ThelB E Syl go’f
MICRO]

K
' 93*“ APPLENl M-,

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

ccccccccccccccccccc

wwwwwwwwwwwwwwwwwwwwwwwww
mmmmmmmmmmmmmmmmmmmm

LILIULIL]LILIUULIUUULIULTULIUU

SUPERBOARD -\
pET 5‘(‘“

I Volumene!)

the 33T @?M
VIIICRIO

Yalumae 2

Oct/Nov 78 to May 79

The BEST of MICRO
Copyright © 1979 by MICRO INK, Inc.
P.O. Box 6502
Cheimsford, MA 01824

617/256-6515

MICRO is a publication devoted to the world of the 6502 microprocessor:
the 6502 based microcomputers, peripheral hardware, software, ideas,
applications, and so forth.

MICRO began publication with the Oct/Nov 1977 issue and was published
regularly on a bimonthly basis for the first year. During the second year ,
MICRO became a monthly publication. This volume, “The Best of MICRO
— Volume 2”, contains all of the significant material from issues 7 through
12 of MICRO. Only the advertising, a few minor articles, and a few dated ar-
ticles have been omitted. Any errors which were discovered after the initial
publication of the articles have been corrected in this collection.

" MICRO obtains most of its material from its readers: users of 6502 based
systems — hobbists and professionals alike. Authors are paid a fee for ar-
ticles which appear in MICRO, and will obtain additional royalties for
reprinting such as this collection.

MICRO is interested in promoting the use of the 6502 and feels that this
can best be accomplished by presenting material that is of a useful, infor-
mative nature as opposed to lots of games or vague ““think” pieces.

MICRO has, in the period Oct/Nov 1978 through May 1979 which is covered
in this volume, focused primarily on the KIM, PET, and APPLE microcom-
puters. This is because the material we recieved was about these three
systems. We would welcome material about the OSI systems, or any of the
myriad of other 6502 based systems which are not as popular. We also an-
ticipate broad coverage of the new 6502 systems that are just becoming
available at the end of the period: the SYM-1 and the AIM-65.

MICRO covers all of the 6502 systems because we feel that ideas
generated on one system may often be useful to users of other related
systems. Therefore, do not just read the stuff in the section on your par-
ticular machine, but find out about the other machines as well, and see
what you can adapt to your own uses.

MICRO is now published monthly by MICRO INK, Inc. For information on
subscriptions and back issues, write to:

MICRO

P.O. Box 6502
Chelmsford, MA 01824
USA

Editor/Publisher
Robert M. Tripp

CONTENTS

AIM I SYMI I KIM ..t e e et ettt e i pages 5 to 62
ASK the DoCtOr Part |ttt it e it e i aa st 7

= Vs S 1 9

=2 (e G 1 1 14

=72 G 7 /Z2 S 16
A Simple 24 Hour Clock forthe AIMB5 i 18
AN AIMB5 USEIr S NOTES . o oottt ittt i et e e st na e e a e naa e eaa s 21
A Digital Clock Program forthe SYM-1 24
Super HI-LO forthe SYM-1 ... et s 26
SYM-1Tape DIreCIOrY .. ittt it it it e ittt 31
SYM-16522 Based TimMer ..o v ittt it ittt it ittt e et a e na e ananens 34
KIM-1 as a Digital Voltmeter s 36
Inside the KIM TTY SeIViCe ..ot ii ittt it ettt anan e aaaaenesns 37
€T 110 = = S 39
LIFE forthe KIM-1and an XITEXVideo Boardttt 47
EKIM or MAXI-KIM Extended Keyboard Input Monitor i 57
Corrected KIM Format Loader for SYM-1 i i et e e e 59
Storage Scope Revisited i e 61
Y 2 = T S | pages 63 to 112
BREAKER: An APPLE Il Debugging Aido i s 65
Two APPLE Il Assemblers: AComparative Review i, 72
APPLE Calls and Hex-Decimal Conversionottt irinini e ns 74
APPLE Il High Resolution Graphics Memory Organizationcociinnnn 75
MOS 16K RAM forthe APPLE Il . .. oot i i ittt e e e 76
LIFEforyour APPLE i i e et 77
An APPLE Il Page 1 Mapooii i i ittt as 81

Exploring the APPLEHIDOS e e 83

How Does 16 Get YoU 107o i i i i e e et ettt e 85
APPLE H Trace List Utilityo i e i e e ettt e et enans 87
8522 Chip SetUp TimMe i i et e et et e e e 93
An APPLE Il Program Edit Aid o e e e e e 94
A Cassette Operating System forthe APPLE Il i i, 97
SC Assembler ll: Super APPLE Il Assemblert e 100
The Integer BASIC Token Systeminthe APPLE Ilt i, 103
Improved Star Battle Sound Effects it 104
Renumber Applesoft e e 106
An APPLE Il Program Relocatorot i i ettt 108
PET pages 113 to 154
A Memory Test Program for the Commodore PETottt 115
PEEKing at PET's BASIC e e 116
PET Update 117
How Goes Your ROM Today? . ..ottt e e e e e 120
High Resolution Plotting forthe PET i e 123
“Thanks for the Memories” A PET Machine Language MemoryTest 123
LIFESAVER .. 132
The Ultimate PET Renumber o e e e 135
APET Hex Dump Program 145
Continuous Motion Graphics, or, How to Fake a Joystick withthe PET 148
The Sieve of Eratosthenes 151
Inside PET BASIC 152
General pages 155 to 224
Manufacturers of 6502 Microcomputers it 156
6502 Interfacing for Beginners: The Control Signals ..., 157

Bufferingthe Busses i, 159

An ASCll KeyboardInterface 162
Real Time Games on O8I i e e e 165
650X Opcode Sequence Matcher 167
Cassette Tape Controller e 173
Expand Your 6502-Based TIM Monitor i e 177
6502 Graphics ROUtINeS ot e e e 1T9
A Close Look at the Superboard Il e e e e e 182
TWO Short TIM Programsot e e e ettt et e e e e e e e 186
A 100 Microsecond, 16-Channel Analog to Digital Convertercc.uunun... 188
Using Tiny BASIC to Debug Machine Language Programsccouiuruuuunnnnn.. 193
The OSI Flasher: Basic Machine Code Interfacingouuieneeinnan.. 198
The MICRO Software Catalogt e 200
6502 Information Resources Updated i, 210
6502 Bibliography 212

AIM SYMIKIM . e pages 5 to 62

AsSK the DOCtOr Part | i e e e e e e 7

Part Il . e e e e e 9

Part I . e e e 14

Part IV e e e e 16
ASimple24 HourClock forthe AIM BG5S et 18
AN AIM B85 UsSer's NOTESot it i e e e e e e e e e e e 21
A Digital Clock Program forthe SYM-1 e 24
Super HI-LO for the SYM-1 o e e e e 26
SYM-1 Tape DireCtoryo e e e 31
SYM-16522 Based Timerottt it e e e e e e e e e e e e e e e 34
KIM-1 as a Digital Voltmeter i e e e e e e 36
Inside the KIM TTY ServiCeottt e e e e e e e e e 37
KimMDase . .o e e e e 39
LIFE forthe KIM-1and an XITEXVideoBoardc.iii ittt e ieennnanns a7
EKIM or MAXI-KIM Extended Keyboard Input Monitor, 57
Corrected KIM Format Loader for SYM-1 it i e e et ns 59
Storage Scope Revisited i e e 61

ASK THE DOCTOR — PART |

Robert M. Tripp, Ph. D.
The COMPUTERIST, Inc.
P.O.Box 3
S. Chelmsford, MA 01824

The Rockwell International AIM 65, the Synertek SYM-1 and the
Commodore KIM-1 form a closely knit family of microcomputers.
Of course they all use the 6502 microprocessor, but the family
resemblence is much deeper than that. A few of the features that
make the three boards so similar are:

1. Each is a “bare” single board microcomputer without a case,
built-in power supply, etc.

2. They have the same basic 1/O support:
A. 20 mA current loop TTY interface; and,
B. Low Speed Audio Cassette interface. All three computers
support the KIM-1 cassette tape format. This means that a
cassette tape generated in the KIM-mode on any of the
machines can be read on any other machine. This tape cassette
compatibility is so complete that it is possible to directly inter-
connect a KIM to SYM, or KIM to AIM, or SYM to AIM via the
the audio cassette interface - without the cassette! Simply take
the Audio Out HI from one computer and connect it to the
Audio IN of the other. Then run the Load KIM format cassette
program on the second computer and the Write KIM format
cassette program on the first computer.

3. They have a compatible bus structure. Each computer has two
dual 22 pin edge connectors with essentially the same
connections. The Expansion connectors have identical placement
of all the Address, Data, Control and Power lines. The Application
connectors have identical placement of most signals that are
common on the three computers - Port A and Port B 1/0, Power
and Ground, Audio Cassette 1/0, TTY 1/O - plus some additional
signals which are unique to each computer. This bus similarity is a
very important component of the AIM/SYM/KIM (ASK) family
compatibility.

4. The SYM intentionally “duplicates” many of the KIM Monitor
routines, and has a similar Hex Keypad and LED Display on board.
The reader is hereby warned to be careful when using SYM
routines which proport to be ‘the same as” the KIM routines. As
will be shown in a later column, there are often minor, but
important differences between two routines which at first appear
identical. For example, in the KIM PACKT subroutine, a successful
return is signaled by the Zero Flag being Set; an error return by the
Zero Flag being Cleared. The similar SYM PACKT subroutine
performs the same packing function, but signals a successful
return with the Carry bit Cleared; an error return by the Carry bit
Set. So, be careful.

An AIM/SYM/KIM Compatibility Example

One way to understand the nature of the similarities and
differences between the ASK family members is to examine in
detail a common situation which involves both hardware and
software for the three systems. MEMORY PLUS(tm) is a
multi-purpose board that was designed for the KIM-1 long before

the SYM or AIM were even a gleam in their creators’ eyes. It
contains 8K RAM, provision for up to 8K EPROM, a 6522 Versatile
Interface Adapter, and an EPROM Programmer. Since it was
designed to work on the KIM-1, it obviously is compatible with
that computer. The question is: Is the MEMORY PLUS compatible
with the SYM and AIM? The answer is Yes, No, and Maybe. Let’s
examine this seeming paradox in some detail.

YES

The 8K RAM and the 8K EPROM work directly with the KIM, SYM
and AIM with no modification. In fact, the same connector cable
may be used to connect the MEMORY PLUS to any one of the
computers. This exact compatibility is due to the fact that all that
MEMORY PLUS requires for operating the RAM and EPROM are
the Address, Data, Control and Power lines, and these are all
positioned identically on the Expansion connector.

NO

The addressing of the 6522 VIA 1/0 was designed to use the K5
chip select that is generated by the KIM and which appears on the
Application connector. This same signal is generated by the SYM
and makes the addressing of the 6522 VIA identical to that of the
KIM. The AIM does not generate this signal. Therefore, without
some sort of modification, the AIM can not use the 6522 VIA, and
since this is the heart of the EPROM Programmer, can not program
EPROMs. Fortunately, there are a couple of unused gates on the
MEMORY PLUS and a minor wiring modification can be made so
that the MEMORY PLUS will itself generate the equivalent of the
K5 signal and permit the AIM to use the 6522 VIA and EPROM
Programmer. This does point out a small, but significant
difference, between the bus signals of the KIM, SYM and AIM. In
general, the SYM made much more of an effort to be KIM
compatible than the AIM did. This example where the KIM and
SYM generate the K1, K2, K3, K4, and K5 signals and the AIM does
not, is probably the greatest difference in the hardware as seen on
the Application and Expansion busses.

MAYBE

Since the KIM does not do al! of the address decoding required for
a system beyond the initial 8K used by the KIM on board, any
additional memory device must generate a DECODE signal which
enables the KIM memory at the proper times. The MEMORY PLUS
board has circuitry to generate the DECODE. The SYM and the
AIM do all of the required address decoding for their operation
on-board, and do not therefore require this signal. The DECODE
signal may be simply ignored in these two systems by not
connecting it from the MEMORY PLUS to the SYM or AIM.

There are other addressing space differences between the three
systems, which may or may not be important in a particular

situation. All three have RAM in locations 0000 to O3FF. This
includes the Page Zero and Stack locations. The KIM does not use
0400 to 16FF, but uses 1700 to 177F for 1/0 and Timers, 1780 to
17FF for RAM, and 1800 to 1FFF for the ROM Monitor. The AIM
has 0400 to OFFF available for on-board RAM expansion, 1000 to
9FFF are available for User expansion, AOOO to AFFF is used for 1/0
and System RAM, and the remainder of the memory is allocated
for various ROMs: B0O0O to CFFF for BASIC, D000 to DFFF for
Assembler, and EQ00 to FFFF for Monitor. The SYM has 0400 to
OFFF for on board RAM expansion, 1000 to 7FFF for User
expansion, 8000 to 8FFF for Monitor ROM, 9000 to 9FFF reserved
for Monitor expansion, A0 to AFFF for System RAM and 1/0,
B0OOO to BFFF for User expansion, C000 to DFFF for BASIC ROM,
E00O to FF7F reserved for Assembler/Editor ROM, and FF80 to FFFF
for SYSTEM RAM Echo locations. The above listing of memory
allocation should make it obvious that the three systems each
have 1/0 and Monitors located in different places, so that software
calling on the 1/0 or Monitor will have to be at least different in
the addresses used. On the MEMORY PLUS this shows up when the
host computer’s Port B is used to generate three of the addresses
required by the EPROM Programmer. While the three lines, PBO,
PB1, and PB2 are all mapped to the same Application connector
locations, the address of the 1/0 device controlling the port is
different. In fact, the 1/0 device on the KIM is a 6530 and the
device on the SYM and AIM is a 6522! All this does is require
different addresses within the EPROM Programming program.
Another memory mapping difference is in the location of the
interrupt vectors. Each of the three computers uses different
addresses to handle the interrupts. The MEMORY PLUS
programmer uses the IRQ interrupt, and must therefore set up the
IRO vector in a different location on the KIM, SYM or AIM. Again,
this is a minor problem, but is an incompatibility. Finally, since the
Monitor is in a different location in each computer, a return to the
Monitor at the end of the EPROM program will be to a different
address for each. If the MEMORY PLUS used the on-board Timers,
then it would again require some modifications to the software. In
the case of the KIM, the Timer is of the 6530 variety; the SYM and
AIM have 6522 types. This would require a different set of
parameters as well as different addresses. As a matter of fact,
MEMORY PLUS uses its own 6522 Timer, and so this problem does
not arise.

One final note of caution on the memory allocation of the three
computers. Even though they all support RAM in locations 0000 to
O3FF, the use of this RAM, especially the end of Page Zero, is quite
different between them, both in the amount of Page Zero RAM
used and the use of particular locations. In addition, while the KIM
and the SYM do not use Page One for anything, in general, except
as the Stack, the AIM makes extensive use of Page One. This
variation in use of Page Zero and Page One will often require that
existing programs undergo some re-definition of addresses and a
re-assembly before they can be moved from one computer to
another, even when the Monitor of the computer is not being used
as part of the program.

SUMMARY

The AIM/SYM/KIM family of 6502 based microcomputers have a
lot in common; but they also have some significant differences. In
most cases these differences are not so great that they can not be
overcome with some careful modification to existing hardware
and/or software. But, significant differences do exist, and any user
who plans to use a variety of these systems should be aware of the

potential problems that exist. Subsequent columns will go into
more detail on the similarities and differences between the ASK
family members.

SYM Cassette Tape Problems

There are two problems with the SYM tape service that users
should be aware of. The first is that the SYM hardware has a filter
circuit that is used in shaping the input signal from the cassette
recorder. This particular circuit is very sensitive and will not work
reliably with all tape recorders. It apparently was optimized to a
particular type of unit, possibly a SuperScope C-190; and is not
very optimal for a large number of other units. Several suggestions
have been made to improve this circuit. One is to replace the
resistor R92 (see page 49 in the SYM Reference Manual for a
circuit diagram) which is a 1K with a 3.3K. Another idea that has
been used was to put a .01 MFD capacitor in parallel with C15
which is a.47 MFD. | have NOT had a chance to try either of these
and do not guarantee that they either work or that they will not
destroy your system. | am merely passing on a couple of
suggestions which were given to me. | hope to be able to give a
more complete and tested set of changes by next month.

The second tape problem has to do with reading KIM format tapes.
As you probably know, the KIM format uses an ASCII “/” character
to signal the end of data. This character has a hex value of 2F. The
SYM Monitor has software to detect the end of data character
which properly detects an ASCH “/” as it should. However, it also
has software which erroneously thinks that an ASCII “2” followed
by an ASCII “F” which when combined make a hex 2F data byte, is
a terminator. This means that anytime your data has a 2F in it, as in
4C 13 2F JMP $2F13 (Jump to address 2F13)

it will mistake the legitimate 2F data as a “/” character and think
that it has reached the end of the data. Since the following bytes of
data will be considered to be the check digits, and will not be
correct, the SYM will give you an error and stop loading. This can
be very disheartening. Synertek is aware of the problem and is
supposed to fix it, but no fix has been received here yet.

One way | have overcome this difficulty, with some difficulty, is to
load my program into the KIM, change any 2F data to an FF, and
then either make a cassette tape or dump the data directly into the
SYM from the KIM via the Audio Out HI on the KIM to the Audio
IN on the SYM. Then | have to go to the SYM and change all of the
FF’s which were substituted for the 2F’s back to their original 2F
value. This is cludgy, but it works. If you do not have a KIM handy,
however, you are out of luck.

Coming Attractions

Future columns will cover all sorts of interesting information about
the AIM, SYM, KIM (and maybe SUPERKIM). If you have
discovered any useful bits of information about these machines,
please drop me a line and [will try to include the info in a future
column. In this way the material can be widely disseminated
without your having to write a whole article about it.

Note: MEMORY PLUS(tm) is manufactured by The COMPUTER-
IST, Inc., P.O. Box 3, S. Chelmsford, MA 01824. It currently retails
for $20000

ASK THE DOCTOR — PART Il
AN ASK EPROM PROGRAMMER

Robert M. Tripp, Ph. D.
The COMPUTERIST, Inc.
P.O. Box 3
So. Chelmsford, MA 01824

One of the most frequently asked questions about the ASK
(AIM/SYM/KIM) family of microcomputers is: “Can a program that
was written for one of the micros run on either of the others?” The
answer is normally no. While the three micros share a lot - common
expansion bus, similar application connector, KIM tape format ...
they do have minor differences in their use of page zero and page
one, some greater differences in their memory and 1/O allocations,
and large differences in their monitor subroutines. Therefore, in
general, the answer to the question is: “No, a program written to run
on one will not run on the others without modification.” This answer
may lead the creative programmer to wonder what it would take to
write programs which would run on all three machines, without
requiring customization for each. What problems would be encoun-
tered? What techniques could be used to reduce the problems?
What about ...2

| faced the three-machine problem for a practical reason. the
MEMORY PLUS™ board that my company makes is hardware com-
patible on the three systems. Part of the package is a cassette tape
with a Memory Test program and an EPROM Programming program.
It would be awkward to have to provide three sets of programs on
the tape and expensive to have to print up three different sets of
program listings. Would it be feasible to write a single program? The
answer turned out to be: “Yes”. The program for the EPROM
Programmer is presented here in its entirity.

There are two major types of compatibility problems. The first is
that the three monitors each have a different set of support
subroutines. Sometimes they may have identical subroutines, but
usually the subroutines are not identical, and often are not even
close! In this particular program, this was not a problem since the
program did not use any monitor subroutines. The second major
problem is that various important locations in memory or in memory
mapped /O are different on the three systems. Examples are the re-
entry address for returning to the monitor at the end of the program,
the location of the interrupt vector, and the address of the
peripheral 1/O port. In this program all three of these address
problems were encountered. The solution for the addressing
problem is fairly simple and will handle all three addressing
problems - if you understand the Indirect indexed mode of ad-
dressing on the 6502. If you are totally unfamiliar with"this ad-
dressing mode, you should consult your programming manual at this
point and find out about it. If you are familiar with it, then this
review may be useful.

The Indirect Indexed addressing mode on the 6502 works by having
a base pointer in a pair of page zero locations which is used to point
to some other location in memory. The contents of the page zero
locations are combined with current contents of the Y register to
form the final address for an instruction. The assembler form of the
instruction is LDA (POINT), Y in the standard MOS Technology syn-
tax or LDAIY POINT in the MICRO-ADE syntax which is generally
used in MICRO. In either case, what results is a form of addressing in
which the page zero pointer forms the base address and the contents
of the Y register allow this address to be modified within a range of

00 to FF. If the pointer value was 2800, then the effective range of
the indirect indexed instruction would be 2800 (with Y = 00) to 28FF
(with Y = FF). The page zero pointer is set up in two consecutive
bytes, with the low byte of the address first followed by the high
byte of the address. In our example, if POINT was the page zero ad-
dress 0006, then location 0006 would contain 00 (the low byte of the
indirect address) and 0007 would contain 28 (the high byte of the in-
direct address). Since the only problem we have to solve for the
EPROM Programmer is one of different addresses for the three
systems, the problem reduces to three steps:

1. Determine which system we are runnng on: AIM, SYM or KIM.

2. Set up appropriate indirect address pointers.

3. Access the variable addresses via the indirect address pointers
using the Indirect Indexed addressing mode.

Now Let’s examine the program in a little detail to see how it ac-
tually accomplishes all of this.

The Program

The program is assembled to run entirely on page zero. It uses a
6522 VIA chip which is located on the MEMORY PLUS board for a
lot of its I/O and timing. The registers within the VIA that are used
are listed under VIA REGISTER OFFSETS. These offsets will be used
within the program to load the Y register prior to making an Indirect
Indexed instruction call so that the appropriate VIA internal register
will be accessed. The first six locations in page zero are used by the
program for parameters to control where the data to be placed into
the EPROM starts in memory, ends in memory, and where it is to be
placed in the EPROM. This information is filled in by the operator
before running the program. Location “VIA” is an indirect pointer to
the MEMORY PLUS V!A chip. This normally will be at lo¢ation 6200
and could have been addressed directly by the program. But, since it
could be in another address, it was decided to handle it through the
Indirect Indexed mode. The “JMPMON” location contains the Op-
code for a JMP. This is used in conjunction with the contents of the
next two bytes, “MONTOR”, to re-enter the system monitor at the
end of the program or when an error is encountered. The actual
monitor re-entry address value is filled in by the program. 1t appears
as 0000 in the listing, but will be altered early in the program as we
shall see below. The “INTVEC” is an indirect pointer to the IRQ in-
terrupt vector which is used as part of the timing service of the
program. This will be properly filled in at the beginning of the
program from a table. “PBDD” and “PBD” are pointers to the Port B
Data Direction and Port B Data registers. These will also be filled in
from a table at the start of the program and will be used in Indirect
Indexed instructions.

The program begins execution at location 0011, after the user has
used his monitor to fill in the appropriate values in the parameters in
locations 0000 to 0005. The first three instructions clear all of the
status bits by pushing a 00 onto the stack from A and popping it into
the status register.

Locations 0015 through 0027 determine which microcomputer the
program is running on by testing the contents of a ROM location.
The contents of location FFFD is specific to each machine. This is
the high order byte of the Reset Interrupt Vector. For the SYM this
will be an 8B; for the AIM an EQ, and for the KIM a 1C. The X register
is loaded with a value which is the start of a table of values which
will be moved into locations 0009 through 0010 to fill in the MON-
TOR, INTVEC, PBDD, and PBD pointers discussed above. The in-
struction at 0028 is unique to the SYM and is required to permit the
program to access some of the SYM’s protected memory locations.
It is not executed by the program for KIM or AIM.

Locations 002B through 0035 move the appropriate table from its
original location at the end of the program into the working indirect
area. The AIM table starts at 00DO; the KIM table at 00D8; the SYM
at 00EO.

By the time we reach ENTER at location 0036, two important things
have been done. First, we have determined which machine we are
running on. Second, using this information, we have set up our in-
direct pointers which will be used by the remainder of the program
to address the machine specific addresses. At ENTER we again set the
status bits to zero. This is done so that a user with a different com-
puter could still use this program. He would do this by manually set-
ting up the pointers in 0009 through 0010 and then starting at 0036 -
ENTER.

Locations 003A through 0044 fill in the system interrupt vector to
point to the interrupt servicing routine of the program which starts
at 00C5. This is a good place to examine the workings of the Indirect
Indexed addressing. The Y register is set to 00. The A register is
loaded with the low byte of the interrupt service routine address.
This value will be C5 since the routine starts at 00C5. This is then
stored in the system interrupt vector which is addressed by adding
the contents of Y (00) to the address contained in INTVEC. For the
AIM INTVEC will have been set to A400; for the KIM INTVEC will be
17FE; for the SYM A67E. So the effective address will be A400 for the
AIM (A400 + 00= A400), 17FE for the KIM and A67E for the SYM.
The A register is then loaded with the high byte of the interrupt ser-
vice routine address, 00 since the routine is in page zero. The Y
register is incremented so that it now contains a 01. When A is now
stored with Indirect Indexed mode through INTVEC, it goes into
A401 on the AIM (A400 + 01 = A401), 17FF on the KIM and A67F on
the SYM. If you are not clear at this point as to how this works, then
STOP. The rest of this article will make no sense until you under-
stand the basics of the Indirect Indexed mode. Re-read the article to
this point, consult your manual, ask a friend.

Using the same techniques of setting Y to an offset value, loading A
with the value to use, and storing in the Indirect Indexed mode, the
VIAis initialized.

The instructions from 005D through 0078 set up the VIA for output.
One additional trick is used here. While we normally think of the Y
register in connection with the Indirect Indexed mode of addressing,
the X register can also be used for this mode of addressing - but only
under one special condition. That condition is when the index value
is 00. In this condition, the Indirect Indexed mode and the Indexed
Indirect mode both collapse to the simple Indirect mode. There are
several places in which we take advantage of this fact so that the X
register can be set to zero once and used several times for ad-
dressing. This section of code now gets the data from the indirect
puinters that the operator set into locations 0000 through 0005 and
outputs the data to the EPROM Programmer.

10

Locations 0079 through 00BA first set a timer in the VIA going for
the 50 millisecond period which is required to program one location
on the EPROM. Then the Peripheral Control Register on the VIA is
set to enable the programming pulse to the EPROM. Again, Indirect
Indexed addressing is used so that the VIA does not have to be at
6200. If it is in any other address, the operator simply sets the poin-
ter at VIA (0006, 0007) before starting the program. Everything else is
automatic.

Locations 008B to 008E form a loop which waits until an interrupt
has occurred and been serviced. If you look down at the interrupt
routine starting at 00C5 you will see that Y is changed so that it is no
longer equal to 0C. At this point the WAIT test will fail and the
program will move on to VERIFY.

Locations 008F through 00C4 perform a series of tests and pointer
updates. When the program reaches the end of the data, or if it
detects an error, it makes a JSR to JMPMON. JMPMON then jumps
to a re-entry point for the appropriate monitor as set up from the
table at the beginning of the program. The reason for making the JSR
is to save the address of where we are coming from to be displayed
by the monitor as an indication of why we exited: successful com-
pletion or one of the three errors. The JMPMON permits us to go to
the correct monitor. While it would have been possible to have the
initialization code change each of the four JSR’s to JSR directly to
the appropriate monitor, this obviously would have entailed more
code and would not have any benefit.

The re-entry to the monitor is the only place where this code makes
use of the system monitor, and wouldn’t you know it - each monitor
handles the re-entry slightly differently. They each display an ad-
dress which is related to the JSR from which it came, but each one
displays a slightly different address. On the successful completion
return which is at 00B7, the AIM displays 00B8, the KIM displays
00B9, and the SYM displays 00BA. It would have been possible to
write some additional code to take care of the address before retur-
ning to the monitor, but this did not seem to be a serious enough
problem to warrant the effort. But it does point out the problems
one can encounter in using the “similar-but-different” monitor
subroutines.

Locations 00C5 through OOCF are the interrupt service. When the in-
terrupt occurs, it is vectored here due to the setup that took place
earlier in the program. The V1A is changed from programming mode
to verify mode and the interrupt is cleared. In the process the Y
register is changed so that the WAIT test will permit the program to
recognize that an interrupt has occurred and to continue.

The ATABLE, KTABLE and STABLE are the pointer values for the
AIM, KIM and SYM respectively. At the start of the program they are
moved into a standard set of locations starting at 0009 (MONTOR).

PROM PROGRAMMER 10 FEBRUARY 1979
PRCM CRG 30000
ACCESS * $8B86 SYM-1 ACCESS ENTRY

VIA REGISTER OFFSETS

ORB * $0000 CUTPUT REGISTER B
ORA * $0001 OUTPUT REGISTER A
DDRB * $00G2 DATA DIRECTION REGISTER B
DDRA * $0003 DATA DIRECTION REGISTER A
TTWOL * $0008 TIMER TWC LOW
TIWOH * $0009 TIMER TWC HIGH
PCR * $000C PERIPHERAL CCNTROL REGISTER
IFR * $000D INTERRUPT FLAG REGISTER
IER * $000E INTERRUPT ENABLE REGISTER
ooce co SAL = $00 STARTING ADDRESS LOW
00C1 60 SAH = {00 STARTING ADDRESS HIGH
G002 00 PRMLOW = $G0 EPRCM LOW ADDRESS
0003 GO0 PRMHGH = $00 EPROM HIGH ADDRESS
00C4 00 EAL - $00 END ADDRESS LCW
0005 00 EAH = $00 END ADDRESS HIGH
0006 00 VIA = $00 PCINTER TO VIA
0007 62 = $62 NORMALLY AT 6200
0008 4C IMPMON = $4C JUMP TO MONITOR
00C9 oo MONTOR = $0C POINTER TO SYSTEM MONITOR
CCCA GO = $o0 FCR RETURN FRCM PROGRAMMER
CooB CO INTVEC = $00 POINTER TC INTERRUPT VECTCR
oooc oC = $00
0ocD OC PBDD = $00 PORT B DATA DIRECTICN
0OOE 0O = $00
00CF CO0 PBD = $00 PORT B DATA
0010 CO = $00

0011 A9 CC BEGIN LDAIM $0O CLEAR ALL STATUS FLAGS
0013 48 PHA

0014 28 PLP

Ccl5 A2 EO LDXIM STABLE ASSUME SYM

0017 AD FD FF LDA $FFFD TEST HIGH BYTE OF INTERRUPT VECTCR
CO1A C9 &B CMPIM ¢€B = 8B FCR SYM-1

001C FO CA BEQ SYM

0ClE AZ DO LDXIM ATABLE ASSUME AIM €5

goz20 C9 to CMPIM ¢EC = EC FOR AIM 65

0022 FC 07 BEQ MOVE IT IS THE AIM

0024 AZ D8 KIM LDXIM KTABLE ASSUME KIM

C02¢ DC 03 BNE MCVE

CC2E 2C 86 8B SYM JSR ACCESS SYM REQUIRES ACCESS

002B 86 30 MOVE STXZ TABLE +01 SETUP POINTER

C0z2D AZ 07 LDXIM 407 MOVE € BYTES

Q02F B5 00 TABLE LDAX {CO REPLACEC BY TABLE
0031 95 09 STAX MONTCR MOVE TC MONTCR TABLE
C033 CA DEX

0034 1C F9 BPL TABLE MOVE UNTIL X = FF

1

0036
co3e
0039
003A
G03C
003E
0040
0042
0043
o045
0047
0049
0048B
004D
C04F
0051
0053
0055
0057
0059
0G58B

005D
005F
0061
0063
0065
0067
0069
006B
0ceéD
006F
0071
G073
0075
0077

0079
0078
067D
007F
oosl
0083
0085
oce7
0oeg

coeB
008D

ccer
0091
0093
Co09%5
6097

A9
48
28
AQC
AS
91
A9
cs
91
A9
AO
91
AO
A9
91
AO
A9
91
AC
A9
91

A2
A9
AD
91
AD
91
61

[4
~

81
AS
81
Al
AQ
91

A9
AD
91
AS
AC
91
AS
AC
91

co
FO

A9
AC
91
AQ
Bl

00

00
C5
0B
00

OB
EC
oc
06
CE
7F
06
i)
FF
113
OE
AD
06

00
FF
02
06
03
06
oD
02
06
03
oF
0o
01
06

50
08
06
C3
09
0¢
CE
oc
06

oc
FC

co
03
0¢
01
06

ENTER

NEXT

T IMER

WAIT

VERIFY

LDAIM
PHA

PLP

LDYIM
LDAIM
STAIY
LDAIM
INY

STAIY
LDAIM
LDYIM
STAILY
LDYIM
LDAIM
STALY
LDYIM
LDAIM
STALY
LDYIM
LDAIM
STAILY

LDXIM
LDAIM
LDYIM
STAIY
LDYIM
STAIY
STAIX
LDA

STAIX
LDA

STAIX
LDAIX
LDYIM
STAILY

LDAIM
LDYIM
STATY
LDAIM
LDYIM
STAIY
LDAIM
LDYIM
STALY

CPYIM
BEQ

LDAIM
LOYIM
STAILY
LDYIM
LDATY

$00

$00

INTRPT
INTVEC
INTRPT

INTVEC
$EC
PCR
VIA
IER
$7F
VIA
IFR
$FF
VIA
IER
$AC
VIA

{00
$FF
DDRB
VIA
DDRA
VIA
PBDD
PRMLCW
VIA
PRMHGH
PBD
SAL
CRA
VIA

$50
TTWCL
VIA
$C3
TTWOH
VIA
$CE
PCR
VIA

PCR
WAIT

$00
DDRA
VIA
ORA
VIA

12

CLEAR ALL STATUS FLAGS

ENTRY IF TABLE PRESET
GET INTERRUPT POINTER
SETUP IN TABLE

/

BUMP PCINTER

SETUP VIA VALUES

DISABLE ALL INTERRUPTS

CLEAR INTERRUPT PENCING

ENABLE TIMER TWO

INIT X RECISTER
SET CATA DIRECTICN

CUTPUT NEXT ADDRESS
LOW 8 BITS

BITS 8, 9, 10
GET DATA BYTE

CUTPUT VIA CRA
SETUP 50 MILLISECCND TIMER

OUTPUT TO TIMER TWO LOW
HIGH BYTE OF TIMER

OUTPUT TC TIMER TWC HICGH
PROCRAM HIGH, PROGRAM MCDE

TEST FOR INTERRUPT SERVICED
ELSE, WAIT FOR IT

VERIFY PROGRAMMING
SET ORA FCR INPUT

SETUP POINTER

0059 C1 00 CMPIX SAL CCMPARE CRIGINAL CATA

0098 FO 03 BEQR OKAY GOOD IF MATCH

009D 20 08 0C JSR JMPMON EXIT CN ERRCR

O0AC E6 0O OKAY INC SAL BUMP DATA POINTER

00A2 DO 07 BNE TEST BRANCH IF NOT ZERC
00A4 E6 01 INC SAH BUMP HIGH DATA PCINTER
00A6 DO 03 BNE TEST BRANCH IF NOT ZERO
COA8 20 08 00 JSR JMPMON EXIT ON ERRCR

OCAB A5 05 TEST LDA EAH TEST ALL DCNE

00AD C5 01 CMP SAH BY COMPARING POINTERS
OCAF DO 09 BNE MCRE

COB1 A5 04 LDA EAL

C0B3 C5 OC CMP SAL

COB5 DC 03 BNE MCRE

0CB7 20 08 00 JSR JMPMCON DONE.

OORA E€ 02 MCRE INC PRMLCW BUMP PRCM PCINTERS
COBC DO 9F BNE NEXT READY IF NCT ZERC

COBE Eé (3 INC PRMHGH BUMP HIGH POINTER

COCO DO 9B BNE NEXT CKAY IF NOT ZERO

C0C2 20 €& 00 JSR JMPMON EXIT ON ERROR

00C5 A9 EC INTRPT LDAIM $EC RESET PROGRAM LOW, VERIFY MCDE
00C7 91 06 STAIY VIA

COCS AC OD LDYIM IFR SETUP TC CLEAR INTERRUPT
0OCB Bl 0¢é LDAIY VIA READ AND WRITE TO CLEAR
GCCD 91 0é STAIY VIA INTERRUPT VIA SNEAKY TRICK
0OCF 40 RTI RETURN FRCM INTERRUPT
0CD0 6D ATABLE = 46D AIM €5 MONITCR ENTRY
oDl E1 = {E1 TG DISPLAY PC CCUNTER
00D2 ©C = $o0 IRG INTERRUPT VECTOR
00D3 A4 = tAL

CoD4 00 = $00 PBDD

0CD5 AC = $AD

0CD6 02 = 402 PBD

00D7 AC = $AD

00D8 C5 KTABLE = $05 KIM MCNITOR ENTRY

0CD9 1C = $1C

OCDA FE = ¢FE IRC INTERRUPT POINTER
coDB 17 - $17

cobC 03 = {03 PBCD

ooDD 17 = $17

CODE (2 = $02 PBD

OCDF 17 = $17

0CED 35 STABLE = ¢35 SYM ENTRY POINT

CCE1 €0 = $80

OCE2 7E = $7E IRG INTERRUPT PCINTER
OCE3 A6 = $AE

QCE4 QO = $00 PBDD

CCES AO = $A0

CCE6 02 = $02 PBC

CLE7 AC = ¢AC

13

ASK THE DOCTOR - PART lil
BITS AND BYTES

Robert M. Tripp, Ph.D.
The COMPUTERIST, Inc.

P.O. Box 3

So. Chelmsford, MA 01824

The Doctor was busy this month and did not get a chance to write
up the EPROM Programmer hardware as promised in the last
issue. Look for it next time. A couple of people did submit some
good info which is printed below. The Doctor encourages such
input. Too much is happening with these new computers for
anyone person to “know it all”, so if you find out something
interestng, please drop us a note and let us get the word out.

Corrected AIM SYNC Program

The early AIM User Manuals had a number of mistakes, as is to
be expected the first batch. One of the more serious errors was
in the listing for the SYN Write and SYN Read programs on page
9-11. The errors have been corrected in later versions of the
manual, but for those of you who need the programs, here they
are - corrected.

SYN Write Program:
0300 20 1D F2 JSR F21D
0303 20 4A F2 JSR F24A
0306 4C 03 03 JMP 0303

SYN Read Program:
0310 A2 00 LDX #00
0312 A9 CE LDA #CE
0314 20 7B EF JSR EF7B
0317 20 EA ED JSR EDEA
031A A2 00 LDX #00
031C A9 DS LDA #D9
031E 20 7B EF JSR EF7B
0321 20 29 EE JSR EE29
0324 C9 16 CMP #16
0326 FO F9 BEQ 0321
0328 DO E6 BNE 0310

Patch for the AIM-DISASSEMBLER

It soon becomes obvious, that the disassembler is extremely
paper consuming, because no single-stepping is provided. The
following program will save you money and time!

Set F1 (010C) to ‘JMP 03D9’ and F2 (010F) to ‘JMP 03CB’. After
loading the desired program address (*), hitting F1 will dissable
just this line on the display. To advance, press the space-bar.
If you want to modify, use ‘I’ and the program jumps to the
Instruction Mnemonic Entry. The current address will not be
changed. ‘ESC’ brings you back to the AIM—Monitor. With
‘F1’, the next address will be disassembled. ‘F2’, however, will
substract the last used op-code length from the current address
and then disassemble the last entry! It is even possible to
disassemble further “backwards”, just keep switching from

14

‘ESC’ to ‘F2’. Of course, a change in the op-code length will
bring up some unexpected results, but very soon you'li catch a
proper op-code again!

03CB AD 25 A4 LDA A425
03CE 18 CLC

03CF E5 EA SBC EA
03D1 8D 25 A4 STA A425
03D4 BO 03 BCS 03D9
03D6 CE 26 A4 DEC A426
03D9 20 24 EA JSR EA24
03DC 20 6C F4 JSR F46C
03DF 20 07 E9 JSR E907
03E2 20 3C E9 JSR E93C
03E5 C9 49 CMP #49
03E7 DO 03 BNE 03EC
03E9 4C 9E FB JMP FBIE
03EC C9 20 CMP #20
03EE DO F2 BNE 03E2
03F0 AD 25 A4 LDA A425
03F3 38 SEC

03F4 65 EA ADC EA
03F6 8D 25 A4 STA A425
03F9 90 DE BCC 03D9
03FB EE 26 A4 1INC A426
03FE 90 D9 BCC 03D9

- Submitted by
Gebhard Brinkmann
Koblenzer Str. 1.
D-5401 Kaltengers
West Germany

SYM Tape Evaluation

As a result of our telephone conversation on Monday, | decided
to look for any possible hardware problems in the SYM Cassette
Interface. Some results are shown below. Whether these are
related to your cassette problems is unknown. in checking my
Sony TC-62, | found an unexpected very slow acting AVC
(increases gain very slowly, decreases rapidly). This could cause
problems in a level sensitive system as the gain slowly increases
during the recording process to a quite large degree.

+3.0v
+25V WAVEFORM A
+2.0V

+3.0vV

+2.5V WAVEFORM B
+20V

+25V r WAVEFORMC
+2.0V |

I o | PR T

740 usec
wide

All waveforms taken at PIN 3 of the LM311 (U26) with a sync
tape generation program running (hi-speed). Audio OUt (HI) is
connected directly to Audio In (A-P to A-L).

WAVEFORM A is the normal condition as received (VIM
80650912 E/C0003)
WAVEFORM B is with C14 (.0047uF) removed
WAVEFORM C is with C14 removed and C16{.01uF) paralled with
1uF

CONCLUSION: C16 is much too small and cou!d easily cause
the system to Become marginal in the presence of noise and
normal level variations. C14 has no apparent real value and
seems to unnecessarily increase transition time uncertainty.
The small value of C16 and the presence of C14 together
simulate the waveform degradation of a very limited band-
width recorder. Their effect augment rather than compensate for
the deficiencies of a recorder. Suprisingly, it appears that it
would be a recorder with poor low, rather than high, frequency
response which would be most likely to have problems with C16
is maintained at its original .01 microfarad value.

Submitted by
Don Lloyd
101 Western Ave., Apt. 76
Cambridge, Ma. 02139

Comments on Synertek BASIC (8K) V1.1
1) 2 ROM's, U21, U22, CO00-DFFF, (J) (0) (CR to start BASIC

2) Commands- CLEAR, LIST, NULL, RUNN, NEW CONT, LOAIj
“A”, SAVE “A”

3) Statements - DATA, DEF, DIM, END FOR, GOTO, GOSUM,
IF...GOTO, IF.. THEN, INPUT, LET, NEXT, ON...

GOSUM, POKE, PEEK, PRINT, READ, REM,
RESTORE, RETURN, STOP, WAIT.

4) Functions - ABS(X), INT(X), RND(X), SGN(X), SQR(X), TAB(l),
USR(I), USR(l,},...Z), EXP(X), FRE(X), LOG(X),
POS(I), SPC(1)

SIN(X), COS(X), TAN(X), ATN(X) all must be
loaded separately - App Note 53-SSC not quite
available.

5) Strings- DIM A$, LET A$, INPUT X$, READ X$, PRINT X$

6) String Functions - ASC(X$), CHRS$(I), FRE(X$), LEFT$(X$,1)

LEN(X$), MID$(X$,1), MID3(X$,1,)), RIGHTS
(X$,1), STR$(X), VAL(X$)
7} Operators = -, +, exponentiation, *,=, (notequal), , ,
(LTE), (GTE), NOT, AND, OR

8) Uses Memory from 0200 HEX up until ROM or no memory,

unless restricted at start up.

9) Weaknesses - Only editing is delete line, delete last character
(RUB-OUT), no ROM TRIG, no program merging
capability.

10) Strengths - Good array features (but no MAT functions), 9

digit accuracy floating points

4 byte floating point numbers

7 bits + 1 bit sign exponent

1 bit sign + 24 bit binary value (M$§bit = 1 always)

& “000F” = 15 decimal

hex string conversion to decimal

USR (1,},...Z) Machine language subroutine multiple

parameters on stack result (A)Y)

Speed is comparable to OSI Kilobaud Oct ‘77 ratings (1IMHz)
Overall subjective by infrequent BASIC user: 7.5/10 seems
appropriate to overall product.

Submitted by
Don Lloyd
101 Western Ave., Apt. 76
Cambridge, Ma. 02139

NOTE: Since this article was originally published, Synertek
Systems has released the new SYSMON V1.1. It is available
through your SYM dealer for $15.00 and may be used to update
your old version system. New SYM-1 systems will come with

the new monitor in place.

15

ASK THE DOCTOR - PART IV
GOOD NEWS/BAD NEWS

Robert M. Tripp, Ph.D.
The COMPUTERIST, Inc.
P.O. Box3
So. Chelmsford, MA 01824

In last month’s issue | announced that Synertek Systems has infor-
med me of an improvement to the SYM monitor which should solve
the audio cassette sensitivity problem that | had mentioned in
several columns. | have since received a copy of the new SYM-1
Supermon Version 1.1 on a pair of EPROMs (which | had supplied to
them) and have had some chance to evaluate the new version. The
documentation | received was in the form of a two page letter. Not
having the monitor listing limited by ability to fully evaluate the
changes.

The Good News
According to the letter only two minor hardware changes are
required in the cassette circuit. This are similar to some reported in-
dependtly by other users and reported in an earlier column. “Change
C16 to .22 microfarad” and “change R97 to 1K ohm”’.

This list of improvements that accompanied the V1.1 monitor, along
with my comments appears below. (The Synertek notes are in bold
face. My comments are normal type.)

1. The improved High Speed Cassette read/write is significantly bet-
ter than before. | was able to write and read quite constantly and
was able to produce a tape on one type of recorder and read it on
another. The volume/tone range was much wider. Whereas before
you had to be right on for any chance of success, now you can have
a reasonable variation in volume and tone and still get a good read.
This is particularly important when you are using different recorders
with different characteristics. The two recorders | tested with were a
Superscope C-190 and a Pioneer Centrex. These fairly high quality
recorders have not worked reliably with the old V1.0 monitor. A
suggestion [had made to Synertek back in June 1978 was to make
the leader time variable. While the 8 seconds they had built-in in
V1.0 is acceptable when you are only occasionally storing a
program, it was much to long if you intended to use the tape service
to save small chunks of data - mailing list information for example.
The above note says that the leader time is now maintained in ram
and can be changed by the user if necessary. Since | did not have the
listing or additional information, | was not able to test this out. But,
assuming it does work, this can be a very significant improvement.
some programs | have written require a lot of extra code simply to
get around the “fixed”” leader problem. They should be much sim-
pler now, since | should be able to set the leader time in ram and
then use the tape cassette routines directly.

2. KIM read. Read routine improved. This has been one of the
biggest problems for the SYM-1 since it release. The V1.0 monitor
had a simple, but powerful, bug. It made an invalid test for the KiM
format ‘end-of-data” character, and treated the legal 32 46 ASCH
pair as an ASCIHI /", thereby terminating prematurely whenever it
encountered a ““2F” in the data. This made the KIM format mode of
the SYM-1 essentially useless. This has been fixed in the new version.
This means that it is now possible to distribute software, data bases,
source files, etc. between the KIM-1, SYM-1 and AIM 65 using the
common KIM format.

3. Beeper frequency adjusted for maximum output. I’ll take their
word for this. It does sound a little louder, but then | had never had
any trouble with the beeper in V1.0

16

4. During the VERIFY command a BREAK key will stop printout
without printing an error message. | didn’t test this minor im-
provement, but it is nice fo keep error messages for real errors.

5. BREAK key is looked for on current loop interface. If you are
using a teletype device, it is handy to have the BREAK key work, so
this change is definitely good.

6. Log-on changed to SY1.1. Yes.

7. After paper tape load the error message count is displayed. | do
not have any paper tape facility to test this, but it is a minor im-
provement.

8. Ability to return to a higher lever program (left arrow).’l do not
quite understand what this is supposed to mean, but | am sure when
additional documentation is available it will make sense.

9. Cassette file 1.D. displayed on left digit seven segments. This is
both cute and useful. They have simply taken the ID value and put it
out on the leftmost digit. It does take a bit of deciphering though.
The figure below shows the value of each segment ‘on the display.
These must be separately read and then added together to get the
file ID. It is useful when you are searching the tape for a particular
tape ID.

10. Unwrite-protect routine added to cassette logic. Again, | could
not test this due to zero documentation.

11. Register name improvement on display during R command.
Hooray! Now the display shows the register name, not a “hard-to-
remember-and-interpret” arbitrary number to identify which register
you are examining. P for program counter; S for stack; F for flags; A
for A register, to represent an X for the X register; and Y for the Y
register. A simple but very nice improvement.

12. Debug-on will not cause ram to be write protected. | did not test
this, but it sounds reasonable.

That's the good news.
The Bad News

The bad news isn’t all that bad, but should be considered. First, the
changes to the Supermon do move some code around and change
some “internal” entry points. Although the Synertek programmer !
talked to said that this was not going to be very important since the
main entry points were not touched, | found the first program | tried
to run, the SYNC generator from the Reference Manual, would not
work since two of the routines it requires have moved. How great a
problem will this be? It is difficult to guess. | haven’t seen the listings
and do not know what routines were changed and also do not know
how often other programmers have used them directly. It will be a
problem for anyone who is trying to make program for distribution
since there may be a requirement for two versions - one for V1.0 and
another for V1.1 - and this adds to the expense and can cause
distribution problems. Hopefully, the number of routines affected is
small and isn’t a big problem - but at present, “Who knows?”.

Second, the V1.1 does use up some {most?, all?) of the Scratch Pad
RAM in the System RAM. While this is not necessarily a big problem
for future programs, it may cause problems for existing programs
which use this previously available resource. Care will have to be
taken when transferring programs from V1.0 to V1.1 to take this
change in scratch pad availability into account.

Third, Synertek does not seem to have a policy yet for how the new
V1.1 will be distributed. They are still waiting for feedback from
myself and a couple of other users before committing to ROM, so it
will be some time before any of the V1.1 are available at all. Then
there is the question of systems already in the field or on dealer’s
shelves. Will there be a reasonable “exchange” policy, say Syner-
tek’s actual ROM production cost of $10-$15.00, or is some outlan-
dish price going to be charged. I strongly feel that Synertek has the
responsibility to offer the new V1.1 at the lowest price possible. Some
of the changes they have made are not “cosmetic” or simple “im-
provements”’. They are basic "‘corrections” to their original
“flawed” V1.0.

SYM-1 Codes

Ever wonder what the various codes were that the SYM used: key-
code, ASClI code, and display code? You can look them up in the
SYM manual in various places, but, why not let the SYM itself
generate a display of these codes. The following program is an aid in
establishing the relations between the three different codes. Start
the program at 0000. The display goes blank, and when a key is
depressed, the display will show key code, ASCHl and display-scan
code for a short time, and go blank again with a “beep”’.

Submitted by
Jan Skov
Majvaenget 7
DK-6000 Kolding
The Netherlands

SYM-1 CODE DISPLAY

JAN SKOV

FEBRUARY 1979

0000 ORG

$0000

SYM SUBRCUTINES

gcoo ACCESS *
goeo SPACE *
0ooo INCHR *
0oo0 QUTCHR *
0000 QuTBYT *
0000 SCAND *
0060 BEEP *
0ocC 20 86 8B START JSR
0003 A2 C6 LDXIM
0005 20 42 83 LOOP JSR
ooceé CA BDEX
0009 DO FA BNE
00CB 20 1B BA JSR
000k 85 EF STAZ
0010 AS 2D LDAIM
0012 20 47 BA JSR
0015 A5 EF LDAZ
0017 20 FA 82 JSR
001A AD 42 A6 LDA
001D 20 FA 82 JSR
0020 AZ OB LDXIM
0022 86 EE STXZ
0024 86 ED STXZ
0026 20 Dé 89 LOOPA JSR
0029 C6 ED DECZ
0028 DO FS " BNE
002D Cé EE DECZ
002F DO F5 BNE
0031 20 72 €9 JSR

0034 4C 00 0O JMP

$8B86
$8342
$8A1B
$8ALT
$82FA
$8906
$8972

SYSTEM RAM ACCESS
QUTPUT SPACE T0 DISPLAY
INPUT CHARACTER

OUTPUT CHARACTER

OUTPUT BYTE

SCAN DISPLAY

ACCESS
$06
SPACE

LOOP
INCHR
$00EF
$2D
CUTCHR
$00EF
OUTBYT
$A642
OUTBYT
$0B
$00EE
$00ED
SCAND
$00ED
LOOPA
$00EE
LOOPA
BEEP
START

DISPLAY BUFFER

DISPLAY AND
TIMER LOOP

A SIMPLE 24 HOUR CLOCK FOR THE AIM 65

Marvin L. De Jong
Department of Math-Physics
The School of the Ozarks
Point Lookout, MO 65726

The program whose listings are given in the AIM 65 disassembly
format is a 24 hour clock that displays the time in hours, minutes,
and seconds on the six right-most digits of the 20 character AIM 65
display. AIM 65 owners can load the program directly from the
listings using the mini-assembler in the AIM 65 monitor. The
program listings were taken directly from the thermal printer on the
AIM 65.

The principal reason for writing the program was to experiment with
the interval timers on the 6522 VIA. One advantage of the so-called
T1 timer on the 6522 is that it can produce equally spaced interrup-
ts, independent of the time necessary to complete an instruction
and the time necessary to process the interrupt. SYM-1 owners may
also use the program with only minor modifications, since the ad-
dresses of the various registers and counters in the 6522 chips are the
same for these two computers. SYM-1 owners will have to change
the display routines, however.

A brief description of the program follows. The first five instructions
set up the interrupt vectors for the AIM 65. The next eight instruc-
tions set up the 6522 VIA for the T1 timer in the free running mode,
enable the T1 interrupt, and set the time interval to $C34E =
49,99810 clock cycles. This number, plus the two clock cycles
necessary to restart the timer, represent 50,000 clock cycles or 0.05
seconds. Thus, the time between interrupts is exactly 50,000 clock
cycles. Twenty interrupts give an interval of 10% clock cycles, or one
second with a one MHz clock frequency. Location $0000 serves as
register for the count-to-twenty interrupts process. It starts at $EC
and advances to $00 before the seconds location is incremented.

The interrupt routine from $0300 to $033C is very similar to the
clock program by Charles Parsons in THE FIRST BOOK OF KIM. The
only difference is that the timers do not need to be restarted in the
interrupt routine. Only the interrupt flag needs to be cleared before
returning from interrupt. This is accomplished by the LDA A004 in-
struction at $0337.

The program from $0226 to $0254 is the display routine from the
AIM 65. First the seconds, minutes, and nours located in $0001,
$0002, and $0003 respectively, are relocated, then converted to
ASCII1, and finally output to the display by the JSR EF7B. Many kinds
of hex to ASCIH routines are possible here. | simply rotated nibble af-
ter nibble into the low order nibble of location $0004 and added $30
to convert to ASCIIL.

AIM 65 owners may be interested in the output routine. Of all the
subroutines mentioned in the “User’s Guide” the one | used is not
mentioned directly. Basically it takes an ASCI! character in the ac-
cumulator and outputs it to the display digit between $00 and $13
(20 character display) identified by the contents of the X register. It
also requires a one in bit seven of the accumulator. Otherwise you
get the cursor. So | did a ORA $80 with the ASCII character in the
accumulator before jumping to the subroutine at $EF7B.

| checked the clock up against WWYV and found it was off by about
0.024%, which is substantial if you wish to keep time over the long
term. | decreased the $4E byte location $0216 to $42 and now it
appearé to be off by only 0.00063%. Of course, these timing errors,
though small, tend to accumulate giving an error of about 0.5
seconds in 24 hours.

18

To start the timer, load the hours, minutes, and seconds locations
with the time at which you intend to start, wait for this time, then
start the program. Of course, there are much more meaningful ap-
plications to this program than simply displaying the time. One
could record the time at which transistions on the I/O pins occur for
example. Have fun.

gz2cce

cz00
201
€203
0206
02086
0208
02¢D
€210
0212
0215
0217
021A
021C
C21F
0221
0223
0224
0225

0226
0228
022A
022C
022E
0230
06232
€234
0235
0236
0228
G23A
023C
023D
C23F
0241
C244
C246
0248
C24A
024B
024D
024E
024F
0250
0252
0254

78
A9
8D
A9
8D
A9
8D
A9
8p
A9
8D
A9
8D
A9
85
58
0o
EA

AS
85
A5

85.

A5
85
A2
EA
48
AQ
A5

o]
7

18
69
0%
20
46
66
66
88
DG
68
AA
CA
EC
BO
4c

8]8]
G4 A4
03
05 A4
co
CE AC
4c
B AC
4E
06 AO
C3
05 AC
EC
co

C1
04
02
05
03
06
13

04
04
OF

30
80
7B EF
06
05
04

F7

CE
EC
26 02

24 HOUR AIM CLOCK

BY MARVIN L. DE JONG
FEBRUARY 1979

ORG §0200

START SEI SET INTERRUPT DISABLE
LDAIM $00 SETUP INTERRUPT VECTCRS
STA $A404 FOR 6522
LDAIM ¢03 POINT TC ADDRESS 0300
STA $A405
LDAIM ¢COC SETUP VIA 6522 FOR TIMER 1
STA $AQCE 1IN FREE RUNNING MCLCE
LDAIM $40
STA ¢ACOB
LDAIM $4E SET LOW BYTE OF TIMER
STA $ACDéE
LDAIM §C3 SET HIGH BYTE OF TIMER
STA $ADO5
LDAIM $EC SET 2C INTERRUPT CCUNTER
STA $occo IN LCCATICN QoCo

CLI ENABLE INTERRUPTS
BRK RETURN TG MONITOR
NCP

DISPLY LDA $0001 MOVE DIGITS TC BE DISPLAYED
STA $0C04 FOR SAFE KEEPING

LDA $0002

STA $0005

LDA {ooe3

STA §Co0é

LDXIM $13 LOAD DISPLAY POSITIGN POINTER
LOCP TXA PUT X VALUE INTC A

PHA SAVE ON STACK

LCYIM {04 SET TC SHIFT FOUR PCSITIONS
LCA $0004 GET LEAST SIGN DIGIT REMAINING
ANDIM $OF MASK TG SINGLE CHARACTER
CLC CLEAR
ADCIM $30 CONVERT 0-9 TO ASCII © - 9
ORAIM ¢80 BIT 80 MUST BE ON FCR AIM
JSR $EF7B AIM OUTPUT ROUTINE

SHIFT LSR $0006 SHIFT TO GET HIGH HALF OF
RCR $0005 DIGIT INTC PCSITICON

ROR 0004

DEY DECREMENT FOUR SHIFT COUNTER
BNE SHIFT KEEP ON SHIFTING

PLA RESTCRE X FROM STACK

TAX

DE X DECREMENT POSITION POINTER

CPXIM {0t TEST 6 DIGITS CUTPUT
BCS LOCP MCRE TC DO
JMP DISPLY DONE. NOW START CVER AGAIN.

19

6300

c300
0301
03063
03C5
0306
0307
0309
0308
030D
G30F
0311
0313
0315
C31¢€
C316
031A
031C
C31E
0320
0322
C324
0325
G327
0329
0328
C32D
032F
0331

0333
0335

G337
033A
G338
033C

48
E6
DO
38
1€
A5
69
a5
c9
90
A9
85
18
A5
69
85
C9
90
A9
85
18
A5
69
85
Cs
90
AS
85

A9
85

AD
be
6€
4c

ce
32

01
01
01
60
22
CC
01

02
01
02
6C
13
G0
02

03
C1
03
24
04
oo
03

£C
0o

04 AD

24 HOUR CLCCK INTERRUPT SERVICE

INTRPT

NCTMIN

IDCNE

CRG

PHA
INC
BNE
SEC
CLC
LDA
ACCIM
STA
CMPIM
BCC
LCAIM
STA
CLC
LDA
APCIM
STA
CMPIM
BCC
LDAIM
STA
CLC
LDA
ADCIM
STA
CMPIM
BCC
LCAIM
STA

LDAIM
STA

LCA
CLD
PLA
RTI

fo3eo

fooee
1DCONE

{oeol
¢l
{cocl
{60
NOTMIN
¢o0
¢oecl

{0002
$01
¢0002
$60
NOTMIN
$co
$cee?

$Coes
¢01
{0003
$24
NOTMIN
foc
$0003

$EC
{occee

$ACCH

20

CCME HERE CON TIMER INTERRUPT

SAVE A REG AND BUMP COUNTER IN 0CCC
DONE WITH INTERRUPT

SET DECIMAL MCDE FCR CALCULATICNS

BUMP ONE SECCNC CCUNTER
BY ADDING 1 WITH CARRY
SAVE

TEST SIXTY SECCNDS

NCT A MINUTE

A MINUTE

ZERC SECCND CCUNTER
THEN BUMP MINUTES

GET MINUTES CCUNTER

AND BUMP

SAVE

TEST HOUR

NOT AN HCUR YET.

AN HCUR, SC ZERC MINUTES

THEN FIX HCURS

TEST 24 HCURS
NOT 24 HCURS
AT 24 HOURS RESET TG ZERC

RESET 2C INTERRUPT COUNTER

RESTART TIMER BY READINC
CLEAR DECIMAL MCCE
RESTCRE A RECISTER
RETURN FRCM INTERRUPT

AN AIM 65 USER’s NOTES

Joe Burnett
16492 E. Tennessee Avenue
Aurora, CO 80012

The AIM 65 Microcomputer, made by Rockwell, is one of the
newest, most versatile home computers available today. At the
time of this writing (January 1979), it sells for $375. For this you
get the complete computer, with a 20 character alphanumeric
display, full size alphanumeric keyboard, a printer which uses
inexpensive calculator type paper, 1K of RAM and 8K ROM-
resident programming. Options include the ability to add 3K more
memory, a 4K assembler, and an 8K Basic interpreter, all on-board,
simply by purchasing them and plugging them in. An
“application” connector and an “expansion” connector accept
standard 44 pin edge connectors, and allow the control and 1/O of
two cassette units and a teletype, as well as off-board additional
memory. On-board programming (ROM-resident) gives you the
ability to display memory in either hex or mnemonic, alter
memory, edit programming, turn the printer on and off, display
registers, and enter any of the many resident subroutines. With
cassette units connected, you can read or write to either one, and
set up the AIM 65 to handle KIM-1 format (X1 or X3) or the AIM 65
format software. The AIM 65 will file and search cassette tapes,
and the front panel alphanumeric display lets you know the status
of the operation in progress as well as the block of data being read
or written. Three keys on the keyboard (F1, F2, and F3) enable user
defined functions through programmed jump instructions, and are
a nice feature. Physically, the computer circuit board itself is
ten inches deep by twelve inches wide, and the keyboard (which
attaches through a supplied ribbon cable) is four inches deep by
twelve inches wide. Included with the computer is a roll of paper
for the printer, “feet” for the computer circuit board and the
keyboard circuit, a User's Guide manual, an R6500 Programming
manual, a System Hardware manual, a Programming Reference
Card, an AIM 65 Summary Card, and a large schematic diagram, as
well as the warranty card (don't forget to mail this in).

Software Compatibility

As with any new product, there are some problems. One is with
the KIM-1 software. The KIM-1is a very basic computer, and the
AIM 65 is sophisticated by comparison. An example of the
problem with the software is the KIM-1 “PLEASE” program.
“PLEASE” loads data into memory locations which either are
dedicated for use by the AIM 65, or are not present in the AIM 65.
Consequently, although the AIM 65 can be initialized to accept
KIM-1 programming, check the listing before you try to do it. Il
save you a lot of time and frustration. The AIM 65 User’s Guide
Manual includes a detailed memory map which you can use to
determine (from a program listing) whether or not the program
you're trying to load will in fact load as advertised.

Some Cassette Control Problems

A second problem is with the cassette unit control circuitry. There
are actually two circuits in the AIM 65 for each cassette unit, and
although Rockwell made an attempt to cover all eventualities,
they didn’t succeed. The first circuit makes use of an integrated
circuit relay driver, which puts a low {ground) at the cassette

control output pin of the “application” connector when the
computer toggles the cassette unit “on”. The second circuit is a
transistor switch which is biased on when the computer toggles the
cassette unit “on”. The problem arises in that not all cassette units
use a positive supply voltage with the negative line common
(connected to the cassette unit frame). General Electric, for
example, typically connects the positive side of the battery (or AC
adapter) to the cassette unit frame, and uses negative voltage for
the motor and electronic circuitry. At first glance, this doesn't
look like a problem; after all, you only need to supply a closure to
the remote switch line, and the cassette unit will run, right? Well,
not quite. ‘If you connect your GE cassette unit to the relay driver
output pin, and the computer control has the cassette unit toggled
“off”, the cassette unit won't shut off. This is because you've put a
negative voltage (from the cassette unit) at a point which has a
nearly equal positive voltage (from the AIM 65), and the result is
close enough to zero volts that the cassette unit motor runs even
though the computer indicated that an “off” condition exists.
Okay, so what about the transistor switch? Figure 9-4 of the User’s
Guide manual shows how to connect the wires. And the cassette
unit won’t run. At this point you’re most likely very annoyed and
confused (1 know | was). The reason that the computer won't
control the cassette unit is that (1) figure 9-4 of the User's Guide
Manual is in error; the positive voltage from the cassette unit
battery should go to pin “F”, and the motor line should go to pin
“E”, of the “application” connector; and (2) the transistor does not
have the voltages necessary to make it work, even after the wires
are properly connected. If you look at the schematic diagram,
vou'll see that the transistor switch in the computer gets its
operating voltage from the circuit it’s controlling. To make it work,
the transistor must have the proper bias (voltage between base and
omitter), and to get this a common ground must exist between the
computer power supply and the cassette unit power supply. It
would seem that all that would be necessary would be to connect
the emitter of the transistor (pin “F” of the “application”
connector) to ground. Now the cassette unit will run and stop in
response to computer control—until you plug in the ear and/or
mic lines. When you do this, and the transistor turns on, you
create a short circuit across the battery (or AC adapter) of the
cassette unit. The reason is that when you wired up the ear/n.c
lines, you connected one side to ground on the 44 pin edge
connector, and now the current finds a path through the cassette
electronic circuitry, and everything stops. Under normal
conditions, the remote switch on the cassette unit microphone is
isolated from everything, so no problem exists. When you make
the return line to the remote switch and the ear/mic line return
common, a short circuit occurs. So what do you do now?
Simulate an isolated switch, similar to what the microphone has.
A relay is the only way, if you're going to control the cassette unit
with the computer. Since my AIM 65 is still in the warranty period,
I have not modified it as I'd like to. However, once the warranty
period expires, I'm going to install two relays on the circuit board
and use the transistor switches to control them. Then it won't
matter what kind of motor control the cassette unit uses; I'll have
the isolated swii~h action required to control any cassette unit,
regardless of the polarity of the voltages involved.

21

A Sample Program

At the time of this writing, neither the Assembler nor the BASIC
interpreter is available from my distributor. This means that any
programming | do has to be done using mnemonic codes.

Although the documentation in the User’s Guide is very good, the
sample programs shown appear to have been produced with the
use of an Assembler. An example is on pages 7-82 and 7-83. This
program is intended to display and print an assembled message,
but the information on how to prepare the message for storage in
memory is absent. So, if you input this program you'll be “ all
dréssed up with nowhere to go”. The program shown below will
allow you to input a message, and then retrieve it, all with the
“bare bones” (1K RAM} AIM 65. How you use this is up to you. It
could be just “for show”, or you can modify it as desired and

include it in more complex routines involving user interaction with
the computer. This program does feature single key access (user
function key F1,F2, or F3). Key F1 allows you to write to memory;
key F2 retrieves the entire message; and key F3 retrieves the
message a line at a time, with the space bar being used to advance
the display to the next line of the message. The maximum length
of the message is 13Y; lines. An asterisk is typed at the end of the
message when it is written to memory, which takes the computer
out of the loop in all of the modes.

! hope the information in this article helps you avoid some of the
problems and frustrations I’'ve experienced. Enjoy your AIM 65.
I'm having a lot of fun with mine, and I'm still learning what it's
capabilities are.

WRITE TO MEMORY PROGRAM

JOE BURNETT

WITH MODS BY MIKE ROWE

DUMP PRINT BUFFER
CARRIAGE RETURN/LINE FEED
INPUT FROM ANY DEVICE
OUTPUT TO ANY DEVICE

SPACE CHARACTER

$002A ASTERISK CHARACTER

CLEAR DISPLAY

INIT MEMORY POINTER
INIT CHARACTER COUNTER
GET AN INPUT CHARACTER
STORE IN BUFFER

TEST TERMINATOR

IF YES, THEN DONE

BUMP POINTER

DECR CHARACTER COUNTER
IF NOT ZERO, GET MORE
LINE FULL, SO PRINT IT
GET NEXT LINE

CLEAR DISPLAY

INIT MEMORY POINTER

INIT CHARACTER COUNTER
GET CHARACTER FROM MEMORY
TEST FOR TERMINATOR

IF YES, THEN DONE

ELSE, DISPLAY CHARACTER
BUMP MEMORY PRINTER

DECR. CHARACTER COUNTER
IF NOT ZERO, GET NEXT CHARACTER
ELSE, PRINT LINE

APRIL 1979
0000 ORG $0000

AIM SUBROUTINES
0000 CRCK * $EA24
0000 CRLF * $E9F 0
0000 INALL * $E£993
0000 OUTALL * $E9BC

ASCII CHARACTER
0000 SPACE * $0020
0000 ASTER *

WRITE MESSAGE TO MEMORY
0000 20 FO E9 WRITE JSR CRLF
0003 A0 OO0 LDYIM $00
0005 A2 13 LINE LDXIM $13
0007 20 93 E9 INPUT JSR INALL
000A 99 00 02 STAY $0200
000D C9 2A CMPIM ASTER
O0CF FQ 47 BEG EXIT
0011 C8 INY
0012 CA DEX
0013 DO F2 BNE INPUT
0015 20 24 EA JSR CRCK
0018 4C 0S5 00 JMP LINE

READ ENTIRE MESSAGE
001B 20 FO E9 REM JSR CRLF
001E AO 00 LDYIM $00
0020 A2 13 RLINE LDXIM $13
0022 B9 00 02 RCHAR LDAY $0200
0025 C9 2A CMPIM ASTER
0027 FO 2F BEQ EXIT
0029 20 BC E9 JSR OQUTALL
0o2c c8 INY
002D CA DEX
002E DO F2 BNE RCHAR
0030 20 24 EA JSR CRCK
0033 4C 20 0O JMP RLINE

22

THEN CONTINUE

READ MESSAGE ONE LINE AT A TIME

0036 20 FO E9 ONELIN JSR CRLF CLEAR DISPLAY

0039 AD 00 LDYIM $00 INIT MEMORY POINTER

003B A2 13 OLINE LDXIM $13 INIT CHARACTER COUNTER
003D B9 00 02 OCHAR LDAY $0200 GET CHARACTER FROM MEMORY

0040 C9 2A CMPIM ASTER TEST TERMINATOR

0042 FO 14 BEQ EXIT IF YES, THEN DONE

0044 20 BC E9 JSR OUTALL ELSE, PRINT CHARACTER
0047 C8 INY BUMP MEMORY POINTER
0048 CA DEX DECR CHARACTER COUNTER
0049 DO F2 BNE OCHAR IF NOT ZERO, CONTINUE
004B 20 93 E9 WAIT JSR INALL ELSE WAIT FOR A SPACE
004E C9 20 CMPIM SPACE FROM KAYBOARD TO CONTINUE
0050 DO F9 BNE WAIT NOT A SPACE

0052 20 24 EA JSR CRCK SPACE, SO PRINT

0055 4C 3B 0O JMP OLINE THEN GET NEXT LINE

COMMON EXIT ROUTINE TGO CLEAN UP
THE DISPLAY AND RETURN TO MONITOR

0058 20 FO E9 EXIT JSR CRLF OUTPUT TO BLANK LINES
005B 20 FO E9 JSR CRLF
0G5E 00 BRK THEN EXIT TO MONITOR

USER FUNCTION DEFINITIONS

010C ORG $010C

010C 4C 00 00 JMP WRITE F1 TO WRITE MESSAGE

010F 4C 1B 00 JMP REM F2 TO READ ENTIRE MESSAGE
0112 4C 36 00 JMP ONELIN F3 TO READ ONE LINE AT A TIME

23

A Vil IAL LLULR TFaRUhAR §T W

AR, LS ETRT AL

Chris Sullivan
9 Galsworthy Place
Bucklands Beach
Aukland, New Zealand

The SYM-1 is a one board hobbyist computer
similiar to the KIM but with a number of
additional features. Since buying the SYM-1
I have had a great deal of fun playing a-
round with both the software and hardwvare
sides of it. The SYM-1 monitor, Supermon, is an
incredible monitor in UK ROM, some of it's sub-
routines are called by the following program.

This program started off as a lesson in
familiarity with the 6502 instruction set and
using the Supermon subroutines to advantage,
but the present version has been modified many
times in order to increase the clock accuracy
and, as my knowledge of the 6502 instruction set
grows, increase coding efficiency. To use it
one should start execution at :200. Then enter
an "A" or "P" (Shift ASCII 5 0) to signify AM
or PM. Then enter the hours (two digits), the
program then outputs a space to separate the
hours from the minutes. Finally enter 2
digits to signify the minutes, the program will
then increment the minutes by 1, and begin the
clock sequence. This slight quirk makes it
ecasier to set the clock using another clock, set
up the "A" or "P", hours and first digit of the
minutes, then enter the last digit of the
minutes as the seconds counter of your setting
clock reaches 0.

There is another slight quirk in that the clock
counts "All 59", "A12 00", “A12 01",,
"pA12 59", "PO1 00","PO1 01" This simpli-
fies the programming and means that 12:30 near
midday is in fact, 12:30 AM according to this
clock! However this is not likely to confuse
many people.

After setting up the initial time, the program
adds 1 to the minutes and then carries on any
carry into the hours, possibly changing "A" to
npn opr vice versa. This section of the program
could be made more efficient with full exploita-

SYM-1 ELECTRONIC CLOCK

tion of the 6502 instruction set. The last sec-
tion in the program is a 1 minute delay. I have
rewritten this section many times in a search
for an accurate 1 minute delay. The first part
is a double loop which also scans the clock dis-
play, this loop takes about 59.8 seconds. The
second part is a double loop to "tweak" the de-
lay up to 60 seconds and consists of 2 delays
using the onboard 6532 timer. This timer is in-
itialised in 1 of 4 memory locations, specifying
+1024, 64, +8, or 1 timing, e.g., the location
to write to if one wants $1024 timing is A417.
This location thus initialised is counted down
in the 6532. The program reads this value until
it becomes negative, at which time the delay is
over.

Some improvements to the program could be made,
for example better coding in the increment min-
utes section. One could also add an alarm fea-
ture, possibly using the on board beeper. The
The section to update the time by one minute
could be used as a part of a background real
time clock, being called by a once-a-minute
hardware interupt generated by an on board 6522
timer chip. Once a minute, processing would be
interupted for 100 cycles or so in order to up-
date the real time clock. Such clocks have many
uses, one of which is to ensure that certain
number-crunching programs don't get tied down
in big loops.

This improved version occupies less RAM by using
jumps to INBYTE rather than INCHAR and messy bit
manipulations. The delay routine has been
improved to use the on board 6532 timer, and
also give greater resolution and hence greater
timing accuracy.

Editor's Note: This program is present primar-
ily for its value in showing how to access the
SYM's monitor for some of the routines. It is
not an "optimal" program for a 24 hour clock,
but should be a good starting point for owners
of SYMs who wish to write similar programs.

BY CHRIS SULLIVAN AUGUST 27, 1978
ORG $0200
SPACE * $0020 ASCII SPACE
ACCESS # $8B86
INCHAR ¥ $8A1B
INBYTE * $81D9
OUTCHR * $8AL7
OUTBYT ¥ $82FA
0200 20 86 8B BEGIN JSR ACCESS
0203 20 1B 8A JSR INCHAR GET A OR P
0206 85 00 STAZ $00
0208 18 CLC
0209 20 D9 81 JSR INBYTE GET HOURS
020C 85 01 STAZ $01
020E A9 20 LDAIM SPACE SPACE CHARACTER
0210 20 47 84A JSR OUTCHR OUTPUT A SPACE
0213 20 D9 81 JSR INBYTE GET MINUTES
0216 85 02 STAZ $02
0218 F8 SED SET DECIMAL MODE FOR REMAINDER OF PROGRAM

24

0219
021A
021C
021E
0220
0221
0223
0225

0228
022A
022C
022D
022F
0231
0233
0234
0236
0238

023B
023D
023F
0241
0243
0245
0247
0249
024C
024E

0250
0252
0255
0257
025A
025C
025F
0261
0264
0265
0267
0269
026B
026E
026F
0271
0272
0274
0276
0278
027B
027E
0280
0281
0283
0284

02
02
60

03
50

02

02

02

84
82

84

82

8a

Al
Al

02

HAVING SET THE INITIAL TIME (LESS 1 MINUTE)
UPDATE THE TIME:

TIMLOP

TIMEX

TIMEY

TIMEZ

NORSET

WAITA
WAITB

WAITC

WAITD

CLC
LDAZ
ADCIM
STAZ
SEC
SBCIM
BEQ
JMP

LDAIM
STAZ
CLC
LDAZ
ADCIM
STAZ
SEC
SBCIM
BEQ
JMP

LDAIM
STAZ
LDAZ
EORIM
BEQ
LDAIM
STAZ
JMP
LDAIM
STAZ

LDAZ
JSR
LDAZ
JSR
LDAIM
JSR
LDAZ
JSR
CLD
LDXIM
LDYIM
LDAIM
JSR
DEY
BNE
DEX
BNE
LDXIM
LDAIM
STA
LDA
BPL
DEX
BNE
SED
JMP

$02
$01
$02

$60
TIMEX
NORSET

$00
$02

$01
$01
$01

$13
TIMEY
NORSET

$01
$01
$00
$50
TIMEZ
$50
$00
NORSET
$41
$00

$00
OUTCHR
$01
OUTBYT
SPACE
OUTCHR
$02
OUTBYT

$CO
$7D
$01
OUTCHR

WAITB

WAITA
$02
$4D
$AL1T
$A406
WAITD

WAITC

TIMLOP

GET MINUTES
INCREMENT
TEST IF NEW HOUR

IF NOT A NEW HOUR

SET MINUTES TO 00

INCR HOURS

TEST HOURS = 13

YES, SET HOURS ‘TO 1
GET A OR P
ASCII P

IS 00 = ASCII P?
NO, THEN SET 00 TO P

YES, THEN SET 00 TO A

GET A OR P

GET HOURS

GET MINUTES

CLEAR DECIMAL MODE

SETUP FOR ALMOST 60 SEC WAIT
COUNTER

NON-DISPLAYING CHARACTER
REFRESH DISPLAY

LOW ORDER COUNTER
HIGH ORDER COUNTER

TWEAK TIME UP TO 60 SECONDS

DIVIDE BY 1024 TIMER
REGISTER OF 6532

VERIFY from 0200 thru 0286 is 356F.

The following subroutines called form part of
the SYM-1's SUPERMON monitor:

ACCESS
system RAM,

Enables the user program to write to
i.e. the RAM contained on the 6532.

It is necessary to call ACCESS before calling
most of the other system subroutines.

INCHAR

Get one ASCII charcter from the input

device (here the hex keypad) and return with it

in the A register.

INBYTE

Get two ASCII characters from the input

device, using INCHAR and pack into a single byte

in the A register.

OUTCHR Output the ASCII data in the A register
to the output device (here the six digit LED
display).

OUTBYT Convert the byte in the A register into
two ASCII characters and output these to the
output device.

Location AM17 1is used to initialise the 6532
timer to count down from the value stored in
AW17, with a divide by 1024 cycles. Thus the
timer register on the 6532 is decremented by one
every 1024 clock cycles. The timer register
sits at location A406, and the time is consider-
ed to be "up" when the value at A406 becomes
negative.

25

SUPER HI-LO FOR THE SYM-1

Jack Gieryic
2041 138th Ave. N.W.
Andover, MN 55303

Super Hl-Lo has a new twist to the game. This program fits into the
standard 1K SYM and execution begins at location 200. The left
two LED digits are your upper limit (initialized to 99) and the
middle two digits are your lower limit (initialized to 00). SYM picks
a random number and you attempt to guess it. Your attempt count
is seen in the right two digits. The right digit will blink when it's
your last guess.

After entering the command GO 200 CR press any key to start the
contest. Enter your two digit guess (decimal only) and hit the “A”
key. Win or loose you get an appropriate message at the end after
which the LED’s go blank. Hit any key and you are ready for a
second game. If you didn’t guess the number then you will be
given one more chance in the next game. If you are lucky enough
to guess the number then you will have one less chance the next
game.

For you SYMMERS who are interested in taking things one step
further, you will find MESSAG an interesting subroutine you may
want to incorporate in your own programs. This code is entirely

SYM SUPER HI-

JCHN GIERYIC
APRIL 1979

LO

SYM REFERENCES

relocatable except for the first four instructions which must be
calculated if the code is moved. The routine uses page zero
locations OD, OE, OF and 10, but you can change that too if
necessary. The A and X registers contain the message buffer
address per comments in the program. This message buffer
contains segment codes which will light up any combination of
LED segments.

Refer to Figure 4-6 Keyboard/Display Schematic in your reference
manual for the LED segments in the lower right corner. Segment
“a” is turned on by setting bit O to a one in a message buffer entry.
Segment “b” is controlled by bit 1 and so on with segments c, d, e,
f, g and the decimal point. Thus a hex 5C is a lower case (@]
(segments ¢, d, e, and g). Feel free to change either message but
don’t forget to add a few OO characters at the start and end of
your message. If you relocate the message buffer then change the
register parameters prior to the call to MESSAG.

One other note on the program. By changing the value at location
206 you can alter the rate at which the right LED will blink when
you reach your last chance.

035E KYSTAT * $896A
035E ACCESS * $8B86
035E OUTBYT * $82FA
035E SCAND * $8906
035E KEYR * $8923
035E GETKEY * $88AF
035E ASCNIB * $8275
035E DISBUF * $A640
035E RDIG * $A645
MESSAGE POINTERS
035E MFAIL * $0360
035E MSUCC * $0380
0000 ORG $0000
0000 00 uPP = $00 UPPER NUMBER
0001 00 LOW $00 LOWER NUMBER
0002 00 ACNT = $00 ATTEMPT COUNT
0003 00 RAN = $00 RANDOM NUMBER 2 - 98
0004 00 TEMP = $00

26

0005
0006
0007
0008
0oe9
00CA
000B
goocC
ooeb
000E
000F
0010

0200

0200
0203
0205
0207
0209

020B
020D
020F
0211
0213
0215

0217
0219

021B
021D
021F
0221
0223
0225

0227
022A
022C
022E
0231
0234
0236
0239
023C
023E
0241

0244
0247
024A
024C
024E
0250
0252

00
00
00
0o
00
00
00
a0
0o
00
0o
00

20
A9
85
A9
85

A9
85
A9
85
85
85
A9
85

E6
A5
c9
DO
A9
85

20
90
A5
20
20
A5
20
20
A5
20
20

20
20
DO
A5
c9
DO
A5

86 BB

60
oc
06
OA

63
00
00
07
01
02
01

03
03
63
04
02
03

6A
EF
00
00
FA
01
00
FA
02
00
FA

06
23
30
07
01
F2
0B

89

03

82

03
82

03
82

89
89

UGES
TGES
BLINK
TDIG
DARK
LATT
ONOFF
BLIM
COUNT
LOOPA
LOOPB
CLIM

BEGIN

TILL

INCRAN

KEYIN

LIMITS

DISP

L T T T T N) S (I I B 1 |

ORG

JSR
LDAIM
STA
LDAIM
STA

LDAIM
STA
LDAIM
STA
STA
STA
LDAIM
STA

INC
LDA
CMPIM
BNE
LDAIM
STA

JSR
BCC
LDA
JSR
JSR
LDA
JSR
JSR
LDA
JSR
JSR

JSR
JSR
BNE
LDA
CMPIM
BNE
LDA

$00
$00
$oo
$00
$00
$00
$00
$00
$00
$00
$00
$00

$0200

ACCESS
$60
BLIM
$06
LATT

$63
UPP
$00
BLINK
LOW
ACNT

$01
RAN

RAN
RAN
$63
KEYIN
$02
RAN

KYSTAT
INCRAN
UPP
HTDEC
OUTBYT
LOW
HTDEC
QuUTBYT
ACNT
HTDEC
ouTBYT

SCAND
KEYQ
READK
BLINK
$01
DISP
ONOFF

27

GUESS UNITS

GUESS TENS

BLINK FLAG 1 = BLINK

SAVE RDIG

1 = DARK

ATTEMPT LIMIT

BLINKING

BLINKING LOCOP COUNT INIT.

|
1

MESSAGE LIMIT

PROGRAM ORIGIN

INIT BLINKING LOOP LIMIT

INIT ATTEMPT COUNTER

INIT UPPER LIMIT
INIT BLINK FLAG

LOWER LIMIT
ATTEMPT COUNT

RANDOM NUMBER

INCREMENT RANDOM NUMBER
IF EQUAL 99 DECIMAL
THEN RESET TO 2

IS A KEY DOWN?

LOOP UNTIL ONE IS DOWN
PUT UPPER, LOWER AND

ATTEMPT COUNT IN
DISPLAY BUFFER

LIGHT LED
IF KEY IS DOWN,

IF BLINKING IS REQUESTED

IF TIME TO TURN CHARACTER ON

0254
0256
0258
025A
025C
025F
0261
0263
0266
0268
026A
026C
026F
0271
0273
0275
0277
0279

027C
027F
0282
0284
0286
0287
0289
0288
028C
028E

0291
0293
0295
0296
0297

0299
0298
029D
029F
02A1
02A3

02A6
02A8
0ZAA
02AC
02AE
02B1
02B3
02B5
02B7
02B9
02BB
028D
02BF

DO
A5
c9
DO
AD
85
A9
8D
Cé
FO
A5
8D
E6
A5
85
DO
E6
4C

20
20
c9
Fo
AA
A5
85
8A
85
4c

A6
A9
18
CA
30

69
DO
65
C5
DO
4C

90
C5
BO
85
4C
C5
90
85
E6
A5
C5
DO
4c

21
09
01
OE
45
08
00
45
09
07
08
45
09
oc
0B
CD
0B
44

AF
75
0A
0B

05
06

05
44

06
00

04

OA
F9
05
03
03
E4

09
00
0B
00
B7
01
02
01
02
02
OA
03
D8

A6

A6

A6

02

88
82

02

02

02

C2

RIGHT

LCOUNT

INCLOP

READK

SETLOP

DECX

ADUNIT

ADUP

RUP

TLOW

INCA

BNE
LDA
CMPIM
BNE
LDA
STA
LDAIM
STA
DEC
BEQ
LDA
STA
INC
LDA
STA
BNE
INC
IMP

JSR
JSR
CMPIM
BEQ
TAX
LDA
STA
TXA
STA
JMP

LDX
LDAIM
CLC
DEX
BMI

ADCIM
BNE
ADC
CMP
BNE
JMP

BCC
CMP
BCS
STA
JMP
cMp
BCC
STA
INC
LDA
cmp
BNE
JMP

INCLOP
DARK
$01
RIGHT
RDIG
TDIG
$00
RDIG
DARK
LCOUNT
TDIG
RDIG
DARK
BLIM
ONOFF
DISP
ONOFF
DISP

GETKEY
ASCNIB
$0A

SETLOP

UGES
TGES

UGES
DISP

TGES
$00

ADUNIT

$0A
DECX
UGES
RAN
ADUP
SUCEED

TLOW
upPP
INCA
upp
INCA
LOW
INCA
LOW
ACNT
ACNT
LATT
TEST
FAIL

28

IF TURN CHAR. OFF

THEN GET CHARACTER
SAVE IT
SET RIGHT DIGIT BLANK

SWITCH FLAG
ELSE RESTORE RIGHT DIGIT

SWITCH FLAG
RESET LOGCP COUNTER

INCR. LOOP COUNTER
LOOP

GET DEPRESSED KEY

IS IT "A" (ATTEMPT)
YES

NO

MOVE PREVIOUS KEY
TO TENS DIGIT

PUT NEW KEY INTO UNITS
LOOP

SET LOCP INDEX (TENS)
INIT A REGISTER

CLEAR CARRY FALG
DECR. X REG.

IF NEG, THEN FINISHED

ELSE ADD 10

LooP

ADD UNITS VALUE
COMPARE TO RANDOM

GUESS = RANDOM

REPLACE UPPER WITH GUESS

REPLACE LOWER WITH GUESS
INCR. ATTEMPT COUNT
LIMIT REACHED?

NO
YES = FAILURE

02C2
02C3
02C5
02C7
02C9
02CB
02CD
02CF
02D1
02D3
02D5

02D8
02DA
02DC
02DE
02E1

02E4
02E6
02E8
0ZEA
0ZED

0300

0300
0302
0303
0305
0307
0308
G30A
030C
030E
030F
0310
0311
0312
0313
0314
0316

38
AS
E5
c9
DO
E6
A5
85
A9
85
4C

E6
A2
A9
20
4cC

Cé
A2
A9
20
4c

A2
38
E9
30
E8
DO
69
85
8A
18
2A
2A
2A
2A

65

60

0A
02
01
0A
07
oc
0B
01
09
2C

OA
03
60
17
0B

OA
03
80
17
0B

00

OA
03

F9

OA
04

04

02

03
C2

03
02

TEST SEC
LDA LATT
SBC ACNT
CMPIM $01
BNE WAIT
INC BLINK
LDA BLIM
STA ONOFF
LDAIM $01
STA DARK

WAIT JMP LIMITS

FAIL- INC LATT
LDXIM MFAIL
LDAIM MFAIL
JSR MESSAG
JMP TILL

SUCEED DEC LATT
LDXIM MSUCC
LDAIM MSUCC
JSR MESSAG
JMP TILL

SUBROUTINE HTDEC

ENTRY JSR HTDEC

LAST ATTEMPT COMING UP

NO
YES - INIT FOR BLINKING

GO WAIT FOR NEXT ATTEMPT

FAILURE = INCR ATTEMPT LIMIT
/ MESSAGE HI BYTE

MESSAGE LO BYTE
DISPLAY FAILURE MESSAGE
RESTART HI-LO

SUCCESS = DECR ATTEMPT LIMIT
/ MESSAGE HI BYTE

MESSAGE LO BYTE

DISPLAY SUCCESS MESSAGE
RESTART HI-LO

THIS ROUTINE WILL CONVERT A HEX NUMBER

TO DECIMAL. UPON ENTRY THE A REGISTER CONTAINS
THE NUMBER TO CONVERT. UPON EXIT THE A REG.
CONTAINS THE UNITS DIGIT AND THE X REGISTER
CONTAINS THE TENS DIGIT.

ORG $0300
HTDEC LDXIM $00
SEC
HTA SBCIM $0A
BMI HTB
INX
BNE HTA
HTB ADCIM $0A
STA TEMP
TXA
CLC
ROLA
ROLA
ROLA
ROLA
ADC TEMP
RTS

INIT TENS COUNT
SUBTRACT 10 DECIMAL
INCR. TENS DIGIT

UNITS DIGIT

0317
031A
031D
0320
0323
0326
0328
032A
032C
032t
0330
0332
0334
0336
0339
033C
033D
033E
0340
0342
0344
0347
0349
034B
034D
034F
0351
0353
0355
0357
0359
035B
035D

8D
8E
8D
8E
AD
85
A9
85
85
85
E6
A4
A2
B9
9D
C8
E8
£0
DO
E6
20
E6
DO
E6
A5
c9
DO
A5
85
A5
C5
DO
60

24
25
37
38
FF
10
00
oD
OE
OF
i)
0D
00
FF
40

06
Fa
b
06
OE
F9
OF
OF
02
Fl
0]
oF
0D
10
D5

03
03
03
03
FF

FF
A6

89

SUBROUTINE MESSAG

ENTRY JSR MESSAG

THIS ROUTINE WILL PARADE THE MESSAGE SPECIFIED

BY THE CALLER ACROSS THE LEDS. THE A REGISTER
CONTAINS THE LO BYTE OF THE MESSAGE ADDRESS. THE
X REG. CONTAINS THE HI BYTE OF THE MESSACE ADDRESS.
THE FIRST BYTE OF THE MESSAGE CONTAINS THE NUMBER
OF BYTES IN THE MESSAGE MINUS 5. THIS COUNT
INCLUDES THE FIRST BYTE

MESSAG STA
STX
STA
STX
MAD LDA
STA
LDAIM
STA
STA
STA
INC
MESS LDY
LDXIM
MADX LDAY
STAX
INY
INX
CPXIM
BNE
INC
MESSA JSR
INC
BNE
INC
LDA
CMPIM
BNE
LDA
STA
LDA
CMP
BNE
RTS

MAD

MAD

MADX
MADX
$FFFF
CLIM
$00
COUNT
LOOPA
LooPs
COUNT
COUNT
$00
$FFFF
DISBUF

$06
MADX
COUNT
SCAND
LOOPA
MESSA
LOOPB
LOOPB
$02
MESSA
LOOPA
LOOPB
COUNT
CLIM
MESS

+01 CHANGE INSTRUCTION
+02

+01 CHANGE INSTRUCTION
+02

ADDRESS WILL BE CHANGED

ADDRESS WILL BE CHANGED

THE FAILURE MESSAGE BEGINS AT LOCATION 0360.

THE FIRST BYTE IS THE HEX NUMBER OF BYTES IN

THE MESSAGE MINUS FIVE. THE MESSAGE IS IN THE
FORM OF SEGMENT CODES. A MEMORY LISTING FOLLOWS.
LOAD THIS BEGINNING AT LOCATION 0360.

0360 0B 00 00 6E 3F 3t 00 38 3F 3F
0368 3F 3F 6D 79 00 00 00 00

THE SUCCESS MESSAGE BEGINS AT LOCATION 0380.

0380 08 00 00 39 5C 50 50 79
0388 58 78 00 00 OO

30

SYM-1 TAPE DIRECTORY

John Gieryic
2041 138th Avenue N.W.
Andover, MN 55303

The SYM-1's high speed tape format enables re-
cording and loading of 1K of RAM in just a few
seconds (185 bytes per second). This quick and
easy means of saving and restoring memory will
have you SYM-1 owners quickly wrapped up in
tape. With the possibility of 254 ID's (01 thru
FE) you may forget which ID's you've already
used or where you stored a particular identifi-
er. Maintaining records sometimes seems second-
ary when you are eagerly pursuing an idea.

This program will refresh your memory quickly.
When DIRECTORY "finds" a tape record it will ex-
tract the ID, startind address and ending ad-
dress + 1. This information will be paraded
across the LED's in much the same format used
.when you saved the data on tape. The program
will then continue its search for more records.
The process is terminated by pressing the RST

key.

The first part of the program (locations 205
thru 232) is taken from the monitor routine
LOADT. Since this is not a subroutine (callable
by a JSR), I had to copy the necessary logic

into my program. The last part of the program
makes extensive use of subroutine calls to two
of my own subroutines and several of the moni-
tor's. Any newcomers to programming should take
time to trace through this in order to see the
power of subroutines.)

SYM TAPE DIRECTORY

High Speed Format Only: START: GO 200 CR

TAPE FORMAT:

256 Sync Char #* 1ID SAL SAH EAL+1 EAH+1

DATA / CKL CKH EOT EOT

This program will extract the tape identifier
(ID), the starting address (SAL and SAH), the
ending address (EAL and EAH) and will "parade"
this information on the LED's. The program will
then go back to the tape and search for the next
record. The program is terminated by pressing
the RST key.

SYM TAPE DIRECTORY

SYM REFERENCES

ACCESS *
START #*
SINC ¥
RDCHTX #*
RDBYTX *
RDBYTH *
OUTDSP #
NIBASC ¥
SCAND ¥
DISBUF *#
DDRIN
VIAACR
LATCHL
MODE

* o W ok

ORG

0000
0001
0002
0003
0004
0005
0006
0007

00
00
00
00
00
00
00
00

ID
SAL
SAH
EAL
EAH
TEMP
LCNT
HCNT

L LI I T R 1 S T N F O T I } |

3

$8B86
$8DB6
$8D82
$8DDE
$8E28
$8DE2
$89C1
$8309
$890B
$A641

$4002
$A00B
$A00U
$00FD
$0000
$00 TAPE ID LOCATION
$00
$00
$00
$00
$00
$00
$00

LOW LOOP COUNTER
HIGH LOOP COUNT

0200 ORG $0200 PROGRAM ORIGIN

0200 20 86 8B BEGIN JSR ACCESS ENABLE SYM PROTECTED MEMORY

0203 A0 80 LDYIM $80 SET HIGH SPEED MODE
0205 20 B6 8D JSR START INIT TAPE ROUTINES
0208 AD 02 AO LDA DDRIN

020B 29 BF ANDIM $BF

020D 8D 02 A0 STA DDRIN

0210 A9 00 LDAIM $00

0212 8D 0B AO STA VIAACR

0215 A9 1F LDAIM $1F SET UP TIMER

0217 8D 04 AO STA LATCHL

021A 20 82 8D FIND JSR SYNC SEARCH TAPE FOR RECORD
021D 20 DE 8D READ JSR RDCHTX GET CHARACTER

0220 C9 2A CMPIM '* COMPARE FOR ASTERISK
0222 FO 06 BEQ TEST MATCH

0224 C9 16 CMPIM $16 TEST SYNC CHAR
0226 DO F2 BNE FIND

0228 FO F3 BEQ READ

022A A5 FD TEST LDA MODE

022C 29 BF ANDIM $BF

022E 85 FD STA MODE

0230 20 28 8E JSR RDBYTX GET ID

0233 85 00 STA 1D SAVE ID

0235 20 28 B8E JSR RDBYTX GET SAL FROM TAPE
0238 85 01 STA SAL SAVE

023A 20 28 BE JSR RDBYTX GET SAH FROM TAPE
023D 85 02 STA SAH SAVE

023F 20 E2 8D JSR RDBYTH GET EAL

0242 85 03 STA EAL SAVE

o244 20 E2 8D JSR RDBYTH GET EAH

0247 85 04 STA EAH SAVE

0249 A9 00 LDAIM $00 CLEAR OUT DISPLAY BUFFER
02u4B 8D 41 Ab STA DISBUF

024E 8D 42 A6 STA DISBUF +01

0251 8D 43 A6 STA DISBUF +02

0254 8D 44 A6 STA DISBUF +03

0257 8D 45 A6 STA DISBUF +04

025A A5 00 LDA ID TAPE ID

025C 20 96 02 JSR DISPL SEND IT TO DISPLAY
025F A9 2D LDAIM '- ASCII DASH

0261 20 C1 89 JSR OUTDSP SEND IT TO DISPLAY
0264 20 B5 02 JSR DELAY PAUSE

0267 A5 02 LDA SAH START ADDRESS HIGH
0269 20 96 02 JSR DISPL SEND TO DISPLAY
026C A5 01 LDA SAL START ADDRESS LOW
026E 20 96 02 JSR DISPL SEND TO DISPLAY
0271 A9 2D LDAIM '- DASH

0273 20 C1 39 JSR OUTDSP DISPLAY IT

0276 20 B5 02 JSR DELAY PAUSE

0279 A5 04 LDA EAH END ADDRESS HIGH
027B 20 96 02 JSR DISPL

02TE A5 03 LDA EAL END ADDRESS LOW
0280 20 96 02 JSR DISPL

32

0283
0285
0288
028B
028D
0290
0293

0296
0298
0299
0294
029B
029C
029E
0241
02AY4
02A7
0249
02AB
02AE
02B1
02B4

02B5
02B7
02B9
02BB
02BE
02C0
02C2
02CY
02C6
02C8
02CA

A9
20
20
A9
20
20
iC

85
64
6A
6A
6A
29
20
20
20
A5
29
20
20
20
60

A9

85
20
E6
Do
E6
A5
C9
Do
60

00
C1
B5
00
C1
B5
00

05

OF
09
C1
B5
05
oF
09
C1
B5

00
06
07

06 ¢

05
F9
07
07
03
F1

89
02

89
02
02

83
89
02

83
89
02

LDAIM
JSR
JSR
LDAIM
JSR
JSR
JMP

$00 ADD 2 TRAILING BLANKS
OUTDSP

DELAY

$00

OUTDSP

DELAY
bEGIN GO TO NEXT RECORD ON TAPE

SUBROUTINE DISPL

ENTRY LDA (BINARY DATA)
JSR DISPL

THE UPPER FOUR BITS IN THE A REGISTER ARE

CONVERTED TO

THEIR ASCII EQUIVALENT, SENT

TO THE DISPLAY VIA SUBROUTINE DELAY. NEXT
THE PROCESS IS REPEATED WITH THE LOWER

FOUR BITS.

DISPL STA
RORA
RORA
RORA
RORA
ANDIM
JSR
JSR
JSR
LDA
ANDIM
JSR
JSR
JSR
RTS

TEMP SAVE A REGISTER
RIGHT JUSTIFY LEFT FOUR BITS

$0F MASK TO FOUR BITS
NIBASC CONVERT TO ASCII
OUTDSP SEND TO DISPLAY
DELAY PAUSE
TEMP RESTORE A »
$0F MASK OFF TO LOWER FOUR BITS
NIBASC CONVERT TO ASCII
OUTDSP SEND TO DISPLAY
DELAY PAUSE
RETURN

SUBROUTINE DELAY

ENTRY JSR DELAY

THIS ROUTINE

WILL CALL SCAND FOR A PERIOD

OF TIME IN ORDER TO ILLUMINATE THE 6 LED'S

DELAY LDAIM
STA
STA

WAIT JSR
INC
BNE
INC
LDA
CMPIM
BNE
RTS

$00 INIT LOOP COUNTERS
LCNT

HCNT

SCAND SYM DISPLAY

LCNT

WAIT DELAY

HCNT

HCNT TEST COUNTER

$03

WAIT

33

SYM-16522-BASED TIMER

John Gieryic
2041 138 Avenue, NW
Andover, MN 55303

Your SYM-1 comes with a number of timers capable of a wide
range of timing intervals. Unfortunately the SYM REFERENCE
MANUAL does not provide information which can easily be
digested by a novice. I'd like to attempt a more down to earth
description of timer 1 on the Versatile Interface Adapter 6522 for
those of us who aren’t hardware inclinded. This timer is capable of
very accurate time delays in the range of fractions of a second. it
has an interrupt associated with it plus the ability to generate
evenly spaced interrupts.

Setting Up The Interrupts

The first step in programming this timer is to place an address in
the Interrupt Request Vector [IRQ] located at address A67E and
A67F. A67E contains the low byte of the address and A67F contains
the high byte. This address in the IRQ is the location you will be
“jerked to” when the timer times down and generates an interrupt.
Your code will be as follows:

Location Code

200 20 86 88 JSR ACCESS disable memory write protect
203 A9 00 LDA #00 interrupt address
205 8D 7E A6 STA A67E Low byte
208 A9 03 LDA #03

20A 8D 7F A6 STA A67F High byte

Our next step is to set two locations so the hardware can “see” the
interrupt and tell us where it is coming from. These two locations
are the Interrupt Flag Register [IFR] at location AOOD and the
interrupt Enable Register [IER] at location AOOE. The IER controls
interrupts from 7 different sources on the 6522. We will only be
interested in bit 6. This is the one for our timer T1. We must set this
bit to a logic 1. This tells the 6522 we will accept interupts from
timer T1. The code follows:

-Location Code
20D A9 CO LDA #CO
20F 8D OF AQ STA AQOE

“Hey, wait a minute! Where did that ‘C’ come from? | thought you
said we were only going to set bit 62"

Yes, | did. We must supply the 6522 with a bit more information
{no pun intended). We must tell it we are going to SET one of the
IER bits. This is done by setting bit 7 to a logic 1, hence our CO.

Note bits 0 thru 5 are a zero. This tells the 6522 we don’t want to
change the condition of any of the other bits in the IER when we
do our store. From this you should be able to see how we CLEAR
any one of the 1ER bits. You guessed it. Bit 7 will be a logic zero
and the IER bit{s) to be cleared will be a logic 1.

I'he Interrupt Flag Register [IFR] tells the user which interrupt has
occurred {when we get one). This information can be used by the
interrupt routine to “see” which element on the 6522 gave us the
interrupt. We want to initialize (clear) our flag bit for timer T1 (bit
6). | don’t want to disturb any of the other bits. Note clearing a bit
in the IFR is not the same as in the 1ER.

Location Code

212 AD OD AO LtDA AOOD
215 29 BF AND #BF
217 8D OD AO STA AOCD

When we do get an interrupt from any of the enabled 6522 devices
(bit=1 in the IER) then bit 7 in the IFR and the corresponding bit
in the IFR will both be set to a logic 1. We can determine if this
interrupt came from the 6522 by just looking at bit 7 of the IFR
(ASL followed by a test of the C bit). If bit 7 is a logic zero then the
interrupt came from some other place. This will save some time
when we are trying to find out where this interrupt originated. You
should log this bit 7 information in the back of your mind since |
won't use it here.

Setting Up The Timer

One more step before starting our timer. 'm going to set our timer
to the free running mode. This means it will count down, give an
interrupt and then immediately begin counting down again. |
won't need to worry about instruction cycle times within any
timing loops. | know I will get repeated interrupts at the exact
interval requested. Setting the Auxiliary Control Register [ACR] bit
7 to a logic 1 establishes the free running mode.

Location Code
21A A9 CO LDA #CO
21C 8D OB AC STA AOOB

Now we have the four mechanical steps finished...setting up the
IRQ, IFR, IER and ACR. Setting the time delay is next. The T1 timer
has two latches (high and low order) and two counters (high and
low order). This results in a 16 bit counter. The low order latch is
loaded first. In this example | will set up for a delay of .05 seconds.
This corresponds to a count of C350 (one count for each
microsecond).

Location Code
21F AS 50 LDA #50 load low order latch
221 8D 06 AO STA A006

Now we will load the high order latch with the value C3. This
instruction will do more than load the high order latch. It will also
write the high order latch into the high order counter as well as
write the low order latch into the low order counter. This one
instruction will transfer all 16 bits from the latches to the counter
at the same instant. Without this hardware assist we would be
unable to load the counter accurately since the counter begins to
count down immediately after being loaded.

Location Code
224 A9 C3 LDA #C3 load high order latch
226 8D 05 AO STA A005

The timer is now running and will generate an interrupt .05
seconds (C350) later. This corresponds to 50,000 clock cycles. If
you were programming a clock your remaining code at location
229 would now initialize your hours, minutes and seconds
counters, initialize the display buffer and then go into a tight loop
calling SCAND in order to illuminate the LED's.

Servicing The Interrupt

Our interrupt routine at location 300 is now executed when we
receive the interrupt. The first thing we must do is SAVE the
processor status and registers. This is done so we can restore these
items when we are finished with our interrupt processing and jump
back into SCAND from where we were “jerked out.”

Location Code

300 08 PHP save processor status on stack
301 48 PHA save accumulator on stack
302 8A TXA transfer X to A

303 48 PHA save X register on stack

304 98 TYA transfer Y to A

305 48 PHA save Y register on stack

35

If you were programming a clock you would now increment a
counter. If the counter equalled twenty then reset it and increment
the time in the display buffer by one second.

Now the interrupt is “serviced.” In order to clear the way for the
next interrupt, the T1 interrupt flag must be reset otherwise the
next interrupt will be blocked. This clearing can be done in either
of two ways. Method 1 will write into the high order latch. This
write uses a different address for the store instruction than the
write used to initialize the timer counter. In doing this the T1
interrupt flag will be reset but it will not disturb the current value
in the counter. Remember this is a free running counter in our
example and automatically resets itself when the interrupt
occurred. By this point in time it has already counted down from
its original value of C350 toward zero (and the next interrupt).
Method 2 will read the low order counter. Either method will reset
the T1 interrupt flag.

Method 1
Code
A9 C3 LDA #C3
3D 07 AO STA A007

Method 2
Code
AD 04 AO LDA A004

Now the processor status and registers can be restored and a return
executed to the location in SCAND at which the interrupt
occurred. Remember you must restore the registers in the exact
reverse order used at the entrance to the interrupt routine. This is a
major point.

Code

68 PLA puill accumulator from stack
A8 TAY transfer to Y index

68 PLA pull accumulator from stack
AA TAX transfer to X index

68 PLA pull accumulator from stack

28 PLP pull processor status from stack
40 RT! Return from Interrupt

That's the end of the lesson for today. In a future article | will use
the information presented here to develop an operating system for
your SYM-1.

KIM-1 AS A DIGITAL VOLTMETER

Joseph L. Powlette and Charles T. Wright
Hall of Science, Moravian College
Bethlehem, PA 18018

Several programs have been described in the 1lit-
erature which turn a KIM-1 microcomputer into a
direct reading frequency counter. In "A Simple
Frequency Counter Using the KIM-1" by Charles
Husbands (MICRO, No. 3, Pp. 29-32, Feb/Mar,1978)
and in "Here's a Way to Turn KIM Into a Freq-
uency Counter" by Joe Laughter (KIM User's Note
Issue 3, Jan, 1977), good use is made of KIM-1's
interval timers and decimal mode to produce a
useful laboratory instrument. A simple change
in hardware will allow these same programs to
serve as the basis of a direct reading digital
voltmeter. This article describes an inexpen-
sive voltage-to-frequency converter (VFC) cir-
cuit which is compatible with these programs and
also describes some software modifications which
will allow Husbands' program to operate down to
low frequency (10 HZ) values.

Hardware Configuration

The VFC circuit is shown in Figure 1. The 4151
chip is manufactured by Raytheon and is avail-
able from Active Electronic Sales Corp., P.O.
Box 1035, Framingham, MA 01701 for $5.00 or from
Jameco Electronics, 1021 Howard Street, San
Carlos, CA 94070 for $5.95. The circuit param-
eters given in Figure 1 have been modified from
the values suggested by the manufacturer in
order to match the pulse requirement for the KIM
TRQ signal. The frequency of the output pulse
is proportional to the input voltage and the 1Kae
(multiturn) trimpot is used to adjust the full-
scale conversion so that 10 volts corresponds to
a frequency of 10 KHz. It is not necessary to
calibrate the KIM-1 as a frequency meter since
. any variation in its timing can be compensated
for by the trimpot. A known potential is con-
nected to the VFC input and the trimpot adjust-
ed until the KIM readout agrees with the known
voltage value. The linearity of the VFC is
better than 1% down to 10 mv (linearity of 0.05%
can be achieved in a "precision mode" which is
described in the Raytheon literature). The
circuit will not respond to negative voltages
and protection of the chip is provided by the
1N914 diode. If negative voltage readings are
also required, the input to the VFC can be pre-

ceded by an absolute value circuit (see IC OP-
AMP cookbook by Jung, p. 193, Sams Pub.).

To operate the system using Laughter's software
the following connections should be made: 1)

the output (pin 3) of the VFC to the PBO input
of KIM (pin 9 on the application connector) and
2) PB7 on the KIM to IRQ on the KIM (A-15 to E-
by, Execution of the program should cause the
voltage to flash on the KIM display in one sec-
ond intervals.

The software described in Husbands' article will
not operate below 500 Hz. This limit is caused
by the fact that the contents of the interval
timer are read to determine if the 100 millisec-
ond interval has elapsed and since the interval
counter continues to count (at a 1T rate) after
the interval has timed out, there are times when
the contents of the interval timer are again
positive. If the interrupt should sample during
this time, the branch on minus instruction will
not recognize that the interval has elapsed.
This problem will manifest itself as a fluctuat-
ing value in the display and is most likely to
occur at low frequencies. One solution is to
establish the interval timer in the interrupt
mode and then allow the program to arbitrate the
interrupt, i.e., to determine whether the inter-
rupt was due to the input pulse or the expira-
tion of the 100 millisecond interval timer. The
necessary changes to Husbands' program are given
in Figure 2. The hardware connections are: 1)
output of the VFC (pin 3) to the KIM IRQ (pin 4
on the KIM gﬁgansion connector), and 2) PB7 on
the KIM to IRQ on the KIM (A-15 to E-4). The
modified program starts at 0004 with a clear
interrupt instruction. Locations 17FE and 17FF
should contain 21 00 and 17FA and 17FB should
have values 00 10 (or 00 1C).

+ 12V
Voltage input I P ”__.TO PIN 6
1 TR
0 to+1i0V 100K INSI4 3 8K 1K iM POT
7 2
Ol pf =
T Lf a5 +5v -
= | VFC
|yt 5K
6 3
frequency
- 100K output
5
4 -.._..:I
6.8K —
I0.0033pf =
+1_v °
Figure 1. Voltage-to-Frequency Converter (VFC)

circuit.

36

Additional Comments

The program modifications above will also extend
Husbands' frequency counter circuit down to 10
Hz (corresponding to 1 input. interrupt in 100
milliseconds). Since the 74121 monostable mul-
tivibrator does not have an open collector
output, PB7 should not be connected (along with
the 74121 output) directly to the KIM IRQ. Two
solutions are:

1. Leave PB7 unconnected. The expir-
ation of the 100 millisecond clock will
be recognized on the next input interrupt
after the timer has timed out. The int-
erval timer will not interrupt the micro-
processor, however.

Connect PB7 to one input of a two input
AND gate and the output of the monostable
to the second input. The output of the
AND gate should be connected to the KIM
IRQ. The expiration of the 100 millisec-
ond interval will now also interrupt the
processor and will result in a faster
response to a change in frequency values
(from high to very low) as well as a more
accurate low frequency count.

The authors would like to thank Charles Husbands
for taking the time to answer our questions and
for pointing out the article by Laughter.

ORG $ 0004
0004 58 CLI clear interrupt flag
OOiM 8D OF 17 STA clock in interrupt mode
OOéM AD Q7 17 LDA read interrupt flag bit 7
OOéC 8D OF 17 STA clock in interrupt mode
Figure 2. Changes in Husbands' program to ext-

end the low frequency range to 10 Hz.

INSIDE THE KIM TTY SERVICE
Ben Doutre
621 Doyle Road
Mont St-Hilaire, Quebec
Canada }J34 1M3

The fact the KIM’s serial TTY port, plain and unmodified, will
operate comfortable at 9600 bauds does not seem to be widely
known. |, for one, went the parallel interface route as soon as |
acquired a higher speed terminal, and | suspect that many others
may have done likewise. After all, what can one expect of an
interface described in the User's Manual in these terms: “You are
not restricted to units with specific bit rates (10 CPS for TTY) since
the KIM-1 system automatically adjusts for a wide variety of data
rates (10 CPS. 15 CPS. 30CPS. ETC.(.- “That's pretty wide, alright,
from 10 to etc. Other writers have been equally vague. Gary
Tater in MICRO 9:14, “A Fast Talking TIM” mentions that “KIM
can adapt to terminal frequencies up to 2400 baud...”. This was the
last straw, and | either had to pull the plug on my “Fast Talking
KIM”. or attempt to put the record straight
First off, let me say that according to my interpretation of what
goes on in KIM, the theoretical maximum baud rate of the TTY
port is 15,625. How’s that for pinning down the etc? Not that you
should try to operate at this rate without some of the well-known
“fine tuning”, but there is no reason why you can’t hook up your
9600 or 4800 baud terminal, with 30 cents worth of gates, and be
up and running, with or without reading the following details. If
you want to know from whence this bonanza, here is the story.

The smarts for the KIM TTY interface are in the monitor software,
so let’s start at that end. There are two main TTY 1/O routines:

GETCH at 1E5A and OUTCH at 1EA0. GETCH returns with the
character in A but strips off the parity bit in the process. If you
need bit 7 (counting from 0) for your own deep, dark reasons, then
retrieve the full character from CHAR at OOFE on your return.
OUTCH (love that label!) outputs a stop bit, then a start bit, then 8
data bits (LSB first), then another stop bit. 1t may seem illogical to
start with a stop, but remember that, aside from slow machinery,

37

the main purpose of a stop bit (line high) is to make sure that the
start bit (line low) will be recognized. In any case, the stop
interval is 2 bits long plus the delay between calls to QUTCH.

Both GETCH and OUTCH are timed by subroutine DELAY at
IED4. (GETCH also used DEHALF to move its strobe to the
mid-point of a bit interval, but let’s not get technical.) DELAY does
its thing based on the contents of a 16-bit counter named, for some
obscure reason, CNTH30 (high byte, at 17F3) and CNTL30
(low byte, 17F2). If this counter is equal to 0000 or less, DELAY
falls through all the way, with a resulting minimum bit time of
64us. (Let’s assume your crystal is bang-on 1 MHz.) Presto: devide
64us into a million, and you come up with 15,625 baud.

Not convinced? OK, here’s more. Every time we add one to the
counter, DELAY adds another 14 us to its timing loop. The high
end of the baud scale looks like this:

Counter Bit Time (us) Baud Rate
0000 64 15,625
0001 78 12,820
0002 92 10,869
0003 106 9,434
0004 120 8,333

If we turn this around and start with some of the usual standard
baud rates, we can calculate the bit times and counter values
required. For instance, 9600 bauds obviously needs something
betweem 2 and 3. DELAY doesn’t do fractions - it doesn’t even like
odd numbers. And how does the counter get properly loaded
anyway’?

We've left the best to the last, a little jewel called DETCPS at 1C2A.
DETCPS is entered following a system reset with TTY enabled. Its
brief hour of glory is in measuring the duration of the start pulse of
the first character you feed in after a Reset. It quickly stuffs the
results in the 16-bit counter, then goes out for coffee until the next
Reset. The question is: will DETCPS buy 9600 bauds? The answer is
YES. albeit a little reluctantly. The thing is the DETCPS is sampling
the input port, waiting for the line to go low - it checks for this
every 9 us, so it could miss your start pulse start by this much.
Once the line is low, it squirrels away 14 us counts, checking for
line high every 14 us. So it could miss the end of your start pulse
by 14 us.)

At 10, 15, 30 or etc CPS, this sloppiness is probably acceptable.

With a Model 33 on the line, DETCPS gaily reports 02C2
plus/minus OB, for instance. But if it comes up with 0004 instead
of 0003 at 9600 bauds, your TV screen will give you a reasonable
facsimile of a Chinese fortune cookie slip. Just look at it as
another Butterfield game - Reset-Delete-Reset-Delete-Reset-Delete
BINGO! Anyway, how many times a day do you Reset? Once you
get that 3, your link with KIM will be rock solid.

There are a number of facinating details, but | will spare you
the pyrotechnics. [f all this is on the leve, | should be able to prove
it, right? Well, | have an ESAT-100 (RHS Marketing) video board
equipped with an AY3-1015 UART hooked up to the KIM TTY port.
The manual admits to a -1% to DETCPS. | set the speed selector
switch to each of the 6 rates avaiiable, did 10 resets at each and
recorded the counts. (A clever piece of programming, at that!)
Except for 9600, all resets were OK the first time around. The
counts did not vary, except for 300 baud. The results look like this:

Baud Rate Bit Time (us) Calc. Count Meas'd Count
9600 104.2 0003 0003
4800 208.3 000A 000B
2400 416.7 0019 001A
1200 833.3 0037 0038
600 1666.7 0072 0074

300 33333 O0EA 00EC/00ED

SER

ECHO

Sfﬁi U-a6
ouT

TTY PTR A

£

-y

38

A few further words of explanation for the fellow who may be hung
up because he has been spared intimate relations with “real” TTY
machines. (You experts can go figure out an algorithm or two - try
infinite recursion on “Every rule has an exception, except this
one.”)

Referring to the KIM-1 User’'s Manual, Fig. 3.7, you will see two
KYBD lines and two PTR lines. The action at the other end of these
lines is assumed to be as follows: - During idle conditions, the
keyboard lines are shorted out, generating a continuous high at the
input to Q7; the printer lines are connected to a “selector magnet”
(quaint) or a relay which is drawing a nominal 20 mA. -when the
keyboard is sending characters, the KYBD lines are open-circuited
for zero bits and shorted for one bits. When KIM sends characters
on the PTR lines, it opens the circuit for zero bits by floating the
output of O/C gate U26 (7438), and closes the circuit for one bits
by pulling U26 to ground. Incidentally, this 7438 can sink up to 48
mA.

If you want to simulate this hardware with some other device, you
need to feed the line labelled “TTY KYBD” with positive logic
signals (low for ones, open for zeros) from the line labelled “TTY

PTR”. You should note that the keyboard line has a 220-ohm pull
down resistor on it, and that the printer line has no pull-up.

You may also notice, if your terminal has a FDX/HDX selector
switch or jumper, that the FDX no longer works as advertised. This
is just KIM trying to be helpful, with a wired-in interconnect which
echos received characters on the output line. If this keeps you
awake at night, cut the trace between pin 11 and U15 and pin 10 of
U26, and connect pin 10 of U26 to Vcc. (1 haven't tried it, but it
should work. I’'m a sound sleeper.)

If you need a for-example, | show a diagram of my own interface
logic, based on a 7406 gate package, which is working quité
satisfactorily. There are probably 1000 other ways of doing it, each
one of which can be improved by SuperSilicon. If it works and
doesn’t smoke, have at it.

Sm————

OUTBRK
ALL GATES Ok\s
A s 1106

12K

GAYS-10

g
RF
BRKM IN

KIMBASE

Dr. Barry Tepperman
25 St. Mary St., No. 411
Toronto, Ontario M4Y 1R2
Canada

KIMBASE is an application program written in the
6502 microprocessor machine language, designed
to make use of the monitor subroutines and mem-
ory configuration of the KIM-1 microcomputer,
for conversion of unsigned integers from one
base to another. The input integer (designated
NUMBER is to be no greater than 6 digits in len-
gth; large 6-digit integers may cause overflow
in the multiplication subroutines with consequ-
ent errors in conversion. The base to be con-
verted from (designated BASE1) and to be con-
verted to (BASE2) are each in the range from 02y
to 10y; the lower limit is set by mathematical
reality and the upper by the limited enumer-
ation available from the KIM-1 keypad.

The program 1is started by placing NUMBER, lowest
order byte last, in page zero 4C-UE, BASE1 (exp-
ressed in hexadecimal) in Y44, and BASE2 (also in
hexadecimal) in 4B. The program starts at 0200,
and will 1light up the KIM-1 LED display with
either an error message (according to an error
flag stored in zero page 02, called ERROR), or
a result display with the input data and a final
result up to 18ydigits in length (RESULT stored
in 03~-0E) in successive segments in a format
to be discussed below, or a combination of both
displays, in an endless loop until the RS key is
pressed.

Program Function

After initialization of data workspace, several
tests of input data validity are conducted.
KIMBASE recognizes four error states:

a) NUMBER will remain same after conversion
(i.e. NUMBER=00000x where x is less than either
base). KIMBASE sets ERROR=01, RESULT=NUMBER,
and shows both error and result displays.

b) Either or both bases are outside the permis-
sable limits of 02-10y. KIMBASE resets bases
under 02 to equal 02 and bases exceeding 10 to
equal 104, and executes program to display res-
ult without an error display.

¢) BASE1=BASE2. KIMBASE sets ERROR=02,
RESULT=NUMBER, and shows error and result dis-
plays.

d) NUMBER enumeration is impermissable, as one
or more digits =BASE1 (e.g., attempting NUM-
BER=1C352A with BASE1=05). KIMBASE sets ERROR=
03, shows error display, and aborts further exe-
cution.

Note that error states "a"™ and "e", above, are
not mutually exclusive, and that KIMBASE sets
the error flag ERROR and goes to the appropriate
response routine after only one positive test.
Errors are displayed as a continuous flashing
LED readout "ErrorY" where Y=ERROR.

KIMBASE - MAIN PROGRAM LISTING

REXRAKXEAXARAAAY this section Initializes

CLD 7200
LDX S#48 g1
ZERO1 LDA $H#@9 73
STA ARRAY,X 25
DEX a7
BNE ZERO1 78
LDA SH#PF ga
STA MASKI1 gc
LDA S#FQ gE
STA MASK2 1g

Following the test routines, if BASE1£10y, KIM-
BASE converts NUMBER into its hexadecimal equiv-
alent by successive generation of powers of
BASE1, multiplication of the appropriate power
by the individual digits of NUMBER (remapped by
masking and shifting into array N), and suc-
cessive addition of all the hexadecimal prod-
ucts. This intermediate result is placed in
array HEXCON. A successive loop algorithm was
used for multiplication rather than a shift-and-
binary-add algorithm for economy of coding.

HEXCON = é_ N(Y) * Baser(¥y-1)

y=1-6 10

This calculation is bypassed and NUMBER entered
directly into HEXCON if BASE1=10y.

After the conversion to hexadecimal, if BASE2=
10y, KIMBASE sets RESULT=HEXCON and the result
display is initiated. If BASE2#10y, HEXCON is
converted into BASE2 by the common successive
division procedure by BASE2 with mapping of rem-
ainders through an intermediate array into
RUSULT.

Results are displayed on the KIM-1 6-digit dis-
play as successive 1-second displays of NUMBER,
BASE1 and BASE2, and RESULT divided into 6-digit
segments, in the format:

NNNNNN (NUMBER 1-NUMBER3)
IIbb0O (II=BASE1; 00=BASE2)
RRRRRR (RESULT1-RESULT3)
RRRRRR (RESULT4-RESULT6)
RRRRRR (RESULT7-RRSULT9)
RRRRRR (RESULTA-RESULTC)

which loops endlessly. Where ERROR=01 or 02,
the error message precedes the result display,
and loops endlessly in the display.

All intermediate arrays and products have been
retained in the zero page data workspace to fac-
ilitate any debugging or further elaboration of
the program that other users may find necessary.

Users of non-KIM 6502-based microcomputers may
implement KIMBASE easily with appropriate relo-
cation of program and workspace (if necessary)
and replacement of the display subroutines
(SHOWER-TIMER1, SHORES-TIMER2) with appropriate
machine-dependant output routines (or by BRK in-
structions with manual interrogation of the ap-
propriate arrays to determine output).

data workspace and constants Fx*#kFAktd

D8 select binary mode

A2 48 set workspace byte counter
A9 g9

95 @1 zero common workspace

CA decrement counter

Dg F9 if #¢ loop back

A2 QF

85 @gF set MASK1=gF

A9 F¢

85 1g set MASK2=Fg

39

LDA $#p5 12 A9 @5

STA PWR 14 85 @9 set PWR=(@5
LDX SH#FF 16 A2 FF
TXS 18 9A set stack pointer=FF

*ERARAXEXAXKAXEE this section tests input data validity **xrdxgisksiirtairrtssdss

TSTINR LDA S#9¢ 19 A9 g¢ TEST - ERROR STATE "a"
CMP NUMBERI1 1B c5 4cC NUMBER1=§@?
BNE TSTI1BS 1p Dg 14 no? go to next test
CMP NUMBER2 IF C5 4D NUMBER2=(@§?
BNE TSTIBS 21 Dg 19 no? go to next test
LDA NUMBER3 23 A5 4E
CMP BASE2 25 C5 4B NUMBER3€ BASE2?
BCC CORRI1 27 99 @3 yes? go to correction routine
JMP TSTI1BS 29 4C 33 @2 go to next test
CORR1 LDA s$#p1 2c a9 g1
STA ERROR 2E 85 @2 set ERROR=@1
JMP CORR3A 3¢ 4C 52 @2 and jump to CORR3A
TST1BS LDX $#g2 33 a2 g2 TEST - ERROR STATE "b"
TST1B2 LDA BASE,X 35 B5 49
CMP S#¢2 37 c9 g2 BASE(Xx) € #2?
BCC CORR2A 39 9¢ ¢B yes? go to correction routine
CMP $#11 3B c9 11 BASE(X)® 11?
BCC RESETI1 3D 9¢ @B no? bypass correction
CORR2B LDA S#1¢ 3F a9 1¢
STA BASE,X 41 95 49 otherwise set BASE(X)=1¢
JMP RESETI1 43 4C 4A @2 and bypass next correction
CORR2A LDA $#p92 46 a9 g2
STA BASE,X 48 95 49 set BASE(X)=02
RESETI1 DEX 4A CA decrement loop counter
BNE TST1B2 4B Dy ES8 and go back if #§
TST2BS LDA BASEZ2 4D A5 4B TEST - ERROR STATE "c"
CMP BASE1 4F C5 4A BASE2=BASE1?
BEQ CORR3 51 Fg ¢3 yes? go to correction routine
JMP TST3BS 53 4C 6A (2 otherwise bypass
CORR3 LDA $#p2 56 A9 @2
STA ERROR 58 85 g2 set ERROR=@2
CORR3A LDX $#@3 53 A2 @3
LDY s#gC 5c Ag gcC
CORR3B LDA NUMBER,X 5E B5 4B read NUMBER
STA RESULT,Y 6g 99 g2 @¢¢ into RESULT
DEY 63 88 decrement counters
DEX 64 CA tecescnenssanes
BNE CORR3B 65 Dg F7 and loop until complete
JSR SHOWER 67 2¢0 AJ @¢ display error message
TST3BS LDA BASE1 gdeA A5 4A
CMP S#1g 6C c9 1g BASE1=1g?
BCC TST2NR 6E 99 @cC no? go to next test
LDX S#¢3 70 A2 ¢3
HExXMAP LDA NUMBER,X 72 B5 4B yes? read NUMBER
STA HEXCON,X 74 95 25 into HEXCON
DEX 76 CA
BNE HEXMAP 77 Dg F9 for all 3 bytes
JMP HEX1 79 4c 1F @3 and bypass hex conversion
TST2NR LDA BASE1 7C A5 4A TEST - ERROR STATE "d"
STA BSTRI1 7E 85 11 store BASEI
ASI. ASL 8g ga ga
ASI, ASL 82 ga ga and left shift 4 bits
STA BSTR2 84 85 12 to store BSTR2=(1§*BASEl)
LDY s#g2 86 Ag @2
TLP2 LDX S#P3 88 a2 g3
TLP1 LDA NUMBER,X 84 B5 4B isolate each digit NUMBER(X)
AND MASK,Y 8C 39 - ¢§E @9 by masking
CMP BSTR,Y N 8F D9 1g @9 and compare with BSTR
BCC TRESET) 92 99 93 if less, reset loop
JMP CORR4 94 4C A¢ @2 otherwise impermissable - correct
TRESET DEX 97 CA decrement counter NUMBER
BNE TLP1 98 Dg Fg and repeat for corresponding digits
DEY 94 88 decrement counter BSTR/MASK
BNE TLP2 9B DJ EB and repeat for remaining digits
JMP REMAP 9D 4C A7 @2 go to REMAP
CORR4 LDA S#93 Ag a9 g3
STA ERROR A2 85 @2 set ERROR=(3

JSR SHOWER a4 20 A¢ @9 and display error message

AAkAkAAAAARAAR, this section remaps NUMBER for conversion to hex **%*kxdkkddkxi*

REMAP
REMAP1

MASKS1

REMAP2

AAXAAAA A A A EAA AR

HEXCNV
LP1PWR

RESET2

RESET3

RESET4

RESETS

RESET6

ook ok o ok ok ok ok o ob ok o K ok ok

HEX1

LDX
LDA
STA
STA
DEX
BNE
LDX
LSR
LSR
LSR
LSR
LDA
AND
STA
DEX
BNE
LDY
LDX
LDA
STA
INY
LDA
STA
INY
DEX
BNE

LpY

JSR
LDA
CMP
BEQ
BCC
STA
TYA
PHA
JSR
PLA
TAY
CLC
LDX
LDA
ADC
STA
DEX
BNE
DEY
BEQ
DEC
LDA
CMP
BEQ
BCS
LDA
STA
LDA
STA
STA
LDA
STA
LDA
CMP
BEQ
BCC

LDA
CMP
BCC
LDY
LDX

$#03
NUMBER , X
NHI , X
NLO,X

REMAP]
s#a3

NHI,X
NHI , X
NHI,X
NHI,X
NLO,X
MASK1
NLO,X

MASKS1
s#ol
sHO3
NLO,X
N,Y

NHI,X
N,Y

REMAP2

a7
A9
AB
AD
AF
Bg
B2
B4
B6
B8
BA
BC
BE
cg
c2
c3
Cc5
c7
c9
CB
CE
CF
DI
D4
D5
D6

az
B5
95
95
ca
Dy
A2
56
56
56
56
B5
25
95
ca
Dy
ag
A2
B5
99
cs
B5
99
c8
ca
oy

g3
4B
12
15

F7
723
12
12
12
12
15
gF
15

EF
g1
23
15
18

12
18

F1

77

a9

load NUMBER
into NHI
and into NLO

loop until done
right shift

NHI
4 bits

isolate right digit NLO

loop until done

store NLO into N

alternately

with NHI
and in inverse order

loop until done

this section converts N into hexadecimal ***x*x&kkAkk &k ksk sk ok kskkskkkkok

s#ge
PWRGEN
N,Y
sHpl
RESET3
RESETS
MULTP

MULT

S#HO3
MULTC ,X
HEXCON ,X
HEXCON ,X

RESET4

HEX1
PWR
PWR
S#p1
RESET6
LPI1PWR
N,Y
MULTC3
S#og
MULTC1
MULTC2
BASE]
MULTP
PWR
S#Hol
RESET2
RESET3

@2D8

DA
DD
EQ
E2
E4
F6
E8
E9
EA
ED
EE
EF
ry
F2
F4
F6
F8
F9
FB
FC
FE

VE
g2
24
g6
g8
g8
#D
gF
11
13
15
17
19
1B
1D

ag
29
B9
c9
Fg
99
85
98
48
29
68
ag
18
a2
B5
75
95
ca
oy
88
Fg
cé6
a5
c9
Fg
Bg
B9
85
A9
85
85
as
85
a5
c9
Fp
9¢

g6
60
18
p1
4B
15
1F

8g

23
1F
25
25

F7

21
29
a9
g1
g2
D2
18
22
g9
20
21
4a
1F
a9
a1
CB
by

a9
g0

a9

g9

for six places
generate powers of BASE1L

N(Y)=g12?

if equal, go to RESET3

if less, go to RESETS5

set MULTP=N(Y)

put index Y into accumulator
and push onto stack
multiply power by N(Y)

pull accumulator from stack
and restore to Y

add new product
to intermediate product
and store as intermediate product

loop until done

for next place

if counter=@ bypass

reduce power to be generated

PWR=¢1?
yes? go to RESET6

greater? loop back to new conversion

set MULTC=N(Y)

set MULTP=BASEI1

PWR=@1?
yes? go to RESET2
less? go to RESET3

this section produces result from HEXCON when BASE2=1(******%x%xk*k

BASE2
s#1g
ZERO2
s#gc
S#Ho3

iF
21
23
25
27

as
c9
99
ag
a2

4B
19
19
gc
23

41

BASE2=1¢7
no? go to ZERO2

HEX2 LDA
STA
DEY
DEX
BNE

JSR

kEkkEAAEEE AR A AAR

ZERO2 STA
LDX
LDA
STA
DEX
BNE
LDy
JSR
LDA
STA
LDX
LDA
CMP
BCS
DEX
BNE
LDA
CcMP
BCC
LDX
LDA
STA
LDA
STA
DEX
BNE
STA
DEY
BEQ
JMP
DEY
LDA
STA

LP1DIV

LP2DIV

TSTI1Q0

RESET7
RST7A

ENDDIV

REAAAARAAAA KA A A

ENDV2 LDY
LDX
CLC
DEX
LDA
ASL
ASL
INX
ADC
STA
DEY
DEX
DEX
BNE
JSR

REMAP3

1. PWRGEN

HEXCON , X 29 B5
RESULT,Y 2B 99
2E 88
2F CA
HEX?2 3¢ Dy
SHORES 32 2¢

this section divides HEXCON

DIVIS 7335 85
S#HO3 37 A2
HEXCON ,X 39 B5
DIVD,X 3B 95

3D CA
LPIDIV 3E Dy
S#18 49 Ad
DIVIDE 42 2¢
RDR 45 A5
RSTOR,Y 47 99
s#g2 4a a2
Quo, X 4c B5
S#@1 4E c9
RESET7 59 B

52 ca
TST1Q0 53 od
QUo3 55 A5
DIVIS 57 c5
ENDDIV 59 99
S#93 5B A2
ouo,X 5D B5
DIVD,X 5F 95
s#gd 61 A9
QuUO,X 63 95

65 ca
RST7A 66 Dy
RDR 68 85

64 88
ENDV2 6B Fg
LP2DIV 6D 4ac

70 88
QUO3 71 A5
RSTOR,Y 73 99

this section maps RSTOR

s#pc 76 ag
s#18 78 A2
74 18
7B ca
RSTOR , X 7C B5
ASL 7E ga
ASL 89 pa
82 ES8
RSTOR, X 83 75
RESULT,Y 85 99
88 88
89 ca
8a ca
REMAP3 8B Dg
SHORES 8D 20

into RESULT for

25 store HEXCON

g2 @9 into RESULT

F7 Joop until done

og @3 and display result

by BASE2 for crude conversion **tEEFEAAAR

2C set DIVIS=BASE2

73

25 load HEXCON

28 into DIVD

F9 Joop until done

18 for 18_ places

g @1 execute division

37 load RDR

33 @¢ into RSTOR

72

2C

g1 ouo(1 or 2)2p1?

79 yes? go to RESET7

F7 loop until done

2F

2C QUO3=DIVIS?

15 less? go to ENDDIV

73

2C load QUO

28 into DIVD

29

2c zero QUO

F5 loop until done

39 zero RDR
decrement place counter

79 if =¢ go to ENDV2

42 43 otherwise back to divide routine
decrement place counter

2F load QUO3

37 @9 into next RSTOR slot

final result Fhkkk ok kR EARE LA A

gc

18

30 left shift alternate bytes
gA RSTOR 4 bytes

177 S

3¢ add to next byte RSTOR
g2 gg and store as RESULT

EE loop until done

99 ¢3 and display result

. b , , . X C ,
Subroutine to generate a by successive iterations of multiplication subroutine MULT
with resetting of counters and intermediate products; allows unsigned binary or
decimal arithmetic in 65¢2 instruction set; maximum result memory allocated 18H bits.

Requires: subroutines:

data arrays:

MULT 2989-9P9B
BASEl {@4A
PWR a209
PWRS Pop1
MULTP P@IF
MULTC g02¢-9922

Inapplicable to PWR=(¢,§1; calling program must test and bypass.

PWRGEN LDA PWR go69 A5 gg load power

STA PWRS 62 85 g1 store in counter
DEC PWRS 64 c6 g1 decrement counter
LDA BASEl 66 A5 44
STA MULTP 68 85 1F set multiplier=base
STA MULTC3 64 85 22 set multiplicand=base
LDA S#gp 6C A9 gg
STA MULTCI1 6E 85 2¢ zero 2 high-order bytes
STA MULTC2 70 85 21 of multiplicand
TYA 72 98 transfer index Y to accumulator
PHA 73 48 and onto stack
MULTCL JSR MULT 74 20 8¢ @@ jump to MULT
DEC PWRS 77 c6 g1 decrement counter
BNE MULTCL 79 Dg F9 if #@ return to MULTCL
PIA 7B 68 pull accumulator from stack
TAY 7C A8 and restore to index Y
RTS 7D 60 return to main program

2. MULT

Subroutine multiplies 24-bit number (MULTC) by 8-bit number (MULTP) to
yield 24-bit final product (MULTC) by successive iterations of nested
addition loops. Intermediate product storage in MIDPRO. Allows unsigned
decimal or binary operation in 65@¢2 instruction set.

Requires : data arrays : MULTP g@1F
MULTC g02¢9-9g922
MIDPRO ga23-9g25

Inapplicable to MULTP less than @2; calling program to test and bypass

MULT LDY MULTP ga8g A4 1F loop counter=multiplier
DEY 82 88 decrement loop counter
LDX $#93 83 A2 g3 set byte counter in loop

REDIST LDA MULTC,X 85 B5 1F set intermediate register
STA MIDPRO,X 87 95 22 =multiplier
DEX 89 CA for each byte in array
BNE REDIST 8A Dg F9 loop until X=¢

ADLP2 LDX $#¢3 8c A2 ¢3 set byte counter in loop
CLC 8E 18 clear carry

ADLP1 LDA MULTC,X 8F B5 1F add multiplicand
ADC MIDPRO,X 91 75 22 to intermediate product
STA MULTC,X 93 95 1F store as new multiplicandc
DEX 95 CcAa for each byte in array
BNE ADLP1 926 bg F7 loop until X=¢
DEY 98 88 decrement loop counter
BNE ADLP2 99 Dpg F1 another loop if Y#@
RTS 9B 6g return to main program

3. DIVIDE

Subroutine to divide 24-bit dividend (DIVD) by 8-bit divisor (DIVIS) to

yield 24-bit quotient (QUO) and 8-bit remainder (RDR) by successive shift

and subtraction processes; unsigned binary arithmetic only in 65¢2 instruction
set. Intermediate gquotient storage in QUO. Requires initialization of RDR

and array QUO to @ by calling program, DIVIS#§.

Requires : data arrays : DIVD gF29-g@2B
DIVIS gpac
QUoO gF2D-g@P2F
RDR a9 3¢
DIVIDE LDX S#19 g1 19 A2 19 load shift counter
LOOP1 ASIL RDR 12 76 3¢ left shift remainder
ASL QUO3 14 g6 2F left shift quotient LSB
LOOP1A BCS HIQUOI1 16 Bg 28 go to Incrementing routine
if carry set
ASL QUO2 18 g6 2E left shift quotient mid-byte
BCS HIQUO2 1a Bg 2F go to Incrementing routine

if carry set
ASL QUO1 ic g6 2D left shift quotient MSB

LOOP2

LOOP3

LooP4

HIQUO1

HIQUO2

HIORDI

HIORD2

INCR

FINIS

CLC
ASL
BCS

ASL
BCS

ASL
BCS

DEX
BEQ
SEC
LDA
SBC
BMI
STA
ASL
ASL
INC
JMP
ASL
INC
BCS

ASL
JMP
ASL
INC
JMP
ASL
INC
BCS

ASL
JMP
ASL
INC
JMP
INC
JMP
LSR
RTS

DIVD3
HIORDI1

DIVDZ2
HIORDZ2

DIVDI1
INCR

FINIS

RDR
DIVIS
LOOP1
RDR
RDR
QUo3
QuUo3
LOOPIA
QuUoO2
Quoz
HIQUOZ2

QuUoO1
LOOP2
QuUuol1
Quol1
LOOP2
DIVD2
DIVD2
HIORD2

DIVDI
LOOP3
DIVDI1
DIVD1
LOOP3
RDR

LOOP4
RDR

4. SHOWER & TIMERI

1E
1F
21

23
25

29

2B
2c
2E
2F
31
32
35
37
39
3B
3D

49

42

44

46
48
4B
4D
4F
52
54
56

58
52

#15p

5F
61
64
66
69
6B

18
g6
By

g6
Bg

g6
BY

ca
Fg
38
a5
E5
39
85
g6
g6
E6
4c
g6
E6
By

g6
4c
g6
E6
4c
g6
E6
Bg

g6

4c
ge
E6
4c
E6
4c
46
64

2B
2F

24
36

29
39

3B

39
2c
DD
3¢
3¢9
2F
2F
16 g1
2E
2E

g5

2D
1E g1
2D
2D
1E g1
2a
24

g5

29

29 g1
29

29

29 @1
39

2B ¢1
3¢

clear carry
left shift dividend LSB
go to incrementing routine
if carry set
left shift dividend mid-byte
go to incrementing routine
if carry set
left shift dividend MSB
go to incrementing routine
if carry set
decrement shift counter
jump to end if X=¢
set carry
from current remainder
subtract divisor
back to LOOP1 if negative
store difference as remainder
left shift remainder
left shift quotient LSB
increment quotient LSB
and go back to LOOPIA
left shift quotient mid-byte
and increment it
go to further incrementing
routine if carry
left shift quotient MSB
and back to LOOP2 (if C=¢)
left shift quotient MSB
increment quotient MSB
and back to LOOP2
left shift dividend mid-byte
increment dividend mid-byte
go to further incrementing
routine if carry
left shift dividend MSB
and back to LOOP3 (if C=¢)
left shift dividend MSB
increment dividend MSB
and back to LOOP3
increment remainder
and back to LOOP4
right shift remainder to end
return to main program

Subroutines to generate error message for display on the KIM-1 6-digit LED readout
by successive lighting of appropriate segments of the individual digits using a
message lookup table.

SHOWER requires: subroutines: TIMERI1

SHOWER

DISP2

DISP1

LDA
STA
LDA
STA
LDY
LDX
STY
LDA
STA
JSR
INY

: data arrays:

SHTF
SADD
S#1E
SBDD
SHO8
sHE5

SBD
MSGERR, X
SAD
TIMERI

SHORES

SADD
SBDD
SAD
SBD
ERROR
MSGERR
MSGNUM

g9Ag
A2
a5
A7
aa
ac
AE
Bl
B3
B6
B9

timing loop for display
result display for ERROR=¢1 or §#2

monitor storage for readout

set output directional vector A=7F

set output directional vector B=I1E

set digit selection counter
set loop counter

select digit

select segments

¢PDE-PIEI
9399-p3CF
1741
1743
1749
1742
g002
PID6 -0 DA
¢9DB-pPDD
A9 7F
8p 41 17
-A9 1E
8D 43 17
Ag @8
a2 @5
8c 42 17
B5 D5
8D 4¢ 17
29 DE gg
c8

to be 1it (from lookup table)

and jump to timing loop

select next digit

INY BA
DEX BB
BNE DISPI1 BC
LDA $#l12 BE
STA SBD cg
LDX ERROR c3
LDA MSGNUM,X c5
STA SAD c7
JSR TIMERI1 CA
LDA ERROR CD
CMP S#p3 CF
BEQ DISP2 D1
JMP SHORES D3

lookup tables:

g006
g9DB

D DC DJ DY F9
8 DB CF

MSGERR
MSGNUM

c8
ca

Dy Fg

a9 12

8D 42 17
a6 g2

B5 DA

8D 4g 17
2¢ DE gg
a5 g2

c9 g3

Fg D7

ac 9p 93

TIMER] requires: interval timer location 1707

TIMERI1 LDA SHFF JP@DE
STA 17¢7 Eg
DELAY1 NOP E3
BIT 17¢7 E4
BPL DELAY1 E7
RTS E9

5. SHORES & TIMER2

A9 FF

8D g7 17
EA

2c g7 17
g ra

69

decrement loop counter
if ## loop again

for sixth digit

set index to error flag

and select segments
to be 1lit (from lookup table)
and jump to timing loop

if ERROR=(@3
loop same display again
otherwise jump to show result

set timer for approximately
200 milliseconds per digit
do nothing but light segments
time up?
no? keep 1lit
yes? back to SHOWER for next digit

Subroutines to generate result display on the KIM-I 6-digit LED readout by loading
appropriate data into array DISP for display by KIM monitor subroutine SCANDS.

SHORES requires: subroutines: TIMER2
SHOWER

: data arrays: ERROR

RESULT
BASE
NUMBER
DISP
SHORES LDY S$#91 7399
LDX S$#P3 92
LOADNI LDA NUMBER,X 94
STA DISP,Y 96
INY 99
DEX 94
BNE LOADNI 9B
JSR TIMER2 9D
LDA BASEIl ag
STA POINTH a2
LDA $#BB a4
STA POINTL A6
LDA BASE2 A8
STA INH AA
JSR TIMER2 AC
LDX $#p1 AF
LOADN3 LDy $#93 Bl
LOADN2 LDA RESULT,X B3
STA DISP,Y B5
INX B8
DEY B9
BNE LOADN2 BA
TXA BC

#3DJ-@3E5
29Ag-gPD5

9992

299 3-9PpE
@P4A-gp4B
gg4C-gg4E
FIF9-gIFA

ag g1

B5 4B
99 F8 pp
c8

ca

Dy F7

20 pg @3
A5 44

85 FB

A9 BB

85 Fa

A5 4B

85 F9

20 DF ¢3
a2 g1

ag g3

B5 g2

99 F8 gp
ES

88

og F7

8a

timing loop for display
error display for ERROR=¢1 or ¢2

monitor storage for readout:

aoF9 INH
PPFA POINTL
PPFB POINTH

set index for DISP
set index for NUMBER
put NUMBER into DISP

increment DISP index
decrement NUMBER index
loop until DISP is full
and jump to timing/display loop
load BASE1
into two highest digits
load BB
into two middle digits
load BASE2
into two lowzst digits
and jump to timing/display loop
set index for RESULT
set index for DISP
put RESULT (3 bytes at a time)
into DISP
increment RESULT index
decrement DISP index
loop until DISP is full
put RESULT index into accumulator

PHA BD 48 and push onto stack

JSR TIMERZ2 BE 20 D@ @3 now jump to timing/display loop

PLA Cc1 68 pull accumulator from stack

TAX Cc2 AA and put in RESULT index X

CPX S#@D c3 E¢ @D is xX>gc?

BCC LOADN3 Cc5 99 EA if not, loop back to load DISP

LDA ERROR Cc7 A5 g2 if yes, does ERROR=@@?

CMP S#@¢ c9 c9 gyg

BEQ SHORES CB Fg C3 if yes, loop again for whole display

JMP SHOWER CD 4c Ag @9 otherwise show error

TIMER2 requires: subroutines: SCANDS 1F1F monitor display subroutine

data arrays: CTLP 72249

interval timer location 1707

TIMER2 LDA $#@5 73Dg a9 g5
STA CTLP D2 85 49 set loop counter
DSPN2 LDA SH#FF @ 3D4 A9 FF set timer for maximum run
STA 17¢7 Dé6 8D @7 17
DSPN1 JSR SCANDS D9 2¢ 1F 1F and call display subroutine
BIT 1797 DC 2c @7 17 time up?
BPL, DSPNI1 DF 19 F8 no? maintain display
DEC CTLP El c6 49 decrement loop counter
BNE DSPN2 E3 Dg EF if #0, reset timer and maintain display
RTS E5 6¢ otherwise back to SHORES for next entry

46

LIFE FOR THE KIM-1 AND AN XITEX VIDEO BOARD

Theodore E. Bridge
54 Williamsburg Drive
Springfield, MA 01108

I have been very interested in the game of LIFE ever since | read
Martin Gardiner's “Recreational Mathematics” section in the
Scientific American - Oct. Nov., 1970. Naturally, | was very much
interested in Dr. Frank Covitz’ excellent article that appeared on
page 5:5 pf the June-july issue of MICRO, 1978.

Just as soon as | got my XITEX video board working on my KIM-1
(16 K on a KIMS! mother board), | attempted to put the Covitz
program on my machine. Because the display feature of the XITEX
video board is so different from the PET, | thought it was necessary
to write a completely new program. | think there may be other
KIM-1 users who would like to try my version of this fascinating
game.

John Conway invented the game of LIFE. I like to think of it as a
simulation of a virus growing on the surface of a POND of DNA.
Therefore, | call the work area in which births and deaths are
recorded, the POND. | have a routine SHOALL that will display the
POND on the screen. | have another routine DISPLY that will add a
cell to the screen when a new one is born, and will remove one
that is about to die. The POND is updated after each generation in
UPDATE. The routine NBRS will record the number of neighbors
for a given cell in variable NN. In the pond, zero represents a
nonliving cel; (1) represents a living cell; (-1) represents a cell that
is about to be born; and (2) represents one that is about to die.

It would take about a second to sweep the entire POND looking
for births and deaths, but it takes 1/6 seconds to process a birth or
a death. The POND is a matrix 16 x 64. In the routine EDGE, the
POND is edged with zeroes to prevent WRAP-AROUND that
would destroy symetry in a life form. According to Conway’s rules:
1 A new cell is born in an empty cell having 3 neighbors.

2 Any living cell having less than two, or more than three
neighbors will die.

3 All deaths and births occur at the same time. A new cell will
not be counted as a neighbor until after all cells have oeen
processed.

The POND may be relocated on another page by putting the page
number at address $2004. Sixty four ($40) bytes must be reserved
immediately before and after the POND for edging with zeroes.

START THE PROGRAM AT $2000

The routine PLANT will put a live ce!l in the center of the screen,
and ask for coordinates V , H for other cells, measured from the
center. V is the line number (t is down and - is up). H is the
column number (1 is right and - is left). Both V and H must be in
the range: minus 7 to plus 7. The sign must follow the digit
entered, but a space may be substituted for the plus sign. The
following entries will establish a blinker in mid screen.

ENTERV,H 2 1- 0t 0
ENTER V,H ? 11,0t
ENTERV H?/ 0

(=)

The slash (/) above will terminate the data and start the program.

A generation count is displayed in the upper left corner of the
screen. The computer will enter a break if there are no births and
no deaths in any generation. To return to the monitor, you will
need to insert $1C00 in the IRQ vector. — 17FE 00, and in 17FF 1C.

If your video board uses different commands for positioning the
cursor, you will need to change the routine DISPLY. The XITEX
board uses the following commands.

Key Hex
Code
ESC $1B invokes coordiante mode
'= $3D invokes absolute addressing

nyn BINARY ROW NUMBER -~ from top

nH" BINARY COLUMN NUMBER - from left
(add $40 if less than $20)
will display a zero

will overwrite a cell with
a space

'0 $30
! $20

If you have a highspeed video board, you
might wish to reform the entire display
after each generation with this patch:

change Address $204F from EC to E9
change Address $2271 from 48 to 60

An article by David J. Buckingham in the Dec 1978 issue of BYTE,
on page 54 gives a great many life forms that you might like to try
with this program.

For practice on inputting data, you might like to try the following
life forms given by John Gardner in the Oct.-Nov. 1970 issue of the
SCIENTIFIC AMERICAN.

000 0+ 1+
0] O+ 2+
1+ 0
Beehive

This fetlow lives for four generations and becomes stable in a form
called a beehive.

000 O+ 1+
0 0+ 1=
1+ 0+

Traffic Light

After 10 generations, this fellow becomes a blinking traffic light.

000 0+ 1+
0 O+ 2+
0 1+ 0+
2+ 1+

Glider

This glider floats up the pond. When he hits the ceiling, he turns
into a stable block of four living cells.

0000 0+ 1+
0 0 0+ 2+
0 0+ 3+
1+ 44

1+ O+

2+ 0+

3+ 1+

Spaceship

This spaceship travels across the pond colliding with the left edge
after 10 generations. He then shoots a glider down.

0 0 2- 2-
0 0 2- 2+
000 1- 2-
0 0 1- 2+
0 0 0+ 1-
0+ 1+
1+ 2-
1+ 2+
2+ 2-
2+ 2+
Spaceman

This life form was first tried by Bob Borg. See figures 1and 2 for the
history of this interesting life form.

If we turn spaceman sideways, he bumps the ceiling after 13
generations losing partial symmetry. He regains symmetry after
generation 94. After generation 111, he turns into 2 beehives and
four blinkers.

000 000
0 0 0 0
000 0 00
0 0000 O
00 00
0 0 00 0
00 O 0 00
0 00 00 0
00 00
0 0000 O
00 0 0 00
0 O 0 0
000 000
Figure 1

This is SPACEMAN after 18 generations. He will soon bump his
head on the ceiling just before his feet touch the flogr. This will
throw him out of symmetry. After generation 33, he will begin to
contract to the form displayed in figure 2.

00 00
0 0
0 0 0 0
000 000
Figure 2

This is SPACEMAN after 75 generations. This is his minimum size.
He will now grow and then later contract again. | have only
followed his history through 150 generations.

Johnson lost

his microprocessor again

by: Bertha B. Kogut

48

ceee

T epee

2¢63
20¢4

2ees
2pp6
ceeT
2ees
A
ciA
2eeEe
2eecC
2een
CCeE
EGEF
zele
2ell
2el!l
z2e11l
c¢ll
2211
ezl
211
2el1
el
211
2e11
ceell
g2l
cril
eell
2e11
21l
¢l

3]

N
]

™ e

e By B I
nY DD D

4C 2F ¢

ee
23

ce

51
ce
56
ce
g1
2
LE
2
8¢
g1

~
&

4C
84
2¢
r4
60
£9

. 26

£9
84
2z
L4
(34

YNy W

[e T % B s

er

e

Zh

-~
(SR

£E

2%
-~

1E

1E

1E

CONwAY 'S CAME OF LIFE

LIFE
CATE

LLLOV
LFTER
POND I

FONTL
PONLH
PON
LAS
OFFSET
LAST
ALT

v

H

N T

NN
LFLAC
SEVY
FOINTL
POINTH
FOINT
CL

GH

KItt FC

FETEYT
GETCH

OUTCHE

ORC fzoew
JMF START
= L3147
= $23

FIEST ADLDRESS IN FONE

$4¢ EYTES EEFOFE AND
FONLD FOR VFAF-AFEGULNL.
S 1K EYTES LONG.

= §C@
$51
L4417
£56
see
$E1
$¢e
40
42
8e
£81
SHE
g§zE1C
$ge1r
$FEIE
$SECCQ
LY A
fegee
$egeC
$CECL
S$ERCF
$eC3¢e
2221
$¢Z2z
LSRR
EeeC4
SEE3E
$E2g26
LEE3H

$0E39

¥R K K X ¥ ¥ X K K X ¥ ¥ ¥ X ¥ ¥ U W W N W@ oMW oN RN

UTINES

JMF $1E3E
STY SEVY
JSE $1EEL
LTY SAVY
FTS

LE&IM S$€T
JEF QUTCH
LDeI S@E
&TY cavy
JET $1EAQ
LY Sevy
ETS

49

FON
LAS

UL OFFSET
UF

UE

LEFT

LL

COWN

LE

FIEST ALLFESS IN FONED

CATA VILL BE MOVED HERE
FOINTS TO LAST ALLF. IN PONC
(POINT-FONL)=(S40%V + H)
VEETICLL OELDINATE

CoUNT
NUMLEE G
LIFE FLA

F NEIGHLORS

G

EEGIN HERE

2@CE AQ €€ START LDYIM $¢¢

cg2r 84 38 STY CL

2peF 84 39 STY GH

2¢31 2 53 20 JSE MOVZ MOVE DATA TO ZERO PAGE
2g34 2¢ D7 21 JSP CLEAR

2g37 2¢ 2E 2 JSR PLANT SEED IN POND

c@l34a 2¢ A5 21 JSE SHOALL OF FONL ON TUEE
cgaD 2¢ 39 22 STAR JSR INCGC INCEE. CGENER. COUNT
cg4ag AL ee LEYIM $€@

cg4a2 84 32 STY LFLAG ZERO LIVING FLAG
cgus 2¢ 11 22 JSE EDGE PONL WITH ZEROES
ogaT 2¢ AF 2¢ JSE FOST BEIRTHS & DEATHS
cgas 2¢ Fl 21 JER UFDATE THF PBOND

cgual AS 32 LDe LFLAG

2¢4F LE EC ENE ST&HE YES. CHECK NEXT GENERATION
cesl 7@ EEK

og52 ¢a@ EEK

2053 A2 ¢L MovzZ LEXIM $@D

2¢sS ED €3 2@ LLDAasY. DATA CET & D&aTa& VORD
2¢s8 95 1IC STAZX PONDL FUT IN PFAGE ZEEO
284 Ca& DEX

2@¢se 1¢ F8 EFL MOVZ +ge

2¢50 18 CLC

2¢SE A5 1IC LDA PONLCL PONL - $4@

2p6e 69 C@ LDCIM s$C@ POND K &
2662 85 24 STA LAST R E
264 £5 1D LLa PON DH 0 R
2066 69 3 ALCIYM %063 LAST ¥ £
2068 85 2C STA LAST +21 LAST +4¢

2e66 A5 1D LDA FONTH

206C &85 IF STA PON +01

CE¢6E Cé IF LEC FON +01

2¢7¢ AS 2B LDA L&asST +G1

c@72 8% 21 STE L&S +¢1

cgT74 E6 21 INC L&S +21

2076 &€ FTS

CALC V & 4 FEOM ALDRESS IN ALE

@77 L6 2D CALCVH LEIX ADFE +Z1
219 At 2C LLA ADR

2¢7E 4C 8¢ 2C JMP CAL

ZZTE E€ ZL INC v

ogge 38 CAL SEC

£€81 E9 4¢ SECIM $4¢€

2¢83 E@ F9 ECS CAL -ge
ee@8s5. Ca DEX

2¢86 1€ F& EFL CAaL -€Z
2¢88 85 CF STe H FEMAINCER IN H
2E8L €8 FETS

CalLC ADE = FOINT - POND

2¢8r 38 CLCALE SEC

288C A5 34 LA POINTL

2¢8E ES 1C SEC FONLL

2¢9¢ 85 2C STa ALE

2e92 A5 3% LCA POINTH
294 ES 1D SBC FONDH
2¢96 85 2D STa ADE +@1
2698 ¢€¢ RTS

SET NN = NO. OF NEIGHEOES FOER CELL
AT FOINT.

2¢99 2¢ SF 22 NEERS JSE MOV

2¢9C A2 @7 LEXIM 327

ZC9E EB 22 NER LDeAX OFFSET

2CAC A8 TEY

2¢al El 36 LDAIY POINT

2¢48 FE R4 LEG NE NOT A& NEIGHEOE
28A5 32 €2 BMI NE CONTINUE
26A7 E6 31 INC NN

a9 Ca NE DEX

2¢AL 10 F2 EFL NER

ZEAC AE @E LIYIM $¢¢

2€AE 68 RTS

POST EIETHS & LEATHS

2¢AaF 2@ CC 21 POST JSE MOVE EIRTH = =1

20E2 20 99 2@ JSE NERS

2€B5 AS 31 LTA NN ALIVE =+]

22ET €9 c2 CMFIM s@2 ¥ILL LDIE

2¢B9 3€ 13 BMI LDEATH IF < &

2¢EE C9 €3 CMFIM $£3

2¢ED F& 1IC EEG EIRTH IF = 3

2¢BF 1¢ €C EFL DEATH IF > &

2¢ll 2¢ &8 22 FOSTA JSE INCFT INCEEMENT FOINT
£eCa 38 SEC

2¢C5 A5 35 Lba POINTH

26C7 ES IC SEC FONEDH

egcs C9 ¢4 CHMPIM 824

£2CE C¢€ ES BEMI PG ST +¢3 NOT YET LONE VITH THIZ CELL
2eCL 6¢ FETS NCW VE AFE LDONE VWITH IT
2¢CE El 4 CEATH LDLIY FPOINTL

2¢L¢ F€ EF EEC FOSTA

Zere p9 £ LLAIY &¢2

eer4 91 24 STAIY POINTL

CPDE £9 Z2€ LDAIM %2

Z¢pg 4C LS 2@ JUMF BIFETHS

2¢LE Bl 34 EIPTH LDAIY POINTL

2err Lg Eg ENE POETA

£¢LF AS FF LDAIM $FF

cZEl 91 34 STAIY FOINTL

27E3 A9 3¢ LDAIM '¢

2ZES 2€ 71 22 EBIETHS JSF CISFLY

26E8 E€ 3¢ INC LFLEG

2GEA 4C C)l 26 JMP FOSTA

51

ZCED 18 convl CLC

CZGEE 65 2F ADC H

2¢FF 85 £ STa £TR

2CFe 9¢ €2 ECC CONVH ~-@1
C¢F4 E€ ED INC LTE +¢1
2¢F6 6L ETS

CONVERET H & V TO EQUIV. ALDLE.

2FF7 A6 2L CONVH LDPX v

2GF9 AG CC LIYIM $6¢

20FE B4 2C STY £DR

Z¢FL 84 2€C STY £DR +£1 CLEAR ALE
2¢FF Ca conv LEX

¢1¢9 3¢ FE IMI CoNVI

zl1ge 18 CLC

123 L9 4€ LLAIM $47

21e5 65 2C ADC £DR

21¢7 8% 2C STa £DF

£1€9 92 F4 ECC CoONV

Z1EE E6 2D INC &L +e1
cleDh 4C FF 2@ JMF coav

£SK FOR VULH

211¢ 2¢ 1C 2¢ ENTEVH JSE CRLF
2113 £2 ¢E LDXIM $EE
21158 ED IF 21 LLALX ENT
2118 20 23 2¢ JSE OUTCH
£11E C& DEX

£11C 1@ F7 FFL ENTEVH +E€5
211E 6¢ ETS

211F 2 ENT = .
£12¢ 3F = "2
2121 o = '
elze 48 = 'H
2123 ¢ = *
olea S6 - v
£128 g = -
2126 52 = s
2127 4% = 'E
2128 54 = T
£1£9 4E = "N
£126 45 = 'E

FLENT THL SELL

2120 AC 0 LEYIM $E6

2120 62 FTS

C12F £9 €7 FLENT LLCAIM 35€7

213¢ 8% 2E STA VY SET FOF MILSCF
2132 A9 IF LEAIM S1F

£134 85 £F EACK STe H

21236 2¢ F7 ¢ JSE CONVH

2139 18 \ cLC

2134 £5 2C LD& ALE

52

213C
Z21CE
214¢
2ilauz
2144
2146
2148
2144
140D
215¢
2152
2154
2156
2158
2154
2150
215F
2161
2162
21¢€4
21€¢
21€8
z16A
216C
216F
cl7¢
2172
2174
2176
2178
z17EB
170
217F
2181
£193
z218¢€
218¢
2184
£18C
180
218F
2191
2192
2i9¢&
£19¢
2198

£19K
219E
e10€
2162

2104

65
gs
£5
65
85
A%
g1
ce
2z
Fe
Cco
3¢

AN

55
oe
¥e
3°]
L¢
38
A9
ES
8c
£9
2r
18
AT
69
g&
Fg
o
3¢
29
gt
2¢
Fe
Ccs
De
ag

“19
LS
8&
£5
18

€9
4G

{7
ol %

co
3¢
A9
6

1C
34
20
1
35
¢1
34
1€
9L
F&
3¢
'S
z7
1’33
9K
EE
er

=y
™ D

M

[ARERAVIR LS I 0]

€

O oM
s I o I o]

e

2

N2

1
1

£DC FPONIL

STA FOINTL

LEa ADR +¢1

ALC FONLH

ST. FOINTH

LDAIM $€1

STAIY FOINTL
BASK JSE ENTFVH

JSE GET

EEC EASK

CMFIM '@

EMI FLANT =-@C

ANDIM $€7

T v

JSE CET

EEE EASK

CMPIM "=

INE FLAN

SEC

LL&IM S2¢
SEC v
STe Y

PL AN LDAIMN ',
JEF QUTCH

CLC

LTA v
LHECIM -0 7
£Te v
JSh GET
BEC EASK

CMFI™® '@

Bl FLENT =¢C
ENLIM 37

STe H

JSE CET

EEC EASK

CMFIM '-

ENE PLANTE

SEC

Lo&IM $¢¢

SEC H

STA H
FLENTE LL& H

CLC

&DCIM S1T MELCUFE TO

JHMP EACK

GCET 2 COQFLINATE

GET JER GLETCH
CMFIM '8

BMI ELLD

CISFLAY ALl 0F FONL

53

CENTEL

21A5 2@ CC 21 SHOALL JSR MOVE

21A8 £9 @F LDAIM $€F
21AA 85 2E STA v

21AC A9 3F SHOAL LDAIM $3F
21AE 85 2F 5Ta H

21E@ 2¢ 1C 20 JSR CRLF
21E3 Bl 24 SHOA LBAIY POINTL
21ES Fe e4 BEQ SHO
21B7 A9 30 LDAIM '@
21B9 1€ €2 EPL SHO +82
21EBB A9 20 SHO LDAIM 326
21ED 22 23 2¢ JSR OUTCH
21C¢ 2¢ 58 22 JSR INCPT
21C3 Cé 2F DEC H

21Cs 16 EC EPL SHOA
21C7 C6 2E DEC v

21C9 1@ EI BPL SHOAL
21Cb 6€ RTS

MOVE PONLC TO FOINT

21CC A5 1C MOVE LEA FONDL
21CE 8% 34 STa POINTL
21pg A% 1D LEa PONLCH
21D2 8% 35 STa POINTH
214 AC €¢ LDYIM $g@
2106 €69 ETS

CLEAE PONC

2107 ¢ €CC 21 CLEAR JSR MOVE

21CA B9 @F LDAIM &¢F
21pC 8% 3¢ STe CNT
21DE A2 3F LDX1Y $3F
Cl1EL 98 YA

21El 91 34 CLEA STAIY POINTL
21E3 2& 58 22 JSR INCFT
21E€ CaA LDEX

21E7 12 F8 EFL CLEA
21E9 Cé6 3@ BEC CNT
21EE 1¢ Fi EFL CLEA -¢3
21ED 2€ CC €1 J SE MOVE
21FeE &2 RTS

EURY THE DEAD AND FAISE THE CHILDEEN

21F1 2¢ CC 21 UPDATE JSE MOVE

21F4 E1 G4 LDAIY FOINTL
21F¥6 3¢ @8 EMI POSTIT -£2
c1Fg C9 g2 CHFIM s@2

Z1FA 3¢ @8 BMI FOSTIT +€2
21FC A9 &8 LDAIM &£€

21FE F& g2 EEQ FOSTIT
ceee A9 £81 LDAIM $61

2e¢2 91 34 POSTIT STAIY POINTL

ceg4
eee7
22e9
22¢5
eeep
eele

2211
2214
2216
2218
2zla
221C
221D
221F
2221
2223
2224
2226
2228
cz2s
22eC
222E
223¢
2232
2234
2236

2239
22348
223E
223D
223F
2241
2243
2245
2247
e248
2244
2240
224F
2es2
2254
2287
2etes
2284
£2s¢
2E5E
228F
2260

2o
£5
Ccs
3g
eg
62

2e
AR
A9
91
g1
g8
le
A
£5
18
69
85
£9
€5
85
cs
217
A9
91
aC

18
Fg
&9
65
85
A9
€5
85
L8
89
2¢
£5
2e
A8
=35
6&
E6
De
Ee
6@
38
AS

&8
35
21
E7
cC

cc
3F
3%
1E
ee

F9
¢
34

4€
34
47
38
35
21
DE
ge
34
21

g1
38
38
ce
39
39

g4

2z

21

21

2¢

ee

26

JSR
LDa
CMP
EM1I
JSE
RTS

INCPT
POINTH

LAS +@1
UPDATE +¢3
MOVE

ELGE POND WITH ZEFQOES
TO PREVENT WREAF-AROUND

ECGE JSE
LLYIM
LDAIM
STAIY
STALIY
CEY
BFL
LLYIM

VEA LA
CLC
ALCIM
STA
LDAIM
ADC
STa
CMP
ECS
LDAaIM
STAIY
JMF

MOVE
$3F
L33
FON
LAS

EDGE +27
50
POINTL

sS40

POINTL

$ee

POINTH
FOINTH
LAS +¢1
EDGE ~-¢1
$ee

POINTL

VEA

INCREMENT ANLD DISPLAY
THE GENERATION COWNT

INCG CLC
SELD
LDAIM
ALC
STa
LDAIM
ADC
STa
CLL
NCG LDaAIM
JSFE
LDA
JSE
LDa
JSE
RTS
INCPT INC
ENE
INC
RTS
MOV SEC
LD&

321
CL
GL
¥6e
GH
GH

524
OUTCH
GH
PRTEYT
CL
FRETEYT

FPOINTL
INCPT +¢@6
FOINTH

FOINTL

65

2eee
2264
2266
2268
2264
2e6C
226E
227¢

2271
2272
2275
2277
2274
z227C
2E7F
2281
zega
2286
2288
228E
2281
ZE8F
2291
2293
2296
2297
2294

E9
85
AS
E9
85
LC
84
6¢

48
2e
8B4
2e
A5

o
[« 2

£9
2
£5
£9
2
A5
Cco
e
o
2t
68
2e

6¢

41
26
35
eec
37
ce

31

SYMEQOL

EASK

CaL
CNT

CFLT

LISPLY
GETCH

H

T
adiwd

MovzZ

NEF
OUTCH
POINT
PONDL
POSTIT
SHOAL
ST&RT

SECIM %41
STA POINT
LDA& FOINTH
SECIM 3$@0
STA POINT +01
LIYIM $¢@
STY NN
ETS
DISFLAY THE CHARACTER IN THE ACC.
AT THE -- POINT -- ALCDEESS ON TUEE
DI SPLY FPH& SAVE £CC
2 JSE CLCADFE
STY v
og JSE CALCVH CaLC V,H
LDAIM S$1E PEINT ESCAPE
og JSE OUTCH TO MOVE CURSOR
LDAIM ‘*= £ES ADLEESS
e JER QUTCH
LLA v
ORLIM $40 ACJSUT V
cF JSFE OUTCH
LA H ADJUST H
CMPIM $2¢
EFL LISPp
ORAIM S4¢
¢ DISP JSE OUTCE
FLA GET ACC
2 JSF OUTCH PEINT IT
ETS
T&ELE
ATF gg2cC EACK £124 EpD
214£ LIFTH 2¢DEb EIFRTHS 2¢ES CALCVH
CERE CLCALE 2¢8E CLEA £1E1 CLEAR
Al CoNV SE¢FF CONVH 2gF7 CoONVI
2¢1C LATA £eEs LEATH S¢CE LI SP
ce71 ELGE ce11 ENTRVH 211¢g ENT
SG14 CET C19E GH ¢ @39 GL
gee INCC 22239 INNCFT 2258 LAST
7oy LFLAG ¢eae LITE ceee MOVE
2¢53 MOV Pe5TF NE 2649 NIDFS
2G9F NCG 2048 NA g3l OFFSET
cgel FL AN clée FLENT 212F PLENTE
Ce36 POINTH ££35 FOINTL £¢34 PONLH
geic FoN EE1E FOST 2CAF FOSTE
cope FETEYT 2¢11 SAVY Geaz SHOL
S14C SHOLLL 21£5% SHO 21EF STEF
2P CE UT'CATE 21F1 v Frok WEA

56

2184
2677
17
Z2¢ED
2293
211F
e
ceee
z21CC
2¢99
gree
21932
gel1r
2601
21L3
2830

ceel

EKIM OR MAXI-KIM
Extended Keyboard Input Monitor

Andrew V.W. Sensicle
155 Valois Bay Ave.
Pointe Claire, Montreal
Quebec, Canada HI9R 4B8

Although KIM-1's ROM contains useful features like the tape and
TTY input-output routines, when it comes to inputting data or
coding via the key pad, KIM’s resident monitor leaves much to be
desired, for example the avoidance of repetitive pushing of the “t”
between each entry or the ability to look back a few bytes without
going into address mode. ! would like to thank }im Butterfield for
his excellent BROWSE and BRANCH PROCRAMS which | put
together in Page 1 and have used religiously since | got started in
this game in mid ‘78.

However, these have their limitations and | have frequently found
the need for a little more sophistication, not to mention the space
they occupy in Page 1. Anyway the thing which irritated me most
was the need to re-enter a long listing merely in order to open up a
few spaces for additional instructions. The process of tidying up a
finished program, entailing closing up unwanted spaces and the
associated readdressing was also very time consuming.

I thus decided to try to write an extended monitor which would be
compact enough to fit in Page 17 and yet provide the functions |
needed. After much condensing and compressing | ended up with
a program 6 bytes longer than the “legal” Page 17 RAM, but by
stealing a little from KIM it fits nicely. KIM doesn’t seem to mind.
As long as you don’t use the tape or TTY routines, he leaves you
alone.

The NMI vector is loaded with the start address (1780) so that the
ST key can be used to access the monitor at any open cell address.
Before pressing ST or after exitting via RS the resident monitor is
used as a normal in the AD mode. The ST key gives you 6 other
modes of operation or functions.

MODE
TEMPX
LAST
INL
POINTL
POINTH

SCAND
GETKEY
UPDATE
INCPT

1780 D8 START
1781 A2 01
1783 86 FF

1785 86 FD

1. STAND BY MODE [ST]: This starts the program which then sits
looking at the open cell address and its contents, ie. nothing seems
to happen. However, any HEX key is stored at the open cell address
which each second key stroke increments the address.

2. INCREMENT [t): Big deal! This works just like normal.

3. DECREMENT [PC]: This steps the address points backwards
exactly the reverse of “t”.

4. OPEN UP MODE [AD]: Each depression of this key causes one
full page of bytes (FF) to be moved one place up starting at the
open cell address.

5. CLOSE UP MODE [DAY}: Each depression of this key causes one
full page of bytes to be moved one place back to overwrite the
open cell contents. Having made an “open up” or close up move
of one or more steps you will, of course, have to fix up all affected
addresses. This is not as onerous as it sounds if you use the sixth
mode.

6. BRANCH MODE [GO}: When a branch instruction is en-
countered while entering a new program or fixing up an old one,
all you need do is press “GO” followed by the actual destinction
address (low order only). The monitor will calculate the relative
address, store it in the open cell and step on to the next cell all in
the twinkling of an eye. The user is, as usual, responsible for
ensuring that the branch does not exceed the normal half page
range.

t hope that this little program will be as useful to others as it is and
has been to me.

ORG $1780

* $00FF

* $00FD

* $00F3

* $00F8

* $00FA

* $00FB

* $1F19

* $1F6A

* $1FBB

* $1F63

CLD

LDXIM $01 INITIATE MODE AND
STX MODE COUNTER
STX TEMPX

57

1787 20 19 1F GETK JSR SCAND LIGHT DISPLAY

178A 20 6A 1F JSR GETKEY CHECK KEYS

178D CS F3 CMP LAST

178F FO F6 BEQ GETK

1791 85 F3 STA LAST NEW KEY

1793 C9 13 CMPIM $13 GO ?

1795 DO 02 BNE SKIP

1797 C6 FF DEC MODE PUT IN BRANCH MODE
1799 C9 12 SKIP CMPIM $12 + ?

179B FO 4A BEQ INCPNT

179D C9 14 CMPIM $14 PC ?

179F FO 22 BEG DECPNT

17A1 C9 11 CMPIM $11 DA ?

17A3 FO 11 BEQR CLOSUP

17A5 C9 10 CMPIM $10 AD ?

17A7 DO 26 BNE INDATA

17A9 AD FF OPENUP LDYIM $FF LOAD 255(10)

17AB 88 OPENX DEY

17AC B1 FA LDAIY POINTL LOAD AND STORE
17AE C8 INY ONE CELL HIGHER
17AF 91 FA STAIY POINTL

17B1 88 DEY

1782 DO F7 BNE OPENX NEXT

17B4 FO CA BEQ START

17B6 AQ 01 CLOSUP LDYIM $01

1788 Bl FA CLOSY LDAIY POINTL LOAD OPEN CELL
17BA 88 DEY PLUS 1

17BB 91 FA STAIY POINTL STORE IN OPEN CELL
178D C8 INY THEN UP

17BE C8 INY UNTIL

17BF DO F7 BNE CLOSY

17C1 FO BD BEQ START CONE 255 (10)

17C3 C6 FA DECPNT DEC POINTL

17C5 A5 FA LDA POINTL

17C7 C9 FF CMPIM $FF PAGE CHANGE?

17C9 DO BS BNE START NO

17CB Cé6 FB DEC POINTH YES, THEN DEC POINTH
17CD 10 Bl BPL START AS WELL

17CF €9 10 INDATA CMPIM $10

17D1 BO B4 BCS GETK FALSE START ACTUALLY NO KEY
17D3 20 BB iF JSR UPDATE ROL &4 BITS FROM A TO INL
17D6 A5 F8 LDA INL

17D8 91 FA STAIY POINTL

17DA Cé6 FD DEC TEMPX

17DC FD A9 BEQR GETK ONE MORE KEY

17DE A4 FF LDY MODE IN BRANCH MODE?
17E0 DO 05 BNE INCPNT NO

17E2 18 cLC

17E3 ES5 FA SBC POINTL CALC RELATIVE ADDRESS
17E5 91 FA STAIY POINTL STORA IT IN OPEN CELL
17E7 20 63 1F INCPNT JSR INCPT NEW CELL

17EA 4C 80 17 JMP START RETURN

58

CORRECTED KIM FORMAT LOADER FOR SYM-1

Nicholas J. Vrtis
5863 Pinetree S.F.
Kentwood, Ml 49508

My cassette is an old model GE, and it won't quite hack the high
speed tape format of the SYM-1, so | have probably used the KIM
format option more than most SYM owners. In the process, | have
found a bug in the SYM monitor tape load routine. Synertek
knows about the problem, but didn’t have a nice fix when | called,
so | worked up the attached program.

The problem with the monitor routines is that they will not load a
slash (hex 2F) from a KIM format tape. The slash is used to indicate
that the data is done, and the checksum follows. The monitor
routines don’t check for the slash until after the KIM characters
have been read and combined. The error you get is a checksum
error (ER CC).

Most of the code for this program has been copied from the SYM
monitor routines, except these work. The basic logic change is that
when a slash is read as a single KIM byte, it is treated as a non-hex

character. The non-hex routine checks for the slash instead of after
every character. If it is a slash, it goes to the checksum check
routine.

This routine is not as fancy as the monitor routines, but it sure
beats re-keying a couple K bytes of program. It has turned out to
be convenient to have this program available even for loading
programs without the slash. By changing the branch after the
compare for the slash to a branch back to LOADT7 it will ignore
errors. Sometimes this will load a bad tape with only minor errors.
Other times the program gets out of sync and loads garbage. It is
worth the try for a tape you have spent a lot of time on.

One final comment about cassettes. If you have the remote
control connected, putting a hex CC into location AOOC will turn
the cassette motor back on. It is easier than yanking the remote

plug.

FIXED SYM-1 KIM FORMAT LOADER

NICHOLAS J.
MARCH 1979

VRTIS

STRIPPED DOWN VERSIONS OF L1 COMMAND.

WILL LOAD A 2F WHICH CAUSES SYM-1 TROUBLE.
ONLY FOR KIM FORMAT TAPES.

ID SHOULD BE PUT INTO LOCATION 000O0.

0080 CHAR * $00FC
0080 MODE * $00FD
0080 BUFADL * $00FE
0080 BUFADH * $00FF
SYM-1 REFERENCES
0080 DDRIN * $A002
0o8o VIAACR * $AQ0B
0080 LATCHL * $A004
0080 ACCESS * $8BA6
0080 SLASH = $8D3C
0080 LOADTX * $8D4F
0080 NHERR * $8D69
008D SYNC * t8D82
0080 START * $8DB6
0080 RDBYTX * $8E28
oosce PACKT * $8E3E
0080 RDCHT * $8E61]
0080 CHKT * $8E78

59

CHAR ASSEMBLY & DISASSEMBLY

CURRENT CHAR INDIRECT ADDRESS

SLASH IN SYM MONITOR

oooo
0000

0601
0004
0006
0009
ooocC
00ctE
0011
0013
0016
0018
001B
001E
0021
0023
0025
0027
0029

0028
002D

002F

0032
0034
0036

0038
0038
003E
0040
0043
0046

0048
004B
004D
0050
0052
0054
0056
0058
CO05A

00

20
AD
20
AD
29
8D
A9
8D
A9
8D
20
20
C9
FO
c9
DO
FO

A9
85

20

C5
FO
DO

20
20
85
20
20
85

20
BO
20
AD
91
Eé6
DO
E6
DO

A6
0]
B6
02
BF
02
00
0B
AE
04
82
61
2A
06
16
F2
F3

0o
FD

28

00
02
E3

28
78
FE
28
78
FF

67
OF
78
00
FE
FE
FO
FF
EC

8B

8D
AQ

AO
AO
AO

8D
8E

8E

8E
8E

8E
8E

G0

8E

ORG
1D =

LOADT JSR
LDYIM
JSR
LDA
ANDIM
STA
LDAIM
STA
LDAIM
STA

LOADTA JSR

LOADTB JSR
CMPIM
BEQ
CMPIM
BNE
BEQ

LOADTC LDAIM
STA

JSR

$0000
$00

ACCESS
$00
START
DDRIN
$BF
DDRIN
$00
VIAACR
$AE
LATCHL
SYNC
RDCHT
L
LOADTC
$16
LOADTA
LOADTB

$00
MODE

RDBYTX

RESERVED FOR PROGRAM ID
UN-PROTECT SYSTEM RAM
SET KIM MODE

INITIALIZE

BIT 6 = 0 INPUT IS PB6

SET UP CLOCK FOR GETTR (KIM)
STORE GETTR VALUE IN LO LATCH
GET IN SYNC

START OF DATA 7

NO - SYNC CHARACTER?

IF NOT, RESTART SYNC SEARCH
IF YES, KEEP LOOKINT FOR THE *

CLEAR "NOT IN SYNC BIT"

READ ID BYTE

CHANGE THE FOLLOWING IF ID LOCATION IS

NOT HEX 0000

CMP
BEQ
BNE

LOADTD JSR
JSR
STA
JSR
JSR
STA

ID
LOADTD
LOADTA

RDBYTX
CHKT
BUFADL
RDBYTX
CHKT
BUF ADH

COMPARE WITH REQUESTED ID
GO LOAD IF EQUAL
UNCONDITIONAL - RESTART SEARCH

GET SAL FROM TAPE

PUT IN BUF START LOW
SAME FOR SAH

THE FOLLOWING JSR RDBYT IS THE ONLY
INSTRUCTION THAT WOULD HAVE TO CHANGE
T0 RE-LGCATE THIS PROGRAM

LOADTE JSR
BCS
JSR
LDYIM
STAIY
INC
BNE
INC
BNE

RDBYT
XNHERR
CHKT
$00
BUFADL
BUFADL
LOADTE
BUF ADH
LOADTE

60

GET A BYTE INPUT
BRANCH IF NON-HEX
INCLUDE IN CHECKSUM
STORE BYTE

BUMP BUFFER ADDRESS

BRANCH IF NO CARRY

ELSE NEED TO UPDATE HIGH ORDER
UNCONDITIONAL

005C CD 3C 8D XNHERR CMP SLASH "/" IN SYM MONITOR

005F DO 03 BNE YNHERR WAS IT REALLY AN ERROR

0061 4C 4F 8D JMP LOADTX NOW LET HIM HANDLE CHECKSUM
0064 4C 69 8D YNHERR JMP NHERR LET MONITOR DO THIS ALSD

0067 20 61 8E RDBYT JSR RDCHT READ ONE HALF

006A CD 3C 8D CMP SLASH SEE IF A SLASH

006D DO 02 BNE RDBYTA BRANCH IF NOT

006F 38 SEC SET CARRY AS NON-HEX
0070 60 RTS AND RETURN

0071 20 3E 8E RDBYTA JSR PACKT SEE IF GOOD CHARACTER
0074 90 01 BCC RDBYTB BRANCH AROUND RETURN IF HEX
0076 60 RTS

0077 AA RDBYTB TAX SAVE MSD

0078 20 61 8E JSR RDCHT GET NEXT HALF CHARACTER
007B 86 FC STX CHAR SAVE IT HERE

007D 4C 3E 8E JMP PACKT CHECK FOR HEX & RETURN

STORAGE SCOPE REVISITED

Joseph L. Powlette
Donald C. Jeffery
Hall of Science
Moravian College
Bethlehem, PA 18018

Marvin DedJong has written an excellent article
(MICRO, No.2, pp.11-15, Dec 77-Jan T78) which
serves to transform an ordinary oscilloscope in-
to a storage scope. We have constructed several
units for use in our laboratory and found them
to be very useful. However, we would like to
suggest a simple hardware change which will
improve the quality of the circuits performance.
Figure 1 is a photograph of the storage scope
response to a triangular wave (14Hz and voltage
offset) using Dedong's circuit. The cause of
the irregularities seen in this figure was
traced to the second OP-AMP which is used as a
comparator. The slew rate of the CA3140 is not
high enough to adequately accommodate the suc-
cessive approximation software routine. Figure
2 shows the collection of data for the same wave
with the second OP-AMP changed to a 531 high
slew rate OP-AMP. The 531, which is readily
available, has the same pin-out (in the T0-5
package) as the CA3140 but pin 4 must be con-
nected to -15 volts rather than ground poten-
tial. Also, do not use a frequency compensation
capacitor with the 531 since this will only de-
crease the slew rate of this OP-AMP in the com-
parator configuration. The 531 is not a FET in-
put type and does not have the high input im-
pedance (1.5 T) of the CA3140. If such a high
impedance is desirable, one can use a CA3140 in
the following configuration preceding the 531
non-inverting voltage input.

One should also note that:

1. There is a 7 bit version of the 1408 DAC.
Specify 1408L8 for the 8 bit converter.

2. +5 volts should be connected to pin 13 of the
1408 (see MICRO, No. 6, p. 4, Aug-Sept, 1978)

3. The flow chart for the successive approxi-
mation routine is not correct.

DeJong is to be commended for this storage scope
application. In fact, the performance of the
program (with the above hardware change)
approaches that of commercial units.

61

Flow Chart for
Successive Approximation
Analog to Digital Conversion

PAD = 8016 = 10000000

2
PGzz = 80,, = 10000000,
>
Y
YES
NO
\/

[PaD = PaD - PGzz]

X?q._____________

LOGICAL SHIFT RIGHT PGZZ.
(Shifts all bits one bit
right and zero bit is
shifted into carry bit

[?AD = PAD + PGZZ

IS PGZZ CARRY
BIT SET?

APPROX,
FINISH

Correction to Successive Approximation -
Micro, No.2, P. 13 Dec. 77 - Jan. 78

Figure 2

Figure 1

14 Hz Sine Wave
(Voltage Offset)

14 Hz Sine Wave

(Voltage Offset)

Modified Circuit

De Jong's Circuit

62

F N = -1 3 | T T pages 63 to 112

BREAKER: An APPLE Il Debugging Aidcooiirun e 65
Two APPLE Il Assemblers: AComparative Review oot 72
APPLE Calls and Hex-Decimal Conversiono virnornrninni s 74
APPLE Il High Resolution Graphics Memory Organizationo 75
MOS 16K RAM forthe APPLE H ... oot ittt 76
LIFE fOr yOUr APPLE . ..\ttt ettt et a e 77
AN APPLE 1 Page 1 Map . ..ottt it nee s 81
Exploring the APPLE IIDOS e 83
How Does 16 Get YOU 107 . ..ottt it ia it e et eaa s a et 85
APPLE I Trace List Utility ... oo ie i it e 87
6522 Chip SEtUP TIME « .o oot i it it e e s aa e e e a e 93
An APPLE Il Program Edit Aid oottt 94
A Cassette Operating System forthe APPLE] e 97
SC Assembler Il: Super APPLE Il Assembler 100
The Integer BASIC Token Systeminthe APPLEIloovininninnes 103
Improved Star Battle Sound Effects ... 104
Renumber Applesoftt 106
An APPLE Il Program Relocator 108

64

BREAKER:

AN APPLE II DEBUGGING AID

Rick Auricchio
59 Plymouth Ave.
Maplewood, NJ 07040

When debugging an Assembly-language program, one
of the easiest tools the programmer can use is
the Breakpoint. In its most basic form, the
Breakpoint consists of a hardware feature which
stops the CPU upon accessing a certain address;
a "deluxe" version might even use the Read/Write
and Sync (instruction fetch) lines to allow
stopping on a particular instruction, the load-
ing of a byte, or the storing of a byte in mem-
ory. Since software is often easier to create
than hardware (gnd cheaper for some of us!), a
better method might be to implement the Break-
point with software, making use of the BRK op-
code of the 6502 CPU.

A Breakpoint, in practice, is simply a BRK op-
code inserted over an existing program instruct-
ion. When the user program's execution hits the
BRK, a trap to the Monitor (via the IRQ vector
$FFFE/FFFF) will occur. In the APPLE, the Mon-
itor saves the user program's status and regis-
ters, then prints the registers and returns con-
trol to the keyboard. The difficult part, how-
ever, comes when we wish to resume execution of
the program: the BRK must be removed and the
original instruction replaced, and the registers
must be restored prior to continuing execut-
ion. If we merely replace the original opcode,
however, the BRK will not be there should the
program run through that address again.

The answer to this problem is BREAKER: a soft-
ware routine to manage Breakpoints. What the
debugger does is quite simple: it manages the
insertion and removal of breakpoints, and it
correctly resumes a user program after hitting
a breakpoint. The original instruction will be
executed automatically when the program is res-
umed !

Is it Magic?

No, it's not magic, but a way of having the
computer remember where the breakpoints are!
If the debugger knows where the breakpoints are,
then it should also know what the original in-
struction was. Armed with that information,
managing the breakpoints is easy. Here's how
the debugger works:

During initialization, BREAKER is "hooked-in" to
the APPLE monitor via the Control-Y user com-
mand exit, and via the COUT user exit. The con-
trol-Y exit is used to process debugger com-
mands, and the COUT exit is used to "steal con-
trol" from the Monitor when a BRK occurs.

the
con-
been

Breakpoint information is kept in tables:
LOCTAB is a table of 2-byte addresses--it
tains the address at which a breakpoint has
placed. The ADTAB is a table of 1-byte low-
order address bytes; it is used to locate a
Break Table Entry (BTE for short). The BTE is
12 bytes long (only the first 9 are used, but 12
is a reasonably round number) and it contains
the following items:

* Original user-program instruction
* JMP back to user-program
* JMP back for relative branch targets

When adding a breakpoint, we must build the BTE
correctly, and place the user-program break add-

65

ress into the LOCTAB. There are eight (8)
breakpoints allowed, so that we have a 16-byte
LOCTAB, 8-byte ADTAB, and 96 bytes of BTE's.

As the breakpoint is added, the original inst-
ruction is copied to the first 3 bytes of the
BTE, and it is "padded" with NOP instructions
($EA) in case it is a 1 or 2-byte instruction.
A BRK opcode ($00) is placed into the user pro-
gram in place of the original instruction's op-
code (other instruction bytes are not altered).
The next 3 bytes of the BTE will contain a JMP
instruction back to the next user-program inst-
ruction.

If the original instruction was a Relative
Branch, one more thing must be considered: if
we remove the relative branch to the BTE, how
will it. branch correctly? This problem is sol-
ved by installing another JMP instruction into
the BTE for a relative branch--back to the Tar-
get of the branch, which is computed by adding
the original PC of the branch, +2, +offset.
This Absolute address will be placed into the
JMP at bytes 7-9 of the BTE. The offset which
was copied from the original instruction will be
changed to $04 so that it will now branch to
that second JMP instruction within the BTE; the
JMP will get us to the intended target of the
original Relative Branch.

in the Monitor

A call to the routine "INSDS2"

returns the length and type of an instruction
for the "add" function. The opcode is supplied
in the AC, and LENGTH & FORMAT are set approp-

riately by the routine.

Removal of a breakpoint involves simply rest-
oring the original opcode, and clearing the
LOCTAB to free this breakpoint's BTE.

Displaying of breakpoints prints the user-prog-
ram address of a breakpoint, followed by the
address of the BTE associated with the break-
point (the BTE address is useful--its importance
will be described later).

When the breakpoint is executed, a BRK occurs
and the APPLE Monitor gets control. The monitor
will "beep" and print the user program's regis-
ters. During printing of the registers, BREAKER
will take control via the COUT exit. (Remember,
we get control on every character printed - but
it's only important when the registers are being
printed. That's when we're at a breakpoint).
While it has control, BREAKER will grab the
user-program's PC and save it (we must subtract
2 because of the action of the BRK instruction).
If no breakpoint exists at this PC (we scan LOC-
TAB), then the Mointor is continued. If a
breakpoint does exist here, then the BTE ad-
dress 1is set as the "continue PC". In other
words, when we continue the user program after
the break, we will go to the BTE; the original
instruction will now be executed, and we will
branch back to the rest of the user program.

Using BREAKER

The first thing to do is to load BREAKER into
high memory. It must then be initialized via
entry at the start address. This sets up the
exits from the Monitor. After a Reset, you must
re-initialize via "YeI" to set up the COUT exit

Upon entry at the start address, all
after "YecI", they re-

again.
breakpoints are cleared;
main in effect.

To add a breakpoint, type: aaaaYcA (Yc is
control-Y). This will add a breakpoint at
address 'aaaa' in the user program. A 'beep!
indicates an error; you already have a break-
point at that address. To remove a breakpoint,
type: aaaaYcR. This will remove the breakpoint
at address 'aaaa' and restore the original op-
code. A 'beep' means that there was none there
to start with.

Run your user-program via the Monitor's "G" com-
mand. Upon hitting a breakpoint, you will get
the registers printed, and control will go back
to the monitor as it does normally. At this
point, all regular Monitor commands are valid,
including "YcA", "YcR", and "YcD" for BREAKER.

To continue execution (after looking at stuff
maybe modifying some things), type: YeG . This
instructs BREAKER to resume execution at the BTE
(to execute the original instruction), then to
transfer control back to the user program. Do
not resume via Monitor "G" command--it won't
work properly, since the monitor knows nothing
of breakpoints. To display all breakpoints,
type: YeD. This will give a display of up to 8
breakpoints, with the address of the associated
BTE for each one.

BREAKER DEBUGGER:
Breakpoints,

Caveats

Some care must be taken when using BREAKER to
debug a program. First, there is the case of
BREAKER not being initialized when you run the
user program. This isn't a problem when you
start, because you'll not be able to use the Ye
commands. But if you should hit Reset during
testing, you must re-activate via "YeI",
otherwise BREAKER won't get control on a break-
point. If you try a YcG, unpredictable thinzs
will happen. If you know that you hit a break-
point while BREAKER was not active, you can
recover. Simply do a "YecI", and then display
the breakpoints (YeD). Resume the user-pro-
gram by issuing a Monitor "G" command to the BTE
for the breakpoint that was hit (since BREAKER
wasn't around when you hit the breakpoint, you
have to manually resume execution at the
BTE). Now all is back to normal. You can tell
if BREAKER is active by displaying loc-
ations $38 and $39. If not active, they will
contain $F0 FD.

It's also important to note that any user pro-
gram which makes use of either the Control-Y or
COUT exits can't be debugged with BREAKER. Once
these exits are changed, BREAKER won't get con-
trol when it's supposed to.

Routines to Handle up to 8
for use in Debugging of User Code.

****x APPLE-2 MONITOR EQUATES

*
B02F FORMAT EQU X'2E" INSTRUCTION FORMAT
d82F LENGTH EQU X'2F' INSTRUCTION LENGTH
203C aiy EQU X'3¢! WORK AREA
de3D AlR EQU x'3r!
d23E A2L EQU X'3E"
@8 3F A2E EQU X'3F'
004e A3L EQU X'4¢9!'
g4l A3H EQU x'41?

*
2936 CSWL EQU X'36" COUT SWITCH WORD
2037 CSWH EQU X'37"

*
F88E INSDS2 EQU X'F88E" CISASSEMBLER
F949 PRNTYX EQU X'F944" PRINT Y/X REGS IN HEX
FDDA PREYTE EQU X'FDDa’ PRINT AC IN HEX
FDED couT EQU X'FDED' CHAR OUT
FF65 RESET EQU X'FF65" MONITOR RESET
FF69 MON EQU X'FF69' MONITOR ENTRY

*

* CHANGE 'LOWPACE' TO LOCATE

* ELSEWBERE IN MEMCRY. IT IS

* NOW SET FOR & 32K SYSTEM.

*

20008870 LOWPAGE EQU X'7D" 3 PGS PEFORE END MEMORY
7020 ORC LOWPACE**8 ORG OUT TO MEMCRY TOP
7D20 4C 36 7F INIT Jmp INITX =>INITIALIZATION ENTRY

*

* ——~ DATA AREAS =-=-= *

*
7D23 Y] Fwl DC) "FINDPC' WORK BYTE 1
7064 20 F¥2 DC) "FINDPC' WORK BYTF 2
7D@5 0o PCL bC B 'GOo' PC LO
7006 e PCH DC 0 'GO' PC HI

*

** SKELETON BREAK-TAEBLE ENTRY (BTE) **

*
7087 20 SKEL LC) SKELETON BTE
7D08 EA NOP NOPS FOR PADDING
7089 EA NOP
7D0A ac @¢ o0 JMP) JUMP BACK INLINE
7D@D 4C DC X'4c' JUMP OPCODE FOR RRANCHES

66

*

* -~ IO ADDRESS OF BTE'S KEPT IN ADTAB -- ¥
*

7DOE 26 ADTAB DC BTE#&255 LO ADDRESS
7DOF 32 DC BTE1&255
7D10 3E DC BTE2&255
7D11 4a DC BTE3&255
7D12 56 DC BTE48255
7D13 62 £C BTES5&255
7D14 6E DC BTE6&255
D15 74 LC BTE7&255
R ,
** —- LOCTAB CONTAINS ADDRESS OF USER-PROGRAM INSTRUCTION
* WHERE WE PLACEDC THE BREAKPCINT IN THE FIRST PLACE.
7D16 LOCTAR L[S 2%8 SPACE FOR 16 PCH/L PAIRS
! *
** —- PREAK-TABLE ENTRIES {BTE'S) --- *
*
D26 BTEY DS 12 12-BYTES RESERVED
7032 BTEL DS 12
7D3E PTE2 DS 12
7D4A ETE3 DS 12
7D56 BTEA4 DS 12
7D62 BTES DS 12
7D6E BTE6 DS 12
7D7a BTE7 DS 12 ENOUGH FOR 8 BREAKPOINTS

*

* END OF DATA AREAS
* THE REST IS ROM-AEBLE.
*

dehkhhhkhkkhkhhkhhhkhhkkhhkhhhkhkhhhhhhhhhkhkkhhkhkhhhhhkthkhhhhhkhhkhkhhhhkhkhhkhkhkhd

* NAME FINDPC
* PURPOSE: CHECK IF PC IN FW1/FW2 MATCHES ANY IN LOCTAB
* RETURNS: CARRY SET IF YES; XREG=ADTAE INDEX @-7
* CARRY CLR IF NOT; XREG=GARBAGE
* VOLATILE :DESTROYS AC
LA S SRR SRS s RS 2R R R 82 2 X 2 2 R R R X E RS R R R R R R R R R R R RS E R R R E T R RS S R XY
7086 A2 @F FINDPC LDXIM 15 RYTE-INDEX TC END COF TABLE
7088 AD 74 7D FPCAOY LDA FW2 GET FCR COMPARE
708E CD 16 7C CMPX LOCTAE a4 PCE MATCH?
7C8E De e BNE FPCE2 =>NC. TRY NEXT 2-BYTE ENTRY
7098 aAD €3 70 LDa Fii GET BCL NOW
7D93 DD 15 7D CMPX LOCTAR-1 A PCL MATCH?
7096 F¢ 26 BEC FPCU4 =>YES! WE HAVE A BREAKPOINT!
7098 ca FECH?2 DEX BACK UP ONE
7099 Ca DEX AND ANOTBER
709a i¢ EC BPL FPCY@ =>D0 ENTIRE TABLE SCAN
7D9C 18 CLC =>DONE; SCaN FAILED
709D 60 RTS
*
JDSE 48 FPCO4 PHA HOLD AC
7D9F 84 TXA HALVE VALUE IN XREG
7DAd 4a LSRa SINCE IT'S 2-BYTE INDEX
7DAl AA TAX
7DA2 68 PLA
70a3 38 SEC SET 'SUCCESS'
7DA4 60 RTS

kkkkhhkhhkhhkhhkhhhkhkhkhhhhkhhhhhhkhkhkkhrhkhhkhkhhhhhhhkhhhhhbhkhhhhhhhkhhkhhhhkhdk

* NAME : BREAK

* PURPOSE: HANDLE ENTRY AT BERK AND PROCESS BREAKPOINTS

* NOTE: THIS ROUTINE GETS ENTERED ON *EVERY* 'COUT'

* CALL--IT KNOWS ABOUT BRK BECAUSE THE MONITOR'S

* REGISTERS ARE SETUP TC PRINT USER REG CONTENTS.

* AFTER PROCESSING Is DCCNE, IT RESTORES THE MCNITOR'S

* REGS AND RETURNS.

Kk kkkhkkk ko k ok hkk kA kA AR R R KRR R AR AR Rh A b Ak kA Rk bk k ke kA kkkkk ke k &
TDAS E¢ FR BREAK CPXIM X'FB' IS XREG SET FOR EXaMINE-REGS?
7DA7 Ly 27 ENE ERKXX =>KNC GET CUT NOW.

67

7DA9 C9 ae BRKD2 CMPIM X'ag' IS AC SETUP CORRECTLY TOO?
7CAR D@ 23 BNE ERKXX =>NOPE. FALSE ALARM!
JDAD as 3¢ LDAZ alL GET USER PCL
TDAF 38 SEC ANDC BACK IT UP
7DR & E9 €2 SECIM 2 EY 2 BYTES SINCE
7CR2 8D 93 7D STA FW1 BRK BUMPED IT!
IDB5 as 3p LDAZ AlH GET PCE
7CB7 E9 08 SBCIM) DO THE CARRY
7DB9 8L @4 7D $Ta FW2 AND SAVE THAT TOO
7DBC 22 86 7D JSR FINDPC A PREAKER OF OURS HERE?
7DBF °g P BCC BRK§4 =>NOPE. WE WON'T HANDLE IT!
7DC1 BD QE 7D LDAX ADTAP YES: GET BTE ADDRESS THEN
7DC4 gD €5 7D STA PCL AND SET IT as THE 'GC'
7DC7 A9 7D LDAINM LOWPAGE PC FOR THE 'GO' COMMAND.
7DC9Y 8D @6 7D $Ta PCH {CUR PAGE FOR BTE'S)
*
7DCC a9 ag BRK{ 4 LDAIM X'ap' SET AC BACK FOR MCNITOR
T0CE A2 FB LDXIM X'FB' AND XREG TOO
A 4C FO FD PRKXX Jup X'FDFO' =>KO. RIGHT BACK TO COUT ROUTINE!
'k**
ok PROCESS THE 'GC' (OMMAND (RESUME USER EXECUTION) *¥*
* COMMAND FORMAT: { * Y& G) .
**k
D03 AL 85 7D CMDGO LDA PCL CET RESUNME PCL
7DD6 85 3C STAZ alL AND SETUP FOR MONITOR
7CD& AD €6 7D LDA PCH TC SIMULATE AN 'XXXX C' (OMMAND
7DCE 85 3D STAZ AlLH NORMALLY.
7DDC 4C B9 FE JMP X'FER9’ =>SAIL INTO MONITOR'S 'CO’
************t**************************************k*************
*k WE CET CONTROL HERE ON THE CONTROL-Y USER EXIT FROM THE
* MONITOR (ON KEYINS). ALL COMMANDS ARE SCANNEC HERE;
* CONTROL WILL PASS TO THE APPROPRIATE ROUTINE.

7DEY A2 FF KEYIN LDXI¥ X'FF' CHAR INDEX
7DE2 E8 KEYIN@E INX SET NEXT CHARACTER
7DE3 BD 0C #2 LDAX X'a200" GET CHAR FROM KEYIN BUFFER
JTE6 C9 99 CMPIM X'99* CONTRCL-Y CHARACTER?
7DE8 D¢ F8 ENE KEYINGD =>NC. KEEP SCANNING
7DEA E8 INX BUMP OVER CTL-Y
7DER BD 08 02 LDAX X'0209" GRAP. COMMAND CHARACTER
7DEE Co C7 CMPIM X'C7’ Is IT 'G' {GO) ?
*
* 4 PRANCE-TARLE WOULD PE
* NEATER, BUT IT WOULD
* TAKE UP MORE CODE FOR
* THE FEW OPTIONS WE HAVE.
*
7DF@ F@ EL BEQ CMDCO =>YES.
7DF2 ce Cl CMPIM X'cl’ IS IT 'a' {(aDbD) ?
7DF 4 FO 18 BEQ CMDADD =>YES.
TDF6 co Ca CMPIM X'car IS IT 'D' (DISPLAY) ?
JDF8 F# ¢B BEQ XXDISP =>YES.
7DFA C9 D2 CMPIM X'D2’ IS IT 'R' {REMOVE) ?
7DEC F@ 0a BEQ XXREMOVE =>YES.
7CFE C9 C9 CMPIM X'Co" I8 IT 'I' (INIT) 2
TEQ0 F@ 99 BEQ XXINIT =>YES.
7E@2 4C 65 FF BADCMD JMP RESET NOTHING; IGNORE IT!
*
TE@S 4C A8 7E XXDISP JMP CMDDISP EXTENDED BRANCH
TEO8 4C 98 7F XXREMOVE JMP CNCREMOV EXTENDED BRANCH
7EOR 4C 4F 7F XXINIT JMP CMDINIT EXTENDED BRANCH

khkkhhhkdkhhhhkhhhhhhkkhkhhhkhhkhkhhhhhkbhkkkhhhkkhkhhhkhkrhhkhhhkhkhrxkrhkhkhkhk

*% PROCESS THE 'ADD' COMMAND..ADD A BREAKPOINT AT
* ¥ LOCATION SPECIFIED IN COMMAND
* COMMAND FORMAT: { * aaaa Yc A) .
(232222 2222222222222 2 2 2 22 2 R AR R XXX 2SS RS RS S RS2SRRSR RS R R]
7EQE AD B8 CMDADD LDYIM %] CHECK OPCODE FIRST
TELD Bi 3E LDATIY a2l CP AT AAAA A BRK ALREADY?
TELZ2 F? EE . BEQ BADCMD =>YES. ILLEGAL!
* ——~ SCAN LOCTAR FOR AN AVAILABLE BTE TC USE --- *
*
7E14 A2 OF LDXIM 15 RYTE INDEX TO LOCTAR END
7E16 BD 16 7D ADD2?d LDAX LOCTAR GET A BYTE
7E19 Lo @5 BNE ADD@ 2 =>IN USE
7E1B BD 15 7D LDAX LOCTaBR-1 GET HI HALF
7ELE F@ 06 BEQ ADD@ 4 => POTH ZERO; USE IT!
TE20Q CA Aabbd2 DEX MOVE BACK TC
TEZ21 Ca DEX NEXT LOCTAB ENTRY
TJE22 18 F2 BPL ADDOO ANC KEEP TRYING!
7E24 349 ©C BMI BADCMD =>DCNE? ALL FULL! REJECT IT.
*
TE26 A5 3E ALCDA4 LDAZ AZL GET aaaa VALUE
7JE28 9p 15 7D sSTaX LOCTAB-1 SAVE LO HALF
TE2R 8D #B 7D STA SKEL+4 STUFF LO ADDR INTO RTE
JEZE A5 3F LDAZ AZH GET aaaa VALUE
TE38 gp 16 7D 5TaX LOCTAB SAVE HI BALF
TE33 8D 4C 7C STA SKEL+5 STUFF HI ADDR INTO BTE
JE36 8a TXA GRAE INDEX FOR LOCTAR
7E37 4A LSRA MAKE ADTAR INDEX
7JE38 AA TAaX AND STUFF BRALK INTQO XREF
JE39 A9 7D LDAIM LOWPAGE BTE'S BI ALCLRESS VALUE
JE3R 85 41 STAZ A3R HOLL IN WORK AREA
JE3D BD #E 7D LDAX ADTAP GET BETE LO ALCDR FROM ADTAR
TE49 85 44 STAZ A3L SAVE IN WORK AREA
JE42 Ad 87 LDYIM 7 7-BYTE MOVE FCR SKEL BTE
7TE44 R9 g7 7D ADD#6 LDAY SKEL GET SKEL BYTE
TE47 91 48 STAlY A3L MOVE TO BPTE
7TE49 88 DEY SET NEXT
7E4A 10 F8 PPL ADRDE6 => MCVE ENTIRE SKELETON
7EAC (6231 INY
7E4D BR1 3E LDAIY A2L GET CRIGINAL OPCOLCE
TJE4F %1 49 STAalY A3L INTO EBTE
7E51 280 8E F8 JSR INSES2 INSDS2 {TO DISASSEMBLE)
7E54 A9 80 LDAIM ('] SET BRK OPCOLE
TFES6 g1 3E STATY A2L OVER ORIGINAL OPCOLE
JES8 A5 2F LDAZ LENGTH GET INSTRUCTICN LENGTH
TE5A 38 SEC
*
* ——— SET UP JMP TO NEXT INST. IN THE BTE --- *
*
TE5SR Al @24 LDYIM 4
7E5SD 71 49 ADCIY a3L ALD TO PC FOR DESTINATION
TE5SF 91 4@ STAIY A3L STUFF INTO ETE
7E61 C8 INY
TE62 Bl 49 LDAIY A3L RUN UP THE LCARRY
7E64 69 ¢49 ADCIM 2 RICHT BERE
E66 1 40 STAIY A3L STUFF ADDRESS INTO JMP
;Eés 25 2E LDAZ FORMAT GET INSTRUCTION FORMAT
TE6A €9 9D CMPIM X'9p!’ IS FORMAT=BRANCH?
TE6C FO 16 BEQ ADDBRCH =>YES. MORE TO DO
TEGE A5 2F LDAZ LENGTH LENGTH=1?
TETO FO OF BEQ CMDRET =>YES. DONE
TET2 6A RORA LENGTH=2?
TET3 BO 06 BCS ADDLENZ2 =>YES
7E75 A0 02 LDYIM 2 LENGTH=3;MOVE 3RD BYTE TO BTE
TET7 B1 3E LDAIY A2L GET INST 3RD BYTE
TET9 91 40 STAIY A3L AND MOVE TO BTE
7ETB AD 01 ADDLEN2 LDYIM 1 LENGTH=2;MOVE 2ND BYTE TO BTE
7ETD B1 3E LDATY A2L GET INST 2ND BYTE
TETF 91 K0 STAIY A3L AND MOVE TO BTE
TE81 4C 69 FF CMDRET JMP MON DONE; BACK TO MONITOR!

69

TESY
TE86
TESS
TE89
TE8B
TES8D
TESF
TE91
7E93
TE9S
TE96
7E98
TE9A
TE9C
TE9E
TEAO
TEA1
TEA3
TEA5
TEA6
7EBA
JEPB
7ERC
7EBF
7EC2
TECY
7EC6
TECT
7ECA
TECC
7ECF
JED®
7EDL
7ED2
JED3
7ED5
7ED8
7EDA
7EDC
JEDF
7EE2
TEE4
JEE7
TEE9

7EEC
TEEE
7JEF1
JEF3
JEF5
7EF8
TJEFA
7EFD
ALY
7F1
TFY2

A9

Al
Bl
20
Bl
20

68
AA
10

16
15
3B
3A

4¢
AP
EL

BC
ED
7D
3F
LA
UE
3E

BE
ED

7D
7D

FS

FC

FC

FD

FD

FD

FD

FD

F8

® ~-~ FOR BRANCHES, WE'VE GOTTA ADD A JMP FOR THE 'TRUE®
CONDITION (SINCE WE MOVED THE BRANCH 'WAY OUTA THE PROGRAM!)

ADDBRCH LDYIM

LDAIY
CLC
ADCIM
ADCZ
STAZ
LDAZ
ADCIM
STAZ
NOP
LDAIM
STAIY
LDYIM
LDAZ
STAIY
INY
LDAZ
STAIY
CLV
BVC

DISPo4 TXa

* % ¥ ¥ *

PHA
LDYX
LDAX
STYZ
STAZ
Tax
JSR
LEAIM
JSR
PLA
PHA
LSRA
TAX
LDAIM
JSR
LDAIM
STAZ
JSR
LDAX
STAZ
JSR
LEAIM
JSR

1
A2L

2
A2L
A2L
A2H
0
A2H

y
A3L
7

A2L
A3L

A2H
A3L

CMDRET

LOCTAB
LCCTAB-1
X'3R*
X'3a"

PRNTYX
X'ag!
cour

x'ec!
cour
LOWPAGE
AZH
PRBYTE
ADTAB
A2L
PRRYTE
X'BE'
cour

SET FOR 2ND BYTE
GET DESTINATION OFFSET
AND ADD 2 BYTES TO

CONSTRUCT ABS ADDRESS
ADD TO SUBJECT-INST ADDRESS

CARRY IT

(PLACE-HOLDER WASTE HERE)
TRUE-BRANCH TO +4
PUT INTO NEW OFFSET

GET JMP ADDRESS
MOVE IT TO
THE
BTE FOR
THE 'TRUE' JMP
SNEAKY BRANCH
TO EXIT
GET INDEX
SAVE IT
GET SUBJECT-INST PCH
AND 178 PCL
SET UP PCH/PCL FOR
DISASSEMBLER...

PRINT Y,X BYTES IN HEX
PRINT ONE

SPACE BERE

RESTORE INDEX

CONVERT TO ADTAR INEX

'<' CHARACTER

PRINT IT

BTE HI ADDRESS

SET INDIRECT POINTER
PRINT BEX BYTE

GET BTE LO ADDR

SET INDIRECT POINTER
PRINT BTE FULL ADDRESS
'>' CHARACTER

PRINT IT

--- DISASSEMBLE THE ORIGINAL INSTRUCTION. PICK UP
ORIGINAL OPCODE FROM BTE, ORIGINAL ADDRESS
FIELD FROM USER PROGRAM LOCATION.

LEAaIM
JSR
LDYIM
LBATY
J5R
LDAIY
JSR
JSR
PLA
TaX
EPL

70

X'ag!'
cour

@

AZL
PREYTE
A2L
INSDS?2
JSRKLUGE

DISPNXT

PRINT ONE

SPACE HERE

INDEX
GET OPCODE FROM BTE
PRINT OPCODE
GET OPCODE FROM BTE
AND CET FORMAT/LENGTH

SNEAK INTO INSDSP @ F8L9

RESTORE LOCTAE INDEX
=) DISPLAY THE REST!

* KLUGE ENTRY INTO SUBROUTINE
* WHICE FORCES JSR PRIOR TO
* A PHA INSTRUCTION. WE HAVE

* TO JSR TO THIS JMP!

*
TF34 48 JSRKLUGE PHa PUSH MNEMONIC INDEX
TFEé5 4C D9 F8 JMP X'F8D9"* CONTINUE WITE INSTDSP

% k% k ok k Kk ENMD OF KLUGE)l *%%%%

*****************************'k***********************************

o REMOVE A BREAKPOINT AT LOCATION adad
* COMMAND FORMAT: { aaaa Yc R)
hhkdkhhhkhhhdhkhkhkhhhhkhkhhhkhhhhhhhkhkhhhhhkhhhkhkkhhkhkhhkrhhkhhkhhhkhhhhkhkhkhkhkhkk
TFO8 a5 3E CMDREMOV LDAZ A2L GET ADDRESS LO
TFda 8D @3 7D STA FW1 HOLD IT FOR FINDPC
7FOD A5 3F LDAZ A2E GET ADLCRESS HI
JFOF 8D ¢4 7D STa Fu2
7F12 20 86 7D JSR FINDEC A PREAKPCINT EERE?
TF15 BE 83 PCS REMOV@2 =>YES
P17 4C 65 FF JIMP RESET =>NO: BELL FOR YOU!
*
JFlA BD #E 7D REMOV@2 LDAX ADTAR GET THE LOCTAE ENTRY
7F1D 85 44 STAZ A3L HCOLD IT
IFLF 8a XA NOW CREATE LOCTABR INDEX
7F20 ga ASLA
7F21 AA TAX
TF22 A9 08 LDAIM | CLEAR OUT THE
JF24 A8 TAY APPROPRIATE
7F25 9L 16 7D STAX LOCTAR LOCTAE ENTRY
7F28 9 17 7D STax LOCTAB+1 FOR THIS EKPT
TF2E a9 7D LDaIM LOWPAGE BEI ADDR FOR BTE
7F2D 85 41 STAZ A3H EOLE FOR ADDRESSING
JF2F Bl 49 LDAIY A3L GET OPCCDE OUT OF BTE
7F34 91 3E STAlY A2L AND PUT BaCK INTO ORICINAI
7F33 4C 69 FF JNP MON =>aLL DONE.

khkhkkkkhkkhkhkkhhkhkhkhkhhkhkkrhkhhkkkhhkhkhkhhdkhhhkhhkhkhhkAkhkk bk kb hkhkkkhkAhkdhhhdhkk

* INITIALIZATICON CODE. ENTERELC AT STAPT ACDCR T0 INITIALIZE.
* 1T CLEARS LOCTAPR, SETS UP TEE Yc AND 'COUT' EXITS.
*
* AFTER EVERY 'RESET', MUST RESETUP WITH * Yc I .
kkkhkkhkhkkhhhhhhhdhhhkhhkkhhhhhkhhhhhhhkhhhhkhhhhhkhhkhkkrhhhhhkkhkh kkx
TF36 A9 4C INITX LDATIM x'4ace JMP OPCODE
JF38 8C F8 4¢3 5TA X'3F8"' STUFF IN Yc¢ EXIT LOC
7F 3P AS 7L LBAIM KEYIN/256 KEYIN: FI ADDRESS
TF3D 8D FA ¢3 S5TA X'3FA' STUFF INTC JMP
TF4¢ A9 EY LDAIM KEYIN&X'FF' KEYIN: LO ADDRESS
JF42 8D F9 43 STA X'3F9’ STUFF INTO JMP ADDRESS
TF45 A% 09 LDAIM ¢
7F47 A2 @F LDXIM i> INCEX TC LCCTAB END
7F49 9C 16 D INITOY sTAX LOCTAB CLEAR IT CUT
JF4C Ca DEX SC THERE ARE
JF4D i¢ Fa BFL INITYY NC BREAKPCINTS
*
* ---- ENTER HERE AFTER HITTING 'RESET' KEY, PLEASE ~-- *
*
TF4F A9 A5 CMDINIT LDAIM BREAK&255 BEREAK: LO ALDRESS
JF51 85 36 STAZ CSWL STUFF INTO 'COUT' EXIT HOOK
TF53 A9 7O LDAINM BREAK/256 BREAK: BI ADDRESS
TF55 85 37 STAZ CSwH STUFF INTO 'COUT' EXIT HOCK
TF57 4C 69 FF JMP MON INIT DONE; BACK TO MON.
END

n

TWO APPLE Il ASSEMBLERS:
A COMPARATIVE SOFTWARE REVIEW

Allen Watson
430 Lakeview Way
Redwood City, CA 94062

There are two assembler programs for the Apple !l available from
independent software vendors: the Microproducts Apple Il
Co-resident Assembler for $19.95 from Microproducts, 1024 17th
Street, Hermosa Beach, CA 90254, and the S-C Assembler 11 for $25
from S-C Software, P.O. Box 5537, Richardson, TX 75080. The
features and relative merits of these assemblers are the subject of
this review.

Introduction: Software Tools

Some microcomputer owners hardly ever program, being satisfied
to run programs written by other people. Others program only in
BASIC or one of the compiler languages. Then there are those who
write programs in machine language because the demands they
make of their computers can be met in no other way. The
assembler is a software tool which relieves them of much of the
drudge-work involved in machine-language programming.

Software tools such as assemblers are much more important than
their modest sizes might imply, since they are used over and over
in the development of other programs. A poor tool is tiring to use
and causes errors and frustration; a good tool requires minimum
effort and soon seems like a natural extension of the user.

Built-In Assembler Features

The mini-assembler built into the Apple Il sets it apart from
conventional microcomputers. It will probably lead many Apple (I
owners to venture into machine-language programming for the
first time.

The mini-assembler's primary function is instruction-code
translation. Instead of remembering all the 6502 numeric opcodes,
the programmer finds himself thinking in the 6502 mnemonics.
The word mnemonic just means easy to remember; while letter
combinations such as CMP and LDA may seem cryptic at first, it
soon becomes second-nature to read CMP as compare and LDA as
load accumulator.

The branch instructions in the 6502 use relative addresses. The
address that is being branched to has to be converted into a
one-byte offset value. Doing this by hand is so tedious and prone
to error that there is even a small slide rule on the market to do the
hexadecimal arithmetic. The Apple’s mini-assembler and its
companion disassembler take care of this automatically, so that
the programmer can use the actual address values when he writes
branch instructions.

The different addressing modes of the 6502 are handled very
simply. Indexing is indicated by a comma and X or Y after the base
address. Parentheses are used to delimit the address of the address
in indirect-addressing mode, and indirect-indexed and
indexed-indirect addressing are easily distinguished by this means.

The Apple’s buiit-in assembler is very convenient, but the

72

machine could do more for him. Obviously, given the right
program, it can. Enter the full-fledged assemblers, stage right.

More Assembler Features

Both of the assemblers described here have all the features of the
Apple mini-assembler and several more besides. The two most
important additional features are program editing and symbolic
addressing. An editor is often a separate program, but since much
of the value of an assembler would be lost without the ability to
edit, both of these assemblers include editors and should properly
be called editor-assemblers.

Once you face the necessity of re-entering most of a long program
by hand in order to make room for additional instructions near the
beginning of the program the need for an editor will be apparent.
Some machines have editors that work directly on the machine
code, but the editor portions of both of these assemblers
manipulate the assembler input data or source file. They enable
the programmer to add or delete instructions anywhere in the
program without worrying about the consequences. (Well, almost;
if the added instructions between a branch instruction and its
destination increase the displacement to more than 128 bytes, the
branch is no longer valid and must be replaced by a different
branch and a jump.)

Symbolic addressing is one of the most important functions of an
assembler. The older higher-level language BASIC and FORTRAN
have symbolic addressing only for variables. The lack of symbolic
addressing of instructions makes programs difficult to read.

Address references in assembler language are made by means of
symbols which are assigned their numeric values when the
program is assembled. The programmer needn’t be concerned
about the actual addresses except to make sure there is room for
all of them. But symbolic addressing does more than just eliminate
a lot of messy bookkeeping: since the symbols are entirely
arbitrary, the programmer can choose them such that they serve as
mnemonic labels for all of the important addresses in the program.
For example, where a BASIC programmer would have to write
something like GOTO 1275, an assembler-language programmer
may write JMP DONE, where DONE is both a symbol which
represents the required address and a label which is meaningful to
the programmer.

The Microproducts Co-resident Assembler and the S-C Assembler
I both qualify as full-fledge assemblers. They have several features
in addition to those described above, including:

(1) loading and saving the assembler input file on tape;

(2) programmer specification of the starting address in memory
of the assembled program;

(3) inclusion of ASCIH character strings and hexadecimal
numbers as part of the program; and

(4) the inclusion of comments, explanatory notes which are part
of the input file but are ignored by the assembler.

What About Documentation?

A user's manual is provided with each of these assemblers. The
Microproducts manual consists of seven pages and is barely
adequate. It is poorly organized and there are a couple of errors in
it. The manual for the S-C assembler is more substantial, with 17
pages of instructions giving complete information for the
programmer. There are also 10 pages of appendices including a list
of references and a listing of a printer-driver program. It is clear
and candid, even pointing out a couple of weak places in the
program.

Now For The Bad News

There are limits to how easy things can be made for the
machine-language programmer. For one thing, both assemblers
limit the length of symbols to not more than four characters, and
special characters are not permitted: only letters and numbers.
Another joy-killer is the strict formatting of the input statements.
Labels must be in their specified columns, opcodes in theirs, and
soon. If there is no label on a particular line, you must skip across
to the correct column before typing in the operation mnemonic.

The S-C assembler ameliorates this problem by providing a
tabulation feature: to skip a field, you just type in a TAB. Since the
Apple 1I's keyboard doesn’t have a TAB key, you have to use
Control-I for this. The Microproducts assembler makes you count
spaces, which is downright criminal. Computers can count without
ever making a mistake, but programmers can’t; therefore
programmers should never be called upon to count when there is a
computer available to do it for them.

Editing With Line Numbers

Both of these assemblers include editors that work like the BASIC
editor by using line numbers. The programmer must type a line
number at the beginning of every line, and the sequence of the
numbers becomes the sequence of the lines. And woe be unto him
who accidentally uses the same numbers twice: the lines entered
earlier will be written over by the later ones having the same
numbers. If you have never been so careless as to make this error,
reading about it here will probably suggest it to your subconscious,
so beware!

Now suppose that you have just typed in a program that is 250
lines long, dutifully numbering the lines in steps of 10, and you
want to examine an earlier part of the program. What do you do? If
you have a printer, you can list the whole thing and examine any
part you want to. Both assemblers include commands for starting
and stopping a printer. But short of listing the whole program,
suppose you just want to display part of it on the TV screen.

Either assembler will enable you to start through the whole input
file on the TV display and interrupt it when you reach the desired
part, that is, if you have fast reactions. The S-C program is kinder:
it has a SLOW mode for displaying. It also lets you specify range of
line numbers to display, just as you do in BASIC.

The S-C assembler has another feature which should prove very
useful: you can APPEND a source file saved on tape earlier onto
the input file you are currently editing in memory and assemble
the whole thing as a single program. This makes it possible to build
yourself a library of standard routines which you can use in several
different programs with a minimum of effort.

73

Shortcomings of the Microproducts Assembler

There aren’t a great many nice things | can say about the
Microproducts assembler. It simply doesn’t do all the things it
should to help the programmer. For example, error messages are
output as number codes which you have to look up in the manual.
If it were programmed to do so, the computer could look them up
a lot faster and put them out in English. With the S-C assembler, it
does.

In the Microproducts version, numeric expressions must include
leading zeros. If you define a symbol as RATE .DL 5, RATE will be
assembled as hexadecimal 5000, not 0005. But what's even more
exasperating, once you get it defined as 0005, references to RATE
will not assemble as zero-page addressing unless you prefix the
symbol with an asterisk each time it is referenced. This is plain
inexcuseable: the program should test for this and select the
appropriate address mode automatically.

Are There Bugs in the Programs?

Nobody’s perfect, not even the people who write assemblers. No
matter how hard they try, debugging can’t demonstrate the
absence of bugs, only their presence. While | haven't tried out
every feature of these assemblers yet, | have assembled the same
program on both of them as a comparison. So far | have found only
one bug in the S-C assembler. If you slip while typing an
implied-operand instruction without a label and put the
mnemonic in the label columns thus leaving the operation and
operand fields blank the assembler will not detect the error but
instead will repeat the previous instruction.

The Microproducts assembler has bugs, too. It permits a comment
on an instruction line, but if the comment is long enough that the
line exceeds 40 columns so that the display continues on a second
line, the address and object code which normally appear at the left
of the screen get written on the second line and obliterate the
comment. Another bug appears whenever you interrupt a listing,
which you can do by hitting any key. The Microproducts
assembler fails to clear the keyboard strobe, causing the key you
used to interrupt it to become the first character of the next
command.

There is a curious error in the Microproducts manual where it
states that the assembler is less than 3K bytes long, even though it
loads from 2000 to 2CFF in memory, a total of 3,328 bytes. Just
coincidentally, the S-C assembler loads from 1000 to 1BFF, making
it exactly 3K bytes long.

Wouldn't It Be Nice If...2

While both of these assemblers are more powerful than the
mini-assembler, some people are never satisfied. A couple of
improvements occurred to me as soon as | started using these
assemblers.

In a BASIC program, the line numbers are an innate part of the
program, used as destinations for GOTOs and so on. Assembler
language doesn't really use line numbers; these assemblers use
them only because they make the editor simpler. It would be nice
if the programmer didn’t have to keep track of a lot of numbers;
the computer is much better at it. If the editor has to have line
numbers, an automatic line-number generator would be a nice
option.

I'd like to see some kind of LOCATE function, too. Since the line
numbers don’t bear much relation to the program, especially after
you've used the RENUMBER a time or two, the selective list
feature of the S-C assembler isn't 100% effective for displaying a
portion of the program. What if you don’t remember the line
number of the instruction you labelled SCAN? Wouldn't it be nice
if you could type something like LOCATE “SCAN” and have the
editor search for the line that has SCAN as its label? Some editors
even have two different forms of this command: one which looks
only at the beginning of each line, and another which searches all
the way through each line to find the places where a label is used
in an operand or in a comment

It is interesting to note the similarities between these two
assemblers. The programs are nearly the same size, about 3K bytes,
and priced at $20-$25. They use similar input formats and both
of them do their editing by means of BASIC-type line numbers.

Where they diverge the advantage is almost always with the S-C
Assembler I1. 1t has more features and a bigger manual, its error
messages are output in English, and its format is a more logical
extension of the Apple Il mini-assembler. If you are the least bit
interested in machine-language programming on the Apple Il, |
strongly recommend the purchase of a copy of the S-C Assembler
Il

APPLE CALLS AND HEX-DECIMAL CONVERSION

Marc Schwartz
220 Everit Street
New Haven, CT 06511

Rich Auricchio's
Apple II™ (MICRO #4,

in BASIC programming is worth noting.

"Programmer's Guide to the
April/May 1978) is a very
useful step in getting out printed materials to
help users fully exploit the Apple's potential.
That his table of monitor routines can be used

Many monitor routines can be accessed in BASIC
by CALL commands addressed to the location of
the first step of the routine. 1If the routine
is located in hex locations 0000 to 4000, it is
necessary only to convert the hex location to
decimal and write CALL before the decimal num-
ber. Thus a routine located at hex 1E would be
accessed by the command: CALL 30, since hex 001E
= decimal 30.

If you do not have a hex-decimal conversion
table handy, you can convert larger numbers to
decimal with the help of the Apple by the fol-
lowing steps:

1. Start in BASIC (necessary for step 2)

2. Multiply the first (of four) hex digits
by 4096, the second by 256, the third by 16 and
the fourth by one. Add the four numbers to get
the decimal equivalent. For example, to get the
decimal conversion of 03E7, with the Apple in
BASIC, press Control/C and type

>PRINT O*4096 + 3%256 + 14%¥16 + 7
then press RETURN. You'll get your decimal
answer: 839. To begin a monitor routine you
wrote starting at 03E7, merely put CALL 839 in
.your program.

If the hex location of the routine is between
C000 and FFFF, then another method of figuring
out the corresponding decimal location must be
used.

1. Start in BASIC

2. Press the RESET button.

3. Take the hex location of the routine and
subtract if from FFFF. The Apple will help you
do this; subtract each pair of hex digits from
FF and press RETURN. The Apple will print the
answer to each subtraction for you. For example
the hex location of the routine to home cursor
and clear screen is $FC58.

74

- FC RETURN
= 03

* FF - 58 RETURN
= A7

* FF

So, $FFFF - $FC58 = $03A7.
Now convert to decimal as above, using BASIC
(control/C) to assist you.

>PRINT 0%*4096 + 3%¥256 + 10%16 + 7

and after pressing RETURN you will have your
answer, 935.

4, Add one to the total, here giving 936.

5. Make the new total negative, or -936.

6. That's it. Now just put a CALL in front
of the number: CALL -936.

Of course, these steps of converting hex loca-
tions to decimal are the same ones to take it
you want to access the PEEK or POKE functions of
the Apple. In all, they allow the BASIC pro-
grammer to take much fuller advantage of the
capabilities of the computer.

And while on the subject of hex-decimal conver-
sion, the Apple can help in decimal to hex con-
version as well. For example to find the hex of
a number, say 8765:

1. Start in BASIC

2. Divide the number by 4096, then find the

remainder:

>PRINT 8765/4096,8765M0D4096 (return)
2 573

3. Repeat the process with 256 and16:
>PRINT 523/256,573MOD256 (return)
2 1

>PRINT 61/16, 61 MOD 16 (return)
3 13

..giving 2 2 3 13 or 223C.

APPLE II HIGH RESOLUTION GRAPHICS
HEMORY ORGANIZATION

Andrew H. Eliason
28 Charles Lane
Falmouth, MA 02540

One of the most interesting, though neglected,
features fo the Apple II computer is its ability
to plot on the television screen in a high res-
olution mode. In this mode, the computer can
plot lines, points and shapes on the TV display
area in greater detail than is possible in the
color graphics mode (GR) which has a resolution
of 40 x 48 maximum.

In the high resolution (HIRES) mode, the compu-
ter can plot to any point within a display area
280 points wide and 192 points high. While this
resolution may not seem impressive to those who
have used plotters and displays capable of plot-
ting hundreds of units per inch, it is nonethe-
less capable of producing a very complex graphic
presentation. This may be easily visualized by
considering that a full screen display of 24
lines of Y40 characters is "plotted" at the same
resolution. An excellent example of the HIRES
capability is included in current Apple II ad-
vertisements.

Why, then, has reletively little software app-
eared that uses the HIRES features? One of the
reasons may be that little information has been
available regarding the structure and placement
of words in memory which are interpreted by HI-
RES hardware. Information essential to the user
who wishes to augment the Apple HIRES routines
with his own, or to explore the plotting possib-
ilities directly from BASIC. 1In a fit of cur-
iosity and Apple-insomnia, I have PEEKed and
POKEd around in the HIRES memory area. The fol-
lowing is a summary of my findings. Happy plot-
ting!

Each page of HIRES Graphics Memory contains 8192
bytes. Seven bits of each byte are used to ind-
icate a single screen position per bit in a ma-
trix of 280H x 192V. The eighth bit of each
byte is not wused in HIRES and the last eight
bytes of every 128 are not used.

The bits in each byte and the bytes in each
group are plotted in ascending order in the fol-
lowing manner. First consider the first two
bytes of page 1. (Page 2 is available only in
machines with at least 24K).

BYTE | 8192 | 8193 i
SCREEN

POSITION 0 1234567891011 12 13
BIT 0123456012 3 4 5 b
WGVGVGIV[GYG VvV G V]G
(Bit 7 not used) :; 57

V = VIOLET

G = GREEN

Figure 1 represents the screen position and res-
pective bit & word positions for the first 14
plot positions of the first horizontal line. If
the bit is set to 1 then the color within the
block will be plotted at the position indicated.
If the bit is zero, then black will be plotted
at the indicated position. It can be seen that
even bits in even bytes plot violet, even bits
in odd bytes plot green and vice versa. Thus
all even horizontal positions plot violet and
all odd horizontal politions plot green. To
plot a single white point, one must plot the
next higher or lower horizontal position along
with the point, so that the additive color prod-
uced is white. This is also true when plotting
single vertical lines.

The memory organization for HIRES is, for design
and programming considerations, as follows:

Starting at the first word, the first 40 bytes
(0-39) represent the top line of the screen (40
bytes x 7 bits = 280). The next 40 bytes, how-
ever, represent the 65th line (i.e., vertical
position 64). The next 40 bytes represent the
line at position 128 and the next 8 bytes are
ignored. The next group of 128 bytes represent
three lines at positions 8, 72 and 136, the next
group at positions 16, 80 and 142, and so on un-
til 1024 bytes have been used. The next 1024
bytes represent the line starting at vertical
position 1 (second line down) in the same man-
ner. Eight groups of 1024 represent the entire
screen. The following simple porgram provides a
good graphic presentation as an aid to under-
standing the above description. Note that there
is no need to load the HIRES machine language
routines with this program. Set HIMEM:8191
before you type in the program.

100 REM SET HIMEM:8191

110 REM HIRES GRAPHICS LEARNING AID

120 POKE -16304,0: REM SET GRAPHICS MODE
130 POKE -16297,0: REM SET HIRES MODE

140 REM CLEAR PAGE - TAKES 20 SECONDS

150 FOR I=8192 TO 16383: POKE I,0: NEXT I
160 INPUT "ENTER BYTE (1 to 127)", BYTE

170 POKE -16302,0: REM CLEAR MIXED GRAPHICS
180 FOR J=8192 TO 16383: REM ADDRESS'

190 POKE J,BYTE: REM DEPOSIT BYTE IN ADDRESS
200 NEXT J .
210 POKE -16301,0: REM SET MIXED GRAPHICS
220 GOTO 160

999 END

An understanding of the above, along with the
following equations will allow you to supplement

the HIRES graphics routines for memory efficient
programming of such things as: target games, 3D
plot with hidden line supression and 3D rota-
tion, simulation of the low resolution C=SCRN
(X,Y) function, ete. Also, you may want to do
some clever programming to put Flags, etc., in
the unused 8128 bits and 512 bytes of memory!

75

HI RES Graphics Equations and Algorithms

Where:

FB = ADDRESS QOF FIRST BYTE OF PAGE.
PAGE1 = 8192 PAGE 2 = 16384

LH = HORIZONTAL PLOT COORDINATE. 0 TO 279

LV = VERTICAL PLOT COORDINATE. 0 TO 191

BV = ADDRESS OF FIRST BYTE IN THE LINE OF
40

BY = ADDRESS OF THE BYTE WITHIN THE LINE
AT BV

BI = VALUE OF THE BIT WITHIN THE BYTE
WHICH CORRESPONDS TO THE EXACT POINT
TO BE PLOTTED.

Given: FB,LH,LV
BV = LV MOD 8 * 1024 + (LV/8) MOD 8 * 128
+ (LN/64) * 40 + FB
BY = LH/T + BV
BI = 2°(LH MOD 7)

To Plot a Point (Without HIRES Plot Routine):

LH = X MOD 280 : LV = Y MoD 192 (OR)

LV = 192-Y MOD 192
FB = 8192
BY = LV MOD 8 * 1024 + (LV/8) MOD 8 * 128 +
(LV/64) * 40 + FB
BY = LH/T + BV
BI = 2°(LH MOD 7)
WO = PEEK (BY)

IF (WO/BI) MOD 2 THEN (LINE NUMBER + 2)
POKE BY, BI + WO

RETURN

To Remove a Point, Substitute:

IF (WO/BI) MOD 2 = 0 THEN (LINE NUMBER + 2)
POKE BY, WO-BI

To Test a Point for Validity, the Statement:

"IF (WO/BI) MOD 2" IS TRUE FOR A PLOTTED POINT

AND FALSE (=0) FOR A NON PLOTTED POINT.

MOS 16K RAM FOR THE APPLE 1I

Allen Watson III
430 Lakeview Way
Redwood City, CA 94062

MOS 16K dynamic RAM is getting cheaper. At the
time of this writing, one mail-order house is
offering 16K bytes of RAM (eight devices) for
$120. Apple II owners can now enhance their
systems for less than the Apple dealers' price.
However, there is a potential drawback to the
purchase of your own 16K RAM chips: speed. You
may wonder why, since the Apple's 6502 CPU is
running at only about 1 MHz, but things aren't
quite that simple.

To begin with, the Apple II continually refresh-
es its video display and dynamic RAM. It does
this by sharing every cycle between the CPU and
the refresh circuitry, a half-cycle for each.
This means that the RAM is being accessed at a
2 MHz rate.

That doesn't sound too fast, with the slowest
16K parts rated at 300ns access time; but you
have to remember that the RAM chips are 16-pin
parts by virtue of a multiplexed address bus.
There are two address-strobe signals during each
memory access cycle, and the access-time specif-
ication will be met only if the delay between
these strobe signals is within specified limits.
In the Apple II this delay is 1l40ns, which is
too long. Furthermore, the Apple II timing
doesn't allow long enough RAS precharge or row-
address hold time for the slow parts. Judg-
ing by the spec sheets, 200ns parts are prefer-
able to 250ns parts, and 300ns parts shouldn't
be used at all. In my Apple, 300ns parts caused
a zero to turn into a one once in a while,

Many mail-order houses do not mention device
speeds in their ads. The best thing to do is to
deal only with those suppliers who specify
speeds, but for those who didn't, the table
below shows the codes used by some 16K dynamic
RAM manufacturers to indicate the speeds of
their devices. -Good luck, and caveat emptor!

SPEED CODES USED BY 16K DYNAMIC RAM MANUFACTURERS

Access Time (ns)

Manufacturer _ Part No. 150 200 250 300
AMD 9016 -F -E -D -C
Fairchild F16K -2 -3 -4 -5
Intel 2117 -2 =3 -4
MOSTEK 4116 -2 -3 -l
Motorola MCM4116C =15 -20 =25 =30
National MM5290 -2 =3 =4

NEC JDU16 -3 -2 -1

TI 4116 -15 =20 =25
Zilog 76166 -2 =3 -4

76

LIFE FOR YOUR APPLE

Richard F. Suitor
166 Tremont St.
Newton, MA 02158

A listing of LIFE for the APPLE II is described
briefly here (see MICRO #5 for a pet version and
discussions). Because my experience with gener-
ation time in BASIC paralleled Dr. Covitz', the
generation calculations are in assembly lang-
uage. The display is initiated in BASIC and the
routines are called from BASIC, which will slow
down the generation time if desired.

The entire (40x48) low resolution graphics disp-
lay is used. An unoccupied cell is 0 (black).
An occupied one is 11 (pink). During the first
half of a generation, cells that will die are
set to color 8 (brown). Those to be born are set
to color 3 (violet). During this stage, bit 3
set indicates a cell is alive this generation;
bits 0 and 1 set indicate a cell will be alive
the next). During the second half (mop-up) part
those with bits 0 set are set alive (color 11),
the rest are set to zero.

The BASIC program allows one to set individual
cells alive, and to set randomly 1 in N alive in
a rectangular region. The boundries (X = 0 and
39; Y = 0 and 47) do not change, but may be in-

LIET
i
Z MOF=Z26
S DIM A%
vok1=1
2 kD=1
10 CALL -% YTHE S: TAE S9: PRINT
TCOHMAY = GAME OF LIFE"
20 NTAER 15: PRINT "IMITIATE FHRHTTERHM
EELON. st WILL ZTARTS
2% FRIMT "THE LIFE FROCEZS A oY
WILL BIYVE A"
40 PRINT "RAMDOM FATTERH WITH OHE T
Moo= ALIVE"
S0OMTAE 22 IMPUT "RETURM TO COMTIN
LE" AT
3 G070 toon
100 RERM
102 POKE ~—1&303s 0
1I: 53070 iz0
104 FOR I=1 7O K=
105 CALL GEM
107 FOR E=1 TO Ei1: HEXT K
110 CALL MOF
112 FOR ¥=1 7O EZ2: HE=T K
120 HEST 1
130 FREM
131 KH= FOL <ox—10
a2 1

Z40 THEH K=

=000 1S 0 + 1
E0TO 104

77

itialized. At the start of the program, NO PAD-
DLE INTERVAL? is requested. If during the pro-
gram the paddle reads close to 255 (as it will
if none is connected) the number input here will
be used instead. Zero is fastest, several gen-
erations per second. Entering 200 gives a few
seconds per generation.

When X and Y coordinates are requested, put in
the coordinates for any cells to be set alive.
A negative X terminates this phase. Setting X=N
and a negative Y will initialize a rectangular
region to 1 in N randomly occupied and terminate
the initialization. The boundaries of the rect-
angular region must be input and may be anywhere
in the full display. A glider gun can be fit
vertically in the display. However, don't init-
ialize for Y 40 (other than random) for the
scrolling during initialization input will wipe
it out.

Before RUNning the BASIC

program, set LOMEM:
2500 to

avoid overwriting the subroutines.

1000 SR
1010 CARLL -234
1020 IHFUT “HO FADDLE TIME IMTERYAL
LR]
1100 COLOR=11: IHFUT TIMPUT ey
s ALY

1105 IF

WOt THEH 1200
0 THEM 2500
2% THEM 1100

: GOTO 1100
DIRECTION LIMITS

IMFUT
»I1s12
IF It<0 Or 1
1200
TPt Y
s A1 2

Ji<0 or

#EYO0OR 1112 THEH

o

DIFECTION LIMITE

IF AZ2FaT OFR J41: .48 THEH
2000 A

Sl
2002
Znas

i

FOF
FEHI
b PLOT Is.d

0 MERT J

MHE=T 1

HO7T0 tan

FIKE ~16202.0
COLOR=u

FOF k=40 TO 47
0 HLIN F3OAT W
2Sd 0 HEST K
HOTO 1an
00 END

=11 70 Jz

THEH |

COLOR=11:

: IF
OLOF=0

i

nEan
nEOz
=09
008
nsns
nans
Os0R
nEan
nanrF
nail
nE1z
nEi1s
=17
mz1a

AS 05

Pl =i]
=

RS04

m

s I 1]

s B oo

o

DU | B R]

AU

DAL U S i {t I C e

b o BN s S SR o w e o IR e L T o O O O IO L R X
LIRS R e BN ¥
T o

R R 0 NI

T
[l

jUUl

-y

iy

s I A
N

T
T

HE00
D400
AT DS
E10&
FOnF
1 00s
FE4 005
FET 0
o9ns
Fooas
FE< 00

aoin
oo
aoza
Digan
nosn
Oe
nnyn
aosn
s
0100
niin
oz
nizn
ni4n
0isn
nl&ed
iy 0
a1sn
nisn

aenn
nin

uscn
=30
u2g4n
nES0
nze
nEyv o
e
TP X
D300
nz10
nsz2n
0=2:0
n=40
n2s0
O=e
0z7v0

UZE0
uzan
adan
nain
gz
3=
odg 0
G
nd4en
na4yv o
e
N
asan
n=s10
nssn
Ns36
540
nEsn

nSe0

:LIFE ROUTIMEEZ

TENTER AT

t2nEs AMD 22

oLt DL
Ml DL
il . DL
RN L o T
BUF1 DL
EFIF 0L
EF1mM oL
BiiFz DL
EFzF DL
EFZM DL
el LDA
=TH
LIOR
=TH
cLC
an
ZTH
LA
AncC
CHF
EHE
LhA
HIn
CHF
EFL
=TH
LIiA
=TA
CLC
=1 RTXE
=T ZEC

B

ZAME

~ F
In

SREMERATE BIRTHE

LEMO

J,E
pEMI

B |:2 l:.

tHLL DOME IF CRERY

RTE
GEMZ LDY

TYH

TH=
s COmME
GEHe LIH
EZTH
=TH
LDR
EEL
EFL
IHC
IHC
AT
EEDR
IHi

EMY

VER

AHD MOFD ALTERMRTELY
DEC. REZF.

ooz OLDh HORIZ LIME
aonogd HEW LIME

nones o 0OF OCC. CELLE
nany 1.2 FOR OLDsHEW
0240 40 YERT. OCC. #%
09g2

WH=F

naF0

GEHD

P S

ey
noeF
LARICIMEE SN}
«0LLH+01
+ MWLM
«0OLLN

a1

* ML

MWLM+
o

0

ZHME
*HWLH
LAET
+HBLH

04
MWLM+ 01

RT=1

(COLOR=22 &
IMIT

HAELH

=EMZ

ZET

ey
o

T OCC &=
(E1]
EBliF1.Y
BilFzsY
COLLHY Y
GEMZ
GENT
BidF1 s
BLFZ ¥
ne

pEME
BlLF1s &

Note:
zero page mode.

78

IM =83

DEATHZ= (COL

The stars in the operand indicate

Elng
FaoF
1003
FEVOOS
oo
Fone
FEVOOD
FE4ODS

i
¥

m

v
T

O o= o IO

N AR

s I v 3 I e
5 1IN W
R I

OO D0 O D = D e TV

[0 I e I e W1 |

i on

¥
N
T
"

XA N

T L) =) Do

L
Cond

FUéE
Bl

[X
=4
i)

o T

T &3 =

RTINS I

T T s D o

SO0
o0
FOnE
El104
FonA
o3RS
Snnd
Eiond

s

=7 0
nSsg
nS9
T H]
netn
020
NE=0
nedn
S
(0
LA
HeEn
HEan
nFnn
nFia
ovysn
av7an
o Ny
nrsin
Oyen
nyEyn
ayan

Ve

e 1)

00
=10
eE0
AN
0340
0350
e
0970

330
1000
it0io
1020
10z=a0
1040
1050
1080
1070
1030
1090
11000
1116

GEMZ

LEM4

GEMS

oOME Qo

LHLF

T
m
i

GEMT

GHLE
EIRB T

G411

LDA
BEG
EFL
ITH
HHE
BEED
IHC
IHC
DEY
IE=
BEFL
LI
CLC
LI
RO
=TH
LTiA
ADC
=TH

CLC
LIH
ADC
ZEC
TR
=TH
CHF
BERQ
BCC
CHE
EEQ

=LA

BED
HHT
B
LA
OFA
=TH
L
LA
AL
ZEC
N T
ZTA
CHF
BEG
RCC
cHr
EBED
LA
BE
AT
EVC

> LI

arH

79

MR E N
GEMS
ETRE
BlFzZa =
e

GEMHS
BilFZae =

BUF 1+

EEME

25

BUF1+&7
BLUF 1 +ZF
ERNEIOh]

i IH 3#3 8 CHAMGE

500N
EF 10

EF1FsY

* SN

e

GEMS
GEMS

g

GHI
COLLHMHY o
IEIE BT

=F

EHle
COLLMHs 2 ¥
a0

COL LMY Y

+ M E
EFZMs Y

EBFZPsY

* UM

=

GiHIE
pH11

g

aH1E
CHBL T A Y
a1z

nFs

GRS
I I

COLOR

R

L [B

Nl 7o o O e

AR
7w

n

]

A
Ry by

nsns

@-WIWIWIIIEIIIL.H:ﬂ 00

=

amns

e LA

v T

I L SR £

1l
iy

3T B

Vo e M T D

1
i
n
o
A
0
o

T

..ﬁ|w~Ix~
BB

r
JS

=il

== I 0 Y W N

AR I

=
T

SYMEIOL TAELE
aons
nong
O,

ooy

O
HUIL
T

1120
1130
1140
1150
11e0
1170
1ian
1130
1200
1210
12z

o)

1240

1250

1390
1400
14146
l4z0
1430
1
1450
14e0
14710
i4=10
1430

aH14

MOFz
MOFz

pOrFg

MOFS

RIS

MOry

SH1S ZTHA
SH13

EY
EEQ
EFL
AptE
LIR
=TH
LD
=TH
ZTH
=TH
=T
s P0OF iR
s OTHERMIE

IMIT

MoFD JzE
MUF1

JER
BCC
TS
Loy
LIwH
BEQ
HHD
CHF
BEMI
OFA
=TH
£ TiA
BER
HHD
=OR
BT
OrH
=00
=TH
DEY
BEW
EFL
.EH

80

eI S K

BrHld
GHLF
~EH1

g
*HBLH+H0]
na

ML
EF1F+E5

EFEF+E

T

FoCoLow
RLIVE

10

MOFS

ail
COLLU M »
CHBLHD Y
MOoFy

nEy

CRLHs oY

MOorF1
MOFz

AT 2 =1
rzOL=112

PO O

MIF

REMOVE cCOL=1002

60230 A=A+1 : C=PEEK(A)-48 : IF C=-16 GOTO 60230
60240 IF C>=0 AND C<9 THEN V=V#10+C : GOTO 60230
60250 S+44 : A=A-~1 : RETURN

RESEQUENCE can sit quietly behind your program.
When you say RUN 60010, your program is renum-
bered. RESEQUENCE gives error notices if:

A. a GOTO or GOSUB statement wants to go to

a non-existant line;

there isn't enough room for a new (higher)
line number.

In both cases you're given the (new) line number
where this happens. RESEQUENCE doesn't run fast
(allow about a second per line, more for large
programs), but it's dependable and very useful.

B.

Program comments: Line 6000 stops the user pro-
gram if it gets here. Lines 60010-60020 extract
all GOTO, GOSUB, and THEN references and build
them into a table. Lines 60030-60040 renumber
all lines, and cross-references the table if
needed. Line 60050 updates all line references.

Subroutines: 60070 looks for an entry in the
line number table. 60090 inserts a new entry
into the table. 60110 revises a line number
reference. 60160 starts a new scan of the user
program; 60170 continues the scan with the next
line. 60210 scans the user program for GOTOs,
etc.; value S is used to accomodate ON A GOTO
... type situations.

AN APPLE II PAGE 1 MAP

M.R. Connolly Jr.
5009 Rickwood Ct. NW
Huntsville, AL 35810

In the Apple II, the on-screen text is stored in
locations $400 through $7FF, Trying to deter-
mine just where a particular spot resides in
memory isn't easy. The page lines are stored
neither consecutively nor sequentially. The
APPLE page 1 map shows in hex and decimal the
starting and ending locations of each line on
the screen. Any given line is sequential from
space 1 through space 40; eg, the 20th position
of any line is equal to the beginning location
+19 decimal or 14 hex.

The value of the page map becomes apparent when
used with a listing of the interpretation of

10 CALL -936: FOR I

numbers stored in the map. Any normal, inverse,
or flashing character, or white block, black
block, or cursor block may be positioned merely
by poking the correct value in the location
storing the page position you require.

You might pass this off as just "nice to know"
information, but it is very useful if, for in-
stance, you are trying to make an impressive
title page for a program you've spent weeks
writing. Run the following short program, then
try to duplicate it without using the page map
and the character chart. It isn't easy!

1205 TO 1217: POKE I,32: POKE I+ 512,32: NEXT I

20 FOR I = 1333 TO 1589 STEP 128: POKE I,32: POKE I+ 12,32: NEXT I
30 POKE 1463,141: POKE 1465,9: POKE 1467,67: POKE 1469,18: POKE 1471,207

40 GOTO 40

MAP OF LINE AND SPACE LOCATIONS FOR TEXT PAGE 1, APPLE II COMPUTER

LOCATION _
LINE HEX DECIMAL
1 400-427 1024-1063
2 480-4A7 1152-1191
3 500-527 1280-1319
4 580-5A7 1408-1447
5 600-627 1536-1575
6 680-6A7 1664-1703
7 700-727 1792-1831

81

8 780-7A7 1920-1959
9 428-44F 1064-1103
10 4A8-4CF 1192-1231
11 528-54F 1320-1359
12 5A8-5CF 1448-1487
13 628-64F 1576-1615
14 6A8-6CF 1704-1743
15 728-74F 1832-1871
16 7A8-7CF 1960-1999

17
18
19
20
21
22
23
24

Not used for on-screen display:

6F8-6FF; 778-77F; 7F8-7FF

MACHINE INTERPRETATION OF VALUES STORED IN $4@@.7FF APPLE II COMPUTER

FIGURE NORMAL INVERSE FLASH
e 128,192 0 64
h 129,193 1 65
B 130,194 2 66
c 131,195 3 67
D 132,196 4 68
E 133,197 5 69
F 134,198 6 70
G 135,199 7 71
H 136,200 8 72
1 137,201 9 73
J 138,202 10 74
K 139,203 11 75
L 140,204 12 76
M 141,205 13 77
N 142,206 14 78
0 143,207 15 79
P 144,208 16 80
2 145,209 17 81
R 146,210 18 82
S 147,211 19 83
T 148,212 20 84
U 149,213 21 85
v 150,214 22 86
W 151,215 23 87
X 152,216 24 88
Y 153,217 25 89
YA 154,218 26 90
C 155,219 27 91
\ 156,220 28 92
3 157,221 29 93
A 158,222 30 94
_ 159,223 31 95

(BLOCK) 160,224] 32

450-477
4D0-4F7
550-577
5D0-5F7
650-677
6D0-6F7
750-777
7D0-7F7

96 JomM

82

1104-1143
1232-1271
1360-1399
1488-1527
1616-1655
1744-1783
1872-1911
2000-2039

478-47F; 4F8-4FF; 578-57F; 5F8-5FF; 678-67F;

FIGURE NORMAL INVERSE FLASH
! 161,225 33 97
" 162,226 34 98
163,227 35 99
$ 164,228 36 100
% 165,229 37 101
& 166,230 38 102
' 167,231 39 103
(168,232 40 104
) 169,233 41 105
* 170,234 42 106
+ 171,235 43 107
, 172,236 44 108
- 173,237 45 109
) 174,238 46 110
/ 175,239 47 111
p 176,240 48 112
1 177,241 49 113
2 178,242 50 114
3 179,243 51 115
4 180,244 52 116
5 181,245 53 117
6 182,246 54 118
7 183,247 55 119
8 184,248 56 120
9 185,249 57 121

186,250 58 122
; 187,251 59 123
< 188,252 60 124
= 189,253 61 125
> 190,254 62 126
? 191,255 63 127

EXPLORING THE APPLE i DOS

Andy Hertzfeld
2511 Hearst St. Apt. 204
Berkeley, CA 94709

To say that the documentation which comes with Apple’s Disk II
system is skimpy is being very kind. Only a terse description of
each DOS command is provided and absolutely zilch is said about
its memory usage or internal structure. Hopefully, Apple will soon
remedy this situation but until that time hobbyists must rely on
each other for the vital information. | have been exploring the
internals of the DOS for the last few months; this article
summarizes some of the interesting things I've found.

The DOS resides in the highest portion of your system’s memory
-and is about 10K bytes long. Its exact size depends on how many
file buffers you choose to allocate (one file buffer is needed for
each simultaneously open file). Each file buffer is 595 bytes long
“and the system provides you with three to start with (you must
have at least one).

The DOS communicates with the rest of the system via the input
and output hooks CSW and KSW located at $36 - $39 (This article
uses “$” to indicate a hexadecimal number). Through these hooks
it is given control every time a character is inputted or outputted.
This is a nice scheme because it allows the DOS to be called from
any environment (BASIC, Monitor, Mini-Assembler, etc.) but it has
the drawback of activating the DOS when a command is typed as
input to a user program, which is usually not what you want. Also,
since the reset button resets the hooks, the DOS is disabled
whenever the system is reset, which isn’t so great.

The process of loading the DOS into memory for the first time is
called “bootstrapping.” Bootstrapping is initiated when control is
transferred to the PROM on the disk controller card. Memory
pages 3 and 8 are blown by a bootstrap. There are two different
types of disks you can boot from: masters and slaves. The
distinction is that a master disk can be used to bootstrap on a
system of arbitrary memory size while a slave will only work
properly on a system with the same memory size as that which
created it. This is because since the DOS sits at the top of memory,
its addresses (for JSRs, JMPs, etc.) will be different on systems with
different memory sizes. A master disk cleverly solves this problem
by loading into low memory first and then relocating itself up to
where it belongs. Note that this means that a master bootstrap will
blow alot of additional memory.

All addresses in this article are for a 48K system. If your system has
memory size X, subtract 48K - X from the addresses that are given
here.

A call to the routine at $9DB9 will initialize or re-initialize the
DOS. This routine should be called after every reset to restore the
hooks. It is exactly like typing “3DO” “G” as Apple’s
documentation recommends but is a little bit safer since the $3DO
location is often destroyed by various programs.

Every diskette has a volume number from 1 to 254 associated with
it. It is assigned when the diskette is initialized and there is
currently no easy way to change it. The volume number of the
current disk is stored at $B7F6. Before most DOS commands the
system checks to see if the current volume number matches the

83

last volume number used. If it doesn’t, a “volume mismatch” error
is generated. While this “feature” may be nice for large business
applications that don’t want dumb operators inserting the wrong
disks, it is very annoying to most average users, especially when
you want to transfer a number of programs between two disks with
different volume numbers. After much searching, | located the
place where the volume check is performed and devised a patch to
disable it. It's only two bytes long; just enter the monitor and type:
“BDFE: A9 00”. This will disable all volume checking until the next
boostrap. It works by replacing the comparison instruction which
performs the volume check with a “ LDA #0 " instruction which
sets the “equality” or Z flag, effectively forcing the match to
succeed.

Binary files of arbitrary length can be saved on disk with the
“BSAVE” command. Each BSAVEd file has an implicit starting
address and length associated with it; when the file is BLOADed it
is loaded at the starting address. Unfortunately, there is no way
provided for a user to find out the starting address and length of a
BSAVE file; this makes copying files that you are not intimately’
familiar with very difficult.

Fortunately, when a file is BLOADed, the directory record of the
file is always placed in a buffer in a fixed location. The buffer
contains the starting address and length of the file as well as other
useful information. The length is kept at memory locations $A9A3
- $A9A4 while the starting address is stored at $A9B5 - $A9B6 (with
the least significant byte first, as usual). Thus to retrieve the
starting address and length of a BSAVEd program you can simply
BLOAD it and then peek at the above locations.

Some people might wish to alter the names of some of the DOS
commands to suit their own, personal tastes (it is, after all, a
personal computer). For example, | know many folks would like to
abbreviate the “CATALOG” command to a simple “C”. This is
surprisingly easy to do; since the DOS lives in RAM the contents of
its command table are easily changed. The command table is
located from $A7EQ - $A863. Each command name is represented
as an ASCII string with the high bits off, except for the last
character of the string, which has its high-order bit set. The strings
are associated with the commands by their position in the
command table (the first string corresponds to the INIT command,
the second to the LOAD command, etc.). The position of every
command is given below in Table 1.

Thus you can dream up your own names for the commands by
storing new strings in the command table. For example to change
the name of the INIT command to “DNEW” you would enter the
monitor and type ” A7EQ: 44 4E 45 D7”. However, some caution is
required when you change the length of a command name; in
general you will probably have to rewrite the entire command
table to achieve the desired affect.

The error message table is stored at addresses $A8CD - $A980.
By using the same techniques described for the command table,
you can rewrite the error messages to be whatever you like.

TABLE 1: POSITION OF COMMANDS IN THE COMMAND TABLE

The position refers to which string in the command table is
associated with the command. 1 means its the first string, etc.

Position Command
1 INIT
2 LOAD
3 SAVE
4 RUN
5 CHAIN
6 DELETE
7 LOCK
8 UNLOCK
9 CLOSE
10 READ
1 EXEC
12 WRITE
13 POSITION
14 OPEN
15 APPEND
16 RENAME
17 CATALOG
18 MON
19 NOMON
20 PR#
21 IN#
22 MAXFILES
23 FP
24 INT
25 BSAVE
26 BLOAD
27 BRUN
28 VERIFY

It is hard to use the input and output hooks in conjunction with
the DOS since you cannot simply change the hooks as they are the
DOS’ only contact with the rest of the system. Also, if you only
change one of them, the DOS has the nasty habit of changing it
back. Fortunately, the DOS has its own internal hooks it uses for
keyboard input and video output. Its output hook is at $A996 -
$A997 and the input hook immediately follows at $A998 $A999. If
you change the contents of these addresses instead of the usual
hooks at $36 - $39, everything should work just fine. For example,
lets say you wanted to divert output to a line printer without
disabling the DOS. If the line printer output routine is located at
$300, all we would have to do is enter the monitor and type “
A99: 00 03 ”.

To execute a DOS command from a BASIC program, you simply
print it, prefixing it with a “control-D”. The prefix character is
stored at memory location $A9F5, with its high-order bit set. Thus,
if you don’t like control-D and wish to use some other prefix
character, all you have to do is store a different character value
into $A9F5.

1 am very curious to find out the primitive instructions the DOS
uses to communicate with the disk controller, but without proper
documentation it is very difficult to determine what does what
(Can someone out there help me?). | have managed to find out the
primitives that turn the drive on and off, though. If your controller
card is in slot S, referencing memory location $C089 t+ $SO will

power up the disk and start it spinning while referencing $C088 t
$SO will turn it back off.

This article is merely the tip of the proverbial iceburg; most of the
DOS’s internals still remain a mystery to me. | hope Apple
eventually distributes complete documentation but until then
other curious users can use this article as a starting point for their
own explorations and hopefully report back what they find. Table
2 (below) contains a summary of important addresses in the DOS
for easy reference, including some not mentioned in the above
commentary.

TABLE 2: IMPORTANT ADDRESSES IN THE APPLE 11 DOS

Address Function

$B7F6 holds the volume number of the
current diskette

$9DB9 routine to re-initialize the DOS

$A9E5 location of printing command

character, initially set to control-D

$A9B5 - $A9B6 starting address of most recently

loaded program, Isb first

length of most recently loaded
program

$A9A3 - $A9A4

$A7EO - $A863 the DOS command table

$A8CD - $A980 the DOS error message table

the internal hook address to output a
character

$A99 - $A997

the internal hook address to input a
character

$A998 - $A999

$C089 t $S0, S= slot no.* address to power up the disk

$C088 t $S0, S= slot no.* address to power down the disk

$9E4D routine which handles the input
hook

$9F7F routine which handles the output
" hook

$BD00 routine which reads in the directory

off the disk. It is called by virtually
every DOS command

All addresses given (except those marked with an asterisk) refer to
a system with 48K bytes of memory. If your system has memory
size X, subtract (48K-X) from each address.

HOW DOES 16 GET YOU 10?

Gary P. Sandberg
1144 Amber Ridge Drive
Lilburn, GA 30247

In order to PEEK, POKE, figure CALL numbers, etc. effectively a
knowledge of Hexadecimal / Decimal conversion is a necessity.
My experience during the past ten years, working with computer
systems and data processing equipment did not include anything

HEXADECIMAL /

that required hexadecimal addressing and coding. When | started
using my Apple 11, I was completely lost and confused with base 16
math. | began looking for a way to work with hexadecimal
effectively. The following conversion table was the answer.

DECIMAL CONVERSION TABLE

16°
0 3]
1 4,096
2 8,192
3 12,288
4 16,384 1,
5 20,480 1,
6 24,576 1,
7 28,672 1,
8 32,768 2,
9 36,864 2,
A 40,960 2,
B 45,056 2,
C 49,152 3,
D 53,248 3,
E 57,344 3,
F 61,440 3,

To convert a number from hexadecimal to decimal;

1. in each column of the table, find the decimal equivalent for the
hexadecimal digit in that position.

2. add the decimal equivalents, found in step #1, to obtain the
decimal number.

Hopefully the following examples will help you master the use of
the conversion table.

Convert Hex

163 162

U
I o

oy
[

162 161 160
0 0 0
256 16 1
512 32 2
768 48 3
024 64 4
280 80 5
536 96 6
792 112 7
048 128 8
304 144 9
560 160 10
816 176 11
072 192 12
328 208 13
584 224 14
840 240 15

To convert a number from decimal to hexadecimal;

1. In the table find the largest decimal value that will fit into the
decimal number to be converted.

2. note its column position and hexadecimal equivalent.

3. find the decimal remainder (subtract)

4. repeat steps 1, 2, & 3 for each remainder. When a hexadecimal
equivalent has been found in the right most column, the
conversion is done.

to Decimal using the conversion table.

Convert from left to right.

14
80 list and
3584 ADD TOGETHER
61440
6511810

Convert Decimal to Hex using the conversion table.

1

65118

-61440 from table

from table

]
w
(o))
co ~3
4= OO

(Vo]
o=

from table
from table

&

ey
&=

6511810

Remember the Apple 11’s system monitor can help you with some
of your hexadecimal problems. The monitor will do hexadecimal
addition and subtraction, as shown on page 70 of the Apple Il
reference manual.

The Apple II's PEEK function also can be helpful. In BASIC key in
PRINT PEEK (2), the Apple Il will display on the screen the decimal
value of decimal memory location 2.

Use the POKE statement to change memory location 2, In BASIC
key in POKE 2,255, then Return. Then PRINT PEEK (2), Return. The
Apple will display 255.

63

1]
z)

162 16" 16°
E
5
E
FESE16

Then CALL -151, or hit Reset. The Apple Il is now in the System
Monitor. Key in 0002 or 2, Return, and the Apple Il displays
0002-FF. Why?, because we put the decimal value 255 into
memory location 2 with the POKE statement, 255(10) is equal to
FF(16), get the idea?

For some conversions from hexadecimal to decimal or back the
other way, you can use the POKE and PEEK method, but for most
conversions use the table.

Here are two more examples that don't use a conversion table:
same numbers different method of conversion:

Convert Hex to Decimal without using the conversion table.

First digit is ¥ 1
Second digit is ® 16
Third digit is ¥ 256
Fourth digit is ¥* 14096

E*1 = 14

5 % 16 = 80

E *# 256 = 3584

F ¥ 43096 = 61440
FESE, o = 6511810

Convert Decimal to Hex without using the conversion table.

65118 / 16 = 4069.875 -> 875 ®* 16 = 14 = E
4069 / 16 = 254.3125 -> .3125 * 16 = 5 = 5
254 / 16 = 15.875 .875 * 16 = 14 = E
15/ 16 = .9375 .9375 ¥ 16 = 15 = F
6511810 = FESE16

Use either method to convert from one number system to the
other, and with a little practice you will be converting numbers

with speed and accuracy.

APPLE 11 - TRACE LIST UTILITY
Alan G. Hill
12092 Deerhorn Rd.
Cincinnati, OH 45240

Did you ever use the TRACE function in Integer BASIC, only to
give up in despair after looking at a screeen full of line numbers?
Try it without a printer and you may never use TRACE again! Well,
here’s the utility that will put TRACE back into your debugging
repertoire (for those of us who need a little help getting it right.)

The utility presented here will list each BASIC program source
statement line by line in the order executed. There’s no need to
refer back and forth between TRACE line numbers and the source
program listing. Two versions are presented: Version 1 is a
real-time utility; i.e. each statement is listed immediately prior to
execution so you can follow the programs logical sequence. You
can slow the execution rate down or even temporarily halt
execution while you scan the screen. Version 2 only saves the line
numbers of the last 100 lines executed for listing later. Version 3
could be useful in tracing a full-screen graphjcs program.

The Technique

The program utilizes the COUT hook at $36.37 to intercept and
suppress TRACE printing. All other printing continues normally
with one exception (see Warning #1). Before returning to the
BASIC interpreter, the line number is picked up and pushed into an
array (TR) in the variables area above LOMEM. If the number is the
same as the previous line number, a zero line number is placed in
the stack with the line number of a FOR | = 1 to 1000: NEXT 1
delay loop, for instance. When the number changes, it will be
placed in the stack. The most recent 100 line numbers are saved.
Tracing is performed under user control by the normal
TRACE/NOTRACE statements. In Version 2, the lines may then be
listed after the test program ends. The technique in Version 1 is
similar with one distinction. The trace intercept routine transfers
control to the utility program to list the line as soon as it is put in
the stack.

How The TRACE Intercept Routine Works

The output pointer in $36.37 is initialized by the utility to the
address ($300) of the Trace Intercept Routine. Each character is
examined by TIR as it comes through if the TRACE flag is up (bit 7
of $AO on). If off, TIR jumps back to the normal print utility at
$FDFO. If the character is a # ($A3), it is assumed that a line
number follows. Every line number in the stack is pushed down
and the current line number is placed at the top. Location $DC.DD
points to the BASIC line about to be executed. The line number is
in the second and third bytes. In Version 2, TIR returns to the
interpreter. In the real-time version (Version 1), control is next
transferred to the utility program at line 30020. TIR expects that
the address of line 30010 has been saved in $15.16 by the utility
programs CALL 945 in line 30010. TIR first saves the contents of
$DC.DD and then replaces it with the contents of $15.16: It also
saves the address of the current statement within the BASIC line.
That is, the contents of $EO.E1 are saved at $1B.1C. TIR can now
transfer control back to the interpreters continue entry point by a
JMP $EBBA which then executes line 30020 of the utility. The
current line of the test program is listed; the BASIC pointers are
restored by the CALL 954 in line 30090; the return address is
popped; and control is returned to the test program through $E881.
Fait accompli.

As mentioned previously, the TR array is used to save the line
numbers. The array is set up the first time TIR is entered. Note that
TR is intentionally not DIMensioned in the utility. TIR must handle
that task since a RUN of the test program will reset the variables
area pointer ($CC.CD) back to LOMEM.

Programming The Routines

TiR starts at $300. It could be relocated if the absolute references
in the POKE and CALL statements are changed. Also note that the
LIST statement in lines 30060 and 32040 will not be accepted by
the Syntax checker. They must first be coded as PRINT statements,
located, and changed to LIST tokens ($74) using the monitor. This
is more easily done if these lines are coded and the tokens
changed before the remaining lines are entered. See example
below for the case where HIMEM is 32768:

NEW

30060 PRINT EXECLINE

32040 PRINT TR (1)

(hit reset to enter monitor)

*7FEC;74

*7FF9:74

(enter Control/C)

LIST

30060 LIST EXECLINE

32040 LIST TR (I)

Using The Utility
1. After coding the assembler and BASIC utility programs, the
test program is then appended. This may be done by a RUN
31000. Start the cassette recorder and hit Return when
prompted. The test program will be appended to the utility
program provided its highest line number is less than 29970.

2. Create a line O that will be used to indicate that a line has
successively executed. For example, code:
O REM ***ABOVE LINE REPEATED***

3. Run the utility of your choice:
RUN 30000 Version 1 (Real-time list)
or RUN 32000 Version 2 (Post-execution list)

4. Insert the TRACE/NOTRACE statements wherever desired in
test program. Just enter the TRACE command directly if you
want to trace the entire program. Also see Warning #1.

5. RUN the test program.

6. Display the results:

A. Real-time Version: The lines will be listed automatically
as executed. Note the FOR: NEXT loop in line 30090 can
be adjusted to control the execution rate. The upper limit
could be PDL(O), thereby giving you run-time control
over the execution rate. Note also that execution can be
forced to pause by depressing paddle switch O.
Execution will resume when the switch is released.

87

B. Post-execution Version: After stopping or ending the
program, enter a GOTO 32020 command. The first page
of statements will be displayed. Enter a “C” to display
additional pages, a “T” to reset for another test run, or an
“E” to return to BASIC. Note that even if you have traced
with Version |, you can still display the last 100 lines with
Version 2.

Sample Run

Test Program

0 REM ##% REPEATED #%%

10 TRACE
30 GOSUB 100+RND(3) ¥*10
40 FOR I=1 TO 10: NEXT I
50 GOTO 30
100 PRINT "LINE 100" :RETURN
110 PRINT "LINE 110" :RETURN
120 PRINT "LINE 120" :POP
125 NO TRACE:END
> RUN 30000
> RUN

Trace Output
30 GOSUB 100+RND(3)#¥10
110 PRINT "LINE 110" :RETURN

LINE 110

30 GOSUB 100+RND(3)%*10

40 FOR I=1 TO 10:NEXT I
0 REM *%% REPEATED *¥#*

50 GOTO 30

30 GOSUB 100+RND(3)¥*10

120 PRINT "LINE 120" :POP
LINE 120

125 NO TRACE:END

>

For a slow motion game of “BREAKOUT”, trace it with the
real-time version!

Hints And Warnings
It’s usually a good idea to deactivate TIR after the test program has
ended by hitting Reset and Control/C and entering NOTRACE.
Don’t try to trace the test program without first running the utility
program at line 30000 or 32000.

To increase the debugging power of the real-time trace utility,
make liberal use of the push button to halt program execution.
With practice and the proper choice of the delay loop limit in line
30090, you can step through the program one line at a time. Enter a
Control/C while the push button is depressed and execution will
be STOPPED AT 30070. You can then use the direct BASIC
commands to PRINT and change the current value of the programs
variables. Enter CON and execution will resume.

88

With additional logic in the utility program, you can create
specialized tracing such as stopping after a specified sequence of
statements has been detected. Return via a CALL 958 if you don’t
want TRACE turned back on.

Tracing understandably shows the execution rate of your program,
but you probably aren’t concerned with speed at this point.
However, the wise use of TRACE/NOTRACE will help move things
along. Also, when encountering a delay loop such as FOR 1=1 to
3000: NEXT I, you may want to help it along by stopping with a
Control/C entering 1=2999, and CONtinuing.

Warning #1: There must be no PRINT statement with a # character
in the output. TIR assumes that a # is the beginning of a trace
sequence. Either remove the # or bracket the PRINT statement
with a NOTRACE/TRACE pair.

Warning #2: There must be no variable names in the test program
identical to those in Version 1. The TR variable name must be
unique in both versions.

Warning # 3: Line O in the test program should be a REMark
statement as described above to avoid confusion. Line O is listed
when a line is successively repeated.

Warning # 4: Once TRACE has been enabled, the test program
must not dynamically reset the variables pointer ($CC.CD) with a
CLR or POKE unless it first disables TRACE and resets $13.14; e.g.,
100 NOTRACE:CLR: POKE 19, O: POKE 20,0: TRACE is OK.

Extensions
The primary motivation for this program was to.improve the
TRACE function in Integer BASIC. However, one can imagine other
uses of a program that gains control as each statement is executed
— maybe the kernel of a multiprogramming executive. | would be
interested in seeing your comments and modifications.

ZERO PAGE MEMORY MAP

Location Use

$00.01 SAVE AREA FOR HIMEM. APPEND USES

$05 PROGRAM SWITCH ON=$FF OFF=$7F
Turned on when trace # character
($a3) is detected. Turned off
when next space character ($A0)
is detected

$13.14 ADDRESS OF TR STORAGE VARIABLE

$15.16 ADDRESS THAT CAUSES RETURN TO
LINE 30020 IN BASIC LIST UTILITY
(Version I)

$17.18 SAVE AREA FOR $DC.DD. ADDRESS OF
CURRENT BASIC LINE IN TEST
PROGRAM

$1B.1C SAVE AREA FOR $EO.E1. ADDRESS OF
STATEMENT WITHIN BASIC LINE

$A0 APPLE II TRACE FLAG ON=z=§FF

OFF=3$7F

0300

0300
0302
G304
03c7
03069
030B
030D
o30F
0311
0313
0316
G317

0318
G31A
031C
031E
0320
0322
0324
G32¢
0328
032A
032C
032D
032F
0331
0333
0335
0337
0339
G338
G33D
033E
034C
0342
C343
0345
£347
0348
034A
034C
034D
034F
£351
0352
0354

24
30
4c
C9
Fo
24
10
c9
Do
4c
EA
60

A9
85
A5
bC
A5
DO
A5
85
A5
85
18
69
85
A5
69
€5
AC
A9
91
c8
A9
91
ce
A9
91
Ce
A5
91
C8
A5
91
18
A9
65

AG
a3

FD FD

A3
CD
05
F5
AD
04
D3

FF
05
13
49
14
45
cD
14
cc
13

CF
cC
CD
00
CD
0o
D4
13

D2
13

00
13

cC
13

Cb
13

04
13

03

TRACE INTERRUPT ROUTINE

BY ALAN G. HILL
23 NOVEMBER 1978

CCMMERCIAL RIGHTS RESERVED

START

PRINT
TRACE

RETURN

SWON

ORG

BIT
BMI
IMP
CMPIM
BEQ
BIT
BPL
CMPIM
BNE
JMP
NOP
RTS

LDAIM
STA
LDA
BNE
LDA
BNE
LDA
STA
LDA
STA
CLC
ADCIM
STA
LDA
ADCIM
STA
LDYIM
LDAIM
STALY
INY
LDAIM
STALY
INY
LDAIM
STAIY
INY
LDA
STALY
INY
LCA
STALY
CLC
LDAIM
ADC

$0300

$00AC
$0307
$FDFO
A3
SWCN
$0005
PRINT
$AC
RETURN
TRCOFF

$FF

{0005
$0013
GLINC
toc14
GLINC
$00CD
$0014
$oocec
$0013

$CF
$coce
$00CD
$ocC
¢o0CDh
$00
{D4
{13

{D2
$13

$00
$13

toocce
$13

$00CD
$13

t04
$0013

89

IS TRACE ON?

BRANCH YES

NO. BACK TC PRINT
NUMBER SICGN?

BRANCH YES. IT'S A TRACE LINE
SWITCH CN?

NC. PRINT CHARACTER
SPACE?

NO. RETURN W/0 PRINTING
VER. II LDAIM $7F

VER. II STA $05

BACK TO BASIC

TURN ON SWITCH
FIRST TIME THRU?
BRANCH NC. TO GET LINE NO.

YES. SETUP TR ARRAY
IN VARIABLES

AREA AND ADJUST
POINTER

NEW PV

NT"

HR"

DSP

NVA

POINT $13.14 TO TR
DATA AREA-1

0356
0358
035A
G35C
G35t
0360
0362
03€4
0365
03€7

0369
0368
036D
C3eF
0371
0372
0374
0375
0376
G377

0379
§378
0370
037F
0380
0382
0384
03€e5
G3E7
0388
0389
C386B
038D
03€eE
G38F
6391

06392
0394
0396
0397
0398
039A
G39C
G359t
G39F
G3A0
03A2

85
A5
69
85
AD
A9
91
ee
DO
FC

AD
Bl
D1
Do
ag
DO
98
48
48
FO

AD
Bl
DO
8e
DO
A2
Ce
Bl
ce
c8
D1
DO
ge
CA
DC
60

AG
Bl
48
8e
Lo
AD
Bl
ce
Ce
91
ge

13
14
0e
14
EA
FF
13

FB
29

02
13
DC
08

F7

Z1
02
13
13

F9
02

DC

13
05

F4

02
bC

FA
CB
13

13

FLOCP

GLINC
TLINE

NLINE
TLCOP

CLGGP

SLINE
PLINE

TSTACK
PLOCP

STA
LDA
ADCIM
STA
LDYIM
LDAIM
STALY
DEY
BNE
BEQ

LCYIM
LDAIY
CMPIY
BNE
DEY
BNE
TYA
PHA
PHA
BEQ

LDYIM
LCATY
BNE
DEY
BNE
LDXIM
INY
LDAIY
INY
INY
CMPIY
BNE
DEY
DEX
BNE
RTS

LDYIM
LDAIY
PHA
DEY
BNE
LDYIM
LDAILY
INY
INY
STATY
DEY

$0013
$0014
$00
$0014
§CA
§FF
$13

FLOCP
SLINE

$02
$13
$DC
NLINE

TLINE

TSTACK
$02
$13

SLINE

TLOOP
$02
$DC

$13
SLINE

CLOCP

{02
$DC

PLINE
¢CB
{13

{13

90

INITIALIZE TR ARRAY
TO ALL FF'S

LOCP TIL DONE
ALWAYS

IS LAST LINE NC.
SAME AS THIS ONE?
BRANCH NO

LOCP

YES. PUT ZERC
LINE NC. IN

STACK TEMPCRARILY
ALWAYS

IS THERE ALREADY A
ZERC AT THE TCP?
BRANCH NO TC GET LINE NO.

LOOP
YES

COMPARE WITH NEXT
LAST LINE NO.

IT'S DIFFERENT. SAVE IT
IT'S SAME

LGOOP
STILL THE SAME. RETURN TO TRACE

PICK UP LINE NO.
HOLD IN STACK TEMPORARILY

BCTH DICITS

PUSH DOWN ALL TR
ELEMENTS TO

MAKE RCCM FCR

NEW LINE NO. AT TR(OC)

03A3
G3A4
03A5
03A7
03A9
G3AA

03AC
G3AD
03AE
0380

03B1
o3B3
03B5
03B7
0389

G3BA
038C
03BE
03Cco
03C2
03C4
03Ceé
G3C8
03CA
03CC
03CE
03CF
03DC

03D3
03D5
03D7
03b9
03DB
G3DD
03DF
03E1
03E3
03E5
G3E7
03E9
03EB
03ED
O3EF
03F1
03F 2
03F 32

88
g8
DO
AO
68
91

Ce
68
91
60

A5
85
A5
85
60

A9
g5
A5
€5
A5
85
A5
85
A5
85
68
€8
4c

A9
85
85
A5
85
A5
g5
A5
85
AS
g5
A5
85
A5
85
€8
68
4C

F5
01

13

13

DC
15
DD
16

FF
AO
17
DC
18
DD
1B
EO
1c
El

€1 E8

7F
g5
AC
DC
17
DD
18
15
DC
16
DD
EC
1B
El
1C

8A EE

SAVE

TEST

TRCCFF

DEY
DEY
BNE
LDYIM
PLA
STAIY

INY
PLA
STAIY
RTS

LEA
STA
LDA
STA
RTS

LDAIM
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
PLA
PLA
JMP

LDAIM
STA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LCA
STA
PLA
PLA
JMP

PLOCP
$01

$13

$13

$00DC
$0015
$00DD
$0016

$FF

$00AC
$0017
40cDC
$oo18
$000D
$o01B
$00ED
¢001C
$00E1

$E881

¢7F

$0005
$0CAD
$ooDC
$0017
$00DD
$0018
$0015
$00DC
$0016
$00DD
$COED
$001B
$00E 1
fcolc

$eeea

91

LOCP UNTIL DONE

PUT NEW LINE NO. OR
ZERC IN TR(O)

GET HIGH ORDER BYTE
STUFF IT TCO
RETURN TO BASIC

RCUTINE TO SAVE ADDRESS

SC TIR WILL CAUSE BASIC

TC EXECUTE LINE 30020

WHEN TRACE SEQUENCE IS DETECTED
RETURN TC UTILITY

ROUTINE TO RE-ENTER TEST PGM
TURN TRACE BACK ON

RESTORE TEST PRCCRAM

LINE NO.

AND

STATEMENT ADCRESS

POP UTILITY ADDRESS

FROM STACK

RE-ENTER BASIC TRACE ROUTINE
TURN OFF

SWITCH AND

TRACE: (DON'T TRACE UTILITY)

SAVE ADDRESS OF
TEST PGM LINE NOC.

SETUP TC TC TO UTILITY
TO LIST LINE NO.
SETUP LINE ADDRESS

SETUP STATEMENT ADDRESS

REMOVE ADDRESS FROM STACK

GO TC UTILITY VIA CONTINUE

VERSION I: Real-Time Trace List Utility Program

29770 REM REAL-TIME TRACE LIST UTILITY PROGRAM

29980 REM SET-UP COUT AND INITIALIZE ZERO PAGE VALUES

29990 REM SET-UP TIR ASSEMBLER JUMP

30000 NOTRACE; POKE 54,768 MOD 256: POKE 55,768/256:
POKE 19,0:POKE20,0=POKE 787,76: POKE 788,211:
POKE 789,3: POKE 790,234

30005 REM SAVE ADDRESS SO TIR RETURNS TO LINE 30020

30010 CALL 945 :END

30020 EXECLINE=TR(0): IF EXECLINE #0 THEN 30050

30030 IF RRRRR=1 THEN 30070

30040 RRRRR=1: GOTO 30060

30050 RRRRR=0

30060 LIST EXECLINE

30070 IF PEEK (-16287)>127 THEN 30070: REM PAUSE IF SW(0) ON

30080 IF EXECLINE = O THEN 30100: REM SKIP DELAY

30090 FOR JJJJJ=1 TO 100: NEXT JJJJJ: REM DELAY

30100 CALL 954: REM BACK TO TEST PGM

30110 END: REM NEVER EXECUTED

31000 REM APPEND TEST PROGRAM

31010 INPUT "HIT RETURN TO APPEND" A$

31020 POKE 0, PEEK(76): POKE 1, PEEK (77): POKE 76, PEEK (202):
POKE 77, PEEK (203): CALL-3873: POKE 76, PEEK (0):
POKE 77, PEEK (1):END

VERSION I1I: Post-Execution Trace List Utility Program

32000 NOTRACE: POKE 54,768 MOD 256: POKE 55,768/256: POKE 19,0:
POKE 20,0: POKE 787,169: POKE 788,127:
POKE 789,133: POKE 790,5
32010 PRINT "TRACE SET UP. ENABLE TRACE IN TEST PROGRAM": END
32015 REM GOTO 32020 WHEN TEST PGM ENDED
32020 NOTRACE: POKE 54,240: POKE 55,253:
IF PEEK (20)#0 THEN 32030: PRINT "TRACE
WAS NOT ON IN TEST PROGRAM": GOTO 32090
32030 CALL-936: FOR I=100 TO 1 STEP-1:
IF TR (I)=-1 THEN 32060
32040 LIST TR (I)
32050 IF PEEK (37)>18 THEN 32090
32060 NEXT I
32070 GOTO 32090
32080 CALL-936: IF I>1 THEN 32060
32090 PRINT:PRINT "C/T/E?"
32100 KEY=PEEK(-16384): IF KEY< 128 THEN 32100:
POKE-16368,0: IF KEY=212 THEN 32000:
IF KEY=195 THEN 32080:END

92

6522 CHIP SETUP TIME

John T. Kosinski
4 Crestview Drive
Millis, MA 02054

MICRO 6:4 summarized some discussion from EDN concerning
their difficulties with interface design. One point in particular
caught our eye - a statement that the 6522 VIA chip cannot use the
Apple-generated device select signal (from pin 41 of the 1/O slot)
because the data sheets clearly require that the chip be selected
180 ns before the 1/O enable signal goes high, whereas the
Apple-generated signals occur nearly simultaneously. That is a
misconception which we would like to correct. We report a 6522
interface that uses the pin 41 select signal, that theoretically ought
to work and in fact does work.

The 6522 VIA - Why Bother?

Since there are several interfaces both supplied by Apple and by
other vendors, why bother? VIA stands for Versatile Interface
Adapter. It was_designed by MOS Technologies, the same folks
who brought us the 6502 and it is well named. It has two /0 ports,
two timers and a shift register, and so many options in operating
them that we won’t try to list them. A very useful feature is that all
of the furictions can interrupt the 6502. Several software tasks
(cassette 1/O, music, software generated serial 1/O) require the
Apple to spend most of its time in timing loops. With the use of
timers and interrupts, these functions can be performed while the
system is running some other program. You can have your STAR
WARS theme while shooting TIE fighters, instead of after; more
prosaically, you can print edited text while editing more. The 6522
is quite flexible because of its versatility; it is a definite asset to the
Apple.

What's the Big Problem?

The 6522 was designed to work well with the 6502. The signals at
the Apple 1/O slots are not all 6502 signals, however - some are
decoded device select signals, which would be very convenient to
use if we could. According to the referenced letter, we can’t - there
is not enough time to select the chip. As mentioned before, the
problem is not insurmountable; let’s discuss timing a bit. The 6522
has 16 registers that control all the bells and whistles. To
communicate yvith the 6522 from the CPU, one:

1. Selects one of the 16 registers with the address lines.
2. Selects (turns on) the 6522 chip itself.

3. Enables the 1/O transaction.

4. Disables the 1/O transaction.

5. De-selects the chip.

Some of the processes take time. For example, th 6522 data sheets
DO say that the address must be valid 180 ns before the 1/0
enable. They ALSO state that the select is normally derived from
the address lines. However, the timing tolerance referred to is the
register select operation of step 1, and it must occur 180 ns before
the /O enable of step 3. The data sheets DO NOT specify the chip
select time of Step 2. A representative of MOS Technologies,
looking at the circuit diagrams, estimated that it would be
sufficient to have Step 2 occur 40 - 50 ns before Step 3. He did not
offer a minimum lead time requirement.

93

Richard F. Suitor
166 Tremont Street
Newton, MA 02158

The 6502 and the 6522 expect that Step 3 will occur when the 6502
02 signal goes high and that Step 4 will occur when 02 goes low.
The enable signal presented at the 1/0 port of the Apple is actually
80, a signal which leads 02 by 50 - 70 ns. That is a very short time,
but long compared to the 10 ns or so it takes an LS gate to operate.
There are three LS gates involved in a transfer (the chip itself, and
data bus buffers at each end) giving a nominal 30 ns timing
tolerance. Actually, if the devices on the data bus are properly
tristated (i.e. they have very high impedance unless they are
active), the capacitance of the bus and the buffer delays will
probably permit proper operation with the §0 enable pulse. There
certainly seem to be several circuits using that signal that work
(now including, for some unknown reason, EDN’s.)

In summary, there are perhaps two problems in interfacing a 6522
to the Apple:

1. One may indeed need to select the chip before enabling the
1/0, but no more than 40 - 50 ns before.

2. One may need to use an I/O enable signal that is coincident
{within about 30 ns) with the 6502 02.

Itis not at all clear what one could get away with if one tried; it is
clear that if the requirements 1 and 2 are met, the 6522 should
interface easily to the Apple Il. However, since the device select
and /O select signals that Apple supplies de-select at the end of
80, one should reasonably expect that an interface that tristates
when these signals deselect should work satisfactorily with the
Apple despite the fact that the 6502 is accepting data for another
50 ns. It is apparent from the discussion that has resulted from
EDN’s efforts that many interfaces so designed do work
satisfactorily; it is not clear how marginal the operation is.

There is an interesting discussion of the Apple timing in the Sept.
issue of KILOBAUD starting on page 10. They reported on a 6522
interface and found that the important time was the rise of the 1/0
enable signal. Since they do not mention what was done for chip
select and for data bus buffering, one can only wonder if chip
select timing was affecting their results.

We decided to play safe and satisfy both requirements. One way to
satisfy the second is to use the real 02. As it turns out, this also
satisfies the first, because 02 lags the device select signal by about
50 ns. This coincidence may have led to some confusion in
interpreting timing experiments! This is the approach we followed;
in retrospect, knowing what we do now, we would have proceded
otherwise (i.e. perhaps used a delayed device select signal as an
1/0 enable signal.) Since it does no good to have the I/O enabled
if the chip and the data bus buffers aren’t, we lenghtened the
device select signal by delaying it and ANDing it with itself. We
had no problems with this approach. (It is not a ‘better solution
than Mr. Scouten’s; he is quite right that one cannot use both the
pin 41 signal and the §0 directly with the 6522 for their intended
functions. The difference, however, between 180 and 50 ns
required setup time makes it feasible to use the pin 41 decoded
device select signal if one chooses.)

AN APPLE It PROGRAM EDIT AID
Alan G. Hill
12092 Deerhorn Dr.
Cincinnati, OH 45240

When editing an Apple Integer Basic program, you often want to
locate all occurrences of a variable name, character string, or
BASIC statements. This is usually the case when you are changing
a variable name, moving a subroutine, etc., and you want to be
sure you have located all references. The BASIC Edit program
presented here should aid your editing.

The BASIC program should be loaded into high memory and the
program to be edited appended to it. The Edit program uses a
machine language routine at hex 300 to 39F to search BASIC
statements for the requested string and return the BASIC line
number in memory locations 17 and 18. The routine is re-entered
at 846 to find the line number of the next occurrence. This process
is continued until no further occurrences can be found. The high
order byte of the line number (location 18) is set to hex FF to
indicate that the search is finished.

BASIC Edit Program
Note in line 32680 of the BASIC program that LIST LINE is an
invalid BASIC statement. You will have to resort to a little
chicanery to get the statement in. First code line 32680 as PRINT
LINE. Then, enter the monitor and change the PRINT token ($62)

You can then RUN 32600 the Edit program. Enter the character
string or variable name to be searched when prompted by
“FIND?”. To search for a hex string (e.g. all occurrences of
COLOR=), enter an @ character followed by the desired hex
character pair (@66 for the COLOR= example)

EXAMPLES
To find all occurrences of: Input
SCORE SCORE
XYZ XYz
RETURN @ss
DIMA @4EC1
All references to 1000 @Eeso3

The Edit program will end if the screen is full (» 18 lines). To
continue the search for more occurrences, a RUN 32720 will return
another page. Happy Editing!

Find Routine
Page Zero Memory Map

to a LIST token ($74). This is easiest done if you code line 32680 $3-4 Address of search limit. Set to HIMEM by routine, but
first and then search for the token in high memory ($3FFA when could be set lower to avoid searching Edit program.
HIMEN is 16384).
$6-7 Address of BASIC Token compared. Incremented until it
After coding the BASIC program and the machine language exceeds Limit Address
routine, you will then need to append the program to be edited.
Note that the program must have line numbers less than 32600. To $8-9 Ending address - 1 of current statement being scanned
append a program, you must first “hide” the Edit program. This is
done by moving the HIMEN pointer (202) and (203) down below $A-B Address of string being searched. Set up by Edit program
the Edit program. Then load the edited program and reset HIMEM:
ie.: $ C Length - 1 of string being searched. Set up by Edit
LOAD (EDIT PROGRAM]) program
POKE 76, PEEK (202)
POKE 77, PEEK (203) $11-12 Line numbei of statement containing the requested
LOAD (PROGRAM TO BE EDITED) string. $12 is set to $FF if no more occurrences
POKE 76,0 HHIMEM MOD 256
POKE 77,64 HIMEM/256
FIND ROUTINE
A. G. HILL
MARCH 1979
HILO * $0003 HIMEM LO BYTE
HIHI * $0004 HIMEM HI BYTE
BSL * $0006 BASIC STATEMENT LO
BSH * $0007 BASIC STATEMENT HI
SEAL * $0008 STATEMENT ENDING ADDRESS LO
SEAH * $0009 STATEMENT ENDING ADDRESS HI
STRL * $000A STRING LO
LNL * $0011 LINE NUMBER LO
LNH * $0012 LINE NUMBER HI

94

0300 ORG $0300

0300 A5 CA START LDA $00CA SET UP ADDRESS OF FIRST
0302 85 06 STA BSL BASIC STATEMENT IN

0304 A5 CB LDA $00CB LOCS 6 AND 7

0306 85 07 STA BSH

0308 A5 4C LDA $004C SET UP TO STOP SEARCH

030A 85 03 STA HILO AT HIMEM. COULD BE

030C A5 4D LDA $004D CHANGED TO LIMIT SEARCH
030E 85 04 STA HIHI AT END OF PROGRAM BEING EDITED
0310 A0 QO LENGTH LDYIM $00 GET STATEMENT LENGTH

0312 B1 06 LDAIY BSL

0314 38 SEC

0315 E9 02 SBCIM $02 MINUS 2 TO POINT TO

0317 18 CLC LAST TOKEN IN STATEMENT
0318 65 06 ADC BSL

031A 85 08 STA SEAL SET UP STATEMENT ENDING
031C A5 07 LDA BSH ADDRESS IN 8 AND 9

031E 69 0O ADCIM $00 ADD IN CARRY IF ANY

0320 85 09 STA SEAH

0322 A0 01 LDYIM $01 SAVE LINE NUMBER 1IN

0324 Bl 06 LDAIY BSL IN 11 AND 12

0326 85 11 STA LNL

0328 C8 INY

0329 Bl 06 LDAIY BSL

032B 85 12 STA LNH

032D A2 0O LDXIM $00 ADJUST BSL TO POINT

032F A9 03 LDAIM $03 TO FIRST TOKEN

0331 20 64 03 JSR INCPNT

0334 A0 0O LDYIM $00 COMPARE TOKEN TO

0336 Bl 06 TTOKEN LDAIY BSL FIRST CHARACTER IN

0338 D1 DA CMPIY STRL STRING

033A DO 03 BNE NXTOKN IF NOT EQUAL POINT TO NEXT
033C 20 7F 03 JSR COMPAR IF EQUAL COMPARE REMAINING CHARS
033F 20 70 03 NXTOKN JSR INCTOK POINT TO NEXT TOKEN

0342 90 F2 BCC TTOKEN CARRY CLEAR THEN LOOK AT NEXT
0344 A5 08 LDA SEAL AT END OF STATEMENT.

0346 C5 03 CMP HILO CHECK TO SEE IF AT END OF
0348 A5 09 LDA SEAH SEARCH LIMIT

034A E5 04 SBC HIHI

034C BO 11 BCS LIMIT CARRY SET = LIMIT OF SEARCH
034E A5 08 LDA SEAL SET UP BSL AND BSH TO POINT
0350 85 06 STA BSL TO NEXT STATEMENT

0352 A5 09 LDA SEAH

0354 85 07 STA BSH

0356 A2 00 LDXIM $00 POINT TO LENGTH OF

0358 A9 02 LDAIM $02 STATEMENT BYTE

035A 20 64 03 JSR INCPNT

035D DO B1 BNE LENGTH ALWAYS BRANCH

035F A9 FF LIMIT LDAIM $FF SET UP LARGE LINE NUMBER
0361 85 12 STA LNH TO INDICATE AT END OF SEARCH
0363 60 RTS RETURN TO BASIC

95

0364 18 INCPNT CLC

0365 75 06 ADCX BSL
0367 95 06 STAX BSL
0369 B5 07 LDAX BSH
036B 69 0O ADCIM $00
036D 95 07 STAX BSH
036F 60 RTS

0370 A5 06 INCTOK LDA BSL
0372 C5 08 CMP SEAL
0374 A5 07 LDA BSH
0376 E5 09 SBC SEAH
0378 E6 06 INC BSL
037A DO 02 BNE REXIT
037C E6 07 INC BSH
037E 60 REXIT RTS

037F A4 OC COMPAR LDY $ooo0cC
0381 Bl OA COMPY LDAIY STRL
0383 D1 06 CMPIY BSL
0385 FO 03 BEQ COMPX
0387 A0 00 LDYIM $00
0389 60 RTS

038A 88 COMPX DEY

038B 10 F4 BPL COMPY
038D 68 PLA

038E 68 PLA

038F 60 RTS

32600
32610

32620
32630

32640

32650
32660
32670

32680
32690
32700
32710
32720
32730

BASIC EDIT PROGRAM

DIM A$(30)

INPUT "FIND?",A$: CALL -936:
IF A$(1,1)="@ THEN 32630:
KK=LEN(A$): FOR I=1 TO KK:
POKE 911+I,ASC(A$(I,I)): NEXT I
POKE 12,KK-1: GOTO 32650
A$=A$(2,LEN(AS)): KK=LEN(A$):
FOR I=1 TO KK STEP 2:
J=ASC(A$(I,I))-176:
J3=ASC(A$(I+1,I1+1))-176

IF 3>9 THEN J=J-7:

IF J3>9 THEN 33=33-7:

POKE 912+1/2,3*16+33: NEXT I:
POKE 12,KK/2-1

POKE 10,912M0D256: POKE 11,912/256
CALL 768

IF PEEK(18)>127 THEN 32730:
LINE=PEEK(17)+PEEK(18)*256
LIST LINE

IF PEEK(37)>18 THEN 32730
CALL 846

GOTO 32670

CALL -936: GOTO 32700

END

96

ROUTINE TO INCREMENT
POINTERS. ENTER WITH
XREG = DISPLACEMENT
FROM

BSL, BSH

ACC = INCREMENT AMOUNT

ROUTINE TCO INCREMENT

THE TOKEN ADDRESS BY 1
SET CARRY IF AT END

OF STATEMENT

ROUTINE TO COMPARE
REMAINING CHARACTERS
(C) LENGTH OF CHARACTER
STRING -1

RESET YREG

FOUND A MATCH! POP STACK ADDRESS
AND RETURN TO BASIC. LINE NUMBER
IS ALREADY IN LNL AND LNH.

A CASSETTE OPERATING SYSTEM FOR THE APPLE I
Robert A. Stein, Jr.
2441 Rolling View Dr.
Dayton, OH 45431

Have you ever wished that as great as the Apple II computer
system is that you were able load programs by name from a library
cassette? Well, with this mini-sized cassette operating system you
can stack many programs on one cassette and load the one you
want by typing in its name. Great for showing off your system
without juggling a dozen or so cassette tapes.

The Cassette Operating System [CASSOS] resides in memory at

locations 02CO to O3FF, where it won't get clobbered by BASIC

programs or initalization. Add the optional cassette control

circuit, or purchase one of the commercially available ones.

(Candex Pacific, 693 Veterans BLVD, Redwood City, CA 94063)

and you never need envy the PET for its loading technique again.
Operation

Load the ‘CASSOS’ tape, which you have created from the
assembly listing, just like any other machine language program
(2C0.3FFR), then initalize the BASIC pointers by depressing
CTRL-B, return. To load a program depress CTRL-Y and RETURN.
“PROG?” will be displayed, enter a 1-10 character program name.
The cassette tape will be searched and the program loaded if
found. “XXXXXXXXXX LOADED” will be output, where
XXXXXXXXXX is the program now in memory. If the cassette
control circuit (described later) is present the tape will also be
stopped. A line of question marks (222222222) are displayed if the
requested program was not found. To write a program to the
library cassette enter Yc (Ctrl-Y, “WRITE”, and RETURN. Program
will be saved under the name requested at PROG? . “X)X)XXXOXXXXX
OUT” will be displayed at completion and the recorder stopped.
To end a cassette program file enter: Y¢, “EOF”, RETURN; a special
record header will be written. Note that to conserve limited
memory space the EOF routine utilizes the program write
subroutine so the “XXXXXXXXXX OUT” message should be ignored.

The program is structured such that the last 63 locations of the
input buffer is used for display 'messages, so if more than 191
characters are entered at one time the program will still function,
but without messages. The listing as presented was for a 16K
system, change location 0358 as follows for a different
configuration:

1F — 8K 5F — 24K
2F — 12K 7F — 32K
3F — 16K 8F — 36K
4F — 20K BF — 48K

Program Design
The method by which CASSOS functions is to write a program
header block consisting of header ID, program name, and start of
the BASIC load. This is followed by the program data itself,
utilizing the Apple monitor routines.

A Cassette On/Off Circuit
The following diagram describes a simple circuit for stopping and
starting a cassette recorder which has a “remote” plug from the
Apple H under program control. The theory involves activating or

deactivating the AN3 signal on the Apple game connector. A store

. to location COS5F turns the recorder on and location CO5E turns it

97

off. The strobe triggers a transistor which in turn opens a relay and
closes the connection to the remote plug, starting the recorder. If
your recorder requires an open connéction to start tape movement
wire the relay normally closed instead of open. It is also possible to
add a relay that would interupt power to the recorder for control if
you have no remote capability on your recorder.

.

to recorder

-

pin plug
N.O.
? +5V (pin 1)
6VDC RELAY 2500
1000 .o

NPN +3.5V (pin 12)

Chasis Ground (pin 8)

Cassette Control Circuit

Parts List
All parts were purchased at a local Radio Shack
6VDC Relay (275-004)
NPN Transistor (2N3568 or equivalent)
1000 Ohm Resistor
2500 Ohm Resistor
Mini-Plug

All connections were made to a DIP Header which was modified
by soldering a 16-pin IC to it so that the game paddles could still be
used without modification when the cassette ON/Off circuit was
in use. The common 6VDC relay was modified to be triggered by
the game connector signals by wiring a 2500 ohm resistance
(utilizing a series of resistors connected in series so that the sum is
2500 Ohms) in parallel with the relay coil. If your recorders rewind
controls are disabled by the remote jack wire a switch to bypass
the. fransistor between chasis ground and the relay, which will
allow the rewind to operate when depressed. If all this is beyond
your scope use the purchased contro} or simply stop and start the
recorder manually.

98

A Cassette Tape Catalog

Shown in exhibit is a short integer BASIC program which when
loaded will list all the programs on a CASSOS format library tape.
The CASSOS sub-routines are used so the software must be core
resident. Just load the program, insert the library cassette into the
cassette handler, and type RUN after starting the cassette player.

HEERT LIERERRY TRPE AHD LEFFESS *RETURH?
FILE # FROGEAM FAME BYTES

S-C ASSEMBLER 11
Super Apple 1l Assembler

Chuck Carpenter
2228 Montclair PI.
Carrollton, TX 75006

I've had the good fortune to get an advance copy of an excellent
assembler for the Apple 1. The assembler was written by Bob
Sander-Cederlof and has many desireable features. Bob has used
sweet 16 and several routines from the monitor and integar BASIC
(it doesn’t run with the Applesoft ROM on). The result is a
compact co-resident two-pass assembler. A summary of assembler
commands and data is listed in Table 1.

Here are a few of the assembler features:

* Format compatible with Apple mini-assembler

« Complete text editing using standard Apple
screen and line editing features.

« Save and Load as in integar BASIC

* Psuedo op codes

» Text for REMs following the line no.

« Tabs to the opcode, operand and comment field using
(CTRL) |

« Symbol table

« Listing, fast or slow

* Stop and start a LIST or ASM at any time

+ Access Apple monitor from the assembler using $

e Run programs from the assembler

The S-C ASSEMBLER 1l includes many other features. Among these
are:

» Line renumbering starting at 1000 by 10’s

* Printer driver routine - his or yours (or -
mine for that matter).

« Pagination of printed output

» Program location and relocation

* Can be used to renumber BASIC programs
(except branches)

» Operates within DOS (see Table 2)

* Runs on an 8K machine

| have included a couple of examples of the S-C ASSEMBLER 1|
features in Figure 1and 2. Figure 1 is a functional routine. Figure 2
is merely for illustration of the .DA feature. Most of the assembler
capability is illustrated in Figure 1. This routine, which compares 2
byte data, can be used for many applications such as extended
loop counters. The example also includes ASCH strings using the
pseudo op code .AS.

A jump to the user exit at $3F8 was used to enter the data. This also
takes advantage of the (CTRL) Y feature of the Apple monitor.

By calling the print routine with PRT, a hard copy of a listing or of
assembled output is obtained. The printer driver routine is output
from the game paddle connector. This is a TTL level serial signal.
Typing SLO(W) or FAS(T) stops the printer output. Also, SLO(W)
will provide a slow listing of your program. You can stop and start
the listing with the space bar and, escape back to the assembler
with a (RETURN). FAS(T): cancels SLO(W) returning to normal
screen speed. (See Slow List, MICRO #5 page 21.)

100

For text editing, you can insert a line between other lines and list
any single line or combination of lines. This allows character
editing or line editing using Apple ESCAPE functions .
((ESCAPE)D,C,B). Also you can DEL(ETE) any line or combination :
of lines.

An asterisk (*) in the first column of the label field allows that line

to be a comment or blank line. Very useful for commenting a

program. | used short comments in my programs; | only have 48

columns. Actually the comment can be any length (up to 100 -
characters or so). An asterisk used in the operand field means

current location. You can add or subtract labels, hex and decimal

values from the current location. Each of these can be added or

subtracted, to or from, each other. Here are some examples:

1000 LABL LDA *-* CURRENT-CURRENT

1010 LAB2 LDA LABL-LABL

1020 LAB3 LDA *-LABL

1030 LAB4 LDA LABLt1234

1040 LABS LDA $1234-LABL

1050 LAB6 LDA $ABCD-5678

1060 *

1070 * EXAMPLES OF ADDITION & SUBTRACTION OF
1080 * CURRENT VALUE, LABELS, DECIMAL AND
1090 * HEX VALUES FROM EACH OTHER.

1100 *

Ilustration of the .DA feature is shown in Figure 2. The intent here
is to show data in a single or 2 byte location. Once the data value
has been assigned with the .DA code, it can be manipulated with
another feature. This feature is shown as a / (slant line) and #
(pound) in the first column of the operand field. Here’s what's
happening:

HIBYTE =
LOBYTE =

LDA /LABL
LDA #LABL

+256
MOD256

As you can see from this and the previous examples, these features
provide a very powerful assembler capability.

Before | obtained this assembler | could never get very enthusias-
tic about extensive machine or assembly language programming.
Now, with this assembler, this coding is as easy as BASIC. You can
get a copy for your Apple It from:

S-C SOFTWARE

P.O. Box 5537
Richardson, TX 75080
Price - $25.00

I think you will enjoy it: having the efficiency of machine
language programs developed with the ease of BASIC. The
combination of compact programs with interactive capability
makes personal computing even more enjoyable.

Load: *1000.1CFFR Commands:

Run: *1000G Hard Entry LOAD load program from tape
or: *1003G Soft Entry SAVE save program to tape
LIST list entire program
LIST line# list selected line
LIST line#,line# list range of lines
Pseudo ops: DELETE line# delete selected line
label .OR expr origin (optional label) DELETE line# linef delete range of lines
label .EQ expr equate RENUMBER renumbers all lines
label .DA expr data (optional label) NEW erase program
label .HS xxxx...x hex string SLOW program slow list
labe!l .AS daaaa...ad ascii string (d is any delimiter) FAST program fast list
.EN end PRT printer driver $1B77-1BFF
ASM assemble program
RUN expr execute starting at expr
APPEND add program from tape to one in memory
Table 1

S-C Assembler Il Summary Notes

Instruction Steps:

. Bring up DOS per instruction manual

. Reset to monitor (*)

. Load assembler from tape

. Return to DOS using $3DOGC

BSAVE Assembler

LOCK Assembler

. Call 4096 Jumps to Assembler

. $3DOG Jumps to DOS soft entry but...

®NO U A WN

At this point the DOS is clobbered. Any further use of DOS
requires a reboot. It is very handy though to have the speed of
loading the assembler from the disc.

Table 2
S-C Assembler 11 with Apple 11 DOS

SN 1860 + IR PSEUD0 OF EXAMPLE
1810 =+
RSP E] LR F2060

24 12 1838 HEX DR $1234
24 12 1846 DEC DR 4&e8

1656 =+
188 + ADDRESS OF DARTA
1878 =+

HZEd- HSY BQ 1836 LDA #HEX HE= LD EYTE

EZBE— A2 82 168503 LIA ~HEX HE® HI EYTE
1188 +
1118 + DATA AT THE ADDRESS
liz@é +
1126 LIA LEC DEC LD BYTE
114 LIA DEC+1 IEC HI BYTE
1158 .EM

SYMBOL THELE

HE= S TEC (50T

Figure 2
H DA Pseudo Op Example

101

SMHEW -0 ASSEMELER I1 EXAMFLE

-0 ASSEMELER 1C
COMPARES HEX WALUES
AMD IMDICATES WHICH

(LORD s GREATER [(OF ECUALD.

ekt LJOF £35E

E

+ JOR DEFARULT IS #8208
-+-

COUT JEG $FIED

,..,..,..,_..... .._.,‘..
U R U U Lot e
e’

l;l -:'j_;l Iz,l :__I 'l' l:?g .E_.. |;i:=‘| 1] I:_'- I';l
DA I X R O B B o R e B

ek Pk b ek ek ek pod ke fde fde ke

ot

LN
IV
b

ux|
=

1118 LESS .As
1128 LHS 2

AIKA]
]

o
I

y
N
1

[y

fa—y

st

[

23 GREER JAS 'E ox= e
118 «HS
1158 =L EE
11e8 =H B
1178 YL B
1188 %'H - B
HD 3 1120 STARE LIA

MM

oy

o W W W 0D

TrrddaoaiH

£ LI #LESS-LESS
£ ASE FRENT
5] RTS
TST1 LDY #GREC-LESS
JHP PREAT
FET1 ORA #Fo8 HOREMAL OUT
JsR COUT
Iy
FEHT LDA LESS.Y
EFL FETL
JeE CoUT

|
Lo b T T D g DT [0 D b
D B o B 0 e ST e o B o ot Y
DA R
)

et
g
sl

EAT
E2EF - OS5 ZE 126 CHF
Eall- AS 2D 1z1a LIA =
f3lz- ES 3F 1zem SEC WH
F2315- BA @ 226 ECS TSTHL =y
e
19

D I;II_‘

e
Lt) e

!
ol

s
ol

o l;l -}

=1

I o0 Do e
= OO T

FIi

- e
Pzl Bl

(R A oV R

1t FL

-
b

— o
P e 050 50 T 5T

* DATA EMTREY THROUGH
UZER EXIT & $7F32.

% % %

ot
[ax]
ek ke e ke ek b ok fed ek e ok bk fod e ok pede fobe ke
-+

B O G 00 T 0 0 G a0 Pl [0 T

* DATA.DATA (CTRL)Y

3

R FIFS
JHF STER E-RMFLE REUM
1426 .EH :

oo == 5 a0 00 =8 T L0 e G P =

s
Ju o

HaFs- 40 6D 863

A

sFlodad, coBEn

SMEOL THELE

HEO0E, 1068
COUT FLED i =y

GRER B3
YL B
TST1 &2

LESS
::_:L Ly
H
FRET1

anls’ eeele’
ST
o]

T ol

K]

STRR
PRMT

1
=4

1
'

xI
A T
[P R TR A 0N

|=|f| I;'_;I (] I'-'_-:-|
A el e AN

Figure 1
S-C Assembiler 11 Example

102

THE INTEGER BASIC TOKEN SYSTEM
IN THE APPLE LI

Frank D. Kirschner
2643 Rockledge Trail
Dayton, OH 45430

There are two primary methods of storing BASIC programs in
microcomputers. One involves storing the entire program, letter
by letter and symbol by symbol somewhere in memory, and
interpreting the ASCII codes on execution. This is typical of BASIC
compilers and some interpreters, like the TRS-80 Level 1. A more
memory-efficient system uses tokens, eight bit bytes each of which
represent a BASIC word or symbol. The TRS-80 Level Il uses this
method, as does the Apple |1, to which the examples which follow
apply.

When in Integer BASIC, the Apple stores characters as they are
entered in a character buffer (hex locations 0200 to 02FF). When
“return” is entered, BASIC “parses” the entry (that is, interprets the
ASCII characters and breaks the instruction into executable parts).
It determines what is a command, what are variables, data and so
forth. If it is legal and is preceded by a number between 0 and
32767 (a line number), it stores it in memory in a fashion discussed
below. If there is no line number, it simply executes the command
and awaits further instructions.

The way the programs are stored is quite clever. When BASIC is
initiated (control B or EO00 G from the monitor) several thiugs
happen. First, the highest available user memory (RAM) is stored
in memory locations 004C (Lo byte) and 004D (Hi byte), called the
HIMEM pointer. Also, locations O0CA and O00CB, the
start-of-program pointer, get the same numbers, since there is no
program as yet. As program steps are entered, they are stored
starting at the top of memory, highest line numbers first, and the
start-of-program pointer is decreased accordingly. See Figure 1.
When a line with a higher number than some already in memory is
entered, they are shuffled to preserve the order. One application:
if you enter a program and then hit control B, the program is not
scratched (or erased); only the start-of-program pointer is affected.
Since powering up the Apple fills the memory with a pattern of
ones and zeros (it looks like FF FF 00 00 ...) from the monitor, it is
easy to find the start of the program and then manually reset CA
and CB to that location.

This is the way program instructions are stored in memory: (All
numbers are in hex)

— - cp— 01

08 64 00
f always 01
Tokens for BASIC statements

Line number (Lo byte, HI byte)
This is line 100 (Decimal).

Number of bytes in BASIC line (also, one less than the number of
bytes from the beginning of the next line.
Figure 2

"End of line

indicator’

As an example, power up the Apple, bring up BASIC, and enter

100 PRINT 0,50

Enter the monitor (by pushing “reset”), and then examine the
program by entering

EXAMPLES FOR

16K Apple
4000 HIMEM
————— (Location stored in 4C and 4D)
A ———
- > Program
———
e ————
/
3FA6 — First line in program

(Location stored in CA and CB

), S S

Figure 1

Memory Map for Program Storage

3FF4.3FFF return
(Locations for a 16K Apple. Subtract 2000 hex for a 4K or add 4000
hex for a 32K Apple.) You will see this:

3FF4-0C 6400 62
3FF8 - B0 00 00 49 B5 32 00 01

which means:

oC There are 12 bytes in this line
64 00 It is line 100 (Decimal)
62 PRINT (see Table 1 for complete list of tokens
BO The next two bytes are a number (rather than tokens)
OQ 00 The number 0
49 The comma in a PRINT statement
B5 Another number follows
3200 The number 50
01 End of BASIC line

103

To demonstrate the use of this information, return to BASIC and
try to enter the following BASIC line:

100 DEL 0,50
You will get a syntax error, because the Apple Interpreter does not
allow the command DEL in deferred execution mode. Now do this:
reenter the monitor and change the 62 (PRINT) to 09 (DEL) and the
49 (,for PRINT) to OA (, for DEL) by entering

3FF7: 09 Return

3FFB: OA Return
Reenter BASIC (control C) and list. Try this instruction by adding
lines between 0 and 50, running the program, and then listing it.
This allows you to write a program which will carry out some
functions only the first time it is run and then automatically delete
those lines.
In addition to inserting instructions which cannot be entered as
deferred commands, you can modify the program under program
control. As an example, here is a program which will stop and start
listing a long program by hitting a key on the keyboard.
Bring up BASIC.
Enter: 257 LIST 0: RETURN
HIT RESET, 3FF6.3FFF RETURN
You will see
3FF6 - OA 01
3FF8 - 01 74 BO 00 00 03 5B 01
What this means:
3FF6: OA Ten bytes in line
3FF7,8: 01 01 LINE 257
3FF9: 74 TOKEN FOR LIST
3FFA: BO Means “Number follows”
3FFB,C: 00 00 LINE TO BE “LISTED” (LO, HI)
3FFD: 03 TOKEN FOR COLON
3FFF: 01 End of BASIC LINE
Now enter 3FF7: FF FF Return
Cont. C, List
You have 65535 LIST O: RETURN
Now enter .
100 X=PEEK (-16384): POKE -16368, 0:1F
X 127 THEN 0: GOTO 100
Reset, 3FCF.3FFF Return
Change line no. from 100 to 65534 by entering 3FDO; FE FF Return
Change GOTO 100 to GOTO 65534 by entering 3FF3: FE FF
Change the 0 in “THEN 0” to 65533 by entering 3FEE: FD FF
In like manner, enter these remaining steps: (Under each number
which has to be entered through the monitér, the Hex equivalent,
in reverse order as it must be entered, appears)

65533 | = | PEEK (I): IFI> PEEK (76)+
(FD FF)
256*PEEK (77) THEN END: GOTO
65531
(FB FP)
65532 X=PEEK (-16384):POKE -16386,0:
(FC FF)
IF X 127 THEN 65534
(FE FF)
65531 POKE 16374, PEEK (1 +1): POKE 16380
(FB BB)

PEEK (I+#2): GOSUB 65535
(FF FF)
°32767 |=PEEK (202) 256* PEEK (203)
The steps must be entered in reverse order (i.e descending line
numbers) because the interpreter orders them by their number
when entered, and will not re-order lines when the numbers have
been changed through the monitor.

The reason for making all these line numbers very high is so the
applications program will fit “under” the list program.
Now, in the monitor, move the start of program and HIMEM
pointers below the program:

3A: 49 3F Return

4C: 49 3F Return
Hit control C and list. Nothing is listed. The program has been
stored in a portion of memory temporarily inaccessible to BASIC.
Load your applications program, make sure all the line numbers
are less that 32767, and change HIMEM through the monitor (4C:
00 40) and execute RUN 32767. The program will list until you hit
a key and then resume when you hit a key again. It uses the fact
that each line begins with the number of bytes in the line followed
by the line number. Numbers of successive lines are found and
“POKE into the appropriate location in line 75535, which then lists
each line.
Using these methods you can exercise considerably more control
over the BASIC interpreter in your microcomputer.

IMPROVED STAR BATTLE SOUND EFFECTS

William M. Shryock, Jr.
P.0. Box 126
Williston, ND 58801

10 POKE 0,160: POKE 1,1: POKE
2,162: POKE 3,0: POKE 4,138
: POKE 5,24: POKE 6,233: POKE
7,1: POKE 8,208: POKE 9,252
: POKE 10,141

20 POKE 11,48: POKE 12,192: POKE
13,232: POKE 14,224: POKE 15
,150: POKE 16,208: POKE 17,
242: POKE 18,136: POKE 19,208
: POKE 20,237: POKE 21,96

30 CALL -936: VTAB 12: TAB 9: PRINT
"STAR BATTLE SOUND EFFECTS"

40 SHOTS= RND (15)+1
50 LENGTH= RND (11)%10+120
60 POKE 1,SHOTS: POKE 15,LENGTH:

CALL 0O

70 FOR DELAY=1 TO RND (1000): NEXT
DELAY

80 GOTO 40

This version can be used in low
res, programs without having to
reset HIMEM. Also it can be load-
ed from BASIC.

104

BASIC COMMAND OR FUNCTION

ABS

(

)
"ASC (
)

i“

”

AUTO

CALL
CLR
COLOR=
CON

31
3F
72
3C
72
28
29
oD
0A
4D
e
66
60
09
0A
4F
34
72
4E
22
72
40
7C
7B
51
55
56
57
58
5C
5F
4C
10
69
6A
6B
60
24

25

54
52
53
27
28
29

7F
3B
5E
74
75

TABLE

APPLE {I INTEGER BASIC TOKENS

'HEX TOKEN

Includes left paren.

first quote
second quote

Includes =

Numeric Arrays

String Array

Numeric Variable
String Variable

Includes :

When followed by a
line no.
When followed by

GOSUB or a basic
operation

Numberic Variable
String Variable
input if followed by

first
Second
Includes #
Includes (

105

BASIC COMMAND (CONT)

LOAD
MAN
NEW
NEXT

NO DSP
NO TRACE
PDL
(
)
PEEK
3F
s 72
PLOT

POKE

POP
PRINT
PRINT

PR #
REM
RETURN
RND

MOD
NOR

HEX TOKEN

04
OF
0B
59
5A
79
7A
32
3F
72
2E
(
)
67
68
64
65
77
63
62
46
49
61
28
29
7E
5D
58
2F
3F
72
36
05
3D
3E
72
30
3F
72
50
4B
7D
6C
6D
6F
6F
03
71
1D
1€
¥
DE

If used alone
Numeric Variable

String Variable
First

Second
Includes #

Includes (

In assignment

RENUMBER APPLESOFT

Chuck Carpenter
2228 Montclair Place
Carrollton, TX 75006

Renumbering Applesoft programs suddenly became possible. The
resequence program in Jim Butterfield’s “Inside Pet BASIC”
(MICRO 8:39) solved the problem.

After clearing up a minor problem in the program (with help from
Jim) I tried it on a 200 line program. Because of the way | started
numbering in the first place, | had to fix-up about a dozen lines.
But, | never would have gotten through that much renumbering
otherwise.

As Jim mentioned in his letter to me, a machine language program
would have ran a whole bunch faster. With DOS and having to find
a place to locate such a program, the BASIC approach may be
easier.

Here are some comments on the Applesoft version shown in
Listing 1: .

-Line 60005 has some prompting inputs to set-up the program.

-Use RUN 60005 to start renumbering.

-Line 60060 brances to a DELete line.

-Line 60160 is changed to a point to the line no. in Applesoft
(2049 or $801).
Note: These are the pointers for Applesoft ROM

-Line 60160 was also changed to allow starting at any line
number (M=LN-IN).

-Line 60170 changed to allow any numbering increment (M=M
$IN).

-Line 60220 - tokens changed for Applesoft (this information is in
the Applesoft Il manual).

-Line 60260 and 60270 added to delete the renumber program
and end it.
To make using the program easier, an append program (also for
ROM) does the job. The assembly language program shown in
listing 2 links the two programs together. You only need to do this
if you want to renumber an existing program. (You can still load
the renumber program before you start a new program.) Here’s
how you use it.

-Load the append program first. It fits in page 3 starting at $3A5.

-Load the lower line no. Applesoft program.

-Type Call 933 and (return).

-Load the higher line no. renumber program.

-Type CALL 955 and (return).

-Use RUN 60005 to start renumbering.

Be sure to record any output that appears on the screen. Write
down the information and check the renumbering on the lines
indicated. Putting longer line numbers in short spaces will be one
message. Another will ask you to check where you used a THEN for
a GOTO. The renumber program is not sure if it should renumber a
line or a parameter.

My thanks to Jim Butterfield for providing us with such a useful
program (and helping me get this one running). Also, thanks to
Bob Matzinger from the Dallas Area Apple Corps for some
modification suggestions and the Applesoft ROM append routine.

Listing 2

Applesoft append program. This program can be used to append

any two programs together.

106

ErHD
a5 510k HOME @ PRIMT @ FPRIMT "EEMUMEER: ": FRIMT & I
FRUT "FIRST LIME # — “sip: FEIMT ¢ INPUT "IMCREMEH
— "3IN
SHRlE LET T = @: TIH VRIS 18081 s GOSUR enlan
R =1 TD 1E3: GOSUE eBgin
IF & THEW !U_UE EE@?H' MEXT R
GOElHE E=E11h : FOR R 1 TO IEZ:H = IWMT (M
FIEE A — 1sM — M # Q e
46 POKE Hvﬁ'” = Lt GOEUE e@Ev@ysi g = M RN R
rEs IF G THEM MHEST F.
P OGOSUE EBIEE: FOR R = 1 TO 1EZ: QOSUR £Eoic:

» THEM GOSUE eGliG: MHEXT R

FREINT "$EMD+": COTO &R26m

PLET =8 IF T < » @ THEM FOR J = 1 TO T

VHLJY < x U THEM MERT Jid = &

2 RETURM

IF W« » & THEM GOSUR &8E7TE: IF J = £t THE
+ 1-“ |T:| = ‘-.:‘

hETiFH
ISUE

SUE EGETR: IF _d = 8 THEN RETURN

HEE W= WL IF o= @ THEN PRIMT “GOvvLv3Liv
2 RETURH
SE1EE FOR I

CE o+ 420 IF W= 8 THEM ¥ = 32

RTOE+ 1 STEF - 1% = IMT (i
_ & o+
PORKE Da'ilbd = =@ MEST 0 IF W = & THEM RETL

T
Lab et Lnd 1
[y

2158 PRINT “"IMSERT"SMROJ15"L"iL: RETURM

68 LET F = Z@49:0 = L4 - IH

v8OLET R =FiM =M + IN
I

£
£

l:.é'é LET F FEEE (R} + FEEE (R + 1} # £Sg:iL =
2+ PEEE (A + 21 % 2568 = A + 2:3 =

t+ 1B = A0 = PEEK (RI: I
Ve O G+ 2 GOTO EP;IU.EEI

AMDC < ITE AHD C + x 1965

Listing 1

APPLE 1l Applesoft Version of Jim Butterfield’s Resequence
program.

107

AN APPLE II PROGRAM RELOCATCR

Rick Auricchio
59 Plymouth Avenue
Maplewood, NJ 07040

After writing an Assembly-language program, the
occasion often arises when one wishes the pro-
gram to run in a different area of memory than
that for which it was originally assembled. Re-
locating a program requires changing all abso-
lute references within the program, so that it
will run elsewhere in memory...this process is
tedious, time-consuming, and repetitive WORK.

ENTER THE ELECTRONIC BRAIN
Behold! We have before us an electronic marval
which thrives on such repetitive work! After
all, why not just write a program to relocate
others? Read on......

HERE'S WHAT IT TAKES

When a Relocating Assembler creates object code
one of the items built is a Relocation Diction-
ary. This is actually a table of pointers to
the program instructions that have absolute ad-
dresses; it also contains some flags for use by
a relocating loader so that the latter can ad-
just the address references during the loading
process.

Unfortunately, we don't have such a luxury whén
relocating most programs...all we have 1is raw
machine language to work with. Our relocator
will have to scan the subject program and find
all absolute references which need adjustment.

FUNCTIONAL DESCRIPTION of RELOC8

The RELOC8 program will use the Apple's SWEET-16
utility for all 16-bit data and address manipu-
lation; use of SWEET-16 saves a lot of 6502 code
at the expense of some speed loss. In order to
decipher the 6502 instructions of the subject
program, Apple's Disassembler is used. (The
disassembler, by the way, turns out to be a
rather nice utility for things like this). In
order to minimize user intervention, it was de-
cided that RELOC8 would be run as part of a
standard Apple Memory-Move command. After load-
ing the subject program in its "old" memory lo-
cation, one enters an Apple Move command to copy
it to the "new" memory location, followed by
Control-Y (which starts RELOC8 after the Move
completes) .

All absolute address references which lie within
the range of the subject program will be up-
dated. References to addresses outside the sub-
ject program (e.g. for Monitor calls) need not
be changed.

108

USING RELOC8

To relocate a machine-language program, the
following procedure is followed: 1load RELOCS
into the Apple and load the subject program into
its "old" location. Type an Apple Move command
to move the subject program to its "new" address
followed by a space and control-Y. The RELOC8
program will print all modified instructions and
then exit when it's done. For example, to re--
locate a subject program from "old" location
1500-1800, to "new" location 2A00-2D00, one
would type the following command:

* 2400<1500.1800M Yc

This is a standard "move" command, moving the
program with the Apple Monitor; however, we
follow the "M" with a space and a control-Y so
that RELOC8 will be entered immediately follow-
ing the move command. When it is entered,
RELOC8 picks up the address values from the
"move" command.

A FEW WORDS OF WARNING

There is something to watch out for while using
RELOC8. Since it scans the subject program for
absolute addresses, any data imbedded within the
program may cause RELOC8 to think the data is an’
instruction. In that case, the data will be
modified and RELOC8's opcode scan might get "out
of sync" with the real instructions in the sub-
Jjeet program. It's best to try and keep data
separate from instructions; if RELOC8 does modi~
fy some data, you'll have to fix it before run-
ning the relocated program.

kkhkhkhkhhhhkhkhkhkkkhhhhhhhkhkhhkk

* *

*# MACHINE-LANGUAGE *

* PROGRAM RELOCATOR *

%* *

* -- RELOC8 -- *

* *

* RICK AURICCHIO 10/26/78 *

* *

* FOR THE APPLE-II *

% E3
khkhkhkhkhhkhkkkhhkhhkkhhkkhkhhhhkhhkk

*

—-—- SWEET-16 REGISTERS

*

AC EQU 0 RU:ACCUMULATOR
OB EQU 1 R1:0LD BASE

OE EQU 2 R2:0LD END

NB EQU 3 R3:NEW BASE

NE EQU 4 R4:NEW END

RB EQU S RS5:RELOCATION BIAS

*

00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009

0000F689
O000F88E
0000F8DO

0000002F
0000003cC
0000003D
00000040
00000041
00000044
00000045
0000003A
0000003B

0300
0300
0302
0304
0306

0308
030A
030cC
030E

0310
0312
0314
0316

ACL EQU 0

ACH EQU 1

OBL EQU 2

OBH EQU 3

OEL EQU 4

OEH EQU 5

NBL EQU 6

NBH EQU 7

NEL EQU 8

NEH EQU 9

%

*

SWEET16 EQU X’F689°
INSDS2 EQU X’ F88E’
INSTDSP EQU X*F8D0O”
*

LENGTH EQU X’2F7°
AlL EQU X3¢’
AlH EQU X‘°3D°
A3L EQU X’40°
A3 EQU X"41°
AS5L EQU X*44°
AS5H EQU X’45°
PCL EQU X*3A°
PCH EQU X’3B’

* ENTRY IS VIA CONTROL-Y AFTER

* MOVING PROGRAM TO ITS NEW
* LOCATION IN MEMORY. THE
* VALUES FROM THE APPLE ‘MOVE’
* COMMAND WILL BE PRESENT IN
* THE MONITOR WORK AREAS UPON
*# ENTRY TO RELOCS.
%*

ORG X°0300°
RELOCS LDAZ A3L

STAZ OBL

LDAZ A3H

STAZ OBH
%*

LDAZ AlL

STAZ OEL

LDAZ AlH

STAZ OEH
*

LDAZ AS5L

STAZ NBL

LDAZ ASH

STAZ NBH

109

SWEET-16 INTERPRETER
DISASSEMBLE WITHOUT PRINT
DISASSEMBLE SINGLE INSTR.

DISASSEMBLED INSTR LENGTH
WORK BYTES FOR MONITOR

PC LOW FOR DISASSEMBLER
++TAKE A GUESS...

ORG TO PAGE 3
MOVE OLD BASE

MOVE OLD END (+1)

MOVE NEW BASE

0318
031B
031cC
031D
031E
031F
0320
0321
0322

0323
0325
0327
0324
032cC
032E

0330
0333
0334
0335
0336
0338
0339

033B
033c
033D
033E

033F
0340
0341
0342
0343
0344
0346
0348
0344
034C
034F
0352

20 89 Fé6

23
Bl
35
22
Bl
A3
34
00

A0
Bl

A5
c9
DO

20
E3
63
Dl
02
D2
03

AS
F3
F3
73

00
06
8E
2F
02
24

89

2A

27

00
3A

3B
1y
89
OE

F8

F6

F8
F6

* % % %

JSR SWEET16

LD NB

SUB OB

ST RB

LD OE

SUB 0B

ADD NB

ST NE

RTN
*
* SCAN THE PROGRAM FOR A 3-BYTE
* INSTRUCTION. ANY OTHERS DON’T
* HAVE TO BE RELOCATED. IF THE
* ADDRESS IS OUTSIDE THE PROGRAM,
* THEN WE CAN LEAVE IT ALONE.
* OTHERWISE, UPDATE IT BY ADDING
* THE RELOCATION BIAS.
*
GETINST LDYIM 0

LDAIY NBL

JSR INSDS2

LDAZ LENGTH

CMPIM 2

BNE NXTINST
*
* IF THE ADDRESS IS WITHIN THE
* PROGRAM, RELOCATE IT.
*

»

»

-== COMPUTE NEW END AND

RELOCATION BIAS.

JSR SWEET16
INR NB

LDD NB

CPR ()]

BNC NXT1
CPR OE

BC NXT1

ADD RELOCATION BIAS.

ADD RB
DCR NB
DCR NB
STD NB

-=-- ANNOUNCE THE CHANGE =--- *
LD NB
DCR AC
DCR
DCR
RTN
LDAZ ACL
STAZ PCL
LDAZ ACH
STAZ PCH
JSR INSTDSP
JSR SWEET16
BR NXT1

10

GO TO SWEETIE

RELOCATION BIAS
IS DIFFEREOCE

COMPUTE SIZE

ADD TO NEW BASE

AND WE HAVE NEW END
6502 MODE!

DUMMY INDEX
GET OPCODE

GET ITS LENGTH
CHECK LENGTH

3 BYTES?

=>NOPE. SKIP IT.

HI, SWEETIE!

BUMP TO ADDRESS

GET BOTH BYTES

>= OLD BASE?
=>LOWER. NO CHANGE.
<= OLD END?
=>HIGHER. NO CHANGE.

ADD BIAS

BACK UP TO
ADDRESS AGAIN
STUFF BACK THERE

BACK UP POINTER
TO OPCODE
FOR THE
DISASSEMBLER
BACK TO 6502 MODE
MOVE POINTER
TO PCH/PCL
FOR THE
DISASSEMBLER
PRINT MODIFIED INSTR.
RE-ENTER SWEET16 TO
CONTINUE...

0354
0355
0357
0359
035B
035p
0360
0361

0362
0363
0364
0366
0367
0368

0364
036B

O3F8
03F8

18
69
85
A9
85
20
A3
33

23
D4

0o

B8
50

0o
60

4C

01
00
00
01
89 F6

04

B9

00 03

* % ¥ F % »

NXTINST

*

* CHECK TO SEE IF WE’RE DONE

CLC
ADCIM
STAZ
LDAIM
STAZ
JSR
ADD
ST

WE°VE GOT A 1 OR 2 BYTE
INSTRUCTION. UPDATE THE
NB POINTER TO THE NEXT
INSTRUCTION.

1

ACL

0

ACH
SWEET16
NB

NB

* WITH THE PROGRAM YET.

*
NXT1

*

* ALL DONE.

*
DONE

*
*

LD
CPR
BC
RTN
CLV
BVC

RTN
RTS

ORG
JMP

END

NB
NE
DONE

GETINST

EXIT TO MONITOR.

X“03F8°
RELOCS

UPDATE LENGTH: 1/2/
GET LENGTH
HI=0

BACK TO SWEETI16
BUMP 1IT
PUT BACK THERE

GET CURRENT ADDRESS

OVER THE END?

=>YUP. ALL DONE!

=>NO. BACK TO THE
6502 MODE FOR
MORE WORK!

6502 MODE, PLEASE!
BACK TO MONITOR!

CONTROL-~Y ENTRY
ROLL STONE, GATHER

3

MOSS...

112

PET

A Memory Test Program for the Commodore PET ity 115
PEEKIiNG at PET'S BASICo ittt it ie it ittt it a st ia i na e 116
=g I oY - = 117
How Goes YOUr ROM T0oday? ... v it ittt ettt it i catantia s aanansaneaeaanan 120
High Resolution Plotting forthe PETo i s 123
“Thanks for the Memories” A PET Machine Language MemoryTest 123
LIFESAVER . ..ttt e ittt ettt e e e 132
The Ultimate PET Renumber oo i i ettt e i et s nannns 135
A PETHex DUmMpP Programot et it ittt a e a e 145
Continuous Motion Graphics, or, How to Fake a Joystick withthe PET 148
The Sieve of Eratostheneso ittt i i ettt i e ettt an s anannns 151
INSIAE PET BASIC ..ottt ittt et ettt e e et et ra e caasanenanss 152

114

A WEMORY TEST PRCGRAM FOR
THE COMMCDORE PET

Michael J. McCann
28 Ravenswood Terrace
Cheektowaga, NY 14225

It would be useful and convenient to be able to
test PET's memory with a testing program rather
than sending the machine back to Commodore for
service. Towards this end I have written a
memory test program in Commodore BASIC for the
PET. The program is well commented, and should
be self documenting. (see listing)

Since the program occupies the lowest 4K of
PET's memory, use of the program will require
that the lowest 4K of memory be operating norm-
ally. The amount of time required to run this
program rapidly increases as the number of bytes
under test is increased (see Figure 1.)

Testing large blocks of memory results in more
rigorous testing at the expense of time. There-
fore, when using this program the user will
have to make a decision regarding rigor vs.
time. As a bare minimum, I would suggest test-
ing 100 bytes at a time.

In closing I would suggest that you get this
program up and running before you have a prob-
lem. It may prove difficult to get a new pro-
gram working when you have a major system prob-
lem.

10 REM MEMORY TEST PROGRAM FOR THE COMMODORE PET
20 REM PROGRAM WILL RUN ON 8K PET

30 REM BY MICHAEL J MCCANN

40 PRINT CHR$(147):EE=0:I=0

50 INPUT "START ADDRESS"; SA

60 IF SA<H097 OR SA>65535 GOTO 50
INPUT "STOP ADDRESS"; SP

80 IF ST>65535 OR SP<SA GOTO 70

90 PRINT CHR$(147):PRINT:PRINT

PRINT TAB(5)"WORKING"
PRINT:PRINT"FAULT IN ADDRESS:";
REM MEMORY ACCESS AND LOGIC CIRCUITRY TEST
REM WRITE ALL 0

FOR A=SA TO SP

POKE A,0

NEXT

REM CHECK FOR CORRECTNESS (=0)
FOR A=SA TO SP

IF PEEK(A)<>0 THEN EE=1:GOSUB 800
NEXT

REM WRITE ALL 255

FOR A=SA TO SP

POKE A, 255

NEXT

REM CHECK FOR CORRECTNESS(=255)
FOR A=SA TO SP

IF PEEK(A)<>255 THEN EE=1:GOSUB 800
NEXT

REM BEAT TESTS

REM WRITE ALL 0

FOR A=SA TO SP

POKE 4,0

NEXT

REM BEAT ONE ADDRESS WITH 255
AD=SA+I

POKE AD,255

POKE AD,255

POKE AD,255

POKE AD,255

POKE AD,255

350
360
370
380

390

400
410
420
430
440
450
460
470
480
490
500
505
510
520
530
540
550
560

570
580
590
600
610
620
630

640
650
660
670
680
690
700
705
710
720
730
T40
750
760
770

780

800
810

115

REM CHECK ALL FOR 0 EXCEPT THE ADDRESS
BEAT WITH 255

FOR A=SA TO SP

IF A=AD GOTO 430

IF PEEK(A)<>0 THEN EE=1:GOSUB 800

NEXT

IF AD=SP+1 THEN POKE AD,0: I=I+1: GOTO 335
I=0

REM WRITE ALL 255

FOR A=SA TO SP

POKE 4,255

NEXT

REM BEAT ONE ADDRESS WITH 0

AD=SA+I1

POKE AD,0

POKE AD,O

POKE AD,0

POKE AD,0

POKE AD,O

REM CHECK ALL FOR 255 EXCEPT THE ADDRESS
BEAT WITH O

FOR A=SA TO SP

IF A=AD GOTO 600

IF PEEK(A)<>255 THEN EE=1:GOSUB 800

NEXT

IF AD<>SP+1 THEN I=I+1:POKE AD,255:GOT0 505
REM ADDRESSING TEST

REM WRITE CONSECUTIVE INTEGERS (0-255) IN
ALL LOCATIONS UNDER TEST

I=0

FOR A=SA TO SP

IF I=256 THEN I=0

POKE A,I

I=I+1

NEXT
REM CHECK FOR CORRECTNESS

I=0

FOR A=SA TO SP

IF I=256 THEN I=0

IF PEEK(A)<>I THEN EE=1:GOSUB 800
I=I+1

NEXT

PRINT

IF EE=0 THEN PRINT" NO MEMORY PROBLEMS DE-
TECTED"

END

PRINT A;

RETURN

3.0 4

2.0 1
W
2
k0
<O
o
|

0 : :
0 100 200 - 300
BYTES TESTED

Figure 1. Graph of Log(Time Required) vs.

Number of Bytes Tested. (Time in Seconds)

PELEKING AT PET'S BASIC

Harvey B. Herman
Chemistry Department, U. of N. Carolina
Greenshoro, NC 27412

Commodore, for reasons best known to them, has
seen fit to prevent users from PEEKing at PET's
ROM located, 8K BASIC. If you try to run a pro-
gram that says, PRINT PEEK (49152), the answer
returned will be zero instead of the actual ins-
truction or data in decimal. Disassemblers
written in BASIC will therefore not work prop-
erly if they use the PEEK command and try to
disassemble 8K BASIC (decimal locations 49152 to
57520). I was curious to see how the PET's 8K
BASIC was implemented and decided to write a ma-
chine language program which circumvents the re-
striction.

A listing of the above program which I have cal-
led MEMPEEK follows. It is decimal 22 bytes
long, relocatable, and can be stored into any
convenient area of memory. I have chosen to use
the area devoted to the second cassette buf-
fer starting at hex 33A. As long as the second
cassette is not used the program should remain
inviolate until the PET is turned off. Storing
the program in memory is trivial if a machine
language monitor is available. Otherwise con-
vert the hex values to decimal and manually poke
the values into memory. As of this writing,
Commodore's free, long-awaited, TIM-like monitor
has not arrived but I continue to hope.

MEMPEEK utilizes the user function (USR) which
jumps to the location stored in memory locations
1 and 2. If MEMPEEK is stored in the second
cassette buffer (hex 33A) initialize locations
1 and ? to decimal 58 and 3 respectively. MEM-
PEEK was written so that the user function re-
turns the decimal value of the instruction given
by its argument (address). For example, if you
want to peek at an address less than decimal
32768 (not part of the BASIC ROMs) use in your
program Y=USR (address), where address 1is the
location of interest and the value of Y is set
to the instruction at that address. Since the
argument of the user function is limited to
+32767, use address -65536 for addresses larger
than 32768. Thus to look at locations in the
BASIC ROMs (all above 32768 and where MEMPEEK is
particularly useful) use Y=USR (address -65536) .
It is not possible to look at location 32768
(the start of the screen memory) with this pro-
gram but this should prove no handicap as PEEK
could be used.

116

MEMPEEK takes advantage of two subroutines in
the PET operating system. The first (located at
hex DOA7) takes the argument (address) in the
floating point accumulator (conveniently placed
there by the user function) and converts it into
a two byte integer stored at hex B3 and B4.
Since I choose to use an indirect indexed instr-
uction to find the desired instruction the order
of the two bytes at hex B3 (MSB) and BU4 (LSB)
need to be reversed. The second subroutine at
hex D278 converts a 2 byte integer representing
the instruction from the accumulator (MSB) and
the Y register (LSB) to floating point form and
stores it in the floating point accumulator.
This value, the instruction, is returned to
BASIC as the result of the user function.

The program, MEMPEEK, is fairly simple but would
be unnessary if the arbitrary restriction on
PEEKing at BASIC was removed. The restriction
makes no sense to me as even a relatively inex-
perienced machine language programmer (myself)
was able to get around it. This type of program
would of course not be difficult for competitors
of Commodore to write. I wrote this program for
the fun of it, to try to understand how BASIC
works and in the hope others will find it use-
ful. Furthermore, I hope I can discourage other
manufacturers like Commodore from trying to keep
hobbyists from a real understanding of their
software by arbitrary restrictions.

MEMPEEK Program

033A 1 *¥=$33A

0334 20A7DO 2 JSR $DOAT ; convert to integer
033D A6B3 3 LDX $B3 ; interchange -

033F A4BY 4 LDY $BA4 ; $B3 and $B4

0341 86B4 5 STX $BlU

0343 84B3 5 STY $B3

0345 A200 7 LDX #0 ; initialize index
0347 A1B3 8 LDA ($B3,X); find instruction
0349 A8 9 TAY

0344 AQ00 10 LDA #0

034C 2078D2 11 JSR $D278 ; convert to floating
034F 60 12 RTS ; return to BASIC
0350 13 END

PET UPDATE

Gary A. Creighton
625 Orange Street, No. 43
New Haven, CT 06510

I am writing this article because I'm tired of
seeing the same rehash of pseudo-facts being re-
peated about the PET. If I read one more time
about the small keyboard or the RND function not
working correctly...! As you will see, the 2001
has an extremely well designed Interpreter which
can be used effectively as subroutines either
from the SYS command, or the USR command. Par-
ameter passing will be revealed as an easy oper-
ation, and returning USR with a value is just as
simple. The RND function may be substituted
with a twelve byte USR program to make it com-
pletely random and non-repeating (as it stands,
it repeats every 24084 times through) and I will
show the use of negative arguments. Unfortun-
ately, RND(0) was apparently a mis-calculation
on Mierosoft's part. They figured that ROM
empty locations would turn out to be more random
than the end product shows. They load non-exis-
tent memory 1locations into the RND store area
(218-222) thus causing a resulting RND value
which fluctuates between a few different values.
When ROM is finally installed in that area
(36932) the RND(0) will have the dubious quality
. of being some fixed number.

RND FUNCTION USE

The RND function may be set at any time to exec-
ute a known series of RND #'s by using a known
negative argument just before RND with a posi-
tive one. The ability to have available a known
list of random numbers is very important in a
lot of sciences.

10 R=RND(-1)

20 FOR X=1 TO 5

30 PRINT INT(1000%RND(1)+1),
40 NEXT X

Gives the sequence: 736, 355, Tu48, 166,629

Since RND(-low#) gives such a small value, use
a negative argument in the range (-1 E10 to -1
E30) if you need one repeatable RND number with
a useful value, e.g., RND(-1 E20)= .811675238.

Concerning the true random nature of RND and
it's ability to act randomly at all times; time
must be combined with RND. This 1is possible
with a RANDOMIZE subroutine or faster still, re-
doing RND(+) with a USR routine.

10000 REM (RANDOMIZE)

10010 R1=PEEK(514) : R2=PEEK(517)
10020 POKE 220, R1 : POKE 221, R2
10030 RETURN

This
tion
will
ever

routine may be used at program initializa-
and as the program halts for an INPUT. It
start a new sequence of RND numbers when-
called.

When the computer does a sequence without inter-
vention, the following USR program is suggested
which will return a truly random number quickly;
without repeating.

10 REM (TRUE RND USING USR FUNCTION)
20 POKE 134,214 : POKE 135,31 : CLR
30 FOR X=8150 TO 8165

40 READ BYTE : POKE X, BYTE

17

50 NEXT X

60 DATA 173,2,2,133,220,173,5,2,133,221,76
65 DATA 69,223,0,0,0

70 POKE 1, 214 : POKE 2, 31

MACHINE LANGUAGE STORING IN BASIC

When using machine language, always precede
storing by setting up BASIC's upper boundary.
This is done by:

POKE 134, ITEM : POKE 135, PAGE : CLR
e.g. POKE 134, 0 : POKE 135, 25 : CLR
sets upper boundary to 6400 and BASIC use will
be confined to 1024 to 6399 unless reset or
turned off.

You can use the following program for storing
decimal. Changing INDEX to 10000 to appropriate
position and typing in DATA lines in 100 to
9997.

0 REM ("MACHINE STORE")

1 REM WRITTEN BY GARY A. CREIGHTON, JULY 78
2 REM (SET INDEX=ORIGIN IN LINE 10000)

3:
15
20
25
30
35
Lo
45
50
55
60
65
70
75
80
85 :
90 REM MACHINE LANGUAGE DATA
100 DATA

REM FIX UPPER STRING BOUNDARY
GOSUB 10000

X=INDEX / 256

PAGE=INT(X)

ITEM=(X-PAGE)* 256

POKE 134, ITEM

POKE 135, PAGE

CLR

REM LOAD MACHINE LANGUAGE
GOSUB 10000 : LOC=INDEX

READ BYTE : IF BYTE<QO THEN END
POKE LOC, BYTE

LOC=LOC+1 : GOTO 70

9997 DATA
9998 DATA 0,0,0,-1

9999 :
10000 INDEX=(START OF MACHINE LANGUAGE)
10010 RETURN

USR PARAMETER PASSING

The following are parameter passing rules for
the USR function and should be added to the
"MACHINE STORE" program.

0 REM ("USR(0 TO 255)")

46 POKE 1, ITEM

48 POKE 2, PAGE

100 REM (USR INPUT 0-255; OUTPUT 0-255)
110 DATA 32,121,214 : REM JSR 54905

120 DATA (Your program using input value)

5000 DATA (Setup output value in Accum.)
5010 DATA 76,245,214 : REM JMP 55029
10000 INDEX 6400

o

OR

0 REM ("USR(0 TO 65535)")
46 POKE 1, ITEM
48 POKE 2, PAGE
100 REM (USR INPUT 0-65535;0UTPUT 0-65535)
110 DATA 32,208,214 : REM JSR 54992
(Note: Check if 0-65535. RTS with:
Y and M(8)= ITEM
A and M(9)= PAGE
120 DATA (Your program using 2 byte passed
value)

DATA

The input parameter may be any complex express-
ion and you can of course:

input 0-255 and output 0-65535, or
input 0-65535 and output 0-255.

SAVE MACHINE LANGUAGE AND LOAD DIRECTLY

The reason for the 0,0,0 at the end of the pre-
ceding machine language programs is that the
saving routine described next SAVES machine
language until 0,0,0 or an ERROR is printed.

5000 (gjggpiguzgut vliaue ITEM in ¥; After it has been saved in this way, it may be
5010 DATA 132,178 . REM STYZ 178 LOADED and VERIFIED with little effort.
2828 DA Egzm" LR T Add to "MACHINE STORE" program (all assembly is
5040 DATA 56 : REM SEC in decimal).
5050 DATA 76,27,219 : REM JMP 56091
(Setup output value and RTS)

0 REM ("SAVEM")

100 REM ERAM=31 (or last page of RAM on your PET)

110 DATA 32,200,0 : REM JSR 200 check if : or end of line

120 DATA 208,3 : REM BNE QVER

130 DATA 76,158,246 : REM JMP 63134 jump 'SAVE' if SYS 8000 only
OVER 140 DATA 32,17,206 : REM JSR 52753 check if !',!

150 DATA 32,164,204 : REM JSR 52388 analyze arithmetical argument

160 DATA 32,208,214 : REM JSR 54992 check if 0-65535

170 DATA 132,247 : REM SYTZ 247 'save from' item

180 DATA 133,248 : REM STAZ 248 'save from' page

190 DATA 170 : REM TAX

200 DATA 152 : REM TYA

210 DATA 208,1 : REM BNE OVR2

220 DATA 202 : REM DEX
QVR2 230 DATA 136 : REM DEY back up 1

240 DATA 132,80 : REM STYZ 80 initialize CHK pointer item

250 DATA 134,81 : REM STXZ 81 initialize CHK pointer page

260 DATA 169,173 : REM LDAIM 173

270 DATA 133,79 : REM STAZ 79 LDA instruction in 0079

280 DATA 169,96 : REM LDAIM 96

290 DATA 133,82 : REM STAZ 82 RTS instruction in 82

300 DATA 32,200,0 : REM JSR 200

310 DATA 201,44 : REM CMPIM uj check if ',' before filename

320 DATA 208,3 : REM BNE QVR3

330 DATA 32,194,0 : REM JSR 194 move code pointer over ',!
OVR3 340 DATA 32,51,244 : REM JSR 62515 get options for "SAVE!'
AGAIN 350 DATA 230,80 + REM INCZ 80

360 DATA 208,2 : REM BNE OVRY

370 DATA 230,81 : REM INCZ 81 add 1 to CHK pointer
OVRY 380 DATA 32,79,0 : REM JSR 79 look at next CHK code

390 DATA 208,27 : REM BNE CHEND

400 DATA 160,1 : REM LDYIM 1 check for 0,0,0

410 DATA 177,80 : REM LDAIY 80

420 DATA 208,21 : REM BNE CHEND

430 DATA 200 : REM INY

440 DATA 177,80 : REM LDAIY 80

450 DATA 208,16 : REM BNE CHEND

460 DATA 24 : REM CLC

470 DATA 165,80 : REM LDAZ 80

480 DATA 105,4 : REM ADCIM 4

490 DATA 13

460 DATA 24 : REM CLC

470 DATA 165,80 : REM LDAZ 80

480 DATA 105,4 : REM ADCIM X4

490 DATA 133,299 : REM STAZ 229 'save to' item

500 DATA 165,81 : REM LDAZ 81

510 DATA 105,0 : REM ADCIM O

520 DATA 133,230 : REM STAZ 230 'save to' page

530 DATA 76,177,246 : REM JMP 63153 complete 'SAVE'

118

CHEND 540 DATA 165,81 : REM LDAZ 81

550 DATA 201,31 : REM CMPIM ERAM

560 DATA 240,10 : REM BEQ CHKNF check: 'not found' if last

570 DATA 144,210 : REM BCC AGAIN 1look at next if less than

580 DATA 32,184,31 : REM JSR END

590 DATA 162,85 : REM LDXIM 85

600 DATA 76,108,195 : REM JMP 70028 ("2END) NOT FOUND ERROR"
CHKNF 610 DATA 165,80 : REM LDAZ 80

620 DATA 201,253 : REM CMPIM 253

630 DATA 144,196 + REM BCC AGAIN again if enough room

640 DATA 32,184,31 : REM JRS END

650 DATA 160,40 : REM LDYIM U0

660 DATA 76,133,245 : REM JMP 62853 ("?END) NOT FOUND ERROR"
END 670 DATA 169,13 : REM LDAIM 13

680 DATA 32,234,227 : REM JSR 58346

690 DATA 169,63 : REM LDAIM 63

700 DATA 32,234,227 : REM JSR 58346

710 DATA 169,69 : REM LDAIM 69

720 DATA 32,234,227 : REM JSR 58346

730 DATA 169,78 : REM LDAIM 78

T40 DATA 32,234,227 : REM JSR 58346

750 DATA 169,68 : REM LDAIM 68

760 DATA 32,234,227 : REM JSR 58346 "?END"

770 DATA 96 : REM RTS

780 REM (FORMAT: SYS 8000,INDEX,"FILENAME",DEVICE#,I/0 OPTION)

After typing and saving normally, type RUN when Loading machine language before BASIC program:
READY. Save "SAVEM" using itself to save itself

by typing: LOAD "machine language name"
NEW
SYS 8000,8000, "SAVE(SYS 8000)" A=PEEK(247) :B=PEEK(248)
POKE 134,A :POKE 135,B
when READY., REWIND TAPE #1 and type: POKE 1,A :POKE 2,B (only if USR, not SYS)

CLR
VERIFY "SAVE(SYS 8000)"

Then LOAD BASIC Program.

Loading machine language from BASIC program:
MACHINE LANGUAGE LOAD PROCEDURE

After SAVEing machine language, you have the
capability of LOADing directly if you follow
these rules.

0 IF OK THEN RUN 6

1 OK=-1 : PRINT "PRESS REWIND ON TAPE #1"

2 WAIT 519,4,4 : REM wait til stop if play down but not motor
3 WAIT 59411,8,8 : REM wait til key on cassette pushed
4 WAIT 59411,8 : REM wait til stop on cassette pushed
5 LOAD "machine language name"

6 A=PEEK(247) : B=PEEK(248)

7 POKE 134,A : POKE 135,B

8 POKE 1,A : POKE 2,B : REM (only if USR, not SYS)
9 CLR

10 REM (BEGIN BASIC PROGRAM, MACHINE LANGUAGE LOADED)

119

HOW GOES YOUR ROM TODAY?

Harvey B. Herman
Chemistry Department
University of North Carolina-Greensboro
Greensboro, North Carolina 27412

Everytime | turn on my KIM-system or PET Personal Computer |
keep my fingers crossed that everything works. So far | have been
“lucky” and the few failures were patently obvious. However, 1
have been concerned about the possibility of subtle errors
appearing which, while not obvious, will still cause programs to
print garbage out without my having inputted garbage. To ease my
troubled mind, | wrote an assembly language program which
computes a checksum byte from the data in a specified area of
memory. The 6502 programs, which | named CHECK, can be used
to check data in both ROMs and RAMs for erroneous bits.

The program for a KIM system is shown in Figure 1. It can be
entered into memory with the KIM monitor program or an
assembler. With a few minor changes, which | believe are obvious
by looking at the code, it can be placed practically anywhere in
memory. The program requires four zero page locations to be
initialized to the starting and ending locations of the specified
area. | used locations hex E1, E2 and E3, E4 respectively (low byte
first) as these were the first free page zero locations in Microsoft
8K BASIC. The reader may wish to change these locations if it
interfers with other programs that are frequently used. The KIM
CHECK program ends with a BRK (break) instruction and will not
operate properly unless two locations, hex 17FE, 17FF, are
initialized to 00, 1C, respectively. The BRK instruction, when
executed will then jump to the start of the KIM monitor and
among other things, print the value saved in location hex 31D - the
calculated checksum. Initialization and executation of this
program can be done with the KIM monitor. The checksum bytes
which I calculated for two different KIM system ROMs are shown
in Table 1.

Several changes are necessary that aliow a similar program to work
on Commodore’s PET computer. The modified program is shown in
figure 2 and is a listing from a cross assembly done on the KIM
system. The values could be placed in memory with a monitor
program, if available, or as ! did, poked into memory from a BASIC
program. The latter approach requires a conversion from hex to
decimal before using the POKE command. Again, as before, four
locations in page zero need to be initialized. Part of the area
reserved for the second cassette buffer was used for the program
(hex 33A-371) and four locations (hex 53-56) in the keyboard buffer
were used for the page zero locations representing the starting and
ending locations of the area to be checked. The PET CHECK
program is designed to be run from BASIC. A call to the USR (user)
function, 2USR(0), jumps to the checksum program and returns the
checksum value. The program has two entry points. It can be used
to calculate checksums (see Table 1) for the BASIC interpreter
and/or the operating system (both are in ROM) or BASIC programs
which have just been loaded or saved. The latter use somewhat
obviates the need to use the VERIFY tape command after a load.
This can save considerable time particularly if long programs are
loaded. Alternate entry points are specified by POKEing locations
1and 2 to decimal 58 and 3 for program checks and to decimal 82

and 3 for ROM checks, respectively. The starting and ending
locations in page zero are automatically set by the program for
program checks but must be specified for ROM checks.

Further details on the use of each program is shown in Table 2. The
checksums calculated are the exclusive OR of all the bytes
between the starting and ending addresses, inclusively. Changing
as little as one bit in the sequence will give a different value for the
checksum. There is a finite probability that when extensive errors
are encountered the checksum calculated would fortuitously be
the same, since only 256 different 8 bit checksums are possible.
However, in that case the errors would probably not be subtle and
you would not be fooled. Whenever the checksums for the ROMs
change it would be prudent also to run a diagnostic test on the
6502 MPU before blaming the ROM. Since programs like that are
sadly lacking | will leave it as an exercise for the reader. A program
and article to that effect would be greatly appreciated by the
author for one, and | believe most of 6502 personal computing
fraternity.

KIM ROMs (Serial numbers 1988 and 6931)

Locations (Hex) Checksum (Hex)

1800-1BFF F5
1C00-1FFF F8
1800-1FFF 0D

KIM CHECK Program. Example for 1800-1FFF.
After placing program from Figure 1 into
memory

KIM

17FE 0.

17FF 1C. 0300 AD G

E1 0. KIM

E2 18. 031D (CHECKSUM)
E3 FF.

EY4 1F.

PET ROMs (Serial numbers 10252 & 20549)

Locations (Hex) Loc.(Dec., Inv.) Check

PET CHECK Program. After poking program
from Figure 2 into memory

Program Checks ROM Checks
CO00-CFFF 0,192-255,207 189 POKE 1,58 (Example for C000-
DOQO-DFFF 0,208-255,223 87 POKE 2,3 CFFF)
E000-ETTT 0,224-119,231 26 LOAD "program name" POKE 1,82
FOOO-FFFF 0,240-255,255 92 or POKE 2,3
SAVE "program name" POKE 83,0
?2USR (0) POKE 84,192
(checksum returned POKE 85,255
depends on program)POKE 86,207
?USR (0)
189 (Checksum
returned)
033A 13 KIM CHECKSUM PROGRAM
033A 23 HARVEY B. HERMAN
033A O) INITIALIZE S17FE/FF
033A 4 3 10 0/1C SO BRK WORKSe.
OO0E! S *x=SE1
00E1 0000 6 START +WORD O
OOE3 0000 7 END «WBRD O
0300 8 *x=$300
0300 9 3 ENTER KHERE FOR
0300 10 » CALCULATI®ON OF
0300 11 3 CHECKSUM BETWEEN
0300 12 3 START AND END.
0300 13 3 ANS DISPLAYED LOC 315
0300 A0Q000 14 LDY #0
0302 BI1E1} 15 LDA (START)»Y
0304 E6E] 16 LOOP INC STAKRT
0306 D002 17 3NE CHECK
0308 E6E2 18 INC START+!}
0O30A 51E1l 19 CHECK EOGR (STARTY»Y
030C A6EA4 20 LDX END+1}
O30E E4E2 21 CPX START+!
0310 DOF2 22 BNE LQOP
0312 AGE3 23 LDX END
0314 E4E] 24 CFX START
0316 DOEC 25 BNE LOOP
0318 8DIDO3 26 STA %*+5
031B 00 27 BRK
031C 28 «END
Figure 1

KIM Checksum Program.

121

033A
033A
0053
0055
033A
033A
033A
033A
033A
033C
O33E
0340
0342
0344
0346
0348
0349
034C
034E
0350
0352
0352
0352
0352
0352
0354
0356
0358
035A
035C
O35E
0360
0362
0364
0366
0368
036A
036B
036D
0370
0371
0372

A900
8553
A904
8554
ASES
8556
ASES
38
ED7103
BOO2
C656
8555

A000
B153
E653
Doo2
E654
5153
A&56
E454
DOF2
A655
E4S53
DOEC
A8
A900
2078D2
60
02

VAN UVDL WN -

27

30
31
32
33
34
35
36
37
38
39
40
41
42

-

'uuuu‘
X
[~}
7]

LeepP

CHECK

Twe

Figure 2

PET CHECKSUM PRGGRAM
HARVEY B« HERMAN
START=$53

END=$55

*=$33A

ENTER HERE T@ CHECK
BASIC PROGRAMS AFTER
LOAD OR SAVE.

LDA #0

STA START

LDA #4

STA START+1

LDA SE6

STA END+1

LDA SES

SEC

SBC TWo

BCS SKIP

DEC END+1

STA END

ENTER HERE Te@ CHECK
ANY LOCATIBNS IN
MEMBRY. INITIALIZE
$53-856 FIRST.

LDY #0

LDA (START),Y

INC START

BNE CHECK

INC START+1

EOR (STARTI»Y

LDX END+1

CPX START+!

BNE LOOP

LDX END

CPX START

BNE L OOP

TAY

LDA #0

JSR $D278

RTS

«BYTE 2

+END

PET Checksum Program

122

HIGH-RESOLUTION PLOTTING FOR THE PET

The PET Machine Language Monitor gives PET users a greatly ex-
panded ability to devleop and use assembly language programs.
While early buyers of PET have had to wait a while for the Monitor,
the ability to save and load machine language programs directly to
and from cassette is well worth the wait. Access to machine
language has always been available through the POKE command,
but translating op codes and addresses from hex to decimal and
back is tedious. Also, the need to load a program via another BASIC
program or via the keyboard is wasteful and time-consuming. PET’s
Monitor allows an assembly language program to be saved and
loaded as easily as the BASIC program. Better yet, an assembly
language program can be written to reside in an unused section of
memory such as the second cassette buffer. A BASIC program can
then be loaded in the usual manner and can use the machine
language program as a subroutine.

One way that the use of a resident machine language routine can be
a big help is in implementing high-resolution plotting on the PET.
High-resoltuion plotting, in effect, expands PET’s 40 X 25 character
display to 80 X 50. To do so, each character is divided into quarter
characters. The four basic quarter characters are displayed by
pressing “SHIFT” and “,” or *;”” or ‘&’ or “»"". There are a total of
sixteen possible combinations of these four quarter characters
which can be used to produce a high-resolution plot. The process of
producing such a plot in BASIC, however, is complex and slow. A
machine language subroutine, on the other hand, can make the
plotting process quite simple. For example, the Lissajous figure in
% Figure 1 was plotted with this program:

10 POKE 1,58:POKE 2,3:PRINT (clr)"
20 DELTA=2*7/900

30 P:3:Q=4

40 FOR I=0 TO 900

50 THETA=DELTA*I

60 X=INT(35.5+38*COS(P*THETA))

70 Y=INT(25.5+24*SIN(Q*THETA))

80 PCKE 81,X:POKE 82,Y:A=USR(0)

90 NEXT I

100 GET A$:IF A$="" THEN 100

The machine language routine is called in line 80 with the USR
command after first POKEing the X and Y coordinates to be plotted
in memory locations 81 and 82, respectively. The values of P and Q
in line 30 determine the shape of the figure. The machine language
plotting routine used by the program is listed below. The procedures
for using it are:

LOADING - The program is initially loadéd into the second cassette
buffer beginning in location $033A using the Monitor. The program
is saved on cassette with the command: .S,01,HI-RES,033A,03CA.
The value $03CA is the endng address plus one. Once saved, the
program can be reloaded into the cassette buffer with the normal
command: LOAD’'HI-RES”.

BASIC INTERFACE - With HI-RES loaded, the BASIC driver program
can be loaded from cassette using normal procedures or the “NEW”
command can be given and a new BASIC program entered from the
keyboard. Before HI-RES can be called, the starting address, $033A,
must be entered in memory locations 0001 and 0002. This was done
in line 10 of the program above. HI-RES can now be called by the
USR command. Before each call, the X and Y coordinates must be
POKED into decimal addresses 81 and 82, respectively. Valid coor-
dinate values run from 0 to 79 in the X direction and from 0 to 49 in
the Y direction. Position 0, 0 is in the upper left-hand corner of the
screen.

John R. Sherburne
206 Goddard
White Sands Missile Range, NM 88002

123

OTHER - If zero is used as the argument of the USR command, the
plotting routine will overwrite any character already on the screen.
If a value other than zero is used any non-plot character already on
the screen will be left there. Thus axes and text can be preprinted on
the screen and a graph later plotted without distrubing the preprin-
ted data.

RECREATIONAL GRAPHICS FOR PET

There are probably a lot of practical uses for the PET high-resolution
graphics program described above but | haven’t had time to find
them yet. Instead, | have spent countléss hours in front of the
display watching PET draw intriguing designs for which there is
relatively little practical purpose. My addiction started simply
enough. To test the HI-RES plotting routine, | wrote a program to
draw an elipse using the formula: X=P*COS(®); Y=Q*SIN(®).
Pleased with the result, | added a FOR loop to vary the values of P
and Q and produced the family of elipses shown in Figure 1. | didn’t
realize it but | had embarked on a project which would take every
free moment for the next two weeks.

The next step was to modify the formula so that a flower rather than
an elipse was produced. The new formula was:

X=R*C0S(8); Y=R*SIN(8) where R=SIN(N*8)
If N is odd, a flower with N leaves is
produced; if N is even, the flower will
have 2N leaves. Figure 2A is an eight
leaved flower using the formula
R=SIN(4*8). Figure 2B uses an alter-
nate forumul: R=COS(4*B). As with the
ellipse, the next step was to produce a
family of flowers (Figure 2C) by adding
a FOR loop to vary the size of the
flower and to alternste between the two
formulas.

By now | was completely hooked. | dug into a dusty book of
mathematical formulas and found two rather obscure figures, the
epicycloid and hypocycloid. Best known from the toy “’Spirograph”,
the epicycloid is formed by tracing the path of a point on the cir-
cumference of a circle as it is rolled around the outside of a second
circle. The hypocycloid is formed when one circle is rolled around
the inside of the other. The formulas are:

Epicycloid:
X=(P+Q)*COS(AN)+Q*COS(P+Q)*AN/Q)
Y=(P+Q)*SIN(AN)+Q*SIN(P+Q)*AN/Q)

Hypocycloid:
X=(P-0)*CCS(AN)+Q*COS(P-Q)*AN/Q)
Y=(P-Q)*SIN(AN)-Q*SIN(P-Q)*AN/Q)

*Note: Figure 1 on cover

In both formulas P represents the radius of the stationary circle and
Q the radius of the rolling circle. A typical epicycloid is shown in
Figure 3. To plot these more complex figures a minor technical
problem had to be solved. Many of the larger “cycloids” require
more than one revolution of the rolling circle around the stationary
circle. To avoid either stopping too soon or running too long, | had
to add a routine to compute the number of revolutions required for
the full figure. Since the rolling circle makes P/Q Revolutions in one
circuit of the stationary circle, a complete figure is made when the
rolling circle turns the number of times equal to the first integer
multiple of P/Q. That multiple, N, times 2 #is the number of points.
or cusps in the cycloid. For convenience | print the number of cusps
in the corner of the display. An eight cusp hypocycloid is shown in
Figure 4. With both types of cycloid P and Q can be varied to
produce a variety of figures. To avoid creating a figure too large to
display, P must be %24 for a hypocycloid and P+2*Q %24 for an
epicycloid.

HI-RESCLUTICN

BY JOHN R. SH
FEBRUARY 1979

033A CRG
033A A9 00 START LDAIM
C33C 85 53 STA
C33E &5 56 STA
C34C 38 SEC
0341 A5 51 LDA
0343 E9 4F SBCIM
0345 30 03 BMI
0347 E6 54 INC
0349 €0 RTS
C34A 38 CHECK SEC
034B A5 52 LCA
034D E9 31 SBCIM
C34F 30 03 BMI
0351 E6 55 INC
0353 60 RTS
0354 46 51 HALF LSR
035¢ 90 02 BCC
0358 E€ 56 INC
035A 46 52 NOCAR LSR
C35C S0 04 BCC
0358 E6 56 INC
0360 E6 56 INC
0362 A9 01 NOCRY LDAIM
0364 A4 56 LOOP LDY
C36€ FO 06 BEQ
0368 CA ASLA
0369 C6 56 DEC
036B 4C €4 03 IMP

As a final fillip, a third parameter can be added to the cycloid
programs. Rather than trace a point on the circumference of the
rolling circle, a point at a distance R from the center of the circle is
traced. The value of R can be larger or smaller than Q. If R is larger
than Q the formulas for determining the largest figure which the
display can accomodate are: epicycloid, P+Q+R = 24;
hypocycloid, P+R ~ Q&£24.

ERBURNE

$033A

$co INITIALIZE
$0053
$005¢6

foos1
$4F CHECK FOR VALID X
CHECK
$0054

CHECK FCR VALID Y
$0052

$31

HALF

$0055

$0051

NOCAR

$0056

$0052

NOCRY

$0056

¢0056 DIVIDE X AND Y BY 2

$01 DETERMINE QUADRANT COF NEW PCINT
$0056 AND PLACE QUADRANT NUMBER IN $0056
MATCH

{0056
LOCP

124

036t
03760
0372
G374
0376
0378
037A
037¢
037E
03ec
0382
0384
0386
0388
038A
038ec
038t
0390
0392
6394
0395
0397
0399
0398
039D
039F
03A1
03A2
03A5
03A7
03A¢S
03A8B
03AD
C3AF

0380
03B1
03B3
03B4
G3B7
0389

C3BA
03BB
038C
038D
C3BE
03BF
03CC
03C1
03C2
03C3
03C4
03C5
03Cé
03C7
03Ce
03C9

85
06
06
06
A5
06
26
0€
26
65
85
A5
€9
85
A5
65
85
90
Eé
18
AS
65
85
AC
A2
Al
g8
b9
Fe
co

A€
FO
60

98
05
A8
BS
81
€0

20
7E
7C
E2
78
61
FF
EC
éC
F
El
FB
62
FC
FE
AD

5€
52
52
52
52
52
53
52
53
52
52
53
00
53
52
51
52
02
53

et
53
53
10
0c
52

BA
09
Go
Fé
Bl
€l

5€

BA
52

03

03

MATCH

NOCHG

CHARAC

FOUND

TABLE

STA
ASL
ASL
ASL
LDA
ASL
ROL
ASL
ROL
ADC
STA
LDA
ADCIM
STA
LDA
ADC
STA
BCC
INC
CLC
LDAIM
ADC
STA
LDYIM
LDXIM
LDAIX
DEY
CMPY
BEQ
CPYIM
BNE
LDX
BEQ
RTS

TYA
ORA
TAY
LDAY
STAIX

L LU LT T T A I N 1 A O 1 B I I 1

$005¢
$0052
$0052
$0052
$0052
$0052
$0053
$0052
$0053
{0052
$0052
$0053
{00

$0053
$0052
$0051
$0052
NOCHG
$0053

480
$0053
40053
$10
$oo
40052

TABLE
FOUND
$0c
CHARAC
$00B1
FOUND

$0056

TABLE
{co52

{20
$7E
$7C
€2
$7B
$61
¢FF
$EC
$6C
$7F
$E1
¢FB
$62
$FC
$FE
$AQ

125

MULTIPLY Y BY DECIMAL 40.
(ND. CHARACTERS PER LINE)

ADC X TO Y * 40.

LOOK UP CHARACTER IN SCREEN
POSITICN X+Y*40 IN TABLE

IF NOT IN TABLE, CHECK $B1 FCR

USR ARCGUMENT

COMPUTE NEW CHARACTER

STORE NEW CHARACTER ON SCREEN

TABLE CONTAINS ALL SIXTEEN POSSIBLE
PLCT CHARACTERS

10
20
30
40
50
60
70
80
90
100
110
120

POKE 1,58:POKE 2,3 FIGURE 1
PRINT "(clr)"

FOR R=4 TO 16 STEP 4

P=38-R

Q=8+R

F=2% 7 /300

FOR I=0 TO 300

AN=F#*I

X=INT(39.5+P¥COS(AN))
Y=INT(24.5+Q*SIN(AN))

POKE 81,X:POKE 82,49-Y:A=USR(0)
NEXT I

NEXT R

GET G$:IF G$="" GOTO 130

FIGURE 2B

(Changes to 2A only)
55 R=P*COS(N¥*AN)

126

FIGURE 2A

1 POKE 1,58:POKE 2,3

10 PRINT "(clr)"

20 P=24:N=U4

30 F=2%7/600

40 FOR I=0 TO 600

50 AN=I¥*F

55 R=P*SIN(N¥®AN)

60 X=INT(R*COS(AN)+39.5)

70 Y=INT(R*SIN(AN)+24.5)

80 POKE 81,X:POKE 82,49-Y:A=USR(0)
90 NEXT I

100 GET G$:IF G$="" GOTO 100

1

10
20
30
4o
50
60
70
80
90

POKE 1,58:POKE 2,3 FIGURE 3

PRINT "(clr)"
P=9;Q=15/2

F=2% 977/250

FOR I=0 TO 1250

AN=I%F

X=(P+Q)*COS(AN)+Q*COS((P+Q)*AN/Q)
Y=(P+Q) *SIN(AN)+Q¥*SIN((P+Q)*AN/Q)
X=INT(X+39.5) :Y=INT(Y+24.5)

POKE 81,X:POKE 82,Y:A=USR(Q)

100 NEXT I
110 GET G$: IF G$="" GOTO 110

FIGURE 2C

(Changes to 2B only)

20 N=4

31 K1=1

32 FOR K2=0 TO 20 STEP 4

33 P=24-K2

34 K1=K1%¥-1

55 R=P*SIN(N*AN)

56 IF K1<0 THEN R=P*COS(N*AN)

127

90

POKE 1,58:POKE 2,3
PRINT "(clr)"
P=24:Q=9

DT=300

F=2% 7/DT

FOR I=1 TO 25
DL=P*I/Q-INT(P*1/Q)
IF DL<.00001 GOTO 36
NEXT I

PT=I%*P/Q

PRINT "(home)";INT(PT+.5)

FOR J=0 TO I*DT

AN=J*F
X=(P-Q)¥COS(AN)+Q*COS((P-Q)*AN/Q)
Y=(P-Q) *SIN(AN-Q*SIN((P-Q)*AN/Q)
X=INT(X+39.5) :Y=INT(Y+24.5)

POKE 81,X:POKE 82,Y:A=USR(0)

FIGURE 4

100 NEXT J
110 GET G$:IF G$="" GOTO 110

“THANKS FOR THE MEMORIES”
A PET MACHINE LANGUAGE MEMORY TEST

Harvey B. Herman
Chemistry Department
University of North Carolina at Greensboro
Greensboro, North Carolina 27412

Most people have surely heard the old Bob Hope theme song,
“Thanks for the Memories.” Whenever | hear it, | remind myself
how much the explosion in personal computing is due to
inexpensive memory chips. Several years ago 1 paid about $64.00
for a 4x16 (64 bits) static RAM by Intel. Today a 1x1024 static
memory costs less than $2.00 - quite a hefty reduction in the per
bit price.

That's the good news. The bad news is that all electronic parts
occassionally fail and failures need to be diagnosed and repaired.
The cheaper memory becomes the more we add and the harder
and more time consuming it becomes to identify failed
components. Diagnostic programs are one answer to this problem.
Recently MICRO (7:25, Oct-Nov, 1978} published a PET memory
test program written in BASIC. Execution time to test even about
200 bytes was quite long - about 1000 seconds. Clearly, a much
faster test is necessary for even the smallest PET computers. If
external memory is added the need for a much faster test becomes
even more urgent.

An obvious way to increase the speed of a program is to write it in
machine language. BASIC, a higher level of language, is
notoriously slow especially when it must interpret each statement
on every encounter. Writing faster machine language programs is
facilitated with the help of a monitor program. PET owners have
finally been given a free monitor program as part of their original
purchase. This program has some nice features but the
documentation is minimal. (How many times have we heard that
song.) Important locations and subroutines are either not
described at all or described sketchally so the program’s usefulness
to the average user is impaired.

However, not to worry. | have been experimenting with the
monitor program by a combination of disassembly and trial and
error have identified some of the missing links. You might guess
from the title of this article that the purpose is to describe a fast
machine language memory test. That is correct, but the other
unspoken and possibly more important purpose is to teach the
reader how better to use Commodore’s machine language monitor
program.

Table 1 summarizes important locations in Commodore’s monitor.
It is an expanded version of the table in their manual. For readers
with access to the PET Gazette’s LOMON program | have also
included locations in that monitor which, incidentally, includes a
disassembly in the latest version.

A large variety of machine language programs, including memory
test programs, have appeared for other 6502 based systems. Jim
Butterfield in “The First Book of KIM” (pp. 122-123) described a
very fast machine language memory test program using a newly
developed algorithm. | picked this particular KIM program for my
first try at a PET translation program. Other programs developed
for KIM (except when specifically hardware dependent) can be
similarly translated. Our PETs will be more powerful than ever
before as we can take already developed machine language
software (the hard part), translate the programs for the PET and

128

poke them into memory with the monitor (the easy part).

An inspection of the original KIM memory test program reveals
some obvious PET incompatabilities. The KIM program originates
at location zero and uses several KIM-specific locations (e.g., 1C4F
as an exit to the KIM monitor). As a first pass we must relocate the
program, change external jumps and substitute other page 0
locations. Table 2 shows the changes 1 made and gives some of my
reasoning. Some decisions are self evident. For example, the -
second cassette buffer (starting at 033A) is a common place to
store small PET programs as long as a second cassette is not being
used. Other changes take advantage of specific features of the PET
monitor. For example, the program counter (actually locations 22
and 23 as LOW and Hl) is printed out after an exit to the monitor at
location 0447. While the KIM monitor works similarly, the exit
point and page zero locations printed are different and must be
converted.

The translated program is executed using the CO command with a
specified address (G 033A). After running the program several
times, | became convinced it could be improved. Modifying a well
documented program (as was the original) is, of course, much
easier than writing one in the first place. The following changes
were made:

1. Repeat the program continually until a key is pressed.
Execution is very fast and one pass is not an adquate test.

2. Output an asterisk after each pass. It is nice to know the
program is doing something.

3. Take the processor out of decimal mode, or hex arithmetic
will not be done properly.

4. Input the beginning and ending page locations as a conven-
ience in the GO step.

The last two modifications were easy to do before beginning
execution. However, | occassionally forgot and felt it was better to
insure it was done properly rather than to take a chance that the
monitor had to be reloaded or BASIC restarted.

This version of the memory test program is also run with the GO
command, with a specified address. The beginning and ending
page location, separated by commas, are typed after the address
(G 033A OA,1F). The program cycles until a faulty memory
location is found which is printed as if it was the program counter
or until any key is pressed. As advertised it is very fast a few second
per pass for an 8 K PET (testing pages OA to 1F). A continuing
outpouring of asterisks is very comforting.

My colleagues and | have found bad (or slow) memory chips with
the original or modified test program on both KIM and PET
computers. Happily, this does not happen very often; my hope is it
won’t happen to you. But if it does you will be prepared if you get
this program running ahead of time. Good luck!

033A
0338
033t
0340
0342
0345
0348
034A
034D
034F
0351
0354
0357

0359
0358
035C
C35E
0360
0362
0364
0366
0368
G3€A
03¢6C
036E
0370
0372
0373
0375
0377
G379
G378
037D
037F

D8
20
Cc9
FO
4C
20
85
20
c9
FO
4c
20
85

A9
A8
85
es
A2
86
AS
85
A6
AS
49
85
51
c8
DO
E6
E4
BO
A6
AS
85

CF
20
03
9B
56
23
CF
2C
03
9B
56
24

00

19
18
02
1D
23
1A
24
18
FF
1c
19

FB
1A
1A
F5
1D
23
1A

FF

04

06

FF

04
06

PET MEMORY TEST

BY HARVEY B. HERMAN

FEBRUARY 1979

BEGIN
END
POINTL
POINTH
FLAG
FLIP
MCD
PRINT
GET
INPUT
EXIT
ERROR
GTBYT

START

ABLE

BAKER

LCOP

BIGLP

PASS

CLEAR

CRG

k Kk ok ok ok ok ok ok sk Kk k >k %

STAIY
INY
BNE
INC
CPX
BCS
LDX
LDA
STA

129

$033A

$0023
$0024
$0019
$001A
$001B
$001C
$001D
$FFD2
$FFE4
$FFCF
$0447
$0498
$0656

INPUT
$20
ABLE
ERRCR
GTBYT
BEGIN
INPUT
$2C
BAKER
ERROR
GTBYT
END

$00

POINTL
FLAG
$02
MOD
BEGIN
POINTH
END
FLAG
$FF
FLIP
POINTL

CLEAR
PGINTH
PCINTH
CLEAR
MCD
BEGIN
PCINTH

SPACE CHARACTER?

COMMA ?

G381 A5 1B FILL LDA FLAG

0383 CA TCP DE X

0364 10 04 BPL SKIP
0386 A2 02 LDXIM $02
0388 91 19 STAIY POINTL
Z8A C8 SKIP INY

0388 DO Fé BNE TOP
038D E€ 1A INC POINTH
038F A5 24 LDA END
0391 C5 1A CMP PCINTH
0393 BO EC BCS FILL
0395 A5 23 LDA BEGIN
0397 85 1A STA POINTH
0399 A¢ 1D LDX MO
0398 A5 1C POP LDA FLIP
039D CA DE X

039E 10 04 BPL SLIP
03A0 A2 C2 LDXIM $C2
03A2 AS 1B LDA FLAG
03A4 D1 19 SLIP CMPIY POINTL
03A6 DO 24 BNE OUT
03A8 C8 INY

03AS DC FO BNE POP
C3AB E6 1A INC POINTH
03AD AS 24 LDA END
03AF C5 1A CMP POINTH
03Bl BO E8 BCS POP
03B3 C6 1D DEC MOD
03BS 1C AD BPL PASS
03B7 AS 1B LDA FLAG
03B9 49 FF EORIM $FF
03BB 30 Al BMI BIGLP
03BD 84 19 STY POINTL
03BF A9 2A LDAIM $2A ASTERISK CHARACTER *
03C1 20 D2 FF JSR PRINT
03C4 20 E4 FF JSR GET
03C7 FO 90 BEGQ LOOP
03C9 4C 47 04 IMP EXIT
03CC 84 19 ouT STY POINTL
03CE 4C 47 04 IMP EXIT

Program Notes

GTBYT Change to $0658 for LOMON

G33A Clear decimal mode to insure arithmetic correct

033k Compare with space charecter

033B - 0358 Input from screen: space, byte (2 characters), comma and byte.

Store byte in begin and end page locations.
0359 - G3BE Memory test program proper. Original author: Jim Butterfield.
03BF - 03CB Print *, check for key press:
no - repeat test
yes - exit to monitor and print register buffer
03CC - 03b0 Abnormal exit to monitor. Program counter has address of fault.

130

MONITOR LOCATIONS

Table 1
Start of monitor QUOF
Exit to monitor ouyT
Break vector LOW 021B Normally 27
Break vector HI 021C Normally 04
Machine register storage buffer:
Program counter LOW ' 0019
Program counter HI 001A The registers are initialized to the
Status register 001B value in these locations after the G
Accumulator 001C command. After the break instruction
X-index register 001D (and break vector set to 0U427) these
Y-index register 001E locations will contain the final
Stack pointer 001F values of the registers.
Operating System calls:
Output byte (from A) FFD2
Input byte (left in A) FFCF (loc 260: 0 keyboard, 1 screen)
Get byte FFEY (A-0 no key depressed otherwide
A- character)
COMMODORE LOMON (PET Gazette}
Output CR) O4F2
OQutput space 063A 063B
Output byte as 2 hex 0613 0613
Input byte as 2 hex 065E 0660
ASCII to hex (from A) 0685 0687
Output? and wait for new
command 049B 0u49B
Input 2 bytes as 4 hex O64F 0651

(LOW in loec. 11, HI in 12)

KIM-PET EQUIVALENCES FOR THE MEMORY TEST PROGRAM

Table 2

KIM LPEL NOTES
BEGIN 0000 0023 first two unused zero
END 0001 0024 page locations
POINTL OOFA 0019 printed as PC location
POINTH 00FB 001A on exit
FLAG 0070 001B printed as SR on exit
FLIP 0071 001C printed as A on exit
MOD 0072 001D printed as X on exit
EXIT 1C4F ouy7 exit to monitor-print registers
START 0002 033A start of second cassette

buffer-well protected if
device not used.

131

LIFESAVER
by J. Stelly
10918 Dunvegan Way
Houston, TX 77013

Is LIFE passing you by; does it progress so quickly than there is
little time to enjoy it? Well, fear not-—the LIFESAVER is here.
Though time marches on, now you are in control. If you got “LIFE
For Your PET” from Dr. Frank H. Covitz (The Best of Micro, p.65),
LIFE moves along at a pretty good clip. LIFESAVER is a BASIC
program that complements and provides some enhancements to
Dr. Covitz machine language routines.

LIFESAVER provides a convenient grid for setting up cellular
patterns, permits saving and loading of patterns on the built in
cassette unit, and gives complete control of the time interval
between generations. You may even single step through the LIFE
sequences.

Commodore is supposedly mailing all owners of early model PET
units the TIM monitor on cassette, so | will assume its availability
in this discussion. It ain’t the best monitor in the world, but it does
allow you to load machine language programs directly from the
cassette without any special loader routines. This does not exclude
other methods the reader may have at his (or her) disposal if TIM is
not available.

A single modification to Dr. Covitz program is required before it
can be used with LIFESAVER. Location 191D (16) should be
changed to read:
191D 60 RTS

When this change is made the program may be entered at
190A(16) e.g. SYS(6410). If the TIM monitor is used, simply do a
hex dump of the machine language listing and save the program
on tape using the instructions given in the manual.

Before loading LIFE (Dr. Covitz program) or LIFESAVER {by yours
truly) from cassette, | recommend the following command be
executed:

POKE 134,0:POKE 135,24

This lowers the BASIC boundary and prevents conflicts between
the two programs. The regular BASIC limit can later be reinstated
by POKE 135,32, It is also a good idea to load LIFE before
LIFESAVER is loaded. This prevents the data pointer from getting
initialized to the wrong location.

It may be possible to eliminate lines 3015 and 3035 from the BASIC
listing, if you have a relatively late model PET. These lines are
necessary for the older units that have a problem with writing file
headers and cassette motor start/stop control. My unit was
delivered in Sept. ‘78 and | was able to eliminate these lines.

Assuming that both LIFE and LIFESAVER have successfully been
loaded, you may begin entering your favorite cell patterns. Please
refer to Dialog 1 (human inputs are underlined) to see how this is
done. After the grid is printed simply press the 'RETURN’ key and
enter your pattern anywhere in the grid area using the cursor keys
and the dot (s) symbol above the Q key. :After you've created the
desired pattern press the 'HOME’ key and the ‘RETURN’ key in

succession. This neat little trick returns control to the LIFESAVER
routine without having to explicitly key in the command ‘GOTO
1000°. After the PET has saved the pattern internally the user then
has the options to save it on tape, have the computer generate
LIFE patterns as described in Dr. Covitz article, or scrap it and
input a new pattern.

The options are relisted after the execution of any LIFESAVER
command. Examples on exercising the different options are given
in the remaining dialogs.

LIFESAVER should relieve the user from the tedium of having to
manually reenter a LIFE pattern every time it is desired to run it. It
should also encourage the user to experiment with various LIFE
forms, some of which are quite dazzling.

DIALOG 1
RUN
LIFE
PLEASE CHOOSE AN OPTION

1. CREATE A PATTERN

2. RUN LIFE GENERATOR

3. LOAD A PATTERN FROM CASSETTE
4, SAVE A PATTERN ON CASSETTE

OPTION NUMBER ? 1 (RETURN)
(SCREEN CLEARS, THEN ...)
GOTO 1000 ?

(At this point the user hits the
RETURN key and proceeds to input a
cell pattern.)

GOTO 1000 ?
READY .
[

%

[d eoe
S e g
[[

(With the desired pattern on the CRT
the user presses the HOME and RETURN
keys to resume program execution.)

STORING CELL PATTERN

(After a slight delay the computer
again responds with the option list.)

132

DIALOG 2 DIALOG 3

LIFE LIFE

(Option List) (Option list)

OPTION NUMBER ? E (RETURN) OPTION NUMBER ? i

(Screen clears ...) (Screen clears ...)

HOW MANY GENERATIONS ? Z_ HOW MANY

DEVELOPMENT RATE PATTERN NAME ? CHESIRECAT (RETURN)

0:SINGLE STEP VIA (G) KEY
1-99: INTERMEDIATE RATES
100:MAX (255 GENERATION LIMIT)

(Pattern is saved and the option
list is printed.)

NOTE: In the following BASIC listing

0
RATE 7 75 the lower case abbreviations stand for
(The computer proceeds to display cursor control keys and have the
generations sequentially at the following meaning:

specified rate. The larger the
numerical value of the rate the
faster the generations are produced.
A rate of 0 meanc that only one
generation is produced at a time.
The G key must be pressed to obtain
subsequent generations.)

clr = clear screen
home = home up

cd = cursor down

s = space key

LISTING

1 REM LIFESAVER

2 REM BY JAMES W. STELLY

3 REM POKE 135,24 BEFORE USING

100 DIM A$(25)

110 PRINT "clrLIFE":PRINT

120 PRINT "PLEASE CHOOSE AN OPTION:":PRINT
130 PRINT "1. CREATE A PATTERN"

140 PRINT "2. RUN LIFE GENERATOR"

150 PRINT "3. LOAD A PATTERN FROM CASSETTE"
160 PRINT "4. SAVE PATTERN ON CASSETTE"
170 INPUT "OPTION NUMBER";N

180 ON N GOSUB 200,2000,4000,3000

190 GOTO 110

CREATE GRID FOR PATTERN INPUT

200 PRINT "clr cd";

210 FOR I=1 TO 5

220 PRINT "™~~~ "™~ F~="r=""r~==r=="r=-"r--7
230 PRINT™ b & & b 1t 01
240 PRINT ™ 0 & 0 0 0 b 01
250 PRINT ":

260 NEXT I ‘

270 PRINT ™M~~~ r~=r==—r==—r==-—r===r==—r=/
280 PRINT " (I o o | o
290 PRINT ™ ¢ ¢ &4 v 4 b 1)

. 300 PRINT "ot bl _ b __blo ot bt __L__4d
310 INPUT "homeGOTO 1000";A$

133

1000
1010
1020
1030
1040
1050
1060

2000
2010
2020
2030
2040
2050
2060
2070
2075
2080

2100
2110
2120
2130
2140
2150

2160
2170
2180
2190
220

3000
3010
3015
3020
3030
3035
3040
3050

4000
4010
4020
4030

STORE PATTERN

PRINT "homeSTORING CELL PATTERN"

FOR I=1 TO 24:A$(I)="":NEXT I

FOR I=1 TO 24:FOR J=1 TO 39

IF PEEK(32767+J+(I%40))= 81 THEN A$(I)=A$(I)+"@":GOTO 1050
A$(I)=A$(I)+"-"

NEXT J:NEXT I

RETURN

ACCESS LIFE GENERATOR

INPUT "clrHOW MANY GENERATIONS";G

PRINT "cdDEVELOPEMENT RATE:":PRINT
PRINT "0;SINGLE STEP VIA (G) KEY"

PRINT "1-99:INTERMEDIATE RATES"

PRINT "100:MAX (255 GENERATIONS LIMIT)"
INPUT "cdRATE";S

PRINT "clrGEN O"

FOR I=1 TO 23:PRINT A$(I): NEXT I

PRINT A$(I);:FOR I=1 TO 2000:NEXT I

IF S=100 THEN POKE 6483,256~G:SYS(6410):GOTO 2140

INTERMEDIATE RATES

POKE 6483,255:IF S=0 GOTO 2160
S=100-S:FOR I=1 TO G

SYS(6410) :PRINT "homeGEN";I
FOR J=1 TO S¥30:NEXT J:NEXT I
GET A$:IF A$<O"X" GOTO 2140
RETURN

SINGLE STEP

G=1

SYS(6410) :PRINT "homeGEN";G
GET A$: IF A$="X" THEN RETURN
IF A$="G" THEN G=G+1: GOTO 2170
GOTO 2180

SAVE PATTERN

INPUT "clrPATTERN NAME";A$
OPEN 1,1,1,A$

POKE 243,122:POKE 2u4,2
FOR I=1 TO 24
PRINT#1,A$(1)

POKE 59411,53

NEXT I

CLOSE 1:RETURN

LOAD PATTERN

INPUT "clrPATTERN NAME";A$

OPEN 1,1,0,A$

FOR I=1 TO 24:INPUT#1,A$(I):NEXT I
CLOSE 1:RETURN

134

THE ULTIMATE PET RENUMBER
Don Rindsberg
The Bit Stop
Box 973
Mobile, Alabama 36601

This article can be of help to the BASIC programmer in providing a
fast, fool-proof renumbering system, but it also includes details on
how to use the PET BASIC interpreter's own machine-language
routines to do some useful chores.

Renumbering programs written in BASIC, such as Jim Butterfield’s
(see MICRO Dec 78 - Jan 79) are very slow in renumbering long
programs, and because BASIC is cumbersome in performing such
routine chores, the machine-language approach has some major
advantages. This routine will renumber a 300-line program in
around 20 seconds, as compared to more than 300 seconds for
Jim’s BASIC version. Further, Jim is forced to duck the issue of
providing space for extra-digit line numbers, whereas by calling
BASIC’s line insertion routine, this program provides enough space
for five digits for every GOTO, GOSUB, etc.

The entire program for renumbering is given in hexadecimal in
listing 1. More later about how to enter it into your machine. With
your BASIC program and the renumber routine in RAM, press
SYS8181 (by coincidence, the name of the program) and you will
either get a message of reassurance that all has gone well, or will
get an error message, such as “line too long”. In no case will the
program bomb, because this is a two-pass program; during the first
pass, nothing is done to the Basic text, other than making sure
there is enough space for five-digit line numbers. If any problem
exists, the BASIC text is unchanged.

DEVELOPING THE PROGRAM

Commodore made it a formidable task to decipher the code of
BASIC sufficiently to be able to make patches for a short renumber
system. The first obstacle is that the PEEK statement is disabled for
the area of memory where BASIC resides. But, by sleight-of-hand, a
little PUNCHing and POKEing and addition of a simple output port
on PET’s memory-expansion connector, the PET disgorged the
contents of its ROMs into my homebrew machine and onto a disk;
now, with the capability of having the programs in RAM, where
breaks could be inserted for diagnosis, the job became a little
easier.

Programming a renumber routine is made tedious by the fact that,
in the BASIC text, the line numbers following the GOTO tokens are
coded in ASCII, whereas the line numbers at the beginning of a
line of text are coded as two-byte hex numbers. Fortunately, the
BASIC interpreter has rountines built in to do these conversions
back and forth between ASCII and hex. The locations of these and
other routines called by this program are given in TABLE 1.
Another problem encountered was locating some page zero
registers, essential to 6502 programming, which are not altered by
the BASIC itself. In some cases, | use space in the line buffer at
000A-0059, but this cannot be done in the section of the Program
which uses the line buffer for its original purpose, i.e., inserting a
line in its proper place in the BASIC text.

This program uses very little RAM, since no tables are created.

PROGRAM OPERATION
The program first sets or clears a flag, depending upon entry point
(DCM 8181 or 8184), since entry point determines whether the

renumber job is standard or custom. It then checks to see if
sufficient memory exists to allow for insertion of spaces for as
many as five digits for GOTO line numbers. An error message (see
TABLE 2) is generated if there is less than one page available for
this enlargement of the program. Then, each line of text is moved
into the line buffer, and if a GOTO, GOSUB, or THEN (followed by
a number) is present, spaces are inserted and the expanded line is
inserted by BASIC’s own line-insertion routine into the text area,
just as though you retyped the line on the keyboard. Any lines too
long for this expansion produce an error message before any harm
is done to the program. BASIC’s own error routine is called to print
these messages! The “TOO LONG” message is a shortened version
of “STRING TOO LONG” used by BASIC.

In the text, all statements are compressed into single-byte tokens,
which | have listed for your reference in TABLE 3. For example,
GOSUB is hex 8D, THEN is A7, etc. This program searches out all
the 89, 8D and A7 tokens. Getting the proper ASCIl numbers after
these tokens requires conversion of the ASCII to hexadecimal and
searching for a matching line number in the text area. If no match
is found, the guy evidently had a GOTO pointing to a non-existent
line number, so we flag this in the text by an opening parenthesis,
such as:

GOTO(
GOSUB(:X=Xt1
IF A=B THEN(

ON X GOTO 1234,(,5678,9987

When the progra is listed or run, the need for correction is obvious,
While we are searching for a matching line number, we keep track
of the new line number which corresponds to the current position
in the text, so that when the match is found, the new line number
can be converted to ASCIl and placed directly into the text.
The actual resequencing process which follows is an anticlimax,
because it requires so little coding (1E16-1E3E). When the entire
renumbering job is done, we jump back to BASIC’s warm start
location.

USING THE PROGRAM

if you would like to renumber your program with the standard
starting line number 100 and increment by 10, simply type
SYS$8181, which directs the program to hex address 1FF5. If you
would like to choose a different starting line number or increment,
POKE the desired values at the addresses shown in LISTING 2, and
type SYS8184 to enter the program at 1FF8. If your BASIC program
is long, it may take 3-4 seconds to complete the renumbering job.
After renumbering, running the program will generally write over
the renumber code, since it occupies the same space as some
BASIC variables. The only precaution to be taken in renumbering
is to avoid line numbers which exceed PET’s [imit of 63999.

135

ROUTINE ENTRY POINT (HFX)

€359

1F00

CCA4

DB1B

DeDO

DCAF

C38B

CA27

DCOr

FUNCTION AND IMPLEMENTATION

Print an error message from the message table. Enter with X
containing the location of the message relative to C190. Message
terminator is ASCIl having bit 7 on.

A duplicate of the original BASIC line insertion routine located at
C3B4, except for the exit jump. Enter with the line assembled in the
line buffer 000A-0059 with 00 as line terminator. Also, the
character count must be in 005C, and the line number (hex) at
0008/9.

Evaluate an expression whose beginning address is in 00C9/CA. We
use this sub to convert from ASCIl to binary, with the result
appearing in the floating accumulator 00BOt.

Convert fixed number in 00B1/2 to floating number. Enter with
X=90 and carry set.

Convert binary value, such as line number, in floating accumulator
to two-byte fixed number and place in 0008/9.

Convert floating number at 00BOt to ASCIl and place in a string
starting at 0101, preceded by a space or minus sign at 0100 and
terminated by 00.

BASIC warm start. Prints READY.

Print message. Enter with ADH in Y, ADL in A. Message is ASCII
string enough with 00.

Print the decimal integer whose hex value is in microprocessor
registers A and X, for example, a line number.

TABLE 1- BASIC ROUTINES USED

MESSAGE

CHECK FOR GOTO(ETC

120
? TOO LONG ERROR

? OUT OF MEMORY ERROR
2 SYNTAX ERROR

GOTO(

GOSUB(

ON X GOTO(
IF A=B THEN(

INTERPRETATION

Successful renumbering.

Line 120 is too long to renumber. Break into two or more lines, and

renumber again.

Program too long to renumber.

Attempt to RUN program with GOTO(remaining in program, or

attempt to renumber with one of these in program text.

The opening parenthesis in the text represents attempt to

reference a non-existent line number.

Note: Lines of the following form are likely to cause a TOO LONG error:

100 ON X GOSUB 1,2,3,4,5,6,7,8,9,10,11,12

TABLE 2 - MESSAGES

136

1Do0
1Dg2
1Do4
1Da6
1De8
1DoB
1DQE
1D1}
1D13

A5
cS
59
A2
4C
20
20

A2

7D
1B
25
52
FC
BD
3F
2B
28

RENUMB ORG

$1Do0

DON RINDSBERG
(C) 1978 N.A.l.L.

(& SIGN MEANS PLUS)

EXTERNAL ROUTINES

INSERT . $1F00
MESSG . $1FCA
TEMPORARIES

BUFF $2008
POINT . $2019
POINTX . $001A
LINGCNT . $2a5¢C
PTRSO $207A
PTRS . $@B6A
FLAG . $2069
BUFPTR . $@O6E
COUNT . $OB6F
STARTC . $02DB
INTC . $20DD
CUSTOM |, $20DE

BASIC PARAMETERS

FACC . $20B0
BASICP , $22CS9
BERROR . $¢355
WARM . $C38B
PRINT . $CA27
EVAL . $CCA4
FIX . $D6DG
FLOAT . $DBi1B
PNUMBR . $DCOF
ASCI1 $DCAF

MAINLINE
START LDA PTRSO
CMPIM $1B
BCC SPACE
BOMB LDXIM $52
1E JMP ERROR
iE SPACE JSR COPY
1E NEXT JSR DNTST
BEQ RENUM
LDXIM $28

137

INSERT A LINE INTO TEXT
DONE MESSAGE

LINE BUFFER LOCATION
TEMP LINE BUFF POINTER
TEMP POINTER

NO. CHAR. IN LINE
ORIGINAL POINTERS
WORKING POINTERS

FLAG THE GOTOS

LINE BUFF POINTER PAGE ZERO
COUNTER

CUSTOM STARTING LINF NO.
CUSTOM INTERVAL

FLAG CUSTOM .JOB

BASIC FLCATING ACCUM

BASIC POINTER

BASIC ERROR ROUTINE

BASIC WARM START

BASIC PRINT ROUTINE

EXPRESSION EVALUATOR

CONVERT TO FIXED DP

CONVERT FIXED NMBR TO FLOAT
BASIC PRINT NUMBER

CONVERT NMBR TO ASCII AT $0100

483 GET END TEXT ADH
ENOUGH ROOM TO EXPAND?

OUT OF MEMCRY

MAKE CC TEXT POINTERS
ARE WE DONE THIS SECTION?

LINE BUFFER START

1D15
1D17
1049
1D1B
1D1D
iDiF
1D23
1D23
1D24
1D25
1027
1D2A
1b2cC
i1D2E
1D2F
1D31
iD33
1D35
$1D38
iD3B

1D3E
1D41
1D44
1D46
1D49
1D4C
1D4E
1D4F
1D51
1D53
1D56
10595
1D5B
1D5D
1D5F
1D61
1D63
1D65
1D66
1D68
1DGA
1D6C
1D6F
iD74
1D72
iD73
1D75
iD76
1D77
1D79
1D78B
1D7E
iD7F
1D82

Ao
B1
95
¢o
5@
¢S
Fo
8
ES8
Do
20
AS
D2
38
A5
E9
85
4C
20
4C

20
20
Do
4C
20
AQ
c8

D2
20
4C
CcS
Fo
CS
Fo
Ccs
D@
cg
Bi
c9S
Fo
20
Bo
g8
cg
84
S8
18

85
20
EA
20
20

@2
GA
20
04
a4
1]
o4

Fo

€9
2A

6E
25
5C
20
C7
gE

BD
3F
23
16
AE
B3

€A

c7
41
89
15
8D
i1
A7
ES

GA
20
FS
ES
E8

19

GA
Ccs
ED

Ay
Do

1E

iF
iE
iD

{E
iE

1E
iF

iE
iD

1E

iF

¢C
D6

GETBYT

SKIPA

TERM

SKIPB

RENUM
NEXTR

NOTDON
SCAN
SCANA
SCANX

GOTEST

THEN

GOTO

LDYIM
LDAIY
STAZX
CPYIM
BCC
CMPIM
BEQ
INY
INX
BNE
JSR
LDAZ
BNE
SEC
LDA
SBCIM
STA
JMP
JSR
JMP

JSR
JSR
BNE
JMP
JSR
LDYIM
INY
LDAIY
BNE
JSR
JMP
CMPIM
BEQ
CMPIM
BEQ
CMPIM
BNE
INY
LDAIY
CMPIM
BEQ
JSR
BCS
DEY
INY
STY
TYA
CLC
ADC
STA
JSR
NOP
JSR
JSR

$02
PTRS
$00
$04
SKIPA
$00
TERM

GETBYT
EDIT
FLAG
SKIPB

BUFPTR
$05
LINCNT
INSERT
UPDATE
NEXT

COPY
DNTST
NOTDON
RESEQ
STRTLN
$03

PTRS
GOTEST
UPDATE
NEXTR
$89
GOTO
$8D
GOTO
$A7
SCANA

PTRS
$20
THEN
TSTDGT
GOTEST

POINT

PTRS
BASICP
PATCH

EVAL
FIX

138

POINT TO LINE NMBR IN TEXT
GET BYTE FROM TEXT

STORE IN LINE BUFFER

2ERO HERE NOT TERMINATOR

GOT THE TERMINATOR
FORCED BRANCH

EDIT ONE LINE

SKIP IF NC GOS FLAGGED
CORRECT BYTE CCUNT
NEED CHAR COUNT

BUT RETURN TO NEXT LINE
POINT TO NEXT LINE

THE POINTERS
ARE WE DONE THIS PORTION?

GET STARTING LINE NMBR
POINT TO TEXT-1

GET A BYTE

BRANCH IF NOT TERMINATOR
GO TO NEXT LINE

GOT A GOTO?

GOT A GOSUB?

GOT A THEN?

PCINT TO NEXT

IGNORE SPACES

TEST FOR NUMBER

SAVE A MOMENT

POINT TO ASCII NMBRS
BUG FIX

CALL BASIC EVALUATOR
AND BASIC FIX ROUTINE

1D85 A5 7A SEARCH LDA PTRSO SETUP SEARCH POINTERS

1D87 85 1A STA POINTX

1D8S A5 7B LDA PTRSO 401

1D8B 85 1B STA POINTX @}

1D8D A3 00 SRCHLP LDYIM $20

1D8F B1i 1A LDAIY POINTX GET NEXT BYTE
iDS1 C8 INY

1DS2 11 1A ORAIY POINTX TEST FOR TWO ZERO BYTES
1DS4 D@ 10 BNE NOTEND 2EROES MARK EOT
1D96 AS 20 LDAIM $20 GET A SPACE
1DS8 8D 00 91 STA $@180 ASCII WORKSPACE
$DSB AS 28 LDAIM $28 GET OPEN PAREN
1DSD 8D 21 @1 STA $2191

1DAG 88 DEY

1DA1 8C @2 o1 STY $0182 TERMINATE WITH ZERO
1DA4 F@ 20 BEQ MVASC FORCED BRANCH
1DA6 A@ 22 NOTEND LDYIM $02

1DA8 Bi 1A LDAIY POINTX GET LINE NO. LOW
1DAA C5 08 CMP BUFF MATCH?

1DAC D@ 55 BNE NOMAT

1DAE C8 INY

1DAF Bi 1A LDAIY POINTX GET LINE NO, HIGH
{DB1 C5 @9 CMP BUFF 401

1DB3 D@ 4E BNE NOMAT

{DB5 As 10 MATCH LDX BUFF 408 GET CURRENT LINE NMBR
1DB7 86 B2 STX FACC @2

1DBS A5 11 LDA BUFF 485 SECOND BYTE
1DBB 85 Bi STA FACC .01

1DBD A2 5@ LDXIM $9¢ SETUP FOR FLOAT
{DBF 38 SEC

1DC@ 20 1B DB JSR FLOAT

1DC3 2@ AF DC JSR ASCII TO $21@1 PLUS
1DC6 A2 FB MVASC LDXIM $FB MINUS 5

1DC8 A4 19 LDY POINT

1DCA BD 86 08 LOOPA LDAAX $880€

1DCD Fo 28 BEQ BLANKS TERMINATOR ZERC
1DCF 51 A STAIY PTRS

1DD1 C8 INY

1DD2 ES INX

1DD3 D@ F5 BNE LOOPA

1DD5 Fa oC BEQ COMMA

1DD7 A9 20 BLANKS LDAIM $20 GET SPACE

1DD9 S1 6A STAIY PTRS STORE IT

1DDB C8 INY

1DDC ES INX

{DDD D@ F8 BNE BLANKS

1DDF 88 DEY

1DE@ Do o1 BNE COMMA

{DE2 C8 COMMX INY

1DE3 B3 6A COMMA LDAIY PTRS GET NEXT BYTE
{DES 20 E5 iE JSR TSTDGT TEST FOR NUMBER
{DES BD 06 BCS NOTNUM

{DEA AS 29 LDAIM $286 SPACE

1DEC 91 6A STAIY PTRS STORE IT

iDEE D@ F2 BNE COMMX FORCED

iDF@ CS 20 NOTNUM CMPIM $20 SPACE?

139

iDF2 F@ EE BEQ COMMX

1DF4 CS 2C CMPIM $2C COMMA?

1DF6 98 PHP DEFER TEST

1DF7 20 AE {F JSR STRTLN GET STARTING LINE NMBR
1DFA 28 PLP NOW TEST

.1DFB D9 @3 BNE JSCANX NOT COMMA

i1DFD 4C 72 1D JYP GOTO GOT A COMMA

3EQO® 4C 4F 1D JSCANX JMP SCANX
1E@3 20 EE §E NOMAT JSR INCLIN INCR NEW LINE NMBR

1EG6 AD 00 LDYIM $00

1E@8 Bi 1A LDAIY POINTX GET NEXT LINE ADDRESS
SEGA 48 PHA

1E0B C8 INY

1EGC Bf 1A LDALY POINTX

1EGE 85 1B STA POINTX .01

1E10 68 PLA

1E11 85 1A STA POINTX

1E13 4C 8D 1D JMP SRCHLP BACK TO SEARCH AGAIN

1E16 20 AE {F RESEQ JSR STRTLN SETUP STARTING LINE

1E19 20 BD iE JSR COPY COPY THE POINTERS
1E1C 20 3F {E LOOPR JSR DNTST DONE?

iELF F@ 13 BEQ WINDUP

1E21 A0 22 LDYIM $82 POINT TO LINE NMBR
1E23 A5 10 LDA BUFF 408 GET NEW ONE
1E25 91 6A STAIY PTRS STORE IT

1E27 C8 INY

1E28 A5 3114 LDA BUFF 409

1E2A S1 6A STAIY PTRS

1E2C 20 C7 iE JSR UPDATE ADVANCE TO NEXT LINE
{E2F 20 EE iE JSR INCLIN INCREMENT LINE NMBR
1E32 50 ES BCC LOOPR FORCED

1E34 AQ iF WINDUP LDYIM MESSG /100

{E36 AS CA LDAIM MESSG

1E38 20 27 CA JSR PRINT END MESSAGE

1E3B 58 CLI ALLOW KEYPRESSES
1E3C 4C 8B C3 JMP WARM BACK TO BASIf

{E3F AQ 20 DNTST LDYIM $00

1E41 B1 6A LDAIY PTRS GET NEXT BYTE

1E43 C8 INY ADVANCE TO NEXT
1E44 11 6A ORAIY PTRS OR WITH LAST TO FIND @000
1E46 60 RTS

1E47 A2 09 EDIT LDXIM BUFF 101

1E49 86 6E STX BUFPTR

1E4B 86 69 STX FLAG SET FLAG

1E4D E6 6E EDITX INC BUFPTR

1E4F A6 6E LDX BUFPTR

{E51 B5 @0 LDAZX $00

1E53 F@ 71 BEQ RTS

1E55 C9 89 EDITY CMPIM $89 GOTO?

AE57 F@ 19 BEQ SPACES

140

1E59 C9 8D CMPIM $8D GOSUB?

1E5B F@ 15 BEQ SPACES

1E5D C9 A7 CMPIM $A7 THEN?

1ESF D@ EC BNE EDITX BACK FOR MORE
1E61 E6 6E THENN INC BUFPTR

1E63 AS GE LDX BUFPTR

1E65 B5 29 LDAZX $0o BYTE AFTER THEN
1E67 C9 20 CMPIM $2¢0 IGNORE SPACES
1E6S FO F¢ BEQ THENN

1EG6B 20 ES5 E JSR TSTDGT IS IT NUMBFR?
1ESE BO ES BCS EDITY IF NOT, GO BACK
1E70 C6 6E DEC BUFPTR

1E72 A2 @9 SPACES LDXIM BUFF 801 TEXT-1

1E74 E8 SPACEX INX '
1E75 B5 99 LDAZX $2¢ LOOK FOR TERMINATOR
1E77 Do FB BNE SPACEX

1E79 E@ 54 CPXIM $54 LINE TOO LONG?
1E7B 9@ aC BCC OKAY

1E7D A5 @9 LDA BUFF 01

1E7F A6 08 LDX BUFF GET BAD LINF NMBR
1E81 20 SF DC JSR PNUMBR PRINT IT

1E84 A2 BB LDXIM $BB TOO LONG MESSG
1E86 4C FC iE JMP ERROR

1E89 A2 @6 OKAY LDXIM %06 DIGITS PLUS ONE
{E8B 86 6F STX COUNT

1ESD E§ 6E LOOP INC BUFPTR

1E8F C6 6F DEC COUNT

1ES1 Fo@ 12 ’ BEQ COMMAS

1E93 A6 6E LDX BUFPTR

1ESS BS 9o LDAZX $@¢

1E97 C9 20 CMPIM $2¢ TEST FOR SPACES
1E99 Fg@ F2 BE@ LOOP

1ESB 20 E5 iE JSR TSTDGT TEST FOR NUMBER
1ESE S@ ED BCC LoOP

1EAQ 20 D5 {E JSR UPONE MAKE ROOM FOR ONF DIGIT
1EA3 Do ES BNE LOOP FORCFD BRANCH
1EA5 A 00 COMMAS LDYIM $29

1EA7 84 69 STY FLAG WE WERE HERE
1EAS A6 6E FINDT LDX BUFPTR

1EAB B5 092 LDAZX $20 FIND TERMINATOR
1EAD F9 17 BEQ RTS

1EAF €9 28 CMPIM $20 SPACE?

1EB1 Do 04 BNE TEST

1EB3 E6 6E INC BUFPTR

1EB5 D@ F2 , BNE FINDT FORCED

1EB7 €9 2aC TEST CMPIM $2C- COMMA?

1EBS F@ B7 BEQ SPACES

iEBB D@ S¢ BNE EDITX

1EBD A2 g4 COPY LDXIM $04 COPY & BYTES
1EBF BS 79 LP LDAZX $79

1EC1 95 69 STAZX $69 COPY POINTERS
1EC3 CA DEX

1EC4 DO FS BNE LP

1ECc 6@ RTS RTS

141

1EC7
1ECS
AECB
AECC
1ECD
{ECF
1ED1
1ED2
1EDA

1EDS
1ED7
1ED8
1EDA
1EDC
1EDE
1EEQ
1EE2
iEEY

1EES
1EE7
iEE?
1EEB
iEEC
1EED

iEEE
iEEF
iEF1
1EF3
1EF5
1EF7
1EF 9
1EFB

$EFC
iEFD

iFAE

1FAE
1FBo
1FB2
1FB4
1FB6
iFB8

AD
Bi
48

Bi
85
68
85
60

A2
CA
B5
95
E4

A9
95
60

¢S

cs
60

3%

18
A5
65
85
AS
69
85
60

58
4C

AS
85
AS
85

A5

00
6A

6A
6B

6A

30
23
3A

10

10
11
20

i1

59

64

1)
11
oA
DE

C3

UPDATE LDYIM $00

UPONE
LOOPU

TSTDGT

SET

INCLIN

ERROR

STRTLN

LDAIY PIRS
PHA

INY

LDAIY PTRS
STA PTRS
PLA

STA PTRS
RTS

LDXIM BUFF
DEX

LDAZX $29
STAZX %0}
cPX BUFPTR
BNE LOOPU
LDAIM $20
STAZX $00
RTS

CHMPIM 'O
BCC SET
CMPIM °':
RTS

SEC

RTS

CLC

LDA BUFF
ADC BUFF
STA BUFF
LDA BUFF
ADCIM $00
STA BUEF
RTS

CLI

JMP BERROR
ORG $1FAE
LDAIM $64
STA BUFF
LDAIM $00
STA BUFF
LDXIM $0A
LDA

GET LINK ADL
HOLD ON STACK

GET LINK ADH
&01 STORE LINK ADH

STORE LINK ADL

£51 END BUFFER

GET A BYTE
MOVE UP ONE

INSERT SPACE

WITH CARRY CLEAR
CARRY SET IF NON-NMBR

808

QA

08

.89

ADD INTERVAL

489 TO CURRENT LINE

ALLOW KEYPRESS
BASIC ERROR PROCESSOR

DEFAULT 100
308
HIGH ORDER
09
INTERVAL 19

CUSTOM TEST FOR CUSTOM

142

1Fo0
1F23
1F@5
iFo7
1FB9
1FoB
1FaD
1FeF
iF11
1F13
iFi15
1F16
1F18
1F19
1F§B
1F1D
iFiF
1F21
1F23
1F25
1F27
1F28
1F2S
1F2B
1F2D
1F2E
iF3¢
1F314
1F33
1F34
1F36

1FBA 10 2A BPL SKIPL
1FBC A6 DD LDX INTC CUSTOM INTERVAL
1FBE A5 DB LDA STARTC CUSTOM START
1FCo 85 10 STA BUFF 408
iFC2 A5 DC LDA STARTC &21
1FC4 85 11 STA BUFF a3
1FC6 86 12 SKIPL STX BUFF &40A
1FC8 69 RTS
1FCS EA NOP
FINAL MESSAGE $1FCA THROUGH $1FEC
“CHECK FOR GOTOC ETC®
{FED PATCH ORG $1FED
iFED A5 6B LDA PTRS 491
iFEF 695 00 ADCIM 300
1FF31 85 CA STA BASICP 401
iFF3 60 RTS
3FF4 EA NOP
§FF5 18 ENTRY CLC CLEAR FOR STANDARD
iFF6 90 01 BCC ALL
iFF8 38 ENTRYA SEC SET FOR CUSTOM
1FFS 78 ALL SEl DISABLE KEYS
iFFA €6 DE RORZ CUSTOM FLAG IN BIT 7
1FFC 4C 00 1D JMP START

20 22 C5
S0 44
AD 01
B1 AE
85 72
A5 7C
g5 71
AS AF
g5 74
AS AE

Fi AE

65 17C
85 7€
85 73
AS 7D
€9 FF
85 7D
E5 AF

A5 AE
E5 7C
Bo 83

Cé6 74

S0 83

INSERT ORG $1F00

DUPLICATE OF BASIC INSERT ROUTINE
EXCEPT FOR EXIT JUMP

JSR $C522 1F38 C6 72 DECZ $72
BCC INSC. 1F3A 18 CLC
LDYIM $01 1F3B B1 71 INSB LDAlY $71
LDAIY S$AE 1F3D 91 73 STAIY $73
STAZ $72 iF3F C8 INY
LDAZ $7C 1F4@ D@ F9 BNE INSB
STAZ $7% 1F42 E€ 72 INCZ $72
LDAZ SAF 1F44 E6 74 INCZ $74
STAZ $74 1F46 CA DEX
LDAZ S$AFE 1F47 Do F2 BNE INSB
DEY 1F4S A5 @A INSC LDAZ $0A
SBC1Y $AE 1F4B F@ 2F BEQ INSF
CLC 1F4D A5 86 LDAZ $86
ADCZ $7C 1F4F A4 87 LDYZ $87
STAZ $7C 1F51 85 82 STAZ $82
STAZ $73 1F53 84 83 STYZ 483
LDAZ $7D 1F55 A5 7C LDAZ $7C
ADCIM $FF 1F57 85 AS STAZ $AS
STAZ $7D 1F59 65 sC ADCZ $5C
SBCZ $AF 1FS5B 85 A7 STAZ $A7
TAX 1FSD A4 7D LDYZ $7D
SEC 1FSF 84 AA STYZ $AA
LDAZ $AE 1F61 ¢ @1 BCC INSD
SBCZ $7¢C 1F63 C8 INY
TAY 1F6Yy 84 A8 INSD STYZ $AS
BCS INSA 1F66 208 DA C2 JSR $C2DA
INX 1F6S AS 8¢ LDAZ $80
DECZ $74 1F6B A4 8} LDYZ $81
INSA CLC 1F6D 85 7¢C STAZ $7¢C
ADCZ $71 1FGF 84 7D STYZ $7D

BCC INSB iF71 A4 5C LDYZ $5C
143

LOCATION

HEX DECIMAL

00DB 219
00DC 220
00DD 22

VALUE TO BE POKED

Low order starting line number (wieght 1)

High order starting line number (weight 256)

Increment desired (1-255)

Example: . POKE 219,232

POKE 220,3
POKE 221,50

This will give a starting line number of 3 x 256 t 232 = 1000, and
following lines will be incremented by 50.

LISTING 2 - NON-STANDARD LINE RENUMBER

STATEMENT

END
FOR
NEXT
DATA —
INPUT#
INPUT
DIM
READ
LET
GOTO
RUN

IF
RESTORE
GOSUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
VERIFY
DEF
POKE
PRINT#
PRINT
CONT
LIST
CLR
CMD
SYS
OPEN
CLOSE
GET
NEW
TAB(
TO

TOKENS (shorthand used in BASIC text)

TOKEN

80
81
82
83
84
85
86
87
88
89
84a
8B
8cC
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
A1
A2
A3
Al

TABLE 3

STATEMENT

FN
SPC(
THEN
NOT
STEP

SGN
INT
ABS
USR
FRE
POS
SQR
RND
LOG
EXP
coS
SIN
TAN
ATN
PEEK
LEN
STR$
VAL
ASC
CHR$
LEFT$
RIGHTS$
MID$

TOKEN

A5
Ab
AT
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
Bl
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
co
C1
c2
C3
o
C5
Céb
CT7
c8
€9
CA

144

ENTERING THE PROGRAM

The hard way to load the program into your PET is to convert my
nex listing into-decimal and POKE each byte into memory. This is,
of course, a challenge to your accuracy and diligence, although it
may take only slightly longer than renumbering by hand. 1t is only
a little easier to write a BASIC program which will accept the hex
data and convert to decimal, with the hex incorporated in DATA
statements and obtained by the READ statement. With this
alternate, the program can be recorded for future use.

To make loading painless (excpet for the wallet), | have arranged

to make tapes available through NAIL*, Drawer F, Mobile,
Alabama 36601, These tapes load the machine-language program
directly into high memory. Ask for #$YS8181” and send $18.18. By
the way, they also have a dandy PET monitor called SYS7171 for
$29.71, which has machine language capabilities, the ability to
co-reside in RAM with BASIC programs, but also has the very
helpful feature of being able to APPEND one BASIC program to
another, just like the big boys do, with interleaving of lines. Like
SYS8181, it uses the BASIC line-inserting routine to do the merging,
just as though you typed all those new lines on your keyboard. |
used a version of this monitor to develop SYS8181. If there is
sufficient interest out there, | may develop a ROM version of
SYS8181, but you will have to be a hardware buff to wire it into
your PET.
Since PET BASIC was written by the same company who write
APPLESOFT and is similar, some APPLE owners may wish to obtain
a disassembled, documented listing of this renumbering program
tfrom me for $5.00.

*National Artficial Intelligence Laboratory

1F73 88 DEY

1F74 B9 @6 86 INSE LDAAY $0006¢
1F77 91 AE STALY $AE
1F79 88 DEY

1F7A 10 F8 BPL INSE
$F7C 20 67 C5 INSF JSR $C567
iF1F A5 7A LDAZ $7A
1F81 A4 7B LDYZ §7B
1F83 85 71 STAZ $71
1F85 84 72 STYZ $72
1F87 18 CLC

1F88 A0 01 INSG LDYIM $01
1F8A By 71 LDAIY $71
1FC DO @3 BNE INSH
AFEE 4C 38 1D JMP $1D38
1F91 A® 04 INSH LDYIM $@4
1F93 C8 INSI INY

1F54 Bi 71 LDAIY $71
1F9¢ Do FB BNE INSI
1F98 C8 INY

1F99 98 TYA

1F9A 65 71 ADCZ $71
JFSC AA TAX

1FSD AP 00 LDYIM $00
1FSF S1 71 STAIY $71
1FAL A5 72 LDAZ $72
1FA3 69 20 ADCIM $00
1FAS C8 INY

1FA6 91 71 STAIY $71
1FA8 86 71 STXZ $71
1FAA 85 T2 STAZ $72
1FAC 92 DA BCC INSG

A PET HEX DUMP PROGRAM

Joseph Donato
193 Walford Rd. E.
Sudbury, ONT., Canada

Have you PET owners ever wondered how it could be possible to
look at your BASIC which resides in Read Only Memory (ROM)?
To be able to look for routines entry points and other interesting
codes in machine language?

This program will do just that. You can look at all memory
locations in PET’s BASIC which starts at 49152 decimal or COQO
hexadecimal in memory. One is able for example to look at
locations D71E through D890 where addition and subtraction
routines are carried out, D8BF through D8FC where the log
function is evaluated, D9E1 through DA73 where division is
performed and many other locations where other routines are
carried out.

A start for this program was provided by Mr. Herman’s article of
MICRO 7:47. Of course the same information was available in the
Commodore Users Notes.

In any event | decided that the ultimate goal of the program would
be to provide a memory dump of some sort in hexadecimal
notation so that machine language instructions could easily be
recognized.

The output of the program is formatted as a starting address
followed by either 32 or 8 bytes of data per line, all in
hexadecimal, depending on whether or not a printer is to be used.
With the data bytes in hex notation it is very easy to correlate them
with the 6502 microprocessor machine language instruction set.

The program listing has been thoroughly debugged and tested.
Although the program was originally written for a PET with a
Centronics printer, as | outlined in the REM’s, the program will run
on a “bare” PET with no problem.

REM *x% A BASIC PET HEX DUMP **x
REM THIS PROGRAM WILL PEEK AT PET'S

REM THE CORRESPONDING DATA.
REM PRINTING.

REM

N O~ ON\VT B ANN

REM IF A "BARE™ PET IS USED.
10 OPEN 5,5:CMD 5
11 REM FOLLOWING IS A MACHINE LANGUAGE

REM THE COMMAND ON LINE 10 INITIALIZES THE PRINTER PORT.

The changes for a “bare” PET are as follows:

1. Omit line 10.
Change line 542 to read:
542 IF L€39 THEN 570

3. Omit all print statements and substitute instead the print
format outlined in the REM’s at lines 606 through 612.
These print lines are to be placed at line 545, 546, 547, 548.

4. Notice that there is no comma or semicolon after the last
print character. This is very important otherwise the format
will be destroyed.

A considerable amount of time was spent on both versions of
the program. No problems were encountered in running either
version.

| hope that by following the machine language coding of the 6502
some of you will obtain a better understanding of PET’s Basic
‘inner workings’. Also some of you who have the T.I.M. monitor
will be able to trace its subroutines and jumps to Basic. Perhaps it
may inspire you in writing some machine language programs or
routines.

I should add that if one wishes to look at different addresses other
than the COOO (49152 decimal), all you need do is to change the
starting address value “K” in line 240. This must be in decimal
notation.

I hope you get as much pleasure as | did ‘sneaking a look” at PET’s
Basic.

REM MEMORY IN ROM STARTING AT A GIVEN ADDRESS 'K' (49152 DECIMAL) AND RETURN
ALL VALUES ARE CONVERTED TC HEXADECIMAL PRICR TO
THE FORMAT IS: STARTING ADDRESS PLUS 32 OR 8 BYTES OF DATA,
REM PER LINE DEPENDING WHETHER OR NOT A PRINTER IS USED.

IT *MUST* BE OMITTED

12 REM ROUTINE WHICH RESIDES IN NUMBER 2 TAPE

13 REM BUFFER AREA.
14 REM LOCATIONS SPECIFIED BY 'K'.
15 POKE(1),58

16 POKE(2),3

17 POKE(826), 32

20 POKE(827),167

30 POKE(828),208

40 POKE (829), 166

IT RETURNS THE CONTENTS OF THE CORRESPONDING MEMORY

145

50 POKE(830),179

60 POKE(831),164

70 POKE (832),180

80 POKE(833),134

90 POKE (834),180

100 POKE(835),132

120 POKE(836),179

130 POKE(837),162

140 POKE(838),00

150 POKE(839),161

160 POKE(840),179

170 POKE(841),168

180 POKE(842),169

190 POKE(843),00

200 POKE(844),32

210 POKE(845),120

220 POKE(846),210

230 POKE(847),96

232 REM SET UP STORAGE AREA FOR ONE

233 REM LINE OF HEX VALUES TO BE PRINTED
235 DIM N1$(40),NC$(40)

236 REM INITIALIZE CHARACTER COUNTER
237 L=1

238 REM THE VALUE OF 'K' DETERMINES

239 REM THE STARTING ADDRESS.

240 FOR K=49152 TO 65536

241 1=K

250 A=USR(K-65536)

255 REM LINES 270-530 CONSIST OF A SUBROUTINE TO CONVERT ALL VALUES FROM
256 REM DECIMAL TO HEXADECIMAL NOTATION
270 B%=16

280 D=A

390 H$="0123456789ABCDEF"

400 NO$(L)="v

405 N1§(L)=""

410 F%=LOG(I)/LOG(B%)

411 REM BECAUSE THE DECIMAL TO HEX ROUTINE
412 REM RETURNS A SINGLE '0' FOR VALUES
413 REM OF A=0, LINE 416 CONVERTS

414 REM ANY OF THESE ZERO VALUES TO

415 REM A DOUBLE HEX '00°'.

416 IF A=0 THEN NO$(L)="00":GOTO 480
418 G%=LOG(D)/LOG(B%)

420 FOR J=G% TO O STEP -1

430 X=INT(B%"J)

440 C%=D/X

445 REM LINE 455 INSERTS A LEADING ZERO
446 REM IN HEXADECIMAL VALUES OF LESS
447 REM THAN 'F'(15). EX. '7'='07' ETC.
450 NO$(L)=NO$(L)+MID$(H$,C%+1,1)

455 IF A<16 THEN NO$(L)=('0'+NO$(L))
460 D=INT(D-C%*X)

470 NEXT J

480 FOR J=F% TG O STEP -1

490 X=INT(B%~J)

500 C%=INT(I/X)

510 N1$(L)=N1$(L)+MID$(H$,C%+1,1)

520 I=INT(I-C%*X)

530 NEXT J

146

L+l

532 REM SUBROUTINE FOR DECIMAL TO HEXADECIMAL CONVERSION ENDS HERE

535 L

’

O T W F I ST
R R N

R~] o - . . > . "

t - m .. = FRUVEPINESF IR IR I S moTw
= & = = wod i (o] o - -

MBS e S PRSI YRS HY T ® e L

",N0$(5),
G W4

) His
. Muu.,nyusn.. SRS R YRR YRS YRR EE R aE
=3 "’%“NMMNN _,r.%rxu..”u.”“. “VUH9~4.w.u_ﬁ%vmm:..p%w TRE IR EBESEASMERI R
0 “N-,mmmm “;.-.ﬂ CFEEE R R W R n FEITRIYEEREFsans
S CHEDYHEHIS YRS NE YL N Y D WBESOYRTR
% mn "mﬁwEﬂmmm_ﬁﬂu_&”ﬁwﬂﬁﬁﬁwﬁﬁ@uﬁuu.ﬂﬁnﬁm"ﬁwmmmm@m%ﬂ“h@“
m.. nim/NH.MW}’MMWh ”.Wu‘.w.wwmum.uﬁm%mmw%. _ﬁ%ﬁnﬁnﬁuﬁEm&m%_ﬁﬁﬂh“w*w%%mmumu%%
Wnn HNMM..NMW//. HEEREESFERINENRSISES OIS EELE LR S S
mu \MWMWMMN“ . MR W R ST R IRR R I NG MR2BE N
< w",m’m,mym’ m mwmm&.m“ﬁ”,@x@%nui@@.:aﬂu@uiiwd«ﬁwﬁuﬂb‘mﬂmvﬂ%mwumm.m
w B ss S ittt EEL LY T
_.r_9 IS S m mmwn.w“w&ﬁﬁhﬂuwﬁnﬁﬁ%"ﬁ%ﬁ@ﬁmrﬁﬂm"ﬂﬁﬁmmmfﬁﬁ R

R T oounou . D bk o g o . o
wm HM\INMW”MW % mu.‘:mrﬂmu..““mm#mi_n%.wunwpuw.%.%_.v%ﬁﬂmmmufﬁﬁm
Av.hm \Hm”w/d(n/.\/n%\ = ﬁn”HM.n.,_J.......H:_ ..-....».mJ.ﬁ..‘.ﬁ%.i_uw_..u,,..ﬁ_w%ﬂ»kﬂw._mwpmmmwfumﬂﬁ“@
T-W Q\n,%%%% UB.’; . .wu\rubuv_u.miﬁﬂu%wwﬁﬁ.%@.ﬁﬁmwﬁ“%umwnﬁmm,pnm REZEDES
Mmmﬂn ¢0¢ Z2zz=Z Pwn \4}n.9M/\ MR ZEIHEHASYHR IDHE AL TR Y S RESER NN
== = = = - 3 TR I o o el o ; [. ;
FmEm "N’\h WWH’WHW mﬂmﬂm.ﬂ%w:#“w“wﬁuﬁwﬂﬁﬁmrhc WERSYEHIREEIIRDE
T L S CHES2hT AR ICAMNCIRALARIIHERE ARSI
Em b n’%\%./.\/l\n“_/}\?ﬂ mm._ﬂ o BLHEARNITIRIPWYAASSFYRIEWES TS RISD MRS RN
SCFHMNH .\I./N?”.\H..\n(/_\n(/.\ﬁu\ T..MW".!%".) Lo TRV e . R I i e R i A I L e RO R e R R
mwmm w" mmmmm Mﬁnﬂu.’m.)\/w,m @Wm@%?ﬁﬁﬁu.%@ﬁ%: SRS SYEEIERIRIS SRS
mmN% Z= eemien mmn% .mv DEHBHBER ORI RIS RERYEns D
E%E*mu\rw MM\”W,".’W’ DHEESEYEHSYSHNSYYRHYMESY YIRS
WWBNSHMNH-,H.,"’"’") wHMHE 7= ARSI YRR YEI YR YRS OGBS P
Mwmwmmm’mmmmm M”Mn;w".’ @Mw.wu"%_&“. TEQEUITHEFERDEAEYENY RIS NNE
SmHzJT.Mn SEEES WmNT.\nh_/W,_\/I HERtEduuIHaayERJdARamaesanoesnee®
MWM”UJJMHWWWWW Emmﬂnm SHSTEAEBEREMNESHYUNSEEIIESYYS IR SRR RS
LRL%WTNIWTNIMTNIMTNI Mmmmmnm W%%M%ﬁﬁﬂﬂﬁﬂﬂ%ﬁﬁf@ﬁﬁﬁ?%&ﬁﬁ it L Bl
WWWWFMMMMMMMJ.__WALWWWWWWW SDOHRIAYRERRAVMESR I S S YRR RS T SR e
xroz~aonocoaoalZegaecxocrd FAANFEIAIXIEBESPEASEIFIRNLYESI ST REa
AR RAY S ST I REERES883 Yy EREREERRANSESEIGNIIRRRARNAARAEE

Example of a partial Hex Dump obtained withthe Program
147

FERDY.

BRERK IN 248

CONTINUQUS MOTION GRAPHICS OR
HOW TO FAKE A JOYSTICK WITH THE PET

Alan K. Christensen
1303 Suffolk
Austin, TX 78723

When using the PET graphics to represent motion
it becomes apparent that the BASIC supported
routines are not fast enough to allow smooth
movenment . If the keyboard and screen are ac-
cessed directly the appearance of controlled mo-
tion can be greatly enhanced. As an example I
will use a short game written in BASIC although
the techniques can be used by machine language
programs with even better results.

Let me first describe the game and then explain
how the effects are produced. The initial ap-
pearance of the screen is two walls at the right
and left sides of the screen with a ball and
pound sign (#) which I will refer to as a bat
(see figure 1). The ball goes into motion and
appears to bounce off the top and bottom of the
screen and the walls. Each time the ball strikes
a wall it causes part of the wall to disappear.
The ball will also bounce off the bat and the
player is able to control the motion of the bat.
This is done with the keys surrounding the num-
ber 5. As each key is pressed the bat moves in
the same relative direction as that key was to
key number 5 (see figure 2). For example if the
number 8 is pressed the bat moves straight up.
If the number 1 is pressed the bat moves along
a diagonal towards the lower left side. The bat
will continue to move for as long as the key is
pressed. The object of the game is to make the
ball strike the grey area of the left wall be-
fore it strikes the grey area of the right wall.

Lines 5-100 of the program are initialization. A
special input array is set up (more about this
later) and boundary conditions are set. Lines
80-90 print the walls. If the walls were placed
directly on the screen the right wall could be
one column further right and both walls could be
extended one line. For this example I chose the
simplest method of initializing the screen.

The boundaries are memory locations 32768 thru
33727. The characters on the PET screen are re-
jated directly to the values in memory locations
32768 thru 33767. The screen fills from left to
right and is 140 characters wide therefore poking
a value into byte 32768 causes a character to
appear in the upper leftmost (home) position,
byte 32768 + 39 is the upper rightmost postion,
byte 32768 + L0 is the leftmost position of the
second line and so forth until byte 33767 which
is the lower rightmost character position. Table
1 gives the values for each character to cause
it to appear on the screen. Lines 25 & 30 set
the conditions to keep the ball and bat from
moving off the top or bottom of the screen. The
grey areas of the walls provide the boundaries
for the sides of the screen. The right grey
area is actually the reverse field (rvs) of the
left grey area therefore a peek (32768) would
return a value of key & = 38 + 64 (for shift) =
102 while a peek (32768 + 39) would return 102
+ 128 (for rvs) = 230. This provides an easy
method of detecting when the sides of the screen
are reached (and in this example an indication
that the game is over).

To provide motion for the ball a horizontal and
vertical displacement are used. This 1s so the
ball can move in directions other than up, down,
sideways, or diagonal. X0 is 32768 + the column
and YO is the line number with 0 as top line. X
and Y are increments which are added to X0 and

148

YO to get the next position. (P1 is the next
position while P2 is the current position). If
the next position is beyond the top or bottom of
the screen the direction of Y is reversed and
the next position is set to the current posi-
tion (lines 120-125) this provides a bounce
The character on the screen at the next position
is now checked (line 155). If this is equal to
35, the pound sign, (line 160) then the bat has
struck the ball and it bounces off at a new
angle. The mcgnitude of vector (S,Y) is fix-
ed at 1 so that the ball cannot outrun the bat.
If the next position has a screen value of 160
(32+128 for rvs blank) the white area of a wall
was struck and the horizontal direction is re-
versed (line 180) but the new position is al-
iowed to stand causing the ball to move into the
wall. Lines 185-190 check for the winning or
losing conditions. Finally in line 195 the next
position is poked to the screen and the current
position is blanked out (line 210). The current
position is reset to the new position after
looping to line 105 and the ball continues to
move.

The bat is supposed to respond to the player and
so a different movement scheme is used. The key-
board input routines supported by BASIC require
one or more keys to be pressed and released for
each input value to be received. This requires
the player to tap at the keys like a woodpecker
to control motion. To avoid this problem the
program accesses byte 547 of the operating sys-
tem working storage. When the interpreter is
running the operating system places a unique
value in this byte for each key that is pressed.
(table 1 also gives these values, they are not
the same as the screen character values). These
values are then translated to a displacement for
the bat.

The bat position is initialized and always kept
at the actual address of the memory location
which corresponds to the bats screen character
position. Al contains the next position while
A2 contains the current position. In lines 35-45
an array E was set up with displacements stored
at index values matching the values which may
appear when any of the 8 keys surrounding number
5 is pressed. All other values of E are zero. By
using the value at Peek (547) as an index to E
the proper displacement for that key is obtain-
ed. For example when key number 2 is pressed,
the value 18 appears at byte 547 and E(18)=40
which when added to the current position gives a
next position one line lower(see lines 130-135)
but if no key is pressed byte 547 contains 255
and since E(255)=0 the next position is the same
as the current position and no motion takes
place. The position is checked against the
boundaries (line 140-150) and the screen is up-
dated (lines 200-205). The program is now fast
enough for the motion to appear continuous.

One drawback to this input scheme is that even
though the keyboard buffer is not used to con-
trol the bat, it still fills up. Lines 310 and
320 show how the buffer had to be emptied before
using the BASIC input routines again in line
370. When using the continuous keyboard input
from a machine language routine it is important
to leave the interrupt set to keyboard input or
byte 547 may not get updated.

o

DEE!
@EES
Ol [B)
Figure 1 Figure 2
Showing the placement of the wall boundaries
at the beginning of the game
TABLE 1
KEY SCREEN KEYBOARD KEY SCREEN KEYBOARD
VALUE VAL (547) VALUE VAL (547)
@ 0 15 blank 32 6
A 1 48 ! 33 80
B 2 30 " 34 72
C 3 31 # 35 79
D 4 47 $ 36 71
E 5 63 % 37 78
¥ 6 39 & 38 77
G 7 46 Single 39 70
H 8 38 (40 76
1 9 53) 41 68
J 10 45 * 42 33
K 11 37 + 43 17
L 12 44 comma ’ 44 21
M 13 29 - 45 9
N 14 22 period - 46 2
) 15 60 / 47 49
P 16 52 y: g 48 10
Q 17 64 1 49 26
R 18 55 2 50 18
S 19 40 3 51 25
T 20 62 4 52 42
U 21 61 5 53 34
v 22 23 6 54 41
w 23 56 7 55 58
X 24 24 8 56 50
Y 25 54 9 57 57
Y4 26 32 : 58 36

149

10
15
2y
a5
30
35
40
45
59
55
60
65
70
75
89
85
90
100
105

110

X0

TABLE 1 {cont)
KEY SCREEN KEYBOARD KEY SCREEN KEYBOARD
VALUE VAL (547) VALUE VAL (547)
C 27 ; 59 28
\ 28 69 e 60 5
] 29 14 = 61 1
AN 30 ; 59 5 62 12
< 31 : 75 ? 63 20

The screen character values for a shift-key is the value of the key + 64.

To get a reverse

field (rvs) of a character (including shift-key characters) take the character value +128.

Additional keyboard values:

Home T4
RVS 8
STOP 4 (note pressing this key will still

Up, down curser 66
Sideways curser 73
Del 65

REM ## WAL RRFEAK #%#
REM ALAN X« CHRISTENSEN

REM AUSTIN, TEXAS

DIM E(256)

T = 32768

B = 33727

E(S8) = =4) : £(50) = =40 3 F(ST)
£(42) = = 1 ¢ El41) =

£(26) = 39 : L£(18) = 40 F(25)
X0 = 32788

Yo = 11

Al = 33148

P1 = 33188

X = RND(1) «,5 1 Y = SQR(1=X#X)

) ”4\ H
" oclr
FOR T =1 T0 25
? HE*AAII SPC(33)”N§"
rvs
NEXT 1
REM #% END OF INITIALIZATION #a
A2 = Al ¢ P2 = P1

X0 ¢« X : YO = Y0 + Y

n

-39

41

150

PROGRAM LISTING

115
120
125
139
135
140
145
150
155
160
165
170
175
180
185
190
195
260
205
210

21s

stop the program)

Pl = X0 + 4g = INT(YD)

IF P1 > B THFN Y =

IF Py < T THEN Y

1% = PEEK (547)

Al = Al + E

IF PEFK (A1)

(1%)

-¥ 1

-Y 3

Pl=p2

pPl=p>

> 10y THEN A1r=A2

IF Ay > B THFy A1=A2

IF A1 < T THEN A)=A2

P% = PEEK(P1)

IF Pg <> 35 THFN 180

X = SGN{=X) & RND(1)
Y = SQR(1=X#X)

P1 = P2

IF P$=160 THEN x=-X

IF Pg = 192 THEN 300

IF Pg = 230 THEN 4400

POKE Pl.87

POKE Ale35

SGN(P2~-a2)

1IF A1<>A2 THEN POKE A2+32

IF P1<>P2 THEN POKE P2+32

GOTO 1¢C5

PROGRAM LISTING (cont)

300 REM ### TNNFR ##s#
410 GET A%
310 GET a%
420 IF A% <> """ YHEN 410
320 IF ag <> v THEN 310 .
439 o v " SPC(12)" § SORRY A+TRYFAGAIN'
339 o v ”SPC(IE)“?CONGRATULATION¢' ome rvi off'“rvs off**rvs
*hmne rvs 440 FOR T = 1 TO 106 ¢ NEXT 1
340 FOR t = 1 TO 100 ¢ NEXT I
45¢ ?ll+”SPC(12)”$ORRY TRY AGAINU
350 ?" , "SPC(12)"cONGRATULATIONS" home
Y home 460 FOR T = 1 TO 100 ¢ NEXT I
360 FOR 1 = 1 TO 100 ¢ NEXT 1
4709 GET A%
379 GET a$
480 1IF A = vt THEN 430
383 IF a3 = THEN 330
490 GO TQ 56
390 GOTO 5S¢
500 END

400 REM nuw LLOSER sras#
A

. THE SIEVE OF ERATOSTHENES

Over 2000 years ago, a Greek geographer-astronomer named
Eratosthenes devised a way of finding prime numbers that is still
the most effective known. He simply started with the number 2
and crossed out all multiples of 2. Then he took the next number
that had not yet been crossed out (3) and proceeded to cross out
all multiples of it. And so on until he had found all the prime
numbers he was interested in. This method of finding prime
numbers is called a “sieve” because the prime numbers fall
through the holes created by crossing out all the non-prime
numbers.

So what? Well, this gives rise to an interesting program for the PET.
Picture the 1000 character positions on your PET’s screen as the
numbers 1 to 1000. Now cross out all the positions that represent
non-prime numbers. What you have left is a strange pattern that
would make an interesting bathroom tile arrangement. It also
shows the placement of the prime numbers occurring between 1
and 1000.

10 PRINT CHR$(147);
20 DIM A(200}

Line 10 simply clears the screen. PET users can use the CLR
function rather than the CHR$(147). Line 20 reserves storage for
the prime numbers we will extract later. (There are more prime
numbers than you might think in the range of 1 to 1000.)

9 FOR N=2 TO 35

95 IF PEEK(N132767)=102 THEN 130

100 FOR X=327671(2*N} TO 33767 STEP N
110 POKE X,102

120 NEXT X

130 NEXT N

This double loop is the meat of our program. We only loop 34
times (2 to 35) because it is only necessary to test for multiples of
primes ‘up to the square root of your limit - in this case
SQR(1000}=31t. (I added a couple for good measure). Line 95
checks the screen to see if our next potential prime has already
been crossed out. Line 100 does the stepping across the screen,
and line 110 does the “crossing out.” Note that the PET’s screen is
actually addressable memory beginning at 32768(10).

Gary }. Bullard
1722 S. Carson, #1502
Tulsa, OK74119

151

200 N=1

210 FOR X=1 TO 1000

220 Z=PEEK(327671X}

240 IF Z=32 THEN POKE(327671X),8 1:A(N)=X:N=Nt1
250 NEXT X

Now that we have crossed out all the non-primes, it is time to see
what was left. This loop examines the screen to find the spaces.
The index “X” will tell us what character we are looking at and the
counter “N” will give us the next empty space in our table to store
the prime number. Line 200 sets the table pointer to 1. Lines
210-250 is the loop that examines the screen. Line 220 looks at the
current character position and puts its value in Z. In this case, the
value will be 102 if it is a crossed out position, and 32 if it has not

been crossed out. Line 240 then tests the value of Z and either
ignores it if it has been crossed out or saves it in our table if it is
prime.

300 GET AS:IF A$=" “ THEN 300

This line simply causes the PET to pause while you admire its
handiwork. When you are ready to see a list of the prime numbers,
press any key.

400 PRINT CHRS$(147);

410 FOR X=1 TO 200

420 IF A(X)=0 THEN STOP
430 PRINT A(X);

440 NEXT X

Line 400 clears the screen again. Lines 410-440 recovers our prime
numbers from the table and prints them. When the table returns a
zero, then we are finished, and the program will stop (line 420).

999 END
I hope you enjoyed this little bit of updated history. I'm sure old

Eratosthenes would have been very happy to have had a PET to
play with, but even 2000 years later he is not out of date.

INSIDE PET BASIC

Jim Butterfield
14 Brooklyn Avenue
Toronto, Ontario

Canada

PET BASIC is pretty good: fast, powerful, and
flexible. Most of the time you can write pro-
grams without ever needing to know what's in-
side. But there are a few handy things that you
can't do without "dissecting" BASIC. Let's take
a couple of examples. Suppose you want to look
through a big program for some reason. You
might have a small bug: say a variable, X4,
ends up with a wrong value, and you want to find
out why. You could list the program, a screen-
ful at a time, looking for every time XU is
used; but eye fatigue starts to set in. Wouldn't
it be nice to have a utility program to do the
scanning for you?

Program FIND

Program FIND will do the job for you. To write
such a program, though, we need to know how
BASIC is built. The first line of your BASIC
program starts at address 1025 (or 0401 hexadec-
imal). That's where we must start our search.
Each BASIC line will have the following format:
The first two locations contain a pointer to the
next line of BASIC; or if they contain zeros,
there is no next line and this is the end of
your program. The next two locations contain
the BASIC line number. After that (starting at
the fifth location) we have the BASIC line it-
self, It's mostly in ASCII code, but keywords
such as FOR, PRINT, or SQR are stored as special
codes known as "tokens". At the end of the line
we'll find the value zero.

How do we use this information to scan BASIC for
a given expression? First, we set our address,
A, to 1025; that's where BASIC starts. Next, we
skip over the first four bytes (pointer and line
number) and search from A+l4 to the end of the
BASIC line. We'll recognize the end-of-line by
the zero at the end. If we find the expression
we want, we can output the line number by ob-
taining it from A+2 and A+3. It's in binary, so
we use the expression 256%PEEK(A+3)+PEEK(A+2) -
printing this value will print the line number.

When we reach the end of the BASIC line, we must
go to the next line, of course. It will be
right behind the zero that marked the end of our
previous line; or we can use the pointer to jump
ahead with A=256%*PEEK(A+1)+PEEK(A). If the
pointer is zero, we know that we have come to
the end of the BASIC program and can stop.

Program RESEQUENCE

Let's move on to something more complicated.
Suppose you want to renumber your BASIC program.
Since we know how the line numbers are stored in
BASIC, it seems easy; we'll just change them to
the new values. There is a hitch, however.
What happens if your program contains a GOTO 300
statement. - and now line 300 is renumbered so
that it becomes line 380? Problems - that's
what happens.

What we must do is search out all the GOTOs and
GOSUBs, including those included in ON.. state-
ments, and be ready to change the old line num-
bers to new ones. One way of doing this is to
build a table of "old" addresses, match them

MaM 2X5

with the "new" line numbers, and then correct
them after renumbering has been accomplished.
To help make things more complicated, we have
two different ways of using the THEN statement.
If we have a line such as IF J=12 THEN Y=2,
there is no line number reference to correct.
On the other hand, if we have IF J=12 THEN 530,
we must be ready to fix up 530, replacing it
with a new line number if necessary.

More difficulties: if we have a statement which
says, for example, GOTO 5, and with the renum-
bering we want to change it to GOTO 100, we
won't have space! And making space isn't that
easy: you may recall that the lines of BASIC
are "chained" together with pointers; if we
lengthen a BASIC 1line, all the pointers will
need to be fixed up! This last problem is too
tough to resolve in a simple manner - let's
sidestep it by printing a warning notice if it
should occur.

How do we approach this job? We separate the
program into three phases. Phase 1 looks
through the program for line number references
and builds a table. Phase 2 does the actual re-
numbering (the easiest part of the whole job).
Phase 3 looks through the program again and cor-
rects the line number references. How do we
look through the program? The same way as with
program FIND. We're looking for three keywords:
GOTO (token 137), GOSUB (141) and THEN (167).
Sometimes we'll also allow a comma (44) so that
statements such as ON X GOTO 100,200,300 will be
allowed. You'll see this testing for tokens on
line 60220 of RESEQUENCE.

If we find one of these keywords, we must con-
vert the following ASCII numbers into a value V
corresponding to the line number. During Phase
1, we build these line numbers into a table at
60090. Phase 2 is a snap. In lines 60030-60040
we change the line number and then check to see
if the old number was in table V%. 1IF so, we
fill in the cross-reference. Phase 3 is the
long one. We must repeat the search of Phase 1.
Then, in 60110 to 60150 we must build the new
line number {(in ASCII) and insert it - with ap-
propriate tests and warning notices.

Making Them Work

Both FIND and RESEQUENCE are written in BASIC.
That means that they will have to reside in
PET's memory along with the programs they are
dealing with. RESEQUENCE is constructed so that
it doesn't renumber itself, of course; and FIND
will examine itself, reporting any occurences of
the search string. Another problem arises, how-
ever: how can you get two programs into the PET
at the same time? We need to load either FIND
or RESEQUENCE together with the program that is
being processed. A normal PET load wipes out
the old program when a new one is loaded. You
could always add FIND or RESEQUENCE by entering
it at the keyboard; this would add the utility
program to the existing program in memory. But
such a procedure is lengthy and it would be easy
for errors to creep in. There must be a better
way. One good way 1is to use the screen as a
"holding buffer". You could load program FIND,
and list it onto the screen. Then load the pro-
gram you want to search. FIND will be wiped out
of memory, but it's still on the screen - so you

152

can move the cursor back to displayed line 9000,
and hit RETURN eight times. FIND will be re-
stored to memory, where it now shares space with
the program to be scanned. This doesn't work
too well with a longer program like RESEQUENCE,
however. The program is too big to fit on the
screen - much too big. There must be another
even better way. Larry Tessler of Sphinx opened
the door with his program UNLIST, which made
true program merging possible for the first
time. Since this breakthrough, an even better
method has been devised by Brad Templeton of
Toronto.

UNLIST - A Procedure for Merging Programs

Here's how it works. Be sure to follow the in-
structions carefully and exactly. Prepare the
programs you will want to merge in the following
manner. Load the program. Place a blank tape
into your cassette unit. Now type:

OPEN 1,1,1:CMD 1:LIST
When the tape stops, type:
PRINT#1:CLOSE1

and your merge tape is ready. At a later time,
when you want to merge the program, here's what
to do. First, mount the merge tape you previ-
ously prepared and type OPEN 1. Now clear the
screen, give exactly four cursor downs, and type
the following, but DO NO HIT RETURN:

POKE611, 1:POKE525, 1: POKE527,13:7"h"

(h is cursor home; shows as reverse S). Don't
hit return: press cursor home and give six (6)
cursor downs. Now type exactly the same line
(two lines below the first line) and then hit
RETURN. The tape will more; the merge will take
place; and finally, an error notice will print
between the two lines. Stop the tape if it's
still going, and then type CLOSE1. Miraculously
the merge has taken place!

How does it work? 1It's a little complex; but if
I hinted that POKE 611,1 transfers control away
from the PET's keyboard to the cassette tape,
you'd have part of the story. And if I mention-
ed that poking 525 and 527 simulates a RETURN
key being hit, you'd have another part. But,
you don't need to know what makes it work in
order to use it. Use it; benefit from it; and
enjoy it.

FIND for PET

Need to search a program for an express, a var-
iable, or a keyword? Slip program FIND in be-
hind your program (it's not very long) - then
insert a line 1 to say what to search for

and the job's done. Every line in memory which
contains the same expression as line 1 will be
reported. This includes line 1 itself, of
course, and any lines in program FIND ... as
well as the program you're searching. The
program is listed here spaced out for read-
ability - close in the spaces when you input to
save space,

9000 A=1025 : X=PEEK(1029) FOR J=1 TO 1E3 : FOR
K=A+4 TO A+83

9001 P=PEEK(K) : IF P=X THEN GOSUB 9005

9002 IF P<>0 THEN NEXT K

9003 A=256*PEEK(A+1)+PEEK(A) : IF A>0 THEN

NEXT J

9004 STOP

9005 FOR L=1 TO 80 : Y=PEEK(1029+L) : FI Y=0
THEN ? 256%PEEK(A+3)+PEEK(A+2); : RETURN

9006 IF Y=PEEK(K+L) THEN NEXT L
9007 RETURN

Example: to find all FQOR statements in a pro-
gram; insert FIND (above) and then insert line 1

1 FOR

Now invoke FIND with RUN 9000. The program will
print 1 followed by any program lines containing
FOR followed by 9000 9000 9005 (9000 prints
twice because it contains two FORs).

FOR is a keyword, and doesn't store as three
separate characters, so you wouldn't find it
if you searched for characters FO. This can be
handy: if you were looking for variable F you
wouldn't get all the FORs printed.

Modifications: if you squeezed P=0 just ahead
of RETURN on line 9005 (it's a tight squeeze) a
line number would print only once even when it
had multiple matches; you might or might not
want this feature.

IMPORTANT: Don't forget to wipe out line 1 and
program FIND when you're finished with them.

RESEQUENCE for PET

60000 END

60010 TO= : DIM V%$(100),W%(100) : GOSUB 60160 :
FOR R=1 TO 1E3 : GOSUB 60210

60020 IF G THEN GOSUB 60090 : NEXT R

60030 GOSUB 60160 : FOR R=1 TO 1E3 : N=INT
(M/256) : POKE A-1,M-N¥256

60040 POKE A,N : V=L : GOSUB 60070 : W%(J)=M :
GOSUB 60170 : IF G THEN NEXT R

60050 GOSUB 60160 : FOR R=1 TO 1E3 : GOSUB 60210
: IF G THEN GOSUB 60110 : NEXT R

60060 ?"®*END¥" : END

60070 J=0 : IF T<>0 THEN FOR J=1 TO T : IF V%(J)

<> V THEN NEXT J : J = 0
60080 RETURN
60090 IF V<>0 THEN GOSUB 60070
T+1 : VE(T)=V
60100 RETURN
60110 GOSUB 60070 :
60120 W=W%(J)
RETURN
60130 FOR D=A TO B+1 STEP-1 : X=INT(W/10)
Y=W~-10%X+48 : IF W=0 THEN Y=32

: IF J=0 THEN T=

IF J=0 THEN RETURN
; IF W=0 THEN 2"GO";"L";L;"2":

60140 POKE D,Y : W=X : NEXT D : IF W=0 THEN
RETURN
60150 ?"INSERT";W%(J);"L";L : RETURN

60160 F=1025 : M=90
60170 A=F : M=M+10

60180 F=PEEK{A)+PEEK(A+1)¥256 : L=PEEK(A+2)+

PEEK(A+3)%¥256 : A=A+3 : G=L<6EH
60190 RETURN
60200 S=0
60210 V=0 : A=A+1 : B=A : C=PEEK(A) : IF C=0

THEN GOSUB 60170 : ON G+2 GOTO 60210,60190
60220 IF C<>137 AND C<>141 AND C <>167 AND C<>S
GOTO 60200

153

RESEQUENCE:

60230 AzA+1 : C=PEEK(A)-48 : IF C=-16 GOTO 60230
60240 IF C>=0 AND C<9 THEN V=V¥10+C : GOTO 60230
60250 S+U4 : A=A-1 : RETURN .

RESEQUENCE can sit quietly behind your program.
When you say RUN 60010, your program is renum-
bered. RESEQUENCE gives error notices if:

A. a GOTO or GOSUB statement wants to go to
a non~-existant line;
B. there isn't enough room for a new (higher)
line number.
In both cases you're given the (new) line number
where this happens. RESEQUENCE doesn't run fast
(allow about a second per line, more for large
programs), but it's dependable and very useful.

Author's Notes:

Program comments: Line 6000 stops the user pro-
gram if it gets here. Lines 60010-60020 extract
all GOTO, GOSUB, and THEN references and build
them into a table. Lines 60030-60040 renumber
all 1lines, and cross-references the table if
needed. Line 60050 updates all line references.
Subroutines: 60070 looks for an entry in the
line number table. 60090 inserts a new entry
into the table. 60110 revises a line number
reference. 60160 starts a new scan of the user
program; 60170 continues the scan with the next
line. 60210 scans the user program for GOTOs,
etc.; value S is used to accomodate ON A GOTO
... type situations.

Reader questions suggest that the following additional information may be
useful:

UNLIST procedure: when you mount the previously prepared merge tape and
type OPEN 1...

-follow this statement with a carriage return in the normal

way,

-PET will want to read tape; press PLAY as requested. Tape
will move, and eventually PET will report FOUND. Now clear
the screen and continue with the POKE 611,1 procedure.

the program as written will handle line numbers up to 32767,

which gives lots of scope in program-writing. If you need to
handle higher line numbers, change V%(to ¥(throughout the

program.

Using Y%(saves space in memory, since integer arrays are
stored very efficiently. However, the highest integer allowed
is 32767, so that higher line numbers won't fit.

It's probably obvious that the user program must have all its
lines below 60000 - since RESEQUENCE itself starts at that point.

154

GENERAL

[T o 1= - | KRR O pages 155 to 224

Manufacturers of 6502 MiCroCOmMPULErSt 156
6502 Interfacing for Beginners: The Control Signals ... 157

Bufferingthe Bussest 159

An ASCll Keyboard Interfacecooiiivinnnn 162
Real Time Games ON OS | .. vt vt ittt i it te i et a e a e 165
650X Opcode Sequence MatCher et 167
Cassette Tape CONIONErottt 173
Expand Your 6502-Based TIM MORItOroiuiiiiii e 177
6502 GraphicsS ROULINES vtiaire 179
A Close Look at the Superboard Ilo it e 182
TWO SOt TIM PIOGraMS oot oottt it iiiaae e ieia s a s aa s 186
A 100 Microsecond, 16-Channel Analog to Digital Converterovvvvennn 188
Using Tiny BASIC to Debug Machine Language Programsccovnennnnnnes 193
The OSI Flasher: Basic Machine Code Interfacing i 198
The MICRO Software Catalog« o v ittt a i 200
6502 Information Resources Updatedo 210
6502 BiDHOGIAPRY « .« v v v e ete ettt e 212

Manufacturers of 6502 Microcomputers covered in Best of MICRO Volume 2

APPLE COMPUTER INC. APPLEII
10260 Bandley Drive, Cupertino, CA 95014 408/996-1010
COMMODORE BUSINESS MACHINES, INC. KiIM-1 & PET
330 Scott Blvd., Santa Clara, CA 95050 408/727-1130
OHIO SCIENTIFIC SUPERBOARD & Others
1333 S. Chillicothe Road, Aurora, OH 44202 216/562-3101
ROCKWELL INTERNATIONAL AIM 65
Microelectronic Devices, P.O. Box 3669, Anaheim, CA 92803 714/632-0950
SYNERTEK SYSTEMS CORPORATION SYM-1
P.O. Box 552, Santa Clara, CA 95052 408/988-5600

156

6502 INTERFACING FOR BEGINNERS;
THE CONTROL SIGNALS

Marvin L. De Jong
Dept. of Math-Physics
The School of the Ozarks
Pt. Lookout, MO 65726

By now your breadboard should look like a rat's
nest so we shall add just a few more wires. So
far you have used several decoding chips to pro-
duce device select pulses (also called chip sel-
ects, port selects, etc.) These pulses activate
a particular I/0 port, memory chip, PIA device,
interval timer or another microcomputer compon-
ent. Almost all of these components must "know"
more than that they have been addressed. They
must know if the microprocessor is going to READ
data from them or WRITE to them. The R/W con-
trol 1line coming from the R/W pin on the 6502
provides this information. It is at logiec 1 for
a READ (typically LDA XXXX) and at logic 0 for
a WRITE (typically STA XXXX).

If you have ever tried to wrap your mind around
timing diagrams for microcomputer systems you
soon realize that system timing is also import-
ant. Suppose that a memory chip is selected by
a device select pulse. A 21L02 chip, after
being selected, must decode the lowest 10 add-
ress lines itself to decide which of its 1024
flip-flops will become the output data. This
takes time, so the data at the output pin is not
ready instantaneously. The 6502 simply waits
for a specified amount of time, and at the end
of this period it reads the information on the
data bus. If the access time of the chip is too
long, the 6502 will read garbage; otherwise it
will get valid data.

Likewise, during a WRITE cycle, the microproces-
sor brings the R/W line to logic 0, selects the
device which is to receive the data, and at the
end of a cycle it signals the divice to read the
data which the 6502 has put on the data bus.
The signal which successfully concludes both a
READ and a WRITE instruction is the so-called
phase-two clock signal symbolized by Og. In
particular, it is the trailing edge (positive to
zero transition) of this signal which is used.

All the timing for the microcomputer is done by
the crystal oscillator on the microcomputer
board and the clock circuitry on the micropro-
cessor itself., A clock frequency of 1 MHz pro-
duces a machine cycle of 1 microsecond in dura-
tion. Near the beginning of the cycle the ad-
dress lines change to select the divice which
was addressed, and the R/W goes to logic 1 or
logic 0 depending on whether a READ or a WRITE
was requested. If a READ was requested, some
device in the system responds by putting data on
the data bus. Typically this happens during the
second half of the cycle when 0, is at logic 1.
Finally, at the end of the cycle, but before the
address lines or the R/W line have changed, 0g
changes from logic 1 to logic 0, clocking the
data into the 6502. The same kinds of things
happen during a WRITE cycle, except that now the

external device uses the trailing edge of the 0a
signal to clock the data, while the 6502 puts

the data on the bus at a slightly earlier time
in the cycle. For details refer to the 6502

HARDWARE MANUAL.

The circuits you have built so far, together
with a few more chips, will demonstrate the eff-
ect of the control signals. Refer to Figure 1
of the last installment of this column (MICRO,
Issue 6, p. 30), and to Figure 1 of this issue.
You will see the LS145 and the LS138 have not
been changed too much, in fact all of the conn-
ections to the LS145 should stay the same. The
device select pulse from the LS145 goes to G2A

as before, but another signal goes to G2B in the
new Figure 1. For the moment disregard the low-
er L3138 and LS367 in Figure 1 of this issue.
The new signal to G2B of the L3138 is our WRITE
signal. It is produced by NANDING the F7W'sig-
nal with 0g and it is an active-low signal. On
the KIM-1 it is called RAM-R/W and is available
on the expansion connector. Most other 6502
systems will very likely also have a RAM-R/W
signal.

Its effect in Figure 1 is to inhibit the devic
select pulse from the LS138 whenever the R/W
line is high (during all READ instructions),
but to allow the device select pulse to occur
when the R/W line is low and 0, is high. Thus,
the top LS138 in Figure 1 selects output ports
only, and the device select pulse from it term-
inates on the trailing edge of the 0g, producing
a logic 0 to logic 1 transition simultaneously
(almost) with Op. This pulse is inverted by the
LSO4. Consequently, a WRITE instruction pro-
duces a positive pulse at the G inputs of the
LS75 whose duration is about 1/2 microsecond and
whose trailing edge coincides with 0,.

The 74LS75 is a Y4-bit bistable latch whose Q
outputs follow the D (data) inputs only when the
G inputs are at logic 1, in other words during
the device select pulse from the LSOY4 inverter.
The trailing edge of this pulse latches the @
outputs to the value of the D inputs during the
device select pulse. If you had a great deal of
trouble following this, you may want to check
the reverse side of this page to make sure there
is nothing valuable on it and then destroy this
by burning or shredding! Otherwise proceed to
to the experiment below.

Connect the circuit shown in Figure 1, omitting
for the time being the lower LS138 and the
LS367. You can also omit the connection of add-
ress line A3 to G1 on the top LS138 if G1 is
connected to 45V as was indicated in the last
issue. 1In other words, simply add the LS04 and
the LS75 to your circuit of the last issue. The
RAM-R/W signal must also be generated if your
6502 board does not have one., Simply use one
inverter on the LSO4 to invert the R/W signal to
R/W, then NAND it with the 0 , and run the out-
put of the NAND gate to the G2B pin on the LS138.

The address of the device is 800F if the connec-
tions are made as shown in the figure. If other
pins on either the LS145 and/or the LS138 are
changed the address will be different. The
switches shown connected to the D inputs may be
implemented with a DIP switch or jumper wires.
An open switch corresponds to a logic 1 while a
closed switch is logic 0. Set the U4 switches to
any combination then load and run the following
program:

0200 8D OF 80 STA DSF.
The LEDs should indicate the state of the
switches. If you add the statements

0203 4C 00 02 JMP START

then you should be able to change the switches
and the LEDs will follow the switches. Try sub-
stituting an AD OF 80 (LDA DSF) for .the 8D OF 80
instruction. Nothing should happen, even though
the same address is being selected, because on
LDA instruction the R/W line is high, inhibiting
the LS138 from producing a device select. Fin-

1R7

ally, connect the data lines D0-3 from the 6502
to the D-inputs of the LS75, making very sure
that the LS145 is de-selecting other locat-
ions. On the KIM-1 this means that pin 1 of the
LS145 is connected to pin K on the application
connector and pin 9 of the LS 145 is connected
to pin J. The appropriate pull-up resistors
must also be added. With the data lines conne-
cted run the following program:

0200 A9 04
0202 8D OF 80

LDAIM $o04
STA DSF.

Play around with different numbers in LDAIM ins-
truction and explain your results. If nothing
seems to make sense, it may be that your data
lines need to be buffered, a topic we will take
up next issue. If your results make sense you
will have discovered that we have configured a
I-bit output port whose address is 800F. Adding
another LS75 to connect to data lines DU-D7 and
whose G connections also go to the output of the
LSOk will give an 8-bit output port. Seven
other output ports, addresses 8008 through 800E,
could be added using the other device select
signals from the LS138, LSO4 inverters, and LS375
latches.

If you want to make an input port wire the cir-

don't have much more room on your circuit board
you might want to simply reconnect the upper LS-
138 to become the lower LS138. A couple of con-
nections do the trick. Set the switches to any-
thing you like and run the program below.

KIM-1 users should see the hex equivalent of the
switch settings appear in the right-most digit
on the display. Owners of other systems can
omit the last two lines of the program, stop it,
and examine the location 00F9 to see that the
lowest four bits agree with the switch settings.
Experiment with other switeh settings to make
sure that everything is operating correctly.

The completed circuit of Figure 1 gives one U-
bit output port (provided the data lines are
connected to the D inputs of the L3 75) and one
L-.bit input port, addresses 800F and 8007 resp-
ectively. These two ports are easily expanded
(two more chips) to become 8-bit ports. Like-
wise the circuit of Figure 1 could be expanded
to give a total of eight 8-bit input ports and
eight 8-bit output ports.

Next issue we will look at a slightly different
input port, and we will look in more detail into
three-state devices and the data bus. You may

cuit for_the lower LS138 in Figure 1. If you want to keep your circuit together until then.
0200 AD 07 80 START LDA DS7 Read input port data
0203 85 F9 STA DISP and store it in location 00F9.
0205 20 1F 1F JSR SCANDS Jump to KIM display subroutine.
0208 4C 00 02 JMP START Repeat program.
T I
/ 5
Ao > A M
vau o— Bls OUTPUT PORT
Al B> 2 ' fe 1575
3 Lswse 2100 QOL/6 {\]l<
> \\h——————_——
A ¢ 0
A3 6las N3y ez @"
Q*sV & N 6oz @l O
ﬁ? 8 AN 1lp3 ¢93‘7 /137TI
AIB>A G2A N\
13145 p ff IZ3
Al4T>18 et sV $
4 43 ? +§V v
' /6
AisT>1C
| 1] G%A L5367
N4 v7 (L LI
218 INPUT PORT J\l
| LS/38
¢ B— e a 2L L PS>0
>y] g N 4 TR s
—Ola28 P T o/
6ler AN & @—Z——D 02
g | ____vo ° 317 p>o0s

Figure 1.
port interface for the 6502.

A four-bit input port and output

158

65062 INTERFACING FOR BEGINNERS:
BUFFERING THE BUSSES

Marvin L. De Jong
Dept. of Math-Physics
The School of the 0Ozarks
Pt. Lookout, MO 65726

The address bus is the set of 16 conducting
lines interconnecting the 6502 and numerous
other integrated circuits in the computer system
such as memory chips, PIAs, decoding circuits,
etec. On my 8K memory board the address bus is
connected to 64 memory chips. The address bus
carries the addressing information from the 6502
to the other components in the system. It is,
consequently, a one-way bus, in contrast to the
data bus which carries signals both ways.

The control bus is a set of conductors which

conpect the 6502 control signals (0 , R/W,
SYNC, RST, NMI, IRQ, RDY, and SO) with the other
components in the microcomputer system. Some

control signals originate in the 6502 and these
are bussed to the system. Other control signals
e.g. NMI and IRQ, originate somewhere in the
system and are bussed to the 6502. None of the
control signals use a bi-directional bus 1like
the data bus.

Finally, the data bus is a set of 8 conductors
connecting the 6502 and the other devices in the
system. It presents a special problem because
it is required to carry information two ways,
hence the name "bi-directional data bus." On a
WRITE command the data bus carries an 8-bit word
(one bit on each line) from the 6502 to a memory
location, while on a READ command the data bus
carries information from a memory location to
the 6502. On my 8K memory board each data line
is connected to 8 memory chips.

¥HY BUFFER?

There are two reasons for buffering uni-direc-
tional busses like the address bus and the con-

trol bus:

1. The address and control pins on the 6502 are
rated to drive one standard TTL load. In any but
the simplest computer system there will be
heavier loading than this.

2. Every conductor including those which make
up the busses has some capacitance. Capacitors
require time to charge and discharge and "dis-
tort" prapidly changing waveshapes. Buffer chips
can drive a much larger capacitance than the
'6502, and consequently may be inserted to pre-
serve the integrity of the waveshapes of the
signals.

In addition, the data bus requires a special
kind of buffer. Recall that the microprocessor
is capable of reading data from any of 65,536
devices. But only one at a timey,please. All
the others should act as if they are not there,
which means they should be disabled somehow. If
two devices are Jboth attached to a data pin, one
trying to raise it to logic 1 and the other try-
ing to lower it to logic 0, not even a prophet
can predict the result. The third reason for
buffering applies only to bi-directional busses
and may be summarized:

3. Buffers must be capable of isolating the bus
from all of the devices on the bus except those
which have been addressed (for example, the 6502
and an input port) and between which data is be-
ing transmitted.

159

BUFFER/DRIVER CHIPS

We mentioned earlier that all the bus pins on
the 6502 are rated to drive one standard 7400
series TTL load. This means that you could con-
nect about four T4LSO0 series chips to a bus
line, but if you tried to hang additional chips-
on these lines the circuit would probably not
operate. For the address bus and the control
bus the solution is to connect the 6502 pins di-
rectly to two 7UOU inverters (or TULSOW's). A
7404 can drive 10 standard TTL loads and about
40 LS loads, while a THLSO4 can drive 20 TULSOO
series loads. This should provide adaquate
drive for most systems, provided the bus length
is not to great. If you have a KIM-1 schematic
you will note that both R/W and 0 are buffered
in this manner, but that none of the address
lines are buffered because the KIM-1 system is
small enough to not require buffering. However
if you expand, the address lines will also re-
quire buffering. As an example, see KIM USER
NOTES, Issue #7,8 where Jim Pollock gives a KIM
to S-100 circuit.

There are other chips called Bus Buffers/Drivers
which can be used either on uni-directional

busses or the bi-directional data bus. They
come in packages of four (quad), six (hex) or
eight (octal) buffer/drivers to a chip. If you

want to look up the specs on some of these chips
here are a few of the more popular ones.

T4LS125 quad
T4LS126 quad
L8367 hex
8T97 hex

DM8093 quad
DM8094 quad
DM8097 hex

81LS97 octal

All of these except the 81LS97 are readily
available (Jameco, Godbout, Jade, etc.). _ The
only place I have been able to find 81LS97% is
Hamilton-Avnet. They are a bit more expensive
and come in a 20 pin package, but they are nice
because they can handle eight lines. Note that
we have already used the T74LS367 to buffer ad-
dress lines. Refer to the last several columns
of this feature.

The truth table and logic symbol for a typical
buffer/driver are given in Figure 1. Carefully

-focus your beady eyes on the function of the G

(gate) input.

Note that when G is low the output follows the
input logic level. The device is then doing its
thing, namely driving the particular bus line to
which it is attached. The inversion circle in-
dicates that the buffer/driver is active (works)
when the gate signal is a logic 0. Some buffers
have no inversion circles,and they will be
active when the gate is at logic 1. Perhaps the
most important feature is the third state of the
output in the truth table, which we have label-
led "disabled." When the gate is high the de-
vice behaves as if it were disconnected from the
bus, that is just as if a switch in series with
output were opened. This property is the reason
for calling these devices "three-state buffer/
drivers" or" or "TRI-STATE buffer/drivers."
(TRI-STATE is a trademark of National Semicon-
ductor.)

Figure 2 shows how an LS 125 might be used on
the bi-directional data bus. Only two bus lines
are shown for simplicity. During a WRITE in-
struction the R/W line is low, enabling the buf-
fers which drive the signals from the 6502 to
the external devices. The other buffers which
drive the 6502 are disabled. Analyze what would
happen if they weren't disabled! During a READ
instruction the R/W line is high, it is inverted
by the LS04, and it enables the buffers driving
the signal from the external devices to the
6502.

The scheme shown in Figure 2 is not the only
possibility. For example, the S-100 bus would
not have pins 3 and 5 connected, nor pins 8 and
12 connected. Instead, the data bus is divided
into two separate busses at this point. The bus
lines connected to pins 3 and 8 become a "data
out" bus, while the lines connected to pins §
and 12 become a "data in" bus. I am not aware
of all of the advantages and disadvantages of
this scheme, so we will not pursue it further.

AN EXPERIMENT

Connect an LS125 as shown in Figure 3. Note
that RESET will very likely cause all the LEDs
to light. Now run the following program:
0000 A4C 00 00 START JMMP START
This is an infinite loop. Do not try to relocate
the program or the experiment may not work. You
should observe that the LEDs on DO and D1 are
off while the other two are one. Can you ex-
plain why before I do?

Analyzed by clock cycles the activity on the
data bus may be summarized as follows:

The LEDs connected to D3 and D2 get a pulse once
every three clock cycles, which the eye inter-
prets as a continuous glow. Now connect the
gates (pins 1,4,10,13) to +5V instead of ground.
None of the LEDs light. Why?

AN OBSERVATION

Refer to Figure 1 in the "INTERFACING...."
column in MICRO #7. The input port illustrates
how a buffer/driver isolates the data bus.
Note that the device select pulse is connected
to the gate of the LS367. Thus, only when the
address lines select the input port and the 6502
is in the READ state does the LS367 control the
data lines. Otherwise it is disabled and the
6502 gets its data elsewhere.

The output port of the same circuit illustrates
another point. Suppose we had say eight output
ports. Data lines D0-D7 would each have eight
LS inputs hanging on them, and the 6502 would
probably be unable to drive them. The solution
would be to buffer the data lines from the 6502
to the output ports. In this case one would
probably connect the R/W line to the buffer/
driver gates.

160

AN APPLICATION

Again refer to Figure 1 in this column in MICRO
7. Recall that the data lines were to be con-
nected to the D inputs of the LS75 to complete
the output port, replacing the switch. A com-
plete 8-bit output circuit, with buffering, is

shown in Figure 4. The device select circuitry
is not repeated here. Up to eight output ports
can be implemented using the device select
pulses from the LS138. All you have to have
are LS 75s. The buffering shown in Figure U
would be more than adaquate for eight ports.

The 8-bit port with LEDs attached can be
used as a debugging tool among other things.
At a point in a program where you suspect
trouble, and want to see the STATUS REGISTER
for example, put a BREAK command. The last
thing on the stack after a break is the status
register contents. So, the interrupt vector
should point to a program which pulls

the last word off the stack and loads it at
the address of the output port, STA $800F. A
little panel could be made which indicates
LED goes with which flag.

The scheme just mentioned can obviously be
varied to indicate the contents of any of the
important registers. One could get very elegant
and use four ports to indicate X, Y, accumulator
and status register simultaneously. Better
yet, use the information you have learned to
display the contents of X,Y,A, and P while the
computer is in the single-step mode.

What's next? I hope to go into a keyboard input
port in a little more detail, then lookat a
memory interface, unless I get some other
ideas that is. Anywaysyou ought to step out from
among the trees to get a look at the forest by
taking a long and studied look at Figure 1.1 of
the MOS TECHNOLOGY HARDWARE MANUAL, the first
figure in the book. A lot of the ideas we have
been discussing are summarized there in a dia-
gram of the microcomputer system as a whole.

Parts 1list of components used for the experi-
ments.,

1 AP Circuit Board
(holds 8, 16-pin DIPs)
coil, #22 wire

LEDs

'Edge connector for KIM-1
TULS 145

TULS138

THLSOU

TULS367

TULSTS

T74LS 125

TULST6

4.7K to 10K resistors
DIP switches

PN PON et cd N et v O

¢

An 1S125 and LSO4 in a bi-directional data bus buffering circuit.
two data lines are shown buffered.
all eight data lines.

Only

Four LS125s would be required for
In this scheme the "write" buffers and "read"

buffers are alternately disabled by the R/W line,
also disabled by device select pulses.

Sometimes they are

+5
From 6502 To Memory, I/O Ports, '14
9 Timers, etc.
g >—>2+ O
| N\
o B - ——
N
_ 13 02 B> o A R
pinlh +5 03 o TR
pin 7 Gnd >4 -
. 13 N
NEPRE A4
Figure 2. T*‘W TOBV | I ’
1y 5] AV
3 2 J.L.)> g Figure 3.
” Circuit to demonstrate data bus
& 3 15— $~D1 buffering. See text for details.
- TLLS 74LS75
125 g 6 10~ pp
Buffer/ }10 Bistable
» 12 Driver 11 7 Latch 9 13
13 13
L
< £
R/
T+ 57 T +5V
) 1L 5
2. 3 2 16 Dy
7 2>
- 5 6 3 L
5 > ws misys > D5
125
._2 | 8 6 [0
ps > Buffer/ |10 Bistable | > D6
Driver Latch
12 11 7 b
pr > 13 13 > 07
L.

S

g

T

¢

Device Select Pulse

Figure 4.

An 8-bit output port.

DS, is from an 7415138 and

150l inverter. The buffers could drive more ports.

161

6502 INTERFACING FOR BEGINNERS:
AN ASCII KEYBOARD INPUT PORT

Marvin L. De Jong
Dept. of Math-Physics

The School of the Ozarks
Pt. Lookout, MO 65726

Introduction

Many computer systems utilize a keyboard as an input device to
get data or instructions from the outside world. KIM and TIM
systems interface with teletype keyboards in which a 7-bit ASCII
word is sent one bit at a time to the computer. This is called “serial
input” and it is very common. Of course, the computer is capable
of reading all 7 bits of an ASCll word in one byte. When operated
in this way the keyboard input is just another location in memory,
and the mode is sometimes referred to as “parallel.” We will
assume that the ASCII keyboard makes all 7 bits available at once
and that it produces a positive strobe signal when the ASCII data is

stable.

The following ingredients are necessary to implement a parallel
keyboard input port.

1) A device select pulse DS for the memory location of the
keyboard

2) Three-state buffer/driver connecting the keyboard to the data
bus when the device select pulse occurs, but disabling it otherwise

3) A means for the keyboard to communicate with the
computer; that is, the keyboard must inform the computer that a
key has been depressed

4) A means to store the data until the computer reads it into the
accumulator

Previous columns have dealt with the generation of DS pulse; it
will be assumed that the appropriate circuitry is available. A single
Intel 8212 Eight-Bit 1/O Port will be used as ingredients 2), 3), and
4) above.

The 82121/0 Port

A logic diagram for the 8212 is shown in Figure 1. The chip
contains three subsystems; the control logic (including the D5,
DS2, MD, ST8B, CIR inputs and the TNT output), the data latch, and
the three-state buffers. 1t all looks confusing but the situation can
be simplified quickly. TLR will be tied to logic 1 to disable it. MD
(for mode) is tied to logic O in the input mode. Examine the
AND-OR control logic carefully to see that this last step in effect
connects the strobe (STB) to the C inputs of the 8-bit data latch.
The keyboard strobe will be connected to STB. When the STB is at
logic 1 the Q outputs of the data latch follow the DI(1-7) inputs
from the keyboard. The data is latched (stored at the Q outputs) on
the trailing edge of the strobe. A single key depression results in
the ASCH data being stored in the 8212, with one bit left over.

Note that the STB is also connected to the C input on the service
request flip-flop. The trailing edge of the strobe latches a logic O
into the Q output of the flip-flop because the D input is tied to
logic O. The Q output is inverted, ORed, and inverted again to
produce a logic O signal at iNT whenever the strobe pulse occurs.
The INT signal is used to communicate with the computer, telling
it that data is available. Clearly it could be connected to the
interrupt (IRQ or NM} line on the 6502 to cause an interrupt. The

162

interrupt vector would point to a routine to read the keyboard, and
would have to include a LDA KYBD instruction.

The address of KYBD appears on the address bus during the third
cycle of the LDA KYBD instruction. The address bus is decoded to
produce a device select pulse-D—S for this address, and the device
select goes to pin DS1 on the 8212. At the same time DS2 is
brought to logic 1 by the R/W line from the 6502. When D51 is low
and DS2 is high the three-state buffers are enabled and the data
from the keyboard is placed on the data bus to be read into-the
accumulator.

SERVICE REQUESYT FF

DEVICE SELECTION >
\ = |sm
C>a?j) inT 2>
i3> os2 (ACTIVE LOW)
F—EN
>~ WA
L.d
> sve ™71 71 ovreur
! | | Burren
| 1
o } foq] 00, [©>
DATA LATCH | "kgi { |
B>or - o] Bl' 00, &>
T e, : l
| :
ey P ° ; } b0y
| 'LG‘:.
el
>0y Iy RE 004 i5>
isiilg
|
B>ots 5 o> o0 2>
| Hee]ll ll
Do Foh >+ on >
i
B> oy }-Hpo o} | ' 00;
pead iU
E>on | LI oo >
RESET ORIVER | : |
I
&R i
IACTIVE LOW)
" L.
Figure 1

Logic diagram of the 8212 1/O Port.

Also observe that the DS1.DS2 signal is connected to the “set”
input on the service request flip-flop. This puts a logic 1 at the Q
output which removes the interrupt request. The data has now
been read, the interrupt cleared, and the computer is free to go on
its way until another key is depressed and the entire process starts
over.

Experiment with the 8212
Figure 2 can be jumper wires. For a device select | simply used the

K1 select from the KIM-1, with a pull-up resistor added since the
KIM-1 does not provide pull-ups for these selects. Any address
decoding scheme to get a device select will do.

A circuit to experiment with the 8212 is shown in Figure 2. You do
not need an ASCII keyboard to construct this input port. The 74121
produces the necessary strobe signal. The data switches shown in

stp [~.STROBE PULSE "'5‘;_
+5v DEVICE SELECT CLR
f:g RIW :3(L1 1|4
N 2 To DATA BUS +58v
I o—2 4~ 0f o
——0
-0\0___5_ ¢ =~ DI -
[———————)
| Jo—F & >n 5 1ok
4
k‘ O ki /0 D3 i
| DN 8212 I 4
rs 5 T4121
—° PORT . 3| ONE-SHOT
o2 >S5 . T8
—0 |
Lo 2| 17 ~D6 "
—O -
R — RN
! ° ;¢ =
= MD":]'-3 d INT . 7o IRQ or NMI
Figure 2.

8-Bit Input Port. The 74121 may be used to strobe the switch
settings into the 8212. The power connections to the 8212 are pin
24 = 15V, pin 12 = GND.

and display the results on some output device. ! used the following
program for the KIM-1.

Connect the data output pins to the data bus of the 6502, but leave
the INT disconnected. Connect the strobe output of the 74121 to
the STB pin on the 8212. Write a short program to read the 8212

0000 AD 00 O4 BEGIN LDA KYBD K1 SELECT ON KIM USED
0003 85 FB STAZ DISP PUT IN DISPLAY CELL
0005 20 1F 1F JSR SCANDS JUMP TO KIM MONITOR
0008 4C 00 00 JMP BEGIN REPEAT

Load the program and run it. Set the switch settings for the data
input to the 8212 to some value. Note that the switch settings have
no effect on the displayed value. Now initiate the strobe pulse by
closing the switch to the one-shot. This clocks the data into the

correspond to the switch settings. To initiate a strobe pulse the
switch to the one-shot must first be opened, then closed.

Now connect the iNT to the ITia on your 6502. Run the following

8212 and the computer will read it. Change the switch settings and program:

initiate another strobe pulse. The data displayed should
0200 A2 00 BEGIN LDXIM $00 SET UP X AS COUNTER
0202 4C 02 02 HERE JMP HERE WAIT FOR INTERRUPT
0000 AD 00 O4 INT LDA KYBD GET DATA FROM KYBD
0003 85 10 STAZ MEM1 SAVE DATA
0005 E8 INX BUMP COUNTER
0006 86 11 STXZ MEM2 SAVE COUNTER
0008 40 RTI RETURN FROM INTERRUPT

163

Be sure to set your interrupt vector to 0000, 17FE and 17FF on the
KIM-1. Run the program starting at 0200. This is just an infinite
loop which initializes the X register to zero. Now hit the strobe
switch. Stop the program and examine the contents of 0010. It
should be identical to the switch settings for the 8212 inputs.
Examine 0011 where the X register was stored. Why doesn't it read
01 corresponding to the single interrupt we produced? Because the
mechanical switch used to initiate the strobe pulse was not
“debounced.”

The program is very simple. The computer loops forever in the JMP
HERE loop unless an interrupt occurs (IRQ pulled low by 1NT).
When the interrupt occurs the computer jumps to the interrupt

0200 20 20 02 MAIN JSR
0203 u4C 00 02 JMP
0220 ORG
0220 20 1F 1F INPUT JSR
0223 2C 00 O4 BIT
0226 30 F8 BMI
0228 AD 00 O4 LDA
022B 85 FB STA
022D 60 RTS

Play around with it changing switch settings and strobing data.
Basically what it does is test bit-7 to see if any new data is
available. MAIN is just a dummy program. It represents almost any
program which uses a keyboard input. For example, my Micro-ADE
assembler, disassembler, editor polls the keyboard for new data
and my BASIC interpreter does the same thing. Both programs
jump to subroutines which wait until new data has been entered
from the keyboard, then return to the main program to process

routine which reads the 8212 and stores the result in 0010. X is also

incremented and stored in 0011. This was done just to give you a

feeling for keybounce. The program then returns to the infinite
loop where vou found it when you stopped the program. Change
the switch settings on the 8212 then try the program again.

Disconnect the INT from the 6502 and connect it to the DI(8) input
(pin 22) on the 8212. We will now poll the input port to see if any
data is ready. If a strobe pulse has occurred, then bit seven will be
I?.‘iv,. because INT is connected to this bit. Once the 8212 is read,
INT goes high as does bit seven. Here is a program to
demonstrate polled service.

INPUT SIMULATES "MAIN PROGRAM"

MAIN

$0220

SCANDS DISPLAY LAST INPUT DATA
KYBD TEST BIT 7

INPUT LOOP IF BIT 7 = 1

KYBD ELSE, GET NEW DATA

DISP STORE IT

RETURN TO MAIN PROGRAM

that information. | used JSR SCANDS in my INPUT subroutine so
you could see the data on the KIM-1 display. Normally one would
not use the KIM-1 display in an input routine. Rather he would
“echo” the input with an output routine which would write the
data on his CRT or teletype.

If you have an ASCII keyboard with a