

PRACTICAL

INTERFACING PROJECTS
WITH THE

COMMODORE COMPUTERS

This book is dedicated to my family:
Peggy

Laura and Jennifer

Also by the Author from TAD BOOKS, Inc.

No. 1583 Interfacing Test Circuits with Single-Board Computers

No. 1983
$24.95

PRACTICAL

INTERFACING PROJECTS
WITH THE

COMMODORE COMPUTERS
ROBERT H. LUETZOW

NOTICES

The VIC-20, PLUS/4, Commodore 64, Commodore 16, Commodore 128,
SIMON'S BASIC, and VICMON are trademarks of Commodore Business

Machines, Inc.

A special thanks to:

Dennis Klepper-who photographed and developed all of the black and white
pictures in this book.

FIRST EDITION
FIRST PRINTING

Copyright © 1985 by TAB BOOKS Inc.
Printed In the United States of America

Reproduction or publication of the content in any manner, without express
permiSSionof the publisher, is prohibited. No liability is assumedwith respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Luetzow, Robert H., 1944-
Practical interfacing projects with the Commodore

computers.

Includes index.
1. Computer interfaces. 2. Commodore computers.

I. Title.
TK7887.5.L84 1985 004.6'165 85-22231

ISBN 0-8306-0983-0
ISBN 0-8306-1983-6 (pbk.)

Introduction

1 Controlling Hobby Projects with the Commodore Computers
User Port I/O Operation-The User Port Experimenter's Boards-Interfacing Circuits and
Experiments-DiscreteTransistor Interface Circuits-Using Integrated Circuits for I/O Interfacing-
Example I/O Circuits Using TIL and CMOS Chips-Program Experiments-Conclusion

2 Computer Control with Machine Language
The Machine-Language Monitor-A Short Machine-Language Program-A Time-Delay Subroutine-A
Final Note on Checking Switches and Pushbuttons

3 Special Projects
Project 3-1-Timing Programs-Project 3-2-ConvertingAnalog Signals into Digital Data-Project 3-3-A
Universal Op-Amp Circuit for Temperature Measurements and Other Applications Using the NO Con-
verter in Project 3-2-ProJect 3-4-An Analog Waveform Recorder

4 VIC-20 Interface Circuits for 110 Projects
The 1KMachine-Language Memory Circuit-Adding an Extra 6522 VIA I/O Chip-Adding an Analog-
to-Digital Converter Circuit-An I/O System on a Single Plug-in Card-Conclusion

vii

1

41

58

91

5 A Digital-to-Analog Converter Circuit for the VIC-20 and C-64 100

Interfacing I/O Circuits to the C-64- The 6522 VIA Circuit-The NO Circuit
6 1/0 Circuits for the Commodore 64 104

7 An 110 System for the C-16 and PLUSI4
The Card Cage-The Address Decoder Board-The I/O Port Board-The Analog-to-Digital Converter
Circuit-Conclusion

8 Graph Plotting Routines
Low-Resolution Plotting Routines-High-Resolution Plotting-Summary

9 A Practical Waveform Recording Program
A Practical Application-Conclusion

10 Elementary Signal Analysis
Curve-Fitting Program-Conclusion

11 Power Supplies
Commercially Manufactured Power SupplieS-Power Supply Construction Projects

12 Computer-Controlled Electronic Measurements
Continuity Checks-An Eight-Circuit Continuity Test Method-Window Comparators-Interfacing to
a Bridge Circuit-Ac Bridge Circuits and Ac Sine-WaveSources--Ac Bridge Circuit Amplifier and Level
Detector-Conclusion

13 The 6502 Instruction Set-An Alphabetical Presentation

14 Analog Control ProJects
Open-Loop Motor-Speed Control-Closed-Loop Motor-Speed Control-Closed-Loop Servo-Control
System-Conclusion

15 Useful Hobby and Control Circuits

Appendix Circuit Board Layouts for the C-64 and C-128

Index

110

128

133

143

154

161

177

206

217

231

241

In the past three years, the Commodore computers
have become very popular. There have been quite
a few books published about these computers that
tell you how to write software programs for home,
educational, business, and game applications. In
this book, you will be introduced to another use for
these computers that has been left almost un-
touched by all of the other books. This "other use"
is controlling hobby projects such as toy trains or
school science experiments that are performed in
physics and chemistry courses. Using the computer
control principles that are described in this book,
you can easily control a hobby project such as a toy
train set-up. If you have taken a physics course in
high school or college, you most likely performed
an experiment in which you placed an ice cube in
a container of hot water and charted the
temperature decline of the water. Using one of the
technical projects in this book, you can let the com-
puter keep track of the temperature of the water
and then print out the recorded data in graphical
form.

Don't think for one minute that the Commodore

computers and the interfacing projects in this book
are limited to just hobby projects. The picture on
the cover of this book and two others in Chapter
1 show three very sophisticated test systems that
are being controlled by Commodore computers
using interfacing circuits that are similar to the ones
described in this book.

The level of electronic technology that is re-
quired for using this book has been kept as simple
as possible. The projects have been designed to be
safe and practical for both you and your computer.
Anyone who has an understanding of fundamental
dc electronics and can construct a simple transistor-
switch circuit can use this book. If you can not build
a simple transistor switch circuit, this book will tell
you how. All you need to do is to buy the correct
electronic part from a given parts list and follow
the project instructions in the book.

Every project in this book has a computer pro-
gram written for it. Each computer program is writ-
ten for a specific Commodore computer to keep the
programs as simple as possible. If a project is in-
tended to be used for all four computers, there are

vii

four programs presented for that project. All of the
programs were printed out while the project and
program were up and running together in order to
keep the mistakes as few as possible.

If you do every project that is presented in this
book, you will be able to impress the best of the
computer programmers. The average programmer
can easily understand the software concepts of the
computer but has no idea what the electrons inside

viii

the computer are doing. When you have your com-
puter controlling a hobby project or recording an
analog waveform, even the best computer hacker
will be impressed whether they admit it or not.

Note: The projects and programs in this book
will all work on the new Commodore 128
microcomputer. Put the C-128 in the 40-column
mode and use the programs that were written for
the Commodore 64.

THE COMMODORE VIC-20, THE COMMODORE 64,
the Commodore 128, and the PLUS/4 per-

sonal computers are well known as a group of ver-
satile computers that can be used to run a great
variety of personal and business software plus a
large number of games. In this chapter, we will in-
troduce you to another use for the computers, which
is how to control the operation of hobby projects.
Along with controlling things like toy trains, these
simple principles of computer control can be used
for engineering, science, and educational ex-
periments. The VIC-20, the Commodore 64 (C-64),
the Commodore 128 (C-128), and the PLUS/4 com-
puters as purchased from the computer store are
equipped to easily function as a small stand-alone
control system that can perform highly complicated
tasks. The Commodore 16 does not have a USER
PORT and requires a little extra hardware help to
perform the same 110 functions. The purpose of this
this book is to show you how to use your computer,
no matter which one you have, as an accurate con-
trol system.

As an example of what one can do with a

VIC-20 or a C-64 computer, Fig. 1-1 shows a test
system controlled by a C-64 that will test all elec-
trical parameters of an ignition sensor used in the
automotive industry. Figure 1-2 shows a VIC-20
controlling a complete test system that checks the
coil resistance and break-down voltage of an
automotive solenoid coil while, at the same time,
running all of the test system robotic control func-
tions. Figures 1-3, 1-4, and 1-5 present the hard-
copy print-out data from a waveform recording
system that is built around a C-64 and described
in Chapter 9.

A series of starter projects will be presented
in this chapter that use the experimenter's board
concept with the computer's USER PORT. These
projects and their supporting software programs
are designed to teach the basic concept of hardware
110 operation and interfacing. The VIC-20 and the
Commodore 64 both have similar USER PORT 110
pinouts on the back of each computer. This USER
PORT has an eight bit 110 port available that can
function under software control as eight output con-
trol lines, eight input data lines, or any combina-

1

Fig. 1-1. This test system is controlled by a Commodore 64. The test system checks the functional parameters of a Hall-
effect Ignition sensor which are: fire-point position, duty cycle, saturation voltage, Vee current, leakage current, and groundpath continuity.

Fig. 1-2. This test system is controlled by a VIC-20 computer. The test system checks an automotive solenoid coil for
coil resistance and break-down voltage, while at the same time controlling all of the system's robotic functions.

2

Fig. 1-3.This is a hardcopy printout from a waveform recorder system built around a Commodore 64. This graph displays
the 32 recorded waveform points and shows that the recorded waveform is a triangular-wave.

tion of eight input-output lines, Both computers also
have a variety of on-board timers which can easily
perform timing functions anywhere between
microseconds to hours. The PLUS/4 does not have
the same USER PORT configuration as the VlC-20

or the C-64, but it can be used in a similar fashion.
When one has a computer with a language like
BASIC, an 110port, and on-board timers, you have
all of the needed requirements for a control system.
If the computer's BASIC program language does

3.574 4.16 4.57 4.375
3.867 3.359 2.812 2.304
1.816 1.25 .683 1.074
1.64 2.07 2.656 3.203
3.632 4.199 4.707 4.296
3.73 3. 183 2.734 2.207
1.679 1. 171 .703 1.152
1.718 2.226 2.714 3.261

THE 32 SAMPLE POINTS ARE -

3

Fig. 1-4. This shows the actual recorded
data points that were used to generate the
graph in Fig. 1-3.

Fig. 1-5. This shows a waveform display that can be secured from the high-resolution waveform recording programs that
are presented in Chapter 3, Project 3-4, and in Chapter 9.

not run fast enough for your project's functions, you
can use machine language subroutines to perform
all of your tasks at lightning speed.

In Chapter 7 of this book, a slide card 110
system for the C-16 (and PLUS/4) will be presented
that will increase the I/O capabilities of the C-16
computer to control projects that require TTL com-
patible I/O lines. But for now, you will be shown
how to build an experimenter's board that will
operate from the USER PORT of the C-64, the
VIC-20, or the PLUS/4.

USER PORT I/O OPERATION
Using the USER PORTS of the VIC-20, the

C-64, or the PLUS/4 for 110 experiments is not too
hard once you understand how the 110 ports func-
tion. Each of the computers have a specific 110 port
circuit chips that controls all of the 110 port func-
tions. These I/O circuit chip in the VIC-20 and C-64
have several programmable registers that you must
learn how to control in order to use the USER
PORTS.

4

Table 1-1 shows that the VIC-20 and the C-64
have USER PORTS that have a DATA REGIS-
TER (DR) and a DATA DIRECTION REGISTER
(DOR). The registers are like any other memory
location in that they are addressed as memory loca-
tions and have eight bits. The data direction regis-
ter controls the operation of each of the data
register port bits by making them either an input
or output bit. The eight bits of the port B data reg-
ister are connected to the eight circuit board pins
that make up the 110 USER PORT. As far as the
computer is concerned, an input bit is used to re-
ceive data from the outside world and an output bit
is used to send data to the outside world. Placing
a logic ZERO in a bit location in the DDR makes the
corresponding bit in the DR an input bit or input
line. Placing a logic ONE in a DDR bit location
makes the corresponding DR bit an output bit or
as it is better known, an output line. Table 1-1also
presents the decimal numbers that can be poked
into the data direction registers with the POKE
command to configure the data register bits as an

110port. When the computer is turned on, all data
register bits are set up as inputs. If you need an
output line, you must reconfigure the DDR by POK-
ING a logic ONE into the DDR bit corresponding

to the DR bit which is to be an output line.
The PLUS/4 computer has an 110 chip that

does not use a data direction register. Simply put-
ting it, if you PEEK the 110 memory location

Table 1·1. A Short Relerence Outline of the Important
Data that Is Needed to Use the USER PORTs to Control the Experimental Programs and Circuits In Chapter 1.

PEEK and POKE Memory Locations
Decimal - - Hex

VIC-20 USER PORT DATA
1/0 Chip - - 6522
Port B Data Direction Register -
Port B Data Register - - - - - -

37138
37136

9112
9110

COMMODORE 64 USER PORT DATA
1/0 Chip - - 6526
Port B Data Direction Register -
Port B Data Register - - - - - -

56579
56577

D003
0001

PLUS/4 USER PORT DATA
1/0 Chip - - 6529
Bidrictional Data Port - - - - - 64784 FD10

REGISTER INFORMATION
A Register contains Eight Bits
Most Significant Bit Least Significant Bit

B7 B6 B5 B4 B3 B2 81 80

POKE Data For Registar Bits:
Decimal POKE Number Logic bit Format

00121 - 0 0 0 0 0 0 0 0
12101 - 0 0 0 0 0 0 0 1
002 - 0 0 0 III 0 0 1 0
004 - 0 0 0 III III 1 0 0
008 - 0 0 0 111 1 III 0 0
016 - 0 0 0 1 0 0 0 0
032 - 0 0 1 0 121 0 0 0
064 - 0 1 0 0 0 0 0 0
128 - 1 0 0 0 0 0 III 0
255 - 1 1 1 1 1 1 1 1

EXAMPLE: A logic ONE in Bit 4 of a data direction registar
makes BIT 4 of the data registar an output bit. A logic
ZERO in that location makes that BIT an input BIT.

5

(64784), the port acts like an input port, and when
you POKE data into it, it acts like an output port.
A special note should be made at this time. In or-
der to use a port bit as an input bit, you must first
POKE that bit location to a logic ONE. Then, when

you PEEK the 110 location, that bit will be read as
a logic ONE unless a logic ZERO signal from the out-
side world has pulled that bit (or input line) low,

This USER 1/0 PORT explanation has been
kind of short, so you should also read the program-

Note: Use the right side
experimenter bOard plug-in holes
'OF" to "J" as shown in pictorials
1.2 and 1.3. See text for connection
details. A Radio Shack experimenter
300 board was used for this
project. See page 283 in the
VIC-20 programmer's reference
guide of page 397 in the
C-64 guide. For user port
pin-out data

Fig. 1-6. This is the connection diagram for the UEB-1.

6

THE USER PORT
EXPERIMENTER'S BOARDS

Now that you have a general idea of the opera-
tional functions of the USER PORTs, two ex-
perimenter's boards will be presented that will
make experimenting with different USER PORT
110 circuits very easy. The completed ex-
perimenter's board will be called the Users Ex-
perimenter Board (UEB). The UEB will be given a
dash number with the UEB-l being used on the
VIC-20 and the C-64 and the UEB-2 used on the
PLUS/4. The C-16 does not have a USER PORT,

Fig. 1-7. This is the connection diagram for the UEB-2.

mers guide for the computer you are using to secure
a complete understanding of the USER PORT 110
functions. A good understanding of the 110 opera-
tion will be gained after you have built and run
some of the experimenter's projects in this chapter.

A final USER PORT note will now be
presented. Some of the experimenter's circuits use
the plus 5 volts from the USER PORT pin 3. This
plus 5 volts can supply only 100milliamps of dc cur-
rent. This is enough current to operate TTL cir-
cuit chips and LEDs, but it can not be used to
operate dc motors, lights, or bells.

7

but this problem is solved in Chapter 8. This ex-
perimenter's board method is not a new idea since
a different version was presented in another book
for other single-board computers. (1)

(1) Luetzow R. H. Interfacing Test Circuits with Single-
Board Computers, TAB Books: Blue Ridge Summit, Pa.,
1983, p41.

8

The two UEB units are built on a supporting
board made from double sided copper clad circuit
board material. The UEB-l connection diagram is
presented in Fig. 1-6 and the UEB-2 is shown in
Fig. 1-7. The top and bottom views of the UEB-l
are shown in Figs. 1-8 and 1-9 and a top view of
the UEB-2 is shown in Fig. 1-10. If you study these

Fig. 1-9. This is a bottom view of
the UEB-1. Note how the hard-
wire connections are made to the
experimenter's circuit board.

figures closely, you will see that a twenty-four pin
edge connector was connected to the supporting
copper circuit board by soldering the four end pins
to the copper foil. Since the four outside pins of the
USER PORTs are ground pins, this is an easy way
of connecting the connector to the support board

while at the same time making the copper foil a
ground or common circuit point. A layer of tape is
placed between the copper foil and the other con-
nector pins to prevent them from shorting to the
copper foil. Looking at Fig. 1-9 you will see that
the connections to the experimenter's board plug-

9

Fig. 1-10. This is a top view of the UEB-2.

in pins are made by cutting a hole in the support
board and then removing the backing from the ex-
perimenter's board, which lets you make solder
connections directly to the circuit plug-in clip pins.
A label can be made and placed on top of the UEB

10

to indicate what data is available from a specific
pin location.

If you study the connection diagrams, you will
note that a plus five volts from the computer is
made available at the red binding post on the UEB.
This power supply point can only supply 100
milliamps of dc. This is enough current to operate
TTL logic chips and other circuits elements such
as LEDs, but it can not be used to run motors,
power relays, and other items that require higher
dc current values. Two small battery power sup-
plies are shown in Fig. 1-11 that will run any ex-
periment that is presented in this chapter. Under
average conditions, these two power supply circuits
will not smoke up anything if you make a mistake.

INTERFACING
CIRCUITS AND EXPERIMENTS

The terminolgy of "interfacing circuits" in this
book will mean a circuit that is designed to connect
your computer to the outside world for the purpose
of performing a given technical function. The in-
terfacing circuits discussed in this chapter are fun-
damental building blocks for the projects presented
in the rest of the book.

Interfacing circuits are the parts of the control
system that gives the computer a form of physical
muscle. Without the interface circuits, The com-
puter would be nothing more than a play thing.
When you interface a computer to the outside
world, there is a right way, a wrong way, and a haz-
ardous way of doing it. One point you should
remember is to "always protect the computer"
when you are connecting it to the outside world.
If you are connecting only to TTL or CMOS IC
chips, it is generally pretty hard to hurt the com-
puter. When you are driving power circuits with
the computer, a good general rule to follow (unless
you don't make mistakes) is to always use a buffer
circuit between the computer and the interface cir-
cuit. This way, if you smoke an interface circuit,
you will only torch the buffer circuit and not the
computer 110 port chip. The 110 port chips in the
Commodore Computers are constructed in such a
way that you must really abuse them in order to
burn out a port bit when you are using 5-volt TTL

Fig. '-11. This presents two simple external power supplies that can be built for the UEB-l and UEB-2.

or CMOS logic circuits.
Before we start describing the different ex-

perimenter's circuits, it will be assumed that the
reader has a basic background in electronics and
can understand how a npn transistor can be turned
off and on and knows a little about the logic fami-
lies of TTL and CMOS. There are a lot of good
electronic books at the locallibrary; so, if you are
strong in programming and weak in electronics, you
should study some of these books. Learning how
to interlace 110circuits to a computer is somewhat
comparable to learning how to program a computer
because a little hands on experience can be better
than two thousand words and a whole bunch of
flowcharts.

DISCRETE
TRANSISTOR INTERFACE CIRCUITS

The first of a number of different computer
interlace circuits that are described in this chapter
will be the transistor output circuits. The transistor
output circuits will enable the programmer to
operate a wide variety of dc components with the
speed, accuracy, and repeatability that is inherent
in a computer. The transistor circuits will be
divided into three categories: low-power, medium-
power, and high-power driver circuits. All of the
presented circuits can easily be built on the ex-
perimenter's board so you can learn how to use
them with your computer.

In all of the transistor circuits, the transistors

11

will be specified as Q1 for low-power applications,
Q2 for medium-power applications, and Q3 for high-
power applications. The transistor specification for
each of the three power levels are described in
Table 1-2for low-power applications, Table 1-3for
medium-power applications, and Table 1-4for high-
power applications along with the transistors that
fulfill the specified requirements. These transistors
were selected because one or more of them will
usually be available at an electronic supply store
close to your location.

The transistor circuit in Fig. 1-12 is the basic
npn transistor switch circuit. The operation of the
circuit is very simple in that when the push button

Table 1-2. Speciflcationa for the
Low-Power Switching Transistor Q1 and Some

Selected Transistors that Match these Specifications.

The low power transistor for circuit appli-
cation as 01 in the transistor output
interface circuits.

Required Transistor Specifications
Type .--.-• ---••••••••• -.... NPN
Mate riaI ••••....•••••.....•••••••••••. Silico n
Power Dissipation -········-···-··.5 Watts
Collector Current ··---······------.5 Amp
Maximum Usable Frequency -. 30 MHz
Base to Emitter Voltage -•. -.... 5 Volts
Collector to Emitter Voltage --- 40 Volts
Input Base Current -.----- ••--.... 4 mA
Transistor Gain ••-... -.------------ 150

Some transistors which meet or exceed
the low power transistor specifications
and are available at most retail electronics
stores are given below.

Manufacturer Part Number
Calectro (CG Electronics) ·--·J4-162B
Radio Shack ------ .. -.• ------ 276.2009
Sylvania -... --... --.- •••---- -.- ECG.123
RCA - ------ .. -----.------------ SK-3444
G E ----.-.-------.- ---- G ES6004
2N Type Number -.------ 2N2222A

12

Table 1-3, Specifications for the Medium-
Power Switching Transistor Q2 and Some

Selected Transistors that Match these Specificationa.

The medium power transistor for circuit
application as 02 in the transistor output
interface circuits.

Required Transistor Specifications
Type -._.-----.----.--------- ... ------ NPN
Material .--------.--- -----.-.- .. Silicon
Power Dissipation ----.- ••---- ... - 5 Watts
Collector Current •••--------.--- •• 1 Amp
Maximum Usable Frequency·· 3MHz
Base to Emitter Voltage --.--.-- 4 Volts
Collector to Emitter Voltage --·40 Volts
Input Base Current ------ .. ------- 400 mA
Transistor Gai n ------ ••--------.--- 15

Some transistors which meet or exceed
the medium power transistor specifica-
tions and are available at most retail elec-
tronics stores are given below.

Manufacturer Part Number
Calectro (C G Electronics) -··J4-1649
Radio Shack -··-----_---------·--276-2018
Texas Instruments ... -- -... -- TIP 29
Sylvania ----- ... --•••--- -.-- •••• ECG-188
RCA -••--•. ----.--- ----.- •••--.. - SK-3893
GE ------- --••--- ----- .. ---- - 044 C4
2N Type Number -------.---- ••- 2N 1701

is pressed, a positive voltage is applied to the base
circuit of transistor Q1. This positive voltage starts
a current that flows into the base of transistor Ql,
which causes the transistor to switch on. When
there is no positive voltage applied to the base cir-
cuit of Q1, the transistor will remain in the off-state
and no current can flow in the collector circuit. With
no current flowing in the collector circuit, there will
be no voltage drop across resistor R2 and the volt-
age level at the collector of Q1 (point "X") will be
at plus six volts. If there is a positive voltage ap-
plied to the base circuit of Q1 (6 volts when PBI
is pushed), a base current will flow and Ql will
switch on. When Q1 is switched on, a collector cur-

Table 1-4. Speciflcations lor the
High-Power Switching Transistor 03 and Some

Selected Transistora that Match these Specifications.

The high power transistor for circuit appli-
cation as 03 in the transistor output inter-
face circuits.

Required Transistor Specifications
Type ---- ---------- ---------- --------- NPN
Material ------------------------------ Silicon
Power Dissipation ------------- 40 Watts
Collector Current -------------- 3 Amp
Maximum Usable Frequency - 3 MHz
Base to Emitter Voltage ------- 5 Volts
Collector to Emitter Voltage --- 40 Volts
Input Base Current ------------ 1 Amp
Transistor Gain --------------- 20

Some transistors which meet or exceed
the high power transistor specifications
and are available at most retail electronics
stores are given below.

Manufacturer Part Number
Calectro (C G Electronics) --- J4-1654
Radio Shack -------------- 276-2017
Texas Instruments -------------- TIP 31
Sylvania ------------------- ECG-152
RCA --------------------- SK-3054
GE ------------------------- D44C5
2N Type Number -------------- 2N148S

rent will flow that is limited by the resistance of
R2. Transistor theory will tell you that a voltage
drop across a silicon npn transistor is about. 7 volts
when the transistor is turned on. This fact will
cause a voltage drop across R2 of 5.3 volts which
leaves only.7 volts at point "~X."~Now if point "z"
is connected to an 110 port line and not the push
button, the transistor switch can be turned off and
on by the computer.

The above explanation of the transistor swit-
ching circuit brings out a point which should be dis-
cussed further, This point is the fact that the
computer 110 port can in theory drive the transistor
switch circuit. If a logic ONE signal is placed on an
110 port line that is connected to the switch circuit,
the positive voltage from the logic ONE signal will
tum on the transistor switch. When the transistor
is turned "on", the voltage at the collector of the
transistor goes to .7 volts or a 10gic ZERO. This
means that a logic ONE into the transistor switch
circuit generates a logic ZERO out of the switch cir-
cuit. This shows that the transistor switch functions
as a logic inverter circuit. The output circuit
characteristics of the 110 port really prevents any
useful operation with a straight transistor switch
circuit because the port is designed to work with
one TTL load. TTL circuits operate on a principle
that is known as current sinking which means that
the port is not designed to output a voltage, but it
is designed to pull down a voltage through a
resistive network as long as the current does not

Fig. 1-12. This is the basic schematic 01 the simple transistor switching circuit.

13

Notes: 1. The output transistor is selected so it will safely
handle the required output current through RLoAD'

2. "E OUT" will switch from a Vee level for a logic
zero input to about .7 volts for a logic one input.

3. The load current in RLOADis about equalto:

Vee - .7
CurrentRL = Resistance of RLOAO

exceed more than one milliamp (check your own
computer specifications).

The Darlington transistor circuit that is shown
in Fig. 1-13 will work nicely with any of the com-
puter 1/0 port B lines. Resistor R2 is a pull-up
resistor that supplies the transistor turn-on drive
current when the 1IOport line is in the logic ONE
state. When the 110 port line is in the logic ZERO
state, the current through resistor Rl flows into the
computer port circuit (remember the port is
designed to sink a dc current) and cannot turn on
the transistors. The current gain of the Darlington
circuit gives one the ability to switch on and off a
dc current of up to at least 150 milliamps with a
computer 110 port line, This switching capability
now gives our personal computer the ability to do
work. Diode Dl and capacitor Cl are placed across

the dc load to suppress any inductive noise that
might be generated when the load current is
switched on and off. The problem of e1ectricalnoise
being generated in this manner can cause noise
problems inside of the computer and much care
must be used to prevent this noise problem.

Figure 1-14 shows a Darlington transistor cir-
cuit being used to switch a number 47lamp on and
off. This circuit does not use the noise suppression
diode and capacitor because the number 47 lamp
is a resistive load and does not generate any induc-
tive noise. One point should be noted at this time.
If the lamp is located far away from the computer,
such as 50 feet, the wires going to the lamp can
generate the inductive noise. In this situation, the
diode and capacitor are still needed at the point in
the circuit where the Darlington transistor circuit

Fig. 1-13. This circuit is a Darlington transistor circuit that is designed for USER PORT interface applications.

14

Fig. 1-14. A simple Darlington lamp-driver circuit.

is located. Figure 1-15 shows how to drive a low-
power relay with a Darlington circuit.

The circuit described next is an ac power-line
control circuit and it should not be built by a begin-
ner. Also, this circuit should not be built on an ex-
perimenter's board because, if a 120 volt power line
wire should slip out of a plug-in hole and touch the
wrong part, a disaster in the form of smoke, fire,
and tears could result. Remember, the power
available from the ac power line can easily bum up
(smoke-up)an experimenter's board if a short cir-

cuit occurs. The circuit in Fig. 1-16 is an extended
application of the relay circuit of Fig. 1-15. When
the relay closes, triac TR-l will turn on supplying
power to the ac load.

USING INTEGRATED
CIRCUITS FOR I/O INTERFACING

One can say in a general type of statement that
the Port B 110 circuits in the computer's 110 inter-
face chip were designed for TTL operation. If you
would POKE memory locations 37138 and 37136

Fig. 1-15. This is a relay driver circuit.

15

Fig. 1-16. This circuit shows one method that could be used to safely control ac loads with a computer. Don't build this
circuit on UEB-l or UEB-2.

with 255 in the VIC-20 and then measure any out-
put port B line voltage, you would find that it is
about 2.7 volts or so for a 10glc ONE signal. This
is because the port B line is TTL compatible. If you
want a full five volt swing from the port B line, you
must use a 6.8K pull-up resistor between the port
line and the computer's five-volt supply. The
VIC-20, the C-64, and the PLUS/4 all have different
I/O port interface output chips and it would be wise
to read the section of the programmer's guide which
explains the I/O port operation. But, as long as you
do not exceed the requirements of the one TTL load
specification, you will not damage any of the port
lines,

The two main logic families that are used in this
book are TTL and CMOS. The majority of all com-
puter interfacing requirements can be done with
only a few of the various TTL and CMOS circuit
chips. CMOS chips require a full five volts logic
swing for their operation and you must use a pull-
up resistor as described in the preceding paragraph
when you are connecting a CMOS chip to a port
B I/O line for an output function. Tables 1-5 and
1-6 describe some of the general TTL and CMOS
characteristics. Tables 1-7 to 1-11 describe some
specific TTL and CMOS Ie circuit chips that can
be used for interfacing projects,

16

Table 1-5. General TTL Operating Characteristics.

A. Dc power connections: +5 volts and
ground or common.

B. TIL circuits should be bypassed by a
.1 µF capacitor at the +5 volts input
pin.

C. Unused inputs should be tied to +5
volts.

D. Know what type of output cjrcuit is in
the TIL chip you are using; standard,
open collector, or 3 state output
(High-low-open circuit).

E. Input conditions: A "One"" Logic level
must be more than about 2.5 volts. A
"Zero" logic level must be below about
.8 volts.

F. The operating speed of the TIL gates
are generally between 10 and 30
nanoseconds, which js far faster than
any low priced single board computer
can operate.

G. Output Orjve (Fan-Out) The 7400
series will drive ten 7400 serjes in-
puts. The 74LS .. series will drive two
7400 series 0 r ten 74LS series inputs.

Table 1-6. General CMOS Operating Characteristics.

A. Dc operating current requirements are
very small compared to TTL.

B. All inputs are high impedance inputs
which require no driving power.

C. The design characteristics give
CMOS chips good noise immunity.

D, The CMOS "B" series chips will func-
tion from 3 volts to over 15 volts with
some operating up to 20 volts.

E, The outout voltage will go from the
positive voltage supply level to ground
level. (complete + to - voltage
swing.)

F. All inputs "must" be connected to an
input line or to the + voltage line or
ground line, CMOS is a high imped-
ance input logic family and uncon-
nected inputs can easily pick up noise.

G. The operating speed of CMOS is not
as fast as TTL at the 5-volt supply
level. The best supply voltage for
CMOS circuits is between 9 and 12
volts.

Table 1-6 describes a Schmitt-trigger logic cir-
cuit which is one of the most versatile interfacing
chips you can buy that can be used for both input
and output projects. A Schmitt-trigger logic circuit
has the special ability to turn on at a specific
positive-goingvoltage and then turn off at a specific
negative-going voltage. These voltage trip points
are referred to as the positive and negative going
threshold voltages. The threshold voltages are set
so the positive threshold trip point is a little higher
than the negative threshold trip point giving what
is called an area of hysteresis. The hysteresis area
between the positive threshold point and the
negative threshold point is generally about .6 volt
to 1 volt for logic circuits with 5-volts supply
voltages. The Schmitt-trigger IC can convert a
slowlyrising or falling logic signal to neat and clean
logic signal with fast rise and fall characteristics.
Schmitt-trigger IC chips are especially useful for
computer interfacing because they can be used with

great success in preventing noise from getting into
an 110 port line from the outside world. As you read
on in this book, you will find that Schmitt-trigger
circuits are used in many different circuit applica-
tions other than just interfacing.

The IC circuits that are described in Tables 1-7
to 1-10 are either inverting or noninverting buffer
circuits. These circuits can be used to interface the
computer to other logic families and logic voltage
levels than the standard five-volts logic. We first
introduced you to the transistor switch as a method
of computer interfacing, but it is wise for a begin-
ner to use one of these buffer circuits between the
computer and the circuit you are interfacing,
because if you make a mistake and connect to the
wrong signal or voltage level you will only blowout
a cheap buffer circuit and not a computer port line
circuit.

EXAMPLE 1/0 CIRCUITS
USING TTL AND CMOS CHIPS

The next group of I/O circuits that will be
presented are examples of how you can use the
TTL and CMOS IC chips to perform input and out-
put operations with a computer. Actually, the IC
circuits that are presented in Figs. 1-17, 1-18, and
1-19can be used to perform most of the needed I/O
functions that will be encountered in normal con-
trol system tasks. Computer programs that will
work with these IC circuits will be presented later
in this chapter.

Figure 1-17 shows a CMOS MC14584 Hex
Schmitt-trigger IC connected in a four function
operation. Pins 10, 11, 12, and 13 are connected
in a logic input circuit. Pins 8 and 9 are connected
in a 12-volt pilot lamp driver. Pins 1, 2, 3, and 4
are connected as LED drivers. Remember that
CMOS circuits are high impedance inputs so any
unused inverter circuits must have their inputs tied
to ground so the inverter circuit will not oscillate.
An oscillating inverter circuit can cause the circuit
chip to overheat or generate unwanted signal noise.
One more general note about Fig. 1-17. CMOS in-
puts are designed to function with logic levels that
switch between zero and five volts. The port B com-
puter outputs need a pull-up resistor to pull their

17

18

Tabte 1-7. A CMOS Hex Schmitt Trtgger tnverting Buffer IC.

The IC package contains six separate inverter circuits. Each inverter circuit has a Schmitt
trigger which gives an internal switching hysteresis characteristic that makes this IC very
ideal for interfacing noisy circuits to a computer input port.

On a positive going input signal, the output state will change when the input signal is about
58 percent of the supply voltage. On a negative going signal, the output state will change
when the input signal, the output state will change when the input signal is about 24 per-
cent of the supply voltage. The actual dead band "hysteresis" is about .61 volts for a pin
14 supply voltage of 5 volts. Five volts is the required supply voltage when using this IC
to interface input data into the USER's port of a VIC-20, C-64, or Plus/4 computer.

output up to the five-volts logic ONE level for
CMOS operation. Resistors R1, R2, R3, and R4
function as pull-up resistors in this figure.

Looking at the circuit of Fig. 1-17 shows that

the circuit connected to pins 12 and 13 is an "input"
push-button circuit and the circuit connected to pins
10 and 11 is an "open-closed" switch circuit. The
main purpose of this circuit is to show you how to

Table 1-8_This CMOS Inverting Buffer Can be Used
lor Input Interlacing to Logic Voltage Levels Other thsn the Standard Five-Volt Computer Logic Signals.

This IC package contains six separate inverter circuits. The main application of this in-
verting buffer IC is to give the 110input line the capability of interfacing to other voltage
levels than just five volts. With a supply voltage of five volts, any input logic level between
5 and 15 volts can be safely applied 10 the inverter inputs. One should note the unusual
supply connections with the + V being connected to pin 1and dc common being connected
to pin 8.

19

20

Table 1-9. Thia CMOS NonInverting Buffer Can be Used
for Input Interfacing to logic Voltage levels Other than tIM Standerd Five-Volt Computer logic Signala.

connect a pushbutton or switch to your computer
to start or stop the program operation. If the switch
is turned on or the pushbutton pressed, a logic ONE

signal will appear at output pins 10 or 12. The logic
signal output of pins 10 and 12 should be connected
to either port bit 6 or 7 because there is a special

machine language BIT instruction which makes it
very easy to read the logic level of input bits 6 and
7.

The circuit that is connected to pins 8 and 9
is used to turn a pilot light on and off. A logic ZERO
at pin 9 will generate a logic ONE at pin 8 that will

ThiS Ie package contains six separate noninverting buffer circuits. The main application
of this noninverting buffer Ie is to give the 110 input line Ihe capability of interfacing to other
voltage levels than just five valls. With a supply voltage of five volts, any input logic voltage
level between 5 and 15 volts can be safely applied 10 the inverter inputs. One should note
the unusual supply connections with the + V being connected to pin 1 and dc common
being connected to pin 8.

turn on the lamp. The lamp could actually be any
dc load within the power ratings of transistor Q2.
Remember to use a noise-suppression diode and ca-
pacitor across the load if it has any inductive com-
ponents. The circuit that is connected to pins 1 and
2 is a simple LED circuit that is designed to turn
on LED 1 when a logic ONE is at pin one. The LED
circuit at pins 3 and 4 is designed to turn on when
a logic ZERO is at pin 3. Pin 5 is grounded because
this inverter circuit is not being used.

Figure 1-18 shows a CMOS MC14050 Hex
noninverting buffer circuit that is being used to in-
terface logic input signal voltages that are higher
than the normal 5-volts computer levels. If a logic
signal inversion is needed, the MC14049 can also
be used for the same voltage level interfacing since
it is an inverting buffer IC. The IC has a supply volt-
age of 5 volts applied to pin one, which sets-up the
output logic voltage swing of 0 to 5 volts. With a
supply voltage of 5 volts, an input logic ONE level

Table 1-10. Standard TTL Inverting Buffer Chip.

This Ie package contains six separate inverter circuits. The main application of this IC is
to increase the TIL driving capability 01the computer flO port. Using this IC as an in-
vertingbuffer in an output linecircuitwill give the I/Olinethe capabilityto drive to TIL loads.

21

Table 1-11. This Inverting Buffer TTL Chip Can Drive Output Loads at Voltage Levels Up to 30 Volta.

This Ie package contains six separate open collector inverter circuits. The main applica-
lion of this Ie is 10 increase the TTL driving capability of the computer 110 port. Using Ihis
Ie as an inverting buffer in an output line circuit will give the 110 line the capability of inter-
facing 10 other voltage levels than just five volts. When the inverter output is low, it can
sink 30 milliamperes per gate, and when the output is high, it can handle circuit voltages
up to 30 volts. This gives the computer 110 port line the capability to drive low power cir-
cuits operating in the range of 12, 15, and 24 volts. The Vee supply voltage at pin 14 for
this chip is five volts. If all six inverters are operated at the maximum gate current of 30
milliamperes per gate, you must make sure that the Ie package does not overheat.

anywhere between 5 and 15 volts can be applied
to any of the six buffer circuits in the Ie. In this
circuit, a pushbutton (PB-I) that is connected in a
12-volts logic system is being interfaced to PB7,
which is operating at the normal 5-volts level. PB-2

22

is functioning at 14.8 volts and is being interfaced
to PB6 at the normal 5-volts level.

Figure 1-19 shows a 7406 TTL chip being used
as an output driver to drive various output loads
at voltage levels between 5 and 24 volts. This cir-

cuit chip can control a little more power because
each of the six gates in this package is an open-
collector transistor circuit that can sink 30
milliamperes per gate. If each gate is operated at
30 milliamperes, you must make sure that the Ie
chip does not overheat. In this figure, the circuit
that is connected to pins 10 and 11 is a simple
resistor that can supply 5 milliamperes of dc driv-
ing current to an external circuit. The circuits using
LED-1 and LED-2 simply show how to connect
LEDs in circuits with 12- and 24-volts supply

voltages. Note that pin 14 has the standard 5-volts
TTL voltage connected to it, but the open collec-
tor concept of the chip gives it the ability to switch
voltage levels up to 30 volts.

This now concludes our beginning discussion
on 1/0 computer operations. The technology that
has been presented to you up to this point will give
you the ability to do any programmable control
tasks that are needed in a control system. The
presented 110 circuits along with the software
capabilities of the Commodore computers gives one

Fig. 1-17. This circuit presents several ways of interfacing input and output functions with a computer. The computer
programs that are presented in Programs 1-1, 1-2, and 1-3 use this CMOS IC circuit.

23

Fig. 1-18. This circuit shows how one can interface input signals that are higher than 5 volts to the USER PORT of the
VIC-20, C-64, or PLUS/4.

a programmable controller that can compete and
surpass any of the industrial programmable con-
trollers that are currently being sold. A series of

24

experimental programs and circuits will now be
presented to give you some hands-on experience
with the technical presentations of this chapter.

PROGRAM EXPERIMENTS
Programs 1-1 through 1-21 are presented to

give you the fundamental knowledge of computer
input-output interfacing. Each of these experimen-
tal programs has been designed to work with a
specific electronic circuit that can be built on one
of the USER PORT Experimenter's Board (UEB-l
or UEB-2), These experiments were designed so
they could be performed without injury to the com-
puter under even the worst mistakes. About the
worst mistake you could make would be to short
out the power supply in the computer. The VEB-l
and UEB-2 have a 1/4-amp fuse that should blow

before the fuse inside of the computer blows. Each
of the Commodore computers have an internal fuse
that is mounted on the computer circuit board and
can only be replaced if you open up the computer
case. If you can buy a lower rated fuse of about .1
amp for the VEB board, do so, but I believe that
most electronic shops only sell a 1/4 fuse as their
smallest size fuse, The best protection against a
mistake is to always keep the wiring neat and dou-
ble check all wiring.

Program 1-1is written to use the electronic cir-
cuit of Fig, 1-17.The program and circuit combina-
tion represents the basic input-output control

Fig. 1-19. This TIL circuit can be used to drive loads operating at voltage levels as high as 30 volts.

25

operation of a computer. Program 1-1 is for the
C-64, Program 1-2 is for the VIC-20, and Program
1-3is for the PLUSI4 computer. The general opera-
tion of the program causes LED-1 to light when
PB-l is pressed, LED-2 lights up when 51 is
switched on, and both LED-1 and LED-2 plus the
pilot lamp light when PB-1 and 51 are turned on
together. The program also presents a video display
that tells you what input (PB-l or 51) is on and what
outputs (LEDs and light) should be on.

The functioning of Programs 1-1, 1-2, and 1-3
works as follows. Lines 10 and 20 set up the U5ER
PORT 110 operation by making bits 6 and 7 inputs
and bits 0 to 5 outputs and then setting the output
bits so that the LEDs and the light are off. Line 30
checks to see if any of the input devices (PB-1 or
S1) have been turned on. Lines 50 to 80 decide
which input has been turned on, if any. If an input
has been turned on, then lines 90 to 110 light up
the proper LED or light. Lines 200 to 225 control
the video presentation while lines 300 to 330 check
to see if both the pushbutton and the switch are on.

Programs 1-4, 1-5, and 1-6 are used with Fig.

1-20 to demonstrate how a relay can be operated
by computer control. In these programs, line 10 sets
up the USER PORT 110 operation by making all
eight of the 110 lines output lines and then turning
all outputs off. Lines 15 and 20 tell you to push '1'
to turn on the relay or push '0' to tum off the relay.
Lines 30, 40, and 50 check to see if the '1' key or
the '0' key have been pushed. Lines 50 and 60 are
used to POKE the proper data into the data regis-
ter to turn the relay on or off. Lines 80 and 90 are
used to print a video message that tells you if the
relay is off or on.

Programs 1-7, 1-8, and 1-9 along with the cir-
cuit in Fig. 1-21are used to show how you can con-
trol the operation of a dc motor with a computer,
In Fig. 1-21, transistors Ql and Q2 are connected
in a Darlington arrangement to drive the switching
transistor Q3. The de motor is used as the load for
Q3, and when Q3 is turned on, the motor runs.
Pushbuttons PB-l and PB-2 are connected to 110
lines PB6 and PB7 for the start/stop operation of
the motor. LED-l should light up when the motor
is running.

5 REM PROGRAM 1.1 FOR FIGURE 1.17
B REM FOR VIC-2I2J

1121POKE 37 138 ,12183:REM TH IS MAY. ES B ITS 121TO 5 OUTPU TS AND B ITS 6 AND 7 INPUTS
2121POKE 3713B,0S:REM THIS TURNS OFF THE TWO LEOS AND THE LIGHT
3121A=PEEK(37136)

4121PRINTCHR$(147):PRINT''PUSH PBI OR SWITCH SI"
5121IF A<7 THEN GOTO 3121
6121 IF 1'1=197 GOTO 9121
7121 IF A=69 GOTO 1121121
8121IF 1'1=133 GOTO 11121
3121 POKE 37136, 1212:GOT0200
t0121POKE 37136,01:GOT022121
110 POKE 37136,07:GOT021121
200 PRINT" ":PRINT"B0TH THE SWITCH AND PSI ARE ON"
205 PRINT" ":PRINT" THE l.IGHT AND BOTH LEOS SHOULD BE ON";GOT03121I2J
210 PRINT" ":PRINT"PB-1 IS PRESSED"
215 PRINT" ":PRINT" LED-I SHOULD BE ON":GOT031210
22121PR INT" .:PR INT"S I IS SWITCHED ON"
225 PRINT" ":PRINT" LED-2 SHOULD BE ON":GOT03121121
31210B=PEEK(37136)
310 IF B>150THEN GOTO 30
320 IF B>1217 THEN GOT030I2J
330 GOTOII2I

Program 1-1. This program is written to use the Circuitry of Fig. 1-17 and the UEB-1 to demonstrate the basic input and
output operation of the USER PORT of the C-64.

26

:5 REM PROGRAM 1,2 FOR FIGURE 1.17
6 REM FOR C-64
10 POKE 56579,063'REM THlS MAKES BITS a TO 5 OUTPUTS AND BITS 6 ANO 7 INPUTS

20 POKE 56577,1'I5'REM THIS TURNS OFF THE TWO LEOS AND THE LIGHT

31'1A=PEEK(56577)
41'1PRINTCHRS(147):PRINT"PUSH PBI OR SWITCH 51"

51'1IF A<7 THEN GOTO 31'1
60 IF A=197 GOTa 91'1
71'1IF A=69 GOTO 11'11'1
81'1IF A=133 GOTO 111'1
91'1POKE 56577, 1'12:GOT021'11'1
101'1POKE 56577,I'II:GOT0221'1
110 POKE 56577,1'I7:GOT0210
21'10PRINT" ":PRlNT"BOTH THE SWITCH AND PBI ARE ON"
205 PR INT" .:PR INT" THE L J GHT AND BO TH LE OS SHOULD BE ON": GOT031'11'1

211'1PRINT" "'PRINT"PB-l IS PRESSED"
215 PRINT" "'PRINT" LED-l SHOULD BE ON":GOT031'10
220 PR INT" :PR INT"S I IS SWITCHED ON"
225 PRINT" "PRINT" LEO-2 SHOULD BE ON":GOT031'10
31'11'1B=PEEK(56577)
310 IF B>15I'1THEN GOTO 31'1
321'1IF B>1'I7 THEN GOT031'10
331'1GOTO tel

Program 1-2. This program is written to use the circuitry of Fig. 1-17 and the UEB-1 to demonstrate the basic input and
output operation of the USER PORT of the VIC-20.

5 REM PROGRAM 1.3 FOR FIGURE 1.17
6 REM FOR THE PLUS/4
10 POKE 64784,192:REM THIS MAKES BITS I'! TO 5 OUTPUTS AND BITS 6 AND 7 INPUTS
21'1POKE 64784,t97:REM THIS TURNS OFF THE TWO LEOS AND THE LIGHT

25 PRINTCHR$(147)
31'1A=PEEK(64784)
40 PR INT "iii"; PR INT"PUSH PB I OR SII TCH S I"
51'1IF 1'1<7THEN GOTO 31'1
60 IF A=197 GOTO 91'1
71'1IF 1'1=69 GOTO 11'11'1
81'1IF 1'1=133 GOTO 111'1
91'1POKE 64784,194 'GOT021'11'1
11'11'1POKE 64784,t93:GOT0221'1
111'1POKE 64784,199:GOT0210
201'1PRINT" ':PRINT"BOTH THE SWITCH AND PBI ARE ON"
21'15PRINT" "'PRINT" THE LIGHT AND BOTH LEOS SHOULD BE ON"'GOT031'10
210 PR INT" • 1 PR INT" PB -1 IS PRESSED"
2 t5 PR INT" IPR INT" LEO- 1 SHOULD BE ON" :GOT031'11'1
220 PRINT" ":PRINT"SI IS SWITCHED ON"
225 PRINT" ":PRINT' LED-2 SHOULD BE ON":GOT031'11'1
300 B=PEEK(64784)
311'1IF B)150THEN GOTO 31'1
320 IF B>1'I7 THEN GOT031'11'1
331'1GOT010

Program 1-3. This program is written to use the circuitry of Fig. 1-17 and the UEB-2 to demonstrate the basic input and
output operation of the USER PORT of the PLUS/4.

27

5 REM PROGRAM 1.4 FOR FIGURE 1.20
6 REM FOR THE C-64
10 POKE56579, 63: POKE56577,00
15 PR INTCHRS(147): PR INT" PUSH '1' TO TURN ON THE RELAY"
20 PRINT" ":PRINT" PUSH '0' TO TURN THE RELAY OFF"
30 GET A$: IF AS = "1" GOT060
40 IF 1'1$ = "0" GOTO 70
50 GOT030
60 POKE 5S577,01:GOT080
70 POKE 56577,00:GOT090
80 PR INT' ":PR HNT" THE RELAY ISON" :GOT030
90 PRINT" ":PRINT" THE RELAY IS OFF":GOT030
READY.

Program 1-4. This program, along with the circuit of Fig. 1-20, teaches one how to control a simple relay with a C-64 computer.

5 REM PROGRAM 1.5 FOR FIGURE 1_20
6 REM FOR THE VIC-20
10 POKE37138, 63: POKE37136,00
15 PRINTCHR$(147): PRINT' PUSH '1' TO TURN ON THE RELAY"
20 PRINT" ":PRINT" PUSH '0' TO TURN THE RELAY OFF"
30 GET 1'1$: IF A$ " "I" GOT060
40 IF A$ = '0" GOTO 70
51"1GOT030
60 POKE 37136,eJl:GOT08eJ
70 POKE 37136,00:GOT090
80 PRINT" ":PRINT" THE RELAY IS ON":GOT030
90 PRINT" ":PRINT" THE RELAY IS OFF":GOT030

Program 1-5. This program, along with the circuit of Fig. 1-20, teaches one how to control a simple relay with a VIC-20computer.

5 REM PROGRAM I.S FOR FlGURE 1.20
6 REM FOR THE PLUS/4
t0 POKE64784, 192

15 PR INTCHR$(147): PR INT" PUSH '1' TO TURN ON THE RELAY"
20 PRINT" ":PRINT" PUSH '0' TO TURN THE RELAY OFF"
30 GET A$: IF A$ = "I" GOT060
40 IF A$ = "0" GOTO 71"1
50 GOT030
60 POKE 64784,193:GOT080
70 POKE 64784,192:GOT090
81"1PRINT" ":PRINT" THE RELAy' IS ON":GOT030
30 PR INT' ":PR INT' THE RELAY IS OFF" :GOT030

Program 1-6. This program, along with the cirCUit of Fig. 1-20, teaches one how to control a simple relay with a PLUS/4computer.

28

5 REM PROGRAM 1.9 FIGURE 1.21
6 REM FOR THE PLUS/4
10 POKE64784, 192
20 PR INTCHR $ (147): PR INT' MOTOR CONTROL PROGRAM"
30 PRINT" ":PRINT"PUSH THE PB6 PUSH BUTTON TO START MOTOR"
40 PR INT" ":PR INT"PUSH THE PB7 PUSH BUTTON TO STOP MO TOR"
50 A=PEEK(64784)
60 IF A = 65 THEN GOTO 200
70 IF A = 128 THEN GOTO 210
80 GOTO 50
100 PRlNTPEEK(S4784):GOTOt00
200 POKE 64784. t92:PR INT"MOTOR ON": GOTO 50
210 POKE 647B4,193:PRINT"MOTOR OFF": GOTO 50

5 REM PROGRAM 1.7 FIGURE 1.21
6 REM FOR THE C-64
10 POKE56579,63:POKE56577,01
20 PRINTCHR$(147): PRINT"MOTOR CONTROL PROGRAM'
30 PRINT" ":PRINT"PUSH THE PBS PUSH BUTTON TO START MOTOR"
40 PRINT" ":PRINT"PUSH THE PB7 PUSH BUTTON TO STOP MOTOR"
50 A =PEEK.(56577)
60 IF A = 65 THEN GOTO 200
70 IF A = 128 THEN GOTO 210
80 GOTO 50
100 PRINTPEEK(56577):GOTOI00
200 POKE 56577,00: PR INT "MOTOR ON": GOTO 50
210 POKE 56577,01:PRINT"MOTOR OFF": GOTO 50

Program 1-7. This program controls the elementary dc motor-control circuit of Fig. 1-21 with a C-64 computer.

5 REM PROGRAM 1.8 FIGURE 1.21
6 REM FOR THE VIC-20
I0 POKE37138,63:POKE37136,01
20 PR INTCHR$ (147): PR I NT"MOTOR CONTROL PROGRAM"
30 PRINT" ":PRINT"PUSH THE PB6 PUSH BUTTON TO START MOTOR"
40 PRINT" ",PRINT"PUSH THE PB7 PUSH BUTTON TO STOP MOTOR"
50 A=PEEK(37136)
60 IF A = 65 THEN GOTO 200
70 IF A = 128 THEN GOTO 210
80 GOTO 50
l00 PR INTPEEK (37136):GOTO 100
201"1POKE 37136 ,¤Ie:PR INT"MOTOR ON", GOTO 5¤I
210 POKE 37136,01:PRINT"MOTOR OFF": GOTO 50

Program 1-8. This program controls the elementary dc motor-control circuit of Fig. 1-21. with a VIC-20 computer.

Program 1-9. This program controls the elementary dc motor-control circuit of Fig. 1-21 with a PLUS/4 computer.

29

Fig. 1-20. This circuit is designed to show one how to control a relay with a computer. This circuit is designed for use
with Programs 1-4, 1-5, and 1-6.

Fig. 1-21. This motor-control circuit is designed to function with Programs 1-7, 1-8, and 1-9.

30

5 REM PROGRAM 1.11"1FIGURE 1.22
6 REM FOR THE C-64
Ie POKE56579,63:POKE56577,00
21"1 A=0
313 B=PEEK(56577)
41"1IF B <128 THEN GOTO 31"1

56
60 IF A = 1"1THEN GOTO 80
71"1IF A = 1 THEN GOTO 91"1
81"1 POKE 56577,63:A=1:GOTOII"I0
90 POKE 56577,01"1:A=0:GOT0101"1
101"1FOR 1=0T0500' NEXT :GOT030

Program 1-10. This C-64 program is used to toggle the two
LEOS of Fig. 1-22 every time the pushbutton is pressed.

Line 10 of Programs 1-7, 1-8, and 1-9 initiates the
USER PORT I/O set-up by making port lines PB6
and PB7 input lines and port lines PBOto PB5 out-
put lines. Port line PBOis set to a logic ONE so the
motor is turned off at the start. Using a logic ONE
to turn the motor off makes sure the motor is off
when the computer is turned on and the I/O port
is not set-up. Lines 20 to 40 tell you which pushbut-
ton must be pushed to turn the motor on or off.
Lines 50, 60, 70, and 80 check to see if a pushbut-
ton has been pressed and if so, what button was
pressed. Line 100 is not part of the actual program,
but if you 'RUN 100', you can watch what data is
generated when a pushbutton is pressed. Lines 200
and 210are used to POKE the correct data into the
USER PORT to turn the motor on or off and also

5 REM PROGRAM I. II FIGURE 1.22
6 REM FOR VIC-21"1
Ie POKE37138,63:POKE37136,1"I0
21"1A=0
31"1B=PEEK (37136)
41"1IF B <128 THEN GOTO 31"1

56
61"1IF A = 1"1 THEN GOTO 81"1
71"1IF A = 1 THEN GOTO 90
81"1 POKE 37136,63:A=I:GOTOII"II"I
91"1POKE 37136,1"I0:A=0'GOT0100
t01"1FOR 1=0T051"11"1:NEXT :GOT031"1

Program 1-11. This VIC-20 program is used 10 toggle the
two LEOs of Fig. 1-22 every time the pushbutton is pressed.

5 REM PROGRAM 1.12 FIGURE 1.22
6 REM FOR PLUS/4
Ie POKE64784, 192
21"1A=0
31"1B=PEEK(64784)
41"1IF B <128 THEN GOTO 31"1
50
60 IF A = 1"1 THEN GOTO 80
71'1IF A = I THEN GOTO 90
80 POKE 64784,255:A=1:GOT0100
90 POKE 64784,192:A=0:GOT0100
100 FOR 1=0T0500: NEXT :GOT031'1

Program 1-12. This PLUS/4 program is used to toggle the
two LEOs of Fig. 1-22 every time the pushbutton is pressed.

print on the video screen telling you if the motor
is on or off.

Programs 1-10, 1-11, and 1-12are used to con-
trol the operation of the circuit in Fig. 1-22. The
purpose of the circuit of Fig. 1-22is simply to show
you how LEDs can be turned on and off under dif-
ferent logic conditions. When PB3 and PBS are set
to a logic ONE, LED-1 will turn off and LED-2 will
turn on. If PB3 and PB5 are set to a logic ZERO,
LED-1 will turn on and LED-2 will turn off. The
programs along with the pushbutton PB-1 are used
to toggle the two LEDs off and on every time the
push PB-l is pressed.

Programs 1-13,1-14, and 1-15 and the switch
circuit of Fig. 1-23 are used to demonstrate how
eight bits of numerical data can be read by an input
port. In Fig. 1-23, and eight position 16 pin DIP
switch is used to place a logic ONE or ZERO on each
one of the 110 lines of the USER PORT. The binary
data that is set up by switch Sl is read and
displayed in a video presentation by the program
that you use. These three programs do not contain
a program line to set up the USER PORT because
all USER PORT lines are initialized as input lines
when the computer is turned on. No other set-up
data is needed if no output lines are required. The
three programs are written to read the input data
of the USER PORT and produce a video display
that shows the binary number, the hexadecimal
number, and the decimal number that represents
the logic state of the port lines (ONES or ZEROS).

31

Fig. 1-22. These two LED circuits flip-flop on and off when used with Programs 1-10, 1-11, and 1-12.

Anytime a switch is changed, the programs will up-
date the video display with the correct numerical
data. When this experiment is performed, it is very
easy to understand why you can only use decimal

numbers between 0 and 255 in your BASIC pro-
gram POKE commands.

Programs 1-16, 1-17, and 1-18 are used with
the LED display circuit of Fig. 1-24. The two

32

33

Fig. 1-23. This switch circuit can be used to input an eight-bit binary number into the USER PORT using Programs 1-13,
1-14, and 1-15.

5 REM PGM 1_13 FIGURE 1.23
6 REM FOR THE C-64
10 DIM A$(20):DIM B$(20)
15 E=56577
20 D=PEEK(E)
40 W=INT(D/I6):X=W*16:Y=O-X
400 B$(0)="0":B$(I)='I':B$(2)="2":B$(3)="3":B$(4)="4":B$(5)="5"1B$(6)='6'
405 B$(7)='7'IB$(8)='8':B$(9)='9"
407 B$(10)="A":B$(11)="B"
410 B$(12)='C":B$(13)='D'1B$(I4)="E':B$(t5)='F"
500 A$(0)="0000':A$(1)='0001":A$(2)="0010':A$(3)="0011"1A$(4)="0100"
510 A$(5)="0101":A$(6)="0110":A$(7)="0111":A$(0)="1000":A$(10'="1001"
520 A$(10,="1010":A$(t1'="1011":A$(12)="1100":A$(13)='1101":A$(14)="1110"
530 A$(15)="1111"
600 PRINTCHR$(147)
610 PRINT" THE DATA IN ADDRESS ";1PRINTE
620 PRINT" ":PRINT" ";:
630 PRINTA$(W);:PRINT' ",:PRINTA$(Y);:PRINT" -
900 PRINTD' DEC -$ "B$(W)B$(Y)' HEX':GOTOI5

Program 1-13. This program displays the digital input data at the C-64 USER PORT, which is set-up by the switch circuit
of Fig. 1-23.

5 REM PGM 1.14 FIGURE 1.23
6 REM FOR THE V IC-20
10 DIM A$(20):OIM B$(20)
15 E=37136
20D=PEEK(EI
40 W=INT(O/16):X=W*16:Y=0-X
400 B$(0)="0':B$(I)="1":B$(2)="2":B$(3)="3":B$(4)='4":B$(5'."5":S$(6)="S"
405 B$(7'='7":B$(8'="8":B$(9'="9"
407 B$(10)="A":B$(I1)="B"
410 B$(12)="C" :8$(13'= '0":B$(14)='E' :8$(15)="F"
500 A$(0)="0000":A$(I,="0001":A$(2)="0010":A$(3)="0011"IA$(4)="0100'
510 A$(S'="010I':A$(6)="0110":A$(7)="0111":A$(8)="1000":A$(10'="1001"
520 A$(10'="1010":A$(11)="1011":A$(12)="1100':A$(13'.'1101"IA$(14)="1110"
530 A$(15)="1III"

600 PRINTCHR$(147'
6 10 PR I NT" THE DATA IN ADDRESS' :PR INTE
S20 PR 1tN" "
631'1PRINTA$(W); :PRINT' ";:PRINTA$(Y):PRINT" "
900 PRINTO"OEC - $ "B$(W'B$(Y)" HEX':GOT015

Program 1-14. This program displays the digital input data at the VIC-20 USER PORT, which is set-up by the switch cir-
cuit of Fig. 1-23.

MC14584 CMOS IC circuits of Fig, 1-24are being
used to drive the LED display Ie. The three pro-
grams are written to make the LED display count
from ZERO to NINE and then reset and start over
again. Line ten of each program is used to set-up

the USER PORT as an output port since all eight
lines are required to drive the LED display circuit.
Other technical data about the functioning of these
three programs and Fig. 1-24is given in Table 1-12.

Programs 1-19 and 1-20 are used with Figs.

5 REl PROGRAM 1.15 FIGURE 1.23
6 REM FOR THE PLU5/4
10 DIM A$(20):DIM B$(20)
15 E=64784
2121D=PEEK(E)
40 W=lNT(D/16) 'X=W*16' Y=D-X
400 B$(0)= "121":e$(1 I="1":B$(2)= "2":B$(3) ."3": B$(4)= "4":B$(S)= "5" :B$(6'="6"
405 B$(7)="7":8$(8)="8":B$(9)="9"
407B$(10)="A":B$(II)="B"
41121B$(12) = 'C" :B$(13)="0" :B$(14)="E' :B$(15)="F"
50121A$(0)="0000":A$(11=·0001":A$(2)="0010":A$(3)="0011":A$(4)="0100"
510 A$(5)="0101":A$(6)="0tI0":A$(7)="0111":A$(8'="1000":A$(1121'="1001'
520 A$(10)="1010":A$(II)="1011"lA$(12'="tt00":A$(13'="110t':A$(14'="1110"
530 A$(I5'="1111"
600 PRINTCHR$(147)
610 PRINT" THE DATA IN ADDRESS "; :PRINTE
620 PRINT" ":PRINT" ",:
630 PRINTA$(W1; :PRINT" "::PRINTA$(Y,; :PRINT' _ "' :
90121PR INTD" DEC - $ "8$(W)B$(Y)" HEX": GOTO 15

Program 1-15. This program displays the digital input data at the PLUS/4 USER PORT, which is set-up by the switch
circuit of Fig. 1-23.

34

Fig. 1-24. This LED display circuit will count 0 through 9 when used with Programs 1-16, 1-17, and 1-18.

35

Table 1-12. AddItional Supporting Data for Fig. 1-24.

Note: This data is for Fig. 1-24 only

Number Generation Data

Display Number-Poke Value
Blank-255

Dot- . ·191
1 - - - 215
2 - - - 98
3 - - - 70
4 - - - 197
5· . - 76
6 - - - 72
7 - - - 214
8 - - - 64
9 - - - 68
0- - - 80

1-25 and 1-26 to show the functioning of the A/D
converters in the VIC-20and the C-64. The PLUS/4
computer is not used in these experiments. Pro-
grams 1-19and 1-20 simplyread the memory loca-

36

Display Segment-Poke Value
Needed to Turn

on A LED Segment
Bit 0 = 254
Bit 1 = 253
Bit 2 = 251
Bit 3 = 247
Bit 4 = 239
Bit 5 = 233
Bit 6 = 191
Bit 7 = 127

tion that is assigned to the internal AID converter
circuit and then displays this data as a decimal
number between 0 an 255 on the video screen. Fig-
ure 1-25 is a potentiometer circuit and the decimal

5 REM PGM 1.IS-FIGURE 1.24-FOR
THE C-S4

t0 POKE 56S79,255:A=56577
20 POKE A,191:GOSUB500
30 POKE A,215:GOSUB500
40 POKE A,98:GOSUB500
50 POKE A,70:GOSUB500
60 POKE A,197:GOSUB500
70 POKE A,76:GOSUB500
80 POKE A,72:GOSUB500
90 POKE A,214:GOSUB500
100 POKE A,64:GOSUB500
110 POKE A,68:GOSUB500
120 POKE A,80:GOSUB500
130 GOT020
500 FOR 1=1 TO 1000:NEXT:RETURN

Program 1-16. This program controls the LED display of Fig.
1-24 with a C-64. When the program runs, the LED display
will continually count 0 through 9 until the program execu-
tion is halted.

number that is shown on the video screen is a
number that corresponds to the positional setting
of the pot. Figure 1-26 uses a Cds photocell (light
sensitive resistor) in a light-level sensing applica-
tion. When this circuit is used, the number that is
displayed on the video screen is a representation
of the level of light in the computer room.

5 REM PGM 1.17-FIGURE 1_24-FOR
THE VIC-20

10 POKE 37138,255:A=37136
20 POKE A,191:GOSUB500
30 POKE A,21S:GOSUB500
40 POKE A,98:GOSUB500
50 POKE A,70:GOSUB500
60 POKE A,197:GOSUB500
70 POKE A,76:GOSUB500
80 POKE A,72:GOSUB500
90 POKE A,214:GOSUB500
100 POKE A,64:GOSUB500
110 POKE A,68:GOSUB500
120 POKE A,80:GOSUB500
130 GOT020
S00 FOR 1=1 TO 1000:NEXT:RETURN

Program 1-17. This program controls the LED display of Fig.
1-24with a VIC-20. When the program runs, the LED display
will continually count 0 through 9 until the program execu-
tion is halted.

5 REM PGM I.IS-FIGURE 1.24-FOR

THE PLUS/4
10 POKE 64874,000:A=64784
20 POKE A,191:GOSUB500
30 POKE A,215:GOSUB500
40 POKE A,98:GOSUB500
50 POKE A,70:GOSUB500
60 POKE A,197:GOSUB500
70 POKE A,76:GOSUB500
80 POKE A,72'GOSUB500
90 POKE A,214'GOSUB500
100 POKE A,64'GOSUB500
110 POKE A,68:GOSUB500
120 POKE A,80:GOSUB5ee
130 GOT020
500 FOR 1=1 TO 1000:NEXT'RETURN

Program 1-18. This program is used to control the LED
display of Fig. 1-24 with a PLUS/4. When the program runs,
the LED display will continually count 0 through 9 until the
program execution is halted.

Ie REM PROGRAM 1.19 F !GURES 1.25
AND 1.2S

15 REM FOR THE C-64
20 B=0
100 FOR I= 1 TO 50
110 A = PEEK(54297)
120 B=B+A
130 NEXT I
140 C=B/50
150 PRINTCHR$(147)
160 PRINT INT(C)
170 GOT010

Program 1-19. This program demonstrates the built in NO
converter in the C-64, using the pot circuit of Fig_ 1-25 or
the light-sensor circuit of Fig. 1-26.

10 REM PROGRAM t.20 FIGURES 1.25 AND
1.26

15 REM FOR THE VIC-20
20 B=0
100 FOR 1=1 TO 50
110 A = PEEK(3S872)
120 B=B+A
130 NEXT I
140 C=B/50
150 PRINTCHR$(147)
160 PRINT INT(C)
170 GOT010
Program 1-20. This program demonstrates the built in NO
converter in the VIC-20, using the pot circuit of Fig. 1-25 or
the light-sensor circuit of Fig. 1-26.

37

Fig. 1-25. This potentiometer circuit is designed to show the
capabilities of the on board NO converter in the C-64 or the
VIC-2O using Programs 1-19 or 1-20.

Remember that these programs and circuits use the
joy stick ports on the computers.

Program 1-21is the last program in this chapter
and it is used with the light level LED display cir-
cuit of Fig. 1-27. This experiment is really a com-
bination of Figs. 1-24and 1-26and Programs 1-16
and 1-19. The result of the addition of these pro-
grams and circuits to each other is a light-level
meter that generates a light level reading between
o and 9. The resistor and capacitor combination of
Rl and C1 is used to adjust the linearity of the light
meter. The actual values of these two parts will de-
pend on the light sensing characteristics of the Cds
photocell. It the display readings seem to be either
all in the low-light level or high-light level area, try
adjusting one of the two components one way or
the other. At night, this circuit has enough sen-
sitivity to detect the emitted light beam from a
6-volt flashlight that is 100 yards away.

5 REM PROGRAM 1.21-FIGURE 1,27-FOR
C-64

6 PRINTCHR$(147):PRINT"PROGRAM

RUNNING - CHECK LED DISPLAY"
11'1POKE 56579,255
20 POKE 56577,191:GOTO 51'11'1
31'1POKE 56577,215:GOTO 51'11'1
41'1POKE 56577,98:GOTO 501'1
51'1POKE 56577,70:GOTO 51'10
60 POKE 56577,197:GOTO 501'1
70 POKE 56577,76:GOTO 560
80 POKE 56577,72:GOTO 561'1
90 POKE 56577,214:GOTO 500
11'10POKE 56577,64:GOTO 501'1
111'1POKE 56577,6B:GOTO 500
121'1POKE56577,8a:GOTO 51'10
51'11'1B=a:A=a
511'1FOR I=I TO 51'1
515 A=PEEK(54297)
521'1B=B+A
530 NEXT I
540 C=B/5a
550 C=INT(C)
560 D=C/28:E=INT(D)
570 IF E=a THEN GOTO 111'1
580 IF E=I THEN GOTO 11'11'1
590 IF E=2 THEN GOTO 90
600 IF E=3 THEN GOTO 80
611'1IF E=4 THEN GOTO 70
620 IF E=5 THEN GOTO 60
630 IF E=8 THEN GOTO 30
640 IF E=9 THEN GOTO 121'1
650 GOT0500

Program 1-21. This program makes an elementary light-level
meter, using the LED display and light-sensor circuit of Fig.
1-27.

Fig. 1-26. This circuit can be used as a relative light-level meter with Programs 1-19 or 1-20.

38

Fig. 1-27. This LED display and photocell circuit is designed to function as a light-level meter when used with Program 1-21.

39

CONCLUSION
In Chapter 1, you have been introduced to a

few elementary computer interfacing techniques to
show how easy it can be to use your Commodore
computer as a controller for either electronic
technology or science experiments, After you have
built and run all of the experimental circuits and

40

programs in this chapter, you will have no trouble
understanding any of the remaining projects in this
book. You should also have a good idea about how
easy it would be to control even the most
sophisticated experiments with a Commodore
computer.

IN CHAPTER 1, WE PRESENTED A SERIES OF EX-
perimenter's circuits and programs. All of the

programs were written in the BASIC language that
all four of the Commodore computers use. You can
do a great deal with BASIC because it is a very
powerfullanguage. This BASIC language does fall
short in one area, though, and that area is speed
of operation. In very general terms, one could say
that it takes "about" 1 millisecond to perform the
average BASIC command. This means that if you
would PEEK the USER PORT memory location
to see if a pushbutton has been pressed, it would
take around one millisecond to do that pushbutton
check. That would be no problem because the
pushbutton will be held down for a second or so
most likely. What happens if you are trying to
detect a logicpulse that is only .1 milliseconds long?
The chances are that the PEEK command would
miss the pulse when it came along because the
BASIC program would be doing some of its busy
work and not checking the USER PORT input line
when the pulse appeared. This problem can be

easily handled with the machine-language control.
The main purpose of this chapter is to rerun one
of the Chapter 1 experiments using 6502 machine
language and not the standard BASIC language.
We will use BASIC as the supporting program, but
all of the input and output functions will be done
with machine-language subroutines that are part of
the main BASIC program, After you have com-
pleted this chapter, you will be able to use the
powerful BASIC language and still perform any
tasks that require lightning fast speed.

Most people have a very hard time under-
standing machine language. If you limit the scope
of your machine-language routines to only include
the machine instruction codes that are required for
control functions, your introduction to machine
language will be much easier. In this chapter, we
will just use 11 of 6502 machine-language instruc-
tion codes (opcodes), A series of machine-language
subroutines using these opcodes will be presented
that can be substituted for the BASIC PEEK and
POKE routines that were used to control the ex-

41

periments in chapter 1.

THE MACHINE-LANGUAGE MONITOR
A machine-language monitor program is a pro-

gramming aid type of program that lets you talk
to your computer at its own machine-language
level. The main function of the monitor program
is to let you examine and change various memory
locations in the computer, insert machine-language
subroutines, and test out these subroutines. Most
monitor programs contain some form of a mini-
assembler and disassembler that lets you look at
any area of the computers memory and a number
of monitor commands that lets you perform various
machine-language functions. I would strongly sug-
gest that you visit your local computer store and
purchase a monitor program for your computer if
you do not have one. (Note: The C-16 and the
PLUS/4 have their own built-in monitor programs.)

If you do not own a monitor program, you can
use Program 2-1 to examine any area of memory
in your computer. This program will display the
memory contents as shown in Fig. 2-1. This figure
displays the 16 highest memory locations in the

PLUS/4 memory map. The program first asks you
to input the address of the memory location where
you want to start the display. The program then
prints out the video display line by line. Each line
starts out by presenting the decimal address loca-
tion. Following the address location is a combina-
tion of eight ONES or ZEROs that corresponds to
the binary data contained in that eight bit memory
byte. Following the binary data is the decimal and
hexadecimal number equivalent for the binary data.
The program display will continue until you press
the RUN/STOP key.

All monitor program that you can buy for your
computer use the hexadecimal number system. The
hexadecimal number system is used in machine
language work because it can represent the eight
bit computer byte very easily. There are many
books and magazine articles on this number system,
and so we will not present any long explanations.
The data that is presented in Tables 2-1 and 2-2
will give you all of the hexadecimal information that
is needed for this book. After studying these two
tables, you will understand the funny number data
that is displayed by the monitor programs. The

Fig. 2-1. This is the video display that is generated by the memory display Program 2-1. This figure shows the top 16
memory locations of the PLUS/4 computer after running this program.

42

Program 2-1. This program can be used to display the memory contents of your computer as shown in Table 2-1.

numbering display of Table 2-2 was generated by
Program 2-2. For those of you who do not own a
monitor program at this time, Programs 2-3and 2-4
are two mini-monitors for the VIC-20 and C-64 that
can be used to enter any program in this chapter
using the information in Tables 2-3 and 2-4.

A SHORT MACHINE-LANGUAGE PROGRAM
The best way to learn how to use machine

language is to use it to do something. Three short
machine-language program experiments and their
supporting instructions will now be presented to in-
troduce you to the high speed world of machine
language. These experiments are written to con-
trol the simple pushbutton/LED circuit of Fig. 2-2.

The main point of these experiments is to learn how
to divide the computer memory into a BASIC area
and a machine-language area, enter a machine-
language routine, and run a BASIC program and
a machine-language subroutine together using the
BASIC's SYS command. One may think that this
is a lot of trouble to go through to just turn a LED
on and off, but you must start with machine
language somewhere and in this book this is where
it starts. Understanding how a BASIC program and
a machine-language subroutine operates together
is a very important part of control system program-
ming. In the experiments, the machine-language
subroutine program data will be presented in the
disassembly format that is common to all of the

Table 2-1. Some of the More Important Computer Address Locations In Decimal, Hexadecimal, and Binary.

43

Table 2-2. Decimal, Hexadecimal, and Binary Numbers
from 0 to 255. You Can Use this Table to Look-up Binary Bit Patterns and Poke Data for Control Programs.

44

45

Table 2-3. Technical Data Needed to Use the Decimal Mini-Monitor Program.

NOTE 1: See Opcode Table 2-4 for the decimal opcode numbers that you can enter with
this program.
NOTE 2: If you do not want to change the data in a memory location, you must enter the
same data back into that location. Pressing the RETURN key without entering a number
will automatically enter a ZERO in that memory location.

46

Program 2-2. This program was used to generate Table 2-2.

6502 monitor programs. If you are using a mini-
monitor program, you will have to use Table 2-2
to convert the hexadecimal data into decimal data
for that monitor.

The memory map of the computer is a listing
that displays all of the memory address locations
in the computer and the function that is allocated
to each memory location. The usable RAM mem-
ory in the VIC-20, the C-16, and the PLUS/4 are
all allocated to the BASIC program. If you want to
use a machine-language subroutine, you must tell
the computer to set up an area of memory for the

Program 2-3. A VIC-20 mini-monitor program.

machine-language subroutine. You do not have to
do this with the C-64 because there is an area of
memory between $C000 and $CFFF that can be
used for machine-language subroutines. In the
VIC-20 and the PLUS/4 this special area of
machine-language memory can be set-up by using
the POKE routines that are presented in Table 2-5.
These routines must be entered into the computer
using the Immediate Programming Mode before you
enter your BASIC or machine-language subroutine.
Remember that these POKE routines will lower the
usable BASIC memory. It should be brought up at

Program 2-4. A C-64 mini-monitor program.

47

Table 2-4. Decimal and Hexadecimal Opcodes of the Machine-Language Instructions Used In This Chapter.

this time that if your computer has a lot of unused
(free) BASIC memory, you can most likely get by
without adjusting your memory map. Generally,
there will be an unused area in the memory where
the BASIC part of your program will not interfere

with the machine-language routine. A good spot to
try is about lK below the highest memory location
that is allocated to the BASIC RAM.

Programs 2-5 and 2-6 are written for the
PLUS/4 computer. The objective of these two pro-

48

Fig.2-2.This is the schematic of a simple pushbutton and transistor switch circuit that can be built on the UEB-l or UEB-2
circuit board. The main purpose of this circuit is to teach you the techniques of input and output interfacing using the
machine-language programs in this chapter.

grams is to detect if the pushbutton PB-1 in the cir-
cuit of Fig. 2-2 is on or off. Program 2-5 is the main
BASIC program while Program 2-6 is the machine-
language subroutine that does the actual technical
work. These first two programs will be described
line by line so you can see how a BASIC program
and a machine-language subroutine work together.

The first jump to the subroutine program oc-

curs in BASIC program line 20. The SYS32512
command sends the program operation to memory
location $7F00 (32512-$7F00). Remember that the
$ just means that the number is a hexadecimal
number. Location $7F00 contains the hex data $A9
which is the opcode for LDA Immediate (Load the
Accumulator). This $A9 LDA opcode tells the com-
puter's microprocessor to load the hex data in the

Table 2-5. POKE Routines that Can Be Used to Set-up a
Machine-language Memory Area In the VIC-20 and the PLUS/4 Computers.

VIC-20 POKE data for setting up a machine language subroutine between $1000 and $1DFF.

POKE5,0:POKE52,29:POKE55,0:POKE56,29:CLR <press-return >

PLUS/4 POKE data for setting up a machine language subroutine between $7F00 and $7FFF.

POKE5,1,0:POKE52,27:POKE55,0:POKE56,127:CR <press-return >

NOTE: A "$" in front of a number means that the number is a Hexadecimal number.

? FRE(O) < press-return >

You can recheck the free BASIC memory by using this routine.

49

Program 2-5. This PLUS/4 BASIC program is used to check if PB-1 of Fig. 2-2 is open or closed using the machine-language
subroutine of Program 2-6.

next memory location ($7F01) into the
microprocessor's accumulator register for further
processing. The computer's microprocessor then
looks at the hex data in location ($7F02) which is
$8D. The opcode $8D (ST A) tells the
microprocessor to store the accumulator's hex data
in the memory location that is called for by the data
that is contained in the next two memory locations
($7F03 and $7F04). Location $7F03 is called the
low-byte data and $7F04 is called the high-byte data
for the opcode STA. The hex data in $7F04 is $FD
and $7F03 is $01. The computer then puts the HI
byte and the LOW byte data together to form a
memory address number of $FD10. This means
that the hex data of $C0, which is in the ac-
cumulator's register, will be moved to the memory
location $FD10, which is the PLUS/4's on board
I/O port. The $C0, which is 11000000 in binary
notation, makes bits 7 and 6 input lines and bits 0,
1, 2, 3, 4, and 5 output lines for our program. Mem-
ory location $7F05 contains the data $60, which is
the opcode for RTS or Return from subroutine. This
opcode sends the program control back to the
BASIC program at line 30. Line 30 simply tells you
that the I/O port is set up and adds a one second
delay loop. Table 2-6 presents some of the
nomenclature that is used with machine-language
programming.

The next SYS command in line 40 (SYS32520)
sends the program control back to the machine-
language routine at address $7F08. The machine-
language opcode instruction in location $7F08 is
$2C, which is the BIT test instruction. The BIT test

50

instruction performs several tests, but in this pro-
gram it is checking to see if bit 7 of the I/O USER
PORT is a ONE or ZERO. Memory locations $7F09
and $7F0A contain the hex data that specifies the
memory location to be tested, which is $FD10. Note
that this memory address is specified in the low
byte-high byte order, which is the way all machine
language addresses are specified.

The next opcode in location $7F0B is $30,
which is a branching instruction. If bit 7 of the

Program 2-6. This PLUS/4 machine-language subroutine is
to be used with BASIC Program 2-5.

Table 2-6. This Machine-Language Nomenclature
Presentation Should Help You Understand the Machine-language Programming In This Chapter.

51

Program 2-7. This C-64 BASIC program is used to check if PB-1 of Fig. 2-2 is open or closed using the machine-language
subroutine of Program 2-8.

USER PORT is a logic ONE, a branch to a new
location occurs that is controlled by the hex data,
which is in the following memory location. If bit 7
is a logic ZERO, no branching occurs and the pro-
gram continues on with the opcode in the next loca-
tion. If a branch does occur, the $03 in $7F0C sends
the program operation to location $7F10. Locations
$7F10 and $7F11 contain $A9-$00 and locations
$7F12, $7F13, and $7F14 contain $8D-$20-$7F,
which tells the microprocessor to store a $00 in
location $7F20 if bit 7 of the USER PORT is a logic
ONE during the BIT test. If bit 7 is a logic ZERO,

no branch occurs and the program operation goes
to location $7F0D which contains a JUMP instruc-
tion ($4C-$18-$7F) to location $7F18. Locations
$7F18 to $7FIC contain $A9-$FF-$8D-$20-$7F,
which tells the microprocessor to store a $FF in
location $7F20. Locations $7F15 and $7FID con-
tain $60 which is an RTS instruction that sends the
program control back to BASIC line 50. It can be
seen now that the main objective of this part of the
machine-language subroutine is to store a $00 in
location $7F20 if the pushbutton is OFF or a $FF
if the pushbutton is ON.

Line 50 of the BASIC program runs a PEEK
to memory location 32544 ($7F20) to see if the
number in 32544 is a 0 ($00) or 255 ($FF). Variable
"A" is set equal to the number data that is con-
tained in memory location 35244. Lines 60 and 70
are IF-THEN STATEMENTS, that do the deci-
sion making in our BASIC program. If A = 0, then
the program jumps to line 80, and if A = 255, the
program jumps to line 90. Line 80 prints the video

52

message that the pushbutton is off, and line 90
prints the video message that the pushbutton is on.
Both lines 80 and 90 contain a GOTO 40 command
that loops the program back around for another trip
through the subroutine to check the pushbutton.
Note that line 30 is only used once to set-up the I/O
USER PORT.

If you study Programs 2-5 and 2-6 thoroughly,
you will gain an understanding of how the BASIC
and machine-language subroutines function in this
chapter. Since all of the other machine-language
programs in this chapter are about the same, we
will not go into a detailed discussion of these pro-

Program 2-8. This C-64 machine-language subroutine is to
be used with BASIC Program 2-7.

Program 2-9. This VIC-20 BASIC program is used to check if PB-l of Fig. 2-2 is open or closed using the machine-language
subroutine of Program 2-10.

grams. The LOAD, STORE, BRANCH, BIT, and
RETURN machine-language instructions are all
that are needed to use your computer as a high-
speedprogrammable controller. When you combine
themwith a BASIC program, you can make a very
intelligent high-speed control system. One can ap-
preciate the speed of machine language when you
considerthat most of the machine-language instruc-
tions are completed in three to five microseconds.

Programs 2-7,2-8,2-9, and 2-10 are the same
as 2-5and 2-6 but they are used with the C-64 and
theVIC-20. Programs 2-11 through 2-16 are about
the same as 2-5 through 2-10 but they have the
addedmachine-language subroutine to turn LED-l
on and off. Using Programs 2-11 and 2-12 for the
PLUS/4 again shows that two SYS jumps have
been added in lines 80 and 90. The SYS32546 in
line 80 jumps the program operation to memory
location$7F22, which is used to tum off the LED.
The SYS32552 in line 90 jumps the program opera-
tion to memory $7F28, which is used to tum the
LEDon. Since the SYS command requires an RTS
machine-code instruction, lines 85 and 95 are used
to receive the program operation back from the
machine-languagesubroutine and loop it back to the
pushbutton check part of the program. The objec-
tivesof Programs 2-11 to 2-16 are to show you how
an input logic signal can be used to control an out-
put logic signal using a machine-language

subroutine. Using the BIT test instruction as
shown, it is possible to easily detect logic signal
pulses as short as 12 microseconds long.

PROGRAM 2. Ie

Program 2-10. This VIC-20 machine-language subroutine is
to be used with BASIC Program 2-9.

53

Program 2-11. This PLUS/4 BASIC program along with the machine-language subroutine of Program 2-12 is used to turn
LED-l on and off using the circuit of Fig. 2-2 and PB-1.

A TIME-DELAY SUBROUTINE
Most control programs need time-delay

routines at some point in the operation of the pro-
gram. If you are programming in BASIC, you will
not have any problems because a simple FOR-
NEXT loop can be used to generate the needed
time delay. Writing a time-delay routine for
machine-language control is not quite as simple. To
help you out of this problem, three time-delay
subroutines are presented in Programs 2-17, 2-18,
and 2-19 for the VIC-20, the C-64, and the PLUS/4.
These time-delay routines can be used to generate
time delays from about 20 microseconds to over 250
milliseconds.

The time-delay routines can be located
anywhere in the computer's free RAM memory and
called up by using a SYS BASIC command, a JMP,
or a JSR machine-language instruction. Because all
of the routines are the same with the exception of
the different address locations for the three com-
puters, we will use the routine in Program 2-18 for
the C-64 computer to explain the operation of the
time-delay function. Using program address lines
$C000, $C002, $C005, and $C007, the routine first
loads the hex number $FF into memory locations
$C015 and $C016. Program line $C00A decrements
memory location $C016 by "I" and program line
$C00D checks to see if that decrement caused loca-
tion $C016 to become $00. If $C016 was not zero,

54

Program 2-12. This PLUS/4 machine-language subroutine
is used with BASIC Program 2-11.

Program 2-13. This C-64 BASIC program along with the machine-language subroutine of Program 2-14 is used to turn
LEO-l on and off using the circuit of Fig. 2-2 and PB-l. Note that the machine-language subroutine for this BASIC pro-
gram is located at $7FOO to show you that a subroutine can be located in the BASIC program RAM if the BASIC program
is not too large.

Program 2-14. This C-64 machine-language subroutine is
used with BASIC Program 2-13.

the routine loops to line $C00A and decrements
again until $C016 is zero. When $C016 is zero, the
routine does not loop back, but goes to program line
$C00F and decrements memory location $C015.
Line $C012 checks to see if location $C015 was
decremented to zero, and if it was not zero, the
routine loops to line $C005 and reloads $FF into
$C016 for another decrement loop. As one can
observe, there are two loops in this routine. The
routine will continue the decrement function until
both loops are zero at the same time. When both
locations $C015 and $C016 are $00, the routine
goes on to line $C014, which is a RETURN FROM
SUBROUTINE instruction that sends the program
control operation back to the main computer
program.

The time delay of the routine is controlled by
the data that is loaded into locations $C001 and
$C006. The longest delay is obtained when $FF is
loaded into both of these locations and the shortest
time delay is obtained when $02 is used.

A FINAL NOTE ON
CHECKING SWITCHES AND PUSHBUTTONS

The example programs in this chapter only
used bit 7 to check for an open or closed pushbut-
ton. You can use the BIT TEST instruction to
check the logic levels of both bits 6 and 7 of any

55

Program 2-15. This VIC-20 BASIC program along with the machine-language subroutine of Program 2-15 is used to turn
LED-l on and off using the circuit of Fig. 2-2 and PB-l.

memory location in the computer. Table 2-7
presents four routines that can be used for check-
ing the logic levels of bits 6 and 7. These bit test

routines show only one of the many different ap-
plications that use the function of the BIT TEST
instruction.

The routine shown in program lines $C000 and
$C002 can be used to test for a logic ZERO on bit
7. The routine will loop within itself as long as bit
7 remains a logic ONE. Any logic ZERO pulse that
is longer than 10 microseconds will be detected by
the BIT TEST and the program control will go on
to the next memory location after the routine, which
in our routine is location $C005. $C005 is a BRK

A TIME DELAY MACHINE LANGUAGE
SUBROUTINE FOR THE VIC-20.

Program 2-16. This VIC-20machine-language subroutine is Program 2-17. This is a machine-language time-delay
used with BASIC Program 2-15. subroutine for the VIC-20.

56

A TlME DELAY MACHINE LANGUAGE
SUBROUTINE FOR THE PLUS/4.

Program 2-19. This is a machine-language time-delay
subroutine for the PLUS/4.

instruction which will stop the program function.
If you have a monitor program with a GO com-
mand, you can load this routine and study its opera-
tion. You can also change $C005 to aRTS
instruction ($60- Return From Subroutine) and use
this routine with the BASIC SYS command. The
routine in lines $C006 and $C009 can be used to
detect a logic ONE on bit 7. The routine in lines
$C00C and $C00F is used to detect a logic ONE on
bit 6 while the routine at lines $C012 and $C015
can be used to detect a logic ZERO on bit 6.

In this chapter, you have been introduced to
machine-language routines that can be used to con-
trol experiments and machines. The scope of this
chapter has been kept narrow so one can learn how
to use a few of the really important machine-
language instructions.

57

Table 2-7. Four Machine-Language Routines
that Will Check the Logic Levels of Bits 6 and 7

of a Memory Location. See the Discussion In the Text.

Program 2-18. This is a machine-language time-delay
subroutine for the C-64.

ALL OF THE SPECIAL PROJECTS THAT FOL-
low in this book use some form of a timing

program. The timing function can be as simple as
a FOR-NEXT loop or as complicated as a timing
subroutine that can detect time intervals as short
as a few microseconds.

PROJECT 3-1- TIMING PROGRAMS
The timing programs presented in this section

can be used to measure time intervals of over 1000
minutes with a verifiable accuracy of .0001 seconds.
The programs really have a time measurement
resolution of .000010 seconds, but the average hob-
byist or experimenter will find it difficult to verify
the accuracy of this level of measurement
resolution.

Timer Programs Using Only BASIC
The first three timing programs that will be

presented are Program 3-1for the VIC-20, Program
3-2 for the C-64, and Program 3-3 for the PLUS/4.
These programs use the built-in real time clock that

58

is part of each computer. The built-in clock keeps
track of time in increments of 1160of a second. The
clock starts out at zero when the computer is turned
on and has the ability to count up to about 14,400
hours before it resets back to zero. If you do not
have to measure time in increments smaller than
1/60 of a second, the built-in real time clock is the
way to go.

All three of the timing programs are designed
to operate with the USER PORTs of the three com-
puters. The I/O functions of the USER PORTs give
you the ability to time external events using input
sensors. The input sensor that is used with these
programs is a simple pushbutton. The pushbutton
circuit is presented in Fig. 3-1 and can be built on
the UEB-l or UEB-2 (see Chapter 1). The function
of the pushbutton circuit is to generate a logic ONE
or ZERO on input line PB7. The pushbutton (PB-l)
is connected so that port line PB7 is held at a logic
ONE level when PB-l is open or dropped to a logic
ZERO level when PB-l is pressed (closed).

The programs are written so the timing period
starts when the <A> key is pressed on the com-

This circuit can be built on the UEB-l or UEB-2

Fig. 3-1. This simple pushbutton circuit is used to place a
logic ONE or ZERO on input line PB7 for timer Programs 3-1
to 3-9.

puter's keyboard and stops when the pushbutton
ofFig. 3-1 is pressed. The time interval data is then
displayed on the video screen. Programs 3-1 and
3-2for the VIC-20 and the C-64 are the same with
the exception of the different PEEK address in line
60and the video data format. Line 30 and 40 of each
program checks to see if the <A> key has been
pressed. When it has been pressed, line 50 sets the
variable "B" equal to the current time value. Lines
60, 70, and 80 are used to check if PB-l has been
pressed. When PB-l is pressed, variable "D" is set
equal to the current timer value. Line 100 is used
to compute the time interval between the time when

the <A> key was pressed and PB-l was pressed.
The time interval data that is shown on the video
screen is only accurate to plus or minus 1160of a
second. Program 3-3 for the PLUS/4 computer is
about the same as Programs 3-1 and 3-2, but line
5 contains a POKE command that is needed to
make the PLUS/4's USER PORT an input port.

Machine-Language Timing Subroutines
The timer Programs of 3-1, 3-2, and 3-3 use

only BASIC programming and the built-in real time
clock in the computer. These programs have a
limited time resolution because BASIC is slow and
the real time clock increments only once every 1160
of a second. If one needs to secure a time interval
with a resolution better than .016 seconds (1/60),
you must use a machine-language subroutine that
works with microseconds and not a BASIC pro-
gram that works with milliseconds.

BASIC Programs 3-4, 3-6, and 3-8 along with
their machine-language subroutines are designed
to provide a verifiable time interval measurement
resolution of better than .0001 seconds for the
measured time period. Each of these BASIC pro-
grams use the machine-language subroutine to do
the actual time keeping function using the execu-
tion speed of machine language programming. The
machine-language subroutines that are presented
in Programs 3-5, 3-7, and 3-9 are shown in the
machine-language monitor disassembly format for
each of the computers. One special note about using
long machine-language subroutines is that you will

Program 3-1. This BASIC program is used to measure time intervals with a VIC-20 computer.

59

Program 3-2. This BASIC program is used to measure time intervals with a C-64 computer.

Program 3-3. This BASIC program is used to measure time intervals with a PLUS/4 computer.

Program 3-4. This BASIC program uses the machine-language subroutine in Program 3-5 to measure time intervals with
a VIC-20 computer.

60

Program 3-5. This machine-language subroutine is used with
BASIC Program 3-4.

have to save your subroutine programs on tape or
disk after you have entered them into the computer
with the monitor program. When you are loading
a machine-language program using the LOAD
"XXX" ,8,1method for a disk system or the LOAD
"XXX",1,l for the tape cassette, you will have to
"RESET" the computer before you can load in the
BASIC program. To reset the computers, you can
use the PLUS/4's built-in reset button or the reset
button on the UEB-l for the VIC-20 or the C-64.

The three BASIC programs and their machine-
language subroutines use the same general program
format that was used in Programs 3-1,3-2, and 3-3.
The program timing interval starts when you press
the <G> key and stops when you press the
<RUN/STOP> key for the C-64, the
<CRSR/DOWN > key for the VIC-20, or pushbut-
ton PB-l of Fig. 3-1 for PLUS/4. The C-64machine-
language subroutine of Program 3-5 uses the timers
in the 6526 CIA to measure the time period. The
VIC-20 and the PLUS/4 subroutines of Programs
3-7 and 3-9 use an internal timing loop that keeps
track of time by decrementing three memory loca-
tions. After the time interval is complete, each of
the main BASIC programs computes the measured

Program 3-6. This BASIC program uses the machine-language subroutine in Program 3-7 to measure time intervals with
a C-64 computer.

61

Program 3-7. This machine-language subroutine is used with
BASIC Program 3-6.

time interval by PEEKing the memory locations
where the time data is stored and using that data
in the program calculations for the time interval
video display.

The time measurement that is made by Pro-

grams 3-4, 3-6, and 3-8depend on the internal clock
frequency in your computer. If each computer had
1MHz clock frequency, calculating the correct time
interval would be very easy because every clock
cycle would be .000001 seconds. Because none of
the computers use an even 1MHz clock frequency,
you must correct for this factor. The correction
factor in Program 3-4 is in line 90 and is
9.00199394E-6. The correction factor in Program
3-6 is in line 130 and is .978641907. The correc-
tion factor in Program 3.8 is in line 90 and is
1.59416303E-5. These three factors are correct for
the computers which were used to write this book,
but yours will not be exactly the same. The best
way to find your correction factor is to locate a radio
station that generates a tone burst at the beginn-
ing of every hour. You can start your timing inter-
val on one tone burst and stop it on the next burst.
It is pretty easy to adjust your correction factor to
secure a measured time interval of one hour plus
or minus .01 seconds by using the pushbuttons.
More accurate measurements will require some
form of a tone decoder circuit that is connected to
port line PB7.

PROJECT 3.2-CONVERTING
ANALOG SIGNALS INTO DIGITAL DATA

The computer system is a digital electronic

Program 3-8. This BASIC program uses the machine-language subroutine in Program 3-9 to measure time intervals with
a PLUS/4 computer.

62

Program 3-9. This machine-language subroutine is used with
BASIC Program 3-8.

system that uses logic ONEsand ZEROsto do its
work. This means that everything that happens in-
side a digital computer happens either at a logic
ONElevel (around a positive 5 volts) or at a logic
ZEROlevel (0 volts). All of the experiments that we
have presented to this point have interfaced either
a logic ONEor ZEROto the USER port of your com-
puter. But to really use your computer to do ex-
periments in the areas of science and technology,
you must be able to interface your computer to an
analog electronic environment that is based on
uniformly changing signals such as a simple
sinewave. It is easy to realize that a sinewave is not
too compatible with a computer's digital logic elec-
tronic system. But, with all of the advances in the
electronic world, there are IC circuits called analog-
to-digital converters (ADC) that will convert an
analog signal into a digital signal that is propor-
tionally equivalent in magnitude value. These ADC
circuits are very easy to interface to the Com-
modore computers using either the EXPANSION
or USER PORT. The ADC circuit that will be de-

scribed now will interface into the computer
through the USER PORT.

The ADC IC that was chosen for this project
is the ADC0809. This IC is a complete electronic
ADC system on one IC chip. The only additional
circuit that is needed for this application is an ex-
ternal clock oscillator. The completed ADC circuit
as shown in Figs. 3-2 and 3-3 can be built for about
$25 (1985 prices). The ADC0809 can be purchased
at most electronic hobby stores or at several elec-
tronics mail order houses that advertise in the
leading electronics magazines.

Two circuits will now be presented for the
VIC-20 and the C-64 computers. At the time of
writing this book, there was not enough informa-
tion released on the PLUS/4's USER PORT to
build an ADC circuit for this computer. When the
data is published, it should be a very simple con-
version project that requires only the proper con-
nections to the USER PORT pins. The schematic
of Fig. 3-4 shows the ADC wiring connections for
the VIC-20, and Fig. 3-5 shows the wiring connec-
tions for the C-64 version. The two ADC circuits
are the same with the exception of the edge con-
nector pin connections for the OUTPUT ENABLE
and START CONVERSION signals.

The ADC0809 IC, being a stand alone ADC
chip, needs only the control logic and clock signals
to function. Since there is no clock signal available
at the USER PORT, a simple clock oscillator was
built from a TTL 7402 IC. The only requirement
of this oscillator is that the oscillation frequency
should be between 1.0 and 1.2 MHz. Looking at
Figs. 3-4 or 3-5, the oscillation frequency is con-
trolled by capacitor C2. A .001 µF capacitor will
get you close to the oscillation frequency, but C2
will most likely need to be a little lower. The
ADC0809 requires about 60 clock cycles to com-
plete an AID conversion and so, the faster that you
run the clock oscillator, the faster the AIDconverter
will work. I have seen ADC0809 ICs that would
work with clock frequencies as high as 2 MHz.

In this ADC application, only one input AID
channel is used and so the other seven inputs are
grounded to keep down the oscillation tendency of
the IC chip. The circuit is really simple and the only

63

Fig. 3-2. A pictorial view of the top-side of the NO converter board.

problems that you should encounter will be wiring
errors, so go slow and double check everything.
The circuit is built on a Radio Shack multi-purpose
circuit board. Figure 3-6 shows how the circuit
board is modified and connected to the edge-card

connector. If you can not find a 24-pin edge-
connector socket, you can make one from a 44-pin
socket by simply cutting it down to size and recon-
necting the end with super glue. This is what was
done to the connector socket that is shown in Figs.

64

65

3-2,3-3, and 3-6. Tables 3-1 and 3-2 present a step-
by-stepprocedure for building this ADC board for
the VIC-20 and the C-64.

When your board is completed, check it over
very carefully for solder shorts. Of all the problems
that one will have with this type of circuit-board

construction 99% will be solder bridges between
circuit pads or broken connecting wires. When you
have built your ADC board following the instruc-
tions in Table 3-1 or 3-2, you can safely test out
your ADC board using your computer's USER
PORT. Figure 3-7 presents a test circuit that can

Fig. 3-3. Pictorial view of the bottom-side of the AiD converter board.

Fig. 3-4. The schematic for the VIC-20 ND converter board.

66

Fig. 3-5. The schematic for the C-64 AID converter board.

67

Fig. 3-6. How the edge connector is fastened to the modified A/D circuit board.

Fig. 3-7. How a potentiometer can be connected to the A/D converter to test the circuit board and demonstrate the voltmeter
program.

68

Table 3-1. Step-by-Step Instructions on Building the AID Converter Circuit.

Step #1 - Modify the circuit board and connect it to the
edge connector socket as shown in figure 3"6.

STEP #2 - Connect the RESET button, the terminal strip,
and the two Ie sockets to the circuit board.

STEP #3 - Install capacitor C3 a 22 uF electrolitic
capaci tor'.

STEP #4 - Connect ground pins 1 and A - and pins 12 and N
together.

STEP #5 - Connect these ground pins to the long copper
strips that run between the IC sockets for the circuit
board's ground plain.

STEP #6 - Install the two IC sockets and connect pin 7 of
IC UI socket to the two copper strips that run between
the pins.

STEP #7Connect the following U2 socke·t pine. to the
ground strips that run between the pins. PINS 1, 2, 3, 4,
5, 14, 16, 23, 24, 26, 27, and 28.

STEP #8 - Connect the 5 volts supply voltage from the
edgE ConnI£ector' pin #2 to Ie U2 pins 11..12, cHId 25"~ and
then to IC Ul Fin 14t.

STEP #9 - Connect the RESET button up by soldering two
wi.r··esto the RESET Lutton and the'n s.OldeIring Ithe othe'Ir'
of one of them to pin A and the other to pin 3.

STEP #9Us.E a VOLT···O'HMl meter and meaS·ur·e ihe 1e'itance·
between pins 1 and 2 of the edge connector socket. This
measurement should be over 50,000 ohms after capacitor C3
has charged up. If the ·r·esis·ta.ncereading is. lowe'I'··,check
and make sure that capacitor C3 is not backwards 01" that
no solder bridges exist.

STEP #10 .- If your board passes the resis.tanCe check,
thEn plug the board into the USER PORT on your computer
an d t uy n on thE' com,put e'r'. T'A FE' a t ew lEt t er's on thE':
screen and then press the RESET button to see that the
computer resets itself.

69

STEP #11 - Now construct the oscillator circuit of IC U1.
When you are finished, make another rEsistance check
between Fins 1 and 2 to make sure that you did not short
the plus 5 volts bus line. Next plug your circuit board
back into the USER POFT and turn on the computer. If you
have an oscilloscope, you can check the clock oscillator
out by observing the waveform at pin 13. If you do not
have a scope, try and use a small AM radio to pick-up the
oscillator signal around the 1000 point on your dial. If
your circuit works, you should be able to hear it some
where between 800 and 1200 on the dial. The oscillatior
frequency does not have to be adjusted at this time
unless you want to do it.

STEP #12 - Connect the rest of the wires to Ie U2 and
check the completed board for solder bridges. Check to
make sure that the DATA pins are connected as tollows.

USER PORT SOCKET PIN
C
D
E
F
H
J
K
L

IC U2 FIN
17
15
l·4
8
18
19
20
21

STEP #13 - AGAIN, lecheck all connections for 131 oken
wires or solder bridges.

NOTE: About the only way
computer is to short out the
time that is longer than a

that you can damage your
pOwer· s.upply for a per iod of
fellw seconds. Other wiring

errors should not cause any damage.

be used with Program 3-10 for the VIC-20 or Pro-
gram 3-11 for the C-64. When you run either of
these two programs, you will realize how valuable
an AID converter can be to a computer system.

Programs 3-12 and 3-13 are simple ADC ap-
plications that turn your computer into a simple 0

to 5 volts voltmeter. Since the resolution of the
ADC is eight bits, the measuring voltage range is
divided into 256 parts. This means that the volt-
age reading that is displayed on the video screen
can have an error of plus or minus .0195 volts (5
volts/ 256 steps) from the actual voltage.

70

Table 3-2. Construction Steps to Follow when Building the Universal Op-amp Circuit on an Experimenter's Board.

1. Secure a Radio Shack or equivalent experimenter's
building board"

2" Select which long copper strip will be
voltage strip and which strip will be
common striP"

the positive
the ground or

3. Install R5 the 200 ohm resistor (You can use two 100
ohms resistors if needed). Install capacitor Cl and zener
diode 01 on the board. Connect the positive point of Dl
and Cl to the positive copper strip.

4. Connect the RED wire of a 9 volts transistor battery
connector to the unused end of resistor R5 and the BLACK
wire to the common copper strip.

5. Connect a 9 volts transistor battery to the
and measure the voltage at test point "V" which
positive copper striP" It should be 5.6 volts

connector
is the

plus or
minus a small amount" Now disconnect the battery.

6. Solder an eight pin IC socket onto the board. Connect
pin 4 to the common copper strip and pin eight to the
positive copper strip.

7" Reconnect the transistor battery and measure the
voltage at pin 8 of the IC socket" It should be 5.6
volts. Check the voltage at pin 4. It should be zero.
Disconnect the battery"

8. Install trimpots Rl, R2, R3, and R4 and adjust them to
their midpoints.

9" Install all remaining components and
wires but do not install the IC chip.

interconnecting

10. Reconnect the transistor battery and measure the
voltage at test point "V", pin 8, and pin 4. They should
be the same as before"

11" Disconnect the battery and install the Ie Chip and
test out the circuit as described in the text.

71

PROJECT 3-3-A UNIVERSAL OP-AMP
CIRCUIT FOR TEMPERATURE MEASURE-
MENTs AND OTHER APPLICATIONS USING
THE AID CONVERTER IN PROJECT 3-2.

The AID converter in Project 3-2 is designed
to operate with signal inputs that range from zero
to five volts. The AID 0 to 5 volts input range is
fine if all of the signals that you wanted to digitize
were in the range of zero to five volts. You will find
many applications, though, where the signal to be
digitized into its equivalent binary form for further
computer processing does not have the full dynamic
voltage range required for the AID converter. For
these applications, a universal op-amp circuit is
presented in Fig. 3-8. This noninverting op-amp cir-
cuit can be adjusted to handle a wide range of signal
applications that require a voltage amplification to
secure an analog signal with an amplitude range of
zero to five volts. The circuit is designed to be a
low-noise low-frequency amplifier with a gain that
can be adjusted to operate from about "I" to over
80 with good linearity. This means that an analog

Program3-10.This BASICprogram is used to test the VIC-20
A/D converter circuit.

Program 3-11.This BASIC program is used to test the C-64
A/D converter circuit.

Program 3-12. This BASIC program can be used to turn the VIC-20 into a zero- to five-volt voltmeter.

Program 3-13. This BASIC program can be used to turn the C-64 into a zero- to five-volt voltmeter.

72

Fig. 3-8. This is the schematic for the universal op-amp. This amplifier is very handy for amplifying dc or low-frequency
signals that are encountered when using electronic sensors to make physical measurements such as temperature, pressure,
and force.

73

signal that is less than .10 volts peak-to-peak can
be amplified to a full five-volts peak-to-peak analog
signal.

Looking at Fig. 3-8 shows that the op-amp cir-
cuit is built around the Radio Shack TLC27M
(276-1749)op-amp IC. The op-amp, shown in Figs.
3-9 and 3-10, is designed to function with a 9-volt
transistor battery which makes the amplifier self

contained and portable. Resistor R4, capacitor Cl,
and diode Dl are used to provide a constant
5.6-volts supply voltage to the op-amp and the input
sensor terminals A, B, and C. The input to the op-
amp is connected to terminal "B." The input
operating point of the amplifier is adjusted by trim-
pot Rl, and the op-amp gain is adjusted by the set-
ting of trimpots R2 and R3. The microammeter

Fig. 3-9. This is the top-view of the universal op-amp circuit board.

74

75

Fig. 3-10. This is the bottom-view of the universal op-amp circuit board.

UA1 and trimpot R4 are optional, but when they
are used, they do give you a relative indication of
the output signal level.

Testing the op-amp circuit is very simple. All
you need to do is to connect a 10K trimpot (Rt) to
terminals A, B, and C as indicated in Fig. 3-8. Ad-
just Rl, R2, R3 and R4 to about midrange and con-
nect the 9-voltbattery to the amplifier. By adjusting
trimpot Rt around midscale, you should be able to
make the microammeter UA1 go between zero to
full scale. To test the voltage gain of the amplifier,
adjust Rl so the voltage at point "X" is .2 volts.
Adjust the voltage at point "B" to .4 volts and con-
nect a voltmeter to point "Z". If your op-amp is
working properly, you should be able to adjust trim-
pot "R2" so the voltage at point "Z" varies between
.2 and 5 volts. When you have the circuit working,
use the test trimpot "Rt" to learn how to adjust
the op-amp circuit to handle different signal input
levels, operating points, and gains. After you have
played with this circuit for awhile, you will have
a much better understanding of how an op-amp
works.

Now, what can you do with the universal op-
amp circuit? Well, as an example, Fig. 3-11 A, B,
and C shows three methods that can be used to turn
our universal op-amp circuit into a thermometer by
using a diode, a transistor, or a thermistor as a
temperature pick-up sensor.

The thermistor is a resistor that changes resis-
tance with temperature. Figure 3-9A shows how to
connect a thermistor s0 the thermistor's changing
resistance value will develop a varying voltage that
can be applied to the op-amp input at terminal "B."
This voltage change is then amplified by the op-
amp and displayed on meter UA1 as an indication
of the temperature of the thermistor.

In recent years, the most common temperature
sensor has been the silicon semiconductor junction.
The forward biased diode has a voltage drop of
about .6 volts with a current of about 10 milliamps
and generally behaves like a 10-ohm resistor in se-
ries with a - .45 volt battery. The - .45 volt so-
called battery is referred to as the band-gap volt-
age which changes with temperature. The band-gap
voltage of the semiconductor junction increases as

76

Fig. 3-11. Here are three methods that can be used to
measure temperature using an electronic component as a
sensing device with the universal op-amp.

the temperature goes down and decreases when the
temperature goes up. The band-gap voltage change
which is about 2 mV per degree C is what makes
the diode a good temperature sensor. The most im-

Program 3-14. This C-64 program can be used to produce a video display of the temperature that is measured by a diode
sensor connected to the universal op-amp and the AlD converter of Project 3-2. Lines 70 and 80 may need to be adjusted
a little to match the characteristics of the diode that you use. See the text.

portant parameter to control when using the diode
as a temperature sensor is the dc current that flows
through the diode. The dc current must turn the
diode fully on and be constant.1

The easiest way to use the universal op-amp
circuitin a temperature-sensing application is to ad-
just all of the op-amp trim pots to their midpoints.
Next connect the diode circuit of Fig. 3-11B to the
input terminals A, B, and C. Connect a 9-volt bat-
tery to the op-amp and then adjust trimpot Rl for
a midscale reading on meter UA-1. You should be
able to dip the diode sensor into ice water and then
hotwater and watch meter UA-1 go back and forth
between 0 and 100. Next, adjust trimpot R4 until
there is no reading on meter UA-1 and then adjust
the trimpot back for about 1 1/2 turns. Readjust
trimpots R2 and R3 until you can secure a 0- to
5-voltsfrom the output of the op-amp circuit when
you go between the ice water and the hot water.
When you have secured the 0- to 5-volts range,
readjust trimpot R4 so that a 5-volt output from the
op-ampwill give you a full scale meter deflection.
Youcan now calibrate meter UA-l to read degrees
if you know the temperature of the ice water and
hotwater. The circuit of Fig. 3-11C uses a 2N2222

(1) Kuecken, How To Measure Anything With Electronic
Instruments, TAB Books, Inc.: 1981, p. 213.

transistor in place of the diode. The operation of
the circuit in Fig. 3-11C is just the same as in Fig.
3-11B, but the transistor is a little slower reacting
to temperature changes.

If you have built the AID converter circuit of
Project 3-2, don't use meter UA-l to read the
temperature because you can use the computer to
do the job better and faster. Adjust the op-amp cir-
cuit to generate output voltages of 5- and 0-volts
when you dip the semiconductor sensor in the ice
at -10 degrees F. and hot water at 110 degrees
F. Program 3-14 is written for the C-64 and Pro-
gram 3-15 is written for the VIC-20 to indicate
temperatures between -10 to 110 degrees F. if the
universal op-amp circuit is adjusted as per the
above instructions. If you can not secure a
temperature of - 10 degrees, then use 3.2 volts for
32 degrees F.2

PROJECT 3-4-AN
ANALOG WAVEFORM RECORDER

Recording an analog waveform by using an
AID converter and a computer gives one the ability
to display the recorded waveform on the computer's

(2) Salt water and ice will go below 32OF if the ice is fro-
zen to below -20°F.

77

Program 3-15. This VIC-20 program can be used to produce a video display of the temperature measured by a diode
sensor connected to the universal op-amp and the AID converter of Project 3-2. Lines 79 and 80 may need adjusted a
little to match the characteristics of the diode that you use. See the text.

video monitor. It's sort of like having a storage
oscilloscope that lets you store the waveform on the
screen so you can observe that waveform at a later
time. The analog waveform recorder's actual job
is to sample the analog waveform at the AID con-
verter's input, convert those samples into a
representative digital format, and store the digital
representations of the sampled waveform in the
computer's memory. A few years ago, a good
digital waveform recorder cost $50,000 or more
based on how fast it would record a signal, but
prices in recent years have dropped, just like other
computer prices. Project 3-4 presents four analog
waveform recording programs for the C-64, which
along with the AID converter of Project 3-2 and the
universal op-amp of Project 3-3can be used to make
very accurate low-frequency waveform recordings.

A Block Diagram of the analog waveform
recorder (AWR) for this project is shown in Fig.
3-12. This AWR is an elementary version, but it
can record a low-frequency waveform, display that
waveform on the computer's monitor in low-
resolution or high-resolution graphics, and print out
a hardcopy of the waveform on the computer's
printer. The recorded digital data can also be used
to do low-frequency signal analyzation. Four AWR
programs will be described for Project 3-4. Two
programs will use a machine-language subroutine
to record fast waveforms between one and 500 Hz

78

and the other two are all BASIC programs for re-
cording slowly progressing waveforms of one hertz
or lower. Also, two of the programs are designed
to use low-resolution graphics for the waveform
display while the other two use high-resolution
graphics with the help of SIMON'S BASIC. The
two low-resolution programs will be described as
five independent program routines that can be put
together as required for the specific waveform
recording application. The five routines are the "A"
BASIC control routine, the "B" BASIC control
routine, the waveform display routine, the hard
copy screenprint routine that can be used with any
Commodore printer, and the machine language
subroutine that is used with "B" BASIC control
program. The two SIMON'S BASIC AWR pro-
grams use the same control routines as the low-
resolution programs, but the waveform display is
generated using Simon's high-resolution graphics
commands.

The "A" BASIC control routine is located be-
tween lines 1 and 300 of waveform recording Pro-
gram 3-16. The routine is used with the waveform
display and screen print routines to make the all
BASIC waveform recording program. The all
BASIC waveform recording program is used to
digitize (record in memory) slowly progressing
waveforms. A temperature curve or the movement
of a long oscillating pendulum are examples of

Fig. 3-12. Basic block diagram of the simple waveform recorder.

Program 3-16. This is the "A" BASIC waveform recording program.

79

80

slowly progressing analog waveforms. The "A"
control routine is designed to record 32 equally
spaced waveform samples with a programmable
sampling rate that can be set as fast as 15 samples
per second to less than 1 per hour according to
whatever the need requires. The time interval be-
tween these samples is controlled by a FOR-NEXT
time-delay loop that uses an INPUT statement so
you can enter the time interval data to secure the
required sampling intervals. After the time inter-
val has been entered, the program then tells you
to push the <R> key to start the waveform re-
cording. After the waveform is recorded, the 32
recorded sample points are shown in a video display
format for your observation. If the data is what you
wanted to see, you can press <W> to go on to the
waveform display. If you want to start over, press
the RUN/STOP key. Table 3-3 gives a functional
description of program "A" BASIC control routine.

Waveform recording Program 3-17 uses the

"B" BASIC control routine that is located between
lines 1 and 600. This routine uses a machine-
language subroutine to control the AID converter's
waveform sampling. The sampling rate of this
routine can run as fast as eight samples per millise-
cond. The actual sampling rate will depend upon
the clock frequency of the AID converter. This con-
trol routine is also set-up to secure 32 waveform
samples per measurement period, but the main
operational difference between the "A" BASIC and
the "B" BASIC routines is the way the sampling
rate time interval data is entered into the routine.
The "A" routine just requested a decimal number
of one or over, but the "B" routine must use a
number between 09 and 255. The 09 number is
used to set-up the fastest sampling rate, so the ac-
tual number may be plus or minus a little bit de-
pending upon the clock frequency of the AID con-
verter. The "B" routine's operation is the same as
the "A" routine after the waveform samples have

Table 3-3. Where the Main Program Routines are Located In the "A" BASIC Program 3-16.

Lines 1-50: Program set-up and description.

Lines 55-65: Record start routine.

Lines 100-150: The waveform sampling routine.

Lines 200-300: The recorded data display routine.

Lines 2000-2600: Waveform display routine.

Lines 8000-8170: Screen print routine.

81

Program 3-17. This is the "B" BASIC program that uses the machine-language subroutine in Program 3-18.

82

been recorded. Table 3-4 presents the functional
description of the "B" control routine.

The machine-language subroutine of Program
3-18is called by the "B" BASIC routine to control

the high speed sampling of the AID converter. The
main points about this subroutine is that it is located
in RAM memory starting at location $C000, con-
tains a machine-language time loop to control the

83

Table 3-4. Where the Main Program Routines are Located In the "B" BASIC Program 3-17.

Lines 1-45: Program set-up and description.

Record start and machine languageLines 51210-··575:

subroutine control.

Lines 1121121-15121:The routine to retrieve the waveform

data from RAM.

Lines 25121-3121121:The recorded data display routine.

Lines 21210121-261210:Waveform display routine.

Lines 81211210-817121:Screen print routine.

waveform sampling rate, and stores the sampled
waveform data in RAM memory which is later
PEEKed by the "B" BASIC control routine to re-
trieve the sampled waveform data. Table 3-5

presents the functional description for the machine-
language subroutine.

The waveform display routine that is located
between lines 2000 to 2600 uses the low-resolution

Table 3-5. This Table Is for Program 3-18 and Describes the Subroutine Functions that
are Performed by the Machine-Language Instructions In the Specified Hexedeclmal Memory Loca-

tions. In This Table, the Hexedecimal Memory Locations Are Used Like the Line Numbers In Tables 3-3 and 3-4.

Address Locations:

$CI2II2II2Ito $CI2I12I4:Loop set-up for 65 waveform samples.

$CI2I1218to $CI2I14: AID converter start conversion logic

generation"

$C12I19 to $CI2I21: Time delay looP"

$C12I28 to $CI2I2A: Set-up to read AID converter"

$C12I31 to $CI2I34: Read AID and store sample data.

$C12I38 to $CI2I3B: sample count routine. After 65

samples, $CI2I3Doperation returns to the BASIC program.

84

Program 3-18. This is the machine-language subroutine for
Program 3-17.

graphics in the C-64 to display the recorded
waveform. The display resolution is limited, but the
waveform presentation does provide a good relative
indication of what the waveform really looks like
without the addition of a high-resolution graphics
software program. The plotting routine uses a
calculation format that is similar to the high-
resolution program on page 126 in the C-64 Pro-
grammer's Guide. A functional description of this
type of waveform display routine is presented in
Chapter 8.

The screenprint routine that is located between
lines 8000 to 8170 is used with the permission of
Compute! magazine. After the waveform has been
recorded and displayed, you can exit the waveform
display by pressing any key. The program then asks
you if you want a hardcopy printout. If you say
YES, the program goes back and reruns the data
display and the waveform display and the screen-
print routine copies each video display on the com-
puter's printer. This screenprint is a low-resolution
routine that will work on all Commodore printers.
Figure 3-13 shows a recorded waveform printout
using this routine.

The two high-resolution AWR programs are
presented in Programs 3-19 and 3-21. These two
AWR programs were written using the SIMON'S
BASIC cartridge from Commodore, but there are
several other high-resolution software programs
that could be easily used if you already have one.
Program 3-19 is a high-speed AWR program that
uses the machine-language subroutine of Program
3-20. The recording capabilities of this program is

Program 3-19. This program is an example of the "B" BASIC hi-resolution waveform-recording program. The waveform
display is much neater than the low-resolution display, but this program is written using SIMON's BASIC, which requires
that you purchase Simon's Basic program cartridge for the C-64 to use this program. This program uses the machine-
language subroutine of Program 3-20.

85

86

4

Fig. 3-13. Video and hardcopy printout display of the low-resolution waveform-recording programs.

Fig. 3-14. Video and hardcopy printout display of the high-resolution waveform-recording programs.

87

Program 3-21. This is the "A" BASIC high-resolution waveform recording program. This program will do a really good
job of displaying slowly progressing analog waveforms such as a temperature-versus-time data graph.

88

Program 3-20. This is the machine-language subroutine program for the "B" BASIC Program 3-19. Note that this subroutine
is located at $CCOO instead of $COOO so it will not interfere with the screen display of Simon's Basic.

the same as Program 3-17, but this program records
and displays 250 waveform samples. Program 3-21
is an all BASIC AWR program which has similar
recording characteristics to Program 3-16, but will
also record and display 250 sample points. The
screen printout routine for these two programs will
onlywork with the VIC-1525 printer. To printout

a waveform display, you must press <C> when
the program has finished displaying the waveform.
Itmay be necessary for you to reset the printer by
turning the ac switch off and back on to get the
high-resolution screen printout to work. A recorded
waveform printout is shown in Fig. 3-14.

The waveform recording programs to Project

89

3-4 are not meant to be a tool for highly technical
research, but you can learn a lot about waveform
recording and digitizing with these programs when

90

they are used to monitor school experiments that
are performed in electronics, physics, and other
science courses.

IT IS MY OPINION THAT THE VIC-20 COMPUTER
is the best computer to use when learning how

to interface I/O chips and circuits to a computer.
At the printing of this book, the VIC-20 is no longer
in production, but there are plenty of these com-
puters available through the used computer chan-
nels at very reasonable prices. The unexpanded
VIC-20computer has lots of unused memory map
space that can be used for I/O chip operation. The
VIC-20's memory map is a list of all of the possi-
blememory address locations that are available in
that computer and the function that is allocated to
eachof the memory locations. After you have stud-
iedthis chapter, you will have the technical knowl-
edge that is required to use these unused memory
locations for I/O interface projects.

The VIC-20 as purchased from the computer
store has only one eight-bit I/O port and a game
orientedAID converter. This one byte I/O port and
game oriented AID converter will only support
smallI/O projects of limited scope. It soon becomes
apparent that the VIC-20 needs more I/O lines plus
a good AID converter if you are going to control

a project which is on a level other than beginning.
The goal of this chapter is to show you how to add
an additional 6522 VIA I/O chip, an AID converter
circuit, and lK of extra machine-language memory
to your computer. The addition of these three hard-
ware circuits to your VIC-20will give you the ability
to investigate many new applications in the areas
of science and engineering.

Each of the three circuits can be built on a
Radio Shack 44-pin edge-card circuit board as a
stand-alone plug-in module for the expansion port.
A multislot expansion port plug-in card can be used
if more than one circuit is needed. The I/O circuits
are designed so the lK of extra memory is assigned
to memory locations $A000 to $A3FF, the 6522 is
assigned to locations $9800 to $980F, and the AID
converter is assigned to locations $9C00 to $9C0F.
These memory location assignments will still let
you use other plug-in modules like VICMON or the
BASIC memory expansion modules.

As mentioned above, the construction method
that was selected for these circuits uses a 44-pin
edge-card experimenter's circuit board which will

91

12345678910111213141516171819202122

ABC 0 E F H J K L M N PAS T U V W x Y Z

(Looking at the connector tram the back of the computer,

Fig. 4-1. The pinout data for the VIC-20 expansion port. The hexadecimal numbers to the right of the chip select pins
(BLK1, RAM1, or 1103 etc.) indicates the memory address location areas that they control.

92

plug into the expansion port of the VIC-20. Using
multicolored flat cables to run the data bus and ad-
dress bus lines and a pointed tip soldering iron will
helpkeep mistakes to a minimum. Be sure that you
understand the nonstandard mirror image pin-out
that is used on the VIC-20 expansion port as shown
in Fig. 4-1. Only build one circuit board AT A
TIME, and then make that circuit work before you
start on the next circuit!

ory of which 3,583 bytes are available for the
BASIC program. Allocating some of this memory
for machine-language routines can be tough at
times when the computer's BASIC program has
only 3.5 K of RAM memory available for program-
ming. The VIC-20 does have unused memory loca-
tions in the area between $0400 and $0FFF, but
this memory area can only be used for the BASIC
PROGRAM because of the way the computer turns
on at start-up. The easiest way to add a small
amount of memory for machine-language operation
is to place lK of RAM memory starting at location
$A000. The area between $A000 and $BFFF is
used for auto-power-up program ROMs which you

THE 1K MACHINE-
LANGUAGE MEMORY CIRCUIT

The basic VIC-20 has only 5K of RAM mem-

Fig. 4-2. The 1K of additional machine-language memory. Note that this circuit is connected to the block 5 chip-select
line so the memory is located at $A000 to $A3FF in the VIC-20 memory map.

93

will not be using with an 110project. The addition
of 1K of RAM memory in this area will let the pro-
grammer have all of the standard memory for BA-
SIC and a complete 1K of RAM for
machine-language routines. The 1K of RAM mem-
ory will handle any programming problem that the
student or hobbyist will encounter with a VIC-20.

The easiest RAM IC that can be used with the
VIC-20 is the 2114. This chip can be purchased at
most electronics hobby stores. The 2114 is a 1K-
by-4 style memory chip and two IC chips are re-
quired to form a 1K block ofmemory. It is very sim-
ple, as shown in Fig. 4-2, to connect two 2114
memory chips so one chip contains the high-order
data and the other contains the low-order data for
a byte of memory. This means that the address bus
lines (CA0 to CA9) are connected to both chips in
parallel while the data bus lines CD0 to CD3 are
connected to chip IC-A, and CD4 to CD7 are con-
nected to chip IC-B.The device select and the read-
write signals from the VIC-20 are also needed to
complete the memory addition.

If there are no other uses planned for the area
of the memory map between $A000 and $BFFF,
the address decoding that is required for the 1K of
memory and the rest of the area between $A3FF
to $BFFF will be unusable. But, this chip selecting
method is a quick, easy, and cost-effective way of
adding 1K of RAM memory for machine-language
routines if the unused memory area can be wasted.
This added memory does not bother the operation
of the VICMON machine-language monitor pro-
gram or the start-up routine of the computer.

When you have the memory circuit completed,
check it over for solder shorts between the IC
socket pads. Make sure that Vee is going to pin 18
and pin 9 goes to ground. If the plus 5 volts and
ground are connected correctly, you can not hurt
the VIC-20 when you plug in the circuit board.
TURN OFF the computer before you plug-in the
circuit board. When you turn on the VIC-20, the
"ON" LED should light and the video display
should show up as normal. If this does not happen,
check the board for wiring errors. If the computer
does not turn-on OK, try POKE 49152,255 and then
when you try a PEEK (49152) the computer should
return a 156. These two POKE-PEEK commands

94

will tell you if the machine-language memory ad-
dition is working correctly.

ADDING AN EXTRA 6522 VIA 110 CHIP
The VIC-20 has only one eight bit 1/0 port

available at the USER PORT. Any 1/0 project will
quickly use up these eight 110 lines. The addition
of a 6522 VIA chip will give you 16 extra 1/0 lines
plus the other extras that are included in the 6522.
The VIC-20 Programmer's Guide has a good opera-
tional description of the 6522 which you should read
before you build this part of the project.

Adding an extra 6522 to the VIC-20 is even
easier than adding the 1K of memory as one can
see by examining Fig. 4-3.All of the required opera-
tional signals for the 6522 are available at the
VIC-20 expansion connector and all that is needed
is the connecting wires between the expansion port
and the 6522. This project only uses one 6522, so
no address decoding is required. The 1102 chip-
select line is connected to one of the 6522 chip-
select pins, which locates the VIA at address loca-
tions $9800 to $980F in the VIC-20's memory map.
When the VIC-20 is turned on, it will set up all of
the internal registers in the external 6522 just like
it does with the 6522 ICs inside the computer . You
can program and use the additional 6522 exactly
the same as you would use the 6522 that is
associated with the USER PORT.

ADDING AN ANALOG- TO-
DIGITAL CONVERTER CIRCUIT

In Chapter 3, an A/D converter was described
that operated from the USER PORT. The AID con-
verter in this project operates with the expansion
port. The AID converter chip that was selected for
this project is the ADC0817. This chip was selected
because it can be easily purchased and has 16
programmably-selectable input channels. The
ADC0817 is very easy to interface to the VIC-20
because of the internal input latching, multiplex-
ing, and TTL-compatible tri-state output circuits
that are used on the ADC chip.

A functional AID circuit is shown in Fig. 4-4
for interfacing the ADC0817 IC to a VIC-20. The
operation is set up so a 0- to 5-volts analog input

Fig. 4-3. The connection details of the 6522 VIA chip. The chip-select pin number 23 is connected to the 1102 chip-select
line to locate the 6522 at addresses $9800 to $980F.

signal can be converted into an eight-bit digital
representation for use with the computer. As with
the other 110circuits in this chapter, this circuit is
designed so that no address decoding is required.
The 1103chip-select line is used with the four LSB
address lines (CA0 to CA3) to select the AID IC and
the analog input channel. The channels are ad-

dressed just like any other memory location. Using
the 1103 chip select line and address lines CA0 to
CA3 places the AID converter in the VIC-20 mem-
ory map at addresses $9C00 to $9C0F. When the
AID converter is selected by the 1103 select line,
the conversion process is started by writing to the
input channel memory location that is to be con-

95

96

Program4-1. This program is written to test all sixteen AID
channels of the AID converter of Fig. 4-4.

verted. This operation places the proper address
data on the address bus lines, drops the CR/W line
low, and drops the 1103 select line low. This is ac-

complished on the VIC-20 by POKING the selected
memory location (AID channel) with the data $00.
The analog-to-digital conversion process takes
about 60 microseconds to complete. After the con-
version is completed, the data is loaded into the
computer by performing a PEEK of the AID chan-
nel (memory) location. This PEEK (or read) opera-
tion drops the 1/03 select-line low but leaves the
CRIW line high, which places the converted data
on the tri-state data pins and onto the computer's
data bus lines. The computer then loads this data
into a memory location as a representation of the
real world analog signal that was present at the
selected input channel at the time of conversion.

The actual operation of the AID converter is
straight forward and any problems can usually be
traced to wiring errors. Program 4-1 is presented
to help you test out the AID circuit.

Fig. 4-5. The top-side of the etched circuit board that contains all three 1/0 cirCUits.

97

to build one circuit at a time and make that circuit
work before building the next circuit. It would also
be a good idea to place a small fuse (no larger than
112amp) in the Vee supply line that comes from
the computer.

Fig. 4-6. The bottom-side of the etched circuit board. Note that edge-card connector pin pads were etched on both sides
of the board. A protective bottom plate was made from G-10 copper clad PC board to protect the circuit wiring.

AN 1/0 SYSTEM ON A SINGLE PLUG-IN CARD
The three circuits of this chapter have been

described separately in order to keep the complex-
ity of the circuits down. It is easy for an advanced
hobbyist to build all three of these circuits on one
circuit board. Figures 4-5 and 4-6 shows a plug-in
card that contains all three circuits. This card was
made using Radio Shack rub-on transfer pads
(276-1577) to form the IC socket solder pads and
the edge connector plug-in pins as shown in Fig.
4-7. The circuit board was then finished by etching.
The circuit board construction is completed by
using point-to-point wiring. Again, the use of flat
colored cable for the bus lines will help prevent wir-
ing errors. The circuits are tested out the same as
if the circuits were on separate boards. It is best

98

CONCLUSION
This chapter has presented three 110 circuits

that can be built for the VIC-20. If you build the
three I/O circuits, you will be able to control a very
complex project because you will have at your com-
mand 1K of machine-language memory, 16 AID
channels, and an extra 6522 that will provide an ad-
ditional 16 110 lines plus the extra goodies that
come with the 6522.

Fig. 4-7. A full-size etched circuit board layout that was used to build all three 1/0 circuits on one plug-in card as shown
in Figs. 4-5 and 4-6.

99

THIS eHAPTER DEseRIBES A DIGITAL-TO-ANA-
log converter circuit that is designed to

operate from the USER PORT on either the VIC-20
or the C-64. Using this DIA converter along with
an AID converter will give you an eight-bit analog
control system that can perform some really
sophisticated control functions.

Because Chapters 4 and 6 present AID con-
verter circuits that operate from the Expansion
Ports on the computers, the DIA converter circuit
of Fig. 5-1was designed to operate from the USER
PORT, giving you the ability to use both AID and
a DIC converter at the same time. The circuit is
built around a NE5018 single-chip microprocessor
compatible DIA converter. Pin 10 of the NE5018
is grounded, which sets up a straight-through con-
version function. This means that any parallel
digital data applied to pins 2 through 9 generates
a corresponding analog signal at pin 18. Pin 18 is
connected to Q2, an emitter-follower circuit. Trim-
pot RA is used to control the amplitude of the
analog output signal and trimpot RB is used to con-
trol the dc level of the output signal. To adjust this

100

circuit, connect an oscilloscope to point "A", which
is the circuit's analog signal output. Load in the
machine-language program (Program 5-1) and run
the program. Adjust trimpot RA for a zero to five
volts output signal. Then adjust trimpot RB so the
top of the signal is not clipped and then readjust
trimpot RB so the bottom of the signal is not clip-
ped. When both trimpots are adjusted correctly,
you should see a good 0- to 5-volt sawtooth
waveform.

The construction of this board uses an ex-
perimenter's board like most of the other projects
in this book. The circuit construction is shown in
Figs. 5-2, and 5-3. Capacitor CA is used to ac cou-
ple the power supply in the computer to the exter-
nal de supply for the converter circuit to lower
potential noise problems.

This circuit is simple and you should not have
any trouble building and getting it working.
Remember that you must make the USER PORT
an output port to write data to the DIA converter.
The DIA chip's latch function is not used in this cir-
cuit, so the data that is placed into the USER PORT

Fig. 5-1. The circuit diagram for the digital-to-analog converter circuit.

101

is converted into an analog voltage as soon as the
data appears on the port pins. After you have it
working, you will be able to program an analog out-
put voltage anywhere between zero and five volts

in .0195-volt steps using BASIC Program 5-2. The
waveforms that can be generated with this DIA con·
verter circuit are limited only by your ability to
write the program to generate the waveforms.

Fig. 5-2. Pictorial view of the top-side of the DIA converter circuit board.

102

Program 5-1. This machine-language program is used to
generate a sawtooth waveform so you can adjust the cir·
cuit trimpots of the DIA converter circuit using an
oscilloscope.

Fig. 5-3. The bottom-view of the DIA converter circuit board.

Program 5-2. This BASIC program can be used to generate an analog voltage at the output of the DIA converter circuit
board, which is controlled input data from the computer keyboard.

103

THIS eHAPTER WILL DEseRIBE TWO eIReUITS
that are designed to increase the 1/0 power

of the C-64. The first circuit is a 6522 VIA circuit
that will give the C-64 an additional 16 1/0 lines,
and the second circuit is an AID converter which
will give the C-64 eight programmable analog-to-
digital conversion channels. When these circuits are
built and used, the C-64 can be turned into a
waveform digitizing system for waveform
recording.

INTERFACING 110 CIRCUITS TO THE C-64
The C-64's memory map is not at all like the

VIC-20's because there are no unused areas of
memory in the computer. There are two areas in
the C-64's memory map that are intended for I/O
functions. They are small areas of memory called
I/01 at $DE00 to $DEFF and 1102 at $DF00 to
$DFFF. Each of these memory blocks have
address-select lines available at the expansion port
on pin 7 for 1101 and pin 10 for 1/02. When you
use these two 110 memory blocks for your inter-

104

face functions, you will not interfere with the
general operation of the C-64.

THE 6522 VIA CIRCUIT
The 6522 VIA circuit in Fig. 6-1 is just about

the same as the one in Chapter 4 with the excep-
tion that U2, a monostable multivibrator TTL chip,
has been added to reshape the clock signal coming
from the C-64. The VIA circuit can be built on an
experimenter's board like most of the other projects
in this book.

The complete circuit is really simple because
it only uses two IC chips. There are a lot of con-
necting wires that must be cut and soldered into
place, so one must take a little care and use good
construction practices to avoid mistakes. The first
circuit that should be constructed is the 74121 TTL
circuit. When this circuit is finished, adjust trim-
pot RA to about the midpoint and then complete
the rest of the VIA circuit on the board. When the
VIA circuit is complete, check it over for solder
shorts between the circuit IC pads and use an ohm-

105

Fig. 6-1. This is the 6522 VIA circuit board schematic for the C-64.

meter to check the plus 5-volt lines on pins 2 and
3 for a shorted condition to the circuit's common
ground. When you are sure that there are no wir-
ing errors on the board, plug it into the C-64 while
the computer is turned off. When you turn on the
computer, the C-64 should come on as it generally
does. If the video screen does not come up, check
to make sure that the data bus wires are connected
correctly on the VIA chip. The next step is to ad-
just trimpot RA. Load and RUN Program 6-1.
When RA is adjusted properly, the number 255
shows all the time on the screen. When 255 appears
on the screen, find the midpoint of this adjustment
and set the trimpot at this point.

When the VIA is up and running, you will have
a complete 6522 VIA and all of its extras available
to you. I would like to bring up the fact that the
timers in the 6526 in the C-64are a little better than
the timers in the 6522 because the 6526 timers can
be stopped for a read operation and then restarted.

You can observe from the pictorial views of the
VIA board that another experimenter's board with
the correct edge-card pin spacings for the C-64was
used to make the plug-in part of the circuit board
for the C-64's expansion port.

THE AID CONVERTER CIRCUIT
The analog to digital circuit shown in Fig. 6-2

is designed around an ADC0809, which is an eight
bit-eight channel AIDconverter chip. The converter
circuit is designed to complete a conversion in about
60 microseconds, which gives you the ability to re-

cord an analog signal with frequency components
as high as 1000 hertz. Just for the information of
you super experimenters, it is possible to purchase
four or five A/D chips and select the unit that will
operate the fastest. If you are going to do this, you
will have to build your own clock circuit instead of
using the C-64's clock signal. I have found IC chips
that will operate with clock frequencies as high as
2 MHz, which reduces the conversion time to under
35 microseconds or so. This gives you the capability
to record faster waveforms.

The main difference between this AID circuit
and any of the other circuits that have been
presented in this book so far is that this circuit uses
an elementary form of address decoding. The cir-
cuit uses the chip-select signal from pin 10, which
places the circuit in the $DF00 to $DFFF address
block. IC U4, a 7430, is used to specifically place
this circuit in the C-64's memory map at addresses
$DFF0 to $DFF8. This address decoding leaves the
rest of the memory block open for other I/O circuits.

The construction of this AID board is shown
in Figs. 6-3 and 6-4. An experimenter's board was
again used for this circuit, and one must employ
good construction practices to avoid solder shorts
between IC circuit pads. The edge-card plug-in for
the C-64's expansion port was cut from another PC
board that had the correct pin spacings. Another
method of connecting to the expansion port is to
use a plug-in card from a C-64game module. These
modules can be purchased on sale at very low
prices. If some of the needed edge-connector cir-

Program 6-1. This program is used to test the 6522 VIA board.

106

107

Fig. 6-3. The top-side of the C-64 AID converter board.

Fig. 6-4. The bottom of the C-64 AID converter board.

108

Program 6-2. This program is used to test the ADC0809 AID board.

Fig. 6-5. This is the pinout data for the ADC0809 AID converter IC chip.

cuit pads are missing, such as pins 4 and 5, you can
go to the local model airplane hobby shop and buy
a sheet of thin brass or copper foil. You can then
cut thin strips of this foil and glue them to the plug-
in module board with five minute epoxy to make
the missing copper pad. This method is described
for the C-16 and PLUSI4 in detail in the next

chapter.
Program 6-2 is presented to help you test the

AID converter board. Figure 6-5 shows the IC
pinout for the ADC0809. When you have your con-
verter circuit up and running, Chapter 9 presents
a series of waveform recording programs that use
this converter circuit.

109

THE PLUSI4 AND THE e-16 eOMPUTERS ARE
functionally different from the VIC-20 and the

C-64 in many ways, but all four of the computers
still use the same 6502 machine language. At the
writing of this book, the two new computers have
only been on the market for about five months, and
Commodore has been slow in releasing technical
data about the computers. The 110 technical data
presented in this chapter has been gained by open-
ing the cases of the two computers and tracing out
the circuits. This technical data was used to design
the I/O system in this chapter. The I/O system is
not a beginner's project because of the number of
required 110 boards and the card-cage style con-
struction that is used. You should plan on having
an oscilloscope available for troubleshooting if
needed or at least some kind of logic probe. If you
have been able to understand everything in this
book so far, you should be able to build this system
if you proceed slowly.

The C-16 and the PLUSI4 are nice computers
to use for science and engineering projects because
of the computer's built-in graphic commands and

110

machine-language monitor. The addition of the AID
converter board and the 110 board that are
presented in this chapter will turn either one of the
computers into a hi-tech data gathering and display-
ing system. Even though the construction of this
110 system is a little more complex than the
previously presented projects, the end results will
justify the required construction effort. When the
technical data becomes available in the C-16 and
PLUSI4 programmer's guide, you should be able
to convert the I/O boards of Chapters 4, 5, and 6
for use with the computers. But for now, we will
use the full sixteen line address bus and the re-
quired address decoding to operate the 1/0 system.
The C-16 and PLUSI4 Expansion Port pinout data
that is required for this chapter is presented in
Table 7-1.

THE CARD CAGE
A card-cage style of construction was selected

for this project because of the number of circuits
that were required to build the complete system.

Table 7-1. The Expansion-Port Pin
Assignments for the C-16 and the PLUS/4.

The complete 110 system requires one address
decoder board, at least one I/O port board, and an
AIDboard to complete a good 110 system. Some
method of interconnecting and securing the three
boards was needed, and a card cage was designed
from G-10 copper-clad circuit board material to
solve the problem. If you have the ability to build
a large complex I/O board, you could build all of
the presented I/O circuits on one large ex-
perimenter's board.

The completed card cage is shown in Figs. 7-1,
7-2,7-3, and 7-4. Four edge-card slots were used,
which will give you the ability to use one address
decoder board and three other 110 boards. Each
edge-card slot has its own 44-pin edge-card connec-
tor. Using the standard 44-pin edge-card connec-
tor will allow you to use a number of different

brands of experimenter's boards for use with this
card cage. The card cage is built from six pieces
of copper-clad circuit board material that form the
right side, the left side, top support and bottom sup-
ports, card slide rails, and the back side, which con-
tains the four edgelcard connectors. All of these
circuit-board pieces are soldered together, which
makes the cage assembly very easy. If you build
these 110 circuits as shown in this chapter, you will
need to buy or build a card cage set-up using Figs.
7-1 to 7-4 as a guide.

The hardest part of the card cage assembly will
be soldering all of the edge-card connector pins to-
gether to form the card cage bus system. All of the
same numbered or lettered pins must be soldered
to each other as shown in Fig. 7-4. This means that
all pin ones' of the four edge connectors along with
the pin twos' through to pin 22s' must be soldered
together in a bus line style. When all of the
numbered pins are connected, solder all of the let-
tered pins in the same fashion.

THE ADDRESS DECODER BOARD
The address decoder board (build the decoder

board first) presented in this chapter is used to se-
lect the specific memory locations in the C-16's and
PLUSI4's memory for I/O functions. For the pur-
poses of this chapter, the PLUSI4 and the C-16have
the same memory-map configurations with the ex-
ception of the limited memory of the C-16. There
is an area in their memory map at $FE00 to $FEFF
that is to be used for the DMA DISK SYSTEM.
This is the memory area that will be used in the
1/0 system of this chapter. The actual memory loca-
tions that are selected by this decoder board are
$DEF0 to $DEF8 or #65264 to #65273.

The decoder board schematic that is shown in
Fig. 7-5 uses two 7430 TTL chips and a 74154 to
do the memory decoding along with some 7402
chips for logic switching. The circuit is designed
so the two 7430 chips are used to select the $FEFX
part of the memory address (Xmeans "don't care")
while the 0 through 8 unit digits are selected by the
74154 chip. The two 7402 NOR gates U2A and
U2B are used to buffer the readlwrite line. The
power supply in the computer is too small to supply

111

Fig. 7-1. Top-view of the card-cage system with all three boards inserted into the card cage. Note how the slide supports
on the side of the AID converter board are soldered to the card-cage sides. Also note the flat forty-conductor ribbon cable
with its connector plugged into the computer's Expansion Port plug-in board.

Fig. 7-2. Side-view of the card-cage assembly. The decoder board is plugged into the bottom slot, the 110board is plugged
into one of the middle slots, and the AID board is plugged into the top slot. When you are inserting the circuit cards into
the plug-in slots, you must use a little care so you will not break any connecting wires on the bottom of the board that
is in the slot above.

112

Fig. 7-3. Front-view of the card-cage system that shows how the circuit card slides are used.

the dc power for the card cage, so an external
supply must be used. Capacitors CA and CB are
used to ac-couple the supply in the computer to the
supply for the card cage to prevent power-supply
noise problems, while dc-isolating the two supplies
from each other. The construction of the decoder
board is shown in Figs. 7-6 and 7-7.

After the address decoder board is finished, the
next project is to build the connecting cable and the
Expansion Port plug-in connector board for the
computer. The pinout connector spacing configura-
tion for the PLUSI4 and C-16 are not compatible
with any experimenter's board pin-out that one can
buy so you will need to make your own plug-in
board or modify a game-cartridge circuit board. We
willmodify a game cartridge circuit board for this
project. To modify a game cartridge board, you will
have to remove the ROM IC chip and add three
edge connector circuit pads for the additional

signals that are required for the 1/0 system.
If you look at Figs. 7-8 and 7-9 will see that

three additional edge connector circuit pads were
added to the game cartridge circuit board to com-
plete the Expansion Port plug-in connector board.
These three connector pad strips can be made by
cutting thin strips from a sheet of brass or copper
foil, which are the same size as the connecting pads
on the circuit board. The metal foil material can be
secured from a model airplane hobby shop along
with some five-minute epoxy. Next, cut the foil
strips to the proper length and width of the edge-
connector pads, and mix-up some five-minute
epoxy. Place a thin coat of five-minute epoxy on
the circuit board where you want the additional cop-
per strip and place the copper strip onto the board.
Now take a piece of plastic sheet from a bread sack
and fold it around the edge connector end of the
circuit board (the plastic will not stick to the epoxy).

113

Forty-pin header strip assemblies which matches
the forty-pin flat ribbon cable connectors are used
on the plug-in connector circuit board and the
decoder board for connection purposes. Make sure
that the pinouts of these connectors and header
strips do not get reversed, although no computer
damage will occur if they do. The connection
diagram for the plug-in connector board is
presented in Fig. 7-10.

When all parts of the address decoder board are
completed, that is the decoder circuit board, the Ex-
pansion Port plug-in connector board, and the flat
ribbon cable, you can test out the decoder circuit
by using an oscilloscope or a logic probe and BASIC
Program 7-1. This program sets up a simple loop
operation that toggles each address decode select
line on or off one at a time in the order that you

Fig. 7-4. Back-view of the card-cage assembly. Note how all of the edge-connector pins are soldered to each other to
form the card cage bus system. The terminal strip at the top is used to connect the 5-volt Vee and the common ground
from the power supply to the card cage. The 5 volts goes to terminal number one and then onto pins 2 and 3 of the card·
cage bus system. Terminal number 4 is connected to the card-cage copper-clad material and all edge-card connector
pins 1, A, 22, and Z.

Place the board in the middle of a large book mak-
ing sure that the new connecting pad strip does not
move on the board. Now, sit on the book for five
minutes. After five minutes, the epoxy should be
set up and you can remove the circuit board from
the book and take off the plastic. You should now
have an additional edge-connector circuit pad on the
plug-in module that you can solder a wire to for
edge connecting purposes. You can use a bench
vice in place of a book if you have one. You may
also need to clean off the excess epoxy with sand
paper if any epoxy gets on top of the copper pads.
Some other types of super glue can be used in place
of the epoxy.

A forty-conductor flat-ribbon cable is used to
take the computer signals from the Expansion Port
plug-in connector board to the decoder board.

114

Fig. 7-5. Schematic of the address decoder board.

115

Fig. 7-6. Top-view of the address decoder board. Note the forty-conductor flat ribbon cable that is connected to the header
strip on the board.

select. Using this program, you can observe the ac-
tual address select signal pulses at the output of the
address decoder circuit (pins F to R).

THE I/O PORT BOARD
The I/O Port Board shown in Figs. 7-11 and

7-12 gives you two eight-bit input ports and one
eight-bit output port. The best part about this I/O
board is that you can buy all of the parts at any good
electronics hobby shop. You also can design our
own I/O port board in other configurations by using
the number of input or output port circuits that is
required. A maximum of 9-input or output port cir-
cuits can be addressed by the address decoder

116

board. The I/O board schematic is shown in Fig.
7-13.

The input port is designed around a 74LS244,
which is an octal based tri-state buffer chip. The
term tri-state means that you can program the Ie
chip's output buffer lines into a high-impedance
state so they will not appear to be connected to the
computer's data bus until the TTL chip is selected
by the address decoder circuit. The basic circuit and
operation of the 74LS244 is shown in Fig. 7-14.The
output port is designed around a 74LS373 TTL
chip, which is an octal based output latch circuit.
When the output latch circuit is selected by the ad-
dress decoder circuit, the data that is present on
the computer's data bus is latched into the chips

outputuntil the next address select pulse. The basic
output latch circuit and its functional operation is
presented in Fig. 7-15.

When you have your 110 board completed, you
can test it out by using Program 7-2. Program 7-2
givesyou the ability to read both input ports or tog-
gle the output port off and on.

THE ANALOG-TO-
DIGITAL CONVERTER CIRCUIT

The analog-to-digital converter circuit of Fig.
7-16 is designed to work with the 1/0 board that
was described previously. It requires one output
port circuit to run the AID chip's control functions
and one inp'ut port to read the converted digital
data. The AID converter board has two circuits
built on it, which are the basic AID circuit and a
clock circuit. The AID circuit uses the ADC0817,
which is a sixteen channel AID chip that has been

used in other projects in this book. The clock cir-
cuit is a standard 1 MHz CMOS clock circuit that
can be turned off or on by transistor Q1. The ac-
tual frequency of this circuit is not too critical, but
it should be kept around 1 MHz to secure the
highest speed AID conversions. The physical con-
struction of the AID board is shown in Figs. 7-17
and 7-18.

The AID circuit is designed using a control port
and a data port. The control port is connected to
an 110 board output port, and the data port is con-
nected to an 110 board input port. Bits 4 through
7 of the control port are used to select the AIDchan-
nel number. Bit 3 is used to control the output
enable line, which places the converted data on data
port pins when bit 3 is low and bit 2 is high. Bit
2 is used as the start conversion line. Anytime bit
2 is taken to a logic ZERO and back high, a conver-
sion is started and completed 60 clock cycles later.

Fig. 7-7. Bottom-view of the address decoder board. Note how the data bus lines are taken directly from the header strip
to the edge-card connector pads using flat ribbon cable to form the card-cage data bus lines.

117

Fig. 7-8. Top-side of the Expansion Port plug-in connector board that was made by modifying a game cartridge circuit
board. Note the added edge-connector plug-in circuit pad at pin 5. The text explains how this circuit pad was added.

Fig. 7-9. Bottom-side of the Expansion Port plug-in connector board. Note the two added circuit pads at pins F and H.
Also, note how the forty-pin header-strip assembly is used·in this application.

118

119

Program 7-1. The decoder board test program.

Fig. 7-11. A pictorial view of the top-side of the 1/0 Board.

120

121

Fig. 7 12. Bottom-side of the 1/0 Board. Note how the multicolored flat cables are used to run the data bus lines.

After the conversion is completed, the con-
verted data can be read by the computer by mak-
ing control bit 3 a logic ZERO, control bit 2 a logic
ONE, and PEEKing the input port memory location
that is assigned to the 110 board input port that is
connected to the AID data port. Control bit 1 is not
used in this circuit, and bit 0 is used to turn the
clock oscillator on and off.

BASIC Program 7-3 is presented to test out the
A/D converter circuit. While testing out the con-
verter board, you willwant to connect the converter
inputsto ground or Vee voltage so you will observe
the operation of the AID converter. A zero voltage

will generate a 000 while a 5 volts Vee voltage will
generate a 255 on the video monitor.

CONCLUSION
Once you have this 1/0 system working, you

can run any AID program in this book on the C-16
or the PLUSI4 with a little conversion work. You
will not have to use any of the special plug-inROMs
for machine-language or graphics functions because
the C-16and the PLUSI4 have these functions built
into their systems. It is actually easier to use
graphics and text together on the PLUSI4 and the
C-16 than it is with the C-64.

122

Fig. 7-14. The operation of the 74LS244 input IC chip.

Fig. 7-15. The operation of the 74LS373 output IC chip.

123

The card cage analog to digital converter

Fig. 7-16. Schematic for the card-cage analog-to-digital converter circuit.

124

125

Program 7-2. The 1/0 board test program. If you change the address locations of the input or output ports to something
different from the 1/0 board schematic, you will have to change the PEEK and POKE locations in lines 100, 200, and
210 to use this program.

Fig. 7-17. Top-side of the AID circuit board. In this picture, the header strip marked "B" is the control-port pins and the
header strip marked "A" is the data-port pins.

126

Fig. 7-18. Bottom-side of the AID circuit board.

Program 7-3. The AID test program.

127

A eOMPUTER PLOTTING ROUTINE IS GENER·
ally used to generate some type of graphical

display to summarize the way one numerical quan-
tity "depends on" or "varies" with another quan-
tity. The plotted graph generated on the video
screen of the computer's monitor can be a video pic-
ture of a mathematical function or a technical
display of recorded data. The main point of this
chapter is to show you how to write a simple plot-
ting program to display a mathematical function or
recorded data that has been secured from an analog
to digital converter. The ability to display data in
graphical form will greatly increase the number of
technical applications in which you can use your
computer.

LOW-RESOLUTION PLOTTING ROUTINES
The plotting routines in Programs 8-1 for the

C-64 and 8-2 for the C-16 and PLUSI4 will be used
to present the basic method that can be used to
generate a low-resolution video graph. These pro-

128

grams use the low-resolution graphic capabilities
of the computers. Program line number 5 is used
to clear the screen to plot the graph. The FOR ..
NEXT loop that is started in line 10 is used to se-
lect the vertical column (the "X" value) that will
receive the plot point. Since there are 40 vertical
columns in the video format of the computers we
are using, the FOR .. NEXT loop counts from 0
to 39 to plot graph points across the entire screen.
Line 20 is a mathematical sine wave formula that
is used to generate the "Y" value of the plot points.
The Y values are the line positions in the vertical
columns where the plot points will be placed. The
number 12 in front of the "*SIN" is used to con-
trol the amplitude of the sine wave and the number
4 in "X/4" is used to control the number of
waveform cycles that will be plotted. The values
of 12 and 4 must be selected to keep the plotted
graph points on the video screen.

Line 30 is the main event line in these pro-
grams. The formula in line 30 calculates the spot
on the video screen where the plot point is placed.

Program 8-1. A simple plotting routine for the C-64 computer.

Program 8-2. A simple plotting routine for the C-16 and the
PLUSI4 computers.

Line 30 contains the formula:

Program 8-1: B = (1504 + (- 40 * Y) + X)

or

Program 8-2 B= (3552 +(- 40*Y)+X)

If you look at the video screen memory layout
for the C-64, the C-16, or the PLUSI4 in your com-
puter's guide, you will find that 1504 or 3552 is the
memory location that controls what character is

placed in the middle of column 0 on the video
screen. Because there are 24 lines on the video
screen, you can add the value of " - 40*Y" to 1504
or 3550 to calculate the vertical position in column
o where the plot point will be placed. If you then
add the value of "X", you can then place the plot
point horizontally on the screen. Programs 8-3 for
the C-64 and 8-4 for the C-16 and PLUSI4
demonstrates this formula.

Line 40 is the POKE instruction that does the
work of putting the plot point in its calculated loca-
tion. You must make sure that the calculated POKE
address does not fall outside the video screen mem-
ory, because if it does, you can crash your program
by POKING data into the wrong memory location.
Line 50 loops the program back for the next math
calculation and plot operation.

Low-resolution plotting has application limita-
tions but it can still be used to display elementary
graphs as one can observe by using Program 3-16
of Chapter 3. One can also learn the basic screen
plotting fundamentals from this method.

HIGH-RESOLUTION PLOTTING
High-resolution plotting is required if one is

going to attempt any serious graphing for science
or engineering applications. The high-resolution
graphing capabilities of the Commodore computers
are as good or better than most other personal com-
puters. You can generate a very sophisticated
graphing program using the high-resolution
graphics of these computers. Because this book is
really about hardware projects and not software ap-
plications, all of the high-resolution graphic pro-

Program 8-3. This C-64 program shows how a point can be plotted on the video screen for graphing displays.

129

Program 8-4. This C-16 and PLUSI4 program shows how a point can be plotted on the video screen for graphing displays.

grams will be written using Simon's Basic or the
high-resolution graphics commands of the C-16 or
PLUSI4 computers. Using the advanced graphics
commands willmake the job of writing the graphing
program easier, but the actual time it takes to

generate and display a graph with these BASIC
commands can be quite long when compared to a
machine-language graphing routine.

Programs 8-5 and 8-6 are presented as ex-
amples of high-resolution graphing programs.

Program 8-5. A high-resolution graphing program for the C-64 using SIMON's BASIC.

130

Program 8-6. A high-resolution graphing program for the C-16 and the PLUSI4 using the computers' built-in high-resolution
graphics commands.

These two programs are used to generate sine
waves from a mathematical formula, but the
general program plotting routine can be used to plot
many other forms of data. In Chapter 9, the
waveform recording programs will use plotting
routines that are similar to Programs 8-5 and 8-6
to display the recorded waveform.

Programs 8-5 and 8-6 both perform similar
functions but use different high-resolution graphic
commands as required by the host computer. Lines
100, 110, and 120 in each program is used to
calculate and store the sine wave data values in an
array so the data can be recalled and plotted later.
The ability to store your data in an array will give
you the capability to secure the data, store it, and

then plot it at a later time. Once you have the data
stored, you can use that data for other things than
just graphs.

Lines 140 to 155 in each program is used to
calculate the position of the plot point. You can ex-
periment with each of the values in these three lines
and observe the effect that they have on the plot-
ted graph. Itwill be easy to change the plotting pro-
gram to meet your graph plotting needs after you
learn the function of each line. The rest of each pro-
gram (line numbers 200 and up) is used to generate
the X and Y axis display. A little experimentation
with these lines will show you how the X and Y axis
can be modified to generate different graphing
displays.

131

SUMMARY
The plotting routines that have been presented

in this chapter will show you the general method
that is used in this book to present graphical data.
You can change the mathematical formula in each
of the programs to display other math functions.

132

When you are trying other math functions,
remember to watch where you are POKING data.
If your formula calculates a POKE address that is
outside of the video screen's memory area, you can
poke data into the wrong memory location and
crash the computer program.

IN THIS eHAPTER, AN ANALOG WAVEFORM
recording program will be presented that will

show the practical application capability of the cir-
cuits that have been presented in the previous
chapters. This waveform recording program can be
used for a variety of practical applications in
physics, chemistry, and engineering. The presented
program will give you the capability to record an
electrical analog waveform and display the recorded
waveform data on the computer's video monitor or
printer. The complete waveform recording pro-
gram uses the combination of a BASIC control
routine and a high-resolution graphics display
routine along with a machine-language subroutine
that operates the analog-to-digital converter circuit.

The basic block diagram of the waveform
recorder which is presented in this chapter is shown
in Fig. 9-1. The waveform recorder is really a Com-
modore 64 computer system plus two circuits that
were presented in previous chapters. A similar
system can be made using a VIC-20. a C-16, or a
PLUSI4 computer. Even if you connect all of the
computer devices together, you will not have a

waveform recorder until you load a waveform
recording program into the computer. The
waveform recorder is only as good as its control
program.

As one can see by observing Fig. 9-1, the com-
plete waveform recording system is assembled
around the C-64. The universal op-amp circuit was
presented in Project 3-3 of Chapter 3 and the
analog-to-digital converter circuit is from Chapter
6. The high-resolution graphics portion of the
waveform display uses SIMON'S BASIC com-
mands, so you will need SIMON'S BASIC plug-in
cartridge to use the presented program. The video
monitor can be any that will work with your com-
puter. The printer must be either a MPS801 or a
VIC 1525 because these two printers will work with
the SIMON'S BASIC high-resolution graphics.

The complete waveform recording program re-
quires two programs; a BASIC program and a
machine-language subroutine. Program 9-1 is the
BASIC control program. This program gives you
the options of selecting the time interval between
the recorded waveform data points, starting the

133

Fig. 9-1. Block diagram of a waveform recording system.

Program 9-1. The BASIC waveform recording control program.

134

135

waveform recording when you press the "S" key,
and a numerical data point display if needed. After
the optional part of the program is finished, the pro-
gram displays the recorded waveform on the video
screen or printer. Program 9-2 is the machine-
language program that controls the operation of the
analog-to-digital converter circuit and stores the
recorded data point information in a RAM mem-
ory location for later use by the BASIC program.

Looking at Program 9-1, shows you that lines
20 to 50 are used to select the time interval between
the recorded data points. Lines 51 to 95 are used
to start the waveform recording machine-language
subroutine. Lines 100 to 120 are used to generate
the optional data point display. Lines 120 to 190
are used for the SIMON'S BASIC high-resolution
plotting routine, and lines 2000 to 2400 are used
to draw the display graph on the video screen.

Program 9-2 is the AID machine-language con-

136

trol subroutine. Address lines CC00 to CC05 are
used to turn off the keyboard interrupts. Line CC08
sets the X register to zero. Lines CC0A and CC0C
are used to set memory location $CCFF to $FF.
Lines CCOF and CC12 form a remote control start
routine by checking BIT 7 of the USER PORT to
see if it is a logic "1" or "0". If BIT 7 is a logic
ZERO the program will wait in a loop until BIT 7
becomes a logic ONE. This BIT test routine only
functions if you have a control line connected to
USER PORT BIT 7. If nothing is connected to the
USER PORT, the remote control routine will not
effect the program operation. Lines CC14 and CC16
are used to start the AID conversion cycle. Lines
CC19 to CC27 are the time-delay loop that receives
its time delay information from the BASIC pro-
gram. After the time-delay loop is finished, lines
CC29 and CC2C reads and stores the AID con-
verter's digital data in RAM memory. The RAM

subroutine's operation. If you look up and read
about all of the instructions in Chapter 13, you can
easily understand the complete operation of this
AID control subroutine.

When using the waveform recorder, you should
be aware of the term aliasing, because aliasing can
be encountered anytime you are using sampled
data. Aliasing is a phenomenon that can cause high-
frequency components to appear as low-frequency
components in the sampled waveform. Figure 9-2
shows a graphical representation of aliasing where
a waveform record might be used to record a 1000
Hz sine wave using data points that are spaced .001
seconds apart. The 1000 Hz sine wave would be
sampled at the same point in its waveform each
time, which would make the recorded amplitude-
time visual display look like a straight-line de signal.
This display would be a false waveform represen-
tation. You should not have any aliasing problems
with this waveform recorder if you limit your input
frequencies to lower than 750 Hz and make several
waveform recordings at different sample rates. If
aliasing does present a problem, you may have to
precede the universal op-amp circuit with a low-
pass filter circuit to limit the frequencies that could
cause aliasing. You will find that the universal op-
amp as presented has a frequency response that
starts to roll-off at about 750 Hz.

You can check the waveform recording pro-
gram and system by connecting a potentiometer to
the input of the AID converter as shown in the
previous chapters about AID circuits.

A PRACTICAL APPLICATION
The practical application that was chosen for

this chapter is a pendulum. There are many dif-
ferent experiments that can be performed with a
pendulum such as calculating the acceleration due
to gravity and study of oscillations. The pendulum
that was constructed for our project is shown in
Figs. 9-3 and 9-4. It is constructed out of surplus
G-10 copper-clad circuit board material by cutting
out the pieces and soldering them together. The ac-
tual size of the pendulum is not a critical factor. The
most important part of the pendulum is to find a
l00-ohm multiturn potentiometer that turns very

137

Program 9-2. The machine-language subroutine for Program
9-1 that controls the AID converter operation.

memory location is calculated by adding the cur-
rent value of the X register to $CD00, which stores
all256data conversions between memory locations
$CD00and $CDFF. Line CC2F increments the X
register. Lines CC30 and CC33 decrements mem-
ory location $CCFF and checks to see if it was
decremented to zero. If it was zero, the program
goes on to line CC35. If $CCFF was not zero, the
program loops back for another AID conversion
cycle until 256 conversion cycles have been com-
pleted. Lines CC35 and CC37 are used to turn the
keyboard interrupt back on, and line CC3A is the
return from subroutine instruction. This paragraph
is a short explanation of the machine-language

1000 Hz input signal

Incorrect waveform recording showing
a constant dc level

Fig. 9-2. Graphical presentation of aliasing (see text).

easy. The shaft of the multiturn (ten-turn) poten-
tiometer is used as a support for the swinging pen-
dulum arm, so a potentiometer that turns easy is
needed. The pendulum arm is a long thin piece of
G-10 board that is connected to the support shaft
on one end and contains the pendulum weight on
the other.

The shaft that supports the pendulum arm is
made of brass tubing that was purchased from a
local model airplane hobby shop. You must secure
a brass tube that will just fit over the shaft of the
potentiometer. (The next size over 1/4 inch) The
other side of the support shaft is supported by a
nylon bushing that can also be purchased at the
same hobby shop. You may need to buy the next

138

smaller size of brass tubing also so you can
telescope the tubes together to get the tubing
diameter back down to 114inch so it will fit into
a standard nylon bushing. The swing pendulum
weight should be steel or lead which can be pur-
chased at a fishing tackle supply store. When the
pendulum frame is completed, it should be screwed
to a flat wooden base board. Make sure that the
complete pendulum framework assembly is
mechanically stable while the pendulum arm is
swinging.

The pendulum arm support shaft tubing can be
connected to the potentiometer shaft with five min-
ute epoxy or super glue after the pendulum is
secured to its wooden base board. When you are

139

Fig. 9-3. Pictorial view of the pendulum.

Fig. 9-4. The pendulum and the waveform recorder in action.

140

Fig. 9-5. The positional data for the pendulum arm and potentiometer "RA" connection.

Fig. 9-6. Block diagram of the waveform recording system using the AID converter from Chapter 6 and the universal op-
amp from Chapter 3.

141

Fig. 9-7. Printout from the waveform recorder showing the decaying sine waves from the pendulum oscillation.

gluing the shafts together make sure that the poten-
tiometer shaft is adjusted all the way to one end,
and set the pendulum arm so the potentiometer end
point and the pendulum arm is at 90 degrees to the
vertical arm rest position as shown in Fig. 9-5. This
will give you a full 180 degree pendulum swing.

A full180 degree pendulum swing will develop
a potentiometer voltage output from zero to about
1/4 volt if you use a ten turn pot. Since the AID con-
verter we are using requires a zero to 5 volts input
range, the voltage range of zero to 114voltwill have
to be amplified in order to secure a zero to 5 volts
input for the AID converter. You can use the univer-
salop-amp circuit of Project 3-3 to amplify the 1/4
volt level to a full five volts for the AID converter

input. A completed connection diagram of the
waveform recorder is presented in Fig. 9-6.

Conclusion
When you have the pendulum completed and

connected to the waveform recorder system, you
should be able to pull the pendulum arm back and
let it swing through a twenty degree arc and re-
cord a decaying sine wave as shown in Fig. 9-7. The
constant decay of the sine wave shows that the
potentiometer shaft turning resistance is constant
and linear. Chapter 10 presents four computer pro-
grams that can be used to analyze the recorded
waveform data.

142

THE PROBLEMS OF WAVEFORM ANALYSIS
were for many years an academic area of

science and engineering that was left for the
mathematically elite engineer or scientist to solve.
Generally, waveform analysis requires the
understanding and the use of rigorous mathematics,
but if you use a computer and a signal analysis pro-
gram, you can easily do elementary signal analysis
without high-level math. This chapter will present
fourcomputer programs that will enable you to per-
form elementary signal analysis on waveforms that
you have recorded with the waveform recording
system that was presented in Chapter 9. A
bibliography will be presented at the end of this
chapter to help you in further research efforts.

Actually, most of the waveforms that you will
want to analyze will be physical waveforms and not
electrical waveforms, but the basic physical
parameters can be converted into electrical
waveforms by using transducers. Transducers can
easily convert physical parameters such as light
level, sound, pressure, acceleration, temperature,
and weight into electrical waveforms that can be

recorded on a waveform recording system so you
can completely analyze the dynamic waveforms.
The analysis of a dynamic waveform can lead to
a better understanding of the physical system that
generated the waveform.

The waveform analysis that will be presented
in this chapter will take complex waveform that has
been recorded in the time domain and transform
that waveform into the frequency domain. This
means that a waveform that has been recorded
using amplitude-time data points will be
transformed into the various signal frequencies that
can be added together to generate the physical
waveform. A transformation of time-amplitude
waveform data into amplitude-frequency data is
called Fourier transformation (see references). A
pictorial that will help you visualize Fourier
transformation is presented in Fig. 10-1.1

Now, you will be presented with three com-
puter programs that will let you perform Fourier
transformations on waveform data that you collect
with the waveform recording system of Chapter 9.
The three programs are Fourier Series Program

143

Fig. 10-1. This is a graphical representation of the Fourier series where sine waves can be added together to give a com-
plex waveform time history. Fourier first published the series in 1807. It states that any periodic waveform in the Time
domain can be expressed as the sum of a series of cosines and sines of different amplitudes and frequencies. From
this, Fourier developed the Fourier Transform also based on the concept of cosine and sine waves 2 (courtesy of Hewlett
Packard Company).

10-1. Discrete Fourier Transform Program 10-2,2
and Fast Fourier Transform Program 10-3.3 All
three of these programs are use to transform
amplitude-time waveform data into amplitude-
frequency data. This book will not go into a
technical discussion of Fourier transform theory
because any college or university library will have
many books on the subject, and you can use these
three programs to help you understand any of the
books.

If you look up a book on Fourier theory, it will
tell you that the frequency spectrum of a square
wave contains its fundamental frequency and all of
its odd harmonics. A square wave is really a com-
plex composition of a fundamental frequency sine

144

wave and a large number of odd-frequency har-
monically related sine waves. The higher the har-
monic content of the square wave, the sharper the
square wave corners will be. Generally a good sharp
1 MHz square wave will contain detectable odd har-
monics to over 100 MHz. This fact can be
demonstrated by entering data into the three
Fourier transform programs for a square wave.
This is shown in Figs. 10-2, 10-3,and 10-4.Actually
the Fourier series program is to be used for con-
tinuous repeated waveforms and the two Fourier
transforms programs are to be used for transient
type waveforms. Once you have looked up read
some of the reference material, you will easily un-
derstand the discussion in this paragraph.

Program 10-1. This is a Fourier Series program (see reference 3).

145

146

Program 10-2. This is a Discrete Fourier Transform program (see reference 3).

147

Program 10-3. This is a Fast Fourier Transform program (see reference 4).

148

Before proceeding on with the next program,
wewill repeat a specific point from Chapter 9 about
aliasing problems when using sampled data with
these analysis programs. Aliasing is a phenomenon
that can happen when the waveform sampling rate
is not fast enough to record all waveform
characteristics. Aliasing causes the complex high-
frequency waveform components to appear as low-
frequency waveform signals when the waveform is
notsampled at rate that is at least twice the highest
frequency waveform signals when the waveform is

not sampled at rate that is at least twice the highest
frequency of the complex waveform. If you limit
the input waveform frequencies to less than 750 Hz
that are recorded with the waveform recording
system of Chapter 9 or at least record enough data
points to generate a usable time-domain display,
you will not have any aliasing problems.

CURVE-FITTING PROGRAM
Along with transform analysis of the recorded

waveform, you may need to develop an equation

149

Fig. 10-2. This is a Fourier Series data display from Program 10-1 for a square wave.

to fit the recorded waveform. Another use for the
curve-fitting program is to develop an equation to
display nonlinear data on the linear waveform data
display. The curve-fitting program is presented in
Program 10-4.

This program has been modified to only
generate coefficients for a 7th degree polynomial
equation. A 7th degree polynomial was selected
because the degree of accuracy that is needed for
our application requires this level of an equation.

The program is also fixed to request lOX -Y data
points. The degree of the equation can be adjusted
in line 20 and the number of required data points
can be changed in line 40 if other requirements
come up. The curve-fitting program is easy to use,
just load it up and follow the program instructions.

CONCLUSION
In this chapter, you have been shown how a

150

Fig. 10-3. This is a DFT data display from Program 10-2 for a square wave.

Program 10-4. This is a polynomial curve-fitting program (see reference 4).

151

computer program can be used to help you analyze
a recorded waveform. One suggested project would
be to use the recorded waveform data points from
the pendulum project in Chapter 9 as input data for

the Fourier Series Program 10-1. Program 10-1will
tell you the frequency spectrum and period of the
pendulum. As you study the applications of chang-
ing time-domain measurements into frequency-

Fig. 10-4. This is a FFT data display from Program 10-3 for a square wave.

152

domain measurements, you will see that difficult
analysis problems in one domain may be understood
more clearly when transformed into the other
domain.

References

I. Hewlett Packard, Inc., Fourier Analyzer Train-
ing Manual. Application Note 140-0.

2. Programs 10-1 and 10-2: (Program Routines
courtesy of:) Howard M. Berlin, Circuit Design
Programsfor the TRS-80. Howard W. Sams, In-
dianapolis, Indiana, 1980, pg. 38.

3. Program 10-3: Phillip L. Emerson, Ph.D., "Fast
Fourier Transform Fundamentals and Applica-
tions," Creative Computing, July 1980, pg. 58.

4. Program 10-4: Lon Poole, et al. Some Common
BASIC Programs, Apple II Edition.
OSBORNE/McGraw-HiII, pgs. 156-157, Nth
Order Regression Program.

Bibliography

Poole, Borchers, and Castlewitz, Some Common
BASIC Programs, Apple II Edition.
OSBORNE/McGraw-Hill, 1980.

Berlin, H.M., Circuit Design Programs For the
TRS-80. H.W. Sams, 1980.

Emerson, Ph.D., P.L., "Fast Fourier Transform Fun-
damentals and Applications," Creative Com-
puting, July 1980.

Hewlett Packard, Inc., The Fundamenta13of Signal
Analysis Application Note 243.

Malmstadt, Enke, and Crouch, Instrumentation For
Scientist Series. Benjamin/Cummings, 1973.

Oppenheim, A.V., Digital Signal Processing.M.I.T.
Press, 1969.

Roxburgh, A., "Fast Fourier Comes Back." BYTE,
May 1981.

Stanley, W.D. "Fast Fourier Transforms on Your
Home Computer," BYTE, Dec. 1978.

153

THE POWER SUPPLY IS A COMMON ELECTRON-
ic circuit which is used in almost all electronic

instruments. Even the electronic instrument that
uses a battery will usually have a voltage-regulator
circuit in it to supply a constant current or a con-
stant voltage to the electronic circuits. Most
generally, the power supply is a simple circuit
which can be built easily or can be purchased at a
low cost. Unless you are a school student who can-
not afford fifty dollars for a power supply, I would
advise that you buy commercially made units.

A lot of good books have been published about
designing power supplies, and so we will not com-
pete with them by presenting a long and dry essay
on power supply designing. Itwill be, however, the
aim of this chapter to describe some commercial
power supplies and their characteristics, plus
supply you with several power supply schematics
that you can build. All of these power supplies can
be built with electronic components that are usually
available at a local electronics hobby store. Now,
go out and buy a good supply of one-amp fuses, and
we will continue on this chapter!

154

COMMERCIALL Y
MANUFACTURED POWER SUPPLIES

The power supplies that I will be describing
are manufactured by Standard Power Incorporated.
I am not selling Standard power supplies, but all
three of the electronic supply houses that I buy from
sell Standard Power power supplies and I also just
happen to have a few around, one of which is shown
in Fig. 11-1. There are several other competing
companies which manufacture equivalent power
supply units that probably function as well and are
competitively priced. I have had very little trouble
with the purchased power supplies that I have used,
and I can generally state that if they work the first
twenty-four hours, they will work for the next two
or three years unless you put it to them in some
way.

The commercially manufactured power sup-
plies are generally protected from overloads and it
is really hard to bum one of them up if they are used
properly. The overload protection does not mean
that you can run a power supply into a short cir-
cuit because sooner or later the power supply will

155

Fig. 11-1. This is a commercially manufactured power supply (courtesy Standard Power Inc.).

heat up and the higher leakage currents that are
caused by the heat will wipe out one of the circuit
components. If the power supply that you are using
is rated at 3 amps and you are only pulling three-
quarters of an amp in your circuit, put a one amp
fuse in the dc output line and protect everything;
some day you will be glad you did. We will now
go through a short discussion of what each of the
power supply specifications means using Fig. 11-2.

Universal Input 115/230 Vac, 47-440 Hz
The universal input means just that. You can

connect the power supply to either a 115 Vac or

a 230 Vac line voltage, using the proper input con-
nections, and the power supply outputs will be
within specification. The input line frequency can
be anything from a 47Hz sine wave to a 440 Hz
sine wave which covers about all of the input line
frequencies that you will ever see.

Temperature Compensated Circuitry
The temperature compensation comes from

the integrated-circuit chip that is used in the volt-
age regulation circuit. Temperature compensation
means that the output specifications will be main-
tained as long as the power supply is operated

Fig. 11-2. A Blue Line power supply specification. (courtesy Standard Power Inc.).

within its temperature range. Floating Output
The floating output means tht neither of the

dc output terminals (+ or -) are connected to
ground. So, you can use this power supply as ei-
ther a positive or negative supply by connecting the

Adjustable Output Voltage
The output voltage may be controlled by ad-

justing a wire wound pot on the pc board.

Fig. 11-3. A basic unregulated power supply.

156

proper output terminal to ground.

Wire Wound Pots/Metal Film Resistors
This is a general description of the type of

components that are used in the construction of the
power supply to make it a dependable unit.

Input Voltage: 115/230 Vac ± 10%,47-440 Hz
The input voltage specifications means that

you can vary the power-supply line voltage ± ten
percent from the specified values and the output
will remain within the specified limits.

Line Regulation: ± 0.1 %
The line regulation specification means that

the output voltage will remain within ± .01% of
its set value if the input line voltage is varied over
the + / - 10% range.

Load Regulation: ± 0.1 % 0 to Full Load
The load regulation specification means that

the output voltage will remain with ± 0.1% of its
set value from a no-load condition to the full load
condition.

Ripple: 0.1 %, Typically 0.5 to 2 m V rms
The ripple specification specifies that the out-

put voltage will not have over a 0.1 % ripple con-
tent on it when the power supply is supplying the
full load current.

Short Circuit Protection: Fold-back
Type, Current limiting, Adjustable from
20% to 150% of Load. Factory Set at 110%.

The over load protection specification in-
dicates the type of protection circuitry that is used,
and specifies that you can adjust the output current

F1 - Fuse 1 amp
S1 - 3 Amp 120 Vac switch
T1 - Radio Shack 273-1505
B1 - Radio Shack 276-1180
R1, R2 - 1 k 1/2 walt resistor
C1, C2 - 2200 µF at 35 Vdc

This power supply is unregulated and the output voltage will vary indirectly
with the output current. The dc output voltage will generally be somewhere
around 1.25 (± 10 percent or so) times the ac input voltage when you are using a
full wave bridge rectifier and a filter capacitor. This means that a 6.3 volts ac
secondary will give you about 8 volts dc or so if the power supply load is not too
heavy.

Fig. 11-4. A basic positive and negative unregulated power supply.

157

F1 - Fuse 1 amp
S1 - 3 Amp 120 Vac switch
T1 - Radio Shack 273-1505
B1 - Radio Shack 276-1180
R1 - 1 k 1/2 watt resistor
IC1 - 7905 - Radio Shack 276-1773
C1 - 2200 µF at 35 Vdc
C2 - 1 to 5 µF at 16 Vdc

This power supply will deliver over 1 amp of dc current at a regulated output
voltage of negative 5 volts. The IC regulator contains a circuit for short circuit
protection and a thermal overload protection. The unit must have a proper heat
sink if it is going to regulate at maximum current levels. You can estimate the IC
heat dissipation by multiplying the dc current through the IC times the voltage
drop across the IC.

Fig. 11-5. A negative 5 volt power supply.

level from 20% to 150% of the power-supply cur-
rent rating. It also indicates that the factory sets
the current limiting control to 110% of the power-
supply rating when the unit leaves the factory.
Short circuit protection does not mean that you can
leave a short circuit across the power supply out-
put continuously without damaging the power
supply.

Response Time: 50 Microseconds
The response time tells you how long it will

take for the voltage regulation circuit to react to
a changing load condition.

Temperature Coefficient: 0.01 % Per Degree C
The temperature coefficient specifies that the

output voltage will not change more than 0.02%
from its set voltage value per degree of temperature
change. (Temperature is in degrees centigrade.)

158

Temperature Rating: 0 Degrees to 50
Degrees C (to 70 Degrees C Derated)

The temperature rating indicates that the
power supply will operate over a temperature range
of 0 to 50 degrees centigrade, and can function at
a temperature of 70 degrees centigrade if its out-
put is derated by a given amount.

Adjustable Voltage Range: ± 10%
This specification indicates the output voltage

may be varied plus or minus ten percent from the
specified output voltage by turning an on-board
wire-wound pot control.

The above specifications pretty well
characterize the performance that you can expect
from the power supply. If these specifications leave
anything unmentioned, all of the power supply
manufacturers have application engineers that will
be happy to answer any questions you may have

about one of their products.

POWER SUPPLY
CONSTRUCTION PROJECTS

The power supplies that are described in the
rest of this chapter can be constructed with hobby
store parts. But, they are still very good power sup-
plies and will do just as good of a job for you as
a commercially manufactured unit with the same
voltage and current ratings. The main thing that
you will have going if you build your own power
supply is the fact that you will be able to easily re-
pair it with parts that you can buy. Sometimes it
is not very easy to find the parts that are in the com-
mercially manufactured power supplies.

All of the required parts for the power supplies
that are shown in Figs. 11-3 through 11-7 can be
purchased at Radio Shack or most other hobby elec-

Parts List for Regulated 5 Volts Power Supply

F1 - fuse 1 amp
S1 - 3 Amp 120 Vac switch
T1 - Radio Shack 273-1505
B1 - Radio Shack 276-1180
R1 - 1 k 1/2 watt resistor
IC1 - 7805 Radio Shack 276-1770
C1 - 2200 µF Vdc
C2 - 1 to 5 µF at 16 Vdc

This power supply will deliver over 1 amp of dc current at a regulated output
voltage of 5 volts. The IC regulator contains a circuit for short circuit protection
and a thermal overload protection. The unit must have a proper heat sink if it is
going to regulate at maximum current levels. You can estimate the IC heat
dissipation by multiplying the dc current through the IC times the voltage drop
across the IC.

tronics shops.
I have built each one of the power supplies at

one time or another and you should have no prob-
lem building them. Make sure that all of the power
transistors and IC regulators are connected to a
heatsink that has been coated with a siliconfor heat-
sink compound for good heat transfer between the
active circuit element and the heatsink. The ma-
jority of all problems that you will encounter in a
power supply will usually be heat related in some
way.

Always be sure that you fuse your power
supply for its protection and your protection. An
unfused power supply can cause large amounts of
smoke and pungent smells. Also, an unfused ac
power line can burn off the tip of a small
screwdriver or burn a pretty good hole in a pair of
wire cutters (which then can be used to strip
number 10 and larger insulated wire).

Fig. 11-6. A positive 5 volt power supply.

159

Parts List for the Junk Box Power Supply

F1 . Fuse 1 amp
Sl ·3 amp 120 Vac switch
T1 • Radio Shack 273-1515
B1 . Radio Shack 276-1180
C1 . 2000 µF at 35 volts
C2· 1000 µF at 16 volts
C3 - 1 µF at 16 volts
R1 - 390 ohms at 1 watt
R2 . 1 k at 1/2 watt
R3 • 500 ohm 2 watt pot
Q1 • Radio Shack 276-2020
Zl . 14 zener
Z2 • 9V zener

This power supply is adjustable between 9 and 14 volts and can deliver up one amp of
dc current. The voltage regulation of this power supply is not as good as a power supply with
a commercial IC regulator unit, but this power supply can usually be built from junk box parts
and little else.

Fig. 11-7. An adjustable power supply.

160

,T HIS CHAPTER IS ABOUT THE ELECTRONIC
measurement of resistance, capacitance, in-

1ductance, and continuity that one will encounter in
the manufacturing of an electrical part on a produc-
tion line. If you are a school student, this chapter

Iwill give you a good view of a style of testing called
go/no-go that will be encountered in an industrial
environment. Just about all electrical or electronic

'items that are manufactured require an electronic
f or electrical measurement check at some point dur-

1
'1"ing their manufacturing trip down the production

line. This chapter will show you how to make these
measurements using a computer to control the
measuring process. The measurements can be as
simple as a few continuity checks during the
manufacturing process, or when the produced item
is finished, a complete series of resistance
measurements to verify the product's integrity. TheI faster that these measurements can be made, the
lower the cost of producing the item. It is very easy

I'to make a computer-controlled measurement
system that can measure the resistance of a resistor
or coil of wire in a time period that is much shorter

than the display set-up time of a LED display ohm-
meter. When the computer-controlled measure-
ment system is combined with a robotic handling
system, you will have a high-speed automatic
manufacturing test system.

CONTINUITY CHECKS
Continuity checks are used to verify that a

complete electrical circuit exist between points.
The check does not show whether the electrical cir-
cuit is a high-resistance or low-resistance circuit,
but only that an electrical current path does exist
between two points. Most of the time, a continuity
check is the only check that is needed to completely
satisfy an in-process type of production resistance
measurement. A continuity check test is really not
too involved. You can easily use a simple ohmmeter
and two leads to make the needed test. This type
of testing is ok if you only need a few checks in an
hour's time. But, if you require 10,000 check per
hour or multipath checks, it is time to use a com-
puter to automate the continuity testing. A low cost

NOTE: The resistor R1 determines what dc current will flow through the external circuit which is receiving
the continuity check. The current that flows through the external circuit must be enough to cause a
voltage drop across R1 that leaves no more than 1 volt at test pOint A. If the external circuit has the
required continuity, a logic one will be generated at test point B.

Program 12-1. A continuity test program for Fig. 12-1.

Fig. 12-1. The simple dc continuity test circuit.

VIC-20 computer can easily be used to build a high-
speed continuity test system.

A continuity test circuit is shown in Fig. 12-1
that is simple and does a very good job. The cir-
cuit uses a CMOS 4049 hex inverter IC which
detects the voltage drop through Rl, a lK resistor.
The value of resistor Rl should be at least 10 times
larger the resistance of the circuit that is being
tested. Also the resistance of Rl must be high
enough to keep the resistor from overheating or
overloading the 5 to 15 volts power supply. The

value of Rl also must permit a voltage drop across
itself that will set-up a voltage at test point A of
no higher than 1 volt when the circuit continuity
is considered GOOD. When the voltage at test point
A is 1 volt, the 4049 will generate a logic ONE at
it's output, which is test point B. This logic ONE
signal can be used by the computer to generate a
part GOOD signal. If only one or two continuity tests
are being made, an LED can be connected to the ,
4049 at test point B to make a hand held go/no-go '"
type tester. Program 12-1 shows a simple BASIC

The resistance of the circuit under test must be low enough to draw 50 mA so point A
will go low to a logic 0 when the push-to-test button is pressed

program that can be used with the continuity test
circuit of Fig. 12-1. A continuity testing routine is
very similar to a routine which looks for an open
or closed switch.

Most of the time in production style testing, you
will have many different test measurements that
must be made to a product before it can be ship-
ped. One of these tests will usually be a continuity
test of a ground lug or connecting bracket. It is very
easy to use a continuity test circuit as shown in Fig.

12-2 in a push-to-test function to check the circuit's
continuity and, at the same time, start the test se-
quence if the continuity test is good. If the circuit's
continuity is bad, the testing sequence can not start.
A customer is generally impressed when they see
that the product that you are producing can not pass
through a final test system if a specified ground
bracket or something similar is not made correctly.
Program 12-2 is an example of how to start a push-
to-test routine.

Program 12-2. A push-to-test continuity test program.

Fig. 12-2. The push-to-test continuity circuit.

AN EIGHT-CIRCUIT
CONTINUITY TEST METHOD

The VIC 20 or the C-64 will function nicely as
an eight-circuit continuity tester with the addition
of a 6522 I/O board such as those described in
Chapters 4 and 6. It is possible to use both of the
PA and PB ports 6522 VIA to make a continuity
test that can test the continuity of eight indepen-
dent circuits while also checking to see if there are
any shorts between the independent circuits. This
testing method is great for checking cables and
small circuit boards.

The continuity test method that will be
presented uses the 6522 Port A 110 lines as the con-
tinuity test drivers and detectors, and the Port B
110 lines as current-sinking lines. Figure 12-3shows
that a 6.8K pull-up resistor is added to each Port
A 110 line to furnish the driving current for the con-
tinuity test. The Port B 110 lines are set up in the
output mode and used to pull the voltage on the cor-
responding Port A line to a logic ZEROby setting
each Port B line to a logic ZERO.If a continuity path
exist between each corresponding port line, all Port
A 110 lines will be pulled to a logic ZERO.Any Port
A 110 line that is not pulled low will indicate that
a bad continuity path exists between Port A and
Port B.

Figure 12-3 also shows how to connect an ex-
ternal circuit to the Port A and Port B 110 lines so
you can use the continuity test Program 12-3 to do
continuity testing. To secure the continuity checks,
all Port A lines must be set up as input lines and
all Port B lines must be set up as output lines. All
Port A lines will supply five volts to each of the ex-
ternal circuits that are to be tested. When you set
all Port B lines to logic ZEROs,all Port A lines
should go to a logic ZEROif the continuity path is
good. You can also test for shorts between the ex-
ternal circuits by setting all Port B line to a logic
ONEand then setting each one to a logic ZEROone
at a time. If any other line goes to a logic ZERO
besides the one that should, you will have a short
between those two external circuit paths. You now
have a method of testing for continuity and elec-
trical shorts.

The only problem that might be experienced

is with external circuit capacity. Sometimes long
multiwire cables can have high levels of stray ca-
pacitance between the wires. This stray capacitance
can cause problems if the continuity testing cycle
is ran too fast. This problem can be overcome by
using a FOR-NEXT loop time delay of .1 seconds
between applying the continuity check voltage and
checking for continuity.

WINDOW COMPARATORS
Most of the testing problems that you will en-

counter in a production operation will be the go/no-
go type of tests. One of the most useful circuits that
you can have in your arsenal of test circuit weapons
to fight the go/no-go problem is the window com-
parator circuit. This circuit is built around two
operational-amplifier circuits that are arranged so
they will turn off and on at specific voltage levels.
You can adjust the two operational amplifiers so
both amplifiers will put out a logic one signal when
the same input signal to both amplifiers is in be-
tween two given voltage levels which forms the
voltage window. The window comparator circuit
can be used for a large number of applications some
of which are checking resistance, pulse
measurements, linear slope measurements, and
thermistor temperature-controller, and so on.

The window comparator circuit, shown in Fig.
12-4, is designed to detect a voltage window that
can be adjusted anywhere between 2.1 to 2.9 volts
with a five-volt supply voltage. The narrowest win-
dow voltage that can be reasonably detected is
about .010 volts. The circuit uses a UA358 dual
operational amplifier IC (UIA and UIB) that can
operate from a single supply voltage source. The
logic circuits are all CMOS chips, so you can use
a supply voltage of 5 to 15 volts with this com-
parator circuit. The circuit is designed for a volt-
age window that is in the middle of the supply
voltage range, but you can adjust the resistors RA,
RB, RC, RD, RE, and RF to operate a voltage win-
dow about anywhere within the supply voltage
range. You should stay about one-half volt away
from the rail voltages.

The upper window-voltage limit is controlled
by minipot RA and the lower voltage limit is con-

Use the 6522 I/O board of Chapter 6

6522 VIA Port B

Fig. 12-3. The eight-circuit continuity test schematic.

trolled by minipot RB. When the input voltage is
within the voltage window limits, both operational
amplifiers will generate logic one output signals are
inverted by the two inverter circuits of U2A and
U2B (4584). The inverted output signals will both
be logic zeros that are then applied to the two in-

puts of the NOR circuit of U3A. When both inputs
to U3A are zeros, the output will be a logic one
which indicates that the input voltage is within the
window-voltage limits. If the input voltage is out-
side either one of the window-voltage limits, the
output of one of the operational amplifiers will be

Program 12-3. An eight-circuit continuity test program.

Fia. 12-4. The voltage-window comparator circuit.

Using the Window
Comparator to Check Resistance

The window comparator's main objective is to
inform you when the input voltage is at a given volt-
age level. If you connect to resistors as a voltage

divider on the input, as shown in Fig. 12-5 you can
set up the window comparator circuit to inform you
when both resistors have the same resistance value.
A standard resistor or a decade resistor box can be
connected between the comparator input and
ground and when an unknown resistance is con-
nected between the input and the positive supply
voltage, which is equal to the standard resistance,
the voltage at the input of the comparator will be
one-half of the supply voltage. The window com-
parator circuit can be set up to detect that one-half
supply voltage point plus whatever tolerance level
you may wish to adjust into the test system. The
test resistance can be about anything like a coil of
wire, a heating element, or a resistor, because you
are comparing the unknown test resistance with a
known standard resistance in a voltage divider cir-
cuit that does not care about anything but dividing
the voltage as per the values of resistance in the
circuit and Ohm's law.

Using the resistance-checking window com-
parator with one of the four computers that we are
using in this book is not too different from what we
did with the voltage-comparator circuit. Just make
sure that you observe which port bits are used for
the high and low resistance connections. They are
the opposite of the high and low voltage comparator
connections that were used in Fig. 12-4. Program
12-5 is a resistance-checking program that is used
with the circuit of Fig. 12-5.

Program 12-4. A voltage-checking program for Fig. 12-4.

a logic zero. That logic zero will be inverted to a
logic one which will turn off the NOR circuit in-
dicating that the input voltage is outside of the win-
dow voltage limits. The logic one signal will also
be sent on to one of the input voltage-high or input
voltage-low output pins by the noninverting buffer
circuits U4A or U4B (4050).

It is very easy to interface a voltage comparator
to a computer. The comparator circuit will give you
one of three logic output signals, which are volt-
age high, voltage low, or voltage ok. These three
logic signals can be connected directly to the USER
PORT lines so the computer can use the com-
parator circuit to test for the three voltage levels.
Program 12-4 shows you how to test for four possi-
ble conditions which are voltage high, voltage low,
voltage OK, or to check the test circuit in case the
wrong logic signals are received if the test circuit
fails. The program assumes that your voltage com-
parator circuit is connected and supplying a logic
signal when the program is executed. This program
is an example of how you can test the product and
verify that your test circuit is functioning at the
same time.

NOTE: The standard resistor must have a resistance value which is high enough to
limit the current through it to a save value in case the resistance under test is shorted.

Fig. 12-5. The voltage comparator circuit designed for checking resistance.

INTERFACING TO A BRIDGE CIRCUIT

You can only do so much testing by measur-
ing dc and ac voltages and currents. When it comes
time to measure other electrical quantities, such as
resistance, inductance, and capacitance, the test
systems engineer will need to resort to more ad-

vanced testing methods that will characterize the
component in question by securing the required
technical data. The basic circuit that is used to
secure this type of technical data is called the bridge
circuit. The theory of the bridge circuit can vary
from simple to very complicated. In this chapter we
will assume that you have a basic idea of what a

Program 12-5. A resistance-checking program for Fig. 12-5.

bridge is, how it works, and continue on from there.
Bridge circuits usually function with very low

currents and voltages while the C-64 computer re-
quires the use of logic ones and zeros at a level of
five volts and zero volts (respectively) which does
not make too good of a match up. So, we will have
to build some type of amplifier circuit to increase
the voltages and currents and then build a detec-
tor circuit to tell the voltages and currents and then
build a detector circuit to tell the computer when
the bridge circuit is in a null condition by generating
a logic one or zero to indicate the given condition.
All of the test circuits that will be described in this
chapter will have one common function, which is
to indicate when the bridge circuit is in the required
null condition. The circuits will not tell you if you
are above or below the null point, but only that you
are in or out of the null condition of the bridge. You
will be able to adjust the circuits to indicate dif-
ferent levels of the null point so you can detect a
specific null point plus or minus a given percent-
age. When you use these bridge circuits in a high-
speed test system with a C-64 computer, you will
be able to secure highly accurate and expedient test
measurements. The detection circuits are fast
enough that, if you include a null meter in your
system, the null meter's needle will not have time
to indicate the null condition because the detection
circuits will have already told the C-64 computer
that the null condition is okay and the computer will

have started the next test function. We will only
discuss a few typical bridge circuit applications, but
it will be very easy for you to expand these circuit's
applications with a little technical understanding
and ingenuity.

The bridge circuit that is shown in Fig. 12-6
is used to measure dc resistance values. The ac-
tual bridge circuit is made up of resistances Rl, R2,
Rx' and Rs' which are connected in the form of a
rectangle. Test point A is where the +V voltage
is applied to the circuit, and test point B is where
the bridge is connected to the ground or common
circuit point. Resistors Rl and R2 are chosen so
their resistances are equal or as close to equal as
you can obtain. Resistor Rs is the standard resistor
which is the resistance that you are comparing to
Rx. Rx is the resistor under test, which is an un-
known quantity. Since resistor Rl and R2 are equal,
the voltage at test point C will be exactly one-half
of the +V voltage. If the resistance of the unknown
resistance Rxis equal to the resistance of the stan-
dard resistor Rs' the voltage at test point D will be
equal to one-half of the +V voltage. Now if both
voltages at test point C and D are equal, the out-
puts of both op amps (UIA and UIB) will be zero,
which will indicate that the bridge circuit is in a null
condition. The null condition will tell you that Rx
and Rs are equal resistances.

When the Rx and Rs resistances are not equal,
the voltage at test point D will no longer be one-

Parts List for the dc bridge amplifier and detector circuit

Rx • Resistance to be tested
Rs • Standard resistance value
R1, R2, R13 ·1 k resistors (matched as close as possible)
R3, R4, R5, R6. R11 . 100 k resistors
R7, R8 . 4.7 k resistor
R9 • 1.5 k reSistor
R10· 10 k resistor
R12 • 5 k trim pot
U1, U2 - LM 358 op-amp
U3 • 4584 CMOS
C1 ·470 µF

(Resistance)
to be tested
Test point

D

+5110lts

Fig. 12-6. The dc bridge-amplifier circuit.

half of the +V voltage because of the different volt-
age drops across the Rx and Rs resistances. The
voltage difference that will exist between test points
C and D will be detected by the op-amps and one
of them will increase its output voltage. The in-
creased output voltage will be amplified by op amp
U2A and applied to the noninverting input of op
amp U2B, which is a voltage detector circuit. If the
voltage at pin 3 of op amp U2B is higher than the
voltage at pin 2, the output of U2B will go high.
If the voltage at pin 3 is lower than pin 2, the op
amp's output will go low. U3 is a 4584 CMOS
Schmitt trigger inverter, which will take out any
noise or slow rise and fall times from the op-amp

circuits and permit easy connection to the input port
of the computer.

In a nutshell, the operation of the circuit can
be described as generating a logic one if the bridge
circuit is in a null condition or generating a logic
zero if the bridge circuit is not in a null condition.
Trim pot R12 is used to control the voltage-
detector circuit's trip point. By setting the trip point
low, you can detect a very sharp null point, and by
setting the trip point high, you will detect a wide
null point. The trip-point setting can be used to con-
trol a given amount of tolerance on each side of the
standard resistance, such as testing for the standard
resistance value plus or minus 10 percent.

Parts list for the 1000 Hz sine
wave oscillator-amplifier

D1, D2 - 1N4004 type
L1 - 28 volt lamp
C1, C2 - 1 µF
C3 - .50 µF
C4 -220 µF
R1, R13, - 100 ohms
R2, R3, R4, R5 - 680 ohms
R6 - 10 k trim pot
R7, R15 - 1 k resistor
R8, R9, R10, R11, R12 - 47 ohms
R14 - 6.8 k resistor
U1 - µA 741 op amp
U2 - LM 388 audio amplifier
01, 02 - 2N2222

AC BRIDGE CIRCUITS
AND AC SINE-WAVE SOURCES

Ac bridge circuits are much more complicated
than dc bridge circuits because you are dealing with
many more variables than you are with dc bridge
circuits. The variables that are in your ac bridge
circuits do not really cause a lot of trouble until your
ac frequencies go into the high audio frequency
range and on into the rf frequency and on into the

rf frequency range. The ac bridge circuits that are
described in this chapter can be used at frequen-
cies between 60 and 1500Hz quite easily. However,
if you try and measure high inductances or low ca-
pacitance values, the situation will become a bit
tricky. The best instructor on bridge circuits is ex-
perience, so, get out the experimenter's boards and
go to it.

In order to experiment with an ac bridge cir-

171

cuit, you will need a sine-wave generator. There
are three ways to secure a sine-wave signal. Way
number one is to go out and buy a sine-wave
generator. Way number two is to build a sine-wave
generator such as the one shown in Fig. 12-7.

Way number three is to simply use the 60 Hz
sine wave frequency that is available from your
friendly power company as shown in Fig. 12-8. If
you are going to use an ac bridge circuit, you will
need an ac signal from some source, so you might
as well decide which method you intend to use.

Figure 12-8 is quite simple and does a fine job
of giving you a 60-Hz sine wave which is variable
between about 6.3 volts and zero volts depending
upon the load that the bridge circuits place on it.
Do not use this sine-wave signal source if the ac
or dc resistance of the total bridge circuit is less
than 50 ohms because the high output current re-
quirements can damage the output control pot (Rl).
This means that you had better keep a watchful eye
on your circuit if you try and measure high capaci-
tance values or low inductance values.

Figure 12-7 shows a 1,000-Hz sine-wave
generator that can be built on a very limited budget.
The nice point about this sine-wave generator is the
fact that it can be turned off and on by the com-
puter by sending a logic one or zero to transistor
Q1. This type of off and on operation is advan-

tageous in situations where you must do both ac
and dc measurements on the same device. There
is nothing critical about this circuit. You can change
the operating frequency of the circuit by changing
the values of capacitors Cl and C2 or resistors R2,
R3, R4, and R5. If at any time the waveform
becomes distorted, try adjusting the values of
resistors Rl and R13 one way or another but not
too much.

The bridge circuit that is presented in Fig. 12-9
can be used to compare inductor coils. Most of the
time a coil will have to be manufactured to a cer-
tain inductance specification (measured in henrys).
But, when you wind this coil, you will find that you
can have a great difference in coil turns and still
have an adequate amount of inductance. Naturally
you will not want to wind any more copper wire on
the coil than is needed in order to keep the price
of the coil low. This fact means that you will need
some method of testing the number of turns on the
coil to insure that a given inductance is being pro-
duced with the least amount of copper in the coil.
The bridge circuit in Fig. 12-9 will give you the
ability to compare coil A with coil B and that the
number of turns on coil A is within .005% of the
number of turns on coil B. Of course, the tighter
you try to measure the coil turns the more difficult
it will become. You will just have to keep ex-

F1 - 1/2 amp fuse
S1 - 3 amp ac switch
T1 - Radio Shack 273-1384
Lamp - 6.3 volt lamp
R6 - 49 ohms, 1 watt resistor
R1 - 500 ohms, 2 watt control pot
R2, R3, R4, R5 - 68 ohm, 1/2 watt resistor

Fig. 12-8. The 60 Hz sine-wave source.

Note: Coils A and B must be placed on the transformer rod equal distance on each side of the rod
center point. The best null will be secured when both coils are together and centered on the transformer
rod.

Fig. 12-9. The inductor-comparison bridge circuit.

perimenting with different fixturing, probes, and
bridge-circuit values until you find the combination
that will work. You can start out by winding coil
"L" over the entire length of the 12-inch steel rod.
Place the rod with coil "L" through the coil A and
B cores and place coils A and B together in the cen-
ter of the rod. You should now be able to null out
the bridge circuit by adjusting the 500 ohm fine-
balance control.

The bridge circuit in Fig. 12-10 can be used to
compare the capacitance value of one capacitor to
a standard capacitor. The circuit is not as critical
as the inductance comparison circuit, so, you should
not have any trouble getting this circuit working.
The bridge circuit is easier to experiment with
because you can easily buy capacitors of the same
value.

AC BRIDGE CIRCUIT
AMPLIFIER AND LEVEL DETECTOR

Once you have built the ac bridge circuit and
have it working, you must find a method to detect
the null point of the bridge circuit and then convert
that null point into a logic signal that can be used
by a computer. The ac bridge circuit interfacing
system is not as simple as the dc bridge system
because the ac circuits are not linear functions, and
as the ac sine-wave driving signal increases in fre-
quency, the stray capacitances and inductances of
the circuit wiring can play tricks on you if you are
not careful.

To start off, you will have to build an ac
amplifier circuit to amplify the ac output signal from
the bridge circuit so you can observe the null point
and then you will need an ac detector circuit so you

173

can tell the computer when the null has been found.
The ac output signal from the bridge circuit will
be very low (less than 200 microvolts) at the null
point, so the amplifiers will have to have a very low
internal noise factor to accurately yield a good
amplified nUll-point signal. A good low-noise op-
amp circuit can be hard to build from low priced
op amps. The solution is to build a low-noise ac
amplifier from, dual gate MOSFETs.

A good low-noise amplifier is shown in Fig.
12-11. This amplifier has a complete set of control
pots so you can adjust every circuit amplification
factor required for your interface system. You can
adjust this circuit to be a low-gain amplifier or you
can adjust it to be a very high gain compression
amplifier is the diode combination of D3 and D4.
After you have gained a little ac bridge experience,
you will find that you will need a very high gain
amplifier if you are going to be attempting any high
quality detection work around the bridge null point.
For example, let's say that you are attempting to
detect a .01 µF capacitor at a tolerance of plus or
minus a few percent. You will observe that it is easy
to find the .01 µF capacitor at 1% but the null points
at the 2, 3, 4, and 5 percentage point are all scrun-
ched together because of the high gain of the

amplifier. The diodes D3 and D4 will give you a
dead band in the area of the null point which will
give you the ability to discriminate between the 2,
3,4 and 5 percentage tolerance points a little easier.
This ability to discriminate between the 2, 3, 4 and
5 percentage points is really what makes this
bridge-circuit interface system usable in the go/no-
go type of test circuit work.

After the amplifier in Fig. 12-11 is working, you
can build the detection circuit in Fig. 12-12. This
circuit is a straightforward voltage detector circuit
using op-amp UI as a noninverting buffer circuit,
and op-amp U2 as a voltage detector circuit. The
voltage doubler circuit of Dl and D2 develops a dc
voltage level will be proportional to the ac signal
at the input of the detection circuit. When the
bridge circuit is in a null condition, there will be
a very low ac input signal which will yield a low
dc voltage level. By adjusting trimpot R2, you will
be able to detect about any voltage level between
0.5 volts to 8 volts which will give you the ability
to detect various levels of null points. Trimpot R3
is used to control the time constant of the rectifier
filter circuit. The output of the voltage detector cir-
cuit goes to the three CMOS circuits and then on
to your computer.

Parts list for the capacitor comparison bridge
T1 - Radio Shack 273-1380
R4 - 47 k resistor
R3 - 100 ohm ten turn trim pot
R1, R2 - 1 k resistors
Note: Control pot R3 should be adjusted for the bridge null condition with two matched capacitors
of the same value.

Fig. 12-10. The capacitor-comparison bridge circuit.

Fig. 12-11. The low-noise ac bridge-amplifier.

It will take you a little time to learn how to use
the ac bridge interfacing circuits, but after you have
solved the start-up problems, you will find that you
can do some really outstanding high speed ac bridge
testing using this method.

CONCLUSION
In this chapter, we have mainly worked with

only simple bridge circuits, but even the more ad-

vanced circuits must be approached in a similar
manner because only the complexity of the bridge
circuits will differ. You will discover that when you
try to interface to a commercial bridge system that
you will only be looking for a logic one or zero,
which will be brought out to one of the application
terminals on the commercially manufactured
bridge.

R1, R4 - 1 k resistor
R2 - 5k trim pot
R3 - 50k trim pot
AS - 1 meg resistor
C1 - .05 µF
C2, C7 - 150 pF
C3 - 10 µF
C4 -.5 µF
C5, C6 - 220 µF
U1 - CA-3140 CMOS op amp
U2 - CA-3130 CMOS op amp
Note: If CMOS op amps can not be secured, try using

two µA 741 op amps.
U3 - 4049 CMOS hex inverter
LED-1 green LED
LED-2 red LED
All capacitors are rated at 16 volts or higher.
All resistors are 1/4 watt or bigger.

Parts list for the bridge amplifier level detector

Fig. 12-12. The ac bridge-amplifier level-detector circuit.

This chapter presents a complete description of the
6502 instruction set from the R6500 Microcomputer
Systems Programming Manual1 by Rockwell Inter-
national. The difference between this chapter and
the programming manual is that, in this chapter,
all of the instruction-set data and descriptions are
presented in alphabetical order. This type of

presentation will help the part-time programmer to
use 6502 machine language. Table 13-1 presents
the notations which are used in this chapter.

1.R 6500 Microcomputing Systems Programming Man-
ual, Rockwell International, 1979. Data from this publication
is reproduced by permission of Rockwell International.

Table 13-1. These Notations are used in the 6502 Op-Code Presentations in this Chapter.

177

Table 13-2. ADC.

This instruction adds the value of memory and
carry from the previous operation to the value of
the accumulator and stores the result in the ac-
cumulator (see Table 13-2).

This instruction affects the accumulator; sets
the carry flag when the sum of a binary add exceeds
255 or when the sum of a decimal add exceeds 99,
otherwise carry is reset. The overflow flag is set
when the sign or bit 7 is changed due to the result

exceeding + 127 or - 128, otherwise overflow is
reset. The negative flag is set if the accumulator
result contains bit 7 on, otherwise the negative flag
is reset. The zero flag is set if the accumulator re-
sult is 0, otherwise the zero flag is reset.
It is a "Group One" instruction and has the

following addressing modes: Immediate; Absolute;
Zero Page; Absolute, X; Absolute,Y; Zero Page, X;
Indexed Indirect; and Indirect Indexed.

Table 13-3. AND.

The AND instructions transfer the accumulator
and memory to the adder which performs a bit-by-
bit AND operation and stores the result back in the
accumulator (see Table 13-3).

This instruction affects the accumulator; sets
the zero flag if the result in the accumulator is 0,
otherwise resets the zero flag; sets the negative flag

if the result in the accumulator has bit 7 on, other-
wise resets the negative flag.

AND is a "Group One" instruction having ad-
dressing modes of Immediate; Absolute; Zero Page;
Absolute, X; Absolute, Y; Zero Page, X; Indexed
Indirect; and Indirect Indexed.

178

Table 13-4. ASL.

The shift left instruction shifts either the ac-
cumulator or the address memory location 1bit to
the left, with the bit 0 always being set to 0 and
the bit 7 output always being contained in the carry
flag. ASL either shifts the accumulator left 1bit
or is a read/modify/write instruction that affects
only memory (see Table 13-4).

The instruction does not affect the overflow bit,
sets N equal to the result bit 7 (bit 6 in the input),
sets Z flag if the result is equal to 0, otherwise resets
Z and stores the input bit 7 in the carry flag.

ASL is a read/modify/write instruction and has
the following addressing modes: Accumulator; Zero
Page; Zero Page, X; Absolute; Absolute, X.

This instruction tests the state of the carry bit
and takes a conditional branch if the carry bit is
reset (see Table 3-5).

It affects no flags or registers other than the

program counter and then only if the C flag is not
on.

The addressing mode is Relative.

179

Table 13-6. BCS.

This instruction takes the conditIOnal branch
if the carry flag is on (see Table 13-6).

BCS does not affect any of the flags or registers
except for the program counter and only then if the
carry flag is on.

The addressing mode is Relative.

Table 13-7. BEQ.

This instruction could also be called "Branch
on Equal." It takes a conditional branch whenever
the Z flag is on or the previous result is equal to
o (see Table 13-7).

BEQ does not affect any of the flags or registers
other than the program counter and only then when
the Z flag is set.

The addressing mode is Relative.

180

Table 13-8. BIT.

This instruction performs an AND between a
memory location and the accumulator but does not
store the result of the AND into the accumulator
(see Table 13-8).

The symbolic notation is M 1\ A.
The bit instruction affects the N flag with N

being set to the value of bit 7 of the memory being
tested, the V flag with V being set equal to bit 6
of the memory being tested and Z being set by the
result of the AND operation between the ac-
cumulator and the memory if the result is Zero, Z

is reset otherwise. It does not affect the ac-
cumulator.

The addressing modes are Zero Page and Ab-
solute.

The BIT instruction actually combines two in-
structions from the PDP-11 and MC6800, that of
TST (Test Memory) and (BIT Test). This, like the
compare test, allows the examination of an in-
dividual bit without disturbing the value in the ac-
cumulator.

Table 13-9. BMI.

This instruction takes the conditional branch
if the N bit is set (see Table 13-9).

BMI does not affect any of the flags or any

other part of the machine other than the program
counter and then only if the N bit is on.

The mode of addressing for BMI is Relative.

181

Table 13-10. BNE.

This instruction could also be called "Branch
on Not Equal." It tests the Z flag and takes the con-
ditional branch if the Z flag is not on, indicating that
the previous result was not zero (see Table 13-10).

BNE does not affect any of the flags or registers
other than the program counter and only then if the
Z flag is reset.

The addressing mode is Relative.

Table 13-11. BPL.

This instruction is the complementary branch
to branch on result minus (see Table 13-11). It is
a conditional branch which takes the branch when
the N bit is reset (0). BPL is used to test if the
previous result bit 7 was off (0) and branch on re-
sult minus is used to determine if the previous re-

sult was minus or bit 7 was on (1).
The instruction affects no flags or other

registers other than the P counter and only affects
the P counter when the N bit is reset.

The addressing mode is Relative.

182

Table 13-12. BRK.

The break command causes the microprocessor
to go through an interrupt sequence under program
control (see Table 13-12). This means that the pro-
gram counter of the second byte after the BRK is
automatically stored of the stack along with the pro-
cessor status at the beginning of the break instruc-
tion. The microprocessor then transfers control to

the interrupt vector.
Other than changing the program counter, the

break instruction changes no values in either the
registers or the flags.

The BRK is a single-byte instruction and its ad-
dressing mode is Implied.

Table 13-13. BVe.

This instruction tests the status of the V flag
and takes the conditional branch if the flag is not
set (see Table 13-13).

BVC does not affect any of the flags and
registers other than the program counter and only
when the overflow flag is reset.

The addressing mode is Relative.

183

Table 13-14. BVS.

This instruction tests the V flag and takes the
conditional ranch if V is on (see Table 13-14).

BVS does not affect any flags or registers other
than the program counter and only when the
overflow flag is set.

The addressing mode is Relative.

Table 13-15. CLC.

This instruction initializes the carry flag to a
O. This operation should normally precede an ADC
loop (see Table 13-15). It is also useful when used
with a ROL instruction to clear a bit in memory.

This instruction affects no registers in the
microprocessor and no flags other than the carry
flag which is reset.

CLC is a single-byte instruction and its address-
ing mode is Implied.

184

Table 13-16. CLD.

This instruction sets the decimal mode flag to a O.
This causes all subsequent ADC and SBC instruc-
tions to operate as simple binary operations (see
Table 13-16).

CLD affects no registers in the microprocessor
and no flags other than the decimal mode flag which
is set to a o.

Table 13-17. CLI.

This instruction initializes the interrupt disable
to a O. This allows the microprocessor to receive
interrupts (see Table 13-17).

It affects no registers in the microprocessor and
no flags other than the interrupt disable which is
cleared.

CLI is a single-byte instruction and is address-
ing mode is Implied.

185

Table 13-18. CLV.

This instruction clears the overflow flag to a
o (see Table 13-18). This command is used in con-
junction with the set overflow pin which can change
the state of the overflow flag with an external

signal.
CLV affects no registers in the microprocessor

and no flags other than the overflow flag which is
set to a O.

Table 13-19. CMP.

This instruction subtracts the contents of mem-
ory from the contents of the accumulator (see Table
13-19).

The use of a CMP affects the following flags:
Z flag is set on an equal comparison, reset other-
wise; the N flag is set or reset by the result bit 7,
the carry flag is set when the value in memory is

less than or equal to the accumulator, reset when
it is greater than the accumulator. The accumulator
is not affected.
It is a "Group One" instruction and therefore

has as its addressing modes: Immediate; Zero Page;
Zero Page, X; Absolute; Absolute, X; Absolute, Y;
(Indirect, X); (Indirect), Y.

186

absolute value of the index register X is equal to
or greater than the data from memory. If the value
of the memory is greater than the content of the
index register X, carry is reset. If the results of the
subtraction contain a bit 7, then the N flag is set,
if not, it is reset. If the value in memory is equal
to the value in index register X, the Z flag is set,
otherwise it is reset.

The addressing modes for CPX are Immediate.
Absolute and Zero Page.

Table 13-20. CPX.

This instruction subtracts the value of the ad-
dressed memory location from the content of index
register X using the adder but does not store the
result; therefore, its only use is to set the N, Z and
C flags to allow for comparison between the index
register X and the value in memory (see Table
13-20).

The CPX instruction does not affect any reg-
ister in the machine; it also does not affect the
overflow flag. It causes the carry to be set on if the

This instruction performs a two's complement
subtraction between the index register Y and the
specified memory location (see Table 13-21). The
results of the subtraction are not stored anywhere.
The instruction is strictly used to set the flags.

CPY affects no registers in the microprocessor
and also does not affect the overflow flag. If the
value in the index register is Y equal to or greater
than the value in the memory, the carry flag will

be set, otherwise it will be cleared. If the results
of the subtraction contain bit 7 on the N bit will be
set, otherwise it will be cleared. If the value in the
index register Y and the value in the memory are
equal, the zero flag will be set, otherwise it will be
cleared.

The addressing modes for CPY are Immediate,
Absolute and Zero Page.

187

Table 13-21. CPY.

Table 13-22. DEC.

This instruction subtracts 1, in two's comple-
ment, from the contents of the addressed memory
location (see Table 13-22).

The decrement instruction does not affect any
internal register in the microprocessor. Itdoes not

affect the carry or overflow flags. If bit 7 is on as
a result of the decrement, then the N flag is set,
otherwise it is reset. If the result of the decrement
is 0, the Z flag is set, otherwise it is reset.

Table 13-23. DEX.

This instruction subtracts one from the current
value of theindex register X and stores the result
in the index register X (see Table 13-23).

DEX does not affect the carry or overflow flag,
it sets the N flag if it has bit 7 on as a result of the
decrement, otherwise it resets the N flag; sets the
Z flag if X is a 0 as a result of the decrement, other-
wise it resets the Z flag.

188

DEX is a single-byte instruction, the address-
ing mode is Implied.

NOTE: Decrement of the index registers is the
most convenient method of using the index
registers as a counter, in that the decrement in-
volves setting the value N on as a result of having
passed through 0 and sets Z on when the results
of the decrement are O.

as a result of the decrement the N flag is set, other-
wise the N flag is reset. If the Y register is 0 as
a result of the decrement, the Z flag is set other-
wise the Z flag is reset. This instruction only af-
fects the index register Y.

DEY is a single-byte instruction and the ad-
dressing mode is Implied.

Table 13-24. DEY.

This instruction subtracts one from the current
value in the index register Y and stores the result
into the index register Y (see Table 13-24). The re-
sult does not affect or consider carry so that the
value in the index register Y is decremented to 0
and then through 0 to FF.

Decrement Y does not affect the carry or
overflow flags; if the Y register contains bit 7 on

Table 13-25. EOR.

The EOR instruction transfers the memory and the
accumulator to the adder which performs a binary
"EXCLUSIVE OR" on a bit-by-bit basis and stores
the result in the accumulator (Table 13-25).

This instruction affects the accumulator; sets
the zero flag if the result in the accumulator is 0,
otherwise resets the zero flag; sets the negative flag

if the result in the accumulator has bit 7 on, other-
wise resets the negative flag.

EOR is a "Group One" instruction having ad-
dressing modes of Immediate; Absolute; Zero Page;
Absolute, X; Absolute, Y; Zero Page, X; Indexed
Indirect; and Indirect Indexed.

189

Table 13-26. INC.

This instruction adds 1 to the contents of the
addressed memory location (see Table 13-26).

The increment memory instruction does not af-
fect any internal registers and does not affect the
carry or overflow flags. If bit 7 is on as the result

of the increment, N is set, otherwise it is reset; if
the increment causes the result to become 0, the
Z flag is set on, otherwise it is reset.

The addressing modes for increment are: Zero
Page; Zero Page, X; Absolute; Absolute, X.

Table 13-27. INX.

Increment X adds 1 to the current value of the
X register (see Table 13-27). This is an 8-bit incre-
ment which does not affect the carry operation,
therefore, if the value of X before the increment
was FF, the resulting value is 00. NX does not af-
fect the carry or overflowing flags; it sets the N flag

if the flag that is the result of the increment has one
in bit 7, otherwise resets N; sets the Z flag if the
result of the increment is 0, otherwise it resets the
Z flag. INX does not affect any other register other
than the X register. INX is a single byte instruc-
tion and the only addressing mode is Implied.

190

not affect the carry or overflow flags, sets the N
flag if the result of the increment has a one in bit
7, otherwise resets N, sets Z if as a result of the
increment the Y register is zero otherwise resets
the Z flag. Increment Y is a single byte instruction
and the only addressing mode is Implied.

Table 13-28. INY.

INX is a single-byte instruction and the only ad-
dressing mode is Implied.

Increment Y increments or adds one to the cur-
rent value in the Y register, storing the result in
the Y register (see Table 13-28). As in the case of
INX the primary application is to step through a
set of values using the Y register. The INY does

Table 13-29. JMP.

In this instruction,the data from the memory
location located in the program sequence after the
OP CODE is loaded into the low order byte of the
program counter (PCL) and the data from the next
memory location after that is loaded into the high
order byte of the program counter (PCH) (see Table
13-29).

As stated earlier, the "()" means "contents of"
a memory location. PC indicates the contents of the
program counter at the time the OP CODE is fet-
ched. Therefore (PC + 2) PCH reads, "the contents
of the program counter two locations beyond the
OP CODE fetch location are transferred to the new
PC high order byte."

The addressing modes are Absolute and Ab-
solute Indirect.

The IMP instruction affects no flags and only
PCL and PCH.

JMP Indirect-for indirect jump.
This instruction establishes a new value for the

program counter.
It affects only the program counter in the

microprocessor and affects no flags in the status
register.

IMP Indirect is a three-byte instruction.
In the IMP Indirect instruction, the second and

third bytes of the instruction represent the indirect
low and high bytes respectively of the memory loca-
tion containing ADL. Once ADL is fetched, the pro-
gram counter is incremented with the next memory
location containing ADH.

191

Table 13-30. JSR.

This instruction transfers control of the pro-
gram counter to a subroutine location but leaves
a return pointer on the stack to allow the user to
return to perform the next instruction in the main
program after the subroutine is complete (see Table
13-30). To accomplish this, JSR instruction stores
the program counter address which points to the
last byte of the jump instruction onto the stack us-
ing the stack pointer. The stack byte contains the
program count high first, followed by program

count low. The JSR then transfers the addresses
following the jump instruction to the program
counter low and the program counter high, thereby
directing the program to begin at that new address.

The JSR instruction affects no flags, causes the
stack pointer to be decremented by 2 and
substitutes new values into the program counter
low and the program counter high. The address-
ing mode for the JSR is always Absolute.

Table 13-31. LDA.

When instruction LDA is executed by the
microprocessor, data is transferred from memory
to the accumulator and stored in the accumulator
(see Table 13-31).

Rather than continuing to give a word picture
of the operation, introduced will be the symbolic
representation M- A, where the arrow means
"transfer to." Therefore the LDA instruction sym-
bolic representation is read, "memory transferred
to the accumulator."

192

LDA affects the contents of the accumulator,
does not affect the carry or overflow flags; sets the
zero flag if the accumulator is zero as a result of
the LDA, otherwise resets the zero flag; sets the
negative flag if bit 7 of the accumulator is a 1, other-
wise resets the negative flag.

The addressing modes include Immediate; Ab-
solute; Zero Page; Absolute, X; ABsolute, Y; Zero
Page, X; Indexed Indirect; and Indirect Indexed.

Table 13-32. LDX.

Load the index register X from memory (see
Table 13-32).

LDX does not affect the C or V flags; sets Z
if the value loaded was zero, otherwise resets it;
sets N if the value loaded in bit 7 is a 1; otherwise

N is reset, and affects only the X register. The ad-
dressing modes for LDX are Immediate; Absolute;
Zero Page; Absolute Indexed by Y; and Zero Page
Indexed by Y.

Table 13-33. LDY.

Load the index register Y from memory (see
Table 13-33).

LDY does not affect the Cor V flags, sets the
N flag if the value loaded in bit 7 is a 1, otherwise
resets N, sets Z flag if the loaded value is zero other-

wise resets Z and only affects the Y register. The
addressing modes for load Yare Immediate; Ab-
solute; Zero page; Zero Indexed by X, Absolute In-
dexed by X.

193

Table 13-34. LSR.

This instruction shifts either the accumulator
or a specified memory location 1 bit to the right,
with the higher bit of the result always being set
to 0, and the low bit which is shifted out of the field
being stored in the carry flag (see Table 13-34).

The shift right instruction either affects the ac-
cumulator by shifting it right 1 or is a
ready/modify/write instruction which changes a
specified memory location but does not affect any
internal registers. The shift right does not affect
the overflow flag. The N flag is always reset. The
Z flag is set if the result of the shift is 0 and reset
otherwise. The carry is set equal to bit 0 of the
input.

LSR is a read/write/modify instruction and has
the followingaddressing modes: Accumulator; Zero
Page; Zero Page, X; Absolute; Absolute, X.

Table 13-35. NOP.

194

Table 13-36. ORA.

The ORA instruction transfer the memory and
the accumulator to the adder which performs a
binary "OR" on a bit-by-bit basis and stores the re-
sult in the accumulator (see Table 13-36).

This instruction affects the accumulator; sets
the zero flag if the result in the accumulator is 0,
otherwise resets the zero flag; sets the negative flag

if the result in the accumulator has bit 7 on, other-
wise resets the negative flag. ORA is a "Group
One" instruction. Ithas the addressing modes Im-
mediate; Absolute; Zero Page; Absolute, X; Ab-
solute, Y; Zero Page, X; Indexed Indirect; and
Indirect Indexed.

Table 13-37. PHA.

This instruction transfers the current value of
the accumulator to the next location on the stack,
automatically decrementing the stack to point to the
next empty location (see Table 13-37).
Noted should be that the notation means push
to the stack. > means pull from the stack.

The Push A instruction only affects the stack
pointer register which is decremented by 1 as a re-
sult of the operation. It affects no flags.

PHA is a single-byte instruction and its ad-
dressing mode is Implied.

195

Table 13-38. PHP.

The following example shows the operations
which occur during Push A instruction.

This instruction transfers the contents of the
processor status register stack, as governed by the
stack pointer (see Table 13-38).

The PHP instruction affects no registers or
flags in the microprocessor.

PHP is a single-byte instruction and the ad-
dressing mode is Implied.

Table 13-39. PLA.

This instruction adds 1 to the current value of
the stack pointer and uses it to address the stack
and loads the contents of the stack into the A reg-
ister (see Table 13-39).

The PLA instruction does not affect the carry
or overflow flags. It sets N if the bit 7 is on in ac-
cumulator A as a result of instructions, otherwise
it is reset. If accumulator A is zero as a result of

the PLA, then the Z flag is set, otherwise it is reset.
The PLA instruction changes content of the ac·
cumulator A to the contents of the memory loca-
tion at stack register plus 1 and also increments the
stack register.

The PLA instruction is a single-byte instruc-
tion and the addressing mode is Implied.

196

Table 13-40. PLP.

This instruction transfers the next value on the
stack to the Processor Status register, thereby
changing all of the flags and settings the mode
switches to the values from the stack (see Table
13-40).

The PLP instruction affects no registers in the
processor other than the status register. This in-
struction could affect all flags in the status register.

PLP is a single-byte instruction and the ad-
dressing mode is Implied.

Table 13-41. ROL.

The rotate left instruction shifts either the ac-
cumulator or addressed memory left 1 bit, with the
input carry being stored in bit 0 and with the input
bit 7 being stored in the carry flags (see Table
13-41).

The ROL instruction either shifts the ac-
cumulator left 1 bit and stores the carry in ac-
cumulator bit 0 or does not affect the internal

registers at all. The ROL instruction sets carry
equal to the input bit 7, sets N equal to the input
bit 6, sets the Z flag if the result of the rotate is
0, otherwise it resets Z and does not affect the
overflow flag at all.

ROL is a read/modify/write instruction and it
has the following addressing modes: Accumulator;
Zero Page; Zero Page, X; Absolute; Absolute, X.

197

Table 13-42. ROR.

The rotate right instruction shifts either the ac-
cumulator or addressed memory right 1 bit with bit
o shifted into the carry and carry shifted into bit
7 (see Table 13-42).

The ROR instruction either shifts the ac-
cumulator right 1 bit and stores the carry in ac-
cumulator bit 7 or does not affect the internal
registers at all. The ROR instruction sets carry

equal to input bit 0, sets N equal to the input carry
and sets the Z flag if the result of the rotate is 0;
otherwise it resets Z and does not affect the
overflow flag at all.

ROR is a read/modify/write instruction and it
has the following addressing modes: Accumulator;
Zero Page; Absolute; Zero Page, X; Absolute, X.

Table 13-43. RTI.

This instruction transfers from the stack into
the microprocessor for the processor status and the
program counter location for the instruction which
was interrupted (see Table 13-43). By virtue of the
interrupt having stored this data before executing
the instruction and the fact that the RTI reinitializes
the microprocessor to the same state as when it was
interrupted, the combination of interrupt plus RTI

allows truly reentrant coding.
The RTI instruction reinitializes all flags to the

position to the point they were at the time the in-
terrupt was taken and sets the program in the
microprocessor.

RTI is a single-byte instruction and its address-
ing mode is Implied.

198

Table 13-44. RTS.

This instruction loads the program count low
and program count high from the stack into the pro-
gram counter and increments the program counter
so that it points to the instruction following the JSR
(see Table 13-44).The stack pointer is adjusted by

incrementing it twice.
The RTS instruction does not affect any flags

and affects only PCL and PCH. RTS is a single-
byte instruction and its addressing mode is Implied.

Table 13-45. sac.

This instruction subtracts the value of memory
and borrow from the value of the accumulator, us-
ing two's complement arithmetic, and stores the re-
sult in the accumulator (see Table 13-45). Borrow
is defined as the carry flag complemented;
therefore, a resultant carry flag indicates that a bor-
row has not occurred.

This instruction affects the accumulator. The
carry flag is set if the result is greater than or equal
to O. The carry flag is reset when the result is less

than 0, indicating a borrow. The overflow flag is
set when the result exceeds + 127 or - 127, other-
wise it is reset. The negative flag is set if the re-
sult in the accumulator has bit 7 on, otherwise it
is reset. The Z flag is set if the result in the ac-
cumulator is 0, otherwise it is reset.

It is a "Group One" instruction. It has address-
ing modes Immediate; Absolute; Zero Page; Ab-
solute, X; Absolute, Y; Zero Page, X; Indexed
Indirect; and Indirect Indexed.

199

Table 13-46. SEC.

This instruction initializes the carry flag to a
1 (see Table 13-46).This operation should normally
procede a SBC loop. It is also useful when used with
ROL instruction to initialized a bit in memory to a 1.

This instruction affects no registers in the
microprocessor and no flags other than the carry
flag which is set.

SEC is a single-byte instruction and its address-
ing mode is Implied.

Table 13-47. SED.

This instruction sets the decimal mode flag D
to a 1 (see Table 13-47),This makes all subsequent
ADC and SBC instructions operate as a decimal
arithmetic operation.

SED affects no registers in the microprocessor
and no flags other than the decimal mode which is
set to a 1.

200

Table 13-48. SEI.

This instruction initializes the interrupt disable
to a 1 (see Table 13-48). It is used to mask inter-
rupt requests during system reset operations and
during interrupt command.

Itaffects no registers in the microprocessor and

no flags other than the interrupt disable which is
set.

SEI is a single-byte instruction and its address-
ing mode is Implied.

Table 13-49. STA.

This instruction transfers the contents of the
accumulator to memory (see Table 13-49).

This instruction affects none of the flags in the
processor status register and does not affect the ac-
cumulator,

It is a "Group One" instruction and has the
following addressing modes available to it: Ab-
solute; Zero Page; Absolute, X; Absolute, Y; Zero
Page, X; Indexed Indirect; and Indirect Indexed.

201

Table 13-50. STX.

Transfers value of X register to addressed
memory location (see Table 13-50).

No flags or registers in the microprocessor are
affected by the store operation. the addressing
modes for STX are Absolute, Zero Page, and Zero
Page Indexed by Y.

Table 13-51. STY.

Transfer the value of the Y register to the ad-
dressed memory location (see Table 13-51). STY
does not affect any flags or registers in the
microprocessor. The addressing modes for STY are
Absolute; Zero Page; and Zero Page Indexed by X.

202

Table 13-52. TAX.

This instruction takes the value from ac-
cumulator A and transfers or loads it into the in-
dex register X without disturbing the content of the
accumulator A (see Table 13-52).

TAX only affects the index register X, does not
affect the carry or overflow flags. The N flag is set
if the resultant value in the index register X has
bit 7 on, otherwise N is reset. The Z bit is set if
the content of the register X is 0 as a result of the
operation, otherwise it is reset. TAXis a single-byte
instruction and its addressing mode is Implied.

Table 13-53. TAY.

This instruction moves the value of the ac-
cumulator into index register Y without affecting
the accumulator (see Table 13-53).

TAY instruction only affects the Y register and
does not affect either the carry or overflow flags.
If the index register Y has bit 7 on, then N is set,

otherwise it is reset. If the content of the index reg-
ister Y equals 0 as a result of the operation, Z is
set on, otherwise it is reset.

TAY is a single-byte instruction and the ad-
dressing mode is Implied.

203

Table 13-54. TYA.

This instruction moves the value that is in the
index register Y to accumulator A without dis-
turbing the content of the register Y (see Table
13-54).

TYA does not affect any other register other
than the accumulator and does not affect the carry

or overflow flag. If the result in the accumulator
A has bit 7 on, the N flag is set, otherwise it is reset.
If the resultant value in the accumulator A is 0, then
the Z flag is set, otherwise it is reset.

The addressing mode is Implied and it is a
single-byte instruction.

Table 13-55. TSX.

TXS is a single-byte instruction and its address-
ing mode is Implied.

Another application for TXS is the concept of
passing parameters to the subroutine by storing
them immediately after the jump to subroutine in-
struction.

This instruction transfers the value in the in-
dex register X to the stack pointer (see Table
13-55).

TXS changes only the stack pointer, making
it equal to the content of the index register X. It
does not affect any of the flags.

204

Table 13-56. TXA.

This instruction moves the value that is in the
index register X to the accumulator A without
disturbing the content of the index register X (see
Table 13-56).

TXA does not affect any register other than the
accumulator and does not affect the carry or

overflow flag. If the result in A has bit 7 on, then
the N flag is set, otherwise it is reset. If the resul-
tant value in the accumulator is 0, then the Z flag
is set, otherwise it is reset.

The addressing mode is Implied, it is a single-
byte instruction.

Table 13-57. TXS.

This instruction transfers the value in the stack
pointer to the index register X (see Table 13-57).

TSX does not affect the carry or overflow flags.
It sets N if bit 7 is on in index X as a result of the
instruction, otherwise it is reset. If index X is zero

as a result of the TSX, the Z flag is set, otherwise
it is reset. TSX changes the value of the index X,
making it equal to the content of the stack pointer.

TSX is a single-byte instruction and the ad-
dressing mode is Implied.

THE PROJECTS IN THIS CHAPTER ARE DE-
signed to demonstrate the basic capability of

analog voltage control. Analog voltage control is
used in process control systems, servomechanisms,
and other electronic circuits such as the AVC cir-
cuit (automatic volume control) in a radio. Analog
control lends itself nicely for control purposes
because of the ease with which you can use a sim-
ple potentiometer as a voltage developing sensor
for data pick-up and a simple transistor as a volt-
age or current driver circuit. The basic concept of
analog control is quite simple, but in practice it can
become technically very complex. The projects that
are presented in this chapter have been kept sim-
ple, but they still present a good basic demonstra-
tion of how analog control works.

Control systems come in two forms, which are
open-loop and closed-loop systems. The open-loop
system is one where the input control signal is in-
dependent of the system's output operation. The
closed-loop control system uses an input driving
signal that is dependent upon a feedback signal
from the output circuit. Two open-loop motor-

206

control systems are shown in Figs. 14-1 and 14-2.
A closed loop control system is shown in Fig. 14-3.

OPEN·LOOP MOTOR·SPEED CONTROL
Figure 14-1 shows the basic dc motor-control

circuit. The circuit is a simple series-regulator cir-
cuit that controls the dc current to the motor. Tran-
sistor Q2 operates as a series-pass transistor in an
emitter-follower dc amplifier circuit. In this circuit,
the controlling base current at transistor Q1 can be
very small because of the current amplification of
the circuit. Because only a small base current is re-
quired to drive this amplifier circuit, the drivingcur-
rent can be supplied by a potentiometer as shown
inFig. 14-1.A computer-controlled digital-to-analog
converter circuit can also drive the motor speed-
control circuit as shown in Fig. 14-2. In the circuit
of Fig. 14-1, the motor speed is dependent on the
setting of potentiometer R1, and in the circuit of
Fig. 14-2, the motor speed is dependent on the
analog output from the digital-to-analog converter.

Programs 14-1 and 14-2are two open-loopcon-

Fig, 14-2. An open-loop computer-controlled dc motor speed-control circuit.

207

Fig, 14-1. An open-loop dc motor speed-control circuit.

Fig. 14-3. A closed-loop computer-controlled dc motor speed-control circuit.

Program 14-1. An open-loop dc motor control demonstration program for Fig. 14-2.

208

Program 14-2. An open-loop dc motor speed-control program for Fig. 14-2.

trol programs for the C-64 computer that
demonstrate the principles of open-loop motor-
speed control. The two programs are designed to
use the D/A converter from Chapter 5. The D/A
converter should be adjusted to generate an out-
put voltage from zero to five volts. Program 14-1
turns the D/A converter into a sawtooth signal
generator, which causes the motor to start out slow
and speed up to a maximum rpm speed. The motor
will then stop and start over again. Program 14-2
is an open-loop program that gives you the ability
to control the motor speed from the C-64 keyboard
by entering control numbers between 0 and 255.

CLOSED·LOOP MOTOR·SPEED CONTROL
Using the open-loop control Program 14-2

along with the circuit of Fig. 14-2, you can easily
control the motor rpm speed. About 10 to 15 per-
cent of the actual motor speed is really controlled
by the load that is placed on the motor. You can
adjust the motor speed to 1000 rpm, but if the load
on the motor increases or decreases, the motor rpm
speed will change accordingly. If you are going to
keep the motor speed at 1000 rpm, you will need
a feedback signal from a rpm detecting sensor to
generate a rpm speed adjustment. When you add
a feedback control circuit, you have created a

closed-loop control system. A closed-loop motor-
control circuit is presented in Fig. 14-3. Program
14-3 is the supporting computer control program
for Fig. 14-3.

The heart of this closed-loop system is the
motor rpm detection sensor. The sensor used in
Fig. 14-3 is a permanent magnet dc motor (M2) that
is used as a dc voltage generator. The motor was
taken out of a used tape recorder. A tape recorder
motor is a good quality motor that will generate a
dc voltage between zero and eight volts if you open
up the motor and disable the rpm speed governor.
Most motors use a centrifuge type governor that
can be disabled by simply soldering the governor
contacts together. The shaft of the drive motor (M1)
is connected to the shaft of the rpm sensor-
generator (M2) The output voltage of the rpm
sensor-generator is directly proportional to the
speed of the drive motor. The output voltage of the
sensor-generator circuit is connected to channel
zero of the AID converter, which was presented in
Chapter 6.

When you have the motor speed-control circuit
of Fig. 14-3working as an open-loop controller, add
the speed-sensing circuit elements, which are M2,
R3, R4, C2, and C3. Adjust R3 so the voltage at
the AID converter input is 5 volts at maximum
motor drive speed. When the speed-sensing circuit

209

is functional, you are ready to load the closed-loop
control Program 14-3 into the C-64. Program 14-3
is an elementary closed-loopspeed control program.
The program's speed control function is slow to
react to a motor load change, but it will give you
a good demonstration of a closed-loopfeedback con-
trol system. When the program is run, it will ask
you to input the motor running speed data. If you
are using a Radio Shack drive motor, the input data
number will need to be greater than about 100 to
start the motor. The program is written to let the

motor speed reach its selected operation speed
before the speed control function starts working.
Figure 14-4shows the data display that is displayed
on the video monitor when this program is runn-
ing. The SPEED INPUT DATA is the entered data
that controls the running motor speed. The SPEED
SENSING LEVEL is the output data from the AID
converter after the motor has reached its running
speed. The SENSOR DATA is the current AID
converter output data, which is a relative indica-
tion of the actual motor speed. The sensor data is

Program 14-3. A closed-loop dc motor speed-control program.

210

Motor speed control program

Speed input data - speed sensing level
130H 75

INPUT SPEED DATA (1-255) - ? 130

Press <C > to change speed

Sensor data - error data - control data
74 1 128

Fig. 14-4.Video data display that is generated by the closed-
loop speed-control Program 14-3.

updated several times each second. The ERROR
DATA is the difference between the speed sens-
ing data and the sensor data. The error data is used
to compute the CONTROL DATA number that is
POKED into the USER PORT address location to
correct the motor speed. The program's closed-loop
function will attempt to keep the speed sensing
level number and the sensor data number the same
number. You can observe this control action by
holding the motor drive shaft slightly to slow down
the motor speed.

You might consider the closed-loop control
system very elementary. Even with its simplicity,
it will give you a good demonstration of a closed-
loop motor speed control system.

CLOSED·LOOP SERVO·CONTROL SYSTEM
The preceding projects were about controlling

the rotational speed of motors. Another control
function that is used in robotics, automation, and
hobby control projects is the control of a shaft's
rotational position. This type of shaft rotational
position control is usually referred to as SERVO
control. One hobby area in which servos are used
is radio-controlled models. The object of this servo-
control project is to control an electronic servo cir-
cuit with a computer.

The servo control system is a closed-loop con-
trol system that uses two basic electronic circuits,

which are a motor direction and speed control cir-
cuit and a shaft position pick-up sensor circuit. The
basic operation of the servo system is to generate
an electronic signal from an input data command
to move the servo control shaft to a given rotational
position. A generated electronic signal turns on the
servo drive motor to move the control shaft in the
proper direction, and when the shaft position sen-
sor indicates that the shaft is in the correct posi-
tion, another signal is generated to stop the motor.
The basic operation sounds quite simple, but the
required operational technology can become very
complex depending on the required positional ac-
curacy and servo operating speed. The project that
is described here does not require a high degree of
accuracy or speed because it is only a demonstra-
tion project. This project does have the capability
to perform the servo functions that are required for
hobby-level robotics.

The complete servo control system is built
around the circuit in Fig. 14-5, which is a bridge-
style servo amplifier that will control both the motor
speed and direction of rotation. The servo circuit
is a redesigned radio-control circuit that will work
from a single five-volt power supply.1 The single
five-volt supply voltage will make the servo
amplifier compatible with the D/A and AID con-
verters that have been presented in this book. The
servo circuit requires an input signal voltage of 2.5
volts to stop the motor and keep it at rest. An input
voltage above 2.5 volts will cause motor to run in
one direction and an input voltage below 2.5 volts
will cause the motor to run in the other direction.
The motor speed is controlled by how much the
input voltage is moved from the 2.5 volts resting
point. The servo's motor-control characteristics are
not linear because of the dc motor's operational
characteristics and the circuit's transistor amplifier
current gains.

When you have the servo amplifier completed,
you can connect it to the D/A converter and the
C-64 for an open-loop control test. Figure 14-6

(1)HowardG.McEntee,Radio Control Handbook, TAB
Books, Inc. 1971, pg. 147.

211

212

Open loop servo control test circuit

Fig. 14-6. Block diagram of the open-loop servo test circuit.

shows a block diagram of the open-loop test circuit.
This test circuit can be used with Program 14-4 to
test the servo amplifier. Open-loop circuit testing
should give you some test results that are similar
to the data that is presented in Fig. 14-7. The ac-
tual control characteristics will vary with different
motors and transistor gains, but the overall opera-
tion should be close. Circuit trimpots RA and RB
along with resistor RC can be varied to control the

maximum motor speed and the speed ramp-up
function.

A complete closed-loop servo control system is
presented in Fig. 14-8 along with its supporting
servo control Program 14-5.The servo system uses
a C-64 as the system computer, the D/A converter
from Chapter 5 to drive the servo amp, and the AID
converter from Chapter 6 to detect the shaft rota-
tional position. A standard 1K potentiometer is con-
nected to the main control shaft and used as the
shaft position sensor. The position sensor will
develop a zero to five volts signal that is dependent
on the shaft's rotational position. The control shaft
can not rotate a complete 360 degrees because of
the potentiometer end stops.

The drive motor is connected to the control
shaft through a series of pulleys to permit the motor
to run at a high speed and the control shaft to run
at a slow speed. The speed reduction also gives the
control shaft more driving power. The pulleys in
this project were taken from a used tape recorder,
but pulleys and drive belts can be purchased at
hobby shops.

To really put on the best demonstration, you
should label the main control shaft pulley with the
numbers 0, 127, and 255 which indicates the out-
put number from the AID converter for that shaft
position. When you load in the servo program, it
will ask you to INPUT a data number from 0 to
255. When a number is entered, the servo system
will move the control shaft so that number is next
to external pointer.

The positional accuracy and speed of opera-
tional of this system is limited only by the ability
of the programmer to write the controlling servo

Program 14-4. An open-loop servo test program for Fig. 14-6.

213

Motor speed and rotation direction
vs.

D/A converter "poke" control numbers

Control numbers which are POKED into
memory location 56577 to control the
analog output voltage of the D/A converter
in Fig. 14

Notes:
1. Poke control numbers less than 119 causes a clockwise rotation.
2. Poke control numbers greater than 178 causes a counter clockwise rotation.

Fig. 14-7. Graphical data display shows the relationship between the servo motor speed and direction and the D/A con-
verter POKE control numbers.

Program 14-5. A closed-loop servo control program for Fig.14-B.

214

215

program. The presented program is very simple,
but it will perform a nice demonstration for you.

CONCLUSION
This chapter has presented a series of open-

216

and closed-loop control projects. After you have
completed these control projects, you will be able
to comprehend the electronic control functions and
problems that are experienced in and connected
with the field of robotics.

THIS CHAPTER PRESENTS VARIOUS ELEC-
tronic circuits that are useful in the area of

electronic hobby projects_These circuits have been

used by me for various electronic projects, and they
can be used for many other projects with slight
modifications to fit your needs.

217

218

Fig. 15-2. An op-amp power booster circuit.

Fig. 15-3. A buffer amplifier circuit. This amplifier can be used to amplify an audio level signal from a data sensor and
transmit the signal on a coax cable for a long distance.

219

Fig. 15-4. A window comparator circuit. The circuit will work with supply voltages between 5 and 15 volts. In its present
configuration, it is a rise and fall detector circuit. The circuit is set-up to generate a logic pulse at the output of U2 whose
pulse length is equal to the rise or fall time of the input signal. If the rise or fall signal is longer than about 20 microseconds,
a computer can be used to measure the rise and fall time by measuring the pulse width of the output signal.

Fig. 15-5.A computer-controlled touch-plate circuit. The circuit is designed to generate a logic ONE pulse when you touch
the touch plate. The circuit can also be turned off and on by the computer.

220

Fig. 15-6. A computer-controlled audio oscillator.

Fig. 15-7. A computer-controlled audio amplifier.

221

Fig. 15-9. A CMOS crystal-controlled oscillator.

222

Fig. 15-8. A transistor crystal-controlled oscillator circuit.

Radio Shack PIN

Q1 - 276-2027
Q2 - 276-2020
Q3, Q4 - 276-2009
M1 - 273-025
S1 - OPOT slide switch
B1, B2, - 2 "AA" battery cells
01,02 - 1N914
RLVA, RLVB - small 5 V Radio Shack relay

Note:
1: Both inputs must be
logic "ONE" to turn off
the motor

2: Make sure that both inputs
never go to a logic "ZERO" at the same
time because this would turn on both
Q1 and Q2 which would short out the batteries.

Fig. 15-10. A small dc motor control circuit that is designed so you can turn the motor on and off and control the direction
of rotation with a computer.

223

Fig. 15-11. How to use a reed relay and a magnet as a rpm sensing circuit or a rotating position sensor.

Fig. 15-12. An optical sensing circuit. It will input data into the computer anytime the light beam is broken.

224

Fig. 15-13. A magnetic pick-up coil gear tooth sensor. When a gear tooth passes by the magnet, a change in the magnetic
field flux around the magnet causes a voltage to be developed in the pick-up coil. The pick-up coil voltage is then used
to turn-on the transistor circuit and generate a logic pulse every time a gear tooth passes by the magnet. A shows the
physical construction of the sensor assembly, B shows the electrical circuit, and C shows the practical application method.
This sensor requires a very strong magnet to generate logic pulses at slow gear speeds.

225

Fig. 15-14. Using a Hall-effect switch to input rotational position information into a computer. When the steel tab inter-
rupts the magnetIc circuit between the magnet and the Hall device, the Hall-effect switch will change logic states. Some
Hall devices will have switching times of less than one microsecond which will supply very accurate data to the computer.

226

227

Fig. 15-17. This 555 timer circuit can be constructed to experiment with pulse-width measurement program routines that
would be required for Fig. 15-4.

228

Fig. 15-18. This circuit is a 555 timer relay control circuit. Jumper J2 can be used to shorten the time delay.

Fig. 15-19. This circuit is a 555 timer free-running oscillator circuit with part values for oscillation frequencies between
100 Hz to 10 kHz. One could use this circuit as an external CNT clock signal for the C-64.

229

Fig. 15-20. This is a positional magnetic proximity detector circuit. The circuit generates a logic ONE signal when a steel
object is held close to the sensor assembly pole-piece. The sensitivity of the circuit is controlled by the size of the pole-
piece, the space between the Hall-effect chip and magnet, and the adjustment settings of RA and RB.

230

THE CIRCUIT BOARDS THAT ARE PRESENTED modore 64 and the Commodore 128.
in this Appendix will work with both the Com-

231

232

233

Fig. A-2. This is the circuit board layout for the top-side of the D/A converter board.

Fig. A-3. This is the circuit board layout for the bottom-side of the D/A converter board.

234

235

Fig. A-5. This is the circuit board layout for the top-side of the AID converter board (not full size).

Fig. A-6. This is the circuit board layout for the bottom-side of the AID converter board (not full size).

236

237

238

239

Index

A
ac bridge circuit, 173
ADC, 63
AID conversion, 62
A/O converter board, 64, 65
AID converter board, C-64, 67, 108
A/O converter board, VIC-20, 66
A/O converter circuit, 94, 117
AID converter circuit building in-

structions, 69, 70
AID converter circuit diagram, 107
AID converter circuit for the VIC-20,

96
AID test program, 127
address decoder board, 111
address decoder board schematic,

115
adjustable output voltage, 156
adjustable voltage range, 158
aliasing, graphical presentation, 138
analog control projects, 206
analog waveform recorder, 77
audio amplifier, 221
audio-oscillator Circuit, 221
automatic volume control, 206
AVC circuit, 206

B
BASIC language, 41

BASIC memory-expansion modules,
91

BASIC timing programs, 58
BASIC voltmeter programs, 72
BASIC waveform recording control

program, 134-136
BASIC waveform recording pro-

gram, 79-81
bridge-amplifier Circuit, dc, 170
bridge Circuit, capacitor-comparison,

174
bridge circuit, interfacing to a, 168
buffer amplifier circuit, 219

C
card-cage AID converter schematic,

124, 125
card-cage system, 110, 112
circuit board layouts, 231-239
closed-loop motor-speed control,

209
closed-loop servo-control system,

211
CMOS, 16
CMOS inverter buffer, 19
CMOS noninverting buffer, 20
CMOS operating characteristics, 17
Commodore 16, 1
Commodore 64, 1

Commodore 128, viii, 1
computer address locations, 43
continuity checks, 161
continuity test, eight-circuit, 164
control Circuits, 217
C-64 motor-control program, 29
C-64 relay program, 28
C-64 user port program, 26
curve-fitting program, 149

D
DIA Circuit, 227
DIA converter Circuit, 101
O/A converter circuit board, 102, 103
DIA converter circuit for the C-64,

100
O/A converter circuit for the VIC-20,

100
Darlington lamp-driver circuit, 15
Darlington transistor Circuit, 14
data direction register, 4
data register, 4
dc motor control circuit, 223
decoder board test program, 120
digital input data programs, 34

E
electronic measurements,

computer-controlled, 161

243

expansion-port pin assignments for
the C-16 and PLUSI4, 111

expansion-port plug-in connector
board, 118, 119

F
floating output, 156
Fourier series program, 143
Fourier transform program, discrete,

144
Fourier transform program, fast 144

G
gear tooth sensor, 225
graph-plotting routines, 128

H
Hall-effect sensor, 230
Hall-effect switch, using a, 226
high-resolution graphing program,

130
high-resolution waveform-recording

program, 85
hobby circuits, 217

I
IC input chip 74LS244 operation,

123
IC output chip 74LS373 operation,

123
input voltage, 157
instruction set, 6502, 177-205
integrated circuits, I/O interfacing

with, 15
interface circuits, discrete transistor,

11
interface Circuits, VIC-20, 91
interfacing circuits, 10
I/O circuits for the C-64, 104
I/O port board, 116
I/O projects, VIC-20, 91
I/O systemfor the C-16and PLUSI4,

110

L
LED Circuits, 32
LED display Circuit, 35
LED display programs, 37
LEDs, 17
light-level meter, 39
light-level meter circuit, 38
light-level meter program, 38
line regulation, 157
load regulation, 157

M
machine language, 41
machine language, 6502, 41
machine-language instructions, 48
machine-language monitor, 42

244

machine-language nomenclature,
51

machine-language time-delay
subroutines, 57

machine-language timing
subroutines, 59

memory map, 47
metal-film resistors, 157
motor-control circuit, 30
motor-speed control, closed-loop,

209
motor-speedcontrol, open-loop, 206
motor-speed control circuit, 207

N
null condition, 169
number tables, 44-46

o
op-amp circuit board, 74, 75
op-amp circuit building instructions,

71
op-amp power booster circuit, 219
opcodes,41
optical sensing circuit, 224
oscillator circuit, crystal-controlled,

222
oscillator, CMOS crystal-controlled,

222

P
PEEK, 5, 6
pendulum, view of the, 139
pendulum positional data, 141
plotting, high-resolution, 129
plotting routines, low-resolution, 128
PLUSI4, 1
PLUSI4 motor-control program, 29
PLUSI4 relay program, 28
PLUSI4 user port program, 27
POKE routines, 49
position sensor Circuit, 224
power supplies, 154
power supply construction projects,

159
program experiments, 25
projects, special, 58
push-to-test routine, 163

R
RAM,93
relay-control circuit, 30
resistance-checking program, 169
response time, 158
rf detector circuit, 218
ripple, 157

S
Schmitt trigger, 18

servo control program, closed-loop,
214

servo motor-control circuit, 212
servo test program, open-loop, 213
short-circuit protection, 157
signal analysis, 143
Simon's high-resolutiongraphics, 78
sine-wave circuit, 60 Hz, 172
sine-wave Circuit, 1000 Hz, 171
6502 instruction set, 177-205
6522 VIA circuit board schematic,

105
switch circuits, 33

T
temperature coefficient, 158
temperature-compensated circuitry,

155
temperature rating, 158
time-delay subroutine, 54
time-interval programs, 60
timer circuit, 555, 228, 229
timing programs, 58
touch-plate circuit, 220
transistor specifications, 12, 13
TTL,11
TTL circuits, 13
TTL inverting buffer, 21, 22
TTL operating characteristics, 16

U
UEB, 7
UEB-1, bottom view of, 9
UEB-1, top view of, 8
UEB-2, top view of, 10
universal-input power supply, 155
user port, 1, 7, 31
user port experimenter's boards, 7

V
VIA circuit, 6522, 104
VIA I/O chip, 91
VIA I/O chip, adding an extra, 94
VIC-20, 1
VIC-20 expansion port data, 92
VIC-20 motor-control program, 29
VIC-20 relay program, 28
VIC-20 user port program, 27

W
waveform recorder printout, 3, 142
waveform-recording printouts, 87
waveform recording program, 133
waveform recording system, 134
window comparators, 164
window comparator, using the, 167
window comparator circuit, 220
wire-wound pots, 157

Edited by Roland S. Phelps

o THE COMPUTER SECURITY HANDBOOK-Baker
Electronic breaking and entering into computers

systems used by business, industry and personal computers
has reached epidemic proportions. That's why this up-to-
date sourcebook is so important. It provides a realistic ex-
amination of today's computer security problems, shows you
how to analyze your home and business security needs, and
gives you guidance in planning your own computer security
system. 288 pp., 61 illus. 7" x 10".
Hard $25.00 Book No. 2608

o TRUE BASIC® PROGRAMS AND SUBROUTINES
Explore the powerful, built-in features of True BASIC-a

new language that Is destined to standardize microcomputer
programming. Now professional programmer and consul-
tant John Clark Craig shows you hands-on how True
BASIC can make your programming easier and less time-
consuming than traditional languages. Vou'll discover the
features that make True BASIC unmatched: coherent syn-
tax, compiled operating speed, greatly improved graphics
capabilities, structured language features, and portability.
224 pp., 50 iIIus. 7" x 10".
Paper $16.95 Book No. 1990
Hard $24.95

o MAKING MONEY WITH YOUR
MICROCOMPUTER-2nd Edition

Let your PC pay for itself by putting it to work in your
own profitable part-time business. This newly revised, ex-
panded, and updated idea book is overflowing with prac-
tical, proven business suggestions for getting started. Plus
you'll find sources for software needed to get started. From
setting up your office to locating tile best market, all the fac-
tors that equal success are provided. 208 pp., 78 iIIus.
Paper $10.95 Book No. 1969
Hard $16.95

o 101 PROGRAMMING SURPRISES AND TRICKS
FOR YOUR COMMODORE 64 COMPUTER

This exciting new collection of games, novelties, and
programming marvels is fresh, literate, and packed with all
kinds of downright amazing ways to have fun with your C-64.
And unlike other programming books, it makes no attempt
to instruct you-instead, the object is to entertain and be
entertained. 224 pp., 12 iIIus. 7" x 10".
Paper $11.95 Book No. 1951
Hard $18.95

Other Bestsellers from TAB

o LISP-THE LANGUAGE OF ARTIFICIAL
INTELLIGENCE-Holtz

Now here's your opportunity to learn and use LISP
... to enter the realm of artificial intelligence with confidence.
Holtz explains LISP vocabulary and how artificial intelligence
programming concepts differ. Vou'll get a look at how LISP
handles mathematical operations ... be introduced to logical
operators ... and see how close BASIC input/output is to
that of Common LISP. 272 pp., 7" x 10".
Paper $16.95 Book No. 2620
Hard $25.95

o 469 PASCAL PROBLEMS WITH DETAILED
SOLUTIONS-Veklerov

Now this unique self-teaching guide makes It amazingly
easy even for a novice programmers to master Pascal. With
a total of 469 problems ranging from the most basic to ad-
vanced applications, the guide provides a unique learning
opportunity for anyone who wants hands-on understanding
of the Pascal language and its programming capabilities.
224 pp., 23 iIIus. 7" x 10".
Paper $14.95 Book No. 1997
Hard $21.95

o TRUE BASIC® -A COMPLETE MANUAL
Written by microcomputer programmer and consultant

Henry Simpson, this invaluable guide covers all the main
features of True BASIC including commands, statements,
and functions, program control, input/output, file-handling,
and even graphics. Simpson even supplies you with exam-
ple programs that demonstrate all the programming func-
tions that can be performed by True BASIC as opposed to
Microsoft BASIC. 208 pp., 53 iIIus. 7" x 10".
Paper $14.95 Book No. 1970
Hard $22.95

o COMMODORE 64™ EXPANSION GUIDE-Phillips
Far more than just a product listing or a rehash of

manufacturers' sales brochures, these are the best of the
hundredS of hardware accessories currently on the market
. . . each one chosen for value and performance after ex-
haustive testing and examination. Vou'll find in-depth
background on each type of device-printers, disk drives,
modems, monitors, and photographic details. 288 pp., 31
illus. 7" x 10".
Paper $16.95 Book No. 1961
Hard $22.95

Other Bestsellers From TAB

o ONLINE RESEARCH AND RETRIEVAL WITH
MICROCOMPUTERS-Goldmann

This time-saving guide shows you how to turn a micro
into an invaluable research "tool" for digging up informa-
tion from databases across the country. Using Nahum
Goldmann's "Subject Expert Searching Technique,"
businessmen, engineers, physicians, lawyers, professors,
and students can be quickly and easily retrieve informa-
tion in the comfort of their work station. 208 pp., 119 iIIus.
7" x 10".
Hard $25.00 Book No. 1947

o COMMODORE 64™ ASSEMBLY LANGUAGE
ARCADE GAME PROGRAMMING-Bress

With the help of this outstanding guide, you'll be able
to create, plan, code, and test virtually any fast-paced ac-
tion game you can think of using assembly language
techniques-and you'll be able to really take advantage of
the power and amazing potential of your C-64. Plus,
you'll be a better programmer in all areas! 272 pp., 148 iIIus.
7" x 10".
Paper $14.95 Book No. 1919

o COMPUTER USER'S GUIDE TO ELECTRONICS
-Margolls

Assembly language will be easy to learn you'll be
able to do your own interfacing with peripherals and most
importantly, you can perform simple repair procedures
yourself. In fact, the savings realized by changing one bad
chip yourself will more than pay for this invaluable hand-
book! 320 pp., 250 iIIus. 7" x 10".
Paper $15.95 Book No. 1899
Hard $24.95

o INTERFACING YOUR MICROCOMPUTER TO
VIRTUALLY ANYTHING-Carr

Here, at last, is a sourcebook that's literally packed with
practical interfacing techniques, plus a wealth of useful
projects. Vou'll find projects such as a single-ended
amplifier, a differential amplifier, a universal rear-end, and
a preciSion 10·volt reference power source. All of these
building block circuits can be used in a variety of applica-
tions. 336 pp., 212 illus.
Paper $13.95 Book No. 1890
Hard $21.95

o COMMODORE 64™ ADVANCED GAME DESIGN-
Schwenk

Professional game designers George and Nancy
Schwenk reveal their winning formula for creating
stimulating, professional-quality microcomputer games for
family fun and even prOfit! Using three fully-developed C-64
games to illustrate game design, this innovative tutorial pro-
vides an informative and practical look at the conceptual
and implementation techniques involved. 144 pp., 14illus.
7" x 10".
Paper $10.95 Book No. 1923
Hard $15.95

o COMPUTER COMPANION FOR THE COMMODORE
64™-Haviland

An essential programming tool for every C-64 user! Ar-
ranged alphabetically, it provides instant access to BASIC
keyword names, tokens used for internal storage, the class
of Instruction, the required form, and conditions and results
of use. In addition, the author has included examples, error
messages, and helpful cautions and warnings on their use.
160 pp., Heavy Card Stock with Comb Binding.
Paper $11.95 Book No. 1913

o PERFECT PASCAL PROGRAMS
Much more than just another collection of programs,

this is a compilation of articles by Pascal experts who are
members of Washington Apple Pi-the nation's second
largest Apple® user's group. Covering applications from
simple utility routines to advanced programming techniques,
it's the perfect tool for Apple users and for Pascal program-
mers using almost any micro (Pascal features easy trans-
portability). 288 pp., 13 illus. 7" x 10".
Paper $16.95 Book No. 1894
Hard $22.95

o TROUBLESHOOTING & REPAIRING YOUR
COMMODORE 64™-Margolls

Written by computer expert Art Margolis, this excep-
tionally well-illustrated manual covers both simple chip-
changing techniques (the cause of about 50% of micro
breakdowns) and in-depth servicing data-includIng a
detailed Master Schematic of your machine that contains all
the parts numbers. So whatever the problem, you will be able
to troubleshoot and repair it yourself. 368 pp., 291 illus.
7" x 10".
Paper $14.95 Book No. 1889

o FROM FLOWCHART TO PROGRAM-Todd
Master the skills of effective, "bug-free" programming

with this practical approach to program design and develop-
ment. Using the flowcharting system of structuring a pro-
gram, you'll learn step-by-step how to break down the
problem logically, enabling you to tackle even large-scale
programs with confidence. It's your key to writing programs,
that are easier to debug, easier to change and expand, easier
to understand, and faster in execution. 192 pp., 190 illus.
7" x 10".
Paper $12.95 Book No. 1862
Hard $19.95

o 1001'THINGSTO DO WITH YOUR COMMODORE64
Here's an outstanding sourcebook of microcomputer

applications and programs that span every use and interest
from game playing and hobby use to scientific, educational,
financial, mathematical, and technical applications. It pro-
vides a wealth of practical answers to the question-what
can my Commodore 64 computer do for me? Contains a
goldmine of actual program! 256 pp., 47 illus.
Paper $10.95 Book No. 1836

o SERIOUS PROGRAMMING FOR THE COMMODORE
64-Simpson

Serious programming means writing programs that are
user friendly, well documented, and designed to take full
advantage of all of the resources offered by the BASIC
language, your DOS (disk operating system), and assembly
language routines. And that's what you'll find here-
everything you need to get more programming power from
your C-64! 208 pp., 124 iIIus. 7" x 10".
Paper $9.95 Book No. 1821
Hard $15.95

o SECRETS OF SOFTWARE DEBUGGING
How to find and eliminate the errors that keep computer

programs from working the way you want them to! This ex-
cellent learn-by-doing guide even shows how to keep those
bugs from happening in the first place! Vou'lIlearn step-by-
step, how to logically identify your problem, how to figure
out what's wrong so you can fix it, and how to get your pro-
gram up and running like it should using tested & proven
techniques from an expert in the field! 288 pp., 58 iIIus.
7" x 10".
Paper $13.95 Book No. 1811
Hard $21.95

Other Bestsellers From TAB

o ARTIFICIAL INTELLIGENCE PROJECTS FOR THE
COMMODORE 64™

This uniquely-exciting guide includes 16 ready-to-run,
full-explained projects illustrating a wide variety of artificial
intelligence techniques; a plain-English Introduction to ar-
tificial intelligence, robotics, and LISP; a complete glossary
of artifiCial intelligence terminology; easy-tO-follow examples
and Show-how illustrations; plus a quick-look-up index for
fast reference. 160 pp., 15 iIIus. 7" x 10".
Paper $12.95 Book No. 1883

o THE BASIC COOKBOOK-2nd Edition
Covers every BASIC statement, function, command,

and keyword in easy-to-use dictionary form-highlighted by
plenty of program examples-so you can cook up a BASIC
program in just about any dialect, to do any job you want.
Whether your interests are business, technical, hobby, or
game playing, this revised 2nd edition of our all-time bestsell-
ing BASIC guide contains exactly what you want, when you
want it! 168 pp., 57 iIIus.
Paper $7.95 Book No. 1855
Hard $12.95

o COMMODORE 64™ PROGRAMMING; A HANDS-ON
APPROACH TO BASIC

Here's a user-friendly guide for computerists who want
to get the most from the C-64's features and capabilities from
programming concepts to editing procedures and program
debugging. It gives practical insight Into how programs are
developed, tips and "tricks" used by profeSSionals, and
techniques for writing original software that is crashproof!
192 pp., 69 iIIus. 7" x 10".
Paper $9.95 Book No. 1831

o DEBUGGING BASIC PROGRAMS-Cecll
With the expert advice provided by this guidebook, you'll

be amazed at how eesy it is to write bug-free programs
... and to trap those errors that do creep in! Vou'll discover
that the most common errors are in syntax, assignment, and
placement of program statements-then find detailed techni-
ques for correcting them. Vou'll get all the how-to's for fin-
ding the correcting errors in arithmetic, strings, input/output,
even disk errors. 176 pp., 20 iIIus. 7" x 10".
Paper $9.95 Book No. 1813

Other Bestsellers From TAS

o INCREASING PRODUCTIVITY WITH PFS® -Burton
Here's an important money-saving guide that provides

expert guidance on the most effective ways to use all six
PFS modules to increase efficiency and productivity in your
business, nonprofit agency, or service organization ! Plus
there are 10 time- and money-saving templates or applica-
tions models that make it possible for you to prepare more
than 20 specific forms! 192 pp., 92 iIIus. 7" x 10".
Paper $14.95 Book No. 1789
Hard $21.95

DUSING. PROGRAMMING THE COMMODORE 64,
INCLUDING READY- TO-RUN PROGRAMS-Herriott

If you own or use a Commodore 64, here's a book that
you will want to keep permanently next to your micro. This
is the key to unlocking the enormous potential of the C-64
and using it to your best advantage! Set up and change
fascinating color, exciting original graphics, even make mu-
sic with your micro!lncludes ready-to-run programs!176 pp.,
7" x 10".
Paper $9.25 Book No. 1712

o COMMODORE 64 GRAPHICS AND SOUND
PROGRAMMING

Here's a hands-on, learn-by-doing approach to master-
ing the full graphics potential offered by your Commodore
64 (sprite, character, and bit mapped graphics), plus learn-
ing to take fullest advantage of the machine's remarkable
built-in three-voice music synthesizer chip ... using this col-
lection of 68 fascinating programs developed by the author.
256 pp., 300 iIIus. 7" x 10".
Paper $15.50 Book No. 1640

o COBOL-Jackson
Vou can be writing and running programs in COBOL

(COmmon Business Oriented Language) in a matter of hours
with this handy, plain-English reference guide. All you need
to know are the fundamentals of computer programming and
how to use a standard computer keyboard. Every phase of
the language is covered ! If you're serious about learning
computer business language, then this introduction to
COBOL is a must! 300 pp., 32 iIIus.
Paper $10.25 Book No. 1398

o BASIC STATISTICS-AN INTRODUCTION TO
PROBLEM SOLVING WITH YOUR PERSONAL
COMPUTER

Here is an introduction to BASIC programming that uses
statistical problem-solving techniques and programs as the
basis for mastering this popular high-levellanguage. It's also
an introduction to statistics that provides you with all the fun-
damental concepts needed to easily find solutions to a wide
variety of mathematical problems. 462 pp., 325 iIIus.
Paper $15.95 Book No. 1759

o PERSONAL MONEY MANAGEMENT WITH YOUR
MICRO-Milner

Here, at last, Is a collection of personal money manage-
ment programs that are practical, useful tools ... programs
that, for once, aren't more complicated and time-consuming
than the old paper-and-pencil method! Vou'll be amazed at
how Simple it is to put any household on the road to sound
money management using an Apple II/lie, or other home
computer. 240 pp., 77 iIIus. 7" x 10".
Paper $13.50 Book No. 1709
Hard $18.95

o BASIC COMPUTER SIMULATION-McNitt
Use your computer to find answers to questions that

simply don't have neat, easily found solutions. Now, this ex-
ceptional sourcebook introduces you to the how-to's of
modeling and creating simulations, and programs written
in a universal subset of BASIC that can be used on any BA-
SIC microcomputer. Loaded with easy-to-follow explanations,
detailed illustrations, and specific programming examples !
352 pp., 63 iIIus. 7" x 10".
Paper $15.50 Book No. 1585

