
JLJ.21651

PROGRAMMING ~
• INTERFACING

THE 6502,
WITH EXPERIMENTS

BY MARVIN L. DE JO NG

II i []J LI~C.[lU[l1!!! CONTINUING EDUCATION S.EAIES' ·
~. IJ~L fl:J1J 1lL:J edited by Larsen . rllus & Titus

The Blacksburg Continuing Education™ Series

The Blatksburg Continuing Education SeriesTlII of books provide 0 laboratory-or elCperiment

oriented approach to electronic topics. Present and forthcoming lilies in this series include:

• Advonced 6502 Interfadng
• Analog Instrumentation Fundamental.

• Apple Assembly languoge
• Apple Interfocing
• Basic Business Softwere
• BASIC Programmer's Notebook
• Cirdut Design Programs fo r Ihe Apple II
• Circu it Desig" Program. for Ihe TRS·BO
• Computer Auisl~ Home Energy Management
• Design of Active Filters. With bperimenh
• Design of Op-Amp Circuils, With Experiments
• Design of Phose·Locked Loop Circuits, With hperimenh
• De sign of Transistor Circuits, With Experim enh

• 8080/8085 Software Design (2 Volumes)

• BOBSA Cookbook
• Electronic Music Circuih
• 555 Timer Applications Sourcebook, With bperimenh
• Guide to CMOS Basics, Circuilt, & bperimenh
• Ho to Program and Interface th e 6BOO
• Introduction to Electronic Speech Synthesis
• Introduction to FORTH
• Microcomputer-Analog Converter Software and Hard ore Interfacing
• Microcomputer Dato·Bose Management
• Microcomputer Cesign and Maintenance
• Microcomputer Interfacing With the 8255 PPI Chip
• NCR Basic Electronics Course, With Experime nts

• NCR EDP Concepts Course
• PET Interfacing
• Programming and Interfacing the 6502, With Experiments
• Real Time Control With the TRS·80
• 16·Bi! Microprocenors
• 6502 Software Design
• 6BOI, 68701, and 6803 Microcomputer Programming and Interfaci ng
• The 6BOoo: Principles and Programming
• 6B09 Microcomputer Programming &. Interfacing, W ith Experiments
• STC Bus Interfacing ,
• TEA: An 8080/ B08S Co·Resident Editor/ Assembler
• TRS·SO Assembly Lan guage Mode Simple
• TRS·SO Color Computer In'ertocing
• TRS·BO Interfacing (2 Volumes)
• TRS·SO More Than BASIC

In most coses, these booles provide both text material and uperiments, hich permit on e 10

demons'rote ond explore the co ncepts that are covered in the book . Th ese books remain among
th e very few tho' provide step·by·step instructions concerning how to learn basic electronic can·
cepts, wire aCluo l circuits, lesl microcomputer inte rfaces, and program compute rs based on popu·
lor "licroprocessor chips. We have found that the booles are very useful to the electronic novice
..... ho de)ires to join the " electroniu revolution," with minimum time and effort.

Jonathon A. Titus, Christopher A. Titus, and David G. larsen
" The Blacksburg Group"

Bug symbol trademark Nano"a", Inc., Blacksburg, VA 24060

Programming &
Interfacing the 6502,

With Experi ments

by

Marvin L. De Jong

Howard W. Sams & Co., Inc.
4300 WEST 62ND ST. INDIANAPOLIS. INDIANA 46268 USA

Copyright © 1980 by Marvin L. De Jong

FIRST EDITION
FIFTH PRINTING-1983

All rights reserved.)J 0 part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any nwans, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. :\0 patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-21651-5
Library of Congress Catalog Card Number: 79-67130

Printed in the United States of America.

Preface

It is interesting that most of us have a completely different feel
ing toward learning something that involves a physical skill than
the feeling we haye when we approach an intellectual challenge. I
have observed people trying to learn to water ski, for example, en
during failure after failure before finally coming up out of the
water to experience the exhilaration of a successful first run. The
entire process seems to provoke very little frustration or aggravation.
On the other hand, the world is full of books that purport to make
learning something easy, and most of us are easily frustrated and
angered when we cannot understand something involving our
intellects the very first time we try. Perhaps we are too vain, but I
think the real problem is our unrealistic attitude toward learning.

All of this leads up to my hope that you will not give up easily
if you want to learn to program the 6502. Be patient with vourself,
and try to see if you can enjoy the process as much as the product.
Although I have made a serious attempt to explain concepts so that
newcomers to the field of 6502 assembly language programming can
easily understand them, no one can subtract from the efforts (and
enjoyment) required of the student. This is not a novel. It is a chal
lenge to you, the reader, to see if you can acquire a new and exciting
skill.

Moreover, I would like to emphasize the importance of obtaining
"hands-on" experience. Current theories of learning emphasize the
importance of concrete experiences before the ability to think ab
stractly is acquired. This is the principal reason for including ex
periments in the book. The experiments, or demonstrations, as many
might more properly be called, are intended to give you the prac
tice and concrete experiences required for the challenge of writing
your own microcomputer programs, a task that requires abstract
thinking.

MARVI~ L. DE JOXG

This book is dedicated to technology that is compatihle u:ith nature.

Acknowledgments

I give my editor in the Blacksburg group special thanks for
making many excellent suggestions that led to a much improved
manuscript. I am very appreciative of the interest and aid I re
ceived from both Rockwell International and Synertek. Their mar
keting and engineering staffs were always prompt and friendly when
I had questions or needed documentation.

I thank my wife, Donna, for typing the manuscript, and my son,
Jeff, and my daughters, Jane and Mary, for their interest in the
project.

Finally, I would like to thank my dog and my cat. Their complete
and obvious lack of concern gave me a perspective I needed for
writing this book.

Contents

PART I-PROGRAMMING THE 6502

CHAPTER

INTRODUCTION TO MICROCOMPUTERS

Objectives-Introduction-What Is a Microcomputer?-The 6502 :\1i
croprocessor-Introduction to Experiments-Experiments 1 Through 3

CHAPTER 2

WRITING AND EXECUTING SlMPLE

PROGRAMS USING DATA TRANSFER I"STRUCTIONS
Objectives - Introduction - Microcomputer Instructions - Addressing
Modes-The Microcomputer Program-A Simple Program-\Vriting
a Program-Loading and Executing a Program-The BRK Instruc
tion-The Single-Step Mode-Introduction to the Experiments-Ex
periments 1 Through 7

CHAPTER 3

9

11

28

SIMPLE INPUT/OUTPUT TECHNIQUES 50
Objectives-Inrtoduction-Input/Output Ports-I/O Ports and Data
Direction Registers-I/O Port Symbols-Input/Output Programming
-IMP Instruction-INC and DEC Instructions-I]'I;X, INY, DEX,
and DEY Instructions-Introduction to the Experiments-Experi
ments 1 Through 8

CHAPTER 4

LOGICAL OPERATIONS . 67
Objectives-Introduction-Logical Operations-AND, ORA, and EOR
Instructions-Programs to Demonstrate ORA, AND, and EOR In
structions-Using ORA, AND, and EOR Instructions to Control
Bit Values-Other Uses of Logical Operations-Introduction to the
Experiments-Experiments 1 Through 6

CHAPTER 5

ARITHMETIC OPERATIONS .

Objectives-Introduction-6502 Processor Status Register-Flag
Modification Instructions-ADC Instruction-Multibyte Addition
Decimal Addition-Twos Complement Arithmetic-Signed I\umber
Arithmetic-Signed Arithmetic and Overflow Status Bit-Experiments
I Through 5

CHAPTER 6

BRA~CHES AND Loops

Objectives-Introduction-Branch Instructions-Modifying the Proces
sor Status Register-Branching-Comparison Instructions-Bit Test
Instrnction-ASCII to Hexadecimal Conversion-Using Branch In
structions for Time Delays-Introduction to the Experiments
Experiments 1 Through 6

CHAPTER 7

REGISTER-SHIFT INSTRUCTIONS

Objectives-Introduction-Getting Acquainted With Register-Shift
Instructions-A 4-Bit Multiplication Program-An 8-Bit Multiplica
tion Program-Hex to ASCII-Decimal to Hexadecimal-Hexadeci
mal to Decimal-Experiments 1 Through 8

CHAPTER 8

INDEXED ADDRESSING

Obiectives-In troduction-Absolute Indexed Addressing-Zero-Page
Indexed Addressing-Data Tables-Code Conversion Programs-Mul
tiple-Byte Arithmetic-Indirect Addressing-Indirect Indcxed Ad
dressing Mode-A Simple Monitor-Indexed Indirect Addressing
Introduction to the Experiments-Experiments 1 Through 7

81

100

120

139

CHAPTER 9

SUBROUTINES, THE STACK, AND INTERRUPTS 172
Objectives-Introduction-Subroutines-The Stack-Nested Subrou
tines-Use of the Stack for Storage-Interrupts-Experiments 1
Through 7

CHAPTER 10

INTERVAL TIMERS .

Objectives-Introduction-6530 Interval Timer-6532 Interval Timer
-6522 Interval Timers-Using T2 Timer as a Counter-Using Tl
Timer-Precision Timing Program-Using Tl Timer to Implement
Frequency Counter-Making Music Using Tl Timer-Experiments
1 Through 8

PART II - INTERFACING THE 6502

INTRODUCTION TO PART II .

CHAPTER 11

ADDRESS DECODI)lG

Objectives-Introduction-Address Decoding-Address Decoding for
R/W Memory-I/O Port Address Decoding-Address Decoding Cir
cuit for 6522 Interface-6502 Instructions and Device Select Pulses
Introduction to the Experiments-Experiments 1 Through 5

CHAPTER 12

210

249

251

254

CONTROL SIGNALS, OUTPUT PORTS, AI'·11) ApPLICATIONS 282
Objectives-Introduction-Clock Signals, <Po (IN), <P1 (OUT), and
<P2 (OUT)-R/W Control Signal-Using Control Signals for an Out-
put Port-Memory-Mapped, Latched Hexadecimal Display-~1emory
Mapped Digital-to-Analog Converter and an Application to !-.1usic
SyntheSis-Other Control Pins on 6502-Experiments 1 Through 5

CHAPTER 13

DATA Bus, BUFFERING, AND ApPLICATIONS 304
Objectives-Introduction-Why Buffer?-Memory-Mapped Analog
to-Digital Converter-An ASCII Keyboard Input Port-Experiments
1 Through 5

CHAPTER 14

ApPLICATIONS 326
Introduction-Digital-Analog and Analog-Digital Conversion Using
the KIM-I-Employing the KIM-I Microcomputer as a Timer and
Data Logging Module-Employing the KIM-I as a Precision Keyer
and Automatic Message Sender-Catching Bugs With Lights: A Pro-
gram Debugging Aid-Lunar Occultation of a Star

APPENDIX A

DECIMAL, BINARY, AND HEXADECIMAL NUMBER SYSTEMS 360

Objectives - Introduction - Numbers - Decimal Numbers - Binary
Numbers-Bits, Bytes, and Nibbles-Hexadecimal Numbers-Exer
cises-Exercise Answers

APPENDIX B

INSTRUCTION SET SUMMARY . · 370

APPENDIX C

MICROCOMPUTER TECHNICAL DATA. · 373

APPENDIX D

PIN CONFIGURATIONS OF FREQUENTLY USED SN7400-SERIES CHIPS 403

APPENDIX E

PIN CONFIGURATIONS OF 81LS97 · 408

INDEX · 410

PA R T I

Programming the 6502

CHAPTER 1

Introduction to
Microcomputers

OBJECTIVES

At the completion of this chapter you should be able to:

• Identify the major components of a microcomputer and describe
their function. These include the microprocessor, R/W memory,
ROM, peripheral interface adapters, keyboard, display, and
monitor.

• Understand the READ and WRITE operations.
• Describe the function of registers in the microprocessor, in par

ticular the accumulator.
• Denne addressing and decoding.
• Understand the concept of memory space, memory blocks, and

pages.
• Examine and modify the contents of a memory location using

the keyboard and display.

INTRODUCTION

The power and versatility of microcomputers become evident
when one makes a list of some of the applications in which they
are currently being used.

• Traffic Controllers • Music Synthesizers • Solar Panel Orienta
tion Controllers • Cash Registers. Chess Challengers • Scientific
Instruments • Automobile Ignition Systems • Video Games • In
dustrial Controllers • Biomedical Instruments • Computer As-

11

sisted Instruction Devices • Speech Recognizers • Office Machines
• On-Line Data Processors. Word Processing Systems • Video
Tape Recorders • Process Controllers • RTTY and Morse Code
to ASCII Converters • Surveying Instruments • Indoor Environ
mental Controllers • Home Security Systems

The preceding list is just a beginning. It appears that there will be
an almost endless variety of applications. Programming and inter
facing a microcomputer are creative, challenging, and rewarding
endeavors. This book is intended to make you a part of these ex
citing developments by combining your study of the subject with
active "hands-on" experience.

The specific microprocessor chosen for study in this book is the
6502. It was first manufactured by MOS Technology, Inc., Valley
Forge Corporate Center, 950 Rittenhouse Road, Norristown, PA
19401. MOS Technology is now owned by Commodore Business
Machines, Inc., 3330 Scott Boulevard, Santa Clara, CA 95050. The
6502 microprocessor is also manufactured by Rockwell Interna
tional, Microelectronic Devices Division, P.O. Box 3669, Anaheim,
CA 92803, and it is manufactured by Synertek® Systems Corpora
tion, 150 South Wolfe Road, Sunnyvale, CA 94086. The 6502 is
currently the most widely manufactured microprocessor,1 and sev
eral other companies will soon be added to the list of those that
manufacture the 6502.

Although the contents of this book are applicable to any 6502-
based microcomputer system, particular emphasis is placed on three
of the most popular microcomputer systems. These are the KIM-l
manufactured by MOS Technology for Commodore Business Ma
chines, the SYM-l manufactured by Synertek Systems Corporation,
and the AIM 65 manufactured by Rockwell International. Photo
graphs of these systems are shown in Figs. 1-1, 1-2, and 1-3. These
three systems were chosen because of their popularity and the fact
that their edge connectors are compatible. Thus, the experiments we
describe may be performed on any of these three systems.

Other small computers that use the 6502 microprocessor and that
you may wish to use as a laboratory tool in connection with this
book include the PET, Apple II, JOLT, Puzzle, OSI Challenger,
and others. A firm that handles mail orders and that specialize in
6502 products is:

Micro Technology Unlimited
P.O. Box 12106
2806 Hillsborough Street
Raleigh, NC 27605

lLibes, Sol, "BYTE News," BYTE, 4, February 1979, p. 64.

12

,

Courtesy Rockwell International

Fig. 1·1. AIM 65 Microcomputer.

RNB Enterprises, Inc.

Johnson Computer
P.O. Box 523
Medina, OH 44256

2967 West Fairmount Avenue
Phoenix, AZ 85017

Seawell Marketing, Inc.
P.O. Box 17006
Seattle, WA 98107

WHAT IS A MICROCOMPUTER?

We will define a microcomputer as any computer system that
uses one of the popular microprocessors as its principal processing
unit. Popular microprocessors include the 6502, 8080A, 8085, 6800,
ZBO, and the 1802. These microprocessors are typically 40-pin inte
grated-circuit chips mounted in a dual-in-line package (DIP).

The terms microprocessor and microcomputer are frequently
used interchangeably. We will take microprocessor to mean one of

13

Courtesy Synertek

Fig. 1·2. SYM·1 Microcomputer

the integrated circuits mentioned above, while a microcomputer is
a system of components including as a minimum:

• A microprocessor such as the 6502.
• A clock circuit (I-MHz crystal in the case of the KIM-I)
• Semiconductor Read/Write (R/\V) memory, sometimes called

RAM which is an acronym for Random Access Memory
• Decoding circuitry
• Input/Output ports based on the 6520, 6522, 6530, 6532, or

other interface integrated circuits.

The components of a microcomputer system are connected by three
sets of wires or printed-circuit conductors called huses. These are:

• The control bus-variable number of lines
• The bidirectional data bus-eight lines designated D7-DO
• The address bus-16 lines designated AI5-AO.

Each of the conductors in a bus is called a line. Fig. 1-4 is a block
diagram of the KIM-I system that illustrates some of the components
and connections mentioned previously. In addition to these com
ponents, the diagram shows that the KIM-I also has a keypad and
a display. Most prototyping systems (microcomputers designed to

14

Fig. 1-3. KIM-I Microcomputer.

test and develop new programs and designs) such as the AIM 65,
SYM-1, and KIM-1 have keyboards and displays for interfacing with
human beings.

Other features that may be included in a microcomputer include
cassette tape interface, ASCII keyboard interface, teletypewriter
interface, CRT or oscilloscope output, line printer, floppy-disc mem
ory, multichannel AID and DI A converters, arithmetic logic units,
high-level language (BASIC, FORTRAN, PASCAL, etc.) inter
preters in ROM, speech-input circuits, etc. It is ironic that some
times the microprocessor is one of the cheapest ($10.00-$15.00)
components in the system. The fact that $15.00 integrated circuits
are surrounded by several thousand dollars worth of peripheral

15

16

,5 RO

~A~
EB~
~

EDF
E~~
U~

ADDPESSBUS
tH~
tJ ~
EK ~~--'---r---------------
EL~
EM~
EN~
EP~
ER~
ES~
E~
E15~
E14~

~13~

::12~
fie ~~--~-r----------------------r-------------------~--------------
E10~
f9~
18~
tI~
fU~
,', fCR-""_l-__ .I __ I ________ r-,.... __________ .I __________________ I ________ CO_'_'R_O,L _BU_S_

J~ ~ I", Ie I", I", l"i 1;0; I;;; I;:; I~ I~ Ie I~ I"" 1"+ - I", 00

rl

UJ
MPS

6530-003

_. __ en 00 c-_ ""

"" "" ct. <: <: « <C « « <l. <l.

APPLICATION CONN£(lOR

v~
II~

38 RO

~ ABO

---'!I ABI

---"! AB1

---'? AB3

,.!} AB'

...Ji ABS

---'? AB6
{ABO ABlSI ---.!.6 AB)

---'-' AB!

~ AB9
UI

~ ASIO MPS 6502

~ ABll

2. ABl2

,E- ABi3

~ AB14

~ AB15

,.!l DBO

r---B- OBI

~ DB1
IDBODB71 ~ DB3

r-1! DB'

c---'l DBS

~ DB6

~ DB)

~ 'ST

:;; ~ ~ ~ ~ ~ .;; ~

I~ I~ I~ I-I~ I~ I~ I~
= ~ I~ 1;:0 11!l IR: Ig I;;; b I:::; ~ I~ I~ I-I~ I", 1- b b b I", ~ I- 'ST

" ~ ~~~~~* ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ r-- 01
~ 0

r-- 'IW
~o--~ U2 r-- RAMRIW CONTROL

"f-

MPS r-- K0
lOGIC

-=- 6530-002
X'~KS

~ ~ ~ ~ i:l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ K7

~ ~ I"' I'" I" I~ I'" I'" l><l I~ I~ I:>: I~ I~ ~
K6

I I I I I I I I I I I I
TAPE &

I I
KEYBOARD & DISPLAY TElETYPE

Courtesy Commodore Business Machines, Inc.

of KIM·1 Microcomputer.

17

equipment is a tribute to the power and versatility of the micro
processor.

Some of the components in the microcomputer will be discussed
at this point because an understanding of their basic functions is
essential for learning how to program a microcomputer.

THE 6502 MICROPROCESSOR

Sixteen pins on the 6502 are dedicated to addressing; that is, they
control the two possible logic levels on each of the 16 lines that
form the address bus. Refer to Fig. 1-4 to identify pin numbers. The
logic levels are called "zero" and "one" although electrically they
are voltage levels. The address pins on the 6502, AB15, AB14, ABl3,
... , ABO in Fig. 1-4, determine a 16-bit binary number called the
address of a memory location (defined in the next section). The
address names and orders memory locations.

Since there are 216 unique 16-bit binary numbers, the 6502 is
capable of addressing 65,536 memory locations. The 16-bit address
is frequently divided into two bytes, a high-order byte or address
high (ADH), and a low-order byte or address low (ADL). In turn,
each of these bytes may be represented by two hexadecimal digits,
0-9 and A-F. The entire address is represented by four hexadecimal
digits. In this book, all hexadecimal numbers will have a "$" prefix.
Thus, $A9F4 is an example of an address. Readers who are un
familiar with binary and hexadecimal numbers are urged to study
Appendix A first.

Eight pins on the 6502 are connected to the data bus of the micro
computer. Refer again to Fig. 1-4 for details. The READ/WRITE
or R/W pin on the 6502 is connected to a line of the control bus
called the R/W line. Introducing these pins allows us to define two
important operations of the microprocessor.

A READ operation (the R/W line is at logic one) causes eight
bits of information (usually called data) to be transferred over the
data bus, from the memory location specified by the address on the
address bus to an 8-bit register in the microprocessor.

A WRITE operation (the RjW line is at logic zero) causes eight
bits of information to be transferred from an 8-bit register in the
microprocessor to a memory location specified by the address on the
address bus. The words "load" and "store" are sometimes used
synonymously with the words "read" and "write," respectively.

Because data are moved in one direction by a read or load opera
tion and in the other direction by a write or store operation, the data
bus is said to be hidirectional. Furthermore, since data are trans
ferred as 8-bit binary numbers, that is, one byte at a time, the
6502 is called an 8-bit microprocessor.

18

A register is an 8-bit storage location in the microprocessor. It is
used to store data upon which the microprocessor is to operate. The
contents of a register may also control the operation of the micro
processor itself. The most commonly used register as far as the pro
grammer is concerned is the accumulator. Other registers in the
6502 include the index registers, X and Y; the processor status regis
ter, P; the stack pointer, SP; and a pair of registers called the pro
gram counter high, PCH, and the program counter low, PCL. The
X and Y registers are used like the accumulator, but in addition they
may serve another purpose to be discussed in Chapter 8. The pro
gram counter will be described in Chapter 2, the status register
in Chapter 6, and the stack pointer in Chapter 9.

Memory
There are four kinds of memory locations:
• RAM-RAM is an acronym for Random Access Memory. It is

more precise to call it Read/Write or R/W memory.
• RO\1-ROM is an acronym for Read Only Memory.
• Input/Output Ports-These include the so-called data direction

registers (OOR) that determine whether a port will be used to
input data or output data. See Chapter 3.

• Interval Timers-One or more bytes of data stored at these lo-
cations determine the length of a time interval. See Chapter 10.

An R/W memory location consists of eight ordered bistable semi
conductor devices, each capable of storing one bit of a binary num
ber. Many such devices are located on a single integrated-circuit
chip. For example, the R/W memory chips on the KIM-l have 102410

such devices on each chip. The 2114 R/vV memory integrated cir
cuits on the AIM 65 and SYM-l have 409610 such devices. Each
memory location stores one byte of data. The data bits are ordered
07, 06, 05, ... , DO, from the most-significant bit to the least
significant bit. One state of the bistable memory device corresponds
to the bit being zero, while the other state corresponds to a bit being
one. The byte of data stored at any location may be displayed in
hexadecimal using the microcomputer output.

The microcomputer can read the data at an R/\V location and it
can write data to an R/\V location. Data in an R/W location is lost
when power to the microcomputer is removed. In contrast, data at
an ROM location is permanent, but the microprocessor can only
read the contents of an ROM location: it cannot write to that loca
tion. The purpose of having ROM locations is to store frequently
used programs and data that the user does not want to be altered,
either because of power failure or for other reasons.

In 6502-based systems the Input/Output ports are separate inte
grated circuits usually called interface adapters. Examples include

19

the 6530 and the 6532. These chips not only contain the I/O ports
and corresponding DDR, but may have additional R/W or ROM
locations as well as interval timers. Chapters 3 and 10 will cover
these topics in more detail.

Addressing and Decoding

The address of a memory location is a 16-bit number which names
and orders the location in memory space. Each R/W location, ROM
location, I/O port, DDR, and interval timer has a 16-bit address.
The address space of a microprocessor is the total of all memory
locations which the microprocessor is capable of addressing. As
pointed out above, the 6502 has 65,536 possible locations in its ad
dress space.

The microcomputer keyboard can be used to enter an address
in hexadecimal. The address is then displayed by the microcomputer
display output. Usually the byte of data stored at that location ap
pears in the two hexadecimal display digits on the right of the ad
dress display.

The microprocessor performs all of the addressing operations in
small systems. (Larger systems may use DMA, an acronym for
Direct Memory Access, where peripheral devices control the address
bus.) The process of activating a particular memory location when
the microprocessor places its address on the address bus is called
decoding. Frequently, much of the decoding is accomplished on
the memory chips. The R/W memory chips on the KIM-I, AIM 65,
and SYM-l decode the lowest 10 address lines, A9-AO. Lines A15-
A10 are decoded by other integrated circuits. Lines A15-A12 are not
decoded at all on the KIM-I. Address decoding will be considered
in more detail in Chapter 11.

Address Space

It is convenient to divide the address space into blocks. The
smallest block size is called a page and consists of 25610 memory
locations. Table 1-1 shows how the address space is divided into
pages. It is seen from the diagram that the high-order address byte
(ADH) is the page number, while the ADL byte gives the memory
location within a page.

The next larger block size after a page is a unit of 102410 locations
which is usually referred to as lK of memory. Recall that 210 =
102410• This means that 10 address bits uniquely specify each loca
tion in a lK block. This leaves six address bits, AI5-A1O, to "name"
a lK block. Six address bits can name 26 or 6410 blocks; thus there
are 64 lK blocks of memory in the address space, and bits AI5-AI0
determine the number of the block. (It might be added that memory

20

Table 1-1. Dividing Address Space Into Pages

Address High

I
Address Low

ADH ADL Address

(Binary) (Hexadecimal)
00000000 00000000 $0000
00000000 00000001 $0001 .

PAGE ZERO

.
00000000 11111111 $OOFF
00000001 00000000 $0100
00000001 00000001 $0101

PAGE ONE

00000001 11111111 $OIFF

11111111 00000000 $FFOO
11111111 00000001 $FFOI

PAGE 255 10

11111111 11111111 $FFFF

is usually sold in K units. For example, 4K, 8K, 16K and sometimes
32K bytes of memory are on a single printed-circuit board.)

The largest block size that will be discussed in this context is the
8K block consisting of 8 X 1024 locations. Each 8K block has 819210

locations. Since 8192 = 213, the remaining address bits A15-A13
are used to "name" each 8K block. Table 1-2 shows how the address

Table 1-2. Dividing Address Space Into 8K Blocks

A15 A14 A13 Block Name Hexadecimal Addresses

0 0 0 8KO $0:)00-$1 FFF

0 0 1 8Kl $2000-$3FFF
0 1 0 8K2 $40oo-$5FFF
0 1 1 8K3 $6000-$7FFF
1 0 0 8K4 $8000-$9FFF
1 0 1 8K5 $AOOO-$BFFF
1 1 0 8K6 $COOO-$DFFF
1 1 1 8K7 $EOOO-$FFFF

21

space is divided into 8K blocks. The 8K blocks are named and or
dered by a block name, such as 8KO for the lowest 8K block and
8K7 for the highest 8K block.

The KIM-I microcomputer uses only the 8KO block of address
space, and not all of the 8KO block is filled. An off-the-shelf KIM-I,
AIM 65, or SYM-I comes with IK R/W memory located in the low
est four pages of the address space; that is, hex addresses $0000 to
$03FF. The KIM-I has eight pages of ROM which contain its
monitor program. A memory map of this system is given in Fig.
1-5. Memory maps of the AIM 65 and SYM-l are given in Figs. 1-6

PAGE
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3

KO
2

I I
0

22

AVAILABLE ~
FOR

EXPANSION

II
KIM
ROM

6530·002

KIM
ROM

6530-003

-STACK-

2000
IFFF HEX

ICOO
IBFF

1800/
17FF
1700 --,

I
I

1400 '"

I
I

I

I
I

I
I

I
I

I
I

I

~ """'"
OECODED
FOR 4K
EXPANSION

I

I
I

I
I

I
I

I

I ".

..Q±QQ..l 1/ ".".".",
03FF / "."
0200/ "."."
01FF "."

64 BYTE
RAM

6530-002

64 BYTE
RAM

6530-003

/10 &
TIMER

6530002

1/0 &
TIMER

6530-003

STACK
PAGE 1

PAGE 0

-PAGCO- 0000
-----------~----~

17Ff } 17E7
KIM RAM

17E6

17CO

1
17BF APPLICATION

RAM

1780
177F

} KIM 1/0

1740
173F

} APPLICATION
1/0

1700

OlFF ---I

STACK
POINTER
INITIALIZED

OOFF
OOEF I
OOEE 17 BYTES

RESERVED
FOR KIM

Courtesy Commodore Business Machines, Inc.

Fig. 1·5. KIM·l memory map.

UNUSED

(FUTURE)

UNUSED

(FUTURE)

UNUSED

1---------

FFFF }

FF80

FFBOO }

EOOO

DFFF }

COOO

BOOO }
AFFF

ACOO

A800 i
A600

MOO)

AOOO)

SFFF i
8000

1000
OFFF

03FF

0000

~

SYSTEM RAM ECHO LOCATIONS '> SY6532 ECHO LOCATIONS
(INTERRUPT VECTORS) /

FUTURE ADDITION OF ASSEMBLER/EDITOR ROM

FUTURE ADDITION OF 8K BASIC ROM

SY6522 VIA 113 (U29) (pAGE 4-25)

SY6522 VIA 112 (U28) (PAGE 4-24)

SYSTEM RAMSY6532 (U27) (PAGES 4-21 THRU 423)

SYSTEM I/OSY6532 (U27) (PAGE 4-20)

SY6522 VIA III (U25) (pAGE 419)

FUTURE EXPANSION OF 4K SUPERMON MONITOR

4 K SUPERMON
MONITOR
(ON ROM) IK x 8

U18,U19

IK X 8
U16,U17

IK X 8
U14.U15

STACK

OFFF

OCOO
OBFF

0800
07FF

0400
03FF
02FF

OIFF

WRITE PROTECTABLE

WRITE PROTECTABLE

WRITE PROTECTABLE

OOFF) USED BY SUPERMON
00F8 MONITOR,(FEE,FF =

PAGE ZERO 0000 MEMORY POINTER)

Courtesy Synertek

Fig. 1·6. SYM·1 memory map.

and 1·7. You can see that these two systems have more ROM space
for their more elaborate monitor programs.

Monitor

The monitor is a program stored in ROM. The computer begins
to execute this program when power is supplied and/ or when a
reset button on the microcomputer is pressed. The monitors of the
KIM·l, SYM-l, and AIM 65 differ widely in their capabilities, but
they have in common the following features:

23

24

0000

03FF
0400

01FF
0800

08FF
OCOO

OFFF
1000

7FFF
8000

8FFF
9000

9FFF
AOOO

AFF
BOO

F

BFF
COO

0

F
0

F

IK x 8 RAM
(Zl7.Z18)

IK x 8 RAM
(Zll,Zl2)

IK x 8 RAM
(Z6.Z7)

IK x 8 RAM
(Z2,Z3)

ust
AVAILABLE
EXPANSION
ADDRESSES

!
AIM 65
1/0 AND

RAM
BASIC ROM

OPTION
(Z26)

BASIC ROM

OPTION
(Z25)

PAGE 1 & 2 REQUIRED FOR
AIM 65 OPERATION

{
0000 USER RAM
OOFF 1--___ --\ EXCEPT AS NOTED
0100 RESERVED FOR STACK
OIFF AND AIM 65

1 ON BOARD OPTIONAL
RAM EXPANSION
- USER AVAILABLE

SYSTEM

}
1000-9FFF OFF BOARD
BY DECODING ADDRESS LINES
(AO-AI5)

}
CS8 DECODED AND ROUTED
TO J3 EXPANSION CONNECTOR

} CS9 DECODED AND ROUTED TO J3

CFF
DOO o ASSEMBLER ROM

NOTES (1) PAGE 0 AND 1 REQUIRED AIM 65
OPERATION

F DFF
EOO 0

EFF
FOO

FFF

F
0

F

OPTION
(Z24)

MONITOR ROM
(Z23)

MONITOR ROM

(Z22)

(2) SEE DETAILED MEMORY MAP FOR
PAGE 0 USER RESTRICTIONS

(3) SEE DETAILED MEMORY MAP FOR
PAGE 1 USER RESTRICTIONS

NOTE (3) ADDRESSES I0009FFF
AVAILABLE FOR USER
OFF BOARD EXPANSION

Courtesy Rockwell International

Fig. 1·7. AIM 65 memory map.

• They allow the user to address any location with the keyboard,
and to display the address and the contents of that location.

• They allow the user to modify the contents of any R/W memory
location with data that is input from the keyboard.

• They allow the user to transfer control of the microprocessor
from the monitor to the user's program.

• They allow the user to interface the microcomputer with a cas-
sette tape recorder for the purpose of storing programs.

You may wish to compare and contrast the remaining features of the
monitors using the manufacturers' literature before deciding on a
purchase. For the purposes of this book, it is the preceding features
that are important.

INTRODUCTION TO THE EXPERIMENTS

The experiments in this chapter are designed to acquaint you with
some of the concepts that were introduced. You will also become
familiar with your microcomputer. Before starting the experiments
consult your user's guide to make the necessary power connections.
Also read the sections in that manual that describe how to display
and modify the contents of any memory location. The three micro
computer systems require different keystrokes to accomplish this
operation, and there is not sufficient space here to warrant including
the instructions for each of the different microcomputers.

EXPERIMENT NO. 1

Step 1

Apply power to your microcomputer and press the RESET button.
The display should light. If it does not, check your connections with
the instructions in your user's manual.

Step 2
Examine the contents of the location whose address is $0000. You

will have to press the "0" key at least four times, once for each of
the hexadecimal digits that represent the address of this location.
What data are found in this location?

Step 3

Enter the hexadecimal number $55 in location with address $0000.

Step 4

Now examine and modify the contents of $03FF; that is, load $33
into the location whose address is $03FF.

Step 5

Return and examine the contents of $0000. What do you find there?

(You should find that the number $55 is still there.)

25

Step 6
Remove the power supply connections to your microcomputer

or turn the power off. Turn it back on again, then examine the con
tents of locations $0000 and $03FF. What do you find?

(You will not find $55 in $0000 or $33 in $03FF because removing
power to an R/W memory location destroys the contents of that lo
cation.)

EXPERIMENT NO. 2

Step 1
Using the memory map for your microcomputer (see Figs. 1-5,

1-6, and 1-7), identify an ROM location.

($1800 is an ROM location in the KIM-I, $8030 is an ROM location
in the SYM-1, and $F947 is an ROM location in the AIM 65.)

Step 2
Examine the locations given above for your microcomputer. What

byte of data do you find there?

(You should find a $A9 in the location mentioned.)

Step 3

Remove power, then examine the ROM location again. What do
you observe?

(You should observe that the data are unchanged by a loss of
power.)

Step 4

Using the same ROM location, attempt to modify the data at
that address by writing a $FF to it. What do you observe?

(You should not be able to modify the contents of any ROM lo
cation.)

26

EXPERIMENT NO. 3

Step 1

Examine the contents of location $I3FF. What is the byte of data
found at this location?

Step 2
Modify the contents of $I3FF; that is, load some hexadecimal

number such as $99 into this location. What do you observe?

(You should observe that you are unable to load any data into this
location because it contains no memory device. Off-the-shelf KIM-Is,
AIM 65s, and SYM-Is have no memory devices at this location.)

27

CHAPTER 2

Writing and Executing
Simple Programs

Using Data Transfer
Instructions

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the terms: instruction, op code, mnemonic, pro
gram, assemble, load, execute, program counter, labels, and
symbols.

• Use the following addressing modes: immediate, absolute, zero
page, and implied.

• Use these instructions: LDA, STA, LDX, STX, LDY, STY, TAX,
TAY, TXA, TYA, and BRK. See Table 2-1 for a summary.

• vVrite, assemble, load, and execute short programs using the
data transfer instructions and the BRK instruction.

• Use the single-step mode for executing a program.

INTRODUCTION

You are urged to learn as many of the 6502 instructions as possible.
Although you will find that you can begin to write programs with
only a few instructions, fast and efficient programs for complex
tasks require a thorough understanding of the entire 6502 instruction
set and the various addressing modes. Some instructions and ad-

28

Table 2-1. Summary of Instructions and Op Codes
Introduced in Chapter 2

Addressing Mode

Instruction Description Immediate Absolute Zero-Page

LDA load Accumulator with A9 AD A5
Memory

STA Store Accumulator in Memory 8D 85
LDX load X Register with Memory A2 AE A6
STX Store X Register in Memory 8E 86
LDY load Y Register with Memory AO AC A4
STY Store Y Register in Memory 8C 84
TAX Transfer Accumulator to X

Register
TXA Transfer X Register to

Accumulator
TVA Transfer Y Register to

Accumulator
TAY Transfer Accumulator to Y

Register
BRK Force Interrupt

Implied

AA

8A

98

A8

00

dressing modes are more efficient than others. More efficient pro
grams generally run faster and take fewer memory locations for
storage of the program. It is the program that controls all of the
activity of a microcomputer.

Before describing instructions in detail, it might be worthwhile
to give the reader an overview of the 6502 instruction capabilities.
In other words, what can the 6502 do? A listing of the 6502 instruc
tions by categories, with simple descriptions of each one, is given
in Table 2-2. A cursory examination of this table indicates that the
6502 can transfer information from a memory location to an in
ternal register and vice versa; it can do simple arithmetic operations;
it can perform a variety of logical operations; it can test for certain
conditions and branch to another part of the program depending on
the outcome of the test (the branch and test instructions); the 6502
can shift the contents of memory locations and registers; and it can
perform a variety of other operations, including doing nothing (the
N OP instruction). The reader is not expected to fully comprehend
the instruction set at this time. The purpose of this book is to pro
vide an in-depth understanding of the instructions as we progress
through the various chapters that explain and illustrate the instruc
tions with a variety of programs.

MICROCOMPUTER INSTRUCTIONS

The basic elements of microcomputer programs are the instruc
tions. A microcomputer instruction is a set of one, two, or three

29

Table 2·2. 6502 Instructions by Categories

Data Transfer Instructions

LDA load Accumulator with Memory STA Store Accumulator in Memory
LDX load X Register with Memory STX Store X Register in Memory
LDY load Y Register with Memory STY Store Y Register in Memory
TAX Transfer Accumulator to X TXA Transfer X Register to

Register Accumulator
TAY Transfer Accumulator to Y TYA Transfer Y Register to

Register Accumulator

Arithmetic Operation Instructions

ADC Add Memory to Accumulator
with Carry

SSC Subtract Memory from
Accumulator with Borrow

30

Logical Operation Instructions

AND AND Memory with Accumulator ORA OR Memory with Accumulator
EOR EXCLUSIVE-OR Memory with

Accumulator

Shift and Modify Instructions

DEC Decrement Memory by One INC Increment Memory by One
DEX Decrement X Register by One INX Increment X Register by One
DEY Decrement Y Register by One INY Increment Y Register by One
ASL Shift left One Bit LSR Shift Right One Bit
ROL Rotate left One Bit ROR Rotate Right One Bit

Test Instructions

CMP Compare Memory and CPX Compare Memory and X Register
Accumulator CPY Compare Memory and Y Register

BIT Test Bits in Memory with
Accumulator

Branch Instructions

BCC Branch on Carry Clear BCS Branch on Carry Set
BEQ Branch on Result Zero BNE Branch on Result Not Zero
8M1 Branch on Result Minus BPL Branch on Result Plus
BVC Branch on Overflow Clear BVS Branch on Overflow Set

Modify Processor Status Register Instructions

CLC Clear Carry Flag SEC Set Carry Flag
CLD Clear Decimal Mode SED Set Decimal Mode
CLI Clear Interrupt Flag
CLV Clear Overflow Flag

JMP
JSR
BRK

Jump to New location
Jump to Subroutine
Jump to I nterrupt Routine

SEI

Jump Instructions

RTS
RTI

Set I nterrupt Flag

Return from Subroutine
Return from Interrupt Routine

Stack Operation Instructions

PHA
PHP
TXS

Push Accumulator on Stack
Push P Register on Stack
Transfer X Register to Stack
Pointer

PLA
PLP
TSX

Pull Accumulator from Stack
Pull P Register from Stack
Transfer Stack Pointer to X
Register

Do Nothing Instruction

NOP No Operation

bytes which, when read into the microprocessor in the correct
sequence, causes it to carry out a specific operation. Three simple
examples are:

• Load a byte of data from the memory location with the ad
dress ADH-ADL into the accumulator.

• Store the contents of the accumulator in a memory location
whose address is ADH-ADL.

• Add the byte of data stored at the memory location whose ad-
dress is ADH-ADL to the byte of data in the accumulator.

The first byte of an instruction determines the specific operation
to be carried out by the computer. In the three previous examples,
the second byte specifies the low-order byte of the address (ADL)
and the third byte specifies the high-order byte of the address
(ADH) of the location where the microprocessor is to find the data.

The particular instructions to which the 6502 responds are called
its instruction set. The 6502 instruction set is summarized in Table
2-3. This particular form of the instruction set is used extensively.
The 6.502 is capable of carrying out 56 different operations, some of
which may be done in as many as eight different ways called ad
dressing modes.

Since the first byte of an instruction determines the nature of
the operation as well as the addressing mode, it is these 8-bit
numbers that the user must know in order to program the micro
processor. Because 8-bit numbers are difficult to remember and
recognize, one seldom sees the binary representation of instructions.
Instead, they are most often represented in a hexadecimal format.
The hexadecimal equivalent of the first byte of an instruction will
be called the operation code or op code. Furthermore, as an aid in
programming, each instruction is given a mnemonic which is an
abbreviated name suggestive of the operation to be performed. Two
other descriptions of instructions are commonly used. One is the
logical expression and the other is an English language description.
The four ways of describing an instruction are illustrated in Ex
ample 1 for three different instructions.

Example 1: Illustration of Four Ways of Describing an Instruction

Mnemonic Logical Expression Op Code Description

LOA M --> A AD Load the accumulator, A,
with a byte from memory,
M.

STA A --> M

AOC

80

60

Store the contents of the
accumulator, A, in mem~

ory, M.
Add the byte in memory
to the contents of the ac·
cumulator. Add the carry;
result into A.

31

~
Table 2·3. 6502 Instruction Set Summary

INSTIUCTIONS IMMEDIATE A.SOllllE lE"OrAGE ACCUM IMPLIED (IND. X) liND I. ,
",OCEssaR STATUS

I 'A&E, X AIS. X AlS, Y IElATlVE INDIIECl I. PAGE, , CODES

MNEMONIC OPERATION OP n • OP n • OP n • 0 n • OP n • OP n • OP n • OP n • OP n • 0 n • OP n • OP n • OP n 76543210MNEMONIC
'NV-SDI C

Aoe A+M+e-A (4)(1) 69 2 2 60 43 65 3 2 61 6 2 71 5 2 75 • 2 70 • 3 79 • 3 N V ze Aoe

AND "'r'lM-A (1) 29 2 2 20 • 3 25 3 2 21 6 2 " 5 2 35 • 2 3D • 3 39 .. 3 N • Z • AND

AS L c~-o OE 6 3 06 5 2 OA 2 1 '6 6 2 'E 7 3 N • Z e AS L

Bee BRANCH ON C == 0 ,2) 90 2 2 Bee

Bes BRANCH ON C = 1 (2) 80 2 2 Bes

BED BRANCH ON Z == 1 (2) FO 2 2 BEO

B , T AAM 2e 4 3 24 3 2 M,M,. Z • B , T

B M' 8RANCHONN = 1 (2) 30 2 2 B M'

B N E BRANCH ON Z == 0 (2) 00 2 2 B N E

B P L BRANCH ON N = 0 (2) '0 2 2 B P L

BRK BREAK 00 7 , . , . , BRK

B V e BRANCH ON V == 0 (2) 50 2 2 Bve

B v S BRANCH ON V = 1 (2, 70 2 2 B v S

eLe o-e '8 2 , • 0 eLe

eLO 0-0 08 2 , • 0 e L 0

e L , 0-' 58 2 , e L ,

e L v o-v B8 2 , e L v

eMP A-M e9 2 2 CD .. 3 C5 3 2 e' • 2 01 5 2 05 " 2 00 " 3 DO • 3 N • Z e eMP

e P x X-M EO 2 2 EC .. 3 e4 3 2 N • Z e e P x

e P y Y - M eo 2 2 CC .. 3 C4 3 2 Z e e P Y

DEe M _ l--M eE 6 3 C6 5 2 06 6 2 DE 7 3 N Z • DEe

DE x X-I - ~ eA 2 , N • Z • DE x

DEY V-I - y 88 2 , N • Z • DEY

EaR A 'f' M-A (1) 49 2 2 40 " 3 4~ 3 2 " . 251 5 2 55 4 2 SO 4 3 59 .. 3 N • Z • EOR

, N e M .. l-M EE 6 3 E6 5 2 F6 6 2 FE 7 3 N • Z • , N e

, N X)(+ I-X E8 2 , N • Z • , N X

, N Y Y + I-V e8 2 T N • Z • , N Y

J M P JUMP TO NEW lOC .e 3 3

2 BJ

6C 5 3 J M P

J S R JUMP'SUB 20 • 3 J S R

LOA M-A 11) AS, 2 2 AD " 3 A5 3 2 AI • 2 B, 5 2 BO 4 3 B9 4 3 N • Z • LOA

lOX .. -x (11 14.2 2 2 AE .. 3 At) 3 2 I I BE 4 3 e. 4 2 N ••••• Z '" lOX

l 0 V M...,Y tl) AO 2 2 AC .. 3 A4 3 2 B4 4 2 Be .. 3 N ••••• z • l 0 V

l 5 " O-U:::::--Ol--C 'E • 3 .. 5 2 4A 2 1 56 • 2 5E 7 3 o ••••• z C l5 "
NOP NOOPERATION EA 2 1 · NOP

ORA ,,11M-A D. 2 2 00 .. 3 05 3 2 01 • 2 11 5 2 15 .. 2 10 .. 3 19 .. J N ••••• z . ORA

PH A A-Ms S 1-5 46 3 1 · PH A

PH P P-Ms S - , ... S 08 3 1 · PH P

P l A 5 + 1 - 5 Ms-A .. . 1 N ••••• z • P l A

P l P S + 1 - S Ms- P 26 4 1 (RESTORED) P L P

ROl '-1' ol--@:I 2E • 3 26 5 2 2A 2 1 36 • 2 3E 7 3 N ••••• z C ROL

ROR L©-~ 6E • 3665 2 6" 2 1 7. 6 2 7E 7 3 N ••••• z C ROR

" T 1 RlRN INT '0 6 1 (RESTORED) R T ,

R T 5 RlRN SUB 60 6 1 · R T 5

5BC A-M-C-A (11 E9 2 2 ED .. 3 E5 3 2 El 6 2 F1 5 2 F5 .. 2 FO .. 3 F9 .. 3 Nil' ••• Z (3) SBC

SEC l-C 38 2 1 • •••••• 1 SEC

SED 1-0 Fa 2 1 • ••• 1 ••• SED

5 E , 1-1 7. 2 1 · , .. S E ,

5 T A A-M 6D 4 3 85 3 2 ., 6 2 91 6 2 "" • 2 9D 5 3995 3 · S T A

5 T X X-M 6E 4 3 86 3 2 96 4 2 · S T X

5 T V V- M 6e • 3 .. 3 2 •• 4 2 · 5 T Y

T • X A-X AA 2 1 N ••••• I • T A X

T A Y A-Y AS 2 1 N ••••• z . T A Y

T 5 X 5-X BA ;,! 1 I'i ••••• z . T 5 X

T X A X-A .A 2 1 N ••••• I • T X A

T X S x-s ,A 2 1 · T X S

T Y A V-A 98 2 1 N ••••• z • T Y· A

"I ADD 1 to"N°'IF PAGE BOUNDARY 1SCROSSED X INDEX x . ADO M, MEMORY BIT 7
121 ADD 1 TO "N" IF BRANCH OCCURS TO SAME PAGE Y INDEX y ~ SUBTRACT "', MEMORY BIT6

ADD2 TO 'N' IF BRANCH OCCURS TO DIFFERENT PAGE

'31 CARRY NOT::: BORROW
A ACCUMIJ LATOFI A AND " NO. CYCLES

'" IF IN DECIMAL MODE.l FlAG IS INVAUD
... MEMORY PER EFFECTIVE ADDRESS V OR • NO. BVTES

ACCUMULATOR MUST BE CHECKED FOR lERO RESUl T ... , MEMORY PER STACK POINTER • EXCLUSIVE OR
--- ----

t:
Courtesy Rockwell International

ADDRESSING MODES

Study the instruction set summary in Table 2-3. The first column
gives the instruction mnemonic, the second gives the logical ex
pression, and the remaining 13 columns list the op codes for the
various addressing modes. In addition to the op code, the 13 columns
list the number of clock cycles, N, that each instruction requires for
execution. The cycle time of the 6502 is typically 1 microsecond,
so the total length of time required to execute an instruction is N
microseconds. The number of bytes (#) in each instruction is
also given.

The names of the various addressing modes are found at the
heading of each column, for example IMMEDIATE, ABSOLUTE,
ZERO-PAGE, etc. Addressing modes are one of the more confusing
concepts for the beginner, and only a simplified explanation is
given at this point. Very briefly, the addressing mode is related
to where and how the microprocessor locates the data upon which
it operates.

Suppose we are dealing with the LDA instruction which is "load
a byte of data from memory into the accumulator." Where does the
microprocessor get the byte upon which it is to operate?

• In the ABSOLUTE mode, the second and third bytes of the in
struction specify the address of the memory location where the
data is located. Assume the data is in location $1703. Then the
complete LDA instruction is specified by the three hexadecimal
numbers, AD 03 17.

• In the ZERO-PAGE mode, the second byte of the instruction
specifies the low-order byte of the address in page zero (first 256
addresses) where the data is located. Suppose the data is in
location $003F. Then the complete LDA instruction is specified
by the two hexadecimal numbers, A5 3F.

• In the IMMEDIATE mode, the second byte of the instruction
is the data. Assume we want to load the accumulator with the
value $7F. The complete LDA instruction is specified by the
two hexadecimal numbers, A9 7F.

Each addressing mode requires a unique op code, even though the
same instruction is involved. This can be seen from the preceding
explanation where the LDA instruction had op codes of $AD, $A5,
and $A9, depending on the addressing mode. Refer to Table 2-3
and notice that the LDA instruction had a total of eight op codes,
one for each of its eight addressing modes.

When, in the process of executing a program, the microprocessor
reads the op code, it decodes or interprets that unique bit pattern
to determine the nature of the instruction and the addressing mode.

34

The meaning of the remaining bytes of the instruction are also de
termined at the same time. If it reads an op code of $AD, it knows
that there will be two more bytes in the instruction, and that they
will be the ADL and ADH of the location of the data to be loaded
into the accumulator. You can more fully understand the instruction
decoding process carried out by the 6502 if you study 13utterfield'sl
op-code chart (Chart 2-1). Sometimes this format is more useful
than the standard chart shown in Table 2-3.

Not all instructions have the same set of addressing modes. For
example, the TAX instruction does not have any of the addressing
modes described above for the LDA instruction. The TAX instruc
tion, when executed by the microprocessor, transfers the contents
of the accumulator to the X register. These registers are internal to
the 6502, hence they have no address. The op code contains all the
necessary information for the instruction to be executed, since no
addressing information is required. This addressing mode is called
implied addressing, since the instruction itself implies both the
source and destination of the data. All instructions using the im
plied addressing mode are single byte instructions. Other addressing
modes will be covered in subsequent chapters.

THE MICROCOMPUTER PROGRAM

A microcomputer program is an ordered set of instructions de
signed to accomplish an objective. Some examples of program ob
jectives are:

• Multiply two 8-bit numbers.
• Measure the time interval between successive logic-zero to

logic-one transitions at an input port.
• Convert serial data on a telephone line to a printed output on a

teletypewriter.
• \Vith appropriate sensors in the left-turn lanes and side streets,

control a traffic light to optimize the flow of traffic through a
busy intersection.

• Produce a digital representation of an analog voltage level using
an analog-to-digital converter, display the result using bcd-to
seven-segment display decoders, and up-date the result every
five seconds.

• Execute commands and instructions in FORTRAN. Such a
program is called an interpreter.

Clearly, the objectives of some programs are very simple and can
be accomplished with a few instructions, while others require long

IButterfield, Jim, "6502 Op-Codes," 6502 User Notes, No. 13 1979, p. 6.

35

Col
00

ASL
ROL
LSR
ROR
STX
LDX
DEC
INC

ORA
AND
EOR
ADC
STA
LDA
CMP
SBC

.0
·8
·A

IMM
2

A2

IMM
2

09
29
49
69

A9
C9
E9

O·

BRK
PHP

ASL-A

Chart 2·1. 6502 Op Codes Arranged in Logical Order

IPAG I,X I,Y ABS A,X A,Y IMM IPAG I,X ABS A,X
2 2 2 3 3 3 2 2 2 3 3

06 16 OE IE BIT 24 2C
26 36 2E 3E STY 84 94 8C
46 56 4E 5E LDY AO A4 84 AC BC
66 76 6E 7E CPY CO C4 CC
86 96 8E CPX EO E4 EC
A6 B6 AE BE Misc. -0, -4, -C
C6 06 CE DE
E6 F6 EE FE

Op Code Ends in -2, -6, or -E

IPAG I,X (I,X) {I),Y ABS A,X A,Y BPL 10 BMI 30
2 2 2 2 3 3 3 BVC 50 BVS 70

05 15 01 11 00 10 19 BCC 90 BCS BO

25 35 21 31 20 3D 39
BNE DO BEQ FO

45 55 41 51 40 50 59 Branches -0
65 75 61 71 60 70 79
85 95 81 91 80 90 99

ABS (lND) A5 B5 Al Bl AD BO B9
C5 05 Cl 01 CD DO 09 JSR 20
E5 F5 El Fl ED FO F9 JMP 4C 6C

Op Code Ends in -I, -5, -9, or-O Jumps

Single-Byte Op Codes -0, -8, -A

1· 2· 3· 4- 5· 6- 7· 8- 9· A· B- C· D· E· F·

RTI RTS
CLC PLP SEC PHA CLI PLA SEI DEY TYA TAY CLV INY CLO INX SED

ROL-A LSR-A ROR-A TXA TXS TAX TSX OEX NOP
Courtesy 6502 Use, Notes. © 1979 E. C. Rehnke

sophisticated programs. The first example above can be implemented
with 10 to 15 instructions using about 30 bytes of memory, while
the last objective may require more than 8K bytes of memory for
the program.

The instructions are stored in memory and are ordered by their
addresses. In the 6502, there is a pair of registers known as the
program counter. They insure that the instructions are performed in
the proper sequence. The program counter contains the address
of the next byte of the program to be read. After each byte of a
program has been read from memory, the program counter is incre
mented by one to point to the memory address at which the com
puter will find the next program byte. Exceptions to this occur
only in the case of subroutines and interrupts. These topics will be
covered in Chapter 9.

A SIMPLE PROGRAM

An illustration will help at this point. Suppose the object of a
program is to transfer the contents of the location whose address is
$0300 to the memory location whose address is $02FF. A program
to accomplish this is shown in Example 2. The program requires
six bytes of memory, its starting address is $0200, and it requires
only two instructions. The LDA instruction is contained in the first
three bytes of the program, and the ST A instruction is contained
in the last three bytes.

Example 2: A Simple Data Transfer Program

Location

0200
0201
0202
0203
0204

Contents

AD
00
03
8D
FF

0205 02

Comments

Fetch the contents of the locatio n whose
address is $0300 and place them in the accumulator.

Store the contents of the accumulator in the
memory location whose address is $02FF.

If the program counter in the 6502 is initialized to $0200, the
starting address of the program, then the 6502 will execute the
program. As far as the 6502 is concerned, the actual location of the
program or its starting point makes no difference. However, it is
absolutely necessary that each byte of an instruction, and the in
structions themselves, be in the proper order.

The activity on the address and data buses of the microcomputer
during the execution of the program in Example 2 may be described
by referring once again to Example 2 and also Figs. 2-1 and 2-2.
Assume that the microprocessor system clock is running at 1 mega
hertz, or each clock cycle takes 1 microsecond. (Detailed timing
considerations will be discussed in Chapter 12.)

37

Y INDEX REGISTER

I I I I I I I
6543210

X INDEX REGISTER

I I I I I I I
76543210

ACCUMULATOR

I I I I
6543210

STACK POINTER

I I I I I
6543210

PROCESSOR STATUS
REGISTORP REGISTER

INlvl IBIOIIIZICI
76543210

PROGRAM COUNTER HIGH-PCH PROGRAM COUNTER lOW-PCl

I I I I I I I I-I I I I I I I I I
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUS

Fig. 2·1. Model of 6502 Microprocessor.

I
CYCLE 1 + CYCLE 2 I. CYCLE 3 J CYCLE 4 1

- OP-CODE FETCH FETCH ADL ----r- FETCH ADH-r-FETCH DATA-l

1'~1 CLOCK

f----$0200 -- ~-t---$020l--l--$0202- _I $0300~ADDRESS
~ ,BUS

~$AD- -+ -$00--1--$03- --tCONTENTS OF $03001~~~A

Fig. 2·2. Activity on Address Bus and Data Bus by clock cycles during LDA instruction.

38

• During the first clock cycle, the contents of the program counter
(PCH -PCL = $0200) are placed on the address bus, and the
6502 reads the op code on the data bus. The program counter
is incremented to $0201.

• During the second clock cycle, the contents of the program
counter, now $0201, are placed on the address bus, the ADL
(SOO) is fetched from location S0201 and appears on the data
bus, the op code is interpreted by the microprocessor, and the
program counter is incremented.

• During the third clock cycle. the contents of the program
counter (S0202) appear on the address bus and the ADII (803)
is fetched from location 80202. The program counter is incre
mented again.

• During the fourth clock cycle, the ADH-ADL = $0300 appears
on the address bus. The byte of data in location $0300 is placed
on the data bus, and is clocked into the 6502 at the conclusion
of this cycle.

• During the fifth clock cycle, the contents of the program
counter, now $0203, are placed on the address bus, the next
op code ($8D) is read from location S0203, the program
counter is incremented, and the previous instruction is imple
mented in the microprocessor. This last step means the byte of
data read during the fourth clock cycle is moved into the
accumulator.

• During the sixth clock cycle, $0204 appears on the address bus
to fetch the ADL ($FF) of the destination location. The op
code fetched during the fifth cycle is interpreted, and the pro
gram counter is incremented again.

• During the seventh clock cycle, $0205 appears on the address
bus to fetch the ADII ($02) of the destination location. The
program counter is incremented.

• Durin~ the eighth clock cycle, the ADH-ADL = $02FF is on
the address bus, the microprocessor places the contents of the
accumulator on the data bus, and the control lines clock the
data into location $02FF.

This completes the program of Example 2, amounting to eight
clock cycles or 8 microseconds. Note from Table 2-3 that both the
LDA and ST A instructions require four cycles in the absolute ad
dressing mode, which checks with our analysis above. To find the
time necessary for an instruction to be executed, multiply the num
ber of clock cycles, N, from Table 2-3 by the clock period (as we
multiplied 8 clock cycles times 1 microsecond to obtain 8 microsec
onds in this example). The length of a program is the sum of the
time intervals required for each of the instructions.

39

WRITING A PROGRAM

As a matter of fact, programs are not written in the form illus
trated in Example 2. The procedure for writing a program is out
lined as follows:

• Have the objective clearly in mind and, if necessary, flowchart
the steps required to achieve the objective.

• 'Write an assembly language version of the program using labels
for addresses, mnemonics for instructions, and symbols for ad
dresses of memory locations that store data.

• Translate the program into hexadecimal machine language.

These ideas will be illustrated shortly. For the moment we will con
centrate on the assembly language program which will be arranged
in four columns,

• The address of the first byte of any instruction may have a
name called a label. Labels are found in the first column.

• The second column contains the instruction mnemonic.
• The third column is the operand. It is empty if a single byte

instruction is involved. It may be a byte of data if the immedi
ate addressing mode is used. It may be a symbol for a location
where a byte of data is found. It may be a label, symbolizing
a program address.

• The fourth column contains comments that interpret or clarify
the instruction.

To illustrate, consider the program in Example 2 whose object was
the transfer of a byte of data from location $0300 to location $02FF.
Let address $0.300 be represented by the symlJol LOCI, and let
address $02FF be represented by the symbol LOC2. The choice of
symbols is up to the programmer. Assume that the starting address
of the program is represented by the label START. Then the as
sembly language version of this program is shown in Example 3.
The third column is called the operand column because it is either
the data to be operated upon, or it is the location of the data to be
used in an operation.

(Do not be overly concerned if you cannot comprehend all of
these facts at once. It will require several examples and perhaps a
re-reading before you begin to feel comfortable with these new
concepts.)

40

label

START

Example 3: Assembly language Data Transfer Program

Mnemonic

lOA
STA

Operand

lOCI
lOC2

Comments

load the data at lOCI into A.
Store the contents of A at lOC2.

Step three in writing a program consists of translating the labels,
mnemonics, and symbols into their hexadecimal equivalents. This
translation is called a machine language program because it is in
the form used to load it into the microprocessor. The machine lan
guage version is usually placed directly to the left of the assembly
language version. The completed program with which we have been
working is given in Example 4.

Some microcomputers have programs that convert mnemonics
entered on keyboards to machine language. Such programs are
called assemblers. Some assemblers have extensive error detection
techniques programmed into them, and they will handle symbol
tables, labels, and branch calculations. Others, like the one in the
AIM 65 monitor, simply convert mnemonics to op codes and enter
the program into memory.

Example 4: Completed Data Transfer Program Using Absolute Addressing

Location Instruction Label Mnemonic Operand Comments

0200 AD 00 03 START LOA LOCI Load the contents of

0203 80 FF 02 STA LOC2
$0300 into A.

Store the contents of A
at $02FF.

Shortly we will describe several programs that perform data
transfers, using several of the addressing modes previously men
tioned. Before that, we note that the instructions, op codes, and
addressing modes of all of the instructions introduced in this chapter
are itemized in Table 2-1. Also, refer again to the form of the pro
gram in Example 4, which is the form of all of the programs in
this book. While the form of programs varies from book to book, no
confusion is likely to occur with the form we have adopted. You may
think that the address skips two locations, from $0200 to $0203.
Actually, location $0200 stores the $AD, location $0201 stores the
$00, and location $0202 stores the $03. The entire instruction is
on a single line. The label refers to the first byte of the instruction,
and the remaining bytes of the instruction must be stored at im
mediately subsequent locations in memory. In the examples that fol
low, the headings used to identify the columns in Example 4 will be
omitted. However, the columns in subsequent examples will contain
the corresponding information.

The program given in Example 5 illustrates the LDA instruction
in the immediate addressing mode. The assembly language version
will contain the byte of data whenever immediate addressing is
used, and in Example 5 observe that the data byte "$00" appears
in the first insh·uction. After the program has executed, both loca
tions $0300 and $0301 will contain $00.

41

Example 5: Data Transfer Program Illustrating Immediate Addressing

Ob;ecf: Store $00 in locations $0300 and $O30l.

0208 A9 00 START lOA $00 load A (immediate) with $00.
020A 80 00 03 STA MEM 1 Store the contents of A in location $0300.
0200 80 01 03 STA MEM2 Store the contents of A in location $0301.

In Example 6 the immediate addressing mode is used for the LDA
instruction, while the zero-page addressing mode is used for the
ST A instmction. The advantage of using page zero of memory for
storing data is that zero-page addressing requires only two instruc
tion bytes in the program, compared to the three bytes required
in the absolute addressing mode, and zero-page addressing requires
one less clock cycle than absolute addressing.

Example 6: Data Transfer Program Using Zero-Page Addressing Mode

Ob;ecf: Store $FF in locations $0000 and $003F.

0212 A9 FF
0214 85 00
0216 85 3F

ORIGIN lOA $FF
STA lOZl
STA lOZ2

load A with $FF (immediate mode).
Store A in zero·page location $0000.
Store A in $003F (zero·page mode).

Example 7 illustrates a data transfer using the X register, and
Example 8 illustrates a data transfer using the Y register. The LDX
instruction uses the zero-page addressing mode, while the LDY
instruction uses the immediate addressing mode. In long programs
with many symbols, the program is usually preceded by a symbol
table in whieh the symbols are related to the addresses they
symbolize. Although the length of the programs in Examples 7 and
8 does not warrant a symbol table, we have included them to il
lustrate the point.

42

Example 7: Data Transfer Program Using the X Register

Ob;ecf: Transfer the contents of location $0000 to location $03Ff without using the
accumulator.

$0000 = lOZ
$03FF = MEM
021A A6 00

021C 8E FF 03

START LOX lOZ

STX MEM

load the X register with the contents
of location $0000.

Store X in $03FF.

Example 8: Data Transfer Program Using the Y Register

Ob;ect: load locations $0000 to $0002 with $7F without usi ng the X register or the
accumulator.

$0000 = HERE
$0001 = THERE
$0002 = lOCT
0221 AO 7F
0223 84 00
0225 84 01
0227 84 02

8EGIN LOY $7F
STY HERE
STY THERE
STY LOCr

load the Y register with $7F.
Store Yin $0000.
Store Y in $0001.
Store Y in $0002.

PROGRAM NAME _________ _ PAGE OF

PROGRAMMER __________ _ DATE ___ _

INSTRUCTION
ADDRESS Bl B2 B3 LABEL MNEMONIC OPERAND COMMENTS

Fig. 2·3. Sample programming form.

A programming form is of considerable help in writing programs.
One possible form is shown in Fig. 2-3.

LOADING AND EXECUTING A PROGRAM

Once a program has been written in assembly language and trans
lated into machine language, it is ready to be loaded into the
microcomputer. This means that, beginning with the starting ad
dress of the program, the program bytes are stored in successive
locations in memory. In the case of the KIM-I, AIM 65, and SYM-I
this is accomplished with the keyboard and the display. All micro
computers with monitors will have some means of loading and
executing a program.

To execute the program, the program counter must be initialized
to be identical to the address of the first byte in the program. In
the SYM-I, KIM-I, and AIM 65, the monitors have the ability to
initialize the program counter to the correct value. Consult your
user's manual for the proper initialization procedure.

THE BRK INSTRUCTION

Since the 6502 does not have a HALT instruction, another tech
nique is used to end the demonstration programs that we will use.
The last instruction in the program will be a single-byte instruction
called BRK. BRK has an op code of $00. Its effect is described as
follows:

• Upon reading and decoding the BRK instruction, the micro
processor reads a location symbolized by IRQL to get the low-

43

order byte for the program counter and the next location,
tRQH, to get the high-order byte for the program counter.

• The program continues execution with these new values in the
program counter, that is, at the instruction whose address is
PCH-PCL.

In the KIM-I, the addresses for IRQL and IRQH are $17FE and
$17FF, respectively. In these locations you must load $00 and $lC,
respectively. The address $lCOO is an address in the KIM-I monitor.
Therefore, upon reading and executing the BRK instruction, the
KIM-l will continue its execution in the monitor. This prevents
the microcomputer from wandering off to perform "nonsense" in
structions that are generated as patterns of binary digits when the
power is applied to the computer. The SYM-l and AIM 65 operate
in a similar way except that IRQL and IRQH are preloaded by the
RESET button, and the user need not load these locations himself.
Example 9 illustrates how our first program, the one given in Ex
ample 4, is modified to include the BRK instruction.

Example 9: Data Transfer Program Illustrating the BRK Instruction

Object: Transfer the contents of location $0300 to location $02FF. End the program
with a BRK instruction.

$02FF = LOC2
$0300 = LOCI
$17FE = IRQL; KIM-l users load with $00.
$17FF = IRQH; KIM-l users load with $IC.
0200 AO 00 03 START LOA LOCI
0203 80 FF 02 STA LOC2
0206 00 BRK Break to the monitor.

The reason for using a BRK instruction as opposed to a jump to
the monitor instruction is that all of the important registers in the
6502 are saved when the BRK to the monitor instruction is used.
The AIM 65, SYM-I, and KIM-I all give the user the ability to
examine these registers after a BRK instruction. Each system has a

44

Table 2-4_ Addresses of Locations Where the Monitor
Stores 6502 Registers

Monitor Storage Locations

Register Name Symbol KIM-l AIM 65 SYM-l

Program Counter Low PCL $OOEF $A425 $A659
Program Counter High PCH $OOFO $A426 $A65A
Accumulator A $00F3 $A421 $A650
X Register X $00F5 $A422 $A65E
Y Register Y $OOF4 $A423 $A65F
Processor Status P $OOFI $A420 $A65C
Stack Pointer SP $OOF2 $A424 $A65B

different means of displaying the registers, so the user is referred
to the respective system manual for details. Table 2-4 lists the ad
dresses of the locations where these registers are saved.

THE SINGLE-STEP MODE

The monitors and control circuitry of the KIM-I, SYM-I, and
the AIM 65 microcomputer systems allow the user to execute a
program one instruction at a time. This feature is very useful in
debugging programs, because the user can examine the effect of
each instruction as it is executed. The user may also examine the
contents of each of the 6502 registers after an instruction has been
executed, because in the single-step mode, the monitor stores the reg
isters in the locations shown in Table 2-4. Each of the three systems
mentioned has a somewhat different technique of implementing the
single-step mode; the user is referred to the appropriate system
manual for details.

INTRODUCTION TO THE EXPERIMENTS

The purpose of the experiments in this chapter is to teach you to
load and execute simple programs. You will also examine the con
tents of the locations which are modified by the data transfer in
structions, and you will be asked to write simple programs. KIM-l
users should refer again to the Single-Step Mode section to set up
the IRQH and IRQL locations before they begin.

EXPERIMENT NO. 1
Step 1

Load the program of Example 4 into memory. For convenience
we list the program.

0200 AD 00 03 START
0203 8D FF 02
0206 00

Step 2

LDA LOC]
STA LOC2
BRK

Put $00 in location $02FF. Refer to your user manuals if you do
not remember how to examine and modify the contents of a location.

Step 3

Put $33 in location $0300.

Step 4

Initialize the program counter to $0200 using your manual in
structions, then execute the program.

45

Step 5
After the program has been executed, the display will light. Now

examine the contents of locations $02FF and $0300. What do you
observe in each location?

(We observed a $33 in both locations $02FF and $0300, indicating
that the program had transferred the contents of location $0300
to location $02FF. Recall that location $02FF contained $00 before
the program was executed.)

EXPERIMENT NO. 2

Step 1
Load the program given in Example 5. A listing is given below

for convenience.

0208 A9 00 START
020A 80 00 03
0200 80 01 03
0210 00

Step 2

LOA $00
STA MEMI
STA MEM2
8RK

Put any nonzero value in locations $0300 and $0301.

Step 3
Run the program, then examine the contents of locations $0300

and $0301. What data are there?

(If the program was entered correctly you should find $00 in both
locations.)

Step 4

Change the second byte of the program to $7F, then rerun the
program. What do you observe in locations $0300 and $0301?

(Since the first instruction is an LDA in the immediate mode, $7F
is first transferred to the accumulator and then loaded into locations
$0300 and $0301.)

46

EXPERIMENT NO. 3

Step 1

Load the program given in Example 6. A listing is provided here.

0212 A9 FF ORIGIN LDA $FF
0214 85 00 STA LOZI
0216 85 3F STA LOZ2
0218 00 BRK

Step 2

Execute the program and examine locations $0000 and $OO3F.
What data are stored in these locations?

(You should find $FF in hoth of these zero-page locations.)

Step 3

Change the byte at $0213 to $00. Run the program again. Predict
what data you will find at locations $0000 and $003F.

(You should find $00 in these locations.)

EXPERIMENT NO. 4

Step 1

Put $FF in location $0000.

Step 2

Load the program listed in Example 7. Omit the BRK command
at location $021F. Put anything at location $021F except $00. Run
the program, then describe what happens. A listing is as follows.

021A A6 00 START LDX LOZ
021C 8E FF 03 STX MEM
021F 00 BRK

(We observed on the KIM -1 and AIM 65 that the display remained
dark, and we could not tell when or if the program executed
properly.)

Step 3

Press the RESET key. Examine location $03FF. Did the program
work?

(We found that the program had worked.)

47

Step 4

Insert the BRK instruction at location $021F and run the program
again.

EXPERIMENT NO. 5

Step 1

Load the program in Example 8. A listing is provided. Execute
the program.

0221 AO 7F BEGIN
0223 84 00
0225 84 01
0227 84 02
0229 00

Step 2

LDY $7F
STY HERE
STY THERE
STY LOCT
BRK

Examine locations $0000 to $0002. What do you find there?

(If the program works you should find $7F in all three locations.)

Step 3

Single-step through the program to make sure you understand
the single-step mode of your microcomputer.

EXPERIMENT NO. 6

Step 1
Write a program to load the accumulator with the contents of

location $0000, the X register with the contents of location $0200,
and the Y register with the contents of location $0300. Locate your
program from location $022A upward. End your program with a
BRK instruction.

(Your program should look something like this:

022A AS 00 START LDA MEMZ
022C AE 00 02 LDX LOC
022F AC 00 03 LOY STG
0232 00 BRK)

Step 2

Load location $0000 with $11, location $0200 with $22, and loca
tion $0300 with $33.

48

Step 3

Execute the program, and then examine the registers using the
monitor program in your microcomputer. Refer to Table 2-4 for
the addresses of the locations where the registers are stored.

Step 4

Use your monitor to modify the accumulator, X register, and Y
register locations so that they are all loaded with $00.

Step 5

Start the program again using the single-step mode. Examine
the contents of each register after each step in the program. You
should observe that each register changes after the instruction in
which it is modified is executed. Experience gained in "following a
register" through a program will be useful in debugging programs.

EXPERIMENT NO. 7

Step 1

Write a program to load the accumulator with $00, and then
transfer this information to both the X register and Y register.

(Your program should look like this:

0233 LDA $00
TAX
lAY
BRK

You can fill in the remammg addresses and op codes. Run the
program and examine the registers to see if your program works.)

49

CHAPTER 3

Simple Input/Output
Techniques

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the operation of memory mapped I/O ports.
• Use a data direction register to program an I/O port to either

input or output data.
• Use the INC, DEC, IMP, INX, INY, DEX, and DEY instruc

tions. See Table 3-1 for a summary.
• Write programs with loops.

INTRODUCTION

The input/ output operations of a microcomputer are fundamental
to any useful application. Some examples of the function of an input
port in a microcomputer system are:

• A key depression produces a voltage level on an input pin
corresponding to a binary zero. Software then inputs this volt
age, determines which key on a hexadecimal keyboard has been
pressed, and converts the key value to its hexadecimal equiva
lent.

• If the temperature exceeds a given value, a thermostat produces
a voltage level on an input pin corresponding to a binary one.
A program reads the input pin to test the temperature.

Two examples of the function of an output port are the following.

50

Table 3-1. Summary of Instructions and Op Codes
Introduced in Chapter 3

Addressing Mode

Instruction Description Absolute Zero·Page Implied

INC Increment Memory by One EE E6
DEC Decrement Memory by One CE C6
INX I ncrement X Register by One E8
DEX Decrement X Register by One CA
INY Increment Y Register by One C8
DEY Decrement Y Register by One 88
JMP Jump to New location 4C

Indirect

6C

• Light the appropriate segments in a seven-segment LED display
to indicate a hexadecimal digit.

• Turn a heating element off if a thermostat indicates a tempera
ture above a given value.

The task of connecting electronic or mechanical devices to the
1/ 0 ports of a microcomputer is often called interfacing, although
this term also refers to the process of interconnecting the various
components of a microcomputer. Clearly, interfacing requires some
experience with electronics, and the interested reader is referred
to books in the Blacksburg Continuing Education Series, especially
the NCR Basic Electronics Course and Logic and Memory Ex
perimellts (two volumes) published by Howard W. Sums &: Co., Inc.,
Indianapolis, IN 46268. Programming a microcomputer, including
the 110 operations, requires little, jf any, background in electronics,
but any programmer would find such a background extremely useful.

INPUT I OUTPUT PORTS

The purpose of an input port is to provide information for the
computer from the outside world. This is usually accomplished by
an external device, a photocell for example, controlling the voltage
level at one to eight pins on an integrated circuit. Typically a voltage
of near 5 volts corresponds to a binary one, while a voltage of near
zero volts corresponds to a binary zero. This integrated circuit is
connected to the data bus and the address bus of the microcomputer.
When the address of the input port is placed on the address bus by
the 6502, then the input port integrated circuit controls the logic
levels on the data bus, and the 6502 READS the binary number
represented by the voltage levels at the input port. These integrated
circuits are sometimes called "interface adapters."

This mode of operation, in which input ports act like any other
memory device in the sense that they supply data to the 6502 only

51

when they are addressed, is called memory mapped input. As far
as the 6502 is concerned, an input port is simply another location in
memory, and it might just as well be a ROM or R/W memory lo
cation because the microprocessor does not know the difference.

The purpose of an output port is to provide information from the
microcomputer to the outside world. An integrated circuit is con
nected to the data bus and the address bus, like the case of the
input port. This integrated circuit has one to eight pins that may be
connected to external devices, a relay for example. The 6502
WRITES data to an output port by placing the address of the output
port integrated circuit on the address bus, while simultaneously
placing the byte of data intended for the output port on the data
bus. This data byte is usually stored in the integrated circuit that
acts as the output port, and it determines the voltage levels on the
output pins of this integrated circuit. A binary zero produces a
voltage level near 0 volts, while a binary one produces a voltage
level near 5 volts, perhaps with enough current capability to close
a relay for example.

This mode of operation, in which output ports act like R/W
memory devices in the sense that a byte of data can be written to
them only when they are addressed by the 6502, is called memory
mapped output. Again, the 6502 does not know whether it is writing
data to an R/W location or an output port; only the programmer
knows this.

To summarize, an input/output port is a location in memory that
can be used to transfer data either from the microprocessor to an
external device or from an external device to the microprocessor.
All the data transfer instructions described in Chapter 2 and all the
instructions you will learn in this and subsequent chapters may be
used either to read the data at an input port or to write data to an
output port. For example, an LDA INPUT instruction might be used
to read an input port where INPUT is a symbol for the address of
the port. A ST A OUTPUT instruction might be used to write data
to an output port, where OUTPUT is a symbol for the address of
the port. Examples of I/O external devices include:

• Keypads and keyboards
• Transistors that drive LEDs, relays, speakers, or other electro-

mechanical devices
• Integrated circuits, a 7490 decade counter for example
• Mechanical switches
• Phototransistors or photoresistors
• Hexadecimal displays.

The 6502 uses memory mapped I/O exclusively as compared to the
8080A which uses a special mode called accumulator I/O in addition

S2

to memory mapped I/O. To reiterate, corresponding to each I/O
port is a set of pins, terminals, or connectors on the microcomputer
where the data are made available. The data are actually voltage
levels or current levels at a series of pins. A voltage of 5 volts cor
responds to an I/O port data bit being a one, and a voltage of 0
volts corresponds to an I/O port data bit being a zero. The two
possible voltage levels are referred to in a variety of ways in com
puter literature. These include +5 V or 0 V, high or low, V,.,. or Gnd,
H or L, and logic one or logic zero. We prefer using the logic one
and logic zero description of voltage levels at an I/O port. Finally,
an I/O port normally consists of eight hits with their corresponding
pins, in other words one byte of data, but only one, two, three, or
even five bits may be used for interfacing purposes. For a more
extensive discussion of input/ output port interfacing, see Chapters
11, 12, and 13.

I/O PORTS AND DATA DIRECTION REGISTERS

Input/output ports are implemented with integrated circuits
connected to the 6502 by the address bus, data bus, and control
bus. Refer to Fig. 3-1 for a number of details. In 6502 systems such
as the AIM 65, SYM-I, and KIM-I, the integrated circuits used for
I/O ports are so-called family chips such as the 6520, 6522, 6530,

TO 6502 TO 6502

ADDRESS BUS

BIDIRECTIONAL DATA BUS

PAJ PA6 PA5 PM PA3 PA2 PAl PAO PBJ PBS:'PB5 PB4 PB3 PB2 PBI PBO

Fig. 3·1. Block diagram of 6530 and 6522 I' 0 Ports. ·See text.

53

and 6532 which not only perform I/O functions but also have
interval timers, R/W, or RO:\1 locations on the chips. Although
these various chips differ considerably in their capabilities, they
have in common the ability to implement two I/O ports, each of
which may be programmed as either an input port or an output
port. In fact, each of the pins of a port may be either an input pin
or an output pin, independent of the other pins in the same port.

Corresponding to each pin or bit of an I/O port, is a bit in a data
direction register (DDR) which is also a location in memory.
These registers are located on the same integrated circuits that con
tain the I/O ports. See Fig. 3-1 for a simplified model of the I/O
port and DDR structure of the 6530 and the 6522 interface adapters.
The bit value in the DDR determines whether the corresponding
I/O bit will be an input bit or an output bit. A bit value of zero in
the DDR makes the corresponding port bit an input bit, whereas
a bit value of one in the DDR makes the corresponding port bit an
output bit. A data direction register also consists of eight bits or
one byte, and the microprocessor can read or write to a DDR just
as if it were a regular R/W memory location.

Not all integrated circuits used as input ports or output ports
are programmable, that is. may be programmed to be either an input
port or an output port. In Part II of this book we will illustrate
how to interface other integrated circuits that are designed to be
either input ports or output ports, but not both. Most 6502 family
interface adapter chips are programmable, but in some cases other
integrated circuits make less expensive I/O ports.

I/O PORT SYMBOLS

On the KIM-I, SYM-I, and AIM 65 microcomputers, the I/O
ports are accessed at an edge connector called the applications
connector. In the remainder of this book, the two I/O ports which
are accessed at this 22/44 pin connector will be called Port A and
Port B. Refer again to Fig. 3-l. The pin connections for the two I/O
ports are identical in the three microcomputers: KIM-I, SYM-I,
and AIM 65. See Table 3-2 for pin identification. The individual
pins of Port A will be referred to as PA7, PA6, ... , PAO, while those
of Port B will be PB7-PBO. PB6 is not available for the user on either
the KIM-lor the SYM-I microcomputers. The address of Port A
will be symbolized by PAD, an acronym for Port A Data, and the
address of Port B will be symbolized by PBD. In the SYM-I and
AIM 65 literature, these ports are named ORA and ORB, but no
confusion is likely to occur. The corresponding data direction regis
ters will be symbolized by PADD, an acronym for Port A Data
Direction, and PBDD. The data direction registers are called DDRA

54

Table 3·2. Port A and Port B Pin Assignments
on the Applications Connector

Port A = PAD Pin Port B = PBD

PA7 8 PB7
PA6 7 PB6*
PAS 6 PBS
PA4 5 PB4
PA3 2 PB3
PA2 3 PB2
PAl 4 PBI
PAO 14 PBO

*PB6 IS not available on KIM·I or SYM·l, but is available on AIM 65.

Pin

IS
17
16
13
12
II
10
9

and DDRB in SYM-l and AI\1 65 literature, A summary of the loca
tions in memory of the ports and their DDR are given in Table 3-3.

Let us illustrate some of the points mentioned. If a $FF is stored
in PADD. then all the bits in the DDR are ones, and all eight pins
of PAD are output pins, making it an 8-bit output port. If $00 is
stored in PADD, then all eight pins are input pins and PAD is an
8-bit input port. If $83 is stored in PADD, then pins PA7, PAl, and
PAD are output pins, while PA6-PA2 are input pins. A system reset
pulse clears the DDR (sets all bits to zero) and all the pins are
input pins. The system may be reset by pressing the RESET button
or key, or by a power-up condition. The task of the programmer is
to know which pins are supposed to act as outputs and, after reset,
to initialize the DDR by programming these registers accordingly.

Table 3·3. I/O Port and Data Direction Register Addresses

KIM·1 SYM·1 AIM6S

Port A = PAD $1700 $AOOI $AOOI
DDRA = PADD $1701 $A003 $AOO3
PORT B = PBD $1702 $AOOO $AOOO
DDRB = PBDD $1703 $A002 $A002

INPUT / OUTPUT PROGRAMMING

In this section we list some programs that relate to the ideas
mentioned above. Note that the program comments take on a
different character than in the previous chapter. The comments do
not always describe the instruction, but rather they may suggest the
purpose or reason for the instruction. It will be assumed that you
have become familiar with the instructions so no further descrip
tions are necessary. You should study the programs carefully to
see how some simple II 0 operations are performed.

SS

Example 1: Program to Make Port A an Output Port

Obiect: Make Port A an output port and set pins PA7, PA6, and PAO at logic one.
The diagram illustrates the desired configuration.

PA7 PA6 PA5 PA4 PA3 PA2 PAl PAO
PADD 1 1 1 1 1 1 1 = $FF
DATA 0 0 0 0 0 1 = $Cl

0200 A9 FF START LDA $FF Set the DDR for Port A so that
0202 8D 01 17 STA PADD all the pins are outputs.
0205 A9 Cl lOA $Cl Set pins PA7, PA6, and PAO
0207 8D 00 17 STA PAD to logic one, others at logic zero.
020A 00 BRK

Example 2: Program to Make Port B an Input Port

Obiect: Make Port B an input port and read the port, storing its contents in location
$0000.

0200 A9 00 START lOA $00 Initialize Port B to be an
0202 8D 03 17 STA PBDD input port by clearing DDR.
0205 AD 02 17 LDA PBD Read the port.
0208 85 00 STA LOZ Store port data in LOZ.
020A 00 BRK

Example 3: Program to Read Port B and Store its Contents in Port A

Obiect: Read Port B and load its contents into Port A which will be an output port.

0200
0202
0205
0208
020B

A9 FF
8D 01 17
AD 02 17
8D 00 17
00

START LDA $FF I nitialize Port A to be
STA PADD an output port.
LDA PBD Get data from Port B.
STA PAD Transfer to Port A.
BRK

Example 4: Program to Illustrate a Loop

Obiect: Continuously read Port B and store its contents into Port A.

0200 A9 FF START LOA $FF
0202 80 01 17 STA PAOO
0205 AD 02 17 HERE LOA PBD Get data from Port B.
0208 80 00 17 STA PAD Store it in Port A.
020B 4C 05 02 JMP HERE Reset program counter to $0205.

Note that in Example 1 the KIM-l addresses for Port A and the
Port A DDR were used. SYM-l users and AIM 65 users must change
these addresses to conform with Table 3-3. The program in this
example is not of any particular use other than as a demonstration
of how to set up the Port A data direction register so that Port A
is an output port. In that connection, it is very important because
setting up the data direction registers for the I/O ports is one of the
first initialization steps in any program. You will see the first two
instructions in the program of Example 1 in many subsequent pro
grams in this book.

The first two instructions in Example 2 may be omitted if the
system monitor loads a $00 into the DDR, or if it leaves the DDR
unaltered after a system RESET. Unless you know the state of the

56

DDRs, it is good practice to initialize the DDR with your program.
The next two instructions in Example 2 might be part of a larger
program to read a keyboard connected to Port B, and to store the
keyboard data in a zero-page location. It is a bit unfortunate that
both the KIM-l and the SYM-l use PB6 for other purposes and,
consequently, it is not available to the user. Thus, Port B is really
a 7 -bit port.

The program in Example 3 simply reads Port B and writes it to
Port A. This kind of program might be used in a keyboard-video
monitor input/ output system. If Port B represents the keyboard, and
Port A is the output to the video monitor, then whenever a key is
read, the character would appear on the screen so the operator can
see what has been typed. Aote that PBDD was not initialized to $00
in Example 3, as it was assumed that the system RESET or the
monitor cleared this register.

The program in Example 4 is essentially the same as the program
in Example 3, except that the JMP instruction causes the program to
continuously read Port B and output the result to Port A. Although
this program has no particular use at this point, it does illustrate
a program loop and the JMP instruction, which we now describe.

JMP INSTRUCTION

The JMP instruction used in Example 4 has the effect of resetting
the program counter to the value labeled HERE. The program will
repeat the LDA PBD, STA PAD, and JMP HERE instructions,
continuously and forever, unless the RESET key is depressed or power
is removed. A program or a portion of a program which repeats itself
one or more times is called a loop. The three instructions just men
tioned form a loop in the program of Example 4. The JMP instruc
tion may be used to reset the program counter to any 16-bit num
ber. Note that in the absolute addressing mode, as used in Example
4, the low-order byte of the program counter (PCL) is the second
byte of the IMP instruction while the high-order byte of the program
counter (PCH) is the third byte.

The IMP instruction has one other addressing mode called
indirect. In this mode, the second and third bytes of the instruction
form an address ADH-ADL whose contents contain PCL, while
PCH is found at ADH-ADL + 1. The indirect JMP instruction is
illustrated with the modification of Example 4 shown in Example 5.

In Example 5, THERE = $0003 and in this location should be
stored the ADL of HERE. That is, in location $0003 put $05, the
address low of HERE. In $0004 put $02, the address high of HERE.
The indirect addressing mode is indicated by putting parentheses
around the operand portion of the instruction. Any available location

57

Example 5: Program to Illustrate JMP Instruction in Its Indirect Addressing Mode

Object: Continuously read Pori B and store its contents in Port A.

$0003 = TH ERE; Load with $05, the ADL of HERE.
$0004; Load with $02, the ADH of HERE.
$AOOO = PBD; AIM 6S or SYM-l address.
$AOOI = PAD; AIM 6S or SYM-l address.
$A002 = PBDD; Port B DDR, AIM 6S or SYM-l address.
$A003 = PADD; Port A DDR, AIM 65 or SYM-l address.
0200 A9 FF START LOA $FF
0202 8D 03 AO STA PADD
0205 AO 00 AO
0208 8D 01 AO
020B 6C 03 00

HERE LOA PBD
STA PAD
JMP (THERE) Indirect JMP instruction. See Text.

may be used to store the new value of the program counter in the
indirect mode. Refer again to Table 3-1 for a description and the
op codes of the IMP instruction. To summarize:

• In the absolute mode, the second and third bytes of the IMP
instruction are the new values of the PCL and PCH, respec
tively.

• In the indirect mode, the second and third bytes of the IMP
instruction are the ADL and the ADH of a location which
contains the new PCL. PCH is in (ADH,ADL + 1).

INC AND DEC INSTRUCTIONS

The I/O techniques learned so far will be used to illustrate two
other instructions, INC and DEC, described in Table 3-1. The
logical expressions for the INC and DEC instructions are M + 1
M, and M - 1 M, respectively. Simply stated, the INC instruc
tion increments the contents of a memory location by one, whereas
the DEC instruction decrements the contents of a memory location
by one. In the zero-page addressing mode, the second byte of either
instruction is the page-zero ADL of the memory location to be modi
fied. In the absolute mode, the second and third bytes are the ADL
and the ADH of the location to be modified.

As an example of the application of these instructions, suppose
that a logic zero at PAO turns a device (a heater, for example) on,
while a logic one turns the same device off. Suppose further that
PAO has been programmed to be an output pin by loading $01 in
PADD, and that PAO is currently in the logic-one state. Then the
instruction DEC PAD turns the device on and the instruction INC
PAD will turn it off. Remember that the "address," PAD, corresponds
to an output port, and not a ROM or R/W memory location.

Some programs which will demonstrate the use of the INC and
DEC instructions follow.

58

Example 6: Program to Demonstrate the INC Instruction

Object: Apply successive increments to Port A which is programmed to be an output
port.

0200 A9 FF START LOA $FF Initialize Port A to be
0202 80 01 17 STA PADD an output port.
0205 80 00 17 STA PAD Begin with $FF in Port A.
0208 EE 00 17 HERE INC PAD I ncrement Port A.
020B 4C 08 02 JMP HERE Loop to continuously increment.

Example 7: Program to Toggle an Output Pin ON and OFF

Object: Toggle (switch on and off) pin PAO. Start with PAO at logic one.

0200 A9 01 START LOA $01 Make PAO an output pin by loading
0202 80 01 17 STA PADD one in bit zero of the DDR.
0205 80 00 17 STA PAD Initialize PAO to logic one.
0208 CE 00 17 DEC PAD Decrement PAD.
020B EE 00 17 INC PAD Increment PAD.
020E 00 BRK

If the Port A pins are used to light LEDs (see the experiments
at the end of this chapter), then the program in Example 6 will
demonstrate successively all binary numbers from zero to 255 on the
LEDs. Other instructions may be used to accomplish the same effect,
but the INC or DEC instructions are very efficient ways to incre
ment or decrement a memory location. The program in Example
7 produces a 6-microsecond negative-going one-shot pulse at pin
PAO of Port A. A pulse such as this might be used to trigger an
oscilloscope or start a counter. A -series of pulses may be produced
by replacing the BRK instruction with a JMP HERE instruction
where HERE = $0208.

INX, INY, DEX, AND DEY INSTRUCTIONS

There are four instructions that increment or decrement the X
and Y index registers. They are introduced here because of their
similarity to the INC and DEC instructions. Their mnemonics,
descriptions, and op codes are given in Table 3-1. These instructions
use the implied addressing mode. For example, when the INX
instruction is used, it is implied that the data to be operated upon
(incremented in this case) are in the 8-bit X register. No other
information about the location of the data is necessary, and, there-

Example 8: Program to Demonstrate the INX Instruction

Object: Successively decrement the X index register. Store the result in output Port A.

0200 A2 FF START LOX $FF Initialize index register to $FF.
0202 8E 01 17 STX PADD Make Port A an output port.
0205 8E 00 17 BACK STX PAD Output the X register to Port A.
0208 CA DEX Decrement the X register.
0209 4C 05 02 JMP BACK Loop to successively decrement.

59

fore, in the implied mode, only single-byte instructions are necessary.
The program in Example 8 on the preceding page illustrates one of
these instructions.

INTRODUCTION TO THE EXPERIMENTS

The experiments in this and subsequent chapters will make ex
tensive use of the I/O Ports on the KIM-I, SYM-l, and AIM 65.
However, it should be noted that most of these experiments may be
simulated using R/W memory locations rather than the I/O Ports
if you do not want to breadboard the I/O circuit described below.
We recommend the use of the I/O circuit, involving switches and
output LEDs, because the experiments and demonstrations become
much more vivid and realistic with the use of this circuit.

The I/O interface circuit is shown in Fig. 3-2. Note that Port B,
symbolized by PBD in the examples, is controlled by eight switches.
This port will be used as an input port, and the switches PB7-PBO
determine the number that the computer reads with an LDA PBD
instruction. There are several important points to note in connection
with the Port B input switches.

• Do not try to use Port B as an output port by writing $FF in
its data direction register, PBDD. The switches connected to
Port B are tied to ground in the logic-zero position, the position
indicated in Fig. 3-2. Damage to the integrated circuits on the
microcomputer boards may occur if you make Port B an output
port with the switches in the logic-zero position. It is also good
practice to leave the switches in the logic-one position when
they are not being used .

• The PBO switch is electronically "debounced." Several experi
ments require debounced switches.

• The PBO switch may also be used to produce an interrupt signal.
See Chapter 9 for details regarding interrupts .

• An Input/Output circuit that can be used to perform the experi
ments in this book with the Apple II microcomputer has been
described in "Programming and Interfacing the Apple, With
Experiments," COMPUTE!, January 1981, page 61.

• Neither the KIM-lor the SYM-l makes pin PB6 available to
the user. If you have one of these systems you may wish to
spot glue the PB6 switch in the logic-one position.

Port A is used as an output port, and the logic levels on the Port
A pins are indicated by the status of the Port A LEDs. If the logic
level is one, the corresponding LED will be lit. In order for Port

60

KIM~SYMAIM ~
APPLICATION 14

:!! CONNECTOR
~ ~ I ~ 2 PAO ...
~
n

PAl ;i-
c:
~'

,
I

a.. ,
;;;' ~ ~ PA2
ce ..
!I ... ~ 91 ~ 18 PA3 0 ..
0-
0- ~ 111 "'- 1 10 PA4
0 ..
a.
c: ~ 131 ~ 112 PA5 .. • a..
5'
• '\7 GND)(
'U

,,<jl +5V
= j'
• .. i--::---.. 11 ~ 12 PAG ;:
ii'
;. ,

31 "'- 14 PA7 iii' ~

0-
0

1 7;~04 0
!'"

GND

~

o +5V

8 LEDs
~ 270 OHMS

~~

-rOV

4700 ~
PSI OHMS

PB2

PB3

PS4

PB5

PBG

PB7 I

& GND

14' +5V

74LSOO

GND

~ ~ ~ 1
I

KIM~SYM~AIM
APPLICATION
CONNECTOR

"9

l
;
l
i

1
r
1
~
;

1
r

1

A, symbolized by PAD in the examples, to operate the LEDs, it
must be configured as an output port by writing $FF to the Port A
data direction register, symbolized by PADD in the examples and
experiments.

If you have some electronics experience, then you may wish to
breadboard the circuit in Fig. 3-2. A ribbon cable from the applica
tion connector pins given in Fig. 3-2 to a DIP connector (the entire
cable assembly is called a DIP JUMPER) that plugs into a Proto
board or Superstrip will work nicely. The integrated circuits,
switches, resistors, and LEDs may be mounted on the Protoboard
or Superstrip.

It may be worth pointing out once more that most of the experi
ments can be performed using R/W memory locations rather than
the I/O ports and the circuit of Fig. 3-2. For persons having little or
no electronics experience we suggest using R/W locations $03FE for
Port A, and $03FF for Port B. Use the monitor to preload $03FF with
the Port B data before running the program that goes with the
experiment.

In the experiments that follow, KIM-I, AIM 65, and SYM-l users
should employ the addresses for PAD, PADD, PBD, and PBDD
given in Table 3-3. Note that with the I/O board connected to the
applications connector, all the LEDs will light when the micro
computer system is RESET. The reason for this is that a RESET
makes all the pins inputs, and as inputs they act like logic-one volt
age levels for the LED TTL drivers. This is an important considera
tion for "power-up" procedures, but is of little concern here.

EXPERIMENT NO.
Step 1

Load the program in Example 1.

0200 A9 FF START LDA $FF Set the DDR for Port A so that
0202 8D 01 17 STA PADD all the pins are outputs.
0205 A9 Cl LDA $Cl Set pins PA7, PA6, and PAO
0207 8D 00 17 STA PAD to logic one, others to logic zero.
020A 00 BRK

Step 2

Execute the program and observe the effect on the LEDs. Which
LEDs on the I/O board glow?

62

(The PA7, PA6, and PAO LEDs should glow.)

Step 3

Change the program byte at $0206 to $55 and run the program
again. Which LEDs glow?

(The PA6, PA4, PA2, and PAO LEDs should glow.)

Step 4

Experiment with various values for the program byte at $0206.
What would you need at this location to turn all of the LEDs off?

(A $00 in location $0206 would turn the LEDs off.)

EXPERIMENT NO. 2

Step 1

Load the program in Example 2.

0200 A9 00 START LOA $00 Initialize Port B to be an
0202 80 03 17 STA PBOO input port by clearing OOR.
0205 AD 02 17 LOA PBO Read the port.
0208 85 00 STA lOZ Store port data in lOZ.
020A 00 BRK

Step 2

Set the input switches at Port B to logic one. Execute the pro
gram.

Step 3

Examine the contents of location $0000. Does it reflect values of
the switch settings? Remember that you may not have control
over PB6.

Step 4

Experiment with different switch settings, checking location $0000
after each run of the program to confirm your switch settings.

63

EXPERIMENT NO. 3

Step 1

Load the program in Example 3.

0200 A9 FF START lOA $FF Initialize Port A to be
0202 80 01 17 STA PADD an output port.
0205 AD 02 17 lOA PBD Get data from Port B.
0208 80 00 17 STA PAD Transfer to Port A.
020B 00 BRK

Step 2

Set the switches on the I/O board to any desired value. Execute
the program.

Step 3

Campare the LEDs with the switch settings.

EXPERIMENT NO. 4

Step 1

Load and execute the program in Example 4.

0200 A9 FF START LOA $FF
0202 80 01 17 STA PADD
0205 AD 02 17 HERE lOA PBD Get data from Port B.
0208 80 00 17 STA PAD Store it in Port A.
020B 4C 05 02 JMP HERE Reset program counter to $0205.

Step 2

Vary the settings of the input switches at Port B while the pro
gram is running. Explain your results.

(The LEDs will follow the switch settings because the program is
in a loop that inputs the switch settings and outputs them to the
LEDs.)

EXPERIMENT NO. 5

Step 1

Load and execute the program in Example 6. Describe what
you observe.

0200 A9 FF START LOA $FF Initialize Port A to be
0202 80 01 17 STA PADD a n output po rt.
0205 80 00 17 STA PAD Begin with $FF in Port A.
0208 EE 00 17 HERE INC PAD Increment Port A.
020B 4C 08 02 JMP HERE Loop to continuously increment.

64

(All the LEDs appear to glow. The reason is that they are being
turned on and off so rapidly that the eye does not perceive them
switching.)

Step 2

Starting with the first instruction, single-step through the pro
gram, paying close attention to the LEDs on the I/O board and the
instructions as they are executed. Note how the loop works by ob
serving the program counter. Explain your observations.

(When the program is single stepped the user can observe that the
Port A LEDs are actually "counting" in binary. The reason is that
the binary number in Port A is continually being incremented by
the INC instruction.)

EXPERIMENT NO. 6

Step 1

Load the program in Example 7, replacing the BRK statement
by a IMP HERE instruction, namely 4C 08 02. A listing follows:

0200 A9 01 START lOA $01 Make PAO an output pin by
0202 8D 01 17 STA PADD loading a one in bit zero of its DDR.
0205 8D 00 17 STA PAD Initialize PAO to logic one.
0208 CE 00 17 HERE DEC PAD Decrement PAD.
020B EE 00 17 INC PAD Increment PAD.
020E 4C 08 02 JMP HERE

Step 2

Execute the program and describe what you observe. Why does
this happen? Would you expect to observe this behavior based upon
your understanding of the program? Can you observe any changes
at the PAO LED as the program is executing? Why not?

(All the LEDs appear to glow continuously, but the PAO LED is
actually being toggled. The eye cannot perceive its off state whose
duration is only six microseconds.)

Step 3

Can you suggest a method that could be used to observe the be
havior at PAO? There are several that may be used.

65

(The single-step mode is probably the easiest to implement. Place
the program in the single-step mode and again run the program.)

Step 4

Is it possible to observe any change at the PAO LED in the
single-step mode? When do the changes take place? Is this reason
able?

EXPERIMENT NO. 7
Step 1

Load and execute the program in Example 8.

0200 A2 FF START lOX $FF I nitialize the X register to $FF.
0202 8E OJ 17 STX PADD Make Port A an output port.
0205 8E 00 17 BACK STX PAD X into Port A.
0208 CA DEX Decrement X.
0209 4C 05 02 JMP BACK

Step 2

Describe and explain the effect you expect to observe on the Port
A LEDs? Do you observe this effect?

Step 3

Single step this program and compare its effect on the Port A
LEDs with the results of the program in Example 6.

(The program of Example 6 starts counting from $00 and goes up.
This program counts backward. The counting can only be observed
in the single-step mode.)

EXPERIMENT NO. 8
Step 1

Write a program to toggle pin PAO. Use the Y register and the
DEY instruction. Initialize PAO to logic one before the toggle
operation starts. Put the toggle operation in a loop.

Step 2

Load, execute, and single step your program to test your success.
(One possible answer is the following program.)

0200 AO 01 START LOY $01 Initialize PAO to be output
0202 8C 01 17 STY PADD pin.

0205 8C 00 17 THERE STY PAD Set PAO to logic one.

0208 88 DEY Decrement the Y register.

0209 4C 05 02 JMP THERE loop to continuously decrement.

66

CHAPTER 4

Logical Operations

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand and use the AND, ORA, and EOR instructions. See
Table 4-1 for a summary.

• Understand the concept of masking.
• Perform complementation with the EOR instruction.
• Be able to set individual bits in a memory location to either

binary one or binary zero.

INTRODUCTION

Because he works with logic circuits and is familiar with digital
techniques, the experienced logic-circuit designer will immediately
recognize the importance of the logical operations. He is aware that
logical operations are involved in such diverse designs as digital
bathroom scales and cruise missiles. However, the beginner fre
quently wonders how the logical instructions will be used. We can
only promise that the answers will become obvious as we proceed.
Once the skills with the fundamentals are obtained, then potential
applications begin to appear.

One historical note: The logical operations originate in an area
of mathematics called Boolean algebra. George Boole was a 19th
century mathematician who could not possibly have anticipated the
widespread use of his work in symbolic logic. The moral should
be obvious.

67

Table 4-1. Summary of Instructions and Op Codes
Introduced in Chapter 4

Addressing Mode

Instruction Description Immediate Absolute Zero·Page

AND AND Memory with Accumulator 29 2D 25
ORA OR Memory with Accumulator 09 OD 05
EOR EXCLUSIVE-OR Memory with 49 4D 45

Accumulator

LOGICAL OPERATIONS

There are four logical operations that we will use. To describe
them, let A and B stand for I-bit binary numbers. The four logical
operations are:

• The AND operation, symbolized by A· B." A· B is read "A and B."
• The OR operation, symbolized by A + B." A + B is read "A or B."
• The Exclusive OR (EOR) operation, symbolized by A \Il B."

A \Il B is read "A e-or B" or "A x-or B."
• Ihe COMPLEMENT (or inversion] cperation, symbolized by

A. That is, the complement of A is A. A is read "not A."

Table 4-2 summarizes the operations with truth tables, and it gives
all the possible combinations of the operations for I-bit numbers.
Fig. 4-1 gives the logic design symbols for each operation. The
Exclusive-oR function in Fig. 4-1 is not a special gate because it
can be implemented with ANDS and ORS; that is, A \Il B = (A, B) +
(A·B).

A and B need not be I-bit binary numbers. An 8-bit microcom
puter operates on eight bits simultaneously. Any 8-bit logical opera-

Table 4·2. Summary of Logical Operations

AND OR EOR Complement

A B A·B A B A+B A B A\IlB A A

I 1 1 1 1 1 1 1 0 1 0
1 0 0 1 0 1 1 0 1 0 1
0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0
1·1 = 1 1 + 1 = 1 l\Ill=O 1=0
1 . 0 = 0 1+0=1 l\IlO=1 0=1
0·1 = 0 0+1=1 O\Ill=1
0·0= 0 0+0=0 0\Il0=0

°The symbols fI , V, and -V- frequently replace ., +, and \Il, respectively. The
dot (.) is sometimes understood; that is, AB = A·B. -\

68

±[yL ~
AND OR

Fig. 4·1. Logic symbols for the AND, OR,
EOR, and COMPLEMENT operations.

±;~ V
EOR COMPLEMENT

(INVERT)

tion can be performed by doing the single-bit operation on cor
responding bits. If the eight bits of A are represented by A7, A6,
A5, ... , AO, the eight bits of B by B7, B6, B5 ... , BO, and if the
answer to A· B is C, then the operation A· B = C is realized by

A7· B7=C7
A6· B6= C6
A5· B5 = C5

AO· BO= CO

Table 4-3 gives 8-bit examples for all four operations. It also sug
gests that the work is easier to do if the operation is arranged so
that the binary numbers are placed one under the other. Table 4-3
also expresses the numbers and the results of the operations in hexa
decimal. It is worthwhile to familiarize yourself with the operations
and results in hexadecimal since this is the form that will be used
in programs. The experiments at the end of this chapter will provide
additional practice. The operations may be summarized as follows:

• The result of an AND is one only if both bits are one.
• The result of an OR is zero only if both bits are zero.
• The result of an EOR is zero if the bits are alike; otherwise it

is one.
• The complement of a one is zero and vice versa.

Table 4-3. Examples of 8-Bit Logical Operations

AND OR EOR

A = 1100 1100 = $CC + A = 1 1 00 1 100 = $CC
ffi

A = 11 00 1 100 = $CC
B = 1010 1010 = $AA B = 1010 1010 = $AA B = 1010 1010 = $AA

C = 1000 1000 = $88 C = 1110 1110 = $EE C = 01100110 = $66
Complement

A = 1100 1100 = $CC

A = 0011 0011 = $33

69

The preceding four statements are easy to remember, and with them
truth tables such as the ones in Table 4-2 can be constructed.

Before turning to the 6502 logical instructions, we note that
the instruction set does not include a COMPLEMENT operation.
To produce the complement of an 8-bit number, the Exclusive OR

operation (EOR) is performed with the number to be complemented
and an 8-bit binary number having a one in every bit; that is, $FF.
See Example 1. The result

A ffi $FF = A,

illustrated in Example 1, is general. It will be used to produce the
complement of a number.

Example 1: Complementing an 8-Bit Number Using Exlusive OR Operation

Let A = 1100 1100 = $CC. Then

ffi A = 1100 1100 = $CC
1111 1111 = $FF

ond A = 1100 1100 = $CC

A ffi $FF = 0011 0011 = $33

showing that in this case A ffi $FF = A.
A = 0011 0011 = $33

AND, ORA, AND EOR INSTRUCTIONS

• The AND instruction forms the logical AND operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A· M -> A .

• The ORA instruction forms the logical OR operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A + M -> A.

• The EOR instruction forms the Exclusive OR operation with a
byte of data from memory and the contents of the accumulator.
The result is stored in the accumulator. Symbolically A ffi
M-> A.

A variety of addressing modes are available for these instructions,
including immediate, absolute, and zero-page. These modes were
described in Chapter 2; you may want to review that material before
proceeding to study the programs.

PROGRAMS TO DEMONSTRATE ORA, AND,
AND EOR INSTRUCTIONS

In Examples 2, 3, and 4 we list programs that will demonstrate
each of the three instructions, ORA, AND, and EOR. The two
numbers to be used in the operations are stored at addresses $0000
and $0001. The result of the logical operation is stored in Port A
so you can see the result on the Port A LEDs. It would be equally

70

suitable to store the result in location $0003, which could then be
examined after executing the program to find the result of the
operation. These three programs will be used in the experiments to
see what happens when specific binary numbers are ANDed, oRed,
EORed, and complemented.

Example 2: Program to Demonstrate the ORA Instruction

Object: Find R +5 and output the result to Port A.

$0000 = R
$0001 = 5
$AOOI = PAD
$A003 = PADD
0200 A9 FF
0202 80 03 AO
0205 A500
0207 05 01
0209 8001 AO
020C 00

START LDA $FF
STA PADD
LOA R
ORA S
STA PAD
BRK

Set up Port A to be
on output port.
Get the first number.
OR it with the second number.
Output the result to Port A.
Finish.

Example 3: Program to Demonstrate the AND Instruction

Object: Fi nd R· S and output the result to Port A.

$0000 = R
$0001 = S
$~= PAD
$'WIllI = PADO
0200 A9 FF
0202 80 01 17
0205 A5 00
0207 25 01
0209 8000 17
020C 00

START LOA $FF
STA PADD
LOA R
AND S
STA PAD
BRK

Get the first number.
AND it with the second number,
then output the result to Port A.
Finish.

Example 4: Program to Demonstrate the EOR Instruction

Object: Find REElS and output the result to Port A.

$0000 = R
$0001 =S
$1700 = PAD
$1701 = PADD
0200 A9 FF
0202 80 01 17
0205 A5 00
0207 al5 01
0209 8000 17
020C 00

START LOA $FF
STA PADD
LOA R
EOR S
STA PAD
BRK

Get the first number.
EOR it with the second number.
Output the result to Port A.
Finish.

USING ORA, AND, AND EOR INSTRUCTIONS
TO CONTROL BIT VALUES

The logical operation instructions are frequently used to change
specific bits in a memory location. These techniques are used quite
frequently in programs. To illustrate, suppose that we wish to

71

change PAD (bit zero of Port A) to be an output pin, leaving all
the other pins of Port A unaffected as far as their input/ output
status is concerned. Recall from Chapter 3 that the I/O status of a
pin is determined by the corresponding bit value in the DDR. If
PADD is the Port A DDR, then our task is to set bit zero of PADD
to one, leaving the others unaffected. This may be accomplished
by oRing PADD with 0000 0001 = $01. Note that a + x = X where
X is any bit value. Thus, oRing with a zero leaves the corresponding
bit unchanged. On the other hand 1 + X = 1 where X is any bit
value. Thus, oRing a bit with a one insures that a one will appear in
that bit. Example 5 illustrates how bit six of a number may be set
to a binary one using the OR operation. In the experiments we will
use a program to demonstrate these ideas.

Example 5: Setting a Bit to a Binary One with the OR Operation

Given the S·bit binary number 1001 1010 = $9A, modify it to have a one in bit six,
but leave the other bits unchanged.

Solution: This may be accomplished by ORing the given number with the binary
number 0100 0000 = $40, since

1001 1010 = $9A
+ 0100 0000 = $40

= 1101 1010 = $DA

How can you set bit seven to binary one? Bit five? Bit four?

The A:-ID operation is used to clear a bit to binary zero. Suppose
wc wish to clear bit seven to zero in the binary number 1100 1010 =
$CA. This is accomplished by ANDing the given number with a num
ber having a zero in the specified bit and binary ones in all the
other bits. For the case under consideration the appropriate number
is Olll llll = $7F. See Example 6 for details. Further practice in
clearing bits will be given in the experiments.

Example 6: Clearing a Bit to Zero with the AND Operation

Show that bit seven in $CA may be cleared (set equal to zero) without affecting the
other bit values by ANDing with $7F.

Solution: 1100 1010 = $CA
0111 1111 = $7F

0100 1010 = $4A

How would you clear bit six? Bit five? Bit four?

The process of clearing one or more bits of a given number, leav
ing the other bits unchanged, is called masking. The cleared bits
are said to be masked. For example, to mask the low-order nibble
of an 8-bit number, it is AiXDed with $FO = llll 0000. Masking the
high-order nibble requires an AND operation with $OF = 0000 llll.

72

How would you mask the odd numbered bits of an 8-bit binary
number?

To change a bit to its complement, that is, change a binary zero
to a binary one and vice versa, perform an Exclusive-oR operation
with ones in the bit positions to be changed. Given the number
llOO OlDl = $C5, the lowest four bits can be changed to have
opposite bit values by forming an Exclusive-oR with 0000 1lll =
$OF. Try this, using the truth table in Table 4-2. The program in
Example 4 will be used to demonstrate this in the experiments at
the end of this chapter.

OTHER USES OF LOGICAL OPERATIONS

As another example of how the logical operation instructions
might be used, suppose that a microcomputer is operating a business
security system consisting of:

• A smoke detector that produces a logic one on PB7 (pin seven
of Port B) if it detects smoke.

• A touch sensitive detector on the safe produces a logic zero
on PB2 if the safe is touched.

• A switch connected to PBS to disable the security system during
opening hours.

The programs listed in Examples 7 through 9 illustrate how the Port
B pins might be tested to check the detectors and control the system.
Note that these programs are illustrative examples. A microproc
essor based security system would have a much more complex
program, including as segments some of the programs illustrated
here.

Several of the ideas mentioned in the previous section are illus
trated with the programs in Examples 7 and 8. For example, in the
fourth instruction in the program in Example 7 the concept of
masking is used to mask all of the bits of Port B except bit seven,
since that is the one connected to the smoke detector. In the pro
gram in Example 8, the EOR $FF instruction complements the
touch sensitive detector bit (and all the other bits) to produce a
logic one when PB2 is at logic zero. Next, all the other bits except

Example 7: Program to Test the Logic Level of Bit Seven of an Input Port

Object: Make PA7 (pin .even of Port A) logic one if the .moke deteclor i. on, other.
wi.e output a logic zero to PA7.

0220 A9 FF BEGIN
0222 BD 03 AO
0225 AD 00 AO HERE
0228 29 80
022A 8D 01 AO
022D 4C 25 02

LDA $FF
STA PADD
LDA PBD
AND $80
STA PAD
JMP HERE

Load the Port A data direction
regi.ter to make Port A an output port.
Read Port B, then AND the contents
of Port B with $80 to mask all except
bit seven. Output result to Port A.
Loop to read Port B continuously.

73

Example 8: Program to Test the logic level of Bit Two of an Input Port

Obiecf: Continue the program above, but also make PA2 equal to logic one if the safe
is touched; that is, if PB2 is at logic zero.

0220 A9 FF BEGIN LOA $FF
0222 80 03 AO STA PADD
0225 AD 00 AO HERE LOA PBD
0228 29 80 AND $80 Mask bits zero through six.
022A 80 01 AO STA PAD Output smoke detector level to Part A.
0220 AD 00 AO LOA PBD Read Part B again, then complement its
0230 49 FF EOR $FF contents by an Exclusive-OR with $FF.
0232 29 04 AND $04 Mask all bits except bit two.
0234 00 01 AO ORA PAD OR the safe bit with the existing
0237 80 01 AO STA PAD contents of Port A. Result into Port A.
023A 4C 25 02 JMP HERE Loop to read the smoke detector and

the safe inputs continuously.

bit two are masked by the AND $04 instruction, isolating the logic
value of bit two, the touch sensitive detector input. If this bit is a
one, then the next ORA PAD will set bit two of PAD to logic one
without affecting the other bits. In other words, a bit has been
set using an ORA instruction as described in the previous section.
The ST A PAD instruction outputs both the smoke detector infor
mation and the touch sensitive detector information to Port A. All
of this logic is placed in a loop by the T\1P HERE instruction.

Before proceeding, you are urged to study the programs until
you understand each stcp. It is educational to "follow the accumu
lator." To illustrate, consider the program in Example fl, and assume
that PB7 is at logic one (the smoke detector is on) and PB2 is at
logic zero (the safe has been touched). The program should cause
both PA 7 and PA2 of Port A to be at logic one. Starting at HERE
in the program, list the contents of the accumulator after the com
pletion of each instruction, as shown in Table 4-4.

The program in Example 9 continues with the same theme. \Ve
would like the security system to be able to be disabled, for example

Step Label

1 HERE
2
3
4
5
6
7
8
9

74

Table 4·4. Trace of the Accumulator Through
the Program of Example 8

Accumulator Comments

lXXX XOXX PB7 is at logic one, PB2 is at logic zero. X = don't care,

1000 0000 Result of the AND with 1000 0000 = $80.
1000 0000 Result into Port A, turning PA7 on.

lXXX XOXX PBD into the accumulator again.
OX XX X1XX Result of EOR with $FF. All the bits are complemented.
0000 0100 Result of AND with $04.
1000 0100 Result of ORA with PAD containing 1000 0000.
1000 0100 Result into Port A, turning PA7 and PA2 on.

XXXX XXXX Program jumps to HERE to read Port B again.

if the alarms have already sounded or something in the system is
being repaired. Recall from our specifications that PB5 (pin five of
Port B) is used to implement this function. A logic zero on PB5
disables the security system, and a logic one enables it. The inter
esting feature of this program is the use of the indirect jump in
struction. Refer to the program and note that as long as PB5 is at
logic zero, the IMP instruction will restart the program at $0200
because the contents of locations $0000 and $0001 are $00 and $02,
respectively. But if PB5 is at logic one, then $20 is stored at the
location whose address is $0000, and the program will jump to
BEGIN. There may be more efficient ways of accomplishing our
objective, but our purpose of illustrating several instructions has
been achieved.

There are several other bit tests that are important in many appli
cations. For example, in an event counter we may wish to test
whether an input port bit received a negative pulse, that is, a logic
one to logic-zero to logic-one transition. Or we may be interested
in whether or not an input bit has changed its state. Programs such
as this make use of branch instructions, and illustrations will be
postponed until Chapter 6.

Example 9: Using an Indirect Jump Instruction to Control the Security System

Ohiect: Reod PBS to see if the system should be disabled. A logic zero on PBS disables
it, ond a logic one enables it.

$0000 = LOI; contains the AOL for the indirect jump instruction.
$0001 = HII; contoins the AOH for the indirect jump instruction.

0200 A900
0202 80 01 AO
0205 A9 FF
0207 80 03 AO
020A A902
020C 85 01
020E AD 00 AO
0211 29 20
0213 85 00
0215 6C 00 00

0220 AD 00 AO
0223 29 80
0225 80 01 AO
0228 AD 00 AO
022B 49 FF
0220 29 04

ORIGIN

HERE

BEGIN

LOA $00
STA PAD
LOA $FF
STA PAOO
LOA $02
STA HII
LOA PSO
AND $20
STA LOI
JMP (lOI)

Store $00 in Port A to starl 011
the outputs at logic zero.
Initialize Port A to be an output
port by putting $FF into its OOR.
Initialize indirect JMP by putting
PC H of $02 in location $0001.
Read Port S to get PBS value.
Mask all but bit five.
Result into $0000 which will contain
PCl for indirect JMP.
(Dotted locations are "don't care"

values.)

Check smoke detector.
Mask bits zero through six.
Result into Port A.
Now get result from the safe.
Complement it.
Mask all bits except bit two.

022F 0001 AO
0232 80 01 AO

LOA PBO
AND $80
STA PAD
LOA PBO
EOR $FF
AND $04
ORA PAD
STA PAD
JMP HERE

OR the safe bit with the existi n9
contents of Port A, then output the result.

0235 4C OE 02

75

INTRODUCTION TO THE EXPERIMENTS

Most of these experiments make use of the I/O board. If you do
not want to use this board, then store the results of the operations
in any available memory location, to be examined when the program
is finished. KIM-l users should always begin the experiments by
loading locations $17FE and $17FF with numbers $00 and $lC,
respectively. Also, always make sure the single-step mode is not
being used, unless you are specifically requested to use it.

EXPERIMENT NO. 1

Step 1

Load the program described in Example 2.

0200 A9 FF START LOA $FF Set up Port A to be
0202 80 03 AO STA PADD an output port.
0205 A5 00 LOA R Get the first number.
0207 05 01 ORA S OR it with the second number.
0209 80 01 AO STA PAD Output the result to Port A.
020C 00 BRK Finish.

Step 2

The numbers to be oned are put into locations $0000 and $000l.
We will use the program to learn some facts about the OR operation.
For each pair of numbers given below, write the result obtained
from DRing them. Express the result in hexadecimal.

$00 + $FO = __ _ $00 + $55 = _ ~ __
$00 + $OF = . __ _ $00 + $FF = __ _

What do you conclude is the result of DRing any number with $OO'?

$FF + $34 = __ _ $FF + $C5 = __ _

What do you conclude is the result of DRing any number with $FF.

$7F + $80 = ~~_
$Al + $5E = ~~_

$33 + $CC = __ _
$EE + $11= __

The last four problems involve DRing a number with its complement.
What do you conclude is the result of DRing a number with its
complement?

76

EXPERIMENT NO. 2

Step 1

In this experiment we will experiment with setting bits to binary
one. Load the following program. Leave the blank byte unchanged
until STEP 2.

0200 A9 FF START lOA $FF
0202 80 01 17 STA PADD
0205 A9 00 LDA $00
0207 80 00 17 STA PAD Initialize Port A to $00.
020A A9_ LDA load A with a byte.
020C 0000 17 ORA PAD OR it with Port A's contents.
020F 80 00 17 STA PAD
0212 00 BRK Finish.

Step 2

Put a number in the blank byte, location $020B, that will set bit
zero of Port A to logic one. Run the program to test your answer.
What numbers must be loaded into the blank byte at location $020B
to set the following bits to logic one? Fill in the following blanks
with the correct hexadecimal numbers.

Bit Number Byte Bit Number Byte Bit Numbers Byte

1 4 3, 1 ---
2 --- 6 7,0
3 --- 7 --- 6,3

EXPERIMENT NO. 3

Step 1
Load the program described in Example 3. The numbers to be

ANDed are put in locations $0000 and $0001. The result of the AND
operation appears at Port A.

0200 A9 FF START
0202 80 01 17
0205 A500
0207 25 01
0209 80 00 17
020C 00

Step 2

lOA $FF
STA PADD
lOA R
AND S
STA PAD
BRK

Get the first number.
AND it with the second number,
then output the result to Port A.
Finish.

For each pair of numbers given below, write the result obtained
by ANDing them.

$00 . $FF = __ _ $00 . $37 = __ _
$00 . $7F = $00 . $00 =

What do you conclude is the result of ANDing a number with $OO?

77

$FF . $11 = ~ __ $FF . $5C = ~ __

What do you conclude is the result of ANDing a number with $FF?

$OF . $88 = __ _ $FO . $88 = __ _
Can you describe the effect of an AND operation with $OF? $FO?

EXPERIMENT NO. 4
Step 1

Load this program. The blank byte will be filled in STEP 2.

0200 A9 FF
0202 80 03 AO
0205 80 01 AO
0208 A9_
020A 2001 AO
0200 8001 AO
0210 00

Step 2

START LOA $FF
STA PADD
STA PAD
LOA
AND PAD
STA PAD
8RK

Set all the bits of Port A to logic
one.
AND with Contents of Port A.

What number must you load in the blank byte, location $0209, to
clear the following bits to logic zero? Fill in the blanks with hexa
decimal numbers.

Bit Number Byte Bit Number Byte Bit Numbers Byte
0 --- 5 --- 7,6,5,4
1 6 3,2,l,0
2 7 --- 7,5,3,1 ---

Either find your answers using hand calculations and test your
logic with the program, or use the program to find the answer.

EXPERIMENT NO. 5
Step 1

Load the program described in Example 4. The numbers to be
EORed are stored in locations $0000 and $0001. The result is stored in
Port A.

0200 A9 FF START LOA $FF
0202 80 01 17 STA PADD
0205 AS 00 LOA R Get the first number.
0207 45 01 EOR S EOR it with the second number.
0209 80 00 17 STA PAD Output the result to Port A.
020C 00 BRK Finish.

78

Step 2

Proceeding as in the previous experiments, use the program to
find the following answers in hexadecimal.

$FF EB $00 = __ _ $FF EB $C8 = __ _
$FF EB $55 = __ _ $FF EB $81 = __ _

Compare your answers with the complements of the numbers $00,
$55, $C8, and $81. What do you conclude is the result of EORing a
number with $FF?

$C3 EB $3C = __ _ $A5 EB $5A = __ _
$44 EB $BB = __ _ $82 EB $7D = __ _

The numbers to be EORed in the last four problems are complements
of each other. What do you conclude is the result of EORing a num
ber with its complement?

$01 EB $OF = __ _ $80 EB $OF = __ _
$02 EB $OF = __ _ $40 EB $OF = __ _

From this last result, explain how you can change the bit value of
a particular bit; that is, how can you complement any specific bit
or group of bits (up to eight bits).

EXPERIMENT NO.6

Step 1

The program listed below toggles PAO (pin zero of Port A) using
the EOR instruction. It illustrates how a specific bit, bit zero in
this case, may be switched in its logic value. Load the following
program.

0200 A9 FF BEGIN lOA $FF I nitialize the Port A
0202 8D 01 17 STA PADD DDR.
0205 8D 00 17 STA PAD Initialize all LEDs to glow.

0208 A9 01 HERE LDA $01 Bit zero in A set to one.
020A 4D 00 17 EOR PAD EOR with contents of PAD.
020D 8D 00 17 STA PAD Result into PAD.

0210 4C 08 02 JMP HERE Loop to logg Ie PAO.

79

Step 2

Execute the program. What do you observe? What can you do to
see PAO toggle?

Step 3

Single step the program if you want to see the P AO LED toggle.
At the same time, prepare a table similar to the one in Table 4-4,
tracing the contents of the accumulator. At what instruction does
the PAO LED change its state? What effect does the EOR PAD
instruction have on the other bits of PAD?

You have obtained a good deal of practice with the logical opera
tions if you have completed the previous experiments. You may
wish to experiment with the programs in Examples 7 through 9,
the security system program. These programs were written so the
ASK I/O board switches simulate the smoke detector, touch sensi
tive detector, and system-disable inputs, while the Port A LEDs
simulate the output conditions. You might also try to write programs
to p~ th~eJ3oolean Alge"Q.ra]heorems: A EB B = (A'B) + (A,
B), A+B = A·B, and A·B = A+B.

80

CHAPTER 5

Arithmetic Operations

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand some of the functions of the processor status reg
ister.

• Use the ADC, SBC, CLC, SEC, CLD, and SED instructions to
add and subtract binary or decimal numbers. See Table 5-1
for a summary of these instructions.

• Do multibyte addition and subtraction.
• Understand and use twos complement arithmetic.
• Do elementary signed number arithmetic.

INTRODUCTION

Probably the least surprising fact about a microprocessor is that
it performs some arithmetic operations. In this age of electronic
calculators, one of the most surprising facts to the beginner is that
microprocessors do not have multiply and divide instructions. In
Chapter 7 we will see that short programs can be written to perform
these operations; for the present, however, we will concentrate
on addition and subtraction. In this chapter, "+" will mean "add."
No confusion with the "OR" operation described in the previous
chapter is likely to occur because the intended operation will be
clear from its context.

6502 PROCESSOR STATUS REGISTER

Several of the 6502 internal registers have already been men
tioned. A complete model of the 6502 register structure is shown

81

Instruction

ADC

SBC

ClC
SEC
ClD
SED

82

Table 5·1. Summary of Instructions and Op Codes
Introduced in Chapter 5

Addressing Mode

Description Immediate Absolute Zero·Page

Add Memory to Accumulator 69 6D 65
with Carry
Subtract Memory from Accu- E9 ED E5
mulator with Borrow
Clear the Carry Flag
Set the Carry Flag
Clear the Decimal Mode Flag
Set the Decimal Mode Flag

PROGRAMMING MODEL R6500
7 0

I A I ACCUMULATOR

7 0

I Y I INDEX REGISTER Y

7 0

I X I INDEX REGISTER X

15 7 0

I PCH I
7

I
I N I V I

PCL I PROGRAM COUNTER

0

S I STACK POINTER

0

I BID I I I Z I C I ~~g CESSOR STATUS
ISTER:P·

I CARRY

ZERO

INTERRUPT DISABLE

DECIMAL MODE

BREAK COMMAND

UNUSED

OVERFLOW

NEGATIVE

Courtesy Rockwell International

Fig_ 5-L Model of 6502 internal register structure.

Implied

18
38
D8
F8

in Fig. 5-1. The register of the greatest interest in the next few
chapters will be the processor status register, symbolized by P.

Each bit of the P register is called a status hit, and each bit has
its own identity, independent of the other status bits in the register.
The status bits are frequently called condition codes or flags because
they act as signals for certain conditions. We make the following
definitions:

• If the carry flag is set, then there is a one in bit zero, the carry
bit, of the P register.

• If the carry flag is clear, then there is a zero in bit zero, the
carry bit, of the P register.

Similar definitions apply to other bits (or flags) of the P register.
The carry idea is related to addition, as a recollection of elementary
arithmetic will suggest. That it is also related to subtraction will
become clear in the subsequent discussion.

FLAG MODIFICATION INSTRUCTIONS

Refer again to Table 5-1 for a summary of the CLC, SEC, CLD,
and SED instructions. These single-byte instructions use implied ad
dressing because their only effect is to change flags in the P register.
No address is needed after the op code since the processor knows
the P register is an internal register. Table 5-2 gives some additional
information about the flag modification instructions. The circum
stances under which these instructions are used will become ap
parent from the examples and programs. More details connected
with the P register will be given in Chapter 6.

Table 5-2. Descriptions of CLC, SEC, CLD, and SED Instructions

Mnemonic OP Code Operation Logical Description

I D I I I c I ClC 18 Clear the Carry Flag
p I I I I

f 0

SEC Set the Carry Flag
p I I I I I D I I I c I 38 I I

ClD 08 Clear the Decimal Mode Flag p I I I I I D I I I c I
! 0

SED FB Set the Decimal Mode Flag
p I I I I I D I I I c I

f I

83

ADC INSTRUCTION

The truth table in Table 5-3 summarizes the binary addition
operation for single-bit numbers. The sum of two single-bit num
bers produces a result, R, and a carry, C. C is zero unless two
binary ones were added. The carry, C, must be added to the next
most significant bit in multibit operations such as the 8-bit opera
tions performed by the 6502. Refer to Fig. 5-2 for a pictorial repre
sentation of an 8-bit addition that demonstrates the "carry" concept.
Observe that the carry from the seventh bit is what appears in the
carry Hag. If there is a carry, then the carry Hag in the processor
status register is set to one. If there is no carry, then the C Hag in
the P register is cleared. The ADC (add with carry) instruction
is described as follows.

+ + + + + + +

1m ~ m1 1BI @1 [@ 1m ~
+ + + + + + + +

~ lm ~ [E] ill] ffiI [ill ~

Fig. 5·2. Diagram of an a·bit binary addition, A+B = R with Carry.

• The ADC instruction adds the contents of a memory location,
the contents of the accumulator, and the carry Hag. The result
is stored in the accumulator. The carry Hag is added as a one
or as a zero.

• Symbolically the ADC instruction is written A + M + C ~ A,
where A and M contain 8-bit numbers but C is a I-bit number.

• If the result of the addition operation exceeds $FF = 25510,

then the carry Hag is set; otherwise it is cleared.

In the examples that follow, the status of the carry Hag after the
operation is indicated to the right of the result. Example 1 illustrates
how two binary numbers are added. A program to add these same
two numbers is given in Example 2.

In Example 2, the carry flag was cleared prior to the ADC in
struction because the state of the carry flag is generally unknown.
It is always good practice to clear this flag before doing additions.

84

Table 5-3. Truth Table for Binary Addition (R is Result, C is Carry)

A B R C A+B=R

0 0 0 0 0+ 0 = 0 [C] = 0
0 1 a 0+ 1 = 1 [C] = 0

a 1 0 1 + a = 1 [C] = 0
0 1 + 1 = 0 [C] = 1

Example 1: Adding Two Binary Numbers with a Cleared Carry Flag

Add $85 and $21. Carry flag is clear.

So/ulion: + $85 = 1000 0101 A
+ $21 = 0010 0001 M

0= 0 C

$A6 = 1010 0110 A [C] = 0

Example 2: Program to Add Two Binary Numbers

ObjecI: Add the two binary numbers represented by $85 and $2l.

0200 08 START CLO Clear the decimal flag to do the addition
0201 18 CLC in 'he binary mode. Clear carry flag.
0202 A9 85 LOA $85 Put $85 into the accumulator.
0204 69 21 AOC $21 Add $2l.
0206 85 00 STA MEM Store the result in MEM = $0000.
0208 00 BRK Finish.

The result of the additiOll is stored in location $0000. It can be
examined to see if the correct answer, $A6, was obtained. Example
3 is another illustration of a binary addition. It introduces a new
complication. Observe that the answer to Example 3 should be
$153, not $53. In this example, the carry flag indicated that the
answer exceeded or overflowed the range of numbers that can be
represented by eight bits. More than one byte is necessary to repre
sent the answer. All is not lost, however, because the carry bit can
be obtained and stored in a second byte. The program in Example
4 illustrates this. It is a simple modification of the program in Ex
ample 2. The numbers added are those from Example 3.

Example 3: Adding Two Binary Numbers that Cause an Overflow

Add $93 and $CO. Carry flag is clear.

So/ulion: + $93 = 1001 0011 A
+ $CO = 1100 0000 M

0= 0 C

$53 0101 0011 A [C] = 1

In Example 4 observe that the complete answer is now contained
in two bytes, located at addresses $0000 and $0001 that contain the
least-significant byte of the sum and the most-significant byte of the
sum, respectively. That is, location $0000 should contain $53 and

85

Example 4: Program to Add Two Binary Numbers and Save the Carry Bit

Obiecf: Add $93 to $CO and save any carry from this sum in location $0001.

0200 08 START CLO Clear the decimal flag.
0201 18 CLC Clear the carry flag.
0202 A993 LOA $93 Put $93 into A.
020.4 69 CO AOC $CO Add $CO.
0206 85 00 STA SUMLO Store the result in SUMLO = $0000.
0208 A900 LOA $00 Put $00 into A.
020A 69 00 AOC $00 Add $00 and the carry from the previous
020C 85 01 STA SUMHI addition. Store in SUMHI = $000l.
020E 00 BRK Finish.

location $0001 should contain $01, giving $0153 as the correct
answer. The program in Example 4 hints at our next problem, add
ing numbers that cannot be represented by a single byte.

MULTIBYTE ADDITION

In the event that the numbers to be added require more than one
byte to represent them, or if the answer cannot be represented with
a single byte, then so-called "multibyte arithmetic" is required.
If two bytes are used to represent a number, we call this double
precision arithmetic. If three bytes are used to represent each num
ber in an arithmetic operation, then we speak of triple-precision
arithmetic. In Example 5, we illustrate a double-precision addition
by adding $1234 to $05D2. The low-order bytes of the two numbers
to be added are $34 and $D2, while the high-order bytes are $12
and $05. The low-order bytes are added first. Any carry from this
addition is added to the sum of the high-order bytes. The program
in Example 6 illustrates how double-precision arithmetic is done on
the microcomputer. Again, it is absolutely essential that the double
precision addition be carried out in the order low-order byte first,
high-order byte second, because any carry from the first addition
must be included in the second.

Example 5: Adding Two-Byte Numbers

Add $1234 and $0502. Carry flag is elear.
Solution: + $12 = 0001 0010 A

+ $05 = 0000 0101 M
1 1 C (from $34+$02)

+ $34 = 0011 0100 A
$02 = 1101 0010 M

86

o 0 C

$18 = 0001 1000 A [C] = 0 $06 = 0000 0110 A [C] = 1

Thus, $1234 + $0502 = $1806.

Example 6: Program to Add Two Two-Byte Numbers

Obiect: Perform a double-precision addition using the memory assignments given here;
that is, the numbers to be added are stored in these locations:

$0301 = Hll; high-order byte of number one
$0300 = LOI. low-order byte of number one

0200 08
0201 18
0202 AD 00 03
0205 60 02 03
0208 80 0403
020B AD 01 03
020E 60 03 03
0211 80 05 03
0214 00

$0303 = H12; high-order byte of number two
$0302 = L02; low-order byte of number two
$0305 = SHI; high-order byte of the sum
$0304 = SLO; low-order byte of the sum

START CLO Clear decimal mode.
CLC Clear carry flag.
LOA LOI Get low-order byte of Number 1.
ADC L02 Add law-order byte of Number 2.
STA SLO Result into low-order byte of sum.
LDA H 11 Get high-order byte of Number 1.
ADC HI2 Add high-order byte of Number 2 and carry,
STA SHI if any, from previous sum. Result
BRK into high-order byte of sum. Finish.

DECIMAL ADDITION

The 6502 is also capable of adding decimal (base-ten) numbers.
This is a useful feature because there are instances in which input
and output data are decimal numbers. The most obvious situation
is when human beings must input data to the microcomputer or read
the output of the microcomputer. However, there are less obvious
situations, such as when a decade counter is interfaced to a micro
computer, providing data in a binary-coded-decimal (bcd) repre
sentation, which must then be operated upon with decimal arith
metic instructions. Other interfacing problems also require decimal
operations, since numerous instruments output data in the bcd form.

In the decimal mode, each digit is represented by four bits. The
conversion scheme is shown in Table 5-4. Since each decimal digit
requires four bits, a single byte of data represents two decimal digits;
that is, a two-digit number. Thus, the numbers 0 to 99 are repre
sented by a single byte in memory. If we were to add 48 to 43 and
output the result to Port A, then since 48 + 43 = 91, the answer ap
pearing at Port A would be 1001 0001 because the bcd represen
tation of nine is 1001 and the bcd representation of one is 000l.
Refer to Table 5-4 to convert other numbers. If 48 were in some
memory location, its binary representation would be 0100 1000,
while 4.3 would be 0100 0011.

If the microcomputer is going to add two decimal numbers to
obtain a decimal sum, then the decimal mode flag must be set with
the SED instruction before the addition is carried out. In the decimal
mode. the carry flag is set if the sum exceeds 99; otherwise it is
cleared. The carry bit can be saved in exactly the same way illus
trated in Example 4, and double-precision decimal arithmetic is
accomplished in exactly the same way that we illustrated in Example
6, except that the decimal mode flag must be set.

A program to illustrate the decimal mode by adding 43 to 48 is
shown in Example 7. Note that it is exactly like the program in

87

Table 5-4. Binary Representation (BCD) of Decimal Digits

Decimal Digit Binary Code (BCD)

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Example 2, except the decimal mode Bag is set by the first instruc
tion. Of course, other numbers can be added with the same pro
gram, provided the locations in the program that contain the num
bers to be added are changed. The curious reader is sure to try
some hexadecimal numbers like $CD + $3F in the decimal mode,
just to see what happens.

Example 7: Program to Add Two Decimal Numbers

Object: Add the decimal numbers 43 and 48.

0200 F8 START SED Set the decimal made flag.
0201 18 CLC Clear the carry flag.
0202 A943 LOA 43 Put 43 into A.
0204 69 48 AOC 48 Add 48.
0206 85 00 STA SUM Result into SUM = $0000.
0208 00 BRK Finish.

To summarize the use of the carry Bag:

• The carry Bag should be cleared with a CLC instruction prior
to doing a sum, unless the state of the carry Bag is known.

• The carry Hag will be set if the result of a binary sum exceeds
$FF = 255; otherwise it will be cleared.

• The carry Bag will be set if the result of a decimal sum exceeds
99; otherwise it will be cleared.

• The carry Bag can be used to implement double-precision sums,
either in the binary mode or the decimal mode, in the event that
the numbers to be added or the sum cannot be represented by
a single byte.

TWOS-COMPLEMENT ARITHMETIC

Microprocessors and other integrated circuits that handle digital
information neither subtract nor recognize plus and minus signs.
To understand how subtraction is performed and signed numbers

88

are handled, an understanding of twos-complement arithmetic is
necessary. The purpose of this section is to provide the background
information for subtraction and signed-number arithmetic, topics
that are covered in the next several sections. The ideas presented
here will also be useful in Chapter 6 when relative addressing and
branching are introduced_

Recall from elementary arithmetic that three numbers are involved
in subtraction: the minuend, the subtrahend, and the difference.
The subtrahend, s, is subtracted from the minuend, ill, to form the
difference, d_ We can express this in this way,

m- s =d (1)

Although most of us do not subtract using the technique that fol
lows, it is possible to subtract by adding the negative of the subtra
hend. This can be expressed as follows,

m - s = m + (-s) = d (2)

For example, 8 - 5 = 8 + (-5) = 3.
On the computer, subtraction is performed with this technique,

namely adding the "negative" of the subtrahend to the minuend.
'\That is the negative of a binary number? For that matter, what

is the negative of any number? Mathematicians define the negative
of a number as that number which when added to the number, gives
zero. For example 5 + (-5) = 0, so (-5) is the negative of +5. To
summarize, a negative number, (-m) has the property that

m+ (-m) =0 (3)

In dealing with binary numbers in a computer, there is no way
of indicating a "-" sign to inform the computer that the number
is a negative number. However, it is possible to discover a relation
ship between binary numbers that is identical to Equation 3, and
that can be used to define the "negative" of a binary number. We
now prove this.

Suppose M is an 8-bit binary number. You can easily verify with
a few examples that

M + M = $FF (4)

For examE!e, if M = llOO 0101 = $C5, then M = 001l 1010 = $3A,
and M + M = llll llll = $FF. This works every time. Since add
ing one to $FF gives $00 (with a one in the carry flag), we can also
state that

M+(M+l)=O (5)

This last equation fits the definition of a negative number perfectly,
and it requires no minus sign. Note that Equation 5 has exactly the

89

same form as Equation 3. In words, our conclusion is, the "negative"
of an 8-bit binary number is found by complementing the number
and adding one. _

If M is an 8-bit binary number, then its "negative" is (M + 1).
The number (M + 1) is not called the "negative" of M in computer
language. Rather, it is called the twos-complement of M. But re
member, it has all the properties of a negative number, and, there
fore, it can be used in subtraction operations.

Recall that to subtract a number we may add the negative of the
number. To subtract an 8-bit binary number M from another 8-bit
binary number A, we can add the twos-complement of M, namely
(M + 1). In symbols,

A-M=A+(M+1) (6)

Direct subtraction in a microprocessor, as the left-hand side of
Equation 6 indicates, is difficult to implement. On the other hand,
complementation of M followed by adding one, as the right-hand
side of Equation 6 indicates, is relatively simple. Microprocessors
implement subtraction by performing the right-hand side of Equa
tion 6; that is, the computer reads the data from memory, comple
ments it, adds it to the accumulator, then adds one to get the final
result. Example 8 will help to illustrate these ideas.

Carefully study Example 8. Note that the addition operation is

Example 8: Subtraction by Twos-Complement Addition

Subtract $33 from $83 using twos-complement arithmetic.

Solution: Step I-Complement $33.
$33 = 0011 0011, so $33 = 1100 1100 = $CC
Step 2-Add 1 to $33.
$CC + 1 = $CD
Step 3-Add $CD to $83.
+ $83 = 1000 0011 A

$CD = 1100 1101 M + 1

$50 = 0101 0000 A [C] = 1

identical to all the previous examples in this chapter. A sharp ob
server would also see that Step 2 in Example 8 would not be neces
sary if the carry flag had been set prior to the entire subtraction
process. Th~ is, to add M + 1 we could set the carry flag and then
simply add M. Since the microprocessor already uses the carry flag
to perform the addition operation, it is convenient to use it to form
the twos-complement. If the carry flag, C, is set, then (M + C) is
the twos-complement of M. Then our subtraction problem, A - M.
may be expressed as

A-M=A+(M+C) (7)

90

Study Equation 7 carefully. If C is set, as it should be if the
subtraction operation is to work, then C is zero. But if C is zero, then
Equation 7 could just as well be written as follows,

A-M-C=A+(KI+C) (8)

Refer to the instruction set summary and observe that Equation 8 is
the equivalent of the SBC instruction. We have arrived. If C is set,
then Equation 8 gives A - M. If C is cleared, then Equation 8
gives A - M with a one borrowed from it.

The SBC instruction may now be summarized as follows:

• The SBC instruction subtracts the contents of a memory loca
tion from the contents of the accumulator. The complement of
the carry Hag, C, is also subtracted from the accumulator. The
result is stored in the accumulator.

• Symbolically the SBC instruction is written A - M - C 4 A.
• If the result of the subtraction is less than zero in either the

decimal mode or the binary mode, then the carry Hag is cleared.

In a subtraction operation the carry Hag serves the purpose of indi
cating a borrow. It may be helpful to think of the complement of
the carry Hag as a borrow Hag.

Another example will help to illustrate these ideas. In Example
9 we subtract $62 from $AF, and in Example 10 we give a program
to perform the same subtraction. In the program note that the carry
Hag is set. If we think of C as the borrow Hag, then the borrow Hag
was cleared prior to the subtraction operation.

Example 9: Demonstration of Carry Flag in Twos·Complement Subtraction

Subtract $62 from $AF. Corry flag is set.

Solution: Step I-Complement $62.
$62 = 0110 0010, so $62 = 1001 1101 = $9D
Step 2-Add $9D to $AF with carry.

$AF = 1010 1111 A
$9D = 1001 1101 hi

1 C

$4D = 0100 1101 A [C] = 1

Example 10: Program to Subtract Two Numbers

Object: Subtract $62 from $AF using the binary mode.

0200 D8 START CLD Clear the decimal mode flag.
0201 38 SEC Set the carry (or clear the barrow) flag.
0202 A9 AF LDA $AF Minuend into A.
0204 E9 62 SBC $62 Subtract subtrahend.
0206 8500 STA DIFF Difference into DI FF = $0000.
0208 00 BRK Finish.

Our last example in this section is a program to perform a double
precision, decimal mode subtraction. This program is given in Ex-

91

ample 11. Compare this program to the double-precision, binary
mode addition program given in Example 6. In Example 11 we set
the decimal mode flag and we set the carry flag before doing the
subtraction, while in Example 6 we cleared the decimal mode flag
and cleared the carry flag before doing the addition. Both pro
grams are easily extended to handle three or more bytes.

Example 11: Program to Subtract Two Two-Byte Numbers in the Decimal Mode

Object: Perform a double-precision subtraction in the decimal mode using the follow-

0200
0201
0202
0205
0208
020B
020E
0211
0214

ing memory assignments.

F8
38
AD 00 03
ED 02 03
80 04 03
AD 01 03
ED 03 03
80 05 03
00

$0300 = LOM; low-order byte of the minuend
$0301 = HIM; high.order byte of the minuend
$0302 = LOS; low-order byte of the subtrahend
$0303 = HIS; high-order byte of the subtrahend
$0304 = LOD; low-order byte of the difference
$0305 = HID; high-order byte of the difference

START SED Set the decimal mode flag.
SEe Set the carry (clear the borrow) flag.
LDA LOM Low-order byte of the minuend into A.
SBe LOS Subtract subtrahend, low-order byte.
STA LOD Result into low-order byte of difference.
LDA HIM Get high-order byte of the minuend.
SBe HIS Minus the subtrahend and borrow, if any.
STA HID Result into difference, high-order byte.
BRK Finish.

SIGNED NUMBER ARITHMETIC

In the previous section we showed that the 8-bit number (M + 1)
may be regarded as the "negative" of the 8-bit number M. The
number (1\1 + 1), called the twos-complement of M, has all the
mathematical properties of negative numbers. For example, you
know that in decimal arithmetic +0 = -0 = 0; that is, zero is neither
minus nor plus. Is this true in the twos-complement arithmetic of
binary numbers? Note that the complement of SOp is $FF, and
$FF + 1 = $00, so the twos-complement (negative) of zero is zero
as in the case of decimal numbers.

These and other facts have led the computer industry to adopt
the following conventions for 8-bit signed binary numbers:

92

• 8-bit binary numbers represent the decimal integers from -128
to + 127. Refer to Table 5-5 to observe the pattern of integers,
binary numbers, and hexadecimal numbers.

• Bit seven is called the "sign bit." A one in bit seven indicates
a negative number. A zero in bit seven indicates a positive
number. Refer again to Table 5-5 to observe this pattern.

With regard to signed hexadecimal representations,

Table 5·5. Twos Complement Representations of
Numbers from - 128 to + 127

Number Twos Complement Hexadecimal

+127 0111 1111 $7F

. .
+5 0000 0101 $05
+4 0000 0100 $04
+3 0000 0011 $03
+2 0000 0010 $02
+1 0000 0001 $01

0 DODO 0000 $00
-1 1111 1111 $FF
-2 1111 1110 $FE
-3 1111 1101 $FD
-4 1111 1100 $FC
-5 1111 1011 $FB . ,~ ,'. " , ' .

~ - ~- ;..-,
-128 1000 0000 $80

• The numbers $00 to $7F represent the non-negative integers
from zero to 127.

• The numbers $80 to $FF represent the negative integers from
-128 to-1.

Table 5-6 gives the decimal integers corresponding to any hexa
decimal number between $00 and $FF.

To handle numbers greater than + 127 and less than -128, two
or more bytes are used, but bit seven in the most significant byte
remains as the sign bit. Thus, a 16-bit signed number could have
values between +32767 and -32768.

Refer again to the P register model in Fig. 5-1. When any opera
tion produces a one in bit seven, then the N Hag of the P register is
set. Thus, when an add or subtract operation sets the N Hag, a
negative result is indicated. On the other hand, if an add or subtract
operation clears the N Hag, a positive result is indicated. An N
symbolizes negative. You will learn that the N Hag has uses other
than indicating the signs of binary numbers.

SIGNED ARITHMETIC AND OVERFLOW STATUS BIT

We begin with some examples of signed arithmetic. As in the
case of ordinary addition and subtraction, the carry Hag should be
cleared before an addition and it should be set before a subtraction.

93

:

Table 5-6. Hexadecimal Equivalents of Signed Decimal Integers

Least Significant Hex Digit

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

.1: 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
III 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 Ci
Ie 4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
• 5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 :z:
C 6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 ..

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 ..
!e 8 -128 -127 -126 -125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114 -113 II:
.21 9 -112 -111 -110 -109 -108 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97 ...
10 A -96 -95 -94 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 -83 -82 -81
0
~ B -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65

C -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 --54 -53 -52 -51 -50 -49
D -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34

-33 I E -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17
F -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Example 12: Adding Two Signed Numbers

Add +12and -7. Carry flag is cleared.
Solution: + + 12 = 0000 1100 = $OC A

+ -7 = 1111 1001 = $F9 M
o 0 0 C

+S = 0000 0101 = $OS A [C] = 1

Example 13: Subtracting Twa Signed Numbers

Subtract -7 from - 12. Carry flag is set. Recall that subtraction is implemented by
adding the complement of the number and the carry flag.

Solution: + -12 = 1111 0100 = $F4 A
+ +6 = 0000 0110 = $06 Ii

1 1 1 C

-S=11111011=$FB A [C]=O

Refer to Table 5-6 to study these examples. You can obtain the
hexadecimal representations of the signed integers from this table,
and you can convert the hexadecimal numbers to binary num
bers. In Example 13 the logic one in bit seven of the result indi
cates that the answer is negative in twos-complement form. To
put the answer in a representation which is more easily recognized,
form the twos-complement of the answer and use bit seven to
inform the user that the answer is negative. The complement of
1111 1011 is 0000 0100. Adding one to form the twos-comple
ment gives 0000 0101 = 5. The N Rag was a logic one so the answer
is -5. The N Rag can be tested, as you will see later, to determine
if the middle horizontal segment in a seven-segment digit should
be lit, indicating a minus sign.

The carry bit has no meaning when signed (seven data bits, plus
a sign bit) operations are performed. Remember that signed opera
tions use values in the range of -128 to +127. Thus, when +127
and + 127 are added, the result is 254 or 1111 1110. If we consider
this result to be a signed number, it turns out to be negative (bit
seven = logic one). This is incorrect. The entire 8-bit number repre
sents the result, and the sign bit must be ignored. In this case, an
overflow condition exists since the sum "overRowed" into the sign
bit, giving an erroneous result. When the addition of two signed
numbers exceeds + 127, 0111 1111, the overRow status bit, V, is set
to a logic one. Remember, the V Rag is present as bit six in the
P register.

OverRow may also occur when the sum of two negative numbers
is less than -128. The microprocessor also recognizes this situation
and sets the overRow Rag. OverRow may occur when a negative
number is subtracted from a positive number giving an answer
greater than + 127, or when a positive number is subtracted from a
negative number giving an answer less than -128. The overRow Rag

95

will be set if any of these overflow conditions occurs; otherwise it
will be cleared. Overflow cannot occur when a positive number is
added to a negative number, a positive number is subtracted from
another positive number, or when a negative number is subtracted
from another negative number.

To the programmer using signed arithmetic, the overflow flag has
the same meaning as the carry flag in ordinary arithmetic. The pro
grammer who is not using signed arithmetic may ignore the over
flow flag and the sign in bit seven. Finally, the overflow flag may
be cleared with the CL V instruction, op code B8.

Since the overflow flag does not directly enter a sum or difference
like the carry flag does, signed arithmetic programs require branch
instructions to inform the user of an overflow or to correct for the
result. Branch instructions will be introduced in Chapter 6.

EXPERIMENT NO. 1

Step 1

Load and execute the program in Example 2. What answer is
found at the address $OOOO?

0200 08 START CLO Clear the decimal flag.
0201 18 CLC Clea r the carry flag.
0202 A985 LOA $85 $85 inlo A.
0204 69 21 AOC $21 Add $21.
0206 85 00 STA MEM Sum into location $0000.
0208 00 8RK

(After the program has run you should find $A6 in location $0000.)

Step 2

What answer would you get if the carry flag had not been cleared
before the program was executed? Try this by exchapging the CLC
instruction for an SEC instruction in the preceding listing.

Step 3

Use the program to add the following numbers:

$7F + $80 = __ _ $33 + $CC = ~ __
$AI + $5E = __ _ $EE + $11 = __ _

These four problems involve adding a number to its complement.
What do you conclude is the result of adding a number to its com
plement if the carry flag is cleared? If the carry flag is set?

96

Step 4

How could you modify the program to add two numbers located
at addresses $0001 and $0002?

(Change the immediate addressing modes of the LOA and AOC
instructions to their zero-page modes. Reference location $0001 with
the LOA instruction and reference location $0002 with the AOC
instruction.)

EXPERIMENT NO. 2

Step 1

Load the program in Example 6.

Ob;ect: Perform 0 double.precision oddition using the memory assignments given here;
that is, the numbers to be added are stored in these locations:

$0301 = Hll; high-order byte of number one
$0300 = LO 1; low-order byte of number one
$0303 = H12; high-order byte of number two
$0302 = L02; low-order byte of number two
$0305 = SHI; high-order byte of the sum
$0304 = SLO; low-order byte of the sum

0200 08 START CLO Clear decimal mode.
0201 18 CLC Clear carry flag.
0202 AO 00 03 LOA LOI Get low-order byte of Number l.
0205 60 02 03 AOC L02 Add low-order byte of Number 2.
0208 ao 04 03 STA SLO Result into low-order byte of sum.
0208 AO 01 03 LOA Hll Get high-order byte of Number l.
020E 60 03 03 AOC HI2 Add high·order byte of Number 2 and carry,
0211 80 05 03 STA SHI if any, from previous sum. Result
0214 00 8RK into high-order byte of sum. Finish.

Step 2

Use this program to add $1234 to $0502. Where should these
numbers be stored? Where will the answer be? What is it?

Step 3

Single step the program while it is adding the numbers in step
2, noting the contents of the processor status register after each
instruction. What is the status of the carry Hag after the CLC in
struction? After the first AOC instruction? After the second AOC
instruction? Note that the carry Hag is bit zero of the P register. If
the carry Hag is clear, then the number in the P register is even.
If the carry Hag is set, then the number in the P register is odd.

97

EXPERIMENT NO. 3

Step 1

Load the following program. It is intended to add the contents
of location $0000 to the contents of $0001. The result is loaded into
Port A, an output port, so the answer can be observed on the Port A
LEDs on the I/O board. We use the PA7 (bit seven of Port A)
LED as the sign of the result in the sense that + = OFF, - = ON.

0200 A9 FF ORIGIN LOA $FF Put $FF in the Port A DDR.
0202 80 01 17 STA PADD
0205 08 CLO Clear decimal mode flag.
0206 18 AGN CLC Clear carry flag.
0207 A5 00 LOA LOll Get addend from LOlL
0209 25 01 ADC LOl2 Add contents of LOl2.
0208 80 00 17 STA PAD Result into Port A.
020E 4C 06 02 JMP AGN Loop to add again.

Load the program using the op codes. Do not use an assembler.

Step 2

Put $22 in location $0000. Enter $20 in location $0001. Run the
program. What do you expect to observe on the Port A LEDs?

(You should observe a $42 = 0100 0010. Do you get this answer?)

Step 3

There is a bug in the program since it does not give the correct
answer. \Ve obtained a $20 at Port A, which is clearly not the sum
of $22 and $20. Start the program over and use the single-step
mode. Examine the contents of the accumulator after each instruc
tion is executed. Compare this to what you know should be in the
accumulator. Where is the bug? Correct the program.

(Instruction ADC has an op code of $65, not $25.)

Step 4

Add the following numbers by changing the contents of locations
$0000 and $0001. The numbers are in base ten, and must be con
verted to hexadecimal. Negative numbers must be converted to their
twos-complement representation using Table 5-6. In each case try to
indicate the state of the Port A LEDs before doing the problem. Re
member, the PA 7 LED is the sign indicator. Write down the sum
and the status of the overflow bit, bit six of the P register.

98

6+2=~ __ _
6+(-2)=_~
6+(-8)= __ ~

120+8= __ . __
-120+ (-8) = ___ _
-120+ (-9) = __ _

Remember that negative answers are in twos-complement form. Use
Table 5-6 to convert back to a decimal number before filling in the
blank.

EXPERIMENT NO. 4

Step 1

Write a program to do signed binary subtraction. The program
in Experiment No. 3 is a good starting point. Then repeat the
problems in Step 4 of Experiment 3, assuming they are subtraction
problems instead of addition problems. Be sure to write down the
status of the overflow bit after each operation. Use the PA 7 LED
to indicate the sign of the result.

EXPERIMENT NO. 5

Step 1

Try writing a program to do signed arithmetic in the decimal
mode.

99

CHAPTER 6

Branches and Loops

OBJECTIVES

At the completion of this chapter you should be able to:

• Use the branch instructions BCC, BCS, BEQ, BNE, BMI, BPL,
BVS, and BVC. See Table 6-1 for a summary .

• Understand and use the compare instructions CMP, CPX, and
CPY .

• Use the BIT test instruction.
• Write programs that test for pulses and logic transitions at

input ports.

INTRODUCTION

The ability of the microprocessor to "make decisions" based on
external or internal conditions makes it the powerful tool that it is.
Although each decision is admittedly simple (for example, if the
logic level on an input pin is one, change an output pin to logic zero;
otherwise leave it unchanged), a set of decisions can be used to
monitor or control complex operations. This chapter deals with the
decision making instructions. We will begin by describing all of
the instructions given in Table 6-1 in the order branch instructions,
comparison instructions, and the bit test instruction. Then we will
describe a number of programs that make use of these instructions.

BRANCH INSTRUCTIONS

The branch instructions test the values of specific bits in the proc
essor status register (P register). If the value or condition tested

100

Table 6-1. Summary of Instructions Introduced in Chapter 6

Addressing Mode

Instruction Description Immediate Absolute Zero-Page Relative

BCC Branch on Carry Clear 90
BCS Branch on Carry Set BO
BEQ Branch on Resu It Zero FO
BNE Branch on Resu It not Zero DO
BMI Branch on Negative Result 30
BPL Branch on Non-Negative

Result 10
BVS Branch on Overflow Set 70
BVC Branch on Overflow Clear 50
CMP Compare Memory and Ac-

cumulator C9 CD C5
CPX Compare Memory and X Reg-

ister EO EC E4
Cpy Compare Memory and Y Reg-

ister CO CC C4
BIT Test Bits in Memory with

Accumulator 2C 24

is met, the program counter is altered, causing the program to jump
to an instruction other than the one following the branch instruction.
If the condition tested is not met, the program continues in sequence.
The branch instructions are

• BCS-Branch on Carry Set: The branch occurs if the carry flag
(bit zero of the P register) is set (C = 1).

• BCC-Branch on Carry Clear: The branch occurs if the carry
flag is clear (C = 0).

• BEQ-Branch on Result Equal Zero: The branch occurs if the
zero flag (bit one of the P register) is set (Z = 1).

o 6 5 4 3 2
T NUMBER

I BID I I I Z I C I ~~ I N I v I

I
OCESSOR STATUS REGISTER .p.

CARRY 1 = CARRY

ZERO 1 = RESULT ZERO

INTERRUPT DISABLE 1 = DISABLE

DECIMAL MODE 1 = DECIMAL

BREAK COMMAND

NOT USED

OVERFLOW 1 = OVERFLOW

NEGATIVE 1 = NEGATIVE

Fig. 6·1. Processor Status Register model.

101

• BNE-Branch on Result Not Equal Zero: The branch occurs
if the zero flag is clear (Z = 0) .

• BMI-Branch on Minus: The branch occurs if the negative flag
(bit seven of the P register) is set (N = 1).

• BPL-Branch on Plus: The branch occurs if the negative flag is
clear (N = 0) .

• BVS-Branch on Overflow Set: The branch occurs if the over
flow flag (bit six of the P register) is set (V = 1).

• BVC-Branch on Overflow Clear: The branch occurs if the over
flow flag is clear (V = 0).

The processor status register (P register) is illustrated in Fig. 6-1.
Before describing the flow of a program during a branch, we review
how some of the flags in the P register are set and cleared.

MODIFYING THE PROCESSOR STATUS REGISTER

The execution of some of the instructions in the 6502 instruction
set may cause the contents of the processor status register to be
modified. For example, in Chapter 5 we learned that the ADC
instruction will result in the N flag being cleared if the sum has a
zero in bit seven, and it will result in the C flag being set if the ad
dition produces a carry. If the result of the ADC instruction were
$00, then the Z flag would be set; otherwise it would be cleared.

These examples serve to illustrate the fact that the flags in the
P register are set or cleared by the outcomes of various instructions.
The instruction set summary in Table 2-3 indicates the flags or
combtion codes which each instruction modifies. Two examples will
clarify this further. Refer to the Condition Code column of the
instruction set summary in Table 2-3.

• How does the LDA instruction modify the P register? Referring
to the instruction set summary, it is seen that the LDA instruc
tion affects both the N flag and the Z flag. The checks (j) in
the Nand Z columns indicate this fact. If the byte transferred
from memory to the accumulator has a one in bit seven, then
the N flag will be set; otherwise it will be cleared. If the byte
transferred is zero, then the Z flag will be set; otherwise it
will be cleared.

• How does the DEC instruction modify the P register? The DEC
instruction modifies the Nand Z flags. If the DEC instruction
produces a zero in a memory location, then the Z flag will be
set; otherwise it will be cleared. If as a result of the DEC in
struction a memory location has a one placed in bit seven, then
the N flag will be set; otherwise it will be cleared.

102

It should be clear that during the course of a program the Hags
are constantly changing. Consequently, the programmer cannot test
the effect of an LDA instruction on the Z Hag with a BEQ instruc
tion unless the BEQ instruction immediately follows the LDA in
struction in the program, or he is absolutely sure that no intervening
instructions affected the Z Hag.

BRANCHING

Fig. 6-2 Howcharts the branch instruction sequence. Let us discuss
it in terms of a particular example, say the "branch on plus" BPL
instruction. In a program, the BPL instruction would be written:

0230 10 07 BPL OFFSET
0232 NEXT INSTRUCTION

where we have chosen an arbitrary location for the instruction. The
BPL op code is $10, and we have also arbitrarily chosen a value of
$07 for OFFSET. The second byte of the instruction, OFFSET, is

PROGRAM COUNTER

PROGRAM COUNTER
+

ONE

- OFFSET

PROGRAM COUNTER

PROGRAM COUNTER
+

OFFSET

+ OFFSET

Fig. 6-2. Flowchart of Branch Instruction.

103

also referred to in Fig. 6-2. What happens when the program reaches
the BPL instruction is described as follows.

• If the N flag is one, corresponding to a negative result, then
the condition tested is not met, and program execution will
continue with the NEXT INSTRUCTION in the program se
quence .

• If the N flag is zero, corresponding to a positive result, then
the condition tested is met, and program execution will con
tinue at the instruction located at PHOGRA\1 COUNTER +
OFFSET.

Thus, if the N flag is one, the program will continue with the in
struction located at $0232, but if the N flag is zero, the program will
continue with the instruction located at $0232 + $07 = $0239.

There are three important points to be made at this time: refer
both to the preceding example being discussed and Fig. 6-2.

• OFFSET is interpreted by the microprocessor as a twos-comple
ment number. It therefore may be positive, zero, or negative.
That is the reason the "OFFSET arrows" in Fig. 6-2 go both
ways.

• The first reference to the program counter in Fig. 6-2 refers to
the second byte of the branch instruction. In this e'.:ample, this
is $0231.

• Because the 6502 program counter is incremented during the
time that it is reading the second byte of the branch instruction,
the OFFSET will actually be added to the value of the pro
gram counter for the instruction following the branch instruc
tion. In the example, this gives $0232 + $07 = $0239 as the new
value of the program counter if the branch condition is met.

The offset is always relative to the location of the op code that
follows the branch instruction. This use of the word "relative" is
the reason that the addressing mode of the branch instructions is
called relative addressing.

Example I: Calculation of a Forward Branch

A branch instruction is stored in locations $AF25 and $AF26. The branch offset is
$34. What is the location of the next instruction that will be executed by the micro
processor?

Solution: If the branch condition is not met, then the next instruction in the normal
program sequence will be executed. It is located in memory immediately above the
branch instruction, so its op code will be in location $AF27. If the branch condition is
met, then the next instruction to be executed will be in $AF27 + $34 = $AF5B.

A simple rule to find small offsets in the forward direction is to
count bytes 0, I, 2, ... in hexadecimal beginning with the location
of the instruction following the branch instruction and ending with

104

Example 2: Calculation of a Backward Branch Offset

A branch instruction is stored in locations $AF25 and $AF26. If the branch condition
is met, it is desired that the program branch backward to an instruction whose ap code
is in $AF20. What offset should be used with the branch instruction?

Solution: The offset is relative to location $AF27. Therefore, OFFSET = $AF20 -
$AF27 = -7 = $F9 in twos-complement notation. The twos-complement conversion
may be facilitated with Table 5-6.

the location of the op code to be executed, if the branch condition
is met. For backward branches, start counting 0, FF, FE, FD, ...
backward from the op code following the branch instruction to the
op code to be executed, if the branch condition is met.

COMPARISON INSTRUCTIONS

The CMP, CPX, and CPY instructions are used to compare two
numbers to see which, if either, is the larger. None of the 6502 reg
isters other than the processor status register are changed, nor are
any memory locations altered by the comparison instructions. Their
only effect is to set or clear flags in the P register, based upon the
result of the comparison operation, \Ve describe the GMP instruc
tion in detail.

• CMP-Compare the contents of the accumulator with the con-
tents of a memory location: symbolically, A - M.

• If A ~ M, then C is set; otherwise it is cleared.
• If A = M, then Z is set; otherwise it is cleared.
• If the operation A - M leaves a one in bit seven of the result,

then N is set; otherwise it is cleared.

Even though the operation is symbolized as a subtraction, the actual
operation is "invisible," since no result, other than the changed flags,
is observed.

The CPX and CPY instructions are identical to the CMP instruc
tion in all respects, except that they compare the X and Y registers
with the contents of a memory location. Replace the accumulator in

Example 3: Illustration of a CMP Operation

Assume $CF is in the accumulator, A, and $3E is in the memory location, M. What
flags will be set by the CMP instruction?

Solulion: Since $CF ~ $3E, the C flag will be sel. Since $CF =F $3E, the Z flag will
be cleared. Since $CF - $3E = $81, the result of the subtraction has a one in bit
seven, and the N flag will be set.

Example 4: Illustration of a CPX Operation

Assume the X register contains $80 and M contains $AO. What flags will be set by the
CPX instruction?

Solulion: Since $80 < $AO, the C flag will be cleared. Since $80 =F $AO, the Z flag
will be cleared, Since $80 - $AO = $EO, the result of the subtraction has a one in
bit seven; therefore, the N flag will be sel.

105

the description of the G\1P instruction with the X register, and you
have a description of the CPX instruction. Likewise, the contents of
the Y register may be compared to a memory location. Two com
parison operations are illustrated in Examples 3 and 4.

BIT TEST INSTRUCTION

The BIT instruction is another test instruction that affects only
the P register. It transfers bits seven and six of the memory location
that it references to the corresponding bits in the P register. It also
forms a logical AND between the contents of the accumulator, A,
and the memory location, M, which it references. If the result of the
AND operation is zero, then the Z flag is set; otherwise it is cleared.
The logical description of the BIT instruction is A· M, M7 N, and
~1r."" V. As in the case of the comparison instructions, the result of
ANDing the contents of the accumulator with the contents of a mem
ory location (A, M) is "invisible." In fact, the AND operation caused
by the BIT instruction serves only to set or clear the Z (zero) flag.
The notation M7 Nand M6 V means that bit seven of the memory
location referenced by the BIT instruction is transferred to the N
flag of the P register, and bit six of the same memory location is
transferred to the V flag of the P register. Example 5 illustrates how
a bit test works.

Example 5: Explanation of a BIT Test

If A contains $02 and M contains $43, how wi" the flags in the p register be changed
by a BIT instruction that references M?

Solution: A· M = $02, SO the result of the AND operation is not zero. The Z flag will
be cleared. Since $43 = 0100 0011, M7 = 0 and M6 = 1. Therefore, the N flag will
be cleared and the V flag will be set.

The program examples that follow illustrate the use of the com
parison and bit test instructions. Flowcharts are used to show some
of the steps. The reader should study carefully the programs, pro
gram comments, and the flowcharts to become familiar with the in
structions introduced in this chapter.

The first program example is given in Example 6. It detects nega
tive pulses on pin PBO (bit zero of Port B) and counts these pulses.
A flowchart of the program, starting with the instruction labeled
BACK, is shown in Fig. 6-3. Two branch instructions are used in
this program; both of them are backward branches. Referring to the
flowchart and the program, observe that the program will stay in
the first loop as long as the voltage level at pin PBO is at logic one.
As soon as the logic level changes to zero, the program proceeds to
the next loop. Thus, the first part of the program detects a logic-one
to logic-zero transition. The program loops in the second loop as

106

Fig. 6-3. Flowchart for Example 6. Train of
negative pulses will be counted and the

answer stored in Port A.

long as the voltage level at pin PBO is at logic zero. It emerges from
the loop to increment X and store this new value of X in Port A
after a complete negative pulse has occurred. It then jumps back
to BACK to wait for the next negative pulse. The two mask opera
tions (AND $01) were used to ensure that only bit zero of Port B
entered the decision making process.

Example 6: Program to Detect and Count Negative Pulses

Object: Write a program to count negative pulses on pin PBO of Port B. The pulses
consist of transitions from logic one, to logic zero, and back to logic one. The
X register will be used to count the pulses, and the result will be stored in
Port A, an output port.

0200 A200 BEGIN LDX $00 Initialize X to zero.
0202 A9 FF LDA $FF Set data direction register of Port A
0204 8D 03 AO STA PADD so it is an output port.
0207 AD 00 AO BACK LDA PBD Read Port B.
020A 29 01 AND $01 Mask all bits except PBO.
020C DO F9 BNE BACK Branch backwards $F9 = -7 bytes if
020E AD 00 AO LOOP LDA PBD PBO oF 0; otherwise read Port B.
0211 29 01 AND $01 Mask all bits except PBO.
0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP.
0215 E8 INX Pulse detected, increment X.
0216 SE 01 AO STX PAD Result into Port A.
0219 4C 07 02 JMP BACK Return to count mare pulses.

107

For what can the program in Example 6 be used? Its application
to event counting, for example, nuclear disintegrations, arrival ot
customers in a queue, or other events, and frequency counting
should be obvious. A more elaborate procedure than the INX in
struction and X register storage would be necessary to keep track
of the number of pulses, but the most important ingredients are
there. The ability of two loops in the program to detect logic level
transitions could also be used in event timing. If a phototransistor
or photoresistor circuit produced a negative transition at pin PBO
when the light was interrupted, then the first loop in the program
in Example 6 could be used to hold the timer until the light was
interrupted, the timing could begin at this transition, and the timing
could end when the interruption ceased; or, both loops could be
used to detect a negative pulse, after which timing would begin.
Any application that involves detecting logic level transitions and
carrying out some function as a result can use the ideas in this
program.

A similar program, but one that makes use of pin PB7 of Port B,
will illustrate some simplification in programming and several of
the other instructions introduced in this chapter. This program is
given in Example 7. It detects and counts positive pulses on pin
seven of Port B, PB7. The BIT instruction is used to set or clear
the N flag depending on the logic level on PB7. The BPL and BMI
instructions produce the required branches. The program loops in
the BACK loop until PB7 goes to logic one. It loops in the LOOP
loop until PB7 goes back to logic zero when the positive pulse is
complete. Then the pulse is counted by the INX instruction. Note
also that the BPL and BMI instructions have nothing to do with
arithmetic operations in this example.

Example 7: Program to Detect and Count Positive Pulses

Obieel: Count positive pulses at pin PB7 of Port B.

0300 A2 00 BEGIN LOX $00 Initialize X to Zero.
0302 A9 FF LOA $FF Set data direction register
0304 80 03 AO STA PADD of Port A to output condition.
0307 2C 00 AO BACK BIT PBD Test bit seven of Port B.
030A 10 FB BPL BACK If bit seven is zero, branch back.
030C 2C 00 AO lOOP BIT PBD Test bit seven again.
030F 30 FB BMI LOOP If PB7 = 1, branch to LOOP.
0311 E8 INX Count pulse.
0312 8E 01 AO STX PAD Result of count into Port A.
0315 4C 07 03 JMP BACK Return to count pulses.

ASCII TO HEXADECIMAL CONVERSION

One of the most common ways of communicating with the micro
computer is by means of an ASCII-encoded keyboard. The ASCII

108

is a binary code used to represent upper-case and lower-case alpha
betic characters, numerals, punctuation marks, and other symbols
and control codes. For example, when the "A" key on an ASCII
keyboard is pressed, a 0100 0001 appears at its output, representing
an upper case "A." If we assume that the keyboard output is an
other location in memory, as it would be in any memory mapped
I/O system such as that on the 6502, then the hexadecimal value
for "A," a $41, would appear in the memory location of the keyboard.

\\lith this background, consider the following problem. Assume
a key representing one of the 16 hexadecimal characters, 0-9 and
A-F, is pressed. Its ASCII representation appears in a certain mem
ory location. Convert the contents of this location into the binary
(or hexadecimal) number it represents. Store it in the low-order
nibble of another location. The program in Example 8 will do this.
Refer to Table 6-2 for the ASCII representations of the hexadecimal
characters. Refer also to Fig. 6-4 to see a flowchart of the program.
Note that for numbers less than $OA, the numerical value may be
obtained from the ASCII value by subtracting $30, while for ASCII
numbers larger than $41 the numerical value may be obtained from
the ASCII number by subtracting $37.

Most of the details of the program in Example 8 are illustrated
by the flowchart in Fig. 6-4, but additional comments may be neces
sary. Observe that a CMP instruction was used. The only type of
branch not explicitly covered in the flowchart is the BCS OVER.
At that point in the program, the conversion for the hex numerals

Table 6-2. ASCII Representations of Hexadecimal Characters

ASCII

Hexadecimal Representation Numerical Value

Character (Hexadecimal) (Binary) (Hexadecimal)

a 30 0000 0000 $00
1 31 0000 0001 $01
2 32 0000 0010 $02
3 33 0000 0011 $03
4 34 0000 0100 $04
5 35 0000 0101 $05
6 36 0000 0110 $06
7 37 0000 0111 $07
8 38 0000 1000 $08
9 39 0000 1001 $09
A 41 0000 1010 $OA
B 42 0000 1011 $OB
C 43 0000 1100 $OC
0 44 0000 1101 $00
E 45 0000 1110 $OE
F 46 0000 1111 $OF

109

Fig. 6-4. Flowchart of program to
convert Hex ASCII character to

Hex Nibble.

zero through nine has been completed. If the program continued
in sequence, the conversion for the numerals A-F would follow,
ruining the previous result. Some means to jump around this con
version is necessary. A JMP OVER instruction could have been
used where the BCS OVER instruction is. However, since the carry

Example 8: ASCII to Hexadecimal Conversion

Ob;ed: Change hex character represented in ASCII to hex number, and store this
number in the low-arder nibble of Port A. Read the ASCII character from
$0300.

0230
0231
0233
0236
0239

023B
0230
023E
0240
0242
0244
0247

110

08
A9 FF
80 03 AO
AD 00 03
C9 40

BO 05
38
E9 30
BO 02
E9 37
80 01 AO
00

ORIGIN

ARND
OVER

CLD
LOA $FF
STA PADD
LOA ASCI
CMP $40

BCS ARND
SEC
S8C $30
BCS OVER
SBC $37
STA PAD
BRK

Clear decimal mode.
Make Port A an output port by
loading $FF into its DDR.
Get ASCII from $0300.
Compare it with $40. If it is
larger, then it represents a numeral
A-F. Branch to subtract $37.
Clear borrow flag.
For numerals 1-9, subtract $30.
Jump to store result in PAD.

Result into Port A.

flag will be set after the subtraction, we used a BCS instead. The
advantage of this is that the program may be relocated in memory
with no changes in the program bytes. With a JMP instruction, the
address following the JMP instruction would have to be changed
to relocate the program. It is good programming practice to make
programs relocatable whenever possible. Relocatable programs are
easy for other programmers to add to their microcomputer systems
because they can place the program in any available memory loca
tions with no programming changes. Such programs are also easier
to put on PROYIs, programmable read-only memory chips.

USING BRANCH INSTRUCTIONS FOR TIME DELAYS

Another use of branch instructions is to form delay loops or timing
loops. For example, in data logging applications it may be required
that a specific interval elapse between the times at which the points
are to be logged. A delay loop may be used to provide this interval.
Consider the following set of instructions:

lDX $10
LOOP DEX

BNE lOOP.

A flowchart of this loop is given in Fig. 6-5. Note that the program
repeats the DEX and BNE instructions until X = 0; then it will
proceed to the instruction following the BNE instruction.

To calculate the time required to execute the delay loop, we refer
to the instruction set summary in Table 2-3 that lists the number of

Fig. 6-5. Simple delay loop. N is number
chosen by the programmer to determine

time interval for delay.

YES

NO

111

clock cycles for each instruction. Our cycle account proceeds as
follows:

• LDX instruction-2 cycles.
• DEX instruction-2 cycles each time, $10 times = 3210 cycles.
• BNE instruction-3 cycles each time the branch is taken, $OF

times = 4510 cycles.
• BNE instruction-2 cycles when the branch is not taken, $01

times = 2 cycles.
• Total time of loop = 2 + 32 + 45 + 2 = 81 cycles.

For a clock cycle of one microsecond, the loop will take 81 micro
seconds. If NX is the number loaded into the X register, then the
loop time in clock cycles is (5NX + 1). Remember, NX must be
converted to hexadecimal before using it in a program. If T is the
required number of clock cycles, and if (T - 1) is a multiple of
five, then NX may be chosen to produce the exact interval that is
desired. In all other cases, the time interval will be an approximation
to the interval desired.

To create longer delays, delay loops may be nested. The program
in Example 9 illustrates this technique. A flowchart is shown in
Fig. 6-6. After each delay the number at Port A will be incremented
so that the programmer may have a visible effect of the various
delays if the Port A output pins operate LEDs. In this program, if
NX is the number loaded into the X register and NY is the number
loaded into the Y register, then the total delay time in the program
in Example 9 is,

NX(5NY + 6) + 1

clock cycles. Note that if NY is 19910 then NX controls the number
of one millisecond (approximately) intervals. The error, assuming
the clock frequency is 1 megahertz, is (NX + 1) microseconds. In
Chapter 10, we will see that interval timers are much easier to use
for delay loops and timing intervals.

Example 9: Nested Delay Loop Program

Object: Demonstrate the delay produced by a delay loop nested in another delay loop.
After each delay increment Port A. Start with $FF in Port A.

0250 A9 fF BEGIN LDA $FF Initialize Port A data direction
0252 8003 AO STA PADD register.
0255 8001 AO STA PAD
0258 A2 FF BACK LOX $FF Set delay of X loop.
025A AO FF LOOPX LDY $FF Set delay of Y loop.
025C 88 LOOPY DEY Decrement Y.
0250 DO FD BNE LOOPY Branch back if Y 0/= O.
025F CA DEX Decrement X.
0260 DO F8 BNE lOOPX Branch back if X 0/= O.
0262 EE 01 AO INC PAD Increment Port A.
0265 4C 58 02 JMP BACK Repeat enti re process.

112

Fig. 6-6. Nested delay loop flowchart.

NO

YES

NO

The last program to illustrate the instructions introduced in this
chapter is a utility program to convert negative hexadecimal num
bers into their twos-complement representations. A hexadecimal
number is entered in Port B by means of the switches connected to
the Port B pins. If the number is a negative number, PB7 is set to
logic one; otherwise it is set to logic zero. The program converts
negative numbers to their twos-complement representations, and
outputs the result to the LEDs connected to the Port A outputs.
Positive numbers will also be written to Port A. Bit six of Port B
is masked because it has different values in the AIM 65, SYM-l,
and KIM-l microcomputers. You can refer to Table 5-6 to check
your answers. The program is given in Example 10.

113

Example 10: Program to Convert a Negative Number to
Its Twos-Complement Representation

Object: Convert a negative number input at Port B to its twos-complement represen
tation. Output the result to the Port A LEOs.

0270 A9 FF
0272 80 03 AO
0275 AD 00 AO
0278 29 BF
027A 10 05
027C 49 FF
027E 38
027F 69 80
0281 80 01 AO
0284 4C 75 02

START

HERE

BRNCH

LOA $FF
STA PADD
LOA PBD
AND $8F
BPL BRNCH
EOR $FF
SEC
ADC $80
STA PAD
JMP HERE

Set up data direction register
for Port A_
Read Port 8.
Mask bit six.
If positive, branch to output.
Perform complement
Set carry flag to add one to
get twos-complement. Also add
a one in bit seven. Result in PAD.
Return to get other numbers.

INTRODUCTION TO THE EXPERIMENTS

The experiments make use of the II 0 board introduced in a
previous chapter. All the experiments make use of the programs
previously listed in this chapter, and these were written in terms of
the SYM-l and AIM 65 I/O port addresses. KIM-l owners must
make the appropriate changes. The branch instructions are among
the most important for the potential user to understand. The pro
grams and experiments should be studied carefully.

EXPERIMENT NO. 1

Step 1

Load the program in Example 6.

0200 A200 BEGIN LOX $00 Initialize X to zero.
0202 A9 FF LOA $FF Set data direction register of Port A
0204 80 03 AO STA PADD so it is an output port.
0207 AD 00 AO BACK LOA PBD Read Port B.
020A 29 01 AND $01 Mask all bits except PBO.
020C DO F9 BNE BACK Branch backwards $F9 = -7 bytes if
020E AD 00 AO LOOP LOA PBD PBO 0/= 0; otherwise read Port B.
0211 29 01 AND $01 Mask all bits except PBO.
0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP.
0215 EB INX Pulse detected, increment X.
0216 BE 01 AO STX PAD Result into Port A.
0219 4C 07 02 JMP BACK Return to count more pulses.

Step 2

Place the PRO switch in the logic-one position (Up).

Step 3

Run the program. Toggle PRO off and on. What do you observe?

114

(We observed that the PAO LED lighted after one toggle.)

Step 4

Continue to toggle PBO. What do you observe?

[We observed that the LEDs at Port A count (in binary) the num
ber of times PBO was toggled from logic one to logic zero and back
to logic one.]

Step 5
How would you modify the program to count positive pulses in

stead of negative pulses?

(Exchange the BNE and BEQ instructions to count positive pulses
instead of negative pulses. Try this change and toggle PBO.)

Step 6

What is the shortest single pulse which the program will detect?

(If a negative pulse occurred after the first LDA PBD instruction,
and if it were of such a duration that it returned to logic one before
the completion of the same LDA instruction at the beginning of
the second loop, then it would be missed. Thus, if it were shorter
than the LDA, AND, and BNE instruction, then it might be missed.
This amounts to nine clock cycles. If a clock cycle is 1 microsecond,
then we may conservatively estimate the minimum detectable pulse
width as 10 microseconds.)

EXPERIMENT NO. 2

Step 1

Load the program in Example 7.

0300 A2 00 BEGIN LOX $00 Initialize X to zero.

0302 A9 FF LDA $FF Set data direction register

0304 8D 03 AO STA PADD of Port A to output condition.
0307 2C 00 AO BACK BIT PBD Test bit seven of Port B.

030A 10 FB BPL BACK If bit seven is zero, branch back.

030C 2C 00 AO LOOP BIT PBD Test bit seven again.

030F 30 FB BMI LOOP If PB7= I, branch to LOOP.
0311 E8 INX Count pulse.
0312 8E 01 AO STX PAD Result of count into Port A.
0315 4C 07 03 JMP BACK Return to count pulses.

115

Step 2

Place the PB7 switch in the logic-zero position.

Step 3

Run the program. What do you expect to observe on the Port A
LEDs if PB7 is switched to logic one?

(Offhand, one would expect to see a zero in Port A because the
program should be in the second loop, waiting for a logic-one to
logic-zero transition.)

Step 4

Switch PB7 to logic one. What do you observe at Port A?

[We observed a five (in binary) at Port A. You may not observe
an identical result.]

Step 5

Switch PB7 back to logic zero, completing the positive pulse. What
do you observe at Port A?

(We observed a six at Port A. You may not get the same answer.
The explanation of these results lies in the fact that the switch on
PBO has been electronically "debounced." The PB7 switch is not
debounced, and the mechanical bouncing of the switch produces
several pulses when only one is intended. For some applications
debouncing is not necessary, for others it is very important. De
bouncing can also be done with a suitable delay loop in the program,
but this will increase the minimum detectable pulse width. As a
challenge you may want to experiment with delay loops in this
experiment until you have solved the switch bounce problem.)

Step 6

Construct a flowchart for this program.

EXPERIMENT NO. 3

Step 1

Load the program in Example 8.

116

0230 08
0231 A9 FF
0233 80 03 AO
0236 AD 00 03
0239 C9 40
023B BO 05
0230 38
023E E9 37
0240 BO 02
0242 E9 30
0244 8001 AO
0247 00

Step 2

ORIGIN

ARND
OVER

CLO
LOA $FF
STA PADD
LOA ASCI
CMP $40
BCS ARNO
SEC
SBC $30
BCS OVER
SBC $37
STA PAD
BRK

Clear decimal mode.
Make Port A an output port by
loading $FF into its OOR.
Get ASCII from $0300.
Compare it with $40. If it
is larger, then it represents a
numeral A-F. Subtract $37.
Otherwise, subtract $30.
Jump to output result.

Result into Port A.

Put an ASCII representation ($30-$39 or $41-$46) for a hexa
decimal numeral (0-9 or A-F) in location $0300. (See Table 6-2.)

Step 3

Run the program. The corresponding hexadecimal number should
appear at Port A in a binary representation. Try several numbers,
some for hex numbers 0-9 and others for hex numerals A-F.

Step 4

What happens if you have an ASCII character other than one
which represents 0-9 or A-F in location $0300? How could you
"trap" this error or inform the user an input error has been made?

(You might start by comparing the number input by the keyboard
with $30 and $46, because if it is outside this range then it is not
an ASCII character for a hexadecimal numeral. This is a challenging
problem; good luck with it.)

EXPERIMENT NO. 4

Step 1
Load and execute the program in Example 9.

0250 A9 FF BEGIN LOA $FF Initialize Port A data direction
0252 80 03 AO STA PADD register.
0255 80 01 AO STA PAD
0258 A2 FF BACK LOX $FF Set delay of X loop.
025A AO FF LOOPX LOY $FF Set delay of Y loop.
025C 88 LOOPY DEY Decrement Y.
0250 DO FD BNE LOOPY Branch back if Y =F o.
025F CA DEX Decrement x.
0260 DO F8 BNE LOOPX Branch back if X =F O.
0262 EE 01 AO INC PAD I ncrement Port A.

0265 4C 58 02 JMP BACK Repeat entire process.

117

Step 2

What do you observe at Port A?

(We observed that the Port A LEDs count upward in binary. The
delay loops allow enough time to see the counting take place.)

Step 3

Change the program byte at $0259 to $01. What do you observe?

(We observed that the low-order LEDs blinked too quickly to see
them in their off state.)

Step 4

Change the program byte at $025B to $01. What do you observe?

(We observed that all the LEDs blinked too fast for the eye to
perceive.)

Step 5
Experiment with different values in $0259 and $025B to vary the

time of the loop. Calculate the delays first, then confirm them using
the formulas in the text.

EXPERIMENT NO. 5

Step 1

Write a program that loops until any logic transition occurs at
PB7. Output the transitions detected to Port A. The following pro
gram segment will serve as a hint.

START LOY PBD Read Port B.
LOOP TYA Transfer Y to A.

EOR PBD
BPL LOOP
INX
STX PAD
JMP START

Step 2

Be sure to include statements to initialize Port A to be an output
port.

118

Step 3

Test your program using the PB7 input switch. How many tran
sitions does it detect for one switch change?

EXPERIMENT NO. 6

Step 1

Using the program in Example 10, find the twos complement
representations of the following decimal numbers. Enter the sign
in bit seven of Port B, convert these numbers to binary, then run
the program. Check your answers by hand computations. -1, -5,
-10, -13, -28, -35, -47.

119

CHAPTER 7

Register-Shift
Instructions

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand and use the ASL, LSR, ROL, and ROR instructions.
See Table 7-1 for a summary of these instructions.

• Multiply 4-bit and 8-bit numbers.
• Output the contents of the accumulator as two ASCII char

acters.
• Convert a two-digit base-ten number to its hexadecimal equiva

lent.
• Convert a two-digit hexadecimal number to its base-ten equiva

lent.

INTRODUCTION

With the addition of the register-shift instructions to the collection
of instructions already learned, you can begin to write more com
plex programs. In fact, after these instructions are learned, you have
the ability to use the great majority of instructions in the 6502 in
struction set. The complexity of the programs in the latter part of
this chapter will begin to reflect this. The need to have the ability
to shift bits left or right in a memory location is less obvious than
the need for arithmetic and logical operations. We can only promise
that the value of these instructions will become obvious as we
proceed.

120

Table 7-1. Summary of Instructions Introduced in Chapter 7

Addressing Mode

Instruction Description Absolute Zero-Page Accumulator

ASL Shift Left One Bit OE 06 OA
ROL Rotate Left One Bit 2E 26 2A
LSR Shift Right One Bit 4E 46 4A
ROR Rotate Right One Bit 6E 66 6A

GETTING ACQUAINTED WITH REGISTER-SHIFT INSTRUCTIONS

The effect of the ASL, LSR, ROL, and ROR instructions is as
easily demonstrated as it is explained. We shall define each instruc
tion and then give a short program that will demonstrate the effect
of each instruction, using the LEDs at Port A. Diagrams illustrating
the effect of each instruction on the contents of the memory location
upon which it operates are shown in Fig. 7-1. We begin with the
definitions.

• ASL-Arithmetic Shift Left: Each bit in the memory location
or register upon which this instruction operates is shifted to
the left. That is, bit zero becomes bit one, bit one becomes bit
two, ... , bit six becomes bit seven, and bit seven becomes the
carry flag. A z~ro is shifted into bit zero.

• LSR-Logical Shift Right: This instruction is similar to the ASL
instruction, except the bits are shifted right. A zero is shifted
into bit seven, and bit zero is shifted into the carry flag.

• ROL-Rotate One Bit Left: The contents of the memory loca
tion or register upon which this instruction operates are shifted
to the left as in the ASL instruction, except that the carry flag
is shifted into bit zero. Since bit seven is shifted into the carry
flag, successive ROL instructions simply rotate the bits left.
A succession of nine ROL instructions will leave the contents of
the location and the carry flag unchanged.

• ROR-Rotate One Bit Right: The ROR instruction is exactly like
the ROL instruction, except the bits are rotated right. Bit zero
goes into the carry flag, and the carry flag is moved into bit
seven.

These definitions should be studied in conjunction with Fig. 7-1.
A program to demonstrate each of these instructions using the

single-step mode of the microcomputer is provided in Example 1.
This program will demonstrate all four register-shift instructions
by replacing the byte represented by a blank in Example 1 with
the appropriate instruction, as follows:

121

Fig. 7-1. Diagrams of Register-Shift Instructions.

• ASL-Op Code $OE
• LSR-Op Code $4E
• ROL-Op Code $2E
• ROR-Op Code $6E

Referring to the demonstration program in Example 1, assume that
the ASL instruction is to be demonstrated, and that its op code has
been entered as the byte at location $020D. The program reads the
data at Port B. Suppose the Port B input switches are set to $Ol.
Then, after execution of the STA PAD instruction, the PAO LED
will be lit. The ASL PAD instruction will cause a zero to be shifted
into bit zero of Port A, while the one that was originally in bit zero
is shifted into bit one, lighting the PAl LED. The program repeat
edly jumps to this ASL PAD instruction, causing the light to shift
from PAO to PAl, to PA2, ... , and finally into the PA7 LED. The

122

next time the ASL PAD instruction is executed, the logic one will
be shifted into the carry flag, and all the LEDs will go out. Repeat
ing this same demonstration with precisely the same conditions but
using an ROL instruction will make the PAO LED light again after
nine ROL instructions. Of course, the program is to be executed in
the single-step mode, or all of these events will happen too quickly
for the eye to perceive. Changing the data that is input at Port B
changes the effects observed, but not the basic ideas. Try rotating
or shifting a $F in the high-order nibble to the low-order nibble.

Example 1: Register-Shift Instructions Demonstration Program

Object: Demonstrate the effect of the ASL, LSR, ROL, and ROR instructions on a memo
ory location (Port A, an output port).

0200 A9 FF START LDA $FF Set up the Port A DDR by loadi ng
0202 8D 01 17 STA PADD $FF into PADD.
0205 AD 02 17 LDA PBD Get some data from Port B.
0208 29 BF AND $BF Mask bit six for the SYM-l and KIM-I.
020A 8D 00 17 STA PAD Output the resulting number to Port A.
020D _00 17 LOOP - PAD Shift the contents of Port A, and put the
0210 4C OD 02 JMP LOOP instruction in a loop for repeated shifts.

Before turning to some application programs that make use of the
register-shift instructions, we note that a new addressing mode,
called accumulator addressing, was introduced in Table 7-1. In this
addressing mode, which only the register-shift instructions have, it
is the contents of the accumulator that are shifted or rotated. The
ASL, LSR, ROL, and ROR instructions are single-byte instructions
when used in the accumulator addressing mode because no extra
bytes to identify a memory location are necessary.

The ASL, LSR, BOL, and BaR instructions together with the
INC and DEC instructions are collectively known as read-modify
write instructions. The reason for this name lies in the fact that the
microprocessor must first read the contents of a memory location,
modify it in accordance with the instruction, and then write the
modified byte of data back to its original location.

A 4·81T MULTIPLICATION PROGRAM

To illustrate an application for the ASL and LSR instructions,
we will write a program to multiply two 4-bit numbers. To begin,
note that the largest number represented by four bits is 1510; con
sequently the largest product that is possible is 15 ·15 = 225, so the
product will fit in one 8-bit memory location. To understand the
program one must understand a typical binary multiplication prob
lem, and one is illustrated in Example 2. Note the structural simi
larity between binary multiplication and your recollection (pre
electronic-calculator era) of elementary decimal multiplication.

123

Example 2: Binary Multiplication Problem

Multiply $A by $9.
Solution: $A = 1010

$9 = 1001
Multiplicand 10'0
Multiplier 9, a

$5A 1010
0000

0000
1010

}

90,0

Add to obtain product.

$5A = 1011010 Product

The important point to recognize in the calculation of Example 2
is that the multiplicand appears in the sum for everyone in the mul
tiplier. With one exception, it is shifted to the left before it is added
to obtain the product. For every zero in the multiplier, a zero is
summed. The appearance of the "left-shifted" multiplicands, added
to find the product, suggests a procedure for performing the multi
plication with a' computer program. The flowchart of Fig. 7-2 is
our starting point. The 8-bit locations will be used for the 4-bit
numbers, but they will have four leading zeros. The multiplicand
will be symbolized by MeND, the multiplier by MLTP, and the
product by PROD.

The multiplication program is listed in Example 3. The LSR
MLTP instruction shifts the multiplier bit zero into the carry flag.

• If this sets the carry flag, then the multiplicand is added to the
location containing the product.

• If this clears the carry flag, then nothing is added to the product.

Next, the multiplicand is shifted left. The next bit of the multiplier
is tested by shifting the multiplier right, moving it into the carry

Example 3: A 4-Bit Multiplication Program

Ob;ect: Multiply two 4·bit numbers
$0000 = MCND; Multiplicand
$0001 = MLTP; Multiplier
$0003 = PROD; Product

0200 D8 START CLD
0201 A900 LDA $00
0203 85 03 STA PROD
0205 46 00 AGAN LSR MLTP
0207 90 07 BCC ARND
0209 18 CLC
020A A501 LDA MCND
020C 65 03 ADC PROD
020E 85 03 STA PROD
0210 06 01 ARND ASL MCND
0212 FO 04 BEQ DONE
0214 A5 00 LDA MLTP
0216 DO ED BNE AGAN
0218 00 DONE BRK

124

Clear decimal mode.
Clear location of product by
storing $00 in PROD.
Shift multiplier right ta test
for zero or one in carry flag. If
zero branch to shift multiplicand
left for next test. If one, add
multiplicand to obtain product.

Shift multiplicand left for next sum.
If multiplicand is zero, operation
is finished. Same for multiplier.
Otherwise branch back to sum again.

Fig. 7·2. Flowchart of 4-Bit Multiplication
Program. MeND = Multiplicand, MLTP =

Multiplier, and PROD = Produd.

NO

NO

YES

flag. The "left-shifted" multiplicand is added, if the carry flag is set;
otherwise it is not added. The entire process is repeated until either
the multiplicand or the multiplier have become zero by virtue of
having had zeros shifted into successive bit positions.

The reader should study this program and the following 8-bit
multiplication program for their use of the ASL and LSR instruc
tions. These programs are not necessarily intended to provide you
with ready-made multiplication routines.

125

NO

NO

Fig. 7-3. Flowchart of 8-Bit Multiplication.
MeND = Multiplicand, MLTP = Multiplier,

MSFT = Left-Shifted Multiplicand.

AN 8-BIT MULTIPLICATION PROGRAM

The maximum product of two 8-bit numbers is $FF . $FF =
$FE01; thus 16 bits are required for the answer. Recall that in our
example of a 4-bit multiplication, the multiplicand was successively
shifted left and added to form the final product. To shift an 8-bit
multiplicand left requires that it be shifted into a new memory loca
tion. This is accomplished by the ASL MeND and ROL MSFT
instructions in the Howchart of the 8-bit multiplication shown in
Fig. 7-3. Note that an ASL operation shifts bit seven of the multi-

126

plicand (MCND) into the carry nag, and that an ROL takes the
carry flag and moves it into bit zero of what we call MSFT for
"multiplicand shifted." With these two instructions, the contents of
one location may be successively shifted into another location. The
product takes two locations (PRDLO and PRDHI), and a double
precision addition is required. Refer to Fig. 7-3 and Example 4 for
further details.

One final note: In the flowcharts for the multiplication programs
and in other flowcharts that follow, the bracket notation, "[]", will
occasionally be used. In microcomputer literature the brackets are
read "contents of." That is, "[ALFAJ" means "the contents of the
memory location symbolized by "ALFA," or more simply, "the con
tents of ALFA." Thus, in the flowcharts "[Bit 0]" means "the con
tents of bit zero." The bracket notation will be used whenever it
clarifies the actual events that are taking place.

Example 4: An 8·8it Multiplication Program

Ob;ect: Multiply two 8-bit numbers.
$0000 = MCNO; Multiplicand
$0001 = MSFT; Multiplicand is shifted into this location
$0002 = MLTP; Multiplier
$0003 = PROLO; Low-order byte of the product
$0004 = PROHI; High·order byte of the product

0200 08 START CLO Clear decimal mode.
0201 A9 00
0203 85 01
0205 85 03
0207 85 04
0209 46 02
020B 90 00
0200 18
020E A5 00
0210 65 03
0212 85 03
0214 A5 01
0216 65 04
0218 85 04
021A 06 00
021C 26 01
021E A5 02
0220 00 E7
0222 00

AGAN

OONE

LOA $00
STA MSFT
STA PROLO
STA PROHI
LSR MLTP
BCC ARNO
CLC
LOA MCNO
AOC PROLO
STA PROLO
LOA MSFT
AOC PROHI
STA PROHI
ASL MCNO
ROL MSFT
LOA MLTP
BNE AGAN
BRK

Clear storage locations for
MSFT. PROLO. and PROHI.

Shift multiplier right into carry
flag to test for one or zero.
Clear carry flag for addition.
Get multiplicand.
Add to low-order byte of product.
Store result.
Get shifted multiplicand.
Add to high-order byte of product.
Store result.
Shift multiplicand and roll it
into MSFT (multiplicand shifted).
If multiplier is not zero then the
job is not finished: branch back again.
Otherwise job is finished.

HEX TO ASCII

In Chapter 6, we listed a program to convert an ASCII character
to a hexadecimal number. A related problem is the conversion of an
8-bit binary number represented by two hexadecimal numerals to
their equivalent ASCII characters. To communicate with the user,

127

the microcomputer usually has a means of displaying the contents
of 8-bit memory locations and registers. The KIM-1 and SY\1-1
use seven-segment LED displays, while the AIM 65 has 16-segment
alphanumeric displays. The latter requires ASCII. Since displays,
printers, and other output devices that represent hexadecimal
numerals using ASCII characters are common, we take as a pro
gramming problem the conversion of the contents of the accumu
lator (or any memory location) to two hexadecimal numerals
(0-9 and A-F) represented with ASCII. A simple description of this
problem is "Two Hex Numerals to ASCII," or more simply "HEX
to ASCII."

The contents of a memory location or register may be divided into
a high-order nibble and a low-order nibble, each represented by one
hex numeral. Refer to Table 6-2 for the ASCII representations of
the hexadecimal numerals. To distinguish whether a nibble is to be
represented by a hex numeral 0-9 rather than a hex numeral A-F,
$A is subtracted from the nibble, and:

• If the result of the subtraction is non-negative, the carry flag
is set; the value of the nibble must be represented by a numeral
A-F.

• If the subtraction gives a negative result, the carry flag is clear;
the nibble must be represented by a numeral 0-9.

The following were also used in the program to convert the con
tents of the accumulator to two ASCII characters:

• A nibble having a hex value $0-$9 is converted to ASCII by
adding $30.

• A nibble having a hex value $A-$F is converted to ASCII by
adding $37.

Since the program first subtracts $A from a nibble to test if it is
a numeral 0-9 or A-F, the two points above are modified to add
$30 + $A = $3A, and $37 + $A = $41, respectively. With this expla
nation, a study of the flowchart shown in Fig. 7-4 and the program
comments should make the program understandable. In a typical
case, writing an ASCII character to OUTPUT would cause it to
appear on an output device like a crt or printer. The comments
in the program are more detailed than usual because this is the
most complex program presented thus far. Again, the program
should be studied for its use of specific instructions. The purpose
of this book is not to build a program library; it is to teach you how
to program.

128

Example 5: Hex to ASCII Conversion Program

Object: Output the contents of a register or memory location as two ASCII characters
representing two hexadecimal numerals. Assume the data to be converted is
in DATA and the 1/0 location is OUTPUT.

$0000 = DATA
$03FF = OUTPUT

0350 AS 00 START LOA DATA DATA contains the number to be

0352 A8

0353 A2 FE
0355 6A
0356 6A
0357 6A
0358 6A
0359 29 OF CHAR2
0358 38
035C E9 OA
035E 80 04

0360 69 3A

0362 80 02
0364 69 40 HERE

0366 80 FF 03 OVER
0369 E8
036A FO 04
036C 98

0360 4C 59 03
0370 00 DONE

TAY

LOX $FE
ROR A
ROR A
ROR A
ROR A
AND $OF
SEC
S8C $OA
8CS HERE

ADC $3A

8CS OVER
ADC $40

STA OUTPUT
INX
8EQ DONE
TVA

JMP CHAR2
8RK

converted to two ASCII characters.
Transfer A to Y for temporary
storage of DATA.
Initialize X to count characters.
High.order nibble must be output
first, so rotate accumulator
four bits to the right. High-order
nibble is now low-order nibble.
Mask tap nibble.
Set carry for subtraction.
Subtract $A to separate numerals
0-9 from A-F. Carry set means numerals
A-F. Carry clear means numerals 0-9.
ASCII for numerals 0-9 obtained by
adding $OA + $30 + Accumulator.
Jump over conversion of numerals A-F.
ASCII for numerals A-F obtained by
adding $40 + Carry + Accumulator.
Output ASCII representation of nibble.
Need to get another nibble?
Not if X = O.
Transfer Y to A to put DATA back
into accumulator.

Jump to output second character.

DECIMAL TO HEXADECIMAL

Suppose that a programmer enters two digits in a memory loca
tion, and he chooses to regard this two-digit number as a base-ten
number. For purposes of illustration, suppose that the number is
5910• The programmer must restrict his use of digits to the base-ten
numerals 0-9.

Of course, the microcomputer will regard the number as an 8-bit
binary number represented by two hex digits, which is not what the
programmer intended. Therefore, before the "decimal value 59"
can be used in subsequent operations, the program must convert
it to a binary or hexadecimal number. (The only exception to this
rule is in decimal addition and subtraction.)

Before providing the solution to the problem of converting a
two-digit base-ten number into a hexadecimal number, consider
some interesting properties of the ASL and LSR instructions, as
shown by Examples 6 through 9.

129

NO

YES

Fig. 7-4. Conversion of accumulator contents to two ASCII characters.

Example 6: Demonstration of the ERect of One ASL Instruction on a Number

What is $05 after one ASL instruction?
Solution: $05 = 0000 0101, shifted once becomes 0000 1010 = $A = 1010. Ob

serve that one shift left is equivalent to multiplication by two.

Example 7: Demonstration of the ERect of Two ASL Instructions on a Number

What is $05 after two ASL instructions?
Solution: $05 = 0000 0101, shifted twice becomes 0001 0100 = $14 = 20,0. Ob

serve that two shifts left is equivalent to multiplication by four.

130

Example 8: Demonstration of the Effect of One LSR Instruction on a Number

What is $OC after one LSR instruction?
Solution: 12 '0 = $OC = 0000 1100, shifted right becomes 0000 0110 = $06 = 6 10 •

Observe that one shift right is equivalent to division by two.

Example 9: Demonstration of the Effect of Two LSR Instructions on a Number

What is $OC after two LSR instructions?
Solution: 12 '0 = $OC = 0000 1100, shifted twice is 0000 0011 = $03 = 3 10• Ob·

serve that two shifts right is equivalent to division by four.

From these examples we can conclude:

• A succession of ASL instructions is equivalent to multiplying
by 2, 4, 8, 16, ... , provided no significant bits are shifted out
of the location.

• A succession of LSR instructions is equivalent to dividing by 2,
4, 8, 16, ... , provided no significant bits are shifted out of the
location.

Now return to the example of the 59, which the programmer intends
to mean 5910 but which the computer supposes is 5916 or $59. To
convert 5910 to binary or hexadecimal we make use of the fact that

5910 = (5.1010) + (9 .110) = (5· $A) + (9 . $1).

Clearly, we need only multiply the five by $A and add it to nine in
order to convert 5910 to hexadecimal. One problem remains. Recall
that the low-order nibble is the one's place while the high-order
nibble is the sixteen's place. The "5" is in the high-order nibble of the
memory location, so the computer interprets it as being (5 . 16).
We could convert this "5" in the sixteen's place to a five in the one's
place by four shift-right (LSR) instructions, moving it from the
high-order nibble to the low-order nibble, and then we could mul
tiply it by $A as outlined above.

There is a more efficient technique, however. We may leave the
"5" in the sixteen's place and divide by 16 and multiply by $A,
using the following facts:

5. $A = (5· $A)16= (5· 16)$A = (5. 16)($8 + $2)
16 16 16

= (5 . 16) (l + 1.) = (5 . 16) + (5 . 16)
2 8 2 8'

In other words, to multiply five times $A, we may take the high
order nibble, (5 . 16), divide it by two, divide it by eight, and add
these two results. This is what the equations above tell us.

The two rules regarding ASL and LSR instructions tell us that
division by two is accomplished by one LSR instruction, and division
by eight is accomplished by three LSR instructions. To divide the

131

(5 . 16) by two, the high-order nibble is shifted to the right by one
LSR instruction. To divide the (5, 16) by eight, the high-order
nibble is shifted to the right by three LSR instructions. When these
two results are added, we have converted 5010 to its binary or hexa
decimal representation. Adding the nine in the one's place com
pletes the conversion of 5910 to its hexadecimal representation. Other
numbers are handled in the same way, and the program in Example
10 will convert any two-digit base-ten number to a hexadecimal
number.

Example 10: Decimal to Hexadecimal Conversion Program

Object: Convert a two·digit base·ten number to hexadecimal. The base·ten number will
be symbolized by DCML. The answer will be symbolized by HEX. TEMP will serve as a
temporary storage location.
$0000 = DCML
$0001 = HEX
$0002 = TEMP

03AO 08
03Al A500
03A3 AA
03A4 29 OF
03A6 85 01
03A8 8A
03A9 29 FO
03AB 4A
03AC 85 02
03AE 4A
03AF 4A
03BO 18
03Bl 65 02
03B3 65 01
03B5 85 01
03B7 00

BEGIN CLD
LOA DCML
TAX
AND $OF
STA HEX
TXA
AND $FO
LSR A
STA TEMP
LSR A
LSR A
ClC
ADC TEMP
ADC HEX
STA HEX

END BRK

Clear decimal mode.
Get decimal number.
Save A in X temporarily.
Mask high-arder nibble.
One's place in answer.
Get A back again.
Mask low-arder nibble.
Divide by twa (see text).
Store in temporary location.
Total of three LSRs gives division
by eight (see text).
Clear carry for addition.
Add divide by two to divide by eight.
Add to answer.
Result in answer location.

HEXADECIMAL TO DECIMAL

In this section we consider the process of converting a hexa
decimal number in one byte of memory to its bcd representation.
Note that since $FF = 25510 and each byte of memory can represent
only two decimal digits with bcd code, we will require two bytes of
memory to represent the decimal equivalent of the hexadecimal
number.

Let $PQ represent a hexadecimal number in the sense that P
is the high-order nibble and Q is the low-order nibble. We intend
to convert $PQ to its decimal equivalent. Note that P is in the 16's
place while Q is in the one's place. That is,

$PQ = ($P .1610) + ($Q . 110)

This result suggests a means of converting $PQ to its decimal equiva
lent, namely, add 1610 to itself $P times using the decimal mode

132

for addition, and add 1 to itself $Q times using the decimal mode.
These two results are then added to give the final answer. Any
carry from these sums will be added to another byte of memory,
giving the complete two byte representation. The program is given
in Example 11.

Suppose $PQ is in a location symbolized by PQ. We first mask
$P, and transfer Q to the X register. X is then used as a counter
to add one to the low-order byte of the decimal answer Q times. This'
addition is carried out in the decimal mode, and the result is stored
in location DCMLO. There will be no carry from this addition.
Next, $P is shifted into the low-order nibble of PQ with four LSR

Example 11: Hexadecimal to Decimal Conversion Program

Object: Convert a hexadecimal number in location PQ to a decimal number located in
DCMLO and DCMHI. These two locations contain the least significant two
digits and the most significant digit, respectively.

$0000 = PQ; Contains the hexadecimal number to be converted to decimal.
$0001 = DCMLO; Contains the two least-significant digits of the decimal answer.
$0002 = DCMHI; Contains the most·significant digit of the decimal answer.

0200 A9 00 ORIGIN LOA $00 Clear the locations that will
0202 85 01 STA DCMLO contain the decimal answer.
0204 85 02 STA DCMHI
0206 A500 LOA PQ Get the hexadecimal number.
0208 29 OF AND $OF Mask $P, leaving $Q in A.
020A FO OC BEQ OVER Branch to convert 16's place if

one's place is zero.
020C AA TAX Transfer $Q to X for counter.
0200 18 CLC Make sure carry flag is clear.
020E F8 SED Set the decimal mode flag.
020F A501 RPTl LOA DCMLO Get DCMLO contents.
0211 69 01 ADC 01 Add one.
0213 85 01 STA DCMLO Result into DCMLO.
0215 CA DEX Decrement X until one has been
0216 DO F7 BNE RPTl added $Q times.
0218 A5 00 OVER LOA PQ Get the hexadecimal number again.
021A 4A LSR A Shift it right four times to get
021B 4A LSR A $P in the low.order nibble.
021C 4A LSR A
02"10 4A LSR A
02 "IE FO 11 BEQ FINISH If 16'5 place is zero, end

the conversion.

0220 AA TAX Transfer $p to X for counter.
0221 18 CLC Clear carry flag in case LSRs set it.
0222 A501 RPT2 LOA DCMLO Get DCMLO contents.
0224 69 16 ADC 16 Add 16.
0226 85 01 STA DCMLO Result into DCMLO.
0228 A900 LOA $00 Prepare to add carry, if any,

022A 65 02 ADC DCMHI to the contents of DCMHI.

022C 85 02 STA DCMHI Result into DCMHI.

022E CA DEX Decremenl X.

022F DO Fl BNE RPT2 Repeat adding 16 until $P additions

0231 00 FINSH BRK have been completed. Finish.

133

instructions. It is then transferred to the X register for the purpose
of counting $P additions of 16]0 in the decimal mode. Up to two
carries may result from these sums. so the carries are added to the
contents of a location called DCMHI, which contains the high-order
byte of the decimal representation of $PQ. This completes the con
version.

EXPERIMENT NO. 1

Step 1

Load the program in Example 1. Put an ASL instruction (op
code $OE) in location $020D.

0200 A9 FF
0202 BD 01 17
0205 AD 02 17
020B 29 BF
020A BD 00 17
020D _00 17
0210 4C OD 02

Step 2

START lDA $FF
STA PADD
lDA PBD
AND $BF
STA PAD

lOOP PAD
JMP lOOP

Set up the Port A DDR by loading
$FF into PADD.
Get some data from Port B.
Mask bit six for the SYM-l and KIM-I.
Output the resulting number to Port A.
Sh ift the contents of Port A, and
put the instruction in a loop for
repeated shifts.

Set the Port B switches to $01; that is, make PBO logic one and
all the other switches logic zero.

Step 3

Single-step the program, repeating the ASL PAD and IMP LOOP
instructions at least eight times. Describe what you observe.

(We observed that after the STA PAD was executed the PAO LED
glowed. The ASL instruction shifted the logic one in PAO to PAl,
PA2, and so on, until the one was shifted out of PAD altogether.)

Step 4

Set the Port B switches to put a $05 in Port B. Run the program
again (in the single-step mode) and describe what you observe.

(We observed that initially PA2 and PAO light. Successive ASL
instructions move each of these one bits to the left, until they are
shifted out of Port A.)

134

EXPERIMENT NO. 2

Step 1

Change the ASL instruction to an ROL instruction (op code $2E)
in the program in Experiment No.1.

Step 2

Set the Port B switches to $01.

Step 3

Single-step the program, repeating the ROL PAD instruction at
least nine times. What do you observe?

(You should observe that initially PAD LED lights. After each
execution of the ROL PAD instruction the glowing LED shifts
left. After eight ROL instructions it disappears, but on the ninth
ROL im:truction the glowing LED appears at PAO again.)

Step 4

Experiment with other settings of the Port B switches and the
single-step mode.

EXPERIMENT NO. 3

Repeat Experiments 1 and 2 with LSR and ROR instructions,
respectively. You may wish to set PB7 rather than PBO to logic
one, because the LSR and ROR instructions shift or rotate right.
Also, experiment with other settings of the Port B switches. Describe
and explain your results.

EXPERIMENT NO. 4

Step 1
Load the program in Example 7-3.

$0000 = MCND; Multiplicand
$0001 = Ml TP; Multiplier
$0003 = PROD; Product

0200 08 START
0201 A9 00
0203 85 03
0205 46 00 AGAN
0207 90 07
0209 18
020A A5 01

CLD
lDA $00
STA PROD
lSR MlTP
BCC ARND
ClC
LDA MCND

Clear decimal mode.
Clear location of product by
storing $00 in PROD.
Shift multiplier right to test
for zero or one in carry flag. If
zero branch to shift multiplicand
left for next test. If one, add

135

020C 65 03
020E 85 03
0210 06 01
0212 FO 04
0214 A5 00
0216 DO ED
0218 00

Step 2

ARND

ADC PROD
STA PROD
ASl MCND
BEQ DONE
LDA MlTP
BNE AGAN

DONE BRK

multiplicand to obtain product.

Shift multiplicand left for next sum.
If multiplicand is zero, operation
is finished. Same for multiplier.
Otherwise branch back to sum again.

Check the operation of the program by entering $02 in $0000 and
$03 in $0001, execute the program, and check the answer in $0003.
The answer should be $06.

Step 3

N ow try some more difficult problems like $F . $A, $2 . $C, $9 .
$E, and others. Check your results by hand calculations.

Step 4

Experiment with some 8-bit problems. Try $10 . $02, for exam
ple. What do you get for an answer? Try $10 . $20. What do you
obtain for an answer?

(For the first answer we obtained $20 as expected. For the second
answer we obtained $00 because the most significant byte is lost.
The program does give the correct answer for the least significant
byte.)

EXPERIMENT NO. 5

Repeat Experiment No.4 using the 8-bit multiplication program
instead of the 4-bit multiplication program. You should now be able
to multiply two 8-hit numbers. In addition to the problems sug
gested in Experiment No.4, try some more difficult ones such as
$FF . $FE and $7C· $EA. Check your program by doing the
calculations by hand.

EXPERIMENT NO. 6

Step 1

Load the program in Example 5.

$0000 = DATA
$03FF = OUTPUT

0350 A5 00 START LDA DATA

0352 A8 lAY

136

DA TA contains the number to be
converted to two ASCII characters.
Transfer A to Y for temporary
storage of DATA

0353 A2 FE LOX $FE Initialize X to count characters.
0355 6A ROR A High·order nibble must be output
0356 6A ROR A first, so rotate accumulator
0357 6A ROR A four bits to the right. High-order
0358 6A ROR A nibble is now low·order nibble.
0359 29 OF CHAR2 AND $OF Mask top nibble.
035B 38 SEC Set carry for subtraction.
035C E9 OA SBC $OA Subtract $A to separate numerals
035E BO 04 BCS HERE 0-9 from A-F. Carry set means

numerals A-F. Carry clear means
numerals 0-9.

0360 69 3A ADC $3A ASCII for numerals 0-9 obtained by
adding $OA + $30 + Accumulator.

0362 BO 02 BCS OVER Jump over conversion of numerals A-F.
0364 69 40 HERE ADC $40 ASCII for numerals A-F obtained by

adding $40 + Carry + Accumulator.
0366 80 FF 03 OVER STA OUTPUT Output ASCII representation of nibble.
0369 E8 INX Need to get another nibble?
036A FO 04 BEQ DONE Not if X = O.
036C 98 TVA Transfer Y to A to put DATA back

into accumulator.
0360 4C 59 03 JMP CHAR2 Jump to output second character.
0370 00 DONE BRK

Step 2

Put $C5 in location $0000. Run the program. What do you find
in location $03FF after the program has been executed?

(The program first converts $C to its ASCII representation, which, if
you refer to Table 6-2, is $43. Next the program converts $5 to its
ASCII representation, which is $35. It is the ASCII representation
of the second digit which you should find in $03FF, namely $35.)

Step 3

Put $5C in location $0000. Run the program and examine the
contents of $03FF. What do you find there?

(You should find the ASCII representation of C, namely $43, in lo
cation $03FF.)

Step 4

Try some other numbers in location $0000 and make sure the
program always gives the correct ASCII representation of the
second digit.

137

EXPERIMENT NO. 7

Step 1

Load the program in Example 10.

$0000 = DCMl
$0001 = HEX
$0002 = TEMP

03AO D8 BEGIN ClD Clear decimal mode.
03A 1 A5 00 lDA DCMl Get decimal number.
03A3 AA TAX Save A in X temporarily.
03A4 29 OF AND $OF Mask high-order nibble.
03A6 85 01 STA HEX One's place in answer.
03A8 8A TXA Get A back again.
03A9 29 FO AND $FO Mask low-order nibble.
03AB 4A lSR A Divide by two (see text).
03AC 85 02 STA TEMP Store in temporary location.
03AE 4A lSR A Total of three lSRs gives division
03AF 4A lSR A by eight (see text).
03BO 18 ClC Clear carry for addition.
03Bl 65 02 ADC TEMP Add divide by two to divide by eight.
03B3 65 01 ADC HEX Add to answer.
03B5 85 01 STA HEX Result in answer location.
03B7 00 END BRK

Step 2

Put a base-ten number like 59 in location $0000. Run the program.
What number do you find in location $OOO1?

(You should find $3B in location $0001, since it is the hexadecimal
equivalent of 5910.)

Step 3

Try some other base-ten numbers to confirm that the program
converts them to hexadecimal.

EXPERIMENT NO. 8

Here are a few additional programs and problems you might like
to try.

• Convert a four-digit hexadecimal number to base ten.
• Input two ASCII representations of hexadecimal numbers and

convert them to a hexadecimal number in the accumulator.
• Divide two 8-bit numbers. This is very challenging.
• Test the hexadecimal-to-decimal conversion program.
• Try constructing a flowchart for the hexadecimal-to-decimal

conversion program.

138

CHAPTER 8

Indexed Addressing

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the function of an index.
• Use absolute and zero-page indexed addressing modes in com

puter programs. See Table 8-1 for a summary of the instructions
that use this mode.

• Understand the concept of indirect addressing.
• Use the indexed indirect and indirect indexed addressing modes

in programs.

INTRODUCTION

So far, we have used, at various times, seven different addressing
modes, including immediate, absolute, zero-page, accumulator, im
plied, relative, and, finally, the indirect jump.

In the immediate addressing mode, the data to be operated upon
is included in the program as the byte following the op code. The
absolute addressing mode uses two program bytes to specify the
address of the location where the byte of data is to be found. Zero
page addressing is similar to the absolute addressing mode, except
that only the low-order byte of the address of the data is given, it
being understood that the high-order byte of the address is $00.
The other addressing modes, accumulator, implied, and relative, will
not be recapped here because they are not closely related to the
topics of this chapter.

139

Table 8·1. Op Codes for Instructions Introduced in Chapter 8

Addressing Mode

Instructions (IND,X) (IND),Y Z·PAGE,X ABS,X ABS,Y Z·PAGE,Y

ADC 61 71 75 70 79

ANO 21 31 35 30 39

ASL 16 1 E

CMP C1 01 05 00 09

OEC 06 DE

EOR 41 51 55 50 59

INC F6 FE

LOA A1 B1 B5 BO B9

LOX BE B6

LOY B4 BC

lSR 56 5E

ORA 01 11 15 10 19

ROL 36 3E

ROR 76 7E

SBC E1 F1 F5 FO F9

STA 81 91 95 90 99

STX 96

Considering all the addressing modes learned so far, it can be
seen from the 6502 instruction set summary in Table 2-3 that there
are still six addressing modes to learn. The instructions, addressing
modes, and the op codes used in this chapter are summarized in
Table 8-1. These addressing modes have one feature in common,
namely, the use of an index. As you shall see, the use of an index
gives the microprocessor the ability to handle large amounts of data
quickly, efficiently, and with a minimum amount of programming.
The indirect addressing modes allow the microprocessor to fetch
data from locations whose addresses have been calculated. The
indirect addressing capability distinguishes the instruction set of the
6502 from the instruction sets of several other popular micro·
processors.

To provide the motivation for learning about indexed addressing,
consider the problem of writing the same number, say $FF, to all
the locations on a single page of memory. This might be part of an
R/W memory test, in which the same number is placed in allloca
tions, and then all locations are read to see if that number is still
present. (Good memory tests are more elaborate than this.) Without

140

indexing, the 6502 program would have to be similar to the one in
Example 1. Clearly such a program is extremely long, requiring
more memory space for the program than for the page of memory
to be tested. There has to be a better way, and the better way is
accomplished with indexed addressing.

Example 1: Loading a Page of R/W Memory with a Number

Write a program to load $FF in all the memory locations in page three of memory.

Solution: START LDA $FF
STA $0300
STA $0301

STA $03FF
END BRK

ABSOLUTE INDEXED ADDRESSING

Before getting started, we note that the X and Y registers are
central to the indexed addressing modes. In fact, these two registers
are more properly called index registers, since their contents will
be the index in all indexed addressing modes. No other registers
may serve as an index. "X" will refer to the number in the X register
and "Y" will refer to the number in the Y register.

To illustrate absolute indexed addressing, first consider the LDA
instruction in the absolute addressing mode. In mnemonic form

LOA TABLE

means fetch the contents of the location symbolized by TABLE.
Thus, TABLE is actually a 16-bit address consisting of an 8-bit
address low (ADL) and an 8-bit address high (ADH). We may
write:

TABLE = ADH-ADL.

The address, TABLE, may be indexed by the contents of register X
in an addressing mode called "absolute indexed by X" or, more sim
ply, "ABS,X." The mnemonic is written:

LDA TABLE,X.

This means that the LDA operation goes to an address that is the
sum of the I6-bit address for TABLE (ADH -ADL) and the con
tents of the X register. The actual16-bit address for TABLE is called
the base address, and it is now symbolized as BAH-BAL for base
address high and base-address low. Thus,

TABLE,X = BAH-BAL + X.

141

,

The address BAH-BAL is called the base address of TABLE, and X
is called the index. BAL and BAH are the second and third bytes,
respectively, of any absolute indexed instruction. The data is ob
tained from location BAH-BAL + X.

In words, the microprocessor adds the contents of the X register
to the BAL of TABLE, any carry from this addition is added to
BAH, and the data is fetched from that location. Example 2 illus
trates how this calculation proceeds.

Example 2: Illustration of Absolute Indexed Addressing Mode

I n the progrom below, identify the oddress of the byle of doto referenced by the
LOA instruction.

0200 A2 20 START LOX $20
0202 BO 00 03 END LOA TABLE,X

Solution: BAL = $00 and BAH = $03, so the base address of TABLE is $0300. The
X register contains $20, SO the byte of data is fetched from the localion whose address
is $0300 + $20 = $0320.

The addition of the contents of the X register to the BAL of the
base address is accomplished within the 6502. It does not involve
the carry flag, but it may involve a carry from the sum (X + BAL),
to BAH. For example, if the base address is $23F5 and the X
register contains $10, then the LDA T ABLE,X instruction would
fetch the contents of location $2405. In any case, where BAL is $00
no page boundary will be crossed because the maximum value of the
X index is $FF, since the X register is an 8-bit register.

Of course, the LDA instruction is not the only instruction capable
of being used in the ABS,X addressing mode. The arithmetic, logi
cal, store, register-shift, compare, and several other instructions also
have this absolute indexed addressing mode available. See Table
8-1 for details.

For most of these same instructions, the Y register may also be
used as an index in an addressing mode called ABS,Y that functions
in exactly the same way as the ABS,X addressing mode, except
that the Y register is used as the index. Table 8-1 summarizes the
new addressing modes introduced in this chapter.

ZERO·PAGE INDEXED ADDRESSING

The two zero-page indexed addressing modes, "Z-PACE,X" and
"Z-PACE,Y" are similar to their ABS,X and ABS,Y counterparts.
These instructions require only two bytes, the first being the op
code from Table 8-1 and the second being the base address low
(BAL); it is understood that BAH is $00, since page zero is being
used. Another important difference between zero-page indexing and
absolute indexing is that any carry from the addition of the BAL

142

to the X register is discarded in zero-page indexing. This produces
a "wrap-around" effect, since the high byte of the address will
always be zero in this mode. For example, if the BAL is $F5, and
the X register used for the index contains $10, then the location of
the data to be operated upon in the Z-PAGE,X addressing mode
is $0005, not $0105, which you would obtain from an addition of
BAL to X with a carry going to BAH. See Example 3.

Example 3: Illustration of Zero-Page Indexed Addressing Mode

Identify the memory locatian referenced by the AOC instruction in the following
program.

0200 A2 35
0202 A9 29
0204 75 20

START LOX $35
LOA $29
AOC TABZ,X

Solution: The AOC instruction uses Z·PAGE,X addressing (see Table 8·1). The base
address of TABZ is $0020. Adding the X index gives $0020 + $35 = $0055 as the
location to be referenced.

To illustrate how indexing is used in programs, we will look at
a variety of programs. To begin, refer to the problem posed in
Example 1 in which we wish to address sequentially the 256 loca
tions in a given page of memory. The program in that example would
have required at least 256 3-byte instructions. Using indexed ad
dressing, however, the program in Example 4 accomplishes the same
task with only five instructions. A flowchart for this program is
shown in Fig. 8-1. Carefully study it and the program in Example 4
to see how the simplest form of the indexed addressing modes works.
(The flowchart uses the notation "[A] --'> [TABLE + X]." Recall
that this notation means "store the contents of A in the location
whose address is symbolized by TABLE + X." Thus, the "[]" means
"the contents of.")

In Example 5, we have implemented the simple memory test
mentioned earlier. It begins with the same instructions as the
program in Example 4, but it goes on to illustrate the CMP instruc
tion in the absolute indexed addressing mode. A flowchart for the
program is given in Fig. 8-2. Study the program and the flowchart
to obtain a better understanding of the absolute indexed addressing
mode. It is important that you realize that the calculated address of
BASE + X may be used over and over again, as was the case for
the STAT ABLE,X and CMP T ABLE,X instructions. Thus an
address that was calculated in this way could be used by many
different instructions in a program. The use of the indexed mode
does not change the base address, or the contents of the index
register, X or Y.

One other note about the program in Example 5. The use of $FF
to test R/W memory is probably a poor choice. It is possible that

143

NO

Fig. 8·1. Flowchart of program in Exampla
4. Recall that notation [Al ~ [TABLE + Xl
means "the contents of the accumulator

becomes the contents of the location
symbolized by TABLE + X."

"empty" locations would not be discovered because the logic levels
on the data bus might all be one for these locations. A better choice
for a number is $55, or any other number containing both ones and
zeros.

Example 4: Program to Illustrate Absolute Indexed Addressing Mode

Object: Load $FF in all page·three locations.
$0300 = TABLE

0200 A2 00
0202 A9 FF
0204 9D 00 03
0207 E8
0208 DO FA

020A 00

START

BACK

LDX $00
LDA $FF
STA TABLE,X
INX
BNE BACK

BRK

Initialize X index to $00.
Initialize A to $FF.
Stare $FF in location TABLE + X.
Increment index X.
If X =1= 0, branch back to load
ather locations.

Example 5: Simple R/W Memory Test

Object: Load each location in page three with $FF. Then read each location in page
three to see if it still contains the number $FF. If it does not contain $FF, out·
put the ADL of that location.

$0300 = TABLE
$A003 = PADD
$AOOI = PAD

144

NO

NO

Fig. 8·2. Flowchart of program in Example 5.

0200 A2 00 START LOX $00 The first five instructions of
0202 A9 FF LOA $FF this program were commented on
0204 90 00 03 BACK STA TABLE.X in Example 4.
0207 E8 INX
0208 00 FA BNE BACK
020A 0000 03 CHECK CMP TABLE)(Compare A (still contains $FF with
0200 0004 BNE OUT page three location. Branch to OUT
020F E8 INX if location does not contain $FF;
0210 00 F8 BNE CHECK otherwise return to read another

location.

145

0212 00 BRK Finish here when all locations are
read.

0213 80 03 AO OUT STA PAOO Initialize Part A to be output port.
0216 8E 01 AO STX PAD Output X for location where test

fails.
0219 00 BRK Then end here.

DATA TABLES

Indexed addressing provides an efficient technique for the manip
ulation of data stored in tables. This will be illustrated, along with
the zero-page indexed addressing mode, in programming examples,
Examples 6 and 7. The program in Example 6 locates the largest

YES

[lTAB + X-II

YES

Fig. 8-3. Flowchart of the program in Example 6. Recall that carry flag is set if subtraction
does not produce a borrow, that is, if [ZTAB + Xl ~ [ZTAB + (X - 1)].

146

Fig. 8-4. Flowchart of program in
Example 7.

number in a table, and the program in Example 7 adds all of the
numbers in a table. The flowcharts for these two programs are
shown in Figs. 8-3 and 8-4, respectively. In reference to the program
in Example 6, you should realize, of course, that the largest value
may be present in several locations. This program only finds the
largest value. It does not note where it (they) are, or how many of
them there are.

The program in Example 7 adds all of the numbers in a table.
The largest value of the sum of all the numbers in the table would

147

Example 6: Program to Locate Largest Number in a Table

Object: Locate the largest number in a table that starts at location $ooAO and ends at
$OOBO. Output the largest number to Port A.

$OOAO = ZTAB
$A003 = PADD
$AOOI = PAD

0200 A9 FF START LDA $FF Initialize Port A DDR to moke the
0202 8D 03 AO STA PADD port an output port.
0205 A2 10 LDX $10 Start X at $10 and get data
0207 B5 AO AGAIN LDA ZTAB,X from the top of the table.
0209 CA BACK DEX Decrement X; if X is less than
020A 30 07 BMI OUT zero, task is finished.
020C D5 AO CMP ZTAB,X Is [ZTAB + Xl ~ [ZTAB + (X - I)]?
020E BO F9 BCS BACK Yes, keep [ZTAB + Xl as largest value

and return to check the next location
in the table.

0210 4C 07 02 JMP AGAIN No, then use [ZTAB + (X - 1)1 as
largest value and return to check
other locations in the table.

0213 8D 01 AO OlyT STA PAD Store largest value in Port A.
0216 00 BRK Finished.

occur if each location had a $FF in it. Since $FF . $100 < $FFFF,
a two-byte location for the sum will be sufficient as long as the
table does not exceed $100 locations. That is why there is a high
order byte (SUM HI) and a low-order byte (SUMLO) for the
sum of the numbers in the table. Although the table could have as
many as $100 = 256 locations, our program illustrates a table with
16 entries. This program will be easier to test than one with 256
entries, while the basic principles remain the same.

Although these two examples of operating on data in tabular
form may seem contrived, they are not. The author has used both
ideas in working with computer applications. In fact, most of the
programs given in this book have practical applications other than
providing mental gymnastics for interested readers.' Because infor
mation usually comes in large quantities, the importance of being
able to work with tables can hardly be overemphasized. In fact,
the ability to manipulate a large quantity of information quickly
is one of the justifications for microprocessor-based instrumentation.

Example 7: Program to Add all Entries in a Table

Object: Add all the numbers in a table consisting of 16 locations in page zero, from
$ooAO through $OOAF.

$0000 = SUMLO
$0001 = SUMHI
$OOAO = TABLE

0200 A900
0202 85 00

148

START LOA $00
STA SUMLO Clear SUMLO to zero.

0204 85 01 STA SUMHI Clear SUMHI to zero.
0206 08 CLO Clear decimal made.
0207 A2 OF LOX $OF Initialize X to start at the tap
0209 18 BACK CLC of the table. Clear carry Aag.
020A B5 AO LOA TABLE,X Load A with [TABLE + Xl.
020C 65 00 ADC SUMLO Add to SUMLO.
020E 85 00 STA SUMLO Result in SUMLO.
0210 AS 01 LDA SUMHI Get SUMHI.
0212 69 00 ADC $00 Add carry, if any, from previous sum.
0214 85 01 STA SUMHI Result into SUMHI.
0216 CA DEX Decrement X.
0217 10 FO BPL BACK Keep adding until all the table entries
0219 00 BRK have been included in the sum. Then quit.

CODE CONVERSION PROGRAMS

Another important use of indexed addressing and tables is in
converting one code into another. For example, refer to Example
8 in Chapter 6 in which a hexadecimal character represented by an
ASCII value was converted into a hexadecimal number, and to
Example 5 in Chapter 7 in which two hexadecimal numerals repre
senting the contents of a memory location were converted to two
ASCII characters. Tables and indexed addressing sometimes make
the conversion task easier than when using arithmetic, logical, and
shift instructions.

The program in Example 8 is a hex to ASCII conversion, the
program in Example 9 converts two bcd digits to binary, and the
program in Example 10 converts a hexadecimal number into the
code necessary to display a hexadecimal numeral on a seven
segment LED display. Example 8 might be used to output informa
tion from a microcomputer to a video monitor, printer, typewriter,

Example 8: Hex·ta-ASCII Conversion Program

Object: Convert the hex number representing the low-order nibble of a memory loca
tion into its ASCII equivalent. Refer to Table 8-2 for the location and contents
of the conversion table. Output the ASCII character to Port A.

$0300 = TABLE
$AOOO = PBD
$AOOI = PAD
$A003 = PADD

0200 A9 FF START
0202 8D 03 AO

0205 AD 00 AO
0208 29 OF
020A AA
020B BD 00 03

020E 8D 01 AO
0211 00

LDA $FF
STA PADD

LDA PBD
AND $OF
TAX
LDA TABLE,X

STA PAD
BRK

Initialize Port A to be an
output port by loading $FF
into its DDR.
Get data from Port B.
Mask the high-order nibble.
Put the low-order nibble in X
to be used as the index to look
up the ASCII value in the table.
Output the ASCII value.
Finish.

149

or some other output device. Example 9 might be used to read bcd
data from a voltmeter or other instrument and convert the data to
binary for processing by the microcomputer. Example 10 could be
used to display the contents of a register or memory location. Both
the SYM-1 and KIM-1 use seven-segment displays to do this.

Because similar Howcharts have already been given, none will
be drawn for Examples 8 through lO. In Example 8 note that the
nibble to be converted to an ASCII value is used as the index to
locate the ASCII character. The value TABLE points to the start
of the code conversion table, while the hex value is actually used
to locate the value in the table. In this way, the hex value was used
to address the table, so that the corresponding ASCII value at the
proper address could be retrieved. The contents of Table 8-2 must
be loaded into memory in order for the program to work. The pro
gram could be expanded to output both nibbles of a memory loca
tion. Refer to Example 5 in Chapter 7 for details about how this
might be accomplished.

The program in Example 9 assumes that two decimal digits are
represented in bed at Port B. For example, 9510 would appear as
1001 OlOl at the Port B pins. Refer to Table 5-4 to find other
decimal-to-bcd conversions. Also refer to Example 10 in Chapter 7
which accomplishes the same objective as the program in Example
9 in this chapter. Our task is to convert the bcd number to binary.
Since the number in the ones place is the same in both bcd and
hexadecimal, we may simply add it to the conversion of the number
in the tens place. Thus,

9510 = (9 . lO) + (5 . 1) = (9 . A) + (5 . 1) = (9 . A) + 5

Table 8-2. ASCII Character Look Up Table for Example 8

Hex Numeral ASCII Character Location Contents

0 $30 $0300 $30
1 31 0301 31
2 32 0302 32
3 33 0303 33
4 34 0304 34
5 35 0305 35
6 36 0306 36
7 37 0307 37
8 38 0308 38
9 39 0309 39
A 41 030A 41
B 42 030B 42
C 43 030C 43
D 44 030D 44
E 45 030E 45
F 46 030F 46

150

will form the basis for the conversion. The bcd digit which appears
in the high-order nibble must be multiplied by A and then added
to the number in the low-order nibble. But the multiplication can
be done ahead of time and the answers stored in a table in memory.
Such a table is shown in Table 8-3. In order for the program in
Example 9 to work, this table must be in memory.

Table 8-3. BCD to Binary Look Up Table for Example 9

BCD Number Hexadecimal Value
(Tens Place) (Number· $A) Location Contents

0 $00 $0000 $00
1 OA 0001 OA
2 14 0002 14
3 1 E 0003 1 E
4 28 0004 28
5 32 0005 32
6 3C 0006 3C
7 46 0007 46
8 50 0008 50
9 SA 0009 SA

Example 9: Decimal·to-Binary Conversion Program

Object: Convert bed number (two digits) at Port B to a binary number and store the
result in Port A.

$0000 = TABLE
$0010 = TEMP
$A003 = PADD
$A001 = PAD

0200 D8 START
0201 AD 00 AD
0204 AA
0205 29 OF
0207 85 10
0209 8A
020A 4A
020B 4A
020C 4A
020D 4A
020E AA
020F B5 00
0211 18
0212 65 10
0214 8D 01 AO
0217 A9 FF
0219 8D 03 AO
021C 00

CLO Clear decimal mode
LOA PBD Get two BCD digits from Port B.
TAX Save in X.
AND $OF Mask high·order nibble.
STA TEMP Store temporarily in TEMP.
TXA Get both digits back in A.
LSR A Shift high·order nibble into low·
LSR A order nibble, and zeros into high-
LSR A order nibble.
LSR A
TAX Use high.order nibble as index to
LDA TABLE,X look up conversion in TABLE.
CLC Clear carry for addition.
ADC TEMP Add conversion of tens place to ones place.
STA PAD Result into Port A.
LDA $FF Configure Port A into output port.
STA PADD $FF into DDR of Port A.
BRK Finished.

The program in Example 10 converts the low-order nibble of a
location to the seven-segment code necessary to indicate the hexa-

151

Table 8-4. Data for Hex Numeral to Seven·Segment Display Program

Seven-Segment Display Output Port Bit Assignments

a -
II

g
Ib

Bit 7 6 5 4 3 2 1 0 - Segment g f e d c b a

el Ie
d -

Hexadecimal Character Output Data-Table Contents location

0 $3F $03FO
1 06 $03Fl
2 5B $03F2
3 4F $03F3
4 66 $03F4
5 6D $03F5
6 7C $03F6
7 07 $03F7
8 7F $03F8
9 67 $03F9
A 77 $03FA
B 7C $03FB
C 39 $03FC
D 5E $03FD
E 79 $03FE
F 71 $03FF

decimal numeral on a seven-segment LED display. Table 8-4 sum
marizes the segment-bit assignments for the output port, and it
lists the table contents that are necessary to perform the conversion.
It will be assumed that a logic one lights the segment, while a logic
zero at the output port will turn the segment off. ,Each segment
can be controlled individually by the computer in this application.

Example 10: Hex-to-Seven-Segment Conversion Program

Object: Convert the low-order nibble of a memory localion into the seven-segment code
necessary to display the hexadecimal numeral which represents the nibble.
Output the code to Port A.

$03FO = TABLE
$AOO3 = PADD
$AOOJ = PAD
$AOOO = PBD

0200 A9 FF
0202 80 03 AO
0205 AD 00 AO
0208 29 OF
020A A8

152

START lDA $FF
STA PADD
lOA PBD
AND $OF
TAY

Configure Port A to be an output
port by loading $FF into its DDR.
Get data to be displayed from Port B.
Mask high·order nibble.
Put low-order nibble in Y for index.

020B B9 OF 03
020E 80 01 AO

LOA TABLE,Y Look up code for seven-segment disploy_
STA PAD Output code to Port A.

0211 00 BRK Finished.

MULTIPLE-BYTE ARITHMETIC

The indexed addressing modes are also useful for performing
multiple-byte arithmetic operations, especially when three or more
bytes are involved. This is illustrated with a triple-precision deci
mal-mode addition program, shown in Example 11. Double preci
sion sums were illustrated in Chapter 5, and you may want to refer
to those examples. The process of adding numbers that must be
represented by more than one byte is shown in Fig. 8-5. The illus-

Ic]
+

ADDEND ONE I BYTE THREE I
+

ADDEND TWO I BYTE THREE I

SUM ...r BYTE THREE I
Ie]

Ic]
+

BYTE TWO I
+

BYTE TWO

Fig. 8-5. Diagram of triple-precision sum.

BYTE ONE

+

BYTE ONE

tration applies both to binary numbers and decimal numbers. The
only difference is that the decimal mode flag must be set to do
decimal arithmetic, and it is assumed that in the decimal mode
each byte represents a number no greater than 99. Note that this
triple-precision addition program requires no more instructions
than the double-precision program given in Example 6 in Chapter
5. If greater precision (more bytes) is required, then a savings in
program bytes results from using the absolute indexed mode of
addressing as illustrated by Example 11. The program in Example
11 is easily modified to add four-byte numbers, five-byte numbers,
etc., simply by changing the LDY instruction to reflect the number
of bytes used to represent the numbers being added. In Example
11, the most-significant byte of each of the numbers is stored in the
location of the base address of NUMl, NUM2, and SUM, re
spectively. Thus, the most-significant byte of NUMI is in location
$0300, and the least-significant byte of NUMI is in location $0302.

The program in Example 12 converts a four-digit hexadecimal
number (16-bit binary number) to a decimal number. Since

153

Example 11: Triple-Precision Decimal Addition Program

Object: Perform 0 triple-precision decimal-made addition_ Use the Y register for the
index. Y is the number of bytes used to represent the numbers involved in
the sum.

$0300 = NUMl; mast-significant byte of addend 1
$0310 = NUM2; mast-significant byte of addend 2
$0320 = SUM; most-significant byte of sum

0200 18 START CLC
0201 F8 SED
0202 AO 02 LOY $02
0204 B9 0003 BACK LOA NUM1,Y
0207 79 10 03 ADC NUM2,Y
020A 99 20 03 STA SUM,Y
0200 88 DEY
020E 10 F4 BPL BACK
0210 00 BRK

Clear carry flag.
Set decimal mode.
Initialize Y index to two.
Get byte of NUM1.
Add to byte of NUM2.
Result into sum location.
Decrement Y index.
If Y ~ 0, branch
back to get other bytes.

the largest four-digit hexadecimal number is $FFFF, and since
$FFFF = 6553510, it is clear that five bcd nibbles are needed to
represent the largest possible number. We will use three bytes of
memory for the decimal number and two bytes for the hexadecimal
number.

The conversion proceeds as follows. Let $PQRS be the four-digit
hexadecimal number to be converted to bcd, in the sense that $P
is the most-significant hexadecimal digit and $S is the least-signifi
cant hexadecimal digit. Using the base-16 place values, $PQRS can
be expressed as follows:

$PQRS = ($P·40961O) + ($Q·2561O) + ($R·161O) + ($S·I1O).

Thus, if we add 4096 to itself $P times, add 256 to itself $Q times,
add 16 to itself $R times, and add 1 to itself $S times, using the
decimal mode, then the conversion will be complete. Adding 4096
to itself and adding 256 to itself requires a double-precision (two
byte) sum, with the possibility of a carry into a third byte. That is
the reason three bytes of memory, DCMLO, DCMMI, and DCMHI,
are used in Example 12 to store the answer. The two-byte hexa
decimal number to be converted to bcd will be stored in locations
symbolized by PQ and RS. The numbers to be added, 4096, 256,
16, and 1, are stored in a table that is referenced using the absolute
indexed addressing mode.

The program of Example 12 illustrates two indexed addressing
techniques introduced in this chapter, namely:

• The use of tables for code conversions
• Multiple-precision arithmetic

Note that this four-hex-digit conversion program requires only three
more instructions than its two-digit counterpart in Example 11 in

154

Chapter 7. The use of indexed addressing modes makes program
ming much more efficient.

One application of this program is related to the pulse counting
mode of the 6522 versatile interface adapter that is described in
Chapter 10. This integrated circuit is found on both the AIM 65
and the SYM-l. The 6522 has the ability to detect and count pulses
on its PB6 pin. A 16-bit register keeps track of the number of
pulses counted, and this register (occupying two memory locations)

Example 12: Four-Digit Hexadecimal to Five-Digit Decimal Conversion Program

Object: Convert $PQRS, a four digit hexadecimal number, to a five-digit decimal num·
ber. Assume $PQ is in a location symbolized by PQ, and $RS is in a location
symbolized by RS. The three·byte decimal number will be stored in three
locations called DCMLO, DCMMI, and DCMH!.

$0001 = DCMLO; Low·order byte of decimal answer
$0002 = DCMMI; Middle-order byte of decimal answer
$0003 = DCMHI; High·order byte of decimal answer
$0010 = RS; Low·order byte of hexadecimal number
$0011 = PQ; High·order byte of hexadecimal number
$0300 = CNVLO; Four bytes, $96, $56, $16, $01, from $0300 to $0303, respectively
$0304 = CNVHI; Four bytes, $40, $02, $00, $00, from $0304 to $0307, respectively

0200 A900 START LDA $00 Clear the locations that will
0202 85 01 STA DCMLO contain the decimal answer.
0204 85 02 STA DCMMI
0206 85 03 STA DCMHI
0208 A2 03 LOX $03 X will index number from the
020A A5 10 MORE LDA RS conversion table. Get $RS.
020C 29 OF AND $OF Mask $R, leaving $S.
020E FO 1A BEQ ARND If $5 = 0, skip the addition.
0210 A8 TAY Otherwise transfer $S to Y to serve
0211 18 CLC as a counter for $5 add itions.
0212 F8 SED Clear carry and set decimal flags.
0213 A5 01 HERE LOA DCMLO Get low-order byte of decimal number.
0215 7D 00 03 ADC CNVLO,X Add the two·digit number from the
0218 85 01 STA DCMLO conversion table.
021A A5 02 LDA DCMMI Get the midd le·order byte.
021C 7D 04 03 ADC CNVHI,X Add the most.significant digits of
021F 85 02 STA DCMMI the conversion numbers.

0221 A5 03 LDA DCMHI Get the high.order byte.
0223 69 00 ADC $00 Add any carry from previous sum.
0225 85 03 STA DCMHI Result into high·order byte.
0227 88 DEY Decrement Y before adding again
0228 DO E9 BNE HERE to see when $S sums are complete.
022A CA ARND DEX The next higher place value wi"
022B 30 OC BMI FINISH be converted by moving $PQRS four
022D AO 04 LOY $04 bits to the right. Y serves as the

022F 46 11 NIBRO LSR PQ bit counter. Shift PQ right.
0231 66 10 ROR RS Rotate PQ into RS.
0233 88 DEY Decrement bit counter until an
0234 DO F9 BNE NIBRO entire nibble has been moved from

0236 4C OA 02 JMP MORE PQ into RS. Jump back to convert
0239 00 FINISH BRK the next place value.

155

can be read by the 6502. Of course, the count is expressed in binary,
but since human beings like their numbers in decimal, a conversion
is necessary to produce a decimal representation on an output
display.

INDIRECT ADDRESSING

The essential idea in indirect addressing is that the location
referenced by the second byte of an instruction does not contain
the data upon which the microprocessor operates. Instead, the zero
page location referenced by an instruction contains the low address
(ADL) of the location of the data. The high address (ADH) of the
location at which the data is to be found is in the next sequential
zero-page memory location. Thus, the ADL and ADH address in
formation is pointed to by the instruction.

Call the second byte of an instruction using the indirect ad
dressing mode IAL, an acronym for indirect address low. The IAL
is the low-order byte of the address of a zero-page memory location.
Then the content of IAL is the ADL of the data to be operated on,
and IAL + 1 contains the ADH of the data to be operated upon. A
diagram of this is shown in Fig. 8-6. Symbolically,

PROGRAM

$0200 INDIRECT OP CODE

[IAl] = ADl

[IAl + 1] = ADH
[ADl-ADHJ = DATA

PAGE ZERO

$0201 L.-IA_L ___ ---II • ~ }
IAL+1~~

Fig. 8·6. Diagram of Indirect Addressing Mode.

Indirect addressing is always indicated by parentheses around
the operand symbol. The parentheses are used to indicate that the
content of the location symbolized is the address of the data to be
operated on, ratber than the data itself. It is worthwhile to ask
what a hypothetical

LDA (MEM)

instruction would mean. This "instruction" would result in the ac
cumulator being loaded with data from a location whose ADL was
in MEM and whose ADH was in MEM + l. The indirect indexed

156

PROGRAM PAGE ZERO

$0200 INDIRECT OP CODE

$0201 ~IA_l ______ ~1 .~}

IAl + l~ 1 BAl-BAH+Y ., DATA'

Fig. 8·7. Diagram of Indirect Indexed Addressing Mode.

addressing mode, studied next, is similar to the indirect addressing
mode.

INDIRECT INDEXED ADDRESSING MODE

The indirect indexed addressing mode is similar to indirect ad
dressing, except that it uses the Y register as an index. With indirect
indexed addressing, the data to be operated on is found in a lo
cation identified by BAH-BAL + Y. Acronym BAL symbolizes "base
address low," and BAH symbolizes "base-address high." Thus the
Y index has the same meaning as it did in the absolute indexed ad
dressing mode. However, BAL and BAH are not given in the in
struction. Instead, the second byte of an indirect indexed instruction
is the low-order address of the page-zero location that contains
BAL. As before, call the second byte of the indirect indexed instruc
tion IAL. BAH is found in the location whose zero-page address
is IAL + 1. Refer to the diagram in Fig. 8-7.

All indirect indexed instructions are two-byte instructions. The
first byte is, as always, the op code. The second byte is the address
low (IAL) of the location in page zero that contains the base
address low (BAL) of the location that contains the data. The
base-address high (BAH) is contained in location IAL + 1. When
the microcomputer obtains BAL from location IAL in page zero, it
adds the contents of the Y register to find the ADL of the data. Any
carry from this result is added to the contents of location IAL + 1
to find the ADH of the data. Symbolically, the address of the loca
tion that contains the data is given by the expression:

ADH-ADl = BAH-BAl + Y

The fact that the carry from BAL + Y is added to BAH means that
when an indexed address reaches $OAFF, the next sequential ad
dress is in the next page, namely $OBOO. Example 13 illustrates how
to calculate the address of the data referenced by an indirect in
dexed instruction.

157

Example 13: Calculating Address Referenced With Indirect Indexed Addressing Mode

In the following program, calculate the address of the location whose contents are
transferred to the accumulator

[$OOFO] = $67
0200 AO 23
0202 Bl FO

[$00F1] = $03
LOY $23
LOA (MEM),Y

Solution: Since MEM refers to location $OOFO and this location contains $67, the
BAL is $67. The location MEM + 1 is $00F1, and it contains $03, 50 BAH-BAL= $0367.
Then BAH-BAL + Y = $0367 + $23 = $038A, 50 the location referenced by the LOA
(MEM),Y instruction is $038A.

If Y = 0, then the instruction

LOA (MEM),Y

works exactly like the hypothetical instruction described in the
previous section. The data to be loaded into the accumulator is
found in a location whose ADL is in the zero-page location MEM
and whose ADH is in the zero-page location MEM + 1. The indirect
indexed mode is frequently used with Y = O. The diagram in Fig.
8-6 applies to this case. The instructions that have indirect indexed
addressing capability include two data transfer instructions, the
arithmetic and logical operations, and a comparison instruction.

The first programming example, given in Example 14, was inspired
by the MEMORY TESTl program written by Butterfield. Readers
who are interested in a good memory test program should consult
the reference. We consider only the problem of loading the same
number, say $FF, in all memory locations in page $PQ through
page $RS of the address space. Refer to the detailed flowchart of
this program given in Fig. 8-8. Locations $0001 and $0002 should

Example 14: Program to Load R/W Memory With a Number

Ob;ect: Load pages $PQ through $RS with $FF.
$0000 = TABLE
$0001 = START; [0001] = $PQ
$0002 = STOP; [0002] = $RS

0010 AO 00 ORIGIN lOY $00
0012 84 00 STY TABLE
0014 A6 02 LOX STOP
0016 A9 FF LOA $FF
0018 91 00 BACK STA (TABlE),Y

001A C8 INY
00IB 00 FB BNE BACK
0010 E6 01 INC START
OOlF E4 01 CPX START
0021 BO F5 BCS BACK
0023 00 BRK

Initialize Y index to zero.
Initialize BAl of TABLE to zero.
X register contains last page, RS.
Initialize A to $FF for load.
Store A in location BAH-BAL + Y.
(BAH is in location $0001.)
Increment index.
Branch back if Y =1= 0; otherwise
page is foiled 50 increment page number.
Is page number [STOP] = RS?
No. fill another page. Yes, then task
is finished.

lButterfield, F. J., The First Book of Kim, Orb, Argonne, Illinois, 1977, p. 122.

158

NO

GET BAl,
ADD V,

GET BAH,
ADD CARRV,

[A[-
[BAH - BAl + VI

Fig. 8·8, Flowchart of program in Example 14.

contain the starting page number ($PQ) and the ending page num
ber ($RS), respectively,

A SIMPLE MONITOR

Another example of the use of indirect indexing is shown in
Example 15 which will be called the NIM-l for Nibble Input
Monitor. It allows the two I/O ports to be used to modify and

159

display the contents of any location in memory. Data or address
information is entered one nibble at a time using the switches on
the I/O board. The contents of a location are displayed on the
LEDs on the I/O board. Perhaps this simple monitor could be
extended to initialize the program counter and execute programs,
but our objectives were smaller in scope. We want to illustrate
the indirect indexing mode, and we want to show how the most
basic feature of a monitor could be implemented. To be precise,
the program in Example 15 uses indirect addressing because the Y
index is zero.

To use the NIM-l and the I/O board to examine and modify a
memory location, the NIM-l program must be running, and these
instructions must be followed .

• The four nibbles forming the address of the location to be
modified are entered one nibble at a time, beginning with the
high-order nibble and ending with the low-order nibble. PB5
is at logic one for an address nibble.

• The nibble value is determined by the settings of switches PB4,
PB3, PB2, and PBl. PB4 is the high-order bit and PBl is the
low-order bit of the nibble.

• The two nibbles forming the data to be loaded are entered one
nibble at a time using the same switches mentioned above. PB5
is at logic zero for a data nibble.

• When the switches are set (PB5 is at logic one for an address
and at logic zero for data, and PB4, PB3, PB2, and PBI repre
sent the nibble), then changing the setting of the PBO switch
enters the information. Either a change from logic zero to logic
one or a change from logic one to logic zero will enter the infor
mation. PBO is debounced, so the nibble is only entered once.

A Howchart of the entire NIM-l program is given in Fig. 8-9.

Example 15: Nibble-Input-Monitor: The NIM-l

Ob;ect: Use the I/O board to examine, modify, and display the contents of any loco·
tion in memory.

$0000 = ADL
$0001 = ADH
$0002 = TEMP
$A003 = PADD
$AOOI = PAD
$AOOO = PBD

0010 A9 FF
0012 BD 03 AO
0015 Bl 00
0017 8D 01 AO

001A AE 00 AO

160

ORIGIN

START

LDA $FF
STA PADD
LOA (ADL),Y
STA PAD

LDX PBD

Load Port A data direction register
so it is an output port.
Output the data at the location
BAH-BAL + Y where BAL is [ADL]
and BAH is [ADH].
Read Port B.

001D 8A CHfCK TXA Save A in X.
001E .olD 00 AO EOR PBD Exclusive-OR with PBD to see if PBO
0021 29 01 AND $01 has changed. Mask all bits except PBO
0023 FO F8 BEQ CHECK Loop to CHECK if no transition

occurred
0025 AD 00 AO LDA PBD Read Port B.
0028 29 3E AND $3E Mask bits not used for information.
002A OA ASL A Move bit from PB5 into carry flag
002B OA ASL A and the nibble into the high-order
002C OA ASL A nibble of A_ All other bits are zero_
002D A2 04 LDX $04 Initialize X register to count four bits.
002F 85 02 STA TEMP Store A temporarily.
0031 BO OF BCS ADDRSS If carry was set, nibble was for address.
0033 AO 00 LDY $00 Set Y index to zero.
0035 B1 00 DATA LDA (ADL),Y Get contents of location to be modified.
0037 06 02 ASL TEMP Shift high bit of nibble into carry_
0039 2A ROL A Rotate carry into A.
003A 91 00 STA (ADL),Y Store modified data in location

BAH-BAl.
003C CA DEX Repeat four times to get entire nibble
003D DO F6 BNE DATA into location_
003F 4C 15 00 JMP START Go back to get more information.
0042 OA ADDRSS ASL A Address information; Shift high bit
0043 26 00 ROL ADL of nibble into carry flag_ Rotate

carry flag into ADL, high-order bit
of ADL into carry flag, and carry

0045 26 01 ROl ADH flag into ADH.
0047 CA DEX Repeat four more times to get entire
0048 DO F8 BNE ADDRSS nibble into the address_
004A .ole 15 00 JMP STARr Go back to get more information.

INDEXED INDIRECT ADDRESSING

With indirect indexing, studied in the previous section, the index
determined the location of the data_ \Vith indexed indirect ad
dressing, the subject of this section, the index determines the location
of the address of the data. The X register is the only register that
may be used as an index in this mode_

The instruction

LDA (MEM,X),

where MEM is zero-page location whose low-order address is IAL,
gets the ADL of the location of the data byte from the zero-page
location IAL + X_ The ADH of the data is found in the zero-page
location IAL + (X + 1) _ Example 16 shows such a calculation, and
Fig. 8-10 diagrams this addressing mode.

All indexed indirect instructions use the notation shown above for
the LDA (MEM,X) instruction (see Table 8-1 for a list of instruc
tions that have this mode available). They are two-byte instructions,
the first byte being the op code, and the second byte being the IAL

161

which, when added to X, gives the zero-page location where the
ADL of the data byte is found.

Like indirect indexed addressing, indexed indirect addressing is
useful in dealing with large quantities of information. Our last
programming example illustrates how indexed indirect addressing

DATA ENTRY COLUMN ADDRESS ENTRY COLUMN

YES

YES

Fig. 8·9. Flowchart of NIM·l Program. Notation [(ADH·ADL)] means "'he contents of 'he
location whose address is 'he contents of the locations ADH and ADL."

162

PROGRAM PAGE ZERO

$0201 IL-'_Al __ h
_ IAl+X .. ~}

IAl+(X+l)~ l
~

Fig. 8·10. Diagram of Indexed Indirect Addressing Mode.

Example 16: Calculating the Address Referenced With Indexed Indirect
Addressing Mode

Find the location referenced by the indexed indirect instruction in the following:

[$0017] = $FF [$0018] = $AO
0200 A2 14 START LOX $14
0202 El 03 END S8C (MEM,X)

Solution: The IAL is $03 + $14 = $17. Location $0017 contains $FF and location
$0018 contains $AO, so the location referenced by the S8C (MEM,X) instruction is
$AOFF.

can be used to input information from several sources. Suppose an
instrument that collects data provides four output channels. (The
author's application was a speech recognition circuit.) Assume
that the four channels are multiplexed; that is, the data from a
channel appears at a single I/O port on the computer, depending
on the channel number (zero through three) that is loaded into
another I/O port. The voltage level at the output of the multiplexer
is converted to a 6-bit digital number by an analog-to-digital (A/D)
circuit. When the circuit is busy making an analog-to-digital con-

Table 8-5. Multichannel Data Logging Program Information

Write Read
Multiplexer Port Data Port

$00 selects Channel·O Data
$01 selects Channel·' Data
$02 selects Channel-2 Data
$03 selects Channel-3 Data

[$0000] = [Base Address Low of Channel-O Table] = $00.
[$0001] = [Base Address High of Channel·O Table] = $03.
[$0002] = [Base Address Low of Channel· 1 Table] = $40.
[$0003] = [Base Address High of Channel-l Table] = $03.
[$0004] = [Base Address Low of Channel-2 Table] = $80.
[$0005] = [Base Address High of Channel-2 Tablel = $03.
[$00061 = [Base Address Low of Channel-3 Table] = $CO.
[$00071 = [Base Address High of Channel-3 Tablel = $03.

163

version, bit seven of the data port is one. When the conversion is
complete, bit seven is zero. Table 8-5 summarizes the pertinent
information for the system.

All four channels must be read and the data stored in a table, one
table for each channel. After all four channels are read, a delay of
10 ms is inserted before they are read again, until 6410 = $40 data
points have been read for each channel. The channel-zero data will
be stored in locations $0300 through $033F, channel-one data in
locations $0340-$037F, channel-two data in locations $0380-$03BF,
and channel-three data in locations $03CO-$03FF. The machine
language version is not given because it is unlikely that you would
use exactly the same program.

Example 17: Logging Four Channels of Input D.t.

Obiecf: Read and log the four-channel system described in the tex!.
$0000 = TABLE
$0000 = BALO
$0002 = BALl
$0004 = BAL2
$0006 = BAL3

ORIGIN
HERE
AGAIN
BACK

OUT

lOX $00
lOY $00
STY MUlTPlX
LOA DATA
BMI BACK
STA (TABLE,X)
INX
INX
INY
CPY $04
BCC AGAIN
INC BALO
INC BAll
INC BAL2
INC BAl3
LOA BAL3
BEQ OUT

JMP HERE

Initialize X index to zero.
Initialize Y index to zero, Y = Channel Number.
Store Y in multiplexer to select channel.
Get AID data at data port.
If bit seven is one, AID is busy.
Otherwise store data in table.
Adva nee X to select the BAl of
the next table.
Advance Y to get next channel.
If Y < 4, branch back to get data from
another channel.
Otherwise, the first data point for each
channel has been logged. Next, increase
the BAL of each table, so the next point
will be stored in the next location.
If BAl3 is $00, the whole table has been
filled, so the task is finished.

Otherwise delay here with interval timer.

Then jump back to get more poin ...

INTRODUCTION TO THE EXPERIMENTS

Having advanced to this stage in your knowledge of the 6502
instruction set, you should feel more like writing your own pro
grams than repeating the ones in the text. The experiments that
follow give you some experience with the programs we studied in
this chapter; some experiments suggest another program to write, a

164

program that is somewhat similar to the one being studied. You
have probably thought of programs you want to write for yourself,
and you should take the time to try a few of these. You have now
learned all but a few instructions of the instruction set, so you should
be able to write programs. If you cannot think of any programs of
your own, here are a few ideas to try for programming experience:

• A program to load data from the I/O board Port B into a
table

• A five-byte addition program
• A program to transfer one page of memory to another page of

memory
• A program to relocate a program (difficult)
• A program to transfer a table in an input buffer to the top of an

existing table someplace in memory
• A program to handle N input channels simultaneously, storing

each channel in a separate page in memory
• A program to implement an FIFO (First-In, First-Out) memory

for a given number of bytes, say N bytes
• A program to implement a LIFO (Last-In, First-Out) memory

for 256 bytes.

EXPERIMENT NO. 1

Step 1

Load the program in Example 8-4, which is listed below for con-
venience.

0200 A200 START LOX $00
0202 A9 FF LOA $FF
0204 90 00 03 BACK STA TABLE,X
0207 E8 INX
0208 DO FA BNE BACK
020A 00 BRK

Step 2

Execute the program. Check a number of locations in page three
of memory to see if the program worked. Change the byte at loca
tion $0203 to $00. Now what do you expect to find in page three
locations?

(The first time the program is run should result in $FF being stored
in every page three location. The second time the program is run
should clear every location in page three.)

165

EXPERIMENT NO. 2

Step 1

Load the program in Example 6. It is listed here for convenience.

0200 A9 FF
0202 8D 03 AO
0205 A2 10
0207 B5 AO
0209 CA
020A 30 07
020C D5 AO
020E BO F9
0210 4C 07 02
0213 8D 01 AO
0216 00

Step 2

START

AGAIN
BACK

LDA $FF
STA PADD
LDX $10
LDA ZTAB,X
DEX
BMI OUT
CMP ZTAB,X
BCS BACK
JMP AGAIN

OUT STA PAD
BRK

Clear locations $OOAO through $OOBO. Run the program. What
do you expect to see at Port A?

(If all the locations are loaded with $00, the largest value in the
table is $00. All the Port A LEDs should go out.)

Step 3

Put some other numbers in locations $OOAO through $OOBO, noting
the largest. Now run the program, and check to make sure it does
find the largest number.

Step 4

Modify the program to find the smallest number in the same
table, and to output this number to Port A. Check your program to
see if it works.

EXPERIMENT NO. 3

Step 1

Load the program in Example 7, which is listed below for con-
venience.

0200 A9 00 STAR" LOA $00
0202 85 00 STA SUMLO
0204 85 01 STA SUMHI
0206 08 CLO
0207 A2 OF LOX $OF
0209 18 BACK CLC

166

020A B5 AO LOA TABLE,X
020C 65 00 AOC SUMLO
020E 85 00 STA SUMLO
0210 A5 01 LOA SUMHI
0212 69 00 ADC $00
0214 85 01 STA SUMHI
0216 CA OEX
0217 10 FO BPL BACK
0219 00 BRK

Step 2

Clear the locations $OOAO through $OOAF. Execute the program.
What do you expect to find in SUMLO and SUMHI, locations $0000
and $0001, respectively?

(You should nnd $00 in both locations.)

Step 3

Load all of the locations in the table with $FF. Now what do you
expect to nnd in SUMLO and SUMHI?

(You should find $Fl in SUMLO, and SUMHI should contain $OE
since $F . $FF = $OEFl.)

Step 4

Write a program to subtract the same number from all the num
bers in a table. It will not look exactly like Example 7, but it should
use Z-PACE,X addressing. Assume the table is in locations $OOAO
through $OOAF.

EXPERIMENT NO. 4

Step 1

Load the program in Example 8, listed here for convenience.
This experiment will use the I/O board, so attach it to the applica
tion port. Also load the conversion table, Table 8-2, into memory.

0200 A9 FF START LOA $FF
0202 80 03 AO STA PAOO
0205 AO 00 AO LDA PBD
0208 29 OF ANO $OF
020A AA TAX
020B BD 00 03 LOA TABLE,X

020E 80 01 AO STA PAD
0211 00 BRK

167

Step 2

For convenience in running the program, change the BRK in
struction to a]MP 0205 instruction, putting the program in a loop
that runs continuously.

Step 3

Set up a hex nibble on the Port B switches PB3-PBO. For ex
ample, set the switches to $A. What should you observe at Port A?

(Since the program converts the hex number represented by the
four switches to ASCII, you should observe $41 at Port A.)

Step 4

Alter the switches PB3-PBO, and check to see if the program is
making the correct conversion. Use Table 8-2 to check your answers.

Step 5
Try writing a program to take an ASCII character from some

location and convert it to the low-order nibble of another location.
Table 8-2 should be useful. Use a table to perform the conversion.

EXPERIMENT NO. 5

Step 1
Load the program in Example 9. If you are not using an AIM 65,

you may want to add an AND $BF instruction after the LDA PBD
instruction to mask bit six.

0200 D8 START ClD
0201 AD 00 AO lDA PBD
0204 AA TAX
0205 29 OF AND $OF
0207 85 10 STA TEMP
0209 8A TXA
020A 4A lSR A
020B 4A lSR A
020C 4A lSR A
020D 4A lSR A
020E AA TAX
020F B5 00 lDA TABlE,X
0211 18 ClC
0212 65 10 ADC TEMP
0214 8D 01 AO STA PAD
0217 A9 FF lDA $FF
0219 8D 03 AO STA PADD
021C 00 BRK

168

Step 2

Set up two bcd digits on the Port B switches. Make sure Table
8-3 is in memory. Run the program. Does the program convert bcd
to binary correctly? For example, if the digits 95 are set up on the
port input switches, what do you expect to see at Port A?

(9510 = $5F so you should observe $5F at Port A.)

Step 3

Try writing a program to convert a hexadecimal number less than
$64 = 10010 to two bed digits and output them at Port A.

EXPERIMENT NO. 6

Step 1

Load the NIM-l, Example 15. The program is quite long, so it
is not repeated here. Turn back to the original listing to load it into
memory.

Step 2

Execute the program. Following the instructions for entering
address and data information, enter $00 in location $0300. This is
accomplished as follows:

• Set PB5 to 1 (address mode) and PB4-PBl to represent $0.
Change switch PBO.

• Set PB5 to 1 and PB4-PBl to represent $3. Change switch PBO.
• Set PB5 to 1 and PB4-PBl to represent $0. Change switch PBO.
• Enter the last zero in the address by leaving PBS-PBl the same

as in the previous step; then change switch PBO to enter the
nibble.

The address $0300 is now entered. To enter $00 as data:

• Set PB5 to O. PB4-PBl should represent $0. Change switch PBO.
• Change switch PBO to enter the second nibble.

Now examine location $0300. It should contain $00, and all the
Port A LEDs should be off.

Step 3

Enter $7F in location $0300. Since the monitor is already set up
to modify location $0300, we can leave it in the data mode (PB5
at 0) and enter $7F with these steps.

• Set switches PB4-PBl to represent $7. Change PBO.
• Set switches PB4-PBl to represent $F. Change PBO.

169

Examine location $0300 to see if your I/O board and NIM-l monitor
did actually enter $7F in this location, and that Port A does represent
the data found in a location.

EXPERIMENT NO. 7

Step 1

Breadboard the circuit shown in Fig. 8-11. The author used a rib
bon cable from a 22/44-pin edge connector on the application port
to a dip socket on an AP Products Superstrip. (These parts are
available from JAMECO Electronics, 1021 Howard Ave., San Carlos,
CA 94070.)

R

R

R

R

1 a
a -

II g Ib

: :/.-:f
2 -

I g

7 SEGMENT
LED

(COMMON ANODE)

R = 270!l

2 7404 INVERTERS (PIN 14 = +5V. PIN 7 = GND)

+5V

Fig. 8·11. Circuit diagram for Experiment No.7. Pin numbers on application connector
are given for each bit of Port A used.

Step 2

Load the program in Example 10. It is listed below for conveni
ence. Also load Table 8-4 into memory.

170

0200 A9 FF
0202 80 03 AO

START LOA $FF
STA PAOO

0205 AD 00 AO LDA PBD
0208 29 OF AND $OF
020A A8 lAY
020B B9 FO 03 LDA lABLE,Y
020E 8D 01 AO SlA PAD
0211 00 BRK

Step 3

Change the BRK instruction at location $0211 to a JMP 0205 so
the program will run as a continuous loop.

Step 4

What is the,status of the LEDs on the seven-segment display when
the system is RESET?

Step 5

Now try to input various nibbles on the Port B switches. You
should observe the hex numeral corresponding to the switch set
tings on PB3--PBO.

171

CHAPTER 9

Subroutines,
The Stack, and

Interrupts

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the function of subroutines and use them in pro
grams.

• Understand how the stack is used in processing subroutines
and interrupts.

• Use the }SR, RTS, CLI, SEI, RTI, PHA, PHP, PLA, PLP, TXS,
TSX, BRK, and NOP instructions. See Table 9-1 for a summary.

• Write programs that make use of subroutines and interrupts.

INTRODUCTION

With few exceptions, the programs in this book that have been
used to illustrate the 6502 instruction set would generally be part of
larger programs with more elaborate objectives. For example, the
program in Example 10 in Chapter 7 that converts two bcd digits
to an 8-bit binary number might be part of a much longer data
logging program in which the input data is manipulated and dis
played on an oscilloscope or output to a printer. As such, the bcd
to binary program would be called a routine. Long programs can
frequently be divided into groups of simpler programs, each of

172

Table 9-1. Summary of Instructions Introduced in Chapter 9

Addressing Mode Op·Codes

Instruction Description Implied Absolute

BRK Force Interrupt 00
CLI Clear Interrupt Disable Flag 58
JSR Jump to Subroutine 20
NOP No Operation EA
PHA Push Accumulator on Stack 48
PHP Push P Register on Stack 08
PlA Pull Accumulator from Stack 68
PlP Pull P Register from Stack 28
RTI Return from Interrupt 40
RTS Return from Subroutine 60
SEI Set Interrupt Disable Flag 78
TSX Transfer Stack Pointer to X Register 8A
TXS Transfer X Register to Stack Pointer 9A

which is usually referred to as a routine. A 16-bit multiplication
program might be part of the interpreter of a high-level language,
such as FORTRAN. As such, it would be called a multiplication
routine.

If a program requires the use of a particular routine in several
different places in the program, then the instructions for that routine
would have to be repeated. This is inefficient programming. It
would be better if the routine could be written and stored once,
and the program could iump to the routine whenever it was needed,
followed by a return to the main program.

The 6502 microprocessor has two quite different, but extremely
important, ways of jumping to and returning from routines. The
first is through the use of the JSR (Jump to Subroutine) instruction
and the RTS (Return from Subroutine) instruction. The second
way of jumping to a routine is through the use of interrupts. In
this case, an external circuit signals the microprocessor and requests
that it jump to a particular routine, called an interrupt routine. These
two techniques for calling a routine will be discussed in detail in
this chapter. The various instructions that are used in calling and
processing these two types of routines are summarized in Table 9-1.

SUBROUTINES

A routine that may be used at several points in a program through
the use of the JSR instruction is called a subroutine. Like a program,
a subroutine has a specific objective, such as multiplying two 8-bit
numbers. Once designed as a subroutine, it cannot be used by itself.
The program of which the subroutine is a part is called the main
program. The main program can use (or call) the subroutine at

173

any point through the use of the ISR instruction. On the other hand,
the subroutine signals the main program that it has completed its
objective with an RTS instruction. The main program then continues
execution at the instruction following the ISH instruction. In this
way, the instructions in the subroutine have been "inserted" in the
main program, between the ISR instruction and the one that
follows it.

The ISR instruction is a three-byte instruction. The first byte is
the op code ($20), the second byte is the ADL for the location of
the first instruction in the subroutine, and the third byte is the ADH
for the location of the first byte in the subroutine. Consider the
program excerpt shown in Table 9-2. The ST A, LDA, and LDX
are just "dummy" instructions used to illustrate the fact that the
ISR instruction is usually found somewhere in the middle of a main
program. It is also assumed in Table 9-2 that there are many in
structions in the subroutine, only the first and last of which have
been shown.

Referring to Table 9-2, the ISR ML TP instruction results in a
jump to the subroutine labeled MLTP, and the op code of the first
instruction in subroutine ML TP is located at address $0300. The
instruction located at this address will be executed immediately
following execution of the ISR MLTP instruction. Subsequent in
structions in the subroutine will be executed until an RTS (Return
from Subroutine) instruction is encountered.

The RTS instruction is a single-byte instruction, op code = $60.
Execution of this instruction results in the main program continuing
at the instruction following the ISR instruction. In the example
shown in Table 9-2, the RTS instruction would result in the next
op code being fetched from the location whose address is $0253;
that is, the location immediately following the last byte of the ISR
instruction.

The ISR instruction contains the information necessary to find
the first instruction of the subroutine, but the RTS instruction is

Table 9-2. Example of Subroutine Call and Return from Subroutine

Location Instruction Label Mnemonic Operand Comments

0240 80 03 04 MAIN STA MEM
0250 20 00 03 JSR MLTP Jump to subroutine labeled

lTP

MLTP.
0253 AO 03 04 LOA MEM-
0300 A2 FF - LOX $FF

.
0344 60 RTS Return from subroutine

174

a single-byte instruction and contains no such information. How
could it? Since, as indicated, a jump to a subroutine may occur any
where in the main program, there will be a number of different
"return locations."

How does the microprocessor know where to return to get the
next instruction after a subroutine call has been completed? Before
the microprocessor jumps to the subroutine, it stores the address of
the location of the third byte of the JSR instruction in a special
section of read/write memory called the stack. Execution of the RTS
instruction results in a fetch of this address which is then loaded into
the program counter. The program counter is then automatically
incremented by one to identify the address at which the op code
immediately following the JSR instruction is stored. In the example
shown in Table 9-2, the address of the $03 byte is stored on the
stack. That is, ADL $52 and ADH $02 are stored on the stack.
Upon executing the RTS instruction, these two numbers are loaded
back into the program counter of the microprocessor, the $52 is in
cremented by one, and the number $0253 becomes the new PCH
PCL and, thus, the address of the location of the next op code. Since
both subroutines and interrupts, to be described in a subsequent
section of this chapter, make use of the stack, we now turn to an
explanation of the operation of the stack.

THE STACK

The stack is a series of read/write memory locations in page
one of memory (addresses $OlOO-$OlFF). The stack area starts at
address $OlFF and extends downward in memory, but no farther
than address $0100. It is sometimes called a push down stack be
cause locations are filled from the top location, whose address is
$OlFF, downward; but locations are emptied (loosely speaking)
from the bottom upward. It could better be called FILO for "first
in, last-out" memory. The first byte placed on the stack by the micro
processor is the last byte taken off the stack.

All stack operations make use of the stack pointer, the only in
ternal register of the 6502 that has not yet been mentioned. The
stack pointer is an 8-bit register which contains the low-order ad
dress (ADL) of the next empty or available location on the stack.
The location just above this may be called the top of the stack,
since it was the last location filled by a stack operation. When the
contents of the stack pointer are placed on the address bus, an ADH
of $01 always appears along with the contents of the stack pointer
as ADL. Thus, in a certain sense, the stack pointer is a 16-bit
register with the most significant byte always being equivalent to
$01. That is, the ADH of the location to be referenced by a stack

175

operation is always $01, while the ADL for the location comes from
the stack pointer. (If the address line A8 is 110t decoded, as in the
case of some small microprocessor-based designs, then the stack will
be in page zero.)

The stack pointer is always initialized to $FF by a RESET opera
tion. You may check this by pressing the RESET button on your
computer and then using the monitor to examine the contents of
this register. There may be situations in which it is undesirable
to have the stack near the top of page one in memory. Two instruc
tions allow the stack pointer to be set to any page-one location or,
if necessary, to be checked. The TSX instruction transfers the con
tents of the stack pointer to the X register. This may be used to see
how much of the stack has been used. The TXS instruction transfers
the contents of the X register to the stack pointer. This may be
used to set the stack pointer to other locations in page one of
memory for the stack. One could, with considerable care in pro
gramming, operate two or more stacks in page one through the use
of the TXS and TSX instructions. However, great care must be
exercised to make sure the stack does not wrap around, for when
the stack pointer reaches $00, it will be decremented to $FF with the
next stack operation, and then it will start writing over data at the
bottom of the stack, address $OlFF.

To understand how the stack is used for subroutine calls, consider
again the program example in Table 9-2. Assume that the system
has been RESET so that the stack pointer is $FF before the pro
gram is executed. Upon execution of the JSR ML TP instruction,
the number $02, representing the ADH of byte three in the JSR
MLTP instruction, is stored in the location with address $OlFF.
The stack pointer is then decremented by the microprocessor to
$FE, and the number $52, representing the ADL of byte three in
the JSR MLTP instruction, is stored at the location whose address
is $OlFE Again. the stack is decremented and it becomes $FD.
Finally, the number $0300 is put in the program counter on the
address bus to fetch the first op code in the subroutine. The subrou
tine is then executed.

The RTS instruction causes the stack pointer to be incremented
from $FD to $FE, and the contents of the location with address
$OlFE is loaded into the PCL. The stack pointer is incremented
again, and the contents of the location whose address is $OlFF is
put into the PCH. Next, the program counter is incremented. and
the program counter contents, now $0253, are placed on the address
bus to fetch the op code of the instruction following the JSR in
struction in the main program.

The JSR and RTS instructions may be summarized briefly as
follows:

176

• JSR-Push the address of the third byte of the JSR instruction
on the top of the stack in the order ADH, ADL. Place the
second and third bytes of the JSR instruction into the PCL and
PCH, respectively. Continue execution.

• RTS-Pull the top two bytes off the stack and place them in
the program counter in the order PCL, PCH. Increment the
program counter and continue execution.

It is clear that the JSR and RTS instructions require the micro
processor to perform several operations, and, consequently, one
would expect that these instructions take a lot of time. They do. An
examination of the instruction set summary or the complete instruc
tion set for the 6502 shows that they each take six clock cycles,
whereas the shortest instructions only take two clock cycles. In ap
plications where time is critical, it may be necessary to avoid sub
routines; but, in many other applications, the expense in time is
worth the programming convenience and savings in the memory
space allotted to the program. Your microcomputer monitor is a
good place to look for the applications of subroutines.

NESTED SUBROUTINES

To understand the idea of nested subroutines and how the stack
works, consider Example 1. This program does nothing except
demonstrate the concept of nested subroutines. The main program
is simply a loop consisting of a subroutine call, namely JSR ONE.
Note that subroutine ONE calls another subroutine, subroutine
TWO. This represents a nested subroutine, because one subrou
tine is calling another. Finally, subroutine TWO calls subroutine
THREE, which also does nothing, whereupon it returns to sub
routine TWO. Subroutine TWO returns to subroutine ONE, and
subroutine ONE returns to the main program. The sequence of
instruction executions is illustrated in Table 9-3. We have, so to
speak, subroutines nested three deep. In Example 9-1, observe that

0010 20 00 01
0013 4C 10 00

0100 20 00 02
0103 60

0200 200003
0203 60

0300 60

Example 1: Demonstration of Nested Subroutines

MAIN PROGRAM

MAIN JSR ONE Jump to subroutine ONE.
JMP MAIN loop back to jump to subroutine ONE.

SUSROUTINE ONE

ONE JSR TWO Jump to subroutine TWO.
RTS Return to main program.

SUBROUTINE TWO

TWO JSR THREE Jump to subroutine THREE.
RTS Return to subroutine ONE.

SUBROUTINE THREE

THREE RTS Return to subroutine TWO.

Table 9-3. Instruction Execution Sequence and Stack Pointer
Values for Example 1

Stack
Page One Memory Locations By ADL

Location Instruction Pointer $FF $FE $FD $FC $FB $FA $F9

(Initial Values) $FF XX XX xx XX XX XX XX

0010 20 JSR 0100 (XX means "don't care")

$FD 00 12 XX XX XX XX XX

0100 20 JSR 0200
$FB 00 12 01 02 XX XX XX

0200 20 JSR 0300
$F9 00 12 01 02 02 02 XX

0300 60 RTS
$FB 00 12 01 02 XX XX XX

0203 60 RTS
$FD 00 12 XX XX XX XX XX

0103 60 RTS
$FF XX XX XX XX XX XX XX

0013 4C JMP 0010
$FF XX XX XX XX XX XX XX

0010 20 JSR 0100
$FD 00 12 XX XX XX XX XX

the subroutine label, TWO for example, also labels the starting
location of the subroutine.

Although the program in Example 9-1 was introduced for the sole
purpose of demonstrating nested subroutines and the operation of
the stack with nested subroutines, you might want to make the
program more useful by putting delay loops, see Chapter 6, in
each of the subroutines. For example, suppose subroutine THREE
produces a lO-millisecond delay. Subroutine TWO might produce
a lOO-millisecond delay by calling subroutine THREE ten times.
If subroutine ONE called subroutine TWO ten times, then sub
routine ONE would produce a delay of 1 second. Thus, the pro
grammer would have a choice of three delays, 1 second, 100 milli
seconds, or ten milliseconds, by calling subroutine ONE, TWO,
or THREE, respectively.

The implementation is left to the reader. Precise delays are more
easily programmed through the use of interval timers, the subject
of the next chapter.

When the program in Example 1 is executed, the sequence of
instruction executions is shown in Table 9-3. Also shown is the
value of the stack pointer after execution of each instruction, and
the contents of the stack locations used by the program are given

178

on the right-hand side of the table. After executing the first JSR
instruction, the stack pointer is $FD, meaning locations with ad
dresses $OlFF and $OlFE have been filled. In particular, these
locations contain the ADH and ADL of the last byte of the first
JSR instruction, as can be seen from the contents of the stack. It
can be seen that subroutines nested three deep will require at least
six locations in the stack. The stack is said to be six locations deep.
Observe that, as the RTS instructions are executed, the stack pointer
is incremented until it is again $FF when all the subroutines have
been executed.

USE OF THE STACK FOR STORAGE

A program that makes use of the X register, for example, may
have a subroutine that also requires the use of this register. Further
more, the contents of the processor status register (P register) will
undoubtedly change during execution of the subroutine, but it
may be necessary to preserve the Rag settings in the P register for
the part of the main program that follows the subroutine. Clearly,
it is desirable to have some way of saving the contents of the 6502
internal registers so that a subroutine may use them and so that
after execution of a subroutine the registers may be restored to the
same value they had prior to the use of the subroutine. Of course,
certain memory locations could be allocated for the purpose of
saving registers, but there is a more efficient technique that makes
use of the stack and several so-called stack operations.

Here we summarize the principal stack operations; S stands for
the contents of the stack pointer, and MR stands for a memory loca
tion in page one whose low address corresponds to the stack pointer.

• PH A-Push Accumulator on the Stack: place the contents of the
accumulator on the stack, then decrement the stack pointer.
Logically, A ~ M~;, S - 1 ~ S. See Fig. 9-1.

• PHP-Push the P register on the Stack: place the contents of
the processor status register on the stack, then decrement the
stack pointer. Logically, P ~ Ms, S - 1 ~ S. See Fig. 9-2.

PAGE·ONE ADDRESS PAGE·ONE CONTENTS STACK POINTER CONTENTS

BEFORE PHA AFTER PHA BEFORE PHA AFTER PHA

$OIPQ ·1 IAI ~$PQ $PQ-l

· i I $OIPQ -1 I-
Fig. 9·1. Diagram of PHA Instrudion. In this diagram, A symbolizes accumulator and

PQ symbolizes any two-digit hexadecimal number.

179

PAGE·ONE ADDRESS PAGE·ONE CONTENTS STACK POINTER CONTENTS

BEFORE PHP AFTER PHP BEFORE PHP AFTER PHP

$OIRS ·1
: .

[PI I· $RS $RS-I

I $OIRS -I ·1
Fig. 9-2. Diagram of PHP Instruction. P symbolizes processor status register and RS

symbolizes any two.digit hexadecimal number .

• PLA-Pull Accumulator from the Stack: increment the stack
pointer, then load the accumulator with the contents of the
stack. Logically, S + 1 ~ S, Ms ~ A. See Fig. 9-3.

PAGE·ONE

STACK POINTER CONTENTS ADDRESS CONTENTS ACCUMULATOR CONTENTS

BEFORE PLA AFTER PLA BEFORE PLA AFTER PLA

$OUK $OIJK+I- $OUK+I '-1_.--.....
1,-_______ • $OUK

1 [$OUK+ I[1

f
Fig. 9-3. Diagram of PLA Instruction. JK symbolizes any two·digit hexadecimal number.

• PLP-Pull the P register from the Stack: increment the stack
pointer, then load the P register with the contents of the stack.
Logically, S + 1 ~ S, Ms ~ P. See Fig. 9-4.

PAGE·ONE

STACK POINTER CONTENTS ADDRESS CONTENTS P REGISTER CONTENTS

BEFORE PLP AFTER PLP BEFORE PLP AFTER PLP

$OIMN $OIMN+I-$OIMN+I 1 ---,_-'

.... 1 ------•• $OIMN

1 [$OIMN+ II 1

t
Fig. 9-4. Diagram of PLP Instruction. MN symbolizes any two-digit hexadecimal number.

Assume that the contents of both the accumulator and the P
register are to be preserved during a subroutine jump. Before the
JSR instruction, one would place a PHA and a PHP instruction.
After the JSR instruction, still in the main program, one would have
a PLP and a PLA instruction, in that order. Remember, the accumu
lator was "first in" so it will be "last out." It is very important to
keep track of the order in which data to be saved is placed on the

180

stack, because it is taken from the stack in reverse order. The "save"
instructions could be in the subroutine instead, the PHA and PHP
being the first two instructions in the subroutine instead, and the
PLP and PLA the last two instructions before the RTS instruction.

It is also very important that these instructions occur in pairs.
That is, for every PHA instruction there should be a PLA instruc
tion, and for every PHP instruction there should be a PLP instruc
tion. If this is not the case, then the stack pointer will not correctly
point to the data that is to be transferred. There may be a few
exceptions to the rule of having the save instructions occur in pairs,
but it is a good rule to keep in mind when programming.

To save the X register, for example, during a subroutine jump,
it is first transferred to the accumulator and then to the stack before
the subroutine call. After the subroutine call the contents of the
stack are placed in the accumulator, and the accumulator contents
are transferred to the X register. The program in Example 2 illus
trates these ideas.

Example 2: Saving X Register During Subroutine Call

Show how the X register may be preserved during a subroutine call.
Solution: The program listing for the main program would appear as follow.:

TXA
PHA
JSR MLTP
PlA
TAX

Transfer the X regi.ter to the accumulator.
Push A on the stack.
Jump to subroutine MlTP.
Pull A from the stack.
Transfer the accumulator to the X register.

The contents of the internal registers of the 6502 may also be
saved by putting the save instructions in the subroutine. Example 3
shows how the accumulator, X register, and Y register may be saved
during a subroutine call by placing the save instructions in the
subroutine.

Example 3: Saving X and Y Registers During Subroutine Call

Show how the accumulatar, X regi.ter and Y register may be .aved with .tack op
eratians placed in the .ubroutine.

Solution: The subroutine would appear as follows:

PHA Tran.fer A to the .tack.
TYA Transfer Y to A.
PHA Pu.h A on the .tack.
TXA Transfer X to A.
PHA Pu.h A on the .tack.

Subroutine instructions.

PlA Pull A from the stack.
TAX Transfer A to X.
PlA Pull A from the stack.
TAY Tran.fer A to Y.
PlA Pull A from the ,tack.
RTS

181

The stack operation instructions are not used exclusively with
subroutines and interrupts. They may be used anywhere in a pro
gram or subroutine where a few simple instructions will save a byte
of data momentarily. An examination of the instruction set will
show that the stack operations are only one cycle longer than the
necessary STA and LDA instructions, if one is saving data. Keep
in mind, however, that if a subroutine requires several stack opera
tions in addition to the JSR and RTS instructions, then it requires
a great deal of time. This is of concern only in those applications
where time is a critical factor. In many applications, this is not the
case.

Another illustration of a situation in which a subroutine is useful
is shown in Example 4. Suppose we have a rather extensive pro
gram such as a monitor, FORTRAN interpreter, or an assembler,
all of which require lengthy communication with an input device
and an output device. We will assume that both I/O devices use the
ASCII format; that is, an ASCII character is read at the keyboard
input port, and, when it is necessary to produce an output, an ASCII
character is written to an output port. Clearly, programs such as
this are required to input and output information at many places
in the program, and subroutine calls provide a convenient way
of accomplishing this. Furthermore, in certain cases the output
should mimic or echo the input. For example, when an input key
is pressed, the same character should appear on the video monitor
or teletypewriter.

Example 4 is a partial simulation of such a situation. The main
program is a "dummy" program that represents an interpreter,
assembler, or a monitor. In our case, we just use an infinite loop
containing three subroutine calls. The subroutines are more realistic,
although in an actual case they might be more complicated. We
assume the keyboard produces a 7-bit ASCII character at bits
PB6-PBO of Port B. Bit seven of Port B is used by the keyboard
to signal the computer that a character is ready. The keyboard
makes bit seven (PB7) of Port B logic zero if a character is ready
(key depressed); otherwise it is at logic one. The INPUT sub
routine simply loops until a character is entered from the keyboard;
then it returns to the main program, which, in a real situation,
would process the input until it was ready for another character
from the keyboard. This type of keyboard operation is called
polling. The program polls the keyboard until a character is ready.
Observe that the accumulator serves to pass the character from
the subroutine to the main program.

If it is necessary to output a character, the main program calls
the OUTPUT subroutine. We have used Port A to simulate this
output location. Finally, if the main program must "echo" the

182

input to the output, it calls the ECHO subroutine. The ECHO sub
routine not only passes an ASCII character to the main program,
but it also outputs the same ASCII character to the output device.
Again, the main program is not to be taken literally. It is meant to
simulate a much longer program that calls these subroutines.

Example 4: Program to Simulate ASCII Input and Output Subroutines

Objective: Write a program to poll a keyboard with an "inpuf' subroutine, write
ASCII characters to an output device with an "output" subroutine, and

write a subroutine that echas the input to the output.

$1700 = PAD; Port A Output Port
$1701 = PADD; Port A Data Direction Register
$1702 = KYBD; Keyboard Input

0200 20 00 03 START JSR INPUT
0203 20 10 03 JSR OUTPUT
0206 20 20 03 JSR ECHO
0209 4C 00 02 JMP START
0300 AD 02 17 INPUT LDA KYBD
0303 30 FB BMI INPUT
0305 60 RTS

0310 8D 00 17 OUTPUT STA PAD
0313 60 RTS
0320 20 00 03 ECHO JSR INPUT
0323 20 1003 JSR OUTPUT
0326 60 RTS

INTERRUPTS

Jump to INPUT subroutine.
Jump to OUTPUT subroutine.
Jump to ECHO subroutine.
Loop to start over.
Read data from keyboard.
If bit seven in one, wait until
key is depressed. Otherwise, return
with ASCII character.
Write data to Port A.
Return to main program.

Get data from key baa rd.
W rite data to output port.
Return to main program.

Once a program has begun execution, nothing short of hitting
the RESET button, pulling the plug, or dropping a hammer on the
6502 will stop it. The programs already described in this book
either continued by jumping to the monitor (BRK instruction) or
they ran continuously in some kind of loop with the use of a branch
instruction or the JMP instruction. The program counter was under
complete control of the program and the microprocessor, as opposed
to outside or external influences. Even the monitor runs continu
ously, so in all cases the program flow was controlled by the soft
ware, that is, the program itself.

To allow external devices, for example, a keyboard, panic but
ton, or interval timer, to exert control over the program flow, the
6502 has the capability of being interrupted by external circuitry.
In particular, a logic-zero voltage level on the interrupt request
(IRQ) pin on the microprocessor may cause an interrupt, or a
logic one to logic zero (negative edge) transition on the nonmask
able interrupt (NMI) pin on the microprocessor can interrupt the
program that is currently being executed.

183

What happens when an external device produces an interrupt
by bringing the IRQ pin to logic zero or by producing a negative
transition on the NMI pin? These are the events that follow an
interrupt request on the IRQ pin.

• The instruction currently being executed by the processor is
completed.

• If bit two in the processor status register (the IRQ disable
flag) is a one, the interrupt request is ignored and program
execution continues.

• Assuming that the IRQ disable flag in the P register was
cleared that is. bit two has a value of zero, then the IRQ dis
able flag is set to prevent further interrupts while the existing
one is being processed.

• After the instruction that was being executed at the time of the
interrupt is completed, the current value of the program
counter is stored on the stack in the order PCH first, PCL next.

• The contents of the P register are stored on the stack.
• The microprocessor reads the contents of the location whose

address is $FFFE. The number found there becomes the new
PCL.

• The number found in the location whose address is $FFFF
becomes the new PCH.

• The next op code is fetched from the location whose address
is the new PCH-PCL. That is, the microprocessor puts the
contents of the program counter on the address bus to fetch the
next op code. Program execution continues from this point.

In terms that neglect some of the more subtle events described
above, an interrupt, produced by an external event, causes the pro
gram to jump to another location where it continues executing
instructions. The address of the new location is stored in the loca
tions with addresses $FFFE and $FFFF. The jump is actually like
a jump to a subroutine, since the return addresses are placed on the
stack.

The location whose address is $FFFE is called IRQL, and the loc
cation whose address is $FFFF is called IRQH. The numbers stored
in these two locations are known as the IRQ vector. The IRQ vector
points to a location where program execution is to begin when an
interrupt request occurs and is recognized (IRQ disable is clear).

A nonmaskable interrupt differs from an interrupt request in the
following ways:

• The NMI pin is edge sensitive rather than level sensitive. A non
maskable interrupt is produced by a logic-one to logic-zero
transition on the NMI pin, whereas an interrupt request is pro
duced by a logic-zero level on the IRQ pin.

184

• The nonmaskable interrupt is recognized and processed no
matter what the status of the interrupt disable flag. That is why
it is called nonmaskable.

• The nonmaskable interrupt vector is fetched from the locations
whose addresses are $FFF A and $FFFB. That is, the new PCL
is stored in the location whose address is $FFF A, and the new
PCH is stored in the location whose address is $FFFB. These
locations are called NMIL and NMIH, respectively.

The setting and clearing of the interrupt disable flag occurs in ex
actly the same way with an NMI-type interrupt as with an IRQ-type
interrupt. Although an NMI sets the interrupt flag, this only pre
vents further IRQ-type interrupts. The interrupt disable flag does
not prevent NMI-type interrupts. The stack operations are the same
for both types of interrupts, and the RTI operation (to be described
in Example 5) is the same in both cases. A nonmaskable interrupt
can interrupt an IRQ-type interrupt routine, but the inverse is not
true. Thus, the nonmaskable interrupt has a higher priority than an
IRQ-type interrupt, an important consideration for any decision in
volving the use of interrupts in a particular application.

The KIM-I and AIM 65 microcomputers handle interrupts in
similar ways. The IRQ vector and the NMI vector point to loca
tions in ROM. These locations contain indirect jump instructions
to locations in RjW memory. Thus, the user can vary the starting
point of the interrupt routines by loading the proper RjW memory
locations with the vectors that point to the start of his interrupt
routine. An example will aid in your understanding. In the AIM 65,
locations with addresses $FFFE and $FFFF contain $78 and $EO,
respectively. The value $E078 becomes the new value of the pro
gram counter when an interrupt is recognized. The address $E078
is a location in ROM, and, as outlined above, the first op code in
the interrupt routine is stored in this location. Examination of the
location whose address is $E078 shows that it contains a $6C, which
is the op code for an indirect jump. The next two bytes in memory
are the ADL and the ADH of the location for the jump. These two
bytes are $04 and $A4, respectively. The location with address $A404
is an RjW memory location. Recall that with the indirect jump in
struction, it is this location that contains the new PCL, while the
new PCH is in the location whose address is $A404 + I, or $A405.
The user loads these locations with the ADL and ADH of the first
instructions of his interrupt routine. That is, the contents of the
locations with addresses $A404 and $A405 become the value in the
program counter. The KIM-l works in the same way, but with
different addresses. Tables 9-4 and 9-5 summarize the important
locations for these two systems, and Example 5 traces the history

185

Table 9-4. AIM 65 Interrupt Structure and Important Addresses

AIM 65 Memory

Address Contents Remarks

t $A402 ~(User PCl) Points to user NMI-Interrupt Routine
R/W Memory

$A403 (User PCH)

t $A404 - .-(User PCl) Points to user IRQ-I nterrupt Routine
$A405 (User PCH) <= Indirect Jumps
$E075 f$6C NMI Interrupt starts execution here
$E076 $02
$E077 $A4
$E078 f$6C- IRQ Interrupt starts execution here
$E079 $04
$E07A $A4

ROM

$FFFA $75l {NMll (PCl) .
$FFFB $EOf

NMI-Veclor location
NMIH (PCH)

$FFFE $78 ~ (lRQL (PCl)
I RQ-Vector location

$FFFF $EO) i IRQH (PCH)

Table 9-5. KIM-l Interrupt Structure and Important Addresses

t
R/W Memory

~

1
ROM

186

Address
$17FA
$17FB

KIM-l Memory

Contents
_(User PCl)

(User PCH)

$17FE -_(User PCl)
$17FF (User PCH) <=
$IC1C _t$6C
$IC1D $FA
$IC1E $17
$ICl F
$IC20
$IC21

_ t$6C
$FE
$17

Remarks
Points to user NMI-I nterrupt Routine

Points to user IRQ-I nterrupt Routine

Indirect Jumps
NMI I nterrupt starts execution here

IRQ Interrupt starts execution here

$IFFA
$IFFB

$IC r---+---,_{NMll (PCl) NMI-Vector location
$IC NMIH (PCH)

$IFFE
$IFFF

$1 F} {IRQl (PCl) .
$IC --'--- IRQH (PCH) IRQ-Vector location

of the program counter subsequent to an interrupt request on the
KIM-I.

In the SYM-I microcomputer, addresses $FFFE, $FFFF, $FFFA,
and $FFFB are all R/W memory locations. Thus, the user may
place his own interrupt request vector or nonmaskable interrupt
vector in these locations. That is, for an interrupt request, the
new value of the PCL is in the location whose address is $FFFE,
and the new value of the PCR is in the location whose address is
$FFFF. The NMI vector is placed in $FFF A and $FFFB. The
monitor of the SYM-I will load all of these locations with its own
interrupt routine vectors if the user does not load them. Table 9-6
summarizes the interrupt locations of importance to the SYM-I
microcomputer.

Table 9·6. SYM·l Interrupt Structure and Important Addresses

SYM-I MEMORY*

Address Contents Remarks

t $A67At (User PCl) NMI-Vector location. Points to user
$A67Bt (User PC H) NMI-Interrupt Routine

R/W MEMORY .

l $A67Et (User PCl) IRQ-Vector location. Points to user
$A67Ft (User PCH) I RQ-Interrupt Routine

*In order to modify these locations, the SYM-l system re"1IQres tl-pt a JSR ACCESS instruc
tion precede the instructions that load these locations. ACCESS = $8B86.

tAccording to the SYM-l manual, these locations are "echoed" at locations $FFFA, $FFFB,
$FFFE, and $FFFF, respectively.

Although technically speaking, the interrupt request vector and
the nonmaskable-interrupt vector are always found at the addresses
$FFFE, $FFFF, $FFF A. and $FFFB, loosely speaking these vectors
are found at $17FE, $17FF, $17FA, and $17FB in the KIM-I and
at $A404, $A405, $A402, and $A403 in the AIM 65, because the

Example 5: Tracing the Program Counter After an Interrupt Request
Trace the history of the program counter after an interrupt request on the KIM-I.
Solution: After finishing the instruction that was executing at the time of the inter

rupt, the program counter and the microprocessor behave as described in the follow
i ng sequence:

PC
$FFFE
$FFFF
$IC'I F
$IC20
$IC21
$17FE
$17FF
PCH-PCl

Microprocessor Activity
Fetch interrupt vector low = $lF.
Fetch interrupt vector high = $1 C.
Fetch indirect jump op code = $6C.
Fetch ADl of indirect jump = $FE.
Fetch ADH of indirect jump = $17.
Fetch new PCl from the location with address $17FE.
Fetch new PCH from the location with address $17FF.
Fetch first op code in the user's interrupt routine.

187

actual interrupt vectors produce indirect jumps to these latter loca
tions. Throughout the remainder of this book it will be assumed that
the interrupt vectors are in these latter locations.

Both the interrupt-request routine and the nonmaskable interrupt
routine must end with an RTI instruction. Execution of the RTI
(Return from Interrupt) instruction causes the microprocessor
to return to the main program, and it continues executing instruc
tions immediately following the "interrupted" instruction. It does
this by loading the program counter with the two numbers at the
top of the stack, loading the P register with the third number down
on the stack, incrementing the stack pointer once for each of the
numbers (PCR, PCL, and P) mentioned, and clearing the interrupt
disable flag in the P register. Examples 6 and 7 illustrate the stack
operations that take place when an interrupt occurs and when an
RTI instruction is executed.

Example 6: Tracing Stack Pointer After an Interrupt Request

Describe how the stack painter and the contents of the stack register change as a
result of an interrupt in the following program segment. Assume the interrupt occurs
during execution of the lDA instruction.

0200 AD 00 03
0203 FO 05

lDA NUMI
BEQ THERE

Solution: Assuming the stack pointer was $FF before the interrupt, the number $02
representing the PCH will be stored on the stack at the location whose address is
$01 FF, and the stack pointer will be decremented to $FE. Next, the number $03,
representing the PCl at the completion of the lOA instruction, will be stored On the
stack. The stack pointer will be decremented again, and the contents of the P register
at the completion of the lOA instruction will be stored on the stack at the location
whose address is $01 FO. The stack pointer will be decremented a third time to $FC.

Example 7: Tracing Stack Pointer Subsequent to RTI Instruction
Describe how the stack pointer and the contents of the stack change as a result of

a return from interrupt in the same program segment shown in Example 6.

Solution: The stock pointer is first incremented to $FO, and the contents of the loco·
tion whose address is $01 FD are transferred to the P register. The contents of memory
location $01 FE are transferred to the PCl, and the contents of location $01 FF are
transferred to the PCH with suitable increments in the stack pointer. The stack pointer
will be $FF at the completion of the RTI instruction, and the program continues with
PCH·PCl = $0203, resulting in a fetch of the BEQ op code.

Fig. 9-5 illustrates the many activities that are taking place during
the events described in Examples 6 and 7. This illustration shows
the "flow" of the program counter during an IRQ-type interrupt
and describes the "stack activities" as well.

The interrupt disable flag in the processor status register may
also be set and cleared by the program in addition to being set by
an interrupt and cleared by the execution of an RTI instruction.
If it is imperative that a section of program not be interrupted by an
interrupt request, then the interrupt flag may be set by the SEI

188

MEMORY REMARKS

ADDRESS I CONTENT

: I NAME I VALUE

[$0150J i $50 = ISTACK POINTERI AFTER IRQ BUT BEFORE RTI

c:$015! P REGISTER STORED HERE DURING THE INTERRUPT

$0152:1 I PCl $03 PCL IS STORED HERE DURING THE INTERRUPT

STACK ~$0153:J PCH $02 PCH IS STORED HERE DURING THE INTERRUPT
POINTER •

I $53 = ISTACK POINTER I BEFORE IRQ AND AFTER RTI
PROGRAM
COUNTER $0200 LDA $AD SOMEWHERE IN THE MAIN PROGRAM

$0201 ADL $00 INTERRUPT OCCURS HERE

$0202 ADH $02 THE "lDA" INSTRUCTION WILL BE COMPLETE.

$0203 BEQ $FO THE MAIN PROGRAM CONTINUES HERE AFTER

$0204 THERE $05 THE INTERRUPT ROUTINE IS COMPLETED.

$0380 LDA $AD START OF THE INTERRUPT ROUTINE.

$039B RTI $40 END OF THE INTERRUPT ROUTINE

$FFFE IRQl $80 I lOCATION OF INTERRUPT VECTOR LOW.

$FFFF IRQH $03 lOCATION OF INTERRUPT VECTOR HIGH

Fig. 9·5. Diagram representing the Program Counter and Stack Pointer changes that
occur during an Interrupt Request (IRQ).

(set interrupt disable Hag) instruction. Later in the program it
may be cleared with the eLI (clear interrupt disable Hag) instruc
tion to allow further interrupts.

You should recognize that an interrupt request is like a JSR
instruction. They both result in an exit from the main program in
order to execute a subprogram. The subprogram is called an "inter
rupt routine" in the case of an interrupt request or a nonmaskable
interrupt. In both cases, the information necessary to return to the
main program is stored on the stack. One important difference is
that an interrupt will result in the contents of the P register also
being stored on the stack. If a programmer wishes to save the
contents of the P register during a subroutine jump, then he must
use the PHP and PLP instructions. The microprocessor takes care
of saving the P register contents during an interrupt.

The reason for this important difference between an interrupt
and a subroutine is simply that the programmer knows where he
has placed a JSR instruction, but he never knows where an inter-

189

rupt will occur in a program. If it occurs directly before a branch
instruction, and the interrupt routine changes the Hag settings in
the P register (as it undoubtedly will) then a branch may be caused
by the result of an operation in the interrupt routine rather than as
a result of the operation in the main program that it was supposed to
test. Clearly, the programmer put the branch instruction in the
main program to test circumstances that develop there, rather than
those in the interrupt routine. Since the 6502 saves the contents of
the P register on the stack when an interrupt occurs, this allows the
programmer to write programs without concerning himself with
either where the interrupt might occur or when the P register is to
be saved.

If other registers must be saved during an interrupt, then it is
up to the programmer to use the necessary stack operations to save
them. The accumulator is almost universally saved on the stack
during an interrupt because almost every interrupt routine one
could think of would use the accumulator. In fact, it would have
been nice if the 6502 would take care of this responsibility, but
the designers of the chip did not provide this feature. Note that
all the register-save instructions must be included in the interrupt
routine. If the X register is used in both the main program and the
interrupt routine, then suitable instructions must be included in
the interrupt routine to save and restore the X register. Example
8 illustrates the necessary instructions that must be included to save
both the accumulator and the X register and then restore them.

Example 8: Saving Accumulator and X Register During an Interrupt
Show the instructions that will result in saving both the accumulator and the X regis.

ter during an interrupt routine.

Solution:
Interrupt Routine

0300 48 8EGIRQ PHA Push accumulator on stack.
0301 8A TXA Transfer X to A.
0302 48 PHA Push A on the stack.
0303

Interrupt routine instructions.
(NOTE REVERSED ORDER)

0329 68 PLA Pu II A from the stack.
032A AA TAX T ra nsfer A to X.
0328 68 PLA Pull A from the stack.
032e 40 RTI Return to main program.

An interrupt request (IRQ) may also be forced with the use of
the BRK instruction that is best described as a software-forced
interrupt request. Note that a nonmaskable interrupt cannot be
forced with any instruction. In those instances where one wants

190

to enter the interrupt request routine without a "hardware-generated
request," the BRK instruction is used to force a jump to the interrupt
request routine. Throughout this book we have been using this
instruction to force the microprocessor to jump from the program
we have written to the monitor. \Ve have done this because, in this
case, the monitor saves the register contents. Furthermore, in our
use of the BRK instruction with the monitor, the microprocessor
never returns from the interrupt. That is, the monitor avoids using
the RTI instruction because that would cause execution to return
to the next instruction in our program, an instruction that did not
exist because we ended the program with a BRK instruction.

In general, when using the BRK instruction one must assume that
an BTl instruction will be encountered and that the program will
return from the interrupt routine. In this situation, it is important
to realize that the BRK instruction results in an increment of the
program counter by two. Thus, upon returning, the instruction im
mediately following the BRK instruction is not executed. If the
break instruction op code is in the location ADH-ADL, then the
next instruction to be executed after the return from the interrupt
routine must be located with its op code in the location ADH
ADL + 2. For this reason, a no-operation instruction (NOP) with
op code $EA is usually placed after a break instruction, that is,
in the location ADH-ADL + 1. The reasons for this quirk in the
BRK instruction are beyond the scope of this book and the author's
comprehension.

Two examples of programs involving interrupts are given. The
program in Example 9 illustrates how an FIFO (first-in, first-out)
memory may be implemented. Originally it was part of a program
to convert ASCII characters from a keyboard to Morse code, and it
will be described in that context. Do not, however, consider that
this example of data acquisition is unique to this application. There
are other instances in which data must be read when they are
produced, and stored in an FIFO memory to be processed on a first
in, first-out basis. The program in Example 10 is a 24-hour clock
that uses a nonmaskable interrupt request. We turn first to the
FIFO memory application.

Most operators can type faster than the Morse code is to be sent,
so the keyboard must be read and stored in the FIFO (first-in, first
out) memory. In the program in Example 9, the keyboard is read
with an interrupt request routine, and the ASCII character is placed
in the FIFO memory. For the FIFO memory we used page two of
memory. It is assumed that the keyboard produces a negative pulse
of at least 10 microseconds on the IRQ pin when a key is depressed
and the ASCII character is ready to be read. Many keyboards not
only produce the 7-bit ASCII data for a particular key, but they

191

also provide a positive- or negative-strobe signal when the data is
ready. We assume the negative-strobe signal is connected to the
IRQ pin, and the seven bits of ASCII data are available at Port A.

Space does not permit the listing of the complete conversion pro
gram. You are referred to a complete ASCII to Morse code con
version program in a reference l . Here we simply wish to show an
example of an interrupt routine. The program is supposed to read
the keyboard and store the ASCII character in the FIFO memory.
Another part of the program reads the first character placed in the
FIFO memory, converts it to Morse code, and "sends" it by keying
a transmitter, and returns to see if another character has been placed
in the FIFO memory. It continues to send as long as the FIFO mem
ory is not empty. The keyboard continues to place characters in the
FIFO memory as long as the typist continues. The typist may get
up to 256 = $FF + 1 characters ahead of the sending routines be
fore he begins to write over previously entered characters that have
not yet been sent.

The Y register serves as an index for the FIFO memory whose
base address is $0200. The number in the Y register also points to
the last location of the FIFO memory that was filled with the key
board interrupt routine. In particular, the number in the Y register
is the ADL of the last location in page two of memory that was
filled by the keyboard interrupt routine. The number in the location
labeled PNTR is the ADL of the location in page two of memory
that contains the character being converted to Morse code and sent
by the OUTPUT subroutine. If the contents of the Y register are
identical to the contents of PNTR, then the OUTPUT subroutine
has "caught up" with the keyboard input, and there is nothing
to do but wait in a loop. The flowchart in Fig. 9-6 and the comments
associated with the program should give you an understanding
of the remaining details. Indexed addressing is used both to fill the
FIFO memory using Y as an index and to empty the FIFO memory
using X as an index.

The program in Example 10 is our second example of a program
that uses an interrupt routine. It is a 24-hour clock program that
may be used to display hours, minutes, and seconds. A number of
clock programs have appeared in various sources.2 •3 These programs
make use of the interval timers on the 6530 or 6522 integrated cir-

IDe Jong, Marvin L., "The Best of Micro," The Computerist, Chelmsford, MA
01824, 1978, p. 38.

2Parsons, Charles, The First Book of KIM, ORB, Argonne, IL 60439, 1977,
p.52.

3Sullivan, Chris, "MICRO," The Computerist, Chelmsford, MA 01824, 1978,
pp. 7-45.

192

Fig. 9-6. 'Flowchart of FIFO Data Acquisition Program.

cuits and the system clock, a crystal-controlled oscillator. Although
crystal oscillators are very accurate and stable, the precision neces
sary to keep good time over a long period (weeks) generally ex
ceeds the capability of the microcomputer system's crystal oscillator.
If we demand that there be an error of no greater than 1 second
in 24 hours, then the crystal must be accurate to approximately
1 part in 100,000. Few microcomputer clocks guarantee this kind
of accuracy, and, consequently, significant errors tend to accumulate
over a period of days.

One approach to guarantee long-term (days) accuracy at the
expense of short-term (seconds) accuracy is to use a signal from the

193

Example 9: First-in, First-out (FIFO) Data Acquisition Program

Objective: Read the data at on input port whenever on IRQ-type interrupt request
occurs. Store this data in successively higher memory locations in page two
of memory. Output data from the bottom of this table one locatian at a
time until the highest filled location is reached. Wait there until more data
is added to the table from the input port.

$0000 = PNTR; contains the AOL of the location in the FIFO memory that contains the
data currently being processed by the output subroutine.

$0200 = FIFO; bose address of the FIFO memory
$1700 = KYBO; input port for the data
$17FE = UIRQL; $00 = low order byte of user's interrupt vector
$17FF = UIRQH; $03 = high order byte of user's interrupt vector.

MAIN Program
0200 AO FF START LOY $FF Initialize Y pointer.
0202 84 00 STY PNTR Initialize output painter.
0204 C400 LOOP CPY PNTR Is output painter = Y pointer?

0206 FO FC BEQ LOOP Yes; wait in loop for mare input data.

0208 E6 00 INC PNTR No; increment painter to get data.
020A A600 LOX PNTR PNTR contents will index FIFO memory.
020C BO 00 02 LOA FIFO,X Get data from FIFO memory at FIFO

+ X.
020F 2017 80 JSR OUTPUT Jump to subroutine to output data.

(Not included in this program.)

0212 4C 04 02 JMP LOOP Return to see if there is mare data.

Interrupt Routine
0300 48 NMIR PHA Save accumulator on the stock.

0301 8A TXA Transfer X to A.
0302 48 PHA Save X on the stock.
0303 AO 00 17 LOA KYBO Read the keyboard.
0306 29 7F ANO $7F Mask bit seven. ASCII is a seven bit

code.
0308 C8 INY Increment Y to index next location in

FIFO.
0309 99 00 02 STA FIFO,Y Store the keyboard data in the FIFO.

memory at FIFO + Y.
030C 68 PLA Get X bock from the stock.
0300 AA TAX
030E 68 PLA Get A from the stack.

030F 40 RTI Return from interrupt.

60-Hz power line as the fundamental time unit. W'henever 60 cycles
are counted a memory location that stores "seconds" is incremented.
When the seconds location reaches 60, a "minutes" location is in
cremented, and when the minutes location reaches 60 an "hours"
location is incremented. \Vhen the hours location reaches 24, the
cycle begins again. The 60-Hz signal from the power line is first
transformed down to 6.3 V ac and then conditioned with a 555
timer circuit acting as a Schmitt trigger to produce one negative
transition for each cycle. ~ See Fig. 9-7 for details of the circuit.

4JlIng, Walter G., Popular Electronics, January 1973, p. 73.

194

Rl lOOK

Fig. 9-7. A 6O-Hz Signal Conditioner OUTPUT
for 24 Hour Clock. el

INPUT o--J 555
0.01 J.tF

R2 lOOK 0.1 J.tF

The 6.3 V ac is connected between the input and ground. The con·
ditioned signal from the 555 circuit is applied to the NMI pin on
the 6502 by way of pin 6 on the expansion port of the AIM 65,
KIM -1, or SYM -1. Each time an interrupt occurs, a counter (location
with address $0000 labeled CNTR) is incremented until 60 counts
have accumulated. CNTR starts at $C4 and is incremented to $00
to give 6010 counts. Then the seconds counter (location with ad
dress $0001) is incremented. The "minutes" are stored in the loca
tion with address $0002, and "hours" are stored in the location whose
address is $0003. The flowchart in Fig. 9-8 should help in under
standing the nonmaskable interrupt routine.

The main program, associated with the 24-hour clock nonmask
able-interrupt routine, consists of loading the appropriate interrupt
vectors into their locations and a routine to display the contents of
SEC, MIN, and HRS on the microcomputer display. Do not connect
the 60-Hz source to the NMI pin until these vectors have been
loaded. The interrupt routine starts at the location whose address is
$0300. It may be relocated anywhere in memory, but we will as
sume that the interrupt vector is $0300. The program in Example
10 shows the initialization instructions for the AIM 65. The same
instructions are used with the KIM-l and SY\1-1, but the locations
of the nonmaskable interrupt vector are different. See Tables 9-5
and 9-6 for the addresses of the appropriate locations for the KIM-l
and SYM-l microcomputers. ($00 is loaded into $17FA on the
KIM-lor into $A67A on the SYM-l, while $03 is loaded into $17FB
on the KIM-lor into $A67B on the SYM-1.)

Each of the three microcomputer systems needs a different display
routine to display the time, so we have included the necessary
routine for each of the systems. Note that we have used the sub
routine approach to display the time. Also observe that the routine
for each system includes one or more subroutine calls to subroutines

195

*$C4 + 6010 = $00

Fig. 9·8. Flowchart of NMI Routine for 24 Hour Clock.

included in the monitor. You are referred to your system manual
for details of these subroutines.

Microcomputers are not used simply to keep time. There are
much less expensive approaches to that problem. However, there
are applications in which the time is important. If you are charging
a client for the amount of time used to process his data, then a

196

Example 10. Twenty-Four Hour Clock Program

Objective: Calculate and display the time of day in hours, minutes, and seconds.

Main Program
$A402 = NMIVL; location of user interrupt vector, low·order byte
$A403 = NMIVH; location of user interrupt vector, high.order byte
$0000 = CNTR; location used to cou nt 60 cycles

0200 A9 00 START LOA $00
0202 80 02 A4 STA NMIVL Load NMI vector, low·order byte.
0205 A9 03 LOA $03
0207 80 03 A4 STA NMIVH
020A A9 C4 LOA $C4
020C 85 00 STA CNTR

Load NMI vector, high·order byte.
CNTR counts from $C4 to $00 to give a
total of $3C = 60 counts.

020E 20 03 40 LOOP JSR OISPLY Jump to display subroutine at $0340.
0211 4C OE 02 JMP LOOP Loop to display time continuously.

Nonmaskable Interrupt Routine
$0000 = CNTR; location used to count 60 cycles
$000 1 = SEC; location used to store time in seconds
$0002 = MIN; location used to store time in minutes
$0003 = HRS; location used to store time in hours

0300 48 NMIR PHA Save accumulator on the stack.
0301 E6 00 INC CNTR Increment CNTR once for every interrupt.
0303 00 33 BNE OONE Cau nter has nat reached zero (60 counts)

yet.
0305 F8 SEO Set decimal mode for subsequent additions.
0306 18 CLC Clear carry flag for same reason.
0307 A501 LOA SEC Get time in seconds.
0309 69 01 AOC $01 Add one to increment seconds counter.
030B 85 01 STA SEC Store in seconds counter.
0300 C960 CMP $60 Has the seconds counter reached 60?
030F 90 22 BCC RPT No; Initialize CNTR, then return from

interrupt.
0311 A900 LOA $00 Yes; Initialize seconds to zero.
0313 85 01 STA SEC
0315 18 CLC Clear carry flag to add one to minutes
0316 A502 LOA MIN counter. Get minutes counter.
0318 69 01 AOC $01 Add one to mi nutes.
031A 85 02 STA MIN Result into minutes counter.

031C C9 60 CMP $60 Has the minutes counter reached 60?
031E 90 13 BCC RPT No; Initialize CNTR, then return from

interrupt.
0320 A9 00 LOA $00 Yes; Initialize minutes to zero.

0322 85 02 STA MIN
0324 18 CLC Clear carry for next addition.
0325 A5 03 LOA HRS Get hours counter.
0327 69 01 AOC $01 I ncrement by one.
0329 85 03 STA HRS Result into hours counter.
032B C9 24 CMP $24 Has the hours counter reached 24?
0320 90 04 BCC RPT No; Initialize CNTR, then return from

interrupt.
032F A900 LOA $00 Yes; start new day.
0331 85 03 STA HRS
0333 A9 C4 RPT LOA $C4 Initialize CNTR for 60 more counts.
0335 85 00 STA CNTR
0337 08 CLO Clear decimal mode.

197

0338 68 DONE PLA Get Accumulator from stack.

0339 40 RTI Return from interrupt.

AIM 65 Display Subroutine
$0004 = TSEC; temporary storage of seconds
$0005 = TMIN; temporary storage of minutes
$0006 = THRS; temporary storage of hours

0340 A5 01 DISPLY LOA SEC Get seconds.
0342 85 04 STA TSEC Store temporarily here.
0344 A5 02 LOA MIN Get minutes.

0346 85 05 STA TMIN Store temporarily here.
0348 A5 03 LOA HRS Get hours.
034A 85 06 STA THRS Store here temporarily.
034C A2 13 LOX $13 X identifies right-most disploy cell.

034E 8A BACK TXA Save X by
034F 48 PHA plad ng it on the stack.
0350 AO 04 LOY $04 Initialize Y for a count of four.

0352 A5 04 LOA TSEC Get seconds.
0354 29 OF AND $OF Mask high-order nibble.

0356 18 CLC Clear carry flag for subsequent
addition.

0357 69 30 ADC $30 Add $30 to convert low·order nibble

to ASCII.
0359 09 80 ORA $80 Set bit seven to one for display.
035B 20 7B EF JSR OUTDDI Use monitor subroutine to display

ASCII.
035E 46 06 AGAIN LSR THRS Shift hours right into carry flag.
0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0)

into carry.
0362 66 04 ROR TSEC Carry into seconds; shift one bit

right.
0364 88 DEY Repeat four times, moving a nibble
0365 DO F7 BNE AGAIN at a time into the display routine.
0367 68 PLA Get X back again (it was modified in
0368 AA TAX monitor subroutine),

0369 CA DEX Decrement X to identify next display
036A EO OE CPX $OE cell, then return to display another
036C BO EO BCS BACK nibble, until all six nibbles of time
036E 60 RTS have been displayed. Then return to

main program.

KIM-l Display Subroutine
$00F9 = DISPS

$OOFA = DISPM
$OOFB = DISPH

0340 A5 01 DISPLY LOA SEC Get seco nds.
0342 85 F9 STA DISPS Store in KIM-l disploy cell.
0344 A5 02 LOA MIN Get minutes.

0346 85 FA STA DISPM Store in KIM-l display cell.
0348 A503 LOA HRS Get hours.
034A 85 FB STA DISPH Store in KIM-l display cell.
034C A2 FF LOX $FF Initialize X for timing loop.
034E 8A RPT TXA Save X on stack during subroutine.
034F 48 PHA
0350 20 IF !F JSR SCAN OS Jump to KIM-! display subroutine.
0353 68 PLA Restore X.

198

0354 AA TAX
0355 CA DEX Decrement X.
0356 DO F6 BNE RPT Branch to display again until X = O.
0358 60 RTS Return from subroutine.

SYM·l Display Subroutine
$A640 = DISBUF; base address of SYM-l display buffer
$8C29 = TAB; base address of seven·segment code table in SYM·l monitor

0340 A501 DISPLY LDA SEC Get seconds.
0342 85 04 STA TSEC Store temporarily in TSEC.
0344 A502 LOA MIN Get minutes.
0346 85 05 STA TMIN Store temporarily in TMIN.
0348 A503 LDA HRS Get hours.
034A 85 06 STA THRS Store temporarily in THRS.
034C 20 86 8B JSR ACCESS Jump to SYM-l ACCESS routine to

access RAM.
034F A2 05 LDX $05 Initialize X index to fill display

table.
0351 A504 PRR LDA TSEC Get seconds.
0353 29 OF AND $OF Mask high·order nibble.
0355 A8 TAY Transfer low·order nibble to Y index.
0356 B9 29 8C LOA TAB,Y Get seven·segment code from table.
0359 9D 40 A6 STA DISBUF,X Store in display buffer.
035C AO 04 LDY $04 Initialize bit counter for one nibble.
035E 46 06 DGL LSR THRS Shift hours into carry flag.
0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0)

into carry.
0362 66 04 ROR TSEC Carry into seconds; shift one bit

right.
0364 88 DEY Decrement Y until one nibble has
0365 DO F7 BNE DGL been shifted right.
0367 CA DEX Decrement X.
0368 10 E7 BPL PRR Return to convert remaining nibbles.
036A A2 FF LOX $FF Initialize X for timing loop.
036C 8A JAT TXA Save X.
036D 48 PHA
036E 20 06 89 JSR SCAND Jump to SYM·l monitor subroutine.
0371 68 PLA Get X back.
0372 AA TAX
0373 CA DEX Decrement X for timing loop.
0374 DO F6 BNE JAT Branch to display again until X = O.
0376 60 RTS Return from subroutine.

system clock is useful. In any application where the time at which
a particular event occurred must be known, a 24-hour clock is
useful. The program in Example 10 would be easily modified to
display or store the time at which a logic-zero to logic-one transition
occurred at one of the Port B input pins. For example, if you were
monitoring the feeding habits of a laboratory animal, a suitable
detector could be placed at the feeding station to produce a logic
level transition on an input pin that, in turn, would result in the
time being recorded. Many other applications suggest themselves
in a brainstorm. The program in Example 10 should not be used in

199

applications such as frequency counting or other short-term timing
measurements because the short-term stability of the power-line
frequency is inadequate. Experiments such as these require interval
timers and a crystal-controlled time base, the subject of the next
chapter.

To start the 24-hour clock, load the programs and wire the cir
cuit shown in Fig. 9-7. Before applying the 60-Hz signal to the
555 timer, start the program and make sure it works. Next, load
locations with addresses $0001, $0002, and $0003 with the seconds,
minutes, and hours of the time you intend to start the clock. Put
$C4 into the location with address $0000. At the instant the time
corresponds to the time loaded into memory, apply the 6O-Hz
signal to the 555 input.

EXPERIMENT NO.

Step 1

Load the following program.

0200 4C 00 03 START JSR NOTHING Jump to a subroutine that does
nothing.

0203 00 BRK Break to monitor.
0300 EA NOTHING NOP No operation.
0301 40 RTS Return from subroutine.

Step 2

There are two bugs in this program. Can you find the bugs with
out running the program? It always pays to search for bugs before
running a program.

Step 3

If you found the bugs before running the program, then run the
program with the bugs in it anyway. If you didn't find the bugs,
then you have no choice but to run the program with the bugs in it.

Step 4

Assuming that there are no bugs in the program, what would you
expect to observe when the program is executed?

(The program should execute the jump to subroutine, the NOP
instruction, return to the main program and execute the BRK in
struction, whereupon the display should light showing the address
$0205 and the contents of that location.)

200

Step 5

What do you observe when the program is executed?

(We observed that the display did not light. The BRK command
was not executed.)

Step 6

We will attempt to debug the program using the single-step mode
and a trace of the 6502 internal registers. What registers would you
suggest be traced?

(Only the S register and the program counter are used in the pro
gram. These are the registers we will trace.)

Step 7

Single step through the program and make a table showing the
contents of the stack pointer (S register) and the program counter
after the execution of each instruction.

(We obtained the following table. 'The stack pointer was $FF
initially.

Instruction

JSR
NOP
RTS

Register Contents After Execution of the Instruction

Program Counter High
$03
$03
$31

Progrom Counter Low
$00
$01
$30

Stock Pointer
$FF
$FF
$02

Your table may not be identical in all respects.)

Step 8

What do you conclude from studying your table? Concentrate
on the contents of the stack pointer.

(We reasoned as follows: The program does jump to the subroutine
because the program counter becomes $0301 as it should. However,
in a subroutine jump the stack pointer should decrement by two
to store the return address. The program made the jump, but it did

201

not provide a way to return. This suggests the JMP instruction was
executed rather than the JSR. Check the op code and confirm this.)

Step 9

Can you find the other bug by studying the table?

(It's not as easy but the evidence is there. Note that on the RTS
instruction the stack pointer increments by three, that is $00, $01,
$02. But an RTS instruction should only result in the stack pointer
being incremented by two. An RTI op code was substituted for the
RTS op code.)

Step 10

Change the op codes to their correct values and verify that the
program now runs correctly.

EXPERIMENT NO. 2

Step 1

Examine the following program, then load it into your micro
computer.

0200 A2 00 START LOX $00 I nitialize X to $00.
0202 9A TXS Transfer the contents of X to S.
0203 20 00 03 JSR NOTHING Jump to subroutine.
0206 00 BRK Break to the monitor.
0300 EA NOTHING NOP No operation.
030] 60 RTS Return from subroutine.

Step 2

What will the value of the stack pointer be after execution of the
TXS instruction?

(The stack pointer will be $00 because the value of X ($00) was
transferred to the stack pointer by the TXS instruction.)

Step 3

Will this program work correctly? Remember the JSR instruction
requires two locations on the stack. What do you predict will happen
when the program is executed? Where will PCL and PCH be stored?

202

(The value of the program counter will be stored at locations whose
addresses are $0100 and $01FF. After storing PCH = $02 at $0100,
the stack pointer is decremented and becomes $FF. Thus, the
PCL = $05 is stored at the location whose address is $OIFF. The
stack "wraps around." Recall that what is stored as the program
counter is the address of the third byte in the JSR instruction which
in this case is $0205. The program will work perfectly. The stack
pointer may have any initial value the user desires.)

Step 4

You may want to check the operation of the stack pointer in this
case by single stepping through the program and tracing the history
of the stack. Also check the contents of the stack after each step.

EXPERIMENT NO. 3

Step 1

Breadboard the circuit of Fig. 9-7, but do not connect the 60-Hz
signal to the O.01-fLFcapacitor. Load the program for the 24-hour
clock.

Step 2

Put $C4 into memory location with address $0000. Load locations
with addresses $0001, $0002, and $0003 with the seconds, minutes,
and hours, respectively, of the time at which you intend to start
your clock. If you have a WWV receiver use it to set the time and
start the clock.

Step 4

Start the program. The AIM 65 will display the time continuously,
while the KIM-I and SYM-I multiplex the various segments giving
what appears to be a continuous display. The time displayed should
be the time you stored in Step 2.

Step 5

At the instant the time on WWV or a good electric clock coin
cides with the time stored in the display, connect the 60-Hz signal
to the capacitor on the 555 timer input. If you do not succeed the
first time, try again until you have a good match between your clock
and some standard.

Step 6

Let your system run overnight or for a day. Does it keep good
time? Keep your clock circuit and program. It will be used in the
next experiment.

203

EXPERIMENT NO. 4

Step 1

How would you modify the main program of the 24-hour clock
to display the correct time only when a transition occurs at PBO
(Bit 0 of Port B)? Try to write the modification yourself before
looking at our answer.

(Here is how the main program would look after we modify it to
display the time after a logic-level transition at PBO. Other answers
are possible. Comments are provided for the added instructions.

START

LOOP
PULSE

Step 2

LDA
STA
LDA
STA
LDA
STA
LDY
TYA

EOR
AND
BEQ

JSR
JMP

$00
NMIVL

$03
NMIVH
$C4
CNTR
PBD

PBD

$01
PULSE
DISPLY
LOOP

Transfer data at Port B to the Y register.
Transfer contents of Y to A.
Exclusive OR produces a one in any bit that changed.

Mask all except bit O.
Loop back to PULSE unless bit 0 changed.
Display time.
Return to check Port B for more transitions.)

~lodify Example 10 to include the above instructions or the
instructions you used to answer STEP 1.

Step 3

Execute the program. Remember to supply the 60-Hz signal after
the program is running. The display should remain blank. Change
the PBO switch on the I/O board. You should observe the time. On
the KIM-l and SY\1-1 the time will flash on the display momen
tarily. On the AIM 65 the time will be latched into the display, but
the display will not change until another transition occurs.

Step 4

Try to think of at least one application where the ability to record
the time when a particular event causes a logic-level transition on
an input pin might be useful.

Step 5

About how much time does the NMI interrupt routine take? Why
is this an important question?

204

(Consider first that an interrupt occurs 60 times every second. Dur
ing 59 of those interrupts only five instructions are executed. They
include the PHA, INC, BNE, PLA, and RTI instructions that take
3, 5, 3, 4, and 6 microseconds, respectively. (We are assuming a
clock frequency of 1 MHz.) The interrupt itself takes 8 micro
seconds; that is, there are eight clock cycles between the completion
of the last instruction in the main program and the fetch of the
first op code in the interrupt routine. Thus, we have a total of 29
microseconds for the interrupt time. The AIM 65 and KIM-1 require
an indirect jump for each interrupt, and that accounts for another
5 microseconds, giving a total of 34 microseconds. The remaining
interrupt in the one-second interval requires 23 microseconds, in
addition to the time mentioned above, to increment the seconds
counter and attend to other details. Thus, in 1 second the micro
processor spends (60 X 34 + 23) microseconds processing the in
terrupts. The total is 2063 microseconds. so about 0.2063% of the
time is devoted to maintaining the 24-hour clock. The additional
time required to increment the minutes and/ or hours counters is
small enough to neglect because these instructions are used so
seldom. The minutes counter is incremented only once every 3600
interrupts, and the hours counter is incremented once every 216,000
interrupts.

The question is important because a real time clock such as this
must usually run concurrently with other programs. One must know
whether the interrupt routine will adversely affect the operation
of another program. In most cases the 0.2063% will not bother.)

Step 6

Try to write an interrupt routine that keeps time using ASCII
rather than the decimal mode we used. This is useful in those micro
computers that must output the time to display devices such as line
printers and terminals that require ASCII data.

EXPERIMENT NO. 5

Step 1

Breadboard the circuit shown in Fig. 9-9. It consists of a mechan
ical switch that is debounced by the cross-coupled NAND gates and
a 74121 monostable multivibrator that gives a 10-microsecond pulse
(one-zero-one) each time the mechanical switch is changed from
logic one to logic zero as noted on the switch positions. (Note that
a debounced signal is available on the I/O board. A small wire or
clip connected to pin 9 (PBO) on the application connector will
provide the necessary debounced signal from the switch associated
with PBO.)

205

+5V

15K

11

74121 O.OOIJ.tF
10

I--------j IRQ

'---....,-----1 PIN E-4

~ GND

Fig. 9·9. Circuit to produce an Interrupt Request Signal on IRQ pin.

Step 2
Connect the output of the multivibrator to the IRQ line by con

necting it to pin E-4 on the expansion connector. You will need a
22/44 pin edge connector to put on the expansion port.

Step 3

Load the following program.

0200 58 MAIN Cli Clear interrupt disable flag.
0201 A9 FF LDA $FF Initialize Port A to be an output port
0203 8D 01 17 STA PADD by storing $FF in its DDR; KIM-l

address.
0206 4C 06 02 LOOP JMP LOOP Loop here.
0300 48 INTERPT PHA Store accumulator on the stack.
0301 BA TSX Transfer stack pointer to X.
0302 8E 00 17 STX PAD Output X to Port A LEDs.
0305 68 PLA Pull accumulator from the stack.
0306 40 RTI Return from interrupt.

Step 4

The interrupt vector is $0300. Refer to Tables 9-4 to 9-6 and
load the interrupt vector into the appropriate locations for your
microcomputer.

Step 5

Describe what effect execution of the program will have on the
Port A LEDs when the program is executed.

206

(When the program is started by initializing the program counter
to $0200 (the starting address of the main program) we observed
that the Port A LEDs did not glow.)

Step 6

What do you predict the Port A LEDs will show when an inter
rupt occurs by flipping switch PBO from logic one to logic zero?
Predict before you cause the interrupt, and give reasons for your
prediction.

(The Port A LEDs should show $FB. In the interrupt routine the
stack pointer is first transferred to the X register, then the X register
is output to Port A. Thus, Port A displays the value of the stack
pointer after the PHA instruction in the interrupt routine. Recall that
an interrupt requires three locations on the stack, the PHA instruc
tion will require one location, and then the stack pointer is decre
mented to point to the next empty location. Counting backward
from an initial value of $FF to the first empty location gives $FB.)

Step 7

If the PHA and PLA instructions are replaced by NOP instruc
tions, what will the stack pointer be during the interrupt as dis
played by the Port A LEDs?

(Since only three locations on the stack are used, the stack pointer
will be $FA.)

Step 8

Think carefully about what would happen if an interrupt routine
had a PHA instruction but no corresponding PLA instruction. Ex
periment with the circuit and program if necessary.

EXPERIMENT NO. 6

Step 1

Write a program to display the time when an interrupt request
occurs; that is, modify the 24-hour clock program to display the time
when an interrupt from the circuit of Fig. 9-9 causes an interrupt.
Try to write your own modifications before looking at the answer
below.

0200 A9 00
0202 BD 02 A4

START LOA $00
STA NMIVl

207

0205 A903 LOA $03
0207 80 03 A4 STA NMIVH
020A A940 LOA $40
020C 80 04 A4 STA IRQVH Load I RQ vector to point to OISPL Y,
020F A903 LOA $03 AIM 65 locations indicated.
0211 80 05 A4 STA IRQVH Load IRQ vector to point to OISPLY.
0214 A9 C4 LOA $C4 KIM and SYM users see Tables 9·5 and

9·6.
0216 85 00 STA CNTR Initialize CNTR for 60 counts.
0218 58 CLI Allow interrupts.
0219 4C 1902 LOOP JMP LOOP Loop here.

Step 2

Load the program, initialize the time locations as described in
the text, and start the program running. What should you observe on
the display?

(The display should remain blank. The display subroutine has be
come an IRQ routine. The time will be displayed when an inter
rupt occurs.)

Step 3

With the circuit of Fig. 9-9, produce an interrupt. Does the time
appear? If it does not, you have made a mistake with your pro
gram. Try again or use the answer given above.

EXPERIMENT NO. 7

Step 1

Study the program below and decide if it will execute properly.
Explain your reasoning. The program has no objective or usefulness.

0200 A9 FF START LOA $FF I nitialize Port A to be an output port
0202 80 01 17 STA PAOO by storing $FF in its OOR.
0205 48 PHA Save the accumulator on the stack.
0206 20 10 02 JSR TEST Jump to subroutine TEST
0209 A9 FO LOA $FO
020B 8000 17 STA PAO Output accumulator contents to Port A.
020E 00 BRK
0210 68 TEST PLA Get contents of stack.
0211 60 RTS Return from subroutine.

Step 2

What do you expect to observe if the program executes properly?

208

(Four of the lights on Port A should light and four should remain
dark because after the program returns from the subroutine we load
$FO into Port A.)

Step 3

Execute the program, see if it works, and then explain why it
doesn't work. Try tracing the program counter and the stack pointer.

(The program attempts to "pass a parameter" from the main pro
gram to the subroutine by means of the stack. The data is placed on
the stack by the PHA instruction in the main program. It is pulled
off the stack by the PLA instruction in the subroutine. If the stack
pointer was $FF before the program was executed, then the PHA
instruction will decrement it to $FE. The "return address" for the
JSR instruction will be stored at $OlFE and $OlFD. The PLA in
struction in the subroutine increments the stack pointer from $FC
to $FD. The RTS instruction increments the stack pointer again, and
reads the "return address" from locations with addresses $OlFE
and $OlFF. Note that these are not the correct locations. It is good
practice to make sure that PHA and PLA instructions always occur
in pairs in subroutines and interrupts.)

209

CHAPTER 10

Interval Timers

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the use of interval timers in programming.
• Program the 6530, 6532, and 6522 interval timers.
• Write programs that use interval timers to implement delay

loops, to measure time between events, and to count events.

INTRODUCTION

Computer systems that are designed mainly as "number crunch
ers" or data processors, and that operate primarily with high-level
language interpreters such as BASIC, FORTRAN, etc., do not
usually make much use of interval timers, except perhaps as a 24-
hour clock. But in many cases where a computer i~ interfaced to
some device in the real world, you are likely to find an interval
timer.

One of the reasons for the popularity of the KIM-I microcomputer
in particular, and 6502-based designs in general, has to be the
interval timers that are associated with these systems. An interval
timer may replace software timing loops, freeing the computer for
other tasks while the timing is taking place in external hardware.
Interval timers may be used to implement 24-hour clocks. They
can be used to make precise measurements of the times between
events, and they can also be used as event counters. Almost any data
logging problem requires a particular time to elapse between the
points or values to be logged, and interval timers are ideal for

210

implementing these time delays. Interval timers are used in music
synthesis applications. The purpose of this chapter is to acquaint
you with the basic programming techniques needed to operate an
interval timer, and to give you some examples of simple applications
that may give you ideas of your own.

In 6502 systems, an interval timer is a location in memory that
may be loaded with a number like any other R/W memory location.
After a number has been written into the location of the interval
timer, the system clock decrements the number in the interval timer
until the number is zero. At that time a flag in a register associated
with the timer is set and/ or an interrupt occurs, signaling the micro
processor that the "time is up." Details of how these events take
place vary considerably, depending on the device involved. Interval
timers are part of the logic circuitry found on integrated circuits
known as the 6522 Versatile Interface Adapter (VIA), the 6530
RAM-ROM-I/O-Timer (RRIOT), and the 6532 RAM-I/O-Timer
(RIOT). The 6530 is found exclusively on the KIM-I, while both
the 6522 and the 6532 are found on the AIM 65 and the SYM-I. The
specifications for these devices are found in Appendix C. After this
brief introduction, we now proceed to examine the interval timing
functions of each of these integrated circuits.

6530 INTERVAL TIMER

Although the integrated circuit known as the 6530 contains R/W
memory locations, ROM memory locations, and I/O ports, in this
section we are interested only in its interval timers. A model of the
interval timer structure of the 6530 is shown in Fig. 10-1. The system
clock decrements a number in the timer register at a rate determined
by "divide down" logic. The clock signal may be divided by one,
eight, 64, or 1024, depending on which divide circuit is selected.
The divide circuits are selected by address lines AO and AI. Thus,
the two least-significant bits of the address of the counter register
determine which divisor will be used to "predivide" the time base
that is used to decrement the count. While the actual address may
change; that is, 0000 0100 through 0000 0111, with the ADH fixed,
the same register is addressed, but different count-down frequencies
are selected by the programmable divide-down logic. If the divide
by-64 circuit is selected, then the timer register will be decremented
once every 64 clock cycles.

When the number in the timer register reaches zero (an event
that we will describe as "timing out"), a flag is set in a I-bit register
called the status register. The status bit is bit seven of a location in
memory that is read to determine whether the timer has timed out.
All the other bits (bit six through bit zero) of the status register

211

..n......n... 6530 INTERVAL TIMER
OIVIOE

BY U TIMER REGISTER J I-MHz J1J1. 0001.
107 1 06 1 051 04 1 03 1 021 oil DO SYSTEM

CLOCK 0008. "..
0064. =0
1024-

AO Al
STATUS REGISTER

'---J " [D7:.L
y

A3 = PB7
ENABLE
= ilRQ
ENABLE)'

... ;:.-

"" ;:..
TO P B 7

'IRQ Line on the 6532 Chip_ II (I RQ)'

ADDRESS BUS DATA BUS

Fig. 10·1. Model of 6530 Interval Timer.

are always zero. A complete summary of the memory locations for
the 6530 interval timer in the KIM-1 system is given in Table 1O-l.

The time-out of a timer may also be used to cause an interrupt.
This option is also selected by addressing. Refer to Table 10-1 and
note that the divide-by-1024 circuit may be selected with either ad-

Table 10-1. The 6530 Interval Timer Read and Write Data

6530 Address
Address Lines (Input)
(KIM-1) A3 A2 A1 AO Function

$1704 0 1 0 0 Write to the TOOOI Timer: PB7 Disabled
$1705 0 1 0 1 Write to the T0008 Timer; PB7 Disabled
$1706 0 1 1 0 Write to the TOO64 Timer: PB7 Disabled
$1707 0 1 1 1 Write to the T1 024 Timer; PB7 Disabled
$170C 1 1 0 0 Write to the TOOOI Timer: PB7 Enabled*
$1700 1 1 0 1 Write to the T0008 Timer: PB7 Enabled*
$170E 1 1 1 0 Write to the T0064 Timer: PB7 Enabled*
$170F 1 1 1 1 Write to the Tl024 Timer; PB7 Enabled'
$1706 0 1 1 0 Read Timer Register
$1707 0 1 1 1 Read Timer Status Register (Bit Seven)

Writing to or reading from any address after time-out clears the status register
and sets PB7 to logic one.

'PB7 should be programmed as an input line.

212

dress $1707 or $170F. In using the first address, only the status
flag will be set to one when the timer register reaches zero, while
if the second address is used the status flag will be set and PB7
(pin seven of Port B) will make a logic-one to logic-zero transi
tion. If PB7 is connected to either the IRQ pin or the NMI pin by
means of an external wire, then an interrupt will result at the end
of the timing period. However, PB7 must be programmed as an
input line for this option to work. Table 10-1 and Fig. 10-1 show
that address line A3 selects the interrupt mode.

The contents of the timer register may be read by reading the lo
cation whose address is $1706. The number in the timer will continue
to decrement during and after a read operation. This read option
is not used very frequently. In most programming situations, one is
interested only in when the timer reaches zero, an event that is sig
naled by the status flag being set or by an interrupt.

Writing to or reading from any of the timer addresses after a
time-out clears bit seven of the status register and sets PB7 to logic
one. the latter being necessary to clear the interrupt.

The time duration, T, between the end of the last clock cycle in
the write instruction (ST A TIMER) and the setting of the status
flag and/ or the interrupt is given by the formula:

T = [(N . D) + ~J . T c (10-1)

where,
N is an 8-bit number written to the timer,
D is the divide ratio, for example, 64, 1024, etc., selected by ad

dressing,
T c is the system clock period (typically one microsecond).

The same formula applies to the timer on a 6532 integrated circuit.
In fact, the timer on a 6532 has many features in common with the
timer on a 6530.

For reference purposes (Table 10-1), we have included the states
of the various address lines connected to the 6530 that identify
which timer or feature is being used. Owners of other systems may
use this information to help in interfacing a 6530.

The operation of the 6530· interval timer may be demonstrated
with a few simple programs. Example 1 shows a simple delay loop
implemented with an interval timer. The corresponding flowchart is
shown in Fig. 10-2. Several modifications of this program are used
in Experiment No. 1. The first instruction in Example 1 loads the
accumulator with the number to be stored in the timer register. The
next instruction stores this number in the timer register; the address
chosen in this case calls for a divide-by-1024. At the conclusion of
the fourth cycle in the ST A instruction, the timer register begins

213

Fig. 10-2. Flowchart of Basic Interval
Timer Delay Loop-Example 1.

to decrement. The status flag is read by the third instruction in the
program, and bit seven is tested by the BPL instruction. If bit seven
of the status register is zero, then the timer register has not yet
reached zero. The program loops back to read the status flag until
the flag is set, at which time the BRK instruction is executed, finish
ing the program. The total delay time produced by the interval
timer delay loop is approximately

T = [255 . 1024] . 10-6 second = 0.261 second,

where we have neglected the time for the ST A and BPL instructions
and the Y:? cycle mentioned in Formula 10-1. The finer details will
be considered when precision timing is required.

Example 1: Basic Interval Timer Delay Loop

Object: Produce a delay of approximately 0.261 second.

$1707 = Tl024; location of divide.by.l024 timer. STATUS; Timer status register.

0200 A9 FF START LOA $FF Get number to be stored in timer
register.

0202 80 07 17 STA Tl024 Stare it in 11024 timer.
0205 AD 07 17 LOOP LOA STATUS Read status.
0208 10 FB BPL LOOP Loop until timer times aut.
020A 00 BRK Finish.

214

The next program demonstrates how the interval timer may be
used in an interrupt mode. Example 2 is not designed to do any
thing except generate equally spaced interrupts, the time between
interrupts being determined by the timer chosen and the number
loaded into the timer. The initialization sequence in Example 2
clears the interrupt flag to allow interrupts, then it forces an inter
rupt to get the timer started, and finally it waits in a "do-nothing"
loop until the next interrupt occurs. In Experiment No.3, some
useful things will be done with this program. Here we simply dem
onstrate how to set up the interrupt mode. Note that for the KIM-I,
output pin PB7 (pin 15 on the application connector) should be
connected to the IRQ pin (pin 4 on the expansion connector).

Example 2: Demonstration of Interval Timer in Interrupt Mode

Object: Generate equally spaced interrupts with an interval timer.

$170E = T0064; divide·by.64 timer with interrupt enabled
$17FE = IRQL; Load with $06
$17FF = IRQH; load with $02

0200 58 5T ART
0201 00
0202 EA
0203 4C 03 02
0206 A99C
0208 80 OE 17
0208 40

LOOP
INTRPT

CLI
BRK
NOP
JMP LOOP
LOA $9C
STA Too64
RTI

Clear interrupt flag.
Farce interrupt.
No aperatian.
Laop here.
Interrupt rautine starts here.
Laad divide.by-64 timer.
Return fram interrupt.

In order for the program in Example 2 to execute properly, an
interrupt vector of $0206 must be loaded into locations whose ad
dresses are $17FE and $17FF on the KIM-I. The time between
interrupts will be $9C times 64 (timing interval) plus the time
necessary to complete the IMP instruction in the main program and
the LDA and ST A instructions in the interrupt routine. Also, the
time necessary to process the interrupt (seven clock cycles) and the
indirect jump (five cycles) in the KIM -1 monitor must be included.
Adding these periods gives a time interval between 10.002 milli
seconds and 10.002 + 0.003 milliseconds as the time between inter
rupts. The +0.003 millisecond originates in the uncertainty of the
location in the IMP instruction in the main program where the
interrupt occurs. The IMP instruction requires three clock cycles,
and it will be completed even though it is interrupted. Thus, the
ability to genelate equally spaced interrupts with the 6530 (or
6532) is made somewhat uncertain by the length of time required
to complete the interrupted instruction. As we shall see below, one
feature of the 6522 eliminates this uncertainty. In any case, the
precision involved with the 6530 timer in the interrupt mode is
sufficient for many experiments and designs.

215

6532 INTERVAL TIMER

The. interval timer on the 6532 integrated circuit operates in
almost the same way as the 6530 interval timer. The only significant
difference is that the 6532 has an interrupt pin that is usually con
nected to the IRQ pin on the 6502 microprocessor. This is in contrast
to the 6530 which uses the PB7 pin to signal an interrupt. The inter
val timer model shown in Fig. 10-1 for the 6530 will be identical in
all respects to a model of the 6532 if the line labeled "TO PBi' is
changed to "IRQ." The connection from the 6532 IRQ pin to the
IRQ pin of the 6502 is usually internal to the microcomputer system;
that is, a jumper wire is not necessary as in the case of the 6530
timer on the KIM -1. As in the case of the 6530, the control of the
interrupt feature is implemented by addressing. If the address line
A3 is at logic zero, then the interrupt feature is disabled. If address
line A3 is at logic one, then the interrupt feature is enabled.

In Table 10-2 the various addresses used to select the timer func
tions are listed. Note that we have included addresses for the

Table 10-2. Equivalent Addresses for 6532 Timers on
AIM 65 and SYM-1

Time. KIM-1 Address AIM 65 Address SYM-l Address

TOOOI $1704* $A494* $A4ICt
TOO08 $1705 $A495 $A4ID
TOO64 $1706 $A496 $A4IE
TI024 $1707 $A497 $A41F
READ

STATUS $1707 $A497 $A407
READ

TIME $1706 $A486 $A406

*Add eight (in hexadecimal) to the address to enable the interrupt feature on the KIM-I and
AIM 65.

tThe interrupt line on the SYM-I is not connected.

KIM-1 that actually address a timer on a 6530 chip rather than a
6532 chip. The reason is that these locations give timing intervals
and interrupt behavior that is equivalent to the AIM 65. Since the
interrupt pin of the 6502 on the SYM-1 is not connected to the
IRQ pin on its 6532, the SYM-1 addresses are equivalent only in
the sense that they produce identical timing intervals, without inter
rupts. The literature associated with the KIM-1 is far more extensive
than that for the AIM 65 or SYM-1, and Table 10-2 is useful for
writing new programs for the AIM 65 and SYM-1, if those programs
make use of the 6532 interval timer. For purposes of illustration,
Example 3 demonstrates the addressing required to implement a
simple delay loop using the 6532 interval timer with the interrupt

216

feature disabled. The program in Example 3 toggles bit zero of
Port A (PAO) with a period equal to twice the length of the timing
interval, producing a square waveform at PAO. See Experiment No.
3 for further details.

Example 3: Using an Interval Timer to Produce a Square Wave

Objective: Produce a square wave at PAO with a programmable period.

$AOOI = PAO; Port A
$A003 = PAOO; Port A OOR
$A497 = Tl 024; Write to divide-by-l024 timer; read status

0200 A9 01 START LOA $01
0202 80 03 AO STA PAOO Make pin PAO an output pin.
0205 A9 62 LOOP LOA $62 Get number = lh period of the square

wave.
0207 80 97 A4 STA Tl024 Store in divide-by-l024 interval timer.
020A A901 LOA $01
020C 40 01 AO EOR PAO Complement PAO.
020F 80 01 AO STA PAO Result into PAO.
0212 2C 97 A4 TEST BIT STATUS Test status register for time out.
0215 10 FB BPL TEST
0217 4C 05 02 JMP LOOP Repeat the process.

The frequency of the square wave produced by the timing vari
ables chosen in Example 3 is about 5 Hz, corresponding to a pe
riod of approximately 0.20 second. Of course, higher and lower
frequencies may be obtained by varying the byte in the location
whose address is $0206 and/ or by selecting a different divide-by
ratio with another timer address. Example 3 uses AIM 65 ad
dresses for the timer and for the output port. It may be converted
to run on the SYM-l by selecting the appropriate timer addresses
with the use of Table 10-2. The output port addresses are the same
for both systems. The program in Example 3 may be run on the
KIM-l by converting both the timer addresses and the output port
addresses using Table 10-2 and Table 3-3, respectively. The square
wave is produced by complementing the value of PAO each time the
interval timer is started. Complementation is produced by an

Table 10-3. Symbols for 6522 Timer Latches and Counters

Name Symbol

Timer 1 Latch Low T1L-L
Timer 1 Latch High T1L-H
Timer 1 Counter Low nC-L
Timer 1 Counter High T1C-H
Timer 2 Latch Low T2L-L *
Timer 2 Counter Low T2C-L
Timer 2 Counter High T2C-H

·There is no corresponding Latch High.

217

Exclusive OR operation of PAO with logic one. See Chapter 4 for
a description of the logical operations.

6522 INTERVAL TIMERS

The 6522 Versatile Interface Adapter (VIA) is a complex but
powerful integrated circuit. The purpose of this section is to de
scribe the two interval timers on the chip. For a description of the
other features of the 6522 refer to Appendix C. Do not expect to
understand the many features of the interval timers with one read
ing. Study the descriptive material and experiments along with the
programs that demonstrate the operation of the timers; then you
will soon appreciate the versatility of this chip. One further note:
the KIM-1 does not have a 6522, but an interface between the 6502
and a 6522 is described in Part II of this book, so that a 6522 could
be added to a KIM-1 system very easily.

The 6522 has two interval timers referred to as T1 and T2. A
model of the two 16-bit timers and their related control and inter
rupt registers is shown in Fig. 10-3. The basic principle of operation

TO 6502 IRQ

- TIMER 2-

f--- COUNTER HIGH -j-COUNTER lOW I

115 114 1 13 1 12 111 1 10 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 I o I
TIMER 2-lATCH lOW

- TIMER I- I 7 1 6 I 5 1 4 I 3 1 1 I
I COUNTER HIGH - I COUNTER lOW I

115 114 113 112 111 110 I 9 I 8 I 7 1 1 5 I 4 I 3 1 1 I o I
I lATCH HIGH - TIMER 1- I lATCH lOW

115 114 113 112111 110 I 9 1 8 I 7 1 6 1 5 1 4 I 3 1 2 1 1

Fig. 10-3. The 6522 Registers, latches, and Counters.

218

Table 10·4. Locations and Functions of 6522 Interval Timers
on AIM 65 and SYM·1

Location Timer Write Function

AOO4 Tl Write data to timer 1 latch low (Tll-l).
AOOS Tl Write data to timer 1 latch high (T'Il-H) and counter high (Tl C-H).

Transfer the contents of Tll-l to Tl Col.
Clear the Tl interrupt flag. Start timing.

AOO6 Tl Write data to timer 1 latch low (Tll-l).
AOO7 Tl Write data to timer 1 latch high (Tll-H). Clear the Tl

interrupt flag.
AOO8 T2 Write data to timer 2 latch low (T2l-l).
AOO9 T2 Write data to timer 2 counter high (T2C-H). Transfer the contents

of T2l-l to T2C-1. Clear the T2 interrupt flag. Start timing.

Read Function

AOO4 Tl Read the contents of timer 1 counter low (Tl Col). Clear the Tl
interrupt flag.

AOOS Tl Read the contents of timer 1 counter high (Tl C-H).
AOO6 Tl Read the contents of timer 1 latch low (Tll-l).
AOO7 Tl Read the contents of timer 1 latch high (Til-H).
AOO8 T2 Read the contents of timer 2 counter low (T2C-l). Clear the T2

interrupt flag.
AOO9 T2 Read the contents of timer 2 counter high (T2C-H).

is similar to the 6530 and 6532 timers: a number loaded into a
counter is decremented at the system clock rate until it reaches zero.
At that time a Rag is set in the interrupt Rag register and, if the
corresponding bit in the interrupt enable register is set, an inter
rupt will occur. The various features of the two timers are con
trolled by the status of various bits in the Auxiliary Control Register
(ACR), the Interrupt Flag Register (IFR), and the Interrupt En
able Register (IER). In addition to studying Fig. 10-3, refer to
Tables 10-3, 10-4, and 10-5 for the names, symbols, and addresses
that will be used in describing the timers. Figs. 10-4, 10-5, and 10-6
supply the necessary information about the three registers (ACR,
IFR, and IER) to select the various timing modes and interrupt
conditions.

We will explain the functions of the various registers, latches, and
timers in the context of demonstration programs. The program in
Example 4 implements a simple delay loop, the most common func
tion of an interval timer, using timer T2. The addresses used are
the same for both the AIM 65 and SYM-l. The internal registers
of the 6522 are cleared when a system RESET occurs, and we as
sume that is the state of the 6522 when the program in Example 3
is started. Refer to Fig. 10-4 and observe that when the IER is
cleared, then the interrupt from timer T2 is disabled. The informa
tion in Fig. 10-6 indicates that since ACR5 = 0, then the T2 timer

219

Table 10-5. The 6522 Control and Interrupt Registers
Used for the Timers

Register Symbol Address Sits Used for Timers

Auxiliary Control Register ACR
Interrupt Flag Register IFR
I nterrupt Enable Register IER

INTERRUPT ENABLE REGISTER (lERI
76543210

I I I I I I I I I

$AOOB ACR7
$AOOD IFR7
$AOOE IER7

II 12 '''5 ~ 0, 0 ISABlE 12 INIERR U PI
IER5 = 1. ENABLE T2 INTERRUPT

Tl IER6 = 0, DISABLE TlINTERRUPT
IER6 = 1. ENABLE Tl INTERRUPT

"'"-----IER SET/CLEAR CONTROL

If. IER7 = 0, THEN WRITING A 1 TO A BIT CLEARS THE
CORRESPONDING IER BIT,

IF IER7 = I, THEN WRITING A 1 TO A BIT SETS THE
CORRESPONDING IER BIT, -

Fig. 10-4. Operation of 6522 Interrupt Enable Register.

ACR6 ACR5
IFR6 IFR5
IER6 IER5

is set to the mode in which a single time-out is generated. That is,
the 16-bit number in the T2C-L and T2C-H is decremented at the
clock rate until it reaches zero, at which time bit IFR5 is set (see
Fig. 10-5).

The first two instructions in Example 4 load the Timer 2 Latch
Low (T2L-L) with an 8-bit number. The next two instructions in

220

INTERRUPT FLAG REGISTER (lFRI
76543210

I I I I I I I
II 12 INTERR UPTF LAG ,

IFR5 = 1 WHEN T2 TIMES OUT.
Tl INTERRUPTS FLAG.
IFR6 = 1 WHEN Tl TIMES OUT

IFR7 = 1 WHEN IFRn AND IERn ARE EQUAL
TO ONE. -

'------ IFR7 = 0 WHEN IFR1 - 6 = 0 OR IERI
- 6 = O. THE MICROPROCESSORIS
INTERRUPTED (IRQ) WHEN IFR7 = 1.

Fig. 10-5. Operation of 6522 Interrupt Flag Register.

AUXILIARY CONTROL REGISTER IACH)
76543210

I I I I I I I I

~ I ACR5 ~ O. GEM"ATE SINGLE TlME·OUT AT ClOCK RATE.
T2 MODE ACR5 = 1. GENERATE SINGLE TIME-OUT AT RATE DETERMINED

BY SIGNAL AT PB6.

T! MODE

ACR7 ACR6
o 0 GENERATE SINGLE TIME- OUT AT CLOCK RATE.

P7 DISABLED.

o GENERATE SINGLE TIME· OUT AT CLOCK RATE.
PB7 ENABLED.

o FREE-RUNNING MODE. GENERATE CONTINUOUS
TIME-OUTS AT CLOCK RATE. PB7 DISABLED.

FREE-RUNNING MODE. GENERATE CONTINUOUS
TIME-OUTS AT CLOCK RATE. PB7 ENABLED.

Fig. ·10-6. Operation of 6522 Auxiliary Control Register.

Example 4 load the Timer 2 Counter High (T2C-H) with an 8-bit
number. At the completion of the STA T2C-H instruction, the num
ber in the T2L-L is automatically transferred to the T2C-L, pro
viding a 16-bit number in the T2 counter. There is no latch for the
T2C-H. The number in the T2 counter, which we shall call N, is
decremented at the system clock rate. Decrementing commences as
soon as the T2 counter is loaded; that is, at the completion of the
ST A T2C-H instruction.

Later, after (N + 1.5) microseconds have elapsed, bit IFR5 is
set, signaling the time-out of the timer. If bit IER5 were set, en
abling the interrupt feature, then an interrupt would also occur.
However, in Example 4 we have assumed that the IER was cleared
by a RESET operation prior to running the program. The last three
instructions before the BRK instruction serve the purpose of testing
bit IFR5 to see if a time-out has occurred. A one in bit five of the
accumulator is ANDed with the IFR. If the result is zero, indicating
that bit IFR5 has not yet been set, then the program loops back to
test bit IFR5 again. Recall that the BIT instruction performs a logi
cal AND operation. When the timer reaches zero, the program will
detect the flag and exit the delay loop to execute the BRK instruc
tion that will send it back to the monitor. The AIM 65 and SYM-l
displays will light after the BRK instruction is executed. By itself,
the program in Example 4 is of little use except to demonstrate

221

how to program timer T2 to produce a delay. Experiment No.6
provides some variations of the program in Example 4 that might
be useful in certain applications.

Example 4. Demonstration of T2 in Noninterrupt Delay Loop Mode

Objective: Generote a single delay using the system clock and the T2 timer.

$A008 = T2L·L
$A009 = T2C·H
$AOOD = IFR

0200 A9 30
0202 80 08 AO
0205 A999
0207 80 09 AO
020A A9 20
020C 2C 00 AO
020F FO FB
0211 00

START

DELAY

LDA $30
STA T2L·L
LDA $99
STA T2C·H
LOA $20
BIT IFR
BEQ DElAY
BRK

Get number to be stored in T2L·L.
Store it in the timer.
Get number to be stored in T2C·H.
Store it and start timing.
Set bit five in A to one.
AND A with IFR to test bit IFR5.
Wait here until bit IFR5 is one,
then break to the monitor.

Example 5 demonstrates how the T2 timer may be programmed
to operate in the interrupt mode. A program such as this could be
used to produce interrupts for servicing some peripheral device, for
example, but our purpose here is to demonstrate simply how the
6522 must be programmed to operate the T2 timer in this mode.
Note in particular how the IER is programmed. Bit IER5 must be
set by writing a one to both bit IER7, the IER set/clear bit, and

Example 5: Demonstration of 6522 Timer T2 in the Interrupt Mode

Objective: Produce a square wave of frequency 10 Hz on pin PAO.

$AOOI = PAD; Port A
$A003 = PADD; Port A DDR
$A008 = T2L·L
$A009 = T2C·H
$AOOE = IER; Interrupt Enable Register
$A404 = IRQL; Load with $15
$A405 = IRQH; Load with $02

0200 A9 AO START LOA $AO Set bits seven and five of A to one.
0202 80 OE AO STA IER Enable T2 interrupts.
0205 A9 FF LOA $FF Set Port A DDR to make Port A an
0207 8D 03 AO STA PADD output port.
020A A900 LDA $00 Initialize Port A LEOs to zera.
020C 8D 01 AO STA PAD
020F 58 Cli Clear interrupt flag to allow interrupts.
0210 00 BRK Force the first interrupt.
0211 EA NOP No operation.
0212 4C 12 02 LOOP JMP LOOP Idle here between interrupts.
0215 A950 IRQ LDA $50 Set up timer registers.
0217 80 08 AO STA T2L·L Initialize T2.
021A A9 C3 LDA $C3
021C 80 09 AO STA T2C·H
021F EE 01 AO INC PAD Increment the contents of Port A.
0222 40 RTI Return from interrupt.

222

bit IER5. The one in bit IER7 tells the 6522 that one or more bits
of the IER are going to be set. The one in bit IER5 enables the
interrupt feature of the T2 timer, as indicated in Fig. 10-4. A zero
in the other data bits written to the IER leaves the corresponding
IER bits unaffected.

The first two instructions in the program in Example 5 set the
IER5 bit. Notice that $AO corresponds to a one in bits seven and
five. The CLI instruction clears the interrupt flag so that subsequent
interrupts will work. The BRK instruction forces the first interrupt.
In the interrupt routine, the T2 timer is loaded with $C350 =
50,000, so there will be slightly more than 0.05 second between in
terrupts. The voltage at pin P AO will be a square wave with a fre
quency of 10 Hz, pin PAl will produce a square wave of 5 Hz,
pin PA2 will produce a square wave of 2.5 Hz, and so on. Note
that in order for the program in Example 5 to work, an interrupt
vector of $0215 is required, $0215 being the starting address of the
interrupt routine.

USING T2 TIMER AS A COUNTER

To demonstrate how the T2 timer may be used to count pulses
from an external source, we will describe a 24-hour clock with
extremely low computer-time overhead. To simplify matters, our
clock will keep time in hours and minutes, omitting seconds. In
many applications such as security systems, oven timers, and punch
clocks for timing in and out of work, the time to the nearest minute
is sufficiently precise. Example 6 utilizes a conditioned signal from
the 60-Hz power line, as outlined in Example 10 in Chapter 9.
This signal is applied to pin PB6, which, in turn, is connected inter
nally in the 6522 to the T2 timer. If bit ACR5 is set to one, then the
number in the T2 timer is decremented once for each pulse on PB6,
rather than being decremented by the system clock. If the T2 timer
is loaded with 360010, then it will time out once every minute if 60-
Hz pulses are applied to PB6. Timer T2 will be operated in the
interrupt mode, so once every minute an interrupt occurs and loca
tions in memory representing minutes and hours are incremented
as necessary. You should compare this with the 24-hour clock pro
gram in Example 10 in Chapter 9 that required interrupts every
1if;o second.

Examples 6 in this chapter and 10 in Chapter 9 are similar in
several respects. The so-called "main" program initializes the inter
rupt vector and then breaks to the interrupt routine to start the
timing. Both programs increment locations in memory corresponding
to minutes and hours in the interrupt routine. The program then
rehuns to the main program to display the time. Note that in

223

Example 6 we have used a JSR DISPLY instruction that jumps
to the same display subroutine that was used in Example 10 in
Chapter 9. This routine is not repeated here because of its length.
The comments should provide enough information to understand
the program, provided that you understood Example 10 in Chap
ter 9.

Example 6: Low Overhead 24-Hour Clock

Objective: Write a program to keep time in hours and minutes using the T2 timer.

$0340 = OISPLY; location of the first byte of the display subroutine described in
Chapter 9, Example 10

$A008 = ACR; Auxiliary Control Register of the 6522
$AOOE = IER; Interrupt Enable Register of the 6522
$A404 = IRQL; cantains low-order byte of the interrupt vector
$A405 = IRQH; contains high-order byte of the interrupt vector

0200 78 MAIN SEI Set Interrupt ~isable Flag_
0201 A9 00 LOA $00 Load interrupt vector_
0203 80 04 A4 STA IRQL
0206 A903 LOA $03
0208 8005 A4 STA IRQH
0208 A9 20 LOA $20 8it five of A is set to one, then it
0200 80 08 AO STA ACR is stored in the ACR to set the timer
0210 A9 AO LOA $AO in the pulse counting mode.
0212 80 OE AO STA IER Enable interrupts from T2.
0215 58 CLI Clear interrupt flag.
0216 00 8RK Jump to the first interrupt.
0217 EA NOP No operation.
0218 20 40 03 IDLE JSR OISPLY Jump to display subroutine.
0218 4C 18 02 JMP IDLE

$0002 = MIN; this location stores the time in minutes
$0003 = HRS; this location stores the time in hours
$A008 = T2L-L; low-order byte of the T2 timer
$A009 = T2C-H; high-order byte of the T2 timer

0300 48 IRQ PHA Push accumulator on the stack.
0301 A9 OF
0303 80 08 AO
0306 A90E
0308 80 09 AO
0308 F8
030C 18
0300 AS 02
030F 69 01
0311 85 02
0313 C960
0315 90 13
0317 A900
0319 85 02
0318 18
031C A5 03
031E 69 01
0320 85 03
0322 C9 24

224

LOA $OF
STA T2L-L
LOA $OE
STA T2C-H
SED
CLC
LOA MIN
ADC $01
STA MIN
CMP $60
8CC OUT
LOA $00
STA MIN
CLC
LDA HRS
ADC $01
STA HRS
CMP $24

Load T2 timer with 3600 = $OE10.
Since T2 counts through zero, use
3599 = $OEOF.
Start counting pulses on P86.
Set decimal mode.
Clear carry flag for next addition.
Get minutes.
Add one.
Result into minutes.
Minutes equal 601
No. Prepare to leave interrupt routine.
Yes. Set to zero then increment HRS.

Clear carry flag.
Get hours.
Add one.
Result into hours.
Hours equal 24?

0324 90 04 BCC OUT No. Prepare to leave interrupt routine.
0326 A900 LOA $00 Yes. Set hours to zero.
0328 85 03 STA HRS Result into hours.
032A 08 OUT CLO Clear decimal mode flag.
032S 68 PlA Pull accumulator from the stack.
032C 40 RTI Return from the interrupt routine.

In order for the program in Example 6 to run. the program should
be started with the contents of MIN equal to one less than the
time at which you intend to start keeping time, and the contents
of HRS should equal the correct time. Connect the circuit of Fig.
9-7 with the output of the 555 timer connected to PB6 (pin 17 on the
application connector of the AIM 65). Connect the input of the 555
timer (Fig. 9-7) to the 6.3 V ac 60-Hz source at the instant at
which the time exceeds the time loaded into MIN by one minute.
Be sure that the computer and the 555 timer have common ground
connections.

USING T1 TIMER

The Tl timer on the 6522 VIA may also be used to generate
delays either with or without interrupts. In other words, Examples
4 and 5, described previously, will also work with the Tl timer.
Changes to these programs to utilize the Tl timer would include
writing the 16-bit number to TIL-L and TIL-H at addresses $A004
and $A005, respectively, instead of using T2L-L and T2C-H. Also,
the time-out of timer Tl is flagged by bit IFR7 instead of bit
IFR6. Thus, the BPL instruction, which tests bit seven, could be
used to hold the timer in the delay loop until it times out. Then
Example 4 should also be modified to include clearing bits ACR7
and ACR6, if the Tl timer is to be used. This last step would not
be necessary after a system RESET because the registers are auto
matically cleared. Example 5 would also require bits ACR7 and
ACR6 to be cleared, and, in addition, bit IER6 must be set to allow
interrupts. Bit IER6 may be set by writing $CO to the IER; that is,
both bit IER7 and bit IER6 must be one to set bit IER6. Refer to
Figs. 10-4, 10-5, and 10-6 for details. The Tl timer cannot be used to
replace the T2 timer in Example 6 because it does not have an
external pulse counting mode.

One of the most attractive features of the Tl timer is its ability
to generate equally spaced interrupts in its "free-running" mode.
In this mode, the timer is autonwtically restarted after each time
out. No write instructions are required to reset or restart the timer.
This has the advantage of making the time between interrupts in
dependent of the time necessary to process the interrupt routine
instructions. For example, when an interrupt occurs, the instruction

225

currently being executed is completed. Depending on the instruc
tion being interrupted and the clock cycle in which it is interrupted,
this time could vary from one to seven clock cycles. This might be a
significant error in precision timing measurements, but it is elim
inated with the free-running mode.

In the free-running mode it is also possible to invert the logic level
of PB7 each time the counter reaches zero. Thus, a square wave
output at PB7 may be obtained, the period of the square wave being
twice the timing interval. The various modes are selected by bits
ACR7 and ACR6 in the ACR. Refer to Fig. 10-6 for details. It is
important to know that the time between interrupts or between
inversions of PB7 is N + 2 clock cycles where N is the 16-bit num
ber loaded into the Tl timer. Also, the Tl timer interrupt flag must
be cleared after each interrupt. This is accomplished by reading
TIC-L with an LDA TIC-L instruction. Even though we are not
interested in the contents of this location, the reading operation
clears the flag.

PRECISION TIMING PROGRAM

To demonstrate the operation of the Tl timer in its free-running
mode, we have written three programs that also represent useful
applications. The program in Example 7 measures the time interval,
in units of 100 microseconds, between two successive negative
pulses on pill PA 7. A six-digit counter (three bytes of bed data) is
incremented every 100 microseconds after the first event produces a
pulse on PA 7 until the second event produces the second pulse on
PA7. The display subroutine listed in Example 10 in Chapter 9 is
used to display the result. Since the six-digit counter is incremented
every 100 microseconds, the two most-significant digits give the
time in seconds, the decimal point is between the second and third
digits, and the remaining four digits give the time in units of ten
thousandths of a second. Time intervals between 0.0001 second
and 99.9999 seconds may be measured with a precision of ±O.OOOI
second. The program in Example 7 is the basic ingredient for a large
number of interesting applications that require precise measure
ment of the time between two events.

Example 7: Program to Measure Time Between Two Events

Objective: Measure the time between successive negative pulses on PA7 in units of 100
microseconds. Display the answer using the display subroutine of Example
lOin Chapter 9.

$0001 = CNTlO; contains the two low-order digits of the time interval
$0002 = CNTMI; contains the two middle-order digits of the time interval
$0003 = CNTHI; contains the two high-order digits of the time interval
$AOOI = PAD; Part A, bit PA7 is used to detect the pulses.

226

$A004 = T1C-L; a location that is read to clear the TI interrupt flag
$A005 = T1 L-H
$AOO6 = TI L-L
$AOOB = ACR
$AOOE = IER
$A404 = IRQL; contains the low-order byte of the interrupt vector
$A405 = IRQH; contains the high-order byte of the interrupt vector

0200 A944 START LOA $44 Get the low-ord er byte of the IRQ
vector.

0202 80 04 A4 STA IRQL Store it in IRQL.
0205 A902 LOA $02 Get the high-order byte of the IRQ

vector.

0207 80 05 A4 STA IRQH Store it in IRQH.
020A F8 SED Set decimal·mode flag for decimal

addition.
020B 18 CLC Clear carry flag for addition.
020C A900 AGAIN LOA $00 Clear counter locations.
020E 85 01 STA CNTLO
0210 85 02 STA CNTMI

0212 85 03 STA CNTHI
0214 A940 LOA $40 Set bit six of A to one. Store the
0216 80 OB AO STA ACR result in the ACR to put T1 in free-

running mode.

0219 A9 CO LOA $CO Set bits six and seven of A to one.
0218 80 OE AO STA IER This result into IER enables T1

interrupts.
021E A962 LOA $62 The time between interrupts will be

0220 80 06 AO STA T'lL-L $62 + 2 = 100,0 clock cycles.

0223 A900 LOA $00 Clear accumulator.

0225 2C 01 AO WAIT BIT PAD Is PA7 at logic I?

0228 30 FB BMI WAIT Yes; wait for a negative transition.

022A 2C 01 AO IDLE BIT PAD No; then negative pulse has begun.

0220 10 FB BPL IDLE Wait for positive transition.
022F 8005 AO STA T1L-H Put $00 in TI L-H, then start timing.
0232 58 CLI Clear interrupt flag to allow

interrupts.
0233 2C 01 AO LOAF BIT PAD Wait for next negative pulse.
0236 30 FB BMI LOAF
0238 2C 01 AO BACK BIT PAD

0238 10 FB BPL BACK

0230 78 SEI Pulse is complete; prevent further
interrupts.

023E 20 40 03 JSR OISPLY See Example 10, Chapter 9 for
display subroutine

0241 4C OC 02 JMP AGAIN Return to make another
measurement.

0244 48 IRQ PHA Save accumulator during the
interrupt.

0245 A901 LOA $01 Increment counters during each

0247 65 01 AOC CNTlO interrupt, that is, every 100
microseconds.

0249 85 01 STA CNTLO Result into counter low·order byte.

024B A900 LOA $00 Clear accumulator.

0240 65 02 AOC CNTMI Add carry from previous add to

227

024F 85 02 STA CNTMI middle-order byte of the counter_

0251 A900 LOA $00 Clear accumulator_
0253 65 03 AOC CNTHI Add carry fram previous add to the

0255 85 03 STA CNTHI high-order byte of the counter.
0257 AD 04 AO LOA TlC-L Clear 6522 timer Tl interrupt flag.
025A 68 PLA Restore accumulotor.

0258 40 RTI Return from interrupt.

A flowchart that presents most of the important features of the
program in Example 7 is shown in Fig. 10-7_ The instructions in
Example 7 that relate directly to the operation of the T1 timer
should be studied carefully. The instruction starting at address
$0216 sets up the ACR for timer T1 to operate in the free-running
mode with PB7 disabled. That is, PB7 will not toggle each time
that an interrupt occurs. The instruction starting at the address
$020B sets the IER to enable interrupts from the T1 timer. The
low-order byte of the counter is loaded with the instruction starting
at address $0220. Note that since the time between interrupts is
to be 10010 clock cycles we loaded $62 = 9810 into the counter. Two
additional cycles are used to reload the counter after each inter
rupt, giving exactly 100 clock cycles between interrupts. The high
order byte of the 16-bit number loaded into the counter is put there
with the instruction starting at the address $022F, directly after the
first negative pulse is detected. Recall that the timer starts counting
down directly after TIL-H is loaded. Directly after that instruction,
the 6502 interrupt Hag is cleared to allow the 6522 VIA to interrupt
it from timer Tl. The six-digit counter is incremented in the inter
rupt routine once every 100 microseconds thereafter, until another
negative pulse is detected. Note that one of the last instructions
in the interrupt routine is used to clear the 6522 interrupt from
the T1 timer.

To measure the time interval between positive pulses, change all
of the BMI instructions to BPL instructions, and vice versa. The
accuracy of the time measurements depends ultimately on the ac
curacy of the system clock. You should be aware that most crystal
oscillators on microcomputers like the KIM-I, SYM-1, and AIM 65
are not accurate to six significant figures. For example, the crystal
on the author's AIM 65 appears to have an error of 240 counts per
million counts. If you want to do laboratory-standard timing, you
will need laboratory-standard crystal oscillators.

The timer program may be used in many ways. We have used
similar programs to measure muzzle velocities, the acceleration of
gravity, the period of a square wave and to conduct simple stop
watch-type experiments. Note that mechanical switches are not
suitable to provide pulses at P A 7 unless they are debounced elec
tronically. Refer to Fig. 3-2 for suitable debouncing circuitry. Photo-

228

INITIALIZE
REGISTERS

AND
COUNTERS

INCREMENT
SIX-DIGIT
COUNTER

Fig. 10-7. Flowchart of Event Timing Program.

229

+---.--+- TO PA7 ~
TOPA7

~ FPT-IOO

"" GND

(al (bl

.------_-.- TO PA7

+---.--- TO PA7
B

GND GND

GND

(e) (d)

Fig. 10-8. Phototransistor Interface for Precision Timing Program of Example 7. Text
describes difference in (a), (b,), (cl, and (d) circuits.

cells and photo transistors make excellent event detectors. Several
possible interfaces involving phototransistors are shown in Fig.
10-8. The time between successive negative pulses produced by the
phototransistor circuit is displayed by the program of Example 7.

Circuit (a) in Fig. 10-8 produces a negative pulse whenever
the light to the phototransistor is interrupted. The 10K potentiometer
is adjusted to give the necessary pulse depth. Circuit (b) pro
duces a negative pulse when a light pulse strikes the phototran
sistor. Circuit (c) produces a negative pulse when the light to
either phototransistor A or B is interrupted. Circuit (d) produces
a negative pulse when a light pulse strikes either phototransistor
A or B.

The program in Example 7 can be easily modified to measure the
time for which pin PA 7 is at logic zero. It can also be modified to
start timing when a logic transition occurs at one pin of Port A and
to stop timing when a logic transition occurs at another pin of Port
A. The experiments at the end of the chapter go into some further
details. Do not attempt to use other than incandescent light sources

230

or LEDs operated from de voltages, or you may find that you are
timing the interval between ac pulses on the power line.

USING T1 TIMER TO IMPLEMENT FREQUENCY COUNTER

The second application of the T1 timer operating in the free
running mode is an event counter. It may be used to count the
number of events that produce a positive pulse at pin PA7 in a
programmed interval of time. As described here, the program is
used as a frequency counter, and the number of positive pulses
that OCCllJ' in one second is displayed by the display subroutine
of Example 10 in Chapter 9. However, the general principles are
applicable to any kind of events-counting problem, such as radio
active decay, cars passing by a certain point, a laboratory animal
going to his feeding station, the arrival of telephone calls, etc., pro
vided that one can construct an interface circuit that produces a
positive pulse on P A 7 for each event.

Since the T1 timer is operating in the same mode as in Example
7, details regarding setting up the various timer registers will not
be repeated. A flowchart of the program in Example 8 is shown
in Fig. 10-9. Although the time between interrupts is independent
of the time necessary to process the interrupt routine, this latter
time must be taken into account in this program because time spent
processing the interrupt routine is time not spent counting pulses.
We decided on a basic time interval of 50,000 cycles. Twenty of these
intervals gives a total counting time of 1 second, since each cycle
is 1 microsecond. Each interrupt requires a total of 36 cycles (add
the instruction cycles for each instruction in the interrupt routine,
remembering that the interrupt itself takes seven cycles and the
indirect jump required by the monitor takes five cycles). Thus, to
obtain a total counting time of 50,000 cycles. we must set the timer
for 50,000 + 36 - 2 cycles = 50,034 cycles. Recall that the time be
tween interrupts is N + 2, so we subtract two to get the correct
number of cvcles. So the timer should be loaded with 50,034 =
$C372. Twenty of these intervals should give a total counting time
of 1 second.

There is one additional minor complication. The first timing
interval is not begun with an interrupt, but rather with an ST A
T1L-H instruction. To make sure all 20 intervals are the same
length, we should, in principle, waste 36 cycles after the timer is
started the first time. This is the reason that in Example 8 we have
spent some time clearing counters and doing other odd jobs after
starting the timer for the first time. In this way, we were able to
take up 15 cycles leaving 21 cycles yet to waste. Instead of writing
another delay loop taking 21 cycles, we chose to reduce the total

231

Fig. 10-9. Flowchart of frequency counter in Example 8.

counting time of each of the twenty 50,000-cycle intervals by one
cycle. Thus, we used the number $C371 in the counter rather than
$C372. We are now within 1 microsecond of 1 second for our total
counting interval. This is more than sufficiently precise, and we
could have decided not to worry about the 21 cycles.

The location with address $0000 is used as the count-to-twenty
counter. It is loaded with 20 = $14 initially, and each interrupt
decrements it until 20 interrupts have occurred. Then the program
jumps to display the number of events counted. After displaying
the number of events counted with a six-digit counter, the counter

232

locations are initialized again and the process is repeated, glvmg
a new measurement about once every second. If an event counting
interval of ten seconds is desired, change the program byte at $021E
to 200 = $C8.

Largely because of the time needed to increment the six-digit
counter after each pulse is detected, there is a limit to the rate at
which pulses may be counted without missing them. This limit is
just above 20 kHz; in other words pulse rates of 20 kHz are ac
ceptable, but rates above this result in pulses not being counted.
To detect negative pulses, interchange the BMI and BPL instruc
tions at $0233 and $0238.

Although the most obvious use of the frequency-counter program
is to measure frequencies, there are other applications for an event
counter. Experiments in nuclear physics, chemistry, biology, and
medicine require nuclear-event counters. If some analog voltage
signal needs to be integrated, for example, the output of a gas
chromatograph, then a voltage-to-frequency converter connected to
the frequency counter may be used to integrate the voltage wave
form. Other things to count include rotations of a motor, heartbeats,
rotation of a turnstile, arrival of cosmic rays, and many others. Of
course, the timing interval may need to be changed, depending on
the nature of the events that are counted.

Example 8: Frequency Counter

Objective: Count the number of events that take place in 1 second and display the
result after each count.

$0000 = CNTR; contains number of 0.05-second intervals to be used in counting
$0001 = CNTLO; low-order byte of six-digit event counter
$0002 = CNTMI; middle-order byte of six-digit event counter
$0003 = CNTHI; high-order byte of six-digit event counter
$A001 = PAD; bit seven of Port A (PA7) is used as the input pin.
$A004 = T1 Col; this location is read to clear the 6522 interrupt flag
$AOO5 = T1 L-H
$A006 = TlL-L
$AOOS = ACR
$AOOE = IER
$A404 = IRQL; contains low-order byte of interrupt vector
$A405 = IRQH; contains high-order byte of interrupt vector

0200 A950 START LOA $50 Set up interrupt vector.
0202 80 04 A4 STA IRQL
0205 A902 LOA $02
0207 8005 A4 STA IRQH
020A A940 LOA $40 Set ACR so timer T1 operates in the
020C 80 OS AO STA ACR free-running mode.
020F A9 CO LOA $CO Set IER to enable T1 interrupts.
0211 800E AO STA IER
0214 20 40 03 OISP JSR DISPLY Use display subroutine from Example

10 in Chapter 9.
0217 F8 SED Set decimal mode for bed addition.

233

0218 A971 LOA $71 Set up T1 cou nter for 50,033 cycles

021A 80 06 AO STA Tl L-L (see text).

0210 A9 14 LOA $14 Set up 20 10 interval counter.

021F 85 00 STA CNTR

0221 A9 C3 LOA $C3 Start timer by loading its high-order

0223 80 05 AO STA TlL-H latch.

0226 A9 00 LOA $00 Clear counters.

0228 85 01 STA CNTLO

022A 85 02 STA CNTMI

022C 85 03 STA CNTHI

022E 58 CLI Allow interrupts to start.

022F EA NOP Use up two more cycles of time.

0230 2C 01 AO WAIT BIT PAO Is PA7 at logic zero?

0233 10 FB BPL WAIT Yes. Then wait for it to go high.

0235 2C 01 AO LOAF BIT PAO No. Then wait for it to go low again.

0238 30 FB BMI LOAF When it goes law, then a complete

023A 18 CLC pulse has been detected so increment

023B A501 LOA CNTLO the six-digit counter.
0230 69 01 AOC $01 Add one to the low-order byte.
023F 85 01 STA CNTLO Result into low-order byte of counter.
0241 A502 LOA CNTMI Corry from previous addition is added
0243 69 00 AOC $00 to middle-order byte of counter.
0245 85 02 STA CNTMI Result into middle-order byte.
0247 A503 LOA CNTHI Corry from previous addition is added
0249 69 00 AOC $00 to high·order byte of the counter.
024B 85 03 STA CNTHI Result into high-order byte.
0240 4C 30 02 JMP WAIT Return to count the next pulse.
0250 48 IRQ PHA
0251 C600 OEC CNTR Decrement cou nt-to-twenty cou nter.

0253 FO BF BEQ OISP If count is zero, 1 sec interval is
0255 AO 04 AO LOA TlC-L complete. Clear 6522 interrupt flag.
0258 68 PLA Get accumulator back,
0259 40 RTI then return from interrupt.

MAKING MUSIC USING T1 TIMER

A final program to demonstrate the Tl timer in the free-running
mode with PB7 enabled is given in Example 9. This program gen
erates a series of tones the frequencies of which are determined by
numbers loaded into the Tl timer from a table, and the durations of
which are determined by a number in a table that controls the
number of times the T2 timer times out. The program could easily
be modified to play simple songs. Simple programs like this may be
used for sound effects in electronic games, alarms and alarm clocks,
or music synthesis. A simple interface circuit is shown in Fig. 10-10.

The frequency of the tone is determined by the 16-bit number
loaded into the Tl timer. PB7 is complemented each time Tl times
out, so the number loaded into the T1 timer is l,~ the period of the
square wave at PB7, measured in microseconds. If 100010 is loaded
into Tl, then the period will be 2000 microseconds, or the frequency
will be 500 Hz. The desired periods are stored in a table in page

234

Fig. 1 ()'10. Output Circuit for Tone
Generation Program. PAJ >----1

three. Starting at address $0300, the first two bytes of the table in
page three contain the numbers to be loaded into TIL-L and
TIL-H, respectively. The next byte contains a number that de
termines the duration of this tone. Timer T2 is loaded with $C34E
corresponding to a time interval of about 0.05 second. The number
in the third byte of the table in page three determines the number
of 0.05-second intervals that the tone will play.

Information that determines the frequency and duration of the
next tone is stored at addresses $0303, $0304, and $0305, and so on
for as many tones as desired. The tone sequence or "song" will end
when a $00 appears in a duration byte. Note that the Y register
is used to index the tones and durations of the notes. Since each
tone requires three bytes of page three, a total of 8510 notes are
available if the song is confined to page three. Longer sequences of
notes may be played if a new base address is chosen after 8510 notes
are played, that is, if the song requires more memory space than
page three. A short sequence of notes is provided in the program.
The indirect indexed addressing mode was used so that a number
of tone sequences could be played by changing the base-address
low (BAL) and the base-address high (BAH) of the tone and
duration tables.

Sirens, vibrato, or other sound effects may be created with similar
programs by putting the frequency determining parameters in a
loop where they are incremented or decremented in small amounts,
and a single tone lasts for only a short period of time. You may
wish to impress your wife by implementing a "wolf whistle" when
she enters the room.

Example 9: Tone Generation Program

Objective: Use the PB7 toggle oplion of Ihe T1 limer 10 generole lanes.
$0000 = NOna; Conloins $00, Ihe BAl of Ihe lone frequency lable. low-order byles
$0001 = NOna + 1; Conlains $03. Ihe BAH of the lone frequency lable. low-order

byles
$0002 = NOTHI; Conlains $01, Ihe BAl of the lone frequency table, high-order bytes

235

$0003 = NOTHI + I; Contains $03, the BAH of the tone frequency table, high.order
byte

$0004 = OUR; Contains $02, the BAL of the tone duration table
$0005 = OUR + I; Contains $03, the BAH of the tone duration table.

$A005 = Tl L·H
$A006 = TlL·L
$A007 = Tl L·H
$A008 = T2L·L
$A009 = T2C·H
$AOOB = ACR
$AOOO = IFR

0200 A9 CO
0202 80 OB AO

0205 A900
0207 80 06 AO
020A 80 05 AO
0200 AO 00
020F BI 00
0211 80 06 AO
0214 BI 02
0216 80 07 AO
0219 BI 04
021B FO IB

0210 AA
021E A9 4E

0220 80 08 AO
0223 A9 C3
0225 80 09 AO
0228 A920
OnA 2C 00 AO
0220 FO FB
022F CA
0230 DO EC
0232 C8

0233 C8
0234 C8
0235 4C OF 02
0238 A900
023A 80 OB AO
0230 00

Step 1

START

OVER

AGAIN

WAIT

OUT

SIMPLE TONE TABLE
$0300 00 01 01 00
$0304 02 02 00 03
$0308 03 00 04 04
$030C 00 05 06 00
$0310 06 07 00 00

LOA $CO Set up ACR for Tl to operate in
STA ACR the free·running mode with PA7

enabled.
LOA $00 Start Tl running.
STA TlL·L
STA TlL·H
LOY $00 Initialize Y register.
LOA (NOTLO),Y Get low-order byte of half·period.
STA TlL·L Result into ti mer.

LOA (NOTHI),Y Get high·order byte of half·period.
STA TlL·H Result into timer.
LOA (OUR),Y Get duration of note.
BEQ OUT Duration::::; zero means end of

tone sequence.

TAX Duration into X register.
LOA $4E Total time = Duration X 0.05

second.
STA T2L·L
LOA $C3
STA T2C·H Start timer T2.
LOA $20 Check to see if time T2 flag is set.
BIT IFR
BEQ WAIT
OEX Decrement duration counter.

BNE AGAIN
INY Increment Y to get new tone

parameters.
INY
INY
JMP OVER Return to get another note.
LOA $00 Clear ACR.
STA ACR
BRK

EXPERIMENT NO.

Load the following program. The timer addresses listed are for
the KIM-I. See Table 10-2 to convert to the 6532 timers on the
AIM 65 or SYM-1. This program is a modification of Example 1 in
the text.

236

0200 A9 FF START LDA $FF Get number to be stored in the timer.
0202 8D 01 17 STA PADD Set Port A DDR to output data.
0205 8D 07 17 STA T1024 Store in 1024 timer and start timer.
0208 AD 07 17 LOOP LDA STATUS Read status flag of timer.
020B 8D 00 17 STA PAD Output status to Port A.
020E 10 F8 BPL LOOP Branch back to loop until time out.
0210 00 BRK

Step 2

Press your system RESET key. Execute the program. What do you
expect to observe on the Port A LEDs?

(The reset should cause all the LEDs to glow. When the program
is in the delay loop, the LEDs should all go out. Note that while
waiting for the timer to time out, hit seven and all the other bits
of the starns register are zero. When the timer goes through zero,
bit seven is set to one. Storing this in the output port causes the
PAO LED to glow. All the other bits remain at zero. Thus, running
the program should cause the PAO LED to go out for about Y± second
and then it should light again.)

Step 3

Change the second byte of the program to something other than
$FF, making sure that it is an odd number to ensure that PAO re
mains as an output port. Rerun the program. What is the shortest
pulse you can observe on P AO? Each count of the T1024 timer is
1.024 milliseconds, or approximately 1 millisecond.

EXPERIMENT NO. 2

Step 1

Load the following program. The timer addresses listed are for
the KIM-I. See Table 10-2 to convert to the 6532 timer on the
AIM 65 or SYM-l. This program is a modification of Example 1
in the text.

0200 A9 FF
0202 8D 01 17
0205 A900
0207 BD 00 17
020A A9 FF
020C BD 07 17
020F EE 00 17
0212 2C 07 17
0215 10 FB
0217 4C OA 02

START

OVER

LOOP

LDA $FF
STA PADD
LDA $00
STA PAD
LDA $FF
STA 11024
INC PAD
BIT STATUS
BPL LOOP
JMP OVER

Initialize Port A DDR so Port A is
an output port.
Initialize Port A pins to logic O.

Get number for timer.
Store in 1024 timer.
I ncrement contents of Port A.
Test bit seven of status register.
Loop until time out.
Repeat timing loop.

237

Step 2
Before executing the program, predict what will happen with the

Port A LEDs when the program is run. Then execute the program
to verify your prediction.

(The Port A LEDs should toggle on and off at a rate determined
by the number stored in the timer. PAl toggles at 'ifi the frequency
of PAO, PA2 at ~2 the frequency of PAl, and so on.)

Step 3
Restart the program and predict how long it will take to light

all the LEDs starting with them all dark. Use a stopwatch or sweep
second hand to measure the time. Is this number consistent with the
0.261 second of each delay?

Step 4
Experiment with other values for the byte at $020B and other

divide values; that is, with other timer locations.

(For step three above we obtained a time of 1 minute and 6 sec
onds. There are 254 delays and 254 X 0.261 second = 66.3 seconds.
Step 4 may be used to test other values when they are loaded into
the timer.)

EXPERIMENT NO. 3

Step 1

Load the following program. It is a variation of Example 2
described in the text. See Table 10-2 to convert the timer addresses
for execution on the AIM 65 (select the interrupt mode). SYM-l
users will not be able to do this timing experiment because the
6532 on the SYM-l is not connected to the IRQ line. Refer to Table
3-3 to find the AIM 65 Port A and Port A DDR addresses. Use a
jumper cable to connect PB7 on the 110 board to pin four on the
expansion connector on the KIM-l. The AIM 65 has the interrupt
line connected internally.

0200 A9 FF START LOA $FF Initialize the Port A OOR so
0202 80 01 17 STA PAOO Port A is an output port.
0205 58 Cli Clear interrupt disable flag.
0206 00 BRK Force the first interrupt.
0207 EA NOP No operation.

238

0208 4C 08 02 LOOP JMP LOOP Loop here until interrupt.
0208 A9 FF INTRPT LDA $FF Interrupt starts here.
020D 8D OF 17 STA III 024 Load divide-by-l 024 timer;

interrupt enabled.
0210 A901 LDA $01
0212 4D 00 17 EOR PAD Exclusive OR of $01 with contents

of Port A.
0215 8D 00 17 STA PAD Result into Port A.
0218 40 RTI Return from interrupt.

Step 2

Load the interrupt vector ($020B) by putting $OB into location
$17FE on the KIM-lor $A404 on the AIM 65 and by putting $02
into location $17FF on the KIM-lor $A405 on the AIM 65.

Step 3

Before running the program, analyze it and describe what you
expect to observe on the Port A LEDs.

Step 4

Run the program, then explain what you observe.

(You should observe that the P AO LED toggles; that is, it turns
off and on at intervals of about 0.26 second. You have produced
a square waveform with a period of approximately 0.52 second.
Recall from the chapter on logical operations that an EOR with a
logic 1 produces the complement. Each time an interrupt occurs,
bit PAO is complemented; that is, its logic level is changed causing
the LED to switch.)

Step 5

What is the smallest number you can load into the timer register
and still perceive the LED blinking as opposed to a continuous
glow?

Step 6

Change the byte at the location whose address is $0211 to $05.
Also, initialize Port A to $01 by loading $01 into the location with
address $1700. Now run the program, using $FF as the number to
be loaded into the timer register. Explain what you observe. Can
you think of a use for this last result? The author couldn't; but he
was fascinated by the blinking lights.

239

EXPERIMENT NO. 4

Step 1

In the program listed in Experiment 3 change the instructions
from $0210 to the end of the interrupt routine to the instructions
given below.

0210 EE 00 17
0213 CE 00 17
0216 40

Step 2

INC PAD
DEC PAD
RTI

I ncrement the contents of Port A.
Decrement the contents of Port A.
Return from interrupt.

Load the interrupt vectors as outlined in Step 2 of Experiment
No.3. Also, initialize the contents of PAD (Port A) to $00.

Step 3

Describe how you think this altered program will affect pin PAO
when the program is running.

(It should produce a positive pulse on pin PAO of about six micro
seconds in duration. Review the INC and DEC instructions if neces
sary.)

Step 4

Attach a frequency counter to pin PAO. Then try the following
numbers with the corresponding timer address:

I. $50 $17OC T0001; Divide by one timer.
2. $7A $1700 T0008; Divide by eight timer.
3. $9C $170E TOO64; Divide by 64 timer.
4. $62 $170F Tl024; Divide by 1024 timer.

Note what frequencies are produced at PAO with the above values
used in the program.

(We observed a frequency of 9.80 kHz for case 1, 1004 Hz for case
2, 99.9 Hz for case 3, and 9.98 Hz for case 4. These correspond to
periods between pulses of 102 microseconds, 996 microseconds, 10.0
milliseconds, and 100 milliseconds, respectively. Note that for many
applications these values are close enough to 100 microseconds, 1
millisecond, 10 milliseconds, and 100 milliseconds to make time
measurements. No error is larger than 2%, and three errors were less
than 1%.)

240

EXPERIMENT NO. 5

Step 1

In the program listed in Experiment No.3, change the instruc
tions from $0210 to the end of the interrupt routine with the in
structions listed below.
0210 2E 00 17
0213 40

Step 2

ROL PAD
RTI

Rotate the contents of Port A to the left.
Return from interrupt.

Make sure the program loads the number $FF into the divide
by-1024 interval timer by checking the program bytes located at
$020C and at $020E. Make sure the interrupt vectors are loaded.

Step 3

Before running the program, first load $FF into PADD, then
load $01 into PAD. The PAO LED should glow; all others should be
dark.

Step 4

Execute the program and describe what you observe.

(We observed that the one in bit zero of Port A was shifted left
at intervals of about 0.26 second, causing the LEDs to light. The
lights to the left of the P AO LED successively light and then go
out as the one is shifted left. The peculiar thing is that the one
does not reappear in bit zero as would be expected with a ROL
instruction. Why does the one not reappear in bit zero of Port A?)

Step 5
Load all zeros into PAD after initializing PADD to $FF. All the

LEDs should be out. Now set the carry flag by loading the P
register with $01. Run the program and describe what you observe.

(We observed that when the program ran, the LEDs at Port A
were turned on from right to left until they all glowed. They then
remained glowing.)

Step 6
Modify the program listed in Experiment No.3 again. Change the

instructions from $0210 to the end of the interrupt routine with the
instructions listed below.

241

0210 28 PLP Get P register from the stack.
0211 2E 00 17 ROL PAD Rotate the contents of Port A to the left.

0214 08 PHP Place P register on the stack.
0215 40 RTI Return from interrupt.

Step 7

Repeat Steps 2, 3, and 4 of this experiment. Compare the be
havior of the modified program as observed on the Port A LEDs
with the behavior of the unmodified program. Describe your re
sults and then write an explanation. In your explanation tell how a
PLP can be used before a PHP instruction, when the opposite order
is the usual one. Why does the ROL instruction produce the ex
pected results with the modified program? A good knowledge of the
stack operation is necessary at this point. You may wish to refer to
Chapter 9.

EXPERIMENT NO. 6
Step 1

Load the following program. It is very similar to Example 4
described in the text.

0200 A9 FF START LOA $FF Load $FF into the Port A OOR
0202 80 03 AO STA PAOO to make it an output port.
0205 A930 BACK LOA $30 Get data for T2L·l.
0207 80 08 AO STA T2L-L Store it in the timer.
020A A990 LOA $99 Get data for T2C-H.
020C 80 09 AO STA T2C-H Store it in the timer and start the timer.
020F A9 20 DELAY LOA $20 Set bit five in A to one.
0211 20 00 AO AND IFR AND A with bit five of the IFR.
0214 80 01 AO STA PAD Output result to PAD.
0217 Fa F6 BEQ DELAY Branch back if result is zero.
0219 00 BRK Jump to monitor.

Step 2

Describe what you expect to observe on the Port A LEDs when
this program is executed. Run the program and explain what you
observe.

(You should observe that the LED associated with bit five, PA5, of
Port A glows. The reason is that this bit is set to one by storing
the contents of the IFR in Port A after time-out, that is, when bit
IFR5 has been set to one by the timer timing out.)

Step 3

Modify the instructions starting at $020F in the program in Step 1
as shown next.

242

020F EE 01 AO INC PAD Increment the contents of PAD.
0212 A920 LOA $20 Set bit five of A to one.
0214 2C 00 AO DELAY BIT IFR AND with IFR.
0217 FO FB BEQ DELAY Branch back until time·out.
0219 4C 05 02 JMP BACK Jump to delay again.

Step 4

Describe what you expect to observe on the Port A LEDs. Run
the program and confirm your suspicions.

Step 5

With a stopwatch or sweep second hand, time the interval be
tween the events when all the LEDs are dark. Compare this with
the time you calculate 255 loops will take. They should be approxi
mately the same.

EXPERIMENT NO. 7

Step 1

Load the following program.

0200 A920
0202 80 OB AO
0205 A906
0207 80 08 AO
020A A900
020C 80 09 AO
020F A920
0211 2C 00 AO
0214 FO FB
0216 00

Step 2

START

CNT

lOA $20
STA ACR
LOA $06
STA T2L-L
LOA $00
STA T2C-H
LOA $20
BIT I FR
BEQ CNT
BRK

Set bit five of A to one.
Load A into the ACR of the 6522.

Store six in T2L-L.

Store zero in T2C-H.
Set bit five of A to one.
AND A with the IFR.
Branch back until IFRS is set.
Then break to the monitor.

Clearly we are using the T2 timer. What mode is it in? Check
Fig. 10-6. What should the timer do in this mode?

(The timer is in the pulse counting mode. It should count pulses
at pin PB6 until ($06 + 1) pulses have occurred; then it should
set the interrupt flag and jump to the monitor.)

Step 3

Using the I/O board connected to the application port, carefully
connect a jumper from pin 9 to pin 17, connecting PBO to PB6.
Note we are not using PBO, but we will use the PBO I/O switch to
pulse PB6. This can only be done on the AIM 65.

243

Step 4
Switch the PBO switch from logic 1 to logic 0 after starting the

program. What happens? Switch the PBO switch several more times.
How many times must you switch it before the program breaks to
the monitor? Why?

(Since the T2 timer counts through zero, it will require N + 1
pulses at PB6 to decrement the timer through zero, where N is the
number loaded into the timer.)

Step 5
Modify the bytes at addresses $0206 and $020B to be $10 and $OE,

respectively, Connect the 60-Hz power line signal conditioner cir
cuit of Fig. 9-7 to pin 17 of the application connector. Connect
the input of the 555 to a 60-Hz source.

Step 6

When the second hand on your watch crosses 12, start the pro
gram running. How long will it be before it breaks to the monitor?
Measure the time on your watch.

($OElO = 3600 so it should require (3600 + 1) counts before the
T2 timer counts to zero. At 60 counts/sec this should take about 60
sec = 1 min.)

Step 7

If you have a signal generator, set it to about 65 kHz. Instead
of loading $OElO into the counter, load $FFFF into it. Run the
program. How long will it take to count to zero?

(It should take about one second.)

EXPERIMENT NO. 8
Step 1

To test the event timer and the frequency counter programs you
will need a signal generator or some other source that produces
positive or negative pulses. A simple 555 multivibrator circuit will
do, and one is shown in Fig. 10-11. The frequency may be adjusted
by changing the values of R1, R2 , or CT. The frequency f in Hz is
determined from the formula

244

f = 1.443
(R1 +2R2)Gl'

If you do not have a signal generator with a square-wave output,
then breadboard the circuit shown in Fig. 10-11.

,-----.----.--+ Vee 15V)

OUTPUT 3
555

Fig. 10·11. Basic 555 Astable Multivibrator (Pulse GeneratorJ.

Step 2

Load the event timer program. Connect the square wave signal
generator to PA 7 (pin 8 of the application connector), making
sure the computer and the signal generator have a common ground.
Adjust the frequency of the signal generator to be about 100 Hz.

Step 3

'Vl1at is the time interval between successive negative pulses with
a frequency of 100 Hz? What number do you predict will show on
the display?

(The interval between successive negative pulses with a l00-Hz
square wave is 0.01 second, or 100 X 10- 4 second. Since the time
is given in units of 100 microseconds = 10- 4 second, the display
should read about 000100.)

Step 4

Load the frequency counter program and measure the frequency
of the same square wave. You should find that f = l/T where f is in
hertz and T is the time interval measured in Step 3 in seconds.

Step 5

Increase the frequency of the signal to about 20 kHz. Does the
frequency counter give correct results compared to the calibration
of the signal generator? If you have another frequency counter

245

available, check the computer measured frequency with the result
of the frequency counter.

(We found that the laboratory frequency counter and the computer
frequency counter were the same to within about 5 cycles. The 5
cycles was explained by a measurement of the crystal frequency of
the author's computer that showed it to be running slow.)

Step 6

Increase the frequency of the signal generator to frequencies
above 20 kHz, comparing the result given by the computer to either
the dial value or to another measurement. What do you regard as
the maximum frequency that may be measured with the computer?

Step 7

How would you modify the timing program to measure the time
duration that PA7 is at logic zero? Flowchart your answer, then
program and test it.

(The most important features of the flowchart are shown in Fig.
10-12.)

Step 8

Here are some further questions to consider: How could you
measure very long (hours or days) intervals? Would a 24-hour

246

Fig. 10-12. Flowchart of Modified
Event Timer.

clock be useful for this task? Can you modify the 24-hour clock
program to produce a tone sequence at a preset time; that is, an
alarm? In the tone sequence program, calculate the half-periods
in microseconds that would be required to play several octaves of
the equally tempered scale (A = 440 Hz). Write a program to
count events or frequencies using the PA6 pulse-counting mode of
timer T2.

247

PA RT II

Interfacing the 6502

Introduction to Part II

The term interfacing means different things to different people in
the world of microcomputers. For some it means connecting the
computer to devices in the real world. A smoke detector, for exam
ple, may produce an input signal for a computer; a relay to drive a
sprinkler system may act in response to a voltage level on an output
pin of a computer. For others the term means connecting various
integrated circuits and devices to make a microcomputer system.
For example, how can additional R/W memory be added to an exist
ing microcomputer system? For that matter, how could one build a
microcomputer from scratch?

Both uses of the term "interfacing" are equally valid, but it is the
latter interpretation of interfacing that will most correctly describe
the position taken in Part II of this book. The microcomputer and
any devices it controls should be regarded as a complete system,
and developing and designing such a system would properly be
described as interfacing. However, we have neither the time nor the
space to describe the host of microcomputer-based designs, so we
will concentrate on interfacing components up to and including I/O
ports. In particular, the next three chapters have an underlying
theme which is to configure several memory-mapped I/O ports. The
principles learned in following this theme are generally applicable
to interfacing problems. In Chapter 14 some designs that illustrate
interfaces with the real world will be given.

Some background information and knowledge will be assumed.
Experience with, and knowledge of, TTL or CMOS logic families
will be extremely useful, if not necessary. In particular, the action
of the various gates, flip-flops, and decoders should be understood.
You should be able to read a truth table, understand binary and hex-

251

adecimal numbers, and know the most elementary Boolean opera
tions. Readers not having this background may wish to study other
books on these subjects in the Blacksburg Continuing Education
Series™. The knowledge acquired in mastering Part I of this book
will also be assumed. You are urged to re-read Chapter 1 of this
book before beginning Part II.

Vss RES 40

2 RDY ~2(OUT) 39

3 ~ dOUT) S.O. 38

IRQ ~o (IN) 37

N.C. N.C. 36

6 NMT N.C. 35

SYNC R/W 34

Vee DO 33

9 AO D1 32

10 Al D2 31

11 A2 6502
D3 30 Fig. 11·1. Pinout Diagram of 6502

12 A3 29
Microprocessor.

D4

13 A4 D5 28

14 AS D6 27

15 A6 D7 26

16 A7 AI5 25

17 A8 AI4 24

.18 A9 AI3 23

19 AIO AI2 22

20 All Vss 21

N.C. = NO CONNECTION

The various pins of the 6502 microprocessor are conveniently di
vided into five groups. These five groups will help us to organize the
subject matter in the next few chapters. A pinout diagram of the
6502 is shown in Fig. II-l.

• The pins used to supply power to the 6502. These include pin
8 for the +5.0 V de ±5% (Vee) supply and pins 1 and 21 for
the ground (V BS) connections.

• The address bus pins. There are 16 address bus pins, including
pins 9 through 20 and pins 22 through 25. These are desig
nated A15-AO.

252

• The bidirectional data bus pins. There are eight data bus pins
from pin 26 through pin 33. These are designated D7-DO.

• The control bus pins. There are eight of these pins, including pin
2, RDY; pin 3,CPl (out); pin 7, SYNC; pin 34, R/W; pin 37, cpo
(in); pin 38, S.O.; pin 39, CP2 (out); and pin 40, RES.

• The interrupt pins. There are two such pins, pin 4, IRQ, and pin
6, NMI. The function of these two pins has already been de
scribed in Chapter 9.

The next three chapters in this book are divided according to pin
functions. In Chapter 11, we will deal with the address bus, includ
ing decoding and generating device select pulses. In Chapter 12,
we will discuss the control bus, and in Chapter 13, we will deal with
the bidirectional data bus. Of course, there will be some overlap. Our
treatment of these topics is intended to be introductory rather than
encyclopedic, since this book is intended for beginners more than
for experts. When these chapters are completed, you should be able
to understand how a microcomputer system works and, perhaps, you
will be ready to create, add to, or remodel your own 6502-based
microcomputer system.

Three final notes before beginning. First, you may wish to obtain
a TTL Data Book, if you do not already have one. Either the data
book published (1976) by Texas Instruments (P.O. Box 5012, Dal
las, TX 75222), or the one published (1976) by National Semicon
ductor (2900 Semiconductor Drive, Santa Clara, CA 95051) will do.
Second, complete pinout diagrams for the TTL integrated circuits
used in the experiments are given in Appendix D. Finally, some of
the material presented in the next few chapters was originally pub
lished in MICRO, a monthly joumal devoted to 6502-based systems,
and it is used with permission of the publisher.

253

CHAPTER 11

Address Decoding

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the need for address decoding circuits in a micro
computer system.

• Understand what the function of a device select pulse is, and
how device select pulses may be generated.

• Design simple address decoding circuits to generate device
select pulses for any memory location.

INTRODUCTION

While executing a program, the 6502 receives bytes of data from a
variety of devices, and it sends bytes of data to one or more devices.
Recall from Chapter 1 that a READ operation causes eight bits of
data to be transferred from some location in memory to the micro
processor, while a WRITE operation causes eight bits of data to be
transferred from the microprocessor to some location in memory.
The locations in memory that supply data to the microprocessor may
be R/W memory, ROM, a memory-mapped keyboard-input port,
floppy-disc port, UART, A/D converter, or a variety of other devices.
The 6502 processes the bytes of data it reads, and then writes data
back either to R/W memory, to a teletypewriter output port, video
monitor, relay, interval timer, D/ A converter, or some other device.

It is the purpose of the address pins on the 6502 to place a set of
signals on the address bus to select the memory location or the device
that is going to either supply or receive eight bits of data. The set

254

of signals that we speak of is a set of zero or one logic levels on the
16 address lines, AIS-AO, that constitute the address bus. Typically,
a logic zero or binary zero corresponds to a voltage level near zero,
while a logic one or binary one corresponds to a voltage level near
S volts. The logic levels on the 16-bit address bus are interpreted as
a 16-bit binary number that we have been calling the address of a
memory location, and that we have been representing by a four-digit
hexadecimal number. Each memory location (and, hence, each de
vice) in the computer system has a unique address, and when the
6502 places an address on the address bus, the uniquely addressed
device or location must be activated.

Circuits that are connected to the address bus to produce a signal
when a particular address appears on the address bus are called
decoders. A decoding circuit may include one or more integrated
circuits. When the correct address appears on the address bus, the
output of the decoder changes to the logic level (usually zero) nec
essary to activate the device that is to supply or receive data. This
signal is called a device select pulse, a chip select pulse, or a port
select pulse. In thi~ook, we will use the term "device select pulse,"
and the notation "DS" will be used to indicate device select pulses
in diagrams. The bar over the "DS" means that the signal is "active
low"; in other words, the device selected is activated by a logic-zero
voltage level.

The READ and WRITE operations take place at regular intervals
determined by the system clock frequency. Many 6502 systems use
a I-megahertz clock frequency, so each READ or WRITE cycle is
1 microsecond in duration. Every cycle of the clock corresponds to
either one READ operation or one WRITE operation. (In some
addressing modes the data that is read is discarded because the mi
croprocessor is actually using that cycle for another purpose.) The
memory locations in a 6502 system, including R/W memory, RO:Vl,
I/O ports, and interval timers, are accessed a million times every
second. Since different memory locations are accessed on subsequent
clock cycles, there is a different address on the address bus once
every microsecond. That is the reason the device select signal is re
ferred to as a pulse. The device select pulse is typically 1 microsec
ond in duration.

A schematic overview of the microcomputer system, as just de
scribed, is shown in Fig. 11-1. We shall refer to this figure again, but
for now we will use it in conjunction with the following summary
of the READ and WRITE operations:

• A READ cycle is 1 microsecond in duration. During the first
part of that cycle, the microprocessor places the address of the
memory location to be read on the address bus. The decoding

255

6502
MICRO·

PROCESSOR

ADDRESS
DECODER DEVICE SELECT LINES

Fig. 11-1. Bloclo: diagram of 6502 System. Various memory locations, R/W Memory,
ROM, etc., may decode some address lines internally, while highest-order address lines

are decoded by decoding circuitry represented by ADDRESS DECODER block.

circuitry responds to that address by producing a device select
pulse that activates one of the 65536 locations in the address
space. The byte stored at that location is placed on the data bus,
and the byte is stored in the 6502 microprocessor later in the
I-microsecond cycle.

• A WRITE cycle is 1 microsecond in duration. During the first
part of that cycle, the microprocessor places the address of the
memory location that is to receive the byte of data on the ad
dress bus. The decoding circuitry responds to that address by
producing a device select pulse that activates one of the 65536
locations in the address space. Near the end of the cycle, the
6502 places the byte of data on the data bus, and the active
memory location stores it at the end of the I-microsecond cycle.

We now turn to a more elaborate description of address decoding.

ADDRESS DECODING

Fig. 11-2 indicates how a microprocessor with only one address
line might generate device select pulses. When its single address
line, called AO, is a logic one, then the device select line labeled
DSO is at logic ~, and any device connected to it is activated.
Meanwhile, the DSI signal is at logic one, so a device connected to
it is disabled_ We are assuming, unless otherwise stated, that all
devices in the address space are activated by logic-zero signals. In

256

ADDRESS LINE D ~
MICRO-

V
PROCESSOR

Fig 11-2. Hypothetical decoding scheme for one-address-line microprocessor.

any case, a one-address-line microcomputer can have only two mem
ory locations. Table 11-1 is the decoder truth table.

Fig. 11-3 shows how a microprocessor with two address lines, Al
and AO, might be decoded. A 74139 decoder/demultiplexer could be
used to generate four device select pulses, DS3-DSO. Refer to the
truth table of the 74139 shown in Table 11-2. When both AO and

II +5V
16

AD 2
A YO 4

Al 3 B Yl 5 DSI

MICRO· Y2 6
PROCESSOR r G

Y3 7

J8
DS3

-l GND

Fig. 11-3. Hypothetical decoding scheme for a two-address-line microprocessor
(decoder shown is 74139).

Table 11.1. Truth Table for One Line Decoder

AO

o
DSO

1
o

DSI

o

Table 11·2_ Truth Table for Two Line Decoder, 74139

AO Al DSO DSI DS2 DS3

0 0 0 1 1 1
0 1 1 0 I I
I 0 I I 0 I
I I I i I 0

257

Al are at logic zero, then DSO is at logic zero, and the device con
nected to it would be active. The truth table in Table 11-2 indicates
the address line logic levels necessary to produce the other device
selects. This kind of microprocessor system is not to be taken too
literally, but it does illustrate the techniques necessary to produce
a unique device select pulse for every possible address that is placed
on the address bus.

A little inductive reasoning can be used to proceed further. If a
microprocessor with one address line can be decoded to produce
two device select pulses, and a microprocessor with two address lines
can be decoded to produce four device select pulses, then it appears
that the number of unique device select pulses that may be obtained
from n address lines is 2n. This is in fact the case and, consequently,
the 16 address lines of the 6502 microprocessor may be decoded to
give 216 = 65536 = ($FFFF + 1) device selects. This is the reason
there are a total of 65536 memory locations in the memory space of
the 6502.

Clearly, no single integrated circuit can be used to simultaneously
decode all 16 address lines and provide an output pin for each device
select pulse. Fortunately for the designer, it is usually not necessary
to decode all 16 lines. Many RjW memory integrated circuits and
ROM ICs decode the low-order address lines (A9-AO, for example)
internally. The 6102 RjW memory integrated circuits and the 6530
ROM, R/W, I/O, and timer integrated circuits on the Kn.l-1 decode
address lines A9-AO. Likewise, the 2104 RjW ICs on the AIM 65
and the SYM-1 decode the ten lowest-order address lines internally.
The 2332 ROM chips on the AIM 65 or SYM-l decode address lines
All-AO internally. That is why in Fig. 11-1 we showed the address
bus connected directly to the R/\V memory locations as well as to
the decoding circuitry. The decoding circuitry handles the high
order address lines for the various integrated circuits or other de
vices in the microcomputer system, while the low-order address lines
are decoded by the integrated circuits themselves. Although in cer
tain circumstances a designer may be required to decode all 16
address lines, there are numerous other circumstances in which only
the highest-order address lines need to be decoded.

Consequently, our problem is to decode the highest-order address
lines, at least initially. These lines are usually decoded to form blocks
of address space. Before we see how this is done, some familiarity
with the concept of address-space blocks is desirable. You may wish
to refer again to Tables 1-2 and A-3 for this discussion.

Address line A15 is at logic zero for all addresses from $0000
through $7FFF, and it is at logic one for all addresses from $8000
through $FFFF, dividing the address space into two blocks each
with $8000 = 3276810 memory locations. In most computer systems,

258

102410 ($0400) memory locations are usually referred to as 1K of
memory. Dividing 1024 into 32768 gives 32; thus address line A15
divides the address space into two 32K blocks. Table 11-3 indicates
the logic level of A15 and the addresses associated with this level.

Table 11-3. Dividing Address Space Into 32K Blocks
With Address Line A 15

A 15 Addresses

o $OOOD-$7FFF
$800D-$FFFF

Fig. 11-4 shows how a 7404 inverter could be used to provide the
necessary "decoding." In some microcomputer systems, A15 is used
to divide the address space so that R/W memory is in the lower
32K locations, while ROM, I/O ports, and interval timers are in the

A15 >-~.....------- DSO

ADDRESSES

$0000 - $7FFF

/'0--. DS8 $8000- $FFFF

Fig. 11·4. Decoding circuit for dividing Address space into 32Kblocks.

upper 32K locations. In many microcomputer systems, not all of the
64K "spaces" or locations are actually occupied by memory chips.
Just because the address lines and decoders are available does not
mean that they must be used.

Refer to Table A-3, or call on your knowledge of 16-bit binary
numbers, and note that bit 14 of a 16-bit binary number is zero for
half of the numbers bdween $8000 and $FFFF, while it is one for
the other half of these numbers. Bit 14 similarly divides the hexa
decimal numbers between $0000 and $7FFF into two groups. Thus,
each 32K block of address space may be divided into two 16K blocks
by the logic levels associated with A14. Table 11-4 illustrates how

Table 11-4. Dividing Address Space Into 16K Blocks
With Address Lines A 15 and A 14

A15 A14 Addresses

0 0 $OOOQ-$3FFF
0 1 $4000-$7FFF

0 $800D-$BFFF
$COOD-$FFFF

259

+5V

16 ADDRESSES
2 A 4 A14 YO DSO $0000-$3FFF

A15
3

B Yl DS4 $4000-$7FFF

Y2
6

DS8 $8000- $BFFF
G

Y3 DSC $COOO - $FFFF

8

GND

Fig. l1·S. Decoding circuit using 74139 to divide Address space into 16K blocks.

this works, and Fig. 11-5 shows a 74139 decoding address lines A15
and A14 to produce device select pulses for each 16K block. In Fig.
11-5 we indicate the range of addresses that will produce the corre
sponding device select pulse. For example, any address in the range
$4000 to $7FFF will produce a device select pulse at the Yl (pin 5)
output of the 74139. The digit in the "DSn" symbolism identifies the
first digit in the lowest address that the decoder will enable.

Proceeding inductively again, if one address line (AI5) divides
the address space into two 32K blocks, and two address lines (A15
and A14) divide the address apace into four 16K blocks, then three
address lines (AI5, A14, and A13) could be decoded and used to
divide the address space into eight 8K blocks, four address lines
(AI5, A14, A13, and A12) could be decoded and use to divide the
address space into sixteen 4K blocks, and n address lines divide the
address space into 2n blocks. How many address lines must be de
coded to divide the address space into lK blocks? There are sixty
four lK blocks in the address space of the 6502. Since 26 = 64, six
address lines (AI5, A14, A13, A12, All, and AlO) are required.
Many popular R/W memory chips decode the remaining ten address
lines internally, as noted above.

In Fig. 11-6 we show how a 74138 Decoder/Demultiplexer may
be used to divide the address space into 8K blocks. The logic levels
of the address lines A15, A14, and A13 associated with each 8K
block are presented in Table 11-5. Since we will refer to these blocks
again, we have given each block of 8K memory locations a name,
as indicated in Table 11-5. The names help to identify the location
of the 8K block in the address space. The truth table of the 74138
given in Table 11-6 should be used in conjunction with Table 11-5
to verify the behavior of the 74138 decoding circuit shown in Fig.
11-6.

260

+5V

16 ADDRESSES
15

$OOOO-$IFFF YO DSO
6 GI 14

Y1 DS2 $2000 - $3FFF
13

1 A
Y2 DS4 $4000 - $5FFF

A!3 12
Y3 DS6 $6000 - $7FFF

2 B 11

3 C
Y4 DS8 $8000 - $9FFF

10
4 Y5 DSA $AOOO - $BFFF

G2A 9
5 Y6 DSC $COOO - $DFFF

G2B 7
Y7 DSE $EOOO - $FFFF

"7 GND

Fig. 11·6. Decoding circuit using 74138 to divide Address space into 8K blocks.

Table 11·5. Dividing Address Space Into 8K Blocks
With Address Lines A 15, A 14, and A 13

A15 A14 A13 Addresses Block Name

0 0 0 $OOOO-$lFFF SKO

0 0 I $2000-$3FFF SKI

0 I 0 $4000-$5FFF SK2
0 I 1 $6000-$7FFF SK3
I 0 0 $8000-$9FFF SK4
I 0 1 $AOOo-$SFFF SK5
I I 0 $COOG--$DFFF SK6
I I I $EOOG--$FFFF SK7

Note that in Figs. 11-4, 11-5, and 11-6, the device select pulses are
produced by any of the corresponding addresses given in these fig
ures. Thus, in Fig. 11-6, for example, DS6 will be at logic zero for

Table 11~6. Truth Table for 74138 Decoder

c B A Yo Y, Y2 Y3 Y. Ys Y6 Y7

0 0 0 0
0 0 1 0 I

0 0 0 1
0 I I 0 1

0 0 0 I

0 I I 0 1 1
0 I 0 1

0

261

any address in the range $6000--$7FFF. Clearly, additional decoding
is required if we demand that each address on the address bus pro
duces a unique device select pulse that activates a unique location
in memory.

ADDRESS DECODING FOR R/W MEMORY

To illustrate this idea begun in the previous paragraphs, let us ex
amine a hypothetical but realistic design problem. Suppose we want
the lowest 8K block of the address space to contain R/W memory.
In other words, the 8KO block with addresses from $0000 to $lFFF
is to contain the RjW memory for our microcomputer system. Also
assume that the R/W memory ICs we have chosen (2114 memory
chips, for example) internally decode the ten lowest-order address
lines, A9 through AO.

If the RjW memory chips decode address lines A9-AO, then we
must decode the remaining six address lines, Al5-AI0. We could
use a 74138 to decode the top three address lines, and another 74138
to decode address lines A12 through AlO. The device select from the
first 74138 will be used to activate the second 74138. Our final
scheme is shown in Fig. 11-7. (Note that there is nothing inherently
correct about one decoding scheme over another. There appear to
be as many different ways of decoding as there are designers.)

Observe that in Fig. 11-7 we have not shown all the device select
signals from the 74138 that decodes address lines Al5-A13. The
device select signal that is active for the 8KO block of address space,
addresses $OOOO--$lFFF, is connected to the G2A pin of the 74138
that decodes address lines A12 through AI0. This 74138 works (sup
plies device select pulses) only if G2A is low, as is indicated by the
inversion circle on the G2A pin. Otherwise this 74138 is disabled.
Refer again to Fig. 11-6 and note that G2A will be at logic zero for
all addresses from $OOOO--$lFFF, exactly the same addresses that are
decoded by the second 74138 introduced in Fig. 11-7.

We have identified the device select pulses from the second 74138
by the first two digits of the lowest address in the lK memory block
that they enable. Thus, DS04 is at logic zero for all addresses from
$0400 through $07FF, a lK block of address space.

For purposes of completeness, we conclude this little design prob
lem by showing how the 2114 RjW memory chips would be con
nected to provide lK of R/W memory. This is described by Fig.
11-8. Our main concern here is that the device select pulse DSOO is
connected to the so-called chip select pins of the two 2114 integrated
circuits, enabling them for addresses $0000 through $03FF, while
the 2114s themselves decode the lowest ten address lines, A9-AO.
The addresses $0000 through $03FF are said to be absolutely de-

262

+5V

16 ADDRESSES
IS

6 GI
YO DSOO $0000 ~ $03FF

14
Yl DS04 $0400 ~ $07FF

13
DS08 Y2 $0800 ~ $OBFF

I Po. 12
Y3 DSOC $oeOO - $OFFF

2 B 74138·2 11

3 C
Y4 DSIO $IOOO-$13FF

10
IS 4 Y5 DSI4 $1400~$17FF

I Po.
YO G2A 9

5 Y6 DSI8 $1800~$lBFF

2 B
G2B 7

Y7 DSle $ICOO~$IFFF

3 C 74138·1

~ GND
7

Y7

Fig. 11·7. Arrangement in which two 74138s are used to decode lowest 8K block of the
address space for R/W memory.

coded because each memory location in this block is activated by
one and only one address in the entire address space $OOOO-$FFFF
of the 6502 microprocessor.

There are address decoding schemes in which one or more address
lines are not decoded, and in those cases a particular memory loca
tion may be activated by several addresses rather than a single ad
dress, in contrast to absolute decoding. The KIM-l does not decode
address lines A13 through A15, which means that location $IFFF,
for example, is also activated when addresses $3FFF, $5FFF,
$7FFF, ... , or $FFFF are on the address bus.

Note the data bus connections and the control line connections
for the 2114 R/W memory chips in Fig. l1-S. Each chip provides
lK-by-four data bits, or a total of 4K bits of memory. Two chips give
lK-by-eight data bits, or a total of SK bits of R/W memory. Since
eight bits make one byte, two 2114s give lK bytes of R/W memory.
To provide a full SK of R/W memory, the other seven device select
lines in Fig. 11-7 must each be connected to two 2114 integrated cir
cuits, requiring 162114 chips for SK of memory. The R/W control
line from the 6502 is connected to the write enable (WE) pin of
each 2114. An inverted cf>2 signal should also be connected to the

263

R/W

A9

A8

A7

A6

A5

A4

A3

A2

Al

AO

DO
01

D2

03

04

05

06
r\1

ADDRESSES $0000 $03FF -

+5V

18 10 8
15 WE CS
16

17

1

2

3
2114

4

7

6

5

14 13 12 11 1. GND

+5V

18 10 8
15 WE CS
16

17

1

2

3
2114

4

7

6

5

14 13 12
11 1 G ND

Fig. 11·8. Read/Write Memory Interface using two Ie memory chips for memory
locations with addresses $0000. $03FF.

G2B pin of the 74138 decoder that supplies the 15SOO device select
pulse. We shall postpone a more detailed discussion of the control
bus and data bus interfaces until the next two chapters. In any case,
you have enough information to provide your microcomputer system
with 1K to 8K of R/W memory.

I/O PORT ADDRESS DECODING

As pointed out in the introduction to Part II of the book, the gen
eral theme of these chapters on interfacing the 6502 will be the con-

264

figuration of several input/ output ports. We will show how this may
be done with standard 7400 series integrated circuits or, preferably,
with the 74LSOO series integrated circuits. In addition to learning the
fundamentals of interfacing, you will acquire the capability of add
ing several 1/ 0 ports with inexpensive, readily available integrated
circuits.

Our first problem is to decide where in the address space of the
microcomputer system to put the I/O ports. The general philosophy
in 6502 systems is to put R/W memory at the low-order addresses,
since page zero and page one should be R/W locations. Thus, the
KIM-l, AIM 65, and SYM-l all have lK of R/W memory supplied
and located at $0000 through $03FF. The three systems all make
provision for additional R/W memory to be added from $0400 up
ward.

The KIM-l provides device select pulses for an additional 4K of
R/W memory from address $0400 to address $13FF. The SYM-l
provides device select pulses for an additional 7K of memory from
address $0400 to address $IFFF. The AIM 65 provides device select
pulses for an additional 11K of R/W memory, from address $0400
to address $OFFF and from address $8000 to address $9FFF. The
address space on the AIM 65 from address $1000 to $7FFF is not
decoded. but it is available for expansion.

In 6502 systems ROM is generally placed high in the address
space. For example, the AIM 65 monitor is located at addresses
$EOOO through $FFFF. The KIM -1 has its monitor in the highest
decoded locations (remember, the KIM-l does not decode address
lines AI5-AI3). The SYM-l departs from this philosophy, and has
its monitor located from address $8000 to $8FFF.

The 6502 address space allocation philosophy usually has I/O
ports and interval timers somewhere between the R/W memory at
the low end of the address space and the ROM at the high end of
the address space. We decided to provide up to 16 1/ 0 ports at ad
dresses $9FFO to $9FFF. These addresses correspond to "empty"
memory locations in all three of the microcomputer systems. The
added I/O ports, in addition to providing us with an interfacing
problem, are also useful since the three microcomputer systems do
not have many of these ports. If you want to add an ASCII encoded
keyboard, video monitor, A/D converter, D/A converter, relays,
sense switches, LED indicators, and other I/O devices to your sys
tem, you will soon find that two ports are inadequate. Also, by locat
ing the I/O ports from addresses $9FFO to $9FFF, we will have
them out of the way of the other vital memory functions. The SYM-l
and AIM 65 have on-board decoders that will provide us with at
least one device select pulse, and this will help to minimize the addi
tional circuitry required to implement the I/O ports. On the other

265

hand, the KIM-1 will require additional circuitry since it does not
provide any device select pulses for these addresses, and since it
does not fully decode all the address lines.

The circuit for providing the necessary device select pulses for 16
I/O ports is shown in Fig. 11-9. In the next few paragraphs, we will
describe this circuit; do not expect to comprehend it with a single
glance. The 74138 decodes the four highest address lines (Al5-A12).
Since address line A15 is connected to the G1 input of the 74138, it
will provide no device selects for addresses below $8000. The truth
table for the 74138 is shown in Table 11-7, and it gives the logic
levels on the address lines A15 through A12 that produce the device
select pulses on the output pins. Table 11-7 also indicates which
addresses produce device select pulses. Note that the Yl output pin
of the 74138 is active (logic zero) for addresses $9000 through

+5V +5V

16 24 ""l...J
AI5 6 GI A 0

I
DS9FFO

74138 74154
2 DS9FF1

B AI4 3
DS9FF2

AI3 B C 4 DS9FF3

AI2 A D 4 DS9FF4

DS9FF5
14 --""",r- 19 7

VI G2 6 DS9FF6
DS9 ~18 8

DS9FF7 GI
8 DSXFF 9

DS9FF8

GND 10
DS9FF9

10
11

DS9FFA

II
13

DS9FFB

12
14

DS9FFC

13
15

DS9FFD +5V
14

16
DS9FFE 14

4 17
DS9FFF 15

7430 12
~ GND

~ GND

A4
12

Fig. 11·9. Device select pulse circuit for I/O ports.

266

Table 11·7. Truth Table for 74138 in Fig. 11·9

A15 A14 AI3 A12 YO YI Y2 Y3 Y4 Y5 Y6 Y7 Addresses

I 0 0 0 0 I 1 1 1 1 1 1 $8000-$8FFF
1 0 0 1 1 0 1 1 1 1 1 1 $9000-$9FFF
1 0 1 0 1 1 0 1 1 1 1 1 $AOOO-$AFFF
1 0 1 1 1 1 1 0 1 1 1 1 $BOOO-$BFFF
I 1 0 0 1 1 I 1 0 I I 1 $COOO-$CFFF
1 1 0 1 1 1 1 1 1 0 1 1 $DOOO-$DFFF
1 1 1 0 1 1 1 1 1 1 0 1 $EOOO-$EFFF
1 1 1 1 1 1 1 1 1 1 1 0 $FOOO-$FFFF

$9FFF; hence, that is the pin we will use for our device select pulse
DS9.

The 74138 decoder will produce device select pulses only when
both pins G2A and G2B are at logic zero, and they are both perma
nently connected to logic zero (GND). The 7430 NAND gate output
will be at logic zero only when all eight inputs are at logic one. The
eight inputs are address lines All through A4. Recall that address
bits All through A4 are the two "middle" nibbles of the address.
Thus, the output of the 7430 NA:'>ID gate will be at logic zero for
any address of the form $XFFX, where "X" is a "don't care" symbol
for one hex digit. That is why we have labeled the device select
signal from the 7430 NA.'>D gate with DSXFF.

Together the 74138 and the 7430 decode the 12 highest address
lines, and the 74154 will decode the lowest four address lines, A3-AO.
Note that the 74138 and the 7430 are connected to the Gl and G2
inputs of the 74154, enabling it only for addresses $9FFO through
$9FFF. The 74154 produces one active low output for each of these
addresses, as indicated to the right of the 74154 in Fig. 11-9. Since
all 16 address lines have been decoded, this is an absolute decoding
scheme. Each of the logic-zero device select pulses from the 74154
may be used to activate an input port device or an output port
device, as we shall see in the next two chapters. The decoding task
has been completed, except for a few odds and ends that we now
describe.

Both the AIM 65 and SYM-l have device select pulses developed
by their decoding circuitry that may be used instead of the 74138
in Fig. 11-9. The AIM 65 has a signal called CS9 available at pin 19
on its expansion connector, and this may be connected to the G2
input (pin 19) of the 74154 decoder, completely omitting the 74138
shown in Fig. 11-9.

The SYM-l has a device select pulse, labeled 98, available at
jumper number 10. It is active for addresses $9800 through $9FFF.
To eliminate the necessity for the 74138 in Fig. 11-9, connect this

267

jumper to pin 19 on the 74154, and also connect a 3.3K pull-up resis
tor between pin 18 on the 74154 and the +5-V supply voltage.

The KIM-l cannot dispense with the 74138, and, in fact, the addi
tional circuit shown in Fig. 11-10 must be added. Since the KIM-l
does not decode address lines AI5-AI3, all of its locations in the
lowest 8K block of the address space will be activated by several
addresses on the address bus. For example, the memory location
with address $IFFF will also be activated by the address $9FFF.
To prevent this, the additional circuit shown in Fig. 11-10 disables
the 74LS145 decoder on the KIM-l board whenever address line
A15 is at logic one. This is accomplished by bringing the D input of
the 74LS145 on the KIM-l to logic one by connecting it to pin four
of the 7405 shown in Fig. 11-10.

+5V +5V

2.2K

4 TO PIN A-K ON THE KIM·1
APPLICATION CONNECTOR

GND

+5V +5V

FROM 74138 2.2K 2.2K
DECODER

12 10 TO PIN A-J ON THE KIM-1
Y7 APPLICATION CONNECTOR

Fig. 11·10. Additional decoding circuit for KIM·l I/O Port Device Selects.

The KIM-l requires one other modification if it is to work prop
erly with the circuit of Fig. 11-9. Recall from Chapter 9 that when
an interrupt (or RESET) occurs two of the addresses $FFF A
through $FFFF will appear on the address lines to fetch the inter
rupt (or RESET) vector. Since the KIM-l system does not decode
address lines A15 through A13, the interrupt (and RESET) vectors
are actually located at addresses $IFF A through $IFFF. However,
the modification introduced in the previous paragraph will deselect
these locations whenever address line A15 is at logic one. To reselect
the interrupt vectors located in the integrated circuit known as the
6530-002 on the KIM-I, we connect the Y7 output of the 74138 to
the chip select on the 6530-002 through two open-collector 7405s.
This modification is also shown in Fig. 11-10.

268

ADDRESS DECODING CIRCUIT FOR 6522 INTERFACE

In Chapter 10, we promised an interface circuit for the 6522 Ver
satile Interface Adapter so that KIM-1 owners could utilize the tim
ers on this integrated circuit. The same decoding circuit used to
enable the 74154 in Fig. 11-9 may be used to enable the 6522. The
interface is shown in Fig. 11-11. The DS9 device select pulse from
the 74138 in Fig. 11-9 is connected to the CS2 pin on the 6522. The
DSXFF device select pulse shown in Fig. 11-11 is obtained from the
7430 in Fig. 11-9. If this pulse is first inverted and then connected to
the CS1 pin on the 6522, then the 6522 will be addressed by addresses
$9FFO through $9FFF. (Note that the 74154 can no longer be used
in this case.) Compare these addresses with the on-board 6522 ad
dresses for the AIM 65 and SYM-1, namely $AOOO through $AOOF.
There is a one-to-one correspondence between the function of each
$AOOX address and each $9FFX address, where X is the same hex
digit (0 through F) in both cases. Thus, in Chapter 10, the programs
that used the interval timers will work in exactly the same way if all
6522 addresses with "AOO" prefixes are replaced with "9FF" prefixes.
Refer to Table 11-8 for additional details regarding addressing the
6522.

Table 11-8. Addressing Information for the 6522 Interface

Address Function

$9FFO Port B Output Data Register (PBD)
$9FFI Port A Output Data Register (PAD), Controls handshake
$9FF2 Port B Data Direction Register (PBDD)
$9FF3 Port A Data Direction Register (PADD)
$9FF4 Write Tll·L; Read Tl C·L; Clear I nterrupt Flag
$9FF5 Write Tl L-H and TIC-H; Transfer T1L-L to TlC-L; Clear Interrupt Flag;

Start the TI timer; Read TIC-H
$9FF6 Write TI L-L; Read T1 L-L
$9FF7 Write Tl L-H; Clear Interrupt Flag; Read T1 L-H
$9FF8 Write T2L-L; Read T2C-L; Clear Interrupt Flag
$9FF9 Write T2C-H; Transfer T2L-L to T2C-L; Clear Interrupt Flag;

Start the T2 timer; Read T2C-H
$9FFA Shift Register (SR)
$9FFB Auxiliary Control Register (ACR)
$9FFC Peripheral Control Register (PCR)
$9FFD Interrupt Flag Register (IFR)
$9FFE Interrupt Enable Register (IER)
$9FFF Port A Output Data Register (PAD), No effect on handshake

If, on the other hand, the DSXFF device select pulse is connected
directly to the CS1 pin on the 6522, then the device selects from the
74154 may still be used because the 6522 is addressed with addresses
$9000 through $900F. However, in this case the 6522 is not abso-

269

lutely decoded, and it will be activated by any other set of addresses
of the form $9XXO through $9XXF except addresses $9FFO through
$9FFF, where X is a "don't care" hex digit. This will be of no con
sequence unless other memory locations in the range $9000 to $9FEF
are to be utilized. The addresses $9FFO through $9FFF enable the
74154 device selects, as before. Although it is generally good practice
to absolutely decode the address lines, in certain cases no harm will
result if this practice is not strictly followed.

PAO

38 RSO PAl

37
RSI PA2 4

36 RS2 PA3 5

35 RS3 PM
6

OS9
-U- 23 csz PAS

J"L 24 CS1 PA6

OSXFF 33 00 PA7

32
01 PBO

10

31 D2 6522 PSI
11

30
03 PB2

12

29
04 PB3

13

05 28 DS PB4
14

27 06 PBS
15

26
D7 PBG

16

25
02 PB7

17

22
R/W CAl

40

21
IRQ CA2 39

RES
34

RES CBl
18

CB2
19

V"
7GND

Fig. 11·11. Interface for 6522 Versatile Interface Adapter.

270

All the other input connections to the 6522 in Fig. 11-11 are found
on the so-called expansion connectors on the KIM-I, SYM-I, and
AIM 65. A pinout description of these connectors is given in Table
11-9. The functions of the various pins will be described in the next
two chapters. Since you have enough detail in Fig. 11-11 to complete
the interface and operate the chip, we will not return to the 6522
interface. This interface was introduced mostly as a service to KIt\I-I
users who do not have an on-board 6522.

Table 11·9. Pinout Description of Expansion Connector

Pin
Pin Function

Pin
Pin Function

Number AIM 65 SYM-1 KIM·1 Number AIM 6S SYM·1 KIM.1

I SYNC SYNC SYNC A AD AD AD
2 RDY RDY RDY B AI AI AI
3 <1>1 ftrn <1>1 C A2 A2 A2
4 TIm 1m D A3 A3 A3
5 5.0. RO RO E A4 A4 A4
6 'fJN\T -m;,J.'l 1i!m F A5 A5 A5
7 1m m 1m H A6 A6 A6
8 D7 D7 D7 J A7 A7 A7
9 D6 D6 D6 K AS A8 A8

10 D5 D5 D5 l A9 A9 A9
11 D4 D4 D4 M A10 A10 A10
12 D3 D3 D3 N All All All
13 D2 D2 D2 P A12 A12 A12
14 Dl Dl Dl R A13 A13 A13
15 DO DO DO S A14 A14 A14
16 -12V 18 K6 T A15 A15 A15
17

:mV
DBOUT SST OUT U <1>, 02 0,

18 CS POR Unused V R;W R/W R/W
19 CS9 Unused Unused W R/W R/W R/W
20 ffi Unused Unused X TEST TEST TEST
21 +5V -f-5V +5V Y 0, <1>2 <1>2
22 GND GND G"JD Z RAM R/W RAM R/W RAM R/W

6502 INSTRUCTIONS AND DEVICE SELECT PULSES

To understand a few more details related to device select pulses,
we examine the execution of some 6502 instructions on a cycle-by
cycle basis. Table 11-10 describes the behavior of the address bus,

Table 11·10. Analysis of Microcomputer Buses by Clock Cycles
During LDA Instruction in Absolute Addressing Mode

Cycle Address Bus R/W Data Bus Comments

1 $0200 1 $AD The 6502 fetches the lDA op code.
2 $0201 1 $FO The 6502 fetches the ADL of the memory

location to be accessed.
3 $0202 1 $9F The 6502 fetches the ADH of the memory

location to be accessed.
4 $9FFO 1 DATA The 6502 fetches the data in the

location whose address is $9FFO.

271

the data bus, and the R/W control line during the execution of the
LDA instruction in the absolute addressing mode, assuming that the
LDA instruction op code is in the location with address $0200 and
that the memory location referenced by the LDA instruction is
$9FFO. Table 11-11 analyzes the STA instruction in a similar way,
and Table 11-12 analyzes the ASL instruction by clock cycles.

Table 11-11. Analysis of Microcomputer Buses by Clock Cycles
During ST A Instruction in Absolute Addressing Mode

Cycle Address Bus R/W Data Bus Cqmments

1 $0200 1 $8D The 6502 fetches the STA op code.
2 $0201 1 $F7 The 6502 fetches the ADL of the memory

location to be referenced.
3 $0202 1 $9F The 6502 fetches the ADH of the memory

location to be referenced.
4 $9FF7 0 DATA The 6502 is writing the contents of the

accumulator to the location whose
address is $9FF7.

Table 11-12. Analysis of Microcomputer Buses by Clock Cycle During
Read-Modify-Write Instruction, e.g., ASL, DEC, or ROL Instruction

Cycle Address Bus R/W Data Bus Comments

1 $0200 1 $OE The 6502 fetches the ASL op code.
2 $0201 1 $F5 The 6502 fetches the ADL of the memory

location to be modified.
3 $0202 1 $9F The 6502 fetches the ADH of the memory

location to be modified.
4 $9FF5 1 DATA The 6502 reads the contents of the

location whose address is $9FF5.
5 $9FF5 0 DATA The 6502 uses this cycle to modify

the data.
6 $9FF5 0 MODIFIED The 6502 writes the modified data back

DATA to the location whose address is $9FF5.

In all three of these tables, note that each cycle is either a READ
or WRITE cycle. Either an instruction byte is read, or a data byte
is either read from memory or written to memory. Referring to Table
11-10, device select pulses corresponding to addresses $0200, $0201,
$0202, and finally $9FFO must be generated by the address decoding
circuitry in order to execute this LDA instruction. Each device select
pulse will last for about 1 microsecond. In Table 11-11, you see that
similar events occur during an STA instruction. Finally, in Table 11-
12, you can see that the data byte located at $9FF5 is first loaded into
the microprocessor, then it is modified, and finally it is written back
to the location whose address is $9FF5, during three successive

272

cycles. The middle cycle of these three cycles is required to give the
microprocessor time to modify the data. Although it, too, is a WRITE
cycle, nothing new is written back to the location being modified.
Finally, note that the device select pulse corresponding to $9FF5
will be generated three times during this Read-Modify-Write in
struction. Consult your 6502 hardware manual for further details
regarding bus activity during other instructions. We have chosen a
few representative examples to illustrate the fact that each clock
cycle in a 6502 system is either a READ or a WRITE cycle, and that
device select pulses are generated during each clock cycle.

The address decoding circuit of Fig. 11-9 generates a 1 microsec
ond logic zero pulse when an LDA or ST A instruction references one
of the locations shown in the figure. This pulse may be used to pre
set or clear a Hip-Hop, as shown in the circuit in Fig. 11-12. The

+5V

14 +5V

QI-=---
150 II

RES >-_....;3=-1CK 7474

D Qr--~'-~
CLR

DSm >------'

Fig. 11·12. Device select pulses used to preset and clear Dotype
flip.flop, and LED used 8S test probe.

LED probe will glow when it is connected to a logic-zero voltage
level, and it can be used to test the logic levels of the Q or Q outputs.
The probe will also be used in the experiments to detect device select
pulses. We now describe the behavior of the circuit in Fig. 11-12,
assuming the device select pulses from the 74154 in Fig. 11-9 are
being used.

Suppose that the device select pulse DS9FFO is connected to the
preset input of the 7474 and that device select pulse DS9FF1 is con
nected to the clear input. When the microcomputer is RESET, as it

273

usually is during "power up," then the RES control signal available
at pin seven on the expansion connector will clock the logic level of
the D input into the Q output. Thus, when power is first applied or
the RESET button is pressed, the Q output will be low and the Q out
put will be high. The LED test probe connected to the <J output will
glow, but an LED test probe connected to the Q output will not
glow. Using an LDA DS9FFO will preset the flip-flop, making Q go
to logic one and Q to logic zero. Using an LDA DS9FFI instruction
in a program will clear the flip-flop to the same state it had after a
RESET.

It should be clear that this scheme could be used to switch a
motor, light, cassette recorder, or any other device, off and on with
a computer program. Thus we have made a simple output circuit
with no output port chips, control signals, or data bus lines involved.
With interval timers, a square wave whose frequency and duty cycle
may be programmed can be made to appear at either the Q or Q
output of the 7474 flip-flop.

INTRODUCTION TO THE EXPERIMENTS

The experiments in the next few chapters will give you an oppor
tunity to experiment with some of the circuits described in the text.
Although a variety of techniques may be used to test the circuits,
we have found that breadboarding on Proto Boards made by Con
tinental Specialties, Super Strips made by A P Products, Inc., or the
SK 10 made by E & L Instruments, Inc., is an excellent approach.
In fact, we did all of the experiments in Part II on an A P Products
Unicard. The Unicard has a 22/44 printed circuit pad just like the
KIM-I, AIM 65, and SYM-l edge connectors. We took a 22/44 pin
edge connector with solder eyelets and soldered the eyelets to the
Unicard pads. The edge connector may be connected directly to the
expansion port and may be left in place for permanent applications,
if desired. Photographs of this configuration before any experiments
were begun and after a number of experiments were completed are
shown in Fig. 11-13. The breadboards mentioned above are available
from a variety of electronic parts mail-order houses. Consult the
advertisements in any of the well known computer or electronics
magazines for sources of parts.

Although we did not indicate in any of our circuit diagrams the
particular variety of 7400-series integrated circuits to use, we
strongly urge you to work with the 74LSOO variety. Ordinary 7400-
series chips will work, but you run into buffering problems because
of the higher power required to drive the logic inputs. The pins on
the 6502 are rated at one standard TTL (7400 series) load, which
means you can have four "LS" series inputs attached to a single 6502

274

(A) Before experiments.

(B) After experiments.

Fig. 11·13. Our breadboarding system.

275

output pin. Unless otherwise noted, the experiments were performed
with the 74LSOO series. Do not attempt to use 74COO or other CMOS
circuits for the experiments.

Circuits that are breadboarded in one experiment will frequently
be used in subsequent experiments. Do not, therefore, dismantle
your circuits after each experiment.

EXPERIMENT NO.

Step 1

Breadboard the circuit shown in Fig. 11-6. Refer to Table 11-9 for
the expansion connector pin description to connect the address lines.
Use +5 V and GND from pins 21 and 22, respectively.

Step 2

Construct the simple LED probe shown in Fig. 11-12. It will be
used to detect a series of device select pulses.

Step 3

Load the following program:

0200 AD FO 9F
0203 4C 00 02

START LDA MEM Fetch the contents of $9FFO.
JMP START Loop back to START.

Note that this program is of no use except to demonstrate the genera
tion of device select pulses. Refer to Table 11-10, and observe that
the program simply repeats the LDA instruction analyzed in Table
11-10.
Step 4

Connect the LED probe constructed in Step 2 to each device
select output of the 74LS138 in turn. Describe and explain what you
observe.

(We observed that the LED glowed quite brightly on the YO (pin
15) output and less brightly on the Y4 (pin 11) output. On all the
other outputs the LED did not glow. These observations may be
explained by referring to Table 11-10 again. During three of the
four clock cycles of the LDA instruction the address bus has an
address in the lowest 8K block, that is, between $0000 and $IFFF.
These addresses enable the DSO device select pulse labeled in Fig.
11-6. During the fourth cycle of the LDA instruction the address
$9FFO appears on the address bus, and the decoding circuit produces

276

a device select pulse on the DS8 output, namely pin 11. The JMP
instruction takes three cycles, all of which reference a memory loca
tion in the lowest 8K block. Thus, the entire program takes seven
cycles. During six of those cycles the DSO pulse occurs, but during
one cycle the 'i5"SS pulse occurs. Since the eye cannot perceive 1-
microsecond flashes, we observe a bright glow when the LED is con
nected to the DSO line, and a faint glow when the LED probe is
connected to the DS8 line.)

Step 5

Replace the LDA instruction in the program of Step 3 with an ST A
instruction. Execute the program and use the LED probe to test the
device select outputs of the 74LS138. Explain your results.

Step 6

Replace the LDA instruction in the program of Step 3 with an
ASL $9FF5 instruction as analyzed in Table 11-12. Execute the pro
gram and describe and explain your results obtained by using the
LED probe.

(The results are essentially the same as in Step 4, but the LED
appears to glow more brightly. The ASL and JMP program takes
nine cycles while the LDA and JMP program takes seven cycles.
Refer to Table 11-12 and note that the location being modified
has its address on the address bus for three of the six cycles re
quired by the ASL instruction, or for a total of three of the nine
cycles required for the program. In the LDA and JMP program the
location being modified has its address on the address bus for only
one cycle out of the seven cycles necessary to execute th!....E..rogram.
Consequently, when the LED probe is connected to the DS8 device
select line, it appears to glow more brightly with the ASL and JMP
program than with the LDA and JMP program.)

Step 7

If you have a frequency counter, connect it to pin 11 of the 74LS-
138 while the program of Step 3 is running. What do you expect to
measure? Repeat this experiment for the program of Step 6.

(In the first case you should measure 17 of the clock frequency, or
about 142.86 kHz.)

277

EXPERIMENT NO. 2

Step 1
AIM 65 owners may wish to repeat all of the steps in Experiment

No.1, using the device select pulse (called CS9) made available at
pin 19 on the expansion connector.

EXPERIMENT NO. 3

Step 1

SYM-l owners may wish to repeat all of the steps in Experiment
No.1 using the device select pulse (called 98) made available at
jumper number 10.

EXPERIMENT NO. 4

Step 1
Modify the circuit for the 74LS138 so that it is the same as shown

in Fig. 11-9. AIM 65 and SYM -1 owners need not breadboard this
integrated circuit. They can use the device select pulses mentioned
in Experiments No. 2 and 3.

Step 2
Breadboard the 74LS30 8-input NAND gate shown in Fig. 11-9.

Before connecting the output of the 74LS30 to the 74LS154, test it
by loading the program given in Step 3 of Experiment No. 1. The
LED should glow when the probe is connected to the output of the
74LS30. Why?

(The location referenced with the program is $9FFO. The output of
the 74LS30 should go to logic zero whenever an address of the form
$XFFX, where X is a "don't care" hex digit, is on the address bus.)

Step 3

Try the LED probe on the output of the 74LS30 when the same
program is executed, but location $9550 is referenced. What should
you observe?

(The LED probe should not glow, because the 74LS30 output goes
to logic zero only when the middle two hex digits of the address are
"FF".)

278

Step 4

Breadboard the 74LS154 circuit shown in Fig. 11-9. Connect the
device select line from the 74LS30 to the G 1 input (pin 18). AIM
65 users can omit the 74LS138 and connect their CS9 device select
pulse from pin 19 on the expansion connector to the G2 (pin 19)
input of the 74LS154. If you have a SYM-l, connect the gs device
select pulse from jumper number 10 to the G2 input of the 74LS154.

Step 5

Refer to Experiment No.1, Step 3, and load the same program.
Execute the program and use the LED test probe to test the device
select pulse outputs of the 74LS154. Which one should produce a
glow on the LED?

(Since the location whose address is $9FFO is referenced by the
LDA instruction, the device select labeled DS9FFO should cause the
LED to glow. None of the other outputs of the 74LSI54 should
affect the LED.)

Step 6

Change the address referenced by the LDA instruction to ad
dresses $9FFI through 9FFF, in turn, executing the program and
testing the outputs of the 74LS154. You should observe that the cor
rect address produces the corresponding device select pulse.

Step 7

Repeat Step 7 of Experiment No.1 with the frequency counter
connected to the output of the 74LS154 that is being enabled by the
address referenced by the LDA instruction. What do you observe?

Step 8

Experiment with other instructions such as the ST A, ROL, DEC,
ADC, AND, and CMP instructions replacing the LDA instruction in
the program described in Step 3 of Experiment No. 1. Do all of these
instructions produce device select pulses on the 74LS154 when they
reference the locations enabled by the 74LS154 outputs?

EXPERIMENT NO. 5

Step 1

Sonnect the circuit shown in Fig. 11-12. Connect the input labeled
DSn to the DS9FFO device select pulse from the 74LSI54 in Fig.

279

11-9. Connect the input labeled DSm to the DS9FFl device select
pulse from the 74LS154. Construct two LED test probes and connect
one to each of the outputs of the 7474.

Step 2

RESET your microcomputer by pressing the RESET key. Which
LED glows?

(The LED connected to the Q output glows. The reason for making
the RESET connection to the clock input of the 7474 is to bring up
the Q outputs in known conditions when power is supplied. With
motors, relays, or other devices connected to an output, it is very
important to know the state of the outputs when power is first
applied to a microcomputer system.)

Step 3
Load and execute the following program.

0200 AD FO 9F START LDA DS9FFO
0203 00 BRK

What do you observe on the LEDs?

Initiate device select pulse DS9FFO.
End of program.

(The Q output LED should go out and the Q LED should glow.)

Step 4
Change the program above to initiate the DS9FFl device select

pulse by using an LDA DS9FFl instruction. What happens to the
LEDs?

(We observed that they switched back to their RESET condition.)

Step 5
Load and execute the following program.

0200 AD FO 9F
0203 A9 FF
0205 8D 97 A4
0208 2C 97 A4
020B 10 FB
020D AD Fl 9F
0210 A9 FF
0212 8D 97 A4
0215 2C 97 A4
0218 10 FB
021A 4C 00 02

280

START

WAIT

WAIT

LDA DS9FFO
LDA $FF
STA Tl024
BIT STATUS
BPL WAIT
LDA DS9FFI
LDA $FF
STA Tl 024
BIT STATUS
BPL LOAF
JMP START

Initiate device select pulse DS9FFO.
Set up the Tl024 interval timer.

Time up?

Initiate device select pulse 'i5'S9'FFi.
Set up the interval timer again.

Check the timer status again?

Repeat entire program.

Step 6

The program in Step 5 initiates a device select pulse to preset the
7474, waits in a delay loop using the divide-by-l024 interval timer,
clears the 7474, waits in a second delay loop, then repeats this pro
cess again and again. What do you expect to observe on the LED
test probes connected to the Q and Q outputs of the 7474?

(The two LEDs should alternately blink on and off.)

Step 7

Experiment with the values loaded into the timers. You should be
able to vary both the frequency of the pulsations and the duty cycle
of the square wave at the Q output of the 7474. For example, change
the byte at address $0204 to $01 and the byte at address $0211 to
$05. Then connect a small speaker from the Q output to ground.

281

CHAPTER 12

Control Signals, Output
Ports, and Applications

OBJECTIVES

At the completion of this chapter you should be able to:

• Describe the functions of each of the control pins on the 6502.
• Understand the timing requirements for interfacing the 6502 to

R/W memory devices and TTL latches used as output ports.
• Construct up to 16 output ports using ordinary TTL integrated

circuits.
• Design the control signal logic necessary to perform the READ

and WRITE operations of the 6502.
• Construct a hexadecimal display port.
• Interface a digital-to-analog converter to an output port.

INTRODUCTION

In this chapter we will examine the functions of those pins on the
6502 that are classified as control pins. Although we will primarily
be interested in the 4>2 and R/W signals, all of the control pins will
be mentioned, if only to provide a brief summary of their function.
The 4>2 and R/W signals are necessary to implement R/W memory,
ROM, I/O ports, and interval timers, whereas some of the other con
trol pins have more specialized functions.

CLOCK SIGNALS, <Po (IN), <PI (OUT), AND <P2 (OUT)

The heart of any microcomputer system is, of course, the micro
processor. What keeps the "heart;' beating, so to speak, is the system

282

clock. Although it is not absolutely necessary to have a crystal con
trolled oscillator for a clock, most microcomputer clocks are quartz
crystals. Although crystal control of the clock frequency is common
place, you should be cautioned against assuming that your clock
frequency is absolutely accurate. The few measurements we have
made suggest that the crystal frequencies may be in error by several
hundred hertz relative to their specified frequency of 1 MHz. If
precision timing is high on your list of applications, you may wish
to purchase and install your own crystal. Consult the specification
sheets in Appendix C for details on clock circuits.

In Fig. 12-1 we show the relationships between the <po (IN) signal
and the two clock signals that are produced by the microprocessor
at the <PI (OUT) and the <P2 (OUT) pins. We will assume that the
clock frequency is 1 megahertz, making Tc 1 microsecond. Lower
frequencies are not prohibited, and 2-MHz versions of the 6502 are
available, but 1 MHz is currently the most popular frequency. There
are many important properties of the three clock signals shown in
Fig. 12-1, such as the pulse width, rise time, fall time, and the delay
time between <PI and ~ that are described in detail in the specifica
tion sheets given in Appendix C, but we will be more concerned
with the general features of these signals.

<po(lN)

I--------Tc

\1...---
Fig. 12·1. Clock signals in 6502 Microcomputer System.

283

The clock system is called a two-phase system because the two
clock signals CPI and CP2 are out of phase. We will refer to the period
when the CPI signal is at logic one as the cpz phase or simply ascpI,
while the period whencp2 is at logic one will be called the CP2 phase
or simply CP2' The periods when the two signals are at logic one
are not allowed to overlap, although the transitions of these signals
are extremely close. As we shall see, different events take place in
the microcomputer system depending on whether CPl orcp2 is at
logic one.

R/W CONTROL SIGNAL

In a 6502 system, each clock cycle is either a READ cycle or a
WRITE cycle. That is, the 6502 is either reading a memory location
or writing to a memory location, but not both, during each and every
clock cycle. The various components in the microcomputer system
are "informed" about which of the two operations is taking place by
th~gic level on the R/W line. If the 6502 places a logic one on the
R/W line, then a READ operation is taking place during that clock
cycle. If the R/W line is at logic zero, then a WRITE operation is
taking place. In some of the 6502 literature the R/W line is called
the R/W line, indicating that the READ operation occurs on a logic
one, while the WRITE operation occurs when the R/W line is at
logic zero.

Fig. 12-2 shows the timing for reading a memory location. Let us
use a concrete example and suppose that data is to be read from a
2114 R/W memory integrated circuit such as is found on the SYM-1
and AIM 65. (The specincations of the 2114 are in Appendix C.)
Our reference point on the timing diagram in Fig. 12-2 will be the
trailing edge of the CP2 signal, as indicated by the left-most dashed
line in Fig. 12-2. At the beginning of a new cycle, when CPI is at
logic one, the 6502 places the address of the location to be read on
the address lines, and the 6502 brings the R/W to logic one, inform
ing the 2114 that it is to supply the data. The address lines and the
R/W line do not change instantaneously, but the 6502 is guaranteed
to have a stable address on the address bus and a stable logic one
on the R/W line within 300 nanoseconds (ns) aftercpz. In Fig. 12-2,
this time is labeled T 8, and it is referred to as the set-up time for the
address bus and the R/W line. The cross-hatched areas in Fig. 12-2
indicate nonstable conditions. The two lines on the graph for the
address bus indicate that some address lines are changing to logic
one, while others are changing to logic zero. The high interval of
CPt is that period when the address bus and the control lines are
changing to select the operation (READ or WRITE) and the loca
tion to be accessed.

284

., j i---- LOGIC 1

I
I
I
I
I ., l
~,--------------~

R/W

I I

i ~~-------------------------------
I I
I I I

AO~~F ~~----------~~;;;::----

I I

LOGIC 0

DATA
BUS

:-Ts ---'----- TA -----, T 0 ~
: J I ELOGICI

! ~ i lOGIC'
I I
I

Fig. 12-2. Timing for a READ operation. Ts is set-up time for address lines and Rlw line.
Tn is time that data on data bus must be stable before end of t/J2. TA is access time.

We now move our attention to the dashed line on the right-hand
side of Fig. 12-2, which is the end of the read cycle. The 6502 re
quires that the data on the data bus be stable for at least 100 ns
before the end of <P2. We have labeled this period as T D in Fig. 12-2.
It is the trailing edge of the<P2 signal that "clocks" or latches the
data into the 6502. It is up to the device being read to have stable
logic levels on the data bus at least 100 ns before the end of <1>2 and
to hold the data lines stable for 10 ns after <P2. The time between the
address lines arriving at their stable levels and the point where the
data lines must be stable is labeled T A in Fig. 12-2. It is called the
access time. Clearly

TA=Tc-Ts-TD

giving an access time for the 6502 of about 600 ns. We have neg
lected the rise time of the <Pl signal in this equation, and in Fig. 12-2
we have shown <Pl and CP2 changing instantaneously, which is not
the case. The rise time is about 25 ns, reducing the access time to
575 ns.

285

Recall that the address lines are connected to the decoding cir
cuitry that produces a device select pulse and to the 2114 RjW
memory chip that decodes the address lines A9 through AO. Because
it takes time for the changing logic levels at the inputs of the decod
ing circuits to propagate to the outputs, the device select pulse will
be delayed and will not begin until slightly after the address lines
have reached their stable levels. With 7400 series or 74LSOO series
chips this time is of little consequence since it is only a few nanosec
onds, and we may regard the device select pulse as occurring simul
taneously with the address lines reaching their stable values, some
time during <Pl.

Memory chips are usually a bit slower. While the address lines are
changing, and for some time after they have become stable, the
address decoding circuitry on the 2114 chip is actively responding
to the address changes on its input lines. The 2114 must "decide"
which four of its 4 X 1024 flip-flops will put data on the four output
lines it has. The time it takes to "decide" is known as its access time.
The access time of the memory chips used in a 6502 system must be
less than the 6502 access time shown in Fig. 12-2 or the 6502 will
read meaningless information. The 2114 chips have an access time
of 450 ns, so there is a comfortable margin for which the data is
stable. If the 2114 chip is selected by the device select pulse and its
WE pin is at logic one, then after the access time has elapsed it puts
its four bits of data on four lines of the data bus in the form of stahle
logic levels. The data will remain stable until shortly after the device
select from the address decoding circuitry allows the chip select,
CS, on the 2114 to go high. This will occur after the trailing edge
of <P2, so the logic levels will be successfully read by the 6502, com
pleting the read cycle. The logic circuit required to produce a
"READ ENABLE" signal from the device select pulse and the RjW
line is shown in Fig. 12-4.

We turn now to an analysis of a \VRITE operation, the timing dia
gram being given in Fig. 12-3. The parameter Ts has the same mean
ing as before; namely it is the time required for the 6502 to produce
stable logic levels on the address bus, and for the 6502 to change
the RjW line to logic zero for a WRITE operation. The parameter
T DS is the amount of time, measured from the beginning Of<p2, re
quired to produce stable logic levels on the data bus. The 6502 re
quires no more than 200 ns to produce stable data, giving a period
of about 300 ns when the data are stable. Finally, the logic levels
on the data bus remain stable for a short time after the conclusion
of <P2, called the data hold time and symbolized by Tn. For a 6502,
THis typically 30 ns.

The peripheral that is to receive the data, the 2114 in our example,
usually requires that the address be stable during the write time.

286

1---- LOGIC 1

LOGIC a

~21
~, --------------~

ow~!, ,
, I I I

~_' -;--...-' ----;...' ;;::---

AD~U~S~ i ~
I ,I ,
I " I

:--T s --: t-----T DS----: I

I ,I ';"-"""'t""E~- LOGIC 1
DATA: I : A'l
BUS i '~~---+--f'£-- LOGIC a , , I

i ~TH

Fig. 12-3. Timing for WRITE Operation. Ts is set-up time for address lines and R/W line.
Tlls is data set-up time from 6502. TH is data hold time.

Thus, the WE pin on the 2114 is usually brought to logic zero after
the addresses are stable, namely duringCP2. Thus, to activate the
"write enable" (WE) pin on the 2114, we would like the R/W line
to be at logic zero and the cpz signal to be at logic one. We also want
the chip to be selected by the OS pulse. The logic circuit shown in
Fig. 12-4 produces the correct WRITE ENABLE signal for the con
ditions stated above. Furthermore, we must somehow signal the 2114
that the data is now stable and should be latched into whichever
of the 4 X 1024 locations we have selected with the address. This is
done by the trailing edge of the CP2 signal at the end of the cycle.
Note that at this time the data have been stable for almost 300 ns,
a sufficient length of time for the 2114, which requires only 200 ns
of stable data. The trailing edge of the 4>2 signal clocks the data into
the 2114, completing the write cycle. Note that both the address lines
and the data lines are still stable at the trailing edge of <P2.

To conclude our discussion of the control signal interface required
to correctly read the 2114 and to correctly write to the 2114, we note
that some of the control line logic is located on the 2114 itself. In

287

R/W

~M>-------------~+-------+-~

WRITE ENABLE =
r-,---. RIW • 01 • ~

(DEVICE m)

-u
DS, >--------+--0

~EAD ENABLE = 150
}--+-. R/W. DS

(DEVICE m) TEST
74LS02 ..IL \ LED

(DEVICE,) ~

74LS02

""Lr
OSo >-----~

Fig. 12-4. Logic circuit to produce READ ENABLE and WRITE ENABLE signals.

Fig. 12-5 we show the control line logic that the designer must pro
vide and the on-chip logic. Note that this is not the only way to inter
face the control signals to a 2114; in fact, the AIM 65 does not use
this approach. The AIM 65 brings the R/W line directly to the WE
~ on the 2114, and it effectively "ANDS" the 0/2 signal with the
DS signal in the decoder, producing a chip select (CS) signal that
is at logic zero when 0/2 is at logic one and US is at logic zero. It
can be shown that this logic circuit is equivalent to the logic circuit
shown in Fig. 12-5.

One final note on the control signals shown in Fig. 12-4: The
signal labeled RAM R/W is generated on the KIM-1 and the SYM-1.
Its logical expression is R/W . 0/2, meaning that it is logic zero when
the R/W line is at logic zero and </>2 is at logic one. It is used to
write to RfW locations, and it is made available at pin Z of the

288

2114 R/W MEMORY CHIP

..n... READ ENBLE =
CS· WE

..n... WRITE ENABLE =
cs.WE

Fig. 12-5. Control Line Logic and On-Chip Logic for controlling 2114.

expansion connectors on these two systems. The AIM 65, on the
other hand, generates a signal whose logical expression is R/\V . CP2,
a signal that is also called RAM R/\\', and that is also brought to
pin Z of the application connector. The user should IJe aware of
the fact that these are not equivalent signals. The KIM-l and SYM-l
RA'vI-R/W signals are useful for the WRITE operation. A future
version of the AIM 65 will have the correct RA'vI-R/W signal. Cur
rent versions of the AIM 65 are marked near the crystal with a
printed-circuit triangle. The new version of the AIM 65, with the
correct RAM-R/W signal, will have a nontriangular-shaped symbol
in the same place.

USING CONTROL SIGNALS FOR AN OUTPUT PORT

The circuit of Fig. 12-4, in addition to providing the necessary
control signals for accessing R/W memory, may also be used to pro
vide the necessary control signals for an output port. Recall that the
write enable output of Fig. 12-4 is at logic one when the R/W line
is at logic zero, CP2 is at logic one, and the device select (DS) is at
logic zero. Apply this signal to the G input of either a 74100 or two
74LS75 integrated circuits, and connect the data bus to the D inputs
of these chips, as shown in Figs. 12-6 and 12-7.

The 7475 and the 74100 integrated circuits are both bistable
latches (or flip-flops), and they behave much like an R/\V memory
location during a WRITE operation. When the G inputs are at logic
one, the Q outputs follow the logic levels at the D inputs. The D
inputs are connected to the data bus of the 6502. Refer to Fig. 12-4
and notice that durin~ WRITE operation to the location whose
address produces the DS pulse, a positive pulse, whose duration is
the same as CP2, is produced at the WRITE EN ABLE output. If this
pulse is applied to the G inputs of the 7475s or the 74100, then the Q
outputs will correspond to the data on the data bus during the
WRITE cycle, and, at the end of the WRITE cycle, the WE pulse
ends while the data is still stable, clocking the data bus logic levels
into the Q outputs. The Q outputs on the 74LS75 will have l~c
levels just opposite to their Q counterparts. The device select (DS)
pulses may be obtained from 74LS154 in the circuit of Fig. 11-9.

Note that only three instructions in the 6502 instruction set will
write data to the output port we have just constructed. These are the
ST A, STX, and STY instructions. The output port only responds to
a WRITE operation because the R/W line must be at logic zero for
the WRITE ENABLE pulse to occur. Instructions such as LDA,
LDX, LDY, or any other instruction that involves a READ operation
from this address will produce meaningless data because nothing
is read (no READ EN ABLE pulse occurs). Instructions such as the

289

DO >----"-1

D 1 >-----'-1

02 ")---"-j

03

WRITE
ENABLE

13

13

6

D7 ")-----'--1

D1

D2

03

D4

Gl

G2

G2

Gl

01

D2

D3

D4

+5V

Ql

74LS75 Ql
Q2
Q2
Q3
OJ
Q4
Q4

12
= GND

+5V

74LS75

Ql
Ql
Q2
Q2
OJ
Q3
Q4
Q4

12
= GND

16
PO

1
15
14 PI

10
11 P2

9 P3
8

Fig. 12-6. Two 74LS75s used as
Output Port. Circuit to generate

WRITE ENABLE shown in Fig. 12-4.

1
16
14 P4

15
11 P5

10
8 P6

9
P7

ASL, DEC, and ROL instructions will not work because they require
a READ cycle also. However, the use of only three of the nine in
structions in the 6502 instruction set that involve the WRITE opera
tion is no great handicap for an output port.

The output pins of the 6502, including the data bus pins, are rated
for one TTL load. The 74100 in Fig. 12-7 represents such a load on
the data bus. Since the data bus on your microcomputer will already
have several devices loading it, the circuit in Fig. 12-7 will cause the
data bus to be overloaded. The circuit might work with the data bus
connected to the D inputs of the 74100, but it is a marginal situation.
To solve the problem, the data bus must be buffered, one of the
topics in the next chapter. The 74LS75s in Fig. 12-6 may be operated
directly from the data bus, but if several output ports are desired,
requiring that the data bus be connected to the inputs of several

290

Fig. 12·7. A 74100 used as B·bit out·
put port. Circuit to generate WRITE

ENABLE shown in Fig. 12-4.

D6

D7

+5V

24

Ql 5 PO

>--~ D2 74100 Q21-'4,--_ .. PI

>-_...::2~2 D3 Q31-"1.:;..9 __ P2

>-_..:02"-11 D4 Q41-"Z,::,,0 -_ P3

>-_ 1.,1 ~1- - - - -- -011-'8,---.. P4

>-_ 1"""0 DZ Q21-'9,--_ .. P5

15 D3

16 D4

7
-,.. GND

Q3 18

Q4 17

P6

P7

74LS75s, then buffering will again be required. Refer to Chapter 13
for details. We will also postpone the discussion of input ports until
Chapter 13, in which three-state devices are described. With suit·
able data bus buffering, the circuits shown in Figs. 11-9, 12-4, and
12-6 or 12-7 may be used to make up to 16 output ports with ad
dresses $9FFO through $9FFF. In the experiments at the end of this
chapter, we will describe a simple buffer/driver that will allow you
to experiment with these circuits, without going into a full discussion
of data bus buffering. In Chapter 13 we will show how to make input
ports. Some of the device select pulses from addresses in this range
may be used for input ports.

MEMORY·MAPPED, LATCHED HEXADECIMAL DISPLAY

The address decoding circuit and the control line logic may be
used to implement a memory-mapped, latched hexadecimal display.
Assuming that the data lines at the expansion connector are ade
quately buffered (see the experiments section at the end of this
chapter, or Chapter 13), two hexadecimal display chips with latches
and drivers make a convenient and useful output display. The chips
used were Texas Instruments TIL311s, but equivalent chips are
made by other manufacturers. The circuit diagram is shown in Fig.
12-8. The write enable pulse from the circuit in Fig. 12-4 may be
converted to the necessary strobe signal by the 74LS04 inverter. One
of the device selects, DS9FFO for example, from the 74LS154 in
Fig. 11-9 may be used to address the display.

291

L..r

14 14

5
STB Tll311

5
STB Tll3\l

07 12 0 03
12

0

06 13 C 13

05 B B

04 A 00 A

Fig. 12·8. Using hexadecimallatch·displays as an output display. WE signal generated
with circuit shown in Fig. 12-4.

Assuming that this memory-mapped display is selected with the
address $9FFO, one can view the contents of the accumulator, X
register, or Y register with ST A, STX, and STY instructions, respec
tively. This may be useful in debugging programs. For example, an
STX $9FFO instruction may be placed in a program loop that is
giving trouble, and the program may be single-stepped to observe
how the X register is changing. This is certainly much faster than
using the register trace mode on the KIM-I. To observe the stack
pointer, use a TSX instruction followed by an STX$9FFO instruction.
A latched hexadecimal display such as this is much more convenient
(and more expensive) than the unlatched seven-segment displays
that require constant refreshing. A program to demonstrate the dis
play is given in the experiments.

MEMORY-MAPPED DIGITAL-TO-ANALOG CONVERTER
AND AN APPLICATION TO MUSIC SYNTHESIS

The address decoding circuitry described in the last chapter, the
control circuit logic, and the 74100 (or 74LS75s) may be used with
a Motorola 1408L8 8-bit digital-to-analog converter to make a mem
ory-mapped digital-to-analog converter circuit. The 1408L8 circuit
is shown in Fig. 12-9, while the necessary control logic was shown
in Fig. 12-4, the 74100 output latch circuit was given in Fig. 12-7,
and the address decoding circuit was shown in Fig. 11-9. We used

292

the DS9FFO device select pulse from the 74LS154 shown in Fig.
11-9.

Just as we did not attempt to explain how the various TTL gates
and decoders worked, we will not attempt to explain how the DAC
(digital-to-analog converter) works. Basically the 1408 is a system of
resistors and "switches" that produce a current proportional to the
8-bit binary number represented by the logic levels on pins 5
through 12, pin 5 being the most significant bit. The outputs of the
74100 shown in Fig. 12-7 are connected to the inputs of the 1408
DAG The CA3140 operational amplifier acts as a current-to-voltage
converter, and the 10K feedback resistor (pin 6 to pin 2) may be
adjusted to produce the desired proportionality between the 8-bit
number on the input of the DAC and the voltage level at pin 6 of
the CA3140 operational amplifier. You may wish to adjust the resis
tor so that with $FF as the digital signal you obtain 2.55 volts on the
output. Then a simple hex-to-decimal conversion gives the correct
output voltage, providing the decimal point is also shifted.

Although there are many uses for digital-to-analog converters,
such as in controlling motor speed, analog-to-digital conversions,
graphics on oscilloscopes or plotters, etc., the application we have
chosen to illustrate the use of a DAC is from the area of music syn
thesis. If one cycle of a particular waveform is stored in a table in
memory, and the computer writes the entries in the table to the

"'" GND

Fig. 12-9. Digital-to-analog converter circuit.

293

DAC as part of a continuously running loop, then the waveform
appears as a voltage level at the output of the CA3140, and this volt
age varies in exactly the same way as the stored waveform. If the
entries in the table are written to the DAC at a fast enough rate,
then the entire waveform stored in the table may appear at the
DAC output at an audio frequency, say 440 Hz, that may then be
amplified and connected to a speaker.

One advantage of this approach over the method of toggling an
output which we used in earlier tone generation programs, is that
it is the waveform which affects the quality or timbre of the music;
and, with the waveform in a table, we have complete control over
the timbre. A toggled output is always a rectangular wave, and al
though the timbre may be altered somewhat by changing the duty
cycle, the technique lacks the versatility of the sampled-waveform
approach.

If the waveform table contains one cycle of the waveform. and if
it is written to the DAC at the rate of 440 tables per second. then
an "A" note (equally tempered scale) will be heard. If the same
read-out rate were used, but only every other entry in the table were
used, then we would hear a tone whose frequency is 880 Hz. Thus,
by skipping a certain number of entries in the table the output fre
quency may be changed.

Chords (several simultaneous tones) may be produced by adding
samples together in the microcomputer, and writing them to the
DAC. For example, if we sample the table at every entry, every
other entry, every third entry, and every fourth entry, add these
samples together and output them continuously to the DAC, we
will hear the fundamental, second harmonic, third harmonic, and
fourth harmonic.

The equally tempered scale assigns the frequency of 440 Hz to
the note A. Successively higher (or lower) notes are related to this
frequency by multiplication by 2V12. A table of note frequencies is
provided in Table 12-1. Unfortunately, to play these frequencies we
need to skip fractional numbers of entries in the waveform table.
To handle this idea, we must look in a little more detail at how we

Table 12·1. Frequencies of Several Notes on Equally Tempered Scale

Frequency Frequency
Note (Hertz) Note (Hertz)

C 261.62 FlI 369.99
Cll 277.18 G 391.99
D 293.66 GlI 415.30
Dj! 311.13 A 440.00
E 329.63 All 466.16
F 349.23 B 493.88

294

intend to accomplish the production of chords with our computer
program.

For our waveform table, let us use one page of memory, or 256
entries. With a base address of $0300, for example, we can use in
direct indexing to read the table. Keeping the base address high con
stant (BAH = $03), the program will continue to "wrap around" the
table as the BAL (base address low) is incremented. Assume we
can output a number to the DAC every 100 microseconds. Then the
frequency we will hear is

1 104

f = 256 X 100 X 10-6 sec = 256 Hz = 39.0625 Hz

To produce higher frequencies, we must skip entries in the table
so that we output the table more quickly. To hear middle C
(f = 261.62), we must sample the waveform table every 261.62/
39.0625 = 6.70 entries. The formula giving the number of table en
tries to skip is

256·fT

S = 100 X 10-6

where 256 represents the number of entries in the table, 100 X 10-6

is the time it takes to output the sum of the entries (loop time) to
the DAC, and £'1' is the frequency of the tone we wish to hear.

\Ve decided to write a simple demonstration program to play the
chord consisting of F and A (below middle C), middle C, and D#.
Thus, the chord consists of four tones, and the table must be sam
pled every 4.47 entries for the F note, every 5.63 entries for the A
note, every 6.70 entries for the C note, and every 7.96 entries for the
D# note. We begin by converting the fractional parts to hexadecimal.
That is, for the F note,

47 X
0.47 = 100 = 256

where X is the two-digit hexadecimal number to the right of the
hexadecimal point. Solving for X gives X = $78 for the F note, $A2
for the A note, $B3 for the C note, and $F7 for the D# note. The in
tervals are then $4.78 for the F note, $5.A2 for the A note, $6.B3
for the C note, and $7.F7 for the D# note.

To sample the waveform table we may start by reading an entry,
using indirect indexed addressing with the index set equal to zero,
for each of the four notes. The samples are then added together and
loaded into the DAG Next, the base address low of each read oper
ation is incremented by the numbers given in the preceding para
graph, and the next samples are taken from these new locations in
the table.

295

To handle the fractional increments, a two-byte addition is per
formed. First the fractional part is added, then the integer part is
added. Any carry from the fractional part will be added to the in
teger part. Only the integer part is used as the BAL for the table
entry to be read. A close examination of the program in Example 1
will make this clear.

The program in Example 1 is very similar to the PLAY subrou
tine used by Hal Chamberlin ' in his noteworthy article on computer
music. There are many other important details, related to this sam
pled waveform approach to making music, that you may find in this
reference or by obtaining a reprint from Micro Technology Unlim
ited, Box 4596, Manchester, NH 03108. Our coverage of this topic
is intended only to stimulate your interest in this area of computer
applications. Refer to the experiments for further details and other
experiments with the DAC circuit of Fig. 12-9.

The waveform table we used was a triangular "vave that produces
a simple but mellow tone. A simple program for producing the wave
form table is given in Example 2. Note that the largest amplitude
in the table is $3F so that when four tones are added together the
result will not exceed $FF, the largest number the DAC will accept.
You may wish to experiment with other waveforms, such as a ramp
or a rectangular waveform. To listen to the chord, we coupled the
auxiliary input of our hi-fi to the output of the CA3140 using a 0.047-
microfarad capacitor.

Example 1: Program to Produce Four Simultaneous Tones

$0000 = TN 1 L; Fractional part of waveform table address for tone one
$0001 = TN1H; Integer part of waveform table address for tone one (BAL)
$0002 = $03 = BAH of waveform table
$0003 = TN2L; Fractional part of waveform table address for tone two
$0004 = TN2H; Integer pari of waveform table address for tone two (BAL)
$0005 = $03 = BAH of waveform table
$0006 = TN3L; Fractional part of waveform table address for tone three
$0007 = TN3H; Integer part of waveform table address for tone three (BAL)
$0008 = $03; BAH of waveform table
$0009 = TN4L; Fractional part of waveform table address for tone four
$ooOA = TN4H; Integer port of waveform table address for tone four (BAL)
$OOOB = 03; BAH of waveform table
$9FFO = OAC; Oigital.to-analog converter port

$0200 A2 00 START LOY $00 Set indirect index to zero.
$0202 08 CLO Clear decimal mode.
$0203 18 CLC Clear carry for additions to follow.
$0204 Bl 01 LOOP LOA (TN1H),Y Get tone one sample from the table.
$0206 71 04 AOC (TN2H),Y Add tone two sample from the table.
$0208 71 07 AOC (TN3H),Y Add tone three sample from the

table.

lChamberlin, Hal, "A Sampling of Techniques for Computer Performance of
Music," BYTE, V2, No.9, Sept. 1977, p. 62.

296

$020A 71 OA AOC (TN4H),Y Add tone four sample from the table.
$020C 80 FO 9F STA OAC Output the result to the OAC.
$020F A5 00 LOA TNIL Co Iculote address of the next entry
$0211 69 78 AOC $78 by adding $4.78 to the previous

oddresss.
$0213 85 00 STA TNlL Add fractional part first.
$0215 A501 LOA TNIH Next add carry from this to integer
$0217 69 04 AOC $04 part of the law·arder byte of the
$0219 85 01 STA TNIH address.
$021B A5 03 LOA TNIL Repeat above process for remaining
$0210 69 A2 AOC $A2 three tones.
$021F 85 03 STA TN2L
$0221 A504 LOA TN2H
$0223 69 05 ADC $05
$0225 85 04 STA TN2H
$0227 A5 06 LOA TN3L
$0229 69 B3 ADC $B3
$022B 85 06 STA TN3L
$0220 A5 07 LOA TN3H
$022F 69 06 AOC $06
$0231 85 07 STA TN3H
$0233 AS 09 LOA TN4L
$0235 69 F7 ADC $F7
$0237 85 09 STA TN4L
$0239 AS OA LOA TN4H
$023B 69 07 ADC $07
$0230 85 OA STA TN4H
$023F A500 LOA DUM The remaining instructions are
$0241 EA NOP "dummies!' They take up time to
$0242 EA NOP make loop time 100 microseconds.
$0243 EA NOP
$0244 4C 04 02 JMP LOOP Back to start over.

Example 2: Program to Place Triangular Waveform in Page Three of Memory

$0300 = Base Address of Waveform Table

$0250 A2 00 START LOX $00 Initialize X register to zero.
$0252 AO FF LOY $FF I nitia I ize Y register to $FF.
$0254 BA LOOP TXA T ra nsfer X to A.
$0255 4A LSR A Divide by two.
$0256 90 00 03 STA TAB,X Store in table, beginning half.
$0259 99 0003 STA TAB,Y Store in table, ending half.
$025C E8 INX Increment X.
$0250 88 DEY Decrement Y.
$025E EO 80 CPX $80 Is X = $80?
$0260 DO F2 BNE LOOP No, continue filling table.
$0262 00 BRK Yes, table is filled.

OTHER CONTROL PINS ON 6502

The control pins not yet mentioned include three input pins, RES
(Reset), RDY (Ready) and S.D. (Set Overflow), and one output
pin, SYNC (Synchronization). We will discuss these brieRy. The

297

RES pin is usually used under "power up" conditions or at other
times when it is desired that the microcomputer "restart." \\Then
power is applied to the 6502, or when the RESET key is depressed,
the RES pin is held at logic zero. Suitable delay circuits hold the
RES pin at logic zero during power-up conditions, while the RESET

key is usually connected to a .55.5 timer to produce a logic-zero sig
nal at the RES pin. After the RES line goes high, the 6502 waits for
six clock cycles; then it fetches the new PCL from the location with
the address $FFFC and the new PCR from the location with the
address $FFFD. The next cycle sees peR-PCL on the address bus
to fetch the first op code in the program. In the case of the KIM-I,
AIM 65, and SYM-l, this address is the starting point of the monitor.

The Ready (RDY) pin is used to interface slow memory devices.
If the ready line is brought to logic zero during 1>1 of any READ
cycle, the RjW line remains at logic one and the address lines main
tain their logic levels. In that case, slow memory devices may be
given a longer access time. When the ready line is allowed to return
to logic one, then the microprocessor will simply complete the sec
ond half of the clock cycle begun when the ready line was pulled
low. That is, the slow memory device will be read. The RDY pin is
also used in direct-memory-access (DMA) applications, a topic be
yond the scope of this book.

The S.O. pin might be a useful pin, but it appears to have found
few applications. Basically it could serve as a kind of "hardware
flag," since a positive-to-negative transition on the S.O. pin sets the
overflow flag. This flag may be tested with the BVC and the BVS
instructions. Note that arithmetic operations also affect this flag.

Finally, the SYNC pin produces a logic-one pulse during the entire
cycle in which an op code is being fetched. In the SYM-I, KIM-I,
and AIM 65, the SYNC pulse is used to pull the NMI pin low when
these microcomputers are in the single-step mode. This produces a
nonmaskable interrupt. The instruction currently being executed is
completed; then the processor jumps to the nonmaskable-interrupt
routine. This monitor routine saves the processor registers and re
turns control of the program to the monitor. The user can, therefore,
execute his program one instruction at a time, and the various regis
ters may be examined after each instruction. The monitor routine
contains no RTI instruction, so a key depression or some other signal
is required to execute the next instruction in the user's program.

EXPERIMENT NO. 1

Step 1

U sing the breadboard begun during the experiments at the end
of Chapt·er 11, add the circuit shown in Fig. 12-4. KIM-l and SYM-l

298

users may omit the 74LS04 and the 74LSOO and use the RA:\1-R/W
signal available at pin Z of the expansion connector. Use the DS9FFO
device select pulse from the 74LS154 shown in Fig. 11-9.

Step 2

Load the following program.

0200 8D FO 9F
0203 4C 00 02

Step 3

START STA MEM Write to address $9FFO
JMP START Loop back to START

With the test probe shown in Fig. 12-4, test the WRITE ENABLE
output and the READ ENABLE output. Describe and explain what
you observe.

(You should observe that the LED glows when it is connected to the
WRITE ENABLE, but it does not glow when it is connected to the
READ ENABLE. Refer to Table 11-11 and note that during the
fourth cycle of the ST A $9FFO instruction the device select pulse
DS9FFO will occur. Since this is a WRITE operation, the R/W line
will be at logic zero. During the last half of this cycle, cJ>2 will be at
logic one, and a WRITE ENABLE pulse will occur. The READ
ENABLE requires that the R/W line be at logic one when the
DS9FFO pulse occurs, but during the last cycle of the ST A $9FFO
instruction the RjW line is at logic zero. Thus, no READ ENABLE
pulse occurs.)

Step 4

How could you modify the program in Step 2 to produce a READ
ENABLE pulse but not a WRITE ENABLE pulse? Use the LED
test probe to verify your hypothesis.

EXPERIMENT NO. 2

Step 1

Breadboard the data bus buffer shown in Fig. 12-10. The 81LS97
is an octal version of the 74LS367, and two 74LS367s may be used
instead. Other data bus buffers will also work. Keep this circuit for
Experiments No.3, 4, and 5.

Step 2

Breadboard the hexadecimal display circuit of Fig. 12-8. Connect
the buffered data bus outputs to the data inputs of the two display

299

+5V

20

DOO

81LS97
DOl

DI2 >--~ D02

DI3 >--~

12

D03
Fig. 12·10. Temporary data bus buf·

11
D04 fer for experiments in Chapter 12.

Two 74L5367s (Hex Buffer/Drivers)
14 13

D05 will also serve for this purpose.

16 15
DOG

18 17
DOl

chips, as indicated in the figure. For the WRITE EN ABLE pulse use
the circuit of Experiment No. 1. The address of the display will be
$9FFO, although any other of the addresses $9FFO through $9FFF
could also be used.

Step 3
To test the display, load the following program and execute it.

0200 A5 00
0202 80 FO 9F
0205 A9 FF
0207 80 97 A4
020A 2C 97 A4

START

WAIT

LOA MEM
STA OISP
LOA $FF
STA Tl024
BIT STATUS

0200 10 FB BPL WAIT

Load A with the contents of $0000.
Store A in the display.

Store $FF in 1024 timer.
Wait for time out.

020F E6 00 INC MEM I ncrement contents of $0000.
0211 4C 00 02 JMP START Loop to beginning of the program.

What effect do you expect this program will have on the display?

(The display should "count" through all possible (256) two digit
hexadecimal numbers. The time delay simply gives enough time for
human beings to observe the count.)

300

EXPERIMENT NO. 3
Step 1

Remove the display chips, and replace them with a 74100, as
shown in Fig. 12-7.

Step 2

Connect the outputs of the 81LS97 to the D inputs of the 74100
shown in Fig. 12-7. Connect the WRITE ENABLE output of Fig.
12-4, that you wired in Experiment 1, to the G inputs of the 74100
as shown in Fig. 12-7.

Step 3

Wire a test probe like the one shown in Fig. 12-4. Check all eight
outputs of the 74100. Some of them will be at logic one (the LED
glows) and some of them will be at logic zero. This output port has
random output logic levels when power is first supplied.

Step 4

Load and execute the following program.

0200 A9 FF

0202 8D FO 9F

0205 00

START LDA $FF

STA PORTP
BRK

Put logic one into each bit of A.

Store A in output port $9FFO.

Break to the monitor.

What do you expect the test probe LED to indicate when you test
the output pins of the 74100?

(The LED should glow when it is connected to any of the 74100
output pins.)

Step 5

Change the byte to be stored in the output port to $00 by changing
the program byte at address $0201 to $00. Execute the program
again. What do you expect will appear on the output pins of the
74100? Experiment with other values of the byte located at $0201,
and test the output port pins with the LED test probe. Your 74100
should work perfectly before you proceed.

EXPERIMENT NO. 4
Step 1

Add the circuit shown in Fig. 12-9 to your breadboard. Connect
the outputs of the 74100 (or 74LS75s) to the Motorola 1408L8 DAG
Adjust the 10K resistor to be approximately 1000 ohms.

301

Step 2

Connect a vom or vtvm between ground and the output (pin 6)
of the CA3140 operational amplifier.

Step 3

U sing the "examine and modify memory" feature of your micro
computer, load $FF into the location whose address produces the
device select pulse to write to the 74100. We have been using
DS9FFO in previous experiments. Your voltmeter should read, very
approximately, three volts. Adjust the 10K feedback resistor so that
the voltage is about 2.55 V.

Step 4

Now load the location whose address is $9FFO with $00. Your volt
meter should read zero.

Step 5

Now load $80 into the DAC output port, $9FFO. You should read
about 1.28 V on your voltmeter. If you do not get this value, you
might check to see if bit seven is connected to pin five of the DAC.
Pin five of the DAC input should be a logic one; all the other pins
should be at logic zero.

Step 6

In turn, load $01, $02, $04, $08, $10, $20, $40, and $80 into the
DAC and measure the lOgic levels on the input pins and the voltage
output from the operational amplifier. The values given above to
load into the DAC produce, in turn, a logic one on pins 12, 11, 10,
9, 8, 7, 6, and 5, leaving the other input pins at logic zero. In this
way you can make sure all the output bits are properly ordered.
Your DAC is now working properly. Compare your output voltages,
given the DAC inputs, with what you would expect.

(You should obtain the following output voltages with the given in
puts, provided the 10K feedback resistor was adjusted to give an
output voltage of 2.55 volts with $FF loaded into the DAG A DAC
input of $01 gives 0.01 V, $02 gives 0.02 V, $04 gives 0.04 V, $08
gives 0.08 V, $10 gives 0.16 V, $20 gives 0.32 v, $40 gives 0.64 V,
and $80 gives 1.28 V.)

302

EXPERIMENT NO. 5

Step 1

Load the programs given in Examples 1 and 2. Execute the
program given in Example 2 first. This loads the waveform table
needed for the tone generation program. After executing the pro
gram in Example 2, check page three of memory to see that it
contains a triangular waveform.

Step 2

Load $03 into locations \\ith addresses $0002, $0005, $0008, and
$OOOB. These locations contain the high-order byte of the addresses
of the entries in the waveform table.

Step 3

Connect a 0.047-microfarad capacitor from the output of the
CA3140 to the input of your hi-fi or some other audio-amplifier
speaker system.

Step 4

In the program listed in Example 1, replace the instruction bytes
from $0206 through $020B with $EAs. In other words, six bytes are
changed to NOP instructions.

Step 5

Run the program. You should hear a mellow tone from your audio
system. The program is now playing only one note.

Step 6

Remove the first two NOP instructions you inserted, and put the
correct instruction bytes back into the program. Now execute the
program. You should hear two tones that are harmonious.

Step 7

Remove the second two NOP instructions you inserted, and put
the correct instructions back into the program. Execute it. What do
you expect to hear?

Step 8

Add the final two correct instructions. Run the program. You
should hear four tones. See reference 1 if you want to play the
Star Spangled Banner in four-part harmony. Keep your DAC circuit;
it will be used in the next chapter.

303

CHAPTER 13

Data Bus, Buffering, and
Applications

OBJECTIVES

At the completion of this chapter you should be able to:

• Understand the necessity for buffering the various microcom
puter buses.

• Understand and use three-state buffer/drivers to buffer the bi
directional data bus.

• Construct a I-bit or an 8-bit input port using three-state buffer/
drivers.

• Build and operate a memory-mapped analog-to-digital converter
circuit.

• Design and construct latched input ports using the 8212 I/O
integrated circuit.

INTRODUCTION

The general topic of this chapter will be the subject of buffering,
but it will include a more complete discussion of the data bus than
has been heretofore given in this book; several interfacing applica
tions will also be mentioned. The control bus and the address bus
are "one-way," or unidirectional, buses; that is, one device in the mi
crocomputer system controls the logic level of the line. For example,
the 6502 controls the logic levels on the address bus (unless the mi
crocomputer system utilizes direct memory access techniques). The
R/W line is also controlled by the 6502, and no other component in

304

the microcomputer system can be allowed to affect this control line.
On the other hand, logic levels on the data bus are controlled by the
6502 only during a WRITE operation. During a READ operation,
the data bus logic levels are determined by the device that was
addressed by the 6502. This might be a RjW memory chip, an input
port, an interval timer, or a ROM chip. Since the data bus carries
information to and from the 6502, it is called a hidirectional bus.
We will look fIrst at the need to buffer any kind of bus in a 6502
system; then we will examine the special requirements of a bidirec
tional bus.

WHY BUFFER?

There are two reasons for buffering any bus:

• The pins on the 6502 that control a bus line are rated to drive
one standard TTL load. In many microcomputer systems there
will be heavier loading than this; that is, the computer will have
to "drive" more than one TTL-type input.

• The conductors in any bus system have capacitance. Capacitors
require time to chan!;e and discharge, and, consequently, they
can distort the rapidly changing waveshapes one encounters on
the buses. Buffers can drive a much larger capacitance than can
the 6502, and, consequently, they are used to preserve the in
tegrity of the waveshapes over long path lengths.

In addition, the data bus requires a special kind of buffer. Recall
that the microprocessor is capable of reading data from any of 65536
devices. However, only one of these devices should control the data
bus during any particular READ cycle. All the others should act as
if they are not there. If two devices are trying to take a data bus line
to opposite logic levels, not even a prophet can predict what data
the 6502 will read. Furthermore, during a WRITE cycle all the
devices in the memory space should be isolated from the data bus
as far as their control of it is concerned, while the 6502 controls the
logic levels on the data bus. This brings us to the third reason for
buffering:

• Buffers must be capable of isolating the data bus from all of the
devices connected to the data bus, except the device being
addressed.

All the control pins, the address pins, and the data pins on the
6502 are capable of driving one standard TTL load. This means that
only one standard 7400-series chip may be connected to an output
pin on the 6502, if the 6502 is to operate properly. You could con-

305

nect four 74LSOO-series chips to a bus line, but if you tried to connect
additional chips to these lines, the circuit might not operate.

One solution to the problem of connecting many devices to a sin
gle line, in the case of the control bus or the address bus, is to con
nect the pins of the 6502 directly to two 7404 inverters in series. Two
inverters in series results in no net inversion. A 7404 can drive ten
standard TTL loads and about 40 LS loads, while a 74LS04 can
drive 20 74LSOO loads. This kind of buffering would be adequate for
most systems provided the bus length is not too great. The Ani 65,
Kni-1, and SY\I-1 all buffer the <P~ and RjW control lines with two
7404 inverters in series. Refer to the schematic of your system for
details. The address lines in these three microcomputer systems are
not buffered because they only drive a few MOS R/\V memory and
RO",d chips that require almost no driving power. However, if any
of these microcomputer systems are expanded, using the expansion
connector for example, some or all of the address lines will have to
be buffered. A popular technique is again to use two "head to tail"
7404 or 74LS04 inverters in series for each address line to be buf
fered. For an example, check Pollock's KIM-1 to S-100 bus circuit. 1

There are other integrated circuits, called bus buffer/drivers that
either may be used on a unidirectional bus, such as the control bus,
or they may be used on a bidrectional bus. These integrated circuits
have four (quad), six (hex), or eight (octal) buffer/drivers per
chip. Some of the more popular chips are listed in Table 13-1. The
logic symbols for some tvpical buffer/drivers are shown in Fig. 13-1.
A truth table for the buffer/drivers used in this chapter is provided
in Table 13-2. Study the function of the G (gate) input. Note that
when the G input is low, then the output logic level of the buffer is
the same as the input logic level. In that case, the buffer/driver is
driving the particular bus line to which it is attached. An inversion
circle on a G input indicates that the buffer/driver is active when
the G input is at logic zero. Other buffers are active when their G
inputs are at logic one, and their logic symbols will not have inver
sion circles at the G inputs.

Perhaps the most important feature is the third state in the truth
table, the one labeled "disabled." When the gate is at logic one, the
buffer / driver acts as if it were disconnected from the bus; that is, it
behaves as if a switch in series with the output had been opened.
In effect, the buffer is "disconnected" from the bus. This property
of the buffer/driver is the reason for calling these devices "three
state buffer j drivers" or "TRI -ST A TE buffer/drivers." (TRI -STATE
is a trademark of National Semiconductor Corporation.) Observe
that the third state, or the disabled state, is exactly what is required

1 Pollock, Jim, "KIM-l to S-100 Bus Adapter," 6502 User Notes, #7-8, p. 7.

306

Fig. 13-1. logic symbols for typical Buffer/Drivers.

when many devices are to be connected to the same bus. The bus
buffer/driver can be enabled whenever the device to which its input
is connected is addressed. It can be disabled, or disconnected from
the bus in effect, whenever the device to which its input is connected
is not addressed.

Fig. 13-2 shows how one bit of data might be input to the 6502
using some simple control logic and a three-state buffer/driver. Sup
pose the address on the address bus produces a device select pulse
as indicated in Fig. 13-2. If the R/W line is at logic one, as it is dur
ing a READ cycle, then the output of the 74LSOO will go to logic
zero during this cycle, enabling the three-state buffer/driver. The in
put labeled D7 will then control the logic level of the seventh bit
of the data bus, and at the conclusion of the READ cycle the 6502
will read this logic level. Whenever the R/W line is low, 01' the

Table 13-1. Some Popular Buffer/Driver Integrated Circuits

74125 QUAD
74126 QUAD

DM8093 QUAD
DM8094 QUAD

DM8097 HEX
74LS367 HEX

74LS241 OCTAL
81 LS97 OCTAL

Table 13-2. Typical Buffer/Driver Truth Table

Gate Input Output

0 0 0
0 1 1
1 X DISABLED

X = DON'T CARE

307

BIT TO BE INPUT 07

+5V

16

"""Lr G 74LS367

8

TO DATA BUS
::---t-'-- LI N E 7

""'" GND
Fig. 13-2. Using Three-State Buffer/Driver to input one bit to data bus.

device select pulse is not present, then the three-state buffer/driver
will be "disconnected" from the data bus, allowing other devices in
the system to control this bus.

Note that the data must be stable at the input to the 74LS367 dur
ing the READ cycle. Clearly, the idea expressed in Fig. 13-2 may be
extended to include the other seven lines of the data bus. Since the
74LS367 is a hex buffer/driver, two of them would be required to
make an 8-bit input port. Alternatively, an octal device, such as
the 81LS97, could be used to provide a single-chip 8-bit input port.
An example of such an input port is given in Fig. 13-3. Note that
we have changed the control signal logic slightly to illustrate that
different possibilities exist, and the designer has a certain amount of
freedom in this area. However, we are assuming that an R/W (in
verted R/W) signal is available, and it will be if two 7404s in series
are used to buffer this control line.

The circuit of Fig. 13-3 is not only useful as an input port, but it
is also useful to interface some devices to the data bus. For example,
on the KIM -1 we find two 74125 buffer/drivers used to interface the
6102 R/W memory chips to the data bus. Some memory chips lack
the necessary drive to control the data bus, so buffer / drivers are used
to provide the drive, and to isolate the memory chips from the bus
when they are not being addressed. The 2114 R/W memory chips
on the AIM 65 and SYM-l have three-state data bus drivers. These
on-chip buffer/drivers are capable of driving two TTL loads, and
the AIM 65 and SYM-l do not, therefore, buffer the R/W memory
chips.

An important restriction on the use of the circuit in Fig. 13-3 must
be observed if it is to be used as an input port. The data logic levels
at the input to the 81LS97 must be stable, at least during the READ

308

BYTE TO BE INPUT
TO THE COMPUTER

DO

4

6

12

14

16

18

+5V

20

Fig. 13·3. Using SlLS97 as S·bit Input Port.

9

11

13

15

17

TO DATA BUS
LINES 0-7

cycle in which the port is being read, or else the 6502 will read in
correct data. In other words, an 81LS97 is not a latch. The logic
levels at the output follow the logic levels at the input anytime the
G inputs are at logic zero. A latched input port will be discussed
later in this chapter. We turn first to an application where the cir
cuit of either Fig. 13-2 or 13-3 is suitable for reading data.

MEMORY·MAPPED ANALOG·lO·DIGITAL CONVERTER

The one-bit input port of Fig. 13-2 and the digital-to-analog con
verter circuit shown in Fig. 12-9 can be used to make an analog-to
digital converter. The complete circuit is shown in Fig. 13-4. Several
parts of this circuit have already been described. For example, the
74100 latch was described in Chapter 12, Fig. 12-7. The WRITE
ENABLE pulse is generated by the circuit in Fig. 12-4. Any conve
nient device select pulse generated by the 74LS154 in Fig. 11-9
may be used. For the experiments, we used DS9FFO. The 74LS04
and the 74LSOO perform the same function as described in Fig. 13-2;
that is, they enable the buffer/driver on the 74LS367 during a READ
cycle. The 1408 is a digital-to-analog converter; it was described in
Fig. 12-9. Note that we have shown the data bus lines connected
directly to the 74100. Since the 74100 represents one TTL load on

309

~ Q +5 V
0

+5 V I 1.5K
24 13 IK

> .L
I°.l!!F

74100 14 61 140818 I~ "7 R r5V

~ M 14 c:n I +5 V ...
21'-.... ? ?+12V 2.2K .p' 16

D3 21 20
Co> .. DATA

R Q 1 1 47!l ~ n~14 :. BUS ~ II ?IL"'Jll~ 74lS367

" II
101 19 0- ~ 10

CD
4

t 15 18 II ANALOG IN
ca' h 1 £: 16 17 12
n .,.. 25pF
0 15
" < • ::L • ~ WRITE ENABLE ,..

I ~ IK '" ~ 6 -12 V ,..
c
~.

these lines, and there may well be other loads on the data bus in
your microcomputer, it would be wise to use the buffer circuit shown
in Fig. 12-10 between the data bus and the 74100. In that case, the
output line from the 74LS367 I-bit input port should be connected
directly to data bus line 7, and not to the input of the 74100. Now
you should see that almost all of the circuit shown in Fig. 1.3-4 has
already appeared in one form or another in previous circuit diagrams
and, therefore, its complexity should not disturb you. The only new
component is the LM311 voltage comparator whose significance in
this circuit will now be explained.

To see how the analog-to-digital converter works, suppose that the
microcomputer program starts by loading $00 into the 74100 output
port that drives the 1408L8 DAC. Then the output of the CA3140
operational amplifier, which is cOllverting the DAC current to a volt
age level at pin 6 of the CA3140, should be zero. Assume also that
the CA3140 feedback resistor, R, has been adjusted to give 10 volts
at pin 6 when $FF is stored in the DAC port. Let the microcomputer
program increment, in steps of one, the number being output to the
DAC port. The voltage level at pin 6 of the CA3140 should increase
from zero to ten volts in 255 steps of 39 m V / step during the incre
menting process. If, after reaching $FF, the number loaded into the
DAC port is incremented once more, then the voltage will suddenly
drop to zero again. If this entire sequence of instructions is put into
a program loop, then a ramp waveform will appear at the output of
pin 6 of the CA3140. A photograph of an oscilloscope measurement
of this waveform from our circuit is shown in Fig. 13-5.

Next, tum your attention to the LM311 voltage comparator. It
compares the voltage at pin 3 with the voltage at pin 2. If the former
is larger than the latter, then the output of the comparator, pin 7,

Fig. 13-5. Photograph of ramp waveform produced by OAC circuit. Sweep time is ap
proximately 12 milliseconds, voltage rises from 0 to 10 volts.

311

will be at logic zero. If the voltage at pin 3 is less than the voltage
at pin 2, then the output of the comparator is at logic one.

Suppose that the analog voltage at pin 2 of the comparator is 5
volts. Then, as the computer program increments the DAC output
from 0 volts to 10 volts, the comparator output voltage will corre
spond to a logic one during that period when the DAC output is less
than 5 volts. As soon as the DAC output exceeds 5 volts, the com
parator output corresponds to a logic zero. Thus, by "watching" bit
seven of the I-bit input port, we can see when the comparator went
from logic one to logic zero. It did this, of course, when the output
of the DAC was equal (or slightly larger) to the analog input volt
age. Fig. 13-6 is a photograph of both the DAC output and the com
parator output with the program running. Observe that the com
parator output drops to zero whenever the DAC output reaches a
certain level.

Suppose that the DAC output was adjusted, by means of the feed
back resistor (R), so that when $FF was loaded into the DAC port
the voltage level at the output of the CA3I40 was 2.55 volts. Further,
suppose that the microcomputer program continually increments the
number loaded into the DAC port. If the comparator switches from
logic one to logic zero when the number loaded into the DAC port
increments from $XY to $XY + 1, then the analog voltage is some
where between $XY and $XY + 1. We, therefore, have succeeded in
finding a hexadecimal representation of the analog voltage. To get
a decimal representation, we must convert the hexadecimal number,
$XY, to a base-ten number, and then move the decimal point two

Fig. 13-6. Ramp waveform from DAC and LM311 Comparator output. Sweep time is 12
milliseconds; ramp voltage waveform (top) goes from 0 to 10 volts, while comparator

output switches between 0 and 5 volts.

312

places to the left. Thus, $FO corresponds to a voltage between 2.40
and 2.41 volts, and $CO corresponds to a voltage between 1.20 and
1.21 volts.

A program to convert the analog voltage to a hexadecimal repre
sentation is presented in Example 1. We assume that the DS9FFO
device select pulse is used to write to the DAC and to read the
74LS367. The 74LS367 represents the logic level of the comparator
output. It will only be connected to the data bus (line seven) when
the DS pulse is present and the R/W line is at logic one. Otherwise,
it will be disabled. Note that the data at the output of the 74LS367
will be stable during the time when it is read because the compara
tor would only change its state after a new "voltage" had been out
put to the DAC by a new 8-bit representation from the computer.
This takes only a few microseconds. Thus, there is no need to latch
the data that we are going to read. Since we are only interested in
the logic level of bit seven of the data bus, a BPL instruction is used
to test the status of this bit.

When the program in Example 1 was run, the photograph shown
in Fig. 13-7 was obtained from an oscilloscope used to measure the
DAC output. Compare this photograph with the one shown in Fig.
13-6, and note that in Fig. 13-7 the ramp waveform stops as soon as
the comparator switches from logic one to logic zero, indicating that
the conversion has been completed. At that time, the number written
to the DAC, which was also stored in the location whose address is
$0000, is stored in the output Port A. If you have the 110 board used
for the experiments at Port A, then the LEDs will indicate the hexa-

Fig. 13-7. DAC and Comparator outputs with Analog.to-Digital Converter program execut
ing. Sweep time is 3 milliseconds, ramp waveform (top) peaks at 4 volts when comparator

waveform (bottom) switches to 0 volts.

313

decimal number that represents the analog voltage. To generate an
"unknown" analog voltage, a 10K potentiometer connected between
+ 12 \' and ground may be used, with the tap going to pin 2 of the
comparator.

We were able to assemble all of the components, including the
necessary decoding circuits described in Chapter 11, the control sig
nal logic described in Chapter 12, and the components in Fig. 13-4
on a single AP Unicard, but it was a close fit. If you want a more
permanent analog-to-digital converter, you might try a wire-wrap
approach. Users of K1\1-1 must be sure to include the circuit shown
in Fig. 11-10, or they will have two devices trying; to control the logic
levels on the data bus simultaneously. (An oscilloscope is indispens
able for getting this circuit adjusted properly. The layout, grounding,
and general construction practices may affect its operation. Voltage
comparators sometimes oscillate near the point where they make the
transition from one logic level to the other.) More details on analog
to-digital conversions, including a much faster conversion routine,
are provided in Chapter 14.

Example I: Analog-to-Digital Conversion Program-Ramp Approximation

$0000 = OIGITl; digital representation of analog voltage
$9FFO = OAC; output part to load the OAC and input part to test comparator
$AOOI = PAD; output port to display result
$A003 = PAOO; data direction register for PAD

$0200 A9 FF START LOA $FF
$0202 80 03 AO STA PADO
$0205 A9 00 AGAIN LOA $00
$0207 85 00 ST A OIGITL
$0209 AS 00 RAMP LOA OIGITL

$020B 80 FO 9F STA OAC
$020E AD FO 9F LOA OAC
$0211 10 05 BPL DONE

$0213 E6 00 INC OIGITL
$0215 4C 09 02 JMP RAMP
$0218 AS 00 DONE LOA OIGITL
$021A 80 01 AO STA PAD
$0210 4C 05 02 JMP AGAIN

Set up data direction register.

Start generating OAC output voltage
by loading $00 into OIGITl.
Get OIGITl and store it in the OAC
port.

Test the comparator output level.
If it is logic zero, conversion is

finished.
Otherwise, increment number and
return to try again.
Now output the result to the 1/0
port for display purpases.
Repeat the conversion process.

AN ASCII KEYBOARD INPUT PORT

One of the problems with the input port shown in Fig. 13-3 is that
the data must be stable at the inputs to the port during the READ
operation, and the data must be available when the computer is
ready to "read" the port. In many instances, it is desirable to be able
to latch a byte of data that is being input to the computer. For ex
ample, suppose two 7490 decade counters provide eight bits of

314

counting data; at the end of a counting period we would like to store
the result and then continue counting while the computer reads the
byte of counting data just obtained. Clearly, using a three-state
buffer/driver as an input port would not allow us to save the count
ing data because the outputs of the 7490s change constantly while
counting.

Another example in which it is sometimes desirable to be able to
latch the data byte to be input to the microcomputer is an ASCII
keyboard. Many computer systems utilize a keyboard as an input
device to get data or instructions from the outside world. The KIM-l
and SYM-l systems interface with a teletypewriter keyboard with
which seven bits. of ASCII code are sent one bit at a time to the
computer. This is called serial input and it is quite common. Of
course, the computer is capable of reading seven bits of ASCII code
in one byte. When operated in this way, the keyboard input is just
another location in memory, and the mode is sometimes referred to
as the parallel I/O mode.

To implement a parallel keyboard input port we will use the fol
lowing:

• A device select pulse, DS, for the memory location of the key
board input port.

• A three-state buffer/driver connecting the keyboard to the data
bus when the device select pulse occurs, but disabling it other
wise.

• A means for the keyboard to communicate with the computer;
that is, the keyboard must inform the computer that a key has
been depressed.

• A means to store the byte of ASCII code until the computer
reads it into the accumulator.

Techniques for generating a device select pulse were described in
Chapter 11. A single Intel 8212 8-bit I/O will be used. In this appli
cation the 8212 will be used for an input port. (It makes a suitable
output port also, but it is more expensive than a 74100, for example.)
In its input mode, the main advantages of the Intel 8212 are that it
has some control-signal logic circuitry available on the chip, it has
the ability to latch the input data, and it has three-state outputs that
can be connected to the data bus.

The logic diagram of the 8212 is shown in Fig. 13-8. We may
divide the c~circuitry into three subsystems; the control logic, in
cluding the DS1, DS2, MD, STB, CLR inputs and the INT output;
the eight data latches connected to the eight data inputs; and the
eight three-state buffer / drivers. Consider first the control logic
shown in Fig. 13-8. The CLR input will be tied to logic one to dis
able it, although it might be connected to the system RES line to

315

PIN CDNFIGURA"ON

DS I Vcr

MD INT

011 DI8

001 DO,

01, DI,

DO, DO,

01] 01,

~O] DO,

01, 01\

DO, 00\

STB CLR

GND OS2

PIN NAMES

OJ l 01 8 DATA IN

DOl 008 DATA OUT

OS; OS2 DEVICE SELECT

MD MODE

STB STROBE

DEVICE SELECTIDN

[DDli

0I>0S2

CI> MD--+-+--1

[II> STB--~--L---'

lOGIC DIAGRAM SERVICE REQUEST FF

':I> 01,------------+-+-1

CD 01,--------4+-1

0:> DI]-----------i--+-1

r::I> DI,--------~+I

G> DI,---------++-1

[If> DI, -----------;.-+-1

~ 01,----------'-+-1

[][> Dl8 --------~+_l

OUIPUT
BUFFER

D02 CI>

OD, [C>

DO, ill>

DO, [19">

DD, [}G>

iNf

CLR

INTERRUPT IACTIVE LOWI ::E> CLR ---------<j
CLEAR IACTIVE LOW I

Courtesy Intel Corp.

Fig. 13-8. Logic diagram of Intel 8212 I/O Port.

bring up the inputs in a known logic-zero state. The MD input is
tied to logic zero for the input mode. This step disables the top AND

gate in the cluster of two AND gates and one OR gate, and it enables
the lower AND gate in this same cluster. Then the STB (for strobe)
line is connected directly to the C inputs of the data latches. When
the STB line is at logic one, then the Q outputs of the latches follow
the D inputs. When the strobe line goes to logic zero, then the data
are latched; that is, they are stored at the Q outputs of the eight data

316

latches. Associated with most ASCII keyboards is a strobe signal
that consists of a positive pulse that occurs with each key depression
and only occurs when the ASCII word is available at the parallel
output of the keyboard. Many keyboards produce only a 7-bit word.
Thus, a single key depression results in the ASCII data being stored
in the 8212, with one bit (bit seven) left over. A 10-microsecond
strobe pulse will be adequate for our purposes.

Note that the STB input is also connected to the C input on the
service request flip-flop. The trailing edge of the strobe latches a
logic zero into the Q output of the flip-flop because the D input of
the service request flip-flop is connected to logic zero. Following the
Q output of the flip-flop, we see that it is inverted, oRed, and in
verted again to produce a logic zero output at INT whenever the
strobe pulse occurs. The output at the INT pin on the 8212 is used
to communicate with the microcomputer, informing it that data is
available. It might be used to cause an interrupt (either IRQ or
NMI), and the interrupt vector would point to a routine to read the
keyboard with an LDA KEYBOARD instruction. Assume that KEY
BOARD is a symbol for the address of the memory location of this
input port.

Continuing, we note that the address of KEYBOARD appears on
the address bus during the third cycle of the LDA KEYBOARD in
struction. The address lines must be decoded to produce a device
select pulse, DS, for this address, and this device select pulse goes
to pin DSI on the 8212. The R/W line is connected to the DS2 pin
on the 8212. Thus, at the same time that DS1 is brought to logic
zero by the device select pulse, the DS2 pin is a logic one. When
DS1 is at logic zero and DS2 is at logic one, then the three-state
buffers are enabled, as an examination of Fig. 13-8 will reveal. This
action places the byte of data on the data bus.

Also observe that when DSI is at logic zero and DS2 is at logic
one, then the set input of the service request flip-flop is at logic
zero, setting it. A logic zero appears at the Q output of the service
request flip-flop, clearing the interrupt request. In other words, INT
goes to logic one. The data has now been read and the interrupt has
been cleared, freeing the computer to go on its way until another
key is depressed and the entire process is repeated.

In Fig. 13-9, we show a complete 8-bit input port utilizing the
8212. The device select pulse, DS9FFF, is assumed to originate in
the 74LS154 in Fig. 11-9. The R/W line comes from the 6502, while
the keyboard strobe and the data originate in an ASCII encoded
keyboard. Obviously there are other uses for an input port such as
this, other than obtaining information from a keyboard. The data in
put pins might be connected to two 7490s in a decade counter config
uration. A positive strobe might be generated by the same circuit

317

24

DS9FFF OS

Rtw 13 DS2 INT
23

TO IRQ OR NMI

KEYBOARD KS
STROBE

11 STB

3 4
DO

6
D1

8
D2

9 10
D3 TO THE

16 15 DATA
DI5 D4 BUS

18 17
D5

20 19
D6

DI8
22 21

D7

Fig. 13-9. Intel 8212 used as 8-bit Input Port.

that gates the pulses going to the first 7490 counter. When the gate
closes, counting stops, a strobe occurs, and the data at the Q outputs
of the 7490s is latched into the 8212. This would make a simple
two-digit bcd pulse counter or timer. You can use your imagination
to think of some other applications.

Let us produce the software necessary to utilize this input port.
First assume that the INT is connected to the IRQ pin on the 6502.
Note that the IRQ and NMI pins both require a pull-up resistor, but
these are already connected on the AIM 65, KIM-1 and SYM-1 sys
tems. The program offered in Example 2 illustrates how the input
port would work in the interrupt mode. The main program is simply
intended to simulate a much longer, more complex, and more useful
program. The main program in Example 2 outputs the contents of
the location with address $0000 to Port A, and in the experiments
section of this chapter it will be used to test the input port. The main
program is also an infinite loop. The interrupt routine reads the key
board and stores the result in the location whose address is $0000.

318

Thus, the keyboard data is passed to the main program by using
this zero-page memory location. Of course, the interrupt vector
(IRQ) must point to $0300 in order for the program to work. The
same program could be used with INT connected to the NMI pin if
the NMI interrupt vector points to $0300. The hardware in Fig. 13-9
and the software given in Example 13-2 constitute an intermpt
driven keyboard.

There is another mode in which an input port may be operated
without using interrupts. If the INT output is connected to the D7
input of our I-bit port described in Fig. 13-3, then the strobe pulse
will cause this input to go to logic zero. Assume another device select
pulse, DS9FFE, for example, is used to read this I-bit input port.
When it shows a logic zero in bit seven, then the computer knows
that a key has been depressed and it should read the input port. In
this case, the software is said to poll the keyboard. After the program

Example 2: Software for Interrupt Driven Input Port

$0000 = DATA
$1700 = PAD; Pori A, an output port
$1701 = PADD; Part A data direction regisler
$17FE = IRQl; Contains $00
$17FF = IRQH; Contains $03
$9FFO = KYBD; Keyboard input port

0200 A9 FF MAIN LOA $FF
0202 80 01 17 STA PADD
0205 A5 00 LOOP LOA DATA
0207 8D 00 17 STA PAD
020A 4C 05 02 JMP LOOP
0300 AD FF 9F IRQST lOA KYBD
0303 85 00 STA DATA
0305 40 RTI

Initialize Port A to be an outpul
port
Get data from address $0000.
Store it in lhe output port.
loop here unless interrupt occurs.
Get data from keyboard input port.
Store it at address $0000.
Return from interrupt.

reads the input port, INT goes to logic one, indicating that the key
board has been serviced. The software for this mode of operation is
given in Example 3. Note that two distinct device select pulses are
required. 'Ve have placed the polling software in a subroutine.
Again, our main program is not to be taken literally. Rather. it is in
tended to simulate a more useful program. The subroutine INPUT
stores the keyboard data in Port A. We will use this feature to test
the program and the ports.

Example 3: Program to Poll Keyboard Input Port

$1700 = PAD; Port A, an output port
$1701 = PADD; Port A data direction register
$9FFE = POll; Bit seven at logic zero indicates a keystroke
$9FFF = KYBD; Keyboard input port

0200 A9 FF
0202 8D 01 17

MAIN LDA $FF
STA PADD

Set up data direction for Port A.

319

0205 20 00 03 HERE JSR INPUT Jump to test if data from keyboard is
ready.

0208 4C 05 02 JMP HERE
0300 2C FE 9F INPUT BIT POLL Is bit seven at logic zero?
0303 30 FB BMI INPUT No; loop here until it is zero.
0305 AD FF 9F LOA KYBO Yes; read the keyboard.
0308 80 00 17 STA PAD Output result 10 Pari A.
030B 60 RTS

EXPERIMENT NO.

Step 1

Connect a 74LS367 three-state buffer/driver as shown in Fig.
13-10. You can do this on a breadboard other than the AP Unicard.

+5V

16

r_....:l<1G 74lS367
GATE

INPUT

Step 2

150 ()

Fig. 13-10. Circuit to demonstrate a
Three-State Buffer/Driver.

Connect the gate, G, input to ground; then try connecting the in
put pin to logic one (+5 V) and next to logic zero (GND). What
do you expect the LEDs will show?

(The top LED should glow when the input is connected to logic
zero, because then current can How from the +5-volt source through
the LED and through the output pin of the 74LS367 to ground. The
lower LED lights when the input is at logic one.)

320

Step 3

Now connect the gate, G, to logic one (+5 V) and repeat Step 2.
What do you expect to observe? Refer to the truth table in Table
13-2 to explain your observations.

(Both LEDs will be lit since there is no longer a path to +5 V
(through pin 3) or GND through the 74LS367.)

EXPERIMENT NO. 2
Step 1

In this experiment we will construct a I-bit input port on the AP
Unicard. The control-logic circuit will be similar to the one shown
in Fig. 13-3. However, since the board is becoming crowded we will
use a slightly modified version shown in Fig. 13-11. Note that the
74LSOO NAND gate is used as an inverter. Connect this circuit. The
74LS02 and 74LSOO are already on the breadboard.

Step 2

INPUT

+5V

16

>--t..:....-_- BIT SEVEN
OF THE
DATA BUS

8

= GND

Fig. 13-11. One-Bit (Bit Seven) Input Port.

Test the input port to see if it works. Connect the input (pin 2)
of the 74LS367 to logic zero. Then load and execute the following
program.

0200 2C FF 9F
0203 10 FB
0205 00

START BIT PORT
BPL START
BRK

Test bit seven of the input port.

If bit seven = zero, branch back.

321

What do you expect to observe?

(If bit seven is at logic zero, then the program should stay in the
loop. Otherwise, it will exit the loop and jump to the monitor, light
ing the display.)

Step 3

While the program is running, change the input pin from logic
zero to logic one. What do you observe?

(You should observe that the program jumps to the monitor as soon
as the input pin is lifted from its ground connection.)

Step 4

With the input pin connected to logic one, load and execute the
same program as in Step 2, but with the BPL instruction replaced
by a BMI instruction (op code $30). Describe and explain your
results.

EXPERIMENT NO. 3

Step 1

Breadboard the analog-to-digital converter circuit of Fig. 13-4.
Use the I-bit input port constructed in the previous experiment; that
is, connect the output of the LM311 comparator to the input of the
74LS367, and connect the output of the 74LS367 to bit seven of the
data bus.

Step 2

Connect a 10K potentiometer between + 12 V and ground, with the
wiper of the potentiometer going to the analog input (pin 2) of the
comparator.

Step 3

Write, load, and execute a short program to load $FF into the
DAC output port, address $9FFO. Adjust the feedback resistor on
the CA3140 to give about 10 V output at pin 6. Adjust the potentiom
eter to produce about 5 V at the pin 2 input of the comparator. What
logic level should you measure with your voltmeter on the output
of the comparator?

322

(You should measure a logic zero (zero voltage) since the output
of the CA3140 exceeds the analog input to the comparator.)

Step 4

With the same program load $00 into the DAC output port. A
simple program of the form:

LDA $00
STA DAC
BRK

will work. Now measure the output of the LM311 comparator. What
do you expect to read?

(Your voltmeter should read +5 V because the output from the
CA3140 is less than the potentiometer input to the comparator. Do
not proceed to the next parts of this experiment unless your experi
ments this far have been successful.)

Step 5

Load and execute the following program:

0200 AS 00
0202 8D FO 9F
0205 E6 00
0207 4C 00 02

START LDA DIGIT
STA DAC
INC DIGIT
JMP START

What do you suppose is the output of the CA3140?

(It should be a ramp waveform, since the input to the DAC is con
tinually being incremented. If you have an oscilloscope, connect it
to the output of the CA3140 (pin 6) and observe this waveform. A
photograph of our results is shown in Fig. 13-5.)

Step 6

Connect the oscilloscope to pin 7 of the comparator. Describe and
explain what you observe. Compare it with the photograph in Fig.
13-6.

EXPERIMENT NO. 4

Step 1

In this experiment, we will make some final tests of the analog-to
digital circuit. With the same circuit used in Experiment No.3, load

323

and execute the program given in Example 1. Connect the 110 board
to the application connector.

Step 2

With the program running, reduce the potentiometer setting until
the voltage at pin 2 of the LM311 voltage comparator is zero. If you
cannot make this voltage zero with the potentiometer, connect pin 2
directly to ground. The LEDs at Port A should all be out, although
in certain cases the op amp might have some offset voltage that will
cause a one or a two to appear at Port A.

Step 3

Increase the potentiometer setting. What happens to the LEDs at
Port A?

(You should observe that as the potentiometer setting is increased
the number represented by the glowing LEDs at Port A increases.
It should be possible to increase the potentiometer until $FF appears
on the Port A LEDs. You have now successfully completed the AID
converter. Congratulations! The proportionality between the analog
voltage level and the digital number is determined by the feedback
resistor, R, in the operational amplifier circuit. For a much faster
conversion scheme, refer to Chapter 14.)

EXPERIMENT NO. 5

Step 1

In this experiment we will test the 8212 110 chip. There will be
no room on the AP Unicard, if you have built the DAC and the AID
converter on this board. If you do not want to dismantle that cir
cuit, you will need another breadboard. In any case, you will need
the device select circuitry of Fig. 11-9. Connect the DS9FFF device
select pulse to the DS1 pin of the 8212 and connect the R/W line
to DS2. Connect the output pins of the 8212 to the data bus, using
the expansion connector as before. Connect the IRQ pin on the ex
pansion connector to the INT pin on the 8212.

Step 2

Breadboard the circuit of Fig. 9-9. It is used to produce a strobe
pulse. Instead of connecting the Q output of the 74121 to the IRQ
line, connect the Q output (pin 6) to the strobe input of the 8212.

324

Step 3
With suitable jumper wires, connect the DI inputs of the 8212 to

either +5 V or ground, producing logic one or logic zero signals,
respectively.

Step 4
Load and execute the following program:

0200 A9 FF MAIN LDA $FF Initialize Port A to be an output
0202 8D 01 17 STA PADD port.
0205 A5 00 LOOP LDA DATA Get data from address $0000.
0207 8D 00 17 STA PAD Store it in the output port.
020A 4C 05 02 JMP LOOP Loop here unless interrupt occurs.
0300 AD FF 9F IRQST LOA KYBD Get data from keyboard input port.
0305 40 RTI Return from interrupt.

What do the Port A LEDs indicate?

(They should show whatever random data happened to be at ad
dress $0000.)

Step 5
Note the logic levels you have set up at the inputs to the 8212;

then strobe the 8212 with the circuit of Fig. 9-9. What do you ob
serve at the Port A LEDs?

(You should observe that they show the same logic levels as you in
put to the 8212. If they do not, check your interrupt vector and try
again.)

Step 6
Now change the inputs to the 8212 by connecting some to +5 V

and some to ground. What do you observe at the Port A LEDs?

(You should observe no change at these LEDs because the data has
not yet been strobed into the outputs, nor has the 8212 been read.)

Step 7
Strobe the 8212 and observe that the Port A LEDs indicate the

same data as are found at the inputs on the 8212.

Step 8
Design your own experiment to test the polled-service routine

described in Example 3.

325

CHAPTER 14

Applications

INTRODUCTION

In this chapter we have collected several articles, already pub
lished or in press, that will give you an idea of what a finished micro
computer project is. Of course, the projects described represent only
a small sample of the possibilities, and the projects would generally
be regarded as "minimal" designs. That is, much more elaborate and
sophisticated instruments and programs are possible. The articles
also reflect the author's interests.

An important source of information for 6502 software and hard
ware is:

COMPUTE!
P.O. Box 5406
Greensboro, NC 27403

Articles about 6502-based designs are often published in other jour
nals as well.

Although the application programs described in this chapter were
written for the KIM-I, they may be easily converted to run on other
microcomputers once you understand both the basic elements of
programming and the features of your microcomputer. We begin by
giving a brief description of each application; the articles then fol
low to complete the chapter.

• "Digital-to-Analog and Analog-to-Digital Conversion Using the
KIM-I." This article first appeared in MICRO, December 1977-
January 1978, page 11. It is reprinted with permission. The
article gives several experiments with the Motorola 1408L8 digi-

326

tal-to-analog converter. It also describes a storage scope appli
cation. The storage scope program and interface have been cor
rected and improved by including suggestions made in the arti
cle "Storage Scope Revisited," by Joseph L. Powlette and Don
ald C. Jeffery in the December 1978-January 1979 issue of
MICRO.

• "Employing the KIM-l Microcomputer as a Timer and Data
Logging Module." This article first appeared in MICRO, Febru
ary-March 1978, page 3. It shows how to measure the times at
which a series of events occur, and how to store the times of
the events for later display.

• "Employing the KIM-l as a Precision Keyer and Automatic
Message Sender." This article is to appear in 73 Magazine. The
article is of particular interest to amateur radio operators. Code
speed is controlled digitally, and the program has the ability to
send three standard code messages automatically.

• "Catching Bugs With Lights-A Program Debugging Aid."
Kilobaud Microcomputing intends to publish this article. Some
of the interfacing techniques introduced in the last few chapters
of this book are used to display the contents of the various reg
isters of the 6502.

• "Lunar Occultation of a Star." This program was written by Dr.
Thomas D. Strickler, Jesse Maupin, and John Drake of Berea
College. A technique to measure the precise time at which an
analog voltage is changing is described. Although they were in
terested in timing occultations of stars by the moon, the tech
niques are applicable to a number of scientific problems, so the
article is included.

DIGITAL·ANALOG AND ANALOG-DIGITAL
CONVERSION USING THE KIM-1 *

A Motorola 1408L8 8-bit digital-to-analog converter is connected
as shown in Fig. 14-1. (The l408L8 is available from James Elec
tronics, 1021 Howard Ave., San Carlos, CA 94070, as are the op amps
used in these experiments.) The PAD port of the KIM -1 is used to
provide the digital input to the 1408L8. The analog output of the
1408L8 is a current sink at pin 4, which we converted to a voltage
by means of the RCA CA3140 operational amplifier. The feedback
resistor R is adjusted to give the desired voltage output. For exam
ple, a value of about 6500 ohms for this resistor results in a voltage
range from 0 volts when PAD is 0000 0000 to 10 volts when PAD is
UU Ull.

°Copyright © 1977, The Computerist, Inc., All rights reserved.

327

1000
n

15

+5V

13 150 n

1500
1408L8 14 n

16

47
()

25pF

-12V

IN746

TO SCOPE
r----'Vvfi',--....,....-.. VERTICAL INPUT

r-'V\iIr-1~-TO PB7

ANALOG
IN

1

1000
()

~ TO SCOPE SYNC

IN751

Fig. 14-1. Circuit diagram for Digital-to-Analog Converter and Analog-to-Digital Converter.
See text for values of R; 1 N746 is 3.3 V zener diode and 1 N751 is 5.1 V zener diode.

For the first experiment do not connect the second op amp; simply
connect the output of the first op amp to an oscilloscope as shown.
Load the program given in Example 1.

Example 1: Program to Generate a Ramp Voltage Waveform

0300 A9 FF START LOA $FF 255 in accumulator.
0302 80 01 17 STA PAOO Port A is the output port.
0305 EE 00 17 BACK INC PAD Increment number in PAD.

0308 4C 05 03 JMP BACK I ncrement in a loop.

Running this program should cause a ramp waveform to be observed
on the oscilloscope screen. A close examination of the ramp will
show that it consists of 28 = 256 steps, rather than a straight line.

Next, connect the 531 op amp. It acts as a comparator. It compares
the voltage from the output of the first op amp (which we shall call
the digital signal) with a voltage from some source to be applied to
pin 3 (which we shall call the analog signal). The output of the
531 is connected to PB7 on the KIM. If PB7 = 1, the analog signal
is greater than the digital signal. If PB7 = 0, the analog signal is less
than the digital signal. The digital signal is, of course, produced by
the contents of PAD.

A Rowchart showing what we intend to do is shown in Fig. 14-2,
and the corresponding program is given in Example 2. Output port

328

Fig. 14-2. Flowchart for Analog.to
Digital Converter: Ramp

Approximation.

PAD is set to zero. If the analog signal is positive, then PB7 = l.
PAD is now incremented until the comparator indicates that the ana
log signal is less than the digital signal, Le., PB7 = O. At that instant,
the digital and analog signals are the same to within one bit, the
least significant bit, in PAD. The contents of PAD are then displayed
and the cycle continues.

If the feedback resistor is adjusted so that a value of PAD = 25510

= $FF 16 produces a voltage of 2.55 volts, then we have constructed
a simple digital voltmeter with a full-scale reading (in hex) of 2.55
volts. A simple program to convert from hex to base ten would make
the meter easier to read.

The ramp approximation is quite slow, and there is a faster tech
nique known as "successive approximation." It works as follows: the
most significant bit in the DAC is set to one, and all the others are
set to zero. If the comparator indicates that the analog signal is
greater than the digital signal, then the highest bit is made zero, and

Example 2: Program for Analog-to-Digital Converter (Ramp Approximation)

0300 A9 FF START LOA $FF 255 in accumulator.
0302 80 01 17 STA PAOO Make Port A an output port.
0305 A2 00 AGN lOX $00 Start PAD at zero.
0307 8E 00 17 RAMP STX PAD Output value of X register.
030A AD 02 17 LOA PBO Read Port B.
0300 10 04 BPl OISP Branch if bit 7 = O.
030F E8 INX Increment X register.
0310 4C 07 03 JMP RAMP Continue loop.
0313 86 F9 OISP STX INH Put X into display register.
0315 20 IF 1F JSR SCAN OS Use KIM·l display subroutine
0318 4C 05 03 JMP AGN and start again at zero.

329

the next lower hit is set to one and the test is repeated. This iterative
process is repeated until all eight bits have been tested, starting with
the MSB and ending with the LSB. The flowchart shown in Fig. 14-3
indicates how this will be accomplished.

This analog-to-digital conversion scheme will be used in a program
which digitizes 256 points on a waveform and then stores the results,
to be displayed on an oscilloscope at a convenient time and with as
many repetitions as desired. This program is useful for examining
slow waveforms with an oscilloscope with a low persistence screen,
for example, ECG waveforms, and it is useful for examining non
periodic waveforms, such as a one-shot impulse from an accelerom
eter. The program has triggering built in, and the output scan por
tion synchronizes the oscilloscope with a SYNC signal, turning an
inexpensive scope into something more useful. Flowcharts for the
storage scope program are presented in Figs. 14-4 and 14-5.

330

PAD = 8016 = 100000001

PBZZ = 8016 = 100000001

NO

PAD = PAD - PBZZ

LOGICAL SHIFT RIGHT PGZZ
(SHIFTS ALL BITS ONE BIT
RIGHT AND ZERO BIT IS
SH IFTED INTO CARRY BIT)

Fig. 14-3. Flowchart for Successive
Approximation Analog-to-Digital

Conversion program.

Fig. 14-4. Flowchart for Storage
Scope Program.

X=X+!
WAIT
FOR TIMER

A short description of the behavior of the circuit and program
follows. The experimenter chooses the desired trigger level and loads
this into location $0306. When the analog signal is greater than this,
the comparator makes PB7 go high and the scan begins. The sam
pling rate and the scan time are determined by the number loaded
into the timer and the timer used, locations $0314 and $0316, respec
tively. It takes about 300 microseconds to digitize, so there is no
point in choosing time intervals smaller than this. The X register is
used as an index to identify each of the 256 points on the scan. After

331

Fig. 14-5. Flowchart for Waveform
Display program.

the timer is started, the analog signal is digitized and the timer is
watched until it is finished. The X is then incremented and a new
point is digitized until all 256 points are finished and stored in
TABLE,X.

The X is then zero again. This entire process will repeat unless the
''1'' key is depressed, in which case the program displays the data
on the oscilloscope, connected as before to the output of the first
op amp. The display will repeat, complete with a SYNC signal out
put from PBO, until the program is halted. In our case we loaded the
vector $17FA and $17FB with the starting address of the program
($0300) so a depression of the ST key caused the entire program to
start over.

A listing of the program is shown in Example 3. Notice that the
data is stored in T ABLE,X located in page two of memory, PGZZ is
at location $0000, the trigger level is in $0306, and the scan time
variable is in $0314 and $0316. The scan time should not be shorter
than 300 microseconds. As far as display is concerned, we found
that a sweep rate of 200 to 500 microseconds per cm gave good re
sults. Two photographs, showing the results obtained by converting
two 14-Hz waveforms to digital levels and then displaying them on
an oscilloscope with the storage scope program, are shown in Figs.
14-6A and B.

A few other comments may be in order. First, most of the ideas
for this project were obtained in a KIM workshop offered by Dr.
Robert Tinker. The software implementation is the author's work.

332

(A) Sine Wave.

(8) Ramp Wave.

Fig. 14-6. Storage Scope reconstruction of 14·Hz Sine and Ramp Waveforms. Photographs
made by Joseph L. Powle"e and Donald C. Jeffery of Morav;an College.

There are some obvious improvements, such as a sample-and-hold
device between the analog source and the comparator or a faster
approximation routine. These improvements are left for the reader
to implement. Fast AID converter circuits can be difficult to adjust.

333

I am indebted to Joseph L. Powlette and Donald C. J efIeryl of
Moravian College for pointing out the necessity for the high-speed
531 op amp, and for providing the photographs.

Example 3: Program for Storage Scope

0300 A9 FF BEGIN LOA $FF Initialize Port A to be an output port.
0302 80 01 17 STA PAOO
0305 A9 10 START LOA TSET Trigger voltage set.
0307 80 00 17 STA PAD
030A A2 00 LOX $00 I nitialize X register.
030C EA NOP
0300 EA NOP
030E AD 02 17 TRIG LOA PBO Test PB7 for trigger level.
0311 10 FB BPL TRIG Wait if PB7 = O.
0313 A9 CO STiME LOA $CO Set scan time here.
0315 80 OS 17 STA TIMER Select interval timer.
0318 A9 80 LOA $80 Start digitize sequence.
031A 85 00 STA PGZZ Store initial value.
031C 80 00 17 TEST STA PAD Output value.
03 IF AC 02 17 LOY PBD Test PB7.
0322 30 03 BMI FWRD Branch if PB7 = 1.
0324 38 SEC Clear borrow flag.
0325 E5 00 SBC PGZZ Subtract bit seven.
0327 46 00 FWRO LSR PGZZ Set PGZZ for next lower bit.
0329 BO OS BCS OUT Out of digitize loop if finished.
032B 65 00 AOC PGZZ Set next lower bit = 1.
0320 4C 1C 03 JMP TEST Return to test all lower bits.
0330 80 00 17 OUT STA PAD Final approximation in PAD
0333 90 00 02 STA TABLE,X and in TABLE(X) in page 2.
0336 E8 INX Bump table index.
0337 FO 08 BEQ DISPLY Go to display if table is complete.
0339 AD 07 17 CHEK LOA TCHEK Test if timer is finished.
033C 10 FB BPL CHEK If not, wait in loop.
033E 4C 13 03 JMP STIME Digitize another point.
0341 20 6A IF DISPLY JSR GETKEY Is key "1" depressed?
0344 C9 01 CMP $01
0346 FO 03 BEQ SYNC Yes. Display the data.
0348 4C OS 03 JMP START No. Return to start.
034B A9 01 SYNC LOA $01 Set up PBO as SYNC output pin.
0340 80 03 17 STA PBDD
0350 A2 00 LOX $00 Initialize X to display table.
0352 AD 02 17 RPT LOA PBD Toggle PBO for SYNC.
0355 49 01 EOR $01 Signal to scope.
0357 80 02 17 STA PBO
03SA BO 00 02 SCAN LOA TABLE,X Output TABLE(X) for
0350 80 00 17 STA PAD display on scope.
0360 E8 INX Increment X register.
0361 DO F7 BNE SCAN Continue until all points are out,
0363 4C 52 03 JMP RPT then repeat.

l"Storage Scope Revisited," Powlette, Joseph L., and Jeffery, Donald C.,
MICRO, December 1978-January 1979, p. 29.

334

EMPLOYING THE KIM·1 MICROCOMPUTER AS A
TIMER AND DATA LOGGING MODULE*

The interval timers on the 6530 on the KIM -1 microcomputer pro
vide a convenient way to measure the time between two or more
events. Such events might include the start and end of a race, the
exit of a bullet from a gun and its arrival at a measured distance
along its trajectory, the interruption of light to a series of phototran
sistors placed along the path of a falling object, an animal arriving
at a feeding station, cosmic rays striking a detector, etc. Some of
these measurements will be described in more detail below. Each
event must produce a negative pulse that the microcomputer detects.
The microcomputer also records the time at which the event oc
curred. The time is stored in memory, and later it may be displayed
on the six-digit KIM-1 display.

The data logging, timer, and display programs are listed in Exam
ples 4, 5, and 6, respectively. The programs must be used together
for the applications described in this article, but each might be used
with other applications, for example, pulse generators, Geiger count
ers, temperature logging, etc. The events to be timed must produce
either a one-shot pulse (positive-zero-positive) whose duration is at
least 50 microseconds, or a zero-to-positive transition which must be
reset to zero before the next event. These signals are applied to pin
PAO accessed on the KIM-1 applications connector. The programs
may be easily modified to detect positive pulses.

The first pulse starts the timer which continues to operate on an
interrupt basis. The time at which the first pulse occurs is not re
corded by the data logging program since it corresponds to t = O.
Successive pulses cause the data logging program to store the six
digit time counter in memory. The number of events (not counting
the first event), N, to be timed must be stored in location $0003.
Remember to convert the number of events, N, to base 16 before
entering it in memory. As the program is written, N must be less
than 75 = $4B.

The function of the timer program is to load the interval timer,
increment the six-digit time counter, and return to the data logging
program. At the end of each timing period the timer causes an inter
rupt to occur (pin PB7 on the application connector must be con
nected to pin 4 on the expansion connector), the computer jumps
to the timer program, does its thing, and returns to the main data
logging program to wait for events.

Table 14-1 lists several timing intervals which are possible and the
numbers which must be loaded into the various timers to produce

"Copyright © 1978, The Computerist, Inc., All Rights Reserved.

335

Table 14·1. Timing Intervals for Example 4

Time Interval Value Address Measured Interval 0/0 Error

100 microsec 49 170C 99.98 m icrosec 0.02%
1 millisec 7A 1700 0.9998 millisec 0.02%

10 millisec 9C 170E 10.007 millisec 0.07%
100 millisec 62 170F 100.5 millisec 0.5%

the given interval. For example, if one wishes to measure time in
units of 100 microseconds, then $49 must be stored in the divide-by
one counter whose address is $I70C. In this case. the numbers which
appear on the display during the display portion of the program
represent the number of 100 microsecond intervals between the first
event and the event whose time is being displaved To put it another
way, multiply the number on the display by 0.0001 to get the time
in seconds. The other possibilities listed in the table are treated in
the same way.

When all N events have been logged, the program automatically
jumps to the display program. '\Then one is ready to record the data,
key "1" on the keyboard is depressed. The time of each event, ex
cepting the first which occurred at t = 0, is displayed on the six-digit
readout for several seconds before the display moves to the time or
the next event. This gives the experimenter time to record the data
on paper. If more time is required, increase the value of the number
stored in location $0289.

Example 5 also lists the measured time interval and gives the per
cent error between the stated interval (say 100 microseconds) and
the actual measured interval (99.98 microseconds). The measure
ments were made by connecting a frequency counter (PASCO Sci
entific Model 8015) to pin PB7 while the program was running and
after the first event had started the timer. If greater accuracy is re
quired for the lO-millisecond and 100-millisecond intervals, then
experiment with putting NOP instructions between the PHA instruc
tion and the LDA TIME instruction in the timer program.

The simplest application for the program is a simple stopwatch
with memory. Any suitably debounced switch can be used. See
pages 213 and 280 in CMOS Cookbook by Don Lancaster, published
by Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapo
lis, Indiana 46268 for several suitable switching circuits. The circuit
of our Fig. 9-9 may also be used to construct a stopwatch.

Being a physics teacher, I originally designed the program to col
lect data for an "acceleration of gravity" experiment in the introduc
tory physics lab. The technique may be applicable to other prob
lems, so it is described herein. Nine phototransistors (Fairchild FPT
100 available from Radio Shack) were mounted on a meter stick at

336

10-cm intervals. Two incandescent (do not try Huorescent lighting)
150-watt Hood lamps provided the illumination. The interface circuit
is shown in Fig. 14-7.

The 555 timer serves as a Schmitt trigger and buffer which pro
duces a negative pulse when an object passes between the light and
the phototransistor. The 500K potentiometer is adjusted so that an
interruption of the light to any of the phototransistors increases the
voltage at pin 2 of the 555 from about 1.5 volts to at least 3.5 volts;
this is a very simple adjustment that should be made with a vtvm or
other high impedance meter, not a vom.

In the case of a simple pendulum, the relationship between the
period and the amplitude can be investigated by allowing the
pendulum to "run down" while logging the times when the bob in
terrupts the light to a single phototransistor. With only one photo
transistor the timer-data logging program can also be used as a ta
chometer, if a rotating system of some kind is involved.

Lancaster, in the CMOS Cookbook, describes a tracking photocell
pickoff which could be used in conjunction with the program for out
door races and other sporting events. See page 346 in the "Cook
book." A simple light-beam-phototransistor system could be placed
in a cage, and the apparatus would record the times at which an ani
mal interrupted the beam, giving a measurement of animal activity.

If you want to measure the muzzle velocity of your riHe or hand
gun, you will have to be more creative. First, I would modify the

+5V

8
2

500K PAO

555

6

.OlmF
I
I
I

~
Fig. 14-7. Interface circuit for Timer·Data Logging program. Up to ten phototransistors

(FPT·l00) may be connected in series as indicated by dashed line.

337

program so that one pin, say PAO, is used to start the timing while
another pin, say PBO, is used to stop the timing. This can be accom
plished by changing the instructions at addresses $0226 and $022D
in Example 4 from AD 00 17 to AD 02 17. Then I would use a fine
wire foil to hold the clock input of a 7474 Hip-Hop low until the wire
foil was broken by the exit of the bullet from the gun. The Q output
going high would start the timing, so it would be connected to PAO.
To end the timing, one could use a microphone to detect a bullet
hitting the backstop. Of course, the microphone signal would have
to to be amplified and used to clock the other Hip-Hop on the 7474
to signal the second event. Another approach would have the arriv
ing bullet smash two pieces of aluminum foil together, closing a
switch. The distance between start and stop should be at least 10
feet. Please be extremely careful with all muzzle velocity measure
ments.

$0000 = LOW
$0001 = MID
$0002 = HIGH
$0003 = N
$0053 = LO
$0053 = MI
$OOA3 = HI
$00F9 = INH
$OOFA = POINTl
$OOFB = POINTH
$0271 = KEY
$1700 = PAD
$1 F6A = GETKEY
$lFlF = SCANDS

0200 78
0201 F8
0202 A2 00
0204 A9 50
0206 80 FE 17
0209 A9 02
020B 80 FF 17
020E A9 99
0210 85 00
0212 85 01
0214 85 02
0216 AD 00 17
0219 29 01
021B DO F9*

0210 AD 00 17
0220 29 01
0222 FO F9*
0224 58 18
0226 00 EA

338

Example 4: Data Logging Program

INITIAL SEI Disable interrupt.
SED Set decimal mode for addition.
LOX $00 Set X reg ister to zero.
LOA $50 Locate interrupt'vectar $0250 at
STA 17FE addresses $17FE and $17FF.
LOA $02
STA 17FF
LOA 99 Clear counter by storing 99
STA LOW in the three two·digit memory
STA MID locations of the counter.
STA HIGH

START LOA PAD Read input pin PAO.
AND $01 Logical AND with input pin.
BNE START If pin is 1, loop to START; if 0,

continue.
FLIP LOA PAD Read input pin again.

AND $01 Logical AND with input pin.
BEQ FLIP If pin is 0, loop to FLIP.
CLI ClC Enable interrupt, go to interrupt
BRK NOP to start timer, then return.

0228 AD 00 17 CHEKI LOA PAD These instructions are the same
0228 29 01 AND $01 as the START and FLIP sequence.
0220 DO F9* BNE CHEKI They sense a logic 0 to logic I
022F AD 00 17 CHEK2 LOA PAD transition at pin PAO on the
0232 29 01 AND $01 application connector.
0234 FO F9* BEQ CHEK2
0236 E8 INX Increment X for each point.
0237 A5 00 LOA LOW Counter contents are stored in
0239 95 03 STA LO,X a sequence of locations indexed
023B A5 01 LOA MID by the X register.
0230 95 53 STA MI,X
023F A5 02 LOA HIGH
0241 95 A3 STA HI,X
0243 E4 03 CPX N Compare X to N. Return to CHEKI
0245 DO EI BNE CHEKI if X is less than N. Otherwise,
0247 78 DISPLAY SEI go to DISPLAY; disable interrupt.
0248 4C 71 02 JMP KEY Jump to display program at $0271

°To trigger on negative transitions change DO instructions to FO instructions
and vice versa in the asterisked statements.

$0049 = TIME
$170C = TIMEX
$0000 = LOW
$0001 = MID
$0002 = HIGH

0250 48
0251 A949
0253 80 OC 17
0256 A901
0258 65 00
025A 85 00
025C A900
025E 65 01
0260 85 01
0262 A900
0264 65 02
0266 85 02
0268 68
0269 40

$0003 = N
$0003 = LO
$0053 = MI
$ooA3 = HI
$OOF9 = INH
$ooFA = POINTL
$OOFB = POI NTH
$0200 = INIT
$1707 = TIME
$IF6A = GETKEY
$IFIF = SCANDS

INTRPT PHA
LOA TIME
STA TIMEX
LOA $01
ADC LOW
STA LOW
LOA $00
ADC MID
STA MID
LOA $00
ADC HIGH
STA HIGH
PLA
RTI

Push accumulator on stack.
Start timer for 49, 6 cycles.

Increment counter by adding I
to the two low digits;
and store result.
Add carry from previous
addition to mid digits. If
carry occurs from the two mid
digits, then add this to the
two high digits.

Pull accumulator from stack.
Return to data logger.

Enmpl. 6: Display Program

339

0271
0274
0276
0278
027A
027C
027E
0280
0282
0284
0286
0287
0288
028A
028B
028C
028E
0291
0294
0297
0299
029C
0290
029E
029F
02Al
02A4
02A5
02A6
02A8
02AA
02AB
02AE

20 6A 1F KEY JSR GETKEY Jump to KIM·l keyboard monitor.
C9 01 CMP $01 Test valid input.
DO F9 BNE KEY If not, wait for input.
A2 01 LOX $01 Initialize X register to index
B5 03 NXPNT LOA LO data poi nfl.
85 F9 STA INH Put in KIM· 1 display registers.
B5 53 LOA MI
85 FA STA POINTL
B5 A3 LOA HI
85 FB STA POI NTH
8A TXA Save X while in subroutine by
48 PHA pus hi ng it on the stack.
AO 10 LOY $10 Time to display each point.
98 AGN TYA Save Y while in subroutine by
48 PHA pushing it on the stack.
A9 FF LOA $FF
80 07 17 STA TIME
20 1F IF REPEAT JSR SCAN OS SCANOS is KIM·l routine which
AD 07 17 LOA TIME displays data in $ooF9, $OOFA,
30 03 BMI OVER and $OOFB. Repeated jumps to
4C 91 02 JMP REPEAT SCANOS produce a constant display.
68 OVER PLA Restore;Y register.
A8 TAY
88 DEY Decrement Y by 1 and repeat
FOOl BEQ HOP display until Y = O.
4C 8A 02 JMP AGN
68 HOP PLA Restore X register.
AA TAX
E4 03 CPX N Compare X with N. If X is less
FO 04 BEQ BEGIN than N increment X and display
E8 INX next point. Otherwise, return
4C 7A 02 JMP NXPNT to the beginning.
4C 00 02 BEGIN JMP INIT

EMPLOYING THE KIM·l AS A PRECISION KEVER
AND AUTOMATIC MESSAGE SENDER*

The short application program listed in Example 7 allows the
KIM -1 to send any of three messages by pressing on'e of three keys,
A, B, or C, on the KIM -1 keyboard, and with the interface circuit
shown in Fig. 14-8 the KIM-1 becomes an electronic keyer as well.
Any microcomputer with a 650X microprocessor and one of the
MOS Technology PIA or VIA chips may be used with only minor
modifications to the program. An important feature of the program
is the ability to precisely set the code speed between 5 and 99 words
per minute by entering the speed, in decimal, at storage location
$0000 in memory. The program converts this decimal number to
hexadecimal, then does a division routine to convert the speed to a

"Copyright © 1979 by 73, Inc., Peterborough, NH, Courtesy of 73, Inc. All
rights reserved.

340

+5V XMTR

IRQ

RELAY

PAO)0-'1:.,:.0-4---'" X MTR

DOT 1.
Fig. 14-8. Interface circuit for Keyer and Message Sender. Some transmitters may require
optional relay for keying. with 1 N914 diode across coil for protection against voltage

transients. All grounds should be same as KIM· 1 ground.

time duration of the basic dot element, and the interval timers on
the 6530 PIA do the rest.

Anyone who does much contest operating will realize how useful
an automatic message sender is. Even the casual cw operator can use
it for sending CQ or other routine messages. Code tests for novices
can be programmed and sent at precisely 5 wpm by storing the en
tire test in memory. At 5 wpm at least nve minutes of code may be
sent. For neld day (1977) we used a similar program to send CQ
CQ CQ FD DE K~EI K~EI K as message A; then when a station
responded we sent ___ DE K0EI UR 599 MO 599 MO K where
the blank was the call of the station to be keyed by the operator,
after which he hit key B to give the remainder of the message. It
worked very smoothly with no discernible pause between the call
letters and the message. (Don't try to look up the score because
KOEI was not the call we used.) The operation of the keyer is exactly
like most electronic keyers; holding the paddle in the dot position
will cause a series of dots and spaces to be sent. Dashes occur with
the paddle in the dash position, and the timing of all the characters
is controlled by the program and the crystal on the microcomputer.

Assuming the program has been loaded and the interface circuit
connected, operation proceeds as follows. The code speed at which
you wish to operate is loaded into storage location $0000. Any deci-

341

mal number from 05 to 99 may be put into this location. Next the
starting and ending addresses of each message must be loaded into
memory. Since all three messages are in page two of memory, only
the low-order bytes of the starting and ending addresses need be
given. Suppose message A starts at $0200 and ends at $0251, message
B starts at $0252 and ends at $0265, while message C starts at $0278
and ends at $02FF. Then one would load $00, the starting address of
message A, at location $0001; $52, the starting address of message B
goes in at $0002; and $78 is entered at $0003. The respective ending
addresses go into memory locations $0004 to $0006; that is, $51 goes
into $0004, $65 goes into $0005, and $FF goes into $0006.

How do you load the messages themselves? For each character
you want to send you must load the corresponding hex number
shown in Table 14-2. Suppose message A is to be "DE KOEI K," and
is to start at $0200. Then you load the hex numbers $90, $40, $00,
$BO, $FC, $40 $20, $00, $BO from locations $0200 through $0208;
$00 goes into $0001 and $08 goes into $0004.

Probably the best way to proceed is to first load the three messages
including spaces, noting the starting and ending addresses of each
message on a piece of paper. Then go back to page zero and put the
starting and ending addresses in their proper locations (Table 14-3).
Go to location $0300 and hit the GO button to start the program run
ning. Test to make sure everything is working before you put it on
the air.

Table 14-2. Morse Character to Hex Conversion Table

Morse Morse Morse
Character Hex Character Hex Character Hex

A 60 5 10 Word space 00
B 88 T CO SK. 16
C A8 U 30 BT 8C
D 90 V 18 AR 54
E 40 W 70 / 94
F 28 X 98 56
G DO Y D8 CE
H 08 Z C8 ? 32
I 20 1 7C
J 78 2 3C
K BO 3 1C
L 48 4 oc
M EO 5 04
N AO 6 84
0 FO 7 C4
P 68 8 E4
Q D8 9 F4
R 50 0 FC

342

Table 14-3. Storage Locations to Be Loaded by Operator

Location Contents

0000 Speed in decimal (words per minute)
0001 Starting address of message A (low-order byte)
0002 Starting address of message B
0)03 Starting address of message C
0004 Ending address of message A (low-order byte)
0005 Ending address of message B
0006 Ending address of message C
ooFl $04 prevents interrupts while in the monitor program

The flowchart shown in Fig. 14-9 and the comments in the pro
gram should give the reader a good feeling for the structure of the
program. It consists of three principal parts, the main program, sub
routine SEND, and the interrupt routine, all of which have individ
ual flowcharts shown. Minor components are subroutine DIT which
holds PBO at logic zero for the dot length followed by a logic one for
the space length, subroutine DAR which holds PBO at logic zero for
three dot lengths (1 dah = 3 dits) followed by a space, and sub
routine TIMER which loads the timer on the KIM-1 with the precise
length of one dot and then waits for this time to elapse.

We now look at some specific details of the program. The speed
in words-per-minute must be converted to hex before the computer
can do any further calculations with it. This conversion may best be
explained with an example. Suppose we wish to operate at 20 wpm,
so 20 is entered into location $0000. What we mean by 20 is 2 in the
tens place and 0 in the ones place, but what the computer thinks
this means is 2 in the sixteens place and 0 in the ones place. At least
we agree on the ones place, so initially we mask the ones place out
with an AND instruction; later we retrieve it and simply add it to the
result of our decimal-to-hex conversion of the 2. To trick the com
puter into thinking the 2 in the sixteens place is the 2 in the tens
place we intended it to be, we change the sixteen to a ten with this
trick,

The sixteens place divided by two is accomplished by one shift right
instruction (LSR), while the sixteens place divided by eight is ac
complished by three shift right instructions. So, the two in the six
teens place is shifted right once, stored, shifted right two more times,
and these two results are added. We now have 2 X 10 in the com
puter (in hex, of course) rather than 2 X 16. Adding the results from
the ones place completes the conversion.

343

(A) Keyer.

344

INITIALIZE
FLAGS
AND

PORTS

DECIMAL TO
HEX. TIME =

494/SPEED

JUMP
SUBROUTINE

GETKEY

Fig. 14-9. Flowchart for

Co>
A
1/1

i:' ...
~ .. ,.
CL

~
CD

z: ..
CO

CD

'" CD ,.
CL

~

:a
'" CD

" 0..
~
n
0

" =.
" c
CD
0..

SEND
DOT
AND

SPACE

TOGGLE
PAD
TO

RESET FLIPFLOP
i

RESTORE
X REGISTER

AND A

YES

SEND
DASH
AND

SPACE -,--

§
~
" 0..

~

U sing the keying speed definitions from The Radio Amateur's
Handbook, one can calculate that the dot length in milliseconds is
1200/S where S is the code speed in words per minute. If the divide
by-1024 timer on the KIM-1 is used, one count corresponds to 1.024
milliseconds. Converting the dot length to timer counts gives

(1172) (494)
TIME = -- base 10 = --hex S S

where TIME is the number to be loaded into the divide-by-1024
timer to give a code speed of S wpm. So the computer must divide
S into 494. This is determined by successively subtracting S from 494
until the result becomes negative. The number of subtractions is the
quotient of 494/S.

Pin PBO on the KIM-1 is used as the keying output from the com
puter. When power is applied to the computer and the reset button
is depressed, PBO comes up in a logic-one state. This dictates that
logic one corresponds to the transmitter being off. Consequently,
PBO is buffered and inverted twice by the NOR gates. Inverters such
as the 7404 would work, but since I needed a NOR gate in the keyer
interface, I simply used the other NOR gates on the same chip. If
PBO could sink enough current it might drive the relay directly, but
I preferred the buffering shown in Fig. 14-8. Mark elements of the
Morse code are sent by decrementing (DEC) PBO for the appropri
ate length of time, while space elements are sent by leaving PBO at
logic one.

The program idles in the loop starting with }SR GETKEY and
ending with BNE RPT, testing each of three keys (A, B, and C) to
see if they were depressed. Refer to Howcharts for the keyer and
message sender shown in Figs. 14-9A, B, and C. If no key is de
pressed, the program remains in this loop. If a key is depressed,
register Y is set to zero, one, or two, depending on which key was
struck. The Y is then used as an index to look up the starting address
(low-order byte of page two of memory) of the message (STRT ,Y)
and later the ending address (END,Y) of the message. The starting
address is used as an index to find the first code element of the mes
sage (MEM,X), and it is incremented until the ending address is
encountered.

The conversion of an 8-bit word of memory to a Morse code char
acter has been described in other references in detail and will not
be repeated here. There are a number of schemes available1,2,3,4, but

IPollock, James W., "1000 WPM Morse Code Typer," 73, January 1977,
p. 100.

2De Jong, Marvin L., "A Complete Morse Code Send/Receive Program for
the KIM-I," MICRO, April-May 1978, p. 7.

346

the most efficient schemes appear to be those in references 3 and 4,
and that was the technique used here.

The keyer is implemented by the interrupt routine which in tum
uses subroutines DIT, DAR, and TIMER. It will send at exactly the
same speed as the messages. The keyer interface circuit is simply
debouncers that are reset at the end of an interrupt. If the key is still
in the dot or dash position, the reset has no effect and another inter
rupt occurs. The flowchart indicates that the state of PA 7 determines
which element is to be sent.

One last thought: if you want to be able to key in a few characters
in the middle of a message, just load a few word spaces there and
key the characters in when the blank occurs. This is handy for giving
signal reports and also in some contests where the number of con
tacts is updated after each QSO.

Example 7: Source listing for Message and Keyer Program

0300 78 BEGIN SEI Prevent interrupts.
0301 08 CLD Binary mode.
0302 A9 C9 LOA $C9 Set interrupt vectors.
0304 80 FE 17 STA IRQL
0307 A9 03 LOA $03
0309 80 FF 17 STA IRQH
030C A9 01 LOA $01 Initialize 1/0 Ports A
030E 80 02 17 STA PBD and B.
0311 80 03 17 STA PBDD PBO is output pin.
0314 80 01 17 STA PADD PAO is output pin.
0317 80 00 17 STA PAD
031A CE 00 17 DEC PAD Toggle PAO to reset debounce
0310 EE 00 17 INC PAD circuit.
0320 AS 00 LOA SPEED Get decimal value of speed
0322 48 PHA from location $0000 and
0323 29 FO AND $FO convert it to hex.
0325 4A LSR A Multiply tens digit by ten.
0326 85 10 STA SCRATCH
0328 4A LSR A
0329 4A LSR A
032A 18 CLC
032B 65 10 ADC SCRATCH
0320 85 10 STA SCRATCH Result of multiplication here.
032F 68 PLA Get SPEED again.
0330 29 OF AND $OF Add ones digit to SCRATCH.
0332 65 10 ADC SCRATCH
0334 85 10 STA SCRATCH Decimal to hex complete.
0336 38 SEC Division routine begins here.
0337 A2 00 LOX $00
0339 A9 94 LOA $94

3Pollock, James W., "A Microprocessor Controlled CW Keyboard," Ham
Radio, January 1978, p. 81.

40ckers, Stan, "Code Test" The First Book of KIM, ORB, Argonne, Illionis,
1977, p. 56.

347

033B 85 08 STA LO
0330 A9 04 LOA $04
033F 85 09 STA HI
0341 A5 08 UP LOA LO
0343 E5 10 SBC SCRATCH
0345 85 08 STA LO
0347 A5 09 LOA HI
0349 E9 00 SBC $00
034B 85 09 STA HI
0340 E8 INX
034E BO Fl BCS UP
0350 86 07 STX TIME Division complete.
0352 20 6A IF RPT JSR GETKEY Reod keyboord subroutine.
0355 58 CLI
0356 AO 00 LOX $00 Test keys.
0358 C90A CMP $OA
035A FO OA BEQ MESSA
035C C9 OB CMP SOB
035E FO 05 BEQ MESSB
0360 C9 OC CMP SOC
0362 00 EE BNE RPT
0364 C8 INY
0365 C8 MESSB INY
0366 BE 01 00 MESSA LOX STRT,Y Start message.
0369 20 76 03 CNT JSR SEND
036C 8A TXA
0360 1;>9 04 00 CMP ENO,Y End message?
0370 FO EO BEQ RPT
0372 E8 INX
0373 4C 69 03 JMP CNT

SUBROUTINE SEND
0376 8A SEND TXA
0377 48 PHA
0378 BO 00 02 LOA MEM,X Get code element.
037B FO IE BEQ WOSP
0370 OA HERE ASL A
037E FO 10 BEQ FINSH
0380 48 PHA
0381 BO 06 BCS DASH
0383 20 AO 03 JSR OIT Send dot.
0386 4C 8C 03 JMP ARNO
0389 20 B9 03 DASH JSR OAH Send dash.
038C 68 ARNO PLA
0380 4C 70 03 JMP HERE
0390 A2 02 FINSH LOX $02
0392 20 BE 03 AGN JSR TIMER Character space.
0395 CA OEX
0396 DO FA BNE AGN
0398 68 PLA
0399 AA TAX
039A 60 RTS
039B A2 04 WOSP lOX $04 Word space.
0390 4C 92 03 JMP AGN

SUBROUTINE OIT
03AO A2 01 OIT LOX $01

348

03A2 CE 02 17
03AS 20 BE 03
03AB CA
03A9 DO FA
03AB AD 02 17
03AE 4A
03AF BO 07
03Bl EE 02 17
03B4 E8
03B5 4C AS 03
03B8 60

03B9 A2 03
03BB 4C A2 03

03BE AS 07
03CO 80 07 17
03C3 2C 07 17
03C6 10 FB
03C8 60

03C9 48
03CA 8A
03CB 48
03CC AD 00 17
0300 30 06
0302 20 AO 03
0305 4C OA 03
0308 20 B9 03
030B CE 00 17
0300 EE 00 17
03EO 68
03EI AA
03E2 68
03E3 40

BACK
SPA

DONE

OAH

TIMER

CHI<

INTRPT

PAST
ACRS

DEC PBD
JSR TIMER
DEX

BNE SPA
LOA PBO
LSR A
BCS DONE
INC PBO
INX
JMP SPA
RTS

SUBROUTINE OAH
LOX $03
JMP BACK

SUBROUTINE TIMER
LOA TIME
STA TIMER
BIT TIMER
BPL CHK
RTS

INTERRUPT ROUTINE
PHA
TXA
PHA
LOA PAD
BMI PAST
JSR OIT
JMP ACRS
JSR OAH
DEC PAD
INC PAD
PLA
TAX
PLA
RTS

Delay for the number of
1.024-millisecond units
stored in TIME.

Save registers.

Is PA7 = logic one?
Yes, doh. No, dit.
Send dot.

Send dash.
Toggle debounce circuit.

Restore registers.

Return from interrupt.

CATCHING BUGS WITH L1GHTS
A PROGRAM DEBUGGING AID*

In debugging a program, how often have you wished you could
see the contents of the accumulator or the status register at each
step without pushing all those buttons? If you are interested in a
simple hardware solution to this problem, read on.

Although my circuit was designed for the KIM-I, the idea cer
tainly is applicable to other systems. Even if you're not interested in
my Bug-Light circuit for programming purposes, it gives you one
or more output ports in page zero of memory, and it makes a useful
tool for teaching programming.

The KIM-I monitor and a little hardware provide you with a sin
gle-step mode in which the program may be executed one instruction

°Courtesy of Kilobaud Microcomputing. Copyright © 1979 by 1001001, Inc.,
Peterborough, NH. All rights reserved.

349

at a time. After each instruction is executed, the resident monitor
program stores the contents of the accumulator, the status register,
X register, Y register, and other registers. (See Table 14-4 for the
locations of each register.) The important registers are also saved in
zero page when a break (BRK) command is placed in a program
and the IRQ vector is $lCOO. Both the single-step (SST) mode and
the break-to-KIM monitor are used extensively in debugging pro
grams.

Table 14-4. Zero·Page Memory Locations of Various Registers

Address Label Contents

OOEF PCl Program Counter low
OOFO PCH Program Counter High
OOF1 P Status Register (Flags)
OOF2 SP Stack Pointer
OOF3 A Accumulator
OOF4 y Y Register
OOFS X X Reg:ster
OOF6 CHKHI Cassette Checksum High
OOF? nl'(C:;UNI Cassette Checksum low

Use of the SST mode is explained in the KIM-1 User Manual,
while the break-to-KIM monitor technique is explained in The First
Book of KIM. With either technique, the contents of the various
registers may be read by using the keyboard to look up the locations
in zero page where their contents are stored. For example, to see
what the contents of the accumulator are after an instruction, simply
address location $OOF3 with the keyboard to display it on the seven
segment display.

It's a great feature, but it's slow. At least six consecutive key de
pressions must take place to examine a register, restore the program
counter, and execute the next instruction in the program. If you're
following your program around some crazy loop to see why it never
comes out, this procedure can take a lot of time. Perhaps my arthritic
fingers and bouncy keys are the problem. There has to be a faster
approach to the register display problem. A reasonable objective, I
decided, was an LED display of each bit in a particular register,
with no extra key depressions.

To accomplish this objective I designed a circuit to decode the
addresses of the locations where the various register contents were
stored and allow the microprocessor to WRITE the same data to
output ports with LEDs to represent each bit. Thus, when the moni
tor stores the contents of the status register at location $OOF1, it also
writes the same data to an output port whose address is $OOFl. In
this case the LEDs indicate the state of the various flags. If the out-

350

put port has address $OOF3, then the LEDs will show the contents
of the accumulator, in binary, of course.

Bug-Lights comes in three versions. The basic circuit is shown in
Fig. 14-10. It will display one register only. A modification that in
creases the utility of the basic circuit is shown in Fig. 14-11. The
DIP switch allows you to select which register you want to follow
as you step through your program. If you really like blinking lights
and/ or do a lot of programming, see the chrome-plated modification
to display up to eight registers simultaneously, as outlined in Fig.
14-12.

+5V

RAM·R/W 74L502

,5V"

00 270 'y
El5

81L597 74L575 ~'

Dl 14 270 ,~---'\

E14
13

E13
02 11 270 "'- ~\

270

11 170

74LS75
13 14 170 "'-

13
15 II 270

17 170

LEOS

Fig. 14-10. Basic Bug-lights circuit.

Of course, the most important registers to display are the accumu
lator, the status register, the X and Y registers and, perhaps, the stack
pointer. These displays would make an impressive yet functional
front panel. My personal version has the DIP switch modification
shown in Fig. 14-11. (The program counter low, peL, is stored at
address $OOEF and cannot be observed with the Bug-Light circuit.
I cannot recall ever using this register to debug a program.)

351

15
YO

74lS138 14
Y1

13
Y2

12
Y3

11
Y4

10
Y5

9
Y6

Y7
7

~

OOFO

OOFI

~

00F2
"U-

00F3
v--

00F4
"U"

OOF5

"0--

OOF6
-'0----

00F7 DIP SWITC H
ADDRESS

SELECT

>-----
TO
PIN 3
74LS02

Fig. 14-11. Use of DIP Switch to select register to be displayed by Bug-Lights circuit.

81lS97
BUS

BUFFER

,----------------1>------. TO OTHER
PORTS

74LS75 74LS75

74lS75

Fig. 14-12. lIug-Lights circuit expanded to output several registers simultaneously. Each
pair of 74LS75s makes one 8-bit output port. Port selects are from 74LS138 decoder.

352

We will begin with the address decoding circuitry. The 74LS138
decoder/demultiplexer will decode the lowest three address lines
(AO, AI, A2) when GI is at logic one and G2A and G2B are at logic
zero. GI is tied high, eliminating any further consideration of it.

In order to have both G2A and B at logic zero, the KO select from
the KIM-l and the output of the 74LS30 must be at logic zero. KO
will be low when address lines AIO-AI.') are low. This is handled by
the KIM-l circuitry. You can see from Fig. 14-10 that the output of
the 74LS30 is low when A4-A7 are at logic one and A3, A8, and A9
are at logic zero. The compilation of this information as the require
ments to select the 74LS138 is shown in Example 8.

The 74LS138 decodes the lowest three address lines to produce
active low device select pulses whenever addresses $OOFO-$OOF7 are
on the address lines. Each of the eight outputs of the 74LS138 cor
responds to one of the eight addresses $OOFO-$OOF7, which in turn
include the address of the locations where the various registers are
stored.

The device select pulse from the 74LS138 is inverted and ANDed
with the inverted RAM-R/W signal from the KIM-I. This produces
a positive pulse from the 74LS02, which occurs only on a WRITE
cycle and when the correct address is placed on the address bus. For
example, an STA $OOFI instruction will produce such a pulse in the
circuit of Fig. 14-10. This pulse is applied to the gate inputs of the
74LS75 Bistable Latches.

As long as the positive pulse is applied to the 75LS75 gates, the Q
outputs follow the D inputs, and the Q outputs are the D inputs in
vert~. At the trailing edge of the positive pulse, which occurs when
the <1>2 clock signal on the KIM-l changes from logic one to logic
zero, the data at the D inputs is latched into the Q outputs. So, when
a WRITE occurs to $OOFl, the data will appear at the Q outputs
and it will be stored there, at least until another WRITE to $OOFI
occurs.

The 81LS97 is a data bus buffer. It is activated only on a WRITE
command when the R/W is low. If only one output port is desired
and the data bus lines are kept short, then the 8ILS97 may be
omitted since the 6502 microprocessor can drive the 74LS75s di
rectly. However, if you want to locate your lights on a front panel,
or if you want to add sets of eight lights for several registers, then
the bus driver becomes essential.

The LEDs are connected through current-limiting resistors to the
Q outputs of the 74LS75s. They will glow when Q is low and Q is
high. Thus, a glowing LED corresponds to a logic one for the bit it
represents while an LED in the off state corresponds to a logic zero.

An added feature of the Bug-Light circuit is its ability to be used
as an output port as well as a debugging tool. The Q outputs of the

353

74LS75s are not used for display purposes; they contain the data
that was written to them. Thus, they can be used as zero-page mem
ory-mapped output ports.

An application program can make use of these ports to write a
7 -bit ASCII word to some external device, such as a video card, an
IBM Selectric, or some other device. AID or DI A converters can be
driven from these ports as easily as the PAD and PBD ports on the
KIM-l application connector. The only time the memory locations
$OOFO-F8 are used by the computer is in an NMI or IRQ jump to
the monitor; that is, in debugging. So you have your Bug-Lights and
output ports as well.

Table 14-5. Power Connections for Bug-Light Integrated Circuits

Integrated Circuit +5V Ground

74lS138 16 8
74lS30 14 7
74lS02 14 7
74lS04 14 7
74lS75 5 12
81lS97 20 10

Table 14-5 shows the power connections for each of the chips in
the logic diagram. All the other connections are shown in the figures.
My version was built on a UNICARD I, which contains two bread
board strips and an edge connector pad that matches the KIM-l
expansion pad. I soldered an edge connector to the UNleARD so I
could plug the KIM-l expansion pad into it. All the connections of
the Bug-Light circuit except one are to the expansion pad on the
KIM-I. All J!!e connections are found on the pad symbols in Fig.
14-10. The KO select comes from the application pad on the KIM-I.
Its pin number, AB, is also given.

Layout is not critical, and approaches other than the one I used
will work. A wire-wrap approach might be more permanent and less
expensive, although I have found that the circuits on the bread
boards last indefinitely. Fig. 14-13 shows my version. Power was
stolen from the KIM-l power supply, since +5 V and ground are
available at the expansion pad.

When you get your circuit built, say a one-port version, select the
location you want to view with the DIP switch or by the appropriate
connection. With the KIM-l running in the monitor, address the
location and store $FF in it, using the keypad on the KIM-I. All the
LEDs should light. Change the contents of the port until you are
sure that each LED is responding to the correct bit value. Stepping
through the sequence $00, $01, $02, $04, $08, $10, $20, $40, $80 of
data values will test each light in turn.

354

Fig. 14-13. Bug-Lights circuit.

Next, load any program, set the KIM-l up for the SST mode, and
step through the program. The lights should reflect the current con
tents of the register you have selected to view. I had no trouble_ For
once my design worked the very first time I tried it. I hope you have
the same kind of success. If you don't, recheck all your wiring, check
the polarity on your LEDs, make sure they all work, and finally
make sure you haven't made a mistake on numbering the pins on
the les.

If some bits work and some do not, then exchange signal paths for
the two bits. For example, if one bit is working, then the 74LS75
latch for this bit will also be working. Use the same latch for a non
working bit to see if the problem is in the latch. The circuit is simple
enough so that it should not take too long to figure out any problems.

Beginning programmers have a lot more trouble visualizing what
is happening as a result of a certain instruction than veteran pro
grammers imagine. One application of Bug-Lights is to illustrate the
results of various instructions. For example, set up Bug-Lights to
show the contents of the accumulator ($00F3). Then write a short
program (shown in Example 9) in which the accumulator is loaded
with 01 followed by an ASL A in an infinite loop.

N ow single-step through the program and watch the "1" move
from right to left on the LEDs. Replace the ASL A with an ROL A
and note the difference. Other instructions can be illustrated in the
same way, giving students, who have difficulty visualizing zeros and
ones among bits and bytes, an excellent visual aid.

355

Example 8: Address Decoding for Bug-Lights Circuit

A15 A14 A13 A12 A11 A10 A9 AS A7 A6 A5 A4 A3 A2 Al AO - Address line
o 0 0 0 0 0 0 0 1 lOX X X - Logic Value

o 0 f 0-7 - Hex Number
(X means "don/t core."}

Example 9: Program to Demonstrate ASL Instruction With Bug-Lights Circuit

BEGIN LOA $01
THERE ASL A

JMP THERE

LUNAR OCCULTATION OF A STAR*

The program described here is designed to measure the light in
tensity from a star as it passes behind the dark face of the moon, a
so-called lunar occultation. A photometer and amplifier attached to
a telescope provide a signal proportional to the light intensity, and
this intensity drops rapidly (in a few milliseconds) as the moon
passes in front of the star. This signal voltage is measured periodi
cally, and the data is stored in 256 memory locations in the KIM-I.
When the star is occulted and the level drops below a predeter
mined value, the measurement is stopped, and the previous 256 mea
surements, representing about 1 second of data, are displayed on an
oscilloscope.

Fig. 14-14 shows the support circuitry for the program which is
given in Example 10. When a logic one appears on PB2 (from,
say, a radio time signal), the timer is set, the measurements START,
and a zero mark is placed in the data every Y4 second to allow accu
rate measurements of the time of the event. The arming switch SW
can be set on position "B" which ensures a logic zero on PB3 to keep
the program from inadvertently stopping before the event takes
place. Near the predicted time of the occultation, it can be switched
to "A," at which time it is armed to stop when the light level falls
below the cut-off point determined by the lOOK potentiometer.

The time constants RC and R'C' can be selected to integrate the
incoming signal as desired. We use RC = 5 msec and R'C' = 20
msec. This delays the cut-off point slightly after the actual occulta
tion. The sampling time can be selected by changing the number
stored in location $003E (we sample about every 4 msec), and the
number stored in locations $002F and $009D can be used as a fine
adjustment to make the timing marks appear at exactly J4 sec inter
vals. The data is stored in locations $0200 through $02FF but may
appear folded over on display. For example, if the cut-off time occurs

"Courtesy of Dr. Thomas D. Strickler, John Drake, and Jesse Maupin, Berea
College, Berea, Ky.

356

+7V

AD7530 +7V PA7--:;-7 ----I

6
FROM: 5
KIM : -ci:-l---.--I

OUTPUT
r-t---o CRO VERTICAL

3

~4 ---.--110
PA 14 11

INPUT <J-<t-""'R"'-"1r----i
FROM

PHOTOMETER
AMPLIFIER

+7V

-7V

10K

10K

1 K 6
>-~VA~----~--------I-oPB5

,---+-0 + 7 V ~
R'

IK

+7V

lOOK

12 PB3

C13 PB4

CRO
SYNC

LOGIC 0>--__________________________________ 1:..;;...1 0 PBl
TIME

SIGNAL FROM c:15 PB7
WWV

6 NMI

Fig. 14-14. Support circuitry for Occultation program.

EXPANSION
CONNECTOR

while data is being stored in memory location $0280, then the most
recent measurements are in locations $027F, $027E, ... , while the
earliest measurements are in locations $0281, $0232, ... , etc. Every
% second, the number in location $OOCB is incremented, and every
256 (FF hex) % seconds, the number in location $OOCC is incre
mented, so that the total time since the START signal can be deter
mined.

Photoelectric measurements of bright stars as they are occulted
often show a diffraction pattern typical of that observed in the labo
ratory by a point source diffracted from a straight edge. They can

357

be used to measure angular diameters of stars and can often resolve
very close double and triple stars. For further information on lunar
occultations, the reader is referred to the articles "Photoelectric Ob-
serving of Occultations," by David S. Evans, in Sky and Telescope,
Vol. 54, Nos. 3 and 4 (1977).

Example 10: Occultation Program

$002F and $0090 = Additional count to make timer equal 114 second
$003E = Convert time count (40 = 4 msec)
$0096 = Comparator Delay Count (02)
$00C9 = BIT2 (04) Test B/T2 to start timer from WWV
$OOCA = REM Remainder in Ii mer afler lasl 1/4 sec count
$ooCB = QSEC No. of 114 Sec counts since start (or since last MIN)
$OOCC = MIN No. of minules (actually 64 secs) since start
$ooCO = KEY
$ooCE = SP
$ooCF = BITS (20) Test BITS 10 lesl comparator

0004 A9 04 LOA $04 Initialize and set port directions.
0006 85 C9 STA BIT2
0008 A9 9C LOA $9C
ooOA 80 FA 17 STA 17FA
0000 A9 00 LOA $00
oooF 80 FB 17 STA 17FB
0012 A9 00 LOA $00
0014 85 CB STA QSEC
0016 A9 00 LOA $00
0018 85 CC STA MIN
oolA A9 10 LOA $10
oolC 80 03 17 STA BPO
001F OA ASL
0020 85 CF STA BITS
0022 A9 FF LOA $FF
0024 80 01 17 STA PAD
0027 AD 02 17 WAIT LOA PB Wait until logic one appears on PB2.
oo2A 24 C9 BIT B/T2
oo2C FO F9 BEQ WAIT
002E A9 DO LOA $00 Extra count to make timing
0030 80 04 17 STA TlME4 marks = 114 second.
0033 2C 07 17 TMI BIT TlME7
0036 10 FB BPL TMI
0038 A9 F4 LOA $F4 Set timer to count 244 X 1024 =
003A 80 OF 17 STA TIMEF 249,856 microseconds.
0030 A9 40 RTIME LOA $40 Set converl time using
oo3F 80 46 17 STA 1746 "other counter."
0042 A9 80 CONY LOA $80 Initialize conversion.
0044 85 CD STA KEY
0046 OA ASL
0047 85 CE STA SP
0049 AS CD lOOP LOA KEY OR KEY into resull and output.
oo4B 05 CE ORA SP
0040 80 00 17 STA PA
0050 20 9500 JSR COlY Wait for comparator delay.
0053 AD 02 17 LOA PB Check comparator, jump if

358

0056 24 CF BIT BIT5 too lorge.
0058 FO 05 BEQ LARGE
oo5A AD 00 17 LOA PA If too smoll, store result
0050 85 CE STA SP in SP.
005F 46 CD LARGE LSR KEY Shift KEY right and repeat
0061 DO E6 BNE LOOP eight times.
0063 A5 CE LOA SP Store result in TABLE, starting
0065 90 00 02 STA TABLE,X with $0200.
0068 AD 47 17 OT LOA TIMER Wait until timer stops.
006B FO FB BEQ OT
0060 E8 INX Increment X.
006E EA EA NOP NOP
0070 AD 02 17 LOA PB Look for logic one on PB3.
0073 29 08 AND $08
0075 FO C6 BEQ RTiME If no, repeat conversion
0077 EA EA NOP NOP measurement.

0079 AD 06 17 LOA TIMER If yes, read remaining time,

007C 85 CA STA REM store and jump to SYNC.
007E EA NOP
007F A9 10 SYNC LOA $10 Generate SYNC pulse for CRO.
0081 80 02 17 STA PB
0084 A9 00 LOA $00
0086 80 02 17 STA PB
0089 BO 00 02 OUT LOA TABLE,X ~isplay spectrum on CRO.
008C 80 00 17 STA PA
008F E8 INX
0090 DO F7 BNE OUT
0092 4C 7F 00 JMP SYNC
0095 A9 02 COLY LDA $02 Delay for comparator.
0097 A8 TAY
0098 88 DELAY DEY
0099 DO FO BNE DELAY
009B 60 RTS

INTERRUPT ROUTINE

009C A9 DO LOA $00 Reset 1/4 second timer.
009E 80 04 17 STA TlME4
OOAI 2C 07 17 TM2 BIT TlME7
OOA4 10 FB BPL TM2
OOA6 A9 F4 LOA $F4
OOA8 80 OF 17 STA TIMEF
OOAB E6 CB INC QSEC Increment 1/4 second cou nter.
OOAO A9 00 LOA $00 Check '/4 second counter for
OOAF C5 CB CMP QSEC overflow (00).
OOBI DO 02 BNE CONT If no, continue.
OOB3 E6 CC INC MIN If yes, increment MIN counter.
OOB5 A9 00 CONT LOA $00 Put zero in TABLE X at '14 second
00B7 90 00 02 STA TABLE,X intervals.
OOBA E8 INX
OOB8 40 RTI Return from interrupt.

359

APPENDIX A

Decimal, Binary, and
Hexadecimal Number

Systems

OBJECTIVES

At the completion of this appendix you should be able to:

• Understand and define the terms number, face value, place
value, base, bit, byte, and nibble.

• Understand that numbers are used to indicate quantity, to in
dicate order, or to indicate codes for various operations.

• Convert binary numbers to decimal numbers and decimal num
bers to binary numbers.

• Convert hexadecimal numbers to binary numbers and binary
numbers to hexadecimal numbers.

INTRODUCTION

Microprocessors use binary numbers to control internal operations,
to communicate with other components in the microcomputer sys
tem, and to exchange information with peripheral devices. On the
other hand, devices that humans use to input information to a micro
computer and devices that display information output by the micro
computer frequently use hexadecimal numbers. Hexadecimal num
bers are representations of binary numbers that provide human
beings with readily recognized symbols that aid in handling binary

360

numbers. These facts justify competency in dealing with binary and
hexadecimal numbers.

NUMBERS

Numbers are used in the following ways:

• Numbers are used to indicate quantity. This is the use with
which we are most familiar.

• Numbers are used to indicate order. For example, the order in
which a mechanical device is assembled is specified by numbers.

• Numbers are used as names or codes. Your social security num-
ber is a code which identifies you.

Sometimes numbers are used in several of these ways. The page
numbers of a book order the pages, name the pages, and indicate
the quantity of pages.

You will see that a microcomputer uses numbers in each of these
three ways.

• A "smart" blood pressure monitor measures a signal and displays
a number representing the blood pressure of a patient.

• A microcomputer program is executed one step at a time, and
the order is determined by a number stored in the program
counter.

• All microprocessor instructions have code numbers. The number
69 sent to the 6502 microprocessor will cause it to execute an
addition operation.

• The memory locations in a microcomputer are ordered and
named by a number called the address of the location.

A number is a sequence of digits. In the familiar decimal (base-
10) system, the ten decimal digits are 0, 1, 2, ... , 9. The binary
number system (base-two) uses only two binary digits, namely 0
and 1. The words binary digit are frequently contracted to form the
word bit. (If the same thing were done with decimal digits we
would have dits, while hexadecimal digits would be hits.) The hexa
decimal system (base-16) requires 16 different hexadecimal digits.
They are 0, 1, 2, ... , 9, A, B, C, D, E, and F. Perhaps a better choice
could have been made for the last six digits, but these are the ones
commonly used.

DECIMAL NUMBERS

In order to understand binary and hexadecimal numbers it will
be helpful to dissect a familiar decimal number. Taking the number
1939 as an example, we obtain the following diagram.

361

Digit Number 2 1m Digit Number 3

Digit Number 1 m Digit Numbe< 0

1939=1000+900+30+9

,..-----FACE VALUES
I I I I

= (1 X 10(0) + (9 X 1(0) + (3 X 10) + (9 xl)
I I I I

1 PLACE VALUES

....----DIGIT NUMBERS
I I I I

= (l X l()3) + (9 X 1(2) + (3 X 101) + (9 X 10°)
I I I I

1-1 ---BASE = 10

Referring to the preceding diagram, each decimal digit has a face
value, the meaning of which is acquired from experience and mem
orization at an early age. There are 10 different face values in a
base-1O system. Each decimal digit has a digit number or place in
the decimal number which determines its place value. The place
value of digit number 0 is 10° = 1; the place value of digit number
1 is 101 = 10. Place values of successive digits are 102 = 100, 103 =
1000, and so on. The place value is equal to the base raised to a
power equal to the digit number.

BINARY NUMBERS

Binary numbers are constructed the same way as decimal numbers
except the base is two and only two face values, 0 and 1, are re
quired. Each binary digit is called a bit. The place values are 2° = 1,
21 = 2, 22 = 4, 23 = 8, and 24 = 16, corresponding to bit numbers 0,
1, 2, 3, and 4, respectively. Table A-I lists powers of two

To illustrate these ideas and to show you how a binary number
may be converted to a decimal number, the binary number HO! is
expanded in a way similar to the decimal number expansion above.

362

2' = 2
22 = 4

23 = 8
24 = 16

Table A-l. A Table of Powers of Two

2 5 = 32
26 = 64
27 = 128
2' = 256

20 = 1
29 = 512
2 '0 = 1024
2" = 2048
212 = 4096

213 = 8192
2'4 = 16384
215 = 32768
2 '6 = 65536

111,!11~, ,I, BI; NUMBERS

1 1 0 12 = (1 X 23) + (1 X 22) + (0 X 21) + (1 X 20)
I I I I

I BASE = 2

r------PLACE VALUES
i I I I

= (1 X 8) + (l X 4) + (0 X 2) + (1 X 1)
I I I I

I FACE VALUES

= 8 + 4 + 0 + 1 = 1310•

The subscripts "2" and "10" are used to indicate the base of the num
ber unless the base is obvious from the context of the discussion.
The expansion diagram for the number 11012 also suggests how
binary numbers may be converted to decimal numbers. Multiply the
face value (either 1 or 0, so the multiplication is easy) by the place
value of each bit and add the results. The place values are 2n, where
n is the bit number. The place value for bits numbered 0-16 may be
obtained from Table A-I. Example 1 gives another base two to base
ten conversion.

Example 1: Conversion of 10100010, to Base 10

10100010, = (1 X 27) + (0 X 26) + (1 X 25) + (0 X 2·)
+ (0 X 2') + (0 X 2') + (1 X 2') + (0 X 2°)

= 128 + 32 + 2
= 162'0

Sometimes it is simpler to organize your work from the smallest
place value, or least significant bit (the bit on the extreme right), to
the largest place value, or most significant bit (the bit on the extreme
left). Thus,

11002 = (0 XI) + (0 X 2) + (1 X 4) + (1 X 8) = 4 + 8 = 1210.

There are several techniques to convert a decimal number to a
binary number. Here is a simple one; Example 2 illustrates it.

• To find the highest place value that has a face value of one
(that is, the most significant nonzero bit), find the largest power
of two which will divide the number. Place a one in this bit
position and note the remainder of the division.

363

• The remainder of the first result is then divided by the next
largest power of two. If it will not divide the first remainder,
then a zero is put in the next lower bit position. Otherwise, a
one is placed in this bit position, and the remainder is noted.

• Repeat step two until you finish by dividing by one.

Example 2: Conversion of 233'0 to Base 2

Clearly the largest power of two which will divide 233 is 27 = 128. The process now
proceeds os follows:

1

1281233
128

105

1

641i05
64

41

1

32141
32

9

o
1619

1

819
8

1

111 = 11101001 2

1

o

Although this looks complicated, it proceeds rather quickly because
most of the steps can be done mentally. In any case, it will be easier
to handle binary numbers in terms of their hexadecimal representa
tions as you shall see in a subsequent section.

BITS, BYTES, AND NIBBLES

Numbers used to express quantity are usually of variable length;
they have no leading zeros to take up "unused" places. Numbers
used as codes, zip codes for example, are usually fixed in length and
often have leading zeros. All numbers used by a microprocessor are
fixed in length regardless of whether they are used to express quan
tity, determine order, or represent a code. If a binary number rep
resents quantity, the leading zeros are disregarded.

The fixed length of the numbers which the 6502 microprocessor
regards as data is eight bits. An 8-bit number is called a byte. The
number 7\0 is represented as shown in Example 3.

Example 3: How the Number 7, 0 is Represented by a Byte of Data

Data Byte 1 0 1 0 1 0 1 0 1 0 I 1 I 1 I 1 1=7,0
Data Bit Designations D7 D6 05 04 D3 D2 01 DO

The 6502 microprocessor also names and orders 65536 different
locations in memory with a 16-bit fixed length binary number called
an address. The number 102010 representing location 102010 in mem
ory is represented as an address as shown in Example 4.

The 16-bit address number is frequently referred to in terms of two
bytes. The low-order byte, or address low (ADL) as it is sometimes
called, is the eight bits on the top while the high-order byte, or
address high (ADH) as it is sometimes called, is the eight bits on
the bottom.

364

Example 4: How the Address 1020'0 is Represented by a 16-Bit Binary Address

ADH
, A ,

Address (Two Bytes) I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I

Address Bit Designations A15 A14 A13 A12 All A10 A9 AS

ADL

'~I=l~=l~=l~l~l~l~l~l=l~=O~I=o~1
A7 A6 A5 A4 A3 A2 Al AO

A 4-bit binary number is sometimes called a nibble. This is a
useful idea when representing binary numbers by means of hexa
decimal digits. A byte consists of a high-order nibble and a low
order nibble.

HEXADECIMAL NUMBERS

The sixteen hexadecimal digits and their decimal and binary
equivalents are given in Table A-2. The subscripts 16, 10, and 2 are
omitted.

Table A·2. Decimal, Binary, and Hexadecimal Equivalents

Decimal Number Binary Number Hexadecimal Number

0 0000 0
1 0:)01 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
S 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 11 01 D
14 1110 E
15 1111 F
16 10000 10

Notice that one hexadecimal digit represents four binary digits or
one nibble. This fact provides the most convenient way to convert
from binary numbers to hexadecimal numbers and vice versa.

Once the table has been committed to memory, the conversion
process is as follows:

365

• Divide the binary number into groups of nibbles, starting from
the least significant bit.

• Mentally convert each nibble to a hexadecimal number and
write it down. (This process sometimes calls for a mental trans
lation of the binary number to decimal and a translation of the
decimal number to hexadecimal.)

Examples 5 and 6 illustrate how binary numbers are converted into
hexadecimal numbers.

Example 5: Conversion of Binary Numbers 010101012. 00000101 2• 1010111h. and
111111102 Into Hexadecimal Numbers.

01010101 2 = 0101 0101 = 55'6 00000101 2 = 0000 0101 = 05,6
10101111 2 = 1010 1111 = AF'6 111111102 = 1111 1110 = FE'6

Example 6: Conversion of Binary Numbe" 10011111000111002 and
0100010111011011 2 Into Hexadecimal Numbers.

10011111000111002 = 1001 1111 0001 1100 = 9F1C'6
01000101110110112 = 0100 0101 1101 1011 = 450B'6

The reverse proc~ss, converting from hexadecimal to binary, is done
in a similar way.

• Divide the hexadecimal number into separate digits.
• Mentally convert each hexadecimal digit into a binary nibble.

Example 7 illustrates the process.

Example 7: Conversion of 30'6 and FC83'6 Into Binary Numbers

30'6 = 0011 1101 = 0011110h
FC83'6 = 1111 1100 10000011 = 11111100100000112

By now it should be easy for the reader to understand that hexa
decimal numbers represent 8-bit and 16-bit binary numbers more
efficiently than decimal numbers. Practice will produce the familiar
ity required for rapid calculations. A table of binary to hexadecimal
to decimal conversions is provided in Table A-3.

It might be added that hexadecimal numbers are frequently called
"hex" numbers, and sometimes the suffix "H" is attached to indicate
the hexadecimal representation. The notation used in this book to
indicate hexadecimal numbers is a "$" prefix. That is, 3616 = $36
and 7FFC16 = $7FFC. This is the most common practice among
6502 users, perhaps to make them feel wealthy. Readers who were
not previously familiar with hexadecimal and binary numbers are
urged to try the exercises at the end of this appendix.

366

Table A·3. Binary to Hexadecimal to Decimal Conversions

Binary Number Hexadecimal Number Decimal Number

0001 NIBBLE 01 1
0:)10 .. 02 2
0011 .. 03 3
0100 .. 04 4
0101 .. 05 5
0110 .. 06 6
0111 .. 07 7
1000 .. 08 8

0001 0000 BYTE 10 16
0010 0000 .. 20 32
0100 0000 .. 40 64
10000000 .. 80 128
1000 1000 .. 88 136
1000 1100 .. 8e 140
1100 1100 .. ee 208
1111 1111 .. FF 255

0001 0000 0000 3 NIBBLES 0100 256
0010 0000 0000 .. 0200 512
0011 0000 0000 .. 0300 768
0011 1111 1111 .. 03FF 1023
0100 0000 0000 .. 0400 1024
1000 0000 0000 " 0800 2048

0001 0000 0000 0000 2 BYTES 1000 4096
0001 1111 1111 1111 .. lFFF 8191
0010 0000 0000 0000 .. 2000 8192
0011 1111 1111 1111 .. 3FFF 16383
0100 0000 0000 0000 .. 4000 16384
0101 1111 1111 1111 .. 5FFF 24575
0110 0000 0000 0000 .. 6000 24576
0111 1111 1111 1111 .. 7FFF 32767
1000 0000 0000 0000 .. 8000 32768
1001 1111 1111 1111 .. 9FFF 40959
1010 0000 0000 0000 .. AOOO 40960
1011 1111 1111 1111 .. BFFF 49151
11 00 0000 0000 0000 .. eooo 49152
1101 1111 1111 1111 .. DFFF 57343
11100000 0000 0000 .. EOOO 57344
1111 1111 1111 1111 .. FFFF 65535

EXERCISES

1. Identify the digit number of the digit 5 in the number 25033. If
this is a base 10 number what is the place value of the 5? Would
the face value be changed if this were a base 16 number? Would
the place value be changed if this were a base 16 number?

2. What is the place value of a digit in the nth place of a number
written in base b?

367

3. Give examples of how numbers are used to indicate quantity, to
indicate order, and as codes or names.

4. Convert the following decimal numbers to binary numbers:
17, 31, 64, 65, 127, 255, and 365.

5. Convert the following binary numbers to decimal numbers:
10110110 11110000
00010010 11111111
01000000 01010101
10000001 00110011

6. Convert the decimal numbers in problem 4 to hexadecimal num
bers. Use the binary results you obtained by doing problem 4.
Also convert the binary numbers in problem 5 to hexadecimal
numbers.

7. How many different 4-bit numbers or nibbles are there? 8-bit
numbers? 16-bit numbers?

8. Define number, bit, byte, and nibble.

EXERCISE ANSWERS

1. The digit number of 5 is 3. (Digit numbers start with 0 on the
right and increase to the left.) Its place value is 103 = 1000 if the
base is 10. Face values are the same in numbers of any base, pro
vided that face value exists. For example, there is no face value
of 5 in the binary number system. If the base of the number were
16 then the place value of the digit 5 would be 163 = 409610•

2. The general formula for the place value of a digit in the nth place
of a number written in base b is b n•

3. The number of words on this page is a quantity. If the Kansas
City Royals are in 2nd place, the 2 is used as an indication of
order. The ASCII for the letter A is 4116, Thus, A is represented
by the code number 4116,

4. 17 = 100012, 31 = 111112 , 64 = 10000002, 65 = lOOOOOh,
127 = lll1l1h, 255 = ll11111h, 365 = 1011011012 ,

5. 10110110 = 18210 = B616 11110000 = 24010 = F016

00010010 = 3410 = 1216 11111111 = 25510 = FF 16

368

01000000 = 6410 = 4016

10000001 = 12910 = 8116

01010101 = 8510 = 5516

00110011 = 5110 = 3316

6. Some of the answers are given in problem 5. The conversions from
problem 4 are 10001 = 1116, 11111 = IF16, 1000000 = 4016,

1000001 = 41J(i, 1111111 = 7F16, 11111111 = FF1{;, and
101101101 = 16D16•

7. Notice that there are 2 different I-bit numbers, 4 different 2-bit
numbers, 8 different 3-bit numbers and 16 different 4-bit numbers.
Thus, there are 16 different nibbles. Using induction, if the num
ber of bits in a number is n, then the number of different n-bit
numbers is 2n. Thus, there are 28 = 256 different bytes or 8-bit
numbers and 216 = 65536 different 16-bit numbers. These answers
may be verified with the table.

8. A number is a sequence of digits. A bit is-a binary digit. A byte is
an 8-bit binary number, and a nibble is a 4-bit binary number.
Leading zeros are permitted.

369

APPENDIX B

Instruction Set Summary

The following instruction set summary is made available through
the courtesy of Rockwell International.

370

6502 INSTRUCTION SUMMARY

INSTRUCTIONS IMMEDIATE ABSOLIm lERO PAGE ACCUM IMPLIED tlNO, KI jIND). Y Z PAGE, K S, X AIS, Y RELATIVE INDIRECT Z PAGE, Y
PROCESSOR STATUS
CODES

MNEMONIC DPHI,t,TlON 0> " • OP , OP n • OP " , OP n • OP " OP n • OP • 0. • OP t OP n , QP n • OP n , N ~ 5 ! ~ ~ ~ g MNEMONIC

AD C " ... '-4+(• .4. (4-)(1) 69 , , 6D 4 3 65 3 2 6' 6 ,
" 5

, 75 4 2 7D 4 3 79 4 3 N V Z C AD C

AND AhM - A (1) 29 , 2 'D 4 3 25 3 2 " 5 2 31 5 , 35 4 2 3D • 3 39 4- :} Z • AND

AS L C~-O OE 6 3 06 5 2 0.4. 2 , 16 6 :2 'E 7 3 N • Z C A S L

BCC BRANCH ON C ~ 0 (2) 90 , 2 BCC

B C S BRANCH ON C '" 1 (2) BO , 2 BCS

BEO BRANCH ON Z == 1 (2) FO , , BE a
BIT UM 2C 4 3 24 3 2 M/M6' Z • BIT

B M 1 BRANCH ON N = 1 (2) 30 , , B M 1

B N E 8RANCHONI::: 0 (2) DO , 2 B N E

B • L BRANCH ON N=:O (2)

" B • L

B R K BREAK 00 7 1 B R K

B V C BRANCH ON II = 0 (21 50 , , B V C

B V S BRANCH ON V .=. 1 (2) 70 , , B V S

C L C O-C 18 , 1 • 0 C L C

C L 0 O-D D8 , 1 • 0 C L D

C L 1 0-1 58 2 1 C L 1

C L V O-V BB 2 1 o • C L V

C M P A-M C9 , 2 CD 4- 3 C5 :) 2 Cl 6 2 01 5 :2 05 4- 2 DO 4- J 09 4- 3 N • Z C CMP

C P x x - M EO , 2 EC 4- J E4 3 2 N • Z C C P x

C P Y M CO 2 2 CC 4- J C4 :} 2 Z C C P Y

DEC M - l-M CE 6 :} C6 5 , D6 6 , DE 7 3 Z • DEC

DE x X-I'" X CA , 1 N Z • DE x

DEY Y - 1'" Y .. 2 1 N • Z • DEY

E 0 R A Y M - A (tl 49

'1 2
40 4 3 45 3 2 41 6 , 51 5 :2 55 4- 2 50 .. J 59 4- J N • Z • EO R

1 N C M + 1-M EE 6 J E6 5 2 F6 6 2 FE 7 3 Z • 1 N C

1 N X X + , - x ! E8 , 1 Z • 1 N X

1 N Y
Y. 1 - Y I C8 2 , N • Z • I N Y

J M P JUMP TO NEW LOC 4C 3 3

2 Bl

6C 5 3 J M P

J S R JUMP SUB 20 6 3 J S R

~ L D A M - A PI A9, 2 2 AD 4- 3 AS 3 , AI 6 2 81 S 2" Bo 4 J B9 4 J N • Z • LOA

w
'"

LOX

LOY

L S A

NO P

OAA

PHA

PH P

P L A

P L P

A 0 L

AOA

A T I

A T S

S 6 C

SEC

SED

S E I

S T A

S T X

STY

T A X

T A Y

T S X

T X A

T X S

T Y A

M-X

M '. Y
'" IA212121AEI'I 'IA'I 'I'
(1) AD 2 2 AC" 3 11.4 3 2

O-E~C

NO OPERATION

AVM -A.

A Ms 5-1-5

p Ms S - 1 ~ S

5 + 1 - 5 Ms - A

S + 1 5 Ms - P

~--{C']..J

'-[9-1' m_ of--!
RIAN INT

AlAN SUB

4E I 6 I 3 1461 5 I 2 1410. I 2 I 1

091 2 I 2 lool " I 3 1051 3 I 2

2EI 6 I 3 1261 5 I 2 1210.1 2 I 1

6E I 6 I 3 1661 5 I 2 1610. I 2 I 1

A-M-C-A

'~C

(1) IE91 2 I 2 IEOI 4 I J IESI 31 2

'-0
'-I
A-M

X- ...

Y~M

A~X

A~Y

5-- X

X~A

x-S
Y~A

BOI'I'I85I'I' 8E438632

8C438432

ADD 1 to "N"IF PAGE BOUNDARY IS CROSSED

<2) ADD 1 TO "N"IF BRANCH OCCURS TO SAME PAGE

EAI 2 I ,

'B 131' OS 3 , .. , ,
28 4 1

'01 6 1' 60 6 1

38121'
F8 2 ,

781 2 I 1

AAI 2 I 1

A8 2 1

BA 2 1

8A 2 ,

9A 2 ,

98 , ,

ADO 2 TO "W IF BRANCH OCCURS TO DIFFERENT PAGE

(3) CARRY NOT:;:: BORROW

(4) IF IN DECIMAL MODE, Z FLAG IS INVALID
ACCUMULATOR MUST BE CHECKEDFOA ZERO AESUL T

BEl" I 3

6'I'I216CI'I '
56625£73

01 I 6 I 2 111 I 5 I 2 1151 "I 2 110 I " I 3 1191 " I J

36161213E1713

761 6 I 2 17E I 7 I 3

El1s121Fli 5121F5141 21Fol41 3 IF9141 3

811,1'19' I 6 I 21951'1 21901 5 1'199151 ,

941 4 1 2

INDEX X

INDEX Y

ACCUMULATOR

M MEMORY PER EFFECTIVE ADDRESS

Ms MEMORY PER STACK POINTER

6'1 ' I 'I N • z ·1 LOX
N • Z' LOY

o . Z C lS R

NOP

N • z ·1 0 A A

PHA

PH P

N ••••• Z • P L A

(RESTORED) P L P

N ••••• Z C " 0 L

N ••••• Z C A 0 A

(RESTORED) A T I

AT S

N V •• Z (3) S 6 C
. , SEC

, . SED

, . S E I

S T A

961 , I 'I . S T X

STY

N • • Z T A X

N • Z • T A Y

N • • Z T S X

N • Z • T X A

T X S

N • Z • T y- A

ADD "" MEMORY 81T 7

SUBTRACT M. MEMORY BIT 6

AND NO. CYCLES

OA NO. ByTES

EXCLUSIVE OR

APPENDIX C

Microcomputer
Technical Data

The following pages contain some technical infonnation pertain
ing to the 6500-series microprocessor devices. The specification sheets
reprinted here are made available through the courtesy of Rockwell
International Corporation. Copyright © 1978 Rockwell International
Corporation. All rights reserved.

The SY2114 specification sheet is made available through the cour
tesy of Synertek Systems Corp. Copyright © 1978 Synertek Systems
Corp. All rights reserved.

373

R6500 Microcomputer System

DATA SHEET

R6500 MICROPROCESSORS (CPU's)

SYSTEM ABSTRAcr

The B·b'! R6500 rn'Cfocomputer WSlem IS produced INMI r-.
Channel. Sd,con Gale lechnoloqy liS pl'rformance speeds are

enhancffi by ildvanced ~v~tt'm arch'll'Clurp Th,s ,nnovat,ve
arch t€Clure re~ullS In ~mollief chIps - 'he lem,condu(1or lh,e~hold

10 (O~I-pff"ctl\lJty SyStem CO~I-etl~ct,v Iy I~ lunht', enhanced by

IHov,d,nq d family of 10 solt""ar~-compillrhlp m,erOprOCl'HOr

{CPU" devl'~~, de~c"bed <n th'~ docum€", H()ckwell also pro

v-des r""~m()'¥ and m,Cfocompule' W51f'm J\ w~11 il~ low~O~1

dt'slgf1 did, J'ld nocumentatlon

R6500 MICROPROCESSOR (CPU) CONCEPT

Ten CPU dev,ces Me aVilil3ble All are $oftware compat,ble

They prOVIde- optIons of addressable memory. Interrupt Input,

oo<h,p clock oscll,ala.; and drivers All are bus-compat,ble

""'Ih lla,I'l1' 9€neral'o" m'crop'oell$SorS I,kll Ihe M6800 dev,ces

The IJ"'''V 'ncludes s._ m,croprocessor, IN,th On board clock

oscillator, and d"vll'S and four m,,,oproce5sors driven by e~ternal

cloc~1 Ttw on-ch,p clock vers,ons are a,med al hlqh performance,

lOIN COlt aPP',cat,ons ""he~ Slng.e phase ,nputs, crVSI~1 or RC

Innut, provide the I,me base The ~>terna, crock versIons are

ql'ared for mull.processor IvSlem appll~dtlon\ whe'e maximum

t<tn,nq control,s mandatory_ A:; R6500 mlcrop'OCeSSOr$ are

also ~vailable tn a vJfte!y of packag,ng tcllram,c imd plast,cI.

aperillmg lrequency 11 MHl and 2 MH11 and lemPerature Icom

merClal, mdus!r,al anrl m"'laryl vers,ons

MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMIL Y

Model Add.~b'- ~mory

A6502 65K Byle5
R6503 41< Byles
A6504 81< Byles

R6505 41< Byles

A6506 4K Byte1
A6501 8K Bytes

M,croprocessor~ "",th E~ternal Two Pha5e Clock OUlp ... 1

374

Modo'

A651?
A6513

A6514

A6515

6SK Byl .. ~

41< BYle~

8K BYle~
41< Byles

FEATURES

S,ngle -+5V supply
N channel, silicon gate, dFpietlo" 10arliPchnoloqy

• E'gh! hrl parall!"t proceSSI"g

DeCima, and b'''Jry a"lhmel,C

• Th"leen dddres"ng modes
T,up mdexlng LJpab,I'ly

Prog'dmmable 'lack POl mer

• Va"Jhle lenglh "ack

• Inlerrupt cdpab",ty
Non-maskable Interrupt

Use w,tl'! any Iype 01 IPeeel mf'mory

8-b't 8,d"ect,onal 0,11" Bus

Addressable memory 'ange at up 10651< bytes

"Ready" ,nPUI

Oorec! M .. mo.y Acc~1S capabol<ly

Bus compat,bl" ""'110 M6800

1 MHz and 2 MH7 operal.on

He lime bale ,,,pul

Cry,lal I,m.' base .npUI

CO"''''PfCIJI.

Plpel,ne arch"11C'ure

Ordering Information

A65XX- -It,m ... ,,,"ce
No suH ~

E

MT

Pac:kaqe

Mll-ST0.883
Class B

C - CeramIc
PlastIC

INol Ava.ble fo.

Mo. MT suff,.~

Frequency Aange

No SUftl~ 1 MHI

A - 2 MHz

Model DeSI9".1tor

XX-02.03,04. IS

JJ
en
U1
o
o
s:
(")
JJ
o
-C
JJ
o
(")
m
en
en
o
JJ
en
n
-C
C
!i

R6500 Signal Description

The R651X requires a two phase non-overlapping clock that runs

at the Vee voltage level.

The A650X clocks are supplied with an internal clock genera lOr
The frequency of these clocks is externally controlled

These outputs are TTL compatible, capable of dr illing one standard

TTL load and 130 pF

D.t, Bus (00·07)

Eight pms are used for the dJla bu~ This is a bidirectional bus,

transferring data 10 and from the de ... ,ce and perIPherals, The oul

puts are tfi-state buffers cJp<lble of driving one standard TTL load

and 130 pF

D.t. Bus En.ble (OBE)

This TTL compatible input allows external conlrol of the tfi-state

data output buffea and will enable the microprocessor bus driller

when in the high state. In normal operation DBE would be driven

by the phase two (/112'. clock, thus ,allowing data output from
mIcroprocessor only dUring /112' Durmg the read cycle, the data
bus drivers are Internally disabled, becoming essentIally an open
CIfCUIt. To dIsable data bus drivers externally. DBE should be held
low.

Ready (RDYI

ThIS Input SIgnal allows the user to halt or single cycle the mIcro
processor on all cycles except wnte cy::les. A negatIve lIanSltlon

to the low state dUflng or COincident WIth phase one (/III) wdl halt
the m,croprocessor with the output address lines reflecllng the
current address being fetched. If Ready is low dunng a wnte
cycte. It IS Ignored until the following read operation ThIS can

dltlon wdl remain thrOugh a 1ubsequent phase two (412) In whIch
Ihe Ready SIgnal IS low. ThIS feature allows mIcroprocessor Intel

faCing WIth the low speed PROMS as well as fast (max 2 cycle)
D"ect Memory Access (DMA)

Interrupt Requ"" {fRO)

This TTL level mput requests that an Interrupt sequence begin

WIthin Ihe microprocessor The mIcroprocessor WIll complete the
current IOstruclion beIng executed before recogniZIng the requesl

At that time, the interrupt mask bIt in the Status Code Register

will be ellammed. If the interrupt mask flaq IS not set, the micro
processor will begin an interrupt sequence. The Program Counter

and Processor Status RegIster are stored 10 the stack. The micro

proceuor will then set the ir"llerrupt mask flag hIgh so that no lur·
ther interrupts may occur At the end of thIS cycle, the program
counter low will be loaded from address FFFE, and program
counter hIgh from location FFFF, therefore transferring program
control to the memory vector located at these addresses. The
ROY signal must be in the high state for any interrUPt to be re<>
ognized A 3KU external resistor should be used lor proper
wlre·OR operatIon.

Non·Maskable Interrupt (flMl)

A negatIve gOIng edge on this input requests that a non-maskable
mterrup! sequence be generated within the microprocessor

NMI IS an uncondItional interrupt. Following completion of ~

current Instruction, the sequence of operations defIned for IRQ

will be performed, regardless of the state interrupt mask flag. The

vector address loaded Into the program counter, low and high, are

locations FFFA and FFF6 respectively, thereby transfefflng pro

gram control !O 1he memory vC'Ctor located at these addresses.
The instructIons loaded at these locations cause the microproc

essor to branch !O a non·maskable Interrupt routine in memory

NMI also requires an external 3K n register to V CC lor proper

wire-OR operatIons

Inputs IRQ and NMI are hardware In'.errupts IIOes that are sam·

pled during "'2 {phase 2) and will begIn the appropriate interrupt
routme on the 1>1 {phase 11 following the completion of the cur·

rent mstructlon

Set Overflow FI ... IS.O.l

A negatIve gomg edge on this input sets Ihe overllo bit In the

Status Code RegIster. ThIS signal .s sampled on the trallmg edge 01

¢II and must be externally synchronized.

SYNC

ThiS output line IS prOVIded to Identify those cycles 10 which the
mIcroprocessor IS doing an OP CODE fetch. The SYNC lme goes
h'gh during ¢l 1 of an OP CODE fetch and stays hIgh Tor the

remamder 01 Ihat cycle. If the ROY line is pulled low during the
411 dock pulse in which SYNC went high, the processor 111 stop
In lIS current state and will remain in the state until the RDY line

goes hIgh, In this manner, the SYNC signal can be used to control

ROY to cause slOgle mStruction exeCUllon.

This input is used to reset or start the mIcroprocessor from a

power down condItion. DUflOg the tIme that this line is held low,

writing to or from Ihe mICroprocessor IS InhibIted. When a posi·
tive edge is detected on the mpul. the microprocessor w;1I Imme

diately begin the reSet sequence

After a system IOltlaillatlOn time of SIll dock cycles, the mask

interrupt flag will be set and the microprocessor will load the pro

gram counter from the memory vector locatIons FFFC and FFFD.
This is the 51art location for program control

After VCC reaches 4.75 vohs in a power up routine, reset must be
held lOW for at least two clock cycles. At this time the R!W and
(SYNC) signal will become valid.

When the reset signal goes high following these two clock cycles.
the microproceS$or ilI proceed with the normaf reset procedure
detaIled above.

375

Clock Timing --- R6502, 03, 04, 05, 06, 07

-- ~TF¢>O -- ___ JA¢>() ____ 24Y

¢>o ;'NI

~~PWHI/lOL -~_PWH¢>O>i--

¢I, loun ----.....I~ ---.-/
_PWH¢>/ __

¢I(oUT)~5V --1SY---. 2 04V 0 ~Y
___ PWH¢>1_

REF "A RE~ "e"

Clock Timing - R6512, 13. 14. 15

"

Timing for Reading Data from Memory or Peripherals

~AEF"A

I O~Y -.....J TRWS ' __

I"--REF 'A

! O~Y
T.,RW __ --

RM~---X:
THA __ .--

AOORESSFROM~~
CPU~-

OATA FROM ~TADS -- 2~_ .

MEMORY •

TACC~ ___ THR

X==TOSU---

---~ -'",,,;c, ==x== __ _
Timing for Writing Data to Memory or Peripherals

ADDRESSfROM~
CPU ~

__ - __ "_D_' ___ '--_'-<''" . ~ •. OATAFAOM /=F
CPU 08~

T "JIOS +-------- T H -- __

PROGRAMMING MODEL

, D

I I ACCUMULATOR B 0 I Z C PROCESSOR STATuS REG 'po,
7 D

I !INDEX REGISTER

0
!INDEX REGISTER

15 0

I PCH PCL I PROGRAM COUNTER "PC"

8 7 0
1,1 I STACK POINTER .,s" II II ~t:~~~::;':::'~:~~~:,

OVERFLOW 1 - TRUE

NEGATIVE 1 NEG

376

1 MHz Timing 2 MHz Timing

Clock Timing - R6502, 03, 04, 05, 06,07 Clock Timing - R6502, 03, 04. as, 06. 07

- -1~~l~J1--;:1-1
Ooo<.'''N'~ "'_.... I.. U." --- - - -

I::"·,'~:"",. ~:~.:: •.
I ~", ' ~ " 1 _. 'A" ". \0

I 0:.:, ':;; ". ~V (0," '0 '

," •..• ".... •• _.. 1-".,' I
'. ." ,' I ~".' 1_" ." ," ' .. "

I _"

'The lowe~t operal+"9 frequency fo' the commerCial tempp,ature 'ange CPU'~,~ 100 KHl, whIch correspond§ 10 a ma",mum cycle tIme
nCYC) of 10 "s. The lowe~t opNatong frequenty for the >ndlJ~l!lal and military temperawre range CPU's \~ 250 KHz, which torre,pond~
to a ma~,mum cycle tIme (TCYCI of 4~s

Clock Timing - R6512, 13, 14, 15 Clock Timing - R6512, 13, 14,15

L ___ _

I :;:.:;::'.

I:.:..:.::"
I::'::

:';':"T ,: .- .,,-
I

I ,

i " ' I
l ___ ~_~

1

-~'--'

L.
C,,,' _.

1
'_"'·""" "" :.'"

ReadflNrite Timing .,

•• load Cond,tlon~'" 1 TTL Load + 130 pf

3.3K

RECOMMENDED TIME BASE GENERATION

1.8K 1.8K

XTAl

11 MH1- 5 MH:zI'

R65XX

~ IINI
o

'CRYSTAL' CTS KNIGHTS MP SERIES, OR EQUIVALENT

.~T--:C---~;-C-'-'.---'--C.C.C

377

37.

4--- REGISTER SECTION

C'O(.G_.'.'O"'"O''''(lu~.do"R6''''2 IJ , .. ,~

2 Add' n.C I,'" ~,,~ CO"UOI op',on> ~.'> ~,'~ nc"

0' 'h~ R6'>00 P'Od~<"

CONTROL SECTION ----.

R6S00 Internal Architecture

" ,," I "6'>12 13, ,. ,'>

<;12 (,.,.,

~o""" A6!i.O.! 0] 0 .. 0,>,06.01

SPECIFICATIONS

Maximum Ratings

Rating Symbol Value Unit

Supply Voltilg~ Vee 0310+7,0 VOc
Input Voltage V ,e ·0.3 to +7,0 Vdc
Operating Temperdture T °e

Comm€rClal o to +70

Industr.al -4010 +85

MII,tary 5510+125

Storage Temperature T STG 55(0+150 °c

Th,S deVice contains 'nput protection against damage due to hIgh staliC voltages or electric fields; however. precautions should be taken to

avoid application of voltages higher than the ma:.,mum ralong

Electrical Characteristics

(Vee ~5.0'!5'\.,VSS 0)

¢I" 412 applies to R6S 12, 13. 14, 15, ¢ o(,n) applies to R6b02. 03, 04, 05. 06 a d 07

CharKl.ristic Symbol Min

Input High Voltage V ,H

LogiC, fPo!in) V 55 + 24

<P" <P2 Vee - 0 2

Input Low Voltage
V"

Loglc·¢o!,"' VSS - 0 3

4>," 4>2 V SS . 0.3
'------- - - --- f-- ---

Input HIgh Threshold VOltage V IHT

m, NMi. RDY. IRQ. Data. 5 0 V SS +2.0

Input Low Thrf!shold VOltage V'LT

RES, NMI. ROY. fRQ. Data. 5 0

Input Leakage Current

(V In ~ 0 to 5.25V, Vee· 0)

LogiC IExcl RDY,SO.l

¢I,. 412

¢loltnl

Three·State (Off State) Input Current ITSI

(V,n" 0.4 to 2.4V, Vee = 525VI

Data LInes

Output HIgh Volta9€' V OH

(I LOAO ~ ·100~Adc, Vee ~ 4.75VI

j SYNC, Data, AO·A '5, R/W, ¢I" ~2 V SS + 2 4

Output Low Voltage VOL
(I LOAD 1.6 mAdc, Vce ~ 4.75VI

SYNC, Data, AO·A1S, R/W, 0" ~2

Powl'r D'SSllldt,on Po
Commen::.al tl'mll. verSIons

InduSl"al ano mll,tary temp. vt'rs,O!15

CapaClli}nct' ill 25°C

IV - 0, f - 1 MH.!i

LogIC C
Dilta

AO·A15. R·W, SYNC C
00'

°ollnl C¢Jol,n)
~, e~1
~2 e¢2

Note fRO and NMI require 3K pull·up re~,stor$

T,p M" Unit

Vdc

Vee

V CC +O.25

Vdc

VSS + 0.4

V 5S + 0.2

Vd,

Vdc

VSS + 08

f---- - r-- -

"A

25

100

100
--

"A

10

Vd<:

--1---- ----------~
Vdc

VSS + 0.4

W

025 0.575

025 0700

pC

10

15
12

15

30 50
50 80

179

R6500 Microcomputer System

DATA SHEET

VERSATILE INTERFACE ADAPTER (VIA)

SYSTEM ABSTRACT FEATURES

DESCRIPTIDN

380

'CliO", "'IJ",,'d lilrO"'1il I\S '''H'm,,1 (f'q"lPr 01'1.''''

l"I~'r"p(FI.'q Rt'Q«!o" In!<""JP! En .. hlp H"<l,'WI, ,,,,,1

Order

Orderln~ lnform(ltlon

Package
Type Frequency

'·:~il·······

0' <--

-:---:>

-- - . --'. .

Tempe'~tLl,e

Ra"ge

BaSIC R6522 I nterface D,agram

CompilT,bl~

I)rur:~\""> ICPU,:

f O'ly-r"" plastic Or DIP P')CKJ'!P

Pm Configuration

:lJ
0)
U1
N
N

< m
:lJ
C/)

l>
-I
r
m

2
-I
m
:lJ
"T1
l>
(")
m
l>
o
l>
"C
-I
m
:lJ

"<
l>

OPERATION SUMMARY
Register Select Lines IASO, RS1, RS2. RS3)

The four Register select lines are normally connected to the processor address bus Imes to allow the processor to s~lect the internal R6522
.eglster which is to be accessed. The sixteen possible combinations access the ff'gistl'rs as follows

RS3 RS2 RS, RSO Register Remarks R53 RS2 RS' RSO Register Remarks

ORB T2L-L Write La1ch

H ORA Controls HJr1(ish~kp T2C-L Read Counter

DDRB T2C·H Triggers T2L-UT2C-L

DORA

T1 L L Wnte Ldtch

T1C-L Read Count!'1

T1C-H T rlg9f!r T 1 L· LiTl Col
Transfer

T1L-L

T1 L-H

NOlI' L=04VOC,H = 2.4V DC

Timer 2 Control

RS3 RS2 RS, RSO

Writing the Timer 1 Register

R!W = l

Writ!' T2L-L

Write T2C-H

Transfer T2L-L to T2C-l
Clear Interrupt flClq

SR

ACR

PCR

IFR

IER

ORA

Transfer

No Effect on

Hdndsha"-e

R/W= H

Read T2C·L
Clear Interrupt flag

Read T2C-H

The operations which take pl<lce whpn writing to each 01 the tOUI T1 addresses are as follows

RS3 RS2 RS,

H

Reading the Timer 1 Registers

RSO Operation (RIW = Ll

Write mto low order latch

Write into high order latch

Write into high order counter

Transfer low order latch Into low order counter

Reset T1 interrupt Ilag

Wrl te iov, order latc:-h

Wnte high order latc:-h

Reset T1 Interrupt flag

For read,ng the Tnner 1 registers. the four addresses relate dlrectlv to the four registers as follows

RS3 RS2 RS, RSO Operation (R/W" H)

R~ad T 1 low order COunter

Re~~t T1 Interrupt flag

Read T1 high orrl!'r counter

Read T1 low ord!', Idtch

Read T1 high orrl!'r ,,1ICh

381

TImer 1 Operating Modes

Two bits are provided In the Au,uliarv Control Aeg,ster to allow selection of the T1 operating morles These bits and the four possible modes

are as follows

ACR7

Output

Enable

FUNCTION CONTROL

ACR6
"Free-Run"

Enable Mode

Generate a Single time-out Interrupt each !,nw Tl IS loade(j

Generate conlinuous Interrupts

Generate a Single Interrurt and an outpu' pul;;~ on PB7 fn'

each Tl load operation

Generate continuous mterrupts and a sqU;:lrp welve output

on PB7

Control of the vaflOU, funct on" ,lOf! oprr,llmg modf!S wllh"l thp R6522 IS accomplished prllnarl'y through two req'''ler~, Ihe Peropheral

trol Aeglster (PCA), an(i the AUXIlidry Cor)1rol Rpg,;Wr (ACR! Th" PCR I, used prlmarrly to select the operallny mod .. for lhp four pe,-.prlPrdl

control pinS, The Au)(rI,a,,. ContlC)" Heyl'>ler seier IS tlw operell!llq mode for the Interltal T,mers (Tl, T2), and the Sprlal PD't (SRI

Perlpkeral Control Register

The Peripheral COntrOl Register 15 organized as follows

Bit' I 7 I 6 I 5 4 3 I 2 I , 0

Function I CB2 Conlrol CR' CD..2 Conr-ol CA'

TYPlc;:I1 functions are shown below

PCR3 PCR2 J PCRl

I

I
AuxilIary Control RegIster

ContrOl Control

Mode

Inpul mode - Set CA2 ,nterrup! flag (IFRO) on a r1Pgal,ve transition ollhe Input s,gnal Clear

IFRO on a read or Write of the Perrprlf'f;:ll A Output Reg,ster

Indpper1(jp", Intf'rrupt mput mode - Set IFRO on a negat.ve tran~ltlon 01 the CA2 ,npu! "q

ndt Hpdrllng or writing ORA does not clear the CA2 Interrupt flag

InpUl mode - Set CA2 Interrupt flag on a pOSItive tranS1tion of the CA2 'nput ",gnal Clf'ar

IFHO With a rei,d 01 write 01 the Peripheral A Output Register

I"depenrif'nr Hlterrupt Input mode - Set fFRO on a POSitiVI' lranSl!.on of 1"'1' CA2 Inpul Slq

na, Rearil"q Of wriling ORA does not clear the CA2 rnlerrupt flag

HandshJkp OU1PU! mode - Set CA2 output Iowan" read or wrote 01 thf' P,'rlpher,ll A OutPut
RCCjls!er Re,p! CA2 high With an act,ve tfans,tion on CA 1

Pulse OutpUl modp CA2 goes low for one cvcle followmg a read 0' W"tf' of thf' P,'"phpral

A Output Rp'I'S!e,

Milnl'JI OlllPUI mode - The CA2 OulpullS held low ,n this mode,

MJnU,ll outrut mode - The CA2 output IS held high 10 IhiS mode

Manv of the lunn,ons m the AUKrilary Control Reg,ster have bee" d"cussed prpvlou,ly However, a summary of Ihls register 15 presented

herp a; d co"ven,ent rpference for the R6522 user The Au)(illary Control Hegl>!er I, organ'led as 10,lows

Bit' 7 I 6 5 4
I

:l I 2 I , 0

Function

T2

I

PB PA

T1 Control Control Sh'ft Rf'QlstPr ContrOl Latch Latch

Enable Enable

Skift Register Control

The Shlfl Reg">t!'r operallOg mode is selected as follows

ACR4 ACR3 ACR2 Mod,

! Sh,fl ,n under control of syStem l !Ol f.

Shift 10 under (on'iol of Timp,)

Shltt In under (on"ol of eKtel ";:II

Shift out under control of Timer 2

Shilt ::lut under control of the ,ystem rlock

Shlf! out under con!rol 01 eKternal pul,f';
,

T2 Control

Tlmpr 2 operatPS ,n twO modes If ACR5 = 0, T2 acts as an interval !lmer In !hp orlP-,"O! mod" If ACR5 ~ 1, T,mer 2 aCls to count a pre·

df'term,ned number of pulses on pm PB6

312

TIMING CHARACTERISTICS

Read Timing Characteristics (loading 130 pF and one TTL load)

P.ramfler Symbol Min TVO

Delay Time. address lIalid 10 clocK Qos.nlle tranSIlIOC> 180

Delay "me, r-Inrk po;'11111' IrClMltron to data valin on bus

Dillil bus hold Tlm~

PHASE TWO
CLOCK

AODRESS

PERIPHERAL
DATA

Write Timing Characteristics

Enilble pulse w.dth

JOO

10

.Ic---t--+--'-+-""-------2.4V
'\--+-+-+--------O.4V

J..--'""=--'--+--+----------2.4V

Read Timing Characteristics

Symbol Min Tvo

T C 047

T ACW 180

T DeW 300

TWCW

Datil bus hold Time T HW

PHASE TWO
CLOCK

ADDRESS

READ/WRITE

.,----'f-'=--+--. r------- 2.4V

~-t-----t--- '-,-.-=----0.4V
,+-""'''"----2.4V

DATABUS _____ ~~ __ ~~~~~~~~

PERIPHERAL
DATA

Write Timing Characteristics

Unit

395

05

M" Unit

25 ,5

05

05

05

05

,5

,5

313

I/O Timing Characteristics

CharacterIstIc Symbol

r-----------------------r----~----r_--_r----r_--~

384

H,,,, and lall t,me 10' CA I, CB I, CA2 ,I"d eB2 ,npul "gnal,

Dt'iay t.me. clock n!!ga"vl! t<"ns.t,o" to CA2 neqatlve

t'd"",.[Jn I,!!ad hand~hak!! 0' pulse model

Deiayl.nw rlPqal 'v~

Dplay t"'n~ r

lrdnSI\'an iw"lt' h,,,,,hh~kp

Delay

D!!lay 11FT'" CB 1 .'U ",~
lrJn"I,,,n (handShake made)

II, C.A2 P('s,\,ve

I to ellL [J' CB2 PO~'I've

'" eB2 positive

Delay I,mI'. per,pheral nala val,d 10 CA 1 0' CS 1 dCllvt'

Iran"llon I,npul latch,ng)

Oel~,. I,m!! CBI negat,~e 'fan~lllon 10 CB2 nala vdi,rj

i,nlP'nal SR cloCk. sholl oull

Oplay I'me. negatIve l'an:\,I,on at CBI "'pul CIOC~ 10 eB2 data

valod leq!!,nal clOCk, Sh,11 oull

[)e1dy 1,me, CB2 dal<l valid 10 PQSd,ve !,anS,t,on:)t CSI clock

I,h,tl ,no ,nlernal a' e"lernal clock)

Pul~ ... W.dth - PB6 Input Pulse

Pul~eW,d,h C81 InpUI C":i,,(k

PB6 Inpu1 Pul"

Pulse SPJ(''''I C81

CB2 SERIAL
DATA IN

CBt CLOCK

T H ~

TCAL

T RS1

TAS2

TWHS

T DC

T RS3

T AS4

T" 300

T SR 1

T SR}

T SRJ

TIPW

T ICW

lIPS

11CS

2.4V

C82 SERIAL------'-'}...::.:.::....----2 .• V

DATA OUT ------.J1'-------O.4V

I/O Timing Characteristics

10

:' 0

'0

300

300

300

I

SPECI FICA nONS

Maximum Ratings

Rating

Supp', Voltage

Input VoITa']e

Operaltng Temperature Ran~

M""~ry

Storage Temperature RanQe

Symbol

Vee

V" ,

TSTG

Value U"it

03 to • 7 0
03 IU '70 Vd{

"c
o to +70

40 to '85
5510 + 1)5

5510 +150 "e

Th>s del/Tee contaonii C",cud'V 10 pr01Pct (he mpuls against damage due to hLgh stat,c voltages Howelle •. It IS adv,~ert lhat norm')l precautions
be taken to al/ood apphca\.on of any voltage h'gher Ihan ma~lmum raled vollaqe~

Electrical Characteristics

(vee 'j ov +5 vSS 01

Ch~racterist,c

Inpu\ hILl!, vollage Inormal operatlonl

Input LOW vo,tJge Inormal operatIon)

OII-state,<lpulCu.renl-V,n 041024V
vee = Ma". DO 10 07

Input hIgh current -- V,H - 24V

Symbol Min M ••

vee

U J +0.8

±25 /JAde

+_10 j.lAdc

·100 ",Adc
;-___ p_A_O_pA_,_'_' e_A2. PBO-PB7, CB 1, C_B_2 ___ .-j- -
I InpHtlow CU'fent - VIL 04 Vdc L-- PAOPA7,CA2,PBO·PB7,CB1,CB2

r OU!PlJ!i"qhvolt<lgE'
vec 0 min, Iload - 100).<Adc

______ 'A~O_'~A_7~CA~2~,~PB~0_.p~B'_'_.e~B~'~,C~U~2 __ _____

Output 10'" volt<l\lE'
vee mm,lloan ~ '_6 mAde

'00
VOH " , ,5V, PBO-PB7, CB I, CB2 ·1.0

16

l OU!P~,;~g~ ~u~~n! (sourClr1\l) IOH

----,O-"-"-"'-'''-w-'-urrE'!lt (slnkIF1ql --------r-----. IO-L---+---c-,----+

VOL = 0.4 Vde

OutPut Ipak:lc!!, eUllen! (off statel
iRi'i

'CO"' c-""-,,-,,,,-,,-. -, A-·-,,-=-Oe-, ,-. -, M-H7 __
R'W.R'ES REO,RSI,RS2,RS3,CS1,CS2,
DO-o7, PAO-PA7, CA2, PBO-PB7

CBI, CB2

-

, 6 mAd,

+0.4

).<Adc
mAde

'0).lAde

" , 0

'0

20

'0 "
750 mW

315

R6500 Microcomputer System
DATA SHEET

ROM-RAM-I/O-INTERVAL TIMER DEVICE (RRIOT)

SYSTEM ABSTRACT

The a·b,t A6500 m,e'ocompulpr \'/51~rn " fl.oriuced with N

channe S I,con Gate :echno ogV It~ performance 5peeds <Ire

enhanced by advanced ",tern oren,lecture liS ,nnOvatlVe' arch,

lecture ,e,uitl ,n ~md'lt'f ch,p, the semIconductor threshOld TO

co" eflec!'~lty System COlt effectIVIty IS !unh!!. enhanced by

plall,dlng a fam,ly of 10 software-compatIble mtcrOp.ace-Hor

ICPU) deVices Rockwe,1 JISO provides memorv and 110 deVIces

that further enhance the cost efleClll/ilV of the R6500 m'crocom

as well a~ low-<;OSI deSign a,d, and documentation

DESCRIPTION

The A6530 ,s deSIgned to operate '" conJunct,on wIth the A6500

Microprocessor FamliV It IS compflsed 01 a mask programmable

1024 " B ADM, a 64 " 8 $lalic RAM. IWU soltware cuntrolled
8 bit bidirectional data porn aHowlng dtrect InterlacIng between

the microprocessor unit and peflpherai deVICes. and a suftware
programmaole mterval timer with Interrupt capable 01 t,m,ng ,n

various intervalslrom 110 262,144 clock periods

PAO PA7

DO AD

FEATURES
• 8 bIt b,dm~etlon .. 1 Data Bu, for direct commun'C<lI,on ",,,th the

microprocessor
1024 ~ 8 ROM

• 64 x 8 static RAM
Two 8 bit b,dorecl,onal dala porh for mlerlace to peropherals
Two programmable Data o"eCllon AeglHer5
Programmablelnlerval TImer
Programmaole Inlerval Timer InterruPI
TTL & CMOS compatIble penpheral hnes

• Peropheral pms wllh Dlrecl Trani,SlOf Or.ve Capabllitv
• H'gh Impedallce Three Stale Data Bus
• Allows up to 7K conllguous bvles 01 ROM wl1h no e"lernal

decodIng

Ordering Information

Order PK"-ve Temper.tUN

Numb.- TV" Ran.,.

A6530P PlastIC ODC to +700C

R6530C CeramIc OOC 10 +70oC

A CUSlom number will be aSSigned bv Rockwell

P80 PB7

R6530 Block Diagram

386

J:I
o
3: ,

'-
9
2
-I m
J:I

~
r
::!
3:
m
J:I

o
m
< n
m

J:I
J:I g

INTERFACE SIGNAL DESCRIPTION

Reset tAtS)

During system initialization 8 Logic "0" on the RES input will
cause a zeroing of all four I/O registers. This in turn will cause all
ItO buses to let as inputs thus protecting external components
from pOillble damage and erroneous data while the system is being
configured under software control. The Data 8us Buffers are put
InlO an off slate during Reset. Interrupt capability is disabled
with the FrES signal. The FrE!: signal must be held low for at least
one clock period when reset is required.

Rad/Writ. (R/W)

The R/W Signal is supplied by the microprocessor and is used to
cOntrol the transfer of data to and Irom the microprocessor and

the R6530 A high on the R/W pin allows the processor to read

(with proper addreSSing) the data supplied by the R6530. A low

on the R/W pin aHOws a write (with proper addreSSing) to the
R6530.

InUITUpt Request t ilml

The ~ pin is an interrupt pin from the interval timer. This same
pin, if not used as an interrupt, can be used as a peripheral I/O pin
~PB71. When used as an interrupt, the pin should be set up as an
Input by the Data Direction Register. The pin will be normall-y

high WIth a low indicating an interrupt from the R6530. An exter
nal pull·up deVice is not required; however, If collector-OR'd with
other devices, the internal pullup may be omitted with a mask
option.

0. .. au. (DO-07I

The R653D has eight bidirectional data pins (00·07). These pins
connect to the syuem's data lines and allow transfer of data to

and from the microprocessor. The output buffers remain in the
off state except when selected for a Read operation.

P.rip'*'al Data PorU

The R6530 has 16 pins available for peripheral 110 operations.
Each pin is individually software programmable to act lIS either

an onput or an output. The 16 pins are diVided Into two a·bit

pom, PAO-PA 7 and PBO·PB7. PB5, PB6 and PB7 also have other
uses which are discussed in later sections The pons are set up as
an Input by writing a "0" into the corresponding bit of the Data
Direction Register. A "1" ,nto the Data Direction Register will

cause its corresponding bit to be an output. When in the Input

mode, the Peripheral Data Buffers are in the "1" state and the
internal pull·up device acts as less than one TTL load to the
peripheral data tines. On a Read operation, the microprocessor
Unit reads the peripheral pin. When the peripheral deVice gets
Information from the R6530 It receives data stored in the Out,
put Register. The mIcroprocessor Will read correct information
if the peripheral lines are greater than 2.0 volts (for a "1") or

less than o.a volts (for a "0") as the peripheral pins are all TTL
compat,ble

Addr_ Li,... (AO-A91

There are 10 address pins (AO-A91. In add,tion, there is the

ROM Select pm (ASOI. Funher. PinS PB5 and P86 are mask
IJrogrammable, and can be used either individuallv Or together as
chip selects_ When used as peripheral data pins they cannot be

used as chip selects

INTERNAL ORGANIZATION

The R653D is divided into four basIc sections AAM, ROM,
1/0 and Timer. The RAM and ROM interface directly with the

mlcroproceS$or through the system data bus and address lines,
The lID section consists of two a-bit halves, Each half contains

a Data Direction Register (DDR) and an Output Register

ROM 1K Byte (8K Biul

The 8K ROM is in a 1024 x a configuration. Address lines AD·A9,
• well as RSO are needed to addre5$ the entire ROM. With the

addition of CSl and CS2, seven R6530's may be addressed, giving
7168 x 8 bits of contiguous ROM_

RAM - 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the R6530. It i. addressed
by AO·A5 (Byte Select!, RSO, A6, A7, A8, A9 and, depending

on the number 01 chips in the system, CSt and CS2.

In_AlII Pwiphenl Regkten

There are four internal regIsters, two data direction registers and

twO output registers. The two data direction registers (A side
and B side) control the direction of the data into and out of the
peripheral pins, A "1" written ,nto the Data Direction Register

-sets up the COrresponding penpheral buffer pin as an output
Therefore, anything then written II1to the Output Register will
appear on that corresponding peflpheral pll1. A "0" written
into the DOR InhibIts the output buller from transmitting data

from the Output Register. For example, a "1" loaded into Data
O.rectlon Register A, pOSition 3, sets up peropheral pin PA3 as an

output If a "0" had been loaded, PA3 would be configured as
an Input and remain in the high state. The two Data Output
Registers are used to latch data from the Data Bus during a Write
operation until the peripheral device can read the data supplied

by the microprocessor

During a Read operation the microprOCeSsOr is reading the periph
eral data pins. For the peripheral data pins which are programmed

as outputi the microprocessor will read the corresponding data
b,ts of the OUlPut Register, The only way the Output Register
data can be changed is bv a mIcroprocessor Write operation.
The OutPut Register is not affected by a Read of the data on the
penpheral pins

387

The Tim,." section 01 the R6530 contJlns three bas,c parts
>cale d,v,dp down register, progrdmrTlable H-b,t register and Inter

rurt 1091('

The Interv;ll timer can be programmpd to count up to 256 time

Intervals. Each time Interval can be either IT, 8T.64T or '024T
increments. where T IS the system clock period. When a lull count

.s reached, an Interrupt Ilag IS set to a logic ",". After the inter
rupt flag is set the internal clock beginS counting down to a maxi·

mum of ·255T. Thus. after the interrupt flag is set, a Read 01 the
timer will tell how long smce the flag was set up to a maximum of

255T.

The 8 blt system Data Bus is used to trdnsfer data to and from the

Intervdl Timer. If a count 01 52 t,me intervals were to be counted.
Ihe patTern 0 0 , , 0 1 0 0 would be put on the Data Bus and

wrotten "110 the Interval Timer Req'Sler

AT The samr time that data 's bemg wrotlen 10 Ihe Inlerval Timer.
the count'ng Interv;l1 (1.8.64 or I024T) IS decoded from address
lines AO and A 1. During d Read or Write operation address line

A3 ~ontrols the Interrupt capability 01 PB7, i.e. A3 = 1 enables

IRQ on PB7, A3 = 0 disables IRQ on PB7. When PB7 is to be used
as an interrupt flag with the interval timer it should be pro
grammed as an input. If P87 is enabled by A3 and an Interrupt
occurs PB7 will go low. When the timer is read pnor to the inter

(Upt flag being set, the number of time intervals rem;lining will be

read, Le 51, 50, 49, etc.

Whl?n Ihe timer has counled duwn to 0 0 0 0 0 0 0 0 on the
neXI cuunl time an interrupt wdl occur dnu Ihe counter will read

1 1 1 1 1 1 1 1 Alter Interrurl. Ihe T"ner Reglster decre
mt'ntS al .J d,vlde by""'" rate 01 the >\-stem clock, If alter Inter

rupl. the IllTle' 's read and d value of 1 I 1 00 1 00 ,5 read. Ihe
time Since Intenupt IS 27T The value read ,s on one's complement

Value read , , I 0 0 , 0 0

Compl~ment - 0 0 0 , , ° I 1 27

Thus to drflve at the total eldPsed t"lle, merely do a one's com
plem~"l and add \0 the onglnaL Ilrne W"lt~n Into the lime, Again,
Js,ume tIme written as 0 0 1 1 0 I 0 0 ! - 52) W,th a d,vlde

fly 8, IOtdl time to Inter<upt ,,(52)(81 ~ 1 0 417T Total elapsed
lime would be 417T + 27T - 444T, assum.rHllhe value read alter

Inlf'rruf]t was I I I 0 0 1 0 0

Alter the interrupt. W'1enever the timer is written or read the
Interrupt is reset However. Ihe reading of the timer at the same
time the interrupt occurs will not reset the interrupt Ilag. When

the interrupt \lag IS read on DB7 all other DB outputs {DBO thru
DBGI go to "0".

When reading the timer after an interrupt, A3 should be low so as

.to disable the JRQ pm. ThiS is done so as to avoid luture IIlter'
rupls until after another Write timer operat,on

02

D7 06 04 02 DO

Basic Elements of Interval Timer

(i) Ql Q) @ ®

~21N ~~~
WRITET ~L-__ _

381

1 D .. ta written into interval timer is 0 0 1 , 0 , 0 0 = 52 10

2. Data In Interval timer is 0 0 0 1 , 0 0 1 = 25'0

52 4l- 1 '" 52·26-1 '"' 25

3 Data in Interval timer is 0 0 0 0 0 0 0 0 = 010
415

52,S ,1'" 52-51-1 =0

4. Interrupt has occurred at 02 pulse #416
Data in Interval timer = 1 , 1 1 1 1 1 1

5. Data in Interval timer is 1 0 1 0 1 1 0 a
two's complement is a 1 0 1 0 0 , 1 .. 83 10
83 .. (52 x 8) + 1 = 500 10

ADDRESSING

Addressing of the R6530 offers many variations to the user for

greater flexibility_ The user may configure his system with RAM

in lower memory, ROM in higher memory. and I/O registers wllh

Interval timers between the e)Ctremes There are 10 address lines

{AO·A9L In addition, there is the possihil,ly of 3 additional

address lines 10 be used as chip-selects and to distmguish between

ROM, RAM, I/O and interval timer Two of the additional lines

are chip-selects 1 and 2 (CSl and CS21. The chip-select pins can
also be PB5 and PB6. Whether the pins are used as chip-selects or

peripheral I/O pins is a mask option and must be specified when
ordering the part. Both pins act independently of each other in

that either or both pins may be designated as a chip-select. The
third additional address line is RSO. The R6502 anc! R6530 In a
2-chip system would use RSO to distinguish between ROM and
non-ROM sections of the R6530 With the addressing pm> avail
able, a tOlal of 7K contiguous ROM may be addressed with no
e)lternal decode Below is an e)lample of a 1-.chip and a 7-.chlp
R6530 Addressing Scheme.

One-Chip Address.jng

A 1-.chip system decode for the R6530 is illustrated on the top of
the follOwing page.

Seven-<:hip Addreuing

In the 7-chip system the objectIVe would be to have 7K of contigu
oos ROM, wilh RAM m low order memory, The 7K of ROM
could be placed between addresses 65,535 and 1024. For this
case. assume A13. A14 and A15 are all 1 when addressing ROM,
and 0 when addressing RAM or liO. This would place the 7K
ROM Of>tween addresses 65,535 and 58,367 The 2 pins deSIg
nated as chip-select or I/O would be masked programmed as
chip select pms. P,n RSO would Of> connected to address line
AIO Pms CSl and CS2 would be connected to address lines
A 11 and A 12 respectively. See illU$lr ation below

The two e)lamples shown would allow addressing of the ROM
and RAM; however, once the I/O or timer has been addressed.
further decoding is necessary to select which of the I/O reg's
ters are desired, as well as the coding of the interval limer

I/O Register - Timer Addressing

Addressing Decode tor I/O RegIster and Timer ,llustrates the
address decodmg for the internal elpments and timer program
ming Address lines A2 d,stinguishes I/O reg,sters from the timer.
When A2 IS high and I/O timer selpct ,s h,gh, the 1/0 registers are
addressed. Once the I/O registers are addrpssed, address lines Al
and AO decode the deSired register.

When the timer is selected A 1 and AO decode the divide bv matri)l
In addition. Address A3 is used to enable the interrupt flag to
PB7.

R6530 Seven Chip Addressing Scheme

The addressing of the ROM select, RAM select and I/O T,mer select lines would be as foHows

R6530 N1, ROM SElECT
RAM SELECT
I/O TIMER

R6530 #2. ROM SELECT
RAM SELECT
I/O TIMER

R6530 #3, ROM SELECT
RAM SELECT
I/O TIMER

R6530 N4, ROM SELECT
RAM SE LECT
I/O TIMER

R6530 fl'5< ROM SELECT
RAM SELECT
If a TIMER

R6530 01'6 ROM SELECT
RAM SELECT
I/O TIMER

R6530,n. ROM SELECT
RAM SELECT
I/O TIMER

CS2
A12

CS1

~

RSO

A!Q

·RAM select for R6530 ,..5 would read '" A12eA"11e AIO.A§ .AS e"A7.AS

389

'r---' ~ L---------+l' itE=J ., ".,.
:F=I
~

r------

Read ROM

Wr'te RAM

Read RAM

Write DORA

Read DORA

Wrote DORB

Read DORB

Wrote Per. Reg. A

Read Per Reg_ A

Wrote Per. Reg. B

Read Per, Aeg. B

WrileT,mer

-'-IT

.;.8T

.;.64T

.;.1024T

Read T,mer

Read IrnerrupI Flag

,

• A3 ~ 1 Enables IRQ to PB7

A3 = 0 Oisables IAQ 10 PB7

390

.'"d· ~ •• O,,~" ••

. :~:::::: ~:~.Afi .• ,.M;
"'O (OIHLtn· CSi.A.<i '.AE

8 _.«"' d""'..,.''''" '
al"" .. " !.~,.~ .. _ ..

R6530 One Chip Address Encoding Diagram

Addressing Decode for I/O Register and Timer

Write Timing Characteristics

Clock Period

Rise 8. Fall Times

Clock Pul5e Width

R!W lIalid before positille Hansition of clock

Addres~ lIalld before positille transition of clock

Data Bus lIalid before negatille transition of clock

Datil Bus Hold Time

Peripheral data lIalid alter negatille transition

of clock

Peripheral data valid after negative transition
of clock driving CMOS (level = vce . 30%1

Symbol

TCYC

T R' T f

Te

Twew

T ACW

TOCW

THW

TCpw

TCMOS

Min

410

160

160

300

10

Read Timing Characteristics

CharKteristic

R/W valid before positive transition of clock

Address valid before-positive Hansition 01 clock

Peripheral data valid before positive transition
of clock

Data Bus valid alter pmit",e transition of clock

Data Bus Hold Time

IRQ (lnterllal Timer Interrupt) lIalid before
positille transition of clock

loadong 30 pF + 1 TTL load for PAQ,PA 1, PBO·PB1

130 pF + 1 TTL load lor 00·07

_______ ~"-'''''

Write Timing Characteristics

Symbol Min

180

180

300

10

200

T,. Mo, Unit

10

25

.'

.'

T,. M .. Unit

395

Read Timing Characteristics

391

R6500 Microcomputer System

DATA SHEET

RAM, 1/0, INTERVAL TIMER DEVICE (RIOT)

SYSTEM ABSTRACT

The 8·bi\ R6S0D microcomputer system ;5 produced wIth N

Channel, SII'con-Gate technology. Its performance ~peed5 are

enhanced by advanced sy$lem .. rchilecture which enable$ mulople

addressing. In innovatIve architecture resulu in smaHer ch,ps -

the Jemicond\.lClOr threShold 10 CO$H~tfeclivt1y Sy$lem COSI

elleet.v"y " further enhanced by prOVidIng a famIly of 10software·

compatIble microprocessor ICPU) dev.ces Rockwell also pro
v,des memory and I/O devIces that further enhance the cou

effectiVIty of the A650D microcomputer system ... as well as

10W<:0\1 design a,ds and documentation

DESCRIPTION

The R6S32 IS deSIgned to operate," conjunction wl1h the R6S00

Microprocessor Family Il I~ comprised of a 128 K 8 Slanc RAM,

twO sohware conuolled 8 bll bidirectional dala pons "llowlng

dlreCI 'nlerfaclng belween .he microcompuier and peripheral

d~ices> a ~ohware programmable ,"!erval !Ime' wllh mterrupt.

capable of l,mlng '" vanOU5 mle,vals from 1 '0262,144 dock

periods, and a programmable edge detect (IrCUIT

PAQ PA7

FEATURES

• 8 bit bidirectional Data Bus for dlfect communication With the

microprocessor

• 128118sIailcRAM

• Two 8 bit bidirectional dala POrlS for Interface 10 peripherals

Two programmable Dala D'reCllon Registers

Pro'lrammable Interval Timer Inl!'rruPI

TTL & CMOS compatible peropheral I,,-,~s

• High Impedance Three-Slille Data Bus

Ordering Information

Order Package Tempefiltu ••

Numbci, ~ ~

R6532P PlasCic oOC to + 70°C

R6532C Ceramic oDe to <70oe

PSO PSl

R6532 Block Diagram

392

"'-p
Z
-I
m
::tI
<
:P
r-
:j
s:
m
::tI

o
m
:::
o
m
'ii
o
.::!

INTERFACE SIGNAL DESCRIPTION

R_tlm,
During system initiallzat.on a logic "0" on the FfES onput will

cause a zeroing of all four 110 reglsters_ Th,s in turn will cause
all 1/0 b ... ses 10 act as inputs thus protecting 8)(18rOal components

from possible damage and erroneous data while the system IS being

configured under software control, The Data Bus Buffers are put

into an OFF-STATE during Reset. Interrupt capability IS d,s·

abled w,th the RES $Ignal. The RES signal must be held low fOT

al least IWO clock periods when reset is required

Tne R/W Signal IS supplied by the microprocessor and IS used 10
control the transfer of data to and from the microprocessor

and the R6S32 A high on the R/W pIn allows Ihe processor

10 read (with prOper addreSSing) the data supplied by the R6532

A Iowan the R/W pin allows a write (With proper addreSSing) to

the R6532

Interrupt Request (I RQI

The IRQ pin IS an interrupt pin from the interrupt contrOl logiC

The pin will be normally high with a lOW Indicatmg an tnterrupt

from the R6532. An eKternal3K puJl·up resistor is reQuired. The

fRO pin may be actillated by a transition on PA 7 or timeout ... '

the interval timer

The R6532 has eight bldlfectional data pinS (DO·D7). These

pins connect to the system's data Imes and allow transfer of

data to and from the microprocessor array, The output buffers

remain In the off state e)(cept when the R6532 IS selected for a

Read operation

Peripheral Data Ports (PAO·PA7, PBO·PB7)

The R6532 has 16 pins allailable for peripheral 110 operatiOns

Each pll1 IS Indlllidually software programmablt' to act as either

an mput or an output. The 16 pins are dlllided into 2 B-blt ports,

PAO-PA7 and PBO·PB7 PA7 also has other un's which are diS'

cussed In later sections, The pins are set liP as an Input hy writing

a "0" Into the corresponding bit of the data direction register

A "1" Into the data direction register will cause 115 corresponding

bll to be an output. When In the mput mode, the peflpheral out

put buffers are In the "',. state and the Internal pull·up dell Ice

acts as less than one TTL load to the peripheral data lines. On a

Read operation, the microprocessor unit reads the peflpheral

pin. When the peripheral deVice gets information trom the R6532

0(receilies data stored In the outp ... t register. The m,c'ofJ(oceBor

w,1I read correct Information t! the peripheral lines Me greater

than 2,0 lIolts lor a "1" and less than O.B IIOlt for a "0" as the

peflpheral pins are all TTL compatible. Pm~ PBO·PB7 are also

capable of sourcing 3 mol at 1.5V, thus making them capable 01
Darlington d.,1I1'

Add,.. lines (AO-A6)

There are 7 address pins In add "ion to these 7, there IS the RAM

SELECT (R"S) pin The pins AO·A6 and RAM SELECT are

II ways ust.'d as addreSSing pins There are two additional pms

which are used as CHIP SELECTS. They are pins CSI and C52

INTERNAL ORGANIZATION

Thll R6532 is diliided into four basiC sections, RAM. 110, TIMER,

and Interrupt Control. The RAM interfaces directly With the

microprocessor tllfOUgh the system data bus and address lines

The 1/0 section consists of two a-bit hailies. Each half contains a

Data DirectIon Register (DDRI and an Output Register

RAM - 128 Byte (1024 Bits)

The 128 .0: 8 Read/Write memory acts as a conventional static

RAM Data can be Wfltten IntO the RAM from the microprocessor

by selecting the chip (CS1"-1. C52 "'- 0) and by setting AS 10 a

logIC 0 (O.4V) Address lines AO through A6 are then used to

select the deSired byte of storage.

Internal P.,iph.,al Registers

The Penpheral A 110 port COnsiStS 01 eight lines whICh can be

Indlllidually programmed to act as either an input or an output A

logiC zero In a bit of the Data Direction Register {DORA) causes

the correspondmg Ime of tne PA port to act as an ineut. A logIC

one causes the corresponding PA line to act as an output. The

lIoltage on any hne programmed to be an output IS determined by

the corresponding bit In the Output Register (ORAL

Data IS read directly from the PA pins during any read operation

For any output pin, the data transferred into the processor will

be the same as that contamed ,n the Output Register If the lIoltage

on the Pin ,1 allowed to go 10 2 4V for a logIC one. Note that for

Input lines. the processor can write into the corresponding bit of

the Output Register. This will not affect the polarity on the pin

until the corresponding bit of DORA IS set to a logIC one to allow

the peripheral Pin to act as an output

In addition to acting as a peripheral 110 Ime. the PA 7 I,ne can be

used as an edge-detecting Input In thiS mode, an actille tranSition

Will set The Internal Interrupt flaq (bit 6 of the Interrupt Flag reg

Ister) Selling the interrupt flag Will cause IRQ output to go low

if the PA7 interrupt has been enabled.

Control of the PA7 edge detecting mode IS accomplished by Wflt

mg to one of four addresses. In thiS operation, AO controls the

polarity of the actille transition and A 1 acts to enable or disable

,nterruptlng of tne processor The data which is placed on the

Data Bus during thiS Olleratlon .s d,scarded and has no eflect on

the control of PA7.

Setting of the PA7 interrupt Ilag will occur on an actille tranS,110n

even II the pm is being used as a normal Input or as a peflpheral

control output The flag Will also be set by an active transition

if interruptmg from PA1 IS disabled. The reset Signal (RES) will

disable the PA7 IOterrupt and will set the actille tranSItion to neg·

atille (high to low) During the ~ystem initialization routine. it IS

pOSSible w set the interrupt flag hy a negative transition It may

.11>0 he set by changing the polaflty of the active Interrupt It IS

therefore 'ecommended that the Interrupt flag be cleared before

enahl,ng Interruptmg from PA 7

Clearing of the PA7 Interrupt Flag occurs when the micorproc

essor reads the Interrupt Flag Register

The operation of the Peripheral B Input/Output port IS exaCtly

!h(' sarn(' as the normal "0 op('ratlon of the Peripheral A POrt

The eight lines can each I'll' programmed to act as e,ther an Input

or as an output by placing a 0 or a 1 mto the DaTa OlfeCI'On reg

iSler IDORB). In the output mode, the voltage on a per-pheral

pin IS controlled by the Output Reg,ster (ORBI

393

The prlmdry dIfference between the PA anu the PB ports 'S In the

operatIon 01 the uuWut bulfers whICh drove thpse pIns The PB

output bulfers a'e flush null deVIces whIch arf' capdble of sourc,ng

3 ma at 15V Th,\ al:ows these p,ns to dICectly drive trans,stor

SWitches To <lssu'e \h<l\ the m'croprocessor w,lt read proper data

on ~ "Read PB" OperatIon, su!!,c,ent logIC IS prOVIded In the chIp

10 alia",", the mIcroprocessor 10 read the Output Reg,ster Instead

of reading the peripheral PIn as on the PA port

Interval Timer

The T,mer section of the R6532 contains three baSIC parts

I,m,nary dIVIde down regIster, programmable !:l hit regIster and

.nterrupt logIC

The Interval t,mer can be programmed to count up 10 255 tIme

.nlervals Each lIme Inlerval can he eIther IT, 8T, 64T or 1024T

Increments, where T IS the system clock perlOd_ When a full count

IS reached, an Interrupt flag IS set 10 a logIC "1" After the Inter·

rupt flag IS set the tnterna; Clock beg"'~ count,ng down to a rna:>:: I

mum 01 -255 r Thus, d'ler the Interrupt fldg LS sel, a Read of the

tImer Will tell how lon9 s,nce the Ilag was set ufl to a ma~Imum
of 255T

The 8-blt syslem Dala Bus IS used to tran~lef data to and from the

Interval Timer. If a counl of 52 tIme ontervals were to be counled.

the pattern 0 a 1 1 a 1 a a would be put on Ihe Data Bus and
written InIO the Interval Ttme reg'ster

At Ihe sam!! time that data IS bemg Wfltten to the Interval T,mer

the counting Intervdls of 1.8.64. 1024T are decoded from address
~lnes AO and AI, DUring a Read Or Wllte operdllon address line

A3 controls the capab.l,ty or PB7, ,e A3 = lenablp\

iRQ. A3 0 a d'lahles When the timer IS read prIOr to the

Interrupt fiag bemg set. the number of time Intervals remalflmQ

w,TI be read. '_I' ,51,50.49. etc

When the \lmer has counted thru a a 0 0 a 0 0 0 on The ne~!

cuunt tIme an tr1terrupt Will occur and Ihf' COun1er wtll read

1 1 1 1 1 1 1 1 After Inlerrupt. the "me, regiSter decrements

at a d.vlde by ,., .. rate 0' Ihe system clock If alter In!errupt. the

t,mer IS read and a 'Ialue of 1 1 1 0 a 1 0 0 IS read, the t,me

Siflce Interrupt ,~27T. The value rEad IS In two's complement.

but rememoer that Interrupt occurred on COunt number one

Therefore. we must sub"act 1

Value read

Complement

ADD 1

SUB 1

1 1 1 a a 1 0 a
o 0 0 1 1 a 1 1
o 0 0 1 1 1 a a = 28 Equals two·s

COmplement of register

a 0 0 1 1 0 1 1 '" 27

Thu>, to arrove at the ~ elapsed t,me. mErely do a 1WO·$ com

plement add to !he oroglnal time wrolten Into the tImer Again,

a,sume tIme Wrttlen a, 0 0 1 1 0 1 a 0 1~521 W,th a dIVide

by 8. total time to ,nterrupt IS 152)(8) ~ 1 ~ 417T Total elapsed

tIme wo"ld be 416T t 27T = 443T. assum,ng the value read after

Iflterrupl was 1 1 1 0 0 1 a 0

After the Interrupt. whenever the tImer IS Written or read the inter

rupt IS reset However, the read1ng of the tImer at the same t,me

(he 'nterrupt occurs will not reset the mterrupl flag When the

Intt'rrupt flags arf' read 107 'or the t,mer. 06 for Ihe edge detect)

data bus 1mI', OO-O'J ,,0 to 0

When reading the IImer after an 'nterrupt. AJ should be low so as

to disable the iAQ pm. ThiS 15 done so as to avoid future Interrupts

until afler another Write tImer operation

<1>2

07 06 04 02 DO

Basic Elements of Interval Timer

COU!\ITER rPTC-1

CONTENTS 0 I N·1 I I I 155 I 154 I 25] I I 64 !
411 ror r,l r-;1 r-;1 r,;l 11 f4l r;l m T4l r4l r4l r4l rI Is1 11

PULSE -1 v LJ JJ .. L...-I '" L.- jJ '~l4 jo.I LJ 0 14 jJ ~ L...J 0 4 ~ ~ L....J 1 L.J , LJ 1 ~ ~ L.J ~ LJ L
NUMBER 1 8 9 6 7 8 q 0

~I~i~! Sl ______________________________ _
PRE SCALE PTc TC,'2~,--___J~

INTERRUPT
N P-Te * Tel2 =:4

______________________________ ~!l~ __________ __
ASSUME 52 LOADED INTO TIMER WITH A DIVIDE BYB
THE COUNTER CONTENTS AND THE CLOCK PULSE NUMBERS WILL COINCIDE

eyel" T,me. Tc 1 .. s .. e ltD. 1 MHli

394

Write Timing Ch.racteristics

ChlirKteristic

Clock Period

Rise & Fall Times

Clock Pulse Width

RIW valid before positive tranSition of clock

Addfess valid before positive transition of clock

Data Bus valid before negative transition of clock

Oat<J Bus Hold Time

Peripheral dala valid aher negative transition
of clock

Peripheral data valid after negative transition
of clock driving CMOS ~ Level'" vee· 30%)

Syrnbol Min

TCYC

TR , T F

T C 470

TWCW 180

TACW 180

T DCW 300

T HW 10

TCpW

TCMOS

Read Timing Characteristics

R/W valid before positive transition of clock

Address valid before pOSitive transition of clock

Peripheral data valid before positive transition
of clock

Data Bus valid after positive transition of clock

Data Bus Hold Time

IAQ Onterval Timer Interrupt) valid before
pmitille transition of clock

loading 30 pF + 1 TT lload for PAO·PA 7. PBO·PB7
130 pF + 1 TTL load for 00·07

Write Timing Characteristics

Symbol Min

180

180

300

10

100

TVO Mox Unit

10

15

TVO M" Unit

395

Read Timing Characteristics

395

396

RAM Addressing

AS.'" 0
AO-A6 select RAM address

1/0 AddrllS5Jng

AS '" 1 A2" 0
R/W ~ 1 to read, 0 to write

PA data

PA data direction

PB data

Write Edge Detect Control

RS,A2"'1 RIW,A4"'O

A 1 1, enable Interrupt from PA 7

A1 '" 0, d'5able ,nterrupt from PA7
AO '" 1, P05",ve edqe delecl :PA 7'

AO " 0, negat've edge detec, {PA 71

!O~ "'Ai':

0" 8" -'- ~-~ DOT OR NOTCH ----.

TO lOCATE 0600MA,n:58110625

PINNO I ,_ !'524M"1:~5'1) 0595

: 20.' 1 - -- ----.L

r~O 190 MAi':

~~_I ; ,""'"" ;l~'-~lJ~rr:-? 111 I .- 1781MM)

I' -,

~ ~T"P-lj~ 1 I 0100MIN
11 Oli 0040 I I 1:2' 54 MM'

I~:~I ~~~~ TVP r. ~ -0010M N

, 910 14851 ""...,1 ~ 11890 (48 00 MMI \

19 EaUAl SPACES

0100 Ii TOl NONCUM

Packaging Diagram

Read and Clear Interrupt Flag

RS,R/W,A2,AO'" 1

Bit 7 '" T,mer Flag

B,t 6 '" PA7 Flag

Read Interval Timer

AS, A4, A2. R 'W, AO 1

Read Interval TImer Overflow

AS, A4, A2, RIW = 1, AO '" 0

Write Count to Internl Time,

FrS A4. A2 0 " R/W ~ 0

-,
-8
-64

'--1024

A3 = 1, enable timer Interrupt

A3 = 0, disable t,mer Interrupt

NOTE For all operat,ons CSt'" 1, CS2 '" 0

~,

coo
As
RiW

AO RES

0'
OJ

Pin Configuration

SPECIFICATIONS

Maximum Rltings

InputlOvtpul Volt,v-

Stor.ge Temperetu" Range

Svmbol

vee

V'N

TOp

T STG

Volt ... Unit

0.3 to +7.0

0.3 to +1.0

o to 70 °e

-5510+150 °e

All mputs contaIn protection Clrcultrv to preven1 damage due to hIgh statIc charges. Care should be exerCised to prevent unnecessary applica
tion of voltage outside the specificallon range.

Electrical Characteristic.

(VCC"'5 0%, VSS=QV, T A ~250C)

Input Low Voltage

Input Leakage Current; V IN ", VSS + 5V

AO-A6, RS, A/W. R"ES, f/>2, CSt, Cs2

Input Leakage Current for High ImplJdance State

(Three State); V IN "' OAV to 2.4V; DO-D1

I--;;;-~;;, Hi,h e";;;~,~v-;;'~i4V-- - -- ---

Symbol

V'H

V'L

"N

ITS!

"H

Min

VSS + 2 4

VSS 0.3

100.

TVO Mo. Unit

vee v
V SS +O.4 V

C--._

1.0 2.5 ~A

--
!10.0 ~A

- 1--- -
300. ~A

~~. p.~~~~~?-------- -- ------------ --- -i------
Input Low Current. V IN ", O.4V

PAD·PA7, PBO-PB7

Output High Voltage

vee ~ MIN, I LOAO ';: 100 JJ.A (PAO-PA7.PBO·PB7. 00·07)

1.0

VSS ... 2.4

vss ... 1.5

-1.6 MA

_L-______ _

V

f-____ I,LOAD_'_·3_M_A_IP_B~.PB7)
Output Low Voltage

------1---- .----- I----+_ --'--- -

VCC ~ MIN, I LOAD 0;;; 1.6 MA (00-07)

Output Hi., Cu'ref1t (SOurcing).

VOL~_t_--- _+ ___ -i __ VS_s_'_0_.4--j ____ _

'OH
VOH ;;. 2.4V (PAO-PA7. PBO-PB7. 00-07)

;;. '.5V Allailable fa, othe, then TTL
(Darlingtons) (PBO-PB7)

---- --
Output Low Currenl(Sinking); VOL" 0.4V (PAO-PA7)

IPBO-PB7)
'OL

Clock Input Capacitance CClk

100
-3.0

- -----
16

~p~.,,",. ------- -- ----- e - ----
_ ___ _ _ -______ f-_'N'---.--l ____ --I

Output Capacitance C OUT

Power DiSSipation

All Values are D.C. ,eadings

1000
-5.0

-----l----. - -
MA

30 pF

10 pF

---+---+--
of

500 1000

397

1024x4 Static Random
Access Memory

SY2114

398

• 300 ns Maximum Access
• Low Operating Power Dissipation

0.1 mW/Bit

• No Clocks or Strobes Required
• Identical Cycle and Access Times

• Single +5V Supply

The SY2114 is a 4096-Bit static Random Access
Memory organized 1024 words by 4-bits and is fabri
cated using Synertek's N·channel Silicon-Gate MOS

technology. It is designed using fully DC stable (static)
circuitry in both the memory array and the decoding

and therefore requires no clock or refreshing to
operate. Address setup times are not required and
the data is read out non destructively wIth the same
polarity as the input data. Common Input/Output

pins are provided to simplify design of the bus oriented
systems, and can drive 2 TTL loads.

PIN CONFIGURATION

.. 'co

" "
" ..
" ,~,

" If O 2

" ,~,

,~,

ORDERING INFORMATION
Supply

Order Package ""_ Current Temperature
NumtMIr Ty .. Time IMul Range

SVC2114 CeramiC 450nsec 100mamp O°C to 70°C
SVP2114 Molded 450nsec 100mamp O°C to 70°C
SVC2114·3 CeramiC 300nsec 100mamp O°C to 7Q°C
SVP2114-3 Molded 300nsec 100mamp 0° C to 70° C
SVC2114L CeramiC 450nsec 70mamp O°C 10 70°C
SVP2114L Molded 450nsec 70mamp O°C 10 70°C
SVC2114L·3 CeramiC 300nsec 70mamp O°C to 70°C
SVP2114L·3 Molded 300nsec 70mamp O~C 10 70°C

• Totally TTL Compatible
All Inputs, Outputs, and Power Supply

• Common Data t 10
• 400 mv Noise Immunity
• High Density 18 Pin Package

The SY2l14 is designed for memory applications

where high performance, low cost, large bit storage,

and simple interfacing are important design objectives.

It is totally TTL compatible in all respects: inputs,

outputs, and the single +5V supply. A separate Chip
Select (CS) input allows easy selection of an individ·

ual device when outputs are or·tied.

The SY2ll4 is packaged in an l8·pin DIP for the

highest possible density and is fabricated with N·

channel, Ion Implanted, Silicon-Gate technology ~ a

technology providing excellent performance charac·
teristics as well as protection against contamination

allowing the use of low cost packaging techniques.

BLOCK DIAGRAM

'0

.,-----"'''''

.,-----'....,

"
" .. -----'....,

::::=:;::::=~-

..

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias

Storage Temperature
Voltage on Any Pin with

Respect to Ground
Power Dissipation

- 1 aOe to aooe
-65°Cto 150°C

-o.SV to +7V

1.0W

COMMENT

Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of
the device at these or any other conditions above
those Indicated in the operational sections of this
specification is not implied.

D.C. CHARACTERISTICS T A "'- O°C to +70°C. Vee'" 5V ±5% (Unless Otherwise Specified)

2114-3,2114
Symbol Parameter Min

'll Input Load Current
(All input pins)

'LO I/O Leakage Current

ICC1 I Power Supply Current

ICC2 Power Supply Current

V,L Input Low Voltage -0.5

V,H Input High Voltage 2.0

VOL Output Low Voltage

VOH Output High Voltage 2.4

CAPACITANCE T A = 25°C, f = 1.0 MH,

Symbol

Input/Output Capacitance
Input Capacitance

Test

Max

10

10

95

100

O.B

Vce
0.4

VCC

2'14L,21'4L·3

Min Max

10

10

I 65

70

-0.5 O.B
2.0 VCC

0.4

2.4 VCC

NOTE: This parameter is periodically sampled and not 100% tested

Unit

.A

.A

mA

mA

V

V
V

V

Conditions

VIN =. 0 to 5.25V

CS = 2.0V,

I Vue'" DAV to Vee
Vee -= 5.25V. Ilia "- a mA,

I TAo 25°C
Vee = 5.25V, ',/0 = 0 rnA,
T A = O°C

IOL'" 3.2 rnA
IOH = -1.0 mA

Units

pF
pF

A.C. CHARACTERISTICS TA = o°c to 70°C, VCC = 5V ±5%(Unless Otherwise Specified)

SYMBOL PARAMETER

AEADCYCLE

tAC Read Cycle Time

tA Access Time

tco Chip Select to Output Valid

tcx Chip Select to Output Enabled

tOTD Chip Deselect to Output Off

tOHA Output Hold From Address Change

WAITE CYCLE

twc Write Cycle Time

tAW Address to Write Setup Time

tw Write Pulse Width

tWA Write Release Time

tOTW Write to Output Off

tDW Data to Write Overlap

tDH Data Hold

A_C, Test Conditions
I nput Pulse Levels.
Input Rise and Fall Time
Timing Measurement Levels: Input

Output
Output Load •.....

I

2114·3,2114l-3

MIN MAX

300
300
100

20

0 BO

50

300
0

150

0
0 BO

150
0

2114,2114L

MIN MAX UNIT

450 nsec
450 nsec

120 nsee
20 nsec
0 100 ns.ee

50 nsec

450 nsec
0 nsec

200 nsee
0 nsee
0 100 nsee

200 nsec

0 nsec

. O.SV to 2.0V
.10nsee

. 1.5V
0,8 and 2.0V

lTTL Gate and 100pF

399

400

TIMING DIAGRAMS

(i)
Read Cycle

Write Cycle

NOTES·

11--- '0T0--

0) WI: IS hIgh for it Read Cycle _ _

CD tw IS measured from the lallef 0' CS or m gomg low to the earlier 01 CS or WE gOing high

DATA STORAGE

When WE IS high, the data input buffers are inhibited

to prevent erroneous data from being written into

the array. As long as WE remains high, the data stored

cannot be affected by the Address, Chip Select, or
Data I/O logic levels or timing transitions

Data storage alsocanl'lot be affected by WE, Addresses,
or the 1/0 ports as tong as CS is high. Either CS or

WE or both can prevent extraneous writing due to
Signal transitions.

Data within the array can only be changed during

Write time - defined as the overlap of Cs low and

WE low. The addresses must be properly established
during the entire Write time plus tWR ,

Internal delays are such that address decoding prop
agates ahead of data Inputs and therefore no address
setup time is reqUired. If the Write time precedes the

addresses, the data In previously addressed locations,

or some other location, may be changed. Addresses
must remain stable for the entire Write cycle but the

Data Inputs may change. The data w~ich is stable

for tow at the end of the Write time will be wntten

into the addressed location.

TYPICAL CHARACTERISTICS

Vee (VI

PACKAGE DIAGRAM

PI""'O ,

'0E'"

CERAMIC PACKAGE

~
z
;;

25

,.

15

10

0.5

o

12 0

100

0

0

0

SUPPl V CURRENT
VS TEMPER TURE A

Vee ",'S.25V

........ 2114.21TJ.3

I"""--- 2TT4L.2114L_3

20 40 60 80 100
TA I·CI

INPUT VOL T AGE LIMITS
vs TEMPERATURE

~ ~ Vee' 5V

""" ~

o 20 40 60 80 100

TA (CI

4. •
35 0

])0 0

25 0

0

15 .
..
..

ACCESS TIME VS
VOL TAGE

IA [25'C

2114'i 114l

1"'7'1
40 5.0 55 6.0

Vee lVI

ACCESS TIME VS

CllPFI

MOLDED PACKAGE

401

APPENDIX D

Pin Configurations of
Frequently Used

SN7400-Series Chips

The following pages contain pin configurations reprinted from the
TTL Data Book published by Texas Instruments, Inc. and are made
available through the courtesy of Texas Instruments, Inc. Copyright
© 1976 by Texas Instruments, Inc. All rights reserved.

Pin assignments for the following integrated circuits have been
reproduced: 7400, 7402, 7404, 7405, 7430, 7474, 7475, 74100, 74121,
74138, 74139, 74154, and 74367.

403

404

QUADRUPLE 2·INPUT
POSITIVE·NAND GATES

00

positive logic:

y .. As

QUADRUPLE 2-INPUT
POSITIVE·NOR GATES

02

poaitive logic:

y ~ A+8

HEX INVERTERS

04

HEX INVERTERS
WITH OPEN~L LECTOR OUTPUTS

05

SN5400 IJI
SN54HOO IJI
SN54l00 (JI
SN54LSOO IJ, WI
SN54S00 IJ, WI

SN5402 (J)

SN54L02IJ)

SN7400 U, NI
SN74HOO IJ, NI
SN74l00 IJ, NI
SN74lS00 IJ, NI
SN74SQO IJ, NI

SN7402 IJ, NI
SN74L02 (J, NI

SN54lS02 IJ, WI SN74LS02 (J, NI
SN54S02 IJ. WI SN74S02 IJ, NI

SN5404 IJI SN7404 IJ. NI
SN5otH04 (J) SN74H04 tJ, NI
SN54L04 tJ) SN74L04 (J, NI
SN54LS04 IJ, WI SN74lS04 IJ. NI
SN54S04 (J. WI SN74SQ4 (J, NI

SN5405 (J) SN7405 U, NI
SN54H05 IJI SN74H05 iJ, NI
SN54lSOS (J. WI SN74lSOS IJ, NI
SN54S05 tJ, WI SN74S05 tJ. NI

SN5400 (WI
SN54HOO (WI
SN54l00 (T)

SN5402IWI
SN54l02 (T)

SN5404 (wi
SN54H04IW)
SN64L04 IT!

SN5405IW)
SN54H05IW)

&-INPUT
POSITIVE·NANO GATES

30

positive lagH::

y = ABCDEFGH

SN5430 (J)
SN54H30 (J)
SN54L30 !J)
SN54LS30 (J. WI
SN54S30 (J, W)

SN7430 IJ, NI
SN74H30 IJ, NI
SN74L30 (J, NI
SN74LS30 IJ. N)
SN74S30 IJ. N)

DUAL O·TYPE POSITIVE·EDGE-TRIGGERED FLlP·FLOPS WITH PRESET AND CLEAR

74
FUNCTION TABLE

INPUTS OUTPUTS

PRESET CLEAR CLOCK 0 a ii
L H X X H L

H L X X L H

L L X X H' H'

H H , H H L

H H , L L H

H H L X 00 60 SN5474 IJI SN7474 IJ. NI
SN54H74 (JI SN74H74 IJ, NI
SN54L74 (J) SN74L741J. NI

SNM30 (WI
SN64H30IWI
SN64L30 IT)

NC-No hnernel connection

SN5474 (WI
SN54H741WI
SN54L74(T)

SN54LS74A (J. WI SN74LS7'A IJ. NI
SN54S74 (J, WI SN74S74 (J. NI

4-8IT BISTABLE LATCHES

75

FUNCTION TABLE

(E h L hI K ",c

INPUTS OUTPUTS

0 G a a
L H L H

H H H L

X L 00 00
H = high lavel, L = low level, X" irrelevant

00'" the lave' of a before the high-te-Iow 'ran,i,tion of G

8-BIT BISTABLE LATCHES

100
FUNCTION TABLE

IE h L t hI '" ac

INPUTS OUTPUTS

0 G a a
L H L H

H H H L

X L aD 00

H 5 high level, X = irrelevant

0 0 r the level of a before the
high w·low transition of G

SN5475 (J, WI SN7475 (J, NI
SN54L75IJI SN74L75 (J, NI
SN54lS75 (J. WI SN74l~75 IJ, NI

SN54100 (J, WI SN74100 tJ. NI

NC - No mternal connection

405

MONOSTABLE MULTI VIBRATORS

121
FUNCTION TABLE

INPUTS OUTPUTS
A1 A2 B Q --l!.
L X H L H
X L H L H
X X L L H
H H X L H
H , H It U , H H J1. -U-
I , H It -U-
L X t It 1I
X L t J1. U

3-T0-8 LINE DECODERS/MUL TIPLEXERS

138

NOTES: 1 An e>lternill capacitor

may be connected

between ee>lt (positive)

2 To use the onternal

timing reSluor, connect

R ont to Vec- For Impro d

puis. width accuracy lind

repeatability, connect an

e>lternal resistor betw.en

Re>lt/C'>lt and VCC with

Ronlop.n-clrculted

DUAL 2·T0-4 LINE DECOOERS/MUL TIPLEXERS

139

.... LINE TO 16·LINE DECODERS/DEMULTIPLEXERS

154

406

, . '"
SN54121IJ. WI SN74121 IJ. NI
SNS4L 121 IJ. T) SN74L 121 IJ. NI

'121 , .. Rint = 2 kG NOM

'L 121 ,. ,Rint = 4 kn NOM

NC-No Internill connection

SNMLSl38 IJ. W' SN74LSl38IJ, HI
SH54S138 (J. W, SN74S138 (J. NI

SN64LSl39 (J. WI SN74LSl39 (J. NI
SN54S 139 (J. W) SN74S139 (J, NI

SN&4154IJ, W) SN74154 (J, NI
SN54L 154 (J) SN74L 164 (J, NI

HEX BUS DRIVERS

367 NONINVERTED DATA OUTPUT
4-lINE AND 2-UNE ENABLE INPUTS
3ST ATE OUTPUTS

SN54367A (J. WI SN74367A (J, NI
SN54LS361 (J. WI SN74LS361 (J. NI

APPENDIX E

Pin Configuration
of 81 LS97

The following pin configuration for the 81LS97 integrated circuit
is made available through the courtesy of National Semiconductor
Corporation. Copyright © 1976 by National Semiconductor Corpora
tion. All rights reserved.

Al VI AZ Y2 AJ Yl A4 Y4 GND

71 LS97/8 1 LS97 IN I

LS97

INPUTS OUTPUT

G A Y

H X Z

L H H

L L L

Index

A

Absolute
indexed addressing, 141-142
mode, 34, 58

Absolutely decoded, 263
Access

direct memory, 20
time, 285, 286

Accumulator, 19
addressing, 123

ACR,219
Adapter(s)

interface, 51
Versatile Interface, 218

ADC instruction, 84-86
Add,31
Addition

decimal, 87-88
multi byte, 86-87

Address, 18
decoding, 256-262

circuit for 6522 interface, 269-271
I/O port, 264-268
R/W memory, for, 262-264

space, 20-23
Addressing, 20

absolute indexed, 141-142
accumulator, 123
implied,35
indexed indirect, 161-164
indirect, 156-157

indexed, 157-159
mode(s), 31, 34-35

immediate, 41
indirect, 57
zero-page, 42

relative, 104
zero-page indexed, 142-146

410

Analog-digital
conversion, 327-334
converter, memory-mapped, 309-314

AND
instruction, 70

bit values, using to control, 71-73
program to demonstrate 70-71

operation,68,69 '
Applications

connector, 54
microcomputer, 11-12

Approximation, successive 329-330
Arithmetic '

~ultiple-byte, 153-156
SIgned, 93-96

number, 92-93
twos-complement 88-92

ASCII '
hex to, 127-129
keyboard input port, 314-320
to hexadecimal conversion 108-111

ASL, 121-123 '
Assemblers, 41
Automatic message sender 340-349
Auxiliary control register, 219

BCC, 101
BCS, 101
BEQ,lOl
Bidirectional, 18

B

Binary numbers 362-364
Bit,364 '

overflow status, 93-96
sign, 92
status, 83
test instruction, 106-1OB

Blocks, 20

BMI,I02
BNE,102
Borrow. 91
BPL,102
Bracket notation, 127
Branch instructions, 100-102

time delays, using for, 111-114
Branching, 103-105
BRK instruction, 43-45
Buffer

/drivers
bus, 306
three ~tate, 306-308

why?, 305-309
Buffering, 274
Bugs, catching with lights, 349-356
Bus(es),14

bidirectional, 305
buffer/drivers, 306

BVC,102
BVS,102
Byte, 364

data, 272
instruction, 272

Chart, op-code, 36
Chips, 53-54
CLC,83
CLD,83

c

CLI instruction, 189
Clock

Signals, 282-284
system, two-phase, 284
24-hour, program, 192-200

CMP,105
Code(s)

condition, 83, 102
conversion programs, 149-153
op,31

Comments, 40
Comparison instructions, 105-106
Complement

operation, 68, 69, 70
twos, 90

Condition codes, 83, 102
Connector, applications, 54
Control signals for output port, 289-

291
Conversion, ASCII to hexadecimal,

108-111
Counter

program, 37
high, 19
low. 19

using timer T2 as, 223-225
CPX,105
CPY,105

D

DAC,293

Data
direction registers, 19, 53-54
logging module, microcomputer as,

335-340
tables, 146-149

DDR,19
Debugging aid, program, 349-356
DEC instruction, 58-59
Decimal

addition, 87-88
hexadecimal to, 132-134
numbers, 361-362
to hexadecimal, 129-132

Decoded, absolutely, 263
Decoders, 255
Decoding, 20

address, 256-262
circuit for 6522 interface, 269-271
R/W memory, for, 262-264

I/O port address, 264-268
Device select pulse, 255, 271-274
DEX instruction, 59-60
DEY instruction, 59-60
Difference, 89
Digital-analog

conversion, 327-334
converter, memory-mapped, 292-297

Direct memory access, 20
Display, hexadecimal, memory-

mapped, latched, 291-292
DMA.20
Double-precision arithmetic, 86
DS,255

E

Echo, 182
English language description, 31
EOR instruction, 70

bit values, using to control, 71-73
program to demonstrate, 70-71

Exclusive OR operation, 68, 69, 70
Executing a program, 43

F

Flag(s), 83, 102
borrow, 91
carry, 83, 84
interrupt disable, 185
modification instructions, 83

Frequency counter, using T1 timer to
implement, 231-234

H

Hex to ASCII. 127-129
Hexadecimal

ASCII conversion to, 108-111
decimal to, 129-132
numbers, 365-367
to decimal, 132-134

I

IER,219

411

IFR,219
Immediate

addressing mode, 41
mode, 34

Implied addressing, 35
INC instruction, 58-59
Index registers, 19
Indexed

addressing
absolute, 141-142
zero-page, 142-146

indirect addressing, 161-164
Indirect

addressing, 156-157
mode, 57

indexed addressing mode, 157-159
mode, 58

Input
memory mapped, 52
/output

ports, 19,51-53
programming, 55-57

Instruction (s)
ADC,84-86
AND, 70

bit values, using to control, 71-73
program to demonstrate, 70-71

bit test, 106-108
branch, 100-102

used for time delays, 111-114
BRK,43-45
CLI,189
comparison, 105-106
DEC, 58-59
DEX,59-60
DEY, 59-60
EOR,70

bit values, using to control, 71-73
program to demonstrate, 70-71

flag modification, 83
INC, 58-59
INX,59-60
INY,59-60
JMP,57-58
microcomputer, 29-31
ORA, 70

bit values, using to control, 71-73
program to demonstrate, 70-71

read-modiFy-write, 123
register shift, 121-123
RTI,188
set, 31
6502,271-274

table of, 30, 32-33
table of, 30, 140, 173

Interface
adapters, 51
circuit, I/O, 60-62
6522, address decoding circuit for,

269-271
Interfacing, 57
Interrupt(s), 173, 183-200

412

Interrupt (s)-cont
enable register, 219
flag register, 219
nonmaskable. 184-185

Interval timer(s), 19
6522, 218-222
6530, 211-215
6532, 216-218

Inversion operation, 68
INX instruction. 59-60
INY instruction, 59-60
I/O

interface circuit, 60-62
port (s), 53-54

address decoding, 264-268
symbols, 54-55

IRQ vector, 184

JMP instruction, 57-58
JSR, 174-175, 177
Jump, 173

K

K of memory, 20
Keyboard, ASCII, input port, 314-320
Keyer, precision, 340-349

Label, 40
Language, machine, 41
Length of program, 39
Lignts, catching bugs with, 349-356
Line, 14
Load, 18,31
Loading a program, 43
Logical

expression, 31
operations, 68-70

uses of, 73-75
Loop, 57
LSR, 121-123
Lunar occultation of a star, 356-359

M

Machine language, 41
Map, memory, 22-23
Masking, 72
Memory, 19-20

access, direct, 20
map, 22-23
mapped

analog-to-digital converter, 309~
314

digital-to-analog converter, 292-
297

input, 52
latched hexadecimal display, 291-

292
output, 52

random access, 19

Memory-cont
read

only, 19
/write, 19

R/W,19
address decoding for, 262-264

Microcomputer(s),14
applications, 11-12
data logging module, as, 335-340
features of, 15
instructions, 29-31
program, 35-37
timer, as, 335-340
what is?, 13-18

Microprocessor, 13
6502,18-25

Minuend, 89
Mnemonic, 31, 40
Modes, addressing, 31
Monitor, 23-25

simple, 159" 161
Multibyte addition, 86-87
Multiple-byte arithmetic, 153-156
Multiplication program

4-bit, 123-125
8-hit, 126-127

Music
making with Tl timer, 234-236
synthesis, 292-297

N

Nested subroutines, 177-179
Nibble, 365
Numbers, 361

binary, 362-364
decimal, 361-362
hexadecimal, 365-367

o
Occultation, lunar, of star, 356-359
Offset, 103-104
Op code, 31

chart 36
Operand, 40
Operation code, 31
OR

Exclusive, operation, 68, 69, 70
operation, 68, 69

ORA instruction, 70
bit values, using to control, 71-73
program to demonstrate, 7~ 71

Output
memory mafped, 52
port, contro signals for, 289-291

Overflow status bit, 93-96

P register, 19
Page, 20

P

Parallel I/O mode, 315
PCH,19
peL, 19

PHA,179
PHP,179
Pinout diagram, 6502, 252
Pins, control, on 6502, 297-298
PLA,180
PLP,180
Poll, 319
Polling, 182
Port (s)

input
ASCII keyboard, 314-320
/output, 19,51-53

1/0,53-54
symbols, 54-55

Processor status register, 19
modifying, 102-103

Program(s)
code conversion, 149-153
counter, 37

high, 19
low, 19

executing, 43
length of, 39
loading, 43
main, 173
microcomputer, 35
multiplication

4-bit,123-125
8-bit, 126-127

simple, 37-39
timing, precision, 226-231
writing, 40-43

Programming, input/output, 55-57
Pulse

chip select, 255
device select, 255, 271-274
port select, 255

R

RAM, 19
Random access memory, 19
Read

only memory, 19
operation, 18
/write memory, 19

Register (s), 19
auxiliary control, 219
data direction, 19,53-54
index, 19
interrupt

enable, 219
flag, 219

P,19
processor status, 19

modifying, 102-103
-shift instructions, 121-123
status, 6502 processor, 81-83
timer, 211
X, 19
Y,19

Relative addressing, 104
Return, 173

413

ROL, 121-123
ROM, 19
ROR,121-123
Routine, 172

interrupt, 173
RTI instruction, 188
RTS. 174-175, 177
R/W

control signal, 284-289
memory, 19

address decoding for, 262-264

SEC, 83
SED, 83

5

Sender, message, automatic, 340-349
Serial input, 315
Set

instruction, 31
-up time, 284

Signed
arithmetic, 93-96
number arithmetic, 92-93

Single-step mode, 45
6502

control pins on, 297-298
instructions, 271-274
microprocessor, 18-25

6522 interval timer, 218-222
6530 interval timer, 211-215
6532 interval timer, 216-218
Space, address, 20-23
Stack, 175-177

pointer, 19, 175-176
storage, use of for, 179-183

Status
bit, 83
register, 6502 processor, 81-83

Storage, use of stack for, 179-183
Store, 18, 31
Subroutines, 173-175

nested, 177-179
Subtrahend, 89
Successive approximation, 329, 330
Symbols, I/O port, 54-55

414

T

Tables, data, 146-149
Three-state buffer/drivers, 306-308
Time

access, 285, 286
delays, branch instructions used for,

111-114
set-up, 284

Timer(s)
interval, 19

6522,218-222
6530,211-215
6532, 216-218

microcomputer as, 335-340
register, 211
Tl

frequency counter, using to
implement, 231-234

music, making, using, 234-236
T2, using as counter, 223-225

Timing
out, 211
program, precision, 226-231

Triple-precision arithmetic, 86
Twos complement, 90

arithmetic, 88-92

V

Versatile Interface Adapter, 218

W

Write operation, 18
Writing a program, 40-43

X
X register, 19

y

Y register, 19

z
Zero-page

addressing mode, 42
indexed addressing, 142-146
mode, 34

READER SERVICE CARD

To better serve you, the reader, please take a moment to fill out
this card, or a copy of it, for us. Not only will you be kept up to date
on the Blacksburg Series books, but as an extra bonus, we will
randomly select five cards every month, from all of the cards sent to
us durina the previous month. The names that are dnwn will win,
absolutely free, a book from the Blacksburg Continuinl Education
Series. Therefore, make sure to indicate your choice in the space
provided be10w. For a complete listing of all the books to choose
from, refer to the inside front cover of this book. Please, one card
per person. Give everyone a chance.

In order to find out who has wona book in your area, call (703)
953-1861 anytime during the night or weekend. When you do call,
an answering machine will let you know the monthly winners. Too
good to be true? Just give us a call. Good luck.

If I win, please send me a copy of:

I understand that this book will be sent to me absolutely free, if my
card is selected.

For our information, how about telling us a little about
yourself. We are interested in your occupation, how and where you
normally purchase books and the books that you would like to see
in the Blacksburg Series. We are also interested in finding authors
for the series, so if you have a book idea, write to The Blacksburg
Group, Inc., P.O. Box 242, Blacksburg, V A 24060 and ask for an
Author Packet. We are also interested in TRS-80, APPLE, OSI
and PET BASIC programs.
My occupation is ______________ --'-__
I buy books through/from ____________ _
Would you buy books through the mail? _______ _
I'd like to see a book about ____________ _

Name
Address
City ____________________ _
State ______________ _ Zip ___ _

MAIL TO: BOOKS, BOX 715, BLACKSBURG, V A 24060
!!!!!PLEASE PRINT!!!!!

The Blacksburg Group

According to Business Week magazine (Technology July 6, 1976) large scole integrated circuitl

or LSI " chips" ore (reoting 0 second industrial revol utio n that will quickly involve 1,11 a ll. The

speed of the developments in this area is breathtaking a nd it becomes more and more difficult to

keep up with the rapid advances that o re being mode. It is 0150 becoming difficult for newcom. rs
to " get on board."

It hos been ou r objective, CIS The Blocks burg Grou p, to develop timely and effective edu cational
materials thai will permit students, engineers, scientists, technicians and others to quickly learn

how to use new technologies and electronic techniques. We continue to do this through several

means, textbooks. short courses, seminars and thraugh the development of special electronic de.
vices and training aids.

Our Group members make thei r home in Blacksburg, found in the Appalachian Mounta in . of

southwestern Virginia. While we didn't actively start our group collaboration until the Spri ng

of 1974, members of our group have been involved in digital electronics, minicomputers and
microcomputers for some time.

Some of our past ex periences a nd on.going efforts include ·th. following:

-The design and development of what is considered to be the first popular hobbyist computer.

The Mark·B was featured in Rodio·E lectronics magazine in 1974. We have also designed several

BOBO·based computers, including the MMD-I system. Our most recent computer is on BOBS-based

computer for educational use, and for use in small controllers.

- The Blocksburg Continuing Education SeriesTN covers lubjects ranging from basic electronics

through microcomputers, operational amplifiers, and active fil ters. Test experiments and examples

have been provided in each book. We a re st rong believers in the use of detailed experiments and

examples to reinforce basic concepts. This series orlginolly sta rted as our Bugbook series and many

titles are now being translated into Chinese, Japonese, German a nd Italian.

-We have pion eered the use of smoll, self·contained computers in hands-on courses for micro·

computer users. Many of our designs have evolved into commercial products that are marketed

by E&l Instruments and PAC COM, and are available from Group Technology, ltd ., Check, VA

24072 .

-Our short courses and seminar programs have been presented throughout the world. Programs

are offered by Th e Blocksburg Group, and by the Virginia Po lytechnic Institute Extension Divi.

sian. Each series of courses provides honds-on experience with reo I computers and electronic
devices. Courses and seminars are provided on a regular basis, and ore also provided for groups,

componies and schools at a site of their choosing. We are strong believers in practical loboro·

tory exercises, so much time is spent working with electronic equipment, computers and circuih.

Additional information may be obtained from Dr. Chris Titus, th e Blacksburg Group, Inc. (703)

951-9030 or from Dr. linda leffel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members ore Mr. David G. lor~en, who is on the faculty of the Deportment of Chem
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blocksburg

Group, all of Blacksburg, VA.

