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Preface 

It is interesting that most of us have a completely different feel
ing toward learning something that involves a physical skill than 
the feeling we haye when we approach an intellectual challenge. I 
have observed people trying to learn to water ski, for example, en
during failure after failure before finally coming up out of the 
water to experience the exhilaration of a successful first run. The 
entire process seems to provoke very little frustration or aggravation. 
On the other hand, the world is full of books that purport to make 
learning something easy, and most of us are easily frustrated and 
angered when we cannot understand something involving our 
intellects the very first time we try. Perhaps we are too vain, but I 
think the real problem is our unrealistic attitude toward learning. 

All of this leads up to my hope that you will not give up easily 
if you want to learn to program the 6502. Be patient with vourself, 
and try to see if you can enjoy the process as much as the product. 
Although I have made a serious attempt to explain concepts so that 
newcomers to the field of 6502 assembly language programming can 
easily understand them, no one can subtract from the efforts (and 
enjoyment) required of the student. This is not a novel. It is a chal
lenge to you, the reader, to see if you can acquire a new and exciting 
skill. 

Moreover, I would like to emphasize the importance of obtaining 
"hands-on" experience. Current theories of learning emphasize the 
importance of concrete experiences before the ability to think ab
stractly is acquired. This is the principal reason for including ex
periments in the book. The experiments, or demonstrations, as many 
might more properly be called, are intended to give you the prac
tice and concrete experiences required for the challenge of writing 
your own microcomputer programs, a task that requires abstract 
thinking. 

MARVI~ L. DE JOXG 

This book is dedicated to technology that is compatihle u:ith nature. 
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CHAPTER 1 

Introduction to 
Microcomputers 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Identify the major components of a microcomputer and describe 
their function. These include the microprocessor, R/W memory, 
ROM, peripheral interface adapters, keyboard, display, and 
monitor. 

• Understand the READ and WRITE operations. 
• Describe the function of registers in the microprocessor, in par

ticular the accumulator. 
• Denne addressing and decoding. 
• Understand the concept of memory space, memory blocks, and 

pages. 
• Examine and modify the contents of a memory location using 

the keyboard and display. 

INTRODUCTION 

The power and versatility of microcomputers become evident 
when one makes a list of some of the applications in which they 
are currently being used. 

• Traffic Controllers • Music Synthesizers • Solar Panel Orienta
tion Controllers • Cash Registers. Chess Challengers • Scientific 
Instruments • Automobile Ignition Systems • Video Games • In
dustrial Controllers • Biomedical Instruments • Computer As-
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sisted Instruction Devices • Speech Recognizers • Office Machines 
• On-Line Data Processors. Word Processing Systems • Video 
Tape Recorders • Process Controllers • RTTY and Morse Code 
to ASCII Converters • Surveying Instruments • Indoor Environ
mental Controllers • Home Security Systems 

The preceding list is just a beginning. It appears that there will be 
an almost endless variety of applications. Programming and inter
facing a microcomputer are creative, challenging, and rewarding 
endeavors. This book is intended to make you a part of these ex
citing developments by combining your study of the subject with 
active "hands-on" experience. 

The specific microprocessor chosen for study in this book is the 
6502. It was first manufactured by MOS Technology, Inc., Valley 
Forge Corporate Center, 950 Rittenhouse Road, Norristown, PA 
19401. MOS Technology is now owned by Commodore Business 
Machines, Inc., 3330 Scott Boulevard, Santa Clara, CA 95050. The 
6502 microprocessor is also manufactured by Rockwell Interna
tional, Microelectronic Devices Division, P.O. Box 3669, Anaheim, 
CA 92803, and it is manufactured by Synertek® Systems Corpora
tion, 150 South Wolfe Road, Sunnyvale, CA 94086. The 6502 is 
currently the most widely manufactured microprocessor,1 and sev
eral other companies will soon be added to the list of those that 
manufacture the 6502. 

Although the contents of this book are applicable to any 6502-
based microcomputer system, particular emphasis is placed on three 
of the most popular microcomputer systems. These are the KIM-l 
manufactured by MOS Technology for Commodore Business Ma
chines, the SYM-l manufactured by Synertek Systems Corporation, 
and the AIM 65 manufactured by Rockwell International. Photo
graphs of these systems are shown in Figs. 1-1, 1-2, and 1-3. These 
three systems were chosen because of their popularity and the fact 
that their edge connectors are compatible. Thus, the experiments we 
describe may be performed on any of these three systems. 

Other small computers that use the 6502 microprocessor and that 
you may wish to use as a laboratory tool in connection with this 
book include the PET, Apple II, JOLT, Puzzle, OSI Challenger, 
and others. A firm that handles mail orders and that specialize in 
6502 products is: 

Micro Technology Unlimited 
P.O. Box 12106 
2806 Hillsborough Street 
Raleigh, NC 27605 

lLibes, Sol, "BYTE News," BYTE, 4, February 1979, p. 64. 
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, 

Courtesy Rockwell International 

Fig. 1·1. AIM 65 Microcomputer. 

RNB Enterprises, Inc. 

Johnson Computer 
P.O. Box 523 
Medina, OH 44256 

2967 West Fairmount Avenue 
Phoenix, AZ 85017 

Seawell Marketing, Inc. 
P.O. Box 17006 
Seattle, WA 98107 

WHAT IS A MICROCOMPUTER? 

We will define a microcomputer as any computer system that 
uses one of the popular microprocessors as its principal processing 
unit. Popular microprocessors include the 6502, 8080A, 8085, 6800, 
ZBO, and the 1802. These microprocessors are typically 40-pin inte
grated-circuit chips mounted in a dual-in-line package (DIP). 

The terms microprocessor and microcomputer are frequently 
used interchangeably. We will take microprocessor to mean one of 
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Courtesy Synertek 

Fig. 1·2. SYM·1 Microcomputer 

the integrated circuits mentioned above, while a microcomputer is 
a system of components including as a minimum: 

• A microprocessor such as the 6502. 
• A clock circuit (I-MHz crystal in the case of the KIM-I) 
• Semiconductor Read/Write (R/\V) memory, sometimes called 

RAM which is an acronym for Random Access Memory 
• Decoding circuitry 
• Input/Output ports based on the 6520, 6522, 6530, 6532, or 

other interface integrated circuits. 

The components of a microcomputer system are connected by three 
sets of wires or printed-circuit conductors called huses. These are: 

• The control bus-variable number of lines 
• The bidirectional data bus-eight lines designated D7-DO 
• The address bus-16 lines designated AI5-AO. 

Each of the conductors in a bus is called a line. Fig. 1-4 is a block 
diagram of the KIM-I system that illustrates some of the components 
and connections mentioned previously. In addition to these com
ponents, the diagram shows that the KIM-I also has a keypad and 
a display. Most prototyping systems (microcomputers designed to 
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Fig. 1-3. KIM-I Microcomputer. 

test and develop new programs and designs) such as the AIM 65, 
SYM-1, and KIM-1 have keyboards and displays for interfacing with 
human beings. 

Other features that may be included in a microcomputer include 
cassette tape interface, ASCII keyboard interface, teletypewriter 
interface, CRT or oscilloscope output, line printer, floppy-disc mem
ory, multichannel AID and DI A converters, arithmetic logic units, 
high-level language (BASIC, FORTRAN, PASCAL, etc.) inter
preters in ROM, speech-input circuits, etc. It is ironic that some
times the microprocessor is one of the cheapest ($10.00-$15.00) 
components in the system. The fact that $15.00 integrated circuits 
are surrounded by several thousand dollars worth of peripheral 
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equipment is a tribute to the power and versatility of the micro
processor. 

Some of the components in the microcomputer will be discussed 
at this point because an understanding of their basic functions is 
essential for learning how to program a microcomputer. 

THE 6502 MICROPROCESSOR 

Sixteen pins on the 6502 are dedicated to addressing; that is, they 
control the two possible logic levels on each of the 16 lines that 
form the address bus. Refer to Fig. 1-4 to identify pin numbers. The 
logic levels are called "zero" and "one" although electrically they 
are voltage levels. The address pins on the 6502, AB15, AB14, ABl3, 
... , ABO in Fig. 1-4, determine a 16-bit binary number called the 
address of a memory location (defined in the next section). The 
address names and orders memory locations. 

Since there are 216 unique 16-bit binary numbers, the 6502 is 
capable of addressing 65,536 memory locations. The 16-bit address 
is frequently divided into two bytes, a high-order byte or address 
high (ADH), and a low-order byte or address low (ADL). In turn, 
each of these bytes may be represented by two hexadecimal digits, 
0-9 and A-F. The entire address is represented by four hexadecimal 
digits. In this book, all hexadecimal numbers will have a "$" prefix. 
Thus, $A9F4 is an example of an address. Readers who are un
familiar with binary and hexadecimal numbers are urged to study 
Appendix A first. 

Eight pins on the 6502 are connected to the data bus of the micro
computer. Refer again to Fig. 1-4 for details. The READ/WRITE 
or R/W pin on the 6502 is connected to a line of the control bus 
called the R/W line. Introducing these pins allows us to define two 
important operations of the microprocessor. 

A READ operation (the R/W line is at logic one) causes eight 
bits of information (usually called data) to be transferred over the 
data bus, from the memory location specified by the address on the 
address bus to an 8-bit register in the microprocessor. 

A WRITE operation (the RjW line is at logic zero) causes eight 
bits of information to be transferred from an 8-bit register in the 
microprocessor to a memory location specified by the address on the 
address bus. The words "load" and "store" are sometimes used 
synonymously with the words "read" and "write," respectively. 

Because data are moved in one direction by a read or load opera
tion and in the other direction by a write or store operation, the data 
bus is said to be hidirectional. Furthermore, since data are trans
ferred as 8-bit binary numbers, that is, one byte at a time, the 
6502 is called an 8-bit microprocessor. 
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A register is an 8-bit storage location in the microprocessor. It is 
used to store data upon which the microprocessor is to operate. The 
contents of a register may also control the operation of the micro
processor itself. The most commonly used register as far as the pro
grammer is concerned is the accumulator. Other registers in the 
6502 include the index registers, X and Y; the processor status regis
ter, P; the stack pointer, SP; and a pair of registers called the pro
gram counter high, PCH, and the program counter low, PCL. The 
X and Y registers are used like the accumulator, but in addition they 
may serve another purpose to be discussed in Chapter 8. The pro
gram counter will be described in Chapter 2, the status register 
in Chapter 6, and the stack pointer in Chapter 9. 

Memory 
There are four kinds of memory locations: 
• RAM-RAM is an acronym for Random Access Memory. It is 

more precise to call it Read/Write or R/W memory. 
• RO\1-ROM is an acronym for Read Only Memory. 
• Input/Output Ports-These include the so-called data direction 

registers (OOR) that determine whether a port will be used to 
input data or output data. See Chapter 3. 

• Interval Timers-One or more bytes of data stored at these lo-
cations determine the length of a time interval. See Chapter 10. 

An R/W memory location consists of eight ordered bistable semi
conductor devices, each capable of storing one bit of a binary num
ber. Many such devices are located on a single integrated-circuit 
chip. For example, the R/W memory chips on the KIM-l have 102410 

such devices on each chip. The 2114 R/vV memory integrated cir
cuits on the AIM 65 and SYM-l have 409610 such devices. Each 
memory location stores one byte of data. The data bits are ordered 
07, 06, 05, ... , DO, from the most-significant bit to the least
significant bit. One state of the bistable memory device corresponds 
to the bit being zero, while the other state corresponds to a bit being 
one. The byte of data stored at any location may be displayed in 
hexadecimal using the microcomputer output. 

The microcomputer can read the data at an R/\V location and it 
can write data to an R/\V location. Data in an R/W location is lost 
when power to the microcomputer is removed. In contrast, data at 
an ROM location is permanent, but the microprocessor can only 
read the contents of an ROM location: it cannot write to that loca
tion. The purpose of having ROM locations is to store frequently 
used programs and data that the user does not want to be altered, 
either because of power failure or for other reasons. 

In 6502-based systems the Input/Output ports are separate inte
grated circuits usually called interface adapters. Examples include 

19 



the 6530 and the 6532. These chips not only contain the I/O ports 
and corresponding DDR, but may have additional R/W or ROM 
locations as well as interval timers. Chapters 3 and 10 will cover 
these topics in more detail. 

Addressing and Decoding 

The address of a memory location is a 16-bit number which names 
and orders the location in memory space. Each R/W location, ROM 
location, I/O port, DDR, and interval timer has a 16-bit address. 
The address space of a microprocessor is the total of all memory 
locations which the microprocessor is capable of addressing. As 
pointed out above, the 6502 has 65,536 possible locations in its ad
dress space. 

The microcomputer keyboard can be used to enter an address 
in hexadecimal. The address is then displayed by the microcomputer 
display output. Usually the byte of data stored at that location ap
pears in the two hexadecimal display digits on the right of the ad
dress display. 

The microprocessor performs all of the addressing operations in 
small systems. (Larger systems may use DMA, an acronym for 
Direct Memory Access, where peripheral devices control the address 
bus.) The process of activating a particular memory location when 
the microprocessor places its address on the address bus is called 
decoding. Frequently, much of the decoding is accomplished on 
the memory chips. The R/W memory chips on the KIM-I, AIM 65, 
and SYM-l decode the lowest 10 address lines, A9-AO. Lines A15-
A10 are decoded by other integrated circuits. Lines A15-A12 are not 
decoded at all on the KIM-I. Address decoding will be considered 
in more detail in Chapter 11. 

Address Space 

It is convenient to divide the address space into blocks. The 
smallest block size is called a page and consists of 25610 memory 
locations. Table 1-1 shows how the address space is divided into 
pages. It is seen from the diagram that the high-order address byte 
(ADH) is the page number, while the ADL byte gives the memory 
location within a page. 

The next larger block size after a page is a unit of 102410 locations 
which is usually referred to as lK of memory. Recall that 210 = 
102410• This means that 10 address bits uniquely specify each loca
tion in a lK block. This leaves six address bits, AI5-A1O, to "name" 
a lK block. Six address bits can name 26 or 6410 blocks; thus there 
are 64 lK blocks of memory in the address space, and bits AI5-AI0 
determine the number of the block. (It might be added that memory 

20 



Table 1-1. Dividing Address Space Into Pages 

Address High 

I 
Address Low 

ADH ADL Address 

(Binary) (Hexadecimal) 
00000000 00000000 $0000 
00000000 00000001 $0001 . 

PAGE ZERO 

. 
00000000 11111111 $OOFF 
00000001 00000000 $0100 
00000001 00000001 $0101 

PAGE ONE 

00000001 11111111 $OIFF 

11111111 00000000 $FFOO 
11111111 00000001 $FFOI 

PAGE 255 10 

11111111 11111111 $FFFF 

is usually sold in K units. For example, 4K, 8K, 16K and sometimes 
32K bytes of memory are on a single printed-circuit board.) 

The largest block size that will be discussed in this context is the 
8K block consisting of 8 X 1024 locations. Each 8K block has 819210 

locations. Since 8192 = 213, the remaining address bits A15-A13 
are used to "name" each 8K block. Table 1-2 shows how the address 

Table 1-2. Dividing Address Space Into 8K Blocks 

A15 A14 A13 Block Name Hexadecimal Addresses 

0 0 0 8KO $0:)00-$1 FFF 

0 0 1 8Kl $2000-$3FFF 
0 1 0 8K2 $40oo-$5FFF 
0 1 1 8K3 $6000-$7FFF 
1 0 0 8K4 $8000-$9FFF 
1 0 1 8K5 $AOOO-$BFFF 
1 1 0 8K6 $COOO-$DFFF 
1 1 1 8K7 $EOOO-$FFFF 
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space is divided into 8K blocks. The 8K blocks are named and or
dered by a block name, such as 8KO for the lowest 8K block and 
8K7 for the highest 8K block. 

The KIM-I microcomputer uses only the 8KO block of address 
space, and not all of the 8KO block is filled. An off-the-shelf KIM-I, 
AIM 65, or SYM-I comes with IK R/W memory located in the low
est four pages of the address space; that is, hex addresses $0000 to 
$03FF. The KIM-I has eight pages of ROM which contain its 
monitor program. A memory map of this system is given in Fig. 
1-5. Memory maps of the AIM 65 and SYM-l are given in Figs. 1-6 

PAGE 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 

KO 
2 

I I 
0 

22 

AVAILABLE ~ 
FOR 

EXPANSION 

II 
KIM 
ROM 

6530·002 

KIM 
ROM 

6530-003 

-STACK-

2000 
IFFF HEX 

ICOO 
IBFF 

1800/ 
17FF 
1700 --, 

I 
I 

1400 '" 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

~ """'" 
OECODED 
FOR 4K 
EXPANSION 

I 

I 
I 

I 
I 

I 
I 

I 

I ". 

..Q±QQ..l 1/ ".".".", 
03FF / "." 
0200/ "."." 
01FF "." 

64 BYTE 
RAM 

6530-002 

64 BYTE 
RAM 

6530-003 

/10 & 
TIMER 

6530002 

1/0 & 
TIMER 

6530-003 

STACK 
PAGE 1 

PAGE 0 

-PAGCO- 0000 
-----------~----~ 

17Ff } 17E7 
KIM RAM 

17E6 

17CO 

1 
17BF APPLICATION 

RAM 

1780 
177F 

} KIM 1/0 

1740 
173F 

} APPLICATION 
1/0 

1700 

OlFF ---I 

STACK 
POINTER 
INITIALIZED 

OOFF 
OOEF I 
OOEE 17 BYTES 

RESERVED 
FOR KIM 
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Fig. 1·5. KIM·l memory map. 
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Fig. 1·6. SYM·1 memory map. 

and 1·7. You can see that these two systems have more ROM space 
for their more elaborate monitor programs. 

Monitor 

The monitor is a program stored in ROM. The computer begins 
to execute this program when power is supplied and/ or when a 
reset button on the microcomputer is pressed. The monitors of the 
KIM·l, SYM-l, and AIM 65 differ widely in their capabilities, but 
they have in common the following features: 
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Fig. 1·7. AIM 65 memory map. 

• They allow the user to address any location with the keyboard, 
and to display the address and the contents of that location. 

• They allow the user to modify the contents of any R/W memory 
location with data that is input from the keyboard. 

• They allow the user to transfer control of the microprocessor 
from the monitor to the user's program. 



• They allow the user to interface the microcomputer with a cas-
sette tape recorder for the purpose of storing programs. 

You may wish to compare and contrast the remaining features of the 
monitors using the manufacturers' literature before deciding on a 
purchase. For the purposes of this book, it is the preceding features 
that are important. 

INTRODUCTION TO THE EXPERIMENTS 

The experiments in this chapter are designed to acquaint you with 
some of the concepts that were introduced. You will also become 
familiar with your microcomputer. Before starting the experiments 
consult your user's guide to make the necessary power connections. 
Also read the sections in that manual that describe how to display 
and modify the contents of any memory location. The three micro
computer systems require different keystrokes to accomplish this 
operation, and there is not sufficient space here to warrant including 
the instructions for each of the different microcomputers. 

EXPERIMENT NO. 1 

Step 1 

Apply power to your microcomputer and press the RESET button. 
The display should light. If it does not, check your connections with 
the instructions in your user's manual. 

Step 2 
Examine the contents of the location whose address is $0000. You 

will have to press the "0" key at least four times, once for each of 
the hexadecimal digits that represent the address of this location. 
What data are found in this location? 

Step 3 

Enter the hexadecimal number $55 in location with address $0000. 

Step 4 

Now examine and modify the contents of $03FF; that is, load $33 
into the location whose address is $03FF. 

Step 5 

Return and examine the contents of $0000. What do you find there? 

(You should find that the number $55 is still there.) 
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Step 6 
Remove the power supply connections to your microcomputer 

or turn the power off. Turn it back on again, then examine the con
tents of locations $0000 and $03FF. What do you find? 

(You will not find $55 in $0000 or $33 in $03FF because removing 
power to an R/W memory location destroys the contents of that lo
cation. ) 

EXPERIMENT NO. 2 

Step 1 
Using the memory map for your microcomputer (see Figs. 1-5, 

1-6, and 1-7), identify an ROM location. 

($1800 is an ROM location in the KIM-I, $8030 is an ROM location 
in the SYM-1, and $F947 is an ROM location in the AIM 65.) 

Step 2 
Examine the locations given above for your microcomputer. What 

byte of data do you find there? 

(You should find a $A9 in the location mentioned.) 

Step 3 

Remove power, then examine the ROM location again. What do 
you observe? 

(You should observe that the data are unchanged by a loss of 
power.) 

Step 4 

Using the same ROM location, attempt to modify the data at 
that address by writing a $FF to it. What do you observe? 

(You should not be able to modify the contents of any ROM lo
cation. ) 
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EXPERIMENT NO. 3 

Step 1 

Examine the contents of location $I3FF. What is the byte of data 
found at this location? 

Step 2 
Modify the contents of $I3FF; that is, load some hexadecimal 

number such as $99 into this location. What do you observe? 

(You should observe that you are unable to load any data into this 
location because it contains no memory device. Off-the-shelf KIM-Is, 
AIM 65s, and SYM-Is have no memory devices at this location.) 
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CHAPTER 2 

Writing and Executing 
Simple Programs 

Using Data Transfer 
Instructions 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the terms: instruction, op code, mnemonic, pro
gram, assemble, load, execute, program counter, labels, and 
symbols. 

• Use the following addressing modes: immediate, absolute, zero 
page, and implied. 

• Use these instructions: LDA, STA, LDX, STX, LDY, STY, TAX, 
TAY, TXA, TYA, and BRK. See Table 2-1 for a summary. 

• vVrite, assemble, load, and execute short programs using the 
data transfer instructions and the BRK instruction. 

• Use the single-step mode for executing a program. 

INTRODUCTION 

You are urged to learn as many of the 6502 instructions as possible. 
Although you will find that you can begin to write programs with 
only a few instructions, fast and efficient programs for complex 
tasks require a thorough understanding of the entire 6502 instruction 
set and the various addressing modes. Some instructions and ad-
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Table 2-1. Summary of Instructions and Op Codes 
Introduced in Chapter 2 

Addressing Mode 

Instruction Description Immediate Absolute Zero-Page 

LDA load Accumulator with A9 AD A5 
Memory 

STA Store Accumulator in Memory 8D 85 
LDX load X Register with Memory A2 AE A6 
STX Store X Register in Memory 8E 86 
LDY load Y Register with Memory AO AC A4 
STY Store Y Register in Memory 8C 84 
TAX Transfer Accumulator to X 

Register 
TXA Transfer X Register to 

Accumulator 
TVA Transfer Y Register to 

Accumulator 
TAY Transfer Accumulator to Y 

Register 
BRK Force Interrupt 

Implied 

AA 

8A 

98 

A8 

00 

dressing modes are more efficient than others. More efficient pro
grams generally run faster and take fewer memory locations for 
storage of the program. It is the program that controls all of the 
activity of a microcomputer. 

Before describing instructions in detail, it might be worthwhile 
to give the reader an overview of the 6502 instruction capabilities. 
In other words, what can the 6502 do? A listing of the 6502 instruc
tions by categories, with simple descriptions of each one, is given 
in Table 2-2. A cursory examination of this table indicates that the 
6502 can transfer information from a memory location to an in
ternal register and vice versa; it can do simple arithmetic operations; 
it can perform a variety of logical operations; it can test for certain 
conditions and branch to another part of the program depending on 
the outcome of the test (the branch and test instructions); the 6502 
can shift the contents of memory locations and registers; and it can 
perform a variety of other operations, including doing nothing (the 
N OP instruction). The reader is not expected to fully comprehend 
the instruction set at this time. The purpose of this book is to pro
vide an in-depth understanding of the instructions as we progress 
through the various chapters that explain and illustrate the instruc
tions with a variety of programs. 

MICROCOMPUTER INSTRUCTIONS 

The basic elements of microcomputer programs are the instruc
tions. A microcomputer instruction is a set of one, two, or three 

29 



Table 2·2. 6502 Instructions by Categories 

Data Transfer Instructions 

LDA load Accumulator with Memory STA Store Accumulator in Memory 
LDX load X Register with Memory STX Store X Register in Memory 
LDY load Y Register with Memory STY Store Y Register in Memory 
TAX Transfer Accumulator to X TXA Transfer X Register to 

Register Accumulator 
TAY Transfer Accumulator to Y TYA Transfer Y Register to 

Register Accumulator 

Arithmetic Operation Instructions 

ADC Add Memory to Accumulator 
with Carry 

SSC Subtract Memory from 
Accumulator with Borrow 

30 

Logical Operation Instructions 

AND AND Memory with Accumulator ORA OR Memory with Accumulator 
EOR EXCLUSIVE-OR Memory with 

Accumulator 

Shift and Modify Instructions 

DEC Decrement Memory by One INC Increment Memory by One 
DEX Decrement X Register by One INX Increment X Register by One 
DEY Decrement Y Register by One INY Increment Y Register by One 
ASL Shift left One Bit LSR Shift Right One Bit 
ROL Rotate left One Bit ROR Rotate Right One Bit 

Test Instructions 

CMP Compare Memory and CPX Compare Memory and X Register 
Accumulator CPY Compare Memory and Y Register 

BIT Test Bits in Memory with 
Accumulator 

Branch Instructions 

BCC Branch on Carry Clear BCS Branch on Carry Set 
BEQ Branch on Result Zero BNE Branch on Result Not Zero 
8M1 Branch on Result Minus BPL Branch on Result Plus 
BVC Branch on Overflow Clear BVS Branch on Overflow Set 

Modify Processor Status Register Instructions 

CLC Clear Carry Flag SEC Set Carry Flag 
CLD Clear Decimal Mode SED Set Decimal Mode 
CLI Clear Interrupt Flag 
CLV Clear Overflow Flag 

JMP 
JSR 
BRK 

Jump to New location 
Jump to Subroutine 
Jump to I nterrupt Routine 

SEI 

Jump Instructions 

RTS 
RTI 

Set I nterrupt Flag 

Return from Subroutine 
Return from Interrupt Routine 

Stack Operation Instructions 

PHA 
PHP 
TXS 

Push Accumulator on Stack 
Push P Register on Stack 
Transfer X Register to Stack 
Pointer 

PLA 
PLP 
TSX 

Pull Accumulator from Stack 
Pull P Register from Stack 
Transfer Stack Pointer to X 
Register 

Do Nothing Instruction 

NOP No Operation 



bytes which, when read into the microprocessor in the correct 
sequence, causes it to carry out a specific operation. Three simple 
examples are: 

• Load a byte of data from the memory location with the ad
dress ADH-ADL into the accumulator. 

• Store the contents of the accumulator in a memory location 
whose address is ADH-ADL. 

• Add the byte of data stored at the memory location whose ad-
dress is ADH-ADL to the byte of data in the accumulator. 

The first byte of an instruction determines the specific operation 
to be carried out by the computer. In the three previous examples, 
the second byte specifies the low-order byte of the address (ADL) 
and the third byte specifies the high-order byte of the address 
(ADH) of the location where the microprocessor is to find the data. 

The particular instructions to which the 6502 responds are called 
its instruction set. The 6502 instruction set is summarized in Table 
2-3. This particular form of the instruction set is used extensively. 
The 6.502 is capable of carrying out 56 different operations, some of 
which may be done in as many as eight different ways called ad
dressing modes. 

Since the first byte of an instruction determines the nature of 
the operation as well as the addressing mode, it is these 8-bit 
numbers that the user must know in order to program the micro
processor. Because 8-bit numbers are difficult to remember and 
recognize, one seldom sees the binary representation of instructions. 
Instead, they are most often represented in a hexadecimal format. 
The hexadecimal equivalent of the first byte of an instruction will 
be called the operation code or op code. Furthermore, as an aid in 
programming, each instruction is given a mnemonic which is an 
abbreviated name suggestive of the operation to be performed. Two 
other descriptions of instructions are commonly used. One is the 
logical expression and the other is an English language description. 
The four ways of describing an instruction are illustrated in Ex
ample 1 for three different instructions. 

Example 1: Illustration of Four Ways of Describing an Instruction 

Mnemonic Logical Expression Op Code Description 

LOA M --> A AD Load the accumulator, A, 
with a byte from memory, 
M. 

STA A --> M 

AOC 

80 

60 

Store the contents of the 
accumulator, A, in mem~ 

ory, M. 
Add the byte in memory 
to the contents of the ac· 
cumulator. Add the carry; 
result into A. 
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~ 
Table 2·3. 6502 Instruction Set Summary 

INSTIUCTIONS IMMEDIATE A.SOllllE lE"OrAGE ACCUM IMPLIED (IND. X) liND I. , 
",OCEssaR STATUS 

I 'A&E, X AIS. X AlS, Y IElATlVE INDIIECl I. PAGE, , CODES 

MNEMONIC OPERATION OP n • OP n • OP n • 0 n • OP n • OP n • OP n • OP n • OP n • 0 n • OP n • OP n • OP n 76543210MNEMONIC 
'NV-SDI C 

Aoe A+M+e-A (4)(1) 69 2 2 60 43 65 3 2 61 6 2 71 5 2 75 • 2 70 • 3 79 • 3 N V ze Aoe 

AND "'r'lM-A (1) 29 2 2 20 • 3 25 3 2 21 6 2 " 5 2 35 • 2 3D • 3 39 .. 3 N • Z • AND 

AS L c~-o OE 6 3 06 5 2 OA 2 1 '6 6 2 'E 7 3 N • Z e AS L 

Bee BRANCH ON C == 0 ,2) 90 2 2 Bee 

Bes BRANCH ON C = 1 (2) 80 2 2 Bes 

BED BRANCH ON Z == 1 (2) FO 2 2 BEO 

B , T AAM 2e 4 3 24 3 2 M,M,. Z • B , T 

B M' 8RANCHONN = 1 (2) 30 2 2 B M' 

B N E BRANCH ON Z == 0 (2) 00 2 2 B N E 

B P L BRANCH ON N = 0 (2) '0 2 2 B P L 

BRK BREAK 00 7 , . , . , BRK 

B V e BRANCH ON V == 0 (2) 50 2 2 Bve 

B v S BRANCH ON V = 1 (2, 70 2 2 B v S 

eLe o-e '8 2 , • 0 eLe 

eLO 0-0 08 2 , • 0 e L 0 

e L , 0-' 58 2 , e L , 

e L v o-v B8 2 , e L v 

eMP A-M e9 2 2 CD .. 3 C5 3 2 e' • 2 01 5 2 05 " 2 00 " 3 DO • 3 N • Z e eMP 

e P x X-M EO 2 2 EC .. 3 e4 3 2 N • Z e e P x 

e P y Y - M eo 2 2 CC .. 3 C4 3 2 Z e e P Y 

DEe M _ l--M eE 6 3 C6 5 2 06 6 2 DE 7 3 N Z • DEe 

DE x X-I - ~ eA 2 , N • Z • DE x 

DEY V-I - y 88 2 , N • Z • DEY 

EaR A 'f' M-A (1) 49 2 2 40 " 3 4~ 3 2 " . 251 5 2 55 4 2 SO 4 3 59 .. 3 N • Z • EOR 

, N e M .. l-M EE 6 3 E6 5 2 F6 6 2 FE 7 3 N • Z • , N e 

, N X )( + I-X E8 2 , N • Z • , N X 

, N Y Y + I-V e8 2 T N • Z • , N Y 

J M P JUMP TO NEW lOC .e 3 3 

2 BJ 

6C 5 3 J M P 

J S R JUMP'SUB 20 • 3 J S R 

LOA M-A 11) AS, 2 2 AD " 3 A5 3 2 AI • 2 B, 5 2 BO 4 3 B9 4 3 N • Z • LOA 



lOX .. -x (11 14.2 2 2 AE .. 3 At) 3 2 I I BE 4 3 e. 4 2 N ••••• Z '" lOX 

l 0 V M...,Y tl) AO 2 2 AC .. 3 A4 3 2 B4 4 2 Be .. 3 N ••••• z • l 0 V 

l 5 " O-U:::::--Ol--C 'E • 3 .. 5 2 4A 2 1 56 • 2 5E 7 3 o ••••• z C l5 " 
NOP NOOPERATION EA 2 1 · ....... NOP 

ORA ,,11M-A D. 2 2 00 .. 3 05 3 2 01 • 2 11 5 2 15 .. 2 10 .. 3 19 .. J N ••••• z . ORA 

PH A A-Ms S 1-5 46 3 1 · ....... PH A 

PH P P-Ms S - , ... S 08 3 1 · ....... PH P 

P l A 5 + 1 - 5 Ms-A .. . 1 N ••••• z • P l A 

P l P S + 1 - S Ms- P 26 4 1 (RESTORED) P L P 

ROl '-1' ol--@:I 2E • 3 26 5 2 2A 2 1 36 • 2 3E 7 3 N ••••• z C ROL 

ROR L©-~ 6E • 3665 2 6" 2 1 7. 6 2 7E 7 3 N ••••• z C ROR 

" T 1 RlRN INT '0 6 1 (RESTORED) R T , 

R T 5 RlRN SUB 60 6 1 · ....... R T 5 

5BC A-M-C-A (11 E9 2 2 ED .. 3 E5 3 2 El 6 2 F1 5 2 F5 .. 2 FO .. 3 F9 .. 3 Nil' ••• Z (3) SBC 

SEC l-C 38 2 1 • •••••• 1 SEC 

SED 1-0 Fa 2 1 • ••• 1 ••• SED 

5 E , 1-1 7. 2 1 · .... , .. S E , 

5 T A A-M 6D 4 3 85 3 2 ., 6 2 91 6 2 "" • 2 9D 5 3995 3 · ....... S T A 

5 T X X-M 6E 4 3 86 3 2 96 4 2 · ....... S T X 

5 T V V- M 6e • 3 .. 3 2 •• 4 2 · ....... 5 T Y 

T • X A-X AA 2 1 N ••••• I • T A X 

T A Y A-Y AS 2 1 N ••••• z . T A Y 

T 5 X 5-X BA ;,! 1 I'i ••••• z . T 5 X 

T X A X-A .A 2 1 N ••••• I • T X A 

T X S x-s ,A 2 1 · ....... T X S 

T Y A V-A 98 2 1 N ••••• z • T Y· A 

"I ADD 1 to"N°'IF PAGE BOUNDARY 1SCROSSED X INDEX x . ADO M, MEMORY BIT 7 
121 ADD 1 TO "N" IF BRANCH OCCURS TO SAME PAGE Y INDEX y ~ SUBTRACT "', MEMORY BIT6 

ADD2 TO 'N' IF BRANCH OCCURS TO DIFFERENT PAGE 

'31 CARRY NOT::: BORROW 
A ACCUMIJ LATOFI A AND " NO. CYCLES 

'" IF IN DECIMAL MODE.l FlAG IS INVAUD 
... MEMORY PER EFFECTIVE ADDRESS V OR • NO. BVTES 

ACCUMULATOR MUST BE CHECKED FOR lERO RESUl T ... , MEMORY PER STACK POINTER • EXCLUSIVE OR 
--- ----

t: 
Courtesy Rockwell International 



ADDRESSING MODES 

Study the instruction set summary in Table 2-3. The first column 
gives the instruction mnemonic, the second gives the logical ex
pression, and the remaining 13 columns list the op codes for the 
various addressing modes. In addition to the op code, the 13 columns 
list the number of clock cycles, N, that each instruction requires for 
execution. The cycle time of the 6502 is typically 1 microsecond, 
so the total length of time required to execute an instruction is N 
microseconds. The number of bytes (#) in each instruction is 
also given. 

The names of the various addressing modes are found at the 
heading of each column, for example IMMEDIATE, ABSOLUTE, 
ZERO-PAGE, etc. Addressing modes are one of the more confusing 
concepts for the beginner, and only a simplified explanation is 
given at this point. Very briefly, the addressing mode is related 
to where and how the microprocessor locates the data upon which 
it operates. 

Suppose we are dealing with the LDA instruction which is "load 
a byte of data from memory into the accumulator." Where does the 
microprocessor get the byte upon which it is to operate? 

• In the ABSOLUTE mode, the second and third bytes of the in
struction specify the address of the memory location where the 
data is located. Assume the data is in location $1703. Then the 
complete LDA instruction is specified by the three hexadecimal 
numbers, AD 03 17. 

• In the ZERO-PAGE mode, the second byte of the instruction 
specifies the low-order byte of the address in page zero (first 256 
addresses) where the data is located. Suppose the data is in 
location $003F. Then the complete LDA instruction is specified 
by the two hexadecimal numbers, A5 3F. 

• In the IMMEDIATE mode, the second byte of the instruction 
is the data. Assume we want to load the accumulator with the 
value $7F. The complete LDA instruction is specified by the 
two hexadecimal numbers, A9 7F. 

Each addressing mode requires a unique op code, even though the 
same instruction is involved. This can be seen from the preceding 
explanation where the LDA instruction had op codes of $AD, $A5, 
and $A9, depending on the addressing mode. Refer to Table 2-3 
and notice that the LDA instruction had a total of eight op codes, 
one for each of its eight addressing modes. 

When, in the process of executing a program, the microprocessor 
reads the op code, it decodes or interprets that unique bit pattern 
to determine the nature of the instruction and the addressing mode. 
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The meaning of the remaining bytes of the instruction are also de
termined at the same time. If it reads an op code of $AD, it knows 
that there will be two more bytes in the instruction, and that they 
will be the ADL and ADH of the location of the data to be loaded 
into the accumulator. You can more fully understand the instruction 
decoding process carried out by the 6502 if you study 13utterfield'sl 
op-code chart (Chart 2-1). Sometimes this format is more useful 
than the standard chart shown in Table 2-3. 

Not all instructions have the same set of addressing modes. For 
example, the TAX instruction does not have any of the addressing 
modes described above for the LDA instruction. The TAX instruc
tion, when executed by the microprocessor, transfers the contents 
of the accumulator to the X register. These registers are internal to 
the 6502, hence they have no address. The op code contains all the 
necessary information for the instruction to be executed, since no 
addressing information is required. This addressing mode is called 
implied addressing, since the instruction itself implies both the 
source and destination of the data. All instructions using the im
plied addressing mode are single byte instructions. Other addressing 
modes will be covered in subsequent chapters. 

THE MICROCOMPUTER PROGRAM 

A microcomputer program is an ordered set of instructions de
signed to accomplish an objective. Some examples of program ob
jectives are: 

• Multiply two 8-bit numbers. 
• Measure the time interval between successive logic-zero to 

logic-one transitions at an input port. 
• Convert serial data on a telephone line to a printed output on a 

teletypewriter. 
• \Vith appropriate sensors in the left-turn lanes and side streets, 

control a traffic light to optimize the flow of traffic through a 
busy intersection. 

• Produce a digital representation of an analog voltage level using 
an analog-to-digital converter, display the result using bcd-to
seven-segment display decoders, and up-date the result every 
five seconds. 

• Execute commands and instructions in FORTRAN. Such a 
program is called an interpreter. 

Clearly, the objectives of some programs are very simple and can 
be accomplished with a few instructions, while others require long 

IButterfield, Jim, "6502 Op-Codes," 6502 User Notes, No. 13 1979, p. 6. 
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Col 
00 

ASL 
ROL 
LSR 
ROR 
STX 
LDX 
DEC 
INC 

ORA 
AND 
EOR 
ADC 
STA 
LDA 
CMP 
SBC 

.0 
·8 
·A 

IMM 
2 

A2 

IMM 
2 

09 
29 
49 
69 

A9 
C9 
E9 

O· 

BRK 
PHP 

ASL-A 

Chart 2·1. 6502 Op Codes Arranged in Logical Order 

IPAG I,X I,Y ABS A,X A,Y IMM IPAG I,X ABS A,X 
2 2 2 3 3 3 2 2 2 3 3 

06 16 OE IE BIT 24 2C 
26 36 2E 3E STY 84 94 8C 
46 56 4E 5E LDY AO A4 84 AC BC 
66 76 6E 7E CPY CO C4 CC 
86 96 8E CPX EO E4 EC 
A6 B6 AE BE Misc. -0, -4, -C 
C6 06 CE DE 
E6 F6 EE FE 

Op Code Ends in -2, -6, or -E 

IPAG I,X (I,X) {I),Y ABS A,X A,Y BPL 10 BMI 30 
2 2 2 2 3 3 3 BVC 50 BVS 70 

05 15 01 11 00 10 19 BCC 90 BCS BO 

25 35 21 31 20 3D 39 
BNE DO BEQ FO 

45 55 41 51 40 50 59 Branches -0 
65 75 61 71 60 70 79 
85 95 81 91 80 90 99 

ABS (lND) A5 B5 Al Bl AD BO B9 
C5 05 Cl 01 CD DO 09 JSR 20 
E5 F5 El Fl ED FO F9 JMP 4C 6C 

Op Code Ends in -I, -5, -9, or-O Jumps 

Single-Byte Op Codes -0, -8, -A 

1· 2· 3· 4- 5· 6- 7· 8- 9· A· B- C· D· E· F· 

RTI RTS 
CLC PLP SEC PHA CLI PLA SEI DEY TYA TAY CLV INY CLO INX SED 

ROL-A LSR-A ROR-A TXA TXS TAX TSX OEX NOP 
Courtesy 6502 Use, Notes. © 1979 E. C. Rehnke 



sophisticated programs. The first example above can be implemented 
with 10 to 15 instructions using about 30 bytes of memory, while 
the last objective may require more than 8K bytes of memory for 
the program. 

The instructions are stored in memory and are ordered by their 
addresses. In the 6502, there is a pair of registers known as the 
program counter. They insure that the instructions are performed in 
the proper sequence. The program counter contains the address 
of the next byte of the program to be read. After each byte of a 
program has been read from memory, the program counter is incre
mented by one to point to the memory address at which the com
puter will find the next program byte. Exceptions to this occur 
only in the case of subroutines and interrupts. These topics will be 
covered in Chapter 9. 

A SIMPLE PROGRAM 

An illustration will help at this point. Suppose the object of a 
program is to transfer the contents of the location whose address is 
$0300 to the memory location whose address is $02FF. A program 
to accomplish this is shown in Example 2. The program requires 
six bytes of memory, its starting address is $0200, and it requires 
only two instructions. The LDA instruction is contained in the first 
three bytes of the program, and the ST A instruction is contained 
in the last three bytes. 

Example 2: A Simple Data Transfer Program 

Location 

0200 
0201 
0202 
0203 
0204 

Contents 

AD 
00 
03 
8D 
FF 

0205 02 

Comments 

Fetch the contents of the locatio n whose 
address is $0300 and place them in the accumulator. 

Store the contents of the accumulator in the 
memory location whose address is $02FF. 

If the program counter in the 6502 is initialized to $0200, the 
starting address of the program, then the 6502 will execute the 
program. As far as the 6502 is concerned, the actual location of the 
program or its starting point makes no difference. However, it is 
absolutely necessary that each byte of an instruction, and the in
structions themselves, be in the proper order. 

The activity on the address and data buses of the microcomputer 
during the execution of the program in Example 2 may be described 
by referring once again to Example 2 and also Figs. 2-1 and 2-2. 
Assume that the microprocessor system clock is running at 1 mega
hertz, or each clock cycle takes 1 microsecond. (Detailed timing 
considerations will be discussed in Chapter 12.) 
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Y INDEX REGISTER 

I I I I I I I 
6543210 

X INDEX REGISTER 

I I I I I I I 
76543210 

ACCUMULATOR 

I I I I 
6543210 

STACK POINTER 

I I I I I 
6543210 

PROCESSOR STATUS 
REGISTORP REGISTER 

INlvl IBIOIIIZICI 
76543210 

PROGRAM COUNTER HIGH-PCH PROGRAM COUNTER lOW-PCl 

I I I I I I I I-I I I I I I I I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

BUS 

Fig. 2·1. Model of 6502 Microprocessor. 

I 
CYCLE 1 + CYCLE 2 I. CYCLE 3 J CYCLE 4 1 

- OP-CODE FETCH FETCH ADL ----r- FETCH ADH-r-FETCH DATA-l 

1'~1 CLOCK 

f----$0200 -- ~-t---$020l--l--$0202- _I $0300~ADDRESS 
~ ,BUS 

~$AD- -+ -$00--1--$03- --tCONTENTS OF $03001~~~A 

Fig. 2·2. Activity on Address Bus and Data Bus by clock cycles during LDA instruction. 
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• During the first clock cycle, the contents of the program counter 
( PCH -PCL = $0200) are placed on the address bus, and the 
6502 reads the op code on the data bus. The program counter 
is incremented to $0201. 

• During the second clock cycle, the contents of the program 
counter, now $0201, are placed on the address bus, the ADL 
(SOO) is fetched from location S0201 and appears on the data 
bus, the op code is interpreted by the microprocessor, and the 
program counter is incremented. 

• During the third clock cycle. the contents of the program 
counter (S0202) appear on the address bus and the ADII (803) 
is fetched from location 80202. The program counter is incre
mented again. 

• During the fourth clock cycle, the ADH-ADL = $0300 appears 
on the address bus. The byte of data in location $0300 is placed 
on the data bus, and is clocked into the 6502 at the conclusion 
of this cycle. 

• During the fifth clock cycle, the contents of the program 
counter, now $0203, are placed on the address bus, the next 
op code ($8D) is read from location S0203, the program 
counter is incremented, and the previous instruction is imple
mented in the microprocessor. This last step means the byte of 
data read during the fourth clock cycle is moved into the 
accumulator. 

• During the sixth clock cycle, $0204 appears on the address bus 
to fetch the ADL ($FF) of the destination location. The op 
code fetched during the fifth cycle is interpreted, and the pro
gram counter is incremented again. 

• During the seventh clock cycle, $0205 appears on the address 
bus to fetch the ADII ($02) of the destination location. The 
program counter is incremented. 

• Durin~ the eighth clock cycle, the ADH-ADL = $02FF is on 
the address bus, the microprocessor places the contents of the 
accumulator on the data bus, and the control lines clock the 
data into location $02FF. 

This completes the program of Example 2, amounting to eight 
clock cycles or 8 microseconds. Note from Table 2-3 that both the 
LDA and ST A instructions require four cycles in the absolute ad
dressing mode, which checks with our analysis above. To find the 
time necessary for an instruction to be executed, multiply the num
ber of clock cycles, N, from Table 2-3 by the clock period (as we 
multiplied 8 clock cycles times 1 microsecond to obtain 8 microsec
onds in this example). The length of a program is the sum of the 
time intervals required for each of the instructions. 
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WRITING A PROGRAM 

As a matter of fact, programs are not written in the form illus
trated in Example 2. The procedure for writing a program is out
lined as follows: 

• Have the objective clearly in mind and, if necessary, flowchart 
the steps required to achieve the objective. 

• 'Write an assembly language version of the program using labels 
for addresses, mnemonics for instructions, and symbols for ad
dresses of memory locations that store data. 

• Translate the program into hexadecimal machine language. 

These ideas will be illustrated shortly. For the moment we will con
centrate on the assembly language program which will be arranged 
in four columns, 

• The address of the first byte of any instruction may have a 
name called a label. Labels are found in the first column. 

• The second column contains the instruction mnemonic. 
• The third column is the operand. It is empty if a single byte 

instruction is involved. It may be a byte of data if the immedi
ate addressing mode is used. It may be a symbol for a location 
where a byte of data is found. It may be a label, symbolizing 
a program address. 

• The fourth column contains comments that interpret or clarify 
the instruction. 

To illustrate, consider the program in Example 2 whose object was 
the transfer of a byte of data from location $0300 to location $02FF. 
Let address $0.300 be represented by the symlJol LOCI, and let 
address $02FF be represented by the symbol LOC2. The choice of 
symbols is up to the programmer. Assume that the starting address 
of the program is represented by the label START. Then the as
sembly language version of this program is shown in Example 3. 
The third column is called the operand column because it is either 
the data to be operated upon, or it is the location of the data to be 
used in an operation. 

(Do not be overly concerned if you cannot comprehend all of 
these facts at once. It will require several examples and perhaps a 
re-reading before you begin to feel comfortable with these new 
concepts. ) 
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label 

START 

Example 3: Assembly language Data Transfer Program 

Mnemonic 

lOA 
STA 

Operand 

lOCI 
lOC2 

Comments 

load the data at lOCI into A. 
Store the contents of A at lOC2. 



Step three in writing a program consists of translating the labels, 
mnemonics, and symbols into their hexadecimal equivalents. This 
translation is called a machine language program because it is in 
the form used to load it into the microprocessor. The machine lan
guage version is usually placed directly to the left of the assembly 
language version. The completed program with which we have been 
working is given in Example 4. 

Some microcomputers have programs that convert mnemonics 
entered on keyboards to machine language. Such programs are 
called assemblers. Some assemblers have extensive error detection 
techniques programmed into them, and they will handle symbol 
tables, labels, and branch calculations. Others, like the one in the 
AIM 65 monitor, simply convert mnemonics to op codes and enter 
the program into memory. 

Example 4: Completed Data Transfer Program Using Absolute Addressing 

Location Instruction Label Mnemonic Operand Comments 

0200 AD 00 03 START LOA LOCI Load the contents of 

0203 80 FF 02 STA LOC2 
$0300 into A. 

Store the contents of A 
at $02FF. 

Shortly we will describe several programs that perform data 
transfers, using several of the addressing modes previously men
tioned. Before that, we note that the instructions, op codes, and 
addressing modes of all of the instructions introduced in this chapter 
are itemized in Table 2-1. Also, refer again to the form of the pro
gram in Example 4, which is the form of all of the programs in 
this book. While the form of programs varies from book to book, no 
confusion is likely to occur with the form we have adopted. You may 
think that the address skips two locations, from $0200 to $0203. 
Actually, location $0200 stores the $AD, location $0201 stores the 
$00, and location $0202 stores the $03. The entire instruction is 
on a single line. The label refers to the first byte of the instruction, 
and the remaining bytes of the instruction must be stored at im
mediately subsequent locations in memory. In the examples that fol
low, the headings used to identify the columns in Example 4 will be 
omitted. However, the columns in subsequent examples will contain 
the corresponding information. 

The program given in Example 5 illustrates the LDA instruction 
in the immediate addressing mode. The assembly language version 
will contain the byte of data whenever immediate addressing is 
used, and in Example 5 observe that the data byte "$00" appears 
in the first insh·uction. After the program has executed, both loca
tions $0300 and $0301 will contain $00. 
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Example 5: Data Transfer Program Illustrating Immediate Addressing 

Ob;ecf: Store $00 in locations $0300 and $O30l. 

0208 A9 00 START lOA $00 load A (immediate) with $00. 
020A 80 00 03 STA MEM 1 Store the contents of A in location $0300. 
0200 80 01 03 STA MEM2 Store the contents of A in location $0301. 

In Example 6 the immediate addressing mode is used for the LDA 
instruction, while the zero-page addressing mode is used for the 
ST A instmction. The advantage of using page zero of memory for 
storing data is that zero-page addressing requires only two instruc
tion bytes in the program, compared to the three bytes required 
in the absolute addressing mode, and zero-page addressing requires 
one less clock cycle than absolute addressing. 

Example 6: Data Transfer Program Using Zero-Page Addressing Mode 

Ob;ecf: Store $FF in locations $0000 and $003F. 

0212 A9 FF 
0214 85 00 
0216 85 3F 

ORIGIN lOA $FF 
STA lOZl 
STA lOZ2 

load A with $FF (immediate mode). 
Store A in zero·page location $0000. 
Store A in $003F (zero·page mode). 

Example 7 illustrates a data transfer using the X register, and 
Example 8 illustrates a data transfer using the Y register. The LDX 
instruction uses the zero-page addressing mode, while the LDY 
instruction uses the immediate addressing mode. In long programs 
with many symbols, the program is usually preceded by a symbol 
table in whieh the symbols are related to the addresses they 
symbolize. Although the length of the programs in Examples 7 and 
8 does not warrant a symbol table, we have included them to il
lustrate the point. 
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Example 7: Data Transfer Program Using the X Register 

Ob;ecf: Transfer the contents of location $0000 to location $03Ff without using the 
accumulator. 

$0000 = lOZ 
$03FF = MEM 
021A A6 00 

021C 8E FF 03 

START LOX lOZ 

STX MEM 

load the X register with the contents 
of location $0000. 

Store X in $03FF. 

Example 8: Data Transfer Program Using the Y Register 

Ob;ect: load locations $0000 to $0002 with $7F without usi ng the X register or the 
accumulator. 

$0000 = HERE 
$0001 = THERE 
$0002 = lOCT 
0221 AO 7F 
0223 84 00 
0225 84 01 
0227 84 02 

8EGIN LOY $7F 
STY HERE 
STY THERE 
STY LOCr 

load the Y register with $7F. 
Store Yin $0000. 
Store Y in $0001. 
Store Y in $0002. 



PROGRAM NAME _________ _ PAGE OF 

PROGRAMMER __________ _ DATE ___ _ 

INSTRUCTION 
ADDRESS Bl B2 B3 LABEL MNEMONIC OPERAND COMMENTS 

Fig. 2·3. Sample programming form. 

A programming form is of considerable help in writing programs. 
One possible form is shown in Fig. 2-3. 

LOADING AND EXECUTING A PROGRAM 

Once a program has been written in assembly language and trans
lated into machine language, it is ready to be loaded into the 
microcomputer. This means that, beginning with the starting ad
dress of the program, the program bytes are stored in successive 
locations in memory. In the case of the KIM-I, AIM 65, and SYM-I 
this is accomplished with the keyboard and the display. All micro
computers with monitors will have some means of loading and 
executing a program. 

To execute the program, the program counter must be initialized 
to be identical to the address of the first byte in the program. In 
the SYM-I, KIM-I, and AIM 65, the monitors have the ability to 
initialize the program counter to the correct value. Consult your 
user's manual for the proper initialization procedure. 

THE BRK INSTRUCTION 

Since the 6502 does not have a HALT instruction, another tech
nique is used to end the demonstration programs that we will use. 
The last instruction in the program will be a single-byte instruction 
called BRK. BRK has an op code of $00. Its effect is described as 
follows: 

• Upon reading and decoding the BRK instruction, the micro
processor reads a location symbolized by IRQL to get the low-
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order byte for the program counter and the next location, 
tRQH, to get the high-order byte for the program counter. 

• The program continues execution with these new values in the 
program counter, that is, at the instruction whose address is 
PCH-PCL. 

In the KIM-I, the addresses for IRQL and IRQH are $17FE and 
$17FF, respectively. In these locations you must load $00 and $lC, 
respectively. The address $lCOO is an address in the KIM-I monitor. 
Therefore, upon reading and executing the BRK instruction, the 
KIM-l will continue its execution in the monitor. This prevents 
the microcomputer from wandering off to perform "nonsense" in
structions that are generated as patterns of binary digits when the 
power is applied to the computer. The SYM-l and AIM 65 operate 
in a similar way except that IRQL and IRQH are preloaded by the 
RESET button, and the user need not load these locations himself. 
Example 9 illustrates how our first program, the one given in Ex
ample 4, is modified to include the BRK instruction. 

Example 9: Data Transfer Program Illustrating the BRK Instruction 

Object: Transfer the contents of location $0300 to location $02FF. End the program 
with a BRK instruction. 

$02FF = LOC2 
$0300 = LOCI 
$17FE = IRQL; KIM-l users load with $00. 
$17FF = IRQH; KIM-l users load with $IC. 
0200 AO 00 03 START LOA LOCI 
0203 80 FF 02 STA LOC2 
0206 00 BRK Break to the monitor. 

The reason for using a BRK instruction as opposed to a jump to 
the monitor instruction is that all of the important registers in the 
6502 are saved when the BRK to the monitor instruction is used. 
The AIM 65, SYM-I, and KIM-I all give the user the ability to 
examine these registers after a BRK instruction. Each system has a 
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Table 2-4_ Addresses of Locations Where the Monitor 
Stores 6502 Registers 

Monitor Storage Locations 

Register Name Symbol KIM-l AIM 65 SYM-l 

Program Counter Low PCL $OOEF $A425 $A659 
Program Counter High PCH $OOFO $A426 $A65A 
Accumulator A $00F3 $A421 $A650 
X Register X $00F5 $A422 $A65E 
Y Register Y $OOF4 $A423 $A65F 
Processor Status P $OOFI $A420 $A65C 
Stack Pointer SP $OOF2 $A424 $A65B 



different means of displaying the registers, so the user is referred 
to the respective system manual for details. Table 2-4 lists the ad
dresses of the locations where these registers are saved. 

THE SINGLE-STEP MODE 

The monitors and control circuitry of the KIM-I, SYM-I, and 
the AIM 65 microcomputer systems allow the user to execute a 
program one instruction at a time. This feature is very useful in 
debugging programs, because the user can examine the effect of 
each instruction as it is executed. The user may also examine the 
contents of each of the 6502 registers after an instruction has been 
executed, because in the single-step mode, the monitor stores the reg
isters in the locations shown in Table 2-4. Each of the three systems 
mentioned has a somewhat different technique of implementing the 
single-step mode; the user is referred to the appropriate system 
manual for details. 

INTRODUCTION TO THE EXPERIMENTS 

The purpose of the experiments in this chapter is to teach you to 
load and execute simple programs. You will also examine the con
tents of the locations which are modified by the data transfer in
structions, and you will be asked to write simple programs. KIM-l 
users should refer again to the Single-Step Mode section to set up 
the IRQH and IRQL locations before they begin. 

EXPERIMENT NO. 1 
Step 1 

Load the program of Example 4 into memory. For convenience 
we list the program. 

0200 AD 00 03 START 
0203 8D FF 02 
0206 00 

Step 2 

LDA LOC] 
STA LOC2 
BRK 

Put $00 in location $02FF. Refer to your user manuals if you do 
not remember how to examine and modify the contents of a location. 

Step 3 

Put $33 in location $0300. 

Step 4 

Initialize the program counter to $0200 using your manual in
structions, then execute the program. 
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Step 5 
After the program has been executed, the display will light. Now 

examine the contents of locations $02FF and $0300. What do you 
observe in each location? 

(We observed a $33 in both locations $02FF and $0300, indicating 
that the program had transferred the contents of location $0300 
to location $02FF. Recall that location $02FF contained $00 before 
the program was executed.) 

EXPERIMENT NO. 2 

Step 1 
Load the program given in Example 5. A listing is given below 

for convenience. 

0208 A9 00 START 
020A 80 00 03 
0200 80 01 03 
0210 00 

Step 2 

LOA $00 
STA MEMI 
STA MEM2 
8RK 

Put any nonzero value in locations $0300 and $0301. 

Step 3 
Run the program, then examine the contents of locations $0300 

and $0301. What data are there? 

(If the program was entered correctly you should find $00 in both 
locations. ) 

Step 4 

Change the second byte of the program to $7F, then rerun the 
program. What do you observe in locations $0300 and $0301? 

(Since the first instruction is an LDA in the immediate mode, $7F 
is first transferred to the accumulator and then loaded into locations 
$0300 and $0301.) 
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EXPERIMENT NO. 3 

Step 1 

Load the program given in Example 6. A listing is provided here. 

0212 A9 FF ORIGIN LDA $FF 
0214 85 00 STA LOZI 
0216 85 3F STA LOZ2 
0218 00 BRK 

Step 2 

Execute the program and examine locations $0000 and $OO3F. 
What data are stored in these locations? 

(You should find $FF in hoth of these zero-page locations.) 

Step 3 

Change the byte at $0213 to $00. Run the program again. Predict 
what data you will find at locations $0000 and $003F. 

(You should find $00 in these locations.) 

EXPERIMENT NO. 4 

Step 1 

Put $FF in location $0000. 

Step 2 

Load the program listed in Example 7. Omit the BRK command 
at location $021F. Put anything at location $021F except $00. Run 
the program, then describe what happens. A listing is as follows. 

021A A6 00 START LDX LOZ 
021C 8E FF 03 STX MEM 
021F 00 BRK 

(We observed on the KIM -1 and AIM 65 that the display remained 
dark, and we could not tell when or if the program executed 
properly.) 

Step 3 

Press the RESET key. Examine location $03FF. Did the program 
work? 

(We found that the program had worked.) 
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Step 4 

Insert the BRK instruction at location $021F and run the program 
again. 

EXPERIMENT NO. 5 

Step 1 

Load the program in Example 8. A listing is provided. Execute 
the program. 

0221 AO 7F BEGIN 
0223 84 00 
0225 84 01 
0227 84 02 
0229 00 

Step 2 

LDY $7F 
STY HERE 
STY THERE 
STY LOCT 
BRK 

Examine locations $0000 to $0002. What do you find there? 

(If the program works you should find $7F in all three locations.) 

Step 3 

Single-step through the program to make sure you understand 
the single-step mode of your microcomputer. 

EXPERIMENT NO. 6 

Step 1 
Write a program to load the accumulator with the contents of 

location $0000, the X register with the contents of location $0200, 
and the Y register with the contents of location $0300. Locate your 
program from location $022A upward. End your program with a 
BRK instruction. 

(Your program should look something like this: 

022A AS 00 START LDA MEMZ 
022C AE 00 02 LDX LOC 
022F AC 00 03 LOY STG 
0232 00 BRK) 

Step 2 

Load location $0000 with $11, location $0200 with $22, and loca
tion $0300 with $33. 
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Step 3 

Execute the program, and then examine the registers using the 
monitor program in your microcomputer. Refer to Table 2-4 for 
the addresses of the locations where the registers are stored. 

Step 4 

Use your monitor to modify the accumulator, X register, and Y 
register locations so that they are all loaded with $00. 

Step 5 

Start the program again using the single-step mode. Examine 
the contents of each register after each step in the program. You 
should observe that each register changes after the instruction in 
which it is modified is executed. Experience gained in "following a 
register" through a program will be useful in debugging programs. 

EXPERIMENT NO. 7 

Step 1 

Write a program to load the accumulator with $00, and then 
transfer this information to both the X register and Y register. 

(Your program should look like this: 

0233 LDA $00 
TAX 
lAY 
BRK 

You can fill in the remammg addresses and op codes. Run the 
program and examine the registers to see if your program works.) 
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CHAPTER 3 

Simple Input/Output 
Techniques 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the operation of memory mapped I/O ports. 
• Use a data direction register to program an I/O port to either 

input or output data. 
• Use the INC, DEC, IMP, INX, INY, DEX, and DEY instruc

tions. See Table 3-1 for a summary. 
• Write programs with loops. 

INTRODUCTION 

The input/ output operations of a microcomputer are fundamental 
to any useful application. Some examples of the function of an input 
port in a microcomputer system are: 

• A key depression produces a voltage level on an input pin 
corresponding to a binary zero. Software then inputs this volt
age, determines which key on a hexadecimal keyboard has been 
pressed, and converts the key value to its hexadecimal equiva
lent. 

• If the temperature exceeds a given value, a thermostat produces 
a voltage level on an input pin corresponding to a binary one. 
A program reads the input pin to test the temperature. 

Two examples of the function of an output port are the following. 
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Table 3-1. Summary of Instructions and Op Codes 
Introduced in Chapter 3 

Addressing Mode 

Instruction Description Absolute Zero·Page Implied 

INC Increment Memory by One EE E6 
DEC Decrement Memory by One CE C6 
INX I ncrement X Register by One E8 
DEX Decrement X Register by One CA 
INY Increment Y Register by One C8 
DEY Decrement Y Register by One 88 
JMP Jump to New location 4C 

Indirect 

6C 

• Light the appropriate segments in a seven-segment LED display 
to indicate a hexadecimal digit. 

• Turn a heating element off if a thermostat indicates a tempera
ture above a given value. 

The task of connecting electronic or mechanical devices to the 
1/ 0 ports of a microcomputer is often called interfacing, although 
this term also refers to the process of interconnecting the various 
components of a microcomputer. Clearly, interfacing requires some 
experience with electronics, and the interested reader is referred 
to books in the Blacksburg Continuing Education Series, especially 
the NCR Basic Electronics Course and Logic and Memory Ex
perimellts (two volumes) published by Howard W. Sums &: Co., Inc., 
Indianapolis, IN 46268. Programming a microcomputer, including 
the 110 operations, requires little, jf any, background in electronics, 
but any programmer would find such a background extremely useful. 

INPUT I OUTPUT PORTS 

The purpose of an input port is to provide information for the 
computer from the outside world. This is usually accomplished by 
an external device, a photocell for example, controlling the voltage 
level at one to eight pins on an integrated circuit. Typically a voltage 
of near 5 volts corresponds to a binary one, while a voltage of near 
zero volts corresponds to a binary zero. This integrated circuit is 
connected to the data bus and the address bus of the microcomputer. 
When the address of the input port is placed on the address bus by 
the 6502, then the input port integrated circuit controls the logic 
levels on the data bus, and the 6502 READS the binary number 
represented by the voltage levels at the input port. These integrated 
circuits are sometimes called "interface adapters." 

This mode of operation, in which input ports act like any other 
memory device in the sense that they supply data to the 6502 only 
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when they are addressed, is called memory mapped input. As far 
as the 6502 is concerned, an input port is simply another location in 
memory, and it might just as well be a ROM or R/W memory lo
cation because the microprocessor does not know the difference. 

The purpose of an output port is to provide information from the 
microcomputer to the outside world. An integrated circuit is con
nected to the data bus and the address bus, like the case of the 
input port. This integrated circuit has one to eight pins that may be 
connected to external devices, a relay for example. The 6502 
WRITES data to an output port by placing the address of the output 
port integrated circuit on the address bus, while simultaneously 
placing the byte of data intended for the output port on the data 
bus. This data byte is usually stored in the integrated circuit that 
acts as the output port, and it determines the voltage levels on the 
output pins of this integrated circuit. A binary zero produces a 
voltage level near 0 volts, while a binary one produces a voltage 
level near 5 volts, perhaps with enough current capability to close 
a relay for example. 

This mode of operation, in which output ports act like R/W 
memory devices in the sense that a byte of data can be written to 
them only when they are addressed by the 6502, is called memory 
mapped output. Again, the 6502 does not know whether it is writing 
data to an R/W location or an output port; only the programmer 
knows this. 

To summarize, an input/output port is a location in memory that 
can be used to transfer data either from the microprocessor to an 
external device or from an external device to the microprocessor. 
All the data transfer instructions described in Chapter 2 and all the 
instructions you will learn in this and subsequent chapters may be 
used either to read the data at an input port or to write data to an 
output port. For example, an LDA INPUT instruction might be used 
to read an input port where INPUT is a symbol for the address of 
the port. A ST A OUTPUT instruction might be used to write data 
to an output port, where OUTPUT is a symbol for the address of 
the port. Examples of I/O external devices include: 

• Keypads and keyboards 
• Transistors that drive LEDs, relays, speakers, or other electro-

mechanical devices 
• Integrated circuits, a 7490 decade counter for example 
• Mechanical switches 
• Phototransistors or photoresistors 
• Hexadecimal displays. 

The 6502 uses memory mapped I/O exclusively as compared to the 
8080A which uses a special mode called accumulator I/O in addition 
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to memory mapped I/O. To reiterate, corresponding to each I/O 
port is a set of pins, terminals, or connectors on the microcomputer 
where the data are made available. The data are actually voltage 
levels or current levels at a series of pins. A voltage of 5 volts cor
responds to an I/O port data bit being a one, and a voltage of 0 
volts corresponds to an I/O port data bit being a zero. The two 
possible voltage levels are referred to in a variety of ways in com
puter literature. These include +5 V or 0 V, high or low, V,.,. or Gnd, 
H or L, and logic one or logic zero. We prefer using the logic one 
and logic zero description of voltage levels at an I/O port. Finally, 
an I/O port normally consists of eight hits with their corresponding 
pins, in other words one byte of data, but only one, two, three, or 
even five bits may be used for interfacing purposes. For a more 
extensive discussion of input/ output port interfacing, see Chapters 
11, 12, and 13. 

I/O PORTS AND DATA DIRECTION REGISTERS 

Input/output ports are implemented with integrated circuits 
connected to the 6502 by the address bus, data bus, and control 
bus. Refer to Fig. 3-1 for a number of details. In 6502 systems such 
as the AIM 65, SYM-I, and KIM-I, the integrated circuits used for 
I/O ports are so-called family chips such as the 6520, 6522, 6530, 

TO 6502 TO 6502 

ADDRESS BUS 

BIDIRECTIONAL DATA BUS 

PAJ PA6 PA5 PM PA3 PA2 PAl PAO PBJ PBS:'PB5 PB4 PB3 PB2 PBI PBO 

Fig. 3·1. Block diagram of 6530 and 6522 I' 0 Ports. ·See text. 
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and 6532 which not only perform I/O functions but also have 
interval timers, R/W, or RO:\1 locations on the chips. Although 
these various chips differ considerably in their capabilities, they 
have in common the ability to implement two I/O ports, each of 
which may be programmed as either an input port or an output 
port. In fact, each of the pins of a port may be either an input pin 
or an output pin, independent of the other pins in the same port. 

Corresponding to each pin or bit of an I/O port, is a bit in a data 
direction register (DDR) which is also a location in memory. 
These registers are located on the same integrated circuits that con
tain the I/O ports. See Fig. 3-1 for a simplified model of the I/O 
port and DDR structure of the 6530 and the 6522 interface adapters. 
The bit value in the DDR determines whether the corresponding 
I/O bit will be an input bit or an output bit. A bit value of zero in 
the DDR makes the corresponding port bit an input bit, whereas 
a bit value of one in the DDR makes the corresponding port bit an 
output bit. A data direction register also consists of eight bits or 
one byte, and the microprocessor can read or write to a DDR just 
as if it were a regular R/W memory location. 

Not all integrated circuits used as input ports or output ports 
are programmable, that is. may be programmed to be either an input 
port or an output port. In Part II of this book we will illustrate 
how to interface other integrated circuits that are designed to be 
either input ports or output ports, but not both. Most 6502 family 
interface adapter chips are programmable, but in some cases other 
integrated circuits make less expensive I/O ports. 

I/O PORT SYMBOLS 

On the KIM-I, SYM-I, and AIM 65 microcomputers, the I/O 
ports are accessed at an edge connector called the applications 
connector. In the remainder of this book, the two I/O ports which 
are accessed at this 22/44 pin connector will be called Port A and 
Port B. Refer again to Fig. 3-l. The pin connections for the two I/O 
ports are identical in the three microcomputers: KIM-I, SYM-I, 
and AIM 65. See Table 3-2 for pin identification. The individual 
pins of Port A will be referred to as PA7, PA6, ... , PAO, while those 
of Port B will be PB7-PBO. PB6 is not available for the user on either 
the KIM-lor the SYM-I microcomputers. The address of Port A 
will be symbolized by PAD, an acronym for Port A Data, and the 
address of Port B will be symbolized by PBD. In the SYM-I and 
AIM 65 literature, these ports are named ORA and ORB, but no 
confusion is likely to occur. The corresponding data direction regis
ters will be symbolized by PADD, an acronym for Port A Data 
Direction, and PBDD. The data direction registers are called DDRA 
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Table 3·2. Port A and Port B Pin Assignments 
on the Applications Connector 

Port A = PAD Pin Port B = PBD 

PA7 8 PB7 
PA6 7 PB6* 
PAS 6 PBS 
PA4 5 PB4 
PA3 2 PB3 
PA2 3 PB2 
PAl 4 PBI 
PAO 14 PBO 

*PB6 IS not available on KIM·I or SYM·l, but is available on AIM 65. 

Pin 

IS 
17 
16 
13 
12 
II 
10 
9 

and DDRB in SYM-l and AI\1 65 literature, A summary of the loca
tions in memory of the ports and their DDR are given in Table 3-3. 

Let us illustrate some of the points mentioned. If a $FF is stored 
in PADD. then all the bits in the DDR are ones, and all eight pins 
of PAD are output pins, making it an 8-bit output port. If $00 is 
stored in PADD, then all eight pins are input pins and PAD is an 
8-bit input port. If $83 is stored in PADD, then pins PA7, PAl, and 
PAD are output pins, while PA6-PA2 are input pins. A system reset 
pulse clears the DDR (sets all bits to zero) and all the pins are 
input pins. The system may be reset by pressing the RESET button 
or key, or by a power-up condition. The task of the programmer is 
to know which pins are supposed to act as outputs and, after reset, 
to initialize the DDR by programming these registers accordingly. 

Table 3·3. I/O Port and Data Direction Register Addresses 

KIM·1 SYM·1 AIM6S 

Port A = PAD $1700 $AOOI $AOOI 
DDRA = PADD $1701 $A003 $AOO3 
PORT B = PBD $1702 $AOOO $AOOO 
DDRB = PBDD $1703 $A002 $A002 

INPUT / OUTPUT PROGRAMMING 

In this section we list some programs that relate to the ideas 
mentioned above. Note that the program comments take on a 
different character than in the previous chapter. The comments do 
not always describe the instruction, but rather they may suggest the 
purpose or reason for the instruction. It will be assumed that you 
have become familiar with the instructions so no further descrip
tions are necessary. You should study the programs carefully to 
see how some simple II 0 operations are performed. 
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Example 1: Program to Make Port A an Output Port 

Obiect: Make Port A an output port and set pins PA7, PA6, and PAO at logic one. 
The diagram illustrates the desired configuration. 

PA7 PA6 PA5 PA4 PA3 PA2 PAl PAO 
PADD 1 1 1 1 1 1 1 = $FF 
DATA 0 0 0 0 0 1 = $Cl 

0200 A9 FF START LDA $FF Set the DDR for Port A so that 
0202 8D 01 17 STA PADD all the pins are outputs. 
0205 A9 Cl lOA $Cl Set pins PA7, PA6, and PAO 
0207 8D 00 17 STA PAD to logic one, others at logic zero. 
020A 00 BRK 

Example 2: Program to Make Port B an Input Port 

Obiect: Make Port B an input port and read the port, storing its contents in location 
$0000. 

0200 A9 00 START lOA $00 Initialize Port B to be an 
0202 8D 03 17 STA PBDD input port by clearing DDR. 
0205 AD 02 17 LDA PBD Read the port. 
0208 85 00 STA LOZ Store port data in LOZ. 
020A 00 BRK 

Example 3: Program to Read Port B and Store its Contents in Port A 

Obiect: Read Port B and load its contents into Port A which will be an output port. 

0200 
0202 
0205 
0208 
020B 

A9 FF 
8D 01 17 
AD 02 17 
8D 00 17 
00 

START LDA $FF I nitialize Port A to be 
STA PADD an output port. 
LDA PBD Get data from Port B. 
STA PAD Transfer to Port A. 
BRK 

Example 4: Program to Illustrate a Loop 

Obiect: Continuously read Port B and store its contents into Port A. 

0200 A9 FF START LOA $FF 
0202 80 01 17 STA PAOO 
0205 AD 02 17 HERE LOA PBD Get data from Port B. 
0208 80 00 17 STA PAD Store it in Port A. 
020B 4C 05 02 JMP HERE Reset program counter to $0205. 

Note that in Example 1 the KIM-l addresses for Port A and the 
Port A DDR were used. SYM-l users and AIM 65 users must change 
these addresses to conform with Table 3-3. The program in this 
example is not of any particular use other than as a demonstration 
of how to set up the Port A data direction register so that Port A 
is an output port. In that connection, it is very important because 
setting up the data direction registers for the I/O ports is one of the 
first initialization steps in any program. You will see the first two 
instructions in the program of Example 1 in many subsequent pro
grams in this book. 

The first two instructions in Example 2 may be omitted if the 
system monitor loads a $00 into the DDR, or if it leaves the DDR 
unaltered after a system RESET. Unless you know the state of the 
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DDRs, it is good practice to initialize the DDR with your program. 
The next two instructions in Example 2 might be part of a larger 
program to read a keyboard connected to Port B, and to store the 
keyboard data in a zero-page location. It is a bit unfortunate that 
both the KIM-l and the SYM-l use PB6 for other purposes and, 
consequently, it is not available to the user. Thus, Port B is really 
a 7 -bit port. 

The program in Example 3 simply reads Port B and writes it to 
Port A. This kind of program might be used in a keyboard-video 
monitor input/ output system. If Port B represents the keyboard, and 
Port A is the output to the video monitor, then whenever a key is 
read, the character would appear on the screen so the operator can 
see what has been typed. Aote that PBDD was not initialized to $00 
in Example 3, as it was assumed that the system RESET or the 
monitor cleared this register. 

The program in Example 4 is essentially the same as the program 
in Example 3, except that the JMP instruction causes the program to 
continuously read Port B and output the result to Port A. Although 
this program has no particular use at this point, it does illustrate 
a program loop and the JMP instruction, which we now describe. 

JMP INSTRUCTION 

The JMP instruction used in Example 4 has the effect of resetting 
the program counter to the value labeled HERE. The program will 
repeat the LDA PBD, STA PAD, and JMP HERE instructions, 
continuously and forever, unless the RESET key is depressed or power 
is removed. A program or a portion of a program which repeats itself 
one or more times is called a loop. The three instructions just men
tioned form a loop in the program of Example 4. The JMP instruc
tion may be used to reset the program counter to any 16-bit num
ber. Note that in the absolute addressing mode, as used in Example 
4, the low-order byte of the program counter (PCL) is the second 
byte of the IMP instruction while the high-order byte of the program 
counter (PCH) is the third byte. 

The IMP instruction has one other addressing mode called 
indirect. In this mode, the second and third bytes of the instruction 
form an address ADH-ADL whose contents contain PCL, while 
PCH is found at ADH-ADL + 1. The indirect JMP instruction is 
illustrated with the modification of Example 4 shown in Example 5. 

In Example 5, THERE = $0003 and in this location should be 
stored the ADL of HERE. That is, in location $0003 put $05, the 
address low of HERE. In $0004 put $02, the address high of HERE. 
The indirect addressing mode is indicated by putting parentheses 
around the operand portion of the instruction. Any available location 
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Example 5: Program to Illustrate JMP Instruction in Its Indirect Addressing Mode 

Object: Continuously read Pori B and store its contents in Port A. 

$0003 = TH ERE; Load with $05, the ADL of HERE. 
$0004; Load with $02, the ADH of HERE. 
$AOOO = PBD; AIM 6S or SYM-l address. 
$AOOI = PAD; AIM 6S or SYM-l address. 
$A002 = PBDD; Port B DDR, AIM 6S or SYM-l address. 
$A003 = PADD; Port A DDR, AIM 65 or SYM-l address. 
0200 A9 FF START LOA $FF 
0202 8D 03 AO STA PADD 
0205 AO 00 AO 
0208 8D 01 AO 
020B 6C 03 00 

HERE LOA PBD 
STA PAD 
JMP (THERE) Indirect JMP instruction. See Text. 

may be used to store the new value of the program counter in the 
indirect mode. Refer again to Table 3-1 for a description and the 
op codes of the IMP instruction. To summarize: 

• In the absolute mode, the second and third bytes of the IMP 
instruction are the new values of the PCL and PCH, respec
tively. 

• In the indirect mode, the second and third bytes of the IMP 
instruction are the ADL and the ADH of a location which 
contains the new PCL. PCH is in (ADH,ADL + 1). 

INC AND DEC INSTRUCTIONS 

The I/O techniques learned so far will be used to illustrate two 
other instructions, INC and DEC, described in Table 3-1. The 
logical expressions for the INC and DEC instructions are M + 1 ..... 
M, and M - 1 ..... M, respectively. Simply stated, the INC instruc
tion increments the contents of a memory location by one, whereas 
the DEC instruction decrements the contents of a memory location 
by one. In the zero-page addressing mode, the second byte of either 
instruction is the page-zero ADL of the memory location to be modi
fied. In the absolute mode, the second and third bytes are the ADL 
and the ADH of the location to be modified. 

As an example of the application of these instructions, suppose 
that a logic zero at PAO turns a device (a heater, for example) on, 
while a logic one turns the same device off. Suppose further that 
PAO has been programmed to be an output pin by loading $01 in 
PADD, and that PAO is currently in the logic-one state. Then the 
instruction DEC PAD turns the device on and the instruction INC 
PAD will turn it off. Remember that the "address," PAD, corresponds 
to an output port, and not a ROM or R/W memory location. 

Some programs which will demonstrate the use of the INC and 
DEC instructions follow. 
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Example 6: Program to Demonstrate the INC Instruction 

Object: Apply successive increments to Port A which is programmed to be an output 
port. 

0200 A9 FF START LOA $FF Initialize Port A to be 
0202 80 01 17 STA PADD an output port. 
0205 80 00 17 STA PAD Begin with $FF in Port A. 
0208 EE 00 17 HERE INC PAD I ncrement Port A. 
020B 4C 08 02 JMP HERE Loop to continuously increment. 

Example 7: Program to Toggle an Output Pin ON and OFF 

Object: Toggle (switch on and off) pin PAO. Start with PAO at logic one. 

0200 A9 01 START LOA $01 Make PAO an output pin by loading 
0202 80 01 17 STA PADD one in bit zero of the DDR. 
0205 80 00 17 STA PAD Initialize PAO to logic one. 
0208 CE 00 17 DEC PAD Decrement PAD. 
020B EE 00 17 INC PAD Increment PAD. 
020E 00 BRK 

If the Port A pins are used to light LEDs (see the experiments 
at the end of this chapter), then the program in Example 6 will 
demonstrate successively all binary numbers from zero to 255 on the 
LEDs. Other instructions may be used to accomplish the same effect, 
but the INC or DEC instructions are very efficient ways to incre
ment or decrement a memory location. The program in Example 
7 produces a 6-microsecond negative-going one-shot pulse at pin 
PAO of Port A. A pulse such as this might be used to trigger an 
oscilloscope or start a counter. A -series of pulses may be produced 
by replacing the BRK instruction with a JMP HERE instruction 
where HERE = $0208. 

INX, INY, DEX, AND DEY INSTRUCTIONS 

There are four instructions that increment or decrement the X 
and Y index registers. They are introduced here because of their 
similarity to the INC and DEC instructions. Their mnemonics, 
descriptions, and op codes are given in Table 3-1. These instructions 
use the implied addressing mode. For example, when the INX 
instruction is used, it is implied that the data to be operated upon 
(incremented in this case) are in the 8-bit X register. No other 
information about the location of the data is necessary, and, there-

Example 8: Program to Demonstrate the INX Instruction 

Object: Successively decrement the X index register. Store the result in output Port A. 

0200 A2 FF START LOX $FF Initialize index register to $FF. 
0202 8E 01 17 STX PADD Make Port A an output port. 
0205 8E 00 17 BACK STX PAD Output the X register to Port A. 
0208 CA DEX Decrement the X register. 
0209 4C 05 02 JMP BACK Loop to successively decrement. 
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fore, in the implied mode, only single-byte instructions are necessary. 
The program in Example 8 on the preceding page illustrates one of 
these instructions. 

INTRODUCTION TO THE EXPERIMENTS 

The experiments in this and subsequent chapters will make ex
tensive use of the I/O Ports on the KIM-I, SYM-l, and AIM 65. 
However, it should be noted that most of these experiments may be 
simulated using R/W memory locations rather than the I/O Ports 
if you do not want to breadboard the I/O circuit described below. 
We recommend the use of the I/O circuit, involving switches and 
output LEDs, because the experiments and demonstrations become 
much more vivid and realistic with the use of this circuit. 

The I/O interface circuit is shown in Fig. 3-2. Note that Port B, 
symbolized by PBD in the examples, is controlled by eight switches. 
This port will be used as an input port, and the switches PB7-PBO 
determine the number that the computer reads with an LDA PBD 
instruction. There are several important points to note in connection 
with the Port B input switches. 

• Do not try to use Port B as an output port by writing $FF in 
its data direction register, PBDD. The switches connected to 
Port B are tied to ground in the logic-zero position, the position 
indicated in Fig. 3-2. Damage to the integrated circuits on the 
microcomputer boards may occur if you make Port B an output 
port with the switches in the logic-zero position. It is also good 
practice to leave the switches in the logic-one position when 
they are not being used . 

• The PBO switch is electronically "debounced." Several experi
ments require debounced switches. 

• The PBO switch may also be used to produce an interrupt signal. 
See Chapter 9 for details regarding interrupts . 

• An Input/Output circuit that can be used to perform the experi
ments in this book with the Apple II microcomputer has been 
described in "Programming and Interfacing the Apple, With 
Experiments," COMPUTE!, January 1981, page 61. 

• Neither the KIM-lor the SYM-l makes pin PB6 available to 
the user. If you have one of these systems you may wish to 
spot glue the PB6 switch in the logic-one position. 

Port A is used as an output port, and the logic levels on the Port 
A pins are indicated by the status of the Port A LEDs. If the logic 
level is one, the corresponding LED will be lit. In order for Port 
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A, symbolized by PAD in the examples, to operate the LEDs, it 
must be configured as an output port by writing $FF to the Port A 
data direction register, symbolized by PADD in the examples and 
experiments. 

If you have some electronics experience, then you may wish to 
breadboard the circuit in Fig. 3-2. A ribbon cable from the applica
tion connector pins given in Fig. 3-2 to a DIP connector (the entire 
cable assembly is called a DIP JUMPER) that plugs into a Proto
board or Superstrip will work nicely. The integrated circuits, 
switches, resistors, and LEDs may be mounted on the Protoboard 
or Superstrip. 

It may be worth pointing out once more that most of the experi
ments can be performed using R/W memory locations rather than 
the I/O ports and the circuit of Fig. 3-2. For persons having little or 
no electronics experience we suggest using R/W locations $03FE for 
Port A, and $03FF for Port B. Use the monitor to preload $03FF with 
the Port B data before running the program that goes with the 
experiment. 

In the experiments that follow, KIM-I, AIM 65, and SYM-l users 
should employ the addresses for PAD, PADD, PBD, and PBDD 
given in Table 3-3. Note that with the I/O board connected to the 
applications connector, all the LEDs will light when the micro
computer system is RESET. The reason for this is that a RESET 
makes all the pins inputs, and as inputs they act like logic-one volt
age levels for the LED TTL drivers. This is an important considera
tion for "power-up" procedures, but is of little concern here. 

EXPERIMENT NO. 
Step 1 

Load the program in Example 1. 

0200 A9 FF START LDA $FF Set the DDR for Port A so that 
0202 8D 01 17 STA PADD all the pins are outputs. 
0205 A9 Cl LDA $Cl Set pins PA7, PA6, and PAO 
0207 8D 00 17 STA PAD to logic one, others to logic zero. 
020A 00 BRK 

Step 2 

Execute the program and observe the effect on the LEDs. Which 
LEDs on the I/O board glow? 
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(The PA7, PA6, and PAO LEDs should glow.) 

Step 3 

Change the program byte at $0206 to $55 and run the program 
again. Which LEDs glow? 

(The PA6, PA4, PA2, and PAO LEDs should glow.) 

Step 4 

Experiment with various values for the program byte at $0206. 
What would you need at this location to turn all of the LEDs off? 

(A $00 in location $0206 would turn the LEDs off.) 

EXPERIMENT NO. 2 

Step 1 

Load the program in Example 2. 

0200 A9 00 START LOA $00 Initialize Port B to be an 
0202 80 03 17 STA PBOO input port by clearing OOR. 
0205 AD 02 17 LOA PBO Read the port. 
0208 85 00 STA lOZ Store port data in lOZ. 
020A 00 BRK 

Step 2 

Set the input switches at Port B to logic one. Execute the pro
gram. 

Step 3 

Examine the contents of location $0000. Does it reflect values of 
the switch settings? Remember that you may not have control 
over PB6. 

Step 4 

Experiment with different switch settings, checking location $0000 
after each run of the program to confirm your switch settings. 
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EXPERIMENT NO. 3 

Step 1 

Load the program in Example 3. 

0200 A9 FF START lOA $FF Initialize Port A to be 
0202 80 01 17 STA PADD an output port. 
0205 AD 02 17 lOA PBD Get data from Port B. 
0208 80 00 17 STA PAD Transfer to Port A. 
020B 00 BRK 

Step 2 

Set the switches on the I/O board to any desired value. Execute 
the program. 

Step 3 

Campare the LEDs with the switch settings. 

EXPERIMENT NO. 4 

Step 1 

Load and execute the program in Example 4. 

0200 A9 FF START LOA $FF 
0202 80 01 17 STA PADD 
0205 AD 02 17 HERE lOA PBD Get data from Port B. 
0208 80 00 17 STA PAD Store it in Port A. 
020B 4C 05 02 JMP HERE Reset program counter to $0205. 

Step 2 

Vary the settings of the input switches at Port B while the pro
gram is running. Explain your results. 

(The LEDs will follow the switch settings because the program is 
in a loop that inputs the switch settings and outputs them to the 
LEDs.) 

EXPERIMENT NO. 5 

Step 1 

Load and execute the program in Example 6. Describe what 
you observe. 

0200 A9 FF START LOA $FF Initialize Port A to be 
0202 80 01 17 STA PADD a n output po rt. 
0205 80 00 17 STA PAD Begin with $FF in Port A. 
0208 EE 00 17 HERE INC PAD Increment Port A. 
020B 4C 08 02 JMP HERE Loop to continuously increment. 
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(All the LEDs appear to glow. The reason is that they are being 
turned on and off so rapidly that the eye does not perceive them 
switching. ) 

Step 2 

Starting with the first instruction, single-step through the pro
gram, paying close attention to the LEDs on the I/O board and the 
instructions as they are executed. Note how the loop works by ob
serving the program counter. Explain your observations. 

(When the program is single stepped the user can observe that the 
Port A LEDs are actually "counting" in binary. The reason is that 
the binary number in Port A is continually being incremented by 
the INC instruction.) 

EXPERIMENT NO. 6 

Step 1 

Load the program in Example 7, replacing the BRK statement 
by a IMP HERE instruction, namely 4C 08 02. A listing follows: 

0200 A9 01 START lOA $01 Make PAO an output pin by 
0202 8D 01 17 STA PADD loading a one in bit zero of its DDR. 
0205 8D 00 17 STA PAD Initialize PAO to logic one. 
0208 CE 00 17 HERE DEC PAD Decrement PAD. 
020B EE 00 17 INC PAD Increment PAD. 
020E 4C 08 02 JMP HERE 

Step 2 

Execute the program and describe what you observe. Why does 
this happen? Would you expect to observe this behavior based upon 
your understanding of the program? Can you observe any changes 
at the PAO LED as the program is executing? Why not? 

(All the LEDs appear to glow continuously, but the PAO LED is 
actually being toggled. The eye cannot perceive its off state whose 
duration is only six microseconds.) 

Step 3 

Can you suggest a method that could be used to observe the be
havior at PAO? There are several that may be used. 
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(The single-step mode is probably the easiest to implement. Place 
the program in the single-step mode and again run the program. ) 

Step 4 

Is it possible to observe any change at the PAO LED in the 
single-step mode? When do the changes take place? Is this reason
able? 

EXPERIMENT NO. 7 
Step 1 

Load and execute the program in Example 8. 

0200 A2 FF START lOX $FF I nitialize the X register to $FF. 
0202 8E OJ 17 STX PADD Make Port A an output port. 
0205 8E 00 17 BACK STX PAD X into Port A. 
0208 CA DEX Decrement X. 
0209 4C 05 02 JMP BACK 

Step 2 

Describe and explain the effect you expect to observe on the Port 
A LEDs? Do you observe this effect? 

Step 3 

Single step this program and compare its effect on the Port A 
LEDs with the results of the program in Example 6. 

(The program of Example 6 starts counting from $00 and goes up. 
This program counts backward. The counting can only be observed 
in the single-step mode.) 

EXPERIMENT NO. 8 
Step 1 

Write a program to toggle pin PAO. Use the Y register and the 
DEY instruction. Initialize PAO to logic one before the toggle 
operation starts. Put the toggle operation in a loop. 

Step 2 

Load, execute, and single step your program to test your success. 
(One possible answer is the following program.) 

0200 AO 01 START LOY $01 Initialize PAO to be output 
0202 8C 01 17 STY PADD pin. 

0205 8C 00 17 THERE STY PAD Set PAO to logic one. 

0208 88 DEY Decrement the Y register. 

0209 4C 05 02 JMP THERE loop to continuously decrement. 
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CHAPTER 4 

Logical Operations 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand and use the AND, ORA, and EOR instructions. See 
Table 4-1 for a summary. 

• Understand the concept of masking. 
• Perform complementation with the EOR instruction. 
• Be able to set individual bits in a memory location to either 

binary one or binary zero. 

INTRODUCTION 

Because he works with logic circuits and is familiar with digital 
techniques, the experienced logic-circuit designer will immediately 
recognize the importance of the logical operations. He is aware that 
logical operations are involved in such diverse designs as digital 
bathroom scales and cruise missiles. However, the beginner fre
quently wonders how the logical instructions will be used. We can 
only promise that the answers will become obvious as we proceed. 
Once the skills with the fundamentals are obtained, then potential 
applications begin to appear. 

One historical note: The logical operations originate in an area 
of mathematics called Boolean algebra. George Boole was a 19th 
century mathematician who could not possibly have anticipated the 
widespread use of his work in symbolic logic. The moral should 
be obvious. 
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Table 4-1. Summary of Instructions and Op Codes 
Introduced in Chapter 4 

Addressing Mode 

Instruction Description Immediate Absolute Zero·Page 

AND AND Memory with Accumulator 29 2D 25 
ORA OR Memory with Accumulator 09 OD 05 
EOR EXCLUSIVE-OR Memory with 49 4D 45 

Accumulator 

LOGICAL OPERATIONS 

There are four logical operations that we will use. To describe 
them, let A and B stand for I-bit binary numbers. The four logical 
operations are: 

• The AND operation, symbolized by A· B." A· B is read "A and B." 
• The OR operation, symbolized by A + B." A + B is read "A or B." 
• The Exclusive OR (EOR) operation, symbolized by A \Il B." 

A \Il B is read "A e-or B" or "A x-or B." 
• Ihe COMPLEMENT (or inversion] cperation, symbolized by 

A. That is, the complement of A is A. A is read "not A." 

Table 4-2 summarizes the operations with truth tables, and it gives 
all the possible combinations of the operations for I-bit numbers. 
Fig. 4-1 gives the logic design symbols for each operation. The 
Exclusive-oR function in Fig. 4-1 is not a special gate because it 
can be implemented with ANDS and ORS; that is, A \Il B = (A, B) + 
(A·B). 

A and B need not be I-bit binary numbers. An 8-bit microcom
puter operates on eight bits simultaneously. Any 8-bit logical opera-

Table 4·2. Summary of Logical Operations 

AND OR EOR Complement 

A B A·B A B A+B A B A\IlB A A 
---

I 1 1 1 1 1 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 0 1 
0 1 0 0 1 1 0 1 1 
0 0 0 0 0 0 0 0 0 
1·1 = 1 1 + 1 = 1 l\Ill=O 1=0 
1 . 0 = 0 1+0=1 l\IlO=1 0=1 
0·1 = 0 0+1=1 O\Ill=1 
0·0= 0 0+0=0 0\Il0=0 

°The symbols fI , V, and -V- frequently replace ., +, and \Il, respectively. The 
dot (.) is sometimes understood; that is, AB = A·B. -\ 
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±[yL ~ 
AND OR 

Fig. 4·1. Logic symbols for the AND, OR, 
EOR, and COMPLEMENT operations. 

±;~ V 
EOR COMPLEMENT 

(INVERT) 

tion can be performed by doing the single-bit operation on cor
responding bits. If the eight bits of A are represented by A7, A6, 
A5, ... , AO, the eight bits of B by B7, B6, B5 ... , BO, and if the 
answer to A· B is C, then the operation A· B = C is realized by 

A7· B7=C7 
A6· B6= C6 
A5· B5 = C5 

AO· BO= CO 

Table 4-3 gives 8-bit examples for all four operations. It also sug
gests that the work is easier to do if the operation is arranged so 
that the binary numbers are placed one under the other. Table 4-3 
also expresses the numbers and the results of the operations in hexa
decimal. It is worthwhile to familiarize yourself with the operations 
and results in hexadecimal since this is the form that will be used 
in programs. The experiments at the end of this chapter will provide 
additional practice. The operations may be summarized as follows: 

• The result of an AND is one only if both bits are one. 
• The result of an OR is zero only if both bits are zero. 
• The result of an EOR is zero if the bits are alike; otherwise it 

is one. 
• The complement of a one is zero and vice versa. 

Table 4-3. Examples of 8-Bit Logical Operations 

AND OR EOR 

A = 1100 1100 = $CC + A = 1 1 00 1 100 = $CC 
ffi 

A = 11 00 1 100 = $CC 
B = 1010 1010 = $AA B = 1010 1010 = $AA B = 1010 1010 = $AA 

C = 1000 1000 = $88 C = 1110 1110 = $EE C = 01100110 = $66 
Complement 

A = 1100 1100 = $CC 

A = 0011 0011 = $33 
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The preceding four statements are easy to remember, and with them 
truth tables such as the ones in Table 4-2 can be constructed. 

Before turning to the 6502 logical instructions, we note that 
the instruction set does not include a COMPLEMENT operation. 
To produce the complement of an 8-bit number, the Exclusive OR 

operation (EOR) is performed with the number to be complemented 
and an 8-bit binary number having a one in every bit; that is, $FF. 
See Example 1. The result 

A ffi $FF = A, 

illustrated in Example 1, is general. It will be used to produce the 
complement of a number. 

Example 1: Complementing an 8-Bit Number Using Exlusive OR Operation 

Let A = 1100 1100 = $CC. Then 

ffi A = 1100 1100 = $CC 
1111 1111 = $FF 

ond A = 1100 1100 = $CC 

A ffi $FF = 0011 0011 = $33 

showing that in this case A ffi $FF = A. 
A = 0011 0011 = $33 

AND, ORA, AND EOR INSTRUCTIONS 

• The AND instruction forms the logical AND operation with a 
byte of data from memory and the contents of the accumulator. 
The result is stored in the accumulator. Symbolically A· M -> A . 

• The ORA instruction forms the logical OR operation with a 
byte of data from memory and the contents of the accumulator. 
The result is stored in the accumulator. Symbolically A + M -> A. 

• The EOR instruction forms the Exclusive OR operation with a 
byte of data from memory and the contents of the accumulator. 
The result is stored in the accumulator. Symbolically A ffi 
M-> A. 

A variety of addressing modes are available for these instructions, 
including immediate, absolute, and zero-page. These modes were 
described in Chapter 2; you may want to review that material before 
proceeding to study the programs. 

PROGRAMS TO DEMONSTRATE ORA, AND, 
AND EOR INSTRUCTIONS 

In Examples 2, 3, and 4 we list programs that will demonstrate 
each of the three instructions, ORA, AND, and EOR. The two 
numbers to be used in the operations are stored at addresses $0000 
and $0001. The result of the logical operation is stored in Port A 
so you can see the result on the Port A LEDs. It would be equally 
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suitable to store the result in location $0003, which could then be 
examined after executing the program to find the result of the 
operation. These three programs will be used in the experiments to 
see what happens when specific binary numbers are ANDed, oRed, 
EORed, and complemented. 

Example 2: Program to Demonstrate the ORA Instruction 

Object: Find R +5 and output the result to Port A. 

$0000 = R 
$0001 = 5 
$AOOI = PAD 
$A003 = PADD 
0200 A9 FF 
0202 80 03 AO 
0205 A500 
0207 05 01 
0209 8001 AO 
020C 00 

START LDA $FF 
STA PADD 
LOA R 
ORA S 
STA PAD 
BRK 

Set up Port A to be 
on output port. 
Get the first number. 
OR it with the second number. 
Output the result to Port A. 
Finish. 

Example 3: Program to Demonstrate the AND Instruction 

Object: Fi nd R· S and output the result to Port A. 

$0000 = R 
$0001 = S 
$~= PAD 
$'WIllI = PADO 
0200 A9 FF 
0202 80 01 17 
0205 A5 00 
0207 25 01 
0209 8000 17 
020C 00 

START LOA $FF 
STA PADD 
LOA R 
AND S 
STA PAD 
BRK 

Get the first number. 
AND it with the second number, 
then output the result to Port A. 
Finish. 

Example 4: Program to Demonstrate the EOR Instruction 

Object: Find REElS and output the result to Port A. 

$0000 = R 
$0001 =S 
$1700 = PAD 
$1701 = PADD 
0200 A9 FF 
0202 80 01 17 
0205 A5 00 
0207 al5 01 
0209 8000 17 
020C 00 

START LOA $FF 
STA PADD 
LOA R 
EOR S 
STA PAD 
BRK 

Get the first number. 
EOR it with the second number. 
Output the result to Port A. 
Finish. 

USING ORA, AND, AND EOR INSTRUCTIONS 
TO CONTROL BIT VALUES 

The logical operation instructions are frequently used to change 
specific bits in a memory location. These techniques are used quite 
frequently in programs. To illustrate, suppose that we wish to 
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change PAD (bit zero of Port A) to be an output pin, leaving all 
the other pins of Port A unaffected as far as their input/ output 
status is concerned. Recall from Chapter 3 that the I/O status of a 
pin is determined by the corresponding bit value in the DDR. If 
PADD is the Port A DDR, then our task is to set bit zero of PADD 
to one, leaving the others unaffected. This may be accomplished 
by oRing PADD with 0000 0001 = $01. Note that a + x = X where 
X is any bit value. Thus, oRing with a zero leaves the corresponding 
bit unchanged. On the other hand 1 + X = 1 where X is any bit 
value. Thus, oRing a bit with a one insures that a one will appear in 
that bit. Example 5 illustrates how bit six of a number may be set 
to a binary one using the OR operation. In the experiments we will 
use a program to demonstrate these ideas. 

Example 5: Setting a Bit to a Binary One with the OR Operation 

Given the S·bit binary number 1001 1010 = $9A, modify it to have a one in bit six, 
but leave the other bits unchanged. 

Solution: This may be accomplished by ORing the given number with the binary 
number 0100 0000 = $40, since 

1001 1010 = $9A 
+ 0100 0000 = $40 

= 1101 1010 = $DA 

How can you set bit seven to binary one? Bit five? Bit four? 

The A:-ID operation is used to clear a bit to binary zero. Suppose 
wc wish to clear bit seven to zero in the binary number 1100 1010 = 
$CA. This is accomplished by ANDing the given number with a num
ber having a zero in the specified bit and binary ones in all the 
other bits. For the case under consideration the appropriate number 
is Olll llll = $7F. See Example 6 for details. Further practice in 
clearing bits will be given in the experiments. 

Example 6: Clearing a Bit to Zero with the AND Operation 

Show that bit seven in $CA may be cleared (set equal to zero) without affecting the 
other bit values by ANDing with $7F. 

Solution: 1100 1010 = $CA 
0111 1111 = $7F 

0100 1010 = $4A 

How would you clear bit six? Bit five? Bit four? 

The process of clearing one or more bits of a given number, leav
ing the other bits unchanged, is called masking. The cleared bits 
are said to be masked. For example, to mask the low-order nibble 
of an 8-bit number, it is AiXDed with $FO = llll 0000. Masking the 
high-order nibble requires an AND operation with $OF = 0000 llll. 
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How would you mask the odd numbered bits of an 8-bit binary 
number? 

To change a bit to its complement, that is, change a binary zero 
to a binary one and vice versa, perform an Exclusive-oR operation 
with ones in the bit positions to be changed. Given the number 
llOO OlDl = $C5, the lowest four bits can be changed to have 
opposite bit values by forming an Exclusive-oR with 0000 1lll = 
$OF. Try this, using the truth table in Table 4-2. The program in 
Example 4 will be used to demonstrate this in the experiments at 
the end of this chapter. 

OTHER USES OF LOGICAL OPERATIONS 

As another example of how the logical operation instructions 
might be used, suppose that a microcomputer is operating a business 
security system consisting of: 

• A smoke detector that produces a logic one on PB7 (pin seven 
of Port B) if it detects smoke. 

• A touch sensitive detector on the safe produces a logic zero 
on PB2 if the safe is touched. 

• A switch connected to PBS to disable the security system during 
opening hours. 

The programs listed in Examples 7 through 9 illustrate how the Port 
B pins might be tested to check the detectors and control the system. 
Note that these programs are illustrative examples. A microproc
essor based security system would have a much more complex 
program, including as segments some of the programs illustrated 
here. 

Several of the ideas mentioned in the previous section are illus
trated with the programs in Examples 7 and 8. For example, in the 
fourth instruction in the program in Example 7 the concept of 
masking is used to mask all of the bits of Port B except bit seven, 
since that is the one connected to the smoke detector. In the pro
gram in Example 8, the EOR $FF instruction complements the 
touch sensitive detector bit (and all the other bits) to produce a 
logic one when PB2 is at logic zero. Next, all the other bits except 

Example 7: Program to Test the Logic Level of Bit Seven of an Input Port 

Object: Make PA7 (pin .even of Port A) logic one if the .moke deteclor i. on, other. 
wi.e output a logic zero to PA7. 

0220 A9 FF BEGIN 
0222 BD 03 AO 
0225 AD 00 AO HERE 
0228 29 80 
022A 8D 01 AO 
022D 4C 25 02 

LDA $FF 
STA PADD 
LDA PBD 
AND $80 
STA PAD 
JMP HERE 

Load the Port A data direction 
regi.ter to make Port A an output port. 
Read Port B, then AND the contents 
of Port B with $80 to mask all except 
bit seven. Output result to Port A. 
Loop to read Port B continuously. 
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Example 8: Program to Test the logic level of Bit Two of an Input Port 

Obiecf: Continue the program above, but also make PA2 equal to logic one if the safe 
is touched; that is, if PB2 is at logic zero. 

0220 A9 FF BEGIN LOA $FF 
0222 80 03 AO STA PADD 
0225 AD 00 AO HERE LOA PBD 
0228 29 80 AND $80 Mask bits zero through six. 
022A 80 01 AO STA PAD Output smoke detector level to Part A. 
0220 AD 00 AO LOA PBD Read Part B again, then complement its 
0230 49 FF EOR $FF contents by an Exclusive-OR with $FF. 
0232 29 04 AND $04 Mask all bits except bit two. 
0234 00 01 AO ORA PAD OR the safe bit with the existing 
0237 80 01 AO STA PAD contents of Port A. Result into Port A. 
023A 4C 25 02 JMP HERE Loop to read the smoke detector and 

the safe inputs continuously. 

bit two are masked by the AND $04 instruction, isolating the logic 
value of bit two, the touch sensitive detector input. If this bit is a 
one, then the next ORA PAD will set bit two of PAD to logic one 
without affecting the other bits. In other words, a bit has been 
set using an ORA instruction as described in the previous section. 
The ST A PAD instruction outputs both the smoke detector infor
mation and the touch sensitive detector information to Port A. All 
of this logic is placed in a loop by the T\1P HERE instruction. 

Before proceeding, you are urged to study the programs until 
you understand each stcp. It is educational to "follow the accumu
lator." To illustrate, consider the program in Example fl, and assume 
that PB7 is at logic one (the smoke detector is on) and PB2 is at 
logic zero (the safe has been touched). The program should cause 
both PA 7 and PA2 of Port A to be at logic one. Starting at HERE 
in the program, list the contents of the accumulator after the com
pletion of each instruction, as shown in Table 4-4. 

The program in Example 9 continues with the same theme. \Ve 
would like the security system to be able to be disabled, for example 

Step Label 

1 HERE 
2 
3 
4 
5 
6 
7 
8 
9 
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Table 4·4. Trace of the Accumulator Through 
the Program of Example 8 

Accumulator Comments 

lXXX XOXX PB7 is at logic one, PB2 is at logic zero. X = don't care, 

1000 0000 Result of the AND with 1000 0000 = $80. 
1000 0000 Result into Port A, turning PA7 on. 

lXXX XOXX PBD into the accumulator again. 
OX XX X1XX Result of EOR with $FF. All the bits are complemented. 
0000 0100 Result of AND with $04. 
1000 0100 Result of ORA with PAD containing 1000 0000. 
1000 0100 Result into Port A, turning PA7 and PA2 on. 

XXXX XXXX Program jumps to HERE to read Port B again. 



if the alarms have already sounded or something in the system is 
being repaired. Recall from our specifications that PB5 (pin five of 
Port B) is used to implement this function. A logic zero on PB5 
disables the security system, and a logic one enables it. The inter
esting feature of this program is the use of the indirect jump in
struction. Refer to the program and note that as long as PB5 is at 
logic zero, the IMP instruction will restart the program at $0200 
because the contents of locations $0000 and $0001 are $00 and $02, 
respectively. But if PB5 is at logic one, then $20 is stored at the 
location whose address is $0000, and the program will jump to 
BEGIN. There may be more efficient ways of accomplishing our 
objective, but our purpose of illustrating several instructions has 
been achieved. 

There are several other bit tests that are important in many appli
cations. For example, in an event counter we may wish to test 
whether an input port bit received a negative pulse, that is, a logic 
one to logic-zero to logic-one transition. Or we may be interested 
in whether or not an input bit has changed its state. Programs such 
as this make use of branch instructions, and illustrations will be 
postponed until Chapter 6. 

Example 9: Using an Indirect Jump Instruction to Control the Security System 

Ohiect: Reod PBS to see if the system should be disabled. A logic zero on PBS disables 
it, ond a logic one enables it. 

$0000 = LOI; contains the AOL for the indirect jump instruction. 
$0001 = HII; contoins the AOH for the indirect jump instruction. 

0200 A900 
0202 80 01 AO 
0205 A9 FF 
0207 80 03 AO 
020A A902 
020C 85 01 
020E AD 00 AO 
0211 29 20 
0213 85 00 
0215 6C 00 00 

0220 AD 00 AO 
0223 29 80 
0225 80 01 AO 
0228 AD 00 AO 
022B 49 FF 
0220 29 04 

ORIGIN 

HERE 

BEGIN 

LOA $00 
STA PAD 
LOA $FF 
STA PAOO 
LOA $02 
STA HII 
LOA PSO 
AND $20 
STA LOI 
JMP (lOI) 

Store $00 in Port A to starl 011 
the outputs at logic zero. 
Initialize Port A to be an output 
port by putting $FF into its OOR. 
Initialize indirect JMP by putting 
PC H of $02 in location $0001. 
Read Port S to get PBS value. 
Mask all but bit five. 
Result into $0000 which will contain 
PCl for indirect JMP. 
(Dotted locations are "don't care" 

values.) 

Check smoke detector. 
Mask bits zero through six. 
Result into Port A. 
Now get result from the safe. 
Complement it. 
Mask all bits except bit two. 

022F 0001 AO 
0232 80 01 AO 

LOA PBO 
AND $80 
STA PAD 
LOA PBO 
EOR $FF 
AND $04 
ORA PAD 
STA PAD 
JMP HERE 

OR the safe bit with the existi n9 
contents of Port A, then output the result. 

0235 4C OE 02 

75 



INTRODUCTION TO THE EXPERIMENTS 

Most of these experiments make use of the I/O board. If you do 
not want to use this board, then store the results of the operations 
in any available memory location, to be examined when the program 
is finished. KIM-l users should always begin the experiments by 
loading locations $17FE and $17FF with numbers $00 and $lC, 
respectively. Also, always make sure the single-step mode is not 
being used, unless you are specifically requested to use it. 

EXPERIMENT NO. 1 

Step 1 

Load the program described in Example 2. 

0200 A9 FF START LOA $FF Set up Port A to be 
0202 80 03 AO STA PADD an output port. 
0205 A5 00 LOA R Get the first number. 
0207 05 01 ORA S OR it with the second number. 
0209 80 01 AO STA PAD Output the result to Port A. 
020C 00 BRK Finish. 

Step 2 

The numbers to be oned are put into locations $0000 and $000l. 
We will use the program to learn some facts about the OR operation. 
For each pair of numbers given below, write the result obtained 
from DRing them. Express the result in hexadecimal. 

$00 + $FO = __ _ $00 + $55 = _ ~ __ 
$00 + $OF = . __ _ $00 + $FF = __ _ 

What do you conclude is the result of DRing any number with $OO'? 

$FF + $34 = __ _ $FF + $C5 = __ _ 

What do you conclude is the result of DRing any number with $FF. 

$7F + $80 = ~~_ 
$Al + $5E = ~~_ 

$33 + $CC = __ _ 
$EE + $11= __ 

The last four problems involve DRing a number with its complement. 
What do you conclude is the result of DRing a number with its 
complement? 
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EXPERIMENT NO. 2 

Step 1 

In this experiment we will experiment with setting bits to binary 
one. Load the following program. Leave the blank byte unchanged 
until STEP 2. 

0200 A9 FF START lOA $FF 
0202 80 01 17 STA PADD 
0205 A9 00 LDA $00 
0207 80 00 17 STA PAD Initialize Port A to $00. 
020A A9_ LDA load A with a byte. 
020C 0000 17 ORA PAD OR it with Port A's contents. 
020F 80 00 17 STA PAD 
0212 00 BRK Finish. 

Step 2 

Put a number in the blank byte, location $020B, that will set bit 
zero of Port A to logic one. Run the program to test your answer. 
What numbers must be loaded into the blank byte at location $020B 
to set the following bits to logic one? Fill in the following blanks 
with the correct hexadecimal numbers. 

Bit Number Byte Bit Number Byte Bit Numbers Byte 

1 4 3, 1 ---
2 --- 6 7,0 
3 --- 7 --- 6,3 

EXPERIMENT NO. 3 

Step 1 
Load the program described in Example 3. The numbers to be 

ANDed are put in locations $0000 and $0001. The result of the AND 
operation appears at Port A. 

0200 A9 FF START 
0202 80 01 17 
0205 A500 
0207 25 01 
0209 80 00 17 
020C 00 

Step 2 

lOA $FF 
STA PADD 
lOA R 
AND S 
STA PAD 
BRK 

Get the first number. 
AND it with the second number, 
then output the result to Port A. 
Finish. 

For each pair of numbers given below, write the result obtained 
by ANDing them. 

$00 . $FF = __ _ $00 . $37 = __ _ 
$00 . $7F = $00 . $00 = 

What do you conclude is the result of ANDing a number with $OO? 
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$FF . $11 = ~ __ $FF . $5C = ~ __ 

What do you conclude is the result of ANDing a number with $FF? 

$OF . $88 = __ _ $FO . $88 = __ _ 
Can you describe the effect of an AND operation with $OF? $FO? 

EXPERIMENT NO. 4 
Step 1 

Load this program. The blank byte will be filled in STEP 2. 

0200 A9 FF 
0202 80 03 AO 
0205 80 01 AO 
0208 A9_ 
020A 2001 AO 
0200 8001 AO 
0210 00 

Step 2 

START LOA $FF 
STA PADD 
STA PAD 
LOA 
AND PAD 
STA PAD 
8RK 

Set all the bits of Port A to logic 
one. 
AND with Contents of Port A. 

What number must you load in the blank byte, location $0209, to 
clear the following bits to logic zero? Fill in the blanks with hexa
decimal numbers. 

Bit Number Byte Bit Number Byte Bit Numbers Byte 
0 --- 5 --- 7,6,5,4 
1 6 3,2,l,0 
2 7 --- 7,5,3,1 ---

Either find your answers using hand calculations and test your 
logic with the program, or use the program to find the answer. 

EXPERIMENT NO. 5 
Step 1 

Load the program described in Example 4. The numbers to be 
EORed are stored in locations $0000 and $0001. The result is stored in 
Port A. 

0200 A9 FF START LOA $FF 
0202 80 01 17 STA PADD 
0205 AS 00 LOA R Get the first number. 
0207 45 01 EOR S EOR it with the second number. 
0209 80 00 17 STA PAD Output the result to Port A. 
020C 00 BRK Finish. 
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Step 2 

Proceeding as in the previous experiments, use the program to 
find the following answers in hexadecimal. 

$FF EB $00 = __ _ $FF EB $C8 = __ _ 
$FF EB $55 = __ _ $FF EB $81 = __ _ 

Compare your answers with the complements of the numbers $00, 
$55, $C8, and $81. What do you conclude is the result of EORing a 
number with $FF? 

$C3 EB $3C = __ _ $A5 EB $5A = __ _ 
$44 EB $BB = __ _ $82 EB $7D = __ _ 

The numbers to be EORed in the last four problems are complements 
of each other. What do you conclude is the result of EORing a num
ber with its complement? 

$01 EB $OF = __ _ $80 EB $OF = __ _ 
$02 EB $OF = __ _ $40 EB $OF = __ _ 

From this last result, explain how you can change the bit value of 
a particular bit; that is, how can you complement any specific bit 
or group of bits (up to eight bits). 

EXPERIMENT NO.6 

Step 1 

The program listed below toggles PAO (pin zero of Port A) using 
the EOR instruction. It illustrates how a specific bit, bit zero in 
this case, may be switched in its logic value. Load the following 
program. 

0200 A9 FF BEGIN lOA $FF I nitialize the Port A 
0202 8D 01 17 STA PADD DDR. 
0205 8D 00 17 STA PAD Initialize all LEDs to glow. 

0208 A9 01 HERE LDA $01 Bit zero in A set to one. 
020A 4D 00 17 EOR PAD EOR with contents of PAD. 
020D 8D 00 17 STA PAD Result into PAD. 

0210 4C 08 02 JMP HERE Loop to logg Ie PAO. 
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Step 2 

Execute the program. What do you observe? What can you do to 
see PAO toggle? 

Step 3 

Single step the program if you want to see the P AO LED toggle. 
At the same time, prepare a table similar to the one in Table 4-4, 
tracing the contents of the accumulator. At what instruction does 
the PAO LED change its state? What effect does the EOR PAD 
instruction have on the other bits of PAD? 

You have obtained a good deal of practice with the logical opera
tions if you have completed the previous experiments. You may 
wish to experiment with the programs in Examples 7 through 9, 
the security system program. These programs were written so the 
ASK I/O board switches simulate the smoke detector, touch sensi
tive detector, and system-disable inputs, while the Port A LEDs 
simulate the output conditions. You might also try to write programs 
to p~ th~eJ3oolean Alge"Q.ra]heorems: A EB B = (A'B) + (A, 
B), A+B = A·B, and A·B = A+B. 
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CHAPTER 5 

Arithmetic Operations 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand some of the functions of the processor status reg
ister. 

• Use the ADC, SBC, CLC, SEC, CLD, and SED instructions to 
add and subtract binary or decimal numbers. See Table 5-1 
for a summary of these instructions. 

• Do multibyte addition and subtraction. 
• Understand and use twos complement arithmetic. 
• Do elementary signed number arithmetic. 

INTRODUCTION 

Probably the least surprising fact about a microprocessor is that 
it performs some arithmetic operations. In this age of electronic 
calculators, one of the most surprising facts to the beginner is that 
microprocessors do not have multiply and divide instructions. In 
Chapter 7 we will see that short programs can be written to perform 
these operations; for the present, however, we will concentrate 
on addition and subtraction. In this chapter, "+" will mean "add." 
No confusion with the "OR" operation described in the previous 
chapter is likely to occur because the intended operation will be 
clear from its context. 

6502 PROCESSOR STATUS REGISTER 

Several of the 6502 internal registers have already been men
tioned. A complete model of the 6502 register structure is shown 
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Instruction 

ADC 

SBC 

ClC 
SEC 
ClD 
SED 
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Table 5·1. Summary of Instructions and Op Codes 
Introduced in Chapter 5 

Addressing Mode 

Description Immediate Absolute Zero·Page 

Add Memory to Accumulator 69 6D 65 
with Carry 
Subtract Memory from Accu- E9 ED E5 
mulator with Borrow 
Clear the Carry Flag 
Set the Carry Flag 
Clear the Decimal Mode Flag 
Set the Decimal Mode Flag 

PROGRAMMING MODEL R6500 
7 0 

I A I ACCUMULATOR 

7 0 

I Y I INDEX REGISTER Y 

7 0 

I X I INDEX REGISTER X 

15 7 0 

I PCH I 
7 

I 
I N I V I 

PCL I PROGRAM COUNTER 

0 

S I STACK POINTER 

0 

I BID I I I Z I C I ~~g CESSOR STATUS 
ISTER:P· 

I CARRY 

ZERO 

INTERRUPT DISABLE 

DECIMAL MODE 

BREAK COMMAND 

UNUSED 

OVERFLOW 

NEGATIVE 

Courtesy Rockwell International 

Fig_ 5-L Model of 6502 internal register structure. 

Implied 

18 
38 
D8 
F8 



in Fig. 5-1. The register of the greatest interest in the next few 
chapters will be the processor status register, symbolized by P. 

Each bit of the P register is called a status hit, and each bit has 
its own identity, independent of the other status bits in the register. 
The status bits are frequently called condition codes or flags because 
they act as signals for certain conditions. We make the following 
definitions: 

• If the carry flag is set, then there is a one in bit zero, the carry 
bit, of the P register. 

• If the carry flag is clear, then there is a zero in bit zero, the 
carry bit, of the P register. 

Similar definitions apply to other bits (or flags) of the P register. 
The carry idea is related to addition, as a recollection of elementary 
arithmetic will suggest. That it is also related to subtraction will 
become clear in the subsequent discussion. 

FLAG MODIFICATION INSTRUCTIONS 

Refer again to Table 5-1 for a summary of the CLC, SEC, CLD, 
and SED instructions. These single-byte instructions use implied ad
dressing because their only effect is to change flags in the P register. 
No address is needed after the op code since the processor knows 
the P register is an internal register. Table 5-2 gives some additional 
information about the flag modification instructions. The circum
stances under which these instructions are used will become ap
parent from the examples and programs. More details connected 
with the P register will be given in Chapter 6. 

Table 5-2. Descriptions of CLC, SEC, CLD, and SED Instructions 

Mnemonic OP Code Operation Logical Description 

I D I I I c I ClC 18 Clear the Carry Flag 
p I I I I 

f 0 

SEC Set the Carry Flag 
p I I I I I D I I I c I 38 I I 

ClD 08 Clear the Decimal Mode Flag p I I I I I D I I I c I 
! 0 

SED FB Set the Decimal Mode Flag 
p I I I I I D I I I c I 

f I 
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ADC INSTRUCTION 

The truth table in Table 5-3 summarizes the binary addition 
operation for single-bit numbers. The sum of two single-bit num
bers produces a result, R, and a carry, C. C is zero unless two 
binary ones were added. The carry, C, must be added to the next 
most significant bit in multibit operations such as the 8-bit opera
tions performed by the 6502. Refer to Fig. 5-2 for a pictorial repre
sentation of an 8-bit addition that demonstrates the "carry" concept. 
Observe that the carry from the seventh bit is what appears in the 
carry Hag. If there is a carry, then the carry Hag in the processor 
status register is set to one. If there is no carry, then the C Hag in 
the P register is cleared. The ADC (add with carry) instruction 
is described as follows. 

+ + + + + + + 

1m ~ m1 1BI @1 [@ 1m ~ 
+ + + + + + + + 

~ lm ~ [E] ill] ffiI [ill ~ 

Fig. 5·2. Diagram of an a·bit binary addition, A+B = R with Carry. 

• The ADC instruction adds the contents of a memory location, 
the contents of the accumulator, and the carry Hag. The result 
is stored in the accumulator. The carry Hag is added as a one 
or as a zero. 

• Symbolically the ADC instruction is written A + M + C ~ A, 
where A and M contain 8-bit numbers but C is a I-bit number. 

• If the result of the addition operation exceeds $FF = 25510, 

then the carry Hag is set; otherwise it is cleared. 

In the examples that follow, the status of the carry Hag after the 
operation is indicated to the right of the result. Example 1 illustrates 
how two binary numbers are added. A program to add these same 
two numbers is given in Example 2. 

In Example 2, the carry flag was cleared prior to the ADC in
struction because the state of the carry flag is generally unknown. 
It is always good practice to clear this flag before doing additions. 
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Table 5-3. Truth Table for Binary Addition (R is Result, C is Carry) 

A B R C A+B=R 

0 0 0 0 0+ 0 = 0 [C] = 0 
0 1 a 0+ 1 = 1 [C] = 0 

a 1 0 1 + a = 1 [C] = 0 
0 1 + 1 = 0 [C] = 1 

Example 1: Adding Two Binary Numbers with a Cleared Carry Flag 

Add $85 and $21. Carry flag is clear. 

So/ulion: + $85 = 1000 0101 A 
+ $21 = 0010 0001 M 

0= 0 C 

$A6 = 1010 0110 A [C] = 0 

Example 2: Program to Add Two Binary Numbers 

ObjecI: Add the two binary numbers represented by $85 and $2l. 

0200 08 START CLO Clear the decimal flag to do the addition 
0201 18 CLC in 'he binary mode. Clear carry flag. 
0202 A9 85 LOA $85 Put $85 into the accumulator. 
0204 69 21 AOC $21 Add $2l. 
0206 85 00 STA MEM Store the result in MEM = $0000. 
0208 00 BRK Finish. 

The result of the additiOll is stored in location $0000. It can be 
examined to see if the correct answer, $A6, was obtained. Example 
3 is another illustration of a binary addition. It introduces a new 
complication. Observe that the answer to Example 3 should be 
$153, not $53. In this example, the carry flag indicated that the 
answer exceeded or overflowed the range of numbers that can be 
represented by eight bits. More than one byte is necessary to repre
sent the answer. All is not lost, however, because the carry bit can 
be obtained and stored in a second byte. The program in Example 
4 illustrates this. It is a simple modification of the program in Ex
ample 2. The numbers added are those from Example 3. 

Example 3: Adding Two Binary Numbers that Cause an Overflow 

Add $93 and $CO. Carry flag is clear. 

So/ulion: + $93 = 1001 0011 A 
+ $CO = 1100 0000 M 

0= 0 C 

$53 0101 0011 A [C] = 1 

In Example 4 observe that the complete answer is now contained 
in two bytes, located at addresses $0000 and $0001 that contain the 
least-significant byte of the sum and the most-significant byte of the 
sum, respectively. That is, location $0000 should contain $53 and 
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Example 4: Program to Add Two Binary Numbers and Save the Carry Bit 

Obiecf: Add $93 to $CO and save any carry from this sum in location $0001. 

0200 08 START CLO Clear the decimal flag. 
0201 18 CLC Clear the carry flag. 
0202 A993 LOA $93 Put $93 into A. 
020.4 69 CO AOC $CO Add $CO. 
0206 85 00 STA SUMLO Store the result in SUMLO = $0000. 
0208 A900 LOA $00 Put $00 into A. 
020A 69 00 AOC $00 Add $00 and the carry from the previous 
020C 85 01 STA SUMHI addition. Store in SUMHI = $000l. 
020E 00 BRK Finish. 

location $0001 should contain $01, giving $0153 as the correct 
answer. The program in Example 4 hints at our next problem, add
ing numbers that cannot be represented by a single byte. 

MULTIBYTE ADDITION 

In the event that the numbers to be added require more than one 
byte to represent them, or if the answer cannot be represented with 
a single byte, then so-called "multibyte arithmetic" is required. 
If two bytes are used to represent a number, we call this double
precision arithmetic. If three bytes are used to represent each num
ber in an arithmetic operation, then we speak of triple-precision 
arithmetic. In Example 5, we illustrate a double-precision addition 
by adding $1234 to $05D2. The low-order bytes of the two numbers 
to be added are $34 and $D2, while the high-order bytes are $12 
and $05. The low-order bytes are added first. Any carry from this 
addition is added to the sum of the high-order bytes. The program 
in Example 6 illustrates how double-precision arithmetic is done on 
the microcomputer. Again, it is absolutely essential that the double
precision addition be carried out in the order low-order byte first, 
high-order byte second, because any carry from the first addition 
must be included in the second. 

Example 5: Adding Two-Byte Numbers 

Add $1234 and $0502. Carry flag is elear. 
Solution: + $12 = 0001 0010 A 

+ $05 = 0000 0101 M 
1 1 C (from $34+$02) 

+ $34 = 0011 0100 A 
$02 = 1101 0010 M 
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o 0 C 

$18 = 0001 1000 A [C] = 0 $06 = 0000 0110 A [C] = 1 

Thus, $1234 + $0502 = $1806. 

Example 6: Program to Add Two Two-Byte Numbers 

Obiect: Perform a double-precision addition using the memory assignments given here; 
that is, the numbers to be added are stored in these locations: 

$0301 = Hll; high-order byte of number one 
$0300 = LOI. low-order byte of number one 



0200 08 
0201 18 
0202 AD 00 03 
0205 60 02 03 
0208 80 0403 
020B AD 01 03 
020E 60 03 03 
0211 80 05 03 
0214 00 

$0303 = H12; high-order byte of number two 
$0302 = L02; low-order byte of number two 
$0305 = SHI; high-order byte of the sum 
$0304 = SLO; low-order byte of the sum 

START CLO Clear decimal mode. 
CLC Clear carry flag. 
LOA LOI Get low-order byte of Number 1. 
ADC L02 Add law-order byte of Number 2. 
STA SLO Result into low-order byte of sum. 
LDA H 11 Get high-order byte of Number 1. 
ADC HI2 Add high-order byte of Number 2 and carry, 
STA SHI if any, from previous sum. Result 
BRK into high-order byte of sum. Finish. 

DECIMAL ADDITION 

The 6502 is also capable of adding decimal (base-ten) numbers. 
This is a useful feature because there are instances in which input 
and output data are decimal numbers. The most obvious situation 
is when human beings must input data to the microcomputer or read 
the output of the microcomputer. However, there are less obvious 
situations, such as when a decade counter is interfaced to a micro
computer, providing data in a binary-coded-decimal (bcd) repre
sentation, which must then be operated upon with decimal arith
metic instructions. Other interfacing problems also require decimal 
operations, since numerous instruments output data in the bcd form. 

In the decimal mode, each digit is represented by four bits. The 
conversion scheme is shown in Table 5-4. Since each decimal digit 
requires four bits, a single byte of data represents two decimal digits; 
that is, a two-digit number. Thus, the numbers 0 to 99 are repre
sented by a single byte in memory. If we were to add 48 to 43 and 
output the result to Port A, then since 48 + 43 = 91, the answer ap
pearing at Port A would be 1001 0001 because the bcd represen
tation of nine is 1001 and the bcd representation of one is 000l. 
Refer to Table 5-4 to convert other numbers. If 48 were in some 
memory location, its binary representation would be 0100 1000, 
while 4.3 would be 0100 0011. 

If the microcomputer is going to add two decimal numbers to 
obtain a decimal sum, then the decimal mode flag must be set with 
the SED instruction before the addition is carried out. In the decimal 
mode. the carry flag is set if the sum exceeds 99; otherwise it is 
cleared. The carry bit can be saved in exactly the same way illus
trated in Example 4, and double-precision decimal arithmetic is 
accomplished in exactly the same way that we illustrated in Example 
6, except that the decimal mode flag must be set. 

A program to illustrate the decimal mode by adding 43 to 48 is 
shown in Example 7. Note that it is exactly like the program in 
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Table 5-4. Binary Representation (BCD) of Decimal Digits 

Decimal Digit Binary Code (BCD) 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

Example 2, except the decimal mode Bag is set by the first instruc
tion. Of course, other numbers can be added with the same pro
gram, provided the locations in the program that contain the num
bers to be added are changed. The curious reader is sure to try 
some hexadecimal numbers like $CD + $3F in the decimal mode, 
just to see what happens. 

Example 7: Program to Add Two Decimal Numbers 

Object: Add the decimal numbers 43 and 48. 

0200 F8 START SED Set the decimal made flag. 
0201 18 CLC Clear the carry flag. 
0202 A943 LOA 43 Put 43 into A. 
0204 69 48 AOC 48 Add 48. 
0206 85 00 STA SUM Result into SUM = $0000. 
0208 00 BRK Finish. 

To summarize the use of the carry Bag: 

• The carry Bag should be cleared with a CLC instruction prior 
to doing a sum, unless the state of the carry Bag is known. 

• The carry Hag will be set if the result of a binary sum exceeds 
$FF = 255; otherwise it will be cleared. 

• The carry Bag will be set if the result of a decimal sum exceeds 
99; otherwise it will be cleared. 

• The carry Bag can be used to implement double-precision sums, 
either in the binary mode or the decimal mode, in the event that 
the numbers to be added or the sum cannot be represented by 
a single byte. 

TWOS-COMPLEMENT ARITHMETIC 

Microprocessors and other integrated circuits that handle digital 
information neither subtract nor recognize plus and minus signs. 
To understand how subtraction is performed and signed numbers 
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are handled, an understanding of twos-complement arithmetic is 
necessary. The purpose of this section is to provide the background 
information for subtraction and signed-number arithmetic, topics 
that are covered in the next several sections. The ideas presented 
here will also be useful in Chapter 6 when relative addressing and 
branching are introduced_ 

Recall from elementary arithmetic that three numbers are involved 
in subtraction: the minuend, the subtrahend, and the difference. 
The subtrahend, s, is subtracted from the minuend, ill, to form the 
difference, d_ We can express this in this way, 

m- s =d (1) 

Although most of us do not subtract using the technique that fol
lows, it is possible to subtract by adding the negative of the subtra
hend. This can be expressed as follows, 

m - s = m + (-s) = d (2 ) 

For example, 8 - 5 = 8 + (-5) = 3. 
On the computer, subtraction is performed with this technique, 

namely adding the "negative" of the subtrahend to the minuend. 
'\That is the negative of a binary number? For that matter, what 

is the negative of any number? Mathematicians define the negative 
of a number as that number which when added to the number, gives 
zero. For example 5 + ( -5) = 0, so ( -5) is the negative of +5. To 
summarize, a negative number, (-m) has the property that 

m+ (-m) =0 (3) 

In dealing with binary numbers in a computer, there is no way 
of indicating a "-" sign to inform the computer that the number 
is a negative number. However, it is possible to discover a relation
ship between binary numbers that is identical to Equation 3, and 
that can be used to define the "negative" of a binary number. We 
now prove this. 

Suppose M is an 8-bit binary number. You can easily verify with 
a few examples that 

M + M = $FF (4) 

For examE!e, if M = llOO 0101 = $C5, then M = 001l 1010 = $3A, 
and M + M = llll llll = $FF. This works every time. Since add
ing one to $FF gives $00 (with a one in the carry flag), we can also 
state that 

M+(M+l)=O (5) 

This last equation fits the definition of a negative number perfectly, 
and it requires no minus sign. Note that Equation 5 has exactly the 
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same form as Equation 3. In words, our conclusion is, the "negative" 
of an 8-bit binary number is found by complementing the number 
and adding one. _ 

If M is an 8-bit binary number, then its "negative" is (M + 1). 
The number (M + 1) is not called the "negative" of M in computer 
language. Rather, it is called the twos-complement of M. But re
member, it has all the properties of a negative number, and, there
fore, it can be used in subtraction operations. 

Recall that to subtract a number we may add the negative of the 
number. To subtract an 8-bit binary number M from another 8-bit 
binary number A, we can add the twos-complement of M, namely 
(M + 1). In symbols, 

A-M=A+(M+1) (6) 

Direct subtraction in a microprocessor, as the left-hand side of 
Equation 6 indicates, is difficult to implement. On the other hand, 
complementation of M followed by adding one, as the right-hand 
side of Equation 6 indicates, is relatively simple. Microprocessors 
implement subtraction by performing the right-hand side of Equa
tion 6; that is, the computer reads the data from memory, comple
ments it, adds it to the accumulator, then adds one to get the final 
result. Example 8 will help to illustrate these ideas. 

Carefully study Example 8. Note that the addition operation is 

Example 8: Subtraction by Twos-Complement Addition 

Subtract $33 from $83 using twos-complement arithmetic. 

Solution: Step I-Complement $33. 
$33 = 0011 0011, so $33 = 1100 1100 = $CC 
Step 2-Add 1 to $33. 
$CC + 1 = $CD 
Step 3-Add $CD to $83. 
+ $83 = 1000 0011 A 

$CD = 1100 1101 M + 1 

$50 = 0101 0000 A [C] = 1 

identical to all the previous examples in this chapter. A sharp ob
server would also see that Step 2 in Example 8 would not be neces
sary if the carry flag had been set prior to the entire subtraction 
process. Th~ is, to add M + 1 we could set the carry flag and then 
simply add M. Since the microprocessor already uses the carry flag 
to perform the addition operation, it is convenient to use it to form 
the twos-complement. If the carry flag, C, is set, then (M + C) is 
the twos-complement of M. Then our subtraction problem, A - M. 
may be expressed as 

A-M=A+(M+C) (7) 
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Study Equation 7 carefully. If C is set, as it should be if the 
subtraction operation is to work, then C is zero. But if C is zero, then 
Equation 7 could just as well be written as follows, 

A-M-C=A+(KI+C) (8) 

Refer to the instruction set summary and observe that Equation 8 is 
the equivalent of the SBC instruction. We have arrived. If C is set, 
then Equation 8 gives A - M. If C is cleared, then Equation 8 
gives A - M with a one borrowed from it. 

The SBC instruction may now be summarized as follows: 

• The SBC instruction subtracts the contents of a memory loca
tion from the contents of the accumulator. The complement of 
the carry Hag, C, is also subtracted from the accumulator. The 
result is stored in the accumulator. 

• Symbolically the SBC instruction is written A - M - C 4 A. 
• If the result of the subtraction is less than zero in either the 

decimal mode or the binary mode, then the carry Hag is cleared. 

In a subtraction operation the carry Hag serves the purpose of indi
cating a borrow. It may be helpful to think of the complement of 
the carry Hag as a borrow Hag. 

Another example will help to illustrate these ideas. In Example 
9 we subtract $62 from $AF, and in Example 10 we give a program 
to perform the same subtraction. In the program note that the carry 
Hag is set. If we think of C as the borrow Hag, then the borrow Hag 
was cleared prior to the subtraction operation. 

Example 9: Demonstration of Carry Flag in Twos·Complement Subtraction 

Subtract $62 from $AF. Corry flag is set. 

Solution: Step I-Complement $62. 
$62 = 0110 0010, so $62 = 1001 1101 = $9D 
Step 2-Add $9D to $AF with carry. 

$AF = 1010 1111 A 
$9D = 1001 1101 hi 

1 C 
-----
$4D = 0100 1101 A [C] = 1 

Example 10: Program to Subtract Two Numbers 

Object: Subtract $62 from $AF using the binary mode. 

0200 D8 START CLD Clear the decimal mode flag. 
0201 38 SEC Set the carry (or clear the barrow) flag. 
0202 A9 AF LDA $AF Minuend into A. 
0204 E9 62 SBC $62 Subtract subtrahend. 
0206 8500 STA DIFF Difference into DI FF = $0000. 
0208 00 BRK Finish. 

Our last example in this section is a program to perform a double
precision, decimal mode subtraction. This program is given in Ex-
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ample 11. Compare this program to the double-precision, binary 
mode addition program given in Example 6. In Example 11 we set 
the decimal mode flag and we set the carry flag before doing the 
subtraction, while in Example 6 we cleared the decimal mode flag 
and cleared the carry flag before doing the addition. Both pro
grams are easily extended to handle three or more bytes. 

Example 11: Program to Subtract Two Two-Byte Numbers in the Decimal Mode 

Object: Perform a double-precision subtraction in the decimal mode using the follow-

0200 
0201 
0202 
0205 
0208 
020B 
020E 
0211 
0214 

ing memory assignments. 

F8 
38 
AD 00 03 
ED 02 03 
80 04 03 
AD 01 03 
ED 03 03 
80 05 03 
00 

$0300 = LOM; low-order byte of the minuend 
$0301 = HIM; high.order byte of the minuend 
$0302 = LOS; low-order byte of the subtrahend 
$0303 = HIS; high-order byte of the subtrahend 
$0304 = LOD; low-order byte of the difference 
$0305 = HID; high-order byte of the difference 

START SED Set the decimal mode flag. 
SEe Set the carry (clear the borrow) flag. 
LDA LOM Low-order byte of the minuend into A. 
SBe LOS Subtract subtrahend, low-order byte. 
STA LOD Result into low-order byte of difference. 
LDA HIM Get high-order byte of the minuend. 
SBe HIS Minus the subtrahend and borrow, if any. 
STA HID Result into difference, high-order byte. 
BRK Finish. 

SIGNED NUMBER ARITHMETIC 

In the previous section we showed that the 8-bit number (M + 1) 
may be regarded as the "negative" of the 8-bit number M. The 
number (1\1 + 1), called the twos-complement of M, has all the 
mathematical properties of negative numbers. For example, you 
know that in decimal arithmetic +0 = -0 = 0; that is, zero is neither 
minus nor plus. Is this true in the twos-complement arithmetic of 
binary numbers? Note that the complement of SOp is $FF, and 
$FF + 1 = $00, so the twos-complement (negative) of zero is zero 
as in the case of decimal numbers. 

These and other facts have led the computer industry to adopt 
the following conventions for 8-bit signed binary numbers: 
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• 8-bit binary numbers represent the decimal integers from -128 
to + 127. Refer to Table 5-5 to observe the pattern of integers, 
binary numbers, and hexadecimal numbers. 

• Bit seven is called the "sign bit." A one in bit seven indicates 
a negative number. A zero in bit seven indicates a positive 
number. Refer again to Table 5-5 to observe this pattern. 

With regard to signed hexadecimal representations, 



Table 5·5. Twos Complement Representations of 
Numbers from - 128 to + 127 

Number Twos Complement Hexadecimal 

+127 0111 1111 $7F 

. . 
+5 0000 0101 $05 
+4 0000 0100 $04 
+3 0000 0011 $03 
+2 0000 0010 $02 
+1 0000 0001 $01 

0 DODO 0000 $00 
-1 1111 1111 $FF 
-2 1111 1110 $FE 
-3 1111 1101 $FD 
-4 1111 1100 $FC 
-5 1111 1011 $FB . ,~ ..... ,'. " , ' . 

~ - ~- ;..-, .. . . . 
-128 1000 0000 $80 

• The numbers $00 to $7F represent the non-negative integers 
from zero to 127. 

• The numbers $80 to $FF represent the negative integers from 
-128 to-1. 

Table 5-6 gives the decimal integers corresponding to any hexa
decimal number between $00 and $FF. 

To handle numbers greater than + 127 and less than -128, two 
or more bytes are used, but bit seven in the most significant byte 
remains as the sign bit. Thus, a 16-bit signed number could have 
values between +32767 and -32768. 

Refer again to the P register model in Fig. 5-1. When any opera
tion produces a one in bit seven, then the N Hag of the P register is 
set. Thus, when an add or subtract operation sets the N Hag, a 
negative result is indicated. On the other hand, if an add or subtract 
operation clears the N Hag, a positive result is indicated. An N 
symbolizes negative. You will learn that the N Hag has uses other 
than indicating the signs of binary numbers. 

SIGNED ARITHMETIC AND OVERFLOW STATUS BIT 

We begin with some examples of signed arithmetic. As in the 
case of ordinary addition and subtraction, the carry Hag should be 
cleared before an addition and it should be set before a subtraction. 
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: 

Table 5-6. Hexadecimal Equivalents of Signed Decimal Integers 

Least Significant Hex Digit 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

.1: 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
III 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 Ci 
Ie 4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 
• 5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 :z: 
C 6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 .. 

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 .. 
!e 8 -128 -127 -126 -125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114 -113 II: 
.21 9 -112 -111 -110 -109 -108 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97 ... 
10 A -96 -95 -94 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 -83 -82 -81 
0 
~ B -80 -79 -78 -77 -76 -75 -74 -73 -72 -71 -70 -69 -68 -67 -66 -65 

C -64 -63 -62 -61 -60 -59 -58 -57 -56 -55 --54 -53 -52 -51 -50 -49 
D -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35 -34 

-33 I E -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 
F -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 



Example 12: Adding Two Signed Numbers 

Add +12and -7. Carry flag is cleared. 
Solution: + + 12 = 0000 1100 = $OC A 

+ -7 = 1111 1001 = $F9 M 
o 0 0 C 

+S = 0000 0101 = $OS A [C] = 1 

Example 13: Subtracting Twa Signed Numbers 

Subtract -7 from - 12. Carry flag is set. Recall that subtraction is implemented by 
adding the complement of the number and the carry flag. 

Solution: + -12 = 1111 0100 = $F4 A 
+ +6 = 0000 0110 = $06 Ii 

1 1 1 C 

-S=11111011=$FB A [C]=O 

Refer to Table 5-6 to study these examples. You can obtain the 
hexadecimal representations of the signed integers from this table, 
and you can convert the hexadecimal numbers to binary num
bers. In Example 13 the logic one in bit seven of the result indi
cates that the answer is negative in twos-complement form. To 
put the answer in a representation which is more easily recognized, 
form the twos-complement of the answer and use bit seven to 
inform the user that the answer is negative. The complement of 
1111 1011 is 0000 0100. Adding one to form the twos-comple
ment gives 0000 0101 = 5. The N Rag was a logic one so the answer 
is -5. The N Rag can be tested, as you will see later, to determine 
if the middle horizontal segment in a seven-segment digit should 
be lit, indicating a minus sign. 

The carry bit has no meaning when signed (seven data bits, plus 
a sign bit) operations are performed. Remember that signed opera
tions use values in the range of -128 to +127. Thus, when +127 
and + 127 are added, the result is 254 or 1111 1110. If we consider 
this result to be a signed number, it turns out to be negative (bit 
seven = logic one). This is incorrect. The entire 8-bit number repre
sents the result, and the sign bit must be ignored. In this case, an 
overflow condition exists since the sum "overRowed" into the sign 
bit, giving an erroneous result. When the addition of two signed 
numbers exceeds + 127, 0111 1111, the overRow status bit, V, is set 
to a logic one. Remember, the V Rag is present as bit six in the 
P register. 

OverRow may also occur when the sum of two negative numbers 
is less than -128. The microprocessor also recognizes this situation 
and sets the overRow Rag. OverRow may occur when a negative 
number is subtracted from a positive number giving an answer 
greater than + 127, or when a positive number is subtracted from a 
negative number giving an answer less than -128. The overRow Rag 
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will be set if any of these overflow conditions occurs; otherwise it 
will be cleared. Overflow cannot occur when a positive number is 
added to a negative number, a positive number is subtracted from 
another positive number, or when a negative number is subtracted 
from another negative number. 

To the programmer using signed arithmetic, the overflow flag has 
the same meaning as the carry flag in ordinary arithmetic. The pro
grammer who is not using signed arithmetic may ignore the over
flow flag and the sign in bit seven. Finally, the overflow flag may 
be cleared with the CL V instruction, op code B8. 

Since the overflow flag does not directly enter a sum or difference 
like the carry flag does, signed arithmetic programs require branch 
instructions to inform the user of an overflow or to correct for the 
result. Branch instructions will be introduced in Chapter 6. 

EXPERIMENT NO. 1 

Step 1 

Load and execute the program in Example 2. What answer is 
found at the address $OOOO? 

0200 08 START CLO Clear the decimal flag. 
0201 18 CLC Clea r the carry flag. 
0202 A985 LOA $85 $85 inlo A. 
0204 69 21 AOC $21 Add $21. 
0206 85 00 STA MEM Sum into location $0000. 
0208 00 8RK 

(After the program has run you should find $A6 in location $0000.) 

Step 2 

What answer would you get if the carry flag had not been cleared 
before the program was executed? Try this by exchapging the CLC 
instruction for an SEC instruction in the preceding listing. 

Step 3 

Use the program to add the following numbers: 

$7F + $80 = __ _ $33 + $CC = ~ __ 
$AI + $5E = __ _ $EE + $11 = __ _ 

These four problems involve adding a number to its complement. 
What do you conclude is the result of adding a number to its com
plement if the carry flag is cleared? If the carry flag is set? 
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Step 4 

How could you modify the program to add two numbers located 
at addresses $0001 and $0002? 

(Change the immediate addressing modes of the LOA and AOC 
instructions to their zero-page modes. Reference location $0001 with 
the LOA instruction and reference location $0002 with the AOC 
instruction. ) 

EXPERIMENT NO. 2 

Step 1 

Load the program in Example 6. 

Ob;ect: Perform 0 double.precision oddition using the memory assignments given here; 
that is, the numbers to be added are stored in these locations: 

$0301 = Hll; high-order byte of number one 
$0300 = LO 1; low-order byte of number one 
$0303 = H12; high-order byte of number two 
$0302 = L02; low-order byte of number two 
$0305 = SHI; high-order byte of the sum 
$0304 = SLO; low-order byte of the sum 

0200 08 START CLO Clear decimal mode. 
0201 18 CLC Clear carry flag. 
0202 AO 00 03 LOA LOI Get low-order byte of Number l. 
0205 60 02 03 AOC L02 Add low-order byte of Number 2. 
0208 ao 04 03 STA SLO Result into low-order byte of sum. 
0208 AO 01 03 LOA Hll Get high-order byte of Number l. 
020E 60 03 03 AOC HI2 Add high·order byte of Number 2 and carry, 
0211 80 05 03 STA SHI if any, from previous sum. Result 
0214 00 8RK into high-order byte of sum. Finish. 

Step 2 

Use this program to add $1234 to $0502. Where should these 
numbers be stored? Where will the answer be? What is it? 

Step 3 

Single step the program while it is adding the numbers in step 
2, noting the contents of the processor status register after each 
instruction. What is the status of the carry Hag after the CLC in
struction? After the first AOC instruction? After the second AOC 
instruction? Note that the carry Hag is bit zero of the P register. If 
the carry Hag is clear, then the number in the P register is even. 
If the carry Hag is set, then the number in the P register is odd. 
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EXPERIMENT NO. 3 

Step 1 

Load the following program. It is intended to add the contents 
of location $0000 to the contents of $0001. The result is loaded into 
Port A, an output port, so the answer can be observed on the Port A 
LEDs on the I/O board. We use the PA7 (bit seven of Port A) 
LED as the sign of the result in the sense that + = OFF, - = ON. 

0200 A9 FF ORIGIN LOA $FF Put $FF in the Port A DDR. 
0202 80 01 17 STA PADD 
0205 08 CLO Clear decimal mode flag. 
0206 18 AGN CLC Clear carry flag. 
0207 A5 00 LOA LOll Get addend from LOlL 
0209 25 01 ADC LOl2 Add contents of LOl2. 
0208 80 00 17 STA PAD Result into Port A. 
020E 4C 06 02 JMP AGN Loop to add again. 

Load the program using the op codes. Do not use an assembler. 

Step 2 

Put $22 in location $0000. Enter $20 in location $0001. Run the 
program. What do you expect to observe on the Port A LEDs? 

(You should observe a $42 = 0100 0010. Do you get this answer?) 

Step 3 

There is a bug in the program since it does not give the correct 
answer. \Ve obtained a $20 at Port A, which is clearly not the sum 
of $22 and $20. Start the program over and use the single-step 
mode. Examine the contents of the accumulator after each instruc
tion is executed. Compare this to what you know should be in the 
accumulator. Where is the bug? Correct the program. 

(Instruction ADC has an op code of $65, not $25.) 

Step 4 

Add the following numbers by changing the contents of locations 
$0000 and $0001. The numbers are in base ten, and must be con
verted to hexadecimal. Negative numbers must be converted to their 
twos-complement representation using Table 5-6. In each case try to 
indicate the state of the Port A LEDs before doing the problem. Re
member, the PA 7 LED is the sign indicator. Write down the sum 
and the status of the overflow bit, bit six of the P register. 
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6+2=~ __ _ 
6+(-2)=_~ 
6+(-8)= __ ~ 

120+8= __ . __ 
-120+ (-8) = ___ _ 
-120+ (-9) = __ _ 

Remember that negative answers are in twos-complement form. Use 
Table 5-6 to convert back to a decimal number before filling in the 
blank. 

EXPERIMENT NO. 4 

Step 1 

Write a program to do signed binary subtraction. The program 
in Experiment No. 3 is a good starting point. Then repeat the 
problems in Step 4 of Experiment 3, assuming they are subtraction 
problems instead of addition problems. Be sure to write down the 
status of the overflow bit after each operation. Use the PA 7 LED 
to indicate the sign of the result. 

EXPERIMENT NO. 5 

Step 1 

Try writing a program to do signed arithmetic in the decimal 
mode. 
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CHAPTER 6 

Branches and Loops 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Use the branch instructions BCC, BCS, BEQ, BNE, BMI, BPL, 
BVS, and BVC. See Table 6-1 for a summary . 

• Understand and use the compare instructions CMP, CPX, and 
CPY . 

• Use the BIT test instruction. 
• Write programs that test for pulses and logic transitions at 

input ports. 

INTRODUCTION 

The ability of the microprocessor to "make decisions" based on 
external or internal conditions makes it the powerful tool that it is. 
Although each decision is admittedly simple (for example, if the 
logic level on an input pin is one, change an output pin to logic zero; 
otherwise leave it unchanged), a set of decisions can be used to 
monitor or control complex operations. This chapter deals with the 
decision making instructions. We will begin by describing all of 
the instructions given in Table 6-1 in the order branch instructions, 
comparison instructions, and the bit test instruction. Then we will 
describe a number of programs that make use of these instructions. 

BRANCH INSTRUCTIONS 

The branch instructions test the values of specific bits in the proc
essor status register (P register). If the value or condition tested 
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Table 6-1. Summary of Instructions Introduced in Chapter 6 

Addressing Mode 

Instruction Description Immediate Absolute Zero-Page Relative 

BCC Branch on Carry Clear 90 
BCS Branch on Carry Set BO 
BEQ Branch on Resu It Zero FO 
BNE Branch on Resu It not Zero DO 
BMI Branch on Negative Result 30 
BPL Branch on Non-Negative 

Result 10 
BVS Branch on Overflow Set 70 
BVC Branch on Overflow Clear 50 
CMP Compare Memory and Ac-

cumulator C9 CD C5 
CPX Compare Memory and X Reg-

ister EO EC E4 
Cpy Compare Memory and Y Reg-

ister CO CC C4 
BIT Test Bits in Memory with 

Accumulator 2C 24 

is met, the program counter is altered, causing the program to jump 
to an instruction other than the one following the branch instruction. 
If the condition tested is not met, the program continues in sequence. 
The branch instructions are 

• BCS-Branch on Carry Set: The branch occurs if the carry flag 
(bit zero of the P register) is set (C = 1). 

• BCC-Branch on Carry Clear: The branch occurs if the carry 
flag is clear (C = 0). 

• BEQ-Branch on Result Equal Zero: The branch occurs if the 
zero flag (bit one of the P register) is set (Z = 1). 

o 6 5 4 3 2 
T NUMBER 

I BID I I I Z I C I ~~ I N I v I 

I 
OCESSOR STATUS REGISTER .p. 

CARRY 1 = CARRY 

ZERO 1 = RESULT ZERO 

INTERRUPT DISABLE 1 = DISABLE 

DECIMAL MODE 1 = DECIMAL 

BREAK COMMAND 

NOT USED 

OVERFLOW 1 = OVERFLOW 

NEGATIVE 1 = NEGATIVE 

Fig. 6·1. Processor Status Register model. 
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• BNE-Branch on Result Not Equal Zero: The branch occurs 
if the zero flag is clear (Z = 0) . 

• BMI-Branch on Minus: The branch occurs if the negative flag 
(bit seven of the P register) is set (N = 1). 

• BPL-Branch on Plus: The branch occurs if the negative flag is 
clear (N = 0) . 

• BVS-Branch on Overflow Set: The branch occurs if the over
flow flag (bit six of the P register) is set (V = 1). 

• BVC-Branch on Overflow Clear: The branch occurs if the over
flow flag is clear (V = 0). 

The processor status register (P register) is illustrated in Fig. 6-1. 
Before describing the flow of a program during a branch, we review 
how some of the flags in the P register are set and cleared. 

MODIFYING THE PROCESSOR STATUS REGISTER 

The execution of some of the instructions in the 6502 instruction 
set may cause the contents of the processor status register to be 
modified. For example, in Chapter 5 we learned that the ADC 
instruction will result in the N flag being cleared if the sum has a 
zero in bit seven, and it will result in the C flag being set if the ad
dition produces a carry. If the result of the ADC instruction were 
$00, then the Z flag would be set; otherwise it would be cleared. 

These examples serve to illustrate the fact that the flags in the 
P register are set or cleared by the outcomes of various instructions. 
The instruction set summary in Table 2-3 indicates the flags or 
combtion codes which each instruction modifies. Two examples will 
clarify this further. Refer to the Condition Code column of the 
instruction set summary in Table 2-3. 

• How does the LDA instruction modify the P register? Referring 
to the instruction set summary, it is seen that the LDA instruc
tion affects both the N flag and the Z flag. The checks (j) in 
the Nand Z columns indicate this fact. If the byte transferred 
from memory to the accumulator has a one in bit seven, then 
the N flag will be set; otherwise it will be cleared. If the byte 
transferred is zero, then the Z flag will be set; otherwise it 
will be cleared. 

• How does the DEC instruction modify the P register? The DEC 
instruction modifies the Nand Z flags. If the DEC instruction 
produces a zero in a memory location, then the Z flag will be 
set; otherwise it will be cleared. If as a result of the DEC in
struction a memory location has a one placed in bit seven, then 
the N flag will be set; otherwise it will be cleared. 
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It should be clear that during the course of a program the Hags 
are constantly changing. Consequently, the programmer cannot test 
the effect of an LDA instruction on the Z Hag with a BEQ instruc
tion unless the BEQ instruction immediately follows the LDA in
struction in the program, or he is absolutely sure that no intervening 
instructions affected the Z Hag. 

BRANCHING 

Fig. 6-2 Howcharts the branch instruction sequence. Let us discuss 
it in terms of a particular example, say the "branch on plus" BPL 
instruction. In a program, the BPL instruction would be written: 

0230 10 07 BPL OFFSET 
0232 NEXT INSTRUCTION 

where we have chosen an arbitrary location for the instruction. The 
BPL op code is $10, and we have also arbitrarily chosen a value of 
$07 for OFFSET. The second byte of the instruction, OFFSET, is 

PROGRAM COUNTER 

PROGRAM COUNTER 
+ 

ONE 

- OFFSET 

PROGRAM COUNTER 

PROGRAM COUNTER 
+ 

OFFSET 

+ OFFSET 

Fig. 6-2. Flowchart of Branch Instruction. 

103 



also referred to in Fig. 6-2. What happens when the program reaches 
the BPL instruction is described as follows. 

• If the N flag is one, corresponding to a negative result, then 
the condition tested is not met, and program execution will 
continue with the NEXT INSTRUCTION in the program se
quence . 

• If the N flag is zero, corresponding to a positive result, then 
the condition tested is met, and program execution will con
tinue at the instruction located at PHOGRA\1 COUNTER + 
OFFSET. 

Thus, if the N flag is one, the program will continue with the in
struction located at $0232, but if the N flag is zero, the program will 
continue with the instruction located at $0232 + $07 = $0239. 

There are three important points to be made at this time: refer 
both to the preceding example being discussed and Fig. 6-2. 

• OFFSET is interpreted by the microprocessor as a twos-comple
ment number. It therefore may be positive, zero, or negative. 
That is the reason the "OFFSET arrows" in Fig. 6-2 go both 
ways. 

• The first reference to the program counter in Fig. 6-2 refers to 
the second byte of the branch instruction. In this e'.:ample, this 
is $0231. 

• Because the 6502 program counter is incremented during the 
time that it is reading the second byte of the branch instruction, 
the OFFSET will actually be added to the value of the pro
gram counter for the instruction following the branch instruc
tion. In the example, this gives $0232 + $07 = $0239 as the new 
value of the program counter if the branch condition is met. 

The offset is always relative to the location of the op code that 
follows the branch instruction. This use of the word "relative" is 
the reason that the addressing mode of the branch instructions is 
called relative addressing. 

Example I: Calculation of a Forward Branch 

A branch instruction is stored in locations $AF25 and $AF26. The branch offset is 
$34. What is the location of the next instruction that will be executed by the micro
processor? 

Solution: If the branch condition is not met, then the next instruction in the normal 
program sequence will be executed. It is located in memory immediately above the 
branch instruction, so its op code will be in location $AF27. If the branch condition is 
met, then the next instruction to be executed will be in $AF27 + $34 = $AF5B. 

A simple rule to find small offsets in the forward direction is to 
count bytes 0, I, 2, ... in hexadecimal beginning with the location 
of the instruction following the branch instruction and ending with 
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Example 2: Calculation of a Backward Branch Offset 

A branch instruction is stored in locations $AF25 and $AF26. If the branch condition 
is met, it is desired that the program branch backward to an instruction whose ap code 
is in $AF20. What offset should be used with the branch instruction? 

Solution: The offset is relative to location $AF27. Therefore, OFFSET = $AF20 -
$AF27 = -7 = $F9 in twos-complement notation. The twos-complement conversion 
may be facilitated with Table 5-6. 

the location of the op code to be executed, if the branch condition 
is met. For backward branches, start counting 0, FF, FE, FD, ... 
backward from the op code following the branch instruction to the 
op code to be executed, if the branch condition is met. 

COMPARISON INSTRUCTIONS 

The CMP, CPX, and CPY instructions are used to compare two 
numbers to see which, if either, is the larger. None of the 6502 reg
isters other than the processor status register are changed, nor are 
any memory locations altered by the comparison instructions. Their 
only effect is to set or clear flags in the P register, based upon the 
result of the comparison operation, \Ve describe the GMP instruc
tion in detail. 

• CMP-Compare the contents of the accumulator with the con-
tents of a memory location: symbolically, A - M. 

• If A ~ M, then C is set; otherwise it is cleared. 
• If A = M, then Z is set; otherwise it is cleared. 
• If the operation A - M leaves a one in bit seven of the result, 

then N is set; otherwise it is cleared. 

Even though the operation is symbolized as a subtraction, the actual 
operation is "invisible," since no result, other than the changed flags, 
is observed. 

The CPX and CPY instructions are identical to the CMP instruc
tion in all respects, except that they compare the X and Y registers 
with the contents of a memory location. Replace the accumulator in 

Example 3: Illustration of a CMP Operation 

Assume $CF is in the accumulator, A, and $3E is in the memory location, M. What 
flags will be set by the CMP instruction? 

Solulion: Since $CF ~ $3E, the C flag will be sel. Since $CF =F $3E, the Z flag will 
be cleared. Since $CF - $3E = $81, the result of the subtraction has a one in bit 
seven, and the N flag will be set. 

Example 4: Illustration of a CPX Operation 

Assume the X register contains $80 and M contains $AO. What flags will be set by the 
CPX instruction? 

Solulion: Since $80 < $AO, the C flag will be cleared. Since $80 =F $AO, the Z flag 
will be cleared, Since $80 - $AO = $EO, the result of the subtraction has a one in 
bit seven; therefore, the N flag will be sel. 
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the description of the G\1P instruction with the X register, and you 
have a description of the CPX instruction. Likewise, the contents of 
the Y register may be compared to a memory location. Two com
parison operations are illustrated in Examples 3 and 4. 

BIT TEST INSTRUCTION 

The BIT instruction is another test instruction that affects only 
the P register. It transfers bits seven and six of the memory location 
that it references to the corresponding bits in the P register. It also 
forms a logical AND between the contents of the accumulator, A, 
and the memory location, M, which it references. If the result of the 
AND operation is zero, then the Z flag is set; otherwise it is cleared. 
The logical description of the BIT instruction is A· M, M7 .... N, and 
~1r."" V. As in the case of the comparison instructions, the result of 
ANDing the contents of the accumulator with the contents of a mem
ory location (A, M) is "invisible." In fact, the AND operation caused 
by the BIT instruction serves only to set or clear the Z (zero) flag. 
The notation M7 .... Nand M6 .... V means that bit seven of the memory 
location referenced by the BIT instruction is transferred to the N 
flag of the P register, and bit six of the same memory location is 
transferred to the V flag of the P register. Example 5 illustrates how 
a bit test works. 

Example 5: Explanation of a BIT Test 

If A contains $02 and M contains $43, how wi" the flags in the p register be changed 
by a BIT instruction that references M? 

Solution: A· M = $02, SO the result of the AND operation is not zero. The Z flag will 
be cleared. Since $43 = 0100 0011, M7 = 0 and M6 = 1. Therefore, the N flag will 
be cleared and the V flag will be set. 

The program examples that follow illustrate the use of the com
parison and bit test instructions. Flowcharts are used to show some 
of the steps. The reader should study carefully the programs, pro
gram comments, and the flowcharts to become familiar with the in
structions introduced in this chapter. 

The first program example is given in Example 6. It detects nega
tive pulses on pin PBO (bit zero of Port B) and counts these pulses. 
A flowchart of the program, starting with the instruction labeled 
BACK, is shown in Fig. 6-3. Two branch instructions are used in 
this program; both of them are backward branches. Referring to the 
flowchart and the program, observe that the program will stay in 
the first loop as long as the voltage level at pin PBO is at logic one. 
As soon as the logic level changes to zero, the program proceeds to 
the next loop. Thus, the first part of the program detects a logic-one 
to logic-zero transition. The program loops in the second loop as 
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Fig. 6-3. Flowchart for Example 6. Train of 
negative pulses will be counted and the 

answer stored in Port A. 

long as the voltage level at pin PBO is at logic zero. It emerges from 
the loop to increment X and store this new value of X in Port A 
after a complete negative pulse has occurred. It then jumps back 
to BACK to wait for the next negative pulse. The two mask opera
tions (AND $01) were used to ensure that only bit zero of Port B 
entered the decision making process. 

Example 6: Program to Detect and Count Negative Pulses 

Object: Write a program to count negative pulses on pin PBO of Port B. The pulses 
consist of transitions from logic one, to logic zero, and back to logic one. The 
X register will be used to count the pulses, and the result will be stored in 
Port A, an output port. 

0200 A200 BEGIN LDX $00 Initialize X to zero. 
0202 A9 FF LDA $FF Set data direction register of Port A 
0204 8D 03 AO STA PADD so it is an output port. 
0207 AD 00 AO BACK LDA PBD Read Port B. 
020A 29 01 AND $01 Mask all bits except PBO. 
020C DO F9 BNE BACK Branch backwards $F9 = -7 bytes if 
020E AD 00 AO LOOP LDA PBD PBO oF 0; otherwise read Port B. 
0211 29 01 AND $01 Mask all bits except PBO. 
0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP. 
0215 E8 INX Pulse detected, increment X. 
0216 SE 01 AO STX PAD Result into Port A. 
0219 4C 07 02 JMP BACK Return to count mare pulses. 
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For what can the program in Example 6 be used? Its application 
to event counting, for example, nuclear disintegrations, arrival ot 
customers in a queue, or other events, and frequency counting 
should be obvious. A more elaborate procedure than the INX in
struction and X register storage would be necessary to keep track 
of the number of pulses, but the most important ingredients are 
there. The ability of two loops in the program to detect logic level 
transitions could also be used in event timing. If a phototransistor 
or photoresistor circuit produced a negative transition at pin PBO 
when the light was interrupted, then the first loop in the program 
in Example 6 could be used to hold the timer until the light was 
interrupted, the timing could begin at this transition, and the timing 
could end when the interruption ceased; or, both loops could be 
used to detect a negative pulse, after which timing would begin. 
Any application that involves detecting logic level transitions and 
carrying out some function as a result can use the ideas in this 
program. 

A similar program, but one that makes use of pin PB7 of Port B, 
will illustrate some simplification in programming and several of 
the other instructions introduced in this chapter. This program is 
given in Example 7. It detects and counts positive pulses on pin 
seven of Port B, PB7. The BIT instruction is used to set or clear 
the N flag depending on the logic level on PB7. The BPL and BMI 
instructions produce the required branches. The program loops in 
the BACK loop until PB7 goes to logic one. It loops in the LOOP 
loop until PB7 goes back to logic zero when the positive pulse is 
complete. Then the pulse is counted by the INX instruction. Note 
also that the BPL and BMI instructions have nothing to do with 
arithmetic operations in this example. 

Example 7: Program to Detect and Count Positive Pulses 

Obieel: Count positive pulses at pin PB7 of Port B. 

0300 A2 00 BEGIN LOX $00 Initialize X to Zero. 
0302 A9 FF LOA $FF Set data direction register 
0304 80 03 AO STA PADD of Port A to output condition. 
0307 2C 00 AO BACK BIT PBD Test bit seven of Port B. 
030A 10 FB BPL BACK If bit seven is zero, branch back. 
030C 2C 00 AO lOOP BIT PBD Test bit seven again. 
030F 30 FB BMI LOOP If PB7 = 1, branch to LOOP. 
0311 E8 INX Count pulse. 
0312 8E 01 AO STX PAD Result of count into Port A. 
0315 4C 07 03 JMP BACK Return to count pulses. 

ASCII TO HEXADECIMAL CONVERSION 

One of the most common ways of communicating with the micro
computer is by means of an ASCII-encoded keyboard. The ASCII 
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is a binary code used to represent upper-case and lower-case alpha
betic characters, numerals, punctuation marks, and other symbols 
and control codes. For example, when the "A" key on an ASCII 
keyboard is pressed, a 0100 0001 appears at its output, representing 
an upper case "A." If we assume that the keyboard output is an
other location in memory, as it would be in any memory mapped 
I/O system such as that on the 6502, then the hexadecimal value 
for "A," a $41, would appear in the memory location of the keyboard. 

\\lith this background, consider the following problem. Assume 
a key representing one of the 16 hexadecimal characters, 0-9 and 
A-F, is pressed. Its ASCII representation appears in a certain mem
ory location. Convert the contents of this location into the binary 
(or hexadecimal) number it represents. Store it in the low-order 
nibble of another location. The program in Example 8 will do this. 
Refer to Table 6-2 for the ASCII representations of the hexadecimal 
characters. Refer also to Fig. 6-4 to see a flowchart of the program. 
Note that for numbers less than $OA, the numerical value may be 
obtained from the ASCII value by subtracting $30, while for ASCII 
numbers larger than $41 the numerical value may be obtained from 
the ASCII number by subtracting $37. 

Most of the details of the program in Example 8 are illustrated 
by the flowchart in Fig. 6-4, but additional comments may be neces
sary. Observe that a CMP instruction was used. The only type of 
branch not explicitly covered in the flowchart is the BCS OVER. 
At that point in the program, the conversion for the hex numerals 

Table 6-2. ASCII Representations of Hexadecimal Characters 

ASCII 

Hexadecimal Representation Numerical Value 

Character (Hexadecimal) (Binary) (Hexadecimal) 

a 30 0000 0000 $00 
1 31 0000 0001 $01 
2 32 0000 0010 $02 
3 33 0000 0011 $03 
4 34 0000 0100 $04 
5 35 0000 0101 $05 
6 36 0000 0110 $06 
7 37 0000 0111 $07 
8 38 0000 1000 $08 
9 39 0000 1001 $09 
A 41 0000 1010 $OA 
B 42 0000 1011 $OB 
C 43 0000 1100 $OC 
0 44 0000 1101 $00 
E 45 0000 1110 $OE 
F 46 0000 1111 $OF 
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Fig. 6-4. Flowchart of program to 
convert Hex ASCII character to 

Hex Nibble. 

zero through nine has been completed. If the program continued 
in sequence, the conversion for the numerals A-F would follow, 
ruining the previous result. Some means to jump around this con
version is necessary. A JMP OVER instruction could have been 
used where the BCS OVER instruction is. However, since the carry 

Example 8: ASCII to Hexadecimal Conversion 

Ob;ed: Change hex character represented in ASCII to hex number, and store this 
number in the low-arder nibble of Port A. Read the ASCII character from 
$0300. 

0230 
0231 
0233 
0236 
0239 

023B 
0230 
023E 
0240 
0242 
0244 
0247 
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08 
A9 FF 
80 03 AO 
AD 00 03 
C9 40 

BO 05 
38 
E9 30 
BO 02 
E9 37 
80 01 AO 
00 

ORIGIN 

ARND 
OVER 

CLD 
LOA $FF 
STA PADD 
LOA ASCI 
CMP $40 

BCS ARND 
SEC 
S8C $30 
BCS OVER 
SBC $37 
STA PAD 
BRK 

Clear decimal mode. 
Make Port A an output port by 
loading $FF into its DDR. 
Get ASCII from $0300. 
Compare it with $40. If it is 
larger, then it represents a numeral 
A-F. Branch to subtract $37. 
Clear borrow flag. 
For numerals 1-9, subtract $30. 
Jump to store result in PAD. 

Result into Port A. 



flag will be set after the subtraction, we used a BCS instead. The 
advantage of this is that the program may be relocated in memory 
with no changes in the program bytes. With a JMP instruction, the 
address following the JMP instruction would have to be changed 
to relocate the program. It is good programming practice to make 
programs relocatable whenever possible. Relocatable programs are 
easy for other programmers to add to their microcomputer systems 
because they can place the program in any available memory loca
tions with no programming changes. Such programs are also easier 
to put on PROYIs, programmable read-only memory chips. 

USING BRANCH INSTRUCTIONS FOR TIME DELAYS 

Another use of branch instructions is to form delay loops or timing 
loops. For example, in data logging applications it may be required 
that a specific interval elapse between the times at which the points 
are to be logged. A delay loop may be used to provide this interval. 
Consider the following set of instructions: 

lDX $10 
LOOP DEX 

BNE lOOP. 

A flowchart of this loop is given in Fig. 6-5. Note that the program 
repeats the DEX and BNE instructions until X = 0; then it will 
proceed to the instruction following the BNE instruction. 

To calculate the time required to execute the delay loop, we refer 
to the instruction set summary in Table 2-3 that lists the number of 

Fig. 6-5. Simple delay loop. N is number 
chosen by the programmer to determine 

time interval for delay. 

YES 

NO 
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clock cycles for each instruction. Our cycle account proceeds as 
follows: 

• LDX instruction-2 cycles. 
• DEX instruction-2 cycles each time, $10 times = 3210 cycles. 
• BNE instruction-3 cycles each time the branch is taken, $OF 

times = 4510 cycles. 
• BNE instruction-2 cycles when the branch is not taken, $01 

times = 2 cycles. 
• Total time of loop = 2 + 32 + 45 + 2 = 81 cycles. 

For a clock cycle of one microsecond, the loop will take 81 micro
seconds. If NX is the number loaded into the X register, then the 
loop time in clock cycles is (5NX + 1). Remember, NX must be 
converted to hexadecimal before using it in a program. If T is the 
required number of clock cycles, and if (T - 1) is a multiple of 
five, then NX may be chosen to produce the exact interval that is 
desired. In all other cases, the time interval will be an approximation 
to the interval desired. 

To create longer delays, delay loops may be nested. The program 
in Example 9 illustrates this technique. A flowchart is shown in 
Fig. 6-6. After each delay the number at Port A will be incremented 
so that the programmer may have a visible effect of the various 
delays if the Port A output pins operate LEDs. In this program, if 
NX is the number loaded into the X register and NY is the number 
loaded into the Y register, then the total delay time in the program 
in Example 9 is, 

NX(5NY + 6) + 1 

clock cycles. Note that if NY is 19910 then NX controls the number 
of one millisecond (approximately) intervals. The error, assuming 
the clock frequency is 1 megahertz, is (NX + 1) microseconds. In 
Chapter 10, we will see that interval timers are much easier to use 
for delay loops and timing intervals. 

Example 9: Nested Delay Loop Program 

Object: Demonstrate the delay produced by a delay loop nested in another delay loop. 
After each delay increment Port A. Start with $FF in Port A. 

0250 A9 fF BEGIN LDA $FF Initialize Port A data direction 
0252 8003 AO STA PADD register. 
0255 8001 AO STA PAD 
0258 A2 FF BACK LOX $FF Set delay of X loop. 
025A AO FF LOOPX LDY $FF Set delay of Y loop. 
025C 88 LOOPY DEY Decrement Y. 
0250 DO FD BNE LOOPY Branch back if Y 0/= O. 
025F CA DEX Decrement X. 
0260 DO F8 BNE lOOPX Branch back if X 0/= O. 
0262 EE 01 AO INC PAD Increment Port A. 
0265 4C 58 02 JMP BACK Repeat enti re process. 
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Fig. 6-6. Nested delay loop flowchart. 

NO 

YES 

NO 

The last program to illustrate the instructions introduced in this 
chapter is a utility program to convert negative hexadecimal num
bers into their twos-complement representations. A hexadecimal 
number is entered in Port B by means of the switches connected to 
the Port B pins. If the number is a negative number, PB7 is set to 
logic one; otherwise it is set to logic zero. The program converts 
negative numbers to their twos-complement representations, and 
outputs the result to the LEDs connected to the Port A outputs. 
Positive numbers will also be written to Port A. Bit six of Port B 
is masked because it has different values in the AIM 65, SYM-l, 
and KIM-l microcomputers. You can refer to Table 5-6 to check 
your answers. The program is given in Example 10. 
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Example 10: Program to Convert a Negative Number to 
Its Twos-Complement Representation 

Object: Convert a negative number input at Port B to its twos-complement represen
tation. Output the result to the Port A LEOs. 

0270 A9 FF 
0272 80 03 AO 
0275 AD 00 AO 
0278 29 BF 
027A 10 05 
027C 49 FF 
027E 38 
027F 69 80 
0281 80 01 AO 
0284 4C 75 02 

START 

HERE 

BRNCH 

LOA $FF 
STA PADD 
LOA PBD 
AND $8F 
BPL BRNCH 
EOR $FF 
SEC 
ADC $80 
STA PAD 
JMP HERE 

Set up data direction register 
for Port A_ 
Read Port 8. 
Mask bit six. 
If positive, branch to output. 
Perform complement 
Set carry flag to add one to 
get twos-complement. Also add 
a one in bit seven. Result in PAD. 
Return to get other numbers. 

INTRODUCTION TO THE EXPERIMENTS 

The experiments make use of the II 0 board introduced in a 
previous chapter. All the experiments make use of the programs 
previously listed in this chapter, and these were written in terms of 
the SYM-l and AIM 65 I/O port addresses. KIM-l owners must 
make the appropriate changes. The branch instructions are among 
the most important for the potential user to understand. The pro
grams and experiments should be studied carefully. 

EXPERIMENT NO. 1 

Step 1 

Load the program in Example 6. 

0200 A200 BEGIN LOX $00 Initialize X to zero. 
0202 A9 FF LOA $FF Set data direction register of Port A 
0204 80 03 AO STA PADD so it is an output port. 
0207 AD 00 AO BACK LOA PBD Read Port B. 
020A 29 01 AND $01 Mask all bits except PBO. 
020C DO F9 BNE BACK Branch backwards $F9 = -7 bytes if 
020E AD 00 AO LOOP LOA PBD PBO 0/= 0; otherwise read Port B. 
0211 29 01 AND $01 Mask all bits except PBO. 
0213 FO F9 BEQ LOOP If PBO = 0, branch back to LOOP. 
0215 EB INX Pulse detected, increment X. 
0216 BE 01 AO STX PAD Result into Port A. 
0219 4C 07 02 JMP BACK Return to count more pulses. 

Step 2 

Place the PRO switch in the logic-one position (Up). 

Step 3 

Run the program. Toggle PRO off and on. What do you observe? 
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(We observed that the PAO LED lighted after one toggle.) 

Step 4 

Continue to toggle PBO. What do you observe? 

[We observed that the LEDs at Port A count (in binary) the num
ber of times PBO was toggled from logic one to logic zero and back 
to logic one.] 

Step 5 
How would you modify the program to count positive pulses in

stead of negative pulses? 

(Exchange the BNE and BEQ instructions to count positive pulses 
instead of negative pulses. Try this change and toggle PBO.) 

Step 6 

What is the shortest single pulse which the program will detect? 

(If a negative pulse occurred after the first LDA PBD instruction, 
and if it were of such a duration that it returned to logic one before 
the completion of the same LDA instruction at the beginning of 
the second loop, then it would be missed. Thus, if it were shorter 
than the LDA, AND, and BNE instruction, then it might be missed. 
This amounts to nine clock cycles. If a clock cycle is 1 microsecond, 
then we may conservatively estimate the minimum detectable pulse 
width as 10 microseconds.) 

EXPERIMENT NO. 2 

Step 1 

Load the program in Example 7. 

0300 A2 00 BEGIN LOX $00 Initialize X to zero. 

0302 A9 FF LDA $FF Set data direction register 

0304 8D 03 AO STA PADD of Port A to output condition. 
0307 2C 00 AO BACK BIT PBD Test bit seven of Port B. 

030A 10 FB BPL BACK If bit seven is zero, branch back. 

030C 2C 00 AO LOOP BIT PBD Test bit seven again. 

030F 30 FB BMI LOOP If PB7= I, branch to LOOP. 
0311 E8 INX Count pulse. 
0312 8E 01 AO STX PAD Result of count into Port A. 
0315 4C 07 03 JMP BACK Return to count pulses. 

115 



Step 2 

Place the PB7 switch in the logic-zero position. 

Step 3 

Run the program. What do you expect to observe on the Port A 
LEDs if PB7 is switched to logic one? 

(Offhand, one would expect to see a zero in Port A because the 
program should be in the second loop, waiting for a logic-one to 
logic-zero transition.) 

Step 4 

Switch PB7 to logic one. What do you observe at Port A? 

[We observed a five (in binary) at Port A. You may not observe 
an identical result.] 

Step 5 

Switch PB7 back to logic zero, completing the positive pulse. What 
do you observe at Port A? 

(We observed a six at Port A. You may not get the same answer. 
The explanation of these results lies in the fact that the switch on 
PBO has been electronically "debounced." The PB7 switch is not 
debounced, and the mechanical bouncing of the switch produces 
several pulses when only one is intended. For some applications 
debouncing is not necessary, for others it is very important. De
bouncing can also be done with a suitable delay loop in the program, 
but this will increase the minimum detectable pulse width. As a 
challenge you may want to experiment with delay loops in this 
experiment until you have solved the switch bounce problem.) 

Step 6 

Construct a flowchart for this program. 

EXPERIMENT NO. 3 

Step 1 

Load the program in Example 8. 
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0230 08 
0231 A9 FF 
0233 80 03 AO 
0236 AD 00 03 
0239 C9 40 
023B BO 05 
0230 38 
023E E9 37 
0240 BO 02 
0242 E9 30 
0244 8001 AO 
0247 00 

Step 2 

ORIGIN 

ARND 
OVER 

CLO 
LOA $FF 
STA PADD 
LOA ASCI 
CMP $40 
BCS ARNO 
SEC 
SBC $30 
BCS OVER 
SBC $37 
STA PAD 
BRK 

Clear decimal mode. 
Make Port A an output port by 
loading $FF into its OOR. 
Get ASCII from $0300. 
Compare it with $40. If it 
is larger, then it represents a 
numeral A-F. Subtract $37. 
Otherwise, subtract $30. 
Jump to output result. 

Result into Port A. 

Put an ASCII representation ($30-$39 or $41-$46) for a hexa
decimal numeral (0-9 or A-F) in location $0300. (See Table 6-2.) 

Step 3 

Run the program. The corresponding hexadecimal number should 
appear at Port A in a binary representation. Try several numbers, 
some for hex numbers 0-9 and others for hex numerals A-F. 

Step 4 

What happens if you have an ASCII character other than one 
which represents 0-9 or A-F in location $0300? How could you 
"trap" this error or inform the user an input error has been made? 

(You might start by comparing the number input by the keyboard 
with $30 and $46, because if it is outside this range then it is not 
an ASCII character for a hexadecimal numeral. This is a challenging 
problem; good luck with it.) 

EXPERIMENT NO. 4 

Step 1 
Load and execute the program in Example 9. 

0250 A9 FF BEGIN LOA $FF Initialize Port A data direction 
0252 80 03 AO STA PADD register. 
0255 80 01 AO STA PAD 
0258 A2 FF BACK LOX $FF Set delay of X loop. 
025A AO FF LOOPX LOY $FF Set delay of Y loop. 
025C 88 LOOPY DEY Decrement Y. 
0250 DO FD BNE LOOPY Branch back if Y =F o. 
025F CA DEX Decrement x. 
0260 DO F8 BNE LOOPX Branch back if X =F O. 
0262 EE 01 AO INC PAD I ncrement Port A. 

0265 4C 58 02 JMP BACK Repeat entire process. 
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Step 2 

What do you observe at Port A? 

(We observed that the Port A LEDs count upward in binary. The 
delay loops allow enough time to see the counting take place.) 

Step 3 

Change the program byte at $0259 to $01. What do you observe? 

(We observed that the low-order LEDs blinked too quickly to see 
them in their off state.) 

Step 4 

Change the program byte at $025B to $01. What do you observe? 

(We observed that all the LEDs blinked too fast for the eye to 
perceive. ) 

Step 5 
Experiment with different values in $0259 and $025B to vary the 

time of the loop. Calculate the delays first, then confirm them using 
the formulas in the text. 

EXPERIMENT NO. 5 

Step 1 

Write a program that loops until any logic transition occurs at 
PB7. Output the transitions detected to Port A. The following pro
gram segment will serve as a hint. 

START LOY PBD Read Port B. 
LOOP TYA Transfer Y to A. 

EOR PBD 
BPL LOOP 
INX 
STX PAD 
JMP START 

Step 2 

Be sure to include statements to initialize Port A to be an output 
port. 
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Step 3 

Test your program using the PB7 input switch. How many tran
sitions does it detect for one switch change? 

EXPERIMENT NO. 6 

Step 1 

Using the program in Example 10, find the twos complement 
representations of the following decimal numbers. Enter the sign 
in bit seven of Port B, convert these numbers to binary, then run 
the program. Check your answers by hand computations. -1, -5, 
-10, -13, -28, -35, -47. 
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CHAPTER 7 

Register-Shift 
Instructions 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand and use the ASL, LSR, ROL, and ROR instructions. 
See Table 7-1 for a summary of these instructions. 

• Multiply 4-bit and 8-bit numbers. 
• Output the contents of the accumulator as two ASCII char

acters. 
• Convert a two-digit base-ten number to its hexadecimal equiva

lent. 
• Convert a two-digit hexadecimal number to its base-ten equiva

lent. 

INTRODUCTION 

With the addition of the register-shift instructions to the collection 
of instructions already learned, you can begin to write more com
plex programs. In fact, after these instructions are learned, you have 
the ability to use the great majority of instructions in the 6502 in
struction set. The complexity of the programs in the latter part of 
this chapter will begin to reflect this. The need to have the ability 
to shift bits left or right in a memory location is less obvious than 
the need for arithmetic and logical operations. We can only promise 
that the value of these instructions will become obvious as we 
proceed. 
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Table 7-1. Summary of Instructions Introduced in Chapter 7 

Addressing Mode 

Instruction Description Absolute Zero-Page Accumulator 

ASL Shift Left One Bit OE 06 OA 
ROL Rotate Left One Bit 2E 26 2A 
LSR Shift Right One Bit 4E 46 4A 
ROR Rotate Right One Bit 6E 66 6A 

GETTING ACQUAINTED WITH REGISTER-SHIFT INSTRUCTIONS 

The effect of the ASL, LSR, ROL, and ROR instructions is as 
easily demonstrated as it is explained. We shall define each instruc
tion and then give a short program that will demonstrate the effect 
of each instruction, using the LEDs at Port A. Diagrams illustrating 
the effect of each instruction on the contents of the memory location 
upon which it operates are shown in Fig. 7-1. We begin with the 
definitions. 

• ASL-Arithmetic Shift Left: Each bit in the memory location 
or register upon which this instruction operates is shifted to 
the left. That is, bit zero becomes bit one, bit one becomes bit 
two, ... , bit six becomes bit seven, and bit seven becomes the 
carry flag. A z~ro is shifted into bit zero. 

• LSR-Logical Shift Right: This instruction is similar to the ASL 
instruction, except the bits are shifted right. A zero is shifted 
into bit seven, and bit zero is shifted into the carry flag. 

• ROL-Rotate One Bit Left: The contents of the memory loca
tion or register upon which this instruction operates are shifted 
to the left as in the ASL instruction, except that the carry flag 
is shifted into bit zero. Since bit seven is shifted into the carry 
flag, successive ROL instructions simply rotate the bits left. 
A succession of nine ROL instructions will leave the contents of 
the location and the carry flag unchanged. 

• ROR-Rotate One Bit Right: The ROR instruction is exactly like 
the ROL instruction, except the bits are rotated right. Bit zero 
goes into the carry flag, and the carry flag is moved into bit 
seven. 

These definitions should be studied in conjunction with Fig. 7-1. 
A program to demonstrate each of these instructions using the 

single-step mode of the microcomputer is provided in Example 1. 
This program will demonstrate all four register-shift instructions 
by replacing the byte represented by a blank in Example 1 with 
the appropriate instruction, as follows: 
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Fig. 7-1. Diagrams of Register-Shift Instructions. 

• ASL-Op Code $OE 
• LSR-Op Code $4E 
• ROL-Op Code $2E 
• ROR-Op Code $6E 

Referring to the demonstration program in Example 1, assume that 
the ASL instruction is to be demonstrated, and that its op code has 
been entered as the byte at location $020D. The program reads the 
data at Port B. Suppose the Port B input switches are set to $Ol. 
Then, after execution of the STA PAD instruction, the PAO LED 
will be lit. The ASL PAD instruction will cause a zero to be shifted 
into bit zero of Port A, while the one that was originally in bit zero 
is shifted into bit one, lighting the PAl LED. The program repeat
edly jumps to this ASL PAD instruction, causing the light to shift 
from PAO to PAl, to PA2, ... , and finally into the PA7 LED. The 
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next time the ASL PAD instruction is executed, the logic one will 
be shifted into the carry flag, and all the LEDs will go out. Repeat
ing this same demonstration with precisely the same conditions but 
using an ROL instruction will make the PAO LED light again after 
nine ROL instructions. Of course, the program is to be executed in 
the single-step mode, or all of these events will happen too quickly 
for the eye to perceive. Changing the data that is input at Port B 
changes the effects observed, but not the basic ideas. Try rotating 
or shifting a $F in the high-order nibble to the low-order nibble. 

Example 1: Register-Shift Instructions Demonstration Program 

Object: Demonstrate the effect of the ASL, LSR, ROL, and ROR instructions on a memo 
ory location (Port A, an output port). 

0200 A9 FF START LDA $FF Set up the Port A DDR by loadi ng 
0202 8D 01 17 STA PADD $FF into PADD. 
0205 AD 02 17 LDA PBD Get some data from Port B. 
0208 29 BF AND $BF Mask bit six for the SYM-l and KIM-I. 
020A 8D 00 17 STA PAD Output the resulting number to Port A. 
020D _00 17 LOOP - PAD Shift the contents of Port A, and put the 
0210 4C OD 02 JMP LOOP instruction in a loop for repeated shifts. 

Before turning to some application programs that make use of the 
register-shift instructions, we note that a new addressing mode, 
called accumulator addressing, was introduced in Table 7-1. In this 
addressing mode, which only the register-shift instructions have, it 
is the contents of the accumulator that are shifted or rotated. The 
ASL, LSR, ROL, and ROR instructions are single-byte instructions 
when used in the accumulator addressing mode because no extra 
bytes to identify a memory location are necessary. 

The ASL, LSR, BOL, and BaR instructions together with the 
INC and DEC instructions are collectively known as read-modify
write instructions. The reason for this name lies in the fact that the 
microprocessor must first read the contents of a memory location, 
modify it in accordance with the instruction, and then write the 
modified byte of data back to its original location. 

A 4·81T MULTIPLICATION PROGRAM 

To illustrate an application for the ASL and LSR instructions, 
we will write a program to multiply two 4-bit numbers. To begin, 
note that the largest number represented by four bits is 1510; con
sequently the largest product that is possible is 15 ·15 = 225, so the 
product will fit in one 8-bit memory location. To understand the 
program one must understand a typical binary multiplication prob
lem, and one is illustrated in Example 2. Note the structural simi
larity between binary multiplication and your recollection (pre
electronic-calculator era) of elementary decimal multiplication. 
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Example 2: Binary Multiplication Problem 

Multiply $A by $9. 
Solution: $A = 1010 

$9 = 1001 
Multiplicand 10'0 
Multiplier 9, a 

$5A 1010 
0000 

0000 
1010 

} 

90,0 

Add to obtain product. 

$5A = 1011010 Product 

The important point to recognize in the calculation of Example 2 
is that the multiplicand appears in the sum for everyone in the mul
tiplier. With one exception, it is shifted to the left before it is added 
to obtain the product. For every zero in the multiplier, a zero is 
summed. The appearance of the "left-shifted" multiplicands, added 
to find the product, suggests a procedure for performing the multi
plication with a' computer program. The flowchart of Fig. 7-2 is 
our starting point. The 8-bit locations will be used for the 4-bit 
numbers, but they will have four leading zeros. The multiplicand 
will be symbolized by MeND, the multiplier by MLTP, and the 
product by PROD. 

The multiplication program is listed in Example 3. The LSR 
MLTP instruction shifts the multiplier bit zero into the carry flag. 

• If this sets the carry flag, then the multiplicand is added to the 
location containing the product. 

• If this clears the carry flag, then nothing is added to the product. 

Next, the multiplicand is shifted left. The next bit of the multiplier 
is tested by shifting the multiplier right, moving it into the carry 

Example 3: A 4-Bit Multiplication Program 

Ob;ect: Multiply two 4·bit numbers 
$0000 = MCND; Multiplicand 
$0001 = MLTP; Multiplier 
$0003 = PROD; Product 

0200 D8 START CLD 
0201 A900 LDA $00 
0203 85 03 STA PROD 
0205 46 00 AGAN LSR MLTP 
0207 90 07 BCC ARND 
0209 18 CLC 
020A A501 LDA MCND 
020C 65 03 ADC PROD 
020E 85 03 STA PROD 
0210 06 01 ARND ASL MCND 
0212 FO 04 BEQ DONE 
0214 A5 00 LDA MLTP 
0216 DO ED BNE AGAN 
0218 00 DONE BRK 
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Clear decimal mode. 
Clear location of product by 
storing $00 in PROD. 
Shift multiplier right ta test 
for zero or one in carry flag. If 
zero branch to shift multiplicand 
left for next test. If one, add 
multiplicand to obtain product. 

Shift multiplicand left for next sum. 
If multiplicand is zero, operation 
is finished. Same for multiplier. 
Otherwise branch back to sum again. 



Fig. 7·2. Flowchart of 4-Bit Multiplication 
Program. MeND = Multiplicand, MLTP = 

Multiplier, and PROD = Produd. 

NO 

NO 

YES 

flag. The "left-shifted" multiplicand is added, if the carry flag is set; 
otherwise it is not added. The entire process is repeated until either 
the multiplicand or the multiplier have become zero by virtue of 
having had zeros shifted into successive bit positions. 

The reader should study this program and the following 8-bit 
multiplication program for their use of the ASL and LSR instruc
tions. These programs are not necessarily intended to provide you 
with ready-made multiplication routines. 
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NO 

NO 

Fig. 7-3. Flowchart of 8-Bit Multiplication. 
MeND = Multiplicand, MLTP = Multiplier, 

MSFT = Left-Shifted Multiplicand. 

AN 8-BIT MULTIPLICATION PROGRAM 

The maximum product of two 8-bit numbers is $FF . $FF = 
$FE01; thus 16 bits are required for the answer. Recall that in our 
example of a 4-bit multiplication, the multiplicand was successively 
shifted left and added to form the final product. To shift an 8-bit 
multiplicand left requires that it be shifted into a new memory loca
tion. This is accomplished by the ASL MeND and ROL MSFT 
instructions in the Howchart of the 8-bit multiplication shown in 
Fig. 7-3. Note that an ASL operation shifts bit seven of the multi-
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plicand (MCND) into the carry nag, and that an ROL takes the 
carry flag and moves it into bit zero of what we call MSFT for 
"multiplicand shifted." With these two instructions, the contents of 
one location may be successively shifted into another location. The 
product takes two locations (PRDLO and PRDHI), and a double
precision addition is required. Refer to Fig. 7-3 and Example 4 for 
further details. 

One final note: In the flowcharts for the multiplication programs 
and in other flowcharts that follow, the bracket notation, "[ ]", will 
occasionally be used. In microcomputer literature the brackets are 
read "contents of." That is, "[ALFAJ" means "the contents of the 
memory location symbolized by "ALFA," or more simply, "the con
tents of ALFA." Thus, in the flowcharts "[Bit 0]" means "the con
tents of bit zero." The bracket notation will be used whenever it 
clarifies the actual events that are taking place. 

Example 4: An 8·8it Multiplication Program 

Ob;ect: Multiply two 8-bit numbers. 
$0000 = MCNO; Multiplicand 
$0001 = MSFT; Multiplicand is shifted into this location 
$0002 = MLTP; Multiplier 
$0003 = PROLO; Low-order byte of the product 
$0004 = PROHI; High·order byte of the product 

0200 08 START CLO Clear decimal mode. 
0201 A9 00 
0203 85 01 
0205 85 03 
0207 85 04 
0209 46 02 
020B 90 00 
0200 18 
020E A5 00 
0210 65 03 
0212 85 03 
0214 A5 01 
0216 65 04 
0218 85 04 
021A 06 00 
021C 26 01 
021E A5 02 
0220 00 E7 
0222 00 

AGAN 

OONE 

LOA $00 
STA MSFT 
STA PROLO 
STA PROHI 
LSR MLTP 
BCC ARNO 
CLC 
LOA MCNO 
AOC PROLO 
STA PROLO 
LOA MSFT 
AOC PROHI 
STA PROHI 
ASL MCNO 
ROL MSFT 
LOA MLTP 
BNE AGAN 
BRK 

Clear storage locations for 
MSFT. PROLO. and PROHI. 

Shift multiplier right into carry 
flag to test for one or zero. 
Clear carry flag for addition. 
Get multiplicand. 
Add to low-order byte of product. 
Store result. 
Get shifted multiplicand. 
Add to high-order byte of product. 
Store result. 
Shift multiplicand and roll it 
into MSFT (multiplicand shifted). 
If multiplier is not zero then the 
job is not finished: branch back again. 
Otherwise job is finished. 

HEX TO ASCII 

In Chapter 6, we listed a program to convert an ASCII character 
to a hexadecimal number. A related problem is the conversion of an 
8-bit binary number represented by two hexadecimal numerals to 
their equivalent ASCII characters. To communicate with the user, 
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the microcomputer usually has a means of displaying the contents 
of 8-bit memory locations and registers. The KIM-1 and SY\1-1 
use seven-segment LED displays, while the AIM 65 has 16-segment 
alphanumeric displays. The latter requires ASCII. Since displays, 
printers, and other output devices that represent hexadecimal 
numerals using ASCII characters are common, we take as a pro
gramming problem the conversion of the contents of the accumu
lator (or any memory location) to two hexadecimal numerals 
(0-9 and A-F) represented with ASCII. A simple description of this 
problem is "Two Hex Numerals to ASCII," or more simply "HEX 
to ASCII." 

The contents of a memory location or register may be divided into 
a high-order nibble and a low-order nibble, each represented by one 
hex numeral. Refer to Table 6-2 for the ASCII representations of 
the hexadecimal numerals. To distinguish whether a nibble is to be 
represented by a hex numeral 0-9 rather than a hex numeral A-F, 
$A is subtracted from the nibble, and: 

• If the result of the subtraction is non-negative, the carry flag 
is set; the value of the nibble must be represented by a numeral 
A-F. 

• If the subtraction gives a negative result, the carry flag is clear; 
the nibble must be represented by a numeral 0-9. 

The following were also used in the program to convert the con
tents of the accumulator to two ASCII characters: 

• A nibble having a hex value $0-$9 is converted to ASCII by 
adding $30. 

• A nibble having a hex value $A-$F is converted to ASCII by 
adding $37. 

Since the program first subtracts $A from a nibble to test if it is 
a numeral 0-9 or A-F, the two points above are modified to add 
$30 + $A = $3A, and $37 + $A = $41, respectively. With this expla
nation, a study of the flowchart shown in Fig. 7-4 and the program 
comments should make the program understandable. In a typical 
case, writing an ASCII character to OUTPUT would cause it to 
appear on an output device like a crt or printer. The comments 
in the program are more detailed than usual because this is the 
most complex program presented thus far. Again, the program 
should be studied for its use of specific instructions. The purpose 
of this book is not to build a program library; it is to teach you how 
to program. 
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Example 5: Hex to ASCII Conversion Program 

Object: Output the contents of a register or memory location as two ASCII characters 
representing two hexadecimal numerals. Assume the data to be converted is 
in DATA and the 1/0 location is OUTPUT. 

$0000 = DATA 
$03FF = OUTPUT 

0350 AS 00 START LOA DATA DATA contains the number to be 

0352 A8 

0353 A2 FE 
0355 6A 
0356 6A 
0357 6A 
0358 6A 
0359 29 OF CHAR2 
0358 38 
035C E9 OA 
035E 80 04 

0360 69 3A 

0362 80 02 
0364 69 40 HERE 

0366 80 FF 03 OVER 
0369 E8 
036A FO 04 
036C 98 

0360 4C 59 03 
0370 00 DONE 

TAY 

LOX $FE 
ROR A 
ROR A 
ROR A 
ROR A 
AND $OF 
SEC 
S8C $OA 
8CS HERE 

ADC $3A 

8CS OVER 
ADC $40 

STA OUTPUT 
INX 
8EQ DONE 
TVA 

JMP CHAR2 
8RK 

converted to two ASCII characters. 
Transfer A to Y for temporary 
storage of DATA. 
Initialize X to count characters. 
High.order nibble must be output 
first, so rotate accumulator 
four bits to the right. High-order 
nibble is now low-order nibble. 
Mask tap nibble. 
Set carry for subtraction. 
Subtract $A to separate numerals 
0-9 from A-F. Carry set means numerals 
A-F. Carry clear means numerals 0-9. 
ASCII for numerals 0-9 obtained by 
adding $OA + $30 + Accumulator. 
Jump over conversion of numerals A-F. 
ASCII for numerals A-F obtained by 
adding $40 + Carry + Accumulator. 
Output ASCII representation of nibble. 
Need to get another nibble? 
Not if X = O. 
Transfer Y to A to put DATA back 
into accumulator. 

Jump to output second character. 

DECIMAL TO HEXADECIMAL 

Suppose that a programmer enters two digits in a memory loca
tion, and he chooses to regard this two-digit number as a base-ten 
number. For purposes of illustration, suppose that the number is 
5910• The programmer must restrict his use of digits to the base-ten 
numerals 0-9. 

Of course, the microcomputer will regard the number as an 8-bit 
binary number represented by two hex digits, which is not what the 
programmer intended. Therefore, before the "decimal value 59" 
can be used in subsequent operations, the program must convert 
it to a binary or hexadecimal number. (The only exception to this 
rule is in decimal addition and subtraction.) 

Before providing the solution to the problem of converting a 
two-digit base-ten number into a hexadecimal number, consider 
some interesting properties of the ASL and LSR instructions, as 
shown by Examples 6 through 9. 
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NO 

YES 

Fig. 7-4. Conversion of accumulator contents to two ASCII characters. 

Example 6: Demonstration of the ERect of One ASL Instruction on a Number 

What is $05 after one ASL instruction? 
Solution: $05 = 0000 0101, shifted once becomes 0000 1010 = $A = 1010. Ob

serve that one shift left is equivalent to multiplication by two. 

Example 7: Demonstration of the ERect of Two ASL Instructions on a Number 

What is $05 after two ASL instructions? 
Solution: $05 = 0000 0101, shifted twice becomes 0001 0100 = $14 = 20,0. Ob

serve that two shifts left is equivalent to multiplication by four. 
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Example 8: Demonstration of the Effect of One LSR Instruction on a Number 

What is $OC after one LSR instruction? 
Solution: 12 '0 = $OC = 0000 1100, shifted right becomes 0000 0110 = $06 = 6 10 • 

Observe that one shift right is equivalent to division by two. 

Example 9: Demonstration of the Effect of Two LSR Instructions on a Number 

What is $OC after two LSR instructions? 
Solution: 12 '0 = $OC = 0000 1100, shifted twice is 0000 0011 = $03 = 3 10• Ob· 

serve that two shifts right is equivalent to division by four. 

From these examples we can conclude: 

• A succession of ASL instructions is equivalent to multiplying 
by 2, 4, 8, 16, ... , provided no significant bits are shifted out 
of the location. 

• A succession of LSR instructions is equivalent to dividing by 2, 
4, 8, 16, ... , provided no significant bits are shifted out of the 
location. 

Now return to the example of the 59, which the programmer intends 
to mean 5910 but which the computer supposes is 5916 or $59. To 
convert 5910 to binary or hexadecimal we make use of the fact that 

5910 = (5.1010 ) + (9 .110 ) = (5· $A) + (9 . $1). 

Clearly, we need only multiply the five by $A and add it to nine in 
order to convert 5910 to hexadecimal. One problem remains. Recall 
that the low-order nibble is the one's place while the high-order 
nibble is the sixteen's place. The "5" is in the high-order nibble of the 
memory location, so the computer interprets it as being (5 . 16). 
We could convert this "5" in the sixteen's place to a five in the one's 
place by four shift-right (LSR) instructions, moving it from the 
high-order nibble to the low-order nibble, and then we could mul
tiply it by $A as outlined above. 

There is a more efficient technique, however. We may leave the 
"5" in the sixteen's place and divide by 16 and multiply by $A, 
using the following facts: 

5. $A = (5· $A)16= (5· 16)$A = (5. 16)($8 + $2) 
16 16 16 

= (5 . 16) (l + 1.) = (5 . 16) + (5 . 16) 
2 8 2 8' 

In other words, to multiply five times $A, we may take the high
order nibble, (5 . 16), divide it by two, divide it by eight, and add 
these two results. This is what the equations above tell us. 

The two rules regarding ASL and LSR instructions tell us that 
division by two is accomplished by one LSR instruction, and division 
by eight is accomplished by three LSR instructions. To divide the 
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(5 . 16) by two, the high-order nibble is shifted to the right by one 
LSR instruction. To divide the (5, 16) by eight, the high-order 
nibble is shifted to the right by three LSR instructions. When these 
two results are added, we have converted 5010 to its binary or hexa
decimal representation. Adding the nine in the one's place com
pletes the conversion of 5910 to its hexadecimal representation. Other 
numbers are handled in the same way, and the program in Example 
10 will convert any two-digit base-ten number to a hexadecimal 
number. 

Example 10: Decimal to Hexadecimal Conversion Program 

Object: Convert a two·digit base·ten number to hexadecimal. The base·ten number will 
be symbolized by DCML. The answer will be symbolized by HEX. TEMP will serve as a 
temporary storage location. 
$0000 = DCML 
$0001 = HEX 
$0002 = TEMP 

03AO 08 
03Al A500 
03A3 AA 
03A4 29 OF 
03A6 85 01 
03A8 8A 
03A9 29 FO 
03AB 4A 
03AC 85 02 
03AE 4A 
03AF 4A 
03BO 18 
03Bl 65 02 
03B3 65 01 
03B5 85 01 
03B7 00 

BEGIN CLD 
LOA DCML 
TAX 
AND $OF 
STA HEX 
TXA 
AND $FO 
LSR A 
STA TEMP 
LSR A 
LSR A 
ClC 
ADC TEMP 
ADC HEX 
STA HEX 

END BRK 

Clear decimal mode. 
Get decimal number. 
Save A in X temporarily. 
Mask high-arder nibble. 
One's place in answer. 
Get A back again. 
Mask low-arder nibble. 
Divide by twa (see text). 
Store in temporary location. 
Total of three LSRs gives division 
by eight (see text). 
Clear carry for addition. 
Add divide by two to divide by eight. 
Add to answer. 
Result in answer location. 

HEXADECIMAL TO DECIMAL 

In this section we consider the process of converting a hexa
decimal number in one byte of memory to its bcd representation. 
Note that since $FF = 25510 and each byte of memory can represent 
only two decimal digits with bcd code, we will require two bytes of 
memory to represent the decimal equivalent of the hexadecimal 
number. 

Let $PQ represent a hexadecimal number in the sense that P 
is the high-order nibble and Q is the low-order nibble. We intend 
to convert $PQ to its decimal equivalent. Note that P is in the 16's 
place while Q is in the one's place. That is, 

$PQ = ($P .1610 ) + ($Q . 110 ) 

This result suggests a means of converting $PQ to its decimal equiva
lent, namely, add 1610 to itself $P times using the decimal mode 
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for addition, and add 1 to itself $Q times using the decimal mode. 
These two results are then added to give the final answer. Any 
carry from these sums will be added to another byte of memory, 
giving the complete two byte representation. The program is given 
in Example 11. 

Suppose $PQ is in a location symbolized by PQ. We first mask 
$P, and transfer Q to the X register. X is then used as a counter 
to add one to the low-order byte of the decimal answer Q times. This' 
addition is carried out in the decimal mode, and the result is stored 
in location DCMLO. There will be no carry from this addition. 
Next, $P is shifted into the low-order nibble of PQ with four LSR 

Example 11: Hexadecimal to Decimal Conversion Program 

Object: Convert a hexadecimal number in location PQ to a decimal number located in 
DCMLO and DCMHI. These two locations contain the least significant two 
digits and the most significant digit, respectively. 

$0000 = PQ; Contains the hexadecimal number to be converted to decimal. 
$0001 = DCMLO; Contains the two least-significant digits of the decimal answer. 
$0002 = DCMHI; Contains the most·significant digit of the decimal answer. 

0200 A9 00 ORIGIN LOA $00 Clear the locations that will 
0202 85 01 STA DCMLO contain the decimal answer. 
0204 85 02 STA DCMHI 
0206 A500 LOA PQ Get the hexadecimal number. 
0208 29 OF AND $OF Mask $P, leaving $Q in A. 
020A FO OC BEQ OVER Branch to convert 16's place if 

one's place is zero. 
020C AA TAX Transfer $Q to X for counter. 
0200 18 CLC Make sure carry flag is clear. 
020E F8 SED Set the decimal mode flag. 
020F A501 RPTl LOA DCMLO Get DCMLO contents. 
0211 69 01 ADC 01 Add one. 
0213 85 01 STA DCMLO Result into DCMLO. 
0215 CA DEX Decrement X until one has been 
0216 DO F7 BNE RPTl added $Q times. 
0218 A5 00 OVER LOA PQ Get the hexadecimal number again. 
021A 4A LSR A Shift it right four times to get 
021B 4A LSR A $P in the low.order nibble. 
021C 4A LSR A 
02"10 4A LSR A 
02 "IE FO 11 BEQ FINISH If 16'5 place is zero, end 

the conversion. 

0220 AA TAX Transfer $p to X for counter. 
0221 18 CLC Clear carry flag in case LSRs set it. 
0222 A501 RPT2 LOA DCMLO Get DCMLO contents. 
0224 69 16 ADC 16 Add 16. 
0226 85 01 STA DCMLO Result into DCMLO. 
0228 A900 LOA $00 Prepare to add carry, if any, 

022A 65 02 ADC DCMHI to the contents of DCMHI. 

022C 85 02 STA DCMHI Result into DCMHI. 

022E CA DEX Decremenl X. 

022F DO Fl BNE RPT2 Repeat adding 16 until $P additions 

0231 00 FINSH BRK have been completed. Finish. 
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instructions. It is then transferred to the X register for the purpose 
of counting $P additions of 16]0 in the decimal mode. Up to two 
carries may result from these sums. so the carries are added to the 
contents of a location called DCMHI, which contains the high-order 
byte of the decimal representation of $PQ. This completes the con
version. 

EXPERIMENT NO. 1 

Step 1 

Load the program in Example 1. Put an ASL instruction (op 
code $OE) in location $020D. 

0200 A9 FF 
0202 BD 01 17 
0205 AD 02 17 
020B 29 BF 
020A BD 00 17 
020D _00 17 
0210 4C OD 02 

Step 2 

START lDA $FF 
STA PADD 
lDA PBD 
AND $BF 
STA PAD 

lOOP PAD 
JMP lOOP 

Set up the Port A DDR by loading 
$FF into PADD. 
Get some data from Port B. 
Mask bit six for the SYM-l and KIM-I. 
Output the resulting number to Port A. 
Sh ift the contents of Port A, and 
put the instruction in a loop for 
repeated shifts. 

Set the Port B switches to $01; that is, make PBO logic one and 
all the other switches logic zero. 

Step 3 

Single-step the program, repeating the ASL PAD and IMP LOOP 
instructions at least eight times. Describe what you observe. 

(We observed that after the STA PAD was executed the PAO LED 
glowed. The ASL instruction shifted the logic one in PAO to PAl, 
PA2, and so on, until the one was shifted out of PAD altogether.) 

Step 4 

Set the Port B switches to put a $05 in Port B. Run the program 
again (in the single-step mode) and describe what you observe. 

(We observed that initially PA2 and PAO light. Successive ASL 
instructions move each of these one bits to the left, until they are 
shifted out of Port A.) 
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EXPERIMENT NO. 2 

Step 1 

Change the ASL instruction to an ROL instruction (op code $2E) 
in the program in Experiment No.1. 

Step 2 

Set the Port B switches to $01. 

Step 3 

Single-step the program, repeating the ROL PAD instruction at 
least nine times. What do you observe? 

(You should observe that initially PAD LED lights. After each 
execution of the ROL PAD instruction the glowing LED shifts 
left. After eight ROL instructions it disappears, but on the ninth 
ROL im:truction the glowing LED appears at PAO again.) 

Step 4 

Experiment with other settings of the Port B switches and the 
single-step mode. 

EXPERIMENT NO. 3 

Repeat Experiments 1 and 2 with LSR and ROR instructions, 
respectively. You may wish to set PB7 rather than PBO to logic 
one, because the LSR and ROR instructions shift or rotate right. 
Also, experiment with other settings of the Port B switches. Describe 
and explain your results. 

EXPERIMENT NO. 4 

Step 1 
Load the program in Example 7-3. 

$0000 = MCND; Multiplicand 
$0001 = Ml TP; Multiplier 
$0003 = PROD; Product 

0200 08 START 
0201 A9 00 
0203 85 03 
0205 46 00 AGAN 
0207 90 07 
0209 18 
020A A5 01 

CLD 
lDA $00 
STA PROD 
lSR MlTP 
BCC ARND 
ClC 
LDA MCND 

Clear decimal mode. 
Clear location of product by 
storing $00 in PROD. 
Shift multiplier right to test 
for zero or one in carry flag. If 
zero branch to shift multiplicand 
left for next test. If one, add 
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020C 65 03 
020E 85 03 
0210 06 01 
0212 FO 04 
0214 A5 00 
0216 DO ED 
0218 00 

Step 2 

ARND 

ADC PROD 
STA PROD 
ASl MCND 
BEQ DONE 
LDA MlTP 
BNE AGAN 

DONE BRK 

multiplicand to obtain product. 

Shift multiplicand left for next sum. 
If multiplicand is zero, operation 
is finished. Same for multiplier. 
Otherwise branch back to sum again. 

Check the operation of the program by entering $02 in $0000 and 
$03 in $0001, execute the program, and check the answer in $0003. 
The answer should be $06. 

Step 3 

N ow try some more difficult problems like $F . $A, $2 . $C, $9 . 
$E, and others. Check your results by hand calculations. 

Step 4 

Experiment with some 8-bit problems. Try $10 . $02, for exam
ple. What do you get for an answer? Try $10 . $20. What do you 
obtain for an answer? 

(For the first answer we obtained $20 as expected. For the second 
answer we obtained $00 because the most significant byte is lost. 
The program does give the correct answer for the least significant 
byte. ) 

EXPERIMENT NO. 5 

Repeat Experiment No.4 using the 8-bit multiplication program 
instead of the 4-bit multiplication program. You should now be able 
to multiply two 8-hit numbers. In addition to the problems sug
gested in Experiment No.4, try some more difficult ones such as 
$FF . $FE and $7C· $EA. Check your program by doing the 
calculations by hand. 

EXPERIMENT NO. 6 

Step 1 

Load the program in Example 5. 

$0000 = DATA 
$03FF = OUTPUT 

0350 A5 00 START LDA DATA 

0352 A8 lAY 
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0353 A2 FE LOX $FE Initialize X to count characters. 
0355 6A ROR A High·order nibble must be output 
0356 6A ROR A first, so rotate accumulator 
0357 6A ROR A four bits to the right. High-order 
0358 6A ROR A nibble is now low·order nibble. 
0359 29 OF CHAR2 AND $OF Mask top nibble. 
035B 38 SEC Set carry for subtraction. 
035C E9 OA SBC $OA Subtract $A to separate numerals 
035E BO 04 BCS HERE 0-9 from A-F. Carry set means 

numerals A-F. Carry clear means 
numerals 0-9. 

0360 69 3A ADC $3A ASCII for numerals 0-9 obtained by 
adding $OA + $30 + Accumulator. 

0362 BO 02 BCS OVER Jump over conversion of numerals A-F. 
0364 69 40 HERE ADC $40 ASCII for numerals A-F obtained by 

adding $40 + Carry + Accumulator. 
0366 80 FF 03 OVER STA OUTPUT Output ASCII representation of nibble. 
0369 E8 INX Need to get another nibble? 
036A FO 04 BEQ DONE Not if X = O. 
036C 98 TVA Transfer Y to A to put DATA back 

into accumulator. 
0360 4C 59 03 JMP CHAR2 Jump to output second character. 
0370 00 DONE BRK 

Step 2 

Put $C5 in location $0000. Run the program. What do you find 
in location $03FF after the program has been executed? 

(The program first converts $C to its ASCII representation, which, if 
you refer to Table 6-2, is $43. Next the program converts $5 to its 
ASCII representation, which is $35. It is the ASCII representation 
of the second digit which you should find in $03FF, namely $35.) 

Step 3 

Put $5C in location $0000. Run the program and examine the 
contents of $03FF. What do you find there? 

(You should find the ASCII representation of C, namely $43, in lo
cation $03FF.) 

Step 4 

Try some other numbers in location $0000 and make sure the 
program always gives the correct ASCII representation of the 
second digit. 
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EXPERIMENT NO. 7 

Step 1 

Load the program in Example 10. 

$0000 = DCMl 
$0001 = HEX 
$0002 = TEMP 

03AO D8 BEGIN ClD Clear decimal mode. 
03A 1 A5 00 lDA DCMl Get decimal number. 
03A3 AA TAX Save A in X temporarily. 
03A4 29 OF AND $OF Mask high-order nibble. 
03A6 85 01 STA HEX One's place in answer. 
03A8 8A TXA Get A back again. 
03A9 29 FO AND $FO Mask low-order nibble. 
03AB 4A lSR A Divide by two (see text). 
03AC 85 02 STA TEMP Store in temporary location. 
03AE 4A lSR A Total of three lSRs gives division 
03AF 4A lSR A by eight (see text). 
03BO 18 ClC Clear carry for addition. 
03Bl 65 02 ADC TEMP Add divide by two to divide by eight. 
03B3 65 01 ADC HEX Add to answer. 
03B5 85 01 STA HEX Result in answer location. 
03B7 00 END BRK 

Step 2 

Put a base-ten number like 59 in location $0000. Run the program. 
What number do you find in location $OOO1? 

(You should find $3B in location $0001, since it is the hexadecimal 
equivalent of 5910. ) 

Step 3 

Try some other base-ten numbers to confirm that the program 
converts them to hexadecimal. 

EXPERIMENT NO. 8 

Here are a few additional programs and problems you might like 
to try. 

• Convert a four-digit hexadecimal number to base ten. 
• Input two ASCII representations of hexadecimal numbers and 

convert them to a hexadecimal number in the accumulator. 
• Divide two 8-bit numbers. This is very challenging. 
• Test the hexadecimal-to-decimal conversion program. 
• Try constructing a flowchart for the hexadecimal-to-decimal 

conversion program. 
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CHAPTER 8 

Indexed Addressing 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the function of an index. 
• Use absolute and zero-page indexed addressing modes in com

puter programs. See Table 8-1 for a summary of the instructions 
that use this mode. 

• Understand the concept of indirect addressing. 
• Use the indexed indirect and indirect indexed addressing modes 

in programs. 

INTRODUCTION 

So far, we have used, at various times, seven different addressing 
modes, including immediate, absolute, zero-page, accumulator, im
plied, relative, and, finally, the indirect jump. 

In the immediate addressing mode, the data to be operated upon 
is included in the program as the byte following the op code. The 
absolute addressing mode uses two program bytes to specify the 
address of the location where the byte of data is to be found. Zero
page addressing is similar to the absolute addressing mode, except 
that only the low-order byte of the address of the data is given, it 
being understood that the high-order byte of the address is $00. 
The other addressing modes, accumulator, implied, and relative, will 
not be recapped here because they are not closely related to the 
topics of this chapter. 
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Table 8·1. Op Codes for Instructions Introduced in Chapter 8 

Addressing Mode 

Instructions (IND,X) (IND),Y Z·PAGE,X ABS,X ABS,Y Z·PAGE,Y 

ADC 61 71 75 70 79 

ANO 21 31 35 30 39 

ASL 16 1 E 

CMP C1 01 05 00 09 

OEC 06 DE 

EOR 41 51 55 50 59 

INC F6 FE 

LOA A1 B1 B5 BO B9 

LOX BE B6 

LOY B4 BC 

lSR 56 5E 

ORA 01 11 15 10 19 

ROL 36 3E 

ROR 76 7E 

SBC E1 F1 F5 FO F9 

STA 81 91 95 90 99 

STX 96 

Considering all the addressing modes learned so far, it can be 
seen from the 6502 instruction set summary in Table 2-3 that there 
are still six addressing modes to learn. The instructions, addressing 
modes, and the op codes used in this chapter are summarized in 
Table 8-1. These addressing modes have one feature in common, 
namely, the use of an index. As you shall see, the use of an index 
gives the microprocessor the ability to handle large amounts of data 
quickly, efficiently, and with a minimum amount of programming. 
The indirect addressing modes allow the microprocessor to fetch 
data from locations whose addresses have been calculated. The 
indirect addressing capability distinguishes the instruction set of the 
6502 from the instruction sets of several other popular micro· 
processors. 

To provide the motivation for learning about indexed addressing, 
consider the problem of writing the same number, say $FF, to all 
the locations on a single page of memory. This might be part of an 
R/W memory test, in which the same number is placed in allloca
tions, and then all locations are read to see if that number is still 
present. (Good memory tests are more elaborate than this.) Without 
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indexing, the 6502 program would have to be similar to the one in 
Example 1. Clearly such a program is extremely long, requiring 
more memory space for the program than for the page of memory 
to be tested. There has to be a better way, and the better way is 
accomplished with indexed addressing. 

Example 1: Loading a Page of R/W Memory with a Number 

Write a program to load $FF in all the memory locations in page three of memory. 

Solution: START LDA $FF 
STA $0300 
STA $0301 

STA $03FF 
END BRK 

ABSOLUTE INDEXED ADDRESSING 

Before getting started, we note that the X and Y registers are 
central to the indexed addressing modes. In fact, these two registers 
are more properly called index registers, since their contents will 
be the index in all indexed addressing modes. No other registers 
may serve as an index. "X" will refer to the number in the X register 
and "Y" will refer to the number in the Y register. 

To illustrate absolute indexed addressing, first consider the LDA 
instruction in the absolute addressing mode. In mnemonic form 

LOA TABLE 

means fetch the contents of the location symbolized by TABLE. 
Thus, TABLE is actually a 16-bit address consisting of an 8-bit 
address low (ADL) and an 8-bit address high (ADH). We may 
write: 

TABLE = ADH-ADL. 

The address, TABLE, may be indexed by the contents of register X 
in an addressing mode called "absolute indexed by X" or, more sim
ply, "ABS,X." The mnemonic is written: 

LDA TABLE,X. 

This means that the LDA operation goes to an address that is the 
sum of the I6-bit address for TABLE (ADH -ADL) and the con
tents of the X register. The actual16-bit address for TABLE is called 
the base address, and it is now symbolized as BAH-BAL for base
address high and base-address low. Thus, 

TABLE,X = BAH-BAL + X. 
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The address BAH-BAL is called the base address of TABLE, and X 
is called the index. BAL and BAH are the second and third bytes, 
respectively, of any absolute indexed instruction. The data is ob
tained from location BAH-BAL + X. 

In words, the microprocessor adds the contents of the X register 
to the BAL of TABLE, any carry from this addition is added to 
BAH, and the data is fetched from that location. Example 2 illus
trates how this calculation proceeds. 

Example 2: Illustration of Absolute Indexed Addressing Mode 

I n the progrom below, identify the oddress of the byle of doto referenced by the 
LOA instruction. 

0200 A2 20 START LOX $20 
0202 BO 00 03 END LOA TABLE,X 

Solution: BAL = $00 and BAH = $03, so the base address of TABLE is $0300. The 
X register contains $20, SO the byte of data is fetched from the localion whose address 
is $0300 + $20 = $0320. 

The addition of the contents of the X register to the BAL of the 
base address is accomplished within the 6502. It does not involve 
the carry flag, but it may involve a carry from the sum (X + BAL), 
to BAH. For example, if the base address is $23F5 and the X 
register contains $10, then the LDA T ABLE,X instruction would 
fetch the contents of location $2405. In any case, where BAL is $00 
no page boundary will be crossed because the maximum value of the 
X index is $FF, since the X register is an 8-bit register. 

Of course, the LDA instruction is not the only instruction capable 
of being used in the ABS,X addressing mode. The arithmetic, logi
cal, store, register-shift, compare, and several other instructions also 
have this absolute indexed addressing mode available. See Table 
8-1 for details. 

For most of these same instructions, the Y register may also be 
used as an index in an addressing mode called ABS,Y that functions 
in exactly the same way as the ABS,X addressing mode, except 
that the Y register is used as the index. Table 8-1 summarizes the 
new addressing modes introduced in this chapter. 

ZERO·PAGE INDEXED ADDRESSING 

The two zero-page indexed addressing modes, "Z-PACE,X" and 
"Z-PACE,Y" are similar to their ABS,X and ABS,Y counterparts. 
These instructions require only two bytes, the first being the op 
code from Table 8-1 and the second being the base address low 
( BAL ); it is understood that BAH is $00, since page zero is being 
used. Another important difference between zero-page indexing and 
absolute indexing is that any carry from the addition of the BAL 
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to the X register is discarded in zero-page indexing. This produces 
a "wrap-around" effect, since the high byte of the address will 
always be zero in this mode. For example, if the BAL is $F5, and 
the X register used for the index contains $10, then the location of 
the data to be operated upon in the Z-PAGE,X addressing mode 
is $0005, not $0105, which you would obtain from an addition of 
BAL to X with a carry going to BAH. See Example 3. 

Example 3: Illustration of Zero-Page Indexed Addressing Mode 

Identify the memory locatian referenced by the AOC instruction in the following 
program. 

0200 A2 35 
0202 A9 29 
0204 75 20 

START LOX $35 
LOA $29 
AOC TABZ,X 

Solution: The AOC instruction uses Z·PAGE,X addressing (see Table 8·1). The base 
address of TABZ is $0020. Adding the X index gives $0020 + $35 = $0055 as the 
location to be referenced. 

To illustrate how indexing is used in programs, we will look at 
a variety of programs. To begin, refer to the problem posed in 
Example 1 in which we wish to address sequentially the 256 loca
tions in a given page of memory. The program in that example would 
have required at least 256 3-byte instructions. Using indexed ad
dressing, however, the program in Example 4 accomplishes the same 
task with only five instructions. A flowchart for this program is 
shown in Fig. 8-1. Carefully study it and the program in Example 4 
to see how the simplest form of the indexed addressing modes works. 
(The flowchart uses the notation "[A] --'> [TABLE + X]." Recall 
that this notation means "store the contents of A in the location 
whose address is symbolized by TABLE + X." Thus, the "[ ]" means 
"the contents of.") 

In Example 5, we have implemented the simple memory test 
mentioned earlier. It begins with the same instructions as the 
program in Example 4, but it goes on to illustrate the CMP instruc
tion in the absolute indexed addressing mode. A flowchart for the 
program is given in Fig. 8-2. Study the program and the flowchart 
to obtain a better understanding of the absolute indexed addressing 
mode. It is important that you realize that the calculated address of 
BASE + X may be used over and over again, as was the case for 
the STAT ABLE,X and CMP T ABLE,X instructions. Thus an 
address that was calculated in this way could be used by many 
different instructions in a program. The use of the indexed mode 
does not change the base address, or the contents of the index 
register, X or Y. 

One other note about the program in Example 5. The use of $FF 
to test R/W memory is probably a poor choice. It is possible that 
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NO 

Fig. 8·1. Flowchart of program in Exampla 
4. Recall that notation [Al ~ [TABLE + Xl 
means "the contents of the accumulator 

becomes the contents of the location 
symbolized by TABLE + X." 

"empty" locations would not be discovered because the logic levels 
on the data bus might all be one for these locations. A better choice 
for a number is $55, or any other number containing both ones and 
zeros. 

Example 4: Program to Illustrate Absolute Indexed Addressing Mode 

Object: Load $FF in all page·three locations. 
$0300 = TABLE 

0200 A2 00 
0202 A9 FF 
0204 9D 00 03 
0207 E8 
0208 DO FA 

020A 00 

START 

BACK 

LDX $00 
LDA $FF 
STA TABLE,X 
INX 
BNE BACK 

BRK 

Initialize X index to $00. 
Initialize A to $FF. 
Stare $FF in location TABLE + X. 
Increment index X. 
If X =1= 0, branch back to load 
ather locations. 

Example 5: Simple R/W Memory Test 

Object: Load each location in page three with $FF. Then read each location in page 
three to see if it still contains the number $FF. If it does not contain $FF, out· 
put the ADL of that location. 

$0300 = TABLE 
$A003 = PADD 
$AOOI = PAD 
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NO 

NO 

Fig. 8·2. Flowchart of program in Example 5. 

0200 A2 00 START LOX $00 The first five instructions of 
0202 A9 FF LOA $FF this program were commented on 
0204 90 00 03 BACK STA TABLE.X in Example 4. 
0207 E8 INX 
0208 00 FA BNE BACK 
020A 0000 03 CHECK CMP TABLE)( Compare A (still contains $FF with 
0200 0004 BNE OUT page three location. Branch to OUT 
020F E8 INX if location does not contain $FF; 
0210 00 F8 BNE CHECK otherwise return to read another 

location. 
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0212 00 BRK Finish here when all locations are 
read. 

0213 80 03 AO OUT STA PAOO Initialize Part A to be output port. 
0216 8E 01 AO STX PAD Output X for location where test 

fails. 
0219 00 BRK Then end here. 

DATA TABLES 

Indexed addressing provides an efficient technique for the manip
ulation of data stored in tables. This will be illustrated, along with 
the zero-page indexed addressing mode, in programming examples, 
Examples 6 and 7. The program in Example 6 locates the largest 

YES 

[lTAB + X-II 

YES 

Fig. 8-3. Flowchart of the program in Example 6. Recall that carry flag is set if subtraction 
does not produce a borrow, that is, if [ZTAB + Xl ~ [ZTAB + (X - 1)]. 
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Fig. 8-4. Flowchart of program in 
Example 7. 

number in a table, and the program in Example 7 adds all of the 
numbers in a table. The flowcharts for these two programs are 
shown in Figs. 8-3 and 8-4, respectively. In reference to the program 
in Example 6, you should realize, of course, that the largest value 
may be present in several locations. This program only finds the 
largest value. It does not note where it (they) are, or how many of 
them there are. 

The program in Example 7 adds all of the numbers in a table. 
The largest value of the sum of all the numbers in the table would 
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Example 6: Program to Locate Largest Number in a Table 

Object: Locate the largest number in a table that starts at location $ooAO and ends at 
$OOBO. Output the largest number to Port A. 

$OOAO = ZTAB 
$A003 = PADD 
$AOOI = PAD 

0200 A9 FF START LDA $FF Initialize Port A DDR to moke the 
0202 8D 03 AO STA PADD port an output port. 
0205 A2 10 LDX $10 Start X at $10 and get data 
0207 B5 AO AGAIN LDA ZTAB,X from the top of the table. 
0209 CA BACK DEX Decrement X; if X is less than 
020A 30 07 BMI OUT zero, task is finished. 
020C D5 AO CMP ZTAB,X Is [ZTAB + Xl ~ [ZTAB + (X - I)]? 
020E BO F9 BCS BACK Yes, keep [ZTAB + Xl as largest value 

and return to check the next location 
in the table. 

0210 4C 07 02 JMP AGAIN No, then use [ZTAB + (X - 1)1 as 
largest value and return to check 
other locations in the table. 

0213 8D 01 AO OlyT STA PAD Store largest value in Port A. 
0216 00 BRK Finished. 

occur if each location had a $FF in it. Since $FF . $100 < $FFFF, 
a two-byte location for the sum will be sufficient as long as the 
table does not exceed $100 locations. That is why there is a high
order byte (SUM HI) and a low-order byte (SUMLO) for the 
sum of the numbers in the table. Although the table could have as 
many as $100 = 256 locations, our program illustrates a table with 
16 entries. This program will be easier to test than one with 256 
entries, while the basic principles remain the same. 

Although these two examples of operating on data in tabular 
form may seem contrived, they are not. The author has used both 
ideas in working with computer applications. In fact, most of the 
programs given in this book have practical applications other than 
providing mental gymnastics for interested readers.' Because infor
mation usually comes in large quantities, the importance of being 
able to work with tables can hardly be overemphasized. In fact, 
the ability to manipulate a large quantity of information quickly 
is one of the justifications for microprocessor-based instrumentation. 

Example 7: Program to Add all Entries in a Table 

Object: Add all the numbers in a table consisting of 16 locations in page zero, from 
$ooAO through $OOAF. 

$0000 = SUMLO 
$0001 = SUMHI 
$OOAO = TABLE 

0200 A900 
0202 85 00 
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STA SUMLO Clear SUMLO to zero. 



0204 85 01 STA SUMHI Clear SUMHI to zero. 
0206 08 CLO Clear decimal made. 
0207 A2 OF LOX $OF Initialize X to start at the tap 
0209 18 BACK CLC of the table. Clear carry Aag. 
020A B5 AO LOA TABLE,X Load A with [TABLE + Xl. 
020C 65 00 ADC SUMLO Add to SUMLO. 
020E 85 00 STA SUMLO Result in SUMLO. 
0210 AS 01 LDA SUMHI Get SUMHI. 
0212 69 00 ADC $00 Add carry, if any, from previous sum. 
0214 85 01 STA SUMHI Result into SUMHI. 
0216 CA DEX Decrement X. 
0217 10 FO BPL BACK Keep adding until all the table entries 
0219 00 BRK have been included in the sum. Then quit. 

CODE CONVERSION PROGRAMS 

Another important use of indexed addressing and tables is in 
converting one code into another. For example, refer to Example 
8 in Chapter 6 in which a hexadecimal character represented by an 
ASCII value was converted into a hexadecimal number, and to 
Example 5 in Chapter 7 in which two hexadecimal numerals repre
senting the contents of a memory location were converted to two 
ASCII characters. Tables and indexed addressing sometimes make 
the conversion task easier than when using arithmetic, logical, and 
shift instructions. 

The program in Example 8 is a hex to ASCII conversion, the 
program in Example 9 converts two bcd digits to binary, and the 
program in Example 10 converts a hexadecimal number into the 
code necessary to display a hexadecimal numeral on a seven
segment LED display. Example 8 might be used to output informa
tion from a microcomputer to a video monitor, printer, typewriter, 

Example 8: Hex·ta-ASCII Conversion Program 

Object: Convert the hex number representing the low-order nibble of a memory loca
tion into its ASCII equivalent. Refer to Table 8-2 for the location and contents 
of the conversion table. Output the ASCII character to Port A. 

$0300 = TABLE 
$AOOO = PBD 
$AOOI = PAD 
$A003 = PADD 

0200 A9 FF START 
0202 8D 03 AO 

0205 AD 00 AO 
0208 29 OF 
020A AA 
020B BD 00 03 

020E 8D 01 AO 
0211 00 

LDA $FF 
STA PADD 

LDA PBD 
AND $OF 
TAX 
LDA TABLE,X 

STA PAD 
BRK 

Initialize Port A to be an 
output port by loading $FF 
into its DDR. 
Get data from Port B. 
Mask the high-order nibble. 
Put the low-order nibble in X 
to be used as the index to look 
up the ASCII value in the table. 
Output the ASCII value. 
Finish. 
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or some other output device. Example 9 might be used to read bcd 
data from a voltmeter or other instrument and convert the data to 
binary for processing by the microcomputer. Example 10 could be 
used to display the contents of a register or memory location. Both 
the SYM-1 and KIM-1 use seven-segment displays to do this. 

Because similar Howcharts have already been given, none will 
be drawn for Examples 8 through lO. In Example 8 note that the 
nibble to be converted to an ASCII value is used as the index to 
locate the ASCII character. The value TABLE points to the start 
of the code conversion table, while the hex value is actually used 
to locate the value in the table. In this way, the hex value was used 
to address the table, so that the corresponding ASCII value at the 
proper address could be retrieved. The contents of Table 8-2 must 
be loaded into memory in order for the program to work. The pro
gram could be expanded to output both nibbles of a memory loca
tion. Refer to Example 5 in Chapter 7 for details about how this 
might be accomplished. 

The program in Example 9 assumes that two decimal digits are 
represented in bed at Port B. For example, 9510 would appear as 
1001 OlOl at the Port B pins. Refer to Table 5-4 to find other 
decimal-to-bcd conversions. Also refer to Example 10 in Chapter 7 
which accomplishes the same objective as the program in Example 
9 in this chapter. Our task is to convert the bcd number to binary. 
Since the number in the ones place is the same in both bcd and 
hexadecimal, we may simply add it to the conversion of the number 
in the tens place. Thus, 

9510 = (9 . lO) + (5 . 1) = (9 . A) + (5 . 1) = (9 . A) + 5 

Table 8-2. ASCII Character Look Up Table for Example 8 

Hex Numeral ASCII Character Location Contents 

0 $30 $0300 $30 
1 31 0301 31 
2 32 0302 32 
3 33 0303 33 
4 34 0304 34 
5 35 0305 35 
6 36 0306 36 
7 37 0307 37 
8 38 0308 38 
9 39 0309 39 
A 41 030A 41 
B 42 030B 42 
C 43 030C 43 
D 44 030D 44 
E 45 030E 45 
F 46 030F 46 
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will form the basis for the conversion. The bcd digit which appears 
in the high-order nibble must be multiplied by A and then added 
to the number in the low-order nibble. But the multiplication can 
be done ahead of time and the answers stored in a table in memory. 
Such a table is shown in Table 8-3. In order for the program in 
Example 9 to work, this table must be in memory. 

Table 8-3. BCD to Binary Look Up Table for Example 9 

BCD Number Hexadecimal Value 
(Tens Place) (Number· $A) Location Contents 

0 $00 $0000 $00 
1 OA 0001 OA 
2 14 0002 14 
3 1 E 0003 1 E 
4 28 0004 28 
5 32 0005 32 
6 3C 0006 3C 
7 46 0007 46 
8 50 0008 50 
9 SA 0009 SA 

Example 9: Decimal·to-Binary Conversion Program 

Object: Convert bed number (two digits) at Port B to a binary number and store the 
result in Port A. 

$0000 = TABLE 
$0010 = TEMP 
$A003 = PADD 
$A001 = PAD 

0200 D8 START 
0201 AD 00 AD 
0204 AA 
0205 29 OF 
0207 85 10 
0209 8A 
020A 4A 
020B 4A 
020C 4A 
020D 4A 
020E AA 
020F B5 00 
0211 18 
0212 65 10 
0214 8D 01 AO 
0217 A9 FF 
0219 8D 03 AO 
021C 00 

CLO Clear decimal mode 
LOA PBD Get two BCD digits from Port B. 
TAX Save in X. 
AND $OF Mask high·order nibble. 
STA TEMP Store temporarily in TEMP. 
TXA Get both digits back in A. 
LSR A Shift high·order nibble into low· 
LSR A order nibble, and zeros into high-
LSR A order nibble. 
LSR A 
TAX Use high.order nibble as index to 
LDA TABLE,X look up conversion in TABLE. 
CLC Clear carry for addition. 
ADC TEMP Add conversion of tens place to ones place. 
STA PAD Result into Port A. 
LDA $FF Configure Port A into output port. 
STA PADD $FF into DDR of Port A. 
BRK Finished. 

The program in Example 10 converts the low-order nibble of a 
location to the seven-segment code necessary to indicate the hexa-
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Table 8-4. Data for Hex Numeral to Seven·Segment Display Program 

Seven-Segment Display Output Port Bit Assignments 

a -
II 

g 
Ib 

Bit 7 6 5 4 3 2 1 0 - Segment g f e d c b a 

el Ie 
d -

Hexadecimal Character Output Data-Table Contents location 

0 $3F $03FO 
1 06 $03Fl 
2 5B $03F2 
3 4F $03F3 
4 66 $03F4 
5 6D $03F5 
6 7C $03F6 
7 07 $03F7 
8 7F $03F8 
9 67 $03F9 
A 77 $03FA 
B 7C $03FB 
C 39 $03FC 
D 5E $03FD 
E 79 $03FE 
F 71 $03FF 

decimal numeral on a seven-segment LED display. Table 8-4 sum
marizes the segment-bit assignments for the output port, and it 
lists the table contents that are necessary to perform the conversion. 
It will be assumed that a logic one lights the segment, while a logic 
zero at the output port will turn the segment off. ,Each segment 
can be controlled individually by the computer in this application. 

Example 10: Hex-to-Seven-Segment Conversion Program 

Object: Convert the low-order nibble of a memory localion into the seven-segment code 
necessary to display the hexadecimal numeral which represents the nibble. 
Output the code to Port A. 

$03FO = TABLE 
$AOO3 = PADD 
$AOOJ = PAD 
$AOOO = PBD 

0200 A9 FF 
0202 80 03 AO 
0205 AD 00 AO 
0208 29 OF 
020A A8 
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START lDA $FF 
STA PADD 
lOA PBD 
AND $OF 
TAY 

Configure Port A to be an output 
port by loading $FF into its DDR. 
Get data to be displayed from Port B. 
Mask high·order nibble. 
Put low-order nibble in Y for index. 



020B B9 OF 03 
020E 80 01 AO 

LOA TABLE,Y Look up code for seven-segment disploy_ 
STA PAD Output code to Port A. 

0211 00 BRK Finished. 

MULTIPLE-BYTE ARITHMETIC 

The indexed addressing modes are also useful for performing 
multiple-byte arithmetic operations, especially when three or more 
bytes are involved. This is illustrated with a triple-precision deci
mal-mode addition program, shown in Example 11. Double preci
sion sums were illustrated in Chapter 5, and you may want to refer 
to those examples. The process of adding numbers that must be 
represented by more than one byte is shown in Fig. 8-5. The illus-

Ic] 
+ 

ADDEND ONE I BYTE THREE I 
+ 

ADDEND TWO I BYTE THREE I 

SUM ...r BYTE THREE I 
Ie] 

Ic] 
+ 

BYTE TWO I 
+ 

BYTE TWO 

Fig. 8-5. Diagram of triple-precision sum. 

BYTE ONE 

+ 

BYTE ONE 

tration applies both to binary numbers and decimal numbers. The 
only difference is that the decimal mode flag must be set to do 
decimal arithmetic, and it is assumed that in the decimal mode 
each byte represents a number no greater than 99. Note that this 
triple-precision addition program requires no more instructions 
than the double-precision program given in Example 6 in Chapter 
5. If greater precision (more bytes) is required, then a savings in 
program bytes results from using the absolute indexed mode of 
addressing as illustrated by Example 11. The program in Example 
11 is easily modified to add four-byte numbers, five-byte numbers, 
etc., simply by changing the LDY instruction to reflect the number 
of bytes used to represent the numbers being added. In Example 
11, the most-significant byte of each of the numbers is stored in the 
location of the base address of NUMl, NUM2, and SUM, re
spectively. Thus, the most-significant byte of NUMI is in location 
$0300, and the least-significant byte of NUMI is in location $0302. 

The program in Example 12 converts a four-digit hexadecimal 
number (16-bit binary number) to a decimal number. Since 
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Example 11: Triple-Precision Decimal Addition Program 

Object: Perform 0 triple-precision decimal-made addition_ Use the Y register for the 
index. Y is the number of bytes used to represent the numbers involved in 
the sum. 

$0300 = NUMl; mast-significant byte of addend 1 
$0310 = NUM2; mast-significant byte of addend 2 
$0320 = SUM; most-significant byte of sum 

0200 18 START CLC 
0201 F8 SED 
0202 AO 02 LOY $02 
0204 B9 0003 BACK LOA NUM1,Y 
0207 79 10 03 ADC NUM2,Y 
020A 99 20 03 STA SUM,Y 
0200 88 DEY 
020E 10 F4 BPL BACK 
0210 00 BRK 

Clear carry flag. 
Set decimal mode. 
Initialize Y index to two. 
Get byte of NUM1. 
Add to byte of NUM2. 
Result into sum location. 
Decrement Y index. 
If Y ~ 0, branch 
back to get other bytes. 

the largest four-digit hexadecimal number is $FFFF, and since 
$FFFF = 6553510, it is clear that five bcd nibbles are needed to 
represent the largest possible number. We will use three bytes of 
memory for the decimal number and two bytes for the hexadecimal 
number. 

The conversion proceeds as follows. Let $PQRS be the four-digit 
hexadecimal number to be converted to bcd, in the sense that $P 
is the most-significant hexadecimal digit and $S is the least-signifi
cant hexadecimal digit. Using the base-16 place values, $PQRS can 
be expressed as follows: 

$PQRS = ($P·40961O ) + ($Q·2561O ) + ($R·161O ) + ($S·I1O ). 

Thus, if we add 4096 to itself $P times, add 256 to itself $Q times, 
add 16 to itself $R times, and add 1 to itself $S times, using the 
decimal mode, then the conversion will be complete. Adding 4096 
to itself and adding 256 to itself requires a double-precision (two
byte) sum, with the possibility of a carry into a third byte. That is 
the reason three bytes of memory, DCMLO, DCMMI, and DCMHI, 
are used in Example 12 to store the answer. The two-byte hexa
decimal number to be converted to bcd will be stored in locations 
symbolized by PQ and RS. The numbers to be added, 4096, 256, 
16, and 1, are stored in a table that is referenced using the absolute 
indexed addressing mode. 

The program of Example 12 illustrates two indexed addressing 
techniques introduced in this chapter, namely: 

• The use of tables for code conversions 
• Multiple-precision arithmetic 

Note that this four-hex-digit conversion program requires only three 
more instructions than its two-digit counterpart in Example 11 in 
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Chapter 7. The use of indexed addressing modes makes program
ming much more efficient. 

One application of this program is related to the pulse counting 
mode of the 6522 versatile interface adapter that is described in 
Chapter 10. This integrated circuit is found on both the AIM 65 
and the SYM-l. The 6522 has the ability to detect and count pulses 
on its PB6 pin. A 16-bit register keeps track of the number of 
pulses counted, and this register (occupying two memory locations) 

Example 12: Four-Digit Hexadecimal to Five-Digit Decimal Conversion Program 

Object: Convert $PQRS, a four digit hexadecimal number, to a five-digit decimal num· 
ber. Assume $PQ is in a location symbolized by PQ, and $RS is in a location 
symbolized by RS. The three·byte decimal number will be stored in three 
locations called DCMLO, DCMMI, and DCMH!. 

$0001 = DCMLO; Low·order byte of decimal answer 
$0002 = DCMMI; Middle-order byte of decimal answer 
$0003 = DCMHI; High·order byte of decimal answer 
$0010 = RS; Low·order byte of hexadecimal number 
$0011 = PQ; High·order byte of hexadecimal number 
$0300 = CNVLO; Four bytes, $96, $56, $16, $01, from $0300 to $0303, respectively 
$0304 = CNVHI; Four bytes, $40, $02, $00, $00, from $0304 to $0307, respectively 

0200 A900 START LDA $00 Clear the locations that will 
0202 85 01 STA DCMLO contain the decimal answer. 
0204 85 02 STA DCMMI 
0206 85 03 STA DCMHI 
0208 A2 03 LOX $03 X will index number from the 
020A A5 10 MORE LDA RS conversion table. Get $RS. 
020C 29 OF AND $OF Mask $R, leaving $S. 
020E FO 1A BEQ ARND If $5 = 0, skip the addition. 
0210 A8 TAY Otherwise transfer $S to Y to serve 
0211 18 CLC as a counter for $5 add itions. 
0212 F8 SED Clear carry and set decimal flags. 
0213 A5 01 HERE LOA DCMLO Get low-order byte of decimal number. 
0215 7D 00 03 ADC CNVLO,X Add the two·digit number from the 
0218 85 01 STA DCMLO conversion table. 
021A A5 02 LDA DCMMI Get the midd le·order byte. 
021C 7D 04 03 ADC CNVHI,X Add the most.significant digits of 
021F 85 02 STA DCMMI the conversion numbers. 

0221 A5 03 LDA DCMHI Get the high.order byte. 
0223 69 00 ADC $00 Add any carry from previous sum. 
0225 85 03 STA DCMHI Result into high·order byte. 
0227 88 DEY Decrement Y before adding again 
0228 DO E9 BNE HERE to see when $S sums are complete. 
022A CA ARND DEX The next higher place value wi" 
022B 30 OC BMI FINISH be converted by moving $PQRS four 
022D AO 04 LOY $04 bits to the right. Y serves as the 

022F 46 11 NIBRO LSR PQ bit counter. Shift PQ right. 
0231 66 10 ROR RS Rotate PQ into RS. 
0233 88 DEY Decrement bit counter until an 
0234 DO F9 BNE NIBRO entire nibble has been moved from 

0236 4C OA 02 JMP MORE PQ into RS. Jump back to convert 
0239 00 FINISH BRK the next place value. 

155 



can be read by the 6502. Of course, the count is expressed in binary, 
but since human beings like their numbers in decimal, a conversion 
is necessary to produce a decimal representation on an output 
display. 

INDIRECT ADDRESSING 

The essential idea in indirect addressing is that the location 
referenced by the second byte of an instruction does not contain 
the data upon which the microprocessor operates. Instead, the zero
page location referenced by an instruction contains the low address 
(ADL) of the location of the data. The high address (ADH) of the 
location at which the data is to be found is in the next sequential 
zero-page memory location. Thus, the ADL and ADH address in
formation is pointed to by the instruction. 

Call the second byte of an instruction using the indirect ad
dressing mode IAL, an acronym for indirect address low. The IAL 
is the low-order byte of the address of a zero-page memory location. 
Then the content of IAL is the ADL of the data to be operated on, 
and IAL + 1 contains the ADH of the data to be operated upon. A 
diagram of this is shown in Fig. 8-6. Symbolically, 

PROGRAM 

$0200 INDIRECT OP CODE 

[IAl] = ADl 

[IAl + 1] = ADH 
[ADl-ADHJ = DATA 

PAGE ZERO 

$0201 L.-IA_L ___ ---II • ~ } 
IAL+1~~ 

Fig. 8·6. Diagram of Indirect Addressing Mode. 

Indirect addressing is always indicated by parentheses around 
the operand symbol. The parentheses are used to indicate that the 
content of the location symbolized is the address of the data to be 
operated on, ratber than the data itself. It is worthwhile to ask 
what a hypothetical 

LDA (MEM) 

instruction would mean. This "instruction" would result in the ac
cumulator being loaded with data from a location whose ADL was 
in MEM and whose ADH was in MEM + l. The indirect indexed 
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PROGRAM PAGE ZERO 

$0200 INDIRECT OP CODE 

$0201 ~IA_l ______ ~1 .~} 

IAl + l~ 1 BAl-BAH+Y ., DATA' 

Fig. 8·7. Diagram of Indirect Indexed Addressing Mode. 

addressing mode, studied next, is similar to the indirect addressing 
mode. 

INDIRECT INDEXED ADDRESSING MODE 

The indirect indexed addressing mode is similar to indirect ad
dressing, except that it uses the Y register as an index. With indirect 
indexed addressing, the data to be operated on is found in a lo
cation identified by BAH-BAL + Y. Acronym BAL symbolizes "base
address low," and BAH symbolizes "base-address high." Thus the 
Y index has the same meaning as it did in the absolute indexed ad
dressing mode. However, BAL and BAH are not given in the in
struction. Instead, the second byte of an indirect indexed instruction 
is the low-order address of the page-zero location that contains 
BAL. As before, call the second byte of the indirect indexed instruc
tion IAL. BAH is found in the location whose zero-page address 
is IAL + 1. Refer to the diagram in Fig. 8-7. 

All indirect indexed instructions are two-byte instructions. The 
first byte is, as always, the op code. The second byte is the address
low (IAL) of the location in page zero that contains the base
address low (BAL) of the location that contains the data. The 
base-address high (BAH) is contained in location IAL + 1. When 
the microcomputer obtains BAL from location IAL in page zero, it 
adds the contents of the Y register to find the ADL of the data. Any 
carry from this result is added to the contents of location IAL + 1 
to find the ADH of the data. Symbolically, the address of the loca
tion that contains the data is given by the expression: 

ADH-ADl = BAH-BAl + Y 

The fact that the carry from BAL + Y is added to BAH means that 
when an indexed address reaches $OAFF, the next sequential ad
dress is in the next page, namely $OBOO. Example 13 illustrates how 
to calculate the address of the data referenced by an indirect in
dexed instruction. 
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Example 13: Calculating Address Referenced With Indirect Indexed Addressing Mode 

In the following program, calculate the address of the location whose contents are 
transferred to the accumulator 

[$OOFO] = $67 
0200 AO 23 
0202 Bl FO 

[$00F1] = $03 
LOY $23 
LOA (MEM),Y 

Solution: Since MEM refers to location $OOFO and this location contains $67, the 
BAL is $67. The location MEM + 1 is $00F1, and it contains $03, 50 BAH-BAL= $0367. 
Then BAH-BAL + Y = $0367 + $23 = $038A, 50 the location referenced by the LOA 
(MEM),Y instruction is $038A. 

If Y = 0, then the instruction 

LOA (MEM),Y 

works exactly like the hypothetical instruction described in the 
previous section. The data to be loaded into the accumulator is 
found in a location whose ADL is in the zero-page location MEM 
and whose ADH is in the zero-page location MEM + 1. The indirect 
indexed mode is frequently used with Y = O. The diagram in Fig. 
8-6 applies to this case. The instructions that have indirect indexed 
addressing capability include two data transfer instructions, the 
arithmetic and logical operations, and a comparison instruction. 

The first programming example, given in Example 14, was inspired 
by the MEMORY TESTl program written by Butterfield. Readers 
who are interested in a good memory test program should consult 
the reference. We consider only the problem of loading the same 
number, say $FF, in all memory locations in page $PQ through 
page $RS of the address space. Refer to the detailed flowchart of 
this program given in Fig. 8-8. Locations $0001 and $0002 should 

Example 14: Program to Load R/W Memory With a Number 

Ob;ect: Load pages $PQ through $RS with $FF. 
$0000 = TABLE 
$0001 = START; [0001] = $PQ 
$0002 = STOP; [0002] = $RS 

0010 AO 00 ORIGIN lOY $00 
0012 84 00 STY TABLE 
0014 A6 02 LOX STOP 
0016 A9 FF LOA $FF 
0018 91 00 BACK STA (TABlE),Y 

001A C8 INY 
00IB 00 FB BNE BACK 
0010 E6 01 INC START 
OOlF E4 01 CPX START 
0021 BO F5 BCS BACK 
0023 00 BRK 

Initialize Y index to zero. 
Initialize BAl of TABLE to zero. 
X register contains last page, RS. 
Initialize A to $FF for load. 
Store A in location BAH-BAL + Y. 
(BAH is in location $0001.) 
Increment index. 
Branch back if Y =1= 0; otherwise 
page is foiled 50 increment page number. 
Is page number [STOP] = RS? 
No. fill another page. Yes, then task 
is finished. 

lButterfield, F. J., The First Book of Kim, Orb, Argonne, Illinois, 1977, p. 122. 
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NO 

GET BAl, 
ADD V, 

GET BAH, 
ADD CARRV, 

[A[ -
[BAH - BAl + VI 

Fig. 8·8, Flowchart of program in Example 14. 

contain the starting page number ($PQ) and the ending page num
ber ($RS), respectively, 

A SIMPLE MONITOR 

Another example of the use of indirect indexing is shown in 
Example 15 which will be called the NIM-l for Nibble Input 
Monitor. It allows the two I/O ports to be used to modify and 
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display the contents of any location in memory. Data or address 
information is entered one nibble at a time using the switches on 
the I/O board. The contents of a location are displayed on the 
LEDs on the I/O board. Perhaps this simple monitor could be 
extended to initialize the program counter and execute programs, 
but our objectives were smaller in scope. We want to illustrate 
the indirect indexing mode, and we want to show how the most 
basic feature of a monitor could be implemented. To be precise, 
the program in Example 15 uses indirect addressing because the Y 
index is zero. 

To use the NIM-l and the I/O board to examine and modify a 
memory location, the NIM-l program must be running, and these 
instructions must be followed . 

• The four nibbles forming the address of the location to be 
modified are entered one nibble at a time, beginning with the 
high-order nibble and ending with the low-order nibble. PB5 
is at logic one for an address nibble. 

• The nibble value is determined by the settings of switches PB4, 
PB3, PB2, and PBl. PB4 is the high-order bit and PBl is the 
low-order bit of the nibble. 

• The two nibbles forming the data to be loaded are entered one 
nibble at a time using the same switches mentioned above. PB5 
is at logic zero for a data nibble. 

• When the switches are set (PB5 is at logic one for an address 
and at logic zero for data, and PB4, PB3, PB2, and PBI repre
sent the nibble), then changing the setting of the PBO switch 
enters the information. Either a change from logic zero to logic 
one or a change from logic one to logic zero will enter the infor
mation. PBO is debounced, so the nibble is only entered once. 

A Howchart of the entire NIM-l program is given in Fig. 8-9. 

Example 15: Nibble-Input-Monitor: The NIM-l 

Ob;ect: Use the I/O board to examine, modify, and display the contents of any loco· 
tion in memory. 

$0000 = ADL 
$0001 = ADH 
$0002 = TEMP 
$A003 = PADD 
$AOOI = PAD 
$AOOO = PBD 

0010 A9 FF 
0012 BD 03 AO 
0015 Bl 00 
0017 8D 01 AO 

001A AE 00 AO 
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ORIGIN 

START 

LDA $FF 
STA PADD 
LOA (ADL),Y 
STA PAD 

LDX PBD 

Load Port A data direction register 
so it is an output port. 
Output the data at the location 
BAH-BAL + Y where BAL is [ADL] 
and BAH is [ADH]. 
Read Port B. 



001D 8A CHfCK TXA Save A in X. 
001E .olD 00 AO EOR PBD Exclusive-OR with PBD to see if PBO 
0021 29 01 AND $01 has changed. Mask all bits except PBO 
0023 FO F8 BEQ CHECK Loop to CHECK if no transition 

occurred 
0025 AD 00 AO LDA PBD Read Port B. 
0028 29 3E AND $3E Mask bits not used for information. 
002A OA ASL A Move bit from PB5 into carry flag 
002B OA ASL A and the nibble into the high-order 
002C OA ASL A nibble of A_ All other bits are zero_ 
002D A2 04 LDX $04 Initialize X register to count four bits. 
002F 85 02 STA TEMP Store A temporarily. 
0031 BO OF BCS ADDRSS If carry was set, nibble was for address. 
0033 AO 00 LDY $00 Set Y index to zero. 
0035 B1 00 DATA LDA (ADL),Y Get contents of location to be modified. 
0037 06 02 ASL TEMP Shift high bit of nibble into carry_ 
0039 2A ROL A Rotate carry into A. 
003A 91 00 STA (ADL),Y Store modified data in location 

BAH-BAl. 
003C CA DEX Repeat four times to get entire nibble 
003D DO F6 BNE DATA into location_ 
003F 4C 15 00 JMP START Go back to get more information. 
0042 OA ADDRSS ASL A Address information; Shift high bit 
0043 26 00 ROL ADL of nibble into carry flag_ Rotate 

carry flag into ADL, high-order bit 
of ADL into carry flag, and carry 

0045 26 01 ROl ADH flag into ADH. 
0047 CA DEX Repeat four more times to get entire 
0048 DO F8 BNE ADDRSS nibble into the address_ 
004A .ole 15 00 JMP STARr Go back to get more information. 

INDEXED INDIRECT ADDRESSING 

With indirect indexing, studied in the previous section, the index 
determined the location of the data_ \Vith indexed indirect ad
dressing, the subject of this section, the index determines the location 
of the address of the data. The X register is the only register that 
may be used as an index in this mode_ 

The instruction 

LDA (MEM,X), 

where MEM is zero-page location whose low-order address is IAL, 
gets the ADL of the location of the data byte from the zero-page 
location IAL + X_ The ADH of the data is found in the zero-page 
location IAL + (X + 1) _ Example 16 shows such a calculation, and 
Fig. 8-10 diagrams this addressing mode. 

All indexed indirect instructions use the notation shown above for 
the LDA (MEM,X) instruction (see Table 8-1 for a list of instruc
tions that have this mode available). They are two-byte instructions, 
the first byte being the op code, and the second byte being the IAL 
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which, when added to X, gives the zero-page location where the 
ADL of the data byte is found. 

Like indirect indexed addressing, indexed indirect addressing is 
useful in dealing with large quantities of information. Our last 
programming example illustrates how indexed indirect addressing 

DATA ENTRY COLUMN ADDRESS ENTRY COLUMN 

YES 

YES 

Fig. 8·9. Flowchart of NIM·l Program. Notation [(ADH·ADL)] means "'he contents of 'he 
location whose address is 'he contents of the locations ADH and ADL." 
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PROGRAM PAGE ZERO 

$0201 IL-'_Al __ h 
_ IAl+X .. ~} 

IAl+(X+l)~ l 
~ 

Fig. 8·10. Diagram of Indexed Indirect Addressing Mode. 

Example 16: Calculating the Address Referenced With Indexed Indirect 
Addressing Mode 

Find the location referenced by the indexed indirect instruction in the following: 

[$0017] = $FF [$0018] = $AO 
0200 A2 14 START LOX $14 
0202 El 03 END S8C (MEM,X) 

Solution: The IAL is $03 + $14 = $17. Location $0017 contains $FF and location 
$0018 contains $AO, so the location referenced by the S8C (MEM,X) instruction is 
$AOFF. 

can be used to input information from several sources. Suppose an 
instrument that collects data provides four output channels. (The 
author's application was a speech recognition circuit.) Assume 
that the four channels are multiplexed; that is, the data from a 
channel appears at a single I/O port on the computer, depending 
on the channel number (zero through three) that is loaded into 
another I/O port. The voltage level at the output of the multiplexer 
is converted to a 6-bit digital number by an analog-to-digital (A/D) 
circuit. When the circuit is busy making an analog-to-digital con-

Table 8-5. Multichannel Data Logging Program Information 

Write Read 
Multiplexer Port Data Port 

$00 selects Channel·O Data 
$01 selects Channel·' Data 
$02 selects Channel-2 Data 
$03 selects Channel-3 Data 

[$0000] = [Base Address Low of Channel-O Table] = $00. 
[$0001] = [Base Address High of Channel·O Table] = $03. 
[$0002] = [Base Address Low of Channel· 1 Table] = $40. 
[$0003] = [Base Address High of Channel-l Table] = $03. 
[$0004] = [Base Address Low of Channel-2 Table] = $80. 
[$0005] = [Base Address High of Channel-2 Tablel = $03. 
[$00061 = [Base Address Low of Channel-3 Table] = $CO. 
[$00071 = [Base Address High of Channel-3 Tablel = $03. 
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version, bit seven of the data port is one. When the conversion is 
complete, bit seven is zero. Table 8-5 summarizes the pertinent 
information for the system. 

All four channels must be read and the data stored in a table, one 
table for each channel. After all four channels are read, a delay of 
10 ms is inserted before they are read again, until 6410 = $40 data 
points have been read for each channel. The channel-zero data will 
be stored in locations $0300 through $033F, channel-one data in 
locations $0340-$037F, channel-two data in locations $0380-$03BF, 
and channel-three data in locations $03CO-$03FF. The machine 
language version is not given because it is unlikely that you would 
use exactly the same program. 

Example 17: Logging Four Channels of Input D.t. 

Obiecf: Read and log the four-channel system described in the tex!. 
$0000 = TABLE 
$0000 = BALO 
$0002 = BALl 
$0004 = BAL2 
$0006 = BAL3 

ORIGIN 
HERE 
AGAIN 
BACK 

OUT 

lOX $00 
lOY $00 
STY MUlTPlX 
LOA DATA 
BMI BACK 
STA (TABLE,X) 
INX 
INX 
INY 
CPY $04 
BCC AGAIN 
INC BALO 
INC BAll 
INC BAL2 
INC BAl3 
LOA BAL3 
BEQ OUT 

JMP HERE 

Initialize X index to zero. 
Initialize Y index to zero, Y = Channel Number. 
Store Y in multiplexer to select channel. 
Get AID data at data port. 
If bit seven is one, AID is busy. 
Otherwise store data in table. 
Adva nee X to select the BAl of 
the next table. 
Advance Y to get next channel. 
If Y < 4, branch back to get data from 
another channel. 
Otherwise, the first data point for each 
channel has been logged. Next, increase 
the BAL of each table, so the next point 
will be stored in the next location. 
If BAl3 is $00, the whole table has been 
filled, so the task is finished. 

Otherwise delay here with interval timer. 

Then jump back to get more poin ... 

INTRODUCTION TO THE EXPERIMENTS 

Having advanced to this stage in your knowledge of the 6502 
instruction set, you should feel more like writing your own pro
grams than repeating the ones in the text. The experiments that 
follow give you some experience with the programs we studied in 
this chapter; some experiments suggest another program to write, a 
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program that is somewhat similar to the one being studied. You 
have probably thought of programs you want to write for yourself, 
and you should take the time to try a few of these. You have now 
learned all but a few instructions of the instruction set, so you should 
be able to write programs. If you cannot think of any programs of 
your own, here are a few ideas to try for programming experience: 

• A program to load data from the I/O board Port B into a 
table 

• A five-byte addition program 
• A program to transfer one page of memory to another page of 

memory 
• A program to relocate a program (difficult) 
• A program to transfer a table in an input buffer to the top of an 

existing table someplace in memory 
• A program to handle N input channels simultaneously, storing 

each channel in a separate page in memory 
• A program to implement an FIFO (First-In, First-Out) memory 

for a given number of bytes, say N bytes 
• A program to implement a LIFO (Last-In, First-Out) memory 

for 256 bytes. 

EXPERIMENT NO. 1 

Step 1 

Load the program in Example 8-4, which is listed below for con-
venience. 

0200 A200 START LOX $00 
0202 A9 FF LOA $FF 
0204 90 00 03 BACK STA TABLE,X 
0207 E8 INX 
0208 DO FA BNE BACK 
020A 00 BRK 

Step 2 

Execute the program. Check a number of locations in page three 
of memory to see if the program worked. Change the byte at loca
tion $0203 to $00. Now what do you expect to find in page three 
locations? 

(The first time the program is run should result in $FF being stored 
in every page three location. The second time the program is run 
should clear every location in page three.) 
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EXPERIMENT NO. 2 

Step 1 

Load the program in Example 6. It is listed here for convenience. 

0200 A9 FF 
0202 8D 03 AO 
0205 A2 10 
0207 B5 AO 
0209 CA 
020A 30 07 
020C D5 AO 
020E BO F9 
0210 4C 07 02 
0213 8D 01 AO 
0216 00 

Step 2 

START 

AGAIN 
BACK 

LDA $FF 
STA PADD 
LDX $10 
LDA ZTAB,X 
DEX 
BMI OUT 
CMP ZTAB,X 
BCS BACK 
JMP AGAIN 

OUT STA PAD 
BRK 

Clear locations $OOAO through $OOBO. Run the program. What 
do you expect to see at Port A? 

(If all the locations are loaded with $00, the largest value in the 
table is $00. All the Port A LEDs should go out.) 

Step 3 

Put some other numbers in locations $OOAO through $OOBO, noting 
the largest. Now run the program, and check to make sure it does 
find the largest number. 

Step 4 

Modify the program to find the smallest number in the same 
table, and to output this number to Port A. Check your program to 
see if it works. 

EXPERIMENT NO. 3 

Step 1 

Load the program in Example 7, which is listed below for con-
venience. 

0200 A9 00 STAR" LOA $00 
0202 85 00 STA SUMLO 
0204 85 01 STA SUMHI 
0206 08 CLO 
0207 A2 OF LOX $OF 
0209 18 BACK CLC 
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020A B5 AO LOA TABLE,X 
020C 65 00 AOC SUMLO 
020E 85 00 STA SUMLO 
0210 A5 01 LOA SUMHI 
0212 69 00 ADC $00 
0214 85 01 STA SUMHI 
0216 CA OEX 
0217 10 FO BPL BACK 
0219 00 BRK 

Step 2 

Clear the locations $OOAO through $OOAF. Execute the program. 
What do you expect to find in SUMLO and SUMHI, locations $0000 
and $0001, respectively? 

(You should nnd $00 in both locations.) 

Step 3 

Load all of the locations in the table with $FF. Now what do you 
expect to nnd in SUMLO and SUMHI? 

(You should find $Fl in SUMLO, and SUMHI should contain $OE 
since $F . $FF = $OEFl.) 

Step 4 

Write a program to subtract the same number from all the num
bers in a table. It will not look exactly like Example 7, but it should 
use Z-PACE,X addressing. Assume the table is in locations $OOAO 
through $OOAF. 

EXPERIMENT NO. 4 

Step 1 

Load the program in Example 8, listed here for convenience. 
This experiment will use the I/O board, so attach it to the applica
tion port. Also load the conversion table, Table 8-2, into memory. 

0200 A9 FF START LOA $FF 
0202 80 03 AO STA PAOO 
0205 AO 00 AO LDA PBD 
0208 29 OF ANO $OF 
020A AA TAX 
020B BD 00 03 LOA TABLE,X 

020E 80 01 AO STA PAD 
0211 00 BRK 
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Step 2 

For convenience in running the program, change the BRK in
struction to a ]MP 0205 instruction, putting the program in a loop 
that runs continuously. 

Step 3 

Set up a hex nibble on the Port B switches PB3-PBO. For ex
ample, set the switches to $A. What should you observe at Port A? 

(Since the program converts the hex number represented by the 
four switches to ASCII, you should observe $41 at Port A.) 

Step 4 

Alter the switches PB3-PBO, and check to see if the program is 
making the correct conversion. Use Table 8-2 to check your answers. 

Step 5 
Try writing a program to take an ASCII character from some 

location and convert it to the low-order nibble of another location. 
Table 8-2 should be useful. Use a table to perform the conversion. 

EXPERIMENT NO. 5 

Step 1 
Load the program in Example 9. If you are not using an AIM 65, 

you may want to add an AND $BF instruction after the LDA PBD 
instruction to mask bit six. 

0200 D8 START ClD 
0201 AD 00 AO lDA PBD 
0204 AA TAX 
0205 29 OF AND $OF 
0207 85 10 STA TEMP 
0209 8A TXA 
020A 4A lSR A 
020B 4A lSR A 
020C 4A lSR A 
020D 4A lSR A 
020E AA TAX 
020F B5 00 lDA TABlE,X 
0211 18 ClC 
0212 65 10 ADC TEMP 
0214 8D 01 AO STA PAD 
0217 A9 FF lDA $FF 
0219 8D 03 AO STA PADD 
021C 00 BRK 
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Step 2 

Set up two bcd digits on the Port B switches. Make sure Table 
8-3 is in memory. Run the program. Does the program convert bcd 
to binary correctly? For example, if the digits 95 are set up on the 
port input switches, what do you expect to see at Port A? 

( 9510 = $5F so you should observe $5F at Port A.) 

Step 3 

Try writing a program to convert a hexadecimal number less than 
$64 = 10010 to two bed digits and output them at Port A. 

EXPERIMENT NO. 6 

Step 1 

Load the NIM-l, Example 15. The program is quite long, so it 
is not repeated here. Turn back to the original listing to load it into 
memory. 

Step 2 

Execute the program. Following the instructions for entering 
address and data information, enter $00 in location $0300. This is 
accomplished as follows: 

• Set PB5 to 1 (address mode) and PB4-PBl to represent $0. 
Change switch PBO. 

• Set PB5 to 1 and PB4-PBl to represent $3. Change switch PBO. 
• Set PB5 to 1 and PB4-PBl to represent $0. Change switch PBO. 
• Enter the last zero in the address by leaving PBS-PBl the same 

as in the previous step; then change switch PBO to enter the 
nibble. 

The address $0300 is now entered. To enter $00 as data: 

• Set PB5 to O. PB4-PBl should represent $0. Change switch PBO. 
• Change switch PBO to enter the second nibble. 

Now examine location $0300. It should contain $00, and all the 
Port A LEDs should be off. 

Step 3 

Enter $7F in location $0300. Since the monitor is already set up 
to modify location $0300, we can leave it in the data mode (PB5 
at 0) and enter $7F with these steps. 

• Set switches PB4-PBl to represent $7. Change PBO. 
• Set switches PB4-PBl to represent $F. Change PBO. 
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Examine location $0300 to see if your I/O board and NIM-l monitor 
did actually enter $7F in this location, and that Port A does represent 
the data found in a location. 

EXPERIMENT NO. 7 

Step 1 

Breadboard the circuit shown in Fig. 8-11. The author used a rib
bon cable from a 22/44-pin edge connector on the application port 
to a dip socket on an AP Products Superstrip. (These parts are 
available from JAMECO Electronics, 1021 Howard Ave., San Carlos, 
CA 94070.) 

R 

R 

R 

R 

1 a 
a -

II g Ib 

: :/.-:f 
2 -

I g 

7 SEGMENT 
LED 

(COMMON ANODE) 

R = 270!l 

2 7404 INVERTERS (PIN 14 = +5V. PIN 7 = GND) 

+5V 

Fig. 8·11. Circuit diagram for Experiment No.7. Pin numbers on application connector 
are given for each bit of Port A used. 

Step 2 

Load the program in Example 10. It is listed below for conveni
ence. Also load Table 8-4 into memory. 
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0200 A9 FF 
0202 80 03 AO 

START LOA $FF 
STA PAOO 



0205 AD 00 AO LDA PBD 
0208 29 OF AND $OF 
020A A8 lAY 
020B B9 FO 03 LDA lABLE,Y 
020E 8D 01 AO SlA PAD 
0211 00 BRK 

Step 3 

Change the BRK instruction at location $0211 to a JMP 0205 so 
the program will run as a continuous loop. 

Step 4 

What is the,status of the LEDs on the seven-segment display when 
the system is RESET? 

Step 5 

Now try to input various nibbles on the Port B switches. You 
should observe the hex numeral corresponding to the switch set
tings on PB3--PBO. 
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CHAPTER 9 

Subroutines, 
The Stack, and 

Interrupts 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the function of subroutines and use them in pro
grams. 

• Understand how the stack is used in processing subroutines 
and interrupts. 

• Use the }SR, RTS, CLI, SEI, RTI, PHA, PHP, PLA, PLP, TXS, 
TSX, BRK, and NOP instructions. See Table 9-1 for a summary. 

• Write programs that make use of subroutines and interrupts. 

INTRODUCTION 

With few exceptions, the programs in this book that have been 
used to illustrate the 6502 instruction set would generally be part of 
larger programs with more elaborate objectives. For example, the 
program in Example 10 in Chapter 7 that converts two bcd digits 
to an 8-bit binary number might be part of a much longer data
logging program in which the input data is manipulated and dis
played on an oscilloscope or output to a printer. As such, the bcd 
to binary program would be called a routine. Long programs can 
frequently be divided into groups of simpler programs, each of 
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Table 9-1. Summary of Instructions Introduced in Chapter 9 

Addressing Mode Op·Codes 

Instruction Description Implied Absolute 

BRK Force Interrupt 00 
CLI Clear Interrupt Disable Flag 58 
JSR Jump to Subroutine 20 
NOP No Operation EA 
PHA Push Accumulator on Stack 48 
PHP Push P Register on Stack 08 
PlA Pull Accumulator from Stack 68 
PlP Pull P Register from Stack 28 
RTI Return from Interrupt 40 
RTS Return from Subroutine 60 
SEI Set Interrupt Disable Flag 78 
TSX Transfer Stack Pointer to X Register 8A 
TXS Transfer X Register to Stack Pointer 9A 

which is usually referred to as a routine. A 16-bit multiplication 
program might be part of the interpreter of a high-level language, 
such as FORTRAN. As such, it would be called a multiplication 
routine. 

If a program requires the use of a particular routine in several 
different places in the program, then the instructions for that routine 
would have to be repeated. This is inefficient programming. It 
would be better if the routine could be written and stored once, 
and the program could iump to the routine whenever it was needed, 
followed by a return to the main program. 

The 6502 microprocessor has two quite different, but extremely 
important, ways of jumping to and returning from routines. The 
first is through the use of the JSR (Jump to Subroutine) instruction 
and the RTS (Return from Subroutine) instruction. The second 
way of jumping to a routine is through the use of interrupts. In 
this case, an external circuit signals the microprocessor and requests 
that it jump to a particular routine, called an interrupt routine. These 
two techniques for calling a routine will be discussed in detail in 
this chapter. The various instructions that are used in calling and 
processing these two types of routines are summarized in Table 9-1. 

SUBROUTINES 

A routine that may be used at several points in a program through 
the use of the JSR instruction is called a subroutine. Like a program, 
a subroutine has a specific objective, such as multiplying two 8-bit 
numbers. Once designed as a subroutine, it cannot be used by itself. 
The program of which the subroutine is a part is called the main 
program. The main program can use (or call) the subroutine at 
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any point through the use of the ISR instruction. On the other hand, 
the subroutine signals the main program that it has completed its 
objective with an RTS instruction. The main program then continues 
execution at the instruction following the ISH instruction. In this 
way, the instructions in the subroutine have been "inserted" in the 
main program, between the ISR instruction and the one that 
follows it. 

The ISR instruction is a three-byte instruction. The first byte is 
the op code ($20), the second byte is the ADL for the location of 
the first instruction in the subroutine, and the third byte is the ADH 
for the location of the first byte in the subroutine. Consider the 
program excerpt shown in Table 9-2. The ST A, LDA, and LDX 
are just "dummy" instructions used to illustrate the fact that the 
ISR instruction is usually found somewhere in the middle of a main 
program. It is also assumed in Table 9-2 that there are many in
structions in the subroutine, only the first and last of which have 
been shown. 

Referring to Table 9-2, the ISR ML TP instruction results in a 
jump to the subroutine labeled MLTP, and the op code of the first 
instruction in subroutine ML TP is located at address $0300. The 
instruction located at this address will be executed immediately 
following execution of the ISR MLTP instruction. Subsequent in
structions in the subroutine will be executed until an RTS (Return 
from Subroutine) instruction is encountered. 

The RTS instruction is a single-byte instruction, op code = $60. 
Execution of this instruction results in the main program continuing 
at the instruction following the ISR instruction. In the example 
shown in Table 9-2, the RTS instruction would result in the next 
op code being fetched from the location whose address is $0253; 
that is, the location immediately following the last byte of the ISR 
instruction. 

The ISR instruction contains the information necessary to find 
the first instruction of the subroutine, but the RTS instruction is 

Table 9-2. Example of Subroutine Call and Return from Subroutine 

Location Instruction Label Mnemonic Operand Comments 

0240 80 03 04 MAIN STA MEM 
0250 20 00 03 JSR MLTP Jump to subroutine labeled 

lTP 

MLTP. 
0253 AO 03 04 LOA MEM-
0300 A2 FF - LOX $FF 

. 
0344 60 RTS Return from subroutine 
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a single-byte instruction and contains no such information. How 
could it? Since, as indicated, a jump to a subroutine may occur any
where in the main program, there will be a number of different 
"return locations." 

How does the microprocessor know where to return to get the 
next instruction after a subroutine call has been completed? Before 
the microprocessor jumps to the subroutine, it stores the address of 
the location of the third byte of the JSR instruction in a special 
section of read/write memory called the stack. Execution of the RTS 
instruction results in a fetch of this address which is then loaded into 
the program counter. The program counter is then automatically 
incremented by one to identify the address at which the op code 
immediately following the JSR instruction is stored. In the example 
shown in Table 9-2, the address of the $03 byte is stored on the 
stack. That is, ADL $52 and ADH $02 are stored on the stack. 
Upon executing the RTS instruction, these two numbers are loaded 
back into the program counter of the microprocessor, the $52 is in
cremented by one, and the number $0253 becomes the new PCH
PCL and, thus, the address of the location of the next op code. Since 
both subroutines and interrupts, to be described in a subsequent 
section of this chapter, make use of the stack, we now turn to an 
explanation of the operation of the stack. 

THE STACK 

The stack is a series of read/write memory locations in page 
one of memory (addresses $OlOO-$OlFF). The stack area starts at 
address $OlFF and extends downward in memory, but no farther 
than address $0100. It is sometimes called a push down stack be
cause locations are filled from the top location, whose address is 
$OlFF, downward; but locations are emptied (loosely speaking) 
from the bottom upward. It could better be called FILO for "first
in, last-out" memory. The first byte placed on the stack by the micro
processor is the last byte taken off the stack. 

All stack operations make use of the stack pointer, the only in
ternal register of the 6502 that has not yet been mentioned. The 
stack pointer is an 8-bit register which contains the low-order ad
dress (ADL) of the next empty or available location on the stack. 
The location just above this may be called the top of the stack, 
since it was the last location filled by a stack operation. When the 
contents of the stack pointer are placed on the address bus, an ADH 
of $01 always appears along with the contents of the stack pointer 
as ADL. Thus, in a certain sense, the stack pointer is a 16-bit 
register with the most significant byte always being equivalent to 
$01. That is, the ADH of the location to be referenced by a stack 
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operation is always $01, while the ADL for the location comes from 
the stack pointer. (If the address line A8 is 110t decoded, as in the 
case of some small microprocessor-based designs, then the stack will 
be in page zero.) 

The stack pointer is always initialized to $FF by a RESET opera
tion. You may check this by pressing the RESET button on your 
computer and then using the monitor to examine the contents of 
this register. There may be situations in which it is undesirable 
to have the stack near the top of page one in memory. Two instruc
tions allow the stack pointer to be set to any page-one location or, 
if necessary, to be checked. The TSX instruction transfers the con
tents of the stack pointer to the X register. This may be used to see 
how much of the stack has been used. The TXS instruction transfers 
the contents of the X register to the stack pointer. This may be 
used to set the stack pointer to other locations in page one of 
memory for the stack. One could, with considerable care in pro
gramming, operate two or more stacks in page one through the use 
of the TXS and TSX instructions. However, great care must be 
exercised to make sure the stack does not wrap around, for when 
the stack pointer reaches $00, it will be decremented to $FF with the 
next stack operation, and then it will start writing over data at the 
bottom of the stack, address $OlFF. 

To understand how the stack is used for subroutine calls, consider 
again the program example in Table 9-2. Assume that the system 
has been RESET so that the stack pointer is $FF before the pro
gram is executed. Upon execution of the JSR ML TP instruction, 
the number $02, representing the ADH of byte three in the JSR 
MLTP instruction, is stored in the location with address $OlFF. 
The stack pointer is then decremented by the microprocessor to 
$FE, and the number $52, representing the ADL of byte three in 
the JSR MLTP instruction, is stored at the location whose address 
is $OlFE Again. the stack is decremented and it becomes $FD. 
Finally, the number $0300 is put in the program counter on the 
address bus to fetch the first op code in the subroutine. The subrou
tine is then executed. 

The RTS instruction causes the stack pointer to be incremented 
from $FD to $FE, and the contents of the location with address 
$OlFE is loaded into the PCL. The stack pointer is incremented 
again, and the contents of the location whose address is $OlFF is 
put into the PCH. Next, the program counter is incremented. and 
the program counter contents, now $0253, are placed on the address 
bus to fetch the op code of the instruction following the JSR in
struction in the main program. 

The JSR and RTS instructions may be summarized briefly as 
follows: 
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• JSR-Push the address of the third byte of the JSR instruction 
on the top of the stack in the order ADH, ADL. Place the 
second and third bytes of the JSR instruction into the PCL and 
PCH, respectively. Continue execution. 

• RTS-Pull the top two bytes off the stack and place them in 
the program counter in the order PCL, PCH. Increment the 
program counter and continue execution. 

It is clear that the JSR and RTS instructions require the micro
processor to perform several operations, and, consequently, one 
would expect that these instructions take a lot of time. They do. An 
examination of the instruction set summary or the complete instruc
tion set for the 6502 shows that they each take six clock cycles, 
whereas the shortest instructions only take two clock cycles. In ap
plications where time is critical, it may be necessary to avoid sub
routines; but, in many other applications, the expense in time is 
worth the programming convenience and savings in the memory 
space allotted to the program. Your microcomputer monitor is a 
good place to look for the applications of subroutines. 

NESTED SUBROUTINES 

To understand the idea of nested subroutines and how the stack 
works, consider Example 1. This program does nothing except 
demonstrate the concept of nested subroutines. The main program 
is simply a loop consisting of a subroutine call, namely JSR ONE. 
Note that subroutine ONE calls another subroutine, subroutine 
TWO. This represents a nested subroutine, because one subrou
tine is calling another. Finally, subroutine TWO calls subroutine 
THREE, which also does nothing, whereupon it returns to sub
routine TWO. Subroutine TWO returns to subroutine ONE, and 
subroutine ONE returns to the main program. The sequence of 
instruction executions is illustrated in Table 9-3. We have, so to 
speak, subroutines nested three deep. In Example 9-1, observe that 

0010 20 00 01 
0013 4C 10 00 

0100 20 00 02 
0103 60 

0200 200003 
0203 60 

0300 60 

Example 1: Demonstration of Nested Subroutines 

MAIN PROGRAM 

MAIN JSR ONE Jump to subroutine ONE. 
JMP MAIN loop back to jump to subroutine ONE. 

SUSROUTINE ONE 

ONE JSR TWO Jump to subroutine TWO. 
RTS Return to main program. 

SUBROUTINE TWO 

TWO JSR THREE Jump to subroutine THREE. 
RTS Return to subroutine ONE. 

SUBROUTINE THREE 

THREE RTS Return to subroutine TWO. 



Table 9-3. Instruction Execution Sequence and Stack Pointer 
Values for Example 1 

Stack 
Page One Memory Locations By ADL 

Location Instruction Pointer $FF $FE $FD $FC $FB $FA $F9 

(Initial Values) $FF XX XX xx XX XX XX XX 

0010 20 JSR 0100 (XX means "don't care") 

$FD 00 12 XX XX XX XX XX 

0100 20 JSR 0200 
$FB 00 12 01 02 XX XX XX 

0200 20 JSR 0300 
$F9 00 12 01 02 02 02 XX 

0300 60 RTS 
$FB 00 12 01 02 XX XX XX 

0203 60 RTS 
$FD 00 12 XX XX XX XX XX 

0103 60 RTS 
$FF XX XX XX XX XX XX XX 

0013 4C JMP 0010 
$FF XX XX XX XX XX XX XX 

0010 20 JSR 0100 
$FD 00 12 XX XX XX XX XX 

the subroutine label, TWO for example, also labels the starting 
location of the subroutine. 

Although the program in Example 9-1 was introduced for the sole 
purpose of demonstrating nested subroutines and the operation of 
the stack with nested subroutines, you might want to make the 
program more useful by putting delay loops, see Chapter 6, in 
each of the subroutines. For example, suppose subroutine THREE 
produces a lO-millisecond delay. Subroutine TWO might produce 
a lOO-millisecond delay by calling subroutine THREE ten times. 
If subroutine ONE called subroutine TWO ten times, then sub
routine ONE would produce a delay of 1 second. Thus, the pro
grammer would have a choice of three delays, 1 second, 100 milli
seconds, or ten milliseconds, by calling subroutine ONE, TWO, 
or THREE, respectively. 

The implementation is left to the reader. Precise delays are more 
easily programmed through the use of interval timers, the subject 
of the next chapter. 

When the program in Example 1 is executed, the sequence of 
instruction executions is shown in Table 9-3. Also shown is the 
value of the stack pointer after execution of each instruction, and 
the contents of the stack locations used by the program are given 
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on the right-hand side of the table. After executing the first JSR 
instruction, the stack pointer is $FD, meaning locations with ad
dresses $OlFF and $OlFE have been filled. In particular, these 
locations contain the ADH and ADL of the last byte of the first 
JSR instruction, as can be seen from the contents of the stack. It 
can be seen that subroutines nested three deep will require at least 
six locations in the stack. The stack is said to be six locations deep. 
Observe that, as the RTS instructions are executed, the stack pointer 
is incremented until it is again $FF when all the subroutines have 
been executed. 

USE OF THE STACK FOR STORAGE 

A program that makes use of the X register, for example, may 
have a subroutine that also requires the use of this register. Further
more, the contents of the processor status register (P register) will 
undoubtedly change during execution of the subroutine, but it 
may be necessary to preserve the Rag settings in the P register for 
the part of the main program that follows the subroutine. Clearly, 
it is desirable to have some way of saving the contents of the 6502 
internal registers so that a subroutine may use them and so that 
after execution of a subroutine the registers may be restored to the 
same value they had prior to the use of the subroutine. Of course, 
certain memory locations could be allocated for the purpose of 
saving registers, but there is a more efficient technique that makes 
use of the stack and several so-called stack operations. 

Here we summarize the principal stack operations; S stands for 
the contents of the stack pointer, and MR stands for a memory loca
tion in page one whose low address corresponds to the stack pointer. 

• PH A-Push Accumulator on the Stack: place the contents of the 
accumulator on the stack, then decrement the stack pointer. 
Logically, A ~ M~;, S - 1 ~ S. See Fig. 9-1. 

• PHP-Push the P register on the Stack: place the contents of 
the processor status register on the stack, then decrement the 
stack pointer. Logically, P ~ Ms, S - 1 ~ S. See Fig. 9-2. 

PAGE·ONE ADDRESS PAGE·ONE CONTENTS STACK POINTER CONTENTS 

BEFORE PHA AFTER PHA BEFORE PHA AFTER PHA 

$OIPQ ·1 IAI ~$PQ $PQ-l 

· i I $OIPQ -1 I-
Fig. 9·1. Diagram of PHA Instrudion. In this diagram, A symbolizes accumulator and 

PQ symbolizes any two-digit hexadecimal number. 
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PAGE·ONE ADDRESS PAGE·ONE CONTENTS STACK POINTER CONTENTS 

BEFORE PHP AFTER PHP BEFORE PHP AFTER PHP 

$OIRS ·1 
: . 

[PI I· $RS $RS-I 

I $OIRS -I ·1 
Fig. 9-2. Diagram of PHP Instruction. P symbolizes processor status register and RS 

symbolizes any two.digit hexadecimal number . 

• PLA-Pull Accumulator from the Stack: increment the stack 
pointer, then load the accumulator with the contents of the 
stack. Logically, S + 1 ~ S, Ms ~ A. See Fig. 9-3. 

PAGE·ONE 

STACK POINTER CONTENTS ADDRESS CONTENTS ACCUMULATOR CONTENTS 

BEFORE PLA AFTER PLA BEFORE PLA AFTER PLA 

$OUK $OIJK+I- $OUK+I '-1_.--..... 
1,-_______ • $OUK 

1 [$OUK+ I[ 1 

f 
Fig. 9-3. Diagram of PLA Instruction. JK symbolizes any two·digit hexadecimal number. 

• PLP-Pull the P register from the Stack: increment the stack 
pointer, then load the P register with the contents of the stack. 
Logically, S + 1 ~ S, Ms ~ P. See Fig. 9-4. 

PAGE·ONE 

STACK POINTER CONTENTS ADDRESS CONTENTS P REGISTER CONTENTS 

BEFORE PLP AFTER PLP BEFORE PLP AFTER PLP 

$OIMN $OIMN+I-$OIMN+I .... 1 ---,_-' 

.... 1 ------•• $OIMN 

1 [$OIMN+ II 1 

t 
Fig. 9-4. Diagram of PLP Instruction. MN symbolizes any two-digit hexadecimal number. 

Assume that the contents of both the accumulator and the P 
register are to be preserved during a subroutine jump. Before the 
JSR instruction, one would place a PHA and a PHP instruction. 
After the JSR instruction, still in the main program, one would have 
a PLP and a PLA instruction, in that order. Remember, the accumu
lator was "first in" so it will be "last out." It is very important to 
keep track of the order in which data to be saved is placed on the 
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stack, because it is taken from the stack in reverse order. The "save" 
instructions could be in the subroutine instead, the PHA and PHP 
being the first two instructions in the subroutine instead, and the 
PLP and PLA the last two instructions before the RTS instruction. 

It is also very important that these instructions occur in pairs. 
That is, for every PHA instruction there should be a PLA instruc
tion, and for every PHP instruction there should be a PLP instruc
tion. If this is not the case, then the stack pointer will not correctly 
point to the data that is to be transferred. There may be a few 
exceptions to the rule of having the save instructions occur in pairs, 
but it is a good rule to keep in mind when programming. 

To save the X register, for example, during a subroutine jump, 
it is first transferred to the accumulator and then to the stack before 
the subroutine call. After the subroutine call the contents of the 
stack are placed in the accumulator, and the accumulator contents 
are transferred to the X register. The program in Example 2 illus
trates these ideas. 

Example 2: Saving X Register During Subroutine Call 

Show how the X register may be preserved during a subroutine call. 
Solution: The program listing for the main program would appear as follow.: 

TXA 
PHA 
JSR MLTP 
PlA 
TAX 

Transfer the X regi.ter to the accumulator. 
Push A on the stack. 
Jump to subroutine MlTP. 
Pull A from the stack. 
Transfer the accumulator to the X register. 

The contents of the internal registers of the 6502 may also be 
saved by putting the save instructions in the subroutine. Example 3 
shows how the accumulator, X register, and Y register may be saved 
during a subroutine call by placing the save instructions in the 
subroutine. 

Example 3: Saving X and Y Registers During Subroutine Call 

Show how the accumulatar, X regi.ter and Y register may be .aved with .tack op
eratians placed in the .ubroutine. 

Solution: The subroutine would appear as follows: 

PHA Tran.fer A to the .tack. 
TYA Transfer Y to A. 
PHA Pu.h A on the .tack. 
TXA Transfer X to A. 
PHA Pu.h A on the .tack. 

Subroutine instructions. 

PlA Pull A from the stack. 
TAX Transfer A to X. 
PlA Pull A from the stack. 
TAY Tran.fer A to Y. 
PlA Pull A from the ,tack. 
RTS 
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The stack operation instructions are not used exclusively with 
subroutines and interrupts. They may be used anywhere in a pro
gram or subroutine where a few simple instructions will save a byte 
of data momentarily. An examination of the instruction set will 
show that the stack operations are only one cycle longer than the 
necessary STA and LDA instructions, if one is saving data. Keep 
in mind, however, that if a subroutine requires several stack opera
tions in addition to the JSR and RTS instructions, then it requires 
a great deal of time. This is of concern only in those applications 
where time is a critical factor. In many applications, this is not the 
case. 

Another illustration of a situation in which a subroutine is useful 
is shown in Example 4. Suppose we have a rather extensive pro
gram such as a monitor, FORTRAN interpreter, or an assembler, 
all of which require lengthy communication with an input device 
and an output device. We will assume that both I/O devices use the 
ASCII format; that is, an ASCII character is read at the keyboard 
input port, and, when it is necessary to produce an output, an ASCII 
character is written to an output port. Clearly, programs such as 
this are required to input and output information at many places 
in the program, and subroutine calls provide a convenient way 
of accomplishing this. Furthermore, in certain cases the output 
should mimic or echo the input. For example, when an input key 
is pressed, the same character should appear on the video monitor 
or teletypewriter. 

Example 4 is a partial simulation of such a situation. The main 
program is a "dummy" program that represents an interpreter, 
assembler, or a monitor. In our case, we just use an infinite loop 
containing three subroutine calls. The subroutines are more realistic, 
although in an actual case they might be more complicated. We 
assume the keyboard produces a 7-bit ASCII character at bits 
PB6-PBO of Port B. Bit seven of Port B is used by the keyboard 
to signal the computer that a character is ready. The keyboard 
makes bit seven (PB7) of Port B logic zero if a character is ready 
(key depressed); otherwise it is at logic one. The INPUT sub
routine simply loops until a character is entered from the keyboard; 
then it returns to the main program, which, in a real situation, 
would process the input until it was ready for another character 
from the keyboard. This type of keyboard operation is called 
polling. The program polls the keyboard until a character is ready. 
Observe that the accumulator serves to pass the character from 
the subroutine to the main program. 

If it is necessary to output a character, the main program calls 
the OUTPUT subroutine. We have used Port A to simulate this 
output location. Finally, if the main program must "echo" the 
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input to the output, it calls the ECHO subroutine. The ECHO sub
routine not only passes an ASCII character to the main program, 
but it also outputs the same ASCII character to the output device. 
Again, the main program is not to be taken literally. It is meant to 
simulate a much longer program that calls these subroutines. 

Example 4: Program to Simulate ASCII Input and Output Subroutines 

Objective: Write a program to poll a keyboard with an "inpuf' subroutine, write 
ASCII characters to an output device with an "output" subroutine, and 

write a subroutine that echas the input to the output. 

$1700 = PAD; Port A Output Port 
$1701 = PADD; Port A Data Direction Register 
$1702 = KYBD; Keyboard Input 

0200 20 00 03 START JSR INPUT 
0203 20 10 03 JSR OUTPUT 
0206 20 20 03 JSR ECHO 
0209 4C 00 02 JMP START 
0300 AD 02 17 INPUT LDA KYBD 
0303 30 FB BMI INPUT 
0305 60 RTS 

0310 8D 00 17 OUTPUT STA PAD 
0313 60 RTS 
0320 20 00 03 ECHO JSR INPUT 
0323 20 1003 JSR OUTPUT 
0326 60 RTS 

INTERRUPTS 

Jump to INPUT subroutine. 
Jump to OUTPUT subroutine. 
Jump to ECHO subroutine. 
Loop to start over. 
Read data from keyboard. 
If bit seven in one, wait until 
key is depressed. Otherwise, return 
with ASCII character. 
Write data to Port A. 
Return to main program. 

Get data from key baa rd. 
W rite data to output port. 
Return to main program. 

Once a program has begun execution, nothing short of hitting 
the RESET button, pulling the plug, or dropping a hammer on the 
6502 will stop it. The programs already described in this book 
either continued by jumping to the monitor (BRK instruction) or 
they ran continuously in some kind of loop with the use of a branch 
instruction or the JMP instruction. The program counter was under 
complete control of the program and the microprocessor, as opposed 
to outside or external influences. Even the monitor runs continu
ously, so in all cases the program flow was controlled by the soft
ware, that is, the program itself. 

To allow external devices, for example, a keyboard, panic but
ton, or interval timer, to exert control over the program flow, the 
6502 has the capability of being interrupted by external circuitry. 
In particular, a logic-zero voltage level on the interrupt request 
(IRQ) pin on the microprocessor may cause an interrupt, or a 
logic one to logic zero (negative edge) transition on the nonmask
able interrupt (NMI) pin on the microprocessor can interrupt the 
program that is currently being executed. 
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What happens when an external device produces an interrupt 
by bringing the IRQ pin to logic zero or by producing a negative 
transition on the NMI pin? These are the events that follow an 
interrupt request on the IRQ pin. 

• The instruction currently being executed by the processor is 
completed. 

• If bit two in the processor status register (the IRQ disable 
flag) is a one, the interrupt request is ignored and program 
execution continues. 

• Assuming that the IRQ disable flag in the P register was 
cleared that is. bit two has a value of zero, then the IRQ dis
able flag is set to prevent further interrupts while the existing 
one is being processed. 

• After the instruction that was being executed at the time of the 
interrupt is completed, the current value of the program 
counter is stored on the stack in the order PCH first, PCL next. 

• The contents of the P register are stored on the stack. 
• The microprocessor reads the contents of the location whose 

address is $FFFE. The number found there becomes the new 
PCL. 

• The number found in the location whose address is $FFFF 
becomes the new PCH. 

• The next op code is fetched from the location whose address 
is the new PCH-PCL. That is, the microprocessor puts the 
contents of the program counter on the address bus to fetch the 
next op code. Program execution continues from this point. 

In terms that neglect some of the more subtle events described 
above, an interrupt, produced by an external event, causes the pro
gram to jump to another location where it continues executing 
instructions. The address of the new location is stored in the loca
tions with addresses $FFFE and $FFFF. The jump is actually like 
a jump to a subroutine, since the return addresses are placed on the 
stack. 

The location whose address is $FFFE is called IRQL, and the loc
cation whose address is $FFFF is called IRQH. The numbers stored 
in these two locations are known as the IRQ vector. The IRQ vector 
points to a location where program execution is to begin when an 
interrupt request occurs and is recognized (IRQ disable is clear). 

A nonmaskable interrupt differs from an interrupt request in the 
following ways: 

• The NMI pin is edge sensitive rather than level sensitive. A non
maskable interrupt is produced by a logic-one to logic-zero 
transition on the NMI pin, whereas an interrupt request is pro
duced by a logic-zero level on the IRQ pin. 
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• The nonmaskable interrupt is recognized and processed no 
matter what the status of the interrupt disable flag. That is why 
it is called nonmaskable. 

• The nonmaskable interrupt vector is fetched from the locations 
whose addresses are $FFF A and $FFFB. That is, the new PCL 
is stored in the location whose address is $FFF A, and the new 
PCH is stored in the location whose address is $FFFB. These 
locations are called NMIL and NMIH, respectively. 

The setting and clearing of the interrupt disable flag occurs in ex
actly the same way with an NMI-type interrupt as with an IRQ-type 
interrupt. Although an NMI sets the interrupt flag, this only pre
vents further IRQ-type interrupts. The interrupt disable flag does 
not prevent NMI-type interrupts. The stack operations are the same 
for both types of interrupts, and the RTI operation (to be described 
in Example 5) is the same in both cases. A nonmaskable interrupt 
can interrupt an IRQ-type interrupt routine, but the inverse is not 
true. Thus, the nonmaskable interrupt has a higher priority than an 
IRQ-type interrupt, an important consideration for any decision in
volving the use of interrupts in a particular application. 

The KIM-I and AIM 65 microcomputers handle interrupts in 
similar ways. The IRQ vector and the NMI vector point to loca
tions in ROM. These locations contain indirect jump instructions 
to locations in RjW memory. Thus, the user can vary the starting 
point of the interrupt routines by loading the proper RjW memory 
locations with the vectors that point to the start of his interrupt 
routine. An example will aid in your understanding. In the AIM 65, 
locations with addresses $FFFE and $FFFF contain $78 and $EO, 
respectively. The value $E078 becomes the new value of the pro
gram counter when an interrupt is recognized. The address $E078 
is a location in ROM, and, as outlined above, the first op code in 
the interrupt routine is stored in this location. Examination of the 
location whose address is $E078 shows that it contains a $6C, which 
is the op code for an indirect jump. The next two bytes in memory 
are the ADL and the ADH of the location for the jump. These two 
bytes are $04 and $A4, respectively. The location with address $A404 
is an RjW memory location. Recall that with the indirect jump in
struction, it is this location that contains the new PCL, while the 
new PCH is in the location whose address is $A404 + I, or $A405. 
The user loads these locations with the ADL and ADH of the first 
instructions of his interrupt routine. That is, the contents of the 
locations with addresses $A404 and $A405 become the value in the 
program counter. The KIM-l works in the same way, but with 
different addresses. Tables 9-4 and 9-5 summarize the important 
locations for these two systems, and Example 5 traces the history 
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Table 9-4. AIM 65 Interrupt Structure and Important Addresses 

AIM 65 Memory 

Address Contents Remarks 

t $A402 ~(User PCl) Points to user NMI-Interrupt Routine 
R/W Memory 

$A403 (User PCH) 

t $A404 - .-(User PCl) Points to user IRQ-I nterrupt Routine 
$A405 (User PCH) <= Indirect Jumps 
$E075 f$6C NMI Interrupt starts execution here 
$E076 $02 
$E077 $A4 
$E078 f$6C- IRQ Interrupt starts execution here 
$E079 $04 
$E07A $A4 

ROM 

$FFFA $75l {NMll (PCl) . 
$FFFB $EOf 

NMI-Veclor location 
NMIH (PCH) 

$FFFE $78 ~ (lRQL (PCl) 
I RQ-Vector location 

$FFFF $EO) i IRQH (PCH) 

Table 9-5. KIM-l Interrupt Structure and Important Addresses 

t 
R/W Memory 

~ 

1 
ROM 
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Address 
$17FA 
$17FB 

KIM-l Memory 

Contents 
_(User PCl) 

(User PCH) 

$17FE -_(User PCl) 
$17FF (User PCH) <= 
$IC1C _t$6C 
$IC1D $FA 
$IC1E $17 
$ICl F 
$IC20 
$IC21 

_ t$6C
$FE 
$17 

Remarks 
Points to user NMI-I nterrupt Routine 

Points to user IRQ-I nterrupt Routine 

Indirect Jumps 
NMI I nterrupt starts execution here 

IRQ Interrupt starts execution here 

$IFFA 
$IFFB 

$IC r---+---,_{NMll (PCl) NMI-Vector location 
$IC NMIH (PCH) 

$IFFE 
$IFFF 

$1 F} {IRQl (PCl) . 
$IC --'--- IRQH (PCH) IRQ-Vector location 



of the program counter subsequent to an interrupt request on the 
KIM-I. 

In the SYM-I microcomputer, addresses $FFFE, $FFFF, $FFFA, 
and $FFFB are all R/W memory locations. Thus, the user may 
place his own interrupt request vector or nonmaskable interrupt 
vector in these locations. That is, for an interrupt request, the 
new value of the PCL is in the location whose address is $FFFE, 
and the new value of the PCR is in the location whose address is 
$FFFF. The NMI vector is placed in $FFF A and $FFFB. The 
monitor of the SYM-I will load all of these locations with its own 
interrupt routine vectors if the user does not load them. Table 9-6 
summarizes the interrupt locations of importance to the SYM-I 
microcomputer. 

Table 9·6. SYM·l Interrupt Structure and Important Addresses 

SYM-I MEMORY* 

Address Contents Remarks 

t $A67At (User PCl) NMI-Vector location. Points to user 
$A67Bt (User PC H) NMI-Interrupt Routine 

R/W MEMORY . 

l $A67Et (User PCl) IRQ-Vector location. Points to user 
$A67Ft (User PCH) I RQ-Interrupt Routine 

*In order to modify these locations, the SYM-l system re"1IQres tl-pt a JSR ACCESS instruc
tion precede the instructions that load these locations. ACCESS = $8B86. 

tAccording to the SYM-l manual, these locations are "echoed" at locations $FFFA, $FFFB, 
$FFFE, and $FFFF, respectively. 

Although technically speaking, the interrupt request vector and 
the nonmaskable-interrupt vector are always found at the addresses 
$FFFE, $FFFF, $FFF A. and $FFFB, loosely speaking these vectors 
are found at $17FE, $17FF, $17FA, and $17FB in the KIM-I and 
at $A404, $A405, $A402, and $A403 in the AIM 65, because the 

Example 5: Tracing the Program Counter After an Interrupt Request 
Trace the history of the program counter after an interrupt request on the KIM-I. 
Solution: After finishing the instruction that was executing at the time of the inter

rupt, the program counter and the microprocessor behave as described in the follow
i ng sequence: 

PC 
$FFFE 
$FFFF 
$IC'I F 
$IC20 
$IC21 
$17FE 
$17FF 
PCH-PCl 

Microprocessor Activity 
Fetch interrupt vector low = $lF. 
Fetch interrupt vector high = $1 C. 
Fetch indirect jump op code = $6C. 
Fetch ADl of indirect jump = $FE. 
Fetch ADH of indirect jump = $17. 
Fetch new PCl from the location with address $17FE. 
Fetch new PCH from the location with address $17FF. 
Fetch first op code in the user's interrupt routine. 
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actual interrupt vectors produce indirect jumps to these latter loca
tions. Throughout the remainder of this book it will be assumed that 
the interrupt vectors are in these latter locations. 

Both the interrupt-request routine and the nonmaskable interrupt 
routine must end with an RTI instruction. Execution of the RTI 
(Return from Interrupt) instruction causes the microprocessor 
to return to the main program, and it continues executing instruc
tions immediately following the "interrupted" instruction. It does 
this by loading the program counter with the two numbers at the 
top of the stack, loading the P register with the third number down 
on the stack, incrementing the stack pointer once for each of the 
numbers (PCR, PCL, and P) mentioned, and clearing the interrupt 
disable flag in the P register. Examples 6 and 7 illustrate the stack 
operations that take place when an interrupt occurs and when an 
RTI instruction is executed. 

Example 6: Tracing Stack Pointer After an Interrupt Request 

Describe how the stack painter and the contents of the stack register change as a 
result of an interrupt in the following program segment. Assume the interrupt occurs 
during execution of the lDA instruction. 

0200 AD 00 03 
0203 FO 05 

lDA NUMI 
BEQ THERE 

Solution: Assuming the stack pointer was $FF before the interrupt, the number $02 
representing the PCH will be stored on the stack at the location whose address is 
$01 FF, and the stack pointer will be decremented to $FE. Next, the number $03, 
representing the PCl at the completion of the lOA instruction, will be stored On the 
stack. The stack pointer will be decremented again, and the contents of the P register 
at the completion of the lOA instruction will be stored on the stack at the location 
whose address is $01 FO. The stack pointer will be decremented a third time to $FC. 

Example 7: Tracing Stack Pointer Subsequent to RTI Instruction 
Describe how the stack pointer and the contents of the stack change as a result of 

a return from interrupt in the same program segment shown in Example 6. 

Solution: The stock pointer is first incremented to $FO, and the contents of the loco· 
tion whose address is $01 FD are transferred to the P register. The contents of memory 
location $01 FE are transferred to the PCl, and the contents of location $01 FF are 
transferred to the PCH with suitable increments in the stack pointer. The stack pointer 
will be $FF at the completion of the RTI instruction, and the program continues with 
PCH·PCl = $0203, resulting in a fetch of the BEQ op code. 

Fig. 9-5 illustrates the many activities that are taking place during 
the events described in Examples 6 and 7. This illustration shows 
the "flow" of the program counter during an IRQ-type interrupt 
and describes the "stack activities" as well. 

The interrupt disable flag in the processor status register may 
also be set and cleared by the program in addition to being set by 
an interrupt and cleared by the execution of an RTI instruction. 
If it is imperative that a section of program not be interrupted by an 
interrupt request, then the interrupt flag may be set by the SEI 
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MEMORY REMARKS 

ADDRESS I CONTENT 

: I NAME I VALUE 

[$0150J i $50 = ISTACK POINTERI AFTER IRQ BUT BEFORE RTI 

c:$015! P REGISTER STORED HERE DURING THE INTERRUPT 

$0152:1 I PCl $03 PCL IS STORED HERE DURING THE INTERRUPT 

STACK ~$0153:J PCH $02 PCH IS STORED HERE DURING THE INTERRUPT 
POINTER • 

I $53 = ISTACK POINTER I BEFORE IRQ AND AFTER RTI 
PROGRAM 
COUNTER $0200 LDA $AD SOMEWHERE IN THE MAIN PROGRAM 

$0201 ADL $00 INTERRUPT OCCURS HERE 

$0202 ADH $02 THE "lDA" INSTRUCTION WILL BE COMPLETE. 

$0203 BEQ $FO THE MAIN PROGRAM CONTINUES HERE AFTER 

$0204 THERE $05 THE INTERRUPT ROUTINE IS COMPLETED. 

$0380 LDA $AD START OF THE INTERRUPT ROUTINE. 

$039B RTI $40 END OF THE INTERRUPT ROUTINE 

$FFFE IRQl $80 I lOCATION OF INTERRUPT VECTOR LOW. 

$FFFF IRQH $03 lOCATION OF INTERRUPT VECTOR HIGH 

Fig. 9·5. Diagram representing the Program Counter and Stack Pointer changes that 
occur during an Interrupt Request (IRQ). 

(set interrupt disable Hag) instruction. Later in the program it 
may be cleared with the eLI (clear interrupt disable Hag) instruc
tion to allow further interrupts. 

You should recognize that an interrupt request is like a JSR 
instruction. They both result in an exit from the main program in 
order to execute a subprogram. The subprogram is called an "inter
rupt routine" in the case of an interrupt request or a nonmaskable 
interrupt. In both cases, the information necessary to return to the 
main program is stored on the stack. One important difference is 
that an interrupt will result in the contents of the P register also 
being stored on the stack. If a programmer wishes to save the 
contents of the P register during a subroutine jump, then he must 
use the PHP and PLP instructions. The microprocessor takes care 
of saving the P register contents during an interrupt. 

The reason for this important difference between an interrupt 
and a subroutine is simply that the programmer knows where he 
has placed a JSR instruction, but he never knows where an inter-
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rupt will occur in a program. If it occurs directly before a branch 
instruction, and the interrupt routine changes the Hag settings in 
the P register (as it undoubtedly will) then a branch may be caused 
by the result of an operation in the interrupt routine rather than as 
a result of the operation in the main program that it was supposed to 
test. Clearly, the programmer put the branch instruction in the 
main program to test circumstances that develop there, rather than 
those in the interrupt routine. Since the 6502 saves the contents of 
the P register on the stack when an interrupt occurs, this allows the 
programmer to write programs without concerning himself with 
either where the interrupt might occur or when the P register is to 
be saved. 

If other registers must be saved during an interrupt, then it is 
up to the programmer to use the necessary stack operations to save 
them. The accumulator is almost universally saved on the stack 
during an interrupt because almost every interrupt routine one 
could think of would use the accumulator. In fact, it would have 
been nice if the 6502 would take care of this responsibility, but 
the designers of the chip did not provide this feature. Note that 
all the register-save instructions must be included in the interrupt 
routine. If the X register is used in both the main program and the 
interrupt routine, then suitable instructions must be included in 
the interrupt routine to save and restore the X register. Example 
8 illustrates the necessary instructions that must be included to save 
both the accumulator and the X register and then restore them. 

Example 8: Saving Accumulator and X Register During an Interrupt 
Show the instructions that will result in saving both the accumulator and the X regis. 

ter during an interrupt routine. 

Solution: 
Interrupt Routine 

0300 48 8EGIRQ PHA Push accumulator on stack. 
0301 8A TXA Transfer X to A. 
0302 48 PHA Push A on the stack. 
0303 

Interrupt routine instructions. 
(NOTE REVERSED ORDER) 

0329 68 PLA Pu II A from the stack. 
032A AA TAX T ra nsfer A to X. 
0328 68 PLA Pull A from the stack. 
032e 40 RTI Return to main program. 

An interrupt request (IRQ) may also be forced with the use of 
the BRK instruction that is best described as a software-forced 
interrupt request. Note that a nonmaskable interrupt cannot be 
forced with any instruction. In those instances where one wants 
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to enter the interrupt request routine without a "hardware-generated 
request," the BRK instruction is used to force a jump to the interrupt
request routine. Throughout this book we have been using this 
instruction to force the microprocessor to jump from the program 
we have written to the monitor. \Ve have done this because, in this 
case, the monitor saves the register contents. Furthermore, in our 
use of the BRK instruction with the monitor, the microprocessor 
never returns from the interrupt. That is, the monitor avoids using 
the RTI instruction because that would cause execution to return 
to the next instruction in our program, an instruction that did not 
exist because we ended the program with a BRK instruction. 

In general, when using the BRK instruction one must assume that 
an BTl instruction will be encountered and that the program will 
return from the interrupt routine. In this situation, it is important 
to realize that the BRK instruction results in an increment of the 
program counter by two. Thus, upon returning, the instruction im
mediately following the BRK instruction is not executed. If the 
break instruction op code is in the location ADH-ADL, then the 
next instruction to be executed after the return from the interrupt 
routine must be located with its op code in the location ADH
ADL + 2. For this reason, a no-operation instruction (NOP) with 
op code $EA is usually placed after a break instruction, that is, 
in the location ADH-ADL + 1. The reasons for this quirk in the 
BRK instruction are beyond the scope of this book and the author's 
comprehension. 

Two examples of programs involving interrupts are given. The 
program in Example 9 illustrates how an FIFO (first-in, first-out) 
memory may be implemented. Originally it was part of a program 
to convert ASCII characters from a keyboard to Morse code, and it 
will be described in that context. Do not, however, consider that 
this example of data acquisition is unique to this application. There 
are other instances in which data must be read when they are 
produced, and stored in an FIFO memory to be processed on a first
in, first-out basis. The program in Example 10 is a 24-hour clock 
that uses a nonmaskable interrupt request. We turn first to the 
FIFO memory application. 

Most operators can type faster than the Morse code is to be sent, 
so the keyboard must be read and stored in the FIFO (first-in, first
out) memory. In the program in Example 9, the keyboard is read 
with an interrupt request routine, and the ASCII character is placed 
in the FIFO memory. For the FIFO memory we used page two of 
memory. It is assumed that the keyboard produces a negative pulse 
of at least 10 microseconds on the IRQ pin when a key is depressed 
and the ASCII character is ready to be read. Many keyboards not 
only produce the 7-bit ASCII data for a particular key, but they 
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also provide a positive- or negative-strobe signal when the data is 
ready. We assume the negative-strobe signal is connected to the 
IRQ pin, and the seven bits of ASCII data are available at Port A. 

Space does not permit the listing of the complete conversion pro
gram. You are referred to a complete ASCII to Morse code con
version program in a reference l . Here we simply wish to show an 
example of an interrupt routine. The program is supposed to read 
the keyboard and store the ASCII character in the FIFO memory. 
Another part of the program reads the first character placed in the 
FIFO memory, converts it to Morse code, and "sends" it by keying 
a transmitter, and returns to see if another character has been placed 
in the FIFO memory. It continues to send as long as the FIFO mem
ory is not empty. The keyboard continues to place characters in the 
FIFO memory as long as the typist continues. The typist may get 
up to 256 = $FF + 1 characters ahead of the sending routines be
fore he begins to write over previously entered characters that have 
not yet been sent. 

The Y register serves as an index for the FIFO memory whose 
base address is $0200. The number in the Y register also points to 
the last location of the FIFO memory that was filled with the key
board interrupt routine. In particular, the number in the Y register 
is the ADL of the last location in page two of memory that was 
filled by the keyboard interrupt routine. The number in the location 
labeled PNTR is the ADL of the location in page two of memory 
that contains the character being converted to Morse code and sent 
by the OUTPUT subroutine. If the contents of the Y register are 
identical to the contents of PNTR, then the OUTPUT subroutine 
has "caught up" with the keyboard input, and there is nothing 
to do but wait in a loop. The flowchart in Fig. 9-6 and the comments 
associated with the program should give you an understanding 
of the remaining details. Indexed addressing is used both to fill the 
FIFO memory using Y as an index and to empty the FIFO memory 
using X as an index. 

The program in Example 10 is our second example of a program 
that uses an interrupt routine. It is a 24-hour clock program that 
may be used to display hours, minutes, and seconds. A number of 
clock programs have appeared in various sources.2 •3 These programs 
make use of the interval timers on the 6530 or 6522 integrated cir-

IDe Jong, Marvin L., "The Best of Micro," The Computerist, Chelmsford, MA 
01824, 1978, p. 38. 

2Parsons, Charles, The First Book of KIM, ORB, Argonne, IL 60439, 1977, 
p.52. 

3Sullivan, Chris, "MICRO," The Computerist, Chelmsford, MA 01824, 1978, 
pp. 7-45. 
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Fig. 9-6. 'Flowchart of FIFO Data Acquisition Program. 

cuits and the system clock, a crystal-controlled oscillator. Although 
crystal oscillators are very accurate and stable, the precision neces
sary to keep good time over a long period (weeks) generally ex
ceeds the capability of the microcomputer system's crystal oscillator. 
If we demand that there be an error of no greater than 1 second 
in 24 hours, then the crystal must be accurate to approximately 
1 part in 100,000. Few microcomputer clocks guarantee this kind 
of accuracy, and, consequently, significant errors tend to accumulate 
over a period of days. 

One approach to guarantee long-term (days) accuracy at the 
expense of short-term (seconds) accuracy is to use a signal from the 
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Example 9: First-in, First-out (FIFO) Data Acquisition Program 

Objective: Read the data at on input port whenever on IRQ-type interrupt request 
occurs. Store this data in successively higher memory locations in page two 
of memory. Output data from the bottom of this table one locatian at a 
time until the highest filled location is reached. Wait there until more data 
is added to the table from the input port. 

$0000 = PNTR; contains the AOL of the location in the FIFO memory that contains the 
data currently being processed by the output subroutine. 

$0200 = FIFO; bose address of the FIFO memory 
$1700 = KYBO; input port for the data 
$17FE = UIRQL; $00 = low order byte of user's interrupt vector 
$17FF = UIRQH; $03 = high order byte of user's interrupt vector. 

MAIN Program 
0200 AO FF START LOY $FF Initialize Y pointer. 
0202 84 00 STY PNTR Initialize output painter. 
0204 C400 LOOP CPY PNTR Is output painter = Y pointer? 

0206 FO FC BEQ LOOP Yes; wait in loop for mare input data. 

0208 E6 00 INC PNTR No; increment painter to get data. 
020A A600 LOX PNTR PNTR contents will index FIFO memory. 
020C BO 00 02 LOA FIFO,X Get data from FIFO memory at FIFO 

+ X. 
020F 2017 80 JSR OUTPUT Jump to subroutine to output data. 

(Not included in this program.) 

0212 4C 04 02 JMP LOOP Return to see if there is mare data. 

Interrupt Routine 
0300 48 NMIR PHA Save accumulator on the stock. 

0301 8A TXA Transfer X to A. 
0302 48 PHA Save X on the stock. 
0303 AO 00 17 LOA KYBO Read the keyboard. 
0306 29 7F ANO $7F Mask bit seven. ASCII is a seven bit 

code. 
0308 C8 INY Increment Y to index next location in 

FIFO. 
0309 99 00 02 STA FIFO,Y Store the keyboard data in the FIFO. 

memory at FIFO + Y. 
030C 68 PLA Get X bock from the stock. 
0300 AA TAX 
030E 68 PLA Get A from the stack. 

030F 40 RTI Return from interrupt. 

60-Hz power line as the fundamental time unit. W'henever 60 cycles 
are counted a memory location that stores "seconds" is incremented. 
When the seconds location reaches 60, a "minutes" location is in
cremented, and when the minutes location reaches 60 an "hours" 
location is incremented. \Vhen the hours location reaches 24, the 
cycle begins again. The 60-Hz signal from the power line is first 
transformed down to 6.3 V ac and then conditioned with a 555 
timer circuit acting as a Schmitt trigger to produce one negative 
transition for each cycle. ~ See Fig. 9-7 for details of the circuit. 

4JlIng, Walter G., Popular Electronics, January 1973, p. 73. 
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Rl lOOK 

Fig. 9-7. A 6O-Hz Signal Conditioner OUTPUT 
for 24 Hour Clock. el 

INPUT o--J 555 
0.01 J.tF 

R2 lOOK 0.1 J.tF 

The 6.3 V ac is connected between the input and ground. The con· 
ditioned signal from the 555 circuit is applied to the NMI pin on 
the 6502 by way of pin 6 on the expansion port of the AIM 65, 
KIM -1, or SYM -1. Each time an interrupt occurs, a counter (location 
with address $0000 labeled CNTR) is incremented until 60 counts 
have accumulated. CNTR starts at $C4 and is incremented to $00 
to give 6010 counts. Then the seconds counter (location with ad
dress $0001) is incremented. The "minutes" are stored in the loca
tion with address $0002, and "hours" are stored in the location whose 
address is $0003. The flowchart in Fig. 9-8 should help in under
standing the nonmaskable interrupt routine. 

The main program, associated with the 24-hour clock nonmask
able-interrupt routine, consists of loading the appropriate interrupt 
vectors into their locations and a routine to display the contents of 
SEC, MIN, and HRS on the microcomputer display. Do not connect 
the 60-Hz source to the NMI pin until these vectors have been 
loaded. The interrupt routine starts at the location whose address is 
$0300. It may be relocated anywhere in memory, but we will as
sume that the interrupt vector is $0300. The program in Example 
10 shows the initialization instructions for the AIM 65. The same 
instructions are used with the KIM-l and SY\1-1, but the locations 
of the nonmaskable interrupt vector are different. See Tables 9-5 
and 9-6 for the addresses of the appropriate locations for the KIM-l 
and SYM-l microcomputers. ($00 is loaded into $17FA on the 
KIM-lor into $A67A on the SYM-l, while $03 is loaded into $17FB 
on the KIM-lor into $A67B on the SYM-1.) 

Each of the three microcomputer systems needs a different display 
routine to display the time, so we have included the necessary 
routine for each of the systems. Note that we have used the sub
routine approach to display the time. Also observe that the routine 
for each system includes one or more subroutine calls to subroutines 
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*$C4 + 6010 = $00 

Fig. 9·8. Flowchart of NMI Routine for 24 Hour Clock. 

included in the monitor. You are referred to your system manual 
for details of these subroutines. 

Microcomputers are not used simply to keep time. There are 
much less expensive approaches to that problem. However, there 
are applications in which the time is important. If you are charging 
a client for the amount of time used to process his data, then a 
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Example 10. Twenty-Four Hour Clock Program 

Objective: Calculate and display the time of day in hours, minutes, and seconds. 

Main Program 
$A402 = NMIVL; location of user interrupt vector, low·order byte 
$A403 = NMIVH; location of user interrupt vector, high.order byte 
$0000 = CNTR; location used to cou nt 60 cycles 

0200 A9 00 START LOA $00 
0202 80 02 A4 STA NMIVL Load NMI vector, low·order byte. 
0205 A9 03 LOA $03 
0207 80 03 A4 STA NMIVH 
020A A9 C4 LOA $C4 
020C 85 00 STA CNTR 

Load NMI vector, high·order byte. 
CNTR counts from $C4 to $00 to give a 
total of $3C = 60 counts. 

020E 20 03 40 LOOP JSR OISPLY Jump to display subroutine at $0340. 
0211 4C OE 02 JMP LOOP Loop to display time continuously. 

Nonmaskable Interrupt Routine 
$0000 = CNTR; location used to count 60 cycles 
$000 1 = SEC; location used to store time in seconds 
$0002 = MIN; location used to store time in minutes 
$0003 = HRS; location used to store time in hours 

0300 48 NMIR PHA Save accumulator on the stack. 
0301 E6 00 INC CNTR Increment CNTR once for every interrupt. 
0303 00 33 BNE OONE Cau nter has nat reached zero (60 counts) 

yet. 
0305 F8 SEO Set decimal mode for subsequent additions. 
0306 18 CLC Clear carry flag for same reason. 
0307 A501 LOA SEC Get time in seconds. 
0309 69 01 AOC $01 Add one to increment seconds counter. 
030B 85 01 STA SEC Store in seconds counter. 
0300 C960 CMP $60 Has the seconds counter reached 60? 
030F 90 22 BCC RPT No; Initialize CNTR, then return from 

interrupt. 
0311 A900 LOA $00 Yes; Initialize seconds to zero. 
0313 85 01 STA SEC 
0315 18 CLC Clear carry flag to add one to minutes 
0316 A502 LOA MIN counter. Get minutes counter. 
0318 69 01 AOC $01 Add one to mi nutes. 
031A 85 02 STA MIN Result into minutes counter. 

031C C9 60 CMP $60 Has the minutes counter reached 60? 
031E 90 13 BCC RPT No; Initialize CNTR, then return from 

interrupt. 
0320 A9 00 LOA $00 Yes; Initialize minutes to zero. 

0322 85 02 STA MIN 
0324 18 CLC Clear carry for next addition. 
0325 A5 03 LOA HRS Get hours counter. 
0327 69 01 AOC $01 I ncrement by one. 
0329 85 03 STA HRS Result into hours counter. 
032B C9 24 CMP $24 Has the hours counter reached 24? 
0320 90 04 BCC RPT No; Initialize CNTR, then return from 

interrupt. 
032F A900 LOA $00 Yes; start new day. 
0331 85 03 STA HRS 
0333 A9 C4 RPT LOA $C4 Initialize CNTR for 60 more counts. 
0335 85 00 STA CNTR 
0337 08 CLO Clear decimal mode. 
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0338 68 DONE PLA Get Accumulator from stack. 

0339 40 RTI Return from interrupt. 

AIM 65 Display Subroutine 
$0004 = TSEC; temporary storage of seconds 
$0005 = TMIN; temporary storage of minutes 
$0006 = THRS; temporary storage of hours 

0340 A5 01 DISPLY LOA SEC Get seconds. 
0342 85 04 STA TSEC Store temporarily here. 
0344 A5 02 LOA MIN Get minutes. 

0346 85 05 STA TMIN Store temporarily here. 
0348 A5 03 LOA HRS Get hours. 
034A 85 06 STA THRS Store here temporarily. 
034C A2 13 LOX $13 X identifies right-most disploy cell. 

034E 8A BACK TXA Save X by 
034F 48 PHA plad ng it on the stack. 
0350 AO 04 LOY $04 Initialize Y for a count of four. 

0352 A5 04 LOA TSEC Get seconds. 
0354 29 OF AND $OF Mask high-order nibble. 

0356 18 CLC Clear carry flag for subsequent 
addition. 

0357 69 30 ADC $30 Add $30 to convert low·order nibble 

to ASCII. 
0359 09 80 ORA $80 Set bit seven to one for display. 
035B 20 7B EF JSR OUTDDI Use monitor subroutine to display 

ASCII. 
035E 46 06 AGAIN LSR THRS Shift hours right into carry flag. 
0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0) 

into carry. 
0362 66 04 ROR TSEC Carry into seconds; shift one bit 

right. 
0364 88 DEY Repeat four times, moving a nibble 
0365 DO F7 BNE AGAIN at a time into the display routine. 
0367 68 PLA Get X back again (it was modified in 
0368 AA TAX monitor subroutine), 

0369 CA DEX Decrement X to identify next display 
036A EO OE CPX $OE cell, then return to display another 
036C BO EO BCS BACK nibble, until all six nibbles of time 
036E 60 RTS have been displayed. Then return to 

main program. 

KIM-l Display Subroutine 
$00F9 = DISPS 

$OOFA = DISPM 
$OOFB = DISPH 

0340 A5 01 DISPLY LOA SEC Get seco nds. 
0342 85 F9 STA DISPS Store in KIM-l disploy cell. 
0344 A5 02 LOA MIN Get minutes. 

0346 85 FA STA DISPM Store in KIM-l display cell. 
0348 A503 LOA HRS Get hours. 
034A 85 FB STA DISPH Store in KIM-l display cell. 
034C A2 FF LOX $FF Initialize X for timing loop. 
034E 8A RPT TXA Save X on stack during subroutine. 
034F 48 PHA 
0350 20 IF !F JSR SCAN OS Jump to KIM-! display subroutine. 
0353 68 PLA Restore X. 

198 



0354 AA TAX 
0355 CA DEX Decrement X. 
0356 DO F6 BNE RPT Branch to display again until X = O. 
0358 60 RTS Return from subroutine. 

SYM·l Display Subroutine 
$A640 = DISBUF; base address of SYM-l display buffer 
$8C29 = TAB; base address of seven·segment code table in SYM·l monitor 

0340 A501 DISPLY LDA SEC Get seconds. 
0342 85 04 STA TSEC Store temporarily in TSEC. 
0344 A502 LOA MIN Get minutes. 
0346 85 05 STA TMIN Store temporarily in TMIN. 
0348 A503 LDA HRS Get hours. 
034A 85 06 STA THRS Store temporarily in THRS. 
034C 20 86 8B JSR ACCESS Jump to SYM-l ACCESS routine to 

access RAM. 
034F A2 05 LDX $05 Initialize X index to fill display 

table. 
0351 A504 PRR LDA TSEC Get seconds. 
0353 29 OF AND $OF Mask high·order nibble. 
0355 A8 TAY Transfer low·order nibble to Y index. 
0356 B9 29 8C LOA TAB,Y Get seven·segment code from table. 
0359 9D 40 A6 STA DISBUF,X Store in display buffer. 
035C AO 04 LDY $04 Initialize bit counter for one nibble. 
035E 46 06 DGL LSR THRS Shift hours into carry flag. 
0360 66 05 ROR TMIN Carry into minutes; minutes (bit 0) 

into carry. 
0362 66 04 ROR TSEC Carry into seconds; shift one bit 

right. 
0364 88 DEY Decrement Y until one nibble has 
0365 DO F7 BNE DGL been shifted right. 
0367 CA DEX Decrement X. 
0368 10 E7 BPL PRR Return to convert remaining nibbles. 
036A A2 FF LOX $FF Initialize X for timing loop. 
036C 8A JAT TXA Save X. 
036D 48 PHA 
036E 20 06 89 JSR SCAND Jump to SYM·l monitor subroutine. 
0371 68 PLA Get X back. 
0372 AA TAX 
0373 CA DEX Decrement X for timing loop. 
0374 DO F6 BNE JAT Branch to display again until X = O. 
0376 60 RTS Return from subroutine. 

system clock is useful. In any application where the time at which 
a particular event occurred must be known, a 24-hour clock is 
useful. The program in Example 10 would be easily modified to 
display or store the time at which a logic-zero to logic-one transition 
occurred at one of the Port B input pins. For example, if you were 
monitoring the feeding habits of a laboratory animal, a suitable 
detector could be placed at the feeding station to produce a logic 
level transition on an input pin that, in turn, would result in the 
time being recorded. Many other applications suggest themselves 
in a brainstorm. The program in Example 10 should not be used in 
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applications such as frequency counting or other short-term timing 
measurements because the short-term stability of the power-line 
frequency is inadequate. Experiments such as these require interval 
timers and a crystal-controlled time base, the subject of the next 
chapter. 

To start the 24-hour clock, load the programs and wire the cir
cuit shown in Fig. 9-7. Before applying the 60-Hz signal to the 
555 timer, start the program and make sure it works. Next, load 
locations with addresses $0001, $0002, and $0003 with the seconds, 
minutes, and hours of the time you intend to start the clock. Put 
$C4 into the location with address $0000. At the instant the time 
corresponds to the time loaded into memory, apply the 6O-Hz 
signal to the 555 input. 

EXPERIMENT NO. 

Step 1 

Load the following program. 

0200 4C 00 03 START JSR NOTHING Jump to a subroutine that does 
nothing. 

0203 00 BRK Break to monitor. 
0300 EA NOTHING NOP No operation. 
0301 40 RTS Return from subroutine. 

Step 2 

There are two bugs in this program. Can you find the bugs with
out running the program? It always pays to search for bugs before 
running a program. 

Step 3 

If you found the bugs before running the program, then run the 
program with the bugs in it anyway. If you didn't find the bugs, 
then you have no choice but to run the program with the bugs in it. 

Step 4 

Assuming that there are no bugs in the program, what would you 
expect to observe when the program is executed? 

(The program should execute the jump to subroutine, the NOP 
instruction, return to the main program and execute the BRK in
struction, whereupon the display should light showing the address 
$0205 and the contents of that location.) 
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Step 5 

What do you observe when the program is executed? 

(We observed that the display did not light. The BRK command 
was not executed.) 

Step 6 

We will attempt to debug the program using the single-step mode 
and a trace of the 6502 internal registers. What registers would you 
suggest be traced? 

(Only the S register and the program counter are used in the pro
gram. These are the registers we will trace.) 

Step 7 

Single step through the program and make a table showing the 
contents of the stack pointer (S register) and the program counter 
after the execution of each instruction. 

(We obtained the following table. 'The stack pointer was $FF 
initially. 

Instruction 

JSR 
NOP 
RTS 

Register Contents After Execution of the Instruction 

Program Counter High 
$03 
$03 
$31 

Progrom Counter Low 
$00 
$01 
$30 

Stock Pointer 
$FF 
$FF 
$02 

Your table may not be identical in all respects.) 

Step 8 

What do you conclude from studying your table? Concentrate 
on the contents of the stack pointer. 

(We reasoned as follows: The program does jump to the subroutine 
because the program counter becomes $0301 as it should. However, 
in a subroutine jump the stack pointer should decrement by two 
to store the return address. The program made the jump, but it did 
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not provide a way to return. This suggests the JMP instruction was 
executed rather than the JSR. Check the op code and confirm this.) 

Step 9 

Can you find the other bug by studying the table? 

(It's not as easy but the evidence is there. Note that on the RTS 
instruction the stack pointer increments by three, that is $00, $01, 
$02. But an RTS instruction should only result in the stack pointer 
being incremented by two. An RTI op code was substituted for the 
RTS op code. ) 

Step 10 

Change the op codes to their correct values and verify that the 
program now runs correctly. 

EXPERIMENT NO. 2 

Step 1 

Examine the following program, then load it into your micro
computer. 

0200 A2 00 START LOX $00 I nitialize X to $00. 
0202 9A TXS Transfer the contents of X to S. 
0203 20 00 03 JSR NOTHING Jump to subroutine. 
0206 00 BRK Break to the monitor. 
0300 EA NOTHING NOP No operation. 
030] 60 RTS Return from subroutine. 

Step 2 

What will the value of the stack pointer be after execution of the 
TXS instruction? 

(The stack pointer will be $00 because the value of X ($00) was 
transferred to the stack pointer by the TXS instruction.) 

Step 3 

Will this program work correctly? Remember the JSR instruction 
requires two locations on the stack. What do you predict will happen 
when the program is executed? Where will PCL and PCH be stored? 
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(The value of the program counter will be stored at locations whose 
addresses are $0100 and $01FF. After storing PCH = $02 at $0100, 
the stack pointer is decremented and becomes $FF. Thus, the 
PCL = $05 is stored at the location whose address is $OIFF. The 
stack "wraps around." Recall that what is stored as the program 
counter is the address of the third byte in the JSR instruction which 
in this case is $0205. The program will work perfectly. The stack 
pointer may have any initial value the user desires.) 

Step 4 

You may want to check the operation of the stack pointer in this 
case by single stepping through the program and tracing the history 
of the stack. Also check the contents of the stack after each step. 

EXPERIMENT NO. 3 

Step 1 

Breadboard the circuit of Fig. 9-7, but do not connect the 60-Hz 
signal to the O.01-fLFcapacitor. Load the program for the 24-hour 
clock. 

Step 2 

Put $C4 into memory location with address $0000. Load locations 
with addresses $0001, $0002, and $0003 with the seconds, minutes, 
and hours, respectively, of the time at which you intend to start 
your clock. If you have a WWV receiver use it to set the time and 
start the clock. 

Step 4 

Start the program. The AIM 65 will display the time continuously, 
while the KIM-I and SYM-I multiplex the various segments giving 
what appears to be a continuous display. The time displayed should 
be the time you stored in Step 2. 

Step 5 

At the instant the time on WWV or a good electric clock coin
cides with the time stored in the display, connect the 60-Hz signal 
to the capacitor on the 555 timer input. If you do not succeed the 
first time, try again until you have a good match between your clock 
and some standard. 

Step 6 

Let your system run overnight or for a day. Does it keep good 
time? Keep your clock circuit and program. It will be used in the 
next experiment. 
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EXPERIMENT NO. 4 

Step 1 

How would you modify the main program of the 24-hour clock 
to display the correct time only when a transition occurs at PBO 
(Bit 0 of Port B)? Try to write the modification yourself before 
looking at our answer. 

(Here is how the main program would look after we modify it to 
display the time after a logic-level transition at PBO. Other answers 
are possible. Comments are provided for the added instructions. 

START 

LOOP 
PULSE 

Step 2 

LDA 
STA 
LDA 
STA 
LDA 
STA 
LDY 
TYA 

EOR 
AND 
BEQ 

JSR 
JMP 

$00 
NMIVL 

$03 
NMIVH 
$C4 
CNTR 
PBD 

PBD 

$01 
PULSE 
DISPLY 
LOOP 

Transfer data at Port B to the Y register. 
Transfer contents of Y to A. 
Exclusive OR produces a one in any bit that changed. 

Mask all except bit O. 
Loop back to PULSE unless bit 0 changed. 
Display time. 
Return to check Port B for more transitions.) 

~lodify Example 10 to include the above instructions or the 
instructions you used to answer STEP 1. 

Step 3 

Execute the program. Remember to supply the 60-Hz signal after 
the program is running. The display should remain blank. Change 
the PBO switch on the I/O board. You should observe the time. On 
the KIM-l and SY\1-1 the time will flash on the display momen
tarily. On the AIM 65 the time will be latched into the display, but 
the display will not change until another transition occurs. 

Step 4 

Try to think of at least one application where the ability to record 
the time when a particular event causes a logic-level transition on 
an input pin might be useful. 

Step 5 

About how much time does the NMI interrupt routine take? Why 
is this an important question? 
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( Consider first that an interrupt occurs 60 times every second. Dur
ing 59 of those interrupts only five instructions are executed. They 
include the PHA, INC, BNE, PLA, and RTI instructions that take 
3, 5, 3, 4, and 6 microseconds, respectively. (We are assuming a 
clock frequency of 1 MHz.) The interrupt itself takes 8 micro
seconds; that is, there are eight clock cycles between the completion 
of the last instruction in the main program and the fetch of the 
first op code in the interrupt routine. Thus, we have a total of 29 
microseconds for the interrupt time. The AIM 65 and KIM-1 require 
an indirect jump for each interrupt, and that accounts for another 
5 microseconds, giving a total of 34 microseconds. The remaining 
interrupt in the one-second interval requires 23 microseconds, in 
addition to the time mentioned above, to increment the seconds 
counter and attend to other details. Thus, in 1 second the micro
processor spends (60 X 34 + 23) microseconds processing the in
terrupts. The total is 2063 microseconds. so about 0.2063% of the 
time is devoted to maintaining the 24-hour clock. The additional 
time required to increment the minutes and/ or hours counters is 
small enough to neglect because these instructions are used so 
seldom. The minutes counter is incremented only once every 3600 
interrupts, and the hours counter is incremented once every 216,000 
interrupts. 

The question is important because a real time clock such as this 
must usually run concurrently with other programs. One must know 
whether the interrupt routine will adversely affect the operation 
of another program. In most cases the 0.2063% will not bother.) 

Step 6 

Try to write an interrupt routine that keeps time using ASCII 
rather than the decimal mode we used. This is useful in those micro
computers that must output the time to display devices such as line 
printers and terminals that require ASCII data. 

EXPERIMENT NO. 5 

Step 1 

Breadboard the circuit shown in Fig. 9-9. It consists of a mechan
ical switch that is debounced by the cross-coupled NAND gates and 
a 74121 monostable multivibrator that gives a 10-microsecond pulse 
( one-zero-one) each time the mechanical switch is changed from 
logic one to logic zero as noted on the switch positions. (Note that 
a debounced signal is available on the I/O board. A small wire or 
clip connected to pin 9 (PBO) on the application connector will 
provide the necessary debounced signal from the switch associated 
with PBO.) 
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Fig. 9·9. Circuit to produce an Interrupt Request Signal on IRQ pin. 

Step 2 
Connect the output of the multivibrator to the IRQ line by con

necting it to pin E-4 on the expansion connector. You will need a 
22/44 pin edge connector to put on the expansion port. 

Step 3 

Load the following program. 

0200 58 MAIN Cli Clear interrupt disable flag. 
0201 A9 FF LDA $FF Initialize Port A to be an output port 
0203 8D 01 17 STA PADD by storing $FF in its DDR; KIM-l 

address. 
0206 4C 06 02 LOOP JMP LOOP Loop here. 
0300 48 INTERPT PHA Store accumulator on the stack. 
0301 BA TSX Transfer stack pointer to X. 
0302 8E 00 17 STX PAD Output X to Port A LEDs. 
0305 68 PLA Pull accumulator from the stack. 
0306 40 RTI Return from interrupt. 

Step 4 

The interrupt vector is $0300. Refer to Tables 9-4 to 9-6 and 
load the interrupt vector into the appropriate locations for your 
microcomputer. 

Step 5 

Describe what effect execution of the program will have on the 
Port A LEDs when the program is executed. 
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(When the program is started by initializing the program counter 
to $0200 (the starting address of the main program) we observed 
that the Port A LEDs did not glow.) 

Step 6 

What do you predict the Port A LEDs will show when an inter
rupt occurs by flipping switch PBO from logic one to logic zero? 
Predict before you cause the interrupt, and give reasons for your 
prediction. 

(The Port A LEDs should show $FB. In the interrupt routine the 
stack pointer is first transferred to the X register, then the X register 
is output to Port A. Thus, Port A displays the value of the stack 
pointer after the PHA instruction in the interrupt routine. Recall that 
an interrupt requires three locations on the stack, the PHA instruc
tion will require one location, and then the stack pointer is decre
mented to point to the next empty location. Counting backward 
from an initial value of $FF to the first empty location gives $FB.) 

Step 7 

If the PHA and PLA instructions are replaced by NOP instruc
tions, what will the stack pointer be during the interrupt as dis
played by the Port A LEDs? 

(Since only three locations on the stack are used, the stack pointer 
will be $FA.) 

Step 8 

Think carefully about what would happen if an interrupt routine 
had a PHA instruction but no corresponding PLA instruction. Ex
periment with the circuit and program if necessary. 

EXPERIMENT NO. 6 

Step 1 

Write a program to display the time when an interrupt request 
occurs; that is, modify the 24-hour clock program to display the time 
when an interrupt from the circuit of Fig. 9-9 causes an interrupt. 
Try to write your own modifications before looking at the answer 
below. 

0200 A9 00 
0202 BD 02 A4 

START LOA $00 
STA NMIVl 
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0205 A903 LOA $03 
0207 80 03 A4 STA NMIVH 
020A A940 LOA $40 
020C 80 04 A4 STA IRQVH Load I RQ vector to point to OISPL Y, 
020F A903 LOA $03 AIM 65 locations indicated. 
0211 80 05 A4 STA IRQVH Load IRQ vector to point to OISPLY. 
0214 A9 C4 LOA $C4 KIM and SYM users see Tables 9·5 and 

9·6. 
0216 85 00 STA CNTR Initialize CNTR for 60 counts. 
0218 58 CLI Allow interrupts. 
0219 4C 1902 LOOP JMP LOOP Loop here. 

Step 2 

Load the program, initialize the time locations as described in 
the text, and start the program running. What should you observe on 
the display? 

(The display should remain blank. The display subroutine has be
come an IRQ routine. The time will be displayed when an inter
rupt occurs.) 

Step 3 

With the circuit of Fig. 9-9, produce an interrupt. Does the time 
appear? If it does not, you have made a mistake with your pro
gram. Try again or use the answer given above. 

EXPERIMENT NO. 7 

Step 1 

Study the program below and decide if it will execute properly. 
Explain your reasoning. The program has no objective or usefulness. 

0200 A9 FF START LOA $FF I nitialize Port A to be an output port 
0202 80 01 17 STA PAOO by storing $FF in its OOR. 
0205 48 PHA Save the accumulator on the stack. 
0206 20 10 02 JSR TEST Jump to subroutine TEST 
0209 A9 FO LOA $FO 
020B 8000 17 STA PAO Output accumulator contents to Port A. 
020E 00 BRK 
0210 68 TEST PLA Get contents of stack. 
0211 60 RTS Return from subroutine. 

Step 2 

What do you expect to observe if the program executes properly? 
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(Four of the lights on Port A should light and four should remain 
dark because after the program returns from the subroutine we load 
$FO into Port A.) 

Step 3 

Execute the program, see if it works, and then explain why it 
doesn't work. Try tracing the program counter and the stack pointer. 

(The program attempts to "pass a parameter" from the main pro
gram to the subroutine by means of the stack. The data is placed on 
the stack by the PHA instruction in the main program. It is pulled 
off the stack by the PLA instruction in the subroutine. If the stack 
pointer was $FF before the program was executed, then the PHA 
instruction will decrement it to $FE. The "return address" for the 
JSR instruction will be stored at $OlFE and $OlFD. The PLA in
struction in the subroutine increments the stack pointer from $FC 
to $FD. The RTS instruction increments the stack pointer again, and 
reads the "return address" from locations with addresses $OlFE 
and $OlFF. Note that these are not the correct locations. It is good 
practice to make sure that PHA and PLA instructions always occur 
in pairs in subroutines and interrupts.) 
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CHAPTER 10 

Interval Timers 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the use of interval timers in programming. 
• Program the 6530, 6532, and 6522 interval timers. 
• Write programs that use interval timers to implement delay 

loops, to measure time between events, and to count events. 

INTRODUCTION 

Computer systems that are designed mainly as "number crunch
ers" or data processors, and that operate primarily with high-level 
language interpreters such as BASIC, FORTRAN, etc., do not 
usually make much use of interval timers, except perhaps as a 24-
hour clock. But in many cases where a computer i~ interfaced to 
some device in the real world, you are likely to find an interval 
timer. 

One of the reasons for the popularity of the KIM-I microcomputer 
in particular, and 6502-based designs in general, has to be the 
interval timers that are associated with these systems. An interval 
timer may replace software timing loops, freeing the computer for 
other tasks while the timing is taking place in external hardware. 
Interval timers may be used to implement 24-hour clocks. They 
can be used to make precise measurements of the times between 
events, and they can also be used as event counters. Almost any data 
logging problem requires a particular time to elapse between the 
points or values to be logged, and interval timers are ideal for 

210 



implementing these time delays. Interval timers are used in music 
synthesis applications. The purpose of this chapter is to acquaint 
you with the basic programming techniques needed to operate an 
interval timer, and to give you some examples of simple applications 
that may give you ideas of your own. 

In 6502 systems, an interval timer is a location in memory that 
may be loaded with a number like any other R/W memory location. 
After a number has been written into the location of the interval 
timer, the system clock decrements the number in the interval timer 
until the number is zero. At that time a flag in a register associated 
with the timer is set and/ or an interrupt occurs, signaling the micro
processor that the "time is up." Details of how these events take 
place vary considerably, depending on the device involved. Interval 
timers are part of the logic circuitry found on integrated circuits 
known as the 6522 Versatile Interface Adapter (VIA), the 6530 
RAM-ROM-I/O-Timer (RRIOT), and the 6532 RAM-I/O-Timer 
(RIOT). The 6530 is found exclusively on the KIM-I, while both 
the 6522 and the 6532 are found on the AIM 65 and the SYM-I. The 
specifications for these devices are found in Appendix C. After this 
brief introduction, we now proceed to examine the interval timing 
functions of each of these integrated circuits. 

6530 INTERVAL TIMER 

Although the integrated circuit known as the 6530 contains R/W 
memory locations, ROM memory locations, and I/O ports, in this 
section we are interested only in its interval timers. A model of the 
interval timer structure of the 6530 is shown in Fig. 10-1. The system 
clock decrements a number in the timer register at a rate determined 
by "divide down" logic. The clock signal may be divided by one, 
eight, 64, or 1024, depending on which divide circuit is selected. 
The divide circuits are selected by address lines AO and AI. Thus, 
the two least-significant bits of the address of the counter register 
determine which divisor will be used to "predivide" the time base 
that is used to decrement the count. While the actual address may 
change; that is, 0000 0100 through 0000 0111, with the ADH fixed, 
the same register is addressed, but different count-down frequencies 
are selected by the programmable divide-down logic. If the divide
by-64 circuit is selected, then the timer register will be decremented 
once every 64 clock cycles. 

When the number in the timer register reaches zero (an event 
that we will describe as "timing out"), a flag is set in a I-bit register 
called the status register. The status bit is bit seven of a location in 
memory that is read to determine whether the timer has timed out. 
All the other bits (bit six through bit zero) of the status register 
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Fig. 10·1. Model of 6530 Interval Timer. 

are always zero. A complete summary of the memory locations for 
the 6530 interval timer in the KIM-1 system is given in Table 1O-l. 

The time-out of a timer may also be used to cause an interrupt. 
This option is also selected by addressing. Refer to Table 10-1 and 
note that the divide-by-1024 circuit may be selected with either ad-

Table 10-1. The 6530 Interval Timer Read and Write Data 

6530 Address 
Address Lines (Input) 
(KIM-1) A3 A2 A1 AO Function 

$1704 0 1 0 0 Write to the TOOOI Timer: PB7 Disabled 
$1705 0 1 0 1 Write to the T0008 Timer; PB7 Disabled 
$1706 0 1 1 0 Write to the TOO64 Timer: PB7 Disabled 
$1707 0 1 1 1 Write to the T1 024 Timer; PB7 Disabled 
$170C 1 1 0 0 Write to the TOOOI Timer: PB7 Enabled* 
$1700 1 1 0 1 Write to the T0008 Timer: PB7 Enabled* 
$170E 1 1 1 0 Write to the T0064 Timer: PB7 Enabled* 
$170F 1 1 1 1 Write to the Tl024 Timer; PB7 Enabled' 
$1706 0 1 1 0 Read Timer Register 
$1707 0 1 1 1 Read Timer Status Register (Bit Seven) 

Writing to or reading from any address after time-out clears the status register 
and sets PB7 to logic one. 

'PB7 should be programmed as an input line. 
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dress $1707 or $170F. In using the first address, only the status 
flag will be set to one when the timer register reaches zero, while 
if the second address is used the status flag will be set and PB7 
(pin seven of Port B) will make a logic-one to logic-zero transi
tion. If PB7 is connected to either the IRQ pin or the NMI pin by 
means of an external wire, then an interrupt will result at the end 
of the timing period. However, PB7 must be programmed as an 
input line for this option to work. Table 10-1 and Fig. 10-1 show 
that address line A3 selects the interrupt mode. 

The contents of the timer register may be read by reading the lo
cation whose address is $1706. The number in the timer will continue 
to decrement during and after a read operation. This read option 
is not used very frequently. In most programming situations, one is 
interested only in when the timer reaches zero, an event that is sig
naled by the status flag being set or by an interrupt. 

Writing to or reading from any of the timer addresses after a 
time-out clears bit seven of the status register and sets PB7 to logic 
one. the latter being necessary to clear the interrupt. 

The time duration, T, between the end of the last clock cycle in 
the write instruction (ST A TIMER) and the setting of the status 
flag and/ or the interrupt is given by the formula: 

T = [( N . D) + ~J . T c (10-1 ) 

where, 
N is an 8-bit number written to the timer, 
D is the divide ratio, for example, 64, 1024, etc., selected by ad

dressing, 
T c is the system clock period (typically one microsecond). 

The same formula applies to the timer on a 6532 integrated circuit. 
In fact, the timer on a 6532 has many features in common with the 
timer on a 6530. 

For reference purposes (Table 10-1), we have included the states 
of the various address lines connected to the 6530 that identify 
which timer or feature is being used. Owners of other systems may 
use this information to help in interfacing a 6530. 

The operation of the 6530· interval timer may be demonstrated 
with a few simple programs. Example 1 shows a simple delay loop 
implemented with an interval timer. The corresponding flowchart is 
shown in Fig. 10-2. Several modifications of this program are used 
in Experiment No. 1. The first instruction in Example 1 loads the 
accumulator with the number to be stored in the timer register. The 
next instruction stores this number in the timer register; the address 
chosen in this case calls for a divide-by-1024. At the conclusion of 
the fourth cycle in the ST A instruction, the timer register begins 

213 



Fig. 10-2. Flowchart of Basic Interval 
Timer Delay Loop-Example 1. 

to decrement. The status flag is read by the third instruction in the 
program, and bit seven is tested by the BPL instruction. If bit seven 
of the status register is zero, then the timer register has not yet 
reached zero. The program loops back to read the status flag until 
the flag is set, at which time the BRK instruction is executed, finish
ing the program. The total delay time produced by the interval 
timer delay loop is approximately 

T = [255 . 1024] . 10-6 second = 0.261 second, 

where we have neglected the time for the ST A and BPL instructions 
and the Y:? cycle mentioned in Formula 10-1. The finer details will 
be considered when precision timing is required. 

Example 1: Basic Interval Timer Delay Loop 

Object: Produce a delay of approximately 0.261 second. 

$1707 = Tl024; location of divide.by.l024 timer. STATUS; Timer status register. 

0200 A9 FF START LOA $FF Get number to be stored in timer 
register. 

0202 80 07 17 STA Tl024 Stare it in 11024 timer. 
0205 AD 07 17 LOOP LOA STATUS Read status. 
0208 10 FB BPL LOOP Loop until timer times aut. 
020A 00 BRK Finish. 
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The next program demonstrates how the interval timer may be 
used in an interrupt mode. Example 2 is not designed to do any
thing except generate equally spaced interrupts, the time between 
interrupts being determined by the timer chosen and the number 
loaded into the timer. The initialization sequence in Example 2 
clears the interrupt flag to allow interrupts, then it forces an inter
rupt to get the timer started, and finally it waits in a "do-nothing" 
loop until the next interrupt occurs. In Experiment No.3, some 
useful things will be done with this program. Here we simply dem
onstrate how to set up the interrupt mode. Note that for the KIM-I, 
output pin PB7 (pin 15 on the application connector) should be 
connected to the IRQ pin (pin 4 on the expansion connector). 

Example 2: Demonstration of Interval Timer in Interrupt Mode 

Object: Generate equally spaced interrupts with an interval timer. 

$170E = T0064; divide·by.64 timer with interrupt enabled 
$17FE = IRQL; Load with $06 
$17FF = IRQH; load with $02 

0200 58 5T ART 
0201 00 
0202 EA 
0203 4C 03 02 
0206 A99C 
0208 80 OE 17 
0208 40 

LOOP 
INTRPT 

CLI 
BRK 
NOP 
JMP LOOP 
LOA $9C 
STA Too64 
RTI 

Clear interrupt flag. 
Farce interrupt. 
No aperatian. 
Laop here. 
Interrupt rautine starts here. 
Laad divide.by-64 timer. 
Return fram interrupt. 

In order for the program in Example 2 to execute properly, an 
interrupt vector of $0206 must be loaded into locations whose ad
dresses are $17FE and $17FF on the KIM-I. The time between 
interrupts will be $9C times 64 (timing interval) plus the time 
necessary to complete the IMP instruction in the main program and 
the LDA and ST A instructions in the interrupt routine. Also, the 
time necessary to process the interrupt (seven clock cycles) and the 
indirect jump (five cycles) in the KIM -1 monitor must be included. 
Adding these periods gives a time interval between 10.002 milli
seconds and 10.002 + 0.003 milliseconds as the time between inter
rupts. The +0.003 millisecond originates in the uncertainty of the 
location in the IMP instruction in the main program where the 
interrupt occurs. The IMP instruction requires three clock cycles, 
and it will be completed even though it is interrupted. Thus, the 
ability to genelate equally spaced interrupts with the 6530 (or 
6532) is made somewhat uncertain by the length of time required 
to complete the interrupted instruction. As we shall see below, one 
feature of the 6522 eliminates this uncertainty. In any case, the 
precision involved with the 6530 timer in the interrupt mode is 
sufficient for many experiments and designs. 
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6532 INTERVAL TIMER 

The. interval timer on the 6532 integrated circuit operates in 
almost the same way as the 6530 interval timer. The only significant 
difference is that the 6532 has an interrupt pin that is usually con
nected to the IRQ pin on the 6502 microprocessor. This is in contrast 
to the 6530 which uses the PB7 pin to signal an interrupt. The inter
val timer model shown in Fig. 10-1 for the 6530 will be identical in 
all respects to a model of the 6532 if the line labeled "TO PBi' is 
changed to "IRQ." The connection from the 6532 IRQ pin to the 
IRQ pin of the 6502 is usually internal to the microcomputer system; 
that is, a jumper wire is not necessary as in the case of the 6530 
timer on the KIM -1. As in the case of the 6530, the control of the 
interrupt feature is implemented by addressing. If the address line 
A3 is at logic zero, then the interrupt feature is disabled. If address 
line A3 is at logic one, then the interrupt feature is enabled. 

In Table 10-2 the various addresses used to select the timer func
tions are listed. Note that we have included addresses for the 

Table 10-2. Equivalent Addresses for 6532 Timers on 
AIM 65 and SYM-1 

Time. KIM-1 Address AIM 65 Address SYM-l Address 

TOOOI $1704* $A494* $A4ICt 
TOO08 $1705 $A495 $A4ID 
TOO64 $1706 $A496 $A4IE 
TI024 $1707 $A497 $A41F 
READ 

STATUS $1707 $A497 $A407 
READ 

TIME $1706 $A486 $A406 

*Add eight (in hexadecimal) to the address to enable the interrupt feature on the KIM-I and 
AIM 65. 

tThe interrupt line on the SYM-I is not connected. 

KIM-1 that actually address a timer on a 6530 chip rather than a 
6532 chip. The reason is that these locations give timing intervals 
and interrupt behavior that is equivalent to the AIM 65. Since the 
interrupt pin of the 6502 on the SYM-1 is not connected to the 
IRQ pin on its 6532, the SYM-1 addresses are equivalent only in 
the sense that they produce identical timing intervals, without inter
rupts. The literature associated with the KIM-1 is far more extensive 
than that for the AIM 65 or SYM-1, and Table 10-2 is useful for 
writing new programs for the AIM 65 and SYM-1, if those programs 
make use of the 6532 interval timer. For purposes of illustration, 
Example 3 demonstrates the addressing required to implement a 
simple delay loop using the 6532 interval timer with the interrupt 
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feature disabled. The program in Example 3 toggles bit zero of 
Port A (PAO) with a period equal to twice the length of the timing 
interval, producing a square waveform at PAO. See Experiment No. 
3 for further details. 

Example 3: Using an Interval Timer to Produce a Square Wave 

Objective: Produce a square wave at PAO with a programmable period. 

$AOOI = PAO; Port A 
$A003 = PAOO; Port A OOR 
$A497 = Tl 024; Write to divide-by-l024 timer; read status 

0200 A9 01 START LOA $01 
0202 80 03 AO STA PAOO Make pin PAO an output pin. 
0205 A9 62 LOOP LOA $62 Get number = lh period of the square 

wave. 
0207 80 97 A4 STA Tl024 Store in divide-by-l024 interval timer. 
020A A901 LOA $01 
020C 40 01 AO EOR PAO Complement PAO. 
020F 80 01 AO STA PAO Result into PAO. 
0212 2C 97 A4 TEST BIT STATUS Test status register for time out. 
0215 10 FB BPL TEST 
0217 4C 05 02 JMP LOOP Repeat the process. 

The frequency of the square wave produced by the timing vari
ables chosen in Example 3 is about 5 Hz, corresponding to a pe
riod of approximately 0.20 second. Of course, higher and lower 
frequencies may be obtained by varying the byte in the location 
whose address is $0206 and/ or by selecting a different divide-by 
ratio with another timer address. Example 3 uses AIM 65 ad
dresses for the timer and for the output port. It may be converted 
to run on the SYM-l by selecting the appropriate timer addresses 
with the use of Table 10-2. The output port addresses are the same 
for both systems. The program in Example 3 may be run on the 
KIM-l by converting both the timer addresses and the output port 
addresses using Table 10-2 and Table 3-3, respectively. The square 
wave is produced by complementing the value of PAO each time the 
interval timer is started. Complementation is produced by an 

Table 10-3. Symbols for 6522 Timer Latches and Counters 

Name Symbol 

Timer 1 Latch Low T1L-L 
Timer 1 Latch High T1L-H 
Timer 1 Counter Low nC-L 
Timer 1 Counter High T1C-H 
Timer 2 Latch Low T2L-L * 
Timer 2 Counter Low T2C-L 
Timer 2 Counter High T2C-H 

·There is no corresponding Latch High. 
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Exclusive OR operation of PAO with logic one. See Chapter 4 for 
a description of the logical operations. 

6522 INTERVAL TIMERS 

The 6522 Versatile Interface Adapter (VIA) is a complex but 
powerful integrated circuit. The purpose of this section is to de
scribe the two interval timers on the chip. For a description of the 
other features of the 6522 refer to Appendix C. Do not expect to 
understand the many features of the interval timers with one read
ing. Study the descriptive material and experiments along with the 
programs that demonstrate the operation of the timers; then you 
will soon appreciate the versatility of this chip. One further note: 
the KIM-1 does not have a 6522, but an interface between the 6502 
and a 6522 is described in Part II of this book, so that a 6522 could 
be added to a KIM-1 system very easily. 

The 6522 has two interval timers referred to as T1 and T2. A 
model of the two 16-bit timers and their related control and inter
rupt registers is shown in Fig. 10-3. The basic principle of operation 

TO 6502 IRQ 

- TIMER 2-

f--- COUNTER HIGH -j-COUNTER lOW I 

115 114 1 13 1 12 111 1 10 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 I o I 
TIMER 2-lATCH lOW 

- TIMER I- I 7 1 6 I 5 1 4 I 3 1 1 I 
I COUNTER HIGH - I COUNTER lOW I 

115 114 113 112 111 110 I 9 I 8 I 7 1 1 5 I 4 I 3 1 1 I o I 
I lATCH HIGH - TIMER 1- I lATCH lOW 

115 114 113 112111 110 I 9 1 8 I 7 1 6 1 5 1 4 I 3 1 2 1 1 

Fig. 10-3. The 6522 Registers, latches, and Counters. 
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Table 10·4. Locations and Functions of 6522 Interval Timers 
on AIM 65 and SYM·1 

Location Timer Write Function 

AOO4 Tl Write data to timer 1 latch low (Tll-l). 
AOOS Tl Write data to timer 1 latch high (T'Il-H) and counter high (Tl C-H). 

Transfer the contents of Tll-l to Tl Col. 
Clear the Tl interrupt flag. Start timing. 

AOO6 Tl Write data to timer 1 latch low (Tll-l). 
AOO7 Tl Write data to timer 1 latch high (Tll-H). Clear the Tl 

interrupt flag. 
AOO8 T2 Write data to timer 2 latch low (T2l-l). 
AOO9 T2 Write data to timer 2 counter high (T2C-H). Transfer the contents 

of T2l-l to T2C-1. Clear the T2 interrupt flag. Start timing. 

Read Function 

AOO4 Tl Read the contents of timer 1 counter low (Tl Col). Clear the Tl 
interrupt flag. 

AOOS Tl Read the contents of timer 1 counter high (Tl C-H). 
AOO6 Tl Read the contents of timer 1 latch low (Tll-l). 
AOO7 Tl Read the contents of timer 1 latch high (Til-H). 
AOO8 T2 Read the contents of timer 2 counter low (T2C-l). Clear the T2 

interrupt flag. 
AOO9 T2 Read the contents of timer 2 counter high (T2C-H). 

is similar to the 6530 and 6532 timers: a number loaded into a 
counter is decremented at the system clock rate until it reaches zero. 
At that time a Rag is set in the interrupt Rag register and, if the 
corresponding bit in the interrupt enable register is set, an inter
rupt will occur. The various features of the two timers are con
trolled by the status of various bits in the Auxiliary Control Register 
(ACR), the Interrupt Flag Register (IFR), and the Interrupt En
able Register (IER). In addition to studying Fig. 10-3, refer to 
Tables 10-3, 10-4, and 10-5 for the names, symbols, and addresses 
that will be used in describing the timers. Figs. 10-4, 10-5, and 10-6 
supply the necessary information about the three registers (ACR, 
IFR, and IER) to select the various timing modes and interrupt 
conditions. 

We will explain the functions of the various registers, latches, and 
timers in the context of demonstration programs. The program in 
Example 4 implements a simple delay loop, the most common func
tion of an interval timer, using timer T2. The addresses used are 
the same for both the AIM 65 and SYM-l. The internal registers 
of the 6522 are cleared when a system RESET occurs, and we as
sume that is the state of the 6522 when the program in Example 3 
is started. Refer to Fig. 10-4 and observe that when the IER is 
cleared, then the interrupt from timer T2 is disabled. The informa
tion in Fig. 10-6 indicates that since ACR5 = 0, then the T2 timer 
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Table 10-5. The 6522 Control and Interrupt Registers 
Used for the Timers 

Register Symbol Address Sits Used for Timers 

Auxiliary Control Register ACR 
Interrupt Flag Register IFR 
I nterrupt Enable Register IER 

INTERRUPT ENABLE REGISTER (lERI 
76543210 

I I I I I I I I I 

$AOOB ACR7 
$AOOD IFR7 
$AOOE IER7 

II 12 '''5 ~ 0, 0 ISABlE 12 INIERR U PI 
IER5 = 1. ENABLE T2 INTERRUPT 

Tl IER6 = 0, DISABLE TlINTERRUPT 
IER6 = 1. ENABLE Tl INTERRUPT 

"'"-----IER SET/CLEAR CONTROL 

If. IER7 = 0, THEN WRITING A 1 TO A BIT CLEARS THE 
CORRESPONDING IER BIT, 

IF IER7 = I, THEN WRITING A 1 TO A BIT SETS THE 
CORRESPONDING IER BIT, -

Fig. 10-4. Operation of 6522 Interrupt Enable Register. 

ACR6 ACR5 
IFR6 IFR5 
IER6 IER5 

is set to the mode in which a single time-out is generated. That is, 
the 16-bit number in the T2C-L and T2C-H is decremented at the 
clock rate until it reaches zero, at which time bit IFR5 is set (see 
Fig. 10-5). 

The first two instructions in Example 4 load the Timer 2 Latch 
Low (T2L-L) with an 8-bit number. The next two instructions in 
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INTERRUPT FLAG REGISTER (lFRI 
76543210 

I I I I I I I 
II 12 INTERR UPTF LAG , 

IFR5 = 1 WHEN T2 TIMES OUT. 
Tl INTERRUPTS FLAG. 
IFR6 = 1 WHEN Tl TIMES OUT 

IFR7 = 1 WHEN IFRn AND IERn ARE EQUAL 
TO ONE. -

'------ IFR7 = 0 WHEN IFR1 - 6 = 0 OR IERI 
- 6 = O. THE MICROPROCESSORIS 
INTERRUPTED (IRQ) WHEN IFR7 = 1. 

Fig. 10-5. Operation of 6522 Interrupt Flag Register. 



AUXILIARY CONTROL REGISTER IACH) 
76543210 

I I I I I I I I 

~ I ACR5 ~ O. GEM"ATE SINGLE TlME·OUT AT ClOCK RATE. 
T2 MODE ACR5 = 1. GENERATE SINGLE TIME-OUT AT RATE DETERMINED 

BY SIGNAL AT PB6. 

T! MODE 

ACR7 ACR6 
o 0 GENERATE SINGLE TIME- OUT AT CLOCK RATE. 

P7 DISABLED. 

o GENERATE SINGLE TIME· OUT AT CLOCK RATE. 
PB7 ENABLED. 

o FREE-RUNNING MODE. GENERATE CONTINUOUS 
TIME-OUTS AT CLOCK RATE. PB7 DISABLED. 

FREE-RUNNING MODE. GENERATE CONTINUOUS 
TIME-OUTS AT CLOCK RATE. PB7 ENABLED. 

Fig. ·10-6. Operation of 6522 Auxiliary Control Register. 

Example 4 load the Timer 2 Counter High (T2C-H) with an 8-bit 
number. At the completion of the STA T2C-H instruction, the num
ber in the T2L-L is automatically transferred to the T2C-L, pro
viding a 16-bit number in the T2 counter. There is no latch for the 
T2C-H. The number in the T2 counter, which we shall call N, is 
decremented at the system clock rate. Decrementing commences as 
soon as the T2 counter is loaded; that is, at the completion of the 
ST A T2C-H instruction. 

Later, after (N + 1.5) microseconds have elapsed, bit IFR5 is 
set, signaling the time-out of the timer. If bit IER5 were set, en
abling the interrupt feature, then an interrupt would also occur. 
However, in Example 4 we have assumed that the IER was cleared 
by a RESET operation prior to running the program. The last three 
instructions before the BRK instruction serve the purpose of testing 
bit IFR5 to see if a time-out has occurred. A one in bit five of the 
accumulator is ANDed with the IFR. If the result is zero, indicating 
that bit IFR5 has not yet been set, then the program loops back to 
test bit IFR5 again. Recall that the BIT instruction performs a logi
cal AND operation. When the timer reaches zero, the program will 
detect the flag and exit the delay loop to execute the BRK instruc
tion that will send it back to the monitor. The AIM 65 and SYM-l 
displays will light after the BRK instruction is executed. By itself, 
the program in Example 4 is of little use except to demonstrate 
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how to program timer T2 to produce a delay. Experiment No.6 
provides some variations of the program in Example 4 that might 
be useful in certain applications. 

Example 4. Demonstration of T2 in Noninterrupt Delay Loop Mode 

Objective: Generote a single delay using the system clock and the T2 timer. 

$A008 = T2L·L 
$A009 = T2C·H 
$AOOD = IFR 

0200 A9 30 
0202 80 08 AO 
0205 A999 
0207 80 09 AO 
020A A9 20 
020C 2C 00 AO 
020F FO FB 
0211 00 

START 

DELAY 

LDA $30 
STA T2L·L 
LDA $99 
STA T2C·H 
LOA $20 
BIT IFR 
BEQ DElAY 
BRK 

Get number to be stored in T2L·L. 
Store it in the timer. 
Get number to be stored in T2C·H. 
Store it and start timing. 
Set bit five in A to one. 
AND A with IFR to test bit IFR5. 
Wait here until bit IFR5 is one, 
then break to the monitor. 

Example 5 demonstrates how the T2 timer may be programmed 
to operate in the interrupt mode. A program such as this could be 
used to produce interrupts for servicing some peripheral device, for 
example, but our purpose here is to demonstrate simply how the 
6522 must be programmed to operate the T2 timer in this mode. 
Note in particular how the IER is programmed. Bit IER5 must be 
set by writing a one to both bit IER7, the IER set/clear bit, and 

Example 5: Demonstration of 6522 Timer T2 in the Interrupt Mode 

Objective: Produce a square wave of frequency 10 Hz on pin PAO. 

$AOOI = PAD; Port A 
$A003 = PADD; Port A DDR 
$A008 = T2L·L 
$A009 = T2C·H 
$AOOE = IER; Interrupt Enable Register 
$A404 = IRQL; Load with $15 
$A405 = IRQH; Load with $02 

0200 A9 AO START LOA $AO Set bits seven and five of A to one. 
0202 80 OE AO STA IER Enable T2 interrupts. 
0205 A9 FF LOA $FF Set Port A DDR to make Port A an 
0207 8D 03 AO STA PADD output port. 
020A A900 LDA $00 Initialize Port A LEOs to zera. 
020C 8D 01 AO STA PAD 
020F 58 Cli Clear interrupt flag to allow interrupts. 
0210 00 BRK Force the first interrupt. 
0211 EA NOP No operation. 
0212 4C 12 02 LOOP JMP LOOP Idle here between interrupts. 
0215 A950 IRQ LDA $50 Set up timer registers. 
0217 80 08 AO STA T2L·L Initialize T2. 
021A A9 C3 LDA $C3 
021C 80 09 AO STA T2C·H 
021F EE 01 AO INC PAD Increment the contents of Port A. 
0222 40 RTI Return from interrupt. 

222 



bit IER5. The one in bit IER7 tells the 6522 that one or more bits 
of the IER are going to be set. The one in bit IER5 enables the 
interrupt feature of the T2 timer, as indicated in Fig. 10-4. A zero 
in the other data bits written to the IER leaves the corresponding 
IER bits unaffected. 

The first two instructions in the program in Example 5 set the 
IER5 bit. Notice that $AO corresponds to a one in bits seven and 
five. The CLI instruction clears the interrupt flag so that subsequent 
interrupts will work. The BRK instruction forces the first interrupt. 
In the interrupt routine, the T2 timer is loaded with $C350 = 
50,000, so there will be slightly more than 0.05 second between in
terrupts. The voltage at pin P AO will be a square wave with a fre
quency of 10 Hz, pin PAl will produce a square wave of 5 Hz, 
pin PA2 will produce a square wave of 2.5 Hz, and so on. Note 
that in order for the program in Example 5 to work, an interrupt 
vector of $0215 is required, $0215 being the starting address of the 
interrupt routine. 

USING T2 TIMER AS A COUNTER 

To demonstrate how the T2 timer may be used to count pulses 
from an external source, we will describe a 24-hour clock with 
extremely low computer-time overhead. To simplify matters, our 
clock will keep time in hours and minutes, omitting seconds. In 
many applications such as security systems, oven timers, and punch 
clocks for timing in and out of work, the time to the nearest minute 
is sufficiently precise. Example 6 utilizes a conditioned signal from 
the 60-Hz power line, as outlined in Example 10 in Chapter 9. 
This signal is applied to pin PB6, which, in turn, is connected inter
nally in the 6522 to the T2 timer. If bit ACR5 is set to one, then the 
number in the T2 timer is decremented once for each pulse on PB6, 
rather than being decremented by the system clock. If the T2 timer 
is loaded with 360010, then it will time out once every minute if 60-
Hz pulses are applied to PB6. Timer T2 will be operated in the 
interrupt mode, so once every minute an interrupt occurs and loca
tions in memory representing minutes and hours are incremented 
as necessary. You should compare this with the 24-hour clock pro
gram in Example 10 in Chapter 9 that required interrupts every 
1if;o second. 

Examples 6 in this chapter and 10 in Chapter 9 are similar in 
several respects. The so-called "main" program initializes the inter
rupt vector and then breaks to the interrupt routine to start the 
timing. Both programs increment locations in memory corresponding 
to minutes and hours in the interrupt routine. The program then 
rehuns to the main program to display the time. Note that in 
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Example 6 we have used a JSR DISPLY instruction that jumps 
to the same display subroutine that was used in Example 10 in 
Chapter 9. This routine is not repeated here because of its length. 
The comments should provide enough information to understand 
the program, provided that you understood Example 10 in Chap
ter 9. 

Example 6: Low Overhead 24-Hour Clock 

Objective: Write a program to keep time in hours and minutes using the T2 timer. 

$0340 = OISPLY; location of the first byte of the display subroutine described in 
Chapter 9, Example 10 

$A008 = ACR; Auxiliary Control Register of the 6522 
$AOOE = IER; Interrupt Enable Register of the 6522 
$A404 = IRQL; cantains low-order byte of the interrupt vector 
$A405 = IRQH; contains high-order byte of the interrupt vector 

0200 78 MAIN SEI Set Interrupt ~isable Flag_ 
0201 A9 00 LOA $00 Load interrupt vector_ 
0203 80 04 A4 STA IRQL 
0206 A903 LOA $03 
0208 8005 A4 STA IRQH 
0208 A9 20 LOA $20 8it five of A is set to one, then it 
0200 80 08 AO STA ACR is stored in the ACR to set the timer 
0210 A9 AO LOA $AO in the pulse counting mode. 
0212 80 OE AO STA IER Enable interrupts from T2. 
0215 58 CLI Clear interrupt flag. 
0216 00 8RK Jump to the first interrupt. 
0217 EA NOP No operation. 
0218 20 40 03 IDLE JSR OISPLY Jump to display subroutine. 
0218 4C 18 02 JMP IDLE 

$0002 = MIN; this location stores the time in minutes 
$0003 = HRS; this location stores the time in hours 
$A008 = T2L-L; low-order byte of the T2 timer 
$A009 = T2C-H; high-order byte of the T2 timer 

0300 48 IRQ PHA Push accumulator on the stack. 
0301 A9 OF 
0303 80 08 AO 
0306 A90E 
0308 80 09 AO 
0308 F8 
030C 18 
0300 AS 02 
030F 69 01 
0311 85 02 
0313 C960 
0315 90 13 
0317 A900 
0319 85 02 
0318 18 
031C A5 03 
031E 69 01 
0320 85 03 
0322 C9 24 
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LOA $OF 
STA T2L-L 
LOA $OE 
STA T2C-H 
SED 
CLC 
LOA MIN 
ADC $01 
STA MIN 
CMP $60 
8CC OUT 
LOA $00 
STA MIN 
CLC 
LDA HRS 
ADC $01 
STA HRS 
CMP $24 

Load T2 timer with 3600 = $OE10. 
Since T2 counts through zero, use 
3599 = $OEOF. 
Start counting pulses on P86. 
Set decimal mode. 
Clear carry flag for next addition. 
Get minutes. 
Add one. 
Result into minutes. 
Minutes equal 601 
No. Prepare to leave interrupt routine. 
Yes. Set to zero then increment HRS. 

Clear carry flag. 
Get hours. 
Add one. 
Result into hours. 
Hours equal 24? 



0324 90 04 BCC OUT No. Prepare to leave interrupt routine. 
0326 A900 LOA $00 Yes. Set hours to zero. 
0328 85 03 STA HRS Result into hours. 
032A 08 OUT CLO Clear decimal mode flag. 
032S 68 PlA Pull accumulator from the stack. 
032C 40 RTI Return from the interrupt routine. 

In order for the program in Example 6 to run. the program should 
be started with the contents of MIN equal to one less than the 
time at which you intend to start keeping time, and the contents 
of HRS should equal the correct time. Connect the circuit of Fig. 
9-7 with the output of the 555 timer connected to PB6 (pin 17 on the 
application connector of the AIM 65). Connect the input of the 555 
timer (Fig. 9-7) to the 6.3 V ac 60-Hz source at the instant at 
which the time exceeds the time loaded into MIN by one minute. 
Be sure that the computer and the 555 timer have common ground 
connections. 

USING T1 TIMER 

The Tl timer on the 6522 VIA may also be used to generate 
delays either with or without interrupts. In other words, Examples 
4 and 5, described previously, will also work with the Tl timer. 
Changes to these programs to utilize the Tl timer would include 
writing the 16-bit number to TIL-L and TIL-H at addresses $A004 
and $A005, respectively, instead of using T2L-L and T2C-H. Also, 
the time-out of timer Tl is flagged by bit IFR7 instead of bit 
IFR6. Thus, the BPL instruction, which tests bit seven, could be 
used to hold the timer in the delay loop until it times out. Then 
Example 4 should also be modified to include clearing bits ACR7 
and ACR6, if the Tl timer is to be used. This last step would not 
be necessary after a system RESET because the registers are auto
matically cleared. Example 5 would also require bits ACR7 and 
ACR6 to be cleared, and, in addition, bit IER6 must be set to allow 
interrupts. Bit IER6 may be set by writing $CO to the IER; that is, 
both bit IER7 and bit IER6 must be one to set bit IER6. Refer to 
Figs. 10-4, 10-5, and 10-6 for details. The Tl timer cannot be used to 
replace the T2 timer in Example 6 because it does not have an 
external pulse counting mode. 

One of the most attractive features of the Tl timer is its ability 
to generate equally spaced interrupts in its "free-running" mode. 
In this mode, the timer is autonwtically restarted after each time
out. No write instructions are required to reset or restart the timer. 
This has the advantage of making the time between interrupts in
dependent of the time necessary to process the interrupt routine 
instructions. For example, when an interrupt occurs, the instruction 
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currently being executed is completed. Depending on the instruc
tion being interrupted and the clock cycle in which it is interrupted, 
this time could vary from one to seven clock cycles. This might be a 
significant error in precision timing measurements, but it is elim
inated with the free-running mode. 

In the free-running mode it is also possible to invert the logic level 
of PB7 each time the counter reaches zero. Thus, a square wave 
output at PB7 may be obtained, the period of the square wave being 
twice the timing interval. The various modes are selected by bits 
ACR7 and ACR6 in the ACR. Refer to Fig. 10-6 for details. It is 
important to know that the time between interrupts or between 
inversions of PB7 is N + 2 clock cycles where N is the 16-bit num
ber loaded into the Tl timer. Also, the Tl timer interrupt flag must 
be cleared after each interrupt. This is accomplished by reading 
TIC-L with an LDA TIC-L instruction. Even though we are not 
interested in the contents of this location, the reading operation 
clears the flag. 

PRECISION TIMING PROGRAM 

To demonstrate the operation of the Tl timer in its free-running 
mode, we have written three programs that also represent useful 
applications. The program in Example 7 measures the time interval, 
in units of 100 microseconds, between two successive negative 
pulses on pill PA 7. A six-digit counter (three bytes of bed data) is 
incremented every 100 microseconds after the first event produces a 
pulse on PA 7 until the second event produces the second pulse on 
PA7. The display subroutine listed in Example 10 in Chapter 9 is 
used to display the result. Since the six-digit counter is incremented 
every 100 microseconds, the two most-significant digits give the 
time in seconds, the decimal point is between the second and third 
digits, and the remaining four digits give the time in units of ten
thousandths of a second. Time intervals between 0.0001 second 
and 99.9999 seconds may be measured with a precision of ±O.OOOI 
second. The program in Example 7 is the basic ingredient for a large 
number of interesting applications that require precise measure
ment of the time between two events. 

Example 7: Program to Measure Time Between Two Events 

Objective: Measure the time between successive negative pulses on PA7 in units of 100 
microseconds. Display the answer using the display subroutine of Example 
lOin Chapter 9. 

$0001 = CNTlO; contains the two low-order digits of the time interval 
$0002 = CNTMI; contains the two middle-order digits of the time interval 
$0003 = CNTHI; contains the two high-order digits of the time interval 
$AOOI = PAD; Part A, bit PA7 is used to detect the pulses. 
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$A004 = T1C-L; a location that is read to clear the TI interrupt flag 
$A005 = T1 L-H 
$AOO6 = TI L-L 
$AOOB = ACR 
$AOOE = IER 
$A404 = IRQL; contains the low-order byte of the interrupt vector 
$A405 = IRQH; contains the high-order byte of the interrupt vector 

0200 A944 START LOA $44 Get the low-ord er byte of the IRQ 
vector. 

0202 80 04 A4 STA IRQL Store it in IRQL. 
0205 A902 LOA $02 Get the high-order byte of the IRQ 

vector. 

0207 80 05 A4 STA IRQH Store it in IRQH. 
020A F8 SED Set decimal·mode flag for decimal 

addition. 
020B 18 CLC Clear carry flag for addition. 
020C A900 AGAIN LOA $00 Clear counter locations. 
020E 85 01 STA CNTLO 
0210 85 02 STA CNTMI 

0212 85 03 STA CNTHI 
0214 A940 LOA $40 Set bit six of A to one. Store the 
0216 80 OB AO STA ACR result in the ACR to put T1 in free-

running mode. 

0219 A9 CO LOA $CO Set bits six and seven of A to one. 
0218 80 OE AO STA IER This result into IER enables T1 

interrupts. 
021E A962 LOA $62 The time between interrupts will be 

0220 80 06 AO STA T'lL-L $62 + 2 = 100,0 clock cycles. 

0223 A900 LOA $00 Clear accumulator. 

0225 2C 01 AO WAIT BIT PAD Is PA7 at logic I? 

0228 30 FB BMI WAIT Yes; wait for a negative transition. 

022A 2C 01 AO IDLE BIT PAD No; then negative pulse has begun. 

0220 10 FB BPL IDLE Wait for positive transition. 
022F 8005 AO STA T1L-H Put $00 in TI L-H, then start timing. 
0232 58 CLI Clear interrupt flag to allow 

interrupts. 
0233 2C 01 AO LOAF BIT PAD Wait for next negative pulse. 
0236 30 FB BMI LOAF 
0238 2C 01 AO BACK BIT PAD 

0238 10 FB BPL BACK 

0230 78 SEI Pulse is complete; prevent further 
interrupts. 

023E 20 40 03 JSR OISPLY See Example 10, Chapter 9 for 
display subroutine 

0241 4C OC 02 JMP AGAIN Return to make another 
measurement. 

0244 48 IRQ PHA Save accumulator during the 
interrupt. 

0245 A901 LOA $01 Increment counters during each 

0247 65 01 AOC CNTlO interrupt, that is, every 100 
microseconds. 

0249 85 01 STA CNTLO Result into counter low·order byte. 

024B A900 LOA $00 Clear accumulator. 

0240 65 02 AOC CNTMI Add carry from previous add to 

227 



024F 85 02 STA CNTMI middle-order byte of the counter_ 

0251 A900 LOA $00 Clear accumulator_ 
0253 65 03 AOC CNTHI Add carry fram previous add to the 

0255 85 03 STA CNTHI high-order byte of the counter. 
0257 AD 04 AO LOA TlC-L Clear 6522 timer Tl interrupt flag. 
025A 68 PLA Restore accumulotor. 

0258 40 RTI Return from interrupt. 

A flowchart that presents most of the important features of the 
program in Example 7 is shown in Fig. 10-7_ The instructions in 
Example 7 that relate directly to the operation of the T1 timer 
should be studied carefully. The instruction starting at address 
$0216 sets up the ACR for timer T1 to operate in the free-running 
mode with PB7 disabled. That is, PB7 will not toggle each time 
that an interrupt occurs. The instruction starting at the address 
$020B sets the IER to enable interrupts from the T1 timer. The 
low-order byte of the counter is loaded with the instruction starting 
at address $0220. Note that since the time between interrupts is 
to be 10010 clock cycles we loaded $62 = 9810 into the counter. Two 
additional cycles are used to reload the counter after each inter
rupt, giving exactly 100 clock cycles between interrupts. The high
order byte of the 16-bit number loaded into the counter is put there 
with the instruction starting at the address $022F, directly after the 
first negative pulse is detected. Recall that the timer starts counting 
down directly after TIL-H is loaded. Directly after that instruction, 
the 6502 interrupt Hag is cleared to allow the 6522 VIA to interrupt 
it from timer Tl. The six-digit counter is incremented in the inter
rupt routine once every 100 microseconds thereafter, until another 
negative pulse is detected. Note that one of the last instructions 
in the interrupt routine is used to clear the 6522 interrupt from 
the T1 timer. 

To measure the time interval between positive pulses, change all 
of the BMI instructions to BPL instructions, and vice versa. The 
accuracy of the time measurements depends ultimately on the ac
curacy of the system clock. You should be aware that most crystal 
oscillators on microcomputers like the KIM-I, SYM-1, and AIM 65 
are not accurate to six significant figures. For example, the crystal 
on the author's AIM 65 appears to have an error of 240 counts per 
million counts. If you want to do laboratory-standard timing, you 
will need laboratory-standard crystal oscillators. 

The timer program may be used in many ways. We have used 
similar programs to measure muzzle velocities, the acceleration of 
gravity, the period of a square wave and to conduct simple stop
watch-type experiments. Note that mechanical switches are not 
suitable to provide pulses at P A 7 unless they are debounced elec
tronically. Refer to Fig. 3-2 for suitable debouncing circuitry. Photo-
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Fig. 10-7. Flowchart of Event Timing Program. 
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Fig. 10-8. Phototransistor Interface for Precision Timing Program of Example 7. Text 
describes difference in (a), (b,), (cl, and (d) circuits. 

cells and photo transistors make excellent event detectors. Several 
possible interfaces involving phototransistors are shown in Fig. 
10-8. The time between successive negative pulses produced by the 
phototransistor circuit is displayed by the program of Example 7. 

Circuit (a) in Fig. 10-8 produces a negative pulse whenever 
the light to the phototransistor is interrupted. The 10K potentiometer 
is adjusted to give the necessary pulse depth. Circuit (b) pro
duces a negative pulse when a light pulse strikes the phototran
sistor. Circuit (c) produces a negative pulse when the light to 
either phototransistor A or B is interrupted. Circuit (d) produces 
a negative pulse when a light pulse strikes either phototransistor 
A or B. 

The program in Example 7 can be easily modified to measure the 
time for which pin PA 7 is at logic zero. It can also be modified to 
start timing when a logic transition occurs at one pin of Port A and 
to stop timing when a logic transition occurs at another pin of Port 
A. The experiments at the end of the chapter go into some further 
details. Do not attempt to use other than incandescent light sources 
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or LEDs operated from de voltages, or you may find that you are 
timing the interval between ac pulses on the power line. 

USING T1 TIMER TO IMPLEMENT FREQUENCY COUNTER 

The second application of the T1 timer operating in the free
running mode is an event counter. It may be used to count the 
number of events that produce a positive pulse at pin PA7 in a 
programmed interval of time. As described here, the program is 
used as a frequency counter, and the number of positive pulses 
that OCCllJ' in one second is displayed by the display subroutine 
of Example 10 in Chapter 9. However, the general principles are 
applicable to any kind of events-counting problem, such as radio
active decay, cars passing by a certain point, a laboratory animal 
going to his feeding station, the arrival of telephone calls, etc., pro
vided that one can construct an interface circuit that produces a 
positive pulse on P A 7 for each event. 

Since the T1 timer is operating in the same mode as in Example 
7, details regarding setting up the various timer registers will not 
be repeated. A flowchart of the program in Example 8 is shown 
in Fig. 10-9. Although the time between interrupts is independent 
of the time necessary to process the interrupt routine, this latter 
time must be taken into account in this program because time spent 
processing the interrupt routine is time not spent counting pulses. 
We decided on a basic time interval of 50,000 cycles. Twenty of these 
intervals gives a total counting time of 1 second, since each cycle 
is 1 microsecond. Each interrupt requires a total of 36 cycles (add 
the instruction cycles for each instruction in the interrupt routine, 
remembering that the interrupt itself takes seven cycles and the 
indirect jump required by the monitor takes five cycles). Thus, to 
obtain a total counting time of 50,000 cycles. we must set the timer 
for 50,000 + 36 - 2 cycles = 50,034 cycles. Recall that the time be
tween interrupts is N + 2, so we subtract two to get the correct 
number of cvcles. So the timer should be loaded with 50,034 = 
$C372. Twenty of these intervals should give a total counting time 
of 1 second. 

There is one additional minor complication. The first timing 
interval is not begun with an interrupt, but rather with an ST A 
T1L-H instruction. To make sure all 20 intervals are the same 
length, we should, in principle, waste 36 cycles after the timer is 
started the first time. This is the reason that in Example 8 we have 
spent some time clearing counters and doing other odd jobs after 
starting the timer for the first time. In this way, we were able to 
take up 15 cycles leaving 21 cycles yet to waste. Instead of writing 
another delay loop taking 21 cycles, we chose to reduce the total 

231 



Fig. 10-9. Flowchart of frequency counter in Example 8. 

counting time of each of the twenty 50,000-cycle intervals by one 
cycle. Thus, we used the number $C371 in the counter rather than 
$C372. We are now within 1 microsecond of 1 second for our total 
counting interval. This is more than sufficiently precise, and we 
could have decided not to worry about the 21 cycles. 

The location with address $0000 is used as the count-to-twenty 
counter. It is loaded with 20 = $14 initially, and each interrupt 
decrements it until 20 interrupts have occurred. Then the program 
jumps to display the number of events counted. After displaying 
the number of events counted with a six-digit counter, the counter 

232 



locations are initialized again and the process is repeated, glvmg 
a new measurement about once every second. If an event counting 
interval of ten seconds is desired, change the program byte at $021E 
to 200 = $C8. 

Largely because of the time needed to increment the six-digit 
counter after each pulse is detected, there is a limit to the rate at 
which pulses may be counted without missing them. This limit is 
just above 20 kHz; in other words pulse rates of 20 kHz are ac
ceptable, but rates above this result in pulses not being counted. 
To detect negative pulses, interchange the BMI and BPL instruc
tions at $0233 and $0238. 

Although the most obvious use of the frequency-counter program 
is to measure frequencies, there are other applications for an event 
counter. Experiments in nuclear physics, chemistry, biology, and 
medicine require nuclear-event counters. If some analog voltage 
signal needs to be integrated, for example, the output of a gas 
chromatograph, then a voltage-to-frequency converter connected to 
the frequency counter may be used to integrate the voltage wave
form. Other things to count include rotations of a motor, heartbeats, 
rotation of a turnstile, arrival of cosmic rays, and many others. Of 
course, the timing interval may need to be changed, depending on 
the nature of the events that are counted. 

Example 8: Frequency Counter 

Objective: Count the number of events that take place in 1 second and display the 
result after each count. 

$0000 = CNTR; contains number of 0.05-second intervals to be used in counting 
$0001 = CNTLO; low-order byte of six-digit event counter 
$0002 = CNTMI; middle-order byte of six-digit event counter 
$0003 = CNTHI; high-order byte of six-digit event counter 
$A001 = PAD; bit seven of Port A (PA7) is used as the input pin. 
$A004 = T1 Col; this location is read to clear the 6522 interrupt flag 
$AOO5 = T1 L-H 
$A006 = TlL-L 
$AOOS = ACR 
$AOOE = IER 
$A404 = IRQL; contains low-order byte of interrupt vector 
$A405 = IRQH; contains high-order byte of interrupt vector 

0200 A950 START LOA $50 Set up interrupt vector. 
0202 80 04 A4 STA IRQL 
0205 A902 LOA $02 
0207 8005 A4 STA IRQH 
020A A940 LOA $40 Set ACR so timer T1 operates in the 
020C 80 OS AO STA ACR free-running mode. 
020F A9 CO LOA $CO Set IER to enable T1 interrupts. 
0211 800E AO STA IER 
0214 20 40 03 OISP JSR DISPLY Use display subroutine from Example 

10 in Chapter 9. 
0217 F8 SED Set decimal mode for bed addition. 
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0218 A971 LOA $71 Set up T1 cou nter for 50,033 cycles 

021A 80 06 AO STA Tl L-L (see text). 

0210 A9 14 LOA $14 Set up 20 10 interval counter. 

021F 85 00 STA CNTR 

0221 A9 C3 LOA $C3 Start timer by loading its high-order 

0223 80 05 AO STA TlL-H latch. 

0226 A9 00 LOA $00 Clear counters. 

0228 85 01 STA CNTLO 

022A 85 02 STA CNTMI 

022C 85 03 STA CNTHI 

022E 58 CLI Allow interrupts to start. 

022F EA NOP Use up two more cycles of time. 

0230 2C 01 AO WAIT BIT PAO Is PA7 at logic zero? 

0233 10 FB BPL WAIT Yes. Then wait for it to go high. 

0235 2C 01 AO LOAF BIT PAO No. Then wait for it to go low again. 

0238 30 FB BMI LOAF When it goes law, then a complete 

023A 18 CLC pulse has been detected so increment 

023B A501 LOA CNTLO the six-digit counter. 
0230 69 01 AOC $01 Add one to the low-order byte. 
023F 85 01 STA CNTLO Result into low-order byte of counter. 
0241 A502 LOA CNTMI Corry from previous addition is added 
0243 69 00 AOC $00 to middle-order byte of counter. 
0245 85 02 STA CNTMI Result into middle-order byte. 
0247 A503 LOA CNTHI Corry from previous addition is added 
0249 69 00 AOC $00 to high·order byte of the counter. 
024B 85 03 STA CNTHI Result into high-order byte. 
0240 4C 30 02 JMP WAIT Return to count the next pulse. 
0250 48 IRQ PHA 
0251 C600 OEC CNTR Decrement cou nt-to-twenty cou nter. 

0253 FO BF BEQ OISP If count is zero, 1 sec interval is 
0255 AO 04 AO LOA TlC-L complete. Clear 6522 interrupt flag. 
0258 68 PLA Get accumulator back, 
0259 40 RTI then return from interrupt. 

MAKING MUSIC USING T1 TIMER 

A final program to demonstrate the Tl timer in the free-running 
mode with PB7 enabled is given in Example 9. This program gen
erates a series of tones the frequencies of which are determined by 
numbers loaded into the Tl timer from a table, and the durations of 
which are determined by a number in a table that controls the 
number of times the T2 timer times out. The program could easily 
be modified to play simple songs. Simple programs like this may be 
used for sound effects in electronic games, alarms and alarm clocks, 
or music synthesis. A simple interface circuit is shown in Fig. 10-10. 

The frequency of the tone is determined by the 16-bit number 
loaded into the Tl timer. PB7 is complemented each time Tl times 
out, so the number loaded into the T1 timer is l,~ the period of the 
square wave at PB7, measured in microseconds. If 100010 is loaded 
into Tl, then the period will be 2000 microseconds, or the frequency 
will be 500 Hz. The desired periods are stored in a table in page 
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Fig. 1 ()'10. Output Circuit for Tone 
Generation Program. PAJ >----1 

three. Starting at address $0300, the first two bytes of the table in 
page three contain the numbers to be loaded into TIL-L and 
TIL-H, respectively. The next byte contains a number that de
termines the duration of this tone. Timer T2 is loaded with $C34E 
corresponding to a time interval of about 0.05 second. The number 
in the third byte of the table in page three determines the number 
of 0.05-second intervals that the tone will play. 

Information that determines the frequency and duration of the 
next tone is stored at addresses $0303, $0304, and $0305, and so on 
for as many tones as desired. The tone sequence or "song" will end 
when a $00 appears in a duration byte. Note that the Y register 
is used to index the tones and durations of the notes. Since each 
tone requires three bytes of page three, a total of 8510 notes are 
available if the song is confined to page three. Longer sequences of 
notes may be played if a new base address is chosen after 8510 notes 
are played, that is, if the song requires more memory space than 
page three. A short sequence of notes is provided in the program. 
The indirect indexed addressing mode was used so that a number 
of tone sequences could be played by changing the base-address 
low (BAL) and the base-address high (BAH) of the tone and 
duration tables. 

Sirens, vibrato, or other sound effects may be created with similar 
programs by putting the frequency determining parameters in a 
loop where they are incremented or decremented in small amounts, 
and a single tone lasts for only a short period of time. You may 
wish to impress your wife by implementing a "wolf whistle" when 
she enters the room. 

Example 9: Tone Generation Program 

Objective: Use the PB7 toggle oplion of Ihe T1 limer 10 generole lanes. 
$0000 = NOna; Conloins $00, Ihe BAl of Ihe lone frequency lable. low-order byles 
$0001 = NOna + 1; Conlains $03. Ihe BAH of the lone frequency lable. low-order 

byles 
$0002 = NOTHI; Conlains $01, Ihe BAl of the lone frequency table, high-order bytes 
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$0003 = NOTHI + I; Contains $03, the BAH of the tone frequency table, high.order 
byte 

$0004 = OUR; Contains $02, the BAL of the tone duration table 
$0005 = OUR + I; Contains $03, the BAH of the tone duration table. 

$A005 = Tl L·H 
$A006 = TlL·L 
$A007 = Tl L·H 
$A008 = T2L·L 
$A009 = T2C·H 
$AOOB = ACR 
$AOOO = IFR 

0200 A9 CO 
0202 80 OB AO 

0205 A900 
0207 80 06 AO 
020A 80 05 AO 
0200 AO 00 
020F BI 00 
0211 80 06 AO 
0214 BI 02 
0216 80 07 AO 
0219 BI 04 
021B FO IB 

0210 AA 
021E A9 4E 

0220 80 08 AO 
0223 A9 C3 
0225 80 09 AO 
0228 A920 
OnA 2C 00 AO 
0220 FO FB 
022F CA 
0230 DO EC 
0232 C8 

0233 C8 
0234 C8 
0235 4C OF 02 
0238 A900 
023A 80 OB AO 
0230 00 

Step 1 

START 

OVER 

AGAIN 

WAIT 

OUT 

SIMPLE TONE TABLE 
$0300 00 01 01 00 
$0304 02 02 00 03 
$0308 03 00 04 04 
$030C 00 05 06 00 
$0310 06 07 00 00 

LOA $CO Set up ACR for Tl to operate in 
STA ACR the free·running mode with PA7 

enabled. 
LOA $00 Start Tl running. 
STA TlL·L 
STA TlL·H 
LOY $00 Initialize Y register. 
LOA (NOTLO),Y Get low-order byte of half·period. 
STA TlL·L Result into ti mer. 

LOA (NOTHI),Y Get high·order byte of half·period. 
STA TlL·H Result into timer. 
LOA (OUR),Y Get duration of note. 
BEQ OUT Duration::::; zero means end of 

tone sequence. 

TAX Duration into X register. 
LOA $4E Total time = Duration X 0.05 

second. 
STA T2L·L 
LOA $C3 
STA T2C·H Start timer T2. 
LOA $20 Check to see if time T2 flag is set. 
BIT IFR 
BEQ WAIT 
OEX Decrement duration counter. 

BNE AGAIN 
INY Increment Y to get new tone 

parameters. 
INY 
INY 
JMP OVER Return to get another note. 
LOA $00 Clear ACR. 
STA ACR 
BRK 

EXPERIMENT NO. 

Load the following program. The timer addresses listed are for 
the KIM-I. See Table 10-2 to convert to the 6532 timers on the 
AIM 65 or SYM-1. This program is a modification of Example 1 in 
the text. 
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0200 A9 FF START LDA $FF Get number to be stored in the timer. 
0202 8D 01 17 STA PADD Set Port A DDR to output data. 
0205 8D 07 17 STA T1024 Store in 1024 timer and start timer. 
0208 AD 07 17 LOOP LDA STATUS Read status flag of timer. 
020B 8D 00 17 STA PAD Output status to Port A. 
020E 10 F8 BPL LOOP Branch back to loop until time out. 
0210 00 BRK 

Step 2 

Press your system RESET key. Execute the program. What do you 
expect to observe on the Port A LEDs? 

(The reset should cause all the LEDs to glow. When the program 
is in the delay loop, the LEDs should all go out. Note that while 
waiting for the timer to time out, hit seven and all the other bits 
of the starns register are zero. When the timer goes through zero, 
bit seven is set to one. Storing this in the output port causes the 
PAO LED to glow. All the other bits remain at zero. Thus, running 
the program should cause the PAO LED to go out for about Y± second 
and then it should light again. ) 

Step 3 

Change the second byte of the program to something other than 
$FF, making sure that it is an odd number to ensure that PAO re
mains as an output port. Rerun the program. What is the shortest 
pulse you can observe on P AO? Each count of the T1024 timer is 
1.024 milliseconds, or approximately 1 millisecond. 

EXPERIMENT NO. 2 

Step 1 

Load the following program. The timer addresses listed are for 
the KIM-I. See Table 10-2 to convert to the 6532 timer on the 
AIM 65 or SYM-l. This program is a modification of Example 1 
in the text. 

0200 A9 FF 
0202 8D 01 17 
0205 A900 
0207 BD 00 17 
020A A9 FF 
020C BD 07 17 
020F EE 00 17 
0212 2C 07 17 
0215 10 FB 
0217 4C OA 02 

START 

OVER 

LOOP 

LDA $FF 
STA PADD 
LDA $00 
STA PAD 
LDA $FF 
STA 11024 
INC PAD 
BIT STATUS 
BPL LOOP 
JMP OVER 

Initialize Port A DDR so Port A is 
an output port. 
Initialize Port A pins to logic O. 

Get number for timer. 
Store in 1024 timer. 
I ncrement contents of Port A. 
Test bit seven of status register. 
Loop until time out. 
Repeat timing loop. 
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Step 2 
Before executing the program, predict what will happen with the 

Port A LEDs when the program is run. Then execute the program 
to verify your prediction. 

(The Port A LEDs should toggle on and off at a rate determined 
by the number stored in the timer. PAl toggles at 'ifi the frequency 
of PAO, PA2 at ~2 the frequency of PAl, and so on.) 

Step 3 
Restart the program and predict how long it will take to light 

all the LEDs starting with them all dark. Use a stopwatch or sweep 
second hand to measure the time. Is this number consistent with the 
0.261 second of each delay? 

Step 4 
Experiment with other values for the byte at $020B and other 

divide values; that is, with other timer locations. 

(For step three above we obtained a time of 1 minute and 6 sec
onds. There are 254 delays and 254 X 0.261 second = 66.3 seconds. 
Step 4 may be used to test other values when they are loaded into 
the timer.) 

EXPERIMENT NO. 3 

Step 1 

Load the following program. It is a variation of Example 2 
described in the text. See Table 10-2 to convert the timer addresses 
for execution on the AIM 65 (select the interrupt mode). SYM-l 
users will not be able to do this timing experiment because the 
6532 on the SYM-l is not connected to the IRQ line. Refer to Table 
3-3 to find the AIM 65 Port A and Port A DDR addresses. Use a 
jumper cable to connect PB7 on the 110 board to pin four on the 
expansion connector on the KIM-l. The AIM 65 has the interrupt 
line connected internally. 

0200 A9 FF START LOA $FF Initialize the Port A OOR so 
0202 80 01 17 STA PAOO Port A is an output port. 
0205 58 Cli Clear interrupt disable flag. 
0206 00 BRK Force the first interrupt. 
0207 EA NOP No operation. 
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0208 4C 08 02 LOOP JMP LOOP Loop here until interrupt. 
0208 A9 FF INTRPT LDA $FF Interrupt starts here. 
020D 8D OF 17 STA III 024 Load divide-by-l 024 timer; 

interrupt enabled. 
0210 A901 LDA $01 
0212 4D 00 17 EOR PAD Exclusive OR of $01 with contents 

of Port A. 
0215 8D 00 17 STA PAD Result into Port A. 
0218 40 RTI Return from interrupt. 

Step 2 

Load the interrupt vector ($020B) by putting $OB into location 
$17FE on the KIM-lor $A404 on the AIM 65 and by putting $02 
into location $17FF on the KIM-lor $A405 on the AIM 65. 

Step 3 

Before running the program, analyze it and describe what you 
expect to observe on the Port A LEDs. 

Step 4 

Run the program, then explain what you observe. 

(You should observe that the P AO LED toggles; that is, it turns 
off and on at intervals of about 0.26 second. You have produced 
a square waveform with a period of approximately 0.52 second. 
Recall from the chapter on logical operations that an EOR with a 
logic 1 produces the complement. Each time an interrupt occurs, 
bit PAO is complemented; that is, its logic level is changed causing 
the LED to switch.) 

Step 5 

What is the smallest number you can load into the timer register 
and still perceive the LED blinking as opposed to a continuous 
glow? 

Step 6 

Change the byte at the location whose address is $0211 to $05. 
Also, initialize Port A to $01 by loading $01 into the location with 
address $1700. Now run the program, using $FF as the number to 
be loaded into the timer register. Explain what you observe. Can 
you think of a use for this last result? The author couldn't; but he 
was fascinated by the blinking lights. 
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EXPERIMENT NO. 4 

Step 1 

In the program listed in Experiment 3 change the instructions 
from $0210 to the end of the interrupt routine to the instructions 
given below. 

0210 EE 00 17 
0213 CE 00 17 
0216 40 

Step 2 

INC PAD 
DEC PAD 
RTI 

I ncrement the contents of Port A. 
Decrement the contents of Port A. 
Return from interrupt. 

Load the interrupt vectors as outlined in Step 2 of Experiment 
No.3. Also, initialize the contents of PAD (Port A) to $00. 

Step 3 

Describe how you think this altered program will affect pin PAO 
when the program is running. 

(It should produce a positive pulse on pin PAO of about six micro
seconds in duration. Review the INC and DEC instructions if neces
sary. ) 

Step 4 

Attach a frequency counter to pin PAO. Then try the following 
numbers with the corresponding timer address: 

I. $50 $17OC T0001; Divide by one timer. 
2. $7A $1700 T0008; Divide by eight timer. 
3. $9C $170E TOO64; Divide by 64 timer. 
4. $62 $170F Tl024; Divide by 1024 timer. 

Note what frequencies are produced at PAO with the above values 
used in the program. 

(We observed a frequency of 9.80 kHz for case 1, 1004 Hz for case 
2, 99.9 Hz for case 3, and 9.98 Hz for case 4. These correspond to 
periods between pulses of 102 microseconds, 996 microseconds, 10.0 
milliseconds, and 100 milliseconds, respectively. Note that for many 
applications these values are close enough to 100 microseconds, 1 
millisecond, 10 milliseconds, and 100 milliseconds to make time 
measurements. No error is larger than 2%, and three errors were less 
than 1%.) 
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EXPERIMENT NO. 5 

Step 1 

In the program listed in Experiment No.3, change the instruc
tions from $0210 to the end of the interrupt routine with the in
structions listed below. 
0210 2E 00 17 
0213 40 

Step 2 

ROL PAD 
RTI 

Rotate the contents of Port A to the left. 
Return from interrupt. 

Make sure the program loads the number $FF into the divide
by-1024 interval timer by checking the program bytes located at 
$020C and at $020E. Make sure the interrupt vectors are loaded. 

Step 3 

Before running the program, first load $FF into PADD, then 
load $01 into PAD. The PAO LED should glow; all others should be 
dark. 

Step 4 

Execute the program and describe what you observe. 

(We observed that the one in bit zero of Port A was shifted left 
at intervals of about 0.26 second, causing the LEDs to light. The 
lights to the left of the P AO LED successively light and then go 
out as the one is shifted left. The peculiar thing is that the one 
does not reappear in bit zero as would be expected with a ROL 
instruction. Why does the one not reappear in bit zero of Port A?) 

Step 5 
Load all zeros into PAD after initializing PADD to $FF. All the 

LEDs should be out. Now set the carry flag by loading the P 
register with $01. Run the program and describe what you observe. 

(We observed that when the program ran, the LEDs at Port A 
were turned on from right to left until they all glowed. They then 
remained glowing.) 

Step 6 
Modify the program listed in Experiment No.3 again. Change the 

instructions from $0210 to the end of the interrupt routine with the 
instructions listed below. 
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0210 28 PLP Get P register from the stack. 
0211 2E 00 17 ROL PAD Rotate the contents of Port A to the left. 

0214 08 PHP Place P register on the stack. 
0215 40 RTI Return from interrupt. 

Step 7 

Repeat Steps 2, 3, and 4 of this experiment. Compare the be
havior of the modified program as observed on the Port A LEDs 
with the behavior of the unmodified program. Describe your re
sults and then write an explanation. In your explanation tell how a 
PLP can be used before a PHP instruction, when the opposite order 
is the usual one. Why does the ROL instruction produce the ex
pected results with the modified program? A good knowledge of the 
stack operation is necessary at this point. You may wish to refer to 
Chapter 9. 

EXPERIMENT NO. 6 
Step 1 

Load the following program. It is very similar to Example 4 
described in the text. 

0200 A9 FF START LOA $FF Load $FF into the Port A OOR 
0202 80 03 AO STA PAOO to make it an output port. 
0205 A930 BACK LOA $30 Get data for T2L·l. 
0207 80 08 AO STA T2L-L Store it in the timer. 
020A A990 LOA $99 Get data for T2C-H. 
020C 80 09 AO STA T2C-H Store it in the timer and start the timer. 
020F A9 20 DELAY LOA $20 Set bit five in A to one. 
0211 20 00 AO AND IFR AND A with bit five of the IFR. 
0214 80 01 AO STA PAD Output result to PAD. 
0217 Fa F6 BEQ DELAY Branch back if result is zero. 
0219 00 BRK Jump to monitor. 

Step 2 

Describe what you expect to observe on the Port A LEDs when 
this program is executed. Run the program and explain what you 
observe. 

(You should observe that the LED associated with bit five, PA5, of 
Port A glows. The reason is that this bit is set to one by storing 
the contents of the IFR in Port A after time-out, that is, when bit 
IFR5 has been set to one by the timer timing out.) 

Step 3 

Modify the instructions starting at $020F in the program in Step 1 
as shown next. 
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020F EE 01 AO INC PAD Increment the contents of PAD. 
0212 A920 LOA $20 Set bit five of A to one. 
0214 2C 00 AO DELAY BIT IFR AND with IFR. 
0217 FO FB BEQ DELAY Branch back until time·out. 
0219 4C 05 02 JMP BACK Jump to delay again. 

Step 4 

Describe what you expect to observe on the Port A LEDs. Run 
the program and confirm your suspicions. 

Step 5 

With a stopwatch or sweep second hand, time the interval be
tween the events when all the LEDs are dark. Compare this with 
the time you calculate 255 loops will take. They should be approxi
mately the same. 

EXPERIMENT NO. 7 

Step 1 

Load the following program. 

0200 A920 
0202 80 OB AO 
0205 A906 
0207 80 08 AO 
020A A900 
020C 80 09 AO 
020F A920 
0211 2C 00 AO 
0214 FO FB 
0216 00 

Step 2 

START 

CNT 

lOA $20 
STA ACR 
LOA $06 
STA T2L-L 
LOA $00 
STA T2C-H 
LOA $20 
BIT I FR 
BEQ CNT 
BRK 

Set bit five of A to one. 
Load A into the ACR of the 6522. 

Store six in T2L-L. 

Store zero in T2C-H. 
Set bit five of A to one. 
AND A with the IFR. 
Branch back until IFRS is set. 
Then break to the monitor. 

Clearly we are using the T2 timer. What mode is it in? Check 
Fig. 10-6. What should the timer do in this mode? 

(The timer is in the pulse counting mode. It should count pulses 
at pin PB6 until ($06 + 1) pulses have occurred; then it should 
set the interrupt flag and jump to the monitor.) 

Step 3 

Using the I/O board connected to the application port, carefully 
connect a jumper from pin 9 to pin 17, connecting PBO to PB6. 
Note we are not using PBO, but we will use the PBO I/O switch to 
pulse PB6. This can only be done on the AIM 65. 
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Step 4 
Switch the PBO switch from logic 1 to logic 0 after starting the 

program. What happens? Switch the PBO switch several more times. 
How many times must you switch it before the program breaks to 
the monitor? Why? 

(Since the T2 timer counts through zero, it will require N + 1 
pulses at PB6 to decrement the timer through zero, where N is the 
number loaded into the timer.) 

Step 5 
Modify the bytes at addresses $0206 and $020B to be $10 and $OE, 

respectively, Connect the 60-Hz power line signal conditioner cir
cuit of Fig. 9-7 to pin 17 of the application connector. Connect 
the input of the 555 to a 60-Hz source. 

Step 6 

When the second hand on your watch crosses 12, start the pro
gram running. How long will it be before it breaks to the monitor? 
Measure the time on your watch. 

($OElO = 3600 so it should require (3600 + 1) counts before the 
T2 timer counts to zero. At 60 counts/sec this should take about 60 
sec = 1 min.) 

Step 7 

If you have a signal generator, set it to about 65 kHz. Instead 
of loading $OElO into the counter, load $FFFF into it. Run the 
program. How long will it take to count to zero? 

(It should take about one second. ) 

EXPERIMENT NO. 8 
Step 1 

To test the event timer and the frequency counter programs you 
will need a signal generator or some other source that produces 
positive or negative pulses. A simple 555 multivibrator circuit will 
do, and one is shown in Fig. 10-11. The frequency may be adjusted 
by changing the values of R1, R2 , or CT. The frequency f in Hz is 
determined from the formula 
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f = 1.443 
(R1 +2R2 )Gl' 

If you do not have a signal generator with a square-wave output, 
then breadboard the circuit shown in Fig. 10-11. 

,-----.----.--+ Vee 15V) 

OUTPUT 3 
555 

Fig. 10·11. Basic 555 Astable Multivibrator (Pulse GeneratorJ. 

Step 2 

Load the event timer program. Connect the square wave signal 
generator to PA 7 (pin 8 of the application connector), making 
sure the computer and the signal generator have a common ground. 
Adjust the frequency of the signal generator to be about 100 Hz. 

Step 3 

'Vl1at is the time interval between successive negative pulses with 
a frequency of 100 Hz? What number do you predict will show on 
the display? 

(The interval between successive negative pulses with a l00-Hz 
square wave is 0.01 second, or 100 X 10- 4 second. Since the time 
is given in units of 100 microseconds = 10- 4 second, the display 
should read about 000100.) 

Step 4 

Load the frequency counter program and measure the frequency 
of the same square wave. You should find that f = l/T where f is in 
hertz and T is the time interval measured in Step 3 in seconds. 

Step 5 

Increase the frequency of the signal to about 20 kHz. Does the 
frequency counter give correct results compared to the calibration 
of the signal generator? If you have another frequency counter 
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available, check the computer measured frequency with the result 
of the frequency counter. 

(We found that the laboratory frequency counter and the computer 
frequency counter were the same to within about 5 cycles. The 5 
cycles was explained by a measurement of the crystal frequency of 
the author's computer that showed it to be running slow.) 

Step 6 

Increase the frequency of the signal generator to frequencies 
above 20 kHz, comparing the result given by the computer to either 
the dial value or to another measurement. What do you regard as 
the maximum frequency that may be measured with the computer? 

Step 7 

How would you modify the timing program to measure the time 
duration that PA7 is at logic zero? Flowchart your answer, then 
program and test it. 

(The most important features of the flowchart are shown in Fig. 
10-12.) 

Step 8 

Here are some further questions to consider: How could you 
measure very long (hours or days) intervals? Would a 24-hour 
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clock be useful for this task? Can you modify the 24-hour clock 
program to produce a tone sequence at a preset time; that is, an 
alarm? In the tone sequence program, calculate the half-periods 
in microseconds that would be required to play several octaves of 
the equally tempered scale (A = 440 Hz). Write a program to 
count events or frequencies using the PA6 pulse-counting mode of 
timer T2. 
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PA RT II 

Interfacing the 6502 





Introduction to Part II 

The term interfacing means different things to different people in 
the world of microcomputers. For some it means connecting the 
computer to devices in the real world. A smoke detector, for exam
ple, may produce an input signal for a computer; a relay to drive a 
sprinkler system may act in response to a voltage level on an output 
pin of a computer. For others the term means connecting various 
integrated circuits and devices to make a microcomputer system. 
For example, how can additional R/W memory be added to an exist
ing microcomputer system? For that matter, how could one build a 
microcomputer from scratch? 

Both uses of the term "interfacing" are equally valid, but it is the 
latter interpretation of interfacing that will most correctly describe 
the position taken in Part II of this book. The microcomputer and 
any devices it controls should be regarded as a complete system, 
and developing and designing such a system would properly be 
described as interfacing. However, we have neither the time nor the 
space to describe the host of microcomputer-based designs, so we 
will concentrate on interfacing components up to and including I/O 
ports. In particular, the next three chapters have an underlying 
theme which is to configure several memory-mapped I/O ports. The 
principles learned in following this theme are generally applicable 
to interfacing problems. In Chapter 14 some designs that illustrate 
interfaces with the real world will be given. 

Some background information and knowledge will be assumed. 
Experience with, and knowledge of, TTL or CMOS logic families 
will be extremely useful, if not necessary. In particular, the action 
of the various gates, flip-flops, and decoders should be understood. 
You should be able to read a truth table, understand binary and hex-
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adecimal numbers, and know the most elementary Boolean opera
tions. Readers not having this background may wish to study other 
books on these subjects in the Blacksburg Continuing Education 
Series™. The knowledge acquired in mastering Part I of this book 
will also be assumed. You are urged to re-read Chapter 1 of this 
book before beginning Part II. 

Vss RES 40 

2 RDY ~2(OUT) 39 

3 ~ dOUT) S.O. 38 

IRQ ~o (IN) 37 

N.C. N.C. 36 

6 NMT N.C. 35 

SYNC R/W 34 

Vee DO 33 

9 AO D1 32 

10 Al D2 31 

11 A2 6502 
D3 30 Fig. 11·1. Pinout Diagram of 6502 

12 A3 29 
Microprocessor. 

D4 

13 A4 D5 28 

14 AS D6 27 

15 A6 D7 26 

16 A7 AI5 25 

17 A8 AI4 24 

.18 A9 AI3 23 

19 AIO AI2 22 

20 All Vss 21 

N.C. = NO CONNECTION 

The various pins of the 6502 microprocessor are conveniently di
vided into five groups. These five groups will help us to organize the 
subject matter in the next few chapters. A pinout diagram of the 
6502 is shown in Fig. II-l. 

• The pins used to supply power to the 6502. These include pin 
8 for the +5.0 V de ±5% ( Vee) supply and pins 1 and 21 for 
the ground (V BS) connections. 

• The address bus pins. There are 16 address bus pins, including 
pins 9 through 20 and pins 22 through 25. These are desig
nated A15-AO. 
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• The bidirectional data bus pins. There are eight data bus pins 
from pin 26 through pin 33. These are designated D7-DO. 

• The control bus pins. There are eight of these pins, including pin 
2, RDY; pin 3,CPl (out); pin 7, SYNC; pin 34, R/W; pin 37, cpo 
(in); pin 38, S.O.; pin 39, CP2 (out); and pin 40, RES. 

• The interrupt pins. There are two such pins, pin 4, IRQ, and pin 
6, NMI. The function of these two pins has already been de
scribed in Chapter 9. 

The next three chapters in this book are divided according to pin 
functions. In Chapter 11, we will deal with the address bus, includ
ing decoding and generating device select pulses. In Chapter 12, 
we will discuss the control bus, and in Chapter 13, we will deal with 
the bidirectional data bus. Of course, there will be some overlap. Our 
treatment of these topics is intended to be introductory rather than 
encyclopedic, since this book is intended for beginners more than 
for experts. When these chapters are completed, you should be able 
to understand how a microcomputer system works and, perhaps, you 
will be ready to create, add to, or remodel your own 6502-based 
microcomputer system. 

Three final notes before beginning. First, you may wish to obtain 
a TTL Data Book, if you do not already have one. Either the data 
book published (1976) by Texas Instruments (P.O. Box 5012, Dal
las, TX 75222), or the one published (1976) by National Semicon
ductor (2900 Semiconductor Drive, Santa Clara, CA 95051) will do. 
Second, complete pinout diagrams for the TTL integrated circuits 
used in the experiments are given in Appendix D. Finally, some of 
the material presented in the next few chapters was originally pub
lished in MICRO, a monthly joumal devoted to 6502-based systems, 
and it is used with permission of the publisher. 
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CHAPTER 11 

Address Decoding 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the need for address decoding circuits in a micro
computer system. 

• Understand what the function of a device select pulse is, and 
how device select pulses may be generated. 

• Design simple address decoding circuits to generate device 
select pulses for any memory location. 

INTRODUCTION 

While executing a program, the 6502 receives bytes of data from a 
variety of devices, and it sends bytes of data to one or more devices. 
Recall from Chapter 1 that a READ operation causes eight bits of 
data to be transferred from some location in memory to the micro
processor, while a WRITE operation causes eight bits of data to be 
transferred from the microprocessor to some location in memory. 
The locations in memory that supply data to the microprocessor may 
be R/W memory, ROM, a memory-mapped keyboard-input port, 
floppy-disc port, UART, A/D converter, or a variety of other devices. 
The 6502 processes the bytes of data it reads, and then writes data 
back either to R/W memory, to a teletypewriter output port, video 
monitor, relay, interval timer, D/ A converter, or some other device. 

It is the purpose of the address pins on the 6502 to place a set of 
signals on the address bus to select the memory location or the device 
that is going to either supply or receive eight bits of data. The set 
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of signals that we speak of is a set of zero or one logic levels on the 
16 address lines, AIS-AO, that constitute the address bus. Typically, 
a logic zero or binary zero corresponds to a voltage level near zero, 
while a logic one or binary one corresponds to a voltage level near 
S volts. The logic levels on the 16-bit address bus are interpreted as 
a 16-bit binary number that we have been calling the address of a 
memory location, and that we have been representing by a four-digit 
hexadecimal number. Each memory location (and, hence, each de
vice) in the computer system has a unique address, and when the 
6502 places an address on the address bus, the uniquely addressed 
device or location must be activated. 

Circuits that are connected to the address bus to produce a signal 
when a particular address appears on the address bus are called 
decoders. A decoding circuit may include one or more integrated 
circuits. When the correct address appears on the address bus, the 
output of the decoder changes to the logic level (usually zero) nec
essary to activate the device that is to supply or receive data. This 
signal is called a device select pulse, a chip select pulse, or a port 
select pulse. In thi~ook, we will use the term "device select pulse," 
and the notation "DS" will be used to indicate device select pulses 
in diagrams. The bar over the "DS" means that the signal is "active 
low"; in other words, the device selected is activated by a logic-zero 
voltage level. 

The READ and WRITE operations take place at regular intervals 
determined by the system clock frequency. Many 6502 systems use 
a I-megahertz clock frequency, so each READ or WRITE cycle is 
1 microsecond in duration. Every cycle of the clock corresponds to 
either one READ operation or one WRITE operation. (In some 
addressing modes the data that is read is discarded because the mi
croprocessor is actually using that cycle for another purpose.) The 
memory locations in a 6502 system, including R/W memory, RO:Vl, 
I/O ports, and interval timers, are accessed a million times every 
second. Since different memory locations are accessed on subsequent 
clock cycles, there is a different address on the address bus once 
every microsecond. That is the reason the device select signal is re
ferred to as a pulse. The device select pulse is typically 1 microsec
ond in duration. 

A schematic overview of the microcomputer system, as just de
scribed, is shown in Fig. 11-1. We shall refer to this figure again, but 
for now we will use it in conjunction with the following summary 
of the READ and WRITE operations: 

• A READ cycle is 1 microsecond in duration. During the first 
part of that cycle, the microprocessor places the address of the 
memory location to be read on the address bus. The decoding 
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6502 
MICRO· 

PROCESSOR 

ADDRESS 
DECODER DEVICE SELECT LINES 

Fig. 11-1. Bloclo: diagram of 6502 System. Various memory locations, R/W Memory, 
ROM, etc., may decode some address lines internally, while highest-order address lines 

are decoded by decoding circuitry represented by ADDRESS DECODER block. 

circuitry responds to that address by producing a device select 
pulse that activates one of the 65536 locations in the address 
space. The byte stored at that location is placed on the data bus, 
and the byte is stored in the 6502 microprocessor later in the 
I-microsecond cycle. 

• A WRITE cycle is 1 microsecond in duration. During the first 
part of that cycle, the microprocessor places the address of the 
memory location that is to receive the byte of data on the ad
dress bus. The decoding circuitry responds to that address by 
producing a device select pulse that activates one of the 65536 
locations in the address space. Near the end of the cycle, the 
6502 places the byte of data on the data bus, and the active 
memory location stores it at the end of the I-microsecond cycle. 

We now turn to a more elaborate description of address decoding. 

ADDRESS DECODING 

Fig. 11-2 indicates how a microprocessor with only one address 
line might generate device select pulses. When its single address 
line, called AO, is a logic one, then the device select line labeled 
DSO is at logic ~, and any device connected to it is activated. 
Meanwhile, the DSI signal is at logic one, so a device connected to 
it is disabled_ We are assuming, unless otherwise stated, that all 
devices in the address space are activated by logic-zero signals. In 
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ADDRESS LINE D ~ 
MICRO-

V 
PROCESSOR 

Fig 11-2. Hypothetical decoding scheme for one-address-line microprocessor. 

any case, a one-address-line microcomputer can have only two mem
ory locations. Table 11-1 is the decoder truth table. 

Fig. 11-3 shows how a microprocessor with two address lines, Al 
and AO, might be decoded. A 74139 decoder/demultiplexer could be 
used to generate four device select pulses, DS3-DSO. Refer to the 
truth table of the 74139 shown in Table 11-2. When both AO and 

II +5V 
16 

AD 2 
A YO 4 

Al 3 B Yl 5 DSI 

MICRO· Y2 6 
PROCESSOR r G 

Y3 7 

J8 
DS3 

-l GND 

Fig. 11-3. Hypothetical decoding scheme for a two-address-line microprocessor 
(decoder shown is 74139). 

Table 11.1. Truth Table for One Line Decoder 

AO 

o 
DSO 

1 
o 

DSI 

o 

Table 11·2_ Truth Table for Two Line Decoder, 74139 

AO Al DSO DSI DS2 DS3 

0 0 0 1 1 1 
0 1 1 0 I I 
I 0 I I 0 I 
I I I i I 0 
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Al are at logic zero, then DSO is at logic zero, and the device con
nected to it would be active. The truth table in Table 11-2 indicates 
the address line logic levels necessary to produce the other device 
selects. This kind of microprocessor system is not to be taken too 
literally, but it does illustrate the techniques necessary to produce 
a unique device select pulse for every possible address that is placed 
on the address bus. 

A little inductive reasoning can be used to proceed further. If a 
microprocessor with one address line can be decoded to produce 
two device select pulses, and a microprocessor with two address lines 
can be decoded to produce four device select pulses, then it appears 
that the number of unique device select pulses that may be obtained 
from n address lines is 2n. This is in fact the case and, consequently, 
the 16 address lines of the 6502 microprocessor may be decoded to 
give 216 = 65536 = ($FFFF + 1) device selects. This is the reason 
there are a total of 65536 memory locations in the memory space of 
the 6502. 

Clearly, no single integrated circuit can be used to simultaneously 
decode all 16 address lines and provide an output pin for each device 
select pulse. Fortunately for the designer, it is usually not necessary 
to decode all 16 lines. Many RjW memory integrated circuits and 
ROM ICs decode the low-order address lines (A9-AO, for example) 
internally. The 6102 RjW memory integrated circuits and the 6530 
ROM, R/W, I/O, and timer integrated circuits on the Kn.l-1 decode 
address lines A9-AO. Likewise, the 2104 RjW ICs on the AIM 65 
and the SYM-1 decode the ten lowest-order address lines internally. 
The 2332 ROM chips on the AIM 65 or SYM-l decode address lines 
All-AO internally. That is why in Fig. 11-1 we showed the address 
bus connected directly to the R/\V memory locations as well as to 
the decoding circuitry. The decoding circuitry handles the high
order address lines for the various integrated circuits or other de
vices in the microcomputer system, while the low-order address lines 
are decoded by the integrated circuits themselves. Although in cer
tain circumstances a designer may be required to decode all 16 
address lines, there are numerous other circumstances in which only 
the highest-order address lines need to be decoded. 

Consequently, our problem is to decode the highest-order address 
lines, at least initially. These lines are usually decoded to form blocks 
of address space. Before we see how this is done, some familiarity 
with the concept of address-space blocks is desirable. You may wish 
to refer again to Tables 1-2 and A-3 for this discussion. 

Address line A15 is at logic zero for all addresses from $0000 
through $7FFF, and it is at logic one for all addresses from $8000 
through $FFFF, dividing the address space into two blocks each 
with $8000 = 3276810 memory locations. In most computer systems, 

258 



102410 ($0400) memory locations are usually referred to as 1K of 
memory. Dividing 1024 into 32768 gives 32; thus address line A15 
divides the address space into two 32K blocks. Table 11-3 indicates 
the logic level of A15 and the addresses associated with this level. 

Table 11-3. Dividing Address Space Into 32K Blocks 
With Address Line A 15 

A 15 Addresses 

o $OOOD-$7FFF 
$800D-$FFFF 

Fig. 11-4 shows how a 7404 inverter could be used to provide the 
necessary "decoding." In some microcomputer systems, A15 is used 
to divide the address space so that R/W memory is in the lower 
32K locations, while ROM, I/O ports, and interval timers are in the 

A15 >-~.....------- DSO 

ADDRESSES 

$0000 - $7FFF 

/'0--. DS8 $8000- $FFFF 

Fig. 11·4. Decoding circuit for dividing Address space into 32Kblocks. 

upper 32K locations. In many microcomputer systems, not all of the 
64K "spaces" or locations are actually occupied by memory chips. 
Just because the address lines and decoders are available does not 
mean that they must be used. 

Refer to Table A-3, or call on your knowledge of 16-bit binary 
numbers, and note that bit 14 of a 16-bit binary number is zero for 
half of the numbers bdween $8000 and $FFFF, while it is one for 
the other half of these numbers. Bit 14 similarly divides the hexa
decimal numbers between $0000 and $7FFF into two groups. Thus, 
each 32K block of address space may be divided into two 16K blocks 
by the logic levels associated with A14. Table 11-4 illustrates how 

Table 11-4. Dividing Address Space Into 16K Blocks 
With Address Lines A 15 and A 14 

A15 A14 Addresses 

0 0 $OOOQ-$3FFF 
0 1 $4000-$7FFF 

0 $800D-$BFFF 
$COOD-$FFFF 
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+5V 

16 ADDRESSES 
2 A 4 A14 YO DSO $0000-$3FFF 

A15 
3 

B Yl DS4 $4000-$7FFF 

Y2 
6 

DS8 $8000- $BFFF 
G 

Y3 DSC $COOO - $FFFF 

8 

GND 

Fig. l1·S. Decoding circuit using 74139 to divide Address space into 16K blocks. 

this works, and Fig. 11-5 shows a 74139 decoding address lines A15 
and A14 to produce device select pulses for each 16K block. In Fig. 
11-5 we indicate the range of addresses that will produce the corre
sponding device select pulse. For example, any address in the range 
$4000 to $7FFF will produce a device select pulse at the Yl (pin 5) 
output of the 74139. The digit in the "DSn" symbolism identifies the 
first digit in the lowest address that the decoder will enable. 

Proceeding inductively again, if one address line (AI5) divides 
the address space into two 32K blocks, and two address lines (A15 
and A14) divide the address apace into four 16K blocks, then three 
address lines (AI5, A14, and A13) could be decoded and used to 
divide the address space into eight 8K blocks, four address lines 
(AI5, A14, A13, and A12) could be decoded and use to divide the 
address space into sixteen 4K blocks, and n address lines divide the 
address space into 2n blocks. How many address lines must be de
coded to divide the address space into lK blocks? There are sixty
four lK blocks in the address space of the 6502. Since 26 = 64, six 
address lines (AI5, A14, A13, A12, All, and AlO) are required. 
Many popular R/W memory chips decode the remaining ten address 
lines internally, as noted above. 

In Fig. 11-6 we show how a 74138 Decoder/Demultiplexer may 
be used to divide the address space into 8K blocks. The logic levels 
of the address lines A15, A14, and A13 associated with each 8K 
block are presented in Table 11-5. Since we will refer to these blocks 
again, we have given each block of 8K memory locations a name, 
as indicated in Table 11-5. The names help to identify the location 
of the 8K block in the address space. The truth table of the 74138 
given in Table 11-6 should be used in conjunction with Table 11-5 
to verify the behavior of the 74138 decoding circuit shown in Fig. 
11-6. 
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+5V 

16 ADDRESSES 
15 

$OOOO-$IFFF YO DSO 
6 GI 14 

Y1 DS2 $2000 - $3FFF 
13 

1 A 
Y2 DS4 $4000 - $5FFF 

A!3 12 
Y3 DS6 $6000 - $7FFF 

2 B 11 

3 C 
Y4 DS8 $8000 - $9FFF 

10 
4 Y5 DSA $AOOO - $BFFF 

G2A 9 
5 Y6 DSC $COOO - $DFFF 

G2B 7 
Y7 DSE $EOOO - $FFFF 

"7 GND 

Fig. 11·6. Decoding circuit using 74138 to divide Address space into 8K blocks. 

Table 11·5. Dividing Address Space Into 8K Blocks 
With Address Lines A 15, A 14, and A 13 

A15 A14 A13 Addresses Block Name 

0 0 0 $OOOO-$lFFF SKO 

0 0 I $2000-$3FFF SKI 

0 I 0 $4000-$5FFF SK2 
0 I 1 $6000-$7FFF SK3 
I 0 0 $8000-$9FFF SK4 
I 0 1 $AOOo-$SFFF SK5 
I I 0 $COOG--$DFFF SK6 
I I I $EOOG--$FFFF SK7 

Note that in Figs. 11-4, 11-5, and 11-6, the device select pulses are 
produced by any of the corresponding addresses given in these fig
ures. Thus, in Fig. 11-6, for example, DS6 will be at logic zero for 

Table 11~6. Truth Table for 74138 Decoder 

c B A Yo Y, Y2 Y3 Y. Ys Y6 Y7 

0 0 0 0 
0 0 1 0 I 

0 0 0 1 
0 I I 0 1 

0 0 0 I 

0 I I 0 1 1 
0 I 0 1 

0 
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any address in the range $6000--$7FFF. Clearly, additional decoding 
is required if we demand that each address on the address bus pro
duces a unique device select pulse that activates a unique location 
in memory. 

ADDRESS DECODING FOR R/W MEMORY 

To illustrate this idea begun in the previous paragraphs, let us ex
amine a hypothetical but realistic design problem. Suppose we want 
the lowest 8K block of the address space to contain R/W memory. 
In other words, the 8KO block with addresses from $0000 to $lFFF 
is to contain the RjW memory for our microcomputer system. Also 
assume that the R/W memory ICs we have chosen (2114 memory 
chips, for example) internally decode the ten lowest-order address 
lines, A9 through AO. 

If the RjW memory chips decode address lines A9-AO, then we 
must decode the remaining six address lines, Al5-AI0. We could 
use a 74138 to decode the top three address lines, and another 74138 
to decode address lines A12 through AlO. The device select from the 
first 74138 will be used to activate the second 74138. Our final 
scheme is shown in Fig. 11-7. (Note that there is nothing inherently 
correct about one decoding scheme over another. There appear to 
be as many different ways of decoding as there are designers.) 

Observe that in Fig. 11-7 we have not shown all the device select 
signals from the 74138 that decodes address lines Al5-A13. The 
device select signal that is active for the 8KO block of address space, 
addresses $OOOO--$lFFF, is connected to the G2A pin of the 74138 
that decodes address lines A12 through AI0. This 74138 works (sup
plies device select pulses) only if G2A is low, as is indicated by the 
inversion circle on the G2A pin. Otherwise this 74138 is disabled. 
Refer again to Fig. 11-6 and note that G2A will be at logic zero for 
all addresses from $OOOO--$lFFF, exactly the same addresses that are 
decoded by the second 74138 introduced in Fig. 11-7. 

We have identified the device select pulses from the second 74138 
by the first two digits of the lowest address in the lK memory block 
that they enable. Thus, DS04 is at logic zero for all addresses from 
$0400 through $07FF, a lK block of address space. 

For purposes of completeness, we conclude this little design prob
lem by showing how the 2114 RjW memory chips would be con
nected to provide lK of R/W memory. This is described by Fig. 
11-8. Our main concern here is that the device select pulse DSOO is 
connected to the so-called chip select pins of the two 2114 integrated 
circuits, enabling them for addresses $0000 through $03FF, while 
the 2114s themselves decode the lowest ten address lines, A9-AO. 
The addresses $0000 through $03FF are said to be absolutely de-
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+5V 

16 ADDRESSES 
IS 

6 GI 
YO DSOO $0000 ~ $03FF 

14 
Yl DS04 $0400 ~ $07FF 

13 
DS08 Y2 $0800 ~ $OBFF 

I Po. 12 
Y3 DSOC $oeOO - $OFFF 

2 B 74138·2 11 

3 C 
Y4 DSIO $IOOO-$13FF 

10 
IS 4 Y5 DSI4 $1400~$17FF 

I Po. 
YO G2A 9 

5 Y6 DSI8 $1800~$lBFF 

2 B 
G2B 7 

Y7 DSle $ICOO~$IFFF 

3 C 74138·1 

~ GND 
7 

Y7 

Fig. 11·7. Arrangement in which two 74138s are used to decode lowest 8K block of the 
address space for R/W memory. 

coded because each memory location in this block is activated by 
one and only one address in the entire address space $OOOO-$FFFF 
of the 6502 microprocessor. 

There are address decoding schemes in which one or more address 
lines are not decoded, and in those cases a particular memory loca
tion may be activated by several addresses rather than a single ad
dress, in contrast to absolute decoding. The KIM-l does not decode 
address lines A13 through A15, which means that location $IFFF, 
for example, is also activated when addresses $3FFF, $5FFF, 
$7FFF, ... , or $FFFF are on the address bus. 

Note the data bus connections and the control line connections 
for the 2114 R/W memory chips in Fig. l1-S. Each chip provides 
lK-by-four data bits, or a total of 4K bits of memory. Two chips give 
lK-by-eight data bits, or a total of SK bits of R/W memory. Since 
eight bits make one byte, two 2114s give lK bytes of R/W memory. 
To provide a full SK of R/W memory, the other seven device select 
lines in Fig. 11-7 must each be connected to two 2114 integrated cir
cuits, requiring 162114 chips for SK of memory. The R/W control 
line from the 6502 is connected to the write enable (WE) pin of 
each 2114. An inverted cf>2 signal should also be connected to the 
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16 

17 

1 
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5 
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+5V 

18 10 8 
15 WE CS 
16 

17 

1 

2 

3 
2114 

4 
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6 

5 

14 13 12 
11 1 G ND 

Fig. 11·8. Read/Write Memory Interface using two Ie memory chips for memory 
locations with addresses $0000. $03FF. 

G2B pin of the 74138 decoder that supplies the 15SOO device select 
pulse. We shall postpone a more detailed discussion of the control 
bus and data bus interfaces until the next two chapters. In any case, 
you have enough information to provide your microcomputer system 
with 1K to 8K of R/W memory. 

I/O PORT ADDRESS DECODING 

As pointed out in the introduction to Part II of the book, the gen
eral theme of these chapters on interfacing the 6502 will be the con-
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figuration of several input/ output ports. We will show how this may 
be done with standard 7400 series integrated circuits or, preferably, 
with the 74LSOO series integrated circuits. In addition to learning the 
fundamentals of interfacing, you will acquire the capability of add
ing several 1/ 0 ports with inexpensive, readily available integrated 
circuits. 

Our first problem is to decide where in the address space of the 
microcomputer system to put the I/O ports. The general philosophy 
in 6502 systems is to put R/W memory at the low-order addresses, 
since page zero and page one should be R/W locations. Thus, the 
KIM-l, AIM 65, and SYM-l all have lK of R/W memory supplied 
and located at $0000 through $03FF. The three systems all make 
provision for additional R/W memory to be added from $0400 up
ward. 

The KIM-l provides device select pulses for an additional 4K of 
R/W memory from address $0400 to address $13FF. The SYM-l 
provides device select pulses for an additional 7K of memory from 
address $0400 to address $IFFF. The AIM 65 provides device select 
pulses for an additional 11K of R/W memory, from address $0400 
to address $OFFF and from address $8000 to address $9FFF. The 
address space on the AIM 65 from address $1000 to $7FFF is not 
decoded. but it is available for expansion. 

In 6502 systems ROM is generally placed high in the address 
space. For example, the AIM 65 monitor is located at addresses 
$EOOO through $FFFF. The KIM -1 has its monitor in the highest 
decoded locations (remember, the KIM-l does not decode address 
lines AI5-AI3). The SYM-l departs from this philosophy, and has 
its monitor located from address $8000 to $8FFF. 

The 6502 address space allocation philosophy usually has I/O 
ports and interval timers somewhere between the R/W memory at 
the low end of the address space and the ROM at the high end of 
the address space. We decided to provide up to 16 1/ 0 ports at ad
dresses $9FFO to $9FFF. These addresses correspond to "empty" 
memory locations in all three of the microcomputer systems. The 
added I/O ports, in addition to providing us with an interfacing 
problem, are also useful since the three microcomputer systems do 
not have many of these ports. If you want to add an ASCII encoded 
keyboard, video monitor, A/D converter, D/A converter, relays, 
sense switches, LED indicators, and other I/O devices to your sys
tem, you will soon find that two ports are inadequate. Also, by locat
ing the I/O ports from addresses $9FFO to $9FFF, we will have 
them out of the way of the other vital memory functions. The SYM-l 
and AIM 65 have on-board decoders that will provide us with at 
least one device select pulse, and this will help to minimize the addi
tional circuitry required to implement the I/O ports. On the other 
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hand, the KIM-1 will require additional circuitry since it does not 
provide any device select pulses for these addresses, and since it 
does not fully decode all the address lines. 

The circuit for providing the necessary device select pulses for 16 
I/O ports is shown in Fig. 11-9. In the next few paragraphs, we will 
describe this circuit; do not expect to comprehend it with a single 
glance. The 74138 decodes the four highest address lines (Al5-A12). 
Since address line A15 is connected to the G1 input of the 74138, it 
will provide no device selects for addresses below $8000. The truth 
table for the 74138 is shown in Table 11-7, and it gives the logic 
levels on the address lines A15 through A12 that produce the device 
select pulses on the output pins. Table 11-7 also indicates which 
addresses produce device select pulses. Note that the Yl output pin 
of the 74138 is active (logic zero) for addresses $9000 through 

+5V +5V 

16 24 ""l...J 
AI5 6 GI A 0 

I 
DS9FFO 

74138 74154 
2 DS9FF1 

B AI4 3 
DS9FF2 

AI3 B C 4 DS9FF3 

AI2 A D 4 DS9FF4 

DS9FF5 
14 --""",r- 19 7 

VI G2 6 DS9FF6 
DS9 ~18 8 

DS9FF7 GI 
8 DSXFF 9 

DS9FF8 

GND 10 
DS9FF9 

10 
11 

DS9FFA 

II 
13 

DS9FFB 

12 
14 

DS9FFC 

13 
15 

DS9FFD +5V 
14 

16 
DS9FFE 14 

4 17 
DS9FFF 15 

7430 12 
~ GND 

~ GND 

A4 
12 

Fig. 11·9. Device select pulse circuit for I/O ports. 
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Table 11·7. Truth Table for 74138 in Fig. 11·9 

A15 A14 AI3 A12 YO YI Y2 Y3 Y4 Y5 Y6 Y7 Addresses 

I 0 0 0 0 I 1 1 1 1 1 1 $8000-$8FFF 
1 0 0 1 1 0 1 1 1 1 1 1 $9000-$9FFF 
1 0 1 0 1 1 0 1 1 1 1 1 $AOOO-$AFFF 
1 0 1 1 1 1 1 0 1 1 1 1 $BOOO-$BFFF 
I 1 0 0 1 1 I 1 0 I I 1 $COOO-$CFFF 
1 1 0 1 1 1 1 1 1 0 1 1 $DOOO-$DFFF 
1 1 1 0 1 1 1 1 1 1 0 1 $EOOO-$EFFF 
1 1 1 1 1 1 1 1 1 1 1 0 $FOOO-$FFFF 

$9FFF; hence, that is the pin we will use for our device select pulse 
DS9. 

The 74138 decoder will produce device select pulses only when 
both pins G2A and G2B are at logic zero, and they are both perma
nently connected to logic zero (GND). The 7430 NAND gate output 
will be at logic zero only when all eight inputs are at logic one. The 
eight inputs are address lines All through A4. Recall that address 
bits All through A4 are the two "middle" nibbles of the address. 
Thus, the output of the 7430 NA:'>ID gate will be at logic zero for 
any address of the form $XFFX, where "X" is a "don't care" symbol 
for one hex digit. That is why we have labeled the device select 
signal from the 7430 NA.'>D gate with DSXFF. 

Together the 74138 and the 7430 decode the 12 highest address 
lines, and the 74154 will decode the lowest four address lines, A3-AO. 
Note that the 74138 and the 7430 are connected to the Gl and G2 
inputs of the 74154, enabling it only for addresses $9FFO through 
$9FFF. The 74154 produces one active low output for each of these 
addresses, as indicated to the right of the 74154 in Fig. 11-9. Since 
all 16 address lines have been decoded, this is an absolute decoding 
scheme. Each of the logic-zero device select pulses from the 74154 
may be used to activate an input port device or an output port 
device, as we shall see in the next two chapters. The decoding task 
has been completed, except for a few odds and ends that we now 
describe. 

Both the AIM 65 and SYM-l have device select pulses developed 
by their decoding circuitry that may be used instead of the 74138 
in Fig. 11-9. The AIM 65 has a signal called CS9 available at pin 19 
on its expansion connector, and this may be connected to the G2 
input (pin 19) of the 74154 decoder, completely omitting the 74138 
shown in Fig. 11-9. 

The SYM-l has a device select pulse, labeled 98, available at 
jumper number 10. It is active for addresses $9800 through $9FFF. 
To eliminate the necessity for the 74138 in Fig. 11-9, connect this 
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jumper to pin 19 on the 74154, and also connect a 3.3K pull-up resis
tor between pin 18 on the 74154 and the +5-V supply voltage. 

The KIM-l cannot dispense with the 74138, and, in fact, the addi
tional circuit shown in Fig. 11-10 must be added. Since the KIM-l 
does not decode address lines AI5-AI3, all of its locations in the 
lowest 8K block of the address space will be activated by several 
addresses on the address bus. For example, the memory location 
with address $IFFF will also be activated by the address $9FFF. 
To prevent this, the additional circuit shown in Fig. 11-10 disables 
the 74LS145 decoder on the KIM-l board whenever address line 
A15 is at logic one. This is accomplished by bringing the D input of 
the 74LS145 on the KIM-l to logic one by connecting it to pin four 
of the 7405 shown in Fig. 11-10. 

+5V +5V 

2.2K 

4 TO PIN A-K ON THE KIM·1 
APPLICATION CONNECTOR 

GND 

+5V +5V 

FROM 74138 2.2K 2.2K 
DECODER 

12 10 TO PIN A-J ON THE KIM-1 
Y7 APPLICATION CONNECTOR 

Fig. 11·10. Additional decoding circuit for KIM·l I/O Port Device Selects. 

The KIM-l requires one other modification if it is to work prop
erly with the circuit of Fig. 11-9. Recall from Chapter 9 that when 
an interrupt (or RESET) occurs two of the addresses $FFF A 
through $FFFF will appear on the address lines to fetch the inter
rupt (or RESET) vector. Since the KIM-l system does not decode 
address lines A15 through A13, the interrupt (and RESET) vectors 
are actually located at addresses $IFF A through $IFFF. However, 
the modification introduced in the previous paragraph will deselect 
these locations whenever address line A15 is at logic one. To reselect 
the interrupt vectors located in the integrated circuit known as the 
6530-002 on the KIM-I, we connect the Y7 output of the 74138 to 
the chip select on the 6530-002 through two open-collector 7405s. 
This modification is also shown in Fig. 11-10. 
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ADDRESS DECODING CIRCUIT FOR 6522 INTERFACE 

In Chapter 10, we promised an interface circuit for the 6522 Ver
satile Interface Adapter so that KIM-1 owners could utilize the tim
ers on this integrated circuit. The same decoding circuit used to 
enable the 74154 in Fig. 11-9 may be used to enable the 6522. The 
interface is shown in Fig. 11-11. The DS9 device select pulse from 
the 74138 in Fig. 11-9 is connected to the CS2 pin on the 6522. The 
DSXFF device select pulse shown in Fig. 11-11 is obtained from the 
7430 in Fig. 11-9. If this pulse is first inverted and then connected to 
the CS1 pin on the 6522, then the 6522 will be addressed by addresses 
$9FFO through $9FFF. (Note that the 74154 can no longer be used 
in this case.) Compare these addresses with the on-board 6522 ad
dresses for the AIM 65 and SYM-1, namely $AOOO through $AOOF. 
There is a one-to-one correspondence between the function of each 
$AOOX address and each $9FFX address, where X is the same hex 
digit (0 through F) in both cases. Thus, in Chapter 10, the programs 
that used the interval timers will work in exactly the same way if all 
6522 addresses with "AOO" prefixes are replaced with "9FF" prefixes. 
Refer to Table 11-8 for additional details regarding addressing the 
6522. 

Table 11-8. Addressing Information for the 6522 Interface 

Address Function 

$9FFO Port B Output Data Register (PBD) 
$9FFI Port A Output Data Register (PAD), Controls handshake 
$9FF2 Port B Data Direction Register (PBDD) 
$9FF3 Port A Data Direction Register (PADD) 
$9FF4 Write Tll·L; Read Tl C·L; Clear I nterrupt Flag 
$9FF5 Write Tl L-H and TIC-H; Transfer T1L-L to TlC-L; Clear Interrupt Flag; 

Start the TI timer; Read TIC-H 
$9FF6 Write TI L-L; Read T1 L-L 
$9FF7 Write Tl L-H; Clear Interrupt Flag; Read T1 L-H 
$9FF8 Write T2L-L; Read T2C-L; Clear Interrupt Flag 
$9FF9 Write T2C-H; Transfer T2L-L to T2C-L; Clear Interrupt Flag; 

Start the T2 timer; Read T2C-H 
$9FFA Shift Register (SR) 
$9FFB Auxiliary Control Register (ACR) 
$9FFC Peripheral Control Register (PCR) 
$9FFD Interrupt Flag Register (IFR) 
$9FFE Interrupt Enable Register (IER) 
$9FFF Port A Output Data Register (PAD), No effect on handshake 

If, on the other hand, the DSXFF device select pulse is connected 
directly to the CS1 pin on the 6522, then the device selects from the 
74154 may still be used because the 6522 is addressed with addresses 
$9000 through $900F. However, in this case the 6522 is not abso-
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lutely decoded, and it will be activated by any other set of addresses 
of the form $9XXO through $9XXF except addresses $9FFO through 
$9FFF, where X is a "don't care" hex digit. This will be of no con
sequence unless other memory locations in the range $9000 to $9FEF 
are to be utilized. The addresses $9FFO through $9FFF enable the 
74154 device selects, as before. Although it is generally good practice 
to absolutely decode the address lines, in certain cases no harm will 
result if this practice is not strictly followed. 
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Fig. 11·11. Interface for 6522 Versatile Interface Adapter. 
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All the other input connections to the 6522 in Fig. 11-11 are found 
on the so-called expansion connectors on the KIM-I, SYM-I, and 
AIM 65. A pinout description of these connectors is given in Table 
11-9. The functions of the various pins will be described in the next 
two chapters. Since you have enough detail in Fig. 11-11 to complete 
the interface and operate the chip, we will not return to the 6522 
interface. This interface was introduced mostly as a service to KIt\I-I 
users who do not have an on-board 6522. 

Table 11·9. Pinout Description of Expansion Connector 

Pin 
Pin Function 

Pin 
Pin Function 

Number AIM 65 SYM-1 KIM·1 Number AIM 6S SYM·1 KIM.1 

I SYNC SYNC SYNC A AD AD AD 
2 RDY RDY RDY B AI AI AI 
3 <1>1 ftrn <1>1 C A2 A2 A2 
4 TIm 1m D A3 A3 A3 
5 5.0. RO RO E A4 A4 A4 
6 'fJN\T -m;,J.'l 1i!m F A5 A5 A5 
7 1m m 1m H A6 A6 A6 
8 D7 D7 D7 J A7 A7 A7 
9 D6 D6 D6 K AS A8 A8 

10 D5 D5 D5 l A9 A9 A9 
11 D4 D4 D4 M A10 A10 A10 
12 D3 D3 D3 N All All All 
13 D2 D2 D2 P A12 A12 A12 
14 Dl Dl Dl R A13 A13 A13 
15 DO DO DO S A14 A14 A14 
16 -12V 18 K6 T A15 A15 A15 
17 

:mV 
DBOUT SST OUT U <1>, 02 0, 

18 CS POR Unused V R;W R/W R/W 
19 CS9 Unused Unused W R/W R/W R/W 
20 ffi Unused Unused X TEST TEST TEST 
21 +5V -f-5V +5V Y 0, <1>2 <1>2 
22 GND GND G"JD Z RAM R/W RAM R/W RAM R/W 

6502 INSTRUCTIONS AND DEVICE SELECT PULSES 

To understand a few more details related to device select pulses, 
we examine the execution of some 6502 instructions on a cycle-by
cycle basis. Table 11-10 describes the behavior of the address bus, 

Table 11·10. Analysis of Microcomputer Buses by Clock Cycles 
During LDA Instruction in Absolute Addressing Mode 

Cycle Address Bus R/W Data Bus Comments 

1 $0200 1 $AD The 6502 fetches the lDA op code. 
2 $0201 1 $FO The 6502 fetches the ADL of the memory 

location to be accessed. 
3 $0202 1 $9F The 6502 fetches the ADH of the memory 

location to be accessed. 
4 $9FFO 1 DATA The 6502 fetches the data in the 

location whose address is $9FFO. 
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the data bus, and the R/W control line during the execution of the 
LDA instruction in the absolute addressing mode, assuming that the 
LDA instruction op code is in the location with address $0200 and 
that the memory location referenced by the LDA instruction is 
$9FFO. Table 11-11 analyzes the STA instruction in a similar way, 
and Table 11-12 analyzes the ASL instruction by clock cycles. 

Table 11-11. Analysis of Microcomputer Buses by Clock Cycles 
During ST A Instruction in Absolute Addressing Mode 

Cycle Address Bus R/W Data Bus Cqmments 

1 $0200 1 $8D The 6502 fetches the STA op code. 
2 $0201 1 $F7 The 6502 fetches the ADL of the memory 

location to be referenced. 
3 $0202 1 $9F The 6502 fetches the ADH of the memory 

location to be referenced. 
4 $9FF7 0 DATA The 6502 is writing the contents of the 

accumulator to the location whose 
address is $9FF7. 

Table 11-12. Analysis of Microcomputer Buses by Clock Cycle During 
Read-Modify-Write Instruction, e.g., ASL, DEC, or ROL Instruction 

Cycle Address Bus R/W Data Bus Comments 

1 $0200 1 $OE The 6502 fetches the ASL op code. 
2 $0201 1 $F5 The 6502 fetches the ADL of the memory 

location to be modified. 
3 $0202 1 $9F The 6502 fetches the ADH of the memory 

location to be modified. 
4 $9FF5 1 DATA The 6502 reads the contents of the 

location whose address is $9FF5. 
5 $9FF5 0 DATA The 6502 uses this cycle to modify 

the data. 
6 $9FF5 0 MODIFIED The 6502 writes the modified data back 

DATA to the location whose address is $9FF5. 

In all three of these tables, note that each cycle is either a READ 
or WRITE cycle. Either an instruction byte is read, or a data byte 
is either read from memory or written to memory. Referring to Table 
11-10, device select pulses corresponding to addresses $0200, $0201, 
$0202, and finally $9FFO must be generated by the address decoding 
circuitry in order to execute this LDA instruction. Each device select 
pulse will last for about 1 microsecond. In Table 11-11, you see that 
similar events occur during an STA instruction. Finally, in Table 11-
12, you can see that the data byte located at $9FF5 is first loaded into 
the microprocessor, then it is modified, and finally it is written back 
to the location whose address is $9FF5, during three successive 
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cycles. The middle cycle of these three cycles is required to give the 
microprocessor time to modify the data. Although it, too, is a WRITE 
cycle, nothing new is written back to the location being modified. 
Finally, note that the device select pulse corresponding to $9FF5 
will be generated three times during this Read-Modify-Write in
struction. Consult your 6502 hardware manual for further details 
regarding bus activity during other instructions. We have chosen a 
few representative examples to illustrate the fact that each clock 
cycle in a 6502 system is either a READ or a WRITE cycle, and that 
device select pulses are generated during each clock cycle. 

The address decoding circuit of Fig. 11-9 generates a 1 microsec
ond logic zero pulse when an LDA or ST A instruction references one 
of the locations shown in the figure. This pulse may be used to pre
set or clear a Hip-Hop, as shown in the circuit in Fig. 11-12. The 

+5V 

14 +5V 

QI-=---
150 II 

RES >-_....;3=-1CK 7474 

D Qr--~'-~ 
CLR 

DSm >------' 

Fig. 11·12. Device select pulses used to preset and clear Dotype 
flip.flop, and LED used 8S test probe. 

LED probe will glow when it is connected to a logic-zero voltage 
level, and it can be used to test the logic levels of the Q or Q outputs. 
The probe will also be used in the experiments to detect device select 
pulses. We now describe the behavior of the circuit in Fig. 11-12, 
assuming the device select pulses from the 74154 in Fig. 11-9 are 
being used. 

Suppose that the device select pulse DS9FFO is connected to the 
preset input of the 7474 and that device select pulse DS9FF1 is con
nected to the clear input. When the microcomputer is RESET, as it 
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usually is during "power up," then the RES control signal available 
at pin seven on the expansion connector will clock the logic level of 
the D input into the Q output. Thus, when power is first applied or 
the RESET button is pressed, the Q output will be low and the Q out
put will be high. The LED test probe connected to the <J output will 
glow, but an LED test probe connected to the Q output will not 
glow. Using an LDA DS9FFO will preset the flip-flop, making Q go 
to logic one and Q to logic zero. Using an LDA DS9FFI instruction 
in a program will clear the flip-flop to the same state it had after a 
RESET. 

It should be clear that this scheme could be used to switch a 
motor, light, cassette recorder, or any other device, off and on with 
a computer program. Thus we have made a simple output circuit 
with no output port chips, control signals, or data bus lines involved. 
With interval timers, a square wave whose frequency and duty cycle 
may be programmed can be made to appear at either the Q or Q 
output of the 7474 flip-flop. 

INTRODUCTION TO THE EXPERIMENTS 

The experiments in the next few chapters will give you an oppor
tunity to experiment with some of the circuits described in the text. 
Although a variety of techniques may be used to test the circuits, 
we have found that breadboarding on Proto Boards made by Con
tinental Specialties, Super Strips made by A P Products, Inc., or the 
SK 10 made by E & L Instruments, Inc., is an excellent approach. 
In fact, we did all of the experiments in Part II on an A P Products 
Unicard. The Unicard has a 22/44 printed circuit pad just like the 
KIM-I, AIM 65, and SYM-l edge connectors. We took a 22/44 pin 
edge connector with solder eyelets and soldered the eyelets to the 
Unicard pads. The edge connector may be connected directly to the 
expansion port and may be left in place for permanent applications, 
if desired. Photographs of this configuration before any experiments 
were begun and after a number of experiments were completed are 
shown in Fig. 11-13. The breadboards mentioned above are available 
from a variety of electronic parts mail-order houses. Consult the 
advertisements in any of the well known computer or electronics 
magazines for sources of parts. 

Although we did not indicate in any of our circuit diagrams the 
particular variety of 7400-series integrated circuits to use, we 
strongly urge you to work with the 74LSOO variety. Ordinary 7400-
series chips will work, but you run into buffering problems because 
of the higher power required to drive the logic inputs. The pins on 
the 6502 are rated at one standard TTL (7400 series) load, which 
means you can have four "LS" series inputs attached to a single 6502 
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(A) Before experiments. 

(B) After experiments. 

Fig. 11·13. Our breadboarding system. 
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output pin. Unless otherwise noted, the experiments were performed 
with the 74LSOO series. Do not attempt to use 74COO or other CMOS 
circuits for the experiments. 

Circuits that are breadboarded in one experiment will frequently 
be used in subsequent experiments. Do not, therefore, dismantle 
your circuits after each experiment. 

EXPERIMENT NO. 

Step 1 

Breadboard the circuit shown in Fig. 11-6. Refer to Table 11-9 for 
the expansion connector pin description to connect the address lines. 
Use +5 V and GND from pins 21 and 22, respectively. 

Step 2 

Construct the simple LED probe shown in Fig. 11-12. It will be 
used to detect a series of device select pulses. 

Step 3 

Load the following program: 

0200 AD FO 9F 
0203 4C 00 02 

START LDA MEM Fetch the contents of $9FFO. 
JMP START Loop back to START. 

Note that this program is of no use except to demonstrate the genera
tion of device select pulses. Refer to Table 11-10, and observe that 
the program simply repeats the LDA instruction analyzed in Table 
11-10. 
Step 4 

Connect the LED probe constructed in Step 2 to each device 
select output of the 74LS138 in turn. Describe and explain what you 
observe. 

(We observed that the LED glowed quite brightly on the YO (pin 
15) output and less brightly on the Y4 (pin 11) output. On all the 
other outputs the LED did not glow. These observations may be 
explained by referring to Table 11-10 again. During three of the 
four clock cycles of the LDA instruction the address bus has an 
address in the lowest 8K block, that is, between $0000 and $IFFF. 
These addresses enable the DSO device select pulse labeled in Fig. 
11-6. During the fourth cycle of the LDA instruction the address 
$9FFO appears on the address bus, and the decoding circuit produces 
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a device select pulse on the DS8 output, namely pin 11. The JMP 
instruction takes three cycles, all of which reference a memory loca
tion in the lowest 8K block. Thus, the entire program takes seven 
cycles. During six of those cycles the DSO pulse occurs, but during 
one cycle the 'i5"SS pulse occurs. Since the eye cannot perceive 1-
microsecond flashes, we observe a bright glow when the LED is con
nected to the DSO line, and a faint glow when the LED probe is 
connected to the DS8 line.) 

Step 5 

Replace the LDA instruction in the program of Step 3 with an ST A 
instruction. Execute the program and use the LED probe to test the 
device select outputs of the 74LS138. Explain your results. 

Step 6 

Replace the LDA instruction in the program of Step 3 with an 
ASL $9FF5 instruction as analyzed in Table 11-12. Execute the pro
gram and describe and explain your results obtained by using the 
LED probe. 

(The results are essentially the same as in Step 4, but the LED 
appears to glow more brightly. The ASL and JMP program takes 
nine cycles while the LDA and JMP program takes seven cycles. 
Refer to Table 11-12 and note that the location being modified 
has its address on the address bus for three of the six cycles re
quired by the ASL instruction, or for a total of three of the nine 
cycles required for the program. In the LDA and JMP program the 
location being modified has its address on the address bus for only 
one cycle out of the seven cycles necessary to execute th!....E..rogram. 
Consequently, when the LED probe is connected to the DS8 device 
select line, it appears to glow more brightly with the ASL and JMP 
program than with the LDA and JMP program.) 

Step 7 

If you have a frequency counter, connect it to pin 11 of the 74LS-
138 while the program of Step 3 is running. What do you expect to 
measure? Repeat this experiment for the program of Step 6. 

(In the first case you should measure 17 of the clock frequency, or 
about 142.86 kHz.) 
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EXPERIMENT NO. 2 

Step 1 
AIM 65 owners may wish to repeat all of the steps in Experiment 

No.1, using the device select pulse (called CS9) made available at 
pin 19 on the expansion connector. 

EXPERIMENT NO. 3 

Step 1 

SYM-l owners may wish to repeat all of the steps in Experiment 
No.1 using the device select pulse (called 98) made available at 
jumper number 10. 

EXPERIMENT NO. 4 

Step 1 
Modify the circuit for the 74LS138 so that it is the same as shown 

in Fig. 11-9. AIM 65 and SYM -1 owners need not breadboard this 
integrated circuit. They can use the device select pulses mentioned 
in Experiments No. 2 and 3. 

Step 2 
Breadboard the 74LS30 8-input NAND gate shown in Fig. 11-9. 

Before connecting the output of the 74LS30 to the 74LS154, test it 
by loading the program given in Step 3 of Experiment No. 1. The 
LED should glow when the probe is connected to the output of the 
74LS30. Why? 

(The location referenced with the program is $9FFO. The output of 
the 74LS30 should go to logic zero whenever an address of the form 
$XFFX, where X is a "don't care" hex digit, is on the address bus.) 

Step 3 

Try the LED probe on the output of the 74LS30 when the same 
program is executed, but location $9550 is referenced. What should 
you observe? 

(The LED probe should not glow, because the 74LS30 output goes 
to logic zero only when the middle two hex digits of the address are 
"FF".) 
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Step 4 

Breadboard the 74LS154 circuit shown in Fig. 11-9. Connect the 
device select line from the 74LS30 to the G 1 input (pin 18). AIM 
65 users can omit the 74LS138 and connect their CS9 device select 
pulse from pin 19 on the expansion connector to the G2 (pin 19) 
input of the 74LS154. If you have a SYM-l, connect the gs device 
select pulse from jumper number 10 to the G2 input of the 74LS154. 

Step 5 

Refer to Experiment No.1, Step 3, and load the same program. 
Execute the program and use the LED test probe to test the device 
select pulse outputs of the 74LS154. Which one should produce a 
glow on the LED? 

(Since the location whose address is $9FFO is referenced by the 
LDA instruction, the device select labeled DS9FFO should cause the 
LED to glow. None of the other outputs of the 74LSI54 should 
affect the LED.) 

Step 6 

Change the address referenced by the LDA instruction to ad
dresses $9FFI through 9FFF, in turn, executing the program and 
testing the outputs of the 74LS154. You should observe that the cor
rect address produces the corresponding device select pulse. 

Step 7 

Repeat Step 7 of Experiment No.1 with the frequency counter 
connected to the output of the 74LS154 that is being enabled by the 
address referenced by the LDA instruction. What do you observe? 

Step 8 

Experiment with other instructions such as the ST A, ROL, DEC, 
ADC, AND, and CMP instructions replacing the LDA instruction in 
the program described in Step 3 of Experiment No. 1. Do all of these 
instructions produce device select pulses on the 74LS154 when they 
reference the locations enabled by the 74LS154 outputs? 

EXPERIMENT NO. 5 

Step 1 

Sonnect the circuit shown in Fig. 11-12. Connect the input labeled 
DSn to the DS9FFO device select pulse from the 74LSI54 in Fig. 
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11-9. Connect the input labeled DSm to the DS9FFl device select 
pulse from the 74LS154. Construct two LED test probes and connect 
one to each of the outputs of the 7474. 

Step 2 

RESET your microcomputer by pressing the RESET key. Which 
LED glows? 

(The LED connected to the Q output glows. The reason for making 
the RESET connection to the clock input of the 7474 is to bring up 
the Q outputs in known conditions when power is supplied. With 
motors, relays, or other devices connected to an output, it is very 
important to know the state of the outputs when power is first 
applied to a microcomputer system.) 

Step 3 
Load and execute the following program. 

0200 AD FO 9F START LDA DS9FFO 
0203 00 BRK 

What do you observe on the LEDs? 

Initiate device select pulse DS9FFO. 
End of program. 

(The Q output LED should go out and the Q LED should glow.) 

Step 4 
Change the program above to initiate the DS9FFl device select 

pulse by using an LDA DS9FFl instruction. What happens to the 
LEDs? 

(We observed that they switched back to their RESET condition.) 

Step 5 
Load and execute the following program. 

0200 AD FO 9F 
0203 A9 FF 
0205 8D 97 A4 
0208 2C 97 A4 
020B 10 FB 
020D AD Fl 9F 
0210 A9 FF 
0212 8D 97 A4 
0215 2C 97 A4 
0218 10 FB 
021A 4C 00 02 
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START 

WAIT 

WAIT 

LDA DS9FFO 
LDA $FF 
STA Tl024 
BIT STATUS 
BPL WAIT 
LDA DS9FFI 
LDA $FF 
STA Tl 024 
BIT STATUS 
BPL LOAF 
JMP START 

Initiate device select pulse DS9FFO. 
Set up the Tl024 interval timer. 

Time up? 

Initiate device select pulse 'i5'S9'FFi. 
Set up the interval timer again. 

Check the timer status again? 

Repeat entire program. 



Step 6 

The program in Step 5 initiates a device select pulse to preset the 
7474, waits in a delay loop using the divide-by-l024 interval timer, 
clears the 7474, waits in a second delay loop, then repeats this pro
cess again and again. What do you expect to observe on the LED 
test probes connected to the Q and Q outputs of the 7474? 

(The two LEDs should alternately blink on and off.) 

Step 7 

Experiment with the values loaded into the timers. You should be 
able to vary both the frequency of the pulsations and the duty cycle 
of the square wave at the Q output of the 7474. For example, change 
the byte at address $0204 to $01 and the byte at address $0211 to 
$05. Then connect a small speaker from the Q output to ground. 
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CHAPTER 12 

Control Signals, Output 
Ports, and Applications 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Describe the functions of each of the control pins on the 6502. 
• Understand the timing requirements for interfacing the 6502 to 

R/W memory devices and TTL latches used as output ports. 
• Construct up to 16 output ports using ordinary TTL integrated 

circuits. 
• Design the control signal logic necessary to perform the READ 

and WRITE operations of the 6502. 
• Construct a hexadecimal display port. 
• Interface a digital-to-analog converter to an output port. 

INTRODUCTION 

In this chapter we will examine the functions of those pins on the 
6502 that are classified as control pins. Although we will primarily 
be interested in the 4>2 and R/W signals, all of the control pins will 
be mentioned, if only to provide a brief summary of their function. 
The 4>2 and R/W signals are necessary to implement R/W memory, 
ROM, I/O ports, and interval timers, whereas some of the other con
trol pins have more specialized functions. 

CLOCK SIGNALS, <Po (IN), <PI (OUT), AND <P2 (OUT) 

The heart of any microcomputer system is, of course, the micro
processor. What keeps the "heart;' beating, so to speak, is the system 
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clock. Although it is not absolutely necessary to have a crystal con
trolled oscillator for a clock, most microcomputer clocks are quartz 
crystals. Although crystal control of the clock frequency is common
place, you should be cautioned against assuming that your clock 
frequency is absolutely accurate. The few measurements we have 
made suggest that the crystal frequencies may be in error by several 
hundred hertz relative to their specified frequency of 1 MHz. If 
precision timing is high on your list of applications, you may wish 
to purchase and install your own crystal. Consult the specification 
sheets in Appendix C for details on clock circuits. 

In Fig. 12-1 we show the relationships between the <po (IN) signal 
and the two clock signals that are produced by the microprocessor 
at the <PI (OUT) and the <P2 (OUT) pins. We will assume that the 
clock frequency is 1 megahertz, making Tc 1 microsecond. Lower 
frequencies are not prohibited, and 2-MHz versions of the 6502 are 
available, but 1 MHz is currently the most popular frequency. There 
are many important properties of the three clock signals shown in 
Fig. 12-1, such as the pulse width, rise time, fall time, and the delay 
time between <PI and ~ that are described in detail in the specifica
tion sheets given in Appendix C, but we will be more concerned 
with the general features of these signals. 

<po(lN) 

I--------Tc 

\1...---
Fig. 12·1. Clock signals in 6502 Microcomputer System. 
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The clock system is called a two-phase system because the two 
clock signals CPI and CP2 are out of phase. We will refer to the period 
when the CPI signal is at logic one as the cpz phase or simply ascpI, 
while the period whencp2 is at logic one will be called the CP2 phase 
or simply CP2' The periods when the two signals are at logic one 
are not allowed to overlap, although the transitions of these signals 
are extremely close. As we shall see, different events take place in 
the microcomputer system depending on whether CPl orcp2 is at 
logic one. 

R/W CONTROL SIGNAL 

In a 6502 system, each clock cycle is either a READ cycle or a 
WRITE cycle. That is, the 6502 is either reading a memory location 
or writing to a memory location, but not both, during each and every 
clock cycle. The various components in the microcomputer system 
are "informed" about which of the two operations is taking place by 
th~gic level on the R/W line. If the 6502 places a logic one on the 
R/W line, then a READ operation is taking place during that clock 
cycle. If the R/W line is at logic zero, then a WRITE operation is 
taking place. In some of the 6502 literature the R/W line is called 
the R/W line, indicating that the READ operation occurs on a logic 
one, while the WRITE operation occurs when the R/W line is at 
logic zero. 

Fig. 12-2 shows the timing for reading a memory location. Let us 
use a concrete example and suppose that data is to be read from a 
2114 R/W memory integrated circuit such as is found on the SYM-1 
and AIM 65. (The specincations of the 2114 are in Appendix C.) 
Our reference point on the timing diagram in Fig. 12-2 will be the 
trailing edge of the CP2 signal, as indicated by the left-most dashed 
line in Fig. 12-2. At the beginning of a new cycle, when CPI is at 
logic one, the 6502 places the address of the location to be read on 
the address lines, and the 6502 brings the R/W to logic one, inform
ing the 2114 that it is to supply the data. The address lines and the 
R/W line do not change instantaneously, but the 6502 is guaranteed 
to have a stable address on the address bus and a stable logic one 
on the R/W line within 300 nanoseconds (ns) aftercpz. In Fig. 12-2, 
this time is labeled T 8, and it is referred to as the set-up time for the 
address bus and the R/W line. The cross-hatched areas in Fig. 12-2 
indicate nonstable conditions. The two lines on the graph for the 
address bus indicate that some address lines are changing to logic 
one, while others are changing to logic zero. The high interval of 
CPt is that period when the address bus and the control lines are 
changing to select the operation (READ or WRITE) and the loca
tion to be accessed. 
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I I 
I 

Fig. 12-2. Timing for a READ operation. Ts is set-up time for address lines and Rlw line. 
Tn is time that data on data bus must be stable before end of t/J2. TA is access time. 

We now move our attention to the dashed line on the right-hand 
side of Fig. 12-2, which is the end of the read cycle. The 6502 re
quires that the data on the data bus be stable for at least 100 ns 
before the end of <P2. We have labeled this period as T D in Fig. 12-2. 
It is the trailing edge of the<P2 signal that "clocks" or latches the 
data into the 6502. It is up to the device being read to have stable 
logic levels on the data bus at least 100 ns before the end of <1>2 and 
to hold the data lines stable for 10 ns after <P2. The time between the 
address lines arriving at their stable levels and the point where the 
data lines must be stable is labeled T A in Fig. 12-2. It is called the 
access time. Clearly 

TA=Tc-Ts-TD 

giving an access time for the 6502 of about 600 ns. We have neg
lected the rise time of the <Pl signal in this equation, and in Fig. 12-2 
we have shown <Pl and CP2 changing instantaneously, which is not 
the case. The rise time is about 25 ns, reducing the access time to 
575 ns. 

285 



Recall that the address lines are connected to the decoding cir
cuitry that produces a device select pulse and to the 2114 RjW 
memory chip that decodes the address lines A9 through AO. Because 
it takes time for the changing logic levels at the inputs of the decod
ing circuits to propagate to the outputs, the device select pulse will 
be delayed and will not begin until slightly after the address lines 
have reached their stable levels. With 7400 series or 74LSOO series 
chips this time is of little consequence since it is only a few nanosec
onds, and we may regard the device select pulse as occurring simul
taneously with the address lines reaching their stable values, some
time during <Pl. 

Memory chips are usually a bit slower. While the address lines are 
changing, and for some time after they have become stable, the 
address decoding circuitry on the 2114 chip is actively responding 
to the address changes on its input lines. The 2114 must "decide" 
which four of its 4 X 1024 flip-flops will put data on the four output 
lines it has. The time it takes to "decide" is known as its access time. 
The access time of the memory chips used in a 6502 system must be 
less than the 6502 access time shown in Fig. 12-2 or the 6502 will 
read meaningless information. The 2114 chips have an access time 
of 450 ns, so there is a comfortable margin for which the data is 
stable. If the 2114 chip is selected by the device select pulse and its 
WE pin is at logic one, then after the access time has elapsed it puts 
its four bits of data on four lines of the data bus in the form of stahle 
logic levels. The data will remain stable until shortly after the device 
select from the address decoding circuitry allows the chip select, 
CS, on the 2114 to go high. This will occur after the trailing edge 
of <P2, so the logic levels will be successfully read by the 6502, com
pleting the read cycle. The logic circuit required to produce a 
"READ ENABLE" signal from the device select pulse and the RjW 
line is shown in Fig. 12-4. 

We turn now to an analysis of a \VRITE operation, the timing dia
gram being given in Fig. 12-3. The parameter Ts has the same mean
ing as before; namely it is the time required for the 6502 to produce 
stable logic levels on the address bus, and for the 6502 to change 
the RjW line to logic zero for a WRITE operation. The parameter 
T DS is the amount of time, measured from the beginning Of<p2, re
quired to produce stable logic levels on the data bus. The 6502 re
quires no more than 200 ns to produce stable data, giving a period 
of about 300 ns when the data are stable. Finally, the logic levels 
on the data bus remain stable for a short time after the conclusion 
of <P2, called the data hold time and symbolized by Tn. For a 6502, 
THis typically 30 ns. 

The peripheral that is to receive the data, the 2114 in our example, 
usually requires that the address be stable during the write time. 

286 



1---- LOGIC 1 

LOGIC a 

~21 
~, --------------~ 

ow~!, , 
, I I I 

~_' -;--...-' ----;...' ;;::---

AD~U~S~ i ~ 
I ,I , 
I " I 

:--T s --: t-----T DS----: I 

I ,I ';"-"""'t""E~- LOGIC 1 
DATA: I : A'l 
BUS i '~~---+--f'£-- LOGIC a , , I 

i ~TH 

Fig. 12-3. Timing for WRITE Operation. Ts is set-up time for address lines and R/W line. 
Tlls is data set-up time from 6502. TH is data hold time. 

Thus, the WE pin on the 2114 is usually brought to logic zero after 
the addresses are stable, namely duringCP2. Thus, to activate the 
"write enable" (WE) pin on the 2114, we would like the R/W line 
to be at logic zero and the cpz signal to be at logic one. We also want 
the chip to be selected by the OS pulse. The logic circuit shown in 
Fig. 12-4 produces the correct WRITE ENABLE signal for the con
ditions stated above. Furthermore, we must somehow signal the 2114 
that the data is now stable and should be latched into whichever 
of the 4 X 1024 locations we have selected with the address. This is 
done by the trailing edge of the CP2 signal at the end of the cycle. 
Note that at this time the data have been stable for almost 300 ns, 
a sufficient length of time for the 2114, which requires only 200 ns 
of stable data. The trailing edge of the 4>2 signal clocks the data into 
the 2114, completing the write cycle. Note that both the address lines 
and the data lines are still stable at the trailing edge of <P2. 

To conclude our discussion of the control signal interface required 
to correctly read the 2114 and to correctly write to the 2114, we note 
that some of the control line logic is located on the 2114 itself. In 
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~EAD ENABLE = 150 
}--+-. R/W. DS 

(DEVICE m) TEST 
74LS02 ..IL \ LED 

(DEVICE,) ~ 

74LS02 

""Lr 
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Fig. 12-4. Logic circuit to produce READ ENABLE and WRITE ENABLE signals. 

Fig. 12-5 we show the control line logic that the designer must pro
vide and the on-chip logic. Note that this is not the only way to inter
face the control signals to a 2114; in fact, the AIM 65 does not use 
this approach. The AIM 65 brings the R/W line directly to the WE 
~ on the 2114, and it effectively "ANDS" the 0/2 signal with the 
DS signal in the decoder, producing a chip select (CS) signal that 
is at logic zero when 0/2 is at logic one and US is at logic zero. It 
can be shown that this logic circuit is equivalent to the logic circuit 
shown in Fig. 12-5. 

One final note on the control signals shown in Fig. 12-4: The 
signal labeled RAM R/W is generated on the KIM-1 and the SYM-1. 
Its logical expression is R/W . 0/2, meaning that it is logic zero when 
the R/W line is at logic zero and </>2 is at logic one. It is used to 
write to RfW locations, and it is made available at pin Z of the 
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expansion connectors on these two systems. The AIM 65, on the 
other hand, generates a signal whose logical expression is R/\V . CP2, 
a signal that is also called RAM R/\\', and that is also brought to 
pin Z of the application connector. The user should IJe aware of 
the fact that these are not equivalent signals. The KIM-l and SYM-l 
RA'vI-R/W signals are useful for the WRITE operation. A future 
version of the AIM 65 will have the correct RA'vI-R/W signal. Cur
rent versions of the AIM 65 are marked near the crystal with a 
printed-circuit triangle. The new version of the AIM 65, with the 
correct RAM-R/W signal, will have a nontriangular-shaped symbol 
in the same place. 

USING CONTROL SIGNALS FOR AN OUTPUT PORT 

The circuit of Fig. 12-4, in addition to providing the necessary 
control signals for accessing R/W memory, may also be used to pro
vide the necessary control signals for an output port. Recall that the 
write enable output of Fig. 12-4 is at logic one when the R/W line 
is at logic zero, CP2 is at logic one, and the device select (DS) is at 
logic zero. Apply this signal to the G input of either a 74100 or two 
74LS75 integrated circuits, and connect the data bus to the D inputs 
of these chips, as shown in Figs. 12-6 and 12-7. 

The 7475 and the 74100 integrated circuits are both bistable 
latches (or flip-flops), and they behave much like an R/\V memory 
location during a WRITE operation. When the G inputs are at logic 
one, the Q outputs follow the logic levels at the D inputs. The D 
inputs are connected to the data bus of the 6502. Refer to Fig. 12-4 
and notice that durin~ WRITE operation to the location whose 
address produces the DS pulse, a positive pulse, whose duration is 
the same as CP2, is produced at the WRITE EN ABLE output. If this 
pulse is applied to the G inputs of the 7475s or the 74100, then the Q 
outputs will correspond to the data on the data bus during the 
WRITE cycle, and, at the end of the WRITE cycle, the WE pulse 
ends while the data is still stable, clocking the data bus logic levels 
into the Q outputs. The Q outputs on the 74LS75 will have l~c 
levels just opposite to their Q counterparts. The device select (DS) 
pulses may be obtained from 74LS154 in the circuit of Fig. 11-9. 

Note that only three instructions in the 6502 instruction set will 
write data to the output port we have just constructed. These are the 
ST A, STX, and STY instructions. The output port only responds to 
a WRITE operation because the R/W line must be at logic zero for 
the WRITE ENABLE pulse to occur. Instructions such as LDA, 
LDX, LDY, or any other instruction that involves a READ operation 
from this address will produce meaningless data because nothing 
is read (no READ EN ABLE pulse occurs). Instructions such as the 
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ASL, DEC, and ROL instructions will not work because they require 
a READ cycle also. However, the use of only three of the nine in
structions in the 6502 instruction set that involve the WRITE opera
tion is no great handicap for an output port. 

The output pins of the 6502, including the data bus pins, are rated 
for one TTL load. The 74100 in Fig. 12-7 represents such a load on 
the data bus. Since the data bus on your microcomputer will already 
have several devices loading it, the circuit in Fig. 12-7 will cause the 
data bus to be overloaded. The circuit might work with the data bus 
connected to the D inputs of the 74100, but it is a marginal situation. 
To solve the problem, the data bus must be buffered, one of the 
topics in the next chapter. The 74LS75s in Fig. 12-6 may be operated 
directly from the data bus, but if several output ports are desired, 
requiring that the data bus be connected to the inputs of several 
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Fig. 12·7. A 74100 used as B·bit out· 
put port. Circuit to generate WRITE 

ENABLE shown in Fig. 12-4. 
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74LS75s, then buffering will again be required. Refer to Chapter 13 
for details. We will also postpone the discussion of input ports until 
Chapter 13, in which three-state devices are described. With suit· 
able data bus buffering, the circuits shown in Figs. 11-9, 12-4, and 
12-6 or 12-7 may be used to make up to 16 output ports with ad
dresses $9FFO through $9FFF. In the experiments at the end of this 
chapter, we will describe a simple buffer/driver that will allow you 
to experiment with these circuits, without going into a full discussion 
of data bus buffering. In Chapter 13 we will show how to make input 
ports. Some of the device select pulses from addresses in this range 
may be used for input ports. 

MEMORY·MAPPED, LATCHED HEXADECIMAL DISPLAY 

The address decoding circuit and the control line logic may be 
used to implement a memory-mapped, latched hexadecimal display. 
Assuming that the data lines at the expansion connector are ade
quately buffered (see the experiments section at the end of this 
chapter, or Chapter 13), two hexadecimal display chips with latches 
and drivers make a convenient and useful output display. The chips 
used were Texas Instruments TIL311s, but equivalent chips are 
made by other manufacturers. The circuit diagram is shown in Fig. 
12-8. The write enable pulse from the circuit in Fig. 12-4 may be 
converted to the necessary strobe signal by the 74LS04 inverter. One 
of the device selects, DS9FFO for example, from the 74LS154 in 
Fig. 11-9 may be used to address the display. 
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Fig. 12·8. Using hexadecimallatch·displays as an output display. WE signal generated 
with circuit shown in Fig. 12-4. 

Assuming that this memory-mapped display is selected with the 
address $9FFO, one can view the contents of the accumulator, X 
register, or Y register with ST A, STX, and STY instructions, respec
tively. This may be useful in debugging programs. For example, an 
STX $9FFO instruction may be placed in a program loop that is 
giving trouble, and the program may be single-stepped to observe 
how the X register is changing. This is certainly much faster than 
using the register trace mode on the KIM-I. To observe the stack 
pointer, use a TSX instruction followed by an STX$9FFO instruction. 
A latched hexadecimal display such as this is much more convenient 
(and more expensive) than the unlatched seven-segment displays 
that require constant refreshing. A program to demonstrate the dis
play is given in the experiments. 

MEMORY-MAPPED DIGITAL-TO-ANALOG CONVERTER 
AND AN APPLICATION TO MUSIC SYNTHESIS 

The address decoding circuitry described in the last chapter, the 
control circuit logic, and the 74100 (or 74LS75s) may be used with 
a Motorola 1408L8 8-bit digital-to-analog converter to make a mem
ory-mapped digital-to-analog converter circuit. The 1408L8 circuit 
is shown in Fig. 12-9, while the necessary control logic was shown 
in Fig. 12-4, the 74100 output latch circuit was given in Fig. 12-7, 
and the address decoding circuit was shown in Fig. 11-9. We used 
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the DS9FFO device select pulse from the 74LS154 shown in Fig. 
11-9. 

Just as we did not attempt to explain how the various TTL gates 
and decoders worked, we will not attempt to explain how the DAC 
( digital-to-analog converter) works. Basically the 1408 is a system of 
resistors and "switches" that produce a current proportional to the 
8-bit binary number represented by the logic levels on pins 5 
through 12, pin 5 being the most significant bit. The outputs of the 
74100 shown in Fig. 12-7 are connected to the inputs of the 1408 
DAG The CA3140 operational amplifier acts as a current-to-voltage 
converter, and the 10K feedback resistor (pin 6 to pin 2) may be 
adjusted to produce the desired proportionality between the 8-bit 
number on the input of the DAC and the voltage level at pin 6 of 
the CA3140 operational amplifier. You may wish to adjust the resis
tor so that with $FF as the digital signal you obtain 2.55 volts on the 
output. Then a simple hex-to-decimal conversion gives the correct 
output voltage, providing the decimal point is also shifted. 

Although there are many uses for digital-to-analog converters, 
such as in controlling motor speed, analog-to-digital conversions, 
graphics on oscilloscopes or plotters, etc., the application we have 
chosen to illustrate the use of a DAC is from the area of music syn
thesis. If one cycle of a particular waveform is stored in a table in 
memory, and the computer writes the entries in the table to the 

"'" GND 

Fig. 12-9. Digital-to-analog converter circuit. 
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DAC as part of a continuously running loop, then the waveform 
appears as a voltage level at the output of the CA3140, and this volt
age varies in exactly the same way as the stored waveform. If the 
entries in the table are written to the DAC at a fast enough rate, 
then the entire waveform stored in the table may appear at the 
DAC output at an audio frequency, say 440 Hz, that may then be 
amplified and connected to a speaker. 

One advantage of this approach over the method of toggling an 
output which we used in earlier tone generation programs, is that 
it is the waveform which affects the quality or timbre of the music; 
and, with the waveform in a table, we have complete control over 
the timbre. A toggled output is always a rectangular wave, and al
though the timbre may be altered somewhat by changing the duty 
cycle, the technique lacks the versatility of the sampled-waveform 
approach. 

If the waveform table contains one cycle of the waveform. and if 
it is written to the DAC at the rate of 440 tables per second. then 
an "A" note (equally tempered scale) will be heard. If the same 
read-out rate were used, but only every other entry in the table were 
used, then we would hear a tone whose frequency is 880 Hz. Thus, 
by skipping a certain number of entries in the table the output fre
quency may be changed. 

Chords (several simultaneous tones) may be produced by adding 
samples together in the microcomputer, and writing them to the 
DAC. For example, if we sample the table at every entry, every 
other entry, every third entry, and every fourth entry, add these 
samples together and output them continuously to the DAC, we 
will hear the fundamental, second harmonic, third harmonic, and 
fourth harmonic. 

The equally tempered scale assigns the frequency of 440 Hz to 
the note A. Successively higher (or lower) notes are related to this 
frequency by multiplication by 2V12. A table of note frequencies is 
provided in Table 12-1. Unfortunately, to play these frequencies we 
need to skip fractional numbers of entries in the waveform table. 
To handle this idea, we must look in a little more detail at how we 

Table 12·1. Frequencies of Several Notes on Equally Tempered Scale 

Frequency Frequency 
Note (Hertz) Note (Hertz) 

C 261.62 FlI 369.99 
Cll 277.18 G 391.99 
D 293.66 GlI 415.30 
Dj! 311.13 A 440.00 
E 329.63 All 466.16 
F 349.23 B 493.88 
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intend to accomplish the production of chords with our computer 
program. 

For our waveform table, let us use one page of memory, or 256 
entries. With a base address of $0300, for example, we can use in
direct indexing to read the table. Keeping the base address high con
stant (BAH = $03), the program will continue to "wrap around" the 
table as the BAL (base address low) is incremented. Assume we 
can output a number to the DAC every 100 microseconds. Then the 
frequency we will hear is 

1 104 

f = 256 X 100 X 10-6 sec = 256 Hz = 39.0625 Hz 

To produce higher frequencies, we must skip entries in the table 
so that we output the table more quickly. To hear middle C 
(f = 261.62), we must sample the waveform table every 261.62/ 
39.0625 = 6.70 entries. The formula giving the number of table en
tries to skip is 

256·fT 

S = 100 X 10-6 

where 256 represents the number of entries in the table, 100 X 10-6 

is the time it takes to output the sum of the entries (loop time) to 
the DAC, and £'1' is the frequency of the tone we wish to hear. 

\Ve decided to write a simple demonstration program to play the 
chord consisting of F and A (below middle C), middle C, and D#. 
Thus, the chord consists of four tones, and the table must be sam
pled every 4.47 entries for the F note, every 5.63 entries for the A 
note, every 6.70 entries for the C note, and every 7.96 entries for the 
D# note. We begin by converting the fractional parts to hexadecimal. 
That is, for the F note, 

47 X 
0.47 = 100 = 256 

where X is the two-digit hexadecimal number to the right of the 
hexadecimal point. Solving for X gives X = $78 for the F note, $A2 
for the A note, $B3 for the C note, and $F7 for the D# note. The in
tervals are then $4.78 for the F note, $5.A2 for the A note, $6.B3 
for the C note, and $7.F7 for the D# note. 

To sample the waveform table we may start by reading an entry, 
using indirect indexed addressing with the index set equal to zero, 
for each of the four notes. The samples are then added together and 
loaded into the DAG Next, the base address low of each read oper
ation is incremented by the numbers given in the preceding para
graph, and the next samples are taken from these new locations in 
the table. 
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To handle the fractional increments, a two-byte addition is per
formed. First the fractional part is added, then the integer part is 
added. Any carry from the fractional part will be added to the in
teger part. Only the integer part is used as the BAL for the table 
entry to be read. A close examination of the program in Example 1 
will make this clear. 

The program in Example 1 is very similar to the PLAY subrou
tine used by Hal Chamberlin ' in his noteworthy article on computer 
music. There are many other important details, related to this sam
pled waveform approach to making music, that you may find in this 
reference or by obtaining a reprint from Micro Technology Unlim
ited, Box 4596, Manchester, NH 03108. Our coverage of this topic 
is intended only to stimulate your interest in this area of computer 
applications. Refer to the experiments for further details and other 
experiments with the DAC circuit of Fig. 12-9. 

The waveform table we used was a triangular "vave that produces 
a simple but mellow tone. A simple program for producing the wave
form table is given in Example 2. Note that the largest amplitude 
in the table is $3F so that when four tones are added together the 
result will not exceed $FF, the largest number the DAC will accept. 
You may wish to experiment with other waveforms, such as a ramp 
or a rectangular waveform. To listen to the chord, we coupled the 
auxiliary input of our hi-fi to the output of the CA3140 using a 0.047-
microfarad capacitor. 

Example 1: Program to Produce Four Simultaneous Tones 

$0000 = TN 1 L; Fractional part of waveform table address for tone one 
$0001 = TN1H; Integer part of waveform table address for tone one (BAL) 
$0002 = $03 = BAH of waveform table 
$0003 = TN2L; Fractional part of waveform table address for tone two 
$0004 = TN2H; Integer pari of waveform table address for tone two (BAL) 
$0005 = $03 = BAH of waveform table 
$0006 = TN3L; Fractional part of waveform table address for tone three 
$0007 = TN3H; Integer part of waveform table address for tone three (BAL) 
$0008 = $03; BAH of waveform table 
$0009 = TN4L; Fractional part of waveform table address for tone four 
$ooOA = TN4H; Integer port of waveform table address for tone four (BAL) 
$OOOB = 03; BAH of waveform table 
$9FFO = OAC; Oigital.to-analog converter port 

$0200 A2 00 START LOY $00 Set indirect index to zero. 
$0202 08 CLO Clear decimal mode. 
$0203 18 CLC Clear carry for additions to follow. 
$0204 Bl 01 LOOP LOA (TN1H),Y Get tone one sample from the table. 
$0206 71 04 AOC (TN2H),Y Add tone two sample from the table. 
$0208 71 07 AOC (TN3H),Y Add tone three sample from the 

table. 

lChamberlin, Hal, "A Sampling of Techniques for Computer Performance of 
Music," BYTE, V2, No.9, Sept. 1977, p. 62. 
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$020A 71 OA AOC (TN4H),Y Add tone four sample from the table. 
$020C 80 FO 9F STA OAC Output the result to the OAC. 
$020F A5 00 LOA TNIL Co Iculote address of the next entry 
$0211 69 78 AOC $78 by adding $4.78 to the previous 

oddresss. 
$0213 85 00 STA TNlL Add fractional part first. 
$0215 A501 LOA TNIH Next add carry from this to integer 
$0217 69 04 AOC $04 part of the law·arder byte of the 
$0219 85 01 STA TNIH address. 
$021B A5 03 LOA TNIL Repeat above process for remaining 
$0210 69 A2 AOC $A2 three tones. 
$021F 85 03 STA TN2L 
$0221 A504 LOA TN2H 
$0223 69 05 ADC $05 
$0225 85 04 STA TN2H 
$0227 A5 06 LOA TN3L 
$0229 69 B3 ADC $B3 
$022B 85 06 STA TN3L 
$0220 A5 07 LOA TN3H 
$022F 69 06 AOC $06 
$0231 85 07 STA TN3H 
$0233 AS 09 LOA TN4L 
$0235 69 F7 ADC $F7 
$0237 85 09 STA TN4L 
$0239 AS OA LOA TN4H 
$023B 69 07 ADC $07 
$0230 85 OA STA TN4H 
$023F A500 LOA DUM The remaining instructions are 
$0241 EA NOP "dummies!' They take up time to 
$0242 EA NOP make loop time 100 microseconds. 
$0243 EA NOP 
$0244 4C 04 02 JMP LOOP Back to start over. 

Example 2: Program to Place Triangular Waveform in Page Three of Memory 

$0300 = Base Address of Waveform Table 

$0250 A2 00 START LOX $00 Initialize X register to zero. 
$0252 AO FF LOY $FF I nitia I ize Y register to $FF. 
$0254 BA LOOP TXA T ra nsfer X to A. 
$0255 4A LSR A Divide by two. 
$0256 90 00 03 STA TAB,X Store in table, beginning half. 
$0259 99 0003 STA TAB,Y Store in table, ending half. 
$025C E8 INX Increment X. 
$0250 88 DEY Decrement Y. 
$025E EO 80 CPX $80 Is X = $80? 
$0260 DO F2 BNE LOOP No, continue filling table. 
$0262 00 BRK Yes, table is filled. 

OTHER CONTROL PINS ON 6502 

The control pins not yet mentioned include three input pins, RES 
(Reset), RDY (Ready) and S.D. (Set Overflow), and one output 
pin, SYNC (Synchronization). We will discuss these brieRy. The 
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RES pin is usually used under "power up" conditions or at other 
times when it is desired that the microcomputer "restart." \\Then 
power is applied to the 6502, or when the RESET key is depressed, 
the RES pin is held at logic zero. Suitable delay circuits hold the 
RES pin at logic zero during power-up conditions, while the RESET 

key is usually connected to a .55.5 timer to produce a logic-zero sig
nal at the RES pin. After the RES line goes high, the 6502 waits for 
six clock cycles; then it fetches the new PCL from the location with 
the address $FFFC and the new PCR from the location with the 
address $FFFD. The next cycle sees peR-PCL on the address bus 
to fetch the first op code in the program. In the case of the KIM-I, 
AIM 65, and SYM-l, this address is the starting point of the monitor. 

The Ready (RDY) pin is used to interface slow memory devices. 
If the ready line is brought to logic zero during 1>1 of any READ 
cycle, the RjW line remains at logic one and the address lines main
tain their logic levels. In that case, slow memory devices may be 
given a longer access time. When the ready line is allowed to return 
to logic one, then the microprocessor will simply complete the sec
ond half of the clock cycle begun when the ready line was pulled 
low. That is, the slow memory device will be read. The RDY pin is 
also used in direct-memory-access (DMA) applications, a topic be
yond the scope of this book. 

The S.O. pin might be a useful pin, but it appears to have found 
few applications. Basically it could serve as a kind of "hardware 
flag," since a positive-to-negative transition on the S.O. pin sets the 
overflow flag. This flag may be tested with the BVC and the BVS 
instructions. Note that arithmetic operations also affect this flag. 

Finally, the SYNC pin produces a logic-one pulse during the entire 
cycle in which an op code is being fetched. In the SYM-I, KIM-I, 
and AIM 65, the SYNC pulse is used to pull the NMI pin low when 
these microcomputers are in the single-step mode. This produces a 
nonmaskable interrupt. The instruction currently being executed is 
completed; then the processor jumps to the nonmaskable-interrupt 
routine. This monitor routine saves the processor registers and re
turns control of the program to the monitor. The user can, therefore, 
execute his program one instruction at a time, and the various regis
ters may be examined after each instruction. The monitor routine 
contains no RTI instruction, so a key depression or some other signal 
is required to execute the next instruction in the user's program. 

EXPERIMENT NO. 1 

Step 1 

U sing the breadboard begun during the experiments at the end 
of Chapt·er 11, add the circuit shown in Fig. 12-4. KIM-l and SYM-l 
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users may omit the 74LS04 and the 74LSOO and use the RA:\1-R/W 
signal available at pin Z of the expansion connector. Use the DS9FFO 
device select pulse from the 74LS154 shown in Fig. 11-9. 

Step 2 

Load the following program. 

0200 8D FO 9F 
0203 4C 00 02 

Step 3 

START STA MEM Write to address $9FFO 
JMP START Loop back to START 

With the test probe shown in Fig. 12-4, test the WRITE ENABLE 
output and the READ ENABLE output. Describe and explain what 
you observe. 

(You should observe that the LED glows when it is connected to the 
WRITE ENABLE, but it does not glow when it is connected to the 
READ ENABLE. Refer to Table 11-11 and note that during the 
fourth cycle of the ST A $9FFO instruction the device select pulse 
DS9FFO will occur. Since this is a WRITE operation, the R/W line 
will be at logic zero. During the last half of this cycle, cJ>2 will be at 
logic one, and a WRITE ENABLE pulse will occur. The READ 
ENABLE requires that the R/W line be at logic one when the 
DS9FFO pulse occurs, but during the last cycle of the ST A $9FFO 
instruction the RjW line is at logic zero. Thus, no READ ENABLE 
pulse occurs.) 

Step 4 

How could you modify the program in Step 2 to produce a READ 
ENABLE pulse but not a WRITE ENABLE pulse? Use the LED 
test probe to verify your hypothesis. 

EXPERIMENT NO. 2 

Step 1 

Breadboard the data bus buffer shown in Fig. 12-10. The 81LS97 
is an octal version of the 74LS367, and two 74LS367s may be used 
instead. Other data bus buffers will also work. Keep this circuit for 
Experiments No.3, 4, and 5. 

Step 2 

Breadboard the hexadecimal display circuit of Fig. 12-8. Connect 
the buffered data bus outputs to the data inputs of the two display 
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18 17 
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chips, as indicated in the figure. For the WRITE EN ABLE pulse use 
the circuit of Experiment No. 1. The address of the display will be 
$9FFO, although any other of the addresses $9FFO through $9FFF 
could also be used. 

Step 3 
To test the display, load the following program and execute it. 

0200 A5 00 
0202 80 FO 9F 
0205 A9 FF 
0207 80 97 A4 
020A 2C 97 A4 

START 

WAIT 

LOA MEM 
STA OISP 
LOA $FF 
STA Tl024 
BIT STATUS 

0200 10 FB BPL WAIT 

Load A with the contents of $0000. 
Store A in the display. 

Store $FF in 1024 timer. 
Wait for time out. 

020F E6 00 INC MEM I ncrement contents of $0000. 
0211 4C 00 02 JMP START Loop to beginning of the program. 

What effect do you expect this program will have on the display? 

(The display should "count" through all possible (256) two digit 
hexadecimal numbers. The time delay simply gives enough time for 
human beings to observe the count.) 
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EXPERIMENT NO. 3 
Step 1 

Remove the display chips, and replace them with a 74100, as 
shown in Fig. 12-7. 

Step 2 

Connect the outputs of the 81LS97 to the D inputs of the 74100 
shown in Fig. 12-7. Connect the WRITE ENABLE output of Fig. 
12-4, that you wired in Experiment 1, to the G inputs of the 74100 
as shown in Fig. 12-7. 

Step 3 

Wire a test probe like the one shown in Fig. 12-4. Check all eight 
outputs of the 74100. Some of them will be at logic one (the LED 
glows) and some of them will be at logic zero. This output port has 
random output logic levels when power is first supplied. 

Step 4 

Load and execute the following program. 

0200 A9 FF 

0202 8D FO 9F 

0205 00 

START LDA $FF 

STA PORTP 
BRK 

Put logic one into each bit of A. 

Store A in output port $9FFO. 

Break to the monitor. 

What do you expect the test probe LED to indicate when you test 
the output pins of the 74100? 

(The LED should glow when it is connected to any of the 74100 
output pins. ) 

Step 5 

Change the byte to be stored in the output port to $00 by changing 
the program byte at address $0201 to $00. Execute the program 
again. What do you expect will appear on the output pins of the 
74100? Experiment with other values of the byte located at $0201, 
and test the output port pins with the LED test probe. Your 74100 
should work perfectly before you proceed. 

EXPERIMENT NO. 4 
Step 1 

Add the circuit shown in Fig. 12-9 to your breadboard. Connect 
the outputs of the 74100 (or 74LS75s) to the Motorola 1408L8 DAG 
Adjust the 10K resistor to be approximately 1000 ohms. 
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Step 2 

Connect a vom or vtvm between ground and the output (pin 6) 
of the CA3140 operational amplifier. 

Step 3 

U sing the "examine and modify memory" feature of your micro
computer, load $FF into the location whose address produces the 
device select pulse to write to the 74100. We have been using 
DS9FFO in previous experiments. Your voltmeter should read, very 
approximately, three volts. Adjust the 10K feedback resistor so that 
the voltage is about 2.55 V. 

Step 4 

Now load the location whose address is $9FFO with $00. Your volt
meter should read zero. 

Step 5 

Now load $80 into the DAC output port, $9FFO. You should read 
about 1.28 V on your voltmeter. If you do not get this value, you 
might check to see if bit seven is connected to pin five of the DAC. 
Pin five of the DAC input should be a logic one; all the other pins 
should be at logic zero. 

Step 6 

In turn, load $01, $02, $04, $08, $10, $20, $40, and $80 into the 
DAC and measure the lOgic levels on the input pins and the voltage 
output from the operational amplifier. The values given above to 
load into the DAC produce, in turn, a logic one on pins 12, 11, 10, 
9, 8, 7, 6, and 5, leaving the other input pins at logic zero. In this 
way you can make sure all the output bits are properly ordered. 
Your DAC is now working properly. Compare your output voltages, 
given the DAC inputs, with what you would expect. 

(You should obtain the following output voltages with the given in
puts, provided the 10K feedback resistor was adjusted to give an 
output voltage of 2.55 volts with $FF loaded into the DAG A DAC 
input of $01 gives 0.01 V, $02 gives 0.02 V, $04 gives 0.04 V, $08 
gives 0.08 V, $10 gives 0.16 V, $20 gives 0.32 v, $40 gives 0.64 V, 
and $80 gives 1.28 V.) 
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EXPERIMENT NO. 5 

Step 1 

Load the programs given in Examples 1 and 2. Execute the 
program given in Example 2 first. This loads the waveform table 
needed for the tone generation program. After executing the pro
gram in Example 2, check page three of memory to see that it 
contains a triangular waveform. 

Step 2 

Load $03 into locations \\ith addresses $0002, $0005, $0008, and 
$OOOB. These locations contain the high-order byte of the addresses 
of the entries in the waveform table. 

Step 3 

Connect a 0.047-microfarad capacitor from the output of the 
CA3140 to the input of your hi-fi or some other audio-amplifier
speaker system. 

Step 4 

In the program listed in Example 1, replace the instruction bytes 
from $0206 through $020B with $EAs. In other words, six bytes are 
changed to NOP instructions. 

Step 5 

Run the program. You should hear a mellow tone from your audio 
system. The program is now playing only one note. 

Step 6 

Remove the first two NOP instructions you inserted, and put the 
correct instruction bytes back into the program. Now execute the 
program. You should hear two tones that are harmonious. 

Step 7 

Remove the second two NOP instructions you inserted, and put 
the correct instructions back into the program. Execute it. What do 
you expect to hear? 

Step 8 

Add the final two correct instructions. Run the program. You 
should hear four tones. See reference 1 if you want to play the 
Star Spangled Banner in four-part harmony. Keep your DAC circuit; 
it will be used in the next chapter. 
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CHAPTER 13 

Data Bus, Buffering, and 
Applications 

OBJECTIVES 

At the completion of this chapter you should be able to: 

• Understand the necessity for buffering the various microcom
puter buses. 

• Understand and use three-state buffer/drivers to buffer the bi
directional data bus. 

• Construct a I-bit or an 8-bit input port using three-state buffer/ 
drivers. 

• Build and operate a memory-mapped analog-to-digital converter 
circuit. 

• Design and construct latched input ports using the 8212 I/O 
integrated circuit. 

INTRODUCTION 

The general topic of this chapter will be the subject of buffering, 
but it will include a more complete discussion of the data bus than 
has been heretofore given in this book; several interfacing applica
tions will also be mentioned. The control bus and the address bus 
are "one-way," or unidirectional, buses; that is, one device in the mi
crocomputer system controls the logic level of the line. For example, 
the 6502 controls the logic levels on the address bus (unless the mi
crocomputer system utilizes direct memory access techniques). The 
R/W line is also controlled by the 6502, and no other component in 

304 



the microcomputer system can be allowed to affect this control line. 
On the other hand, logic levels on the data bus are controlled by the 
6502 only during a WRITE operation. During a READ operation, 
the data bus logic levels are determined by the device that was 
addressed by the 6502. This might be a RjW memory chip, an input 
port, an interval timer, or a ROM chip. Since the data bus carries 
information to and from the 6502, it is called a hidirectional bus. 
We will look fIrst at the need to buffer any kind of bus in a 6502 
system; then we will examine the special requirements of a bidirec
tional bus. 

WHY BUFFER? 

There are two reasons for buffering any bus: 

• The pins on the 6502 that control a bus line are rated to drive 
one standard TTL load. In many microcomputer systems there 
will be heavier loading than this; that is, the computer will have 
to "drive" more than one TTL-type input. 

• The conductors in any bus system have capacitance. Capacitors 
require time to chan!;e and discharge, and, consequently, they 
can distort the rapidly changing waveshapes one encounters on 
the buses. Buffers can drive a much larger capacitance than can 
the 6502, and, consequently, they are used to preserve the in
tegrity of the waveshapes over long path lengths. 

In addition, the data bus requires a special kind of buffer. Recall 
that the microprocessor is capable of reading data from any of 65536 
devices. However, only one of these devices should control the data 
bus during any particular READ cycle. All the others should act as 
if they are not there. If two devices are trying to take a data bus line 
to opposite logic levels, not even a prophet can predict what data 
the 6502 will read. Furthermore, during a WRITE cycle all the 
devices in the memory space should be isolated from the data bus 
as far as their control of it is concerned, while the 6502 controls the 
logic levels on the data bus. This brings us to the third reason for 
buffering: 

• Buffers must be capable of isolating the data bus from all of the 
devices connected to the data bus, except the device being 
addressed. 

All the control pins, the address pins, and the data pins on the 
6502 are capable of driving one standard TTL load. This means that 
only one standard 7400-series chip may be connected to an output 
pin on the 6502, if the 6502 is to operate properly. You could con-
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nect four 74LSOO-series chips to a bus line, but if you tried to connect 
additional chips to these lines, the circuit might not operate. 

One solution to the problem of connecting many devices to a sin
gle line, in the case of the control bus or the address bus, is to con
nect the pins of the 6502 directly to two 7404 inverters in series. Two 
inverters in series results in no net inversion. A 7404 can drive ten 
standard TTL loads and about 40 LS loads, while a 74LS04 can 
drive 20 74LSOO loads. This kind of buffering would be adequate for 
most systems provided the bus length is not too great. The Ani 65, 
Kni-1, and SY\I-1 all buffer the <P~ and RjW control lines with two 
7404 inverters in series. Refer to the schematic of your system for 
details. The address lines in these three microcomputer systems are 
not buffered because they only drive a few MOS R/\V memory and 
RO",d chips that require almost no driving power. However, if any 
of these microcomputer systems are expanded, using the expansion 
connector for example, some or all of the address lines will have to 
be buffered. A popular technique is again to use two "head to tail" 
7404 or 74LS04 inverters in series for each address line to be buf
fered. For an example, check Pollock's KIM-1 to S-100 bus circuit. 1 

There are other integrated circuits, called bus buffer/drivers that 
either may be used on a unidirectional bus, such as the control bus, 
or they may be used on a bidrectional bus. These integrated circuits 
have four (quad), six (hex), or eight (octal) buffer/drivers per 
chip. Some of the more popular chips are listed in Table 13-1. The 
logic symbols for some tvpical buffer/drivers are shown in Fig. 13-1. 
A truth table for the buffer/drivers used in this chapter is provided 
in Table 13-2. Study the function of the G (gate) input. Note that 
when the G input is low, then the output logic level of the buffer is 
the same as the input logic level. In that case, the buffer/driver is 
driving the particular bus line to which it is attached. An inversion 
circle on a G input indicates that the buffer/driver is active when 
the G input is at logic zero. Other buffers are active when their G 
inputs are at logic one, and their logic symbols will not have inver
sion circles at the G inputs. 

Perhaps the most important feature is the third state in the truth 
table, the one labeled "disabled." When the gate is at logic one, the 
buffer / driver acts as if it were disconnected from the bus; that is, it 
behaves as if a switch in series with the output had been opened. 
In effect, the buffer is "disconnected" from the bus. This property 
of the buffer/driver is the reason for calling these devices "three
state buffer j drivers" or "TRI -ST A TE buffer/drivers." ( TRI -STATE 
is a trademark of National Semiconductor Corporation.) Observe 
that the third state, or the disabled state, is exactly what is required 

1 Pollock, Jim, "KIM-l to S-100 Bus Adapter," 6502 User Notes, #7-8, p. 7. 
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Fig. 13-1. logic symbols for typical Buffer/Drivers. 

when many devices are to be connected to the same bus. The bus 
buffer/driver can be enabled whenever the device to which its input 
is connected is addressed. It can be disabled, or disconnected from 
the bus in effect, whenever the device to which its input is connected 
is not addressed. 

Fig. 13-2 shows how one bit of data might be input to the 6502 
using some simple control logic and a three-state buffer/driver. Sup
pose the address on the address bus produces a device select pulse 
as indicated in Fig. 13-2. If the R/W line is at logic one, as it is dur
ing a READ cycle, then the output of the 74LSOO will go to logic 
zero during this cycle, enabling the three-state buffer/driver. The in
put labeled D7 will then control the logic level of the seventh bit 
of the data bus, and at the conclusion of the READ cycle the 6502 
will read this logic level. Whenever the R/W line is low, 01' the 

Table 13-1. Some Popular Buffer/Driver Integrated Circuits 

74125 QUAD 
74126 QUAD 

DM8093 QUAD 
DM8094 QUAD 

DM8097 HEX 
74LS367 HEX 

74LS241 OCTAL 
81 LS97 OCTAL 

Table 13-2. Typical Buffer/Driver Truth Table 

Gate Input Output 

0 0 0 
0 1 1 
1 X DISABLED 

X = DON'T CARE 
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BIT TO BE INPUT 07 

+5V 

16 

"""Lr G 74LS367 

8 

TO DATA BUS 
::---t-'-- LI N E 7 

""'" GND 
Fig. 13-2. Using Three-State Buffer/Driver to input one bit to data bus. 

device select pulse is not present, then the three-state buffer/driver 
will be "disconnected" from the data bus, allowing other devices in 
the system to control this bus. 

Note that the data must be stable at the input to the 74LS367 dur
ing the READ cycle. Clearly, the idea expressed in Fig. 13-2 may be 
extended to include the other seven lines of the data bus. Since the 
74LS367 is a hex buffer/driver, two of them would be required to 
make an 8-bit input port. Alternatively, an octal device, such as 
the 81LS97, could be used to provide a single-chip 8-bit input port. 
An example of such an input port is given in Fig. 13-3. Note that 
we have changed the control signal logic slightly to illustrate that 
different possibilities exist, and the designer has a certain amount of 
freedom in this area. However, we are assuming that an R/W (in
verted R/W) signal is available, and it will be if two 7404s in series 
are used to buffer this control line. 

The circuit of Fig. 13-3 is not only useful as an input port, but it 
is also useful to interface some devices to the data bus. For example, 
on the KIM -1 we find two 74125 buffer/drivers used to interface the 
6102 R/W memory chips to the data bus. Some memory chips lack 
the necessary drive to control the data bus, so buffer / drivers are used 
to provide the drive, and to isolate the memory chips from the bus 
when they are not being addressed. The 2114 R/W memory chips 
on the AIM 65 and SYM-l have three-state data bus drivers. These 
on-chip buffer/drivers are capable of driving two TTL loads, and 
the AIM 65 and SYM-l do not, therefore, buffer the R/W memory 
chips. 

An important restriction on the use of the circuit in Fig. 13-3 must 
be observed if it is to be used as an input port. The data logic levels 
at the input to the 81LS97 must be stable, at least during the READ 
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Fig. 13·3. Using SlLS97 as S·bit Input Port. 
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15 
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TO DATA BUS 
LINES 0-7 

cycle in which the port is being read, or else the 6502 will read in
correct data. In other words, an 81LS97 is not a latch. The logic 
levels at the output follow the logic levels at the input anytime the 
G inputs are at logic zero. A latched input port will be discussed 
later in this chapter. We turn first to an application where the cir
cuit of either Fig. 13-2 or 13-3 is suitable for reading data. 

MEMORY·MAPPED ANALOG·lO·DIGITAL CONVERTER 

The one-bit input port of Fig. 13-2 and the digital-to-analog con
verter circuit shown in Fig. 12-9 can be used to make an analog-to
digital converter. The complete circuit is shown in Fig. 13-4. Several 
parts of this circuit have already been described. For example, the 
74100 latch was described in Chapter 12, Fig. 12-7. The WRITE 
ENABLE pulse is generated by the circuit in Fig. 12-4. Any conve
nient device select pulse generated by the 74LS154 in Fig. 11-9 
may be used. For the experiments, we used DS9FFO. The 74LS04 
and the 74LSOO perform the same function as described in Fig. 13-2; 
that is, they enable the buffer/driver on the 74LS367 during a READ 
cycle. The 1408 is a digital-to-analog converter; it was described in 
Fig. 12-9. Note that we have shown the data bus lines connected 
directly to the 74100. Since the 74100 represents one TTL load on 
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these lines, and there may well be other loads on the data bus in 
your microcomputer, it would be wise to use the buffer circuit shown 
in Fig. 12-10 between the data bus and the 74100. In that case, the 
output line from the 74LS367 I-bit input port should be connected 
directly to data bus line 7, and not to the input of the 74100. Now 
you should see that almost all of the circuit shown in Fig. 1.3-4 has 
already appeared in one form or another in previous circuit diagrams 
and, therefore, its complexity should not disturb you. The only new 
component is the LM311 voltage comparator whose significance in 
this circuit will now be explained. 

To see how the analog-to-digital converter works, suppose that the 
microcomputer program starts by loading $00 into the 74100 output 
port that drives the 1408L8 DAC. Then the output of the CA3140 
operational amplifier, which is cOllverting the DAC current to a volt
age level at pin 6 of the CA3140, should be zero. Assume also that 
the CA3140 feedback resistor, R, has been adjusted to give 10 volts 
at pin 6 when $FF is stored in the DAC port. Let the microcomputer 
program increment, in steps of one, the number being output to the 
DAC port. The voltage level at pin 6 of the CA3140 should increase 
from zero to ten volts in 255 steps of 39 m V / step during the incre
menting process. If, after reaching $FF, the number loaded into the 
DAC port is incremented once more, then the voltage will suddenly 
drop to zero again. If this entire sequence of instructions is put into 
a program loop, then a ramp waveform will appear at the output of 
pin 6 of the CA3140. A photograph of an oscilloscope measurement 
of this waveform from our circuit is shown in Fig. 13-5. 

Next, tum your attention to the LM311 voltage comparator. It 
compares the voltage at pin 3 with the voltage at pin 2. If the former 
is larger than the latter, then the output of the comparator, pin 7, 

Fig. 13-5. Photograph of ramp waveform produced by OAC circuit. Sweep time is ap
proximately 12 milliseconds, voltage rises from 0 to 10 volts. 
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will be at logic zero. If the voltage at pin 3 is less than the voltage 
at pin 2, then the output of the comparator is at logic one. 

Suppose that the analog voltage at pin 2 of the comparator is 5 
volts. Then, as the computer program increments the DAC output 
from 0 volts to 10 volts, the comparator output voltage will corre
spond to a logic one during that period when the DAC output is less 
than 5 volts. As soon as the DAC output exceeds 5 volts, the com
parator output corresponds to a logic zero. Thus, by "watching" bit 
seven of the I-bit input port, we can see when the comparator went 
from logic one to logic zero. It did this, of course, when the output 
of the DAC was equal (or slightly larger) to the analog input volt
age. Fig. 13-6 is a photograph of both the DAC output and the com
parator output with the program running. Observe that the com
parator output drops to zero whenever the DAC output reaches a 
certain level. 

Suppose that the DAC output was adjusted, by means of the feed
back resistor (R), so that when $FF was loaded into the DAC port 
the voltage level at the output of the CA3I40 was 2.55 volts. Further, 
suppose that the microcomputer program continually increments the 
number loaded into the DAC port. If the comparator switches from 
logic one to logic zero when the number loaded into the DAC port 
increments from $XY to $XY + 1, then the analog voltage is some
where between $XY and $XY + 1. We, therefore, have succeeded in 
finding a hexadecimal representation of the analog voltage. To get 
a decimal representation, we must convert the hexadecimal number, 
$XY, to a base-ten number, and then move the decimal point two 

Fig. 13-6. Ramp waveform from DAC and LM311 Comparator output. Sweep time is 12 
milliseconds; ramp voltage waveform (top) goes from 0 to 10 volts, while comparator 

output switches between 0 and 5 volts. 
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places to the left. Thus, $FO corresponds to a voltage between 2.40 
and 2.41 volts, and $CO corresponds to a voltage between 1.20 and 
1.21 volts. 

A program to convert the analog voltage to a hexadecimal repre
sentation is presented in Example 1. We assume that the DS9FFO 
device select pulse is used to write to the DAC and to read the 
74LS367. The 74LS367 represents the logic level of the comparator 
output. It will only be connected to the data bus (line seven) when 
the DS pulse is present and the R/W line is at logic one. Otherwise, 
it will be disabled. Note that the data at the output of the 74LS367 
will be stable during the time when it is read because the compara
tor would only change its state after a new "voltage" had been out
put to the DAC by a new 8-bit representation from the computer. 
This takes only a few microseconds. Thus, there is no need to latch 
the data that we are going to read. Since we are only interested in 
the logic level of bit seven of the data bus, a BPL instruction is used 
to test the status of this bit. 

When the program in Example 1 was run, the photograph shown 
in Fig. 13-7 was obtained from an oscilloscope used to measure the 
DAC output. Compare this photograph with the one shown in Fig. 
13-6, and note that in Fig. 13-7 the ramp waveform stops as soon as 
the comparator switches from logic one to logic zero, indicating that 
the conversion has been completed. At that time, the number written 
to the DAC, which was also stored in the location whose address is 
$0000, is stored in the output Port A. If you have the 110 board used 
for the experiments at Port A, then the LEDs will indicate the hexa-

Fig. 13-7. DAC and Comparator outputs with Analog.to-Digital Converter program execut
ing. Sweep time is 3 milliseconds, ramp waveform (top) peaks at 4 volts when comparator 

waveform (bottom) switches to 0 volts. 
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decimal number that represents the analog voltage. To generate an 
"unknown" analog voltage, a 10K potentiometer connected between 
+ 12 \' and ground may be used, with the tap going to pin 2 of the 
comparator. 

We were able to assemble all of the components, including the 
necessary decoding circuits described in Chapter 11, the control sig
nal logic described in Chapter 12, and the components in Fig. 13-4 
on a single AP Unicard, but it was a close fit. If you want a more 
permanent analog-to-digital converter, you might try a wire-wrap 
approach. Users of K1\1-1 must be sure to include the circuit shown 
in Fig. 11-10, or they will have two devices trying; to control the logic 
levels on the data bus simultaneously. (An oscilloscope is indispens
able for getting this circuit adjusted properly. The layout, grounding, 
and general construction practices may affect its operation. Voltage 
comparators sometimes oscillate near the point where they make the 
transition from one logic level to the other.) More details on analog
to-digital conversions, including a much faster conversion routine, 
are provided in Chapter 14. 

Example I: Analog-to-Digital Conversion Program-Ramp Approximation 

$0000 = OIGITl; digital representation of analog voltage 
$9FFO = OAC; output part to load the OAC and input part to test comparator 
$AOOI = PAD; output port to display result 
$A003 = PAOO; data direction register for PAD 

$0200 A9 FF START LOA $FF 
$0202 80 03 AO STA PADO 
$0205 A9 00 AGAIN LOA $00 
$0207 85 00 ST A OIGITL 
$0209 AS 00 RAMP LOA OIGITL 

$020B 80 FO 9F STA OAC 
$020E AD FO 9F LOA OAC 
$0211 10 05 BPL DONE 

$0213 E6 00 INC OIGITL 
$0215 4C 09 02 JMP RAMP 
$0218 AS 00 DONE LOA OIGITL 
$021A 80 01 AO STA PAD 
$0210 4C 05 02 JMP AGAIN 

Set up data direction register. 

Start generating OAC output voltage 
by loading $00 into OIGITl. 
Get OIGITl and store it in the OAC 
port. 

Test the comparator output level. 
If it is logic zero, conversion is 

finished. 
Otherwise, increment number and 
return to try again. 
Now output the result to the 1/0 
port for display purpases. 
Repeat the conversion process. 

AN ASCII KEYBOARD INPUT PORT 

One of the problems with the input port shown in Fig. 13-3 is that 
the data must be stable at the inputs to the port during the READ 
operation, and the data must be available when the computer is 
ready to "read" the port. In many instances, it is desirable to be able 
to latch a byte of data that is being input to the computer. For ex
ample, suppose two 7490 decade counters provide eight bits of 
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counting data; at the end of a counting period we would like to store 
the result and then continue counting while the computer reads the 
byte of counting data just obtained. Clearly, using a three-state 
buffer/driver as an input port would not allow us to save the count
ing data because the outputs of the 7490s change constantly while 
counting. 

Another example in which it is sometimes desirable to be able to 
latch the data byte to be input to the microcomputer is an ASCII 
keyboard. Many computer systems utilize a keyboard as an input 
device to get data or instructions from the outside world. The KIM-l 
and SYM-l systems interface with a teletypewriter keyboard with 
which seven bits. of ASCII code are sent one bit at a time to the 
computer. This is called serial input and it is quite common. Of 
course, the computer is capable of reading seven bits of ASCII code 
in one byte. When operated in this way, the keyboard input is just 
another location in memory, and the mode is sometimes referred to 
as the parallel I/O mode. 

To implement a parallel keyboard input port we will use the fol
lowing: 

• A device select pulse, DS, for the memory location of the key
board input port. 

• A three-state buffer/driver connecting the keyboard to the data 
bus when the device select pulse occurs, but disabling it other
wise. 

• A means for the keyboard to communicate with the computer; 
that is, the keyboard must inform the computer that a key has 
been depressed. 

• A means to store the byte of ASCII code until the computer 
reads it into the accumulator. 

Techniques for generating a device select pulse were described in 
Chapter 11. A single Intel 8212 8-bit I/O will be used. In this appli
cation the 8212 will be used for an input port. (It makes a suitable 
output port also, but it is more expensive than a 74100, for example.) 
In its input mode, the main advantages of the Intel 8212 are that it 
has some control-signal logic circuitry available on the chip, it has 
the ability to latch the input data, and it has three-state outputs that 
can be connected to the data bus. 

The logic diagram of the 8212 is shown in Fig. 13-8. We may 
divide the c~circuitry into three subsystems; the control logic, in
cluding the DS1, DS2, MD, STB, CLR inputs and the INT output; 
the eight data latches connected to the eight data inputs; and the 
eight three-state buffer / drivers. Consider first the control logic 
shown in Fig. 13-8. The CLR input will be tied to logic one to dis
able it, although it might be connected to the system RES line to 
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Fig. 13-8. Logic diagram of Intel 8212 I/O Port. 

bring up the inputs in a known logic-zero state. The MD input is 
tied to logic zero for the input mode. This step disables the top AND 

gate in the cluster of two AND gates and one OR gate, and it enables 
the lower AND gate in this same cluster. Then the STB (for strobe) 
line is connected directly to the C inputs of the data latches. When 
the STB line is at logic one, then the Q outputs of the latches follow 
the D inputs. When the strobe line goes to logic zero, then the data 
are latched; that is, they are stored at the Q outputs of the eight data 
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latches. Associated with most ASCII keyboards is a strobe signal 
that consists of a positive pulse that occurs with each key depression 
and only occurs when the ASCII word is available at the parallel 
output of the keyboard. Many keyboards produce only a 7-bit word. 
Thus, a single key depression results in the ASCII data being stored 
in the 8212, with one bit (bit seven) left over. A 10-microsecond 
strobe pulse will be adequate for our purposes. 

Note that the STB input is also connected to the C input on the 
service request flip-flop. The trailing edge of the strobe latches a 
logic zero into the Q output of the flip-flop because the D input of 
the service request flip-flop is connected to logic zero. Following the 
Q output of the flip-flop, we see that it is inverted, oRed, and in
verted again to produce a logic zero output at INT whenever the 
strobe pulse occurs. The output at the INT pin on the 8212 is used 
to communicate with the microcomputer, informing it that data is 
available. It might be used to cause an interrupt (either IRQ or 
NMI ), and the interrupt vector would point to a routine to read the 
keyboard with an LDA KEYBOARD instruction. Assume that KEY
BOARD is a symbol for the address of the memory location of this 
input port. 

Continuing, we note that the address of KEYBOARD appears on 
the address bus during the third cycle of the LDA KEYBOARD in
struction. The address lines must be decoded to produce a device 
select pulse, DS, for this address, and this device select pulse goes 
to pin DSI on the 8212. The R/W line is connected to the DS2 pin 
on the 8212. Thus, at the same time that DS1 is brought to logic 
zero by the device select pulse, the DS2 pin is a logic one. When 
DS1 is at logic zero and DS2 is at logic one, then the three-state 
buffers are enabled, as an examination of Fig. 13-8 will reveal. This 
action places the byte of data on the data bus. 

Also observe that when DSI is at logic zero and DS2 is at logic 
one, then the set input of the service request flip-flop is at logic 
zero, setting it. A logic zero appears at the Q output of the service 
request flip-flop, clearing the interrupt request. In other words, INT 
goes to logic one. The data has now been read and the interrupt has 
been cleared, freeing the computer to go on its way until another 
key is depressed and the entire process is repeated. 

In Fig. 13-9, we show a complete 8-bit input port utilizing the 
8212. The device select pulse, DS9FFF, is assumed to originate in 
the 74LS154 in Fig. 11-9. The R/W line comes from the 6502, while 
the keyboard strobe and the data originate in an ASCII encoded 
keyboard. Obviously there are other uses for an input port such as 
this, other than obtaining information from a keyboard. The data in
put pins might be connected to two 7490s in a decade counter config
uration. A positive strobe might be generated by the same circuit 
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Fig. 13-9. Intel 8212 used as 8-bit Input Port. 

that gates the pulses going to the first 7490 counter. When the gate 
closes, counting stops, a strobe occurs, and the data at the Q outputs 
of the 7490s is latched into the 8212. This would make a simple 
two-digit bcd pulse counter or timer. You can use your imagination 
to think of some other applications. 

Let us produce the software necessary to utilize this input port. 
First assume that the INT is connected to the IRQ pin on the 6502. 
Note that the IRQ and NMI pins both require a pull-up resistor, but 
these are already connected on the AIM 65, KIM-1 and SYM-1 sys
tems. The program offered in Example 2 illustrates how the input 
port would work in the interrupt mode. The main program is simply 
intended to simulate a much longer, more complex, and more useful 
program. The main program in Example 2 outputs the contents of 
the location with address $0000 to Port A, and in the experiments 
section of this chapter it will be used to test the input port. The main 
program is also an infinite loop. The interrupt routine reads the key
board and stores the result in the location whose address is $0000. 
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Thus, the keyboard data is passed to the main program by using 
this zero-page memory location. Of course, the interrupt vector 
(IRQ) must point to $0300 in order for the program to work. The 
same program could be used with INT connected to the NMI pin if 
the NMI interrupt vector points to $0300. The hardware in Fig. 13-9 
and the software given in Example 13-2 constitute an intermpt 
driven keyboard. 

There is another mode in which an input port may be operated 
without using interrupts. If the INT output is connected to the D7 
input of our I-bit port described in Fig. 13-3, then the strobe pulse 
will cause this input to go to logic zero. Assume another device select 
pulse, DS9FFE, for example, is used to read this I-bit input port. 
When it shows a logic zero in bit seven, then the computer knows 
that a key has been depressed and it should read the input port. In 
this case, the software is said to poll the keyboard. After the program 

Example 2: Software for Interrupt Driven Input Port 

$0000 = DATA 
$1700 = PAD; Pori A, an output port 
$1701 = PADD; Part A data direction regisler 
$17FE = IRQl; Contains $00 
$17FF = IRQH; Contains $03 
$9FFO = KYBD; Keyboard input port 

0200 A9 FF MAIN LOA $FF 
0202 80 01 17 STA PADD 
0205 A5 00 LOOP LOA DATA 
0207 8D 00 17 STA PAD 
020A 4C 05 02 JMP LOOP 
0300 AD FF 9F IRQST lOA KYBD 
0303 85 00 STA DATA 
0305 40 RTI 

Initialize Port A to be an outpul 
port 
Get data from address $0000. 
Store it in lhe output port. 
loop here unless interrupt occurs. 
Get data from keyboard input port. 
Store it at address $0000. 
Return from interrupt. 

reads the input port, INT goes to logic one, indicating that the key
board has been serviced. The software for this mode of operation is 
given in Example 3. Note that two distinct device select pulses are 
required. 'Ve have placed the polling software in a subroutine. 
Again, our main program is not to be taken literally. Rather. it is in
tended to simulate a more useful program. The subroutine INPUT 
stores the keyboard data in Port A. We will use this feature to test 
the program and the ports. 

Example 3: Program to Poll Keyboard Input Port 

$1700 = PAD; Port A, an output port 
$1701 = PADD; Port A data direction register 
$9FFE = POll; Bit seven at logic zero indicates a keystroke 
$9FFF = KYBD; Keyboard input port 

0200 A9 FF 
0202 8D 01 17 

MAIN LDA $FF 
STA PADD 

Set up data direction for Port A. 
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0205 20 00 03 HERE JSR INPUT Jump to test if data from keyboard is 
ready. 

0208 4C 05 02 JMP HERE 
0300 2C FE 9F INPUT BIT POLL Is bit seven at logic zero? 
0303 30 FB BMI INPUT No; loop here until it is zero. 
0305 AD FF 9F LOA KYBO Yes; read the keyboard. 
0308 80 00 17 STA PAD Output result 10 Pari A. 
030B 60 RTS 

EXPERIMENT NO. 

Step 1 

Connect a 74LS367 three-state buffer/driver as shown in Fig. 
13-10. You can do this on a breadboard other than the AP Unicard. 

+5V 

16 

r_....:l<1G 74lS367 
GATE 

INPUT 

Step 2 

150 () 

Fig. 13-10. Circuit to demonstrate a 
Three-State Buffer/Driver. 

Connect the gate, G, input to ground; then try connecting the in
put pin to logic one (+5 V) and next to logic zero (GND). What 
do you expect the LEDs will show? 

(The top LED should glow when the input is connected to logic 
zero, because then current can How from the +5-volt source through 
the LED and through the output pin of the 74LS367 to ground. The 
lower LED lights when the input is at logic one.) 
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Step 3 

Now connect the gate, G, to logic one (+5 V) and repeat Step 2. 
What do you expect to observe? Refer to the truth table in Table 
13-2 to explain your observations. 

(Both LEDs will be lit since there is no longer a path to +5 V 
(through pin 3) or GND through the 74LS367.) 

EXPERIMENT NO. 2 
Step 1 

In this experiment we will construct a I-bit input port on the AP 
Unicard. The control-logic circuit will be similar to the one shown 
in Fig. 13-3. However, since the board is becoming crowded we will 
use a slightly modified version shown in Fig. 13-11. Note that the 
74LSOO NAND gate is used as an inverter. Connect this circuit. The 
74LS02 and 74LSOO are already on the breadboard. 

Step 2 

INPUT 

+5V 

16 

>--t..:....-_- BIT SEVEN 
OF THE 
DATA BUS 

8 

= GND 

Fig. 13-11. One-Bit (Bit Seven) Input Port. 

Test the input port to see if it works. Connect the input (pin 2) 
of the 74LS367 to logic zero. Then load and execute the following 
program. 

0200 2C FF 9F 
0203 10 FB 
0205 00 

START BIT PORT 
BPL START 
BRK 

Test bit seven of the input port. 

If bit seven = zero, branch back. 
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What do you expect to observe? 

(If bit seven is at logic zero, then the program should stay in the 
loop. Otherwise, it will exit the loop and jump to the monitor, light
ing the display.) 

Step 3 

While the program is running, change the input pin from logic 
zero to logic one. What do you observe? 

(You should observe that the program jumps to the monitor as soon 
as the input pin is lifted from its ground connection.) 

Step 4 

With the input pin connected to logic one, load and execute the 
same program as in Step 2, but with the BPL instruction replaced 
by a BMI instruction (op code $30). Describe and explain your 
results. 

EXPERIMENT NO. 3 

Step 1 

Breadboard the analog-to-digital converter circuit of Fig. 13-4. 
Use the I-bit input port constructed in the previous experiment; that 
is, connect the output of the LM311 comparator to the input of the 
74LS367, and connect the output of the 74LS367 to bit seven of the 
data bus. 

Step 2 

Connect a 10K potentiometer between + 12 V and ground, with the 
wiper of the potentiometer going to the analog input (pin 2) of the 
comparator. 

Step 3 

Write, load, and execute a short program to load $FF into the 
DAC output port, address $9FFO. Adjust the feedback resistor on 
the CA3140 to give about 10 V output at pin 6. Adjust the potentiom
eter to produce about 5 V at the pin 2 input of the comparator. What 
logic level should you measure with your voltmeter on the output 
of the comparator? 
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(You should measure a logic zero (zero voltage) since the output 
of the CA3140 exceeds the analog input to the comparator.) 

Step 4 

With the same program load $00 into the DAC output port. A 
simple program of the form: 

LDA $00 
STA DAC 
BRK 

will work. Now measure the output of the LM311 comparator. What 
do you expect to read? 

(Your voltmeter should read +5 V because the output from the 
CA3140 is less than the potentiometer input to the comparator. Do 
not proceed to the next parts of this experiment unless your experi
ments this far have been successful.) 

Step 5 

Load and execute the following program: 

0200 AS 00 
0202 8D FO 9F 
0205 E6 00 
0207 4C 00 02 

START LDA DIGIT 
STA DAC 
INC DIGIT 
JMP START 

What do you suppose is the output of the CA3140? 

(It should be a ramp waveform, since the input to the DAC is con
tinually being incremented. If you have an oscilloscope, connect it 
to the output of the CA3140 (pin 6) and observe this waveform. A 
photograph of our results is shown in Fig. 13-5.) 

Step 6 

Connect the oscilloscope to pin 7 of the comparator. Describe and 
explain what you observe. Compare it with the photograph in Fig. 
13-6. 

EXPERIMENT NO. 4 

Step 1 

In this experiment, we will make some final tests of the analog-to
digital circuit. With the same circuit used in Experiment No.3, load 
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and execute the program given in Example 1. Connect the 110 board 
to the application connector. 

Step 2 

With the program running, reduce the potentiometer setting until 
the voltage at pin 2 of the LM311 voltage comparator is zero. If you 
cannot make this voltage zero with the potentiometer, connect pin 2 
directly to ground. The LEDs at Port A should all be out, although 
in certain cases the op amp might have some offset voltage that will 
cause a one or a two to appear at Port A. 

Step 3 

Increase the potentiometer setting. What happens to the LEDs at 
Port A? 

(You should observe that as the potentiometer setting is increased 
the number represented by the glowing LEDs at Port A increases. 
It should be possible to increase the potentiometer until $FF appears 
on the Port A LEDs. You have now successfully completed the AID 
converter. Congratulations! The proportionality between the analog 
voltage level and the digital number is determined by the feedback 
resistor, R, in the operational amplifier circuit. For a much faster 
conversion scheme, refer to Chapter 14.) 

EXPERIMENT NO. 5 

Step 1 

In this experiment we will test the 8212 110 chip. There will be 
no room on the AP Unicard, if you have built the DAC and the AID 
converter on this board. If you do not want to dismantle that cir
cuit, you will need another breadboard. In any case, you will need 
the device select circuitry of Fig. 11-9. Connect the DS9FFF device 
select pulse to the DS1 pin of the 8212 and connect the R/W line 
to DS2. Connect the output pins of the 8212 to the data bus, using 
the expansion connector as before. Connect the IRQ pin on the ex
pansion connector to the INT pin on the 8212. 

Step 2 

Breadboard the circuit of Fig. 9-9. It is used to produce a strobe 
pulse. Instead of connecting the Q output of the 74121 to the IRQ 
line, connect the Q output (pin 6) to the strobe input of the 8212. 
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Step 3 
With suitable jumper wires, connect the DI inputs of the 8212 to 

either +5 V or ground, producing logic one or logic zero signals, 
respectively. 

Step 4 
Load and execute the following program: 

0200 A9 FF MAIN LDA $FF Initialize Port A to be an output 
0202 8D 01 17 STA PADD port. 
0205 A5 00 LOOP LDA DATA Get data from address $0000. 
0207 8D 00 17 STA PAD Store it in the output port. 
020A 4C 05 02 JMP LOOP Loop here unless interrupt occurs. 
0300 AD FF 9F IRQST LOA KYBD Get data from keyboard input port. 
0305 40 RTI Return from interrupt. 

What do the Port A LEDs indicate? 

(They should show whatever random data happened to be at ad
dress $0000.) 

Step 5 
Note the logic levels you have set up at the inputs to the 8212; 

then strobe the 8212 with the circuit of Fig. 9-9. What do you ob
serve at the Port A LEDs? 

(You should observe that they show the same logic levels as you in
put to the 8212. If they do not, check your interrupt vector and try 
again.) 

Step 6 
Now change the inputs to the 8212 by connecting some to +5 V 

and some to ground. What do you observe at the Port A LEDs? 

(You should observe no change at these LEDs because the data has 
not yet been strobed into the outputs, nor has the 8212 been read.) 

Step 7 
Strobe the 8212 and observe that the Port A LEDs indicate the 

same data as are found at the inputs on the 8212. 

Step 8 
Design your own experiment to test the polled-service routine 

described in Example 3. 
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CHAPTER 14 

Applications 

INTRODUCTION 

In this chapter we have collected several articles, already pub
lished or in press, that will give you an idea of what a finished micro
computer project is. Of course, the projects described represent only 
a small sample of the possibilities, and the projects would generally 
be regarded as "minimal" designs. That is, much more elaborate and 
sophisticated instruments and programs are possible. The articles 
also reflect the author's interests. 

An important source of information for 6502 software and hard
ware is: 

COMPUTE! 
P.O. Box 5406 
Greensboro, NC 27403 

Articles about 6502-based designs are often published in other jour
nals as well. 

Although the application programs described in this chapter were 
written for the KIM-I, they may be easily converted to run on other 
microcomputers once you understand both the basic elements of 
programming and the features of your microcomputer. We begin by 
giving a brief description of each application; the articles then fol
low to complete the chapter. 

• "Digital-to-Analog and Analog-to-Digital Conversion Using the 
KIM-I." This article first appeared in MICRO, December 1977-
January 1978, page 11. It is reprinted with permission. The 
article gives several experiments with the Motorola 1408L8 digi-
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tal-to-analog converter. It also describes a storage scope appli
cation. The storage scope program and interface have been cor
rected and improved by including suggestions made in the arti
cle "Storage Scope Revisited," by Joseph L. Powlette and Don
ald C. Jeffery in the December 1978-January 1979 issue of 
MICRO. 

• "Employing the KIM-l Microcomputer as a Timer and Data 
Logging Module." This article first appeared in MICRO, Febru
ary-March 1978, page 3. It shows how to measure the times at 
which a series of events occur, and how to store the times of 
the events for later display. 

• "Employing the KIM-l as a Precision Keyer and Automatic 
Message Sender." This article is to appear in 73 Magazine. The 
article is of particular interest to amateur radio operators. Code 
speed is controlled digitally, and the program has the ability to 
send three standard code messages automatically. 

• "Catching Bugs With Lights-A Program Debugging Aid." 
Kilobaud Microcomputing intends to publish this article. Some 
of the interfacing techniques introduced in the last few chapters 
of this book are used to display the contents of the various reg
isters of the 6502. 

• "Lunar Occultation of a Star." This program was written by Dr. 
Thomas D. Strickler, Jesse Maupin, and John Drake of Berea 
College. A technique to measure the precise time at which an 
analog voltage is changing is described. Although they were in
terested in timing occultations of stars by the moon, the tech
niques are applicable to a number of scientific problems, so the 
article is included. 

DIGITAL·ANALOG AND ANALOG-DIGITAL 
CONVERSION USING THE KIM-1 * 

A Motorola 1408L8 8-bit digital-to-analog converter is connected 
as shown in Fig. 14-1. (The l408L8 is available from James Elec
tronics, 1021 Howard Ave., San Carlos, CA 94070, as are the op amps 
used in these experiments.) The PAD port of the KIM -1 is used to 
provide the digital input to the 1408L8. The analog output of the 
1408L8 is a current sink at pin 4, which we converted to a voltage 
by means of the RCA CA3140 operational amplifier. The feedback 
resistor R is adjusted to give the desired voltage output. For exam
ple, a value of about 6500 ohms for this resistor results in a voltage 
range from 0 volts when PAD is 0000 0000 to 10 volts when PAD is 
UU Ull. 

°Copyright © 1977, The Computerist, Inc., All rights reserved. 
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1000 
n 

15 

+5V 

13 150 n 
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16 
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-12V 

IN746 

TO SCOPE 
r----'Vvfi',--....,....-.. VERTICAL INPUT 

r-'V\iIr-1~-TO PB7 

ANALOG 
IN 

1 

1000 
() 

~ TO SCOPE SYNC 

IN751 

Fig. 14-1. Circuit diagram for Digital-to-Analog Converter and Analog-to-Digital Converter. 
See text for values of R; 1 N746 is 3.3 V zener diode and 1 N751 is 5.1 V zener diode. 

For the first experiment do not connect the second op amp; simply 
connect the output of the first op amp to an oscilloscope as shown. 
Load the program given in Example 1. 

Example 1: Program to Generate a Ramp Voltage Waveform 

0300 A9 FF START LOA $FF 255 in accumulator. 
0302 80 01 17 STA PAOO Port A is the output port. 
0305 EE 00 17 BACK INC PAD Increment number in PAD. 

0308 4C 05 03 JMP BACK I ncrement in a loop. 

Running this program should cause a ramp waveform to be observed 
on the oscilloscope screen. A close examination of the ramp will 
show that it consists of 28 = 256 steps, rather than a straight line. 

Next, connect the 531 op amp. It acts as a comparator. It compares 
the voltage from the output of the first op amp (which we shall call 
the digital signal) with a voltage from some source to be applied to 
pin 3 (which we shall call the analog signal). The output of the 
531 is connected to PB7 on the KIM. If PB7 = 1, the analog signal 
is greater than the digital signal. If PB7 = 0, the analog signal is less 
than the digital signal. The digital signal is, of course, produced by 
the contents of PAD. 

A Rowchart showing what we intend to do is shown in Fig. 14-2, 
and the corresponding program is given in Example 2. Output port 
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Fig. 14-2. Flowchart for Analog.to
Digital Converter: Ramp 

Approximation. 

PAD is set to zero. If the analog signal is positive, then PB7 = l. 
PAD is now incremented until the comparator indicates that the ana
log signal is less than the digital signal, Le., PB7 = O. At that instant, 
the digital and analog signals are the same to within one bit, the 
least significant bit, in PAD. The contents of PAD are then displayed 
and the cycle continues. 

If the feedback resistor is adjusted so that a value of PAD = 25510 

= $FF 16 produces a voltage of 2.55 volts, then we have constructed 
a simple digital voltmeter with a full-scale reading (in hex) of 2.55 
volts. A simple program to convert from hex to base ten would make 
the meter easier to read. 

The ramp approximation is quite slow, and there is a faster tech
nique known as "successive approximation." It works as follows: the 
most significant bit in the DAC is set to one, and all the others are 
set to zero. If the comparator indicates that the analog signal is 
greater than the digital signal, then the highest bit is made zero, and 

Example 2: Program for Analog-to-Digital Converter (Ramp Approximation) 

0300 A9 FF START LOA $FF 255 in accumulator. 
0302 80 01 17 STA PAOO Make Port A an output port. 
0305 A2 00 AGN lOX $00 Start PAD at zero. 
0307 8E 00 17 RAMP STX PAD Output value of X register. 
030A AD 02 17 LOA PBO Read Port B. 
0300 10 04 BPl OISP Branch if bit 7 = O. 
030F E8 INX Increment X register. 
0310 4C 07 03 JMP RAMP Continue loop. 
0313 86 F9 OISP STX INH Put X into display register. 
0315 20 IF 1F JSR SCAN OS Use KIM·l display subroutine 
0318 4C 05 03 JMP AGN and start again at zero. 
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the next lower hit is set to one and the test is repeated. This iterative 
process is repeated until all eight bits have been tested, starting with 
the MSB and ending with the LSB. The flowchart shown in Fig. 14-3 
indicates how this will be accomplished. 

This analog-to-digital conversion scheme will be used in a program 
which digitizes 256 points on a waveform and then stores the results, 
to be displayed on an oscilloscope at a convenient time and with as 
many repetitions as desired. This program is useful for examining 
slow waveforms with an oscilloscope with a low persistence screen, 
for example, ECG waveforms, and it is useful for examining non
periodic waveforms, such as a one-shot impulse from an accelerom
eter. The program has triggering built in, and the output scan por
tion synchronizes the oscilloscope with a SYNC signal, turning an 
inexpensive scope into something more useful. Flowcharts for the 
storage scope program are presented in Figs. 14-4 and 14-5. 
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PAD = 8016 = 100000001 

PBZZ = 8016 = 100000001 

NO 

PAD = PAD - PBZZ 

LOGICAL SHIFT RIGHT PGZZ 
(SHIFTS ALL BITS ONE BIT 
RIGHT AND ZERO BIT IS 
SH IFTED INTO CARRY BIT) 

Fig. 14-3. Flowchart for Successive 
Approximation Analog-to-Digital 

Conversion program. 



Fig. 14-4. Flowchart for Storage 
Scope Program. 

X=X+! 
WAIT 
FOR TIMER 

A short description of the behavior of the circuit and program 
follows. The experimenter chooses the desired trigger level and loads 
this into location $0306. When the analog signal is greater than this, 
the comparator makes PB7 go high and the scan begins. The sam
pling rate and the scan time are determined by the number loaded 
into the timer and the timer used, locations $0314 and $0316, respec
tively. It takes about 300 microseconds to digitize, so there is no 
point in choosing time intervals smaller than this. The X register is 
used as an index to identify each of the 256 points on the scan. After 
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Fig. 14-5. Flowchart for Waveform 
Display program. 

the timer is started, the analog signal is digitized and the timer is 
watched until it is finished. The X is then incremented and a new 
point is digitized until all 256 points are finished and stored in 
TABLE,X. 

The X is then zero again. This entire process will repeat unless the 
''1'' key is depressed, in which case the program displays the data 
on the oscilloscope, connected as before to the output of the first 
op amp. The display will repeat, complete with a SYNC signal out
put from PBO, until the program is halted. In our case we loaded the 
vector $17FA and $17FB with the starting address of the program 
( $0300) so a depression of the ST key caused the entire program to 
start over. 

A listing of the program is shown in Example 3. Notice that the 
data is stored in T ABLE,X located in page two of memory, PGZZ is 
at location $0000, the trigger level is in $0306, and the scan time 
variable is in $0314 and $0316. The scan time should not be shorter 
than 300 microseconds. As far as display is concerned, we found 
that a sweep rate of 200 to 500 microseconds per cm gave good re
sults. Two photographs, showing the results obtained by converting 
two 14-Hz waveforms to digital levels and then displaying them on 
an oscilloscope with the storage scope program, are shown in Figs. 
14-6A and B. 

A few other comments may be in order. First, most of the ideas 
for this project were obtained in a KIM workshop offered by Dr. 
Robert Tinker. The software implementation is the author's work. 
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(A) Sine Wave. 

(8) Ramp Wave. 

Fig. 14-6. Storage Scope reconstruction of 14·Hz Sine and Ramp Waveforms. Photographs 
made by Joseph L. Powle"e and Donald C. Jeffery of Morav;an College. 

There are some obvious improvements, such as a sample-and-hold 
device between the analog source and the comparator or a faster 
approximation routine. These improvements are left for the reader 
to implement. Fast AID converter circuits can be difficult to adjust. 
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I am indebted to Joseph L. Powlette and Donald C. J efIeryl of 
Moravian College for pointing out the necessity for the high-speed 
531 op amp, and for providing the photographs. 

Example 3: Program for Storage Scope 

0300 A9 FF BEGIN LOA $FF Initialize Port A to be an output port. 
0302 80 01 17 STA PAOO 
0305 A9 10 START LOA TSET Trigger voltage set. 
0307 80 00 17 STA PAD 
030A A2 00 LOX $00 I nitialize X register. 
030C EA NOP 
0300 EA NOP 
030E AD 02 17 TRIG LOA PBO Test PB7 for trigger level. 
0311 10 FB BPL TRIG Wait if PB7 = O. 
0313 A9 CO STiME LOA $CO Set scan time here. 
0315 80 OS 17 STA TIMER Select interval timer. 
0318 A9 80 LOA $80 Start digitize sequence. 
031A 85 00 STA PGZZ Store initial value. 
031C 80 00 17 TEST STA PAD Output value. 
03 IF AC 02 17 LOY PBD Test PB7. 
0322 30 03 BMI FWRD Branch if PB7 = 1. 
0324 38 SEC Clear borrow flag. 
0325 E5 00 SBC PGZZ Subtract bit seven. 
0327 46 00 FWRO LSR PGZZ Set PGZZ for next lower bit. 
0329 BO OS BCS OUT Out of digitize loop if finished. 
032B 65 00 AOC PGZZ Set next lower bit = 1. 
0320 4C 1C 03 JMP TEST Return to test all lower bits. 
0330 80 00 17 OUT STA PAD Final approximation in PAD 
0333 90 00 02 STA TABLE,X and in TABLE(X) in page 2. 
0336 E8 INX Bump table index. 
0337 FO 08 BEQ DISPLY Go to display if table is complete. 
0339 AD 07 17 CHEK LOA TCHEK Test if timer is finished. 
033C 10 FB BPL CHEK If not, wait in loop. 
033E 4C 13 03 JMP STIME Digitize another point. 
0341 20 6A IF DISPLY JSR GETKEY Is key "1" depressed? 
0344 C9 01 CMP $01 
0346 FO 03 BEQ SYNC Yes. Display the data. 
0348 4C OS 03 JMP START No. Return to start. 
034B A9 01 SYNC LOA $01 Set up PBO as SYNC output pin. 
0340 80 03 17 STA PBDD 
0350 A2 00 LOX $00 Initialize X to display table. 
0352 AD 02 17 RPT LOA PBD Toggle PBO for SYNC. 
0355 49 01 EOR $01 Signal to scope. 
0357 80 02 17 STA PBO 
03SA BO 00 02 SCAN LOA TABLE,X Output TABLE(X) for 
0350 80 00 17 STA PAD display on scope. 
0360 E8 INX Increment X register. 
0361 DO F7 BNE SCAN Continue until all points are out, 
0363 4C 52 03 JMP RPT then repeat. 

l"Storage Scope Revisited," Powlette, Joseph L., and Jeffery, Donald C., 
MICRO, December 1978-January 1979, p. 29. 
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EMPLOYING THE KIM·1 MICROCOMPUTER AS A 
TIMER AND DATA LOGGING MODULE* 

The interval timers on the 6530 on the KIM -1 microcomputer pro
vide a convenient way to measure the time between two or more 
events. Such events might include the start and end of a race, the 
exit of a bullet from a gun and its arrival at a measured distance 
along its trajectory, the interruption of light to a series of phototran
sistors placed along the path of a falling object, an animal arriving 
at a feeding station, cosmic rays striking a detector, etc. Some of 
these measurements will be described in more detail below. Each 
event must produce a negative pulse that the microcomputer detects. 
The microcomputer also records the time at which the event oc
curred. The time is stored in memory, and later it may be displayed 
on the six-digit KIM-1 display. 

The data logging, timer, and display programs are listed in Exam
ples 4, 5, and 6, respectively. The programs must be used together 
for the applications described in this article, but each might be used 
with other applications, for example, pulse generators, Geiger count
ers, temperature logging, etc. The events to be timed must produce 
either a one-shot pulse (positive-zero-positive) whose duration is at 
least 50 microseconds, or a zero-to-positive transition which must be 
reset to zero before the next event. These signals are applied to pin 
PAO accessed on the KIM-1 applications connector. The programs 
may be easily modified to detect positive pulses. 

The first pulse starts the timer which continues to operate on an 
interrupt basis. The time at which the first pulse occurs is not re
corded by the data logging program since it corresponds to t = O. 
Successive pulses cause the data logging program to store the six
digit time counter in memory. The number of events (not counting 
the first event), N, to be timed must be stored in location $0003. 
Remember to convert the number of events, N, to base 16 before 
entering it in memory. As the program is written, N must be less 
than 75 = $4B. 

The function of the timer program is to load the interval timer, 
increment the six-digit time counter, and return to the data logging 
program. At the end of each timing period the timer causes an inter
rupt to occur (pin PB7 on the application connector must be con
nected to pin 4 on the expansion connector), the computer jumps 
to the timer program, does its thing, and returns to the main data 
logging program to wait for events. 

Table 14-1 lists several timing intervals which are possible and the 
numbers which must be loaded into the various timers to produce 

"Copyright © 1978, The Computerist, Inc., All Rights Reserved. 
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Table 14·1. Timing Intervals for Example 4 

Time Interval Value Address Measured Interval 0/0 Error 

100 microsec 49 170C 99.98 m icrosec 0.02% 
1 millisec 7A 1700 0.9998 millisec 0.02% 

10 millisec 9C 170E 10.007 millisec 0.07% 
100 millisec 62 170F 100.5 millisec 0.5% 

the given interval. For example, if one wishes to measure time in 
units of 100 microseconds, then $49 must be stored in the divide-by
one counter whose address is $I70C. In this case. the numbers which 
appear on the display during the display portion of the program 
represent the number of 100 microsecond intervals between the first 
event and the event whose time is being displaved To put it another 
way, multiply the number on the display by 0.0001 to get the time 
in seconds. The other possibilities listed in the table are treated in 
the same way. 

When all N events have been logged, the program automatically 
jumps to the display program. '\Then one is ready to record the data, 
key "1" on the keyboard is depressed. The time of each event, ex
cepting the first which occurred at t = 0, is displayed on the six-digit 
readout for several seconds before the display moves to the time or 
the next event. This gives the experimenter time to record the data 
on paper. If more time is required, increase the value of the number 
stored in location $0289. 

Example 5 also lists the measured time interval and gives the per
cent error between the stated interval (say 100 microseconds) and 
the actual measured interval (99.98 microseconds). The measure
ments were made by connecting a frequency counter ( PASCO Sci
entific Model 8015) to pin PB7 while the program was running and 
after the first event had started the timer. If greater accuracy is re
quired for the lO-millisecond and 100-millisecond intervals, then 
experiment with putting NOP instructions between the PHA instruc
tion and the LDA TIME instruction in the timer program. 

The simplest application for the program is a simple stopwatch 
with memory. Any suitably debounced switch can be used. See 
pages 213 and 280 in CMOS Cookbook by Don Lancaster, published 
by Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapo
lis, Indiana 46268 for several suitable switching circuits. The circuit 
of our Fig. 9-9 may also be used to construct a stopwatch. 

Being a physics teacher, I originally designed the program to col
lect data for an "acceleration of gravity" experiment in the introduc
tory physics lab. The technique may be applicable to other prob
lems, so it is described herein. Nine phototransistors (Fairchild FPT 
100 available from Radio Shack) were mounted on a meter stick at 
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10-cm intervals. Two incandescent (do not try Huorescent lighting) 
150-watt Hood lamps provided the illumination. The interface circuit 
is shown in Fig. 14-7. 

The 555 timer serves as a Schmitt trigger and buffer which pro
duces a negative pulse when an object passes between the light and 
the phototransistor. The 500K potentiometer is adjusted so that an 
interruption of the light to any of the phototransistors increases the 
voltage at pin 2 of the 555 from about 1.5 volts to at least 3.5 volts; 
this is a very simple adjustment that should be made with a vtvm or 
other high impedance meter, not a vom. 

In the case of a simple pendulum, the relationship between the 
period and the amplitude can be investigated by allowing the 
pendulum to "run down" while logging the times when the bob in
terrupts the light to a single phototransistor. With only one photo
transistor the timer-data logging program can also be used as a ta
chometer, if a rotating system of some kind is involved. 

Lancaster, in the CMOS Cookbook, describes a tracking photocell 
pickoff which could be used in conjunction with the program for out
door races and other sporting events. See page 346 in the "Cook
book." A simple light-beam-phototransistor system could be placed 
in a cage, and the apparatus would record the times at which an ani
mal interrupted the beam, giving a measurement of animal activity. 

If you want to measure the muzzle velocity of your riHe or hand
gun, you will have to be more creative. First, I would modify the 

+5V 

8 
2 

500K PAO 

555 

6 

.OlmF 
I 
I 
I 

~ 
Fig. 14-7. Interface circuit for Timer·Data Logging program. Up to ten phototransistors 

(FPT·l00) may be connected in series as indicated by dashed line. 
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program so that one pin, say PAO, is used to start the timing while 
another pin, say PBO, is used to stop the timing. This can be accom
plished by changing the instructions at addresses $0226 and $022D 
in Example 4 from AD 00 17 to AD 02 17. Then I would use a fine 
wire foil to hold the clock input of a 7474 Hip-Hop low until the wire 
foil was broken by the exit of the bullet from the gun. The Q output 
going high would start the timing, so it would be connected to PAO. 
To end the timing, one could use a microphone to detect a bullet 
hitting the backstop. Of course, the microphone signal would have 
to to be amplified and used to clock the other Hip-Hop on the 7474 
to signal the second event. Another approach would have the arriv
ing bullet smash two pieces of aluminum foil together, closing a 
switch. The distance between start and stop should be at least 10 
feet. Please be extremely careful with all muzzle velocity measure
ments. 

$0000 = LOW 
$0001 = MID 
$0002 = HIGH 
$0003 = N 
$0053 = LO 
$0053 = MI 
$OOA3 = HI 
$00F9 = INH 
$OOFA = POINTl 
$OOFB = POINTH 
$0271 = KEY 
$1700 = PAD 
$1 F6A = GETKEY 
$lFlF = SCANDS 

0200 78 
0201 F8 
0202 A2 00 
0204 A9 50 
0206 80 FE 17 
0209 A9 02 
020B 80 FF 17 
020E A9 99 
0210 85 00 
0212 85 01 
0214 85 02 
0216 AD 00 17 
0219 29 01 
021B DO F9* 

0210 AD 00 17 
0220 29 01 
0222 FO F9* 
0224 58 18 
0226 00 EA 
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Example 4: Data Logging Program 

INITIAL SEI Disable interrupt. 
SED Set decimal mode for addition. 
LOX $00 Set X reg ister to zero. 
LOA $50 Locate interrupt'vectar $0250 at 
STA 17FE addresses $17FE and $17FF. 
LOA $02 
STA 17FF 
LOA 99 Clear counter by storing 99 
STA LOW in the three two·digit memory 
STA MID locations of the counter. 
STA HIGH 

START LOA PAD Read input pin PAO. 
AND $01 Logical AND with input pin. 
BNE START If pin is 1, loop to START; if 0, 

continue. 
FLIP LOA PAD Read input pin again. 

AND $01 Logical AND with input pin. 
BEQ FLIP If pin is 0, loop to FLIP. 
CLI ClC Enable interrupt, go to interrupt 
BRK NOP to start timer, then return. 



0228 AD 00 17 CHEKI LOA PAD These instructions are the same 
0228 29 01 AND $01 as the START and FLIP sequence. 
0220 DO F9* BNE CHEKI They sense a logic 0 to logic I 
022F AD 00 17 CHEK2 LOA PAD transition at pin PAO on the 
0232 29 01 AND $01 application connector. 
0234 FO F9* BEQ CHEK2 
0236 E8 INX Increment X for each point. 
0237 A5 00 LOA LOW Counter contents are stored in 
0239 95 03 STA LO,X a sequence of locations indexed 
023B A5 01 LOA MID by the X register. 
0230 95 53 STA MI,X 
023F A5 02 LOA HIGH 
0241 95 A3 STA HI,X 
0243 E4 03 CPX N Compare X to N. Return to CHEKI 
0245 DO EI BNE CHEKI if X is less than N. Otherwise, 
0247 78 DISPLAY SEI go to DISPLAY; disable interrupt. 
0248 4C 71 02 JMP KEY Jump to display program at $0271 

°To trigger on negative transitions change DO instructions to FO instructions 
and vice versa in the asterisked statements. 

$0049 = TIME 
$170C = TIMEX 
$0000 = LOW 
$0001 = MID 
$0002 = HIGH 

0250 48 
0251 A949 
0253 80 OC 17 
0256 A901 
0258 65 00 
025A 85 00 
025C A900 
025E 65 01 
0260 85 01 
0262 A900 
0264 65 02 
0266 85 02 
0268 68 
0269 40 

$0003 = N 
$0003 = LO 
$0053 = MI 
$ooA3 = HI 
$OOF9 = INH 
$ooFA = POINTL 
$OOFB = POI NTH 
$0200 = INIT 
$1707 = TIME 
$IF6A = GETKEY 
$IFIF = SCANDS 

INTRPT PHA 
LOA TIME 
STA TIMEX 
LOA $01 
ADC LOW 
STA LOW 
LOA $00 
ADC MID 
STA MID 
LOA $00 
ADC HIGH 
STA HIGH 
PLA 
RTI 

Push accumulator on stack. 
Start timer for 49, 6 cycles. 

Increment counter by adding I 
to the two low digits; 
and store result. 
Add carry from previous 
addition to mid digits. If 
carry occurs from the two mid 
digits, then add this to the 
two high digits. 

Pull accumulator from stack. 
Return to data logger. 

Enmpl. 6: Display Program 
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0271 
0274 
0276 
0278 
027A 
027C 
027E 
0280 
0282 
0284 
0286 
0287 
0288 
028A 
028B 
028C 
028E 
0291 
0294 
0297 
0299 
029C 
0290 
029E 
029F 
02Al 
02A4 
02A5 
02A6 
02A8 
02AA 
02AB 
02AE 

20 6A 1F KEY JSR GETKEY Jump to KIM·l keyboard monitor. 
C9 01 CMP $01 Test valid input. 
DO F9 BNE KEY If not, wait for input. 
A2 01 LOX $01 Initialize X register to index 
B5 03 NXPNT LOA LO data poi nfl. 
85 F9 STA INH Put in KIM· 1 display registers. 
B5 53 LOA MI 
85 FA STA POINTL 
B5 A3 LOA HI 
85 FB STA POI NTH 
8A TXA Save X while in subroutine by 
48 PHA pus hi ng it on the stack. 
AO 10 LOY $10 Time to display each point. 
98 AGN TYA Save Y while in subroutine by 
48 PHA pushing it on the stack. 
A9 FF LOA $FF 
80 07 17 STA TIME 
20 1F IF REPEAT JSR SCAN OS SCANOS is KIM·l routine which 
AD 07 17 LOA TIME displays data in $ooF9, $OOFA, 
30 03 BMI OVER and $OOFB. Repeated jumps to 
4C 91 02 JMP REPEAT SCANOS produce a constant display. 
68 OVER PLA Restore;Y register. 
A8 TAY 
88 DEY Decrement Y by 1 and repeat 
FOOl BEQ HOP display until Y = O. 
4C 8A 02 JMP AGN 
68 HOP PLA Restore X register. 
AA TAX 
E4 03 CPX N Compare X with N. If X is less 
FO 04 BEQ BEGIN than N increment X and display 
E8 INX next point. Otherwise, return 
4C 7A 02 JMP NXPNT to the beginning. 
4C 00 02 BEGIN JMP INIT 

EMPLOYING THE KIM·l AS A PRECISION KEVER 
AND AUTOMATIC MESSAGE SENDER* 

The short application program listed in Example 7 allows the 
KIM -1 to send any of three messages by pressing on'e of three keys, 
A, B, or C, on the KIM -1 keyboard, and with the interface circuit 
shown in Fig. 14-8 the KIM-1 becomes an electronic keyer as well. 
Any microcomputer with a 650X microprocessor and one of the 
MOS Technology PIA or VIA chips may be used with only minor 
modifications to the program. An important feature of the program 
is the ability to precisely set the code speed between 5 and 99 words 
per minute by entering the speed, in decimal, at storage location 
$0000 in memory. The program converts this decimal number to 
hexadecimal, then does a division routine to convert the speed to a 

"Copyright © 1979 by 73, Inc., Peterborough, NH, Courtesy of 73, Inc. All 
rights reserved. 
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+5V XMTR 

IRQ 

RELAY 

PAO )0-'1:.,:.0-4---'" X MTR 

DOT 1. 
Fig. 14-8. Interface circuit for Keyer and Message Sender. Some transmitters may require 
optional relay for keying. with 1 N914 diode across coil for protection against voltage 

transients. All grounds should be same as KIM· 1 ground. 

time duration of the basic dot element, and the interval timers on 
the 6530 PIA do the rest. 

Anyone who does much contest operating will realize how useful 
an automatic message sender is. Even the casual cw operator can use 
it for sending CQ or other routine messages. Code tests for novices 
can be programmed and sent at precisely 5 wpm by storing the en
tire test in memory. At 5 wpm at least nve minutes of code may be 
sent. For neld day (1977) we used a similar program to send CQ 
CQ CQ FD DE K~EI K~EI K as message A; then when a station 
responded we sent ___ DE K0EI UR 599 MO 599 MO K where 
the blank was the call of the station to be keyed by the operator, 
after which he hit key B to give the remainder of the message. It 
worked very smoothly with no discernible pause between the call 
letters and the message. (Don't try to look up the score because 
KOEI was not the call we used.) The operation of the keyer is exactly 
like most electronic keyers; holding the paddle in the dot position 
will cause a series of dots and spaces to be sent. Dashes occur with 
the paddle in the dash position, and the timing of all the characters 
is controlled by the program and the crystal on the microcomputer. 

Assuming the program has been loaded and the interface circuit 
connected, operation proceeds as follows. The code speed at which 
you wish to operate is loaded into storage location $0000. Any deci-
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mal number from 05 to 99 may be put into this location. Next the 
starting and ending addresses of each message must be loaded into 
memory. Since all three messages are in page two of memory, only 
the low-order bytes of the starting and ending addresses need be 
given. Suppose message A starts at $0200 and ends at $0251, message 
B starts at $0252 and ends at $0265, while message C starts at $0278 
and ends at $02FF. Then one would load $00, the starting address of 
message A, at location $0001; $52, the starting address of message B 
goes in at $0002; and $78 is entered at $0003. The respective ending 
addresses go into memory locations $0004 to $0006; that is, $51 goes 
into $0004, $65 goes into $0005, and $FF goes into $0006. 

How do you load the messages themselves? For each character 
you want to send you must load the corresponding hex number 
shown in Table 14-2. Suppose message A is to be "DE KOEI K," and 
is to start at $0200. Then you load the hex numbers $90, $40, $00, 
$BO, $FC, $40 $20, $00, $BO from locations $0200 through $0208; 
$00 goes into $0001 and $08 goes into $0004. 

Probably the best way to proceed is to first load the three messages 
including spaces, noting the starting and ending addresses of each 
message on a piece of paper. Then go back to page zero and put the 
starting and ending addresses in their proper locations (Table 14-3). 
Go to location $0300 and hit the GO button to start the program run
ning. Test to make sure everything is working before you put it on 
the air. 

Table 14-2. Morse Character to Hex Conversion Table 

Morse Morse Morse 
Character Hex Character Hex Character Hex 

A 60 5 10 Word space 00 
B 88 T CO SK. 16 
C A8 U 30 BT 8C 
D 90 V 18 AR 54 
E 40 W 70 / 94 
F 28 X 98 56 
G DO Y D8 CE 
H 08 Z C8 ? 32 
I 20 1 7C 
J 78 2 3C 
K BO 3 1C 
L 48 4 oc 
M EO 5 04 
N AO 6 84 
0 FO 7 C4 
P 68 8 E4 
Q D8 9 F4 
R 50 0 FC 
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Table 14-3. Storage Locations to Be Loaded by Operator 

Location Contents 

0000 Speed in decimal (words per minute) 
0001 Starting address of message A (low-order byte) 
0002 Starting address of message B 
0)03 Starting address of message C 
0004 Ending address of message A (low-order byte) 
0005 Ending address of message B 
0006 Ending address of message C 
ooFl $04 prevents interrupts while in the monitor program 

The flowchart shown in Fig. 14-9 and the comments in the pro
gram should give the reader a good feeling for the structure of the 
program. It consists of three principal parts, the main program, sub
routine SEND, and the interrupt routine, all of which have individ
ual flowcharts shown. Minor components are subroutine DIT which 
holds PBO at logic zero for the dot length followed by a logic one for 
the space length, subroutine DAR which holds PBO at logic zero for 
three dot lengths (1 dah = 3 dits) followed by a space, and sub
routine TIMER which loads the timer on the KIM-1 with the precise 
length of one dot and then waits for this time to elapse. 

We now look at some specific details of the program. The speed 
in words-per-minute must be converted to hex before the computer 
can do any further calculations with it. This conversion may best be 
explained with an example. Suppose we wish to operate at 20 wpm, 
so 20 is entered into location $0000. What we mean by 20 is 2 in the 
tens place and 0 in the ones place, but what the computer thinks 
this means is 2 in the sixteens place and 0 in the ones place. At least 
we agree on the ones place, so initially we mask the ones place out 
with an AND instruction; later we retrieve it and simply add it to the 
result of our decimal-to-hex conversion of the 2. To trick the com
puter into thinking the 2 in the sixteens place is the 2 in the tens 
place we intended it to be, we change the sixteen to a ten with this 
trick, 

The sixteens place divided by two is accomplished by one shift right 
instruction (LSR), while the sixteens place divided by eight is ac
complished by three shift right instructions. So, the two in the six
teens place is shifted right once, stored, shifted right two more times, 
and these two results are added. We now have 2 X 10 in the com
puter (in hex, of course) rather than 2 X 16. Adding the results from 
the ones place completes the conversion. 
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U sing the keying speed definitions from The Radio Amateur's 
Handbook, one can calculate that the dot length in milliseconds is 
1200/S where S is the code speed in words per minute. If the divide
by-1024 timer on the KIM-1 is used, one count corresponds to 1.024 
milliseconds. Converting the dot length to timer counts gives 

(1172) (494) 
TIME = -- base 10 = --hex S S 

where TIME is the number to be loaded into the divide-by-1024 
timer to give a code speed of S wpm. So the computer must divide 
S into 494. This is determined by successively subtracting S from 494 
until the result becomes negative. The number of subtractions is the 
quotient of 494/S. 

Pin PBO on the KIM-1 is used as the keying output from the com
puter. When power is applied to the computer and the reset button 
is depressed, PBO comes up in a logic-one state. This dictates that 
logic one corresponds to the transmitter being off. Consequently, 
PBO is buffered and inverted twice by the NOR gates. Inverters such 
as the 7404 would work, but since I needed a NOR gate in the keyer 
interface, I simply used the other NOR gates on the same chip. If 
PBO could sink enough current it might drive the relay directly, but 
I preferred the buffering shown in Fig. 14-8. Mark elements of the 
Morse code are sent by decrementing (DEC) PBO for the appropri
ate length of time, while space elements are sent by leaving PBO at 
logic one. 

The program idles in the loop starting with }SR GETKEY and 
ending with BNE RPT, testing each of three keys (A, B, and C) to 
see if they were depressed. Refer to Howcharts for the keyer and 
message sender shown in Figs. 14-9A, B, and C. If no key is de
pressed, the program remains in this loop. If a key is depressed, 
register Y is set to zero, one, or two, depending on which key was 
struck. The Y is then used as an index to look up the starting address 
(low-order byte of page two of memory) of the message (STRT ,Y) 
and later the ending address (END,Y) of the message. The starting 
address is used as an index to find the first code element of the mes
sage (MEM,X), and it is incremented until the ending address is 
encountered. 

The conversion of an 8-bit word of memory to a Morse code char
acter has been described in other references in detail and will not 
be repeated here. There are a number of schemes available1,2,3,4, but 

IPollock, James W., "1000 WPM Morse Code Typer," 73, January 1977, 
p. 100. 

2De Jong, Marvin L., "A Complete Morse Code Send/Receive Program for 
the KIM-I," MICRO, April-May 1978, p. 7. 
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the most efficient schemes appear to be those in references 3 and 4, 
and that was the technique used here. 

The keyer is implemented by the interrupt routine which in tum 
uses subroutines DIT, DAR, and TIMER. It will send at exactly the 
same speed as the messages. The keyer interface circuit is simply 
debouncers that are reset at the end of an interrupt. If the key is still 
in the dot or dash position, the reset has no effect and another inter
rupt occurs. The flowchart indicates that the state of PA 7 determines 
which element is to be sent. 

One last thought: if you want to be able to key in a few characters 
in the middle of a message, just load a few word spaces there and 
key the characters in when the blank occurs. This is handy for giving 
signal reports and also in some contests where the number of con
tacts is updated after each QSO. 

Example 7: Source listing for Message and Keyer Program 

0300 78 BEGIN SEI Prevent interrupts. 
0301 08 CLD Binary mode. 
0302 A9 C9 LOA $C9 Set interrupt vectors. 
0304 80 FE 17 STA IRQL 
0307 A9 03 LOA $03 
0309 80 FF 17 STA IRQH 
030C A9 01 LOA $01 Initialize 1/0 Ports A 
030E 80 02 17 STA PBD and B. 
0311 80 03 17 STA PBDD PBO is output pin. 
0314 80 01 17 STA PADD PAO is output pin. 
0317 80 00 17 STA PAD 
031A CE 00 17 DEC PAD Toggle PAO to reset debounce 
0310 EE 00 17 INC PAD circuit. 
0320 AS 00 LOA SPEED Get decimal value of speed 
0322 48 PHA from location $0000 and 
0323 29 FO AND $FO convert it to hex. 
0325 4A LSR A Multiply tens digit by ten. 
0326 85 10 STA SCRATCH 
0328 4A LSR A 
0329 4A LSR A 
032A 18 CLC 
032B 65 10 ADC SCRATCH 
0320 85 10 STA SCRATCH Result of multiplication here. 
032F 68 PLA Get SPEED again. 
0330 29 OF AND $OF Add ones digit to SCRATCH. 
0332 65 10 ADC SCRATCH 
0334 85 10 STA SCRATCH Decimal to hex complete. 
0336 38 SEC Division routine begins here. 
0337 A2 00 LOX $00 
0339 A9 94 LOA $94 

3Pollock, James W., "A Microprocessor Controlled CW Keyboard," Ham 
Radio, January 1978, p. 81. 

40ckers, Stan, "Code Test" The First Book of KIM, ORB, Argonne, Illionis, 
1977, p. 56. 
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033B 85 08 STA LO 
0330 A9 04 LOA $04 
033F 85 09 STA HI 
0341 A5 08 UP LOA LO 
0343 E5 10 SBC SCRATCH 
0345 85 08 STA LO 
0347 A5 09 LOA HI 
0349 E9 00 SBC $00 
034B 85 09 STA HI 
0340 E8 INX 
034E BO Fl BCS UP 
0350 86 07 STX TIME Division complete. 
0352 20 6A IF RPT JSR GETKEY Reod keyboord subroutine. 
0355 58 CLI 
0356 AO 00 LOX $00 Test keys. 
0358 C90A CMP $OA 
035A FO OA BEQ MESSA 
035C C9 OB CMP SOB 
035E FO 05 BEQ MESSB 
0360 C9 OC CMP SOC 
0362 00 EE BNE RPT 
0364 C8 INY 
0365 C8 MESSB INY 
0366 BE 01 00 MESSA LOX STRT,Y Start message. 
0369 20 76 03 CNT JSR SEND 
036C 8A TXA 
0360 1;>9 04 00 CMP ENO,Y End message? 
0370 FO EO BEQ RPT 
0372 E8 INX 
0373 4C 69 03 JMP CNT 

SUBROUTINE SEND 
0376 8A SEND TXA 
0377 48 PHA 
0378 BO 00 02 LOA MEM,X Get code element. 
037B FO IE BEQ WOSP 
0370 OA HERE ASL A 
037E FO 10 BEQ FINSH 
0380 48 PHA 
0381 BO 06 BCS DASH 
0383 20 AO 03 JSR OIT Send dot. 
0386 4C 8C 03 JMP ARNO 
0389 20 B9 03 DASH JSR OAH Send dash. 
038C 68 ARNO PLA 
0380 4C 70 03 JMP HERE 
0390 A2 02 FINSH LOX $02 
0392 20 BE 03 AGN JSR TIMER Character space. 
0395 CA OEX 
0396 DO FA BNE AGN 
0398 68 PLA 
0399 AA TAX 
039A 60 RTS 
039B A2 04 WOSP lOX $04 Word space. 
0390 4C 92 03 JMP AGN 

SUBROUTINE OIT 
03AO A2 01 OIT LOX $01 
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03A2 CE 02 17 
03AS 20 BE 03 
03AB CA 
03A9 DO FA 
03AB AD 02 17 
03AE 4A 
03AF BO 07 
03Bl EE 02 17 
03B4 E8 
03B5 4C AS 03 
03B8 60 

03B9 A2 03 
03BB 4C A2 03 

03BE AS 07 
03CO 80 07 17 
03C3 2C 07 17 
03C6 10 FB 
03C8 60 

03C9 48 
03CA 8A 
03CB 48 
03CC AD 00 17 
0300 30 06 
0302 20 AO 03 
0305 4C OA 03 
0308 20 B9 03 
030B CE 00 17 
0300 EE 00 17 
03EO 68 
03EI AA 
03E2 68 
03E3 40 

BACK 
SPA 

DONE 

OAH 

TIMER 

CHI< 

INTRPT 

PAST 
ACRS 

DEC PBD 
JSR TIMER 
DEX 

BNE SPA 
LOA PBO 
LSR A 
BCS DONE 
INC PBO 
INX 
JMP SPA 
RTS 

SUBROUTINE OAH 
LOX $03 
JMP BACK 

SUBROUTINE TIMER 
LOA TIME 
STA TIMER 
BIT TIMER 
BPL CHK 
RTS 

INTERRUPT ROUTINE 
PHA 
TXA 
PHA 
LOA PAD 
BMI PAST 
JSR OIT 
JMP ACRS 
JSR OAH 
DEC PAD 
INC PAD 
PLA 
TAX 
PLA 
RTS 

Delay for the number of 
1.024-millisecond units 
stored in TIME. 

Save registers. 

Is PA7 = logic one? 
Yes, doh. No, dit. 
Send dot. 

Send dash. 
Toggle debounce circuit. 

Restore registers. 

Return from interrupt. 

CATCHING BUGS WITH L1GHTS
A PROGRAM DEBUGGING AID* 

In debugging a program, how often have you wished you could 
see the contents of the accumulator or the status register at each 
step without pushing all those buttons? If you are interested in a 
simple hardware solution to this problem, read on. 

Although my circuit was designed for the KIM-I, the idea cer
tainly is applicable to other systems. Even if you're not interested in 
my Bug-Light circuit for programming purposes, it gives you one 
or more output ports in page zero of memory, and it makes a useful 
tool for teaching programming. 

The KIM-I monitor and a little hardware provide you with a sin
gle-step mode in which the program may be executed one instruction 

°Courtesy of Kilobaud Microcomputing. Copyright © 1979 by 1001001, Inc., 
Peterborough, NH. All rights reserved. 
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at a time. After each instruction is executed, the resident monitor 
program stores the contents of the accumulator, the status register, 
X register, Y register, and other registers. (See Table 14-4 for the 
locations of each register.) The important registers are also saved in 
zero page when a break (BRK) command is placed in a program 
and the IRQ vector is $lCOO. Both the single-step (SST) mode and 
the break-to-KIM monitor are used extensively in debugging pro
grams. 

Table 14-4. Zero·Page Memory Locations of Various Registers 

Address Label Contents 

OOEF PCl Program Counter low 
OOFO PCH Program Counter High 
OOF1 P Status Register (Flags) 
OOF2 SP Stack Pointer 
OOF3 A Accumulator 
OOF4 y Y Register 
OOFS X X Reg:ster 
OOF6 CHKHI Cassette Checksum High 
OOF? nl'(C:;UNI Cassette Checksum low 

Use of the SST mode is explained in the KIM-1 User Manual, 
while the break-to-KIM monitor technique is explained in The First 
Book of KIM. With either technique, the contents of the various 
registers may be read by using the keyboard to look up the locations 
in zero page where their contents are stored. For example, to see 
what the contents of the accumulator are after an instruction, simply 
address location $OOF3 with the keyboard to display it on the seven
segment display. 

It's a great feature, but it's slow. At least six consecutive key de
pressions must take place to examine a register, restore the program 
counter, and execute the next instruction in the program. If you're 
following your program around some crazy loop to see why it never 
comes out, this procedure can take a lot of time. Perhaps my arthritic 
fingers and bouncy keys are the problem. There has to be a faster 
approach to the register display problem. A reasonable objective, I 
decided, was an LED display of each bit in a particular register, 
with no extra key depressions. 

To accomplish this objective I designed a circuit to decode the 
addresses of the locations where the various register contents were 
stored and allow the microprocessor to WRITE the same data to 
output ports with LEDs to represent each bit. Thus, when the moni
tor stores the contents of the status register at location $OOF1, it also 
writes the same data to an output port whose address is $OOFl. In 
this case the LEDs indicate the state of the various flags. If the out-
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put port has address $OOF3, then the LEDs will show the contents 
of the accumulator, in binary, of course. 

Bug-Lights comes in three versions. The basic circuit is shown in 
Fig. 14-10. It will display one register only. A modification that in
creases the utility of the basic circuit is shown in Fig. 14-11. The 
DIP switch allows you to select which register you want to follow 
as you step through your program. If you really like blinking lights 
and/ or do a lot of programming, see the chrome-plated modification 
to display up to eight registers simultaneously, as outlined in Fig. 
14-12. 

+5V 

RAM·R/W 74L502 

,5V" 

00 270 'y 
El5 

81L597 74L575 ~' 

Dl 14 270 ,~---'\ 

E14 
13 

E13 
02 11 270 "'- ~\ 

270 

11 170 

74LS75 
13 14 170 "'-

13 
15 II 270 

17 170 

LEOS 

Fig. 14-10. Basic Bug-lights circuit. 

Of course, the most important registers to display are the accumu
lator, the status register, the X and Y registers and, perhaps, the stack 
pointer. These displays would make an impressive yet functional 
front panel. My personal version has the DIP switch modification 
shown in Fig. 14-11. (The program counter low, peL, is stored at 
address $OOEF and cannot be observed with the Bug-Light circuit. 
I cannot recall ever using this register to debug a program.) 
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Y7 
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~ 

OOFO 

OOFI 

~ 

00F2 
"U-

00F3 
v--

00F4 
"U" 

OOF5 

"0--

OOF6 
-'0----

00F7 DIP SWITC H 
ADDRESS 

SELECT 

>-----
TO 
PIN 3 
74LS02 

Fig. 14-11. Use of DIP Switch to select register to be displayed by Bug-Lights circuit. 

81lS97 
BUS 

BUFFER 

,----------------1>------. TO OTHER 
PORTS 

74LS75 74LS75 

74lS75 

Fig. 14-12. lIug-Lights circuit expanded to output several registers simultaneously. Each 
pair of 74LS75s makes one 8-bit output port. Port selects are from 74LS138 decoder. 
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We will begin with the address decoding circuitry. The 74LS138 
decoder/demultiplexer will decode the lowest three address lines 
(AO, AI, A2) when GI is at logic one and G2A and G2B are at logic 
zero. GI is tied high, eliminating any further consideration of it. 

In order to have both G2A and B at logic zero, the KO select from 
the KIM-l and the output of the 74LS30 must be at logic zero. KO 
will be low when address lines AIO-AI.') are low. This is handled by 
the KIM-l circuitry. You can see from Fig. 14-10 that the output of 
the 74LS30 is low when A4-A7 are at logic one and A3, A8, and A9 
are at logic zero. The compilation of this information as the require
ments to select the 74LS138 is shown in Example 8. 

The 74LS138 decodes the lowest three address lines to produce 
active low device select pulses whenever addresses $OOFO-$OOF7 are 
on the address lines. Each of the eight outputs of the 74LS138 cor
responds to one of the eight addresses $OOFO-$OOF7, which in turn 
include the address of the locations where the various registers are 
stored. 

The device select pulse from the 74LS138 is inverted and ANDed 
with the inverted RAM-R/W signal from the KIM-I. This produces 
a positive pulse from the 74LS02, which occurs only on a WRITE 
cycle and when the correct address is placed on the address bus. For 
example, an STA $OOFI instruction will produce such a pulse in the 
circuit of Fig. 14-10. This pulse is applied to the gate inputs of the 
74LS75 Bistable Latches. 

As long as the positive pulse is applied to the 75LS75 gates, the Q 
outputs follow the D inputs, and the Q outputs are the D inputs in
vert~. At the trailing edge of the positive pulse, which occurs when 
the <1>2 clock signal on the KIM-l changes from logic one to logic 
zero, the data at the D inputs is latched into the Q outputs. So, when 
a WRITE occurs to $OOFl, the data will appear at the Q outputs 
and it will be stored there, at least until another WRITE to $OOFI 
occurs. 

The 81LS97 is a data bus buffer. It is activated only on a WRITE 
command when the R/W is low. If only one output port is desired 
and the data bus lines are kept short, then the 8ILS97 may be 
omitted since the 6502 microprocessor can drive the 74LS75s di
rectly. However, if you want to locate your lights on a front panel, 
or if you want to add sets of eight lights for several registers, then 
the bus driver becomes essential. 

The LEDs are connected through current-limiting resistors to the 
Q outputs of the 74LS75s. They will glow when Q is low and Q is 
high. Thus, a glowing LED corresponds to a logic one for the bit it 
represents while an LED in the off state corresponds to a logic zero. 

An added feature of the Bug-Light circuit is its ability to be used 
as an output port as well as a debugging tool. The Q outputs of the 
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74LS75s are not used for display purposes; they contain the data 
that was written to them. Thus, they can be used as zero-page mem
ory-mapped output ports. 

An application program can make use of these ports to write a 
7 -bit ASCII word to some external device, such as a video card, an 
IBM Selectric, or some other device. AID or DI A converters can be 
driven from these ports as easily as the PAD and PBD ports on the 
KIM-l application connector. The only time the memory locations 
$OOFO-F8 are used by the computer is in an NMI or IRQ jump to 
the monitor; that is, in debugging. So you have your Bug-Lights and 
output ports as well. 

Table 14-5. Power Connections for Bug-Light Integrated Circuits 

Integrated Circuit +5V Ground 

74lS138 16 8 
74lS30 14 7 
74lS02 14 7 
74lS04 14 7 
74lS75 5 12 
81lS97 20 10 

Table 14-5 shows the power connections for each of the chips in 
the logic diagram. All the other connections are shown in the figures. 
My version was built on a UNICARD I, which contains two bread
board strips and an edge connector pad that matches the KIM-l 
expansion pad. I soldered an edge connector to the UNleARD so I 
could plug the KIM-l expansion pad into it. All the connections of 
the Bug-Light circuit except one are to the expansion pad on the 
KIM-I. All J!!e connections are found on the pad symbols in Fig. 
14-10. The KO select comes from the application pad on the KIM-I. 
Its pin number, AB, is also given. 

Layout is not critical, and approaches other than the one I used 
will work. A wire-wrap approach might be more permanent and less 
expensive, although I have found that the circuits on the bread
boards last indefinitely. Fig. 14-13 shows my version. Power was 
stolen from the KIM-l power supply, since +5 V and ground are 
available at the expansion pad. 

When you get your circuit built, say a one-port version, select the 
location you want to view with the DIP switch or by the appropriate 
connection. With the KIM-l running in the monitor, address the 
location and store $FF in it, using the keypad on the KIM-I. All the 
LEDs should light. Change the contents of the port until you are 
sure that each LED is responding to the correct bit value. Stepping 
through the sequence $00, $01, $02, $04, $08, $10, $20, $40, $80 of 
data values will test each light in turn. 
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Fig. 14-13. Bug-Lights circuit. 

Next, load any program, set the KIM-l up for the SST mode, and 
step through the program. The lights should reflect the current con
tents of the register you have selected to view. I had no trouble_ For 
once my design worked the very first time I tried it. I hope you have 
the same kind of success. If you don't, recheck all your wiring, check 
the polarity on your LEDs, make sure they all work, and finally 
make sure you haven't made a mistake on numbering the pins on 
the les. 

If some bits work and some do not, then exchange signal paths for 
the two bits. For example, if one bit is working, then the 74LS75 
latch for this bit will also be working. Use the same latch for a non
working bit to see if the problem is in the latch. The circuit is simple 
enough so that it should not take too long to figure out any problems. 

Beginning programmers have a lot more trouble visualizing what 
is happening as a result of a certain instruction than veteran pro
grammers imagine. One application of Bug-Lights is to illustrate the 
results of various instructions. For example, set up Bug-Lights to 
show the contents of the accumulator ($00F3). Then write a short 
program (shown in Example 9) in which the accumulator is loaded 
with 01 followed by an ASL A in an infinite loop. 

N ow single-step through the program and watch the "1" move 
from right to left on the LEDs. Replace the ASL A with an ROL A 
and note the difference. Other instructions can be illustrated in the 
same way, giving students, who have difficulty visualizing zeros and 
ones among bits and bytes, an excellent visual aid. 
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Example 8: Address Decoding for Bug-Lights Circuit 

A15 A14 A13 A12 A11 A10 A9 AS A7 A6 A5 A4 A3 A2 Al AO - Address line 
o 0 0 0 0 0 0 0 1 lOX X X - Logic Value 

o 0 f 0-7 - Hex Number 
(X means "don/t core."} 

Example 9: Program to Demonstrate ASL Instruction With Bug-Lights Circuit 

BEGIN LOA $01 
THERE ASL A 

JMP THERE 

LUNAR OCCULTATION OF A STAR* 

The program described here is designed to measure the light in
tensity from a star as it passes behind the dark face of the moon, a 
so-called lunar occultation. A photometer and amplifier attached to 
a telescope provide a signal proportional to the light intensity, and 
this intensity drops rapidly (in a few milliseconds) as the moon 
passes in front of the star. This signal voltage is measured periodi
cally, and the data is stored in 256 memory locations in the KIM-I. 
When the star is occulted and the level drops below a predeter
mined value, the measurement is stopped, and the previous 256 mea
surements, representing about 1 second of data, are displayed on an 
oscilloscope. 

Fig. 14-14 shows the support circuitry for the program which is 
given in Example 10. When a logic one appears on PB2 (from, 
say, a radio time signal), the timer is set, the measurements START, 
and a zero mark is placed in the data every Y4 second to allow accu
rate measurements of the time of the event. The arming switch SW 
can be set on position "B" which ensures a logic zero on PB3 to keep 
the program from inadvertently stopping before the event takes 
place. Near the predicted time of the occultation, it can be switched 
to "A," at which time it is armed to stop when the light level falls 
below the cut-off point determined by the lOOK potentiometer. 

The time constants RC and R'C' can be selected to integrate the 
incoming signal as desired. We use RC = 5 msec and R'C' = 20 
msec. This delays the cut-off point slightly after the actual occulta
tion. The sampling time can be selected by changing the number 
stored in location $003E (we sample about every 4 msec), and the 
number stored in locations $002F and $009D can be used as a fine 
adjustment to make the timing marks appear at exactly J4 sec inter
vals. The data is stored in locations $0200 through $02FF but may 
appear folded over on display. For example, if the cut-off time occurs 

"Courtesy of Dr. Thomas D. Strickler, John Drake, and Jesse Maupin, Berea 
College, Berea, Ky. 
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Fig. 14-14. Support circuitry for Occultation program. 

EXPANSION 
CONNECTOR 

while data is being stored in memory location $0280, then the most 
recent measurements are in locations $027F, $027E, ... , while the 
earliest measurements are in locations $0281, $0232, ... , etc. Every 
% second, the number in location $OOCB is incremented, and every 
256 (FF hex) % seconds, the number in location $OOCC is incre
mented, so that the total time since the START signal can be deter
mined. 

Photoelectric measurements of bright stars as they are occulted 
often show a diffraction pattern typical of that observed in the labo
ratory by a point source diffracted from a straight edge. They can 
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be used to measure angular diameters of stars and can often resolve 
very close double and triple stars. For further information on lunar 
occultations, the reader is referred to the articles "Photoelectric Ob-
serving of Occultations," by David S. Evans, in Sky and Telescope, 
Vol. 54, Nos. 3 and 4 (1977). 

Example 10: Occultation Program 

$002F and $0090 = Additional count to make timer equal 114 second 
$003E = Convert time count (40 = 4 msec) 
$0096 = Comparator Delay Count (02) 
$00C9 = BIT2 (04) Test B/T2 to start timer from WWV 
$OOCA = REM Remainder in Ii mer afler lasl 1/4 sec count 
$ooCB = QSEC No. of 114 Sec counts since start (or since last MIN) 
$OOCC = MIN No. of minules (actually 64 secs) since start 
$ooCO = KEY 
$ooCE = SP 
$ooCF = BITS (20) Test BITS 10 lesl comparator 

0004 A9 04 LOA $04 Initialize and set port directions. 
0006 85 C9 STA BIT2 
0008 A9 9C LOA $9C 
ooOA 80 FA 17 STA 17FA 
0000 A9 00 LOA $00 
oooF 80 FB 17 STA 17FB 
0012 A9 00 LOA $00 
0014 85 CB STA QSEC 
0016 A9 00 LOA $00 
0018 85 CC STA MIN 
oolA A9 10 LOA $10 
oolC 80 03 17 STA BPO 
001F OA ASL 
0020 85 CF STA BITS 
0022 A9 FF LOA $FF 
0024 80 01 17 STA PAD 
0027 AD 02 17 WAIT LOA PB Wait until logic one appears on PB2. 
oo2A 24 C9 BIT B/T2 
oo2C FO F9 BEQ WAIT 
002E A9 DO LOA $00 Extra count to make timing 
0030 80 04 17 STA TlME4 marks = 114 second. 
0033 2C 07 17 TMI BIT TlME7 
0036 10 FB BPL TMI 
0038 A9 F4 LOA $F4 Set timer to count 244 X 1024 = 
003A 80 OF 17 STA TIMEF 249,856 microseconds. 
0030 A9 40 RTIME LOA $40 Set converl time using 
oo3F 80 46 17 STA 1746 "other counter." 
0042 A9 80 CONY LOA $80 Initialize conversion. 
0044 85 CD STA KEY 
0046 OA ASL 
0047 85 CE STA SP 
0049 AS CD lOOP LOA KEY OR KEY into resull and output. 
oo4B 05 CE ORA SP 
0040 80 00 17 STA PA 
0050 20 9500 JSR COlY Wait for comparator delay. 
0053 AD 02 17 LOA PB Check comparator, jump if 
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0056 24 CF BIT BIT5 too lorge. 
0058 FO 05 BEQ LARGE 
oo5A AD 00 17 LOA PA If too smoll, store result 
0050 85 CE STA SP in SP. 
005F 46 CD LARGE LSR KEY Shift KEY right and repeat 
0061 DO E6 BNE LOOP eight times. 
0063 A5 CE LOA SP Store result in TABLE, starting 
0065 90 00 02 STA TABLE,X with $0200. 
0068 AD 47 17 OT LOA TIMER Wait until timer stops. 
006B FO FB BEQ OT 
0060 E8 INX Increment X. 
006E EA EA NOP NOP 
0070 AD 02 17 LOA PB Look for logic one on PB3. 
0073 29 08 AND $08 
0075 FO C6 BEQ RTiME If no, repeat conversion 
0077 EA EA NOP NOP measurement. 

0079 AD 06 17 LOA TIMER If yes, read remaining time, 

007C 85 CA STA REM store and jump to SYNC. 
007E EA NOP 
007F A9 10 SYNC LOA $10 Generate SYNC pulse for CRO. 
0081 80 02 17 STA PB 
0084 A9 00 LOA $00 
0086 80 02 17 STA PB 
0089 BO 00 02 OUT LOA TABLE,X ~isplay spectrum on CRO. 
008C 80 00 17 STA PA 
008F E8 INX 
0090 DO F7 BNE OUT 
0092 4C 7F 00 JMP SYNC 
0095 A9 02 COLY LDA $02 Delay for comparator. 
0097 A8 TAY 
0098 88 DELAY DEY 
0099 DO FO BNE DELAY 
009B 60 RTS 

INTERRUPT ROUTINE 

009C A9 DO LOA $00 Reset 1/4 second timer. 
009E 80 04 17 STA TlME4 
OOAI 2C 07 17 TM2 BIT TlME7 
OOA4 10 FB BPL TM2 
OOA6 A9 F4 LOA $F4 
OOA8 80 OF 17 STA TIMEF 
OOAB E6 CB INC QSEC Increment 1/4 second cou nter. 
OOAO A9 00 LOA $00 Check '/4 second counter for 
OOAF C5 CB CMP QSEC overflow (00). 
OOBI DO 02 BNE CONT If no, continue. 
OOB3 E6 CC INC MIN If yes, increment MIN counter. 
OOB5 A9 00 CONT LOA $00 Put zero in TABLE X at '14 second 
00B7 90 00 02 STA TABLE,X intervals. 
OOBA E8 INX 
OOB8 40 RTI Return from interrupt. 
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APPENDIX A 

Decimal, Binary, and 
Hexadecimal Number 

Systems 

OBJECTIVES 

At the completion of this appendix you should be able to: 

• Understand and define the terms number, face value, place 
value, base, bit, byte, and nibble. 

• Understand that numbers are used to indicate quantity, to in
dicate order, or to indicate codes for various operations. 

• Convert binary numbers to decimal numbers and decimal num
bers to binary numbers. 

• Convert hexadecimal numbers to binary numbers and binary 
numbers to hexadecimal numbers. 

INTRODUCTION 

Microprocessors use binary numbers to control internal operations, 
to communicate with other components in the microcomputer sys
tem, and to exchange information with peripheral devices. On the 
other hand, devices that humans use to input information to a micro
computer and devices that display information output by the micro
computer frequently use hexadecimal numbers. Hexadecimal num
bers are representations of binary numbers that provide human 
beings with readily recognized symbols that aid in handling binary 
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numbers. These facts justify competency in dealing with binary and 
hexadecimal numbers. 

NUMBERS 

Numbers are used in the following ways: 

• Numbers are used to indicate quantity. This is the use with 
which we are most familiar. 

• Numbers are used to indicate order. For example, the order in 
which a mechanical device is assembled is specified by numbers. 

• Numbers are used as names or codes. Your social security num-
ber is a code which identifies you. 

Sometimes numbers are used in several of these ways. The page 
numbers of a book order the pages, name the pages, and indicate 
the quantity of pages. 

You will see that a microcomputer uses numbers in each of these 
three ways. 

• A "smart" blood pressure monitor measures a signal and displays 
a number representing the blood pressure of a patient. 

• A microcomputer program is executed one step at a time, and 
the order is determined by a number stored in the program 
counter. 

• All microprocessor instructions have code numbers. The number 
69 sent to the 6502 microprocessor will cause it to execute an 
addition operation. 

• The memory locations in a microcomputer are ordered and 
named by a number called the address of the location. 

A number is a sequence of digits. In the familiar decimal (base-
10) system, the ten decimal digits are 0, 1, 2, ... , 9. The binary 
number system (base-two) uses only two binary digits, namely 0 
and 1. The words binary digit are frequently contracted to form the 
word bit. (If the same thing were done with decimal digits we 
would have dits, while hexadecimal digits would be hits.) The hexa
decimal system (base-16) requires 16 different hexadecimal digits. 
They are 0, 1, 2, ... , 9, A, B, C, D, E, and F. Perhaps a better choice 
could have been made for the last six digits, but these are the ones 
commonly used. 

DECIMAL NUMBERS 

In order to understand binary and hexadecimal numbers it will 
be helpful to dissect a familiar decimal number. Taking the number 
1939 as an example, we obtain the following diagram. 
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Digit Number 2 1m Digit Number 3 

Digit Number 1 m Digit Numbe< 0 

1939=1000+900+30+9 

,..-----FACE VALUES 
I I I I 

= (1 X 10(0) + (9 X 1(0) + (3 X 10) + (9 xl) 
I I I I 

1 PLACE VALUES 

....----DIGIT NUMBERS 
I I I I 

= (l X l()3) + (9 X 1(2) + (3 X 101 ) + (9 X 10°) 
I I I I 

1-1 ---BASE = 10 

Referring to the preceding diagram, each decimal digit has a face 
value, the meaning of which is acquired from experience and mem
orization at an early age. There are 10 different face values in a 
base-1O system. Each decimal digit has a digit number or place in 
the decimal number which determines its place value. The place 
value of digit number 0 is 10° = 1; the place value of digit number 
1 is 101 = 10. Place values of successive digits are 102 = 100, 103 = 
1000, and so on. The place value is equal to the base raised to a 
power equal to the digit number. 

BINARY NUMBERS 

Binary numbers are constructed the same way as decimal numbers 
except the base is two and only two face values, 0 and 1, are re
quired. Each binary digit is called a bit. The place values are 2° = 1, 
21 = 2, 22 = 4, 23 = 8, and 24 = 16, corresponding to bit numbers 0, 
1, 2, 3, and 4, respectively. Table A-I lists powers of two 

To illustrate these ideas and to show you how a binary number 
may be converted to a decimal number, the binary number HO! is 
expanded in a way similar to the decimal number expansion above. 
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2' = 2 
22 = 4 

23 = 8 
24 = 16 

Table A-l. A Table of Powers of Two 

2 5 = 32 
26 = 64 
27 = 128 
2' = 256 

20 = 1 
29 = 512 
2 '0 = 1024 
2" = 2048 
212 = 4096 

213 = 8192 
2'4 = 16384 
215 = 32768 
2 '6 = 65536 



111,!11~, ,I, BI; NUMBERS 

1 1 0 12 = (1 X 23 ) + (1 X 22) + (0 X 21) + (1 X 20) 
I I I I 

I BASE = 2 

r------PLACE VALUES 
i I I I 

= (1 X 8) + (l X 4) + (0 X 2) + (1 X 1) 
I I I I 

I FACE VALUES 

= 8 + 4 + 0 + 1 = 1310• 

The subscripts "2" and "10" are used to indicate the base of the num
ber unless the base is obvious from the context of the discussion. 
The expansion diagram for the number 11012 also suggests how 
binary numbers may be converted to decimal numbers. Multiply the 
face value (either 1 or 0, so the multiplication is easy) by the place 
value of each bit and add the results. The place values are 2n, where 
n is the bit number. The place value for bits numbered 0-16 may be 
obtained from Table A-I. Example 1 gives another base two to base 
ten conversion. 

Example 1: Conversion of 10100010, to Base 10 

10100010, = (1 X 27) + (0 X 26 ) + (1 X 25 ) + (0 X 2·) 
+ (0 X 2') + (0 X 2') + (1 X 2') + (0 X 2°) 

= 128 + 32 + 2 
= 162'0 

Sometimes it is simpler to organize your work from the smallest 
place value, or least significant bit (the bit on the extreme right), to 
the largest place value, or most significant bit (the bit on the extreme 
left). Thus, 

11002 = (0 XI) + (0 X 2) + (1 X 4) + (1 X 8) = 4 + 8 = 1210. 

There are several techniques to convert a decimal number to a 
binary number. Here is a simple one; Example 2 illustrates it. 

• To find the highest place value that has a face value of one 
( that is, the most significant nonzero bit), find the largest power 
of two which will divide the number. Place a one in this bit 
position and note the remainder of the division. 
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• The remainder of the first result is then divided by the next 
largest power of two. If it will not divide the first remainder, 
then a zero is put in the next lower bit position. Otherwise, a 
one is placed in this bit position, and the remainder is noted. 

• Repeat step two until you finish by dividing by one. 

Example 2: Conversion of 233'0 to Base 2 

Clearly the largest power of two which will divide 233 is 27 = 128. The process now 
proceeds os follows: 

1 

1281233 
128 

105 

1 

641i05 
64 

41 

1 

32141 
32 

9 

o 
1619 

1 

819 
8 

1 

111 = 11101001 2 

1 

o 

Although this looks complicated, it proceeds rather quickly because 
most of the steps can be done mentally. In any case, it will be easier 
to handle binary numbers in terms of their hexadecimal representa
tions as you shall see in a subsequent section. 

BITS, BYTES, AND NIBBLES 

Numbers used to express quantity are usually of variable length; 
they have no leading zeros to take up "unused" places. Numbers 
used as codes, zip codes for example, are usually fixed in length and 
often have leading zeros. All numbers used by a microprocessor are 
fixed in length regardless of whether they are used to express quan
tity, determine order, or represent a code. If a binary number rep
resents quantity, the leading zeros are disregarded. 

The fixed length of the numbers which the 6502 microprocessor 
regards as data is eight bits. An 8-bit number is called a byte. The 
number 7\0 is represented as shown in Example 3. 

Example 3: How the Number 7, 0 is Represented by a Byte of Data 

Data Byte 1 0 1 0 1 0 1 0 1 0 I 1 I 1 I 1 1=7,0 
Data Bit Designations D7 D6 05 04 D3 D2 01 DO 

The 6502 microprocessor also names and orders 65536 different 
locations in memory with a 16-bit fixed length binary number called 
an address. The number 102010 representing location 102010 in mem
ory is represented as an address as shown in Example 4. 

The 16-bit address number is frequently referred to in terms of two 
bytes. The low-order byte, or address low (ADL) as it is sometimes 
called, is the eight bits on the top while the high-order byte, or 
address high (ADH) as it is sometimes called, is the eight bits on 
the bottom. 
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Example 4: How the Address 1020'0 is Represented by a 16-Bit Binary Address 

ADH 
, A , 

Address (Two Bytes) I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 

Address Bit Designations A15 A14 A13 A12 All A10 A9 AS 

ADL 

'~I=l~=l~=l~l~l~l~l~l=l~=O~I=o~1 
A7 A6 A5 A4 A3 A2 Al AO 

A 4-bit binary number is sometimes called a nibble. This is a 
useful idea when representing binary numbers by means of hexa
decimal digits. A byte consists of a high-order nibble and a low
order nibble. 

HEXADECIMAL NUMBERS 

The sixteen hexadecimal digits and their decimal and binary 
equivalents are given in Table A-2. The subscripts 16, 10, and 2 are 
omitted. 

Table A·2. Decimal, Binary, and Hexadecimal Equivalents 

Decimal Number Binary Number Hexadecimal Number 

0 0000 0 
1 0:)01 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
S 1000 8 
9 1001 9 

10 1010 A 
11 1011 B 
12 1100 C 
13 11 01 D 
14 1110 E 
15 1111 F 
16 10000 10 

Notice that one hexadecimal digit represents four binary digits or 
one nibble. This fact provides the most convenient way to convert 
from binary numbers to hexadecimal numbers and vice versa. 

Once the table has been committed to memory, the conversion 
process is as follows: 
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• Divide the binary number into groups of nibbles, starting from 
the least significant bit. 

• Mentally convert each nibble to a hexadecimal number and 
write it down. (This process sometimes calls for a mental trans
lation of the binary number to decimal and a translation of the 
decimal number to hexadecimal.) 

Examples 5 and 6 illustrate how binary numbers are converted into 
hexadecimal numbers. 

Example 5: Conversion of Binary Numbers 010101012. 00000101 2• 1010111h. and 
111111102 Into Hexadecimal Numbers. 

01010101 2 = 0101 0101 = 55'6 00000101 2 = 0000 0101 = 05,6 
10101111 2 = 1010 1111 = AF'6 111111102 = 1111 1110 = FE'6 

Example 6: Conversion of Binary Numbe" 10011111000111002 and 
0100010111011011 2 Into Hexadecimal Numbers. 

10011111000111002 = 1001 1111 0001 1100 = 9F1C'6 
01000101110110112 = 0100 0101 1101 1011 = 450B'6 

The reverse proc~ss, converting from hexadecimal to binary, is done 
in a similar way. 

• Divide the hexadecimal number into separate digits. 
• Mentally convert each hexadecimal digit into a binary nibble. 

Example 7 illustrates the process. 

Example 7: Conversion of 30'6 and FC83'6 Into Binary Numbers 

30'6 = 0011 1101 = 0011110h 
FC83'6 = 1111 1100 10000011 = 11111100100000112 

By now it should be easy for the reader to understand that hexa
decimal numbers represent 8-bit and 16-bit binary numbers more 
efficiently than decimal numbers. Practice will produce the familiar
ity required for rapid calculations. A table of binary to hexadecimal 
to decimal conversions is provided in Table A-3. 

It might be added that hexadecimal numbers are frequently called 
"hex" numbers, and sometimes the suffix "H" is attached to indicate 
the hexadecimal representation. The notation used in this book to 
indicate hexadecimal numbers is a "$" prefix. That is, 3616 = $36 
and 7FFC16 = $7FFC. This is the most common practice among 
6502 users, perhaps to make them feel wealthy. Readers who were 
not previously familiar with hexadecimal and binary numbers are 
urged to try the exercises at the end of this appendix. 
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Table A·3. Binary to Hexadecimal to Decimal Conversions 

Binary Number Hexadecimal Number Decimal Number 

0001 NIBBLE 01 1 
0:)10 .. 02 2 
0011 .. 03 3 
0100 .. 04 4 
0101 .. 05 5 
0110 .. 06 6 
0111 .. 07 7 
1000 .. 08 8 

0001 0000 BYTE 10 16 
0010 0000 .. 20 32 
0100 0000 .. 40 64 
10000000 .. 80 128 
1000 1000 .. 88 136 
1000 1100 .. 8e 140 
1100 1100 .. ee 208 
1111 1111 .. FF 255 

0001 0000 0000 3 NIBBLES 0100 256 
0010 0000 0000 .. 0200 512 
0011 0000 0000 .. 0300 768 
0011 1111 1111 .. 03FF 1023 
0100 0000 0000 .. 0400 1024 
1000 0000 0000 " 0800 2048 

0001 0000 0000 0000 2 BYTES 1000 4096 
0001 1111 1111 1111 .. lFFF 8191 
0010 0000 0000 0000 .. 2000 8192 
0011 1111 1111 1111 .. 3FFF 16383 
0100 0000 0000 0000 .. 4000 16384 
0101 1111 1111 1111 .. 5FFF 24575 
0110 0000 0000 0000 .. 6000 24576 
0111 1111 1111 1111 .. 7FFF 32767 
1000 0000 0000 0000 .. 8000 32768 
1001 1111 1111 1111 .. 9FFF 40959 
1010 0000 0000 0000 .. AOOO 40960 
1011 1111 1111 1111 .. BFFF 49151 
11 00 0000 0000 0000 .. eooo 49152 
1101 1111 1111 1111 .. DFFF 57343 
11100000 0000 0000 .. EOOO 57344 
1111 1111 1111 1111 .. FFFF 65535 

EXERCISES 

1. Identify the digit number of the digit 5 in the number 25033. If 
this is a base 10 number what is the place value of the 5? Would 
the face value be changed if this were a base 16 number? Would 
the place value be changed if this were a base 16 number? 

2. What is the place value of a digit in the nth place of a number 
written in base b? 
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3. Give examples of how numbers are used to indicate quantity, to 
indicate order, and as codes or names. 

4. Convert the following decimal numbers to binary numbers: 
17, 31, 64, 65, 127, 255, and 365. 

5. Convert the following binary numbers to decimal numbers: 
10110110 11110000 
00010010 11111111 
01000000 01010101 
10000001 00110011 

6. Convert the decimal numbers in problem 4 to hexadecimal num
bers. Use the binary results you obtained by doing problem 4. 
Also convert the binary numbers in problem 5 to hexadecimal 
numbers. 

7. How many different 4-bit numbers or nibbles are there? 8-bit 
numbers? 16-bit numbers? 

8. Define number, bit, byte, and nibble. 

EXERCISE ANSWERS 

1. The digit number of 5 is 3. (Digit numbers start with 0 on the 
right and increase to the left.) Its place value is 103 = 1000 if the 
base is 10. Face values are the same in numbers of any base, pro
vided that face value exists. For example, there is no face value 
of 5 in the binary number system. If the base of the number were 
16 then the place value of the digit 5 would be 163 = 409610• 

2. The general formula for the place value of a digit in the nth place 
of a number written in base b is b n• 

3. The number of words on this page is a quantity. If the Kansas 
City Royals are in 2nd place, the 2 is used as an indication of 
order. The ASCII for the letter A is 4116, Thus, A is represented 
by the code number 4116, 

4. 17 = 100012, 31 = 111112 , 64 = 10000002, 65 = lOOOOOh, 
127 = lll1l1h, 255 = ll11111h, 365 = 1011011012 , 

5. 10110110 = 18210 = B616 11110000 = 24010 = F016 

00010010 = 3410 = 1216 11111111 = 25510 = FF 16 
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01000000 = 6410 = 4016 

10000001 = 12910 = 8116 

01010101 = 8510 = 5516 

00110011 = 5110 = 3316 

6. Some of the answers are given in problem 5. The conversions from 
problem 4 are 10001 = 1116, 11111 = IF16, 1000000 = 4016, 

1000001 = 41J(i, 1111111 = 7F16, 11111111 = FF1{;, and 
101101101 = 16D16• 

7. Notice that there are 2 different I-bit numbers, 4 different 2-bit 
numbers, 8 different 3-bit numbers and 16 different 4-bit numbers. 
Thus, there are 16 different nibbles. Using induction, if the num
ber of bits in a number is n, then the number of different n-bit 
numbers is 2n. Thus, there are 28 = 256 different bytes or 8-bit 
numbers and 216 = 65536 different 16-bit numbers. These answers 
may be verified with the table. 

8. A number is a sequence of digits. A bit is-a binary digit. A byte is 
an 8-bit binary number, and a nibble is a 4-bit binary number. 
Leading zeros are permitted. 
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APPENDIX B 

Instruction Set Summary 

The following instruction set summary is made available through 
the courtesy of Rockwell International. 
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6502 INSTRUCTION SUMMARY 

INSTRUCTIONS IMMEDIATE ABSOLIm lERO PAGE ACCUM IMPLIED tlNO, KI jIND). Y Z PAGE, K .... S, X AIS, Y RELATIVE INDIRECT Z PAGE, Y 
PROCESSOR STATUS 
CODES 

MNEMONIC DPHI,t,TlON 0> " • OP , OP n • OP " , OP n • OP " OP n • OP • 0. • OP t OP n , QP n • OP n , N ~ 5 ! ~ ~ ~ g MNEMONIC 

AD C " ... '-4+( • .4. (4-)(1) 69 , , 6D 4 3 65 3 2 6' 6 , 
" 5 

, 75 4 2 7D 4 3 79 4 3 N V Z C AD C 

AND AhM - A (1) 29 , 2 'D 4 3 25 3 2 " 5 2 31 5 , 35 4 2 3D • 3 39 4- :} Z • AND 

AS L C~-O OE 6 3 06 5 2 0.4. 2 , 16 6 :2 'E 7 3 N • Z C A S L 

BCC BRANCH ON C ~ 0 (2) 90 , 2 BCC 

B C S BRANCH ON C '" 1 (2) BO , 2 BCS 

BEO BRANCH ON Z == 1 (2) FO , , BE a 
BIT UM 2C 4 3 24 3 2 M/M6' Z • BIT 

B M 1 BRANCH ON N = 1 (2) 30 , , B M 1 

B N E 8RANCHONI::: 0 (2) DO , 2 B N E 

B • L BRANCH ON N=:O (2) 

" B • L 

B R K BREAK 00 7 1 B R K 

B V C BRANCH ON II = 0 (21 50 , , B V C 

B V S BRANCH ON V .=. 1 (2) 70 , , B V S 

C L C O-C 18 , 1 • 0 C L C 

C L 0 O-D D8 , 1 • 0 C L D 

C L 1 0-1 58 2 1 C L 1 

C L V O-V BB 2 1 o • C L V 

C M P A-M C9 , 2 CD 4- 3 C5 :) 2 Cl 6 2 01 5 :2 05 4- 2 DO 4- J 09 4- 3 N • Z C CMP 

C P x x - M EO , 2 EC 4- J E4 3 2 N • Z C C P x 

C P Y M CO 2 2 CC 4- J C4 :} 2 Z C C P Y 

DEC M - l-M CE 6 :} C6 5 , D6 6 , DE 7 3 Z • DEC 

DE x X-I'" X CA , 1 N Z • DE x 

DEY Y - 1'" Y .. 2 1 N • Z • DEY 

E 0 R A Y M - A (tl 49 

'1 2 
40 4 3 45 3 2 41 6 , 51 5 :2 55 4- 2 50 .. J 59 4- J N • Z • EO R 

1 N C M + 1-M EE 6 J E6 5 2 F6 6 2 FE 7 3 Z • 1 N C 

1 N X X + , - x ! E8 , 1 Z • 1 N X 

1 N Y 
Y. 1 - Y I C8 2 , N • Z • I N Y 

J M P JUMP TO NEW LOC 4C 3 3 

2 Bl 

6C 5 3 J M P 

J S R JUMP SUB 20 6 3 J S R 

~ L D A M - A PI A9, 2 2 AD 4- 3 AS 3 , AI 6 2 81 S 2" Bo 4 J B9 4 J N • Z • LOA 



w .... 
'" 

LOX 

LOY 

L S A 

NO P 

OAA 

PHA 

PH P 

P L A 

P L P 

A 0 L 

AOA 

A T I 

A T S 

S 6 C 

SEC 

SED 

S E I 

S T A 

S T X 

STY 

T A X 

T A Y 

T S X 

T X A 

T X S 

T Y A 

M-X 

M '. Y 
'" IA212121AEI'I 'IA'I 'I' 
(1) AD 2 2 AC" 3 11.4 3 2 

O-E~C 

NO OPERATION 

AVM -A. 

A ..... Ms 5-1-5 

p ..... Ms S - 1 ~ S 

5 + 1 - 5 Ms - A 

S + 1 .... 5 Ms - P 

~--{C']..J 

'-[9-1' m_ of--! 
RIAN INT 

AlAN SUB 

4E I 6 I 3 1461 5 I 2 1410. I 2 I 1 

091 2 I 2 lool " I 3 1051 3 I 2 

2EI 6 I 3 1261 5 I 2 1210.1 2 I 1 

6E I 6 I 3 1661 5 I 2 1610. I 2 I 1 

A-M-C-A 

'~C 

(1) IE91 2 I 2 IEOI 4 I J IESI 31 2 

'-0 
'-I 
A-M 

X- ... 

Y~M 

A~X 

A~Y 

5-- X 

X~A 

x-S 
Y~A 

BOI'I'I85I'I' 8E438632 

8C438432 

ADD 1 to "N"IF PAGE BOUNDARY IS CROSSED 

<2) ADD 1 TO "N"IF BRANCH OCCURS TO SAME PAGE 

EAI 2 I , 

'B 131' OS 3 , .. , , 
28 4 1 

'01 6 1' 60 6 1 

38121' 
F8 2 , 

781 2 I 1 

AAI 2 I 1 

A8 2 1 

BA 2 1 

8A 2 , 

9A 2 , 

98 , , 

ADO 2 TO "W IF BRANCH OCCURS TO DIFFERENT PAGE 

(3) CARRY NOT:;:: BORROW 

(4) IF IN DECIMAL MODE, Z FLAG IS INVALID 
ACCUMULATOR MUST BE CHECKEDFOA ZERO AESUL T 

BEl" I 3 

6'I'I216CI'I ' 
56625£73 

01 I 6 I 2 111 I 5 I 2 1151 "I 2 110 I " I 3 1191 " I J 

36161213E1713 

761 6 I 2 17E I 7 I 3 

El1s121Fli 5121F5141 21Fol41 3 IF9141 3 

811,1'19' I 6 I 21951'1 21901 5 1'199151 , 

941 4 1 2 

INDEX X 

INDEX Y 

ACCUMULATOR 

M MEMORY PER EFFECTIVE ADDRESS 

Ms MEMORY PER STACK POINTER 

6'1 ' I 'I N • z ·1 LOX 
N • Z' LOY 

o . Z C lS R 

NOP 

N • z ·1 0 A A 

PHA 

PH P 

N ••••• Z • P L A 

(RESTORED) P L P 

N ••••• Z C " 0 L 

N ••••• Z C A 0 A 

(RESTORED) A T I 

AT S 

N V •• Z (3) S 6 C 
. , SEC 

, . SED 

, . S E I 

S T A 

961 , I 'I . S T X 

STY 

N • • Z T A X 

N • Z • T A Y 

N • • Z T S X 

N • Z • T X A 

T X S 

N • Z • T y- A 

ADD "" MEMORY 81T 7 

SUBTRACT M. MEMORY BIT 6 

AND NO. CYCLES 

OA NO. ByTES 

EXCLUSIVE OR 



APPENDIX C 

Microcomputer 
Technical Data 

The following pages contain some technical infonnation pertain
ing to the 6500-series microprocessor devices. The specification sheets 
reprinted here are made available through the courtesy of Rockwell 
International Corporation. Copyright © 1978 Rockwell International 
Corporation. All rights reserved. 

The SY2114 specification sheet is made available through the cour
tesy of Synertek Systems Corp. Copyright © 1978 Synertek Systems 
Corp. All rights reserved. 
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R6500 Microcomputer System 

DATA SHEET 

R6500 MICROPROCESSORS (CPU's) 

SYSTEM ABSTRAcr 

The B·b'! R6500 rn'Cfocomputer WSlem IS produced INMI r-. 
Channel. Sd,con Gale lechnoloqy liS pl'rformance speeds are 

enhancffi by ildvanced ~v~tt'm arch'll'Clurp Th,s ,nnovat,ve 
arch t€Clure re~ullS In ~mollief chIps - 'he lem,condu(1or lh,e~hold 

10 (O~I-pff"ctl\lJty SyStem CO~I-etl~ct,v Iy I~ lunht', enhanced by 

IHov,d,nq d family of 10 solt""ar~-compillrhlp m,erOprOCl'HOr 

{CPU" devl'~~, de~c"bed <n th'~ docum€", H()ckwell also pro 

v-des r""~m()'¥ and m,Cfocompule' W51f'm J\ w~11 il~ low~O~1 

dt'slgf1 did, J'ld nocumentatlon 

R6500 MICROPROCESSOR (CPU) CONCEPT 

Ten CPU dev,ces Me aVilil3ble All are $oftware compat,ble 

They prOVIde- optIons of addressable memory. Interrupt Input, 

oo<h,p clock oscll,ala.; and drivers All are bus-compat,ble 

""'Ih lla,I'l1' 9€neral'o" m'crop'oell$SorS I,kll Ihe M6800 dev,ces 

The IJ"'''V 'ncludes s._ m,croprocessor, IN,th On board clock 

oscillator, and d"vll'S and four m,,,oproce5sors driven by e~ternal 

cloc~1 Ttw on-ch,p clock vers,ons are a,med al hlqh performance, 

lOIN COlt aPP',cat,ons ""he~ Slng.e phase ,nputs, crVSI~1 or RC 

Innut, provide the I,me base The ~>terna, crock versIons are 

ql'ared for mull.processor IvSlem appll~dtlon\ whe'e maximum 

t<tn,nq control,s mandatory_ A:; R6500 mlcrop'OCeSSOr$ are 

also ~vailable tn a vJfte!y of packag,ng tcllram,c imd plast,cI. 

aperillmg lrequency 11 MHl and 2 MH11 and lemPerature Icom 

merClal, mdus!r,al anrl m"'laryl vers,ons 

MEMBERS OF THE R6500 MICROPROCESSOR 
(CPU) FAMIL Y 

Model Add.~b'- ~mory 

A6502 65K Byle5 
R6503 41< Byles 
A6504 81< Byles 

R6505 41< Byles 

A6506 4K Byte1 
A6501 8K Bytes 

M,croprocessor~ "",th E~ternal Two Pha5e Clock OUlp ... 1 
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Modo' 

A651? 
A6513 

A6514 

A6515 

6SK Byl .. ~ 

41< BYle~ 

8K BYle~ 
41< Byles 

FEATURES 

S,ngle -+5V supply 
N channel, silicon gate, dFpietlo" 10arliPchnoloqy 

• E'gh! hrl parall!"t proceSSI"g 

DeCima, and b'''Jry a"lhmel,C 

• Th"leen dddres"ng modes 
T,up mdexlng LJpab,I'ly 

Prog'dmmable 'lack POl mer 

• Va"Jhle lenglh "ack 

• Inlerrupt cdpab",ty 
Non-maskable Interrupt 

Use w,tl'! any Iype 01 IPeeel mf'mory 

8-b't 8,d"ect,onal 0,11" Bus 

Addressable memory 'ange at up 10651< bytes 

"Ready" ,nPUI 

Oorec! M .. mo.y Acc~1S capabol<ly 

Bus compat,bl" ""'110 M6800 

1 MHz and 2 MH7 operal.on 

He lime bale ,,,pul 

Cry,lal I,m.' base .npUI 

CO"''''PfCIJI. 

Plpel,ne arch"11C'ure 

Ordering Information 

A65XX- -It,m ... ,,,"ce 
No suH ~ 

E 

MT 

Pac:kaqe 

Mll-ST0.883 
Class B 

C - CeramIc 
PlastIC 

INol Ava.ble fo. 

Mo. MT suff,.~ 

Frequency Aange 

No SUftl~ 1 MHI 

A - 2 MHz 

Model DeSI9".1tor 

XX-02.03,04. IS 

JJ 
en 
U1 
o 
o 
s: 
(") 
JJ 
o 
-C 
JJ 
o 
(") 
m 
en 
en 
o 
JJ 
en 
n 
-C 
C 
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R6500 Signal Description 

The R651X requires a two phase non-overlapping clock that runs 

at the Vee voltage level. 

The A650X clocks are supplied with an internal clock genera lOr 
The frequency of these clocks is externally controlled 

These outputs are TTL compatible, capable of dr illing one standard 

TTL load and 130 pF 

D.t, Bus (00·07) 

Eight pms are used for the dJla bu~ This is a bidirectional bus, 

transferring data 10 and from the de ... ,ce and perIPherals, The oul

puts are tfi-state buffers cJp<lble of driving one standard TTL load 

and 130 pF 

D.t. Bus En.ble (OBE) 

This TTL compatible input allows external conlrol of the tfi-state 

data output buffea and will enable the microprocessor bus driller 

when in the high state. In normal operation DBE would be driven 

by the phase two (/112'. clock, thus ,allowing data output from 
mIcroprocessor only dUring /112' Durmg the read cycle, the data 
bus drivers are Internally disabled, becoming essentIally an open 
CIfCUIt. To dIsable data bus drivers externally. DBE should be held 
low. 

Ready (RDYI 

ThIS Input SIgnal allows the user to halt or single cycle the mIcro 
processor on all cycles except wnte cy::les. A negatIve lIanSltlon 

to the low state dUflng or COincident WIth phase one (/III) wdl halt 
the m,croprocessor with the output address lines reflecllng the 
current address being fetched. If Ready is low dunng a wnte 
cycte. It IS Ignored until the following read operation ThIS can 

dltlon wdl remain thrOugh a 1ubsequent phase two (412) In whIch 
Ihe Ready SIgnal IS low. ThIS feature allows mIcroprocessor Intel 

faCing WIth the low speed PROMS as well as fast (max 2 cycle) 
D"ect Memory Access (DMA) 

Interrupt Requ"" {fRO) 

This TTL level mput requests that an Interrupt sequence begin 

WIthin Ihe microprocessor The mIcroprocessor WIll complete the 
current IOstruclion beIng executed before recogniZIng the requesl 

At that time, the interrupt mask bIt in the Status Code Register 

will be ellammed. If the interrupt mask flaq IS not set, the micro
processor will begin an interrupt sequence. The Program Counter 

and Processor Status RegIster are stored 10 the stack. The micro 

proceuor will then set the ir"llerrupt mask flag hIgh so that no lur· 
ther interrupts may occur At the end of thIS cycle, the program 
counter low will be loaded from address FFFE, and program 
counter hIgh from location FFFF, therefore transferring program 
control to the memory vector located at these addresses. The 
ROY signal must be in the high state for any interrUPt to be re<> 
ognized A 3KU external resistor should be used lor proper 
wlre·OR operatIon. 

Non·Maskable Interrupt (flMl) 

A negatIve gOIng edge on this input requests that a non-maskable 
mterrup! sequence be generated within the microprocessor 

NMI IS an uncondItional interrupt. Following completion of ~ 

current Instruction, the sequence of operations defIned for IRQ 

will be performed, regardless of the state interrupt mask flag. The 

vector address loaded Into the program counter, low and high, are 

locations FFFA and FFF6 respectively, thereby transfefflng pro

gram control !O 1he memory vC'Ctor located at these addresses. 
The instructIons loaded at these locations cause the microproc 

essor to branch !O a non·maskable Interrupt routine in memory 

NMI also requires an external 3K n register to V CC lor proper 

wire-OR operatIons 

Inputs IRQ and NMI are hardware In'.errupts IIOes that are sam· 

pled during "'2 {phase 2) and will begIn the appropriate interrupt 
routme on the 1>1 {phase 11 following the completion of the cur· 

rent mstructlon 

Set Overflow FI ... IS.O.l 

A negatIve gomg edge on this input sets Ihe overllo ..... bit In the 

Status Code RegIster. ThIS signal .s sampled on the trallmg edge 01 

¢II and must be externally synchronized. 

SYNC 

ThiS output line IS prOVIded to Identify those cycles 10 which the 
mIcroprocessor IS doing an OP CODE fetch. The SYNC lme goes 
h'gh during ¢l 1 of an OP CODE fetch and stays hIgh Tor the 

remamder 01 Ihat cycle. If the ROY line is pulled low during the 
411 dock pulse in which SYNC went high, the processor ..... 111 stop 
In lIS current state and will remain in the state until the RDY line 

goes hIgh, In this manner, the SYNC signal can be used to control 

ROY to cause slOgle mStruction exeCUllon. 

This input is used to reset or start the mIcroprocessor from a 

power down condItion. DUflOg the tIme that this line is held low, 

writing to or from Ihe mICroprocessor IS InhibIted. When a posi· 
tive edge is detected on the mpul. the microprocessor w;1I Imme

diately begin the reSet sequence 

After a system IOltlaillatlOn time of SIll dock cycles, the mask 

interrupt flag will be set and the microprocessor will load the pro

gram counter from the memory vector locatIons FFFC and FFFD. 
This is the 51art location for program control 

After VCC reaches 4.75 vohs in a power up routine, reset must be 
held lOW for at least two clock cycles. At this time the R!W and 
(SYNC) signal will become valid. 

When the reset signal goes high following these two clock cycles. 
the microproceS$or ..... ilI proceed with the normaf reset procedure 
detaIled above. 
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Clock Timing --- R6502, 03, 04, 05, 06, 07 

-- ~TF¢>O -- ___ JA¢>() ____ 24Y 

¢>o ;'NI 

~~PWHI/lOL -~_PWH¢>O>i--

¢I, loun ----.....I~ ---.-/ 
_PWH¢>/ __ 

¢I(oUT)~5V --1SY---. 2 04V 0 ~Y 
___ PWH¢>1_ 

REF "A RE~ "e" 

Clock Timing - R6512, 13. 14. 15 

" 

Timing for Reading Data from Memory or Peripherals 

~AEF"A 

I O~Y -.....J TRWS ' __ 

I"--REF 'A 

! O~Y 
T.,RW __ --

RM~---X: 
THA __ .--

AOORESSFROM~~ 
CPU~-

OATA FROM ~TADS -- 2~_ . 

MEMORY • 

TACC~ ___ THR 

X==TOSU---

---~ -'",,,;c, ==x== __ _ 
Timing for Writing Data to Memory or Peripherals 

ADDRESSfROM~
CPU ~ 

__ - __ "_D_' ___ '--_'-<''" . ~ •. OATAFAOM /=F 
CPU 08~ 

T "JIOS +-------- T H .... -- __ 

PROGRAMMING MODEL 

, D 

I I ACCUMULATOR B 0 I Z C PROCESSOR STATuS REG 'po, 
7 D 

I !INDEX REGISTER 

0 
!INDEX REGISTER 

15 0 

I PCH PCL I PROGRAM COUNTER "PC" 

8 7 0 
1,1 I STACK POINTER .,s" II II ~t:~~~::;':::'~:~~~:, 

OVERFLOW 1 - TRUE 

NEGATIVE 1 NEG 
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1 MHz Timing 2 MHz Timing 

Clock Timing - R6502, 03, 04, 05, 06,07 Clock Timing - R6502, 03, 04. as, 06. 07 

- -1~~l~J1--;:1-1 
Ooo<.'''N'~ "'_.... I.. .... U." --- - - -

I::"·,'~:"",. ......... ~:~.:: •. 
I ~", .... ' ~ " 1 _. 'A" ". \0 

I 0:.:, ':;; ". ~V (0," '0 ' 

," •..• ".... •• _.. 1-".,' I 
'. ." ....... ,' I ~".' 1_" ." ," ' .. " 

I _" 

'The lowe~t operal+"9 frequency fo' the commerCial tempp,ature 'ange CPU'~,~ 100 KHl, whIch correspond§ 10 a ma",mum cycle tIme 
nCYC) of 10 "s. The lowe~t opNatong frequenty for the >ndlJ~l!lal and military temperawre range CPU's \~ 250 KHz, which torre,pond~ 
to a ma~,mum cycle tIme (TCYCI of 4~s 

Clock Timing - R6512, 13, 14, 15 Clock Timing - R6512, 13, 14,15 

L ___ _ 

I :;:.:;::'. 

I:.:..:.::" 
I::':: 

:';':"T ,: .- .,,-
I 

I , 

i " ' I 
l ___ ~_~ 

1 

-~'--' 

L. 
C,,,' _. 

1
'_"'·""" "" ....... :.'" 

ReadflNrite Timing ., 

•• load Cond,tlon~'" 1 TTL Load + 130 pf 

3.3K 

RECOMMENDED TIME BASE GENERATION 

1.8K 1.8K 

XTAl 

11 MH1- 5 MH:zI' 

R65XX 

~ IINI 
o 

'CRYSTAL' CTS KNIGHTS MP SERIES, OR EQUIVALENT 

.~T--:C---~;-C-'-'.---'--C.C.C 
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SPECIFICATIONS 

Maximum Ratings 

Rating Symbol Value Unit 

Supply Voltilg~ Vee 0310+7,0 VOc 
Input Voltage V ,e ·0.3 to +7,0 Vdc 
Operating Temperdture T °e 

Comm€rClal o to +70 

Industr.al -4010 +85 

MII,tary 5510+125 

Storage Temperature T STG 55(0+150 °c 

Th,S deVice contains 'nput protection against damage due to hIgh staliC voltages or electric fields; however. precautions should be taken to 

avoid application of voltages higher than the ma:.,mum ralong 

Electrical Characteristics 

(Vee ~5.0'!5'\.,VSS 0) 

¢I" 412 applies to R6S 12, 13. 14, 15, ¢ o(,n) applies to R6b02. 03, 04, 05. 06 a .... d 07 

CharKl.ristic Symbol Min 

Input High Voltage V ,H 

LogiC, fPo!in) V 55 + 24 

<P" <P2 Vee - 0 2 

Input Low Voltage 
V" 

Loglc·¢o!,"' VSS - 0 3 

4>," 4>2 V SS . 0.3 
'------- - - --- f-- ---

Input HIgh Threshold VOltage V IHT 

m, NMi. RDY. IRQ. Data. 5 0 V SS +2.0 

----

Input Low Thrf!shold VOltage V'LT 

RES, NMI. ROY. fRQ. Data. 5 0 

Input Leakage Current 

(V In ~ 0 to 5.25V, Vee· 0) 

LogiC IExcl RDY,SO.l 

¢I,. 412 

¢loltnl 

Three·State (Off State) Input Current ITSI 

(V,n" 0.4 to 2.4V, Vee = 525VI 

Data LInes 

Output HIgh Volta9€' V OH 

(I LOAO ~ ·100~Adc, Vee ~ 4.75VI 

j SYNC, Data, AO·A '5, R/W, ¢I" ~2 V SS + 2 4 

Output Low Voltage VOL 
(I LOAD 1.6 mAdc, Vce ~ 4.75VI 

SYNC, Data, AO·A1S, R/W, 0" ~2 

Powl'r D'SSllldt,on Po 
Commen::.al tl'mll. verSIons 

InduSl"al ano mll,tary temp. vt'rs,O!15 

CapaClli}nct' ill 25°C 

IV - 0, f - 1 MH.!i 

LogIC C 
Dilta 

AO·A15. R·W, SYNC C 
00' 

°ollnl C¢Jol,n) 
~, e~1 
~2 e¢2 

Note fRO and NMI require 3K pull·up re~,stor$ 

T,p M" Unit 

Vdc 

Vee 

V CC +O.25 

Vdc 

VSS + 0.4 

V 5S + 0.2 

Vd, 

Vdc 

VSS + 08 

f---- - r-- -

"A 

25 

100 

100 
--

"A 

10 

Vd<: 

--1---- ----------~ 
Vdc 

VSS + 0.4 

W 

025 0.575 

025 0700 

pC 

10 

15 
12 

15 

30 50 
50 80 
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Package 
Type Frequency 

'·:~il······· ...... . 

0' <--

-:---:> 

-- - . --'. . 

Tempe'~tLl,e 

Ra"ge 

BaSIC R6522 I nterface D,agram 

CompilT,bl~ 

I)rur:~\""> ICPU,: 

f O'ly-r"" plastic Or DIP P')CKJ'!P 

Pm Configuration 
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0) 
U1 
N 
N 
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OPERATION SUMMARY 
Register Select Lines IASO, RS1, RS2. RS3) 

The four Register select lines are normally connected to the processor address bus Imes to allow the processor to s~lect the internal R6522 
.eglster which is to be accessed. The sixteen possible combinations access the ff'gistl'rs as follows 

RS3 RS2 RS, RSO Register Remarks R53 RS2 RS' RSO Register Remarks 

ORB T2L-L Write La1ch 

H ORA Controls HJr1(ish~kp T2C-L Read Counter 

DDRB T2C·H Triggers T2L-UT2C-L 

DORA 

T1 L L Wnte Ldtch 

T1C-L Read Count!'1 

T1C-H T rlg9f!r T 1 L· LiTl Col 
Transfer 

T1L-L 

T1 L-H 

NOlI' L=04VOC,H = 2.4V DC 

Timer 2 Control 

RS3 RS2 RS, RSO 

Writing the Timer 1 Register 

R!W = l 

Writ!' T2L-L 

Write T2C-H 

Transfer T2L-L to T2C-l 
Clear Interrupt flClq 

SR 

ACR 

PCR 

IFR 

IER 

ORA 

Transfer 

No Effect on 

Hdndsha"-e 

R/W= H 

Read T2C·L 
Clear Interrupt flag 

Read T2C-H 

The operations which take pl<lce whpn writing to each 01 the tOUI T1 addresses are as follows 

RS3 RS2 RS, 

H 

Reading the Timer 1 Registers 

RSO Operation (RIW = Ll 

Write mto low order latch 

Write into high order latch 

Write into high order counter 

Transfer low order latch Into low order counter 

Reset T1 interrupt Ilag 

Wrl te iov, order latc:-h 

Wnte high order latc:-h 

Reset T1 Interrupt flag 

For read,ng the Tnner 1 registers. the four addresses relate dlrectlv to the four registers as follows 

RS3 RS2 RS, RSO Operation (R/W" H) 

R~ad T 1 low order COunter 

Re~~t T1 Interrupt flag 

Read T1 high orrl!'r counter 

Read T1 low ord!', Idtch 

Read T1 high orrl!'r ,,1ICh 
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TImer 1 Operating Modes 

Two bits are provided In the Au,uliarv Control Aeg,ster to allow selection of the T1 operating morles These bits and the four possible modes 

are as follows 

ACR7 

Output 

Enable 

FUNCTION CONTROL 

ACR6 
"Free-Run" 

Enable Mode 

Generate a Single time-out Interrupt each !,nw Tl IS loade(j 

Generate conlinuous Interrupts 

Generate a Single Interrurt and an outpu' pul;;~ on PB7 fn' 

each Tl load operation 

Generate continuous mterrupts and a sqU;:lrp welve output 

on PB7 

Control of the vaflOU, funct on" ,lOf! oprr,llmg modf!S wllh"l thp R6522 IS accomplished prllnarl'y through two req'''ler~, Ihe Peropheral 

trol Aeglster (PCA), an(i the AUXIlidry Cor)1rol Rpg,;Wr (ACR! Th" PCR I, used prlmarrly to select the operallny mod .. for lhp four pe,-.prlPrdl 

control pinS, The Au)(rI,a,,. ContlC)" Heyl'>ler seier IS tlw operell!llq mode for the Interltal T,mers (Tl, T2), and the Sprlal PD't (SRI 

Perlpkeral Control Register 

The Peripheral COntrOl Register 15 organized as follows 

Bit' I 7 I 6 I 5 4 3 I 2 I , 0 

Function I CB2 Conlrol CR' CD..2 Conr-ol CA' 

TYPlc;:I1 functions are shown below 

PCR3 PCR2 J PCRl 

I 

I 
AuxilIary Control RegIster 

ContrOl Control 

Mode 

Inpul mode - Set CA2 ,nterrup! flag (IFRO) on a r1Pgal,ve transition ollhe Input s,gnal Clear 

IFRO on a read or Write of the Perrprlf'f;:ll A Output Reg,ster 

Indpper1(jp", Intf'rrupt mput mode - Set IFRO on a negat.ve tran~ltlon 01 the CA2 ,npu! "q 

ndt Hpdrllng or writing ORA does not clear the CA2 Interrupt flag 

InpUl mode - Set CA2 Interrupt flag on a pOSItive tranS1tion of the CA2 'nput ",gnal Clf'ar 

IFHO With a rei,d 01 write 01 the Peripheral A Output Register 

I"depenrif'nr Hlterrupt Input mode - Set fFRO on a POSitiVI' lranSl!.on of 1"'1' CA2 Inpul Slq 

na, Rearil"q Of wriling ORA does not clear the CA2 rnlerrupt flag 

HandshJkp OU1PU! mode - Set CA2 output Iowan" read or wrote 01 thf' P,'rlpher,ll A OutPut 
RCCjls!er Re,p! CA2 high With an act,ve tfans,tion on CA 1 

Pulse OutpUl modp CA2 goes low for one cvcle followmg a read 0' W"tf' of thf' P,'"phpral 

A Output Rp'I'S!e, 

Milnl'JI OlllPUI mode - The CA2 OulpullS held low ,n this mode, 

MJnU,ll outrut mode - The CA2 output IS held high 10 IhiS mode 

Manv of the lunn,ons m the AUKrilary Control Reg,ster have bee" d"cussed prpvlou,ly However, a summary of Ihls register 15 presented 

herp a; d co"ven,ent rpference for the R6522 user The Au)(illary Control Hegl>!er I, organ'led as 10,lows 

Bit' 7 I 6 5 4 
I 

:l I 2 I , 0 

Function 

T2 

I 

PB PA 

T1 Control Control Sh'ft Rf'QlstPr ContrOl Latch Latch 

Enable Enable 

Skift Register Control 

The Shlfl Reg">t!'r operallOg mode is selected as follows 

ACR4 ACR3 ACR2 Mod, 

! Sh,fl ,n under control of syStem l !Ol f. 

Shift 10 under (on'iol of Timp, ) 

Shltt In under (on"ol of eKtel ";:II 

Shift out under control of Timer 2 

Shilt ::lut under control of the ,ystem rlock 

Shlf! out under con!rol 01 eKternal pul,f'; 
, 

T2 Control 

Tlmpr 2 operatPS ,n twO modes If ACR5 = 0, T2 acts as an interval !lmer In !hp orlP-,"O! mod" If ACR5 ~ 1, T,mer 2 aCls to count a pre· 

df'term,ned number of pulses on pm PB6 
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TIMING CHARACTERISTICS 

Read Timing Characteristics (loading 130 pF and one TTL load) 

P.ramfler Symbol Min TVO 

Delay Time. address lIalid 10 clocK Qos.nlle tranSIlIOC> 180 

Delay "me, r-Inrk po;'11111' IrClMltron to data valin on bus 

Dillil bus hold Tlm~ 

PHASE TWO 
CLOCK 

AODRESS 

PERIPHERAL 
DATA 

Write Timing Characteristics 

Enilble pulse w.dth 

JOO 

10 

.Ic---t--+--'-+-""-------2.4V 
'\--+-+-+--------O.4V 

J..--'""=--'--+--+----------2.4V 

Read Timing Characteristics 

Symbol Min Tvo 

T C 047 

T ACW 180 

T DeW 300 

TWCW 

Datil bus hold Time T HW 

PHASE TWO 
CLOCK 

ADDRESS 

READ/WRITE 

.,----'f-'=--+--. r------- 2.4V 

~-t-----t--- '-,-.-=----0.4V 
,+-""'''"----2.4V 

DATABUS _____ ~~ __ ~~~~~~~~ 

PERIPHERAL 
DATA 

Write Timing Characteristics 

Unit 

395 

05 

M" Unit 

25 ,5 

05 

05 

05 

05 

,5 

,5 
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I/O Timing Characteristics 

CharacterIstIc Symbol 

r-----------------------r----~----r_--_r----r_--~ 

384 

H,,,, and lall t,me 10' CA I, CB I, CA2 ,I"d eB2 ,npul "gnal, 

Dt'iay t.me. clock n!!ga"vl! t<"ns.t,o" to CA2 neqatlve 

t'd"",.[Jn I,!!ad hand~hak!! 0' pulse model 

Deiayl.nw rlPqal 'v~ 

Dplay t"'n~ r 

lrdnSI\'an iw"lt' h,,,,,hh~kp 

Delay 

D!!lay 11FT'" CB 1 .'U ",~ 
lrJn"I,,,n (handShake made) 

II, C.A2 P('s,\,ve 

I to ellL [J' CB2 PO~'I've 

'" eB2 positive 

Delay I,mI'. per,pheral nala val,d 10 CA 1 0' CS 1 dCllvt' 

Iran"llon I,npul latch,ng) 

Oel~,. I,m!! CBI negat,~e 'fan~lllon 10 CB2 nala vdi,rj 

i,nlP'nal SR cloCk. sholl oull 

Oplay I'me. negatIve l'an:\,I,on at CBI "'pul CIOC~ 10 eB2 data 

valod leq!!,nal clOCk, Sh,11 oull 

[)e1dy 1,me, CB2 dal<l valid 10 PQSd,ve !,anS,t,on:)t CSI clock 

I,h,tl ,no ,nlernal a' e"lernal clock) 

Pul~ ... W.dth - PB6 Input Pulse 

Pul~eW,d,h C81 InpUI C":i,,(k 

PB6 Inpu1 Pul" 

Pulse SPJ(''''I C81 

CB2 SERIAL 
DATA IN 

CBt CLOCK 

T H ~ 

TCAL 

T RS1 

TAS2 

TWHS 

T DC 

T RS3 

T AS4 

T" 300 

T SR 1 

T SR} 

T SRJ 

TIPW 

T ICW 

lIPS 

11CS 

2.4V 

C82 SERIAL------'-'}...::.:.::....----2 .• V 

DATA OUT ------.J1'-------O.4V 

I/O Timing Characteristics 

10 

:' 0 

'0 

300 

300 

300 

I 



SPECI FICA nONS 

Maximum Ratings 

Rating 

Supp', Voltage 

Input VoITa']e 

Operaltng Temperature Ran~ 

M""~ry 

Storage Temperature RanQe 

Symbol 

Vee 

V" , 

TSTG 

Value U"it 

03 to • 7 0 
03 IU '70 Vd{ 

"c 
o to +70 

40 to '85 
5510 + 1)5 

5510 +150 "e 

Th>s del/Tee contaonii C",cud'V 10 pr01Pct (he mpuls against damage due to hLgh stat,c voltages Howelle •. It IS adv,~ert lhat norm')l precautions 
be taken to al/ood apphca\.on of any voltage h'gher Ihan ma~lmum raled vollaqe~ 

Electrical Characteristics 

(vee 'j ov +5 vSS 01 

Ch~racterist,c 

Inpu\ hILl!, vollage Inormal operatlonl 

Input LOW vo,tJge Inormal operatIon) 

OII-state,<lpulCu.renl-V,n 041024V 
vee = Ma". DO 10 07 

Input hIgh current -- V,H - 24V 

Symbol Min M •• 

vee 

U J +0.8 

±25 /JAde 

+_10 j.lAdc 

·100 ",Adc 
;-___ p_A_O_pA_,_'_' e_A2. PBO-PB7, CB 1, C_B_2 ___ .-j- -
I InpHtlow CU'fent - VIL 04 Vdc L-- PAOPA7,CA2,PBO·PB7,CB1,CB2 

r OU!PlJ!i"qhvolt<lgE' 
vec 0 min, Iload - 100 ).<Adc 

______ 'A~O_'~A_7~CA~2~,~PB~0_.p~B'_'_.e~B~'~,C~U~2 __ _____ 

Output 10'" volt<l\lE' 
vee mm,lloan ~ '_6 mAde 

'00 
VOH " , ,5V, PBO-PB7, CB I, CB2 ·1.0 

16 

l OU!P~,;~g~ ~u~~n! (sourClr1\l) IOH 

----,O-"-"-"'-'''-w-'-urrE'!lt (slnkIF1ql --------r-----. IO-L---+---c-,----+

VOL = 0.4 Vde 

OutPut Ipak:lc!!, eUllen! (off statel 
iRi'i 

'CO"' c-""-,,-,,,,-,,-. -, A-·-,,-=-Oe-, ,-. -, M-H7 __ 
R'W.R'ES REO,RSI,RS2,RS3,CS1,CS2, 
DO-o7, PAO-PA7, CA2, PBO-PB7 

CBI, CB2 

-

, 6 mAd, 

+0.4 

).<Adc 
mAde 

'0 ).lAde 

" , 0 

'0 

20 

'0 " 
750 mW 
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R6500 Microcomputer System 
DATA SHEET 

ROM-RAM-I/O-INTERVAL TIMER DEVICE (RRIOT) 

SYSTEM ABSTRACT 

The a·b,t A6500 m,e'ocompulpr \'/51~rn " fl.oriuced with N 

channe S I,con Gate :echno ogV It~ performance 5peeds <Ire 

enhanced by advanced ",tern oren,lecture liS ,nnOvatlVe' arch, 

lecture ,e,uitl ,n ~md'lt'f ch,p, the semIconductor threshOld TO 

co" eflec!'~lty System COlt effectIVIty IS !unh!!. enhanced by 

plall,dlng a fam,ly of 10 software-compatIble mtcrOp.ace-Hor 

ICPU) deVices Rockwe,1 JISO provides memorv and 110 deVIces 

that further enhance the cost efleClll/ilV of the R6500 m'crocom 

as well a~ low-<;OSI deSign a,d, and documentation 

DESCRIPTION 

The A6530 ,s deSIgned to operate '" conJunct,on wIth the A6500 

Microprocessor FamliV It IS compflsed 01 a mask programmable 

1024 " B ADM, a 64 " 8 $lalic RAM. IWU soltware cuntrolled 
8 bit bidirectional data porn aHowlng dtrect InterlacIng between 

the microprocessor unit and peflpherai deVICes. and a suftware 
programmaole mterval timer with Interrupt capable 01 t,m,ng ,n 

various intervalslrom 110 262,144 clock periods 

PAO PA7 

DO AD 

FEATURES 
• 8 bIt b,dm~etlon .. 1 Data Bu, for direct commun'C<lI,on ",,,th the 

microprocessor 
1024 ~ 8 ROM 

• 64 x 8 static RAM 
Two 8 bit b,dorecl,onal dala porh for mlerlace to peropherals 
Two programmable Data o"eCllon AeglHer5 
Programmablelnlerval TImer 
Programmaole Inlerval Timer InterruPI 
TTL & CMOS compatIble penpheral hnes 

• Peropheral pms wllh Dlrecl Trani,SlOf Or.ve Capabllitv 
• H'gh Impedallce Three Stale Data Bus 
• Allows up to 7K conllguous bvles 01 ROM wl1h no e"lernal 

decodIng 

Ordering Information 

Order PK"-ve Temper.tUN 

Numb.- TV" Ran.,. 

A6530P PlastIC ODC to +700C 

R6530C CeramIc OOC 10 +70oC 

A CUSlom number will be aSSigned bv Rockwell 

P80 PB7 

R6530 Block Diagram 

386 
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INTERFACE SIGNAL DESCRIPTION 

Reset tAtS) 

During system initialization 8 Logic "0" on the RES input will 
cause a zeroing of all four I/O registers. This in turn will cause all 
ItO buses to let as inputs thus protecting external components 
from pOillble damage and erroneous data while the system is being 
configured under software control. The Data 8us Buffers are put 
InlO an off slate during Reset. Interrupt capability is disabled 
with the FrES signal. The FrE!: signal must be held low for at least 
one clock period when reset is required. 

Rad/Writ. (R/W) 

The R/W Signal is supplied by the microprocessor and is used to 
cOntrol the transfer of data to and Irom the microprocessor and 

the R6530 A high on the R/W pin allows the processor to read 

(with proper addreSSing) the data supplied by the R6530. A low 

on the R/W pin aHOws a write (with proper addreSSing) to the 
R6530. 

InUITUpt Request t ilml 

The ~ pin is an interrupt pin from the interval timer. This same 
pin, if not used as an interrupt, can be used as a peripheral I/O pin 
~PB71. When used as an interrupt, the pin should be set up as an 
Input by the Data Direction Register. The pin will be normall-y 

high WIth a low indicating an interrupt from the R6530. An exter
nal pull·up deVice is not required; however, If collector-OR'd with 
other devices, the internal pullup may be omitted with a mask 
option. 

0. .. au. (DO-07I 

The R653D has eight bidirectional data pins (00·07). These pins 
connect to the syuem's data lines and allow transfer of data to 

and from the microprocessor. The output buffers remain in the 
off state except when selected for a Read operation. 

P.rip'*'al Data PorU 

The R6530 has 16 pins available for peripheral 110 operations. 
Each pin is individually software programmable to act lIS either 

an onput or an output. The 16 pins are diVided Into two a·bit 

pom, PAO-PA 7 and PBO·PB7. PB5, PB6 and PB7 also have other 
uses which are discussed in later sections The pons are set up as 
an Input by writing a "0" into the corresponding bit of the Data 
Direction Register. A "1" ,nto the Data Direction Register will 

cause its corresponding bit to be an output. When in the Input 

mode, the Peripheral Data Buffers are in the "1" state and the 
internal pull·up device acts as less than one TTL load to the 
peripheral data tines. On a Read operation, the microprocessor 
Unit reads the peripheral pin. When the peripheral deVice gets 
Information from the R6530 It receives data stored in the Out, 
put Register. The mIcroprocessor Will read correct information 
if the peripheral lines are greater than 2.0 volts (for a "1") or 

less than o.a volts (for a "0") as the peripheral pins are all TTL 
compat,ble 

Addr_ Li,... (AO-A91 

There are 10 address pins (AO-A91. In add,tion, there is the 

ROM Select pm (ASOI. Funher. PinS PB5 and P86 are mask 
IJrogrammable, and can be used either individuallv Or together as 
chip selects_ When used as peripheral data pins they cannot be 

used as chip selects 

INTERNAL ORGANIZATION 

The R653D is divided into four basIc sections AAM, ROM, 
1/0 and Timer. The RAM and ROM interface directly with the 

mlcroproceS$or through the system data bus and address lines, 
The lID section consists of two a-bit halves, Each half contains 

a Data Direction Register (DDR) and an Output Register 

ROM 1K Byte (8K Biul 

The 8K ROM is in a 1024 x a configuration. Address lines AD·A9, 
• well as RSO are needed to addre5$ the entire ROM. With the 

addition of CSl and CS2, seven R6530's may be addressed, giving 
7168 x 8 bits of contiguous ROM_ 

RAM - 64 Bytes (512 Bits) 

A 64 x 8 static RAM is contained on the R6530. It i. addressed 
by AO·A5 (Byte Select!, RSO, A6, A7, A8, A9 and, depending 

on the number 01 chips in the system, CSt and CS2. 

In_AlII Pwiphenl Regkten 

There are four internal regIsters, two data direction registers and 

twO output registers. The two data direction registers (A side 
and B side) control the direction of the data into and out of the 
peripheral pins, A "1" written ,nto the Data Direction Register 

-sets up the COrresponding penpheral buffer pin as an output 
Therefore, anything then written II1to the Output Register will 
appear on that corresponding peflpheral pll1. A "0" written 
into the DOR InhibIts the output buller from transmitting data 

from the Output Register. For example, a "1" loaded into Data 
O.rectlon Register A, pOSition 3, sets up peropheral pin PA3 as an 

output If a "0" had been loaded, PA3 would be configured as 
an Input and remain in the high state. The two Data Output 
Registers are used to latch data from the Data Bus during a Write 
operation until the peripheral device can read the data supplied 

by the microprocessor 

During a Read operation the microprOCeSsOr is reading the periph
eral data pins. For the peripheral data pins which are programmed 

as outputi the microprocessor will read the corresponding data 
b,ts of the OUlPut Register, The only way the Output Register 
data can be changed is bv a mIcroprocessor Write operation. 
The OutPut Register is not affected by a Read of the data on the 
penpheral pins 
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The Tim,." section 01 the R6530 contJlns three bas,c parts 
>cale d,v,dp down register, progrdmrTlable H-b,t register and Inter 

rurt 1091(' 

The Interv;ll timer can be programmpd to count up to 256 time 

Intervals. Each time Interval can be either IT, 8T.64T or '024T 
increments. where T IS the system clock period. When a lull count 

.s reached, an Interrupt Ilag IS set to a logic ",". After the inter 
rupt flag is set the internal clock beginS counting down to a maxi· 

mum of ·255T. Thus. after the interrupt flag is set, a Read 01 the 
timer will tell how long smce the flag was set up to a maximum of 

255T. 

The 8 blt system Data Bus is used to trdnsfer data to and from the 

Intervdl Timer. If a count 01 52 t,me intervals were to be counted. 
Ihe patTern 0 0 , , 0 1 0 0 would be put on the Data Bus and 

wrotten "110 the Interval Timer Req'Sler 

AT The samr time that data 's bemg wrotlen 10 Ihe Inlerval Timer. 
the count'ng Interv;l1 (1.8.64 or I024T) IS decoded from address 
lines AO and A 1. During d Read or Write operation address line 

A3 ~ontrols the Interrupt capability 01 PB7, i.e. A3 = 1 enables 

IRQ on PB7, A3 = 0 disables IRQ on PB7. When PB7 is to be used 
as an interrupt flag with the interval timer it should be pro 
grammed as an input. If P87 is enabled by A3 and an Interrupt 
occurs PB7 will go low. When the timer is read pnor to the inter 

(Upt flag being set, the number of time intervals rem;lining will be 

read, Le 51, 50, 49, etc. 

Whl?n Ihe timer has counled duwn to 0 0 0 0 0 0 0 0 on the 
neXI cuunl time an interrupt wdl occur dnu Ihe counter will read 

1 1 1 1 1 1 1 1 Alter Interrurl. Ihe T"ner Reglster decre
mt'ntS al .J d,vlde by""'" rate 01 the >\-stem clock, If alter Inter 

rupl. the IllTle' 's read and d value of 1 I 1 00 1 00 ,5 read. Ihe 
time Since Intenupt IS 27T The value read ,s on one's complement 

Value read , , I 0 0 , 0 0 

Compl~ment - 0 0 0 , , ° I 1 27 

Thus to drflve at the total eldPsed t"lle, merely do a one's com 
plem~"l and add \0 the onglnaL Ilrne W"lt~n Into the lime, Again, 
Js,ume tIme written as 0 0 1 1 0 I 0 0 ! - 52) W,th a d,vlde 

fly 8, IOtdl time to Inter<upt ,,(52)( 81 ~ 1 0 417T Total elapsed 
lime would be 417T + 27T - 444T, assum.rHllhe value read alter 

Inlf'rruf]t was I I I 0 0 1 0 0 

Alter the interrupt. W'1enever the timer is written or read the 
Interrupt is reset However. Ihe reading of the timer at the same 
time the interrupt occurs will not reset the interrupt Ilag. When 

the interrupt \lag IS read on DB7 all other DB outputs {DBO thru 
DBGI go to "0". 

When reading the timer after an interrupt, A3 should be low so as 

.to disable the JRQ pm. ThiS is done so as to avoid luture IIlter' 
rupls until after another Write timer operat,on 

02 

D7 06 04 02 DO 

Basic Elements of Interval Timer 

(i) Ql Q) @ ® 

~21N ~~~ 
WRITET ~L-________________________________________________________________ _ 
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1 D .. ta written into interval timer is 0 0 1 , 0 , 0 0 = 52 10 

2. Data In Interval timer is 0 0 0 1 , 0 0 1 = 25'0 

52 4l- 1 '" 52·26-1 '"' 25 

3 Data in Interval timer is 0 0 0 0 0 0 0 0 = 010 
415 

52,S ,1'" 52-51-1 =0 

4. Interrupt has occurred at 02 pulse #416 
Data in Interval timer = 1 , 1 1 1 1 1 1 

5. Data in Interval timer is 1 0 1 0 1 1 0 a 
two's complement is a 1 0 1 0 0 , 1 .. 83 10 
83 .. (52 x 8) + 1 = 500 10 



ADDRESSING 

Addressing of the R6530 offers many variations to the user for 

greater flexibility_ The user may configure his system with RAM 

in lower memory, ROM in higher memory. and I/O registers wllh 

Interval timers between the e)Ctremes There are 10 address lines 

{AO·A9L In addition, there is the possihil,ly of 3 additional 

address lines 10 be used as chip-selects and to distmguish between 

ROM, RAM, I/O and interval timer Two of the additional lines 

are chip-selects 1 and 2 (CSl and CS21. The chip-select pins can 
also be PB5 and PB6. Whether the pins are used as chip-selects or 

peripheral I/O pins is a mask option and must be specified when 
ordering the part. Both pins act independently of each other in 

that either or both pins may be designated as a chip-select. The 
third additional address line is RSO. The R6502 anc! R6530 In a 
2-chip system would use RSO to distinguish between ROM and 
non-ROM sections of the R6530 With the addressing pm> avail 
able, a tOlal of 7K contiguous ROM may be addressed with no 
e)lternal decode Below is an e)lample of a 1-.chip and a 7-.chlp 
R6530 Addressing Scheme. 

One-Chip Address.jng 

A 1-.chip system decode for the R6530 is illustrated on the top of 
the follOwing page. 

Seven-<:hip Addreuing 

In the 7-chip system the objectIVe would be to have 7K of contigu 
oos ROM, wilh RAM m low order memory, The 7K of ROM 
could be placed between addresses 65,535 and 1024. For this 
case. assume A13. A14 and A15 are all 1 when addressing ROM, 
and 0 when addressing RAM or liO. This would place the 7K 
ROM Of>tween addresses 65,535 and 58,367 The 2 pins deSIg
nated as chip-select or I/O would be masked programmed as 
chip select pms. P,n RSO would Of> connected to address line 
AIO Pms CSl and CS2 would be connected to address lines 
A 11 and A 12 respectively. See illU$lr ation below 

The two e)lamples shown would allow addressing of the ROM 
and RAM; however, once the I/O or timer has been addressed. 
further decoding is necessary to select which of the I/O reg's 
ters are desired, as well as the coding of the interval limer 

I/O Register - Timer Addressing 

Addressing Decode tor I/O RegIster and Timer ,llustrates the 
address decodmg for the internal elpments and timer program
ming Address lines A2 d,stinguishes I/O reg,sters from the timer. 
When A2 IS high and I/O timer selpct ,s h,gh, the 1/0 registers are 
addressed. Once the I/O registers are addrpssed, address lines Al 
and AO decode the deSired register. 

When the timer is selected A 1 and AO decode the divide bv matri)l 
In addition. Address A3 is used to enable the interrupt flag to 
PB7. 

R6530 Seven Chip Addressing Scheme 

The addressing of the ROM select, RAM select and I/O T,mer select lines would be as foHows 

R6530 N1, ROM SElECT 
RAM SELECT 
I/O TIMER 

R6530 #2. ROM SELECT 
RAM SELECT 
I/O TIMER 

R6530 #3, ROM SELECT 
RAM SELECT 
I/O TIMER 

R6530 N4, ROM SELECT 
RAM SE LECT 
I/O TIMER 

R6530 fl'5< ROM SELECT 
RAM SELECT 
If a TIMER 

R6530 01'6 ROM SELECT 
RAM SELECT 
I/O TIMER 

R6530,n. ROM SELECT 
RAM SELECT 
I/O TIMER 

CS2 
A12 

CS1 

~ 

RSO 

A!Q 

·RAM select for R6530 ,..5 would read '" A12eA"11e AIO.A§ .AS e"A7.AS 
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'r---' ~ L---------+l' itE=J ., ".,. 
:F=I 
~ 

r------

Read ROM 

Wr'te RAM 

Read RAM 

Write DORA 

Read DORA 

Wrote DORB 

Read DORB 

Wrote Per. Reg. A 

Read Per Reg_ A 

Wrote Per. Reg. B 

Read Per, Aeg. B 

WrileT,mer 

-'-IT 

.;.8T 

.;.64T 

.;.1024T 

Read T,mer 

Read IrnerrupI Flag 

, 

• A3 ~ 1 Enables IRQ to PB7 

A3 = 0 Oisables IAQ 10 PB7 
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R6530 One Chip Address Encoding Diagram 

Addressing Decode for I/O Register and Timer 



Write Timing Characteristics 

Clock Period 

Rise 8. Fall Times 

Clock Pul5e Width 

R!W lIalid before positille Hansition of clock 

Addres~ lIalld before positille transition of clock 

Data Bus lIalid before negatille transition of clock 

Datil Bus Hold Time 

Peripheral data lIalid alter negatille transition 

of clock 

Peripheral data valid after negative transition 
of clock driving CMOS (level = vce . 30%1 

Symbol 

TCYC 

T R' T f 

Te 

Twew 

T ACW 

TOCW 

THW 

TCpw 

TCMOS 

Min 

410 

160 

160 

300 

10 

Read Timing Characteristics 

CharKteristic 

R/W valid before positive transition of clock 

Address valid before-positive Hansition 01 clock 

Peripheral data valid before positive transition 
of clock 

Data Bus valid alter pmit",e transition of clock 

Data Bus Hold Time 

IRQ (lnterllal Timer Interrupt) lIalid before 
positille transition of clock 

loadong 30 pF + 1 TTL load for PAQ,PA 1, PBO·PB1 

130 pF + 1 TTL load lor 00·07 

_______ ~"-''''' 

Write Timing Characteristics 

Symbol Min 

180 

180 

300 

10 

200 

T,. Mo, Unit 

10 

25 

.' 

.' 

T,. M .. Unit 
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Read Timing Characteristics 
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R6500 Microcomputer System 

DATA SHEET 

RAM, 1/0, INTERVAL TIMER DEVICE (RIOT) 

SYSTEM ABSTRACT 

The 8·bi\ R6S0D microcomputer system ;5 produced wIth N 

Channel, SII'con-Gate technology. Its performance ~peed5 are 

enhanced by advanced sy$lem .. rchilecture which enable$ mulople 

addressing. In innovatIve architecture resulu in smaHer ch,ps -

the Jemicond\.lClOr threShold 10 CO$H~tfeclivt1y Sy$lem COSI 

elleet.v"y " further enhanced by prOVidIng a famIly of 10software· 

compatIble microprocessor ICPU) dev.ces Rockwell also pro
v,des memory and I/O devIces that further enhance the cou

effectiVIty of the A650D microcomputer system ... as well as 

10W<:0\1 design a,ds and documentation 

DESCRIPTION 

The R6S32 IS deSIgned to operate," conjunction wl1h the R6S00 

Microprocessor Family Il I~ comprised of a 128 K 8 Slanc RAM, 

twO sohware conuolled 8 bll bidirectional dala pons "llowlng 

dlreCI 'nlerfaclng belween .he microcompuier and peripheral 

d~ices> a ~ohware programmable ,"!erval !Ime' wllh mterrupt. 

capable of l,mlng '" vanOU5 mle,vals from 1 '0262,144 dock 

periods, and a programmable edge detect (IrCUIT 

PAQ PA7 

FEATURES 

• 8 bit bidirectional Data Bus for dlfect communication With the 

microprocessor 

• 128118sIailcRAM 

• Two 8 bit bidirectional dala POrlS for Interface 10 peripherals 

Two programmable Dala D'reCllon Registers 

Pro'lrammable Interval Timer Inl!'rruPI 

TTL & CMOS compatible peropheral I,,-,~s 

• High Impedance Three-Slille Data Bus 

Ordering Information 

Order Package Tempefiltu •• 

Numbci, ~ ~ 

R6532P PlasCic oOC to + 70°C 

R6532C Ceramic oDe to <70oe 

PSO PSl 

R6532 Block Diagram 
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INTERFACE SIGNAL DESCRIPTION 

R_tlm, 
During system initiallzat.on a logic "0" on the FfES onput will 

cause a zeroing of all four 110 reglsters_ Th,s in turn will cause 
all 1/0 b ... ses 10 act as inputs thus protecting 8)(18rOal components 

from possible damage and erroneous data while the system IS being 

configured under software control, The Data Bus Buffers are put 

into an OFF-STATE during Reset. Interrupt capability IS d,s· 

abled w,th the RES $Ignal. The RES signal must be held low fOT 

al least IWO clock periods when reset is required 

Tne R/W Signal IS supplied by the microprocessor and IS used 10 
control the transfer of data to and from the microprocessor 

and the R6S32 A high on the R/W pIn allows Ihe processor 

10 read (with prOper addreSSing) the data supplied by the R6532 

A Iowan the R/W pin allows a write (With proper addreSSing) to 

the R6532 

Interrupt Request (I RQI 

The IRQ pin IS an interrupt pin from the interrupt contrOl logiC 

The pin will be normally high with a lOW Indicatmg an tnterrupt 

from the R6532. An eKternal3K puJl·up resistor is reQuired. The 

fRO pin may be actillated by a transition on PA 7 or timeout ... ' 

the interval timer 

The R6532 has eight bldlfectional data pinS (DO·D7). These 

pins connect to the system's data Imes and allow transfer of 

data to and from the microprocessor array, The output buffers 

remain In the off state e)(cept when the R6532 IS selected for a 

Read operation 

Peripheral Data Ports (PAO·PA7, PBO·PB7) 

The R6532 has 16 pins allailable for peripheral 110 operatiOns 

Each pll1 IS Indlllidually software programmablt' to act as either 

an mput or an output. The 16 pins are dlllided into 2 B-blt ports, 

PAO-PA7 and PBO·PB7 PA7 also has other un's which are diS' 

cussed In later sections, The pins are set liP as an Input hy writing 

a "0" Into the corresponding bit of the data direction register 

A "1" Into the data direction register will cause 115 corresponding 

bll to be an output. When In the mput mode, the peflpheral out 

put buffers are In the "',. state and the Internal pull·up dell Ice 

acts as less than one TTL load to the peripheral data lines. On a 

Read operation, the microprocessor unit reads the peflpheral 

pin. When the peripheral deVice gets information trom the R6532 

0( receilies data stored In the outp ... t register. The m,c'ofJ(oceBor 

w,1I read correct Information t! the peripheral lines Me greater 

than 2,0 lIolts lor a "1" and less than O.B IIOlt for a "0" as the 

peflpheral pins are all TTL compatible. Pm~ PBO·PB7 are also 

capable of sourcing 3 mol at 1.5V, thus making them capable 01 
Darlington d.,1I1' 

Add,.. lines (AO-A6) 

There are 7 address pins In add "ion to these 7, there IS the RAM 

SELECT (R"S) pin The pins AO·A6 and RAM SELECT are 

II ways ust.'d as addreSSing pins There are two additional pms 

which are used as CHIP SELECTS. They are pins CSI and C52 

INTERNAL ORGANIZATION 

Thll R6532 is diliided into four basiC sections, RAM. 110, TIMER, 

and Interrupt Control. The RAM interfaces directly With the 

microprocessor tllfOUgh the system data bus and address lines 

The 1/0 section consists of two a-bit hailies. Each half contains a 

Data DirectIon Register (DDRI and an Output Register 

RAM - 128 Byte (1024 Bits) 

The 128 .0: 8 Read/Write memory acts as a conventional static 

RAM Data can be Wfltten IntO the RAM from the microprocessor 

by selecting the chip (CS1"-1. C52 "'- 0) and by setting AS 10 a 

logIC 0 (O.4V) Address lines AO through A6 are then used to 

select the deSired byte of storage. 

Internal P.,iph.,al Registers 

The Penpheral A 110 port COnsiStS 01 eight lines whICh can be 

Indlllidually programmed to act as either an input or an output A 

logiC zero In a bit of the Data Direction Register {DORA) causes 

the correspondmg Ime of tne PA port to act as an ineut. A logIC 

one causes the corresponding PA line to act as an output. The 

lIoltage on any hne programmed to be an output IS determined by 

the corresponding bit In the Output Register (ORAL 

Data IS read directly from the PA pins during any read operation 

For any output pin, the data transferred into the processor will 

be the same as that contamed ,n the Output Register If the lIoltage 

on the Pin ,1 allowed to go 10 2 4V for a logIC one. Note that for 

Input lines. the processor can write into the corresponding bit of 

the Output Register. This will not affect the polarity on the pin 

until the corresponding bit of DORA IS set to a logIC one to allow 

the peripheral Pin to act as an output 

In addition to acting as a peripheral 110 Ime. the PA 7 I,ne can be 

used as an edge-detecting Input In thiS mode, an actille tranSition 

Will set The Internal Interrupt flaq (bit 6 of the Interrupt Flag reg

Ister) Selling the interrupt flag Will cause IRQ output to go low 

if the PA7 interrupt has been enabled. 

Control of the PA7 edge detecting mode IS accomplished by Wflt 

mg to one of four addresses. In thiS operation, AO controls the 

polarity of the actille transition and A 1 acts to enable or disable 

,nterruptlng of tne processor The data which is placed on the 

Data Bus during thiS Olleratlon .s d,scarded and has no eflect on 

the control of PA7. 

Setting of the PA7 interrupt Ilag will occur on an actille tranS,110n 

even II the pm is being used as a normal Input or as a peflpheral 

control output The flag Will also be set by an active transition 

if interruptmg from PA1 IS disabled. The reset Signal (RES) will 

disable the PA7 IOterrupt and will set the actille tranSItion to neg· 

atille (high to low) During the ~ystem initialization routine. it IS 

pOSSible w set the interrupt flag hy a negative transition It may 

.11>0 he set by changing the polaflty of the active Interrupt It IS 

therefore 'ecommended that the Interrupt flag be cleared before 

enahl,ng Interruptmg from PA 7 

Clearing of the PA7 Interrupt Flag occurs when the micorproc 

essor reads the Interrupt Flag Register 

The operation of the Peripheral B Input/Output port IS exaCtly 

!h(' sarn(' as the normal "0 op('ratlon of the Peripheral A POrt 

The eight lines can each I'll' programmed to act as e,ther an Input 

or as an output by placing a 0 or a 1 mto the DaTa OlfeCI'On reg 

iSler IDORB). In the output mode, the voltage on a per-pheral 

pin IS controlled by the Output Reg,ster (ORBI 

393 



The prlmdry dIfference between the PA anu the PB ports 'S In the 

operatIon 01 the uuWut bulfers whICh drove thpse pIns The PB 

output bulfers a'e flush null deVIces whIch arf' capdble of sourc,ng 

3 ma at 15V Th,\ al:ows these p,ns to dICectly drive trans,stor 

SWitches To <lssu'e \h<l\ the m'croprocessor w,lt read proper data 

on ~ "Read PB" OperatIon, su!!,c,ent logIC IS prOVIded In the chIp 

10 alia",", the mIcroprocessor 10 read the Output Reg,ster Instead 

of reading the peripheral PIn as on the PA port 

Interval Timer 

The T,mer section of the R6532 contains three baSIC parts 

I,m,nary dIVIde down regIster, programmable !:l hit regIster and 

.nterrupt logIC 

The Interval t,mer can be programmed to count up 10 255 tIme 

.nlervals Each lIme Inlerval can he eIther IT, 8T, 64T or 1024T 

Increments, where T IS the system clock perlOd_ When a full count 

IS reached, an Interrupt flag IS set 10 a logIC "1" After the Inter· 

rupt flag IS set the tnterna; Clock beg"'~ count,ng down to a rna:>:: I 

mum 01 -255 r Thus, d'ler the Interrupt fldg LS sel, a Read of the 

tImer Will tell how lon9 s,nce the Ilag was set ufl to a ma~Imum 
of 255T 

The 8-blt syslem Dala Bus IS used to tran~lef data to and from the 

Interval Timer. If a counl of 52 tIme ontervals were to be counled. 

the pattern 0 a 1 1 a 1 a a would be put on Ihe Data Bus and 
written InIO the Interval Ttme reg'ster 

At Ihe sam!! time that data IS bemg Wfltten to the Interval T,mer 

the counting Intervdls of 1.8.64. 1024T are decoded from address 
~lnes AO and AI, DUring a Read Or Wllte operdllon address line 

A3 controls the capab.l,ty or PB7, ,e A3 = lenablp\ 

iRQ. A3 0 a d'lahles When the timer IS read prIOr to the 

Interrupt fiag bemg set. the number of time Intervals remalflmQ 

w,TI be read. '_I' ,51,50.49. etc 

When the \lmer has counted thru a a 0 0 a 0 0 0 on The ne~! 

cuunt tIme an tr1terrupt Will occur and Ihf' COun1er wtll read 

1 1 1 1 1 1 1 1 After Inlerrupt. the "me, regiSter decrements 

at a d.vlde by ,., .. rate 0' Ihe system clock If alter In!errupt. the 

t,mer IS read and a 'Ialue of 1 1 1 0 a 1 0 0 IS read, the t,me 

Siflce Interrupt ,~27T. The value rEad IS In two's complement. 

but rememoer that Interrupt occurred on COunt number one 

Therefore. we must sub"act 1 

Value read 

Complement 

ADD 1 

SUB 1 

1 1 1 a a 1 0 a 
o 0 0 1 1 a 1 1 
o 0 0 1 1 1 a a = 28 Equals two·s 

COmplement of register 

a 0 0 1 1 0 1 1 '" 27 

Thu>, to arrove at the ~ elapsed t,me. mErely do a 1WO·$ com 

plement add to !he oroglnal time wrolten Into the tImer Again, 

a,sume tIme Wrttlen a, 0 0 1 1 0 1 a 0 1~521 W,th a dIVide 

by 8. total time to ,nterrupt IS 152)( 8) ~ 1 ~ 417T Total elapsed 

tIme wo"ld be 416T t 27T = 443T. assum,ng the value read after 

Iflterrupl was 1 1 1 0 0 1 a 0 

After the Interrupt. whenever the tImer IS Written or read the inter 

rupt IS reset However, the read1ng of the tImer at the same t,me 

(he 'nterrupt occurs will not reset the mterrupl flag When the 

Intt'rrupt flags arf' read 107 'or the t,mer. 06 for Ihe edge detect) 

data bus 1mI', OO-O'J ,,0 to 0 

When reading the IImer after an 'nterrupt. AJ should be low so as 

to disable the iAQ pm. ThiS 15 done so as to avoid future Interrupts 

until afler another Write tImer operation 

<1>2 

07 06 04 02 DO 

Basic Elements of Interval Timer 

COU!\ITER rPTC-1 

CONTENTS 0 I N·1 I I I 155 I 154 I 25] I I 64 ! 
411 ror r,l r-;1 r-;1 r,;l 11 f4l r;l m T4l r4l r4l r4l rI Is1 11 

PULSE -1 v LJ ..... JJ .. L...-I '" L.- jJ '~l4 jo.I LJ 0 14 jJ ~ L...J 0 4 ~ ~ L....J 1 L.J , LJ 1 ~ ~ L.J ~ LJ L 
NUMBER 1 8 9 6 7 8 q 0 

~I~i~! Sl ______________________________ _ 
PRE SCALE PTc TC,'2~,--___ .....J~ 

INTERRUPT 
N P-Te * Tel2 =:4 

______________________________ ~!l~ __________ __ 
ASSUME 52 LOADED INTO TIMER WITH A DIVIDE BYB 
THE COUNTER CONTENTS AND THE CLOCK PULSE NUMBERS WILL COINCIDE 

eyel" T,me. Tc 1 .. s .. e ltD. 1 MHli 
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Write Timing Ch.racteristics 

ChlirKteristic 

Clock Period 

Rise & Fall Times 

Clock Pulse Width 

RIW valid before positive tranSition of clock 

Addfess valid before positive transition of clock 

Data Bus valid before negative transition of clock 

Oat<J Bus Hold Time 

Peripheral dala valid aher negative transition 
of clock 

Peripheral data valid after negative transition 
of clock driving CMOS ~ Level'" vee· 30%) 

Syrnbol Min 

TCYC 

TR , T F 

T C 470 

TWCW 180 

TACW 180 

T DCW 300 

T HW 10 

TCpW 

TCMOS 

Read Timing Characteristics 

R/W valid before positive transition of clock 

Address valid before pOSitive transition of clock 

Peripheral data valid before positive transition 
of clock 

Data Bus valid after positive transition of clock 

Data Bus Hold Time 

IAQ Onterval Timer Interrupt) valid before 
pmitille transition of clock 

loading 30 pF + 1 TT lload for PAO·PA 7. PBO·PB7 
130 pF + 1 TTL load for 00·07 

Write Timing Characteristics 

Symbol Min 

180 

180 

300 

10 

100 

TVO Mox Unit 

10 

15 

TVO M" Unit 
---
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RAM Addressing 

AS.'" 0 
AO-A6 select RAM address 

1/0 AddrllS5Jng 

AS '" 1 A2" 0 
R/W ~ 1 to read, 0 to write 

PA data 

PA data direction 

PB data 

Write Edge Detect Control 

RS,A2"'1 RIW,A4"'O 

A 1 1, enable Interrupt from PA 7 

A1 '" 0, d'5able ,nterrupt from PA7 
AO '" 1, P05",ve edqe delecl :PA 7' 

AO " 0, negat've edge detec, {PA 71 

!O~ "'Ai': 

0" 8" -'- ~-~ DOT OR NOTCH ----. 

TO lOCATE 0600MA,n:58110625 

PINNO I ,_ !'524M"1:~5'1) 0595 

: 20.' 1 - -- ----.L 

r~O 190 MAi': 

~~_I ; ,""'"" ;l~'-~lJ~rr:-? 111 I .- 1781MM) 

I' -, 

~ ~T"P-lj~ 1 I 0100MIN 
11 Oli 0040 I I 1:2' 54 MM' 

I~:~I ~~~~ TVP r. ~ -0010M N 

, 910 14851 ""...,1 ~ 11890 (48 00 MMI \ 

19 EaUAl SPACES 

0100 Ii TOl NONCUM 

Packaging Diagram 

Read and Clear Interrupt Flag 

RS,R/W,A2,AO'" 1 

Bit 7 '" T,mer Flag 

B,t 6 '" PA7 Flag 

Read Interval Timer 

AS, A4, A2. R 'W, AO 1 

Read Interval TImer Overflow 

AS, A4, A2, RIW = 1, AO '" 0 

Write Count to Internl Time, 

FrS A4. A2 0 " R/W ~ 0 

-, 
-8 
-64 

'--1024 

A3 = 1, enable timer Interrupt 

A3 = 0, disable t,mer Interrupt 

NOTE For all operat,ons CSt'" 1, CS2 '" 0 

~, 

coo 
As 
RiW 

AO RES 

0' 
OJ 

Pin Configuration 



SPECIFICATIONS 

Maximum Rltings 

InputlOvtpul Volt,v-

Stor.ge Temperetu" Range 

Svmbol 

vee 

V'N 

TOp 

T STG 

Volt ... Unit 

0.3 to +7.0 

0.3 to +1.0 

o to 70 °e 

-5510+150 °e 

All mputs contaIn protection Clrcultrv to preven1 damage due to hIgh statIc charges. Care should be exerCised to prevent unnecessary applica
tion of voltage outside the specificallon range. 

Electrical Characteristic. 

(VCC"'5 0%, VSS=QV, T A ~250C) 

Input Low Voltage 

Input Leakage Current; V IN ", VSS + 5V 

AO-A6, RS, A/W. R"ES, f/>2, CSt, Cs2 

Input Leakage Current for High ImplJdance State 

(Three State); V IN "' OAV to 2.4V; DO-D1 

I--;;;-~;;, Hi,h e";;;~,~v-;;'~i4V-- - -- ---

Symbol 

V'H 

V'L 

"N 

ITS! 

"H 

Min 

VSS + 2 4 

VSS 0.3 

----
100. 

TVO Mo. Unit 

vee v 
V SS +O.4 V 

C--._ 

1.0 2.5 ~A 

--
!10.0 ~A 

- 1--- -
300. ~A 

~~. p.~~~~~?-------- -- ------------ --- -i------
Input Low Current. V IN ", O.4V 

PAD·PA7, PBO-PB7 

Output High Voltage 

vee ~ MIN, I LOAO ';: 100 JJ.A (PAO-PA7.PBO·PB7. 00·07) 

1.0 

VSS ... 2.4 

vss ... 1.5 

-1.6 MA 

_L-______ _ 

V 

f-____ I,LOAD_'_·3_M_A_IP_B~.PB7) 
Output Low Voltage 

------1---- .----- I----+_ --'--- -

VCC ~ MIN, I LOAD 0;;; 1.6 MA (00-07) 

Output Hi., Cu'ref1t (SOurcing). 

VOL~_t_--- _+ ___ -i __ VS_s_'_0_.4--j ____ _ 

'OH 
VOH ;;. 2.4V (PAO-PA7. PBO-PB7. 00-07) 

;;. '.5V Allailable fa, othe, then TTL 
(Darlingtons) (PBO-PB7) 

---- --
Output Low Currenl(Sinking); VOL" 0.4V (PAO-PA7) 

IPBO-PB7) 
'OL 

Clock Input Capacitance CClk 

100 
-3.0 

- -----
16 

~p~.,,",. ------- -- ----- e - ----
_ ___ _ _ -______ f-_'N'---.--l ____ --I 

Output Capacitance C OUT 

Power DiSSipation 

All Values are D.C. ,eadings 

1000 
-5.0 

-----l----. - -
MA 

30 pF 

10 pF 

---+---+--
of 

500 1000 
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1024x4 Static Random 
Access Memory 

SY2114 

398 

• 300 ns Maximum Access 
• Low Operating Power Dissipation 

0.1 mW/Bit 

• No Clocks or Strobes Required 
• Identical Cycle and Access Times 

• Single +5V Supply 

The SY2114 is a 4096-Bit static Random Access 
Memory organized 1024 words by 4-bits and is fabri 
cated using Synertek's N·channel Silicon-Gate MOS 

technology. It is designed using fully DC stable (static) 
circuitry in both the memory array and the decoding 

and therefore requires no clock or refreshing to 
operate. Address setup times are not required and 
the data is read out non destructively wIth the same 
polarity as the input data. Common Input/Output 

pins are provided to simplify design of the bus oriented 
systems, and can drive 2 TTL loads. 

PIN CONFIGURATION 

.. 'co 

" " 
" .. 
" .. .. ,~, 

" If O 2 

" ,~, 

,~, 

ORDERING INFORMATION 
Supply 

Order Package ""_ Current Temperature 
NumtMIr Ty .. Time IMul Range 

SVC2114 CeramiC 450nsec 100mamp O°C to 70°C 
SVP2114 Molded 450nsec 100mamp O°C to 70°C 
SVC2114·3 CeramiC 300nsec 100mamp O°C to 7Q°C 
SVP2114-3 Molded 300nsec 100mamp 0° C to 70° C 
SVC2114L CeramiC 450nsec 70mamp O°C 10 70°C 
SVP2114L Molded 450nsec 70mamp O°C 10 70°C 
SVC2114L·3 CeramiC 300nsec 70mamp O°C to 70°C 
SVP2114L·3 Molded 300nsec 70mamp O~C 10 70°C 

• Totally TTL Compatible 
All Inputs, Outputs, and Power Supply 

• Common Data t 10 
• 400 mv Noise Immunity 
• High Density 18 Pin Package 

The SY2l14 is designed for memory applications 

where high performance, low cost, large bit storage, 

and simple interfacing are important design objectives. 

It is totally TTL compatible in all respects: inputs, 

outputs, and the single +5V supply. A separate Chip 
Select (CS) input allows easy selection of an individ· 

ual device when outputs are or·tied. 

The SY2ll4 is packaged in an l8·pin DIP for the 

highest possible density and is fabricated with N· 

channel, Ion Implanted, Silicon-Gate technology ~ a 

technology providing excellent performance charac· 
teristics as well as protection against contamination 

allowing the use of low cost packaging techniques. 

BLOCK DIAGRAM 

'0 

.,-----"''''' 

.,-----'...., 

" 
" .. -----'...., 

::::=:;::::=~-

.. 



ABSOLUTE MAXIMUM RATINGS 

Temperature Under Bias 

Storage Temperature 
Voltage on Any Pin with 

Respect to Ground 
Power Dissipation 

- 1 aOe to aooe 
-65°Cto 150°C 

-o.SV to +7V 

1.0W 

COMMENT 

Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. 

This is a stress rating only and functional operation of 
the device at these or any other conditions above 
those Indicated in the operational sections of this 
specification is not implied. 

D.C. CHARACTERISTICS T A "'- O°C to +70°C. Vee'" 5V ±5% (Unless Otherwise Specified) 

2114-3,2114 
Symbol Parameter Min 

'll Input Load Current 
(All input pins) 

'LO I/O Leakage Current 

ICC1 I Power Supply Current 

ICC2 Power Supply Current 

V,L Input Low Voltage -0.5 

V,H Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

CAPACITANCE T A = 25°C, f = 1.0 MH, 

Symbol 

Input/Output Capacitance 
Input Capacitance 

Test 

Max 

10 

10 

95 

100 

O.B 

Vce 
0.4 

VCC 

2'14L,21'4L·3 

Min Max 

10 

10 

I 65 

70 

-0.5 O.B 
2.0 VCC 

0.4 

2.4 VCC 

NOTE: This parameter is periodically sampled and not 100% tested 

Unit 

.A 

.A 

mA 

mA 

V 

V 
V 

V 

Conditions 

VIN =. 0 to 5.25V 

CS = 2.0V, 

I Vue'" DAV to Vee 
Vee -= 5.25V. Ilia "- a mA, 

I TAo 25°C 
Vee = 5.25V, ',/0 = 0 rnA, 
T A = O°C 

IOL'" 3.2 rnA 
IOH = -1.0 mA 

Units 

pF 
pF 

A.C. CHARACTERISTICS TA = o°c to 70°C, VCC = 5V ±5%(Unless Otherwise Specified) 

SYMBOL PARAMETER 

AEADCYCLE 

tAC Read Cycle Time 

tA Access Time 

tco Chip Select to Output Valid 

tcx Chip Select to Output Enabled 

tOTD Chip Deselect to Output Off 

tOHA Output Hold From Address Change 

WAITE CYCLE 

twc Write Cycle Time 

tAW Address to Write Setup Time 

tw Write Pulse Width 

tWA Write Release Time 

tOTW Write to Output Off 

tDW Data to Write Overlap 

tDH Data Hold 

A_C, Test Conditions 
I nput Pulse Levels. 
Input Rise and Fall Time 
Timing Measurement Levels: Input 

Output 
Output Load •..... 

I 

2114·3,2114l-3 

MIN MAX 

300 
300 
100 

20 

0 BO 

50 

300 
0 

150 

0 
0 BO 

150 
0 

2114,2114L 

MIN MAX UNIT 

450 nsec 
450 nsec 

120 nsee 
20 nsec 
0 100 ns.ee 

50 nsec 

450 nsec 
0 nsec 

200 nsee 
0 nsee 
0 100 nsee 

200 nsec 

0 nsec 

. ............. O.SV to 2.0V 
.10nsee 

. 1.5V 
0,8 and 2.0V 

lTTL Gate and 100pF 
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TIMING DIAGRAMS 

(i) 
Read Cycle 

Write Cycle 

NOTES· 

11--- '0T0--

0) WI: IS hIgh for it Read Cycle _ _ 

CD tw IS measured from the lallef 0' CS or m gomg low to the earlier 01 CS or WE gOing high 

DATA STORAGE 

When WE IS high, the data input buffers are inhibited 

to prevent erroneous data from being written into 

the array. As long as WE remains high, the data stored 

cannot be affected by the Address, Chip Select, or 
Data I/O logic levels or timing transitions 

Data storage alsocanl'lot be affected by WE, Addresses, 
or the 1/0 ports as tong as CS is high. Either CS or 

WE or both can prevent extraneous writing due to 
Signal transitions. 

Data within the array can only be changed during 

Write time - defined as the overlap of Cs low and 

WE low. The addresses must be properly established 
during the entire Write time plus tWR , 

Internal delays are such that address decoding prop 
agates ahead of data Inputs and therefore no address 
setup time is reqUired. If the Write time precedes the 

addresses, the data In previously addressed locations, 

or some other location, may be changed. Addresses 
must remain stable for the entire Write cycle but the 

Data Inputs may change. The data w~ich is stable 

for tow at the end of the Write time will be wntten 

into the addressed location. 



TYPICAL CHARACTERISTICS 

Vee (VI 

PACKAGE DIAGRAM 

PI""'O , 

'0E'" 

CERAMIC PACKAGE 

~ 
z 
;; 

25 

,. 

15 

10 

0.5 

o 

12 0 

100 

0 

0 ...... 

0 

SUPPl V CURRENT 
VS TEMPER TURE A 

Vee ",'S.25V 

........ ...... 2114.21TJ.3 

I"""--- ..... 2TT4L.2114L_3 

20 40 60 80 100 
TA I·CI 

INPUT VOL T AGE LIMITS 
vs TEMPERATURE 

~ ~ Vee' 5V 

""" ~ 

o 20 40 60 80 100 

TA (CI 

4. • 
35 0 

] )0 0 

25 0 

0 

15 . 
.. 
.. 

ACCESS TIME VS 
VOL TAGE 

IA [25'C 

2114'i 114l 

1"'7'1 
40 5.0 55 6.0 

Vee lVI 

ACCESS TIME VS 

CllPFI 

MOLDED PACKAGE 
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APPENDIX D 

Pin Configurations of 
Frequently Used 

SN7400-Series Chips 

The following pages contain pin configurations reprinted from the 
TTL Data Book published by Texas Instruments, Inc. and are made 
available through the courtesy of Texas Instruments, Inc. Copyright 
© 1976 by Texas Instruments, Inc. All rights reserved. 

Pin assignments for the following integrated circuits have been 
reproduced: 7400, 7402, 7404, 7405, 7430, 7474, 7475, 74100, 74121, 
74138, 74139, 74154, and 74367. 
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404 

QUADRUPLE 2·INPUT 
POSITIVE·NAND GATES 

00 

positive logic: 

y .. As 

QUADRUPLE 2-INPUT 
POSITIVE·NOR GATES 

02 

poaitive logic: 

y ~ A+8 

HEX INVERTERS 

04 

HEX INVERTERS 
WITH OPEN~L LECTOR OUTPUTS 

05 

SN5400 IJI 
SN54HOO IJI 
SN54l00 (JI 
SN54LSOO IJ, WI 
SN54S00 IJ, WI 

SN5402 (J) 

SN54L02IJ) 

SN7400 U, NI 
SN74HOO IJ, NI 
SN74l00 IJ, NI 
SN74lS00 IJ, NI 
SN74SQO IJ, NI 

SN7402 IJ, NI 
SN74L02 (J, NI 

SN54lS02 IJ, WI SN74LS02 (J, NI 
SN54S02 IJ. WI SN74S02 IJ, NI 

SN5404 IJI SN7404 IJ. NI 
SN5otH04 (J) SN74H04 tJ, NI 
SN54L04 tJ) SN74L04 (J, NI 
SN54LS04 IJ, WI SN74lS04 IJ. NI 
SN54S04 (J. WI SN74SQ4 (J, NI 

SN5405 (J) SN7405 U, NI 
SN54H05 IJI SN74H05 iJ, NI 
SN54lSOS (J. WI SN74lSOS IJ, NI 
SN54S05 tJ, WI SN74S05 tJ. NI 

SN5400 (WI 
SN54HOO (WI 
SN54l00 (T) 

SN5402IWI 
SN54l02 (T) 

SN5404 (wi 
SN54H04IW) 
SN64L04 IT! 

SN5405IW) 
SN54H05IW) 



&-INPUT 
POSITIVE·NANO GATES 

30 

positive lagH:: 

y = ABCDEFGH 

SN5430 (J) 
SN54H30 (J) 
SN54L30 !J) 
SN54LS30 (J. WI 
SN54S30 (J, W) 

SN7430 IJ, NI 
SN74H30 IJ, NI 
SN74L30 (J, NI 
SN74LS30 IJ. N) 
SN74S30 IJ. N) 

DUAL O·TYPE POSITIVE·EDGE-TRIGGERED FLlP·FLOPS WITH PRESET AND CLEAR 

74 
FUNCTION TABLE 

INPUTS OUTPUTS 

PRESET CLEAR CLOCK 0 a ii 
L H X X H L 

H L X X L H 

L L X X H' H' 

H H , H H L 

H H , L L H 

H H L X 00 60 SN5474 IJI SN7474 IJ. NI 
SN54H74 (JI SN74H74 IJ, NI 
SN54L74 (J) SN74L741J. NI 

SNM30 (WI 
SN64H30IWI 
SN64L30 IT) 

NC-No hnernel connection 

SN5474 (WI 
SN54H741WI 
SN54L74(T) 

SN54LS74A (J. WI SN74LS7'A IJ. NI 
SN54S74 (J, WI SN74S74 (J. NI 

4-8IT BISTABLE LATCHES 

75 

FUNCTION TABLE 

(E h L hI K ",c 

INPUTS OUTPUTS 

0 G a a 
L H L H 

H H H L 

X L 00 00 
H = high lavel, L = low level, X" irrelevant 

00'" the lave' of a before the high-te-Iow 'ran,i,tion of G 

8-BIT BISTABLE LATCHES 

100 
FUNCTION TABLE 

IE h L t hI '" ac 

INPUTS OUTPUTS 

0 G a a 
L H L H 

H H H L 

X L aD 00 

H 5 high level, X = irrelevant 

0 0 r the level of a before the 
high w·low transition of G 

SN5475 (J, WI SN7475 (J, NI 
SN54L75IJI SN74L75 (J, NI 
SN54lS75 (J. WI SN74l~75 IJ, NI 

SN54100 (J, WI SN74100 tJ. NI 

NC - No mternal connection 
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MONOSTABLE MULTI VIBRATORS 

121 
FUNCTION TABLE 

INPUTS OUTPUTS 
A1 A2 B Q --l!. 
L X H L H 
X L H L H 
X X L L H 
H H X L H 
H , H It U , H H J1. -U-
I , H It -U-
L X t It 1I 
X L t J1. U 

3-T0-8 LINE DECODERS/MUL TIPLEXERS 

138 

NOTES: 1 An e>lternill capacitor 

may be connected 

between ee>lt (positive) 

2 To use the onternal 

timing reSluor, connect 

R ont to Vec- For Impro ..... d 

puis. width accuracy lind 

repeatability, connect an 

e>lternal resistor betw.en 

Re>lt/C'>lt and VCC with 

Ronlop.n-clrculted 

DUAL 2·T0-4 LINE DECOOERS/MUL TIPLEXERS 

139 

.... LINE TO 16·LINE DECODERS/DEMULTIPLEXERS 

154 

406 

, . '" 
SN54121IJ. WI SN74121 IJ. NI 
SNS4L 121 IJ. T) SN74L 121 IJ. NI 

'121 , .. Rint = 2 kG NOM 

'L 121 ,. ,Rint = 4 kn NOM 

NC-No Internill connection 

SNMLSl38 IJ. W' SN74LSl38IJ, HI 
SH54S138 (J. W, SN74S138 (J. NI 

SN64LSl39 (J. WI SN74LSl39 (J. NI 
SN54S 139 (J. W) SN74S139 (J, NI 

SN&4154IJ, W) SN74154 (J, NI 
SN54L 154 (J) SN74L 164 (J, NI 



HEX BUS DRIVERS 

367 NONINVERTED DATA OUTPUT 
4-lINE AND 2-UNE ENABLE INPUTS 
3ST ATE OUTPUTS 

SN54367A (J. WI SN74367A (J, NI 
SN54LS361 (J. WI SN74LS361 (J. NI 



APPENDIX E 

Pin Configuration 
of 81 LS97 

The following pin configuration for the 81LS97 integrated circuit 
is made available through the courtesy of National Semiconductor 
Corporation. Copyright © 1976 by National Semiconductor Corpora
tion. All rights reserved. 



Al VI AZ Y2 AJ Yl A4 Y4 GND 

71 LS97/8 1 LS97 IN I 

LS97 

INPUTS OUTPUT 

G A Y 

H X Z 

L H H 

L L L 



Index 

A 

Absolute 
indexed addressing, 141-142 
mode, 34, 58 

Absolutely decoded, 263 
Access 

direct memory, 20 
time, 285, 286 

Accumulator, 19 
addressing, 123 

ACR,219 
Adapter(s) 

interface, 51 
Versatile Interface, 218 

ADC instruction, 84-86 
Add,31 
Addition 

decimal, 87-88 
multi byte, 86-87 

Address, 18 
decoding, 256-262 

circuit for 6522 interface, 269-271 
I/O port, 264-268 
R/W memory, for, 262-264 

space, 20-23 
Addressing, 20 

absolute indexed, 141-142 
accumulator, 123 
implied,35 
indexed indirect, 161-164 
indirect, 156-157 

indexed, 157-159 
mode(s), 31, 34-35 

immediate, 41 
indirect, 57 
zero-page, 42 

relative, 104 
zero-page indexed, 142-146 

410 

Analog-digital 
conversion, 327-334 
converter, memory-mapped, 309-314 

AND 
instruction, 70 

bit values, using to control, 71-73 
program to demonstrate 70-71 

operation,68,69 ' 
Applications 

connector, 54 
microcomputer, 11-12 

Approximation, successive 329-330 
Arithmetic ' 

~ultiple-byte, 153-156 
SIgned, 93-96 

number, 92-93 
twos-complement 88-92 

ASCII ' 
hex to, 127-129 
keyboard input port, 314-320 
to hexadecimal conversion 108-111 

ASL, 121-123 ' 
Assemblers, 41 
Automatic message sender 340-349 
Auxiliary control register, 219 

BCC, 101 
BCS, 101 
BEQ,lOl 
Bidirectional, 18 

B 

Binary numbers 362-364 
Bit,364 ' 

overflow status, 93-96 
sign, 92 
status, 83 
test instruction, 106-1OB 

Blocks, 20 



BMI,I02 
BNE,102 
Borrow. 91 
BPL,102 
Bracket notation, 127 
Branch instructions, 100-102 

time delays, using for, 111-114 
Branching, 103-105 
BRK instruction, 43-45 
Buffer 

/drivers 
bus, 306 
three ~tate, 306-308 

why?, 305-309 
Buffering, 274 
Bugs, catching with lights, 349-356 
Bus(es),14 

bidirectional, 305 
buffer/drivers, 306 

BVC,102 
BVS,102 
Byte, 364 

data, 272 
instruction, 272 

Chart, op-code, 36 
Chips, 53-54 
CLC,83 
CLD,83 

c 

CLI instruction, 189 
Clock 

Signals, 282-284 
system, two-phase, 284 
24-hour, program, 192-200 

CMP,105 
Code(s) 

condition, 83, 102 
conversion programs, 149-153 
op,31 

Comments, 40 
Comparison instructions, 105-106 
Complement 

operation, 68, 69, 70 
twos, 90 

Condition codes, 83, 102 
Connector, applications, 54 
Control signals for output port, 289-

291 
Conversion, ASCII to hexadecimal, 

108-111 
Counter 

program, 37 
high, 19 
low. 19 

using timer T2 as, 223-225 
CPX,105 
CPY,105 

D 

DAC,293 

Data 
direction registers, 19, 53-54 
logging module, microcomputer as, 

335-340 
tables, 146-149 

DDR,19 
Debugging aid, program, 349-356 
DEC instruction, 58-59 
Decimal 

addition, 87-88 
hexadecimal to, 132-134 
numbers, 361-362 
to hexadecimal, 129-132 

Decoded, absolutely, 263 
Decoders, 255 
Decoding, 20 

address, 256-262 
circuit for 6522 interface, 269-271 
R/W memory, for, 262-264 

I/O port address, 264-268 
Device select pulse, 255, 271-274 
DEX instruction, 59-60 
DEY instruction, 59-60 
Difference, 89 
Digital-analog 

conversion, 327-334 
converter, memory-mapped, 292-297 

Direct memory access, 20 
Display, hexadecimal, memory-

mapped, latched, 291-292 
DMA.20 
Double-precision arithmetic, 86 
DS,255 

E 

Echo, 182 
English language description, 31 
EOR instruction, 70 

bit values, using to control, 71-73 
program to demonstrate, 70-71 

Exclusive OR operation, 68, 69, 70 
Executing a program, 43 

F 

Flag( s), 83, 102 
borrow, 91 
carry, 83, 84 
interrupt disable, 185 
modification instructions, 83 

Frequency counter, using T1 timer to 
implement, 231-234 

H 

Hex to ASCII. 127-129 
Hexadecimal 

ASCII conversion to, 108-111 
decimal to, 129-132 
numbers, 365-367 
to decimal, 132-134 

I 

IER,219 
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IFR,219 
Immediate 

addressing mode, 41 
mode, 34 

Implied addressing, 35 
INC instruction, 58-59 
Index registers, 19 
Indexed 

addressing 
absolute, 141-142 
zero-page, 142-146 

indirect addressing, 161-164 
Indirect 

addressing, 156-157 
mode, 57 

indexed addressing mode, 157-159 
mode, 58 

Input 
memory mapped, 52 
/output 

ports, 19,51-53 
programming, 55-57 

Instruction ( s ) 
ADC,84-86 
AND, 70 

bit values, using to control, 71-73 
program to demonstrate, 70-71 

bit test, 106-108 
branch, 100-102 

used for time delays, 111-114 
BRK,43-45 
CLI,189 
comparison, 105-106 
DEC, 58-59 
DEX,59-60 
DEY, 59-60 
EOR,70 

bit values, using to control, 71-73 
program to demonstrate, 70-71 

flag modification, 83 
INC, 58-59 
INX,59-60 
INY,59-60 
JMP,57-58 
microcomputer, 29-31 
ORA, 70 

bit values, using to control, 71-73 
program to demonstrate, 70-71 

read-modiFy-write, 123 
register shift, 121-123 
RTI,188 
set, 31 
6502,271-274 

table of, 30, 32-33 
table of, 30, 140, 173 

Interface 
adapters, 51 
circuit, I/O, 60-62 
6522, address decoding circuit for, 

269-271 
Interfacing, 57 
Interrupt( s), 173, 183-200 

412 

Interrupt ( s )-cont 
enable register, 219 
flag register, 219 
nonmaskable. 184-185 

Interval timer( s), 19 
6522, 218-222 
6530, 211-215 
6532, 216-218 

Inversion operation, 68 
INX instruction. 59-60 
INY instruction, 59-60 
I/O 

interface circuit, 60-62 
port ( s ), 53-54 

address decoding, 264-268 
symbols, 54-55 

IRQ vector, 184 

JMP instruction, 57-58 
JSR, 174-175, 177 
Jump, 173 

K 

K of memory, 20 
Keyboard, ASCII, input port, 314-320 
Keyer, precision, 340-349 

Label, 40 
Language, machine, 41 
Length of program, 39 
Lignts, catching bugs with, 349-356 
Line, 14 
Load, 18,31 
Loading a program, 43 
Logical 

expression, 31 
operations, 68-70 

uses of, 73-75 
Loop, 57 
LSR, 121-123 
Lunar occultation of a star, 356-359 

M 

Machine language, 41 
Map, memory, 22-23 
Masking, 72 
Memory, 19-20 

access, direct, 20 
map, 22-23 
mapped 

analog-to-digital converter, 309~ 
314 

digital-to-analog converter, 292-
297 

input, 52 
latched hexadecimal display, 291-

292 
output, 52 

random access, 19 



Memory-cont 
read 

only, 19 
/write, 19 

R/W,19 
address decoding for, 262-264 

Microcomputer(s),14 
applications, 11-12 
data logging module, as, 335-340 
features of, 15 
instructions, 29-31 
program, 35-37 
timer, as, 335-340 
what is?, 13-18 

Microprocessor, 13 
6502,18-25 

Minuend, 89 
Mnemonic, 31, 40 
Modes, addressing, 31 
Monitor, 23-25 

simple, 159" 161 
Multibyte addition, 86-87 
Multiple-byte arithmetic, 153-156 
Multiplication program 

4-bit, 123-125 
8-hit, 126-127 

Music 
making with Tl timer, 234-236 
synthesis, 292-297 

N 

Nested subroutines, 177-179 
Nibble, 365 
Numbers, 361 

binary, 362-364 
decimal, 361-362 
hexadecimal, 365-367 

o 
Occultation, lunar, of star, 356-359 
Offset, 103-104 
Op code, 31 

chart 36 
Operand, 40 
Operation code, 31 
OR 

Exclusive, operation, 68, 69, 70 
operation, 68, 69 

ORA instruction, 70 
bit values, using to control, 71-73 
program to demonstrate, 7~ 71 

Output 
memory mafped, 52 
port, contro signals for, 289-291 

Overflow status bit, 93-96 

P register, 19 
Page, 20 

P 

Parallel I/O mode, 315 
PCH,19 
peL, 19 

PHA,179 
PHP,179 
Pinout diagram, 6502, 252 
Pins, control, on 6502, 297-298 
PLA,180 
PLP,180 
Poll, 319 
Polling, 182 
Port ( s) 

input 
ASCII keyboard, 314-320 
/output, 19,51-53 

1/0,53-54 
symbols, 54-55 

Processor status register, 19 
modifying, 102-103 

Program(s) 
code conversion, 149-153 
counter, 37 

high, 19 
low, 19 

executing, 43 
length of, 39 
loading, 43 
main, 173 
microcomputer, 35 
multiplication 

4-bit,123-125 
8-bit, 126-127 

simple, 37-39 
timing, precision, 226-231 
writing, 40-43 

Programming, input/output, 55-57 
Pulse 

chip select, 255 
device select, 255, 271-274 
port select, 255 

R 

RAM, 19 
Random access memory, 19 
Read 

only memory, 19 
operation, 18 
/write memory, 19 

Register ( s), 19 
auxiliary control, 219 
data direction, 19,53-54 
index, 19 
interrupt 

enable, 219 
flag, 219 

P,19 
processor status, 19 

modifying, 102-103 
-shift instructions, 121-123 
status, 6502 processor, 81-83 
timer, 211 
X, 19 
Y,19 

Relative addressing, 104 
Return, 173 
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ROL, 121-123 
ROM, 19 
ROR,121-123 
Routine, 172 

interrupt, 173 
RTI instruction, 188 
RTS. 174-175, 177 
R/W 

control signal, 284-289 
memory, 19 

address decoding for, 262-264 

SEC, 83 
SED, 83 

5 

Sender, message, automatic, 340-349 
Serial input, 315 
Set 

instruction, 31 
-up time, 284 

Signed 
arithmetic, 93-96 
number arithmetic, 92-93 

Single-step mode, 45 
6502 

control pins on, 297-298 
instructions, 271-274 
microprocessor, 18-25 

6522 interval timer, 218-222 
6530 interval timer, 211-215 
6532 interval timer, 216-218 
Space, address, 20-23 
Stack, 175-177 

pointer, 19, 175-176 
storage, use of for, 179-183 

Status 
bit, 83 
register, 6502 processor, 81-83 

Storage, use of stack for, 179-183 
Store, 18, 31 
Subroutines, 173-175 

nested, 177-179 
Subtrahend, 89 
Successive approximation, 329, 330 
Symbols, I/O port, 54-55 
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T 

Tables, data, 146-149 
Three-state buffer/drivers, 306-308 
Time 

access, 285, 286 
delays, branch instructions used for, 

111-114 
set-up, 284 

Timer(s) 
interval, 19 

6522,218-222 
6530,211-215 
6532, 216-218 

microcomputer as, 335-340 
register, 211 
Tl 

frequency counter, using to 
implement, 231-234 

music, making, using, 234-236 
T2, using as counter, 223-225 

Timing 
out, 211 
program, precision, 226-231 

Triple-precision arithmetic, 86 
Twos complement, 90 

arithmetic, 88-92 

V 

Versatile Interface Adapter, 218 

W 

Write operation, 18 
Writing a program, 40-43 

X 
X register, 19 

y 

Y register, 19 

z 
Zero-page 

addressing mode, 42 
indexed addressing, 142-146 
mode, 34 





READER SERVICE CARD 

To better serve you, the reader, please take a moment to fill out 
this card, or a copy of it, for us. Not only will you be kept up to date 
on the Blacksburg Series books, but as an extra bonus, we will 
randomly select five cards every month, from all of the cards sent to 
us durina the previous month. The names that are dnwn will win, 
absolutely free, a book from the Blacksburg Continuinl Education 
Series. Therefore, make sure to indicate your choice in the space 
provided be10w. For a complete listing of all the books to choose 
from, refer to the inside front cover of this book. Please, one card 
per person. Give everyone a chance. 

In order to find out who has wona book in your area, call (703) 
953-1861 anytime during the night or weekend. When you do call, 
an answering machine will let you know the monthly winners. Too 
good to be true? Just give us a call. Good luck. 

If I win, please send me a copy of: 

I understand that this book will be sent to me absolutely free, if my 
card is selected. 

For our information, how about telling us a little about 
yourself. We are interested in your occupation, how and where you 
normally purchase books and the books that you would like to see 
in the Blacksburg Series. We are also interested in finding authors 
for the series, so if you have a book idea, write to The Blacksburg 
Group, Inc., P.O. Box 242, Blacksburg, V A 24060 and ask for an 
Author Packet. We are also interested in TRS-80, APPLE, OSI 
and PET BASIC programs. 
My occupation is ______________ --'-__ 
I buy books through/from ____________ _ 
Would you buy books through the mail? _______ _ 
I'd like to see a book about ____________ _ 

Name 
Address 
City ____________________ _ 
State ______________ _ Zip ___ _ 

MAIL TO: BOOKS, BOX 715, BLACKSBURG, V A 24060 
!!!!!PLEASE PRINT!!!!! 



The Blacksburg Group 

According to Business Week magazine (Technology July 6, 1976) large scole integrated circuitl 

or LSI " chips" ore (reoting 0 second industrial revol utio n that will quickly involve 1,11 a ll. The 

speed of the developments in this area is breathtaking a nd it becomes more and more difficult to 

keep up with the rapid advances that o re being mode. It is 0150 becoming difficult for newcom. rs 
to " get on board." 

It hos been ou r objective, CIS The Blocks burg Grou p, to develop timely and effective edu cational 
materials thai will permit students, engineers, scientists, technicians and others to quickly learn 

how to use new technologies and electronic techniques. We continue to do this through several 

means, textbooks. short courses, seminars and thraugh the development of special electronic de. 
vices and training aids. 

Our Group members make thei r home in Blacksburg, found in the Appalachian Mounta in . of 

southwestern Virginia. While we didn't actively start our group collaboration until the Spri ng 

of 1974, members of our group have been involved in digital electronics, minicomputers and 
microcomputers for some time. 

Some of our past ex periences a nd on.going efforts include ·th. following: 

-The design and development of what is considered to be the first popular hobbyist computer. 

The Mark·B was featured in Rodio·E lectronics magazine in 1974. We have also designed several 

BOBO·based computers, including the MMD-I system. Our most recent computer is on BOBS-based 

computer for educational use, and for use in small controllers. 

- The Blocksburg Continuing Education SeriesTN covers lubjects ranging from basic electronics 

through microcomputers, operational amplifiers, and active fil ters. Test experiments and examples 

have been provided in each book. We a re st rong believers in the use of detailed experiments and 

examples to reinforce basic concepts. This series orlginolly sta rted as our Bugbook series and many 

titles are now being translated into Chinese, Japonese, German a nd Italian. 

-We have pion eered the use of smoll, self·contained computers in hands-on courses for micro· 

computer users. Many of our designs have evolved into commercial products that are marketed 

by E&l Instruments and PAC COM, and are available from Group Technology, ltd ., Check, VA 

24072 . 

-Our short courses and seminar programs have been presented throughout the world. Programs 

are offered by Th e Blocksburg Group, and by the Virginia Po lytechnic Institute Extension Divi. 

sian. Each series of courses provides honds-on experience with reo I computers and electronic 
devices. Courses and seminars are provided on a regular basis, and ore also provided for groups, 

componies and schools at a site of their choosing. We are strong believers in practical loboro· 

tory exercises, so much time is spent working with electronic equipment, computers and circuih. 

Additional information may be obtained from Dr. Chris Titus, th e Blacksburg Group, Inc. (703) 

951-9030 or from Dr. linda leffel, Virginia Tech Continuing Education Center (703) 961-5241. 

Our group members ore Mr. David G. lor~en, who is on the faculty of the Deportment of Chem
istry at Virginia Tech, and Drs. Jon Titus and Chris Titus who work full-time with The Blocksburg 

Group, all of Blacksburg, VA. 




