
ulcnoPnocffffrlilo nmD[.IEuTrLS

, sEttll[.an, lfonrBoor

A SSORT COT'NSE rcR

SCIEilTI{NS AITD E[I[}I[EERS

Br

BAJUOND !I. BEIWEST

II{D

DR. JOgEPH B. BGS

flEruClu NTS8IN'TE

FCR

PBOFEfISIOI{IL EDUCAIION

C.ER}IDOIE BUIIDI}IG
nrr.rgFrqt RD.
uaDxso[, N. J. o7gb0

PREFACE

As in learnJng to drlve a car, a nl,croprocessor nust be pnactlced

rLth. Iou cqnot really leara how tp use @e frm just read,i.rng books

alone. Sls course i.nclndes a ntcrocoqruter and nore lnfornatLon tlran

can be covered in a tbree-day senlnari because lt .l.s the autborst

purpose to glve yor suffLcient background, rsrlttea.naterlal, and

lurdrare to be able to des{gn a nLcroccnputer systen. BUT THIS C4$Rgl

hrFpea if the student does Dot strrdy ALL ttre lnfornatLon gLven rrltb the

course ald bulLd rry a systen using tbe lf,il-l,

COUNSE OUTLINE

RElDIlKt .{$S]I}ilMESITS

EXPENI!,TENTS

1-1

2-L

3-1
3-3
3-5
3-8
3-9
3-lo

g[P.
EIP.
ETP.
ETP.
EXP.
E]F.

#t
#z
lf3
#b
#5
#6

rcGIC AI{D INTERT'ACE DEVTCES

B.SSTC IPGIC
T. TOil-I}II'ENTINC BT'FFEN

II. II{VERTSE BUffER
rI[. .$ID SAIE
rT. $al{D GelS
V. OR GITE

VI. NOR GAE
VTI. EXCU'SIYE-OR GAIE

VIT[. EXCLTfiiIYE-ITO8 GAIE
IX. DrSC'USSrOil OF IOW-IRI,E

ruIP-EIOPS
I. R-S LAICH

II. R-S TLIP-fLOP
I[I. D-fNE TLIP-FIPP
IY. J-tr ITPE ELIP-FIOP
V. T-TIPE FLIP-EIOP

DECODERS,/DWT'LTIPIJAXENS

A{CODERSATIJ LTIPI,&Tffi S

I}MffiFACE DE\IICES
OPEI{-COIJ,ESTOR IOGIC
T?I-ST&TE IPGTC
BUS TRANSCEIVERS

AlIltTZIilG SONilNJEE PROBIE!{S

I'GIC

L.1-1
b.r-2
lr.1-2
b.1-3
lr.l.-lr
b.L-5
b.1-6
u.L-7
lr.1-8
lr.1-8

lr.2-L
b.2-L
b;2-2
L.2-2
I+.2-2

lr.3-1

b.h-1

h.5-1
\ .5-2
b.5-lr

5.o

5.L

5.2

5.3

SIIE SOFI'lflnE DESIGN PROCEDIIRE

SfEP 1: DEFINE ltIE PA0BLEU

STEP 2: P.0BTIIIO$ THE PROBLEI!
BIOCKS

Slm 3; .0IEOBITHU DETEIOP!{E!$?
Il]R EACH PTRTITIOII

5-t

5-z

5-e

5-tz

INTO TUUCTIONAI'

.lxttrzrNc soFlw^[RE PRoBIEI'Is (comnlurD)

5.\ OBJECTTVES TO FIOT'CHTBTS

5.5 PBOCEDURES ArtER AICORT$IU DE\IEIOP!.IENT

QIIESTIONS

tm ilnomng,/sorrliltRr tpPRoAcE T0 I'frcRoccn-tnngR DEsrGu

II{IRODUCTION

5.1 HIRDWARE COST

6.1.1 STSTEM SFEED
6.L.2 DIn{OBI BEQUTBEI'{EIIIS
6.L.3 Vo nregmB@NTS
5.1.1r PERIPEER.AL DEVICES
6J.5 DEYICE STIPPORT
6.L.6 tflcRoPnocEsgoR EfiDi{tRE

SEI^ECTIO}T St'MM.Off

6.2 SOTffARE COSTB
t

6.2.L PROCESSOn ORG.0IITZATIOI{
6.2.2 PRSBAI'f-slBucrItnE
6.2.3 rI{PIAMENTAIIoN r,JuWiU&E

6.3 sf,sr$-f cosrs

6.3.L DEVELoP!€NT cosrs
6.3.2 MoDrrrclrroN cosrs
6,3.3 !4.[IUTEN.0]ICE C6lS

6.h A PERSPECTTVE oN C6TS

6.5 TBADrlte oFF sort'r{tRE AND gtRD[ilaRE

6.9.L oOIIDITIONS WIIICH LEAD TO
DESIOI{ 1n'.CDE OI'FS

6.5.2 STS1EU SFEED PROBIJ!{S
6.5.3 srsluM cosr PRoBLEl.ts

6.6 EenDt,t&E sFEm tn.{DE otr'rs

6.6.L pRocE$sons txD ltEl.loRrns
6.6.2 I}ECODE I'GIC
6.6.3 I{BORI ilITFEBS
6.6.b SPEcI.ILIZED I!{TEBTAcE DETICEI
6.6.5 D{IERRUPIS

6.7 SOFmAnE rRtDE OmS

6.7.1. FRMRA}T IOOPS AI{D SUBROTNINES

5-n

5-22

5-23

6-L

6-2

6-2
6-3
6-5
6-7
6-7
6-9

6-9

6-10
6-11
6-II

6-L2

6-L2
6-r3
6-1I

6-L5

6-L6

6-L6

6-n
6-A

6-2L

5-2J
622
622
623
6-U

6-25

6-25

6.7.2 FI'NCTIOIIAL COUpUTATIOTS
6.7.3 BEPEAfED COUpUUIIoNS

5.8 $ruM.oR:r

RT,PNESEMTIIG BI}IINT DAIA

NI'MBER STSTEU CO}MERSIOI{S

DECIilAL TO BIT.ABT
BIS.OBT rc DECIUAL
DECIUAL TO OCTAL
OCTEI TO DECII{AL
DECII{AL TO HEIADECII.IAL
HEX.CDECII.'IL fO DECI}{AL
coNvmslous

OC:TII TO BI}IABI,
HEI.qDECIUAL TO BII{rff,
.OCIIL TO HEI.ADECII{AL;
fiO BACK

BCD mnAEnS

BII{IRI IIRICTIOI{S

BIUART ARITHMETIC ^OIID IPGIC INSIRUCTIOTS

11.1 CoUPUTER .0RI$IME?IC II{SmUctIOilS

L1.1.1 tldo'S COUPI,EMENT NO4ATIO}I
IL.I.z BINANI .0RIITIUEEIC

rL.2 COUpUmn rtrrc TNSTRUCTiOUS

TT.2.2 IOGIC COMPTE}IENT
JJ.z.? IOGIC .E}ID
1L.2.3 IOOIC 0R
Il.z.lr IOOIC XOR

TPPESpICES

UODITIED 55OO OP CODE T.{BI,E

KIU INFOR}TIfIOII

IIU PNGil}T DATA SNEET

rIil BIPCK DIII}BA}T

KIU INTER,FACIT{G DATA SHE T

6-26
6-27

6-27

7-L

8-1
8-1
8-3
8-3
&L
8-5

8-5

Ll-1

u-1
u-3

\-5

tL-5
11-6
L1-6
IL-7

9-L

10-1

A-1

B-1

B-2

B-3

l .

B.

KIM MONITOR IMPORTANT ADDRESSES

COLLECTED KIM SOFTWARE

DISPLAY ROUTINE
DIRECTORY
VU TAPE
SUPERTAPE
TAPE DUPE
MOVE -A-BLOCK
HEX DUMP
FREQUENCY COUNTER
ANALOG TO DIGITAL CONVERSION DEMO
REAL-TIME CLOCK
TIT,IER
HEDEC
BINARY MULTIPLICATION AND DIVISION
16 BrT SQUARE ROOT
LUNAR LANDER
HORSE RACE
ONE-ARMED BANDIT
KIMMAZE
MUSIC MACHINE
HUNT THE WUMPUS

KIM DEMONSTMTION TAPE

INDEX
PROGRAM HEX DUMPS

SPECIAL APPTICATIONS

EIGHT BIT A TO D CONVERSION
MULTICHANNEL ANALOG INTERFACE

KIM/6s00 INFORMATION SOURCES

KIM SOFTWARE SOURCES
65OO MICROPROCESSOR SUPPTIERS

GENERAL REFERENCE INFORMATION

TTt REFERENCE SHEETS

MOS TECHNOLOGY DATA SHEETS

MI CROCOMPUTER B IBt IOGRAPHY

GLOSSARY OF COMMONLY USED TERMS

B-4

C.

c-1
c-2
c-3
c-4
t . - /
c-8
c-10
c-11
c-13
C-L4
c-15
c- 16
C-L7
c-22
c-23
c- 26
c-27
c- 28
c-31
c- s3

D.

E.

F.

D-1
D-2

E-1
E-3

F-1
F-5

G.

H.

I .

J.

K.

3Nt1In0 ltsunoc

MI CROPROCESS I NG FUNDAMENTALS

COURSE OUTLINE

FIRST DAY

I. Introduct ion to Microprocessors and Microcomputers
A. Hardware
B. Software
C. Nurnber systems

II . Operat ing a Typical Microcornputer: The KIM-1
A. Exanining and nodi fy ing memory
B. Loading and running sample programs
C. Using the KIM audio cassette systen
D. Using the single step mode

II I . Exper inent 1: Loading and Running a Sinple Program

IV. Microc.omputer Archi tecture and Elenentary Prograrnning
A. Sinpl i f i -ed CPU model
B. Data, address, and control buses
C. Memory and I /O addressing
D. The KIM monitor
E. A selected subset of instruct i -ons

V. Programming Examples
A. Paral le l data input and output
B. Use of the KIM-1 keyboard and display

VI. Exper inent 2: Paral le l Data Input and Output

SECOND DAY

I. Interfacing Microconputers to External Devices
A. Using programmable I /O l ines for device control
B. Device control sof tware techniques
C. Common interface devices
D. Analog input and output techniques

II . Exper iment 3: Control l ing External Devices

I I I . Further Software
A. Flags and condi t ional branches
B. Count ing and t i rn ing loops

1-1

THIRD DAY

I. Advanced Software
A. Binary and decimal ar i thrnet ic
B. Indexed addressing
C. Indirect addressing

II . Interval Timersi and Interrupts
A. Using an interval t imer for t ime delays
B. The 6502 interrupt system
C. Interval t iner t r iggered interrupts
D. fnterrupt appl icat ions

I I I . Exper inents 5 and 6: Using the Interval Timer and Interrupts

IV. Ser ia l Data Input and Output
A. The KIM-1 ser ia l T/O system
B. 20 rnA current loop and RS-232 interfaces
C. The ASCII code
D. KIM monitor,rout ines for ser ia l I /0

IV. Further Topics as Requested

L-2

SINInN0|SSV oNtovitu

P.EADII'IG ASS fGI!,IENTS

Ii is -.rirtua]]lr inrpossibla to reaci a.}l ihe r+rltten materia] given

rith this colrrse j-n the tno nights during wir-ich the course is given.

This rnaterial is given with the course to facilitate a hi.gher level

of expertise than can be presented or absorbed in a three-day seninar.

lhe readi-ng assignnents llsted belos are tr-ighly recornnended in order

to receive the most from the next dayrs lecture. These assignraents

O!fLY cover the two nights of the course. &ead these assignnents for

infor:nation and understanding, NOT FOR DETAILED knowledge.

PIRST NIGHT

SECOT.ID NIOHT

KII'I-I USEP,
MAi{tJAT

Chapter 1
Sections
2.1 thru 2. l r
Chapter l
Section h.1
Chapter I

HANDWARE
MANUAI

Sections
1.0 ttru
1.2, r .J.1,
L.3.3 t
1.)+ thru
1.L.1.2.L

Sections
1.3.2 thru
1^^/

L.) .2.O

1.5 thru
. / l
. ,L.Oo4.J

PRGRA},I
M..INUAT

Chapter
Chapter

Chapters
^! /U-JtUt>tor(
Section
11.3 r
11"3.1
Appendix H

SEMINAR
WORKBOOK

Basic Logic
Interf ace
Devices

Glossary of
Cornmon ?erms

l_

2

A5"TER COMPIETION OF T}IE SE}"ID[AR:

You should reread aIL the reading assigrunents FOR DETAILED IOIOh|LEDGE.

Ttrere are many sections of the KIM-I USER l,lAMrAl, H.ARDWIRE AI{D PROGRA},I

M4NUALS, that were not made reading assigrunents. this D0ES NOt MEAI{

that they are wtimportant or not relevant. The reading assignnents were

made a basic understandiag for tbe lecture materia^L. You should reari

FOR. DEf,AILED IC{O"{LEEE the entire set of manuals anci the SB{!\AR WORKBOOK.

You will firrd all the jaforrnation in the W0RKB00K, highly eondensed and

extremely useful.

2-r

sINStUtUrdXS

,{,

KIM EXPERIMENTS

WARNING: Your KI}I-I experinental set-up operates on 1ow voltage on1y.

EXPERII,IEM 1 Loadi.og and Rrmning a Sinple Progran

1. KIM-I Ini.tializarion:
Tura oa 5V power. Press the RS key (reset). The display should
light e''d show some ramdom hex nutbers.

2. Address Selectlon:
Press AD to put ICIM ln address entry uode (address entry mode ls
autonatically seJ-ected after reset). Enter 0000 oo the keyboard.
Obsexive the dl-splay see 0000 tn the left four digLts. You are
looklug at locacloa 0000 in the KIM-I read/wrlt@ ul€rtrorlr Ttre
rlght two dlgits show the contents of thls Iocat,lon. Wtrat are the
cootents? Look at the next location by presslag *. Coatlnue pressing
* to see what aumbers are 1a your DeEory after system start uP.
Do you see a pattera to the ouubers? Go to locatlons 01001 0200t
0300, 0800, etc. and note the nunbers you flad. KIM readlwxLte
meaory rauges froa 0000 to 03I1F. I{hat utlrabers are found ln locatl-oos
whgre there is oo physlcal uenory?

3. Data Eatry:
Go to address O0OO. Put KIII into the data entry node by pressJng the
DA key. Press varLous keye and obsenre the display, To go co the
aext address, press *. For practLce enter the followLng data lnto
the KIM-I memory:

address data

0000
0001
0002
0003

Ttre * key alJ.ows you to lncrenent the address Ln either the AD or
DA mode. Eow do you go to a lower address or to a much hlgher
address?' You must retura to the address mode and key la the new
address theo contlnue data entry in the DA node.

4. Load{ng a Carned prograu:
Enter the progrrnt a8 lleted on the codl-ng eheet folJ.owtng this page.
This prograo w111 cycle through the meuory and dlsplay the conteuts
of each locatlon. For uore lnforuatlon consult the prograo aoces
in your literature package

00
01
02
03

3-1

PROGRAM: EPERIMENT 1 - Display Routine

MrcRopRocESSoR coDING SHEET PAGE oF

I"ABEL ADDRESS OP CODE MNEMONIC COI&i1I{TS

0000 A2

0001 04

0042 8A

0003 48

0004 A9

0005 62

0006 8D

0007 47

0008 L7

0009 20

000A t9

0008 1F

000c 2c
000D 47

0008 L7

000F L0

0010 F8

0011 68

0012 AA

0013 ca,
o014 DO

0015 EC

00L6 E6

0017 rA
0018 DO

0019 E6

001A E6

0018 FB

001C DO

00lD E2

GENERAL COMMENTS 1

3-2

5. Progr:m Execut. ion:
Go to the beginning of rhe progrrTq using rhe AD mode (address 0000).
Press the G key. The address display wi l l count up and the data
display wi l l show the contents of each memory locat ion. To stop
the program and return t.o the KrM monitor, press RS. This program
is written as a loop and will run forever.

6. Opti.onal- Experiment:
select one of the game programs in the lj.terature package and load
and run i.t. Lunar Lander, Horserace, and Kj.maze are reasonably short.

ilGERII(ENT 2 Parallel Dara Inpur and Output

1. Prepare Experlmental Equipnreut:
Locate the SK-10 breadboarding socket and the LR-25 module. Plug
the LR-25 into the SK-10 socket so that it is oriented as shown in
the drawing be1ow. Insert the flat cable plug 1n the center of the
SK-10 as shown. The flat cable should enter the plug fron the side
away from you. This will put pin 1 on the front left side. Connect
the black lead (GNn) to the GND ter-rninal on the LR-25. Connect the
red lead (+5V) ro the +5 LR-25 rerrinal.

Experlmental Breadboard

f'L J rt < :-' '*.}-.uo''l
S

l - t . i t {st : i f ,
wl

. f
- ; , .0t-i)6.r +r- r

{f

tr

3-3

(red)
(black)

pi,Jt{

Use 8 w-ires to cormect the KIM PA output lines to the I LED
indicators on the LR-25. Connect:

pAO = piu 9 to IA
pAL = pin 10 to IB
pA2 = pin 1l to IC
pA3 = pln J.2 to ID
pA4 = pin 13 ro IE
pA5 = pin 14 to IF
pA6 = pin 15 ro IG
pA7 = pia 16 to IE

Use 6 sires to connect the KIM PB ioput/output llnes to the
switches and pulsers on the LR-25. Connect:

pBQ = pin I to SA
pB1 = ptn 2 ro SB
pBZ = pin 3 to SC
pB3 = pin 4 to SD
pB4 = pin 5 ro pt (0)
pB5 = pi:r 5 ro p2 (0)
ac pin 7 used in interrupt e:cp.
PB7 plu 8 ro 61[D

2. Eight Blt ParalJ-el Output:
Establish the eight PA lines as OUIPUT LINES by storiag the
aumber $I"F fu the PA data direction register at locatloa
$1701. Use the KIM-1 keyboard to do thls. Now use the
KIM-1 keyboard to write various hex oumbers into the output
register and observe the effect oo the I LED lndicators.
Go to address$1700 = PAD, press DA, then press hex keys.
You wllL see the blnary represenLatiou of the hex anrnbers
shown in the data di.splay.

Note: Ttre RS key resets the data direction registers to
$00 = INPUT, so you must reenter the $Ff io $1701 each time
you use RS.

3. Parallel Input From ExternaL Swltches:
Establish PBO - PB7 as INPUT by storLng $00 in the PB data
direction register at locatlon $1703. Remeruber that this
ls done automaticalJ.y by the RS key. Use the KIM-L keyboard
to look at the conteats of the PB data register at locatioo
$L702. 0perate the exteroal switches and obserrze the effect
ou the memory contents.

4. Nr.rnerical Input frou the KilFl Keyboard:
The KI!1-1 keyboard is scanned by a software routlne. If no key
ls pressed the routlne returns wlth $15 1n the accrnulator. If
a key ls pressed, the routlne returns with the hex key code ln the
accumulator. The followlng program ca1ls the keyboard lnput
routloe aad transfers the contents of the accumulator to the
PA output port. This will enable you to see the key codes on
the 8 LED iadicators.

)-4

Keyboard Input Test, Program

0000 D8 CLD set binary mode
0001 M LDX// estabLish PA as out
0002 I'F $FF
0003 8E STX@
0004 01 $01
0005 17 $17
0006 20 JSR@ call keyboard input routine
0007 64 $6A
0008 1F $1F
0009 8D STAC send contents of A out to PA

{ 000A' 00 $00
.. ,,i* oooB 17 $rz

-, b*- ,r000c 4c JMPG J-oop back for more data

^.,Q., T r 000D 06 $06
.,'iYt

*
\ o00E o0 $oo

)
To run thls prograu, go co addrees $0000, Ehea press G. Ttre
display wiJ-l go dark because lt is :rot used by this program.

5. Prograro Output to the KIM-J. Dfsplay:
The KIM-1 display is a softnare drlven multip3.exed seven segnent
display. We are going to use the dlsplay to output hex nr.rmbers,
Three Eexoory locatioos hold the nuobers which are displayed by
the dlsplay routlne. Ttre leftmoet two diglts are stored ln
$0088, the niddle th'o 1n $00FA, the right two ln $00tr'9. To
display a number, we must store lt t4 the approprlate locatlon
and then call the display routlne. If a contiauous dlsplay ls
desired, you must include the call instruction in a loop so that
i.t is repeatedly executed. The following prograrn displays
0L0203 oa the KIM-I dlsplay.

Display Output Test Program

49 LDLII load first number
01 $01
8D STA@ store lt ln left display
IB $TN
00 $00
A'9 LDA# load second nr.rmber
02 $02
8D STA@ store it in niddle dispJ-ay
FA $FA
00 $00
A9 LDAI/I load thlrd nr.rober
03 $03
8D STA@ store lt 1rr rlght dtsplay
I .9 $r9
00 $00
20 JSR@ call dlsplay routine
lF $rr
lF $rr
4C JMPG loop back to call routlne agaln
lE $18
00 $00

000F
00L0
001L
0012
0013
0014
0015
0016
0017
0018

100L9
. I 001A

{n I 00tB
I 001c
[ooro
I 0018
' 001F

-*'0920'002L

^i *,- 'O022v''r oo23

3-5

Note that thls progrrn staree ee $00*1i" Gc che prograB
begtnnfug aod run the pragr.aa" 'Pr*ss RS te st6F the
Prograo.

As a final project, you rnright like to 1lnk the keyboard
eatry program with the display outpr.tt progrso so that the
hex key codes are displayed in the righE hand displays.
Eow would the prognms given need to be nodifled? Try
it and see what you can do.

EXPERIMENT 3 Cootrolliag ExternaL Deviees

1. Single Step Exeeutlon of Programs:
Ihe KIM single step function uses the NMI interrupt feature.
In order to actj.vate the slngle step futrctlon, you nust load
the proper address into the II}fI vector locatioas. This is
doue by stoting $00 lu location $l"7F"E and $1C tn location
$17E8. Ooce this vector has beea loaded the ST key can be
used to stop a program and returu Lo the KIM monitor.
You are aow ready to try the single ste:, fr.rnctloa" Load
a progrilm and set the address to poiat lo the progran start
location. Switch the keyboard switch to liSorr. Press G
and one lnstructlon vilL be executei. I{hile in ghe SS eode

' the data display will only show the first byte of each lnst,cuction.
I,lhlle ln the SS mode, you can use the AD and DA modes to exanlne
and nodlfy ey memory l-ocatlon. T1're PC key w111 recall the
progrErn counter vaLue for the next iastructlon to be executed.
After each i.nstruction, the CPU registers are stored in memory
where they can be examlned or nodi.fLed, this g*ves you the
Eeaas of checking program execution or nodifiyLng register
vaLues between steps. Memory locatlons f,or regl.ster storage
are:

OOEF PCL
00F0 .p6H
00FL status reglster (P)
00F2 stack pointer (S)
00F3 acetrmul"ator (A)
00F4 Lndex register (Y)
00F5 index register (X)

2. We are norr going ge r'nrm:giae that our KIM-I Ls connected to an
experlmental apparatus. The devlces to be cont'dolled are hooked
to the elght PA llnes (used agaln as output). 0f course we
will have to use appropriate polrer drlvers and Lnterface devlcee
to convert the TTL output slgnals to whatever is needed. We
w111 al.so have several feedback slgnals to feed lnto our KIM-I.
Ttrese are considered to be si"pLe contact closures aad are

" connected to the PB Lines whlch wtll be prograuned ae lnputs.
The devlces to be controlLed and their laput/output aesignments
are showu in the following schemati-c:

3-6

, ,
7

3
f
r
9

7

LEVEL
lEl'tP
DRAIN

EEAT
START

STOP

lir (1)
nI \ r , /

cL (0)

oN (1)
(1)

(0)

Nc
o

A],ARIY

' .AFFFF
DNT

AGITAIOR

FILLii2
FILL#1
DMIN VALVE

6 ItE.\TrR
4 nne

Let SA = Level, SB = Teup., SC = Drain, SD = I leat, Pl = Start ,
P2 = Stop.

3. We are now going to use the logical i.nstructions OR and AI.ID
to turn individual devices on and off. Load che following
progrr{ and single step through 1t so you can see the effect
of each instruction on the output LEDrs which represenL the
actual devices. NoEe that you wiLl have to look uP your own
op codes.
Device Control Program

0000 A1 LDA/I $rr eshblish PA as output
2 vu SlAe $IioL
5 A{ tDA/l $00 turn off all devices
7 g* STAG $1700
A Arr LDAG $1700 get outPut status
D {81 oM/l $40 turn on coffee pot
F Se STAG $1700

12
^p

LDAG $1700 set status
,"15'""-tsb onail* +o*i i"t bn ptni!r*

,t-17 ep sTA.9*-JfZoU
-1A aD LDA@ $1702 get iupuE status -*
LD h? AbID/l $04 check state of drain valve

r_ lF
2L
24
26
29
2C
2E

^i1\(\ Oc'- ' - '(/ t v--

(, ;o" , - , , r '
: . I

_

t , .
l i

f t '

t , i :
I ; -
l i)

, l

" i r

\
r^rU ,- , l

\v . , j
|t l

t t \

j

Ds glrgr $F9 if drain is open, loop back and check agai.n
A? LDAG $L700 ger srarus
s? 0RA// $08 drain ls closed so start EL].L lll
F;. SreG $1700
r:'li LDAG $1700 get status
sX AIID/I $f7 turn off ELL]- llL
$? STAG $1700
4,C JMP@ $1C4F

etc.

As you run through the progiV.n, turn switch SC on and off co si,uulate
havi.ng the drain valve open and closed.

Program termination: r

ff you want to have a program run just oncer You must end it
with a command to return to the KIM monitor. This can be
done by terminating your Program with: JMP@ $1C4f'.

\D
. l

D\ oo
. j : ,3-7

E)(PERIMENT 4 Countlng and T{rn{ng Loops

1. Counting Loops:
The following example shows how to set up a cotrnter (bere the
X register) to a1low executioa of a progta'n segnent for some
preselected nunber of tlmes. We eould Just as easily used the
accumulator, the Y register or any r/w moory locatiou as a
couDter.

Counting Loop Prograo Example

LI)A# $l'f establish PA aa output
srA@ $1701
tDA/l $00 turn off all LED's
srAG $1700

COUNT LDX/ SOe load cormter wLrh 10,
^LOOP INCG $1700 iocremeat rhe ourpurrflort

DEX decrement the cor:nter
BNEr LoOP if cor"rater not zera. jr:mp to loop

DONE JMPG $1C4F return ro rhe moniror

Rr:n thls program in the SS node and at fu11 speed. Change the
count value and observe the result.

2. f {ming Loops:

. A11 operations lrr the KIM-I system are tioed by the crystal clock
oscillator operatlng at a nominal 1.000 MIIz. The osclllator ls
quite stable, but nay not be exactly L MEz slnce that would requlre
a nore experisive crystal. If you need preclss. g{m{4g, check your
osclllator with a good frequeucy cornrter. Each instruction requires
a specific nr:mber of clock eycles for lts executlon. Ttrus progr€rn
segmeots and J-oops can be used to produce very preclse tlme delays
which are as stable as the crystal clock. The nunber of cycles for
each instructi.oo ls found otr the MCS6500 Srrnrrnary card and l.n the
MOS Microcomputer Prograrrming ldanual" Ihe folJ.owi-ug progrErn ylelds
a delay of 502 cycles = 502 oicroseconds froo a sr4gle loop.

Time Delay Program cycles

t"Dxlif $64 2
LOOP DEX 2

Bl{Er LOOP 3

Ttre loop ls 5 eycles and 1s executed 100 tLmes. the Lal.tla1 LDX#
adds the last 2 cyeles. To obtaln long delays, loops cen be nested
to produce delays of aay length. Now that you have the baslc idea
here is a more coruplicated program. I{e put the ti-oe delay ln a
subroutlne so that lt caa be readlly used by other progrsms. The
maLa program clearg A then lacreuente lt and outputs Lt to the .
PA port. Each cycle 1s delayed by the tloe delay subroutlne.
You w111 have to look up the op codes.- Start the oaln progrirm at
0000 and the delay subroutlne ar 00L3.

aQ
)-v

Tjoe Delay Test Program w:tth Subroutine

:ii::r.:i:, START tDA/l $ff
.L- srAG $1701
{ LDA/I $00 clear A
I SUOW STAG $1700 look at A
n CLC
$ $D,9Jf,".,$Or add 1 to A

rS JMPG SHOW J-oop back to SE0W
16 ogtav LDY# $ce load 20019 i.uto Y =

i., i$ LOOPY tDX/l $62" load 98rn j-nto X =
iF STXZ $l'51 ' srr w8$t€ 3-Eyeles

sii "i LOOPX DEX_ 9 o , * 'd decremeot X
'

'1,*. , -o ' t 'BNEr. ' ,1L0OPX i f X not zeto, loopx
LS . DEY decreuent Y
't"i BNEt''{LOOpy if Y not zero, loopy

clear carry before add

;'x

?-: RTS. return

The total tiue delay here ls TD = 5Ty(Tx + 2) + L4 microsec.

Run the program and try dlffcrent values for T., and T*. You
ulght try to write a progrEu that would al1ow fou to 6nter tlne
constants from the keyboard ln real tLme as the program ls runnlng.

This is a good progran t,o use to see the effects of eorne of the
other accr:uulator instructlons. Replace Ehe CLC, ADC# sequence
with SEC, SBC#, or RORa, ROLa, ASLa, LSRa. If you replace a two
byte instruction rrith a one byte lnstruction, be sure to add
a NOP to fil l rhe gap.

EXPERIMENT 5 The Interval Timer

1. Ihe KIM-I j-n.terval tlmer can produce a wide range of progra'rnable
tine delays from a few microseconds to 250 nSEC. the intenral
timer consl-sts of an eight bit down counter and a programmable
cLock divider which produces time intervals of 1 uSEC, 8 uSEC,
64 uSEC, or LO24 uSEC. The auuber of counts and the cor.rnt latervaL
are easily controlJ.ed. In thls experiment we sha1l use the
intenral tLmer to produce a Llme delay subroutlne. You should
use the sarne main program used ln EXP. 4 to test thls routlne.
start ldth Ehe rDLy address E $1707, then try the other values
sholrn in the following Eable:

TDLY Tlor (X) Delay

$L704 1 USEC $64 100 uSEC
$1705 8 USEC $64 800 uSEC
$L706 64 USEC $64 6400 uSEC
$1707 I nSEC $64 100 nSEC

l-. '

:., :
. j . .

3-9

Interval Timer Subroutl::e

INTDLY PEA
LDX/I $54
SIXG SLY

WAIT LDAG $1707
BEQr WAIT

DONE PI,A
RTS

save the eontents of A
load ccunt
load counter aad set divide ratlo
gec tjrner status
if status = 0, wait
restore aecunulator
retura

Note that the interrraL timer always runs io real time. If you
single step through a program ccntinlng an interval tiner delay,
the program wiLl flow rlght through the delay aad aot get huog
up for N loops as is the case with tising loops.

H(PERIMENT 6 Interrupts

1. The interval tiuer can be prograurned to interrupt the KIM-I system
every nnn machine cycles. In this experiment we are going to generate
an interrupt every 0.2 eec and uee ttil i-s interrupt to run a progrs:l
which will increment the PA output port" You shouLd run a ualn
progtam which does not use the PA port. flre g,ane prograrus, or Ehe
display rout ine used in experiment 1 are good for this purpose.
Here is the interrupt rout ine:

Interval Timer Interrupt Program

1780 PHA save A
1781 tDAil $Ce ioad A wirh 2001n
1783 STAG $170f Load tiner and 3Et aiviae rarlo ro L{t24
L786 rDAti $FF
1788 STAG $1701 set P.A to out
1788 INCG $1700 lncrenent PA lines
178E Pl"A restore original A

enable interrupt
1-78F RTI teturn froo interrupt

We put this program in one of the enoall blocks of t/w Eemory not
used by Bost programs. Set the IRQ interrupt veetor to polnt tc
the above routine by storing the entry addrese in $17FE and $17FF
(store 980 in $17fE and $17 ln $17FF). You nnrst connect the
the lnterval timer output slgnal to the IRQ lnput l.lne. This le
acconpllshed as follows. Attach a Bpare 22 pLn edge connector to
the expansion Lines on the KIM-I board. Connect the orange clip
to the IRQ input (pin 4). Connect a- ihort jr:mper between pins
7 and 8 of the dip plug. Make sure PB7 is prograrnmed as an lnput
line eveo though it is used to send the tlmer signal out to IRQ.
After a system reset (RS key used) you mrst enable the lntervaL
t imer interrupt capabiLl ty by readlng locat ion $170E once. this
can be dcne manually uslng thc KII{ keyboarci. You are now ready
to run'your rrrain Program. You shctrld obeerve noruel Program
executlon and apparently simultaneous lncrementing of the PA
output lndlcat,ors. Be sure the processor atalcs wlth the interrupt
enabled by storing $00 in locatioa S00F1 befc're running the program.
TI{IS PBOGRAU WILI NOT T"TIIICTION UNI,SS$ YOU REI'{OVE THE GNO$ND WIAE FRO},I
prN # B ou nm 16-PI3l RIBB0:{ coNhTcT0fi,"

3-1C

TT-6

'rrDrr
parrE' sTBurErraf aqf ur srofrsBdBc Jo sazrs fuaraJJTp EuTfrasur dq
r(cuanba:y rof"TTTcso eqf rrpA .ooo0$ f" gurlrers-urergord,aqS ung

'(t qd) ggg 1ndul ratunoc aqf of 3nd1no rofeTTTrso {coTc SZ-g-I ar{l
fJauuog '(r-g 'dxa u1 euop sB ? urd roleauuoc uo;suedxa o1 drlc

a8uBro aqf 1ooq pue g pu" Z suld .:adun.f) bUf ol /gd fcauuoc .f; peol
'atalced arnfBrafTl :no{ u1 urarSo:d ra3unoS dcuanbarg aq1 dn qool

ralunoC dcuanba:g :luau-:.radxg 1euo11dg .Z

sIctASo lcvJuSINt oNv 3t901

BXSIC IPSIC DE'IIICES

Although mLcroprocessors 6s:s sallsd (end oftEn are used as) logLc rerplace-

merrts, basJ,c logi,c gates are sttU. needed ln most nlcrocoqnrter systems. ThEr

are rrsed for &rffers, Latches, Ad&ess Decoderse and Sfgnal Condltloners.

Therefore, lt ls tnportat to bave a good rrnderstendl.rog ald rorklag borl'edge

of basl.c J.oglc gates.

Dl€ltal loglc operates tn tb€ btnary nlnber systan. Tberefore, ar\y one

taput or outlmt can oaly be l.a one of tno dlstlact stat€s, elllre a xJ'tr or

s trgltt. Norrnally, references nade !n regard, to a dJgltal sig[a,L, a loglcal-

ttUt ls greater than 2.0 volts and a logJcal ttf,tr 13 Less tban O.8 volts;

thls l.s gal1sd HICIH-TRUE or PGIIWE-IBUE L@IC. IPI{-ItsUE or II&ATIVD-TRUB

tCtiIC ts tlre opposlte, a loglcal ttUr ls lees then 0.8 volts and logleal- ndn

Js greater t'han 2.0 volts. Ott logJ.cal dlagrgs, ttro tJrpe of logJc (PoeXtlve

or Negatlve) ,.s stsnt by the use of a clrc.Le tn ttre fnfnrt/ortpUt lead tcrrch-

lng tbe logic synbol for the eate ta ladlcate a LOU-TRUE fnprut/oaq)ut. The

absence of thls clrcle lndlcatps a HIGH-BIIE lrput/output.

PGITTYE IOCIC
INPUT

NUiAITVE I'GIC
I![PUT

t{hen the clrcle ls used ln an outprt J.ead of a POSITfV hput gate

or the absence of lt ln a IOW-TRIJE lnput Eatr.t lt clunges tbs n:ne of tJe

gat€ bV a<lrt{ng the letter rrNfr ln frcrrt of t,lte gatefs name, such 8Er

HIGH-IIR,{IE INPUT GATES
-

LOI{-IRUE INPUT OAIEI
-

fl

_{-\ ___<{-\ ___-ol--,
I l- | lc,-- | br- | l-

a_/ aND

-_/

NAIrD 4*/ AtrD 4_/ NAI{D

L.1-1

.0n ogll,anatJo of tbe bastc loglc gates folLlons:

I. }ION-IIffERTING BUFFER

TblE devl,ce l^s used prlnarlly to lacrease tbe load handllag

capabdlltles of aotb€r dsvtce. &e ou@ut of thls dwlce rllJ.

alrry: be tJre sae loglc Level as ltE fuFnrt.

INSIICY:

ff. &s srlt€h closed represeots
"

rr{gh lnput
The srltch opeo represents a Low laput
the lar;> on rslreseots a lrgh oulnrt
the lary of,f retrnreseots a J.ow out4nrt

C]'osrng tlte srltch ArrDs
the laq> ON. Ope'rhg tbs
srLtcb turrs the lap OFF.

LOGIC SIMBOT:

A - Inptrt
e - otttput

a.e

prlnarJty for loglc leve1 Luverelon. Tbe

rtll alrrys be ths opposLte Loglc lsvel to

lbe erltcb cloaed repreeots a hlgh lapnt
The erttch open rqreamts a 1or lnpnt
Tbe J.arp oB represelats a hrgin @Ulut
lbe 14l off rqrresente a lor output

Cl.osbg tbe srltch siA[short
out tb 3'ap and turn Xt off .
Op€ltfug thc srltch rLLL rmove l'
the abmt end turlu on tJo IaP.

L.1-2

A e
I

0

1

o

t?INE T.ABI,E;

BOOI,EAN EQUATION:

II. ffYERTIIffi MT'SER

Tbls.devLce ls used

ollut of t'bl,s dgvice

lts lnpet.

IITAI,OGT:

lnu$t tABLEl
-

POoLEail E@AITON:

A iE'

??.F IND
III.

srhlc devlce uaed pJnanfly to lndtcate rbsths e aot g!! of lts

lapte 4ts hlgh at tbe same tlneo Tbe ou@ut ls EE}H-TBIIE.

.0$IIOGIr
-

I.OGIC $$TBOI,:
-

A+e

Both srrttches mrst be closed
to bltr t'be].ap o" If elther
on both srLtcbes ere op@, ths
Iary rtl-l be off,o

I$GIC SIMSLT

A - Ilput
A - arEut

ths smet]. clrcJ.e at tb end of tbe
€ate tadlcates outErt lsversis"

I srritch closed retrEesents a hJgh lap'ut
A srLtch opq retrneserts a lon lxput

e Ttre J.ap oo represots a ldgb output
Xhe 1op off relreseots a 1or ortPut

l&B - INPUS!

a - 0Ut?Ul

A a
1

o

0

1

lr '1-3

IAI]TE TABT,E:
-

A B e
o

0

I

1

0

I

o

I

0

0

o

1

B0oLEAr EQITA?ION!

lo B s a

IY. U.OI{D

thls d€wl,ce ls used the sae es t&s .A![D, ercept tbe ortput ls LOtf-IRlIE.

INAIOGI:

4 srttcb c.loeed repreeerils a btgb 3sryg
A sritch otr].@, retreeets a 1or tnfnrt
l&e]'ap @ rspr€sents a ftl.gb mtpnrt
lhe J'ap of,f represents a l.on outpr:*

tt@ bot& sritctps ae closede they
ebort out ths lap ald tum, lt off.
If elths or botb sritrcbss open, tba
short rILt be rmoved ard trlrn ths
3.fubt m.

IPGIC SIMBOI:

a&8

e
- Iuprts

- Artlnrt

I3IN[?TBT.E:
-

A B a
0

0

I

L

0

1

o

I

1

I

1

0

L.1-L

BO0r.E0s, EQU48S:

Ao ?EE'

VO OR

Sls d€rrtce Ls used to ladLeatE rtFD qt lg_&st gq9 of Xts tapts ls

A srrttrh closed retraesents a hlgb floptrt
A snttph open repreeeots a 1or tglnt
&e 1ry m rspteseots a hlgh otpot
lte lap of,f relneoeots a lor outPut

Clootrg of eLtlc or bot& srttcheg
turns tbc flght on" llJ. ths srrLtcbee
uut be open to 'lilnil ths lmp offo

rocrc s4agr:

IRUM TABI,E:
-

EOOI,EAII E@IUTION:

A+Bte

A&B

e
- IEPute

- 0utpt

hlgho lte o,$nrt ls EIDH-$UE.

A B e
o

o

1

1

o
't

o

I

0

1

I

I

b.t-5

VI. NOR

ltls d€nlae ls used for the sae Itulpose as the 0R gatee ercept tho

sutlnt ls l0tf-ffiIE.

4{4€'

A sttttcb closed relnesotg a h{gh lnprt
At B t ,f1 C A srltph open rqpaesats a lor lnpst

lte laP ql rqlresots e rrgh ottrrt
eB lu1l off relneseots a lcr ootput

Closbg of ettlren or both snlte,hes
sbrts ouf tie Lry ad Utrns lt
offc Botb Errttthes nrst be oPen
to ADta o the lalr"

IPGIC SIilBOL:

A & B Irytrts

A OutErt

BINH TA8L8:
-

BOOI.EAI{ F@ATION:

A + I EE

A B a
o

o

1

1

o

I

0

I

1

0

0

o

l+.1-6

VII. EKCLItsIgg - OR

fbfu dtrLce ls rrsed to lxdfua.te rbea one, and o.ly oep icptrt is hl€b.

lbe otpnt ls ECiH-tRtIEo

a{3rpcr:

A srltsh ,n t&e ,,1r posltdolr
rqneets a hlglt lnpt$

^
A srrttch fu the n2r positlm

! relneeots a Lcrr laput
the 14l @ rqp€sats a hrdl outprt
Tbe 3-anp off represeote a 1or mttrnrt

Fc tbe 14l to be q,r qre srltch
urst be ln tbe n3.'t trnsltton and oe
n1gt be ln tba r/n positJono Oth,ff_
rlse, tb f-ql rlAL be of,fo

IOGIC SI!{BOL:

18,I'TH TABI,E:
-

BOOI,EAI{ EQIIATION:

A B a
o

0

I

I

o

1

0

I

o

I

1

0

a(DB. aE+-. ln r e

A&B

a
- Inputc

- Ortput

lr.1-7

VIII. EICLIBM-NOB

lbls d€wlcs Ls tne saFe as tbe EXCIJIIfIE-OB gatet ercept tbe Eutput
ls LOI|-IUIE.

IN.EIOGT:

eF orqy rqy to sbort-qrt tho
lap 8d Ulrtr tt off, ls to
b^ge oe suitch ln, tbe nl,tt
posXtioa ad one Erltch ia
ths r2r po€Ltt@c 0therrtse,
tbe l.anp rtlt be o,o

&OGIC SIMBOL:

A&

e
- lnputs

- Output
,lr:" ..

IRUB TIBI,E:
-

A B a
o

0

1

L

o

1

o

1

I

o

o

I

EOOTE/IT &IUATTON:

A@B.AF+TB:0

I]T. DT.CSCI'SSIOII OF IPW-IRI'E IOGIC

lbe peceedbg dLscnsslon on tbe baglc J,oglc gates hae Dot dlgcnssed

gatee rl,ti LOt{ e NE}ASM-$IIE fuputse 'l?r{o ls becanse there ar.e no

I.C.rs epeclf,lca{y deelgnat€d fon IOU-IBIIE l4nltsr h,t a close eraLnatlon

I srrttch tlr tha rln posltdCIa relreeots
g h{gh fDp11t
A srttcb lD tbe nl; prosltJ.@, relroeeate
a lon lnput
lte Lql qn rspreseots a hrgh ouQnrt
Ilte 3.ep off represelrts a Low ertgxrt

lr.1-8

of tbe inrth tables sbons t&e foltow{ng r*,rlatlors}rt5s:

NOIE: b tne foltoming talrrtb t,aLles, sLs & rEn ar:e used lngtead
of nlrt & n0n to re&ce tbe enfuslm of rhat ls a I&IG.{L
nlr e rOil betrreea HIOH-B,UE and fp!{-!ffifi lalnt IffIC.
b L4, Oc8 voLts sFd atr H> 2oO voltso

HIDH-lRllE INPUT r ISTf-TEIIE INPUT

HIGH-BIIE .eilD trOtf-IRIIE 0B

HIOH-IRIIE N.0ND LOLJ-lfgtB ggi

A B e
L

L

H

H

t

E

L

R

L

L

L

H

A B e
L

L

E

E

t

g

L

H

t

t

L

H

A B e
L

L

E

H

L

H

L

H

H

H

H

L

A B a
?
E

I

H

fl

t

H

I

E

H

g

H

L

l r .1-9

HIIIH-BIIE OB t

HIDE-IBIIE NOB

IOtf-lBIIE AIID

IIW-tRIIE NIilD

A B a
t

t

g

H

L

E

L

H

L

H

E

E

A B a
L

t

H

E

t

E

t

E

L

H

H

H

l B e
L

t

g

I

t

a

L

H

E

L

L

L

I B e
L

L

H

H

t

E

L

H

E

L

L

L

lr.1-10

Lri -4

ELIP-ff[O-PSr
ffi

I. 8"8 LAICE.

the n S, latcb rat probably the flrst t3pe of ft$-flop enrc tnrflte

lb mks tee 8€ lafnh tato a ctocked (Ltptlepr a d[oc& lnRrt urst be

addedo

II. B-g ErJp EIOP.

Ibe 8.8 fllp-fl.op ls tha slqfleet of t&e f,Llgrf,lqrc

B s e e
0

o

I

t

o

I

o
t

NO,

1

0

1*

]HTM}I

0

I

1*

xt{ot altmed

tha addlilpn of ths bto NAIID gates rrlt& t&e clock latrlt cbsses lt

lato a ctocked n S fljp-tXopc Ilbe bprlts (B & S) ca oly &ange tbe

otrtputs (e a O drrllog a fdgb lnfut dloek pnlsec Ibe A€, f,tlp-ffop tu

usualty dran tn tnfs nsrlnrt

p(.

.j! :, !

:",')
air

{ i

(n-Reset&S=$et)o

1*l 1*

] ' lo

ol l

Itilort dlmd

lr.2-1

rrr. DATA oR D-frpE FLrp-FIop:

Tire D-type F. F, is

effectively from an 8-S F.

for a data latch, It can be made

whenever data is to be trapped

as in shift registers. f t can

J K v

0

I

a
I

o

1

o

1

an

0

t

6'tt

used primarily

F. by:

D
CIOCK

rv. J.K IYPE FI,IP-FI!P:

fhe J-K or Master-Slave F. F. is used

and laiched at a given instant in time, such

be effectively made from two R-S F. F.rs by:

WHERE:
Qn = value
of Q during
previ.ous
clock eycle.

V. TOGGIE OR T-IYPE FLIP-FIOP:

Thc T-fype F. tr'. is used pri.rna-r'i1y in counters. It can be effectively

made fron a J-K (Master-Slave) F. F. by:

CL a a
1

I

U

1

1

o

U

1

I

cycle.

as the

For every complete clock cycle (|), O

Therefore, tb T-type F. F. divides the

ItTtr input is held high.

and 0 go through L of their

clock frequency by 2 as long

D a 0
1

0

1

n

U

1

It,2-2

Dtr ODEB IDN4II, TIPI,NXTNS

DECODERS:

Tbese devices are most comrorrly used for address decodlng. llrery are

avall able ln 2-Llae to l+-llner 3-1lne to B-line, h-Line to LO-Ilae, l+-].lne

to l6-$xe conffuuratiqr. For sinpl5.city, a 2-1jne to lr-llne decoder ls

sbffla belov:

B A o L 2 3

0

0

1

1

0

1

0

L

L

H

H

H

H

I

H

H

.H

u

t

H

H

H

H

t

t'lhere n.0'n ls the least-
s{gniflp4lt blt Ard rtttt
ls the nost_stgnrflcant
bit.

Witn thJs device, tt m.ly takes 2 llnes to speclfy or e'nable L dlfferent

devlces. the outtrnrt is lor-tarre"

DUJIIILTIPLF.XTnS :

these gat€s are the same as a decoder, except tbe NAIiD gates have an

addltlqra.l lnprrt for data. lhis devlce eeparates serial data oa olre Llne

B A o I 2 3

0

0

t

t

o

1

0

I

D

H

H

H

H

D

H

H

H

H

D

E

H

H

H

D

where rrDrr ls tbe DarA
preseoted to the data
Jngrt"

to separate Llnes.

ENcopEvur&rrPr€Fm$

EIICODEFS:

Ibese devices are used to ccnvert several lnputs lnto a few encoded

Llrres. Tlrese are used m keyboards and nr:.ltLposltlon sritches.

I 2 3 B A

L

H

L

L

I

L

H

t

t

L

L

H

0

o

1

t

o

1

o

L

MULTIPLETffi r

l0rltiplexorc or Data $electors are used to seleet qre of several

sources and plaoe tbs data frm tbat source qrto a stngle ortErt llne.

are avaJ'lable ln lr to 1, I to L, and 15 to L ccnfiguratlons,

I

3

data

these

h.lr-t

z-1'1

SEV9 frll00 = X

T

0

T

0

T

o

T

0

T

0

x

x

x
x
x
x

x
x
T

o

x
x
x
x

x
x
x
x

T

o

x
x

x
x
x

x

x
x
T

0

T

T

0

0

T

T

o

o

T

T

T

T

0

o

o

o

I€cecTC9cv

]NTERFACE DEYICES

OPE}I-COLI,ECTOR INGIO

There are severaL instances where a large multiple input oR gate

is needed. rn certai.n cases the common practice is to create a

IfiRED-OR. This is done by riri:rg tro or more gate outputs together

to create a single inpui into anottrer gate. The WIRED-@ is a LoW-TRuE

output. the l{fRED-oR is used frequent\y to 0R several iaterrupts together.

BUT, this procedure cANNoT be d,one rith just any logic gate. The

standard TIL logic gate has both active pu11-up and active pull-dolrn.

Therefore, if two standard TTL outputs were tied together and one output

was hlghl nhile ttre other was low; each gate would try to make itrs

outprt prevail until finally one of the output transistors of one of the

gates burned out.

I'he only type of loglc that can be

logic. The inte:nal differenees of the

below:

STA}IDAND TTL
OUTPUT DRTVEA,

OUTFUT

WIRED-OR together is 0PEN-C0r.T.trCTOR

output driving circuits is shomn

OPEN-COII,ECTOR
OUTPUT DRTVER

Vsc Vcc
EXIERNAL
PUil-UP
RESISTOR

0ulPuT

l+.5-t

NOIE: The open-collector logic has no inter4:] pull-up device (neither

active nor passive). Therefore, the gate can 0NtY pull what is attacbed

to its outpu.t to grotnd. Sjnce there is no pull-up device in the gate2

several of these types of outputs call be rired together with no i1l

effects. But their cqrbiaed outputs must have two states (high and 1ow)

to be of any use as an input to another gate. Therefore, an external

pu1l-ry resistor must be added to the jrrnction of the WIRED-0R. The

value of the resistor is caleulated by:

2.6\D\1r.5
E 2 5' ." isE;

W}ERE:

I1X = Total of the leakage currents of all the gates of
the IfJRED-0R when thei-r outputs are aI[high.

IS = The lowest mocimrln ctrrent sinking capaliU.ty of
any of the gates forming the WIRED-0R wben its
output is 1or.

TRI.STATE I.OGIC

Il a micro-computer systern transferriry of data from oae part of the

systeua, to another is done via the DA?A BUS. In a large number of systemsl

the number of devices attached to the data bus exceeds tlie load driving

capa.bi'lities of the rnj.croprocessor or other devices ttrat are conrected to

it. Ttrerefore, there ls a aeed to buffer the sectious of the system to

ttre data bus. There is always more than one secti@r connected to the data

bus, so for intellegent commrnications, one and oaly one can cormrunicate

to the bus at arry one time. Therefore, there is a need to turn off on

discorurect al'l but the section ttrat has been enabled by the processor.

b.5-2

But a large nr:rnber of devices only have tro output states (high or lon) -

So, there is a need. for a special output that has tbree statcs (higb, 1ow,

or off) . This is referenced to as tbee-state or TRI-STATE 1ogic. The

logic symbols for these devices are belol:

ITIGII-TBUE EN^ABI"ES

IOhI-TRUE ETIABI.ES

I+.5-3

These gates when enabled, through the separate enable input, will

function like the standard gates that we have abeady <iiscuss€d.

Butr rhen they are disabled their outputs go to a high-inpedance or

off-staie. Therefore, many l-state devices caa be attached to a

common llne withcut unwanted interaction as long as one ald onJ-y one

is enabled to output -uo that line at arry given tine.

BUS TBA}ISCETVERS

lhe TRI-STATE devices that have been di-scussed are essential

to one-way cornmunications to a bus, BUT, the processor and a number

of other derrices are by-directional and need to cqnnunicate in both

directions with the by-directj.onal data bus. this caused the creation

of BUS TRAIISCEIIERS. BUS TRINSCEIVER.S a.re effecti.vely two IRI-STATE

buffers strapped together in sucb a nanner as to tie the input of each

buffer to the output of the other. Ore of the jr.rnctions is to be

attached to one of the d.ata bus lines whlle the other junction is attached.

to the sane res'pecti're line of a device or section that is to be buffereci.

One and only one gate is enabled at any given tjrne. The gate that is

enabled is deterrnined by the ciesired direction of communlcations (tr't

or OUT). This is uzual1y done by the READIdRITE control line. There

gf,'s usuelly fonr strapped pairs in one IC, In some Bus lbansceivers,

one of the junctions (j.rrput to output) is not rnade within the fC to

facilitate interfacing a bj--di-rectj-ona1 bus to a split data bus or

de'rice. If this is not desired cn needeci, the user can externally make

the connection.

IN/OUT

sy|l3lgoud 3uv,l,uJos oNtz lvNV

ANALYZING SOFTUARE PROBLEMS

INTRODUCTION

The obiect of th is chapter;s to present a general procedure used to

design software to solve a prob' lem. This procedure is completely mach' ine

independent, and' i t can be appl ied to any software problems you are l . ikely

to encounter. The most important th ing to reme+nber about th is procedure

is that you do not concern younsel f wi th the prograrnming language detai ls

unt i l wel l into the solut ion. This is t rue of even the seemingly " t r iv ia l"

programs. There is no way more certain to resul t in a program that is

sloppy' i l l -designed, and hard to debug than to t ry to wr i te the program

direct ly f rom the prob' lem def in i t ion. To be ef fect ive sof tware must be

designed f i rst and then implemented using the correct techniques.

5.0 The Software Oesion Procedure

The systemat ic approach to developing a prograr lned system is a logical

extension of the normal problem solv ing cycle engineers and scient ists

have employed for years. I t consists of seven basic steps:

1.

2.

3.

4.

5.

6.

7.

problem def in i t ion,

prob' l em part i t ioni ng ,

a lgor i thm development for each part i t ion,

wr i t ing the program for each part i t ion,

debugging each program,

integrat ing the programs back into the system, and

f inal system debug.

Using this technique, the problen js broken down into smal ler and smal ler

sub-problems unt i t they are a s ize which you can dea' l wi th convenient ' ly

and ef fect ively. This is because j t is much easier to focus your at ten-

t ion on one smal ' l sect ion of the system at a t ime. You develop each of

these blocks and sub-blocks into a group of detai led f lowcharts and pro-

grams, each of which is tested and debugged. They are then interfaced

and the whole system tested. This systemat ic approach is intended to help

you minimize errors, s ince the smal l h ighly local ized programs are much

easier to thoroughly check out than a s ingle large, spread out program.

5-t

Graphical ly, the procedure is ' i l lustrated in Figure 1.1. You start wi th
a central problem and part i t ion i t jntc l logical b locks, solve and debug
each of the blocks, and f inal ly integrate and ref ine the blocks into the
f inal system. There may be one or many levejs of b locking, depend. ing on
the complexi ty of the problem. | . l i th exper ience, you wi l l f ind th js gen-
eral approach to be the most direct and consistent way to implement a
working software system, regardless of s ize. Less organized approaches
may work for smal ler systems, but you wi11 become hopelessly tangled as
the systems grow in s ize. I t is best to learn the general procedure and
use i t on al l prob' lems, smal l or large. The greatest d isasters usual ly
occur when the who' le design procedure is dispensed with because the pro-

blem is too " t r iv ia l" to warrant the general approach. Conversely, dogged
appl icat ion of th is approach can make many formidable problems turn out
far better and faster than ant ic ipated.

In the remainder of th is Jesson we wi l l in i t iate our study of the general

sof tware solut ion procedure. Lessons Three through Ten wi l l then expand
and ref ine the techniques used dur ing the solut ion process.

5.1 Step 1: Def ine the Problem

As with any procedure for solv ing any problem, the f i rst step is always

the same (and the hardest) : def ine the problem. For the case of sof tware
problems, you must decide exact ly what the f in ished software system is to
do. This def in i t ion of the operat jonal character ist ics you want the f inal

system to have fs cal led the funct ional speci f icgt ion. Natural ly, i t is

easier to def ine and speci fy solut ions for some type of problems than for

others. Problems which are concerned with the implementat ion of speci f ic

features are general ly easiest . Prob' lems which require both judgement

and imp' lementat ion are the hardest. In the f i rst case, the task is to
f igure out how to do something. In the later case, i t is of ten a quest ion

of whether or not the job can be done, and i f i t can, what is the best way
to do i t . For example, a program to wr j te s ingle data bytes onto a mag-

net ic tape uni t is a fa i r ly speci f ic problem with a s j rn i lar ly straight-

forward funct ional speci f jcat ion. There is l i t t le conceptual design work

to be done. I t is mainly a quest ion of using a program to control the

5-e

I'IAJOR
SYSTEM ELOCK

SYSTEI'I
SUB-BLOCK

sYsTEt'l
SUB.BLOCK

DEVELOP
ALGORITHM

SYSTEM
SUB-BLOCK

II{TERFACE AND DEBUG
MAJOR SYSTEI'I BLOCK

FIGURE 5"1 GENEML PROBLEM SOLUTION PROCESS
)^
5-J

selected hardware. 0n the other hand, the program required to use this
program as part of a system to format sequences of data bytes into records
on the tape wi l l require considerably more design. You wi l l have to de-
cide on record length, record marks, whether or not you want to format the
data wi th par i ty and/or check sum, and so on. Not only that , you must
decide on the probable usage of the rout ine. The quick format program
required to test a tape deck's operat ion in the lab is apt to be qui te

di f ferent f rom a general usage exchange forrnat for a tape l ibrary. In the
second case you must consider problems of compat ib i l i ty wi th di f ferent
hardware, rel iabi l i ty , userdocumentat ion, and many other detai ls. Al l of
these quest ions should be sett led in the funct iona' l speci f icat ion before
you proceed to the next design phase. l rJe wi] ' l examine both of these

cases as examples of general problem solut ions in th ' is and later lessons.

5.1.1 Informat ion Required For A Funct ional Speci f icat ion
I t is d i f f icul t to give a compiete def in i t ion of informat ion that is always

required for a funct ional speci f icat ion. I t var ies widely f rom problem

to problem. Simp' le systems can be speci f ied adequately in a few pages.

Large, cunplex systems may have hundreds of pages of speci f icat ions and

st l l l be inadequately def ined. However, the fo l lowing informat ion should

always be present.

1. A concise problem statement. One short paragraph descr ib ing

the prob' lem the system is being designed to soive.

Required hardware. You must know what s ignals and devices are

avai lable or required. The exact l /0 or memory addresses are

not important at th is point , but you must know the hardware
you wi l l be using.

3. Required software interfaces. When designing programsr)ou

wi l l of ten be placing them into systerns where they wi l l have

to co-exist wi th or ut i l ize other programs. I f th is is to be

the case, i t should be noted in the speci f icat ion. In th is

case, exact detai ls are necessary; you should ment ion the

2.

5-lt-

re levant system standard or format (i .e. , a l l output must
conform to system i /0 standard i -13) for a l l rout jnes to be
interfaced. These requirements wi lJ of ten have a s igni f icant
af fect on your design.

4. A complete descrfpt ion of how the system is supposed to funct ion
when compl ete. Thi s is usual ' ly the ' longest part of the func-
t iona' l speci f icat ion. This sect ion should ' include a descr ipt ion
of user interact ion (i f any), data required, output produced,

special featunes, error condi t ion handl ing, etc. In other words,

a complete descr ipt ion of how the system wi l l look to the wor ld

from the outside with no considerat ion for how i t wi l l look

from the inside.

This problem makes wri t ing the software speci f icat ion sound l ' ike a rather

formidable task. I t is . A good, wel l thought out speci f icat ion is the

key to a good (i .e.successf,uj !) project . I t is wel l worth the t ime re-
qui :^ed to th ink the problem through completely. I f you know what you have

to do' i t becomes much easier to proceed direct ly to a solut ion than when
you must constant ly stop and start to f i l l in the blanks in the problem

def in i t ion. Few speci f fcat ions are ever total ly complete, but you should

str ive to get as c lose as possible before you start the actual design.

0nce you become immersed in the detai ls of the solut ion, i t becomes much

more di f f icul t to separate the normal implementat ion prob' lems from those

caused by a fundamental design' logic error.

Example (.1

Consider the design of a program to interface a magnet ic tape

recorder to microcomputer. This program wi l i control the t ransfer

of para' |1e1 data between the tape deck and the microcomputer. I t

wi l l control a l l tape deck hardware funct ions which are required to

perform these data t ransfers. The fol lowing is a possjb1e funct jon-

al speci f icat ion.

5-5

Scope: This speci f icat ion covers the program required to interface
a f ' lagbyte Model 1010 djgi ta l magnet ic tape dr ive to an everyday
mi crocomputer.

Required Hardware: The interface wi l ' l require the tape dr ive to be
connected to the computer through two input ports and two output
ports: one data input port wi th paral le l data f rom the tape deck,
one data output port wi th paral ' le l data out to the tape deck, one
status input port and one control output port . Status input s ignals
avai lable are End of Tape, }{rr ' te Protect and Ready. Control s ignals
required are Tape Advance, Read/ l l r i te and Transfer Data. The t iming
waveforms are shown in Figure 1.2.

Software Requirements: The I/0 routines must conform to the normal
system requirements: output data to be passed via the C register
(or the appropr iate register or memory locat ion for your system) and
input data is to be returned in the A register (or the appropr iate

register or memory locat ion for your system) upon exi t . The rout ines

must restore any registers or memory locat ions used.

Operat ional Descr ipt ion:

Input 0perat ion: Upon cal l , the rout ine wi l l generate al ' l t iming and

control s ignals required to t ransfer one data byte f rom the tape in

the tape dr ive into the processor. I t wi l l then return to the cal l -

ing program with that data byte. I f the tape dr ive status indicates

End of Tape, an error indicator shouJd be set on return. 0therwise

i t should be reset.

0utput 0perat ion: Upon cal l , the rout ine wi l l generate al1 t iming

and control s ignals required to t ransfer the data byte passed from

the cal l ing program onto the magnet{c tape in the tape dr ive. I f

the tape dr ive status indicates End of Tape or Wri te Protect , an error

indicator should be set on return. Otherwise i t should be reset.

5-6

READ =+ ADVANCE TAPF i I
I

--> READ/WRITE

END OF TAPE

_> TRANSFER

+- DATA(S)

+- READY

WRITE ..+ ADVANCE TAPE

-..-> READ/WRITE

<_- END OF TAPE

HIGH IF PROTECTED
1

LOI,J IF ENABLED
I.JRITE PROTECT

DATA

TRANSFER

<-- READY

END OF

_->

TAPE

<--

ADVANCE TAPE

END OF TAPE

FIGURE 5.2 TAPE DECK TIMING IJAVEFORMS

t .n

The above example is the speci f icat ion for an I /0 dr iver rout ine. Al l an
I/0 driver does is control the transfer of data between the cqnputer and
an I/0 device. Note that the specif icat ion makes no mention of the re-
quirements for ini t ial izat ion of the tape drive, how the data is to be
formatted, etc. This is because an I/0 driver is str ict ly concerned with
transferr ing data to or from the device i t interfaces. I t is the responsi-
bi l i ty of those prograns which ut i l ize an I /0 driver to interpret the data
and signals returned. A complete tape I/0 system which wi l l use this
dr iver wi l l be discussed in Lesson 7.

11.2 Using the Fungt ional Speci f icat ion
The funct ional specif icat ion is the base upon which you wi l l bui ld your

system. I f i t has been properly designed, i t wi l l support and guide the
rest of your problem solving effort . l f i t has not been properly designed,
your project is probably doomed to failure or overrun before you even get

started. Therefoie, once you have establ ished a funct ional specif icat ion,

use i t . I f you don't , you are apt to run into that dreaded software
disease known as "creeping features". This happens when an inadequate or

disregarded problem specif icat ion al lows non-specif ied "neat" features to

creep into the systgn after rrprk has begun. This can be disastrous, be-

cause changes easily ac@rmodated in the planning stage can require massive

effort and re-design mrk during the impleri lentat ion stage. Usual ly, the

farther work has progressed, the more effort is required to make any sig-

nificant changes. The disease is often well advanced before detected and

it can be fatal to even the best software projects. (Professional engineers

note: marketing deparfinents are notorious carriers of this disease. l,lhile

they seldom show any syrnptoms, they are known to infect entire departments.)

The above corrnents should not be construed to mean that advanced features

are to be shunned or omitted. Far from it. The microcomputer makes these

features both possible and attainable. blhat is meant is that they should

be deslgned in from the top, not added from the side. Therefore, when you

design your funct ional specif icat ions, take some t ime. Brainstorm for a

whi ' le and come up with a l ist of features that the system can real ly accom-

pl ish. Try trading off some hardware and software to lower cost or increase

/6

system performance. Microcomput€rs make whole new f ie lds of features
possible, and i t is worth your t ime to see i f you can f ind sonre for your
project . But once that funct ional speci f icat ion is done, st ick wi th i t .
I f real ly drast ic changes are needed, you wi l l probably be better of f
start ing over than try ing to patch an inadequate speci f icat ion.

5.2 Step 2: Part i t ion The Problem Into Funct ' ion Blocks
0nce you have comp' leted the funct ional spec' i f icat ion for your system,
you can begin to part i t ion i t into operat ional b locks. An operat ional
block is a sect ion of the system which is responsible for performing some

speci f ic system funct ion. 0perat ional b locks can be as complex as a com-
plete f loat ing point ar i thmet ic package or as s imple as a few instruct ion
data conversions. in system operat ions, control passes from one funct ional

block to another as the program executes. In th is respect the block diagram

can actual ly be considered as a type of overal l system f lowchart . I t d j f -

fers f rom the f lowchart in that i t does not speci fy lhe actual a lgor i thns

used to implement the funct ions (see Sect ion 5.3). You f i rst design the

structure of the program as a ser ies of successively more detai led opera-

t ional b locks unt j l you reach a level of comp' lexi ty that you can deal wi th

ef fect ively. You then proceed to algor i thm development for each block.

Blocking and part i t ioning are the cornerstone of convert ing a funct iona' l

speci f icat ion into a funct ional program. You can have as many levels of

blocks and sub-blocks as the problem requires. l ,Jhen you are f i rst learn-

ing,you should not hesi tate to block down to sect ions which seem a' lmost

tr iv ia l . As you gain exper ience you wi l l be able to judge more accurately

what s ize blocks you can comfortably handle. Also, extreme' ly involved

or complex sect ions of a system may require much more detai led blocking

than the more straightforwarrd sect ions. The f lexibi l i ty of b locking is

that i t a l1ows you to easi ly adjust the level of detai l to match the com-

plexi ty of the problem.

(.2.1 Deciding on the System Blocks

The decis ion of what blocks to div ide the system into in i t ia l ly is usua' l ly

made by r .efer.r ing to the character ist ics def ined in the funct ional speci-

f icat ion. Some cgmmon in i t ia l b locks are:

1-9

a.

b.

input operat ions,
program funct ions (t ransfer data, search msnory, do ar i thmet ic,
etc.) ,
system control and t iminE,

output operat ion, and

major data structures (tables, l is ts, etc.) .

c.

d.

e.

These blocks are then drawn and interconnected to form the system block
diagram. I t is important to remember that at th is in i t ia l point you are
concerned with ident i f icat ion of the major system structures. You are not
yet concerned with their actual operat ion. The design of how the opera-

t ional b locks wi l l implement their funct ions wi l l cormence once the overal l
system structure has been establ ished. In theory, i t should be possible

to implement the system in either hardware, software, or some combination

of hardware and software at the end of the blocking operat ion. This

leaves you with the maximum f lexibi l i ty for actual system imp' lementat ion.

Example ! .2

Let 's take the speci f icat ion for the magnet ic tape I /0 dniver we

wrote in Example 5.1 and do the block diagrams for that system.

l . le can see from the funct ional speci f icat ion that we wi l l require

blocks to input data, output data, and control the data t ransfers.

Figure 5.3a shows an in i t ia l b lock diagram for th is s ' imp1e system.

Note that i t shows al l data and control s ignals that .are passed

through the system. Since the data is transferred to and from the

tape deck in paral le l form, no further blocking is needed for the

Input and 0utput b ' locks. Howevet ' , the control b lock is required to
perform several operat ions. I t must detect end of tape, control

the read/wri te l fne, sense a wr i te protect condi t ion, and advance

the tape. This block is suf f ic ient ly complex to warrant sub-blocking.

I t is shown sub-blocked in Figure 5.3b. Note how al ' l inputs and

outputs of the sub-block diagram match those on the main block

diagram. I t is the same interface expanded to show more detai l .

5-ro

DATA INPUT

DATA OUTPUT

TAPE DATA IN

END OF TAPE
WRITE PROTECT

READY

TAPE ADVANCE
TRANSFER DATA

TIMING

AND
CONTROL

ERROR INDICATOE

DATA FROM SYSTEM

FIGURE 5.3a MAGNETIC TAqE t/0 BLoCK DIAGRAI1

END OF
TAPE OETECT

TAPE ADVANCE
CONTROL

READ/t.IRITE
SELECT

DATA IHPUT
INTERFACEEND OF TAPE STATUS

TAPE ADVANCE

WRITE PROTECT
TRANSFER DATA

READY :

FIGURE 5.3b TIMII{G ANO CONTROL SUB-BLOCK DIAGRAI'I

FTGURE 5.3

5-u

DATA OUTPUT
INTERFACE

5.2.2 Checkino the Bloc! 0 iaqram
0nce you have blocked out the system, step back and see i f i t wi l l neet
your funct ional speci f icat ion. Be sure you have accounted for al l inputs,
outputs, data t ransformat ions, systems funct ions, error condi t ions, and so
on. A useful test is to l is t a l j the requfred systern f ,eatures and ver i fy
that you have included al l the blocks required to perform these funct ions.
After you have conf i rmed that everything is there, be certain that the
blocks are detai led enough for you to proceed on to the togic design im-
plementat ion. I f some of the blocks sound vague or" only part ly def ined,
you may need to add more Eub-blocks in that area. Repeat th is procedure

unt i l you are convinced the system def ined by the block diagran matches
your funct iona' l speci f icat ion. Once you are sat isf ied that you have covered
al l the required funct ions in suf f ic ient detai l , you are ready to proceed

to the next step and begin designing the actual logjc funct ions required
to implement the system b' locks

At th is point i t is important to recognize that i {h i le we are going to
cont inue using the assumption that we are designing a sof twdre system, th is
is not always the case. The problem speci f icat ion and blocking methods we
have presented so far are perfect ly general ; they can be appl ied wi th equal
faci l i ty to hardware, Software, and hardware/software system designs. In
the lat tercase, the opt imum trade of f between the two implsnentat ion tech-
niques wi l l be looked for at th is point . Background Sect ion C is devoted
to how these fundamental design decis ions are made.

5.3 Step 3: Alqor i thn Development For Lach Part_i t io l

Up to th is point we have only been concerned with. the funct ions to be
performed on a block (or non-funct ional) leve1" br i th algor i thm develop-

ment we make the transi t ion f rom logical system part i t ions to the actual

logic required to implement the system. Most of our algor i t t rn develognent

wi ' l l be done using f lowcharts. The f ' lowchart i s of ten ment ioned as the
most important step in the software prob' lem solut ion. This is plainly not

true. The f lowchart is s imply a tool in the cont inuing design process

which began with the problern speci f icat ion. I t is no rnore correct to s i t

down and start drawing f lowcharts than i t is to s j t down and start wr i t ' ing

5-t2

machine code. Both operat ions have their p lace in the problem solut ion
procedure. Nei ther is sat jsfactory alone. Flowcharts are one possible

way to convenient ly develop and check the logic of the problem blocks for

correct operat ion. Using f lowcharts i t is possible to develop progranr

logic independent of any speci f ic computer. I t is a lso much easier to

f ind logic errors in the symbol ic f lowchart than to t ry and hunt them

down once they are commit ted to program implementat ion. (This is part icu-

lar ly t rue wi th the relat ively pr imit ive debug faci l i t ies current ly pro-

vided by microprocessor manufacturers.)

5. 311 Fl owchart S.ymbol s
The data processing industry has a standard set of f lowchart symbols and

you should adhere to these in the interest of making your work usable to

others. (IBM produces an excel lent temp' late of a l l the standard symbols;

i t is widely avai lable in stat ionery supply houses.) The most conrnon' ly

used symbols and their funct t 'ons are shown in Figure 5.4 (see page i -]d i .

These symbo'ls should prove adequate for the construction of any flow-

charts you wi l l require.

(.3.2 Type of Flowcharts

Flowcharts can be drawn to represent algor i thms at any desired level of

complexi ty. The two most cormnonly used types of f lowchart are the logic

f lowchart and the machine-dep.endent f lowchart . A logic f lowchart repre-

sents algor i t lm logic in general operat ing terms with no reference to

speci f ic machine features (registers, memory, f lags, etc.) . The machine

dependent f lowchart presents algor i thm logic wi th in the context of the

features provided by some speci f ic processor. I t is advantageous to

ini t ia l ly draw a logic f lowchar: t for each funct ional b lock in the block

diagram. These are then thoroughly debugged and used as the basis for the

machine dependent f lowcharts required for the computer you are usin9.

I f you program in higher level languages, you wi l l hardly ever use machine

dependent f lowcharts. The logic f lowcharts required to def ine the algo-

r i t l rn to be gsed are al l that are required. This is because al l of the

ma.chine dependent detai ls wi l l be handled by the language processor.

5-L3

SYMBOLS EXAI-IPLES
PROGRAH FLOW. ARROWS INDICATE
SEQUENCE THAT THE PROGRAH FOLLO}JS.

PROCESS. THE FUNCTION SPECIT:IED
IN THE RECTANGLE IS TO BE PER.
F0RMED, e.9. A IS T0 BE MULI-
PLIED BY 2

PRE.DEFINED PROCESS. THE EXTER-
NAL ROUTINE DEFINED BY THE NAIIIE
Ii ' I THE RECTANGLE IS TO BT IIIVOKED
T0 PERF0RI4 ITS FUNCTI0N. e.9. THE
ROUTINE DEFINED BY THE NAME ' 'TTI' '
IS TO PERFORM A FUNC'IION.

A=AX2

DECISIOI{. THE FLOI.J OF THE PROGMI4
I.IILL BE BASED ON THE CONDITION
SPECIFIED INSIDE THE DIAMONO.
e.g. IF A = ?, ADD l . 0THERTJISE
ADD 2.

I/O OPERATION. THE INPUT OR
OUTPUT OPEMTION INDICATEO IN THE
PARALLELOGRAM IS TO BE PERFORI4ED,
e.g. THE VALUE 0F THE VARIABLE
IIAII IS TO 8E SENT TO AII OUTPUT
DEVICE.

TERI''IINAL OR INTERRUPT. THE OVAL
INDICATES T}IE BEGINI{ING OR EI{D OF
A PROGMI'I OR AN INTERRUPT OPERA.
TI0t l , e.9. TNTRY P0INT FOR R0UTINE

EIITER TTI
,.TTI " .

CONNECTORS. I.IHET.I FLOI.I I,IIJST PROCEED TO ANOTHER
\ / t j PAGE 0R ANoTHER PLACE 0N THE SME PAGE, USE A
\.-/ \,/ coNNEcr0R IF IT Is AltKt{ARD T0 usE AN ARR0IJ.

CALL TTI

A=A+1

A=A+?

PRINT A

FiGURE 5.4 FLOI.J CHART SYIIBOI.S

Simi lar ly, general a lgor j thms and problem solut ions which are to be
impiernented on a var iety of computers are best presented using Iogic f low-

charts. Any user can then take the general logic f lowchart and use i t as
the basis for the imp' lementat ion of a solut ion on any computer or in any
language. As you gain exper ience with your part icular instal lat ion, you

wi l l be ab' le to go direct ly f rom the block diagrams to f low charts that
are a cross between purely logical and purely machine dependent f lowcharts:

However, i f you intend to save the algor i thm or solut ion for documentat ion
or possible use on some other system, i t would be a good jdea to draw a
good logic f lowchart af ter the system is completed.

5.3.3- How to Desiqn Alqor i thms
The design of program algor i t f rns ' is actual ly

vast subject indeed. We wi l l be cover ing a

next eight lessons. However, we can discuss
used when translat ing a logical system block

the design of sof tware, a

port ion of that subject in the

some of the generai Procedures
to an algor i thm.

1. Decide what the block is to do. This is the same step as when we

ini t ia l ly speci f ied the problem. The only di f ference is that j t is

now being done for a smal l , local program rather than for the whole

system. Natural ly i the label on the block w' i ' l l provide a good start-

ing place for th is descr ipt ion. Usual ly a one or two sentence

descr ipt ion of the operat jon to be performed is al l that is required.

Decide where the data to be operated upon is located. Is i t read in,

passed from another block, looked up in a tabl€, or what? You wi l l

need operat jon blocks to input the required data. t l lh i le you decide

where to get the data, decide i f you need to do anything special to

i t before you use i t . Does i t have to be complemented? Rotated?

Masked? Scaled? I f so, you know you wi ' l l need some data t ransforma-

t ion blocks in the f lowchart .

Figure out how to perform the required operat ' ion. This is the real

meat of the algor i thm development. This wj l l be where you combine

process blocks, data and decis ions to convert the data f rom the input

2.

J.

(_1 c

4.

format to the output format. This part of the process wi l l usua' l ly
account for the largest port ion of your work. Remember, develcping
the algor i thm is an i terat ive process.

I t wi l l usual ly take several t r iesbefore you get the algor i thrn

correct . Start out by wr i t ing down the sequence of operat ions to
be performed in the order they must be performed, l ike "read in data,
then test for control characters, then test for iower case characters",
and so on. This wi l ' l g ive you that al l important feel for the se-
quences of actions which are to be performed. After you have the
general f low, add the process and decis ion blocks you need to actua' l ly
perform the operations

After you have an algor i thm that should work, t ry i t out wi th data

to see i f i t does work (al l on paper, of course). Try to imagine

every possible data condi t ion that could occur and then be sure your

algor i thm can process i t correct ly. You must be certain your logic

is correct in the algor i thm before you proceed to cod' ing. Be part i -

cular ' ly careful that your algor i t l rm can handle error condi t ions.

This is an area which is part icular ly suscept ib le to errors which

wi l l be very hard to detect . Be pat ient and thorough. Time spent
gett ing the logic correct in the algor i thm wi l l be t ime saved dur ing

system debugging. Think f i rst , program later.

Decide what to do with the f in ished data. Does i t have to be special ly

formatted? Do you save i t? Pass i t back to a cal l ing rout ine? 0ut-
put it? Add the blocks reguired to get the output data ready for the

receiv ing rout ine or device.

Keep the structure s imple. Hake i t a goal to keep the f low straight-

forward, logical and clear. Be part icular ly careful about how you

enter and exi t f rom the rout ines. There are real ly only a few simple

structures you should ever need to use in construct ion of any algor i thm.

We wi ' l l examine these structures in the next few lessons.

5.

5-l.6

Example 5.3
Let 's develop the algor i thms requ' i red for our magnet jc tape dr ive
interface system used in Examples 5.r and S.z. The f i rst th ing
that becomes apparent is that the data input and output blocks are
very large blocks and very smal l programs. The data is to pass
through the rout ine in paral le l wi thout being modif ied. Thus the
f low charts for those blocks would be simply one block each:

The obvious conclusion is that the major i ty of these f lowcharts wi l l
be concerned with when to read and wri te the data, namely the t iming
and control b locks. Let 's take the read block f i rst . From the t im-
ing diagram we can see that for th is tape deck the sequence of control
for reading a data byte f rom the tape is advance the tape (f rom the
manufacturer 's speci f icat ion we f ind that i t automat ical iy advances
in one byte increments), test for End of Tape, set the Read/Wri te
l ine to Read, wai t for data ready, read the data, then exi t . The
algor i thm for th is funct ion is shown in the logic f lowchart in
Figure 5.5. Note how the f ' lowchart def ines a logical solut ion to
the prob' lem without reference to any speci f ic hardware.

A simi lar procedure is used to design the algor i thm for wr i t ing data.
For l , | r i te operat ion the t iming waveform speci f ies that we advance
the tape, test for End of Tape, test for l , l r i te protect , set the Read/
wri te I ine to I ' l r i te, set up the output data, strobe the data t rans-
fer l ine, wai t foeData Ready and exi t . This f lowcharr t is shown in
Figure 5.6. Using these two logic f lowcharts we could then draw the
machine dependent f lowcharts or proceed direct ly on to the actual
program

INPUT DATA FROM TAPE DECK OUTPUT DATA TO TAPE DECK

5-L7

EilTER
TAPE REAE

AEVANEE
TAPE

INPUT

TAPE ilECK

STATUS

SET ERROR

INDICATOR

OUTPUT
TRAilISFER
SI6NAL

I}IPUT

TAPE DECK

STATUS

DATA RFADY

FIGURE 5.5 TAPE DECK READ LOGIC FL0l ' l CHART

I

INPUT
TAPE

STATUS

SET ERROR
INDICATORPROTECT

FER SIGNAL

I NPUT
TAPE

STATUS

FIGURE 5.6 TAPE WRITE LOGIC FLOt, l CHART

5.4 Object ions to Flowcharts

l ' le have been using (and wi I I cont inue to use) f lowchants to represeni the
algor i thms we have deve' loped. This procedure is not universal ly accepted,
part icular ly in the data processing industry. cr i t ics maintain, wi th a
certain amount of iust i f icat ion, that f lowcharts are unnecessary and even
misleading. This posi t ion ar ises f rom the basic content ion that (1) f low-
charts are only marginal ly useful in higher level language program develop-
ments and (2) complex f lowcharts can become very di f f icul t to fo l low. To
support th is posi t ion they c i te very val id evidence that most professional
progralmers draw only very l fmited f lowcharts pnior to commencing coding.
In fact , most f lowcharts for large systems are drawn for documentat ion
purposes af ter the program is complete. This s i tuat ion ar ises f rom the
fact that when wri t ing programs in modern higher levei languages, a ' lgor i thms
can be ef f ic ient ly developed direct ly in the language with no intermediate
f lowcharts at a l l .

To answer these arguments (which we real ly basicai ly agree with), we must
point to t t to basic facts: (1) sat isfactory higher level languages are
not yet general ly avai lable for rn icrocomputers, and (2) most prograrmers
developing microcomputer programs are not professional programners. The
content ion that poor ly structured f lowcharts are hard to fo l low is com-
pletely t rue. We wi l l a lways go to great lengths to keep f lowchart logic
structure c lear.

The f i rst fact , the lack of h igher level language avai labi l i ty , is obvious.
There are at present only two widely avai lable higher level microcomputer
languages (Intel 's PLIM* and var ious BASIC** interpreters.) 0f these,
only BASIC is avai lable for smal l system use. I t wi l l be some t ime before
cormon higher level languages such as F0RTRAN or C0B0L wi l l be avai lable
for microcomputers. In the inter im, the work wi l l be done in assembly
language. Even when higher level language processors become avai lab]e
for microprocessors, the nature of many microprocessor appl icat ions is

*Wl4 is a r .egistered trademark of Intel corp.**BASIC is a registered
trademark of Dartmouth Universi ty.

5-20

such that a knowledge of assembly language wi l l s t i l l be requ. i red. H. igher
level languages are onTy marg' inal ly ef fect ive in developing programs for
use in control or real t ime app' l fcat ions. Programs of th is type require
the complete controJ of the computer 's hardware that assembly language
provides. For assembly ' languagBr us€ of the f lowchart provides a pseudo
higher level language for algor i thm deveiopment that can be ei ther dependent
or independent of the computer to be used. (L, le wi l l have much more on
the higher levei -assembly language tradeoffs . in l_esson 9.)

That most microcomputer programmers are not professjonal programmers js
ai so fa i r ly obv ious . Most current microcomputer prograr,rners are ' log i c
designers and hobbyists, n lany pr 'ugrarrnrr i r rg f -or , Lhe !" i r .st , t ime. Since they
wi l I probably be forced to use assembty language, these users yu' i l I be
learning programming, aigor i t i rn development, and machjne structure al l at
the same t ime. The use of , assembly language progranrning and f lowcharts
wi l l enable us to separate these jearning act iv i t ies. In part icu ' lar , the
ini t ia l process of teaching general a lgor i thm development is better pre-
sented with genera' l f lowcharts than with some speci f ic language. The
techniques presented using some speci f ic languaEe may ref lect the compro-
mises made by the language rather than those requ' i red to sclve the problem.
After some in i t ia l a ' lgor i thm deve' loprnent t ra in ing, the user may be abie
to proceed to f lowchart f ree higher level language programming. For that
in i t ia l t ra in ing, however, the iogic f lowchart is an important teaching
tool .

To make maximum use of f lowcharts wi thout becoming unduiy at tached to
them we wi l l adopt a careful ly structured approach. Al i a ' lgor i thms wi l l
be presented in general logic f lowcharts. l , {e wi l l not use machine depen-
dent f lowcharts except in the contexi of speci f ic examples. Al l f lowchart
structures wi l l be chosen from a srnal l group of s imple, 1og' ical l .y suf f i -
c ient structures whose use can be djrect ly t ransferred to most h ' !gher
level languages. in th is way we wi l l make maxjmum use of f lowcharts whi le
avoiding the major object ions.

5-zt

(.5 Procedures After Alqor i thm Development

After you have completed the problem def in i t ion, b lock diagrams, and
algor i t t rns, you can begin to th ink about wr i t ing the program required to
implement the logic systern you have def ined. However, i t should be appar-

ent by now that i f you have fol lowed the f i rst three steps correct ly,

th is step should present you with very l i t t le t rouble. The blocking and

algor i t t rn steps combined with the f low charts wi l l have suppl ied the sys-

tem structure and control logic. Al l you wi l l need to do is implement

these features using the progranming language you have avai lable. Natural ly,

that is easier said than done, but i f the logic is correct , the problem

wil l have been reduced to f inding combinat ions of machine instruct ions or

higher level language statements to perform the desired operat ions. l le

wi l l spend the next eight lessons ref in ing and expanding .your problem

sblving ski l ls , augment ing these ski l ls wi th useful progranming techniques.

.5.6 Summary

This lesson has presented the general approach required to solve software

problems. Al l sof tware problems can be solved by div id ing than into b ' locks

and sub-blocks, developing algor i thms for those blocks, wr i t ing programs

to implement the a ' lgor i t lms and interfacing the blocks back into a systef i t

which solves the problem. The general approach to problem def in i t ion,

blocking and algor i t tm development was then presented and i l lustrated us-

ing the example of a digi ta l Read/ l , l r i te magnet ic tape deck.

5-22

QUESTIONS

1. Descr ibe the general sof tware problem solut ion process. Is th is the
way you normal ly approach problems? Do you think the generai proce-
dure can be appl ied to other, non-software problems?

2. l r lhy is i t important to establ ish and fol low a funct ional speci f icat ion
at the outset of the solut ion to a problem?

3. Descr ibe "creeping featurest ' . Have you ever seen i t in act ion? What
was the cause? What was the resul t?

4. Descr ibe the di f ference between a logic f lowchart and a machine
dependent f lowchart . Which do you usual ly use? I f you usual ly use
a machine dependent f lowchart , do you usual ly draw a logic f lowchart
of the solut ion for future use?

PROBLEI{S

1. l lhat value of A wi l l be pr inted in the example f low chart below:

B=B*2

B=A+1

2- The Fibonacci ser ies F(N) is a mathematical number sequence which is
def ined for al l integer values of l { by the fo j lowing algor i thm

F(0) = g

F(1) = I

F(t t1 = F(N - 1) + f (H - 2) for a l l N > I
For examPle, F(2) = F(2 - l) + F (2 - 2)

= F(1) + F(0)
=1+0

= t .
Thus the Fibonacci series can be represented as follows

N01?34567 N
F(N) 0 rL2 3 s8 13. F(N - 1) + F(N - 2)

Draw the flowchart to compute F(N) for any value of N.

3. Draw a flowchart which incorporates the flowchart developed in
Problern 2, to compute and print the f i rst 100 values of N and F(N).
(Assume that the cormand "Print" is suff ic ient to print a value.)

4. One simple method often used to multiply tuo numbers together is to
repeatedly add one number to itself. For example, 3 * 4 can be thought
ofas 3 + 3 + 3 + 3= L2. Develop thealgor i t tun tomult ip ly two num-
bers using this method. Draw the flowchart. Do you feel this is an
efficient way to multiply two numbers? Is there any way to make this
basic algori thm more eff ic ient?

5-U

l'lglSlq USrndHOCOUClltl 0I HCV0UddV 3UV/tA.ktOS/3UV,l oUVH IHI

THE HARDWARE/SOFT}JARE APPROACH

TO MICROCOMPUTER OESIGN

INTRODUCTION

In the course of designing a system there are a ser ies of crucial decis ions
which must be made regarding the u ' l t imate system implementat ion. Through-
out the software course we are concerned pr imari ly wi th the implementat ion
of the software port ions of these systems and how they interact wi th avai l -
ab' le hardware. To be sure, th is area is v i ta l to the designer. However,
the thorniest problem ini t ia l ly confront ing most designers of microprocessor

based systems is how to part i t ion the system funct ions between hardware
and software implementat lons. This is understandablb s ince r lost users are

far more exper ienced with hardware design than software design. However,

the plain t ruth is th is: wi th in the speed l imi ts imposed by any computer,
anything that can be done with hardware can be done with sof tware. In fact ,

only a smal l percentage of appl icat ions wi l l present speed problems.

Usual ly even these appl icat ions are only speed sensi t ive in areas which

can be readi ly ident i f ied and processed with discrete logic to make them

adaptable to a sof tware solut ion. ice thus have a s l id ing scale of imple-

mentat ion possibi l i t ies f rom appl icat ions wi th no software (i .e. no micro-
processor) to appl icat ions where 95% of the system cost wi l l be in the soft -

ware. Given this wide range of possibi l i t ies, how do we decide where to

draw the l ine? Where indeed. Assuming that the object ive is to do the
job and make some money, the answer is obvious: we draw the l ine at the

point where we find the lowest cost hardware/software system that does

the job.

Before we cdn discuss how to t rade hardware cost for sof tware cost, we

must f i rst ident i fy the areas that af fect cost in both of these areas.

For the purposes of d iscussion we shal l consider cost to be local ized in

three areas: hardware cost, SOftware cost ' and system cost ' Af ter we

have discussed the var ious cost areas we wi l l be able to discuss tradeoffs

required to modify system cost and performance.

6-1

The CPU chosen for the system wi l ' l have the central ef fect on the hardware
cost of the system. This is not because of the cost of the processor i t -
sel f . For most systems the actual CPU cost wi l ' l be an insigni f icant port ion

of the total systern cost . I t is a resul t of the ef fect of the CPU on al i
other aspects of the system design, both hardware and software. I t there-
fore makes the most sense to discuss these costs wi th in the context of the
CPU i tsel f .

6.1 Hardware Cost

Hardware cost wi l l be considered to be al l of the hardware which must be
designed to implement the required system funct ions. This would include

themicroprocessor, memories, interfaces, c locks, power suppl ies, terminals,
pr inters, or other pre-conf igured per ipherals.

6.1.1 System Speed

To paraphrase an old pol ice t raf f ic s logan, "Spbed ki l ' ls microcompUter

projects". This is due to the sad fact that of a l l the great th ings micro-

processors do, doing them fast isn ' t their best at t r ibute. Most commonly

avai lable microprocessors have maximum cycle speeds in the ZMHz range.

Execut ion of an instruct ion genera' l ly requires f rom 4 to 10 machine cycles.

l ' loreover, doi ng anythi ng usef ul wi 1 I requi re several i nstruct ions. l r lhat

al'l this means is that a Itcfqproq-elqof p-pe!:p!.9_"sJ-"q!_:_iqgfAhl.y*,q_1gleJ*:mg
convent ional sequent ia l and combinat ional logic. As a rough rule of thurnb,

|l@-.' i f your system requires the processor to do anything faster than lOusec 'AC

(100 kHz) you wi l l need to be very careful in your design

There are a l imi ted number of h igh speed microprocessors avai lable, but

these are sets of devices, not s ing' le package microprocessors. They are

somewhat harder to use and considerably more expensive. I f you.begin to

use these you may discover your cost rapidly exceeding the cosf lof some

other form of logic implementat ion. Also, h igh speed for the CPU general ly

requires high speed memories, interface ' logic,and per ipheral devices,

fur ther rais ing costs.

6-2

As we ment ioned ear l iero few projects have overal l speed requirements that
are so severe as to preclude microprocessor use. However, they do exist ,
and i f you think you have one, be very careful to be certain f r^om the start
that a microprocessor wi l l be able to do the job. Conversely, there is no
point in paying for system speed you don' t need. Speed is expensive. You
general ly get a certain level of speed with the microprocessor. I f you're
not using i t r s€€ i f you can trade i t for some interface simpl ic i ty. No
use buying a fast processor and fast interfaces i f a fast processor and
some slower, dumber, and cheaper interfaces wi l l do. t le ' l l ta]k more about
this later.

,6-.l.:,2 ltleqgry Requi rements

The system memory is where you wi l l s tore the programs and data required

for system operat ion. l . l i th most microcomputer systems this memory wi l l

consist of a combinat ion of read/wri te memory (RAM) and read only memory
(R0M) . (t,| i th some processors the CPU i tsel f conta i.ns a sma'l I read/wr i te
mernory, thus making i t possib ' le to implement s imple systems with just the

CPU and ROM's. Larger systems wi '11 require addi t ional read/wri te memory.)
The obiect of the game here is, as usual , to minimize cost. This ' is done

by gett ing as much of the software fnto ROM as possible. This is because

ROM can be lef t wi th power of f and the program wi l l s t i l l be there when
power is restored. Alas, such is not the case for RAM. Thus when you

hear people say that programs should be in ROM because ROM is cheaper then

RAM, i t isn ' t real ly t rue. Bi t for b i t the costs are becoming qui te com-
parabl€r wi th many types of ROM considerably more expensive than RAM. The

fact is that RAM is not pract ical in dedicated systems whict t must maintain

the prograrn without re-loading memory every time the power is tunned 0N.

Bead/write nelqry can be broadly divided into stat ic RAM and dynamig 84F:..a

A stat ic*8&[*Wi"] .J maintain i ts data as long as power is appl ied. A dynamic

@.l l*p 'srr* j "*]k.Thisrefreshoperat ionisaciompl ished
by puls ing some of the address l ines (usual ly the most s igni f icant bi ts)
per iodical ly. To do this requires the addi t ion of special c i rcui t ry to

the system. In general , the integrated circui t constraints are such that

a static memory requires more a

2

memory of s imi lar s ize. Stat ic memories also dissipate more power per bi t .
The largest RAM memories are, therefore, usual ' ly dynamic, at least in i t ia l ly .
As the device technology improves these larger memories usual ' ly then be-

come avai lable in stat ic form.

The cost of both stat ic and dynamic memories has decl ined and wi l ' l cont inue

to decl ine. This cost is based on the absolute cost per bi t for a given

amount of storage. However, the device organizat ion and not th is absolute

cost per bi t is of ten more important in pract ical appl icat ions. In terms

of cost per bit, a 4096 x 1 dynamic memory may be much cheaper than a 256 x 8

stat ic memory. However, you wi l l need eight of the dynamic memories to do

any good. They wi l l require refresh circui t ry, and they wi l l take up eight

t imes more P.C. board space in product ion. I f you only need a 128 byte

buffer and some miscel laneous program storage, the bigger "cheaper" memory

may cost far more. For cost ef fect ive design i t is imperat ive that you

avoid memory overki l l . Design in what you need, al low some extra for un-

foreseen di f f icul t ies and reasonable future expansion and stop.

The advances in memory technology are impressive and they receive lots of

publ icity. But the fact remains that fglv *glg!5.,fe.ri- mas,5.-p1odu.9_!io1..ry!11

tggglqe*y.$l_3ll.9"l1.ng:*-9,f,-"SM. oftea nrin'i{'J[*P-?g!qq-e---c-9u[!""91d gas-e ol.

:y*g_tg!,g.t'3ce""ylll-1. I3.'.':-..: .lTp"'!.!t.rhan sheer "vglyrye. Buv one
development system with lots of RAM. Use i t to develop lots of systems

with only the RAM required to do the job.

l , l i th ROM's, the s i tuat ion is considerably di f ferent. Read only storage is

real ly only useful organized in mult ip les of the computey'sbasic data word.

I t doesn' t make much sense to mask program two 1023 X 4 ROMs for use in an

1024 X 8 system. As a resul t , ROMs are widely avai lable for e ight-bi t

processors in s izes f rom B x 8 to 2048 x 8. ROMs are avai lable in three

types, each sui table for certain areas of appl icat ion: ER0Ms, PR0Ms and

masked programmed ROMs.

An ER0M is a ROM which can be erased and re-used. An EROM can be programmed

and, i f errors are found, erased and reprogrammed. Erasure is accompl ished

b4

by exposing the ER0M to intense ul t raviolet l ight for a hal f hour or so.
In th is way the ER0Ms can be re-used indef in i te ly. EROMs are the most
expensive Lype of R0M. They are best used in development work or low
volume product ion eguipnent which require f requent changes to the operat-
ing program.

A PR0M is a ROf ' l which comes from the manufacturer wi th al l locat ions as
one's or zero's. I t can then be programmed by the user. Unl ike an EROM,
however, once programmed a PR0f'f cannot be erased. PR0l'ls are somewhat
lower in cost than EROl ' ls . However, f requent program changes can quickly

make them more expensive. They are best used in product ion systems which

wi l l requlre few changes but whose product ' ion volume does not just i fy a
mask programmed ROM.

A mask programmed R0l' l is fabricated by the manufacturer to contain the

desired program. I t is nei ther f ie ld programrnable nor erasable. A ROM

is ordered by sending the serniconductor manufacturer your proqram. They

then generate a custom ROM from your speci f icat ion. The cost of ROMs pro-

duced this way is the lowest avai lable. However, the ssniconductor manu-

facturers charge a f lat fee for the generat ion of the required mask. This

cost makes mask programmed ROMs cost effective only for those high volume
products whose program wi l ' l never (hopeful ly) require change.

6.1.3 I /0 Requi !"ements

I t is rapidly becoming apparent that I /0 is the soft underbel ly of most

microprocessor based systems. Interfacing the microprocessor to the rest

of the system is always a requirement. JE_fn-i_."rsp.r9cg9lgtg,*cgf.r-el!.U =

.avai lable general ly provide only enough interface capabi l i ty to direct ly

Jll.II3.e one normal TTt, device. This me.qns"!h,q"t ?l! .!.r"9,.[9.].s- j1. g{ out

:l !rl.:*,_--Ti91oOrocesso.1 1u1t bg b.uffered, Further, control signals must be
decoded, interrupts must be processed, data must be latched and held unt i l

the processor or peripheral is ready to accept it, and many other system

requirements must be met. Al l th is fa l ls wi th in the realm of I /0.

6-s

The fundamental e lement of microprocessor I /0 operat ions is the l , rg port .

An I /A port fs the point where the s ignals to and from the var ious 1/A
devices meet their respect ive s ignals f rom the microprocessor. I /0 ports
provide both buffer ing and some control decoding. The I /0 addresses sent
out by the CPU are decoded to provide an enable s ignal to a speci f ic l lA
port , thereby gat ing the informat ion f rom that port onto the system data

bus for a read operat ion or gat ing the informat ion on the system data bus
into the port for a wr i te operat ion. The mechanics of how the port works

are not as important as the real izat ion that al l data into and out of the
microprocessor is going to have to pass through I /0 ports. This means

that you wi l l want to get your money's worth out of every port . To help
you do this, some processors provide a smal l number (usual ly two or four)

of I /0 ports r ight on the CPU chip i tsel f . I f you only need one or two
ports for a s imple system, th is can be a s igni f icant cost saving factor.

After you've got the I /0 ports, Jou then must design the speciai log' ic

rcquired to control t i re devices or c i rcui ts you are interfacing. For most
microprocessorappl icat ions th is is where you wi l l do the major i ty of your

hardware design. i f you do lot ,s of microprocessor systems, you wi l l

eventual ly arr ive at some standard I /0 port design, but there wi l l a lmost

a' lways be some detai led interface design work to be done.

l . lhen making the decis ions about how to implement your I /0 ports and control

logicr you may be able to obtain some cost advantage by using a special ized

interface device. Some microprocesson manufacturers have designed special

fami l ies of devices to ease I /0 design. ' These devices usual ly consist of

several I /0 ports, some def ined logic funct ions, and al l required control

logic required to interface some device direct ly to the microprocessor wi th

l i t t le or no external logic. For example, the data ports, control log' ic,

and interface circui t ry required to input and output paral le l data direct ly

to a ser ia l interface is one popular example. 0thers include interrupt

handlers, real t ime clocks, b i -d i rect ional data ports, and so on, wi th

more becoming avai lable as the industry def ines what funct ions ane conrnonly

useful . . I f
you can f ind someof these to f i t your needs, they can save

you money.

s-o

I /0 design is the area where you can of ten achieve signi f icant savings by
trading hardware for sof tware. I t is a lso the area where you may be able
to t rade some cost for enough added speed to make a usable system. I /O
design is an area where creat ive use of sof tware and hardware wi l l resuJt
in opt imum system perfonnance at Jowest system cost.

6. 1.4 Per ipheral Devices
In terms of product ion cost the most expensive port ions of your system
can easi ly turn out to be those assembl ies you have to buy pre-assembled.
Al l types of computer keyboards, d isplays, pr inters, tape equipment, A/0
and D/A converters, and simi lar per ipherals are very expensive relat ive
to the cost of the microprocessor hardware. In the normal microprocessor
system these devices account for over 50% of the hardware cost. I f you
must include these components in your system, i t is very important to make
a very careful analysis of whether or not your product is st i ' l l cost ef fec-
t ive. I t can be devastat ing to have to add a $75 keyboard to a micropro-
cessor system where the total component cost is only 950. In th is type
of s i tuat ion you might see i f you can use a less expensive device and add
the other features wi th sof tware. Al l these types of decis ions must be
weighed careful ly before you start the actual design.

Into th is category we toss al l those microprocessor system detai ls that
dr ive your system cost up. These are part icularJy obnoxious because they
are of ten over looked unt i l i t is too late. The three most common of fenders
in th is category are c locksr pow€F suppl ies and interface requirements.

The system clock is used to provide the t iming signa' ls required to run the
CPU and sorne of the other system logic. From a cost standpoint , there are
two areas of interest : who generates the c lock and how good does i t have
t0 be. In the f i rst case the answer is r : i ther the CPU or ihe system. I f
the CPU generates i ts own clock (i t may need an external resistor and
capaci tor) , you don' t have to worry about the second quest ion. I f you have
t0 generate the c lockr Jou def in i te ly have to worry about j t . Some micro-
processors are very f in icky about their c locks. This means special dr iver

6-7

chips, crystals, iogicr pow€r suppl ies (i .e. money). I f you are in a
very cost sensi t ive operat ion, th is can rnake a s igni f icant di f ference.

In addi t ion to the mafn CPU clock, c€!" td in interfaces wi l l require their
own clocks. This inc ' ludes ser ia l interfaces, rea' l t ime clocks, and many

special interfaces. In some cases you may be able to der ive the required

clock(s) f rom the main system clock. i f nat , you wi l l have to plan on

the added cost of the required addi t ional c lock(s).

Power suppl ies are another area where requinements d ' i f fer wide' ly f rom

microprocessor to microprocessor. Some microprocessors wi l l run of f

the same +5V power supply that ' is used for al l the logic. Some require

up to three di f ferent pourer suppl ies. Power suppl ies are not cheap and
you can quickly add a large cost to the system that you may be able to

avoid ent i re ly by chosing a di f ferent processor. (Note: af ter you go to

the trouble of p icking a microprocessor" be sure the rest of the system

runs on the same voi tages. i t doesn' t make much sense to cut corners to

get a s ingle supply microprocessor and discover the memories chosen need

three suppl ies anyway.)

Besides paying at tent ion to the number of system power suppl ies, you must

be aware of the overal ' l system current requirements. These requirernents

can vary widely, depending upon the CFU, m$rCIr ies, and interface logic

used. You must be certain that your power suppTies can supply enough

current to meet peak system usage. Conversel ,y, you don' t want to pay for

more capabi ' l i ty than you need. To solve th is problem, you usual ly don' t

set t le on the f inal product ion power supply rat ings unt i l the system is

complete and i ts power requirements are character ized. This is in contrast

to the select ion of the system hardwaren where the number of suppl ies to

be used in the system is determined before beginning the design.

Interface requirements relate to support c j rcui t ry required to use the

microprocessor wj th other devices jn the systmn. A rnicropnocessor that

is very, easy to use among the members of i ts own fami ly of devices may

turn out to be a horror to interface to the rest of the wor ld. This is

6-B

part icular ly t rue of P-channel devices to be used in N-channel or TTL

systems. Incompat ib i l i t ies among system components can lead to problems

and increased costs al l over the system, including the previously ment ioned

clock and power supply areas.

6. I . 6 Microprocessor Hardware Sel ection SuJrnnarv

I t should be obvious from the preceding br ief d iscussion that picking

microprocessor hardware is a t r icky business. Even ignor ing the software

cr i ter iar |ou must be very certain you get a devicewhichwi l l meet your

system requirements at the lowest cost . I t is important to remember at

th is point that lowest system cost may not always be the same as lowest

possible hardware cost. Modif icat ion ease, maintenance and other factors

may enter into the picture. There are t imes when you may want to knowinEly

al low some extra hardware cost to lower the costs in some other area. | r le

wi l l point out these areas as we go along.

6.2 Software Costs

Software costs are insidious. You can' t see i t , or feel i t , or hear i t '

but sof tware can break your microcomputer project faster than almost any-

thing. As hardware systems and per ipheral devices become more and more

standard, more and more of the design-to-pr ice burden is going to fa l1 on

the designer who has to design the software to hold these hardware blocks

together.

Software is character ized by a very high development cost and a very 1ow

dupl icat ion cost. By way of example, IBM's sof tware development of 0S 360

(a very large and complex software project , to put i t mi ld ly) is est imated

to have taken over 5000 man years of development time. However, the entire

system can easi ly be dupl icated and stored on $1000 worth of magnet ic tape'

As we said, dupl icat ion is cheap, development is expensive. This character-

ist ic br ings wi th i t the fo l lowing general izat ion: sof tware for use in

high volume products must be f ixed. I t is absolutely not possible to pro-

duce low cost custom software. 0nce you cornnit a program to R0l'1, don't

consider changing the program unless you are prepared to change every other

ident ical ROM in every other system. (Not to ment ion updat ing a1l

5-9

reference documentat ion.) The cost of custom software (unless you are in
that business) is so high as to completely preclude i t f rom volume systems.
The software development cost very quick ' ly completely overshadows the hard-
ware cost.

Software exerts cost pressure on projects fn two basic ways. The f i rst

is when poor technique and analysis lead to systems with inef f ic ient use
of expensive hardware resources. This causes the system to end up with
more memory than i t reai ly needed, high speed interfaces that cou' ld have
been el iminated with good softwarer €XtFa i /0 ports that some software
muit ip lexing could have el iminated, and so on. The second way software
raises cost is in the development/support cycle. This resul ts in late
projects due to inadequate t ime requirement forecast ing, program bugs that

turn up just af ter you take dej ivery on 10,000 mask progranmed R0Ms,

documentat ion that requires a complete sof tware system redesign when the
program has to be changed a year af ter re lease, and other gory, expensive

examp' les. 0f the two areas software causes probiems, the second is far

more ser ious than the f i rst . The f i rst set of problems wi l l natural ly

become less severe as you become more fami l iar wi th hardware/software

system designs. (After al '1, that 's what th is course is here to teach you.)

The second set belong to that group of prob' lems that the ent i re computer

community suf fers along with year af ter year. Some progress is being

made, but i t is st i l l a thorny problem. Good eng' ineer ing pract ice is
your best defense. Remember th is basic rule: hardware and software design

are equal ly compl icated. The only di f ference ' is the ruies.

Let 's look at those areas where software can raise (or lower) your hardware

costs. Remember we are cons' ider ing a s l id ing cost scale f rom al l hardware

to v i r tual ly a ' l l sof tware.

6.2.1 Processor 0rqanizat ion
The architecture of the processor you choose for your system can have a
signi f icant ef fect on your sof tware costs. This is fe l t pr imari1y in two
areas: memory and l /0. A processor which is def ic ient in memory address-
ing modes wi l l require larger programs to accompl ish the same iob as a

6-1 0

processor wi th more f lexible addressing. More program means more memories,
and more memories means more cost. A lack of on-chip registers may re-
guire you to use memory for temporary data storage. These memory references

take more t ime dur ing program execut ion and may make the di f ference between
a simple (i .e. cheap) interface and a more complex (i .e. expensive) one.

A versat i le interrupt system may enable you to do most of the interrupt
decoding with logic bui l t into the CPU. 0therwise, you wi l l have to add

more service rout ines, I /0 devices and money. A processor wi th a versa-

t i le instruct ion set may enable you to implement your programs much more

eff ic ient ly, thereby saving msnory space. The l is t goes on and on. Any

area of the microprocessor 's archi tecture can become a cost sensi t ive
point in certain appl icat ions. The ul t lmate goal is to f ind the cost
sensi t ive areas in your appl icat ion and pick a processor that is strong

in those areas.

6.2.2 Program Structure

The program structure, just as wi th the processor archi tecture, exerts i ts

primary effect on the system memory requirements and I/0 structure. Poorly

designed programs wi ' l l of ten take.tur ice the memory of more careful ly de-

signed programs. You nrust balance the t ime and cost required to opt imize
programs against the cost of memory saved. ideal ly, you wi l l become

ski l led enough to design near opt imum code the f i rst t ime, thereby avoid-

ing the expensive ref inement procedure. Also, d i f ferent program structures

can be used to get maximum speed of program execution in speed sensitive

areas. Fai lure to take advantage of these structures can resul t in the

use of more expensive I /0 interface hardware than is actual ly needed.

The different program structures and their tradeoffs in speed and memory

usage are discussed throughout the software lessons.

6.2.3 Implementat ion Lanquaqe

The level at which you develop your programs has its primary effect on

system memory size and overa'l l system speed. Programs deve:loped in higher

level languages wi l l general ly be faster to develop, but they wi l l take

more time to.execute and occupy from two to ten times more memory than the

same program done in assembly languige. Assembly language programs can

6. l1

be designed for optimum memory usage and system speed but they take more
t ime to develop. A data processing industry est imate is that assembly
language programs take from two to f ive t imes longer to develop than com-
parable higher level language programs. This is part icular ly t rue of
large, complex systems. You must balance the cost of development against
the cost of the addi t ional hardware resources. As a general ru ' le, h igher
level languages wi l l be lower in cost for smal l quant i t ies of systems with
assembly language becoming more cost ef fect ive as product ion quant i ty

increases. (This assumes the higher ' level language programs can meet al l
system speed requirements wi thout extra work.) t t re hig 'her level language/
assembly ' language tradeoffs are discussed in Lessons 9 and 10.

6.3 Systems Cos_t

Beyond the costs associated with producing the hardware are those costs
associated with developing and maintaining the product. Unl ike product ion

costs, which are incurred as a funct ion of how many uni ts are produced,

these costs are largely independent of product ion. Indeed, i t is possible

to incur very large costs in th is area and never produce a s ing' fe uni t .

6.3. 1 Devel ounent Costs

System Development Costs include al l of the expenses you incur dur ing the
design of the product. Since these costs wi l l be incurred pr ior to pro-

duct ion, they wi l l usual ly have to be met f rom your avai lable resources.

The areas of cost in th is phase are aj l wel l known. However, the addi t ion

of sof tware development adds a few extra categor ies.

Hardware Select ion

Al l t ime and money spent evaluat ing var ious microprocessors and

system components pr ior to commencing the actual system design.

This would also include a1l analysis of crucial t iming and inter-

faces and the in i t ia l part i t ioning of the system into hardware and

software blocks

tgrdw.are ?esiS
Al l t ime and money spent designing and&bugging the hardware required

to implement the system hardware.

e-1 2

Software Desiqn

Al l t ime and money spent designing and debugging the programs

required for use in the system. This may include a s ' igni f icant

amount of expense for t imeshar ing computer usage i f you do not

have the required program translat ion faci l i t ies avai lable in

hou se.

Devqlopment Tools

This includes an-y special hardware (such as a microcomputer

develognent system or special test hardware) you have to buy

for debugging and checking out the system design. Some of

this cost wl ' l l actual ly be spread out over al ' l developments

which end up based on the same microprocessor.

Documentat ion

Al l cost spent in developing the user manuals, product ion

documents, reference speci f icat ionsr dod other documents

essent ia l to convert ing a working lab proiect into a v iable

product. This cost should not be underest imated. Thorough

documentat ion wi l l probably consume 20-25 percent of your

development budget. However, i t wi l l be money wel l spent as

your product matures and requires changes.

Marketi nq

This is the cost incurred in taking your f in ished product

from the lab and present ing i t to the wor ld. This is not

usual ly an engineer ing act iv i ty.

6.3.2 Modif icat ion Costs

0nce you have a working product, there is always the possibi l i ty that you

wi l l want to issue a neh, ' improved version. T, l is is one area where a

microprocessor based system can real ly save you t ime and money. In a

total hardware system, a design extension or re-design wi l l usual ly mean

an almost total re- investmentof the in i t ia l development costs. However '

with a microprocessor based system you may be able to make substantial

6-13

funct ional changes with l i t t le or no changes to the hardware. This is
because a sof tware system can be re-conf igured by changing the program.
Bearing in mind that al l the sof tware cost ru les st i l l applJ, th is is
st i l l usual ly a very ef fect ive technique. Expanding or changing an exist-
ing system is one area where you wi l l f ind that the money spent on docu-
mentat ion was wel l spent. I t can of ten make the di f ference between a
successful and cost ef fect ive design modif icat ion or a complete re-design.

Program changes wi ' l l of ten not be ef fect ive in products which were opt imized
so completeiy in i t ia l ly that there is not much extra hardware lef t to work
with. The program can, af ter a l l , only perform funct ions which use avai l -
able hardware. No matter how clever your programner, i f there isn' t
enough memory or I /0 ports, some things just won' t be feasible. I f you
have a product which looks l ike i t is a candidate for later expansion, you
may wish to incur a l i t t le higher product ion cost in i t ia l ly by adding some
hardware for ' later use.

5.3.3 Maintenance Costs

Any cost you incur when your product fa i ls in the f ie ld comes under th is
heading. Al l those f ie ld servicemen, return c lerks, rework l ines, and
other support are expensive. Here too, the microprocessor can save you

money. Almost by def in i t ion, the microprocessor must cormunicate wi th
the ent i re system. This means that wi th the addi t ion of some programming,

memory, and sorne small amounts of hardware you can convert your micropro-
cessor based system into i ts own diagnost ic tester. You may not need to
provide thorough tests, but even some simple tests can make troubleshoot ing
a lot easier. Anything you can do to make test ing and servic ing easier
wi l l lower your maintenance costs.

Natural ly, you must weigh the benef i ts of sel f - test ing against the cost
i t wi l l add. Often, however, you wi l l d iscover at the end of the project

that you have some extra I /0 l ines or a part ia l ly fu l l ROl{ . Since these
are going to be there anyhow, you may as we' l l use them i f you can. Since
this type of th ing is not usual ly discovered unt i l wel ' l into the project ,

the addi t ion of sel f test features at that point is one of the few t imes

*14

when i t may be desirable to add features af ter the design has started.
However, i f you want to be sure you have sel f - test ing you should never
wait to see what is lef t over. In that case, the sel f - test ing features
should be designed in l ike any other system feature.

6.4 A Perspect ive 0n Costs
Now that we have examined the var ious component costs, let 's see how they
relate to the total cost per uni t of our proposed product. bver the total

l i fe of a product, the cost can be represented by the fol lowing generai

equat ion:

1g=.f+vc where TC is the total cost per uni t '

FC is the f ixed cost required to develop

and maintain the. product,

VC is the var iable cost associated with

producing each uni t , and

N is the number of uni ts.

The terms in th is equat ion can now be further broken down into those cost

areas we discussed in the previous sect ions. Thus the f ixed cost port ions

of the equat ion would turn out to be the development costs of the hard-

ware and software, the documentat ion, the modif icat ion costs to the l ine

of products, market ing, and al l other cost which is incurred regardless

of the volume of product produced. These costs are amort ized over the

number of uni ts produced; the larger the number of uni ts produced, the

lower the f ixed cost per uni t .

The var iable costs would be the cost of a l l the hardware components, produc-

t ion labor, f ie ld service for the percentage of uni ts which prove defect ive,

and al l those other costs which vary based upon the number of uni ts pro-

duced

I t is c lear f romithis equat ion that the area where we wi l l want to direct

our cost reductlon..effort is dependent upon the quanti ty of units produced.

For smal l q lant i t ies of uni ts, we wi l l want to minimize the f ixed costs.

6-15

In pract ical terms this means using higher level languages (when avai lable),
hardware that is designed for ease of debugging and high rel iabi l i ty , and
a general emphasis on develoi lnent speed rather than low cost product ion.

Conversely, for h igh volume product ion we wi ' l l want to absolutely minimr 'ze
product ion costs. This means highly opt imized programs to minimize memory

use, maximum use of program control led interfaces to el iminate unneeded

hardware, mechanical designs for easy product ion and any other techniques
which can be used to hold the cost down.

The exact point at which the emphasis shi f ts f rom f ixed cost reduct ion to
var iable cost reduct ion natural ly changes for every product. In general ,

the more expensive the f inal product, the lower the emphasis on the var iable

costs.

6.5 Tradinq Off Software and Hardware

Now that we have discussed the main factors af fect ing system performance

and cost, we can discusS the areas where system problems wi l l force us to

trade off hardware and software to modify system performance and cost.

As we ment ioned ear l ier , h igh speed (programmed, hardware, or whatever) ,
' large numbers of pa: 'cs, and complex software are al l expensive. t {e wi l l

be t ry ing to implement al l required system funct ions using the minimum

cost combinat ion of these i tems

6.5.1 Condj t ions tJhich Lead to Design Trade Offs

In the course of the design we wi l l be faced with several possible project

condi t ions, some of which wi l l require us to consider the var ious possible

system tradeoffs. These condi t ions can be summarized as fo l lows:

1. system speed too low, systern cost too high,

2. system speed too low, system cost acceptable,

3. system speed acceptable, system cost too high,

4. system speed acceptable, system cost acceptable,

5. system speed excessive, system cost too high,

6. system speed excessive, system cost acceptable.

6-t6

Clear ' ly , each of these condi t ions requires di f ferent remedial act ion.
Condit ion one is an obvious cr is is s i tuat ion. Unless some major break-
through can be discovered, the project is probab' ly doomed. Condi t ion
two is also fa i r ly cr i t ical . I t can be worked on only i f the necessary
speed can be acquired without dr iv ing cost into the unacceptable range.
Very careful analysis wi l l be required. Condi t ions three and f ive are
probably both solvable by appl icat ion of some hardware/software t rade of fs.
Condi t ions four and six can be' lef t a lone. They may also be examined to
see i f extra features might be added to ut i l ize the excess system speed
without increasing the cost to an unacceptable level . I f you elect to
try th is, be very careful not to go overboard. Any addi t ions are best
made in very smal l control led increments. Avoid "creeping features"
(see Lesson 2). I f you aren' t sure what to add, don' t . Be happy you
brought th is one in under budget and save your money for next t ime.

After you f igure out which condi t ion your project is in, yoU have three
al ternat ives: bui l t i t , change i t , or cancel i t . Bui ld ing i t or cancel-
ing i t are decis ions that you have to make on a s i tuat ion by s i tuat ion
basis. Changing i t may help you postpone that decis ion for awhi le, but
ul t imately you wi l l s t i l l have to decide. t , le can now examine how to
change i t so that hopeful ly you can decide to bui ld i t .

6.5.2 System Speed Problems

As we have emphasized al l a long, speed usual ly costs money. There are
very few si tuat ions where increasing system speed lowers the cost. I f you

have a project which haS to have increased speed, you might consider the

t i t le of th is sect ion to be "Trade Offs that Increase Cost" . l . l i th that
in mind, h,e can examine where to look to increase system speed.

System speed problems can be broadly div ided into data t ransfer rate
problems and data manipulat ion rate problems. In system operat ion these

two types of problems wi l ' l require dist inct ly di f ferent solut ions. However,

the same general techniques wi l l apply to correct ing both.

6-17

6.5.2.1 Data f ransfer Rate Problems
Data t ransfer problems are encountered when trant 'err ing data between the
computer and system I /0 devices. This c lass of speed problsn can be fur-
ther subdiv ided into processor rate. l imi ted problems and per ipheral rate
l imited problems. Processor rate ' l imi ted problems ar ise when the compu-
ter is t ransferr ing data to a device which must have a high, non-varying
transfer rate. This is character ist ic of many real t ime interfaces, disk
dr ives, and high speed buffered l /0 devices. In the case of the disk
dr ive, for example, i t is not pract ical for the computer to vary the speed
of disk rotat ion. Therefore, the processor must be able to read the data
as fast as the rotat ing disk presents i t to the read head. Data t ransfer
rate problems of th is type wi l l resul t in lost or erroneous data. They
represent the rnost serious system speed prob'lems and they must be detected
and corrected before the system wi l l funct ion proper ' ly .

Cur ing processor. rate i imi ted problems where the speed di f ferent ia l is

excessive requires the addi t ion of hardware' to t ransfer some of the speed

burden from the CPU. I f the speed di f ferent ia l is c lose, restructur ing

the program sect ions which perform the actual data t ransfers may provide

the speed margins you need. However, s ince instruct ions execute in f ixed

mult ip les of system cycle t imes, i t wi l l be impossible to adjust the sys-

tem speed any more accurately than the execut ion t ime of the fastest

instruct ions. For th is type of problem, adjust ing system speed by varying

the program structure wi l l only be ef fect ive over a fa i r ly narrow range

of t iming.

Unl ike processor rate problems, per ipheral rate l imi ted problems turn up

when the computer is able to process the data at a much higher rate than

the I /0 devices can supp' ly or accept i t . This probiem is most conrnonly

encountered when the microcomputer is communicat ing wi th per ipherals which

are mechanical or which require user interact ion, i .e. pr inters, tape

readers, te letypegrr i ters, etc. For example, many smal l microcomputer

systems rely on the Teletype Corporat ion's model ASR 33 teletype as the

main systern per iphera' l . I t serves as the keyboard, d isplay, punch and

reader for a l l program I /0 operat ions. Now the teletype can only t ransfer

6- 18

data at the rate of ten characters per second, or one data byte every 100
mil l iseconds. Pr int ing 2500 characters (a snral l program l ist ing) wi l l
take over four minutes. In th is case, the computer wi l l be spending most
of i ts t ime wait ing for the te letype to f in ish pr int ing.

Per ipheral rate problems are probabty the most commonly encountered system
speed problems. Fortunately, they seldom present a cr i t ica] design pro-

blem. The cure is usual ly to add a faster I /0 device. Even this solut ion
has l imi tat ions. Most computer per ipherals involve mechanical devices,
and these wj l l a lmost always be slower than the computer. You must t rade
off the cost of the faster per ipheral against the t jme saved. I f you

discover you have a system which spends most of i ts t jme wait ing for I /0
transfers (a condj t ion referred to as I /0 boun-d), you may want tb see i f
you can come up with some features to ut i l ize what js essent ia l]y f ree
processor t ime. Even better, you may be able to use some of that t ime to
replace some hardware and further lower system cost. 0n the other hand,

i f the system can do everything i t needs to at a cost you can af ford, who

cares i f i t spends 95% of i ts t ime wait ing for the user to press a key?

Microprocessor hardware is going to become so inexpensive that i t wi l l
probab]y become far more economical to underr . l t i I i ze several microprocessOrs

than to spend the development cost to opt imize the use of one.

6.5.2.2 Data Manipufgt ion Rate Prbblems
Where data t ransfer rate problems were related to how fast we can get data

in and out of the computer, the data manipu' lat ion rate problems are con-

cerned with how fast the data is processed once the computer has i t .

Where data t ransfer rate prob' lems wi l l be solved mainly be adding or

changing system hardware, data manipulat ion rate problems wi l l be solved

mainly by restructur ing the system's sof tware.

The typical data manipulat ion problem ar ises when some sect ion (or sect ions)

of the system program takes an excessive amount of t ime to execute. The

more cormonly used that port ion of the program, the worse the problem.

This type of problem is character ized by your pushing a button and wait ing

for f i f teen seconds unt i l the te letypewri ter pr ints the ten digi t answer

6.L9

to your equat ion. Using some hand held scient i f ic calculators for compiex
calculat ions (t ry SIN 89o) provides some excel lent examples of data man' i -
pulat ion rate 1 imitat ions.

Some problems of th is type are unavoidable in microprocessor systems.
Their low speed (relat ive to minicomputers and large computers), modest
instruct ion sets, and smal l data element s ize l imi t the ef f ic iency wi th
which any program wi l l run. They are s imply not designed for complex data
processing appl icat ions. No matter how good the algor i thm, certain c lasses
of operat ions are going to take up signi f icant amounts of comput ing t ime.
Some examples of th is group are complex mathemat. ics rout ines (anything

more compl icated than a sfxteen-bi t integer div ide can safely be considered

compJex), large memory searches, array operat ions, and moving blocks of
data around in memory. In the large and minicomputer worJd, another
pr imary cause of th is problem is mult ip le user systems. Fortunately, to

date the microprocessor wor ld has been spared this part icular problem.

I f your system requires any of these types of operat iohs, you wi l l end up
paying some speed penal ty. You wi l l be able to minimize i t to some extent,

but i t wi I l be there. Fortunately, the types of appl icat ions which wi l l

use microprocessors do not normal ' ly require large numbers of complex opera'

t ions. I f you have one that does, you might ser iously consider one of the

sixteen-bi t microprocessors or a low end min' icomputer.

6.5.3 . System Cost_ Ploblems

System cost problems become signi f icant when you have a working system

which must be made more economical for pract ical product ion. The term

"problems" in th is context is probably misleading. Vir tual ly al l systems

intended for high volume product ion wi l l go through some cost opt imizat ion

procedure between prototype and f inal product ion. Usual iy you wit l have

decided that the cost range for the product is acceptable before proceeding

w' i th the development. This decis ion is based on market studies, compari-

son with exist ing products, and other evaluat ions of what is a reasonable

f inal sel l ing pr ice of the product. This number can then be proiected

back to arr ive at a cost range for the product.

6-20

In general , the techniques for lowering product cost wi l l be the reverse
of techniques to increase speed. You wi l l want to remove extraneous hard-
ware' compact al l programs into minimum menory space, and in general ,
make the maximum use of the processor and software to implement system
funct ions. This must al l be done without creat ing any system speed pro-

blems. Therefore, the proceedure is best carr ied out in discrete steps.
You ref ine one sect ion of the system, make sure the system st i l l works,
and move on to the next sect ion. Ul t imately you wi l l reach a point where
no further cost economies can be achieved without compromising system
performance.

Cost opt imizat ion should always be undertaken with the f i rm real izat ion

that the end must just i fy the means. I t is an expensive process that is

usual ly only v igorously appl ied to products whose high volume wi '11 just i fy

the expense. 0therwise the cost of the opt imizat ion wi l l overshadow any

savings made in product ion.

6.6 Hardwgre Speed Trade 0ffs
When you must modify system speed using hardware, you wi l l be t ry ing to

ei ther increase or decrease the amount of work done by the processor. In

the f i rst case you wi l l be t ry ing to s impl i fy the system hardware or re-

place much of i t wi th sof tware. This resul ts in decreased hardware cost

and lower system speed. In the second case you wi l l be t ry ing to t rans-

fer some of the work being performed by the software out to the hardware.

This wi l l resul t in higher system cost. tJ i th in th is f ramework let 's

examine some of the al ternat ives avai lable.

6.5.1 Processors and Memorie:

A simple solut ion to some system speed proble{ns may be to change processors

within the same fami ly. Some manufacturers provide microprocessors which

are graded by speed. I f the nominal processor speed is 2 MHz, some devices

may be'avai lable in selected speed ranges from 1 to 4 MHz. Since the

processor cost goes up wjth the speedr us' ing th js method you only have to

pay for the speed you require.

6-21

I f you are consider ing a faster (or s lower) processor, you must also
consider the ef fect that memory speed has on program execut ion. The
computer must get al l instruct ions and data f rom memory. I f the memory
is not at least as fast as the processor, there is no point in increasing
processor speed. Simi lar ly, you may be able to increase system speed by
using the same processor wi th faster memories.

6.5.2 Decode Loqic

Decode' logic is reguired for a var iety of purposes in a microcomputer
system. Most decoding is done to determine I /0 dev' ice addresses and
memory addresses. This ' logic is almost al l done with hardware, and i t
can usual ly be minimized in a dedicated system. For example, many micro-
processors can address 65K bytes of memory using 16 address l ines. Very
few appl icat ions wi l l require th is much memory, so af ter you determine
how much memory the system requires, you can el iminate the excess decod-
ing. For example, i f you only need 4096 bytes of memory, you need only

decode 12 address l ines to access al i val id memory addresses in your

system. Simi lar minimizat ion can be appl ied to the I /0 device addresses.

One added benef i t of reducing the decoding is that the undecoded l ines

can be used as extra control l ines in the system. Usual ly the fu l t

address bus runs everywhere in the system. I f system speed permits, the

undecoded address ' l ines may be used to el iminate fur ther hardware control

logic. In the case of the system with 4096 bytes of memory we ment ioned

ear l i€F, the four unused address l ines could be used indiv idual ly (or

even decoded) to provfde system controi s ignals. Simi lar t rade of fs can

be performed in systsns which require fewer I /0 devices than the maximum

avai lable.

6. 9. 3 l'lemory BuJf ers

Memory buffers are used to col lect or hold data that is in t ransi t between

the CPU and system per ipheral devices. The addi t ion of a high speed buffer

dedicated to a speci f ic per ipheral can be used to solve processor data

transfer.rate prob' lems. This is part icular ly ef fect ive i f the per jpheral

has a low average data rate wi th high speed burst t ransfers of data. A

6-22

buffer can be used to col lect the data dur ing the burst t ransmission,
with the CPU reading the indiv idual data elements f rom the buffer af ter
the t ransmission is complete. This type of buf fer ing can also be used in
coniunct ion wi th the computer 's Dl '1A faci I i ty . In th i s case, the buf fer
accumulates the data and transfers i t into the main computer memory in a
sing' le block t ransfer

Buffers can a' lso be used to solve per ipheral data rate problems. In th js

case, the CPU transfers the data out to the per ipheral buf fer . The per j -

pheral can then take the characters at i ts own rate wi th no further processor

i ntervent i on .

Addi t ion of buf fers to the system reguires the addi t ion of considerable

hardware expense. Accordingly, they should only be added i f the system

real ly needs them. As long as speed is not a problem, most microprocessors

can do a good job of implement ing buffers. They can do this using already
present main memory and some progranming. Data, is t ransferred into and

out of th is type of buf fer using an interrupt. The device interrupts

when i t is ready for a t ransfer and the CPU performs a s ingle t ransfer.

When the buffer becomes ful l or empty, the data is then processed, iust
as wi th a dedicated buffer. This is always much cheaper than an external

buffer system. In the course of the design, i f you think you need data

buffer ing, look very careful ly to see i f i t can be done using software.

Even af ter the design is done you may discover that a hardware buffer

in i t ia l ly thought necessary can actual ly be done in th is way. I t may be

worth the redesign cost to save the hardware cost, part icular ly i f pro-

duct ion vo' lume wi l l be high

6.6.4 Special ized Interface Devices

A special ized interface device is designed to perform some def ined funct ion

in the system. Usual ly the funct ion to be performed could be performed

using ei ther sof tware or the special ized device. You wi l l consider a t rade

off when you ei ther f ind yoursel f wi th a.speed problem and no interface

device or the interface device and lots of program t ime avai lable. in the

f i rst case l iou design in the device to f ree up the program t ime that

6-23

performing the funct ion is ty ing up. In the second case you take out
the dev' ice and replace the funct ion wi th sof tware.

A cormon example of th is type of device is the UART (Universal Asynchronous
Receiver Transmit ter) . This device accepts paral le l data and converts i t
to a ser ia l b i t stream conforming to the EIA RS232C data t ransmission stan-
dard. The funct ion can eas' i ly be performed under program control , but as
ment ioned ear l i€F, edch character sent or received wi l l take up 100 mi l l i -
seconds of computer t ime. Dur ing this t ime the software must convert a
character f rom paral le l to ser ia l , add start and stop bi ts and generate

al l t iming and control s ignals required to perform the transfer. I f your

system has the t ime, f ine. I f i t doesn' t , you add a UART. The on' ly t ime
required now is the t ime required to wr i te one paral le l byte out to the

UART. After that , the UART generates al l those funct ions that were done

by the software, f reeing your processor to do other th ings. Simi lar t rade

offs can be made using other pre-def ined funct ional devices.

6.6.5 Interrupts

In many systems the computer must spend considerable t ime responding to

interrupts. I f there is more than one possible interrupt ing device, the
processor must determine which device generated the interrupt before i t

can process any data. This ident i f icat ion can be done in a combinat ion

of hardware and software ;hat can be varied to meet system speed/cost

requ i remen ts .

For maximum system speed you design the hardware so that each interrupting

device responds to CPU acknowledgement wi th the address of i ts own dedi-

cated service rout ine. This gives maximum response speed, s ince no t ime

is spent decoding any device ident i f icat ion codes. In some processors

this can be reduced to the interrupt ing device providing an actual sub-

rout ine cal l instruct ion, making the interrupt almost t ransparent in terms

of overhead t ime loss.

To lower hardware expense, the device ident i f icat ion can be moved into

the service rout ines. In th is case, the interrupt ing devices al ' l provide

6-24

the same rout ine address. The software must then pol l a l l devices in the
systern to see who generated the interrupt. This adds a s igni f icant amount

of overhead t ime to the rout ine, and wi l l probably not be sat isfactory for

faster devices.

As a compromise, the system can be implemented as a combinat jon of d i rect

and indirect interrupt decoding. In th is caser lou assign your highest
pr ior i ty or fastest (usual ly the same) devices their own ident i f icat ion

address. They wi l l then interrupt direct ' ly to their rout ines wi th mini-

mum t ime loss. The lower pr ior i ty devices can then be assigned to a common

address and these can be decoded under s lower, cheaper sof tware control .

6.7 Software Trade Offs

Software trade offs are made for the same reason as hardware trade offs,

namely modif icat ions of system cost and speed. Where we traded of f hard-

ware for differ'ent hardware or a combination of less hardware and some

software, wi th sof tware we wi l l usual ly be trading of f pt 'ogram speed f ,or

memory s ize. Increases in program speed wi l l of ten take more memory'

thereby cost ing more money. Conversely, i f speed is not a problem, certain

program types can be replaced by markedly less code, wi th a subsequent

lowering of memory s ize and cost. I t must be kept in mind, however, that

not al l decreases in program size' lower memory cost nor do al l increases

in program size increase cost. The only t ime changes in program size

affect memory cost at a l l is when the change resul ts in the saving or use

of an ent i re memory. For example, i f your program is to be located in

2Kx8 mask prograrmed ROMs, the only t ime that your cost wi l l change is

when your program size exceeds mult ip les of 2048 bytes. Up to that point ,

the memory is essent ia l ly f ree. Simi lar ly, i f you discover your new' im-

proved, program is now 2A75 bytes long, Jou may want to expend some tjme

el iminat ing those 27 extra bytes. (The terms and techniques discussed in

the next few sect ions are covered in greater detai l in the software lessons.)

6.7.1 Program Loops and Subrout ines

Program loops and subrout ines are used to minimize program size and control

execut ion. A sequence of operat ions which is to be executed a f ixed number

6-28,

of t jmes can be placed in a loop. A sect ion of code common to several
port ions of the program can be placed in a subrout ine. The actual coding
is thereby only mit ten one t ime no matter how many t imes the' toop is
executed or the subrout ine is cal led. Loops and subrout ines minimize
program size at the expense of some program speed.

The instruct ions which must be executed to control execut ion of the loop
or the cal l ing of the subrout ine take a certain amount of t ime that is
not required for the actual funct ion being performed. In speed cr i t ical
s i tuat ions the ef fect of these overhead instruct ions can be e] iminated or
modif ied to increase execut ion speed. This is done by replacing the loop
or subrout ine wi th the actual straight l ine code that was or ig inal ly there.
This el iminates the overhead instruct ions completely. Al ternat ively, a
loop may be modif ied to use a lower percentage of i ts t ime for overhead.
This is done by part ia l ly replacing the loop with the straight l ine code
and lowering the number of t imes through the loop. For example, say a
certain funct ion is to be performed 10 t imes, once for each execut ion of

the loop. In th is case, say loop overhead is 20%. By dupl icat ing the

funct ion and lowering the loop count to f ive we wouid do the same process-

ing wi th only 10% overhead. The pr ice nould be a doubl ing of the amount

of memory occupied by the funct ion.

6.7.2 Funct i .gng- l 9omputat ions
Throughout your program you wi l l use funct ional computat ions to evaluate

data and decide on program responses to input condi t ions. You wi l l be

able to vary the execution speed and memory usage of many of these blocks

based on how you evaluate the data. For example, let 's say we have an

appl icat ion where we need to mult ip ly two eight-bi t integers. One solut ion

is to wr i te an algor i t tm which wi l l mul t ip ly the tun numbers. I f for some

reason the speed of the algor i thm execut ion was not adequate for our app' l i -

cat ion, we might consfder stor ing al i possible resul ts in a ROM (or part

of a R0l' l). l , le vould then use our two numbers to compute the address of

the product, thus remov' ing most of the ccxnputat ions. This method should

execute considerably faster. Again, the pr ice is more memory usage.

6-26

In pract ice, not many mathematical funct ions can be produced in the manner
just descr ibed, However, the technique is very of ten appl icable to memory
addresses,. A required address can of ten be computed as part of the pro-
gram execut ion or stored as f ixed data. Computat ion by algor i t l rn ismore

eff ic ient , but fetching def ined data is faster. These types of a ' l ternat ives

can be traded of f throughout the course of system software design.

6.7.3 Repeated Computat ions
Related to funct ional computat ions is the c lass of program operat ions

cal led repeated computat ions. Analys ' is of programs over the years has

shown that in most programs 90% of the execut ion t jme is spent execut ing

70% of the program. These software "cr i t ical paths" are what we cal l

repeated computat ions. I f your system has a speed problem, the f i rst

th ing to do is to see i f you have any repeated computat ions. You can then

devote,your 'opt imizat ion ef for t in those areas where i t wj l ' l do the most
good. Some common t.ypes of repeated computations are common mathematical

funct ions, table searches, data movement rout ines, and data sorts.

I f .you f ind.you have a c lear l .y def ined repeated computat iof i , you may f ind

i t worthwhi le to study i t . See i f you can f ind a better algor i thm in the

data processing l i terature. I f you can' t f ind one, do your best to devise

one. Time spent thoroughly opt imizing a repeated calculat ion can be far

more valuable than part ia l ly opt imizing several sect ions of less f requent ly

executed code.

6.8 Sunmar.v

The hardware/software design procedure is something that you only learn

by pract ice. You must gain f i rst hand exper ience in the real wor ld. I t

is a process which becomes more than designing the hardware and then de-

signing the software. I t is an integrated proceedure which wi l l a l low you

to implement some of the most creat ive digi ta l systems ever imagined. l r le

have only scratched the surface of what is avai lable, and what is avai l -

able is just the beginning.

6-27

vrvo AuvNf g gN t_LNitsifudlt-u

"%Y"

REPRESENTING BINARY DATA

When working with digi ta l computers i t is necessary to rvork wi th binary
data. Computer components are bui l t up f rom electronic devices which can
only represent data as 0 's and l 's . This nreans you wi l l have to use
binary to represent numbers. In spi te of th is, i t is impossible to
escape from the fact that b inary data is not over ly convenient to use.
l{e'have all used base 10 numbers for years and the base 2 number system
seems qu' i te inef f ic ient by comparison. I t takes 6 binary digi ts to rep-
resent the number 50rO (1100102), and i t gets worse. In th is sect ion we
wi l l d iscuss how the indiv idua' l b inary data e ' lgnents are represented and
how they can be grouped together for more convenient use. Binary ar i th-
mat ic and logic are discussed in the fo l lowing supplementary sect ion.

7.1 - Binary Data Elements
A computer data element of arbi t rary length N is shown below.

FT- ll
The r ight most bi t (b i t 0) is considered to be the least s iqni f icant bi t .
Bi t N, at the lef t most posi t ion, is considered to be the most s igni f i -
cant bi t . Thus a computer wi th a 16-bi t data element would have data in
bi t posi t ions 0-15:

16-Bit Data t' lord

Simi lar ly, an 8-bi t microcomputer would have data in bi t posi t ions 0-7:

8-Bit Data t{ord

Thus when we speak of
bi t register, we wi l l

Ioading one's into bi ts f ive and seven

be loading the fol lowing pattern.

15 L4 13 t2 11 10 9 8 7 6 5 4 3 2 1 0

7 5 5 4 3 2 1 0

7-L

of an eight-

References to the bi t posi t ions

than to the binary number in a

control and logic appl icat ions.

?.2 - Binary Numbers

Bit Posi t ion

of a register or memory ' locat ion rather

register or memory locat ion are cormon in

numbers as a funct ion of

indiv idual d ig i ts. Any

can be represented as

AItAH-t .AtAo=ANRN+AN-txRN-l+ +AlxR1+A0xR0

where A is any digl t in the range 0 to R- l and N is the digi t posi t ion.

For example, consider the number 136 in base 10. hle have digi ts in posi-

t ions 0, 1 and 2. In th is case, al l values of A must be in the range

0-9, and R = 10. l , le thus have a number represented as

Al l number systems (including binary) represent

the radix (number base) and the posi t ion of the

number composed of d ig i ts AH-AO in a radix R
fol I ows :

t
13610=1xR'+3x

\subscr ipt to
=1x(to)z*
=100+30+6

= 13610

Rl*6rRo
identi fy nurnber base.)
3x(10) + '6x1

Binary numbers can be simi lar ly represented. The di f ference is that where

in decimal we have ten possible numbers (0-9), in binary we only have trro
(0 and 1). This means that represent ing a given number in binary wi l ' l re-

quire more digi t posi t ions than represent ing the same number in decimal.

Thus the binary number 10110 is represented as

10110^. =
z

'=
L x 24+ o x 23, L x zZ * I x ZL + L x z0
1x16+0+4+2+0
2?to

7-2

1 0 I
I 0 0 0 0 0

sNotsur^Noc tutls^s ussnnN

NI'MBER SXSTiff COUVERStrONS

DECII'IAI ?0 Bn{lRy

To convert any decirnal nrmber to a bi.nary nrrmbere take the decimal

number and successively divide by n2n and, nrite dcnm ttre remainde,:r (1

or 0) as you continue divi{,ing until the nr:mber becores trOft.

ETI}IPI,E:

Convert b3ZrO to a bjnary number.

2)blz

) 1oB /a

) itl

)zz
) r : / t

t6/ t

) t /o

)1 /r-l
I

/ t-, I
t lv*

)0

b3ero

ErNAnI T,O pEqrUAr

As ln the deci:nal nunber systeu, the least signiJicant dlgtt ls on

the rlght and the most sigrrlficant digit ls on the left and each diglt

Ls a nultiple of a certeln poner of 10.

b x mA +) x l0l + 2 x lO0L3zro

8-t

firis is 'a1so true for a binary nurnber, except that it is a nultiple

of a certain power of trZn,

IOIIA = f x 23 + o x 22 + 1 x ZI + 1 x 2A

So to eonvert a binary number to a decimal nrurberr take each power

of nzil and change lt to its respective decimal nunber.

20=f

2L=Q

2?=L

23 = 8

,lt = 16

ar6 = 6r rg36

etc.

EXA}IPI,E:

Take the number 101101

1OL1O12 = 1 x 25 + O * 2L * Ix 23 + I x 22 + A x 2L +1x 2O

= 1x 32+Ox16+1 x8+Ixb+0 xZ+1 x1

- 32 +0+B+b+0+1

1011012 = h51o

8-2

COI{YERTING DECI},I.AL 11] OCTAJ,

Use t'tre sane nethod as to convert decinal to bJ.ary except dlvide

by ttre base of n8n i-nstead of n2r.

EXAIIIPLE:

Convert 13110 to Octa1

) 131

) re /3

/o

/zo

f: f

81 =,8

82 s d+

d=5L2

* r bo96

85 , 32T(i8

66 . 262]|o

etc.

Btao = e3g

C CIIVEBT II{G_oCTAL_ TPJDE g.II.{At

To convert from octal to decLnal use the same nettrod as for

b:inery to declmal converslon, except use the poners of n|n lnstead ef ttltt.

EKAI{PI"E 3

8-3

EXA!{PIE:

Convert 2O3U to decimal

2o3^ = 2xB2+ox81*3*80
o

2x(i l+Ox8+3x1

= 128+O+l

= 131

c0livERTING pECII.{AL TO. HEJilpECn{AI,

Agajnr use the sane nethod for decinal to biaary convErsion, except

use the base x16rt jastead and replace the renalnders of n10r to iltr5tr by

the letters A to F respectively.

10=A

U=B

J2=C

13 a D

U=f,

$=f

EXAI"IPIE:

Convert 9L92n to hexadeclnal

) 35/rJt

) 2/3

) o/z

9192ro

8-1,

=;; l
:'ill,

colwERTIllG IIEX4)EC"I1{.qL T0. DECI]4AL

lgain, use the sane nethod fcr binary to decima-l conversiooe

except use the polters of 16 lnstead, and convert the letters A thrcrugb

F to 1O ttrough 1l respectively.

160=l

161 - 16

:162 = 256

- ba96

- 65536

EXIIMPI.E:

Convert 23881d to decirnal

L63

1*

238\6 = 2xLO+3xt62+Ex161 +8x160

= 2 xt63 + 3 x t62+].|r x t61 + B x t6o

2388:]6

s 2 xbO96 + 3 x 256 + ll+ x 16 + I x I

- 8192+768+zLt+8

a 9L92Lo

COT{VERTItrKI OCUL TO BIXANf,. EEtrIDECII.{AI fO BIr.ONr.

OCT.[I. TO IGX'jDLCIMAI: AND BACK

Convert to blnary firste tlren tl oeadrd' regroqp the bfuary nunbers

into the desj.red goqps of three c four btnary dlglts, (three for octaL

or fqrr for hexadeclnal). lnhese translate dlrectly to tbe deslrad nunber

sr5rsten. Alrays start tbe regrorrytng rlth the ISB.

8-5

BinarY

000

001

o10

olJ

100

101

110

111

0ctaI

o

1

2

3

b

5

6

7

Bi-nary

oooo

0001

0010

oo11

0100

0101

OILO

o111

1000

100r

1010

1011
.

ILOO

Ito1

1ILO

Ltu

llexadeciraal

o

I

2

3

b

5

6

7

I

I

A

B

c
D

E

F

E]NAMPT.q:

1) convert bnzncaa to octal

btcncr, = orco 1010 0010 1011 1100

= ovoo VoLo /oovo L1/LI V10o

' 01 OO1 010 001 010 111 100

= 112l .27b

hmncr, = ltzl2?bg

8-6

2) Convert U35S to Hexadeci:nal

rI35S = oO1 loo 011 101

= 0Ol VQo 01/1 101

= 0O11 0001 1101

= 31D

!+358 = 3St6

B-7

sutSl,[nN ocg

-/a

BCD }TIJI,IBERS

In some applicaLions it is desirable to be able to directly rep-

resent decinal nurnbers in the binary computer. Th.is is done using

Binarv Cocied DecimaL, BCD. When using BCD we do not use all possible

data values that the binary data element can represent. Instead, we

1!nit ourselves to the followirrg fou: bit patternsl

Decimal

0

1

I

L

5

6

1
I

B

9

BCD

oooo

0001

0010

0011

o100

0101

UJ.l-U

0111

1000

1001

The o',her sj.x four bit combinations (1C10-111tr) are not used in BCD.

An eight-bit data element can hold two BCD digifs. This means it can

represent decirnal nunbers from 0-99. BCD is very cornmonly encoultered in

control and instrLment interface applications. As a resulte many computers

provide instructions to a1low direet arithmeric with BCD nwrbers.

e- ' l

sl{ott3vHs AuvNts

//'

BINARY FRACTIONS

Binary numbers are general ly considered as shole i .ntegers (i .e., 1,

2, 3, . .-). Hcrcever, i t often becornes necessary to represent nu-nbers

other then whole nurnbers. Binary fraction representation is an3.lagous to

cecimal fraction representati.on. In decimal nwrbers a fractlon consists

of digits to the right of a declmal. point; in biaar;y r we consider the bits

to the right of the binary point to be a fracticn. In a bilary fraction

the bits represent 2-N, where l,l = the bit posi.tion to the right of the

binary point. The powers of 2-N are shonn in the nunber tables. Con-

sider the following binary nrunber ?

Binary Poj-nt

1101.1101

ltris binary nr:nber representation means

Z3 + 22 + O + ZO . Z-l * Z-2 + O + 2-3

=B+lr+1+.5r.25+.0625

= I3.B].,Z5

Numbers can be converted to and from binary fractions using the

techniques already shorn fe converting whcle binary nunbers. Unfortunately,

not all fractj-ons are as well behaved as the above exanple. Consi<ier the

decimal number 3 L/3. When we try to convert j.t we end up with -

i r / -3 L/3IO = 3.3333..3rO

) V3LO = 11.01010101..01-
2

The fracti,on repeats and there is obviously no exact result. We

ri1l have to choose a bit posi.tion where re tnurcate the value. For

example, j.f we choose bit position sixl we end up with dn approximation.

) L/3n N 1 1 . 0 10 10 1

10-1

The rouadlng errol introduced by ttris tnuncatio, can be coputed by

courerting the tnrncated fraction.

1 1 . O 1 O I 0 10 1 = 2 + I + .25 + .e62i + .OLS6ZS

=3.328L29

Tbe error is about .1t. lbe possibility of tJrls type of rounding

error must alrays be taken into cqrsideratLon when using binary .fractioas,

partlcularly ln dlvision operations. Very fen nunbens result tn eract

binary flacttons, so the possibility of erqr wlIL be ever lresent.

sNotrcnursNt 3t901 oNV ctr3utHrruv AuvNts

BINARY ARITHMETIC Atfp Lgcrc rNSTRucTroNs

All computers provide a nr"rnber of instructions which are used to perform
arithmetic and log'ic operations on data. As discussed elsewherer coCIput€r
data consists of patterns of bits in registers and memory locations. How-
ever' there is a fundamental difference between the way the arithmetic
instruct ions and logic instruct ions treat this binary data. The ari thmetic
instruct ions interpret the data as numbers. The logic instruct ions, on
the other hand, interpret the data as a col lect ion of individual bi ts.

'11.1 Computer Arithmetic Instructi.ons
The most basic computer ar i thmetic instruct ion is addit lon. This instruct ion
and the logic complement instruction can be used to lmplement any known
n6thematical function. As a result, many computers offer addition as
their only arlthrnetic instruction, After additlon, the next most cofli lnon
arithrntic instruction is subtraction. This is because subtraction can
be perfomnd using the same basic hard*are as addition. After addition
and subtraction you have to go to a considerably more complex computer
to get mult ip l icat ion and div is ion as bui l t - in funct ions. The hardware
required for these operations is conslderably more complex than that used
for addit ion and subtract ion. As of this wri t ing (July L976) there are
no microprocessors with bui l t- in mult iply and divide hardware. Thls wl l l
certainly change. All of these operations use the contents of the computer's
accumulator(s) and another data source as operands with the result endlng
up in the accumulator.

3I;X.l Tnos Complement ilotatlg
The most cormon way of representing numbers for arlthmetic operatlons in
the computer is twos complement notation. To understand twos complernent
notation let's consider the binary nurnbers that can be represented by an
8-bit data element. lrle know that an 8-bit data elernent can represent 256
individual values. When we use a reglster as a counter, we can count up
to 256 dlfferent values. The binary number countlng method follows,

Lt-1

Binary Count
00000000 0
00000001 1
00000010 2
00000011 3
00000100 4

: :

11111110 254

11111111 255

This is an example of using the data element as an unsigned number. The
numbers in the register are interpreted as being in the range +0 to +255.

Now this method is convenient for counting, but awkward for ar i thmetic
because there is no way to represent negat_ive numbers. To circumvent
this 'problem we change the way in which we interpret the 256 possible,

numbers in the registers so that we wil l be able to represent both posi-

tive and negative numbers. This revised scheme will be called g.igned-

twos complement

Any binary number is converted to i ts negative by complementing' i t ,
adding one, and ignoring any carry out causd bJ the addit ion. For example,
consider the binary number +5 in an 8-bit microcomputer; 00000101. To

convert +5 to -5 we f i rst complement 11111010, and then add 1; 11111011.

If we perform the procedure on the result we get back our original number.

The 256 possible numbers in an 8-bit register now represent posit ive and

negative numbers in the range -128 to +127 as follows:

IL.2

00
00

000

000

000=0
001=1

:

1l l ' '+127
111= -1
110--2
101=-3

01
11
l l
11

111
111
1l l
111

: :

10000000'-128

t{obhow bit 7 (the most signif icant bl t) is always a zero for al l posit ive

numbers and always a one for negatlve numbers. The npst slgniflcant bit

in a irl,os complement number is called the siqn bi3, because by testing

it you can deterrnine if a number is positive or negative.

tL. 1.2 BinarY Ari thmtlc

Blnary arithmetic is perforrnd uslng the ALU and two operands' The

operation can be perfonned using either unsigned nr,mbers or slgned tms

complement numbers, depending upon the operation being perforrned' ibst

computers perform addition and subtraction as unsigned operations. They

do provlde flags to indicate the result ln signed tms complement, but

it ls up to you to keep track of the slgn and magnltude.

Addltion is perfonned by addlng the contents of an operand to the contents

of the accumulator. If the result ls greater than the largest number

which can be represented in the accumrlator, a flag ril l be set to indl-

cate a carry out has Occurred. For example, conslder the operatlon of

addlng the number 15rO to an 8-blt accu,rulator whlch contalns 25LO' The

operatlon would be performed as follows.

IL.3

Accumulator 00011001
+0perand 0000I111

Resul t 00101000=40,^

Now consider the addi t ion of l l l r ' to 14510 in the accumulator.

Accumulator 10010001
+Operand 01101111

u00000000
carry out

The resul t of th is operat ion is 25510. I t causes a cary out to indicate

that the accumulator overflowed.

Subtraction is performed by taking the twos complement of the subtrahend

and adding i t to the minuend in the accumulator. Thus to subtract 10rO

from 25rO we urould perform the following operation

Subtrahend 00001010
Form Twos Complement I 1 1 1 0 1 I 0

Add To Accumulator 0 0 0 I 1 0 0 I

4000011
carry out

Ignoring the camy out, we have a result of 1510. Now consider the

subtract ion of 35 from 15.

Subtrahend 00100011
Form Twos Complement 1 1 0 1 1 1 0 1

Add To Accumulator 0 0 0 0 I I I 1

! /11101100
no carry

No carry lndicates a negative result . I f we convert the number using our

twos c6mplement rules, we obtain the correct result , -20.

11=1510

11-ir

n'.wr'^^Ir*d"
g*b*re-Iv,*A

K w-*+

Result 11101100
Complement 00010011

Addl 00010100=2010

Notice that the sense of the carry after a subtraction is reversed from

that of addi t ion. A carry out indic i tes that the subtrahend was smal ler

than the minuend 1nd the result of the subtract ion was posit ive. &gry

-out
indicates that the subtrahend was larqer than the minuend qnC that

the resutt rvls nega This is cal led a borrpw condit ' ion, and i t is
analagous to overf low in an addit ion operat ion. To avoid confusion about
the reversal of the state of the carry f lag, many computer ALU'S auto-
matical ly complement the carry f lag after a subtract ion. This makes i ts
state after a subtract ion match more closely l ts state after an addit ion
(i .e. camy set i f resul t cause a borrow, c lear i f the resul t d id not
cause a borrow),

lL2 Computer Loqic Instructions
In contrast to the ari thmetic instruct ions, the logic instruct ions perform

their operations with no regard for the number representation being used.

The numbers being operated upon are simply treated as strings of bits.

That is why,these operations are often refemed to as bit by bit opera-

tions. The operation performed on one bit in no way affects the operation

upon adjacent bi ts.

A
b

The four most cormon computer logic
and Exclusive 0R. These operations
of the accumulator and another data
ending up in the accumulator.

instructions are Complement, AND' 0R'
(except complement) use the contents

source as operands, with the result

9.2. I Loeic Conlplement
The complement instruction replaces each bit in the accumulator with its

logiccomplement. Thus i f theaccumulatorcontains 1 0l 01 I 01, the

complernent operation yields the following result. ,r

u-5

Accumulator
Complement

11.2.2 Loqic AND
The Logic AND operations (Symbol

and an operand according to the
A) operates upon the bits of

folloring truth table.

r0101101
01010010

the accumulator

Thus gnly those bit positions which are logic ones in both the accumulator

and the operand will be logic ones ln the accunnrlator after a Logic Al{D
operation has been perfonned. For example, consider the following Logic
At{D operation.

Accumulator 01101101
A0perand 11011011

Resul t 01001001

Only those bits which were ones in both operands are in the result.

Lt .2.3 Looic,0R

The Loglc 0R operation (symbol V) operates upon the bfts of the

accumulator and an operand according to the folloring truth table.

Accumulator 001
nd

Bit
Bi t 0

Resul t Bi t

Bit posit ions which are logic ones in

wil l be Logic ones in the accumulator
performed. For example, consider the

either the accunulaton or the operand
after a Logic 0R operation has been

fol lowing Logic 0R operat ion.

Accumrlator Bit 0011
i t

Result Bit

II-O

Bit posi t ions which are Logic ones in ei ther the accumulator or the operand
wi l l be Logic ones in the accumulator af ter a Logic 0R operat ion has been
performed. For example, consider the fo l lowing Logic 0R operat ion.

Accumulator
V Operand

Resu I t

10110110
00110011
11110111

All bi ts which were ones in bcth operands are ones in the results.

q.2.4
-Loqic XOR

The Logic Exclusive 0R operat ion (symbol A, o-ten cal led XOR) is not
found in al l computers. I t operates upon the bits of the accumulator
and an operand according to the fol lowing truth tabSL

Accumulator Bit 0011
and Bi t

Result Bi t 0110

Bit posit ions which are a Logic one in either the accumulator or the
operand but not both wi l l be Logic ones in the accumulator after a logic
XOR operation has been performed. For exanple, consider the following
Exclusve 0R operat ion.

Accumulator 01100101
.lf 0perand I 0 I l gJ I 0

Resul t I 1 0 I 0 0 I I

Those bits which were ones in only one of the operands are ones in the

resul t .

u-7

APPENDIX A

MODIFIED 6500 OP CODE TABLE

0

I

2

3

4

5

6

7

8

9

A

I

c

D

B

F

0

8RK

BPLr

JSNG

EMIr

RTI

BVCr

RTS

E4rSr

*

BCCr

LDT#

BCSr

CPYf

BNEr

cPx*

BEQr

0

OR$(t *

ORAIy *

ANDxt *

ANDiy *

EORxi *

EORIy *

ADCxI *

ADCIy *

STAr(I *.

STAty *

LDAxl IDX#
i

LDAIy *

CMP!(I *

CMPIy *

SBCII *

SBCIy *

l2

* ORAz ASLz *

* ORAzx ASLzx *

BITz, ANDz ROLz *

* ANDzx ROLzx *

tt EORs LSRz *

* EORzx LSRzx *

* ADCz RORa *

* ADCzx RORzx *

STYz STAz STXz *

STYzx STAzx STXzy *

LDYa LDAz I"DXz *

IDYzx LDAzx LDXzy *

CPYz CMPz DECz *

* CMPzx DECzx *

CPXz SBCa INCz *

* SBCzx INCzx *

MODIFIED 6500 oP coDE TABLE

8

PHP

cIf

PLP

sEc

PHA

CLI

PIA

SEI

DET

TYA

TAY

cLv

INY

CI.D

INX

SED

I

* ORA@ ASI€ *'

:r ORAGX ASIGx *

BIIG AND@ ROIS * r

* ANDGx ROIGx *

JMF@ EORG LSR@ *

* EOR@x LSRGx *

JlrPt ADC@ RORG| *

* AD@x RORgn *

STTG STAG ST)@ *

* STA@x * *

u)YG I.DAG tDX@ *

IDI@x LDAGx LDXGy *

CPYG CMF@ DEOG *

* a"tG* DECGx *

cP)(G 88C@ IN@ *

* SB@x INCGr *

ORA# ASLa

oRlGy *

A"llD# ROLa

ANDCy *

EOR# LSRa

EORey *

ADC# RORa

AD@y *

* TXA

sTAGy T)(S

I.DA# TN(

IJeGy TSX

CMP# DEX

c[@y *

SBC# NOP

SB@y *

9A

B

*

*

*

*

*

*

*

't

*

rb

*

*

*

*

*

*

B

Key to addresslng eldole:

t lnnrediate
@ abeolute
t 8ccumulatot
r re lat ive
a tero PagG

&t, Gy absolute tndexed
N*,, zV Eero page tndexed
rl lndercd lndtrect
ty lndlrcct lndexod

APPENDIX B

KIM INFORMATTON

KIM PROGRA}MING DATA SHEET

.5500
OP CODE TAELE

o 8RK oR$(l t r

I BPLr oRAly * r

2 JSRG ANDX, * t

3 Bltlr ANDIy t *

4 RTI EoRr(* r

5 BfCr EoRfy t *

6 R?S A.DCxi * r

7 BVSr ADCty * *

SrSTAxtt t

9 BCCr STAIy I *

A LDY+ .tDAxl lrxt .

B BCSr IDAIy * i

c cPIf cMht * *

D BNE! C!{Ply) *

E CEK' SBGxt r .

F BEQr sBcty r t

ol2t

STASUS REGISTER

P: NV BDIZC
76543210

I}IPORTAI{T ADDRSSSES

00EF PCL 17rA t&tI-L ss=00
00F0 PCH 17FB NUI-H ss=1c

4567

* oRAz ASLz *

i otu{zx ASLzx *

BITt A.liDz ROLz *

* AJ{Dzx ROLil t

* EORZ IJRz *

* EORzx LSRzx *

* ADCZ RORZ t

r ADCzx RORzr *

STYZ SI.tz STXz *

STl:r STArr STXzy *

l.J)Yz ItAa lJXz t

U)Y?r lJAzx L}Xzy i

CPY8 CltPz DEC: *

t CliPzx DECzx t

CEX8 SBC? lNc" *

* SBCzr INCa *

6567

9At

ORA* ASIJ *

ORnGy * *

AND' ROL. t

AND@y * *

EOR# ISRa r

EO@y * *

ADC# RORs *

l\D@Y * *

TXA

STAGy fXS *

I.DA# TA,\ *

I,l@y TsX *

cMPrr D!!{ *

CilrGy *
'

60nf NoF I

SB@y t *

9i{8

CDEF

* ORI{ ASI€ i

* OR{}x ASICI *

BITE ANDG ROItr *

* AN[ax ROLG! *

JlaG Eo8€ tsR€ *

* ECRj-ex f-sRLlr t

.JnPt ADC.a RORG *

* ADC(ax RORGI *

sTr€ sTr@ sr:@ *

* sTAGx * *

rcl€ LDr& LD& r

IrlG* LDA(?x LDX?y *

cI'rG cliRd DE@ *

* C.'{I?x Df,CGr *

€8&r 5UW lH€g *

* SB@x fNO!fu *

CDEI

6

PHP

cLc

PLP

sEc

PiIA

cLt

PIA

cFt

DEY

TfA

TAY

cLv

INY

ct

I:!X

SED

8

I

i

4

5

6

I

9

A

t

c

E

ASCII/HEX CONVERSION TABLE

DECIT.{AL iTA(BII{ARY M

OOF1 P
o0F2 s
OOF3 A
OOF4 Y

ITFC RST-L
17m RsT-H
17FE IRQ/BRK-L
ITFF IRQ/BRK.H

0 0000 F
1 0001 E
2 0010 D
3 0011 c
4 0100 B
5 0101 A
6 0110 9
7 0111 6
8 1000 7
9 1001 6
a 1010 5
B 1011 4

0
1
2
3
4
)
5
7
8

00F5 X
w.i1, 0OF1- 00 (LD)

Fi. 1 ". -: ,-1700 pAD 17F5 SAL
... LTOL PADD I7F5 SAIT

-rr.i, , 4L702 PBD L7F7 EAr+l
1703 PBDD 17F8 EAII

' ,4 ,4 - 17F9 rBlt
,/' i;t11s..t 1g0O DUMPI, : , ! ; ' aAJ ' '

t1 1' / =,.,, ". ;,
L873 LOADT

- i , i . : . . r+-

' IMERVAL TIT'{ER

pRT to @: /ll INT
L704 1 D
1705 8 D
L706 64 D
L707 LO24 D
170c I E
170D 8 E
170E 64 E
l70F t024 E

9
l0
l1

READ G I}N
L7O7 STA?US
L7O6 COUNT D
17OE COTJIfI E

L2 c 1100 3
13 D 1101 2
14 E 1110 1
15 F 1111 0

DISPIAY OI'TPI.TT:

)g)0(xx
00FB 00rA 0oF9

JSRG grFlF

KEYBOARD INPIIT:

JSRG $1F6A

OTTTPUT TO IIY:

char ln A
Jsn@ 91EA0

II{PTIT FROM ITY:

JSR@ $1E5A
char lntoA o . '1

NULL
s7anr oF H€aorr{c. AtSo 6TAFT
OF MESSAGE
START aF r€Xl j ALSO €OA. E(O
OF AOORESS
eND OF lgxt; also €oM, Ei l , oF
MESSAOE
EHO OF ?FANSMr39tC{ tENOt
ENOUIRY I€NORYI- ALSO V'FU
ACXNO4LEOCE,

^LsO
NU

RINGS TH€ A€LL
BACKSPAC€
HOAI2OiI IAL TA'
LINE FEED OR LIN€ SPACE { i l€W
LTNEI AOVANCES ?A?'A fO
ft€xr Lr i l€ a€GttNrNG oF Lttr€
VFRTICAL TA8 (VTAAI
FORM :EED TO

'OP
OF NEX'

PAG€ iPAGE}
CABRIAG€ R€TUNN

sHrFt Out
sHrt t rx
OATA LINX €SCAT€
DgvrcE coN?roL t
oEvrcE coitleoL 2
cEv'cE coNTBor 3
:tEvrCe CONIPCL a
i /EcAttv€ Acracfvt locc
3YIJCHHONOU' IALE ISYfVC'
€NO CF rnANSVrSSrON TLOCX
SArrCEL lCALCLl
EwO Of storur,
3Utg?rrutg
€scAtE. Pi l€Ftx
FILE SEPAiATOI
GFOU' SEPAFATOR
R€COFIO SEPARATOR
UTITS€PARATON

I {UL

I soH
I
srx

€TX

ENO
ACK
t€L
ss
HT

,.9n

CDt !a..i

I

I
I

..i
I

i
I
I

I

I

t.&t

@

0t

03
v\

06

00
09
OA
oa
oc
oo
o€
OF
t0
t l
r2
?f,
la
l5
r6
l7

'|lt9
tA

'Erc

IE
!F

cu
NUL
sox
slx
EIX
EOr
EflO
ACK
seL
as
HT

LF

so

OL€

oc3
Oc.

SYN
€ta
cAr{
Et1
sua
E5C
FS

is
US

7.8'r

Ch, 8o.

:?f ,
i24
a?5
e26
,21

{?E
t29
.?a
+29

,2e
i2F

r3l
232
33: l
a34
535
i3a
,37
83i
93!}

.38

.3o

r lF

e.0

r6 l
b6?
? 6:t
d&
.65
r66

t €t
h6€
.69

r6a
r5a
r6c
m60
n6€
o6F
FrA
c?l
. t2
r t3
r?a
r75
r7g
r17
r7E
rE
!tA

76

AL' ?D
EsC

'E0eL. t t
EUBOUI

7'8 ' r

Chr No.

a 4l

e12

o{
E4!
F4
ca1
Ba8
t49

K48
Lac
Mao
t.€
O4F
P5q
o5r
R52
s53
74
u55
v16
w5t

'x gl

Y!9
z5a

!58

150
. .5F

\eo

OLE

'rC1

oc4

sYU
€r8
CAN
€tl
su8

RS
US

rII't Brocr Dr.0oniM

DBO - DB7

6530-
oo2

I.K ROM

TII,IER

648 RI{U

15 PIO

6s30-
003

-1K ROt'{

TIMEF.

648 RI{U

15 PIO

.J

PAO . PA7
7

gBO . PB7

PAO - P.A,7

PBO . PB7

Kf,YBOARD/
DISST.AY

TTYITAPE
TNTERFACE

-rRQ NlIr R/W RAM R/W ABO - AB15

KII"I INTERFACIY DATA SITEET

APPLICATION CONNECTOR PLUG

TUNCTION PIN #

PBO I
PBl 2
PB2 3
PB3. 4
PB4 5
PB5 6
INT(orange) 7
PB7* 8

*6ee p. H-7 for

FI'NCTION PIN #

480 I
A8l 2
AB2 3
AB3 4
K(green) 5
EIF 6
027
RAM R/r{ 8

FUNCTION

PA7
PA6
PA5
PA4
PA3
PA2
PAT
PAO

detai ts about th is

BAUD I1O

l7F1 79
l7r3 02

BAT'D RATE CONTROL

600 1200 2400

75 38 18
00 00 00

PIN I

l6
15
r4
l3
t2
l1
IO
9

Itne

4800

OA
00

TTY

300

EA
00

9600

02
00

EKPANSION CONNECTOR PLUG

F'

I
t,

FIJNCTION

DB7
DB6
DB5
DB4
DB3
DB2
DBI
DBO

PIN #

16
l5
L4
13
t2
11
10
9 __l

(A

PR.GRAHMABLE I/O LINES

PA DATA RECISTER 17OO PA DIRECTION REGISTER 1?OI.
PB DATA REGISTER 1702 PB DIRECTION REGISTER 1703

(0=lnput, 1=output)

TTY
OATA
ouT

TTY
OATA
IN

;;)
<H

TAPE

FIJNCTl,ON

GND
AI'DIO IN
AUDIO OTIT

FT'NCTION

KEYBD RET.
PRINTER RET.
KEYBOARI)
PRINTER

RECORDER CONNECTIONS

PIN f COLOR CODE NOTES

TTY/CRT CONNECTIONS

PIN # COLOR CODE

BRO{rtN
tsR(NN
VIOI.ET
YULLCH

GREY GND
BLUE FROM EARPITONE OUTPUT
RED TO MIC INPUT

K
L
l.{

R
s
t

u

NOTES

(+)
(+)
20 nA current Loop
20 nA current loop

I
L

EXTERNAL SWITCH IO SELECI
EITHER MOD€

FOR TTY OPENATIONJUMPf R

Mtc

-J;)

REMOTE

o
EAR PHONE

-o
7

6
-o

-o
3

4
-o

7
c

G

6
o

KEYBOARO R€TURN

{_--- KtM --:j

KIM MONITOR IMPORTANT ADDRESSES

OOEF USER PC LOW BYTE
OOFO USER PC HIGH BYTE
OOFl USER STATUS REGISTER
OOF2 USER STACK POINTER
OOF] USER ACCUMULATOR
OOF4 USER Y REGISTER
OOF5 USER X REGISTER
OOF6 CHECKSUM
OOFT CHECKSUM

OOF9 STORAGE FOR RIGHTHAND DISPLAY DIGIT PAIR
OOFA STORAGE FOR CENTER DISPLAY DIGIT PAIR
OOFB STORAGE F.OR LEFTHAND DISPLAY DIGIT PAIR

17OO PORT A.DATA
LTOT PORT A DIRECTION CONTROL REGISTER
I7O2 PORT B DATA
L7O' PORT B DIRECTION CONTROL REGISTER
L7O4-L707 INTERVAL TIMER #1
LTOC-L7OF INTERVAL T.IMER #T

L744-I747 INTERVAL TIMER #2
L74C-I74T INTERVAL TIMER #2
I7F2-T7F3 SERIAL T /O BAUD RATE CONTROL
I7F5 TAPE DUMP STARTING ADDRESS LOW BYTE
L7F6 TAPE DUMP STARTING ADDRESS HIGH BYTE
I7F7 TAPE DUMP ENDING ADDRESS+I LOW BYTE
17F8 TAPE DUMP ENDING ADDRESS+I HIGH BYTE
L7F9 TAPE FILE INDENTIFICATION NUMBER

ITFA NMI VECTOR LOW BYTE
17FB NMI VECTOR HIGH BYTE

LTFE rRQ VECTOR LOW BYTE
LTFF IRQ VECTOR HIGH BYTE

18OO ENTRY POINT FOR TAPE DUMP ROUTINE

1873 ENTRY POINT FOR TAPE LOAD ROUTINE

ICOO NONDESTRUCTIVE MONITOR ENTRY POINT

lC+F DESTRUCTIVE MONITOR ENTRY POINT

IEAO SERIAL OUTPUT ENTRY POINT

1E5A SERIAL INPUT ENTRY POINT

lFlF ENTRY POINT FOR DIGIT DISPLAY ROUTINE

IF6A ENTRY POINT FOR KEYBOARD READ ROUTINE

B-4

APPENDTX c

C. KTM SOFTWARE COLLECTTON

KIM User Notes vl- /13

Cass R. Lewart
HoI"mde1, N. J.

DISPI,AY ROUTINE

This rout ine wi l l d isplay any program showing each successive
locat ion and the contents of that locat ion. The rout ine is fu1lv
relocatabLe. By stor ing in the 17FA and LTFB l-ocat ions the
start ing address of th is rout ine one can use the ST key to start
the program. The display can be stopped by pressing RS and cont inued
by pressing ST again. The program starts dispLaying consecut ive
locat ions start ing with the locat ion shown in the displ-ay by
pressing ST. The second prograrn MULT controls the displa.v t ime.
With val-ue 04 i t is 0.4 sec per Locat ion.

OO A2 04 THREE LDX/I MULT
02 8A TWO T)(A
03 48 PHA
04 A9 62 LDAIf $62 .1 sec/cycle
06 8D 47 L7 STAG $L7 47 Load timer
09 20 L9 \F ONE JSRG SCANDS Display
0C 2C 47 17 BITG $L7 47 Check t imer
0F 10 F8 BlLr ONE
11 68 PtA
T2 AA TAX
13 CA DEX
L4 D0 EC BNEr TI^IO
L6 E6 FA INCz $FA
18 D0 E6 BNEr THREE
1A E6 FB INCz $FB
1C D0 E2 BNEr TI'IO

e.g. to start d isplayipg at . 2LO: AD,O,2,1r0,ST
if the DISPLAY starts at 300: AD, L,7,F,A,DA,0,0,+,0,3,AD,go
to desired locat ion,ST,. , . .

l l q l l+i *11r.*'L.vs$d*f- i't"",.*-

c-1

KIM User Notes vL l/t4

Jim Butterfield
Toronto

DIRECTORY: A KIM-I UTILITY PROGMI'I

Program DIRECTORY aLlows you 254 program IDs to choose from ... enough
for most program libraries with some to spare. The program is fu1ly
reLocatabl-e, so put it anlnohere convenient. Start at the first instruction
(0000 in the l ist ing). IncidentaLly, 000L to 001D of this program are
functionaLly identical to the KIM monitor L88C to 18CL.

After you start the program, start your audio tape input. When
DIRECTORY finds a prograu, it will display the Start Address (first
four digits) and the Program ID. Hit any key and it wiLl scan for
the next prograu.

0000 D8
0001 A9
0003 8D
0006 20
0009 46
0008 05
000D 85
000F c9
0011 D0
0013 20
00L6 c6
00t8 L0
00LA c9
001c D0
0018 A2
oo20 20
oo23 9s
0025 E8
0026 3A
0028 20
0028 D0
002D F0

CLD
LDA# $OZ
STAG SBD
JSRG RDBIT
LSRz INH
ORAz INH
STAz INH
cMHl $le
BNEr SYN
JSRG RDCHT
DECz INH
BPLT TST
cu"tt $2A
BNET TST
LDXtI $rD
JSRG RDBYT
STAzx POINTII+I
INX
BMIT RD
JSRG SCANDS
BNEr GO
BEQr SHOI{

o7
42 L7
4t 1A
F9
E9
F9
L6
F3
24 LL
F9
F5
2A
F1
FD
F3 19
FC

F8
lF lF
D3
F9

Directional reg

Scan thru bi ts. . ,
. .shi f t ing new bi t
. . into lef t of
. .byte INH
SYNC character?
no, back to bi ts
get a character
count 22 SYNC's

then test astk
, .or SYNC
if aster isk,
stack 3 bytes
into display
atea

., .and shine
until keyed
atf s al l fo l ,ks

c-2

VU TAPE

KIM User Notes v l l t2

Jim Butterf ie ld
Toronto

Program VUTAPE lets you actual-1y see the contents of a KIM format tape
as i t 's going by. I t shows the data going by very qrr ickly, because of the
taPe speed . . but you can at least 'sense' the k ind of mater ia l on the tape.
In case of tape troubles, th is should give you a hint as to the area of
your problem: nothing? noise? dropouts? And you can prepare a test tape
(see beLow) to check out the tape qual i ty and your recorder, The test
tape wi l l a lso help you establ ish the best set t ings for your volume and
tone controls.

Perhaps VUTAPE's most useful funct ion,though, is to give you a
t feel ing' for how data is stored on tape. You can actual ly watch the
Processor t ry ing to synchronLze into the bi t stream. Once i t rs synched,
you' l l see the characters rol l ing of f the tape unt i l an END or i l legal
character drops you back into the sync mode agaLn. I t rs educat ional to
watch. And since the program is fa i r ly short , you should be able to t race
out just how the processor t racks the input tape.

VUTAPE starts at locat ion 0000 and is fu1-J-y relocatable (so you can
load i t anyplace i t f i ts) .

OOOO D8 START CLD
0001 A9 7F LDAI| $7r
0003 BD 4L L7 STA@ PADD set display dir reg
0006 A9 13 SYN LDA/f $13 . .window 6 and tape in
0008 85 E0 STAz POINT and keep pointer
OOOA 8D 42 17 STA@ SBD
000D 20 41 1A JSRG RDBIT get a bi t and
0010 46 F9 LSRz INH . .sLip i t into
0012 05 F9 ORAz INH . . the r ight-hand
00L4 85 F9 STAz INH . .s ide;
0016 8D 40 17 STA@ SAD show bit f lag on display
0019 C9 16 TST CMIVf $16 . . is i t a SYNC?
0018 D0 E9 BNEr SYN nope, keep 'em rol l ing
001D 20 24 LA JSRG RDCHT yup, start grabbing.. .
OO2O C9 2A CMH| $2A .8 bi ts at a t ime and..
0022 D0 F5 BNEr TST . . i f i t 's not an r*r ."

0024 49 00 STREAM In.Ait $OO .. then start showing
0026 8D E9 L7 STA@ SAVX . .characters 1 at a t ime
OO29 20 24 LA JSRG RDCHT
002C 20 00 LA JSRG PACKT . .convert ing to hexadec..
002F D0 D5 BNEr SYN . . i f legal
0031 A6 E0 LDXz POINT
OO33 E8 INX
0034 EB INX Move al-ong to next. .
0035 E0 1-5 c?x/ f $15 . .d isplay posi t ion
0037 D0 02 BNEr OVER (i f last d ig i t , . .
0039 A2 09 LDX/F $09 . . reset to f i rst)
0038 86 E0 OVER STKz POINT
OO3D 8E 42 T7 SD(@ SBD
0040 AA TAX change character read
0041 BD E7 \F LDAGx TABLE . . to segments and. .
0044 8D 40 17 STA@ SAD send to the dLapLay
0047 D0 DB BNEr STREAM uncondit lonal jurnp

c-3

PROGRAM TO CHECK OUT TAPES/RECORDERS

Make a test taPe contal.ning an endless stream of SYNC characters
with the folLowlng program:

0000 A0 BF cO LDy# $Br directionaL..
0002 8C 43 L7 STlf@ PBDD .,regtsrers
0005 A9 16 LP LDA/I $rO SYNC
oooT 20 7A 19 JSR@ OUTCH ..our to rape
0O0A D0 F9 BNEr Lp

Now use program WTAPE. The display should show a steady synchronizatLoa
pattern. Tty praying with your controls and see over !f,hat range the
Pattern stays l-ocked in. The wider the range, the better your cassettel
recorder.

c-4

KIM User Notes v1/12

Jim Butterf ie ld
Toronto

SUPERTAPE

0100 A9 AD DIIMPT LDA# $AO op code LDA
O1O2 8D EC L7 STAG VEB
0105 20 32 L9 JSRG INTVEB ser up subrtn
oL08 A9 27 LDAIF 527
0104 85 El STAz GANG fl-ag to go to SBD
010c 49 BF LDA/I $sr
010E 8D 43 L7 STAG PBDD open the channels
OLLL A2 64 LDx/f $64 send 100.. .
0113 A9 16 LDA/I $16 . .SYNC chars
0115 20 61 01 JSRG rrrc
011-8 A9 6- tDA/f S2A send aster isk
011A 20 88 0l_ JSRG OUTCHT
011D AD F9 n LDA@ ID then the ID
OI2O 20 70 01 JSRG OUTBIT
0123 AD F5 L7 LDAG SAL followed by
0L26 20 6D 01 JSRG OUTBTC rhe srarr address
OLzg AD E6 L7 IDAG SAH (1ow and hieh)
OLaC 20 6D 01 JSR@ OUTBI'C
OL2E 20 EC L7 DIMPT4 JSRG VEB get memory word
OL32 20 6D 01 JSRG ouTBTc and send it
0135 20 EA l.9 JSRG rNcvEB on to next address
O].38 AD ED 17 LDAG VEB+I
0138 CD E7 17 CMP@ EAL is the address. .
013E AD EE L7 LDAG VEB+z . .at the end?
0141 8D F8 17 SBC@ EAH
0L44 90 E9 BCCr DUMPT4 no, go back;
0146 A9 2F LDA/F $2F Yes: send end-data
0L48 20 88 01 JSRG OUTCITT
0148 AD W T7 LDAG CIIKL . . and checksum
OL4E 20 70 01. JSR@ OUTBT
0L51 AD E8 17 LDAG CHKII . .hi and Low. .
OL54 20 70 O]. JSRG OUTBT
0L57 A2 02 LDKIF $OZ send two..
0159 A9 04 LDA/,[$O+ EOT characters
0158 20 61 0l- JSRG HrC
015E 4C 5C 18 JI4FG DISPZ and werre finished

; subroutines foll-ow here
0161 86 E0 HIC Sfiz TIC count
0163 48 HrCl PHA
0L64 20 88 01 JSRG oUTcHT send character
0167 68 PLA . .and br ing i t back
0168 C6 E0 DECz TIC
016A D0 F7 BNEr HICL do it again
016C 60 RTS

c-5

016D 20 4C L9
0L70 48
0l_71- 4A
oL72 4L
oL73 4A
oL74 4A.
0L75 20 7p 01
0178 68
oL79 2A 7D 01
01.7c 60

0LTD 29
017F C9
0181 18
0L82 30
oL84 69
0L86 59
0188 A0
018A 84
018C A0
0188 84
0190 BE
0193 48
oL94 2C
0197 L0
0L99 89
019C 8D
019F A5
01A1 49
0143 8D
01A6 85
0LA8 cA
0l_A9 D0
OI.AB 68
01Ac c6
ol.AE r0
0180 30
0LB2 4A
0183 90
0185 A0
0187 F0
0189 C6
O1BB DO
01BD 60

Speed
X3
X6

OUTBTC JSRG
OUTBT PHA

LSRa
LSRa
LSRa
LSRa
JSNG
PLA
JSNG
RTS

IID(OUT AND/T
CMI{I
c16
BMlr
ADCI|

ITH(I ADC'T
OUTCIIT I.D'TII

STtz
lRY T.NYNI.

STYz
ZON T,DXGY

PHA
ZON1 BII'G

BPLT
LDAay
STAG
LDAz
EOR/I
STAG
STA.z
Dm(
BNEr
PT.A
DECz
BEQr
BMIr
LSRa
BCCr

SETZ TNYII
BEQr

ROUT DECz
BNEr

' RTS

CHKT compute checksum
save the character

. .and take i ts
four lef t b i ts. .

r , f r i te rem.. .

now the 4 r ight bi ts. .

remove unwanted bits
change to ASCII by..

adding:

i fAtoF
if numeric
the eight bi ts, .

send 3 units
starting at 3600 hertz
number of half cycl.es
keep the character
wait for the previous,.

cycle to complete
get the t ime to the..

. .next pulse ($78 or C3)

flip between 1 and 0

have we sent al l the cycles?
nope, aend another one
get back the character
one less unit to send
and the last oners here
none teft? quit
take next bit
. .and l f l t fs a one..
switch to 24AA cycLes/sec

unconditionat return
one less bi t

any more? go back

$01"c0
06
05

$:z
$30
for

OF
OA

02
07
30
08
E2
o2
E3
BE 01

47 L7
FB
BF 01
T+ T7
E1.
80
42 t7
E1

E9

E3
05
o7

DB
00
D7
E2
CF

HHKOUT

$0F
$oe

HH(T.
$oz
$go
$08
conNT
$oz
TRIB
NPUL

CLKRDI
z0N1
TIMG
CLKlT
GAIIG
$80
SBD
GANG

zoN1

TRIB
stv,
ROUl

zoN
$oo
z0N
COT'NT
TRY

I frequency/density controls
01BE 02 NPUL .BYTE $OZ two pulses; one cycl.e!
01BF C3 03 7E TrMG .BYTE $C3,$03,$78

end

Tining Data: $01BE
04
02

c-6

KIM- 1 User Note s vl lf4

Jim Butterf ie ldTAPE DUPLICATION PROGRAM

L78O L9 27 START LDA/f $27 SBD value
1782 A2 3F GO LDX/f $3F set direct ional register to
1784 8E 43 17 STX@ PBDD input
L787 A2 07 LDX/I $07 PB5 (cont) set for input
1789 8E 42 L7 STXG SBD
17BC A0 5E LDY/f 94 high frequency
l78E 2C 42 L7 BITG SBD zero or one?
L79L lO 02 BPLr OVER
1793 A0 A3 tDY/l L63 low frequency
L795 A2 BF OVER LDX// $BF set direct ional register to
L797 8E 43 L7 STX@ PBDD output
L79L 49 80 EORif $80 reverse output bi t
L79C 8D 42 L7 STAG SBD and send i t
L79F 8C 44 L7 STYG CLKIT set timer
LTLZ 2C 47 17 WAIT BITG CLKSTAT and wait
1745 10 FB BPLr WAIT
I7L7 30 D9 BMIr cO

Connect your two cassette recorders in the usual way at the AIIDIO IN

and AIJDIO OUT points. With the program running, start the recorders.

A11 programs wi l l be copied from one tape to the other. This program

works on speeds up to 3X. I f bad copies are obtained, try reducing

the volume on the playback machine.

c-7

MOVE-A.BLOCK

KIM User Notes vL lf4

Edward J. BechteL, M.D.
Nerrport Beach, Cal i f .

The MovE-A-BLocK program wilL move a block of bytes up to 256 bytes
Long forewards or bachwards any distance. The bI-ock can be across page
boundaries -- i t does not have to reside in one page. The start ing
address and ending address of the block is entered in 00E0 - 00E3. The
NEII start ing address of the moved block (i .e. , where you want to move
it) is entered at 00E4 - 0085. r located i t in 1780 ro be general ly
out of the way, but l f you wish, you can use i t to reLocate i tsel f anlmhere.

lhe program calculates whether the move is forewards or backwards,
then moves from the top up, or from the bottom down. The number of spaces
the block is moved (in signed notation) is stored by the program in
0086 - 00E7' and the number of bytes that nere moved is stored in 00E8.
Also, the new ending address of the moved block is automatical l -y placed
in 0082 - 0083, for subsequent use.

1780 38 SEC
L78L A5 E4 LDA.z $W+
1783 E5 E0 sBCz $ro
1785 85 E6 srAz $ro
L787 A5 E5 wilz $gs
1798 E5 EL SBCZ $Er
L78B 85 E7 STAz $rZ
178D 90 18 BCCr MOVEB
178F 38 MOVEF SEC
L79O A5 E2 IJi.AZ $82
1792 E5 EO SBCz $rO
L794 L8 TAY
1795 84 E8 slYz $ng
L797 E6 E8 INCZ $Eg
L799 BL EO LooPl- LDAiy $80
L79B 9L E4 srAiy $84
179D 88 DEY
T79E DO t^9 BNEr L00p1
17A0 81 E0 LDAiy $80
L7A2 9L E4 srAiy $sa
L7A4 88 DEY
L7A5 30 L4 BMIr END
L7A7 38 MOVEB SEC
17A8 A5 E2 LDAZ $NZ
17AA E5 E0 SBCz $rO
17Ac 85 E8 STAz $ee
17AE E6 E8 INCz $ee
1780 A0 00 rDYtt $OO
l7B2 81 EO LOOP? LDAiy $nO
L7B4 9L E4 SIAIy $ra
1786 C8 INY
L7B7 C4 E8 cwz $rg
t7B9 D0 F7 BNEr LOOP2
17BB 18 END CI.E
LTBO A5 EZ LDAz $82
LTBE 65 E6 A,DCz $UO
L7c0 85 E2 STAz $pZ
L7C2 A5 E3 LDAz $Ug
L7c4 65 9,7 ADCz $E7
17c6 85 E3 STAz $83
L7C8 4C 4F I.C JMPG START

c-8

0OEO = SAL)
00E1 = SAH) Original

) b lock of
00E2 = EAL) bytes
00E3 = EAH)

00E4 = SAL) New location
O0E5 = SAH)

00E6 = di f L) Number of spaces
00E7 = di f H) block is moved

(signed notat ion)
00EB = Number of bytes in block

c-9

IiEX DI]MP

by J.B. Ross

Here is a program to print out machine language programs in
hexadecimel format. To use the Program' load the start ing address
of the dump in $17F5 (SAL) and $17F6 (SAH), the ending address *1
in $17F7 (EAt+l) and $17F8 (EAH), then run IIEX DUMP starting at

$0100. HEX DUMP is relocateabLe so you can nove' i t to other memory
locat ions as needed. As wri tcen, I IEX DUMP centers the pr int-out on
an 80 character l ine wieh 11 spaces on the lef t . The pr int-out i tsel f
requires 53 spaces. To modify the lef t margin, change the data in
locat ions $0113 and $0137.

EsI BITIP

1OO AD P5 17 SfBt LDA€I S17Fg gct lor startiag eddress
103 85 FA ,SfAU POINTIT save it in POINTL
1O5 AD r'6 17 LDA@ $17r'6 get high startiag address
108 85 FB STAZ POINTS save it in POINTH
104 20 2F tE JsR@ CRLF print Cn/Lr
lOD A9 0A LDA# 'LF' prlnt another LF
1SF 20 AO LE .rSR@ OUTCTT
LI,z AZ OF LDX# $Of print 15 spaces on lett
114 SO 9E 1E IOOP1 JSR@ OUTSP
117 CA DEX
118 DO FA BNEA LOOP1
114 A2 10 L$Xll $10 print headlng:
11C A9 FF LDA# $ff start wlth A at -1
1lE 48 PEA save A
11F 20 9E 1E JSR@ OttTSP print 1 space
t22 2A 9E 1E LOOP2 JSR@ OUTSP priot 1 space
125 68 PLA restore A
126 18 CLC
127 69 01 ADC# $01 add 1 to A
I29 48 PFA save A
12A 2A 38 lE JSll@ pRTgYT prlnt A as bex nunber
12D CA DEX
12S DO F2 BNER LOOP?
130 20 2F 1E JsR@ CRLF prlnt CR/LF
133 20 2F lE LOOpS JSR@ CRLF print CR/LF
136 A2 0B l,DX# $OB print 11 spaces oa left
138 20 9E 1E IOOP3 JSR@ OUTSp
1.38 CA DEX
13C DO lA BI\'ER L0OP3
138 AZ 10 LDX# $10 set up data counter
L4O 20 1E 1E JSR@ pBfP$? print address
143 20 9E 1E .tSR@ OUTSP space
146 20 9E lE LOOP4 JSR@ OUTSP space
149 A0 0O LDY# $OO zero Y
148 81 FA LDAIY F,OINTI get data from address
t4D 20 38 1E JSR@ PRTBYT print data
150 20 63 1F JSn@ INCPT increnent address pointer
153 A5 FB LDAZ POIN'fg test for maximum address
1s5 CD F8 1_7 CMp@ $17F8
158 90 09 BCCR MORE
15A A5 TA LDAZ POINTL
15C CD F7 L7 C',lP@ $17F7
15F 90 02 BCCR MORE
161. BO 06 BCSts DGNE
163 CA MORE DEX decrement data counter
164 D0 E0 BNHR LOOP4 repeat if counter not uero
166 18 CtC go to I.OOPS
16? 90 CA BCCIT LOOPS
169 20 2f 18 DONE JSR@ CRLF priat two blank lines
16C 20 ?F 1E J$&@ CRLF
16f 4C 4F 1C JtrP@ KIU return to monitor

tr*10

KIM-1 User Notes v1 #3

Joe Laughter
Memphis, Tenn.

FREQUENCY COI'NTER ROUTINE

This routine counts frequency using input PBO at a maximum rate
of 2O KHz. I t counts DATA for I second. To count ' for 10 seconds
load $29 into address 60. I t uses PB7 for int . req. (connect PB7
to IRQ.) .

0000 A9 01 r_DNt
0002 85 65 STAz
OOO4 F8 SED
0005 A9 36 LDA/f
OOOT 8D FE L7 STAG
000A 49 00 LDA/r
OOOC 8D FF 17 STAG
000F 58 cl,r
0010 00 BRK
OO11 EA NOP
OO12 AD 02 L7 CKL6^I LDAG
0015 29 01 ANdt
0017 D0 F9 BNEr
OO].9 AD 02 T7 CKHIGH LDAG
001c 29 01 AND/r
0OLE F0 F9 BEQr
0020 18 crc
0021 A9 01 LDNI
OO23 65 F9 ADCz
0025 85 F9 STAz
0027 A9 00 LDLI1
0029 65 FA ADCz
0028 85 FA STAz
002D A9 00 Trlill
002F 65 FB ADCz
0031 85 FB STAz
0033 4c 12 00 JMP@
0036 48 INT PHA
0037 49 90 LDAii
OO39 BD 04 L7 STAG
003c 2c 07 L7 BrT@
003F 10 FB BPLr
0041 A9 F4 LDA/F
0043 BD 0F 17 SrA@
0046 c6 65 DECz
0048 F0 02 BEQr
004A 68 PtA
OO4B 40 RTI
OO4C A9 FF DISP LDAif
0048 85 66 STAz
OO5O 20 lF lF OUT JSRG
0053 C6 66 DECz
0055 D0 F9 BNEr
0057 49 00 Tr}ilt

$or
lUECNT

INTLOW set int . vector
$17FE
INTHIGH
$17FF

PB check for input lotr

$or
CKLCff
PB check for input high
$01
CKHIGH

add count to total
$or
$F9
$re
$oo
$ra
$FA
$00
$FB
$FB
CKLCI^I

check time
$eo
$r.704
$L704
DEI,AY
$f+ set t imer for another int .
$170r
II'{ECNT check remaining time
DISP Lf zero disPlaY counts

$FF set dispLay loop count
SCANCT
SCANDS output data
SCANCT dee. loop count
OUT rept. d isplay t i l l looP
$00 count Ls zeto

c-11

0059 85 F9
0058 85 rA
o05D 85 FB
0o5F A9 05
0061 85 6s
0063 68
0064 40
0065 05
0066 rF

STAz $rg
STAz $m
STAz $TB
rDAtl $OS
STAz T'{BCNT
PI,A
RTI

*DATA (${ECNT)
*DATA (SCANCT)

set total counts to zero

reset I see timer

c-12

ANALOG TO DIGITAL CONVERSION DEMONSTMTION PROGRAI-T

Display ADC Output in HEX Format

0000 A9 FF START LDA/I $ff set PA port to output
0002 8D ol 17 srAG $1701
0005 AD 03 17 LDAG $1703 set PB4 to be input
0008 29 sF AND/f $EF
000A 8D 03 17 SrAG $1703
000D 20 B0 00 LOOP JSRG ADC call ADC subroutine
0010 85 F9 STAz $fg store ADC output in r ight display
0012 20 lF 1F JSRG SCANDS dispLay data
0015 4C 0D 00 JMP@ L0OP loop back for more data

Display ADC Output in BCD Formrt

0020 A9 FF START LDA/f $ff set PA port to output
0022 8D 01 17 STAG PADD
0025 AD 03 17 LDAG PBDD set PB4 to be input
0028 29 EF AND/} $nr
002A 8D 03 17 STA@ PBDD
O02D 20 80 00 READ JSRG ADC read ADC
0030 85 E7 STAz HEDEC-L set up data for binary to BCD conversion
0032 !,2 00 r.Dxlt $00
OO34 86 E6 STXz HEDEC.H
0036 20 00 02 JSRG HEDEC cal l binary to BCD converslon rout lne
0039 46 Ei IDXz $ff get BCD result high
0038 86 FB STXz $FB store result in lef t display
003D 46 E2 LDXz $82 get BCD resul-t Iow
003F 86 FA STXz $fe store result in niddle dllsplay
0041 A2 00 IJX/i $OO zero the right display
0043 86 F9 STXz $rg :
OO45 20 lF lF JSRG SCANDS display final BCD value
0048 4C 2D 00 Jl€@ READ loop back for more data

note: In order to perforrn the binary to BCD conversion, you nust load
the IIEDEC program into the memory starting at address $0200.

c-13

REAL.TIHE CLOCK

Kllt- l Ueer Notee v. l f4
Charlee H. parsone
80 Longview Rd.
Monroe, CT 06469

This progran uti l izes the interval tr 'er to produce an NHr rnterruptevery 249,856 mlcroseconds, A f ine adjustment to L/4 second is done wlththe sane t lme In th€ interuppt ptogr.r i--This f lne adjustn€nt can b€ vrr ledby.changlng the nuqber fn focation-$OSAS. A dtsplay routine is lncludedwhlcb shous rhe t*oe on-the KrM-1 di; ; t ; i . you can exlt rhis rourrncand get back to the Bonltor Uy pressfnt ih. , , I , , k"y.

To run the clock program you Duat conoect pB7 to expanaron connecEor
l l l 9 "19_l"t

up Ehe r{!r l interiupt vector by storing $eS'i"-Si ir l
"oa903 in $17F8. The cloci< la set iy

"" i"g-tte
KIl , nonltor to ent€r thccurrent ttlre lnto the HR, MIN, ani SEC Iocatlone glven below.

1/4 SEC - $0080 l /4 second counrer
SEC - $00E1 gecond counter
MIN = $0092 minute counter

. IiR . $0093 hour counter
Llz DAI - $0084 day counter for am-pm

*:.: I 11:t1.V.proglan once starr ing ar g0370 to set the interruprioutlne going, then re-enter the disf lay routine
" i

$OfZg I,heneveryo$ want to rho{ th. ttDc.

IIAI,-TIII CITCK - DIs?IAY ROUTIIII

0370 A9 00 START
0372 p5 80
0374 A9 F4
0376 8D 0F 1?
0379 A5 81 D$PLY
0378 85 19
037D A5 82
0371 85 FA
0381 A5 83
0383 85 FB
0385 20 6A lF
0388 c9 or
038A D0 0D
038c 20 lp lF
038F 20 6A 1r
0392 c9 01
0394 D0 03
0396 4C .4F tC
0399 20 lF lE
0t9c ll
0t9D 90 br

REAL-TIME CLOCK . INTERRI'FT ROUTINE

03A5 48
03A6 8A
03A7 48
03A8 98
03A9 48
03AA 49 83
03Ac 8D 04
03AF 2C 07
0382 10 rB
0384 E6 80
0386 A9 04
0388 C5 80
038A D0 38
03BC 49 00
03BE 85 80
03c0 18
03c1 F8
03c2 45 8l
03c4 69 01
03c6 85 81
o3c8 c9 60
03cA D0 28
03cc 49 00
03cE 85 8l
03D0 A5 82
03D2 18
0tD3 59 01
O3D5 E5 E?
03D7 c9 60
03E9 D0 19
03Dl r.9 00
03DD E5 82
03DF 45 83
03El 18
0382 69 01
0384 85 E3
03E6 c9 12
03E8 D0 02
03EA E6 84
03EC C9 13
03BE D0 04
0310 A9 01
0312 85 83
03F4 D8
03F5 A9 rA
0317 8D 0F 17
03rA 68
O3FB A8
03rc 68
O3TD AA
03F! 68
otrt 40

RTCLK PHA
Tt(A
PHA
TYA
PE[

. r.DA{f $83
STAG TIME4

TM BIIG TI}TES
BPLR TM
INCZ qSEC
r.DA# $04
CMPZ QSEC
BNER RTN
u)A# $oo
S1AZ QSEC
cLc
SED
I.DAZ SEC
ADC{I $Or
STAZ SEC
cMP# 60
BNER RTN
I.DA# OO
STAZ SEC
I"DAZ MIN
cIc
toGt 0l
stlz xtx
ctot 60
trat lu
IDA' @
sttz tEr
I.DAZ HR
cLc
ADC# 01
STAZ H8,
cMP# 12
BNER TH
INCZ DAY

TH CMP# 13
BNER RTN
r.DA# 01
STAZ HR

RTN CI.D
LDA# $rl
STA@ TI,}MF
FI.4
TAY
PIA
TA:(
PIA
TTI

L7
L7

aave A

gave X

Save Y
ftne adJust t iur ing

te8t t lnler status
loop untl l t ine out
count 1/4 seconds
do four t ines before updating lccondl

zero QSEC and update clock

change to decirnal node
increuent seconds

untl l eeconds = 60

reset seconds to 00

lncreroent.. mlnutes

untll tlhnter . 60

rcrot Elnutcr to (b

lncrenent houra

untl l hours
- 12

lnc!€nent L/2 day
check for 13 houre

statt agalo r l th one

teturn to blnary Eode
set tlne! to lnterrupt Ln 24grg56 .Gc

reetole Y

restore X

re8tore 4
raturn fron lnttrrupt

o
,

F
tb

IDA#
STAZ
IDA#
STAG
I.DAZ
STAZ
LDAZ
STAZ
I.DAZ
STAZ
JSR,@
CMP#
BNER
JSRG
JSRG
cl{P#
BNER
JUPG
JSRG
GTf
BGM

$00 zeto Ll4 second neryry
QSEC
$F4 eet tlEer to lntelrupt in 1/4 rcc.
TIMEF
SEC get aeconds
$Pg eend to r lght dlsplay palr
MIN get rnloutes
$FA cend to rolddle dlsplay patr
HR get houre
$FB sent to left dlsplsy patr
GETIGY check for r '1r key pressed
$01
ENDR
SCAMS dlsplay t lue and delay
GETKEY check for "I i l key preised agatn
$0r
ENDR

YOXTR Junp back to oonitor if 'r1r' prcrred
SCAI{DS dtaplay time agaln

tr0p b{dL to DSpLy te coatlrxl.
DSPLT

TIMER (STOPWATCH)

Klm-l User Notes
v, L l l2

Joel Swank /1186
4655 S. W. l42nd
Beaverton, 0R 97005

TIMER turns KIM-I lnEo a digital stopwatch showing up to 99 mi.nutes
and 59.99 eeconds. I t ls designed to be accurate to 50 ur icroseconds per
aecond. The KLM-I lnterval t iurer ls used to count 9984 nachine cycles
and the instruct lons between t ime-out and the reset of the t imer make
up the renalnlng 16 cycles needed to produce a t ime delay of 0.0100 sec.
The keyboard controls the rout ine as fo l lows:

FI.'NCTION
Btop
star t
reset
pt lnt t ine on terainal
return to KIM monitor

KET
0
1
2
3
4

0342 c9 02 NoPRT
0344 F0 C4
0346 c9 0r
0348 D0 C8
034A A9 9C
034c 8D 06 17
O34F 20 IF IF DISPL
0352 AD 07 17 D(PCK
0355 F0 FB
0357 8D 00 1C
035A A9 9c
035c 8D 06 t7
335F 18
1360 F8
3361 A5 F9
0363 69 01
0365 85 F9
0367 A5 rA
G369 69 00
0368 85 FA
036D C9 60
036F D0 0B
0371 A9 00
0373 85 FA
G375 45 rB
C'377 18
0378 69 01
a37A 85 rB
C37C DB CKEY
c37D 20 6A lF
0380 c9 00
0382 D0 cB
0384 F0 8c

cw# $02
BEQR RESET
nMDJI (111

Yvr

BNER HOLD
r,DA# $9c
STA@ TIMSET
JSRG SCANDS
I.DAG TIMCET
BEQR D(PCK
STAG ROM
I.DA/I $9c
STAG TIMSET
cLc
SED
LDAZ INH
ADCII $01
STAZ INH
LDAZ POINTL
ADC# $00
STAZ POINTL
cMPit $60
BNER CKEY
LDA# $00
STAZ POINTL
LDAZ POINTH
cLc
ADC{it $01
STAZ POINTH
CIID
JSR@ GETKEY
cMP/f $00
BNER DISPL
BEQR Hor.D

key 2
back to zero
key 1

set t iner
dlsplay value
check t iner
wait loop
delay 4 usec.
set t imer

8et f lags
decimal node

lncrement hundredths

tncrement seconds

stop at 60

zero seconds

lncreroent mlnutes

read keyboard
key 0

6toP

c)
I

H
LN

STOPI,IATCH

0300 A9 79 BAUDR
0302 8D F2 17
0305 A9 02
0307 8D F3 17
O3OA 49 OO RESET
030c 85 F9
0308 85 FA
0310 85 FB
0312 20 lF lF Hor,D
0315 20 6A lF
0318 C9 04
031A D0 03
031C 4C 64 lC
031r c9 03 NoQUIT
0321 D0 lF
0323 A5 rB
0325 20 38 lE
0328 A9 3A
032A 20 A0 lE
O32D A5 FA
032F 20 38 lE
0332 A9 2E
0334 20 A0 lE
0337 A5 19
0339 20 38 IE
033C 20 2F rE
033F 38
0340 B0 D0

979 set baud rate to 110 for pr inter
$ r7F2
$02
$ 17F3
900 zero display
INH
POINTL
POINTH
SCANDS l ight dlsplay
GETKEY read keyboard
$04 key 4
NOQUIT
CLEAR return to KIM Sonitor
$03 key 3
NOPRT
POINTH
PRTBYT print tiroe on terminal
t : t

OUTCH
?OINTL
PRTBYT
t . t

OUTCH
INH
PRTBYT
CRLF end of prlnt routine

Jurnp to HOLD
HOI.D

r.DA#
srA@
I.DA#
STAG

STAZ
STAZ
STAZ
JSRG
JSRG
CMP/I
BNER
JMPG
CMP#
BNER
I.DAZ
JSRG
I.DA{I
JSR@
I.DAZ
JSRG
LDA#
JSR@
LDAZ
JSRG
JSR@
sEc
BCS

KIM User Notes vl /f 1

H. T. Gordon
Berkeley, Cal i f .

HEDEC

HEDEC converts a 4-digit hex number in 00 E6 (hi byte) and 00 E7
(Lo byte) into a decimal equivalent stored in 00 80, 00 El, and 00 E2.
I t uses 00 E3, 00 E4, and 00 E5 to store calculated conversion factors
for each of L6 binary bi ts. Length: 67 bytes, Conversion t imes: 0.7
mil l isec for hex 0000, 1.5 ms for hex 1LL1", 1".4 ms for hex 8080, and
2.L2 ms for hex FFFF. Times are proportionaL to the number of binary
1 bi ts, not to the numericaL val-ue.

0200 F8 (sets decirnal mode)
98 (pushes Y, then X index into stack)
48
8A
48

0205 A9 00 (zeros 00 E0 to 00 E5 in a Loop)
A2 06 (sets X-lndex for 6 operat ions)
95 DF (zero-page, X stor ing)
CA

020c D0 FB
E6 E5 (increments 00 E5 to 01, to be fLrst conversion factor)

02L0 A5 E7 (accumulator pick-up of Lo hex byte)
02L2 48 (stored in stack)

A0 08 (sets Y-lndex for test ing of 8 bi ts)
0215 68 (pul ls hex byte fron stack)

4A (one logical shift rLght, lowest bit in carry)
48 (stores shi f ted hex byte in stack)

0218 90 0C (i f carry cl .ear, bi t was a zero. skip to O226)
42 03 (if not, do tripl-e-precision add of conversion factor
18 to the decimal Locat lons)

OZTD 85 E2
75 DF.
95 DF
CA

0224 DO F7
0226 A2 03 (next conversion factor atways calculated, doubLing

L8 previous factor by adding it to itseLf' gi-ving a
85 E2 sequence 1, 2, 4, 8, to f inal 65536 (not used))
75 E2
95 E2
CA

0230 D0 17
88 (DEY)

0233 D0 E0 (if not zero, back to 02L5 for next bit)
0235 68 (this PLA stack pu1l needed to equallze PIIAe and PLAs)

A5 E3 (LDA highest converslon factot location)
0238 D0 04 (i f not zeto, Job ts f in lshed, eo exi t)

A5 E6 (Lf zero, Load hl hex byte)
023C D0 D4 (t f not zero, back to 02L2 for bl t test lng)
0238 68 (restore X, then Y, lndexes)

AA
68
A8

0242 D8 (clear decimal node)
0243 60 (RrS)

c-15

BINARY MATH ROUTINES KIl4-1 User Notes vl / f3
I i . T, Gordon
Berke1ey, Cal i f

MULTIA SUBROUTINE

Program MULTIA (second, revised version) does binary mult ipl- icat ion
of tswo 8-bi t numbers that have been stored (before the JSR to MULTIA)
in 0083 and 00E4 and are destroyed by the operat ion of the subrout ine.
The hi 8 bi ts of the product are stored in 00E0 and the low I bi ts in
00E1; the subrout ine in i t iaLLy zeras these locat ions, and aLso 00E2.
Operat ions use LSRs on the mul. t ip l ier i .n 00E4 to move up to B bi ts in
sequence into the carry f lag. I f the carry is set, the mult ipl icand
(in 00E2 and 00E3) is double-p: :ecis ion added to the product locat ions.
I f b i ts remain in the mult ip l ier (00E4 not zero), the mult ip l icand is
shi f ted lef t in the 16 birs of 0082-00E3; crherwise rhe subrour ine
exits. Program length: 36 bytes. Maximun product (FF X fF) is FE01
or decimaL 65025, with execut ion t ime about 380 rnicroseconds. Time
decl ines ta 240 microseconds for 80 X 80" 160 microseconds for 10 X 10,
70 microseconds for 01 X 0l-" 40 microseconds for 00 X 00.

000A A9 00 (zeros locat ions 00E0 to 0082)
85 E2
85 El
85 E0

OOL2 46 E4 (LSR 00E4, lowest bi t into carry)
0014 90 0D (i f carry c lear, skip the addi t ion, go to 0023)
0016 18 (CLC starts double-precis ion add)

45 E].
65 E3 (running totals stored in 00E0-0081)
85 El

001D A5 E0
65 E2
85 E0

0023 A5 E4 (LDA of 00E4, zero fLag set i f zero)
F0 06 (exi t to 002D i f zero)

0027 06 E3 (ASL shi f ts highesr biE of 00E3 into carry,
26 E2 ROL shif ts carry intc, lo isest bi t of 00E2)

0028 90 E5 (carry is always ctear, so baek to 0012)
002D 60 (RTS exi t)

NOTE: This subrout ine assumes that the processor is in the binary
(not the decimal rnode) ! I t should not be necessary lor subrout ines
to protect themselves (by a CLD) from this problem.

c-r7

H, T. Gordor:
Berkeley, Cal l f .

SUBROUTINE DIVIDA

Ttr is software gives the quot ient, to t6-bi t or better precision,
from division of, any hex number from 0001 to FFFF by any hex number
from 0L to FF. It uses 10 Locations from 00E0 to 00E9, The quotient
appears in the lowest 5, with a fixed decinal igfi"d. betlseen EL and
Er. The raage of quotlents is from $ 0000,0fffi11@o* division of
0001/Ff) to $ FFFF.000000 (from divis ion of FFFF/OI). Quot ient Locat ions
are initiai.ly zeroed by a JSR. to SUBROUTINE ZEROER, which must also be
in memory and is coded separateLy for use in other programs. Before
the JSR DMDA, 4 locations must be fiLLed by the calLing program. Ttre
dividend high byte is set in-E6l the lshr bytl in 87, and-the Jivisor in
88. The'rprecis ion byte ' ! , wi th a vaLne from 01 to 05, is sec in
locat ion E9; i t is not al tered by the programrbut the other 3 bytes
usualLy are. The purpose of the precision byte i.s to alloqz the user to
control the number of quotient Xocatl.ous to be calculated by DIVIDA.
A value of 01 causes exit after the proper quotient value in Location
E0 (which may be 00) has been calculated" A vaLue of 02 l imlts the
caLculat ion Co quot ient t rocat ions E0 and 8L, and gives fr integer

arithmetic". A val-ue of 03 aLLows only one Locatlon to the right of
the inpl-ied decimal, etc.. The chief, use is to shorten the execution
time, wirich caa approach 2000 mie.roseconds at a preclsion of 05.
However, DMDA aL',tays exlts when the calcuLated remainder is zeto, since
calculat ion of higher-precislon locat ions ls then unnecessary. No
"rounding-off ! ' operat ions are included. 8.g., the quot lent of FEFE/FF
is 00FF.FD0000 at a preci .s ion of 03, al though t t should be 00FF.FE
since the quotient is 00tr'F.I'DFDFD at a preclsi.on of 05.

DIVIDA exits in Less than i.50 uicroseconds if the dividend is 0000.
It provides uo protection agalnst a dlvisor of 00, so the caL!.ing
program shouLd guard against thts! A guard could be i"neerted ln
DIVIDA, but I feel it is better for the cal-ling program to decide
what should be done lf such an error occura,

Operat ion of DIVIDA invol"ves addlt l^on of a ehif t lng elngle-btt

"Bit-Bytef in locatLon 05, to the quotient location controLted by the
X-register, whenever a posit ive remainder is obtalned. The X-register
is not protected by DIVIDA, so i t is better to use Y-indexed Loops in
the calLing program (that othenrise wilL have to store and restore the
X vaLue). T'tte final renainder is i.n location E6 when DMDA exirs.
ltre divisor vaLue is not altered if it is $ 80 or rnore; otherwise
lt ls lef t shi . f ted by DMDA.

DMDA is very Long (70 bytes, or 78 Lf one includes ZEROER; tf
the zeroing operation were made an integral part of DMDA the length
would be 74 bytes and execut ion a strade faster). I t Ls also sLor^l
compared to hardware arithsretic" but retratlveLy inexpenslve. It ls
meant to handle data, that are never precise, and not the kind of
eomplex math for which cai.cul.ators are designed, Since the ROR
instruction is not used, it wi.L1 run in any 6502 system.

Much of the Length of DIVIDA ls caused by speclal. Logic designed
to reduce the execution tirne---a deli.berate trade-off of rnore program
bytes for a Lower average time, that has the effect cf proloflgtng the
tlme of divisions wher no eaxL,g exit is posslble.

c* l_8

Execut ion t ime depends both on the number of quot ient locat ions to
be f i lLed and on the number of l -bi ts to be inserteci . Thus FFF,F/gl runs
slowly because i t requires insert ion of 16 l -b i ts into Lwo locat ions.
The rrhi / l -o exchange" operat ion at 022g speeds up many operat ions with
a div idend of 00xx. rn general , h igher speed wi l l require sacr i f ic ing
precis ion, and a precis ion-byte of 04 wi l l be ar lequate" My reason for
f imit ing the div idend to L6 bi ts and the div isor to 8 birs was that data
more Precise than 1 part Ln 256 wi l - l be rare, so that most data wi l l be
singl-e-byte, and data sets with more than 256 i tems wiLl be uneof lnnon.
calculat ion of the average of 255 one-byte data i tems is within the
capacity of DIVIDA. When there are more, they can be divided into subsets
of 255 or ferter' the averages for aL1 subsets acided, and the average of the
set of subsets calculated. we are now in the t ime range of seconds!
with more bi ts, i t would be minutes. people who neeci ar i thmetic speed
had better get a 16-bi t microprocessor (oi bet ter st i l i , she1l out for
hardware mult iply-divide) .

Those who want integer ar i thrnet ic operat ions wi l t do betcer using
a_div idend of type D(00 and precis ion-uyte of 01, However, s imir .ar
effects can usual ly be obtained more quickLy an<i by other Logic, not
divis ion. The number of poesible ways of doing di-vis ion is i rrcredibly
large, but I wi1"1- be surpr ised i f an operat ion l i lce that of DIVIDA can
be done with many fewer bytes or much r, ign"" speerl , al fhough using the
ROR instruct ion rnight help.

c-19

SUBROUTINE ZEROER

0200 A9 00 (rDA/i 00)
95 DF (STA zero-page, X)

0204 cA (DH()
D0 FB (BMo i f * 0, back to 0202)

o2a7 60 (Rrs)

SUBROUTIM DIVIDA
(Note that 3 Locations are unused between the end of ZEROER and the

start of DIVIDA. This is to aLl.ow users (if the subroutines are in
RAM) to insert 3 instructions folLowing the LDA divisor instruction
ax O2L3. If the divisor is 0G, DIVIDA is wrong. The instructi.ons
D0 01 00 substltute for this a BREAK to 1C00. If something more
complex is needed, the 3 ins'tructions can be a Jl'lP or JSR to a
longer sequence of instruct iorts.)

o2oB L2 06 (I,DA/I 06)
20 00 02 (JSR ZEROER, Eo zero 00E0 to 00E5)

021_0 38 (sEc)
26 E5 (ROL sets Blt-Byte to 01 and clears carry)

02L3 A5 E8 (LDA dtvisor byte)
30 05 (8M1, i f b l t 7 = L, skip to 021C)

o2L7 26 E5 (ROL Blr-Byre)
0A (ASL, Left-shtft divlsor Ln accumulator)

021A D0 F9 (BNE, Lf. * 0n back ro BMI ar O2L5)
85 E8 (STA bit-pattern L)C0(XruO(into dlvlsor locatlon)

021-E A5 E6 (tDA dividend-hi)
B0 0F (BCS, if carry set, go to subtraction at O23L)

0222 D0 09 (BNE, lf * 0, go to CMP at 022D)
A5 E7 (LDA dividend-lo)

0226 FO 28 (BEQ, dlvldend = 0 so exi t to 0250)
85 E6 (STA dtvidend-lo into dlvidend-hi l-ocatlon)

O22L 86 EV (STK zeros dfvldend-lo)
E8 (INX to shift to next higher quotient Locatlon)

022D C5 E8 (CMP dividend-hi with dfvisor)
90 0B (BCC, dl.vlsor too large, bypass to 023C)

0231 E5 E8 (SBC, subtract divlsor frorn divldend-hl)
85 E6 (STA renainder Lnto dlvidend-hi)

0235 L8 (CLC for addlt ion)
85 E0 (LDA zero-pager X the proper quotl.ent byte)

0238 65 E5 (ADC the nit-Byte)
95 E0 (STA zero-pager X back lnto quotient locatlon)

023C 46 E5 (LSR the ntt-nyte)
D0 09 (BM, i f * 0, bypass resett ing)

O24O Eg (INI(to shift to next higher quotient locatl.on)
E4 E9 (CPt(to preeision-byte)

0243 I'0 0B (BEQ, lf equal exLt to 0250)
A9 80 (LDAtf 80 to reser)

0247 85 E5 (STA inro E5 reeers ntt-nyte)

c-2 0

TZ-3

(aeuanbas Ssaf fxau JoJ gTZ0 of
(l3;;r{s eqt sa}aTduroc 1q-puap}^Tp

(rJ;qs*+laT puapTATp slraf,s oT-prrapT^Tp

(sru)

dl^If)
rox)
TSV)

AEZO

qrzo

6rz0

09

ZO H\ 3V
9s. 9Z
Ls, 90

15 BIT SQUARE ROOT

Ilere te a progrsrn which takee the square root of a 16 bit blnary

ouder aod ylelda a! elght blt lnteger plus elght blt blnary fractlon

result. Thlg routlne nas tra$alated by J.B. Rosg frou an g0g0 progrrn

rrttteo by B.E. DuPuy. The prograo is rrlltten as a subroutlne and

coMlnl'cates rtth other programs vta rnemory locstlone. Alt cpu .reglatctr

are changed by thls routlne. tnput and output data are located as

fol lowe:

8 blt taput (high) 90080
8 btt tnput (1ov) 9O0Sl

8 blt output (tnteger) 900E0
8 blt output (fact lon) 90081

otlter locatioue ueed are : $0082 - 900E8

SQUARE ROOT SIDROIITINE

o
I

N)
N

0100 A9 00
0102 85 82
0104 85 E3
0106 49 Fr'
0108 85 E4
010A 85 E5
010c A'9 10
0l0E 85 E8
0110 A2 02
0112 06 Er
0114 26 E0
0116 26 E3
0118 26 E2
0114 cA
0118 D0 F5
011D 06 E5
011F 26 g+
0121 E6 E5
0123 A5 E4
0125 85 E5
0127 A5 E5
oL29 85 E7
0t2B 06 E7
0t2D 26 E6
012F 86 E7
0131 18
0132 A5 E7
0134 65 E3
0136 85 E7
0138 A5 E6
013A 65 E2
013c 85 E6
0138 90 0A
0140 c6 E5
oL42 L5 E7
0144 85 E3
0146 A5 E6
0148 85 E2
0t4A c6 E8
014c F0 03
0l4E 18
014F 90 Br
0151 A5 E4
0153 49 FF
0155 85 E0
0157 A5 E5
0159 49 FF
0t5B 85 El
ouD 60

SQRT LDA/I
STAZ
STAZ
I.DA#
STAZ
STAZ
I,DA#
STAZ

LOOP I.DXii
SI{FT ASLZ

ROLZ
ROLZ
ROLZ
DEtr
BNER
ASLZ
ROLZ
INCZ
I.DAZ
STAZ
I,DAZ
STAZ
ASLZ
ROLZ
INCZ
cLc
wAz
ADCZ
STAZ
IDAZ
ADCZ
STAZ
BCCR
DECZ
LDAZ
STAZ
wAz
STAZ

NOGO DECZ
BEQR
cIt
BCCR

DONE I-DAZ
EORf
STAZ
I.DAZ
808#
8TAZ
ft8

$00
$82
$E3
$rF
$84
$ns
$10
colrNl
$02
9El
$no
$E3
982

SHTT
$85
)e4
$a:
$84
$uo
$Es
$87
987
986
$87

$87
$nr
$87
$so
9E2
$86
NOGO
985
$87
$83
$86
$az
cilnn
DONE

LOOP
$E/t
$Fr
9so
$85
$rr
err

lnl t ial lze extended ergunent

loltiallze cooplenented result

tnlt lst lze loop count

double lefr shifr of E2-E3-80-81

shift part lat result left

ehlft ln a one on tbe right
make a eopy of shlf ted part ial rcrult

shi f t copy of part la l reeul t lef t

shlft ln 8 one on the right
subtract ehtfted part ial result fron

hlgh L6 of curreot renainder (by
adding conplernent)

test 8ubtract ion resul t
tack a zrto onto complenented rerult
replace hlgh order 16 of current

renainder wlth subtractlon rerult

decresent and test loop count

Juop to loop

conpleloent result and store ln E0-81

rcturn

BYTE Aprit l9??

r tF
r ; t t +\
l l l ; l j

[,il uEfffI Gses tCI jtv-14.,ft |.q!
u;'(, il il

F;;,:E;;.,i;l
iEuERy ois I

Figure l: A general block
diagram of a simple lunar
fander progrom. tt can be
seen thot a tunar londer
program bosicolly breaks
dawn into o number of
updating rautines. Thse
updating routines ore con-
tinuously repeated until
the lunor lander has
reached the surface.

Jim Butterfield
14 Erooklyn Av
Toronro Ontario fol4M ?XS CANADA

There are quite a few lunar landing prc-
grams available nowadays: some for pocket
calculators, others using graphic displays.
The one I wrote for my KlM.l, based on the
ftfOS Technology 65A2 microprocessor, illus-
trates many of the techniques needed to
develop the program.

The KIM-I comes with a six digit LED
display, which can be accessed by the user. I
used ihe first fbur digits to represent the
craft 's alt itude, and optionally, the fuet
remaining. The last two digits, rvhich are
slightly separated from the rest of the
display, are used for rate of descent. Both
values change continually as the craft moves.

The KIM-l keyboard is used as rhe pilot's
control panel. Thrusr is set by pressing
controls 1 to 9. A value of 1 is minimurn
thrust, and the craft's rate of descent will
increase due to gravity. Nine is maximum
thrust, which slows the rate of descent
sharply. ln addition to power control. the
pilot can elect to view either current alri-
tude,. by pressing A, or remaining fuel, by
pressing F.

The Equations of Motion

The craft, of course, moves in accordance
with the .forces acting upon it: thrust and
graVity'." A physics textbook shows some
rathe;"' forrmidable equations. However, they
cari"be boited down to rhe following simple
grocedure:

NT, FUEL

c-.23

Every 0.01 second,
add 0.01 of the

veloe lty;
add 0-01 of the

tude;
subtract 0.01 of

fuel.

acceleration to the

veiocity to the alti-

the thrust frorn the

The acceleration is set equal io thrust minus
gravity, and gravity is set at the constant
value 5.

The time period of S.01 s is arbitrary"
Since KIM can op€rate in decimal mode,
dividing by 100 becon'res an elementary
operation. Everything would work iust as
well if i t were done in.any other srnall t ime
incrernent.

Figure 1 shows an elementary block
diagram of tfie program" After setting rhe
init ial f l ight valuesu we settl€ into three main
jobs: updating the fl ight, l ighting the dis-
play, and detecting input from the pilot"

Sctting lnitial Values

An interesting fl ight ean be obtained by
starting the lunar rnodule at a height of
4,500 feet with 800 pounds of fuel. That's
rnore than rufficient fuel for a safe landing,
but not enough to allow for prclonged
hovering

It 's not diff icult to 5et all the inirial
values by programming thern individually.
Howerrer, a faster method is to set them all
togethe!' in rnemory and use a loop to
init ialize ali of them" Thls is what I did as
shown in lisring

.l
on hexadecimal lines 0000

ro 0007.

Updating the Flight

Every 0.0i s we must updale our rate of
descent, altitude and fuel. As previously
indicated, we have tc add 0"01 of various
values into the totals. lVe can accornpllsh
this quite easily by using a gimmick. lnstead
of holding the allirude, for exarnple, in feet,
let's ute two n'lore digits arid store it as
multiples of 0"{}.1 feet" f,low we can add rhe
rate of ascent directly into the six digit
number; and the division by 100 happens
automatically, For dispiay purposcs, of
course, we drop the last lwo digits, so that
we're back to height in fcet, Using the s;rrne
technique on the other parameters, we find
that the updating joLi becomes relatively
easy.

During the updaring task, we must also
detecI two special conditions; touchdown
and oul of fuai. T'his s*effis fairly simnle

Listing t: Atr example luns lander proqran writt€n for the Klfrt-l
micropracessar thot uses the flowchart af l'igure I ss s bsse" The input ond
outpat o{ this pragram is handled by rautines thot src inherent to the KIM-l
systcm. The dota display is seen on the keypad ond LED dispfay of the KIM-I
assembly" This disploy continuously shows the rate of descent, und on
tornman,l will display either the qmaufit of fuet left, ar the altitade of the
croft. Keys I through 9 are used t# !ftput thrust commands, while key A
c*ssses the altitude disploy mode and the F hey choases the fuel disploy
tnsde. A!! the numbes in this listing arc in hexadecimal unles otherwise
stsfe#.

Addrcs 0p Optrad L.bcl Mnwmonie Gorm*tary

so A2
*fi42 85
0004 95
0s06 eA
000? 'r0
00{rg A?
0s0s 4,0
$#dn F8
00$E '!E
0fl0F 85
00r1 75
$sT3 95
0s15 eA
ss'r6 8g
00'! ? 10
00rs 85
ffixg "!o
ESt S rqg
s01 F ?5
s0?1 95
c023 cA
0c?.4 x0

ss?s ,q5

0e
B8
E2

Ftt

0s
ol

€2
E4
€2

ro
F6

a2
99
E2
F",

E5

E2

o8
oo
a2
E2
E8

FC

€D
EA
EO
ol
e8
o0
EB

GO l-Dx sSC
LPl tSA trutT,x

5TA ALT,X
EEX, 8FL LPT

CALC LDX *SF
RECAL LSY.,*S1

*gn

cr,g
DIGIT LDA AI.T"X

AFE ALT+?,X
gTA ALT,X
D€X
0€Y
BP[- BISIT
LSA ALT+3.X
$FL INCR
[-sA #sg

INCR ADS ALT,X
STA ALT,X
D€X
EPL R€gI{L

LDA ALT

8FL UF
I,.DA ffiO
LDX *S2

DD STii.&Lf"X
STA TF|?,X
ogx
Bp[s&

UP C€C
LSA FTJEL+z
sse TF{flLrsT
$!.A FU€L+2
LSX.#*1

LF2 L*A F{,I*L,X
$80 **S
si'A F{J#L.X
il€x
BPL LF?
geg TAr{K
LS4 #0
LSX *SS

LP3 I9TA THSUST,X
DEX
BPL O-F3
J5FI ?HfiSET

TANK LSA futI)OE
Si\{E S}'{GFL

tDA A{,'1"
LOX AL,T+i
sEs $'f"
stvtr $f

LINK gg0 EALO
SHOFL I"CIA FU€L

tSX FU€t+1
ST $TA POIru?H

sTX p8iiitTL
. LSA X,1&L

Bf,{i sffl /F{
LFA 1l€€-+X
E#fl FLY
gfl,g€ FLY

DOWN Sge
'r-p& #{ffi
s8* vsL+x

init,sliee veldGs;

X:*O5;
Y:*Ol;
ser d€cir:al ma&;
clear carry;
l
)' add each digir;
l

I
) set up nert digit;
I

G0?8 10
so?A .49
s02c A2
0$28 gs
fi030 95
ss32 cA
0fi33 10
**35 3S
f;836 A5
smSs E5
s$3.4 85
0s3c A?
ss3tr Es
s0,40 E9
fii84? 95
s$li4 eA
0s45 'r0
6Sd7 S0
0{J49 A9
fls4B Alt
004D 95
0s4F cA
0050 r0
s0$2 ?0
o$gs A5
$s6? n0

eounter:*counter - l;
il counter pgitirr€ go ta
R€CAL;
elsc check it altiarde ir
$'6ititG;
it altiwde positilr{ go to UP;
elr€ sltitude:*q);
X:*O?

l
I els* turn off$!gino;
I

3et e8r{'y;

t
I uodoto fuel;

$
i
I

i check if fuel left;
l

I
-if fuel left 9o to TAI$K;
I

I
else turn off engine;

I'ea to THflSET;
A:*display rlrods;
il rnode not 0O go to
SFiSFL;

AX :-locaticn of eltituda;

go to $T;

A:*F[.i€L;
X;TFUEL+l ;
i

I dlrrlov valuce;
A:welocity slgn;
if *ign n*grtlvc 0o to DOWN;
A;./wlociry/;
I so te FLY:

b
1 vst@city:*Amto€ity/;
a

0c5g A5
01158 46
005n Fi)
OfisF D0
6061 F0
&s63 A5
00€s A6
ss6? sii
CI*69 8S
s0s8 .A5
s060 30
ilSSF rx5
6)07! F0
ss?s o0
&8?5 3g
0s7s A9
0*?s Hs

f -e 4

F7
0e
oo
03
EA

F8
AA OO
EE
OA

€?
E3
08
06
,4€
EB
ga<

F8
FA
E5
06
CD

07
ne

80
c!'

Listing l, continued:

Address Op Operand Label Mnemonic Cornmlntary

FLY STA INH
LDA =O2 !
STA DECK l DEcK:=o2; lcounterl

FLITE JSR SCANDS look for depressed key;
8EO NOKEY i f no input go ro NOKEY:
JSR GETKEY else go to GETKEY;
JSR DOKEY go to DOKEY;

NOKEY DEC DECK DECK:-DECK-I:
BNE F LITE i{ DECK not egual ro 0 go to

F LITE;
elre go to LINK;
A:=fuel mode?;
it not fuel mode go to
NALT;
else MODE:= fuel mode;
return;
A:raltitude mcdre?;
if not go ro NAL2;
else mode: =altitude mode:
MODE:-A;
return;
return; fillegal model
€lse X:-A;
A:-THRUST;
if thru:t:=0 go ro RETl;
else TFIRUST:*X;
A:.THRUST;
3et carry;
THRUST:*THRUST - O5;
TH2+1:.THRUST;
I

I A:'00;
TH2:-OO;
raturn;
)
) [inatiat heishrl
,
I
) [initial-soeedl
I
I

| [initi"t acceleration]

iinitial thrustl
)
) [ini t ial fuel l
I

tmoacl

untif we realize that both the altitude and
the fuel gauge will probably go right past the
zero mark, jumping directly from a positive
to a negative value; so a zero test is out.
Instead, we take action the instant the
number goes negative, restoring it to zero
and then taking whatever other action is
called for.

Lighting the Display

The display is quite straightforward; in
fact, the KIM-I monitor program has a
subroutine to do the job.

Depending on the display mode flag, all
we need to do is to move altitude or fuel to
the display area, together with rate of
dcscent. Then we call the slbi2rllins 1t
transfer it to the LEDs.

Of course, we must remember to drop the
last two digits from the displayed values

(0.01 of units, rcmember?) and to riegate lhe
ratc of dcsccnt. wherc' nccessaiy, so that it
shows as a positive numbcr.

Detecting Input

Tlrr KIM-l monitor subrout ine that i ights
rhe display gives us a frec bonus: lt also tells
us whcther or not a kcy ir dcpresscd cfl the
keyboard. To find out which key, we murt
cali another subroutine in the monitor pro-
gram.

lf we discover thet the uscr has input a
thrust command. buttons I to 9, we firsl
check to see that tlrc motor is on and that
we have fuel. Then we set the thrust, and
also calculate the acceleration as thrust
rninus 5, where 5 repretents the force of
gravity.

The two orher legal keys, A and F,set the
display mode to alt itude or fuel. The pro-
grarn sets a memory location whiEh will bc
tested by the display routine.

The program doesn't need to worry about
vrhen a button is released. Although the
gucstion can be quite important foi' pro-
grams that must distinguish between, say, 9
and 99 on the input, lhe lunar lander doesn't
really care. lf you leave your finger on the
butron, it wil l keep on setting the thru$r
over and over to the same value, without
affecting the fligfit.

Coming Down

The program doesn't stop. lf you run out
of fuel, you wil l wateh yourself freefall to
the surface. When you land, with or without
fuel, your rate of descent freezes 50 that you
can see how hard you landed.

It would be easy to have the display
change after you land, to show words such
as "SAFE" or "DEAD." The KIM-I d ispiay
is segment driven so that you can easily
produce special combinations.

The novice astronaut who would l ike to
'try his or her hand at flying this, or other,
craft should keep the following rules in

mind:

1. Always conserve fuel at the beginning
by reducing power to minimum tl:rust-

2. Don't let your rate of descent get

excessively high;with my piogram' it 's
wise to steady up with a thrust value

of 5 when your speed gets over 90 feet
per second.

3. As you get to lower alt itudes' try to
balance your alt itude against your rate
of descent. At 1000 feet, a rate of

' descent of 500 feet per second will

bring you down in 20 seconds, whiclt
is reasonable. KeeP that sort of
balance.r

007A
ooTc
007E
o080
oo83
oo85
0088
oo88
ooSD

008F
0091
0093

(X)gs 85
0097 60
(X)98 C9
oo9A DO
o09c A9
009e 85
00Ao. 60
00Ar 10
OOA3 AA
ooA4 A5
00A6 FO
ooAS 86
OOAA A5
ooAc 38
OOAD E9
00AF 85
0081 A9
0083 E9
00Bs 85
0087 60
0088 45
(n89 00
ooEA @
ooBB 99
ooBc 8[)
00BD 00
ooBE 99
00BF 98
00c! 02
00c1 08
ooc2 00
ooc3 00
00qr 00

BEO LINK
DOKEY CMP =15

BNE NALT

STA MODE
RTS

NALT CMP:10
BNE NALz
LDA =OO
STA MOOE

BET1 BTS
NAL2 BPL RET1

TAX
LDA THRUST
8EQ RETl
STX THRUST

THRSET LDATHRUST
sEc
SgC;{)5
STA TH2+1
LOA C)O
sBc so
STA TH2
RTS

INIT

85 F9
A9 02
85 E1
20 tF rF
F0 06
20 6A tF
20 91 00
c6 El
DO FI

FO DO
c9 15
DO 03

EE

ro
o5
o0
EE

FO

EA
F8
€A
EA

o5
FO

00
00
EE

c-25

HORSERACE

Eight 1ap

whip your horse

too much and he

Horse

Prince Charming
Colorado Cowboy
Ir ish Rai-r

Start program at

to go faster.

probably poops

Track

top
middle
bottom

A27F. Bace is

Warni.ng--whip the horse

out.

Whipping button

PC
c
4

eight laps.

KIM-1 User Notes v1 #3
Charles K. Eaton
19606 Gary Ave.
Sunnyvale, CA 94086

horse raee and you ean be the jockey and

HORSE RACE

00 01 02 03 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

0270 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D8
0280 A2 L3 BD 7C 07 95 7C CA 10 F8 A9 7F 8D 41 t7 A0
0290 00 A2 0g 89 7c 00 84 FC 20 4E lF C8 C0 05 90 F3
0240 20 5D 1F A5 8F

'0
Et A2 03 CA 3A DE D6 86 D0 F9

0280 85 99 A4 99 86 83 89 90 03 35 7C EA EA EA EA EA
02cg 95 7C E8 96 8l 89 90 03 49 FF 15 7C 95 7C E0 05
02D0 50 t8 D0 0b A5 8F F0 28 D0 30 A2 02 l8 85 83 E9
02E0 06 95 83 CA 10 F6 A2 06 85 7C 95 76 A9 80 95 7C
OTFO CA DO F5 EA EA EA EA EA EA EA EA EA EA EA EA EA
OSOO C6 8F DO 06 45 8T 09 05 85 81 EA EA EA EA EA EA
0110 89 89 00 F0 0B 20 68 03 29 tC D0 18 99 89 00 EA
g32A 20 68 03 29 t8 85 94 89 8C 00 30 0B 29 t8 C5 9A
0330 B0 05 A9 FF 99 86 00 2A 5D 1F A0 FF 46 99 3D 93
05+0 03 F0 0i 88 98 55 89 85 9A EA EA 2D 68 0t 38 29
O55O 01 65 9A 18 A6 99 75 8C EA EA EA EA EA EA EA EA
0160 95 8c 95 86 4c A9 02 t8 18 A5 92 65 95 65 96 85
0370 91 A2 04 85 91 95 92 CA 10 F9 50 80 80 80 80 80
0580 80 80 80 FF FF FF 80 80 80 00 00 00 80 80 80 08
0t90 FE BF F7 01 0i 04

c-26

ONE.ARMED BANDI,T Start progrsm
Press any key

er $0200
to spin wheels0200 A9 25

0202 85 05
0204 20 BA 02
0207 A9 00
0209 85 06

0208 20 8D 02
020s D0 FB
021.0 E6 09
0212 20 8D 02
02 tr5 F0 r'9
02],7 A9 03
0219 8s 06
0218 F8
0?1C 38
021D A5 05
02tF E9 0t
0221 85 05
02?3 20 BA 0?
0226 26 09
0223 20 8D 02
0??B c6 08
022D D0 19
02?F A{i 06
0?3t. 15 09
s233 :,9 $6
03:i5 fi9 4ii
0237 95 01
c?39 45 09
0?3s 45 09
0l3D C5 06
O??F DO E7

0241 A5 04
0243 c5 03
0245 DC 37
0247 C5 02
0249 D0 33
o24B A2 10
024D C9 4C
024F F0 0D
0?5t A2 0B
0253 c9 42
0255 F0 C7
0257 A2 06
a?59 c9 44
0258 F0 01
025D CA

J. Butterf le ld
ToronSo

0258 86 07
0260 A9 B0
0?62 B5 08
0?64 20 8t] c2
c267 c6 08
0269 s0 F9
0?68 c6 0.r
0268 FO 9C
026F 18
0270 F8
s27t A5 Crs
0?73 $9 0i ,
0275 s0 94
02?7 B5 05
02?9-20 BA 02
02?c Ds S2

4?T,Fi fi: $l]
il?fl,j CP 4d,
O?S? F$ DA
&3,i!4 1{! 8D u;
+3Ei ,;J 0S
{r?89 s0 {i0
t2sil $Ll F?

; A !{INI PAY AI'toUM.
FAY STXz RWD
PAx rrA# $80

STAZ STALLI
T,P9 JSR@ DISPIY

DgCz STALLtr,
BNEU tl'9
DECg RIJD
EDQr Lpl
cLc
SED

- LDAz AMT
Alcf $01
BCgr Lpi-
STAZ Alff
JSRG CVA.}ffi
B}q$r PAX

: WllEEl-$ NOf .d]^,t $Al4E
i{0i'l,tT Lc$# $*3

CltPi? $45
sEqr FAy

L#li JSRG nlsFr."f
LDAa Slfi'
bt{Er t,tr i"
EEtlu ItJ$.

" enEffK FOFi r3lti,i,t $iIS

CEERRY

co rDA# $25
STAa Al'ff
JSRG CVA}ff CHANGE TO DISP
LDA# $0O
STAz ARRCI,J

: HAII.I DISPLAY LooP
LPl JSRG NISPLY

EIIEr LPI
ROIL lNCz TLI},IBLE

JSRG DISPIAY
BEqr I{OLL
LDAII $03
STAa .qRRCt"t
SED
sEC
LDAz AMI
SBC# $01. CHAR.6E A BTJCK
,iTAz At-fT

-TSRG C'VAHT
ROLZ TL&$TJ8

LP2 JSFLG D ISPLY
OECz STALLI ilAIT
Bi{Er l,Pz
Lily;n An-R.CSf
IDAZ TI,JlIEL4
tu\D# *36
$R.e.{l $40 ,cF.!-L\} rtil$rJL'i
STAZ:- irilr.ilst=-1..1 ?i3 FegFi,p^'i
[.SBa ?]ttl'i&LE
L$Ra ?UMBLS

, EEC3 4,RRC+i
$Nnr LPz

; S?.L i*llin$L5 *q'IOPPSD - Cei;l?Lryg pAy0?t
L0eu ilINDoJ+q
{:t'tPe }III.ID@{+3
8)inr NOMAT
CtlPz SLND{nf+g
ENEr NOitfAt
rDx+ $10
cr'tr# $40 gr5 rp 3 $Aes
BEqr pAy
ilJlx* $08
cliP# $42 $10 rF 3 uPs
DEQT PAY
rsx# $06
cllP* $44 $5 rF 3 D&'NS
BEQT PAY
DEI(

TN :T , lfrp"aX SUBII0UTINfl
;

0288 A5 06 DISPIJ LoXz AARsd
028f 1$ 02 BPLr INB1S
029!, F6 02 OVfiR lttCzx WINDtlir+?.
0293 CA INB15 DAX
0294 l0 Fb BPLr OVEa_
s296 i .9 7F LDA# $7F
0298 &D 4l J.? $TA0 pr.DD
0298 A0 CB r.Drdi gilB
O29D A2 At+ LIX/I ${)rr
0291' 85 00 LITE LDAzx it')tirx$
02Al 8{ /+? l? s't'\ig SBri
02A4 BD 40 1? s?AG SAt
O2A7 D8 CLD
O2A8 49 7F T"DA# 9?r
02AA E9 0t ztrP stsrii $01
02AC F0 ir{l Bttpjr. i:i}}
02Ai; 8* 42 L? s?,a/i Siii-..
02Bi Cg ItL1:
O2B? CE II.iY
0283 CA onx
028{,. 1S g;{, Fpt r' 1"l lt.t
0286 2S 40 lF" JS!{r-g fr-hrijt:-li
O2I]9 6G RT$

I

: At'tflUNT C8trVtii{il iCH

02BA t5 05 iueo*r
02BC 29 0F
0?8s &{
OzBF BD E7 },F
02c2 85 00
02c4 45 05
02C6 /rA
02c7 44
02c8 4A
02c9 4A
O2CA AA
O?CB BD E7 l"F
02c0, s5 01
02D0 60

I.DAz A|$
.A,ND/i $0F
TAX
Illd0x TAt]1.8
STAa tlINDS,.;
!,DAz AKI'
i,$Ra
I^SRe
LSR4
LSRa
TAX
I^DA{9x TABLI
STAz rri INDCfi+l
&TS

KIM-I User Notes v1{f4
Stan Ockers
Jim Butterfield

KIMMAZE

Find your way out of the maze. Yourre the fl-ashing f.ight in the
center of the display. As you move up (key 9), dorm (key 1), lef t
(key 4), or r ight (key 6), KIM wiLl keep you in the central display;
you'11 see the wal ls of the maae moving by as you travel. . Like walking
through a real- maze, yourLl only see a smalt part of the maze as you
pass through i t . I f you can get out, your 11 f ind yourself in a large
open area; that means youfve won.

Program starts at address 0200.

O2OO DB START CI,D
OaOL L2 OZ LDX{f 2 3 values
0203 BD 85 02 SETUP LDA@x INIT from init
0206 95 D2 STAzx |"LZPT. , . to maze ptr
O2O3 CA DEX
0209 10 rB BPLr SEfitP

;--pick out specifLc part of maze
O2OB AO OB MAP lDYii 1.1
020D B1 D2 GEXI,IOR r.DAiy YEPT 6 rows X 2
O2W 99 D8 00 sTAay WORK
o2l2 88 DSY
0213 10 FB BPLr GEAnOR

;--shi f t to posit ion vert ical ly
O2L5 A2 0A T-DXlt 10 for each of 6 ro'ws, .
O2L7 A4 D4 NXDIG LDYz POSIT shtft Y positions
0219 A9 FF I,DA{i $ff fi l l ing with rwalls'

0218 38 REROL S0C ..on both sides
Ozl.C 36 D9 ROLzx I{ORK+i.
02LE 36 D8 ROLzx WORK ro11 'em
O22O 2A ROLa
O22L 88 DEY
0222 DA E7 BNEr REROL

;--calculate segments
0224 29 07 AbIrHi 7 take 3 birs
0226 A8 TAY & change to
0227 89 A0 02 LDAGy T48L segnent pattern
022A 95 DB STAzx WORK ,.and store
O22C CA DE'X
022D CA DD(
O22E LO E7 BPLr }IXDIG

;-- test f ! "asher
0230 C6 D5 LIGHT DECz PLUG time out?
0232 L0 0A BPLr MUG ,.no
0234 Ag 05 LDA{I 5 . ,!e8 e reset
0236 85 D5 STAz PLUG
0233 A5 DE LDAz WORK{6 . .and..
023h 49 40 EOtVl $40 .,fLLp.,
023C 85 DE STAz WORK{6 . ,. f lasher..

c-28

023E'
0240
0243
o245
o247
o249
024c
o24F
o25L
0253
0254
0255
0256
0257

0259
o25C
o25F
026L
0263

02.65 A?
0267 DD
026A F0
026C CA
o26D LO
026F 30
027L CA
0272 30

A9 7F
8D 41 17
A0 09
A2 OA
85 DB
8D 40 17
8C 42 L7
c6 D6
DO FC
CB
CB
CA
CA
10 EE

40 lF
6A].F
D7
CD
D7

a4
A8 02
05

20
20
c5
FO
85

; - - l ight d isplay
MUG LDA/f $Zr open the gare

STA@ SADD
r.DYlt $Og
LDXit 10

SHOI,{ LDAzx I,JORK tiptoe thru. .
STAG SAD . . the seguenrs
STY@ SBD

STL DECz STALL . . .pausing
BN T ST1
INY
INY
DEX
DEX
BPLr SHCff

; - - test new key depression
JSRG KEYIN ser dir reg
JSRG GETKEY key?
CMPz SOK ,.same as l"ast?
BEQT LIGHT
STAz SOK no, record i t

; - - test which key
LDX/I 4 5 i tems in tahle

SCAN CMFGx TAB2
BEQr FOIIND
DEX
BPLT SCAN
BMIT LIGHT

FOI]ND DD(
BMIr START go key?

;-- test i f wal l
LDY@x TAB3
tDAGy WORK
AND@x TAB4
BNET LIGIIT

; --move
DEX
BPLT NOTUP
DECz POSIT upr4Tard move

MLINK BNEr MAP l-o-n-g branch!
NOTUP BNEr SIDEI^IY

INCz POSIT dormward move
BMT MLINK

SIDEWY DEX
BMT LEFT
DECz MZPT right move
DECz MZPT
BN T MLINK

LEFT INCz WW left nove
INCz NIZPT
BN T MLINK

; - - tabLes (hex Listed)
00 08 40 48 01 09 4L 49
13 09 01 06 04
06 06 04 08
0r. 08 40 40

F8
BC

0274 BC AD
0277 B9 DB
O27A 3D BL
027D D0 81

o27F CA
0280 10 04
0282 C6 D4
0284 D0 85
0286 D0 04
0288 E6 D4
028A D0 F8
028C CA
02BD D0 06
o28F c6 D2
029L C6 D2
0293 D0 EF
0295 E6 D2
0297 E6 D2
0299 DO E9

o2
00
o2

TAB1 O2AO
TAB2 O2A8
TAB3 O2AD
TAB4 O2BL

c-29

; - -sampLe maze fol lo lrs
;-- f i rst 3 bytes are ini t ia l cursor pointer

INIT O2B5 84 02 08
MAZE O2B8 FF FF 04 08 F5 7E 15 OO 41 FE 5F 04

51 7D 5D 04 51 86 54 L4 F7 D5 04 54
7F 5E 01 00 FD FF 00 00 00 00 00 00
00 00 00 00 00 00

Maze construction: every two bytes, starting at MITZE, represents a
complete cross section of the mazei a one bit in any position represents
a wa11.

In the example above, the first cross sectioa is FF FF (a11 one
bits) - this would be an inpassable section of watL. The next cross
sect ion (04 03) has only rwo pieces of waL1 in i t , at posi t ions 6 and
13. The zeros at the end represent the topen spacet.

c-30

MUSIC MACHINE

Descr ipt ion

This progran plays one or several tunes via the rAudio Outr
intet face of KIM-1. Use the sane connect ion as that for
rocording on cassette tape. I f your tape recorder has atnoni tor t feature, Iou can l is ten to the tune as wel l as
record i t . Al ternat ively, an anpl i f ier can be used to play
ths tune through a speaker.

How to Run

Load the program. Load the tune(s) f rom cassette or f rom
the keyboard. Tunes start at locat ion$0000. Be sure to
store the value $FA at the end of each tune, and behind the
last tune, store: $FF, $00. Since this progran uses the
Break instruct ion to t ransfer control back to the noni tor
af ter each tune is played, Iou nust set up the software
interrupt vector by stoxing 900 in g17FE, and glC in g17FF.

The start ing address for the progaan is 90200. To play the
next tune, press G0.

How to Wri te your own Tune

Each note goes into a byte of storage, start ing at locat ion
$0000 of mernory. Each tune should end with the value $FA
which stops the program unt i l GO is pressed.

Special codes are incorporated in the p!ogram to a1low
certain ef fects - adjustnent of speed, tone, etc. The codes
arc fo l lowei l by a value which sets the part icular ef fect .
The codes are l is ted below:

The progran can be easi ly converted to a subrout ine by
replacing the BRK instruct ion wi th RTS. This al lows the
prograaner to play var ious rphrasesr of music to produce
qui te conplex tunes.

Tho lowest note you can play is A belos niddle C. You can
plsy short notcs and long notes (a long note is twice as
long as a short note). I f you nant to stretch out a note
evcn longer than a long note a11ows, put a rpauset note
after i t . Sone of the notes axe as fo l lows:

Note Short Long
A --- - - 79 - - - - - - F9
Af 72 F2
B ----- 6C ------ EC

niddle C 66 E6
c#----- 60 ------ E0
D5ADA
D#--- - - 56 ------ D6
E 51 Dl
F ---- 4C ------ CC

F. J. Butterf ie ld
Toronto

)
J

48
44 ------
40
3D ------
39
36 ------
33
30 ------
2D
28 ------
26
00 ------

c8
c4
c0
BD
B9
B6
B3
BO
AD
A8
A6
80

sl 4C C4 C4 C4 Dl
33 2D A8 80 80 33
51 E6 EO 80 FA FE
5A 5A 51 48 DA EO
6C 60 DA DA FA FE
E6 E6 80 00 s6 s6
48 4C 4C 4C 4C 56
s6 5A 66 56 5A 66
cc 72 5L cc 80 BB
FF OO

Code

FB
FC

FD
FE
FF

$30
$0?

$01
$FF
$00

E6
00
c4
48
5l
JA

tt

4C
5A
E6

Effect

sets sp6ed of tune
sets length of
r longrnotes

sets pi tch
sets instrurnent
sets addTess for
tune

I-ni t ia l ly Exanpl .es-

18 is quick;60 is s low
2 neans t longrnote lasts
twice as longras I short I
2 is bass; 4 is deep bass
FF is piano, 00 is c lar inet
00 wi l l take you back to
f i rst tune; l ike a t junpt

18 FE FF 44 51
BD BD OO 44 BD
B5 B0 80 44 51
FB 28 SA 5A 51
5A st 48 44 48
5A 5A 5A 5A 5A
56 56 56 5A 66
56 4C 00 C4 44
80 FE 00 00 72
4C 56 5A s6 5A

For example, at any t ine dur ing a tune, you nay insert the
sequence $FB $18 and the tune wi l l begin to play at a fast
speed. Insert ing $FF $45 wi l l cause a switch to the tune at
zero page address $0045. The in i t ia l values shown can be
reset at any t ime by start ing at address $0200.

No tune should extcnd bcyond address $00DF, r lnce prog!an
valucs arc stored at $00E0 and up.

Sanple Tgnqq

0000
0 010
0020
00 30
0040
0050
0060
00 70
0080
0090

E6 66 5A
44 3D 36
80 80 5A
5A 48 Dl
sA 60 7e
66 72 79
80 80 4C
56 5A 5A
cc 72 5A
F2 80 FA

FB
BD
14
00
5A
iF
56
5A

80

HUSIC MACHINE

0200 A2 05
0202 BD 86 02
0205 9s E0
0207 cA
0208 l0 F8

020A A9 BF
020c 8D 43 L7
020F A0 00
0211 B1 E4
0213 E6 E4
0215 C9 FA
0217 D0 04

,0219 00
I 0e1A EA
I 02rD F0 ED
j0210 s0 0B

O O21F E9 FB
,1. I ozzr rn
t I oz22 81 E4

;0224 E6 E4
1 0226 es Eo

,t0228 B0 E0

022A A6 E0
a22C 86 E7
022E A6 El
0230 A8
o23L 30 02
0233 A2 01
0235 86 E6
o2s7 29 7F
0239'85 E9
0238 F0 02
023D 85 EA
023F As E9
024L 25 Es
0243 F0 04
0245 E6 EA
_0247 C6 E9
0249 A6 E9
0248 A9 47
024D 20 5D 02
0250 30 88

; ln i t ia l izc
t

START !DX#
LPI LDA@X

STAZX
DEX
BPLR

F. J. Butterf ie ld
Toront o

$os
INIT
WORK

LPI

0252 A6
0254 A9
02s6 20
02s9 30
0258 10

025D A4
025F 84
0261 86
0263 E0
0265 D0
0267 A6
0259 C6
0e6B D0
026D F0
026F 8D
4272 CA
027 3 C6
0275 D0
0277 C6
0279 D0
0278

^4027D 84
027F C6
028r D0
0283 A9
0285 60

0286 30
0287 02
0288 01
0289 FF
026A 00
0288 00

00E0
0 0E6
0 0E9
OOEA
OOEB
00 Ec

EA
27
5D
AF
E2

E2
EB
EIJ

00
08
EC
EI
F6
16
42

E8
IL

E7
E8
FN

E6
EO
FF

vz

[DXf vAt l
LDA# $27
JSRO SOUND
BMIR GO
BPLR HUSH

; subrout ine to send a
t

SOUND LDYZ WORK+2
STYZ TIMER

. sTxz xsAv
slooP cPx# $oo

BNER CONT
LDXZ ISAV
DECZ TIXER,
B}IER SLOOP
tEqR gEr

COI{T STAO SBD
D8X
DECZ LIMIT+2

. BNER SLOOP
DECZ LIMIT+1
BNER SLOOP
LD'TZ WORK
STYZ LIMIT+ 1
DECZ LIMIT
BNER SLOOP
LDA# $rr

SEX RTS

; in i t ia l constaots
t

bit

octave f leg

,
,
t

GO

nain rout ine here - WORK not resot

NEXT

$BF
PBDD open output channel
$00
WORK+4 get next note
WORK+4
$FA tost for hal t
NEXT

(or RTS i f usod as subrout ino)

G0 losune when G0 pressed
NoTE is i t a note?
$FB i f not , decode instruct ion

and put into X
WORK+4 get paraneter
WORK+4 and
WORK store in work table
GO Junp to G0

tDA#
STAE
LDY #
LDAIY
INCZ
CMP #
BNER
BRK
NOP
BEQR
BCCR
sBc #
TAX
LDAIY
INCZ
STAZX
BC SR

L7

! , " t up t in lng for note

NOTE LDXZ WORK t in ing
STXZ LIMIT+l
LDXZ WORK+I long note facto!
TAY test a icuraulator

- BMIR OVER long note?
LDX# $Of nope, get short note

0VER STXZ LIMIT
-

stoie length factor
1I9t $zr renov€ short / tong f tag
STAZ VALz
BEQR HUSH is i t a pause?
STAZ VALI no, set p i tch

HUSH LDAZ VAt2 get t i rn ing and
ANDZ WORK+5 bypass i f nut ,ed
BEQR ON
INCZ VALl else fade the
DECZ VALZ note

ON LDX# V AL2
LDA# $A7
JSRO SOUND
BMIN, GO

i
I work areas reserved

l fORK *e* +6 speed/ length rat io/octave/tone
LIMIT *=* +3 t in ing of note
VALZ *=* *1 narking and spacing
VAtl *=* +1 durat ions
TIMER *=* r l octave counter
XSAV rrr t l

EUNT THE WUMPUS

Game by Gregory Yob
Adapted for the KIM-1 by Stan Ockers

Stan Ockers
R.R. #4 Box 209
tockport, I11 6044L

Klm- 1 Us er Notes v. 1 #2

CAVE ITAP
I first ran across the 1WMPUS in TI{E BEST OF CREATIVE

COMPUTING_ where it is programmed in ba@is
EAGI on-this program witn modif icat ions so I could f i t ihe
progratn and messages in the KIM-1 memory. The messages appear
on the display i .n scannj .ng form rv i th "sort-of" a lphanumeric
let ters.

The I I I I IMPUS l ives ln a cave of 16 rooms (labeled p - f) .
Each room has four tunnels leading to other rooms (see the
nrap below). When the program is started, you and the
WUUPUS are p!-aced at random. AIso placed at random are two
bottomless pi ts (they donrt bother tbe WUMPUS, he has sucker-

O , type feet) and two rooms with SUpERBATS, (a1so no trouble to
.1. ,WUMPUS, he's too heavy). I f you enter a room with a pi t , you
) l fa l l in and lose. I f you enter a BAT'S room you are picked

up and f lown at random to another room. You wi l l be warned
when BATS, PITS, or the WUMPUS are nearby. I f you enter the
room with \ ryI tMPUS, he wakes and ei ther moves to an adjacent
roo& or Just eats you up (you lose). In order to capture the
1YUMPUS and wln, you must use "MOOD CIIANGE" gas. When thrown
lnto a room contalning the IYUI,{PUS, the gas causes him to turn
from a vic ious snar l ing beast into a meek and loveable creature.
Ee wi l l even cone out and give you a hug. Beware though, you
have only three cans of gas and once you toss a can of gas j,rt i)
a room it is contaminated and you cannot enter or you wil-1 be
turned lnto beast (you lose) !

The prograrn starts at $0300. I f you lose and want every-
thing to remaln the same, (except the rocm you are in) , resart
at $0316. Use tbe reset key to stop the program because about
hal" f of page one ls used and i f you just use the ST key the
stack wlLl eventual ly work i ts way down into the progr i ln. The
'byte at $0229 controls the speed of the displa;r . Once you get
used to the characters you can speed things up by putt ing in a
lower number. The message normally given te1ls you what roon
you are ln and what the choices are for the next roorn. In order
ts f l re the mood gas, press PC (pi tch can) when tbe rooms to be
selected are dfspl"ayed. Then indicate the room lnto whlch you
want to pi tch the can. I t takes a f resh can of gas to get tbe
WUMPUS (he may move into a room already gassed). COOD HUNTING:

APPENDIX D,

KIM DEMONSTRATION TAPE

KII{. 1 DEMONSTMTION TAPE

Index

Notes:

ID'/l Name

01 DIRECTORY

02 VU TAPE

03 SITPER TAPE (3X speed)

04 MOVE A BLOCK

05 HmEC

06 ADC DEMONSTRATION - BINARY
- BCD

07 FREQUENCY COLNTER

08 TAPE DIIPE

09 REAL TIME CLOCK

OA STOP WATCH

10 LI'NAR I.AI{DER

11 TIORSE RACE

L2 ONE ARMED BANDIT

13 KIMAZE

T4 MUSIC MACHINE

15 IIT'NI THE WIffPUS

Entry Point Address Range

$1780 $1780-$17AF

$0000 $0000-$oo4e

$0100 $oloo-$01c2

$1780 $1780-$17cB

$o2oo $o2oo-$0244

$oooo $oooo-$ooA4
$0020

$0000 $0000-$0067

$1780 $1780-$17Ae

$0370 $0370-$o4oo

$o3oo $o3oo-$0386

$oooo $oooo-$ooc6

$027F $027r-$0396

$0200 $0200-$02D1

$0200 $0200-$0210

$o2oo $oooo-$028c

$0300 $0000-$0400

Supertape is set for 3X speed. To obtain the 6X speed change
locat ion $Ofnr to $02 and $01C0 to $03.

l.love A Block uses data stored in memory as follows:
$OOro SAL old $0081 SAH old
$OOrZ EAL old $0083 EAH old
$0084 SAL new $0OnS SAL new

Frequency Counter: Connect IRQ to PB7. Signal input is PB0.

Mrslc lGchine: Be sure to set up the BRK vector by stortng
$00 ln $17rE and $lC ln $17FF.

Real Tlne Clock: Connect NMI to PB7, Btore $A5 ln $17FA and
$03 in $17F8. Restart display program at $0379. I teas r t l r '

to return to the KIM monltor.

D-1

DI RECTORY

1780 D8 A9 07 8D 42
1790 16 D0 F3 20 24
l7A0 20 F3 19 95 FC

VU TAPE

2A 41 1A 46 F9 05 F9 85 F9 C9
C6 F9 10 F5 C9 2A DO Fl A2 FD
30 F8 20 LF lF DO D5 FO F9

00 01 02 0t 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

L7
1A
E8

00 01 a2 05 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

0000 D8
0010 46
0020 c9
0050 D5
00+0 AA

A9 7F
F9 05
2A DO
46 EO
BD E7

8D 41
F9 85
F5 A9
E8 E8
lF 8D

L7 A9 L3
F9 8D 40
00 8D Eg
E0 15 D0
40 17 D0

85 E0
t7 c9
17 20
02 A2
DB

8D 42 17 2A 41 1A
16 D0 E9 20 24 1A
24 LA'20 00 1A D0
09 86 E0 8E 42 L7

SUPER TAPE ('X)

00 01 02 05 0r+ 05 06 07 08 09 OA OB OC OD OE OF

MOVE A BLOCK

00 01 02 0l 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

010 0 49
0r l0 17
0120 20
0rr0 Ec
0140 L7
0150 01
0160 18
9170 48
0 r80 0A
0190 BE
01A0 E 1
0180 30
0 1c0 06

AD 8D EC
A2 64 A9
70 01 AD
t7 20 6D
ED F8 T7
AD E8 L7
86 E0 48
4A 4A 4A
18 30 02
BE 01 48
+9 80 8D
07 4A 90
7E

L7 20
16 20
F5 L7
01 20
90 E9
20 70
20 88
4A 20
69 A7
2C 47
42 L7
DB AO

32 19
61 01
2A 6D
EA 19
A9 2F
01 A2
0r. 58
7D 01
69 30
L7 r0
85 El
00 F0

A9 27
A9 2A
01 AD
AD ED
20 88
02 49
c5 E0
68 2A
A0 08
FB 89
CA DO
D7 C6

85 El A9
2A 88 01
F6 L7 20
17 CD F7
01 AD E7
04 20 61
D0 F7 60
7D 01 60
84 E2 A0
BF 01. 8D
E9 58 C6
E2 DO CF

BF 8D 43
AD F9 L7
6D 01 20
L7 AD EE
L7 20 70
01 4C 5C
20 4c 19
29 0F C9
a2 84 Et
44 L7 A5
E1 F0 05
60 04 c3

OE OF

E6 E5
E2 75
E2 CA
68 AA

t780 58
1790 A5
17A0 B I
1780 A0
L7C0 85

HEDEC

A5 E4 E5
E2 E5 EO
E0 91 E4
00 B1 E0
E2 A5 E3

E0 85
A8 84
88 30
91 E4
65 E7

E6 45 E5
E8 E6 E8
1t+ l8 A5
c8 c4 E8
85 E3 4C

E5 El
B1 EO
E2 E5
DO F7
4F lC

85 E7 90 18 38
91 E4 88 D0 F9
EO 85 E8 E6 E8
18 45 E2 65 E5

00 01 02 0t 04 05 06 07 08 09 0A 0B 0c 0D

0200 F8
02r0 45
0220 DF
02ta D0
02q0 6B

98 48 8A
E7 48 A0
95 DF CA
F7 88 D0
A8 D8 60

q8 A9 00 A2 06 95 DF CA D0 FB
08 68 4A 48 90 0c A2 0t 18 85
D0 F7 A2 A3 18 85 E2 7' E2 95
E0 68 A5 E5 D0 04 A5 E5 D0 Dt+

D-2

ADC DEMONSTRATION

00 01 02 03 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

0000 A9
0010 85
0020 Ag
00 t0 85
0040 FA
0050 00
0060 00
0070 00
0080 A9
0090 10
OOAO EE

0370 A9
0380 FA
0390 6A
03A0 00
0tB0 07
03c0 18
0lDo A5
0tE0 85
03F0 A9

FF 8D 01
F9 20 1F
FF 8D 01
E7 A2 00
A2 00 86
00 00 00
00 00 00
00 00 00
80 85 EE
DO 09 AD
90 E3 60

17 AD
1F 4C
17 AD
86 E6
F9 2A
00 00
00 00
00 00
A9 00
00 17

03 77
0D 00
03 L7
20 00
1F 1F
00 00
00 00
00 00
18 65
38 E5

29 EF
00 00
29 EF
02 46
4C 2D
00 00
00 00
00 00
EE 8D
EE 4C

80 00
00 00
80 00
E2 86
00 00
00 00
00 00
00 00
17 29
17 46

8D 03 L7 20
00 00 00 00
8D 03 t7 20
El 86 FB A6
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 t7 AD 02
9F 00 AD 00

FREQUENCY COUNTER

00 01 02 0t 04 05 05 07 08 09 OA OB OC OD OE OF

0000 A9 01 85 65
0010 00 EA AD 02
0020 18 A9 01 65
00t0 FB 85 FB t+C
OO4O FB A9 F4 8D
0050 20 lF lF C6
0060 05 85 55 68

TAPE DUPE

F8 A9
L7 29
F9 85
L2 00
0F t7
66 D0
40 03

36 8D FE
01 D0 F9
F9 49 00
+8 A9 90
c6 65 F0
F9 A9 00
00

t7 A9
AD 02
65 FA
8D 04
02 58
85 F9

OO 8D FF
L7 29 01
85 FA A9
L7 2C 07
40 A9 FF
85 FA 85

L7 58
FO F9
00 65
L7 10
85 65
FB A9

00 01 02 03 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

1780 A9 27 A2 3F 8E 43 L7 A2
1790 17 10 02 A0 A3 A2 BF 8E
r7A0 4t+ L7 2C 47 17 10 FB 3A

REAL.TIME CLOCK

8E 42 17 A0 5E 2C 42
L7 49 80 8D 42 t7 8C

a7
43
D9

00 0r 02 05 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

00 85
A5 83
lF Cg
00 00
L7 10
F8 A5
82 18
18 69
01 85

80 A9 F4
85 FB 20
01 D0 03
00 00 48
FB E6 80
81 69 01
69 01 85
01 85 83
83 D8 A9

8D OF L7
64 lF C9
4C 4F lC
8A 48 98
A9 04 C5
85 81 C9
82 C9 60
c9 L2 D0
F4 8D OF

45 81
01 D0
20 1F
48 A9
80 D0
60 D0
D0 1g
02 E6
L7 68

85 F9 A5
0D 20 lF
r.F 18 90
83 8D 04
58 A9 00
28 A9 00
A9 00 85
84 C9 L3
A8 68 AA

82 85
1F 20
DA OO
L7 2C
85 80
85 81
82 A5
D0 04
68 40

D-3

STOP WATCH

0500 49
0310 85
0t20 at
0350 38
0340 B0
0150 lF
0560 F8
0170 0B
d:so c9

75 8D F2
FB 20 7F
DO lF 45
IE A9 2E
D0 c9 02
IF AD 07
A5 F9 69
A9 00 85
00 D0 cB

00 01 02 03 04 05 06 g7 08 09 0A 0B 0c 0D 0E 0F

02
6A

'B1E
c9
FB
r9
FB

t7
1F
FB
20
FO
T7
01
FA
FO

A9
20
20
AO
c4
FO
85
A5
8C

8D F3
lF Cg
lE A9
A5 F9
01 D0
8D 00
A5 FA
18 69

17 A9
04 D0
3A 20
20 3B
c8 A9
lC Ag
69 00
01 85

00 85 F9 85 FA
st 4c 64 lC c9
AO lE 45 FA 20
].E 20 2F lE

'89C 8D 06 t7 20
9C 8D 06 t7 18
85 FA C9 60 D0
FB D8 20 6A lF

LUNAR LANDER

00 01 02 03 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

0000 A2 0c 85 88 95 E2 CA 10 F9 A2 05 A0 01 F8 18 85
0010 E2 75 E4 95 E2 CA 88 10 F6 85 E5 10 02 A9 99 75
0020 E2 95 E2 CA r0 E5 45 E2 10 0B A9 00 A2 02 95 E2
OO'O 95 E8 CA 10 F9

'8
A5 ED E5 EA 85 ED A2 01 85 EB

0040 E9 00 95 EB CA 10 F7 B0 0C 49 00 A2 A3 95 EA CA
OO5O 10 FB 2O AA OO 45 EE DO OA 45 E2 A6 E3 FO 08 DO
0060 06 F0 A5 A5 EB 46 EC 85 FB 85 FA 45 E5 30 06 A5
0070 E5 F0 07 D0 05 38 A9 00 E5 E6 85 F9 A9 02 85 El
0080 20 lF lF F0 06 20 6A lF 20 91 00 C5 El D0 Fl F0
0090 D0 c9 15 D0 03 85 EE 60 C9 10 D0 05 A9 00 85 EE
OOAO 50 10 FD AA A5 EA FO F8 85 EA A5 EA 38 E9 05 85
0080 E9 A9 00 E9 00 85 E8 60 45 00 00 99 80 00 99 98
00c0 02 08 00 00 00 00

D-$.

00 01

0270 00 00
0280 A2 t3
0290 00 A2
02A0 20 3D
0280 86 99
02c0 95 7C
02D0 30 18
02E0 06 95
02F0 cA D0
0 r00 c6 8F
0310 89 89
0320 20 68
0530 B0 05
0540 03 F0
0350 01 65
0t60 95 8C
0370 91 A2
0 r80 80 80
O39O FE BF

HORSE RACE

0200 A9
0 210 E6
022A 0 1
0230 06
0240 E7
0250 0D
0260 A9
0270 F8
0280 c9
0290 02
02A0 00
0 280 1.7
02c0 E7
02D0 50

00 00 00
05 95 7C
7C 00 84
8F 30 E3
86 85 89
83 89 90
A5 8F FO
10 F6 A2
EA EA EA
A5 81 0g
0B 20 68
38 85 9A
99 86 00
98 55 89
46 99 75
4C A9 02
91 95 92
FF FF 80
02 04

00 00 00 00
cA 10 F8 A9
FC 20 4E lF
A2 03 CA l0
90 03 35 VC
03 49 FF L5
28 D0 30 A2
06 85 7C 95
EA EA EA EA
06 85 81 EA
0t 29 3C D0
89 8C 00 t0
20 tD lF A0
85 9A EA EA
8C EA EA EA
38 l8 A5 92
cA r .0 F9 60
80 80 00 00

00 00 00 00 D8
7F 8D 41 17 A0
c8 c0 06 90 F3
DE D6 86 DO F9
EA EA EA EA EA
7C 95 7C E0 05
02 38 85 83 E9
76 A9 80 95 7C
EA EA EA EA EA
EA EA EA EA EA
18 99 89 00 EA
0B 29 t8 C5 9A
FF 46 99 1D 93
20 68 03 18 29
EA EA EA EA EA
65 95 55 95 85
80 80 80 80 80
00 80 80 80 08

02 03

00 00
BD 7C
09 89
lF A5
A4 99
E8 96
D0 06
83 CA
F5 EA
D0 05
00 F0
03 29
A9 FF
01 88
9A 18
95 86
04 85
8O FF
F7 01

0I+ 05 06 07 08 09 0A 0B 0c 0D 0E 0F

ONE ARMED BANDIT

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

25 85
09 2A
85 05
A5 09
A5 04
A2 OB
80 85
A5 05
46 F0
F6 02
8C 42
c8 c8
1F 85

05 20
8D 02
20 BA
29 06
c5 03
c9 42
08 20
69 01
DA 20
cA 10
17 8D
cA 10
00 A5

BA 02
FO F9
02 26
09 40
D0 37
F0 07
8D 02
B0 94
8D 02
FB A9
f+0 L7
E9 20
05 4A

A9 00
A9 03
09 20
95 01
c5 02
A2 06
c6 08
85 05
A5 05
7F 8D
D8 A9
40 1F
tlA 4A

85 06
85 06
8D 02
46 09
D0 33
c9 44
DO F9
20 BA
D0 80
4L L7
7F E9
60 45
4A AA

20 8D
F8 38
c6 08
46 09
A2 10
F0 01
c6 07
02 D0
FO F7
AO OB
01 D0
c5 29
BD E7

O2 DO FB
A5 05 E9
DO F9 A6
c6 06 D0
c9 40 F0
cA 86 07
F0 9C 18
E2 A2 01
46 06 r0
A2 04 85
FC 8D 42
OF AA BD
lF 85 01

D-5

K I MAZE

0200 D8 A2 02 BD 85 02
0210 D8 00 88 L0 F8 A2
0220 2A 88 D0 17 29 A7
a2t0 c6 D5 10 0A A9 05
0240 8D 41 17 A0 09 A2
0250 D6 D0 FC C8 C8 CA
0260 D7 F0 CD 85 D7 A2
027A BC CA 30 8C BC AD
0280 l0 04 c6 D4 D0 85
0290 D2 C6 D2 D0 EF E6
02A0 00 08 40 48 01 09
0280 08 01 08 40 40 84
02c0 41 FE 5F 04 51 7D
02D0 71 5E 01 00 FD FF
ozEA 00 00 00 00 00 00

MUSIC MACHINE

OOOO FB 18 FE
OO1O BD BD BD
0020 44 83 80
0010 00 FB 28
0040 5A 5A 51
OO5O FF 5A 5A
0060 56 56 56
007CI 5A -56 4c
OOSO F2 BO FE
0090 80 4C 56

FF r+4 51
00 44 BD
80 t tq 51
5A 5A 51
48 44 48
5A 5A 5A
56 5A 66
00 c4 44
00 00 72
5A 56 5A

BD 86 02
Er+ E6 E4
81 E4 E6
02 A2 01
E3 F0 04
46 EA A9
EC E0 00
cA c6 E8
EO A9 FF

00'0t 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

95 D2 CA
0A Ah Dr+
A8 89 AO
85 D5 A5
OA 85 D8
CA 10 EE
04 DD A8
O? 89 D8
D0 04 E6
D2 E6 D2
41 r+9 L3
02 08 FF
5D 04 51
oCI 00 00
00 00 00

F8 AO OB
FF 38 16
95 D8 CA
49 40 85
+0 t7 8c
40 lF 20
F0 05 cA
5D 81 02
DO F8 CA
E9 00 00
01 06 04
0,+ 08 F5
5+ 14 F7
00 00 00
00 00 00

D2 99
56 D8
10 E7
A9 7F
t7 c6
lF C5
F8 t0
BI CA
06 c6
00 00
06 04
15 00
04 54
00 00
00 00

c4 c4 Dl
80 80 33
80 FA FE
48 DA EO
DA FA FE
56 56 56
4C 4C 56
56 5A 66
cc 80 88

B1
D9
CA
DE
42
6A
10
DO
DO
00
06
7E
D5
00
00

10
A9
02
DE
8D
20
a2
00
D4
DO
09
FF
B5
00
00

00 01 s2 05 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

t rb
00
c4
48
5'1
5A
D9
4C
5A
E6

E5 65
44 5D
80 80
54 t l8

5A 60
65 72
80 80
56 5A
cc 72
F2 80

5A 5r
36 3t
5A 5T
D1 5A
79 6C
79 E6
4C 48
5A 56
5A CC
FA FF

4C .C4
2D A8
E6 80
54 5T
60 DA
E6 80
4C 4C
5A 66
72 54
00

00 01 a2 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0200 A2 05
0210 00 81
O22A FB AA
02t0 A8 ,0
0240 E9 25
0250 30 88
0250 EB 86
0270 42 t7
0280 E6 D0

95 E0 CA
C9 FA DO
E4 95 H0
86 E6 29
E6 EA C5
27 20 5D
D0 08 A5
D0 EC C6
60 50 02

r .0 18
0tr 00
BO EO
7F 85
H9 46
02 30
EC C6
E7 DO
O1 FF

A9 BF
EA FO
A5 EO
E9 FO
E9 A9
AF 10
EB DO
E8 A4
00 00

8D 43
ED 90
86 E7
02 85
A7 20
E2 A4
F6 FO
E0 84

L7 AO
OB E9
A5 El
EA A5
5D 02
E2 84
r6 8D
E7 C6

D-5

HUNT THE WUMPUS

00 01 02 03 04 05 08 09 0A 0B 0c 0D 0E 0F

0000 80
0010 F8
0020 F7
00 t0 87
0040 00
0050 02
0060 05
0070 08
0080 0B
0090 80
00A0 80
0 080 80

0100 80
0110 84
0120 D0
0 110 63
0140 F3
0150 EE
0160 F3
at70 87

EE DC
BE D4
89 F9
F3 F9
00 00
02 00
03 01
04 03
0E 05
87 84
89 F7
B8 DC

BE 80 F7
D4 F9 BB
F1 80 00
DE 80 F7
00 00 00
01 01 00
02 03 02
04 07 06
06 0F 08
ED ED F9
D4 ED 80
ED F9 80

06 07

DO F9
ED 80
80 Dc
80 9C
00 00
03 04
05 06
07 0A
09 0F
DE 80
88 Fg
00 80

06 07

80 84 Dt+
B8 F9 F7
DC F3 ED
BE 87 F3
00 00 00
00 06 07
05 08 09
09 0A 0F
0B 0c 0D
c0 80 Dc
Fl F8 80
DO DC DC

00 01 02 05 04 05

80 DE 85 C0 80
DE 80 F8 DC 85
80 c0 80 Fc BE
BE ED 80 80 OO
00 00 00 00 00
00 09 0A 01 04
08 0B 0c 0B 07
0c 0D 0E 0c 0A
OE OE OF OD OD
D4 88 EE 80 DB
OO 80 EE DC BE
87 D3 80 00 00

OB OC OD OE OF08 09 0A

9C BE
F8 80
lE DO
1E 6C
F9 DO
EE 84
84 FB
80 00

87 T' BE
89 88 DC
lE DO] .E
lC BD DC
FC F7 F8
84 Fg F9
80 00 80
80 DC BE

ED 85 B9
ED F9 OO
48 22 0F
F8 80 EE
80 ED D4
F9 80 Fl
BD F7 ED
F8 80 DC

B8
80
t ro
DC
F7
F9
80
F1

09

DC ED
FC F7
63 lE
BE 8O
F8 89
88 88
84 D4
8O BD

F9 00 80 r3
F8 ED 80 89
6C tC 0F E6
OO 80 ED BE
F5 80 00 80
80 84 D4 80
80 D0 DC DC
F7 ED 80 00

00 01 02 03 04 05 06 a7

07 85 DF
88 cA 10
4C 0A 02
07 t7 10
A2 09 89
3D lF 60
20 3E 02
04 E6 C0
A5 C0 60
cA 10 F9
AD 06 17
50 85 C6
A2 03 D5
00 A9 AC
EE DC BE
DC 87 80

08 OA OB OC OD OE OF

0200 8tr
0210 D0
0220 20
0230 t7
0240 8D
9250 c0
0260 20
4270 E7
0280 FD
0290 04
0 2A0 30
0280 cB
0 2c0 B5
02D0 0 1
0 2E0 F9
O?FO BE

DD A9
95 E8
A4 DC
02 2C
A0 00
F3 20
FO FB
c0 D0
06 c0
F0 01
82 02
CA 85
c9 60
02 A0
c0 80
Fl DO

A0 05
F3 D8
A2 06
F8 C6
E8 00
20 8C
FO F6
DO F8
05 c0
60 2s
29 0t
B5 60
c6 F0
20 00
8O BD
9C BE

A2 05
18 98
86 DB
DB DO
84 FC
tE 20
20 6A
29 8E
E6 C0
72 02
AA 85
85 C7
03 CA
02 4C
F9 F8
87 F3

c9 00
85 DC
8D 07
A9 7F
LF C8
DO F8
15 10
0A 90
60 A2
c9 04
CB A5
85 C8
60 A0
BD DO
80 F6
80 00

DE
01
28
20
41
06

'E50
FO
D5
OD
60
80
20
F7
BD

85
60
02
1E
I7
90
02
A5
05
CB
20
A6
85
00
F8
80

B1
65
A9
EF
20

'E1F
FO
A5
29
c6
B5
10
D4
80
BE

DD
DF
52
60
4E
02
c9
05
c0
OF
85
70
F9
02
F7
ED

D-7

HUNT THE WUMPUS CCONT.)

00'0r 02 01 04 05 06 07 08 09 0A 0B 0c 0D 0E 0F

0500 AD 06 17 85 C0 A9
0310 85 E0 A0 05 10 02
0320 cA F0 F5 CA 10 F9
0tt0 0t 84 El 89 C6 00
0540 A9 19 10 0A E0 0 I
0t50 20 00 02 c6 El A4
0t60 A2 03 84 C6 89 E7
ot70 00 02 20 58 02 C9
0180 EB A5 CA A2 04 D5
0390 30 9A E0 05 10 L7
0lA0 02 20 99 02 C5 CA
0tB0 3D 20 00 02 +c 16
0tc0 02 A0 00 A9 87 20
OSDO 8A 30 EE A5 Dl 46
O3EO 1A A4 EO 89 E7 lF
05F0 5C 0' A0 02 A9 DE

FF A2 OE 95 CI CA IO FB A9 g3

A0 00 A2 05 2A 72 02 29 0F D5
99 CA 00 88 10 EC 20 82 02 A0
20 8F 02 8A 30 t7 E0 03 30 04
30 04 A9 0E 10 02 A9 00 A0 01
El 10 DA Ar+ CA 89 El 1F 85 0C
lF 95 20 cA l0 F6 A0 0o 98 20
14 F0 48 20 C5 02 85 CA 8A 70
cl . F0 t t cA 10 F9 20 8F 02 8A
E0 01 10 LD A0 00 A9 26 20 q0
D0 84 A9 26 20 CF 02 A0 01 A9
05 A9 4F 20 CF 02 A9 65 20 CF
00 02 20 58 02 20 C5 02 85 Dl
E0 95 C0 C5 CB F0 L5 C6 E0 F0
85 9F A0 00 A9 90 20 00 02 4c
20 00 02 F0 F7 A9 73 2A CF 02

D-8

APPENDIX E.

SPECIAL APPLICATIONS

Single Channel Analog to Digi ta l Conversion

SUBROTITINE ADC - 8 Bit Analog to DigltaL Comrersion

0080 49 80 ADC LDAti
00E2 85 EE STAZ
0084 A9 00 r.DAJt
OOE6 lE MCTBIT CLC
0087 65 EE ADCz
0089 8D 00 17 STd@
OOEC AD 02 17 I.DJG
0088 29 10 allDit
0091 D0 09 BNEr
0093 aD 00 17 r,Da@
0096 38 s8c
0097 E5 EE SBCz
0099 4c 9F 00 JlcG
OO9C AD OO 17 SAVE I,DAG
OO9F 45 EE SHIFT I,SRZ
0041 90 E3 BCCr
00a3 60 RTs

Hardware:

s80
TRIAL
$00

TRIAL
PAD
PBD
$10
SAVE
PAD

TRIAT
SHIF1.
PAD
TRIA].
lDffBIT

eoter trlal Bo.
save it
clear A
clear carry before add
add tl ial to A
outPut to DAC
check cooparator
oask all. but bit 4
if conP. = 1, save result
too big, get no. fronr DAC
set carry before subtract
subtract trial no.

load DAC loto A
dlvide trlaL by 2
done 1f t l ial less thao 1
retura with final no. la A

' "40 -
PB4 is

PA7 are out to DAC
to froo conparator

+15 V
Ref. input

-10 v

PA7

PA6

PA5

PA4

PA3

Pta

PAl

PAO

V output

+uv

-15 V

+5V

w4

100 K

V lnput

r l - ' l

2.2 K

C@parator output

AMLOG TO DIGITAL CONVERSION DEMONSTRATION PROGRAM

Display ADC Output in HEX Fornat

0000 A9 FF START LDA/i $ff' set PA port to output
0002 8D oL L7 STAG $1701
0005 AD A3 L7 LDA@ $1703 set Pts4 to be input
0008 29 EF AND/f $EF
000A BD 03 L7 srA@ $1703
000D 20 B0 00 LOOP JSRG ADC call ADC subroutine
0010 85 I'9 STAz $F9 store ADC output in right display
O0L2 20 lF lF JSRG SC^ANDS dispLay data
0015 4C OD 00 JMPG LOOP Loop back for more data

Display ADC Output in BCD Format

0020 A9 FF START LDAit $ff' set PA port to output
oo22 8D 01 17 STA@ PADD
0025 AD 03 L7 LDA@ PBDD set PB4 to be input
0028 29 EF AND/f $EF
OO2A 8D 03 L7 STA@ PBDD
O02D 20 80 O0 READ JSR@ ADC read ADC
0030 85 E7 STAz HEDEC-L set up data for binary to BCD converslo
0032 A2 00 r,Dxit $oo
0034 86 E6 STXz IIEDEC-H
0036 20 O0 02 JSRG HEDEC call blnary to BCD conversion routlne
0039 A6 El LDXz $81 get BCD result high
0038 86 FB STIk $fB store result in left display
003D 4'6 E2 LDXz 982 get BCD result Low
O03F 86 F'A STXz $fA store result in middle display
0041 42 00 LDX/I $00 zero the right display
0043 86 19 STKz $rg
OO45 20 1F 1F JSRG SCANDS display final BCD value
0048 4C 2D 00 Jl@G READ loop back for more data

note: In order to perform the binary to BCD conversion, you nnrst load
the HEDEC program into the memory starting at address $0200.

This program uses.,:.t 'h€-eircuit and ADC subroutine phown on page E-1.

F'-2

MULTICHANNEL ANALOG INPUT/OUTPUT SYSTEM FOR KII"I.1

by J.B. Ross

A mult ichannel analog I /O system whlch is ideal ly sui ted to the

KIM-I system was developed by Douglas R. Ikaul (BYTE June 1977, pP. L8-23).

This system (see diagram on p.E-7) provides B channels of analog input

and output. The circui t uses standard conponents and can be constructed

using wire-wrap techniques for less than $50.00.

The ruult ichannel I /O system is interfaced to KIM-1 via the

progragmabLe I /O l ines as fol lows:

Counect the 8 data l ines dr iv ing the DAC to port PA--

DAC 0 tn PAO
DAC I to PAI

: : :
DAC 7 to PA7

Connect the remaining control l ines to port PB--

SELECT 0 to PBO
SELECT 1 to PBl
SELECT 2 to PB2
STROBE to PB3
SIGN BIT to PB4

The cornplete dr iver software is given on the fol lowing Pages.

The interface dr iver uses the KIM-I. interval t imer to tr igger an NMI

interrupt to update the inputs and outputs every 50 rnSec so you must

also connect PB7 to pin 6 of the expansion connector. The NMI interrupt

vector is set up by the in i t ia l iz ing rout ine start ing at $0380.

To make the interface system operate, load the Analog Interface Driver

Rout ine, the Analog to Digi ta l Conversion Subrout lne, and the Ini t ia l izat ion

Rout ine. Start the program at $0380. Control w111 be transferred inrnediately

back to the KIM monitor. I f the display begins to f l icker, the program

ls operat ing proper ly. Eight bi t data to be sent to output channels 0

through 7 is stored ln locat ions $00C0 through $OOCZ, elght bi t lnput

E-j

data from channels 0 through 7 is written into tocations $00C8 through

$oocr. when the interface driver is operating, the keyboard monitor

can be used to enter data for the analog outputs and to examine data

from the analog inputs. This feature rnrkes calibration of the Lnterface

very convenient.

Since the analog data is transferred to and from the rerrory table

by the interface driver software, users need concern themselves only

with the detai ls of how to use the dlgi tal data contained in the table.

Programs can readily be written to examine input data and generate output

data. I f a user program does any cr i t ical t ln lng, . there is a posalbi l i ty

of lnterference by the interface dr iver. A complete update of al l inputs

and outputs reguires about 5 n^Sec and takes place automatLcal ly every

50 nSec. If a timing loop is used, it nay be lengthened by 5 n^Sec.

Ttre lnterface driver uses the interval timer located at $L704 - $170tr'

so this souLd not be used'by another program. the other t imer at

$L744 - $L74F is available for general tlnlng use,. but has no eignal

output for lnteruppt ing the ptocessor, ,

The dr iver software also includes an elght bi t counter in locat ion

$OOOO which increments by one each time the interface is serviced, and

a four digi t BCD I 'c lockr ' in locat ions $OOnf and $00D2 which is incremented

oace'each 0. 1 Sec (approxirnately).

E-4

ANALOG INTERFACE DRIVER ROUTINE

0300 48 START PHA 6ave A
O3O1 8A TXA
0302 48 PHA save X
0303 A2 0O LDX/f $00 clear X
0305 BA OUTPUT TXA get channel number
0306 09 0B OM/f $08 disable output mult ip lexer
0308 8D OZ 17 STA@ $L7AZ select output channel
0308 85 C0 LDAzx $C0 get nunber from memory table
030D 8D 00 17 STAG $1700 send it to DAC
0310 AD 02 17 LDAG $1702 enable output mult ip lexer
o3L3 29 F7 ANDdI Sr7
0315 8D 02 L7 STA@ $L702
0318 49 64 DELAY LDA/f $64 set up time delay for charging
031A BD 04 17 STAG $1704 use microsecond t imer
031D AD 07 L7 WAIT LDAG $1707 get status
0320 F0 FB BEQr WAIT wait unt i l t imer is done
0322 ID OZ L7 LDAG $L7OZ disable outPut mult ip lexer
032s 09 0B oRA# $08
0327 BD 02 L7 SrAG $1702
032A E8 INX increment channel in X
0328 E0 08 CPX/I $Oa check for maximum X=8
032D D0 D6 BNEr OUTPUT if less than rnaximum, rePeat output
032F BE OZ L7 INPUT STXG $1702 select input channel
0332 20 58 03 JSRG ADC convert analog V to binary
0335 95 C0 STAzx $CO save number in memory table
0337 EB INX increment channel. in X
0338 E0 l0 CPX/I $10 check for naximu* 11=$10
033A D0 F3 BNEr itlpUf if less than maximum, repeat input
033C A9 30 EXIT LDA/I $30 reload interval t imer with refresh
033E BD 0F 17 STA@ $170F value (rnsec)
0341 E6 D0 fNCz COUNT increment sample count
0343 18 CLOCK CLC clear caxry before addit ion
0344 F8 SED switch to BCD mode
0345 A'5 D0 LDAz COUNT get count number
0347 29 0I AMif $01 ur.ask all buc low bit
0349 65 Dl ADCz TIME-L add bit to low order time
0349 85 Dl STAz TI lm-L save result
034D A9 00 LDA/I $00 clear A
O34F 65 D2 ADCz TII'{E-}I add carry to high order time
0351 85 D2 STAz TIME-H save result
0353 D8 CLD return to binary mode
0354 68 PLA restore X
0355 AA TAX
0356 68 PLA restore A
0357 40 RTI return from interrupt

E-5.

ANALOC TO DIGITAL CONVERSION STEROUTINE

0358 A9 80 ADC LDA# $80 enter trial number
0354 85 EE STAz TRIAL save it
035C 49 00 lDA/l $OO clear A
0358 18 MCIBIT CtC clear carry before addition
035F 65 EE ADCz TRIAL add trial value to A
0361 8D 00 17 STA@ DAC send trtal value to DAC
0364 C6 E3 DECz $fS naste 5 microseconds
0366 AD AZ L7 IJA@ COMP get comparator status
0369 29 LO ANDii $fO mask to recover bit 4
0368 D0 09 BNEr SAVE save result if comparator = I
036D AD 00 17 LDAG DAC too big, get number from DAC
0370 38 SEC set carry before subtract ion
0371 E5 EE SBCz TRIAL subtract trlal nurnber
0373 18 CLC
0374 90 03 BCCr SIIIFT Jr.mp to shift
0376 AD 00 17 SAVE l,DA@ DAC get nuober from DAC
0379 46 EE SHIFT LSRz TRIAL divlde trial number by 2
0378 90 El BCCr NXIBIT done if carry is 1
O37D 60 RTS return wlth finaL valud in A

INITIALIZATION ROUTINE FOR INTERFACE DRIVER

0380 A9 FF INTLZ LDA# $FF set PA port to output
0382 8D OL t7 STA,G $1701
0385 49 0F LDAtf $0f set PBO - PB3 to output
0387 8D 03 17 STAe $1703 ,
038A' 49 00 IJA/F $00 clear A
038C 85 D0 STAz COUNT clear COIJNT
0388 85 Dl STAz TIUE-L cLear TIME-L
0390 85 D2 STAz TIME-H clear TIME-II
0392 8D gA L7 STA@ NMI-L set up NMI interrupt vector
0395 A9 03 tDAilf $Or
0397 8D FB 17 STAG NMI-H,
0394 AD 0E 17 LDAG $170E enable tlmer lnterrupt
039D 4C 4F IC JIC@ $1C4F jtrnp. to monitor (or user program)

E-6

MULTICHANNEL ANALOG INTERFACE

IC4

IC5

tc?

n
6l
5l
4 \ourPr,rr
3 f Foflr
aI
r l
o)

IPF

IC t2
LM3II

\ 6rooopF
|t, h
r t

. / t t *
- ' T

rooopF

IC I TO8
ca3r30

-3y

-r5Y

t

IO
PORT

Number Type +5V GND -15 V +15 V -5V

1ro8
I

10
1l
12
13

cA3 1 30
cD4051
cD4051
MCt408L-8
LM31 1
LM318

16.
' t6
13

I
a

2
I 4

4
8
B

4
1

E-7

APPEI{BtTi F.

KIr{16500 TNFORI\4AfION SOURCES

KIM SOFII^IARE SOURCES

KIM-1/650X User Nores
109 Centre Ave.
West Norr i ton, PA 19401
Publ ished every 5 to B weeks. Subscr ipt ion: $5.00 for
six issues. Back issues may be avai lable. Highly
recoumended.

ARESCO
314 Second Ave.
Haddon Heights, NJ 08035

4K version of FOCAL for $40, 2.5K assesrbler (nonstapdard
mnemonics) for $30, 6K assembler/ text edi tor (standard
mnemonics) for $60. Send 92.00 for l i terature.

6502 PROGRAM EXCHANGE
2920 l{oana
Reno, Nevada 89509

4K FOCAL (FCL-65), . scient i f ic rout ine package (wri t ren in
FOCAL), games and general software for 6500 systems using
the KIM and TIM monitors. Send $0.50 for program l ist .

THE COMPUTERIST
P.O. Box 3
S. Chelmsford, MA OL824

High qual i ty software. PLEASE game package fot KIM-I:
$10.00 (cassette). HELP text edi tors and word processing
programs-send for descr ipt ion-$15.00 per cassette. MICRO-
CHESS Chess playing program for KIM-L: $15.00.

PYRAMID DATA SYSTEMS
6 Terrace Avenue
New Egypt, NJ 08533

rrXIMil extended I/O nonitor package for KIM (requires more
than lK of memory) $12 for manual and cassette.

MICRO-h7ARE LTD.
27 Firstbrooke Road
Toronto, Ontar io
Canada M4E 2L2

Assembler, d issassembler, and text edi tor for 6502 with
4K memory. Manual and KIM cassette: $25, source l is t ing:
$eS. Wel l documented.

IGnneth I.l. Ensele
1337 Foster Rd.
Napa, CA 94558

Source for Tom Pit tnans 2K TINY BASIC on KIM cagsette.
Speci fy st ,ar t lng address $0200 or $2000. $9.50 for
tape plus $1.00 handl tng and postage.

F-1

oPa
P.O. Box 311
Argonne, IL 60439

THE FIRST BOOK OF KIM by Stan Ockers, Jim Butterfield, and
Eric Rehnke. The book includes a beginners guide to KIM,
several tutorials on hooking things up to KIM, and a large
number of game and utility type programs. 180 pages,
8 Ll2 X 11 fornat: $9.00 plus $0.50 postage.

Johnson Comput.er
P.O. Box 523
DIedlna, Ohio 44258

4.5K assembler/text editor and other 65O2 sof&rare. I,Irite
for current information.

T-2

6500 MICROPROCESSOR SUPPLIERS

MOS Technology
950 Rit tenhouse Rd.
Norr istown, pA 19401 (2L5) 666_1950

Rockwel l Microelectronic Devices
P. O. Box 3669
Anaheim, CA 92903 eL4) 632_3729

Synertek
3050 Coronado Dr.
Santa C1ara, CA 95051 (40g) 9g4_g900

6500 BASED MICROCOMPTIfER SIIPPLIERS

Apple Computer Inc.
20863 Stevens Creek Blvd.
Bldg. B3-C
Cupert ino, CA 950L4 (40g) 996_1010

Coumodore Business Machines
901 Cal i fornia Ave.
Palo Alto, CA 94304 (4L5) 326-4000

ECD Corp.
196 Broadway
Cambridge, I,rA A2L39 (6tt1 66L-440O

Ohio Scient i f ic
LI679 Hayden
Hiram, Ohio 44234

F-3

NorJ\fwrro,{ldr trcldtrLlgJsu rvdsNnS'o

0 xtoNlrddv

6530 TI i 'JER TL'NCTIOI. IS AND PROFERTIES

A . T I } ' IE-OUT FLAG AND i NTf RRUFT E}{ABLE REG I STER ,

t . ALL I^JRITE 0PERATIOI. I9 TD THE CO'JNTER T0UCH THE INTERRUPT
ENABLE RT$1STER (AL'TTRESS ts iT 3, THE ,8, BIT, IS COPIED INTO
THE I NTF- ' I I?LJPT ENABL.E REG I STER) .

?. ALL READ T}PERATIO|"I : : CI. i THE COUNTER (EVEH ADDRESSESi TOUCH
TI{E I NTERRUPT EI. . iT iBi-E REG i STER.

3. ALL READ OPERATISI{S ON THE TI| ,1E-OUT FLAG (ODD ADDRESSES}
LEAVE THE l I . {TEFTRUPT EI.{AgLE REGISTER UNTOUCHED.

4 . AFTER COI' IPLET i Oi i OF T I I . {E_OUT. FLAG READ OPERAT I ONS OO HOT
CLEAR THE Ti I ' iE_OU'T FLAG.

5 , AFTER COh,IFLET i Oi ' ; AF T i I ' !E-IJUT, C{JLJI. ITER EEAD OPER*T i ONS CLEAR THE
T I bIE-OUT FLAG .

6 . ALL COUI. . ITER UR I TE OPERfiT I OHS CLEfiR THE T I ME-OUT FLAG.

B. PRE-SCALER BIT$'

1. P|?E-SCALER BITS ARE T0UCHED ot ' lLY EY I IRITE OPERATI0I ' |g
(ADDI?ESS tsITS @ ANO I , THE 'T ' ATJD 'Z ' BITS, ARE COPiED INTO
THE PRE-SCiILER REGISTER) .

?. THE C0UNTER CAI ' { EE LOAI,ED AT ALL ADDRESSES FROtt L7@4-L7AV AND
FROM T7T\C.T76F , BUT I T CA|.{ BE REA'I OI. ' I -Y AT THE EVEH ASORESSES .

3. THE TIME-OUT FLAG C,IFI BE REAF OI. IL- / AT $09 f ,XDEES1JES; SUCH
READ 0PEHATIC'NS ALI^ l f tYS RETURI' I EI ' |HER 36 0R AA tHEX).

C0NSEGUENCES 2 |

1. SETTII ' {G Tl jE PRE-SCALER EiTS RE0UIRES A
' r rRITE

oPEl i :ATi0H.

? . ENABL I NG THE I HTERP'"IPT PECIU i PES f1 ldR I TE 0PERRT i 0N AT ADi lRESSES
L7OC,_1.7@F, OH A FEA', OPEF:ATIOI{ AT EITHER L7AC, OR t ,7bE.

3. DISABLJNG THT I I {TERPUPT REAUIRE$ A I^IRITE OFEI?ATIOI. I AT ABDRESSES
t7a4- i7a7, 0R A REA! 0FERATi0N A1' TITHER r7' ,+4 0R t768.

4. ALL TRA|. I ; :ACTI0NS AT EVEt. l TIDDRESSES CLEa{R THE TIhIE-0UT FLAG
IF IT HAPPEI.{ ID TO gE r- IET.

G-1

(\ .) r l

I NTERRUPT EXPER IT4ENT

@a60 A9 4g LDA# g40
@AOE 8D FE L7 STAE f i1"7F8
ooo5 A9 oo LDA* g.CIo

--.)
.

6@07 8D FF 1.7 STA@ FLTFF " IRO VECTOR INSTALLED
g,@OA 8D CI3 1"7 STAS f iX.703 J PORT B INPUT }
OOOD Ag FF LDA* $FF , t^ , , t ' ' ,s
0o6F 8D 6t L7 , STA@ #1.7Ot J poRt A oUTPUT
A@ft. 8D 6F L7 STAB *DAF 'e*--* '*9TART UP TIMER 1pi{ i " ' r * ' * i ' n
OO15 58 CLI ENABLE INTERRUFTS
@016 F8 sED DECIMAL MODE
@o7? A9 0g LDA{I $00
aa19 85 F9 STHZ $F9
OO1B 85 FA STAZ SFA
OO1D 85 FB STAZ $FB. ZERO OUT DISFLAY DIGITS
AO1F 38 STC USE CARRY TO DO THE INCREMENT
6IA?A AA FD LDX$ $FD NOTE I IRAP-AROUND INDEXING
bq?? 85 I--C LDAZX $FC TO GET TO LOEAT I ON F9 F I RST
g@?4 69 00 ADCS *AO
80A6 95 FC STqZY, $FC I ,JRITE BACK UPDATED DIGIT PAIR
OOE8 90 03 BCC SO3 FALL OUT IF NO CARRY-OUT

I NX IJPDATE I NDEX I F NEED BE807.f1 E8
OO?B DO F5 SNE $F5 FALL OUT IF ALL DIGITS DONE
eo?D A9 ?0 LDA'$ '$e6
Oq?F 85 80 STAZ #BA USE LOC. 8CI AS DISFLAY LOOP CTR,
@931 EO 1F LF JSR@ $lF1F EALL TO DISPLAY DITIITS
QO34 C6 80 tr fcz SB0 CoUNT D0tdt ' t DISpLAY CALLS
@036 DA F9 ENE $F9 DO ANOTHER DISPLAY CALL
OO38 FO E5 EEO f E5 UPDATE D I SPLAY CONTEI ' ITS

NOtd THE I NTERRUFT-DR I VEN PR')GRAhl ,

@O4O 48 FHA SAVE ACCUIdULNTOR
a6+1 nD 02 t7 LDAo #t702 GET Sh|ITCHES
O@44 OA ASL A SHIFT UF
OO45 AA AgL A TIdICE
OO46 DA OA BNE $OA iF f iLL $I^ ' ITUHES ARE ZERO
CI048 A9 FF LDAS $FF USE $FF FOR DEFAULT
OO4A 8D qF f i 5TNE $X7OF RESTART TIMER
Ot)40 EE Oq T,7 I N' ;@ #i7A@ UPDATE PORT A
OOSO 68 PLA RITR I EVE ACCUbIULATOR
-fJO51 40 RT I RETURN FRO}' I I NTENRUFT

NOTES:

1. GR0UNDING SIAf ITCHES LrILL SPEED UP THE UPDATES 0N P0RT A.

?, LOCATION OOAE COI,{TROLS THE COUNTING RATE ON THE DIGIT DISPLAY.

G-2

CODE CO|'IPAN I.]ON CiIART

DECII-{AL

T5

14

r)
L2-

11

10

9

I

7
6

,

I+

3
2

1

o
-1

-?.

-3
-l+

-5

-6

-7
-B

-9
-10
-11

-12
-1,3

-1 l}

-15
-16

,+-BIT
I]INARX

SIGN AI'ID 5-BIT
I"L\GNI'I'UDB OFF'SET

ls COl,lPL. 2s COF{P. 5-BIT
I]INAITY BINARY GRAY

I 111

1 110

1101

1100

1011

101o

1001

1000

0111

0110

0101

o100
oo11
oo10
oool
oooo

(*=o
_ = 1)

o 1111

o 1110

o 1101

o'1100

o 1011

o 1010

o 1001

o 1000

o 0111

o 0110

0 0101

o 0100

o ool_t
o oo10
o oool
o ooco
1 0co1
1 0010

L 0011"

1 0100

1 0101

1 0110

1 0111

1 1000

1 1001

1 1010

1 1011

1 1100

1 1101

1 1L10

1111.1

o 1111

o 1110

o 1101

o 1100

o 1011

o r,o10
o 1001

o 1000

o 0111

0 0110

0 0L01

0 0100

o oo11
o oo10
o oool
o oooo
1'11L1

L 1110

1 1101

L 1100

1 1011

r 1010

1 1001

I 1000

L 0111

1 01.10

1 0L01

1 0100

1 0011

1 0010

1 0001

1 0000

o1000

o1001

o1011

o1010

01110

01111 .

ol to1

01100

00100

00101

00111

00110.

00010

ooo11

ooool
ooooo
10000

10001

10011

10010

10110

10111

10101

10100

1 1100

11101

11111

1 1110

11010

11011

11001

11000

BINARY

1 1111 . O 1111

1 1r.10 0 1110

1 1101 0 1101

1 1100 0 1100

1 L011 0 1011

1 1010 0 1010

1 1001 0 1001

1 1000 0 10oo

1 0111 0 0111

1 0110 0 0110

1 010r. 0 0101

1 0100 0 0100

L 001L 0 0011

t 0010 0 @10

1 0001 0 0@1

loooo ?ff i
o 1111 1 11tO

o 1110 1 1101

0 1101 1 1100

0 1100 1 L011

o 1011 1 1010

0 1010 I 1001

0 1001 1 1000

0 1000 1 0111

0 0111 1 0110

0 0110 1 0101

o 0101 L 0100

o 0100 1 0011

0 0011 1 0010

0 00to I 0001

o 0001 1 0000

o 0000

Offsct blnary and 2s corngrlement dlffer only ln the slafc of ihe slgn blt, .
Cray code ls not vrclght,t:c1; i t can only be converLed info a binary blf s[r ing,
whlch must Lhen be fur.t,hcr lnternrcLed.

OVBRFLOI{ AND I.NDER}'Lo}I l'tITI{ SIGIIUD ARITill'tL'tIC

For the purpose at hand wc w-i}l use a 3-bit binary adder which rvill

accept a pair of 3-bit lnputs (the addends) to fornr a i,-bit output by

the rules of strai6ht ("unsi-gncd't) bj.nary addition. In additlon to the

1O bits nnaking up the inputs and the output, we uiIl define one more.

signal, v;hich is the carry lnto the leftnost bit position of the addends:

i lHH EHi l i l
To keep a running count of overflow and underflor.l el.ents rve ui1l need

one more reglster, here also shown as 3 bits vride. Because spill-ouL from

the adder may have a ueight of +l+ or -4 (overflow or underflpw), it vrill.

be convenient to assign a weight of lr to M2r a;:d to treat the contents

of l'l as another sigtred nunber which may 'oe i-ncremented or decrernented

by the sar:re add/subtract strate$r we ti-I} devclop for A, B, and S. The

bit welghts for all bits are shovn Ln the diagran; they corlespond to

the standard convention for tvro's conplenent signed integers. In the

exarnples be3-ow, the bit locations and fonnats rti.ll be as shovm above,

but the bit weights r,,'i11 not be shown,

Two factors may be held accountable for most of the confuslon around

signed arithmeti,c:

1. The term l.'lSB (rnost significant b'it) is often used rn{.th an irnpliclt

convention which may assign the name l,tSB to either bit O or bit 1 of

a h'ord. fn recognit lon of this, we wil l noL use the term l{SB here.

2. The signals Ln the o corunn may have either a positive rvei6ht (c.-)

or a neEativc weight (Aor Bo). Thc adder nakes no such air i ir . i i l l ;

the lnterpretation of bits as weighted nurnhors fs str i"cLly ourBr

+

+2L=+2

Az

+2o=+L

Bz

+20

6-{

sig,rred arit l tnctic p. 2

Having recognized fhc sources of confusion, lef us attennpt to create
some order by inspecting all possible conbinations of sign bits and
carry-in signals:

A. Cir ,=O; Ao=Oi Bo =Q

o
O 1 O +2 Addition of tr,'o snalL posiii_ve

O01 +1 numbers.

OOO O O11 +3 Nooverf lo l t ,nounderf low

B. Cirr=O; Ao -0; Bo=1 (orAo=1; Bo=O)

o
O 1 0 +2 Addition of a rosi-tive and a

1 O 1 '3 ne3ati're number, result negative.
000 O 111 -1 l i looverf lox,nouncierf lor i

C. C.-=O; Ao=1; Bo=1Lno

1 O 1 -3 Acid:ition of tuo negative nuslbers.

11O -2 Underf low

000 1 011 -5 Cohasaweightof 2x- l+, r r 'h ich

111 is reCistributed Lo 14, a,rd So

111 111 -L+-1

D. Cirr=1; Ao=O; Bo=0

1

0 1 1 +3 Addition of tuo positive nunbers.

OO1 +1 Overf low

000 O 100 +t+ Soasformed.hasar ie ightof +! . ,

001 000 +4+0 vrhj-chismovedtoM,

B. Cin=1; Ao=O; Bo=1 (orAo=1; Bo=O)

1

O 1 O t'?. Adrji.l;lon of a positj-ve ancl a negaLive

110 -2 nurnber.

000 1 OOO O l looverf lo ' ,v, nounderf low

llote that the weigtrt of Co is zeroi

.!_q
Co is pro<iucr:d by t 'addll ion" of C.r,

signed arithmetic p. 3

l,i.th rveight +lr and Bo tdt'h weight -4.

F. Cir, = 1; Ao = 1i Bo = 1

L

1 i. O -2 AdCition of ti*o small negative

111 -1 nu, 'nbers.

0OO 1 101 -3 Nounderf lovtrnooverf low

Again Cr* neutralizes one of the

sign bits. The o+,her sign bit

re:pPears as 5o.

fn sumnary:

1. If carry-in is produced, but no carry-out 1s generated, theri

overflotv has occurred.

2. If a carry-out is procluced 'vrithout help from a carry-in, then

underfLow occurred.

3. If no earries are generated, neit,her overilool nor underflot* occurred.

l+. ff a carry-in produces a carry-out, this announts to neutralization

of the posj-tive lveight of the carry-in by the negative i+eight of

one of the si-gn bits, I{either overflow nor urjderflou has occurred.

5. l.lhenever overflovl or underflor.r oecus, So must be compLernented,

to ma}:e S suitable as input to the adder for further arifhmetic

operations. If Cooi=l, l4 must be decrenented; if Co,rr=0, M must

be incremented.

fn logical terms, spill-out can be deteeted as Crr, 0 Corrt, The slgn of

the spilI-ouf is given b/ Co,rt,

l'ihen all additions have been rnade, we should combine the spill-out

counter with the S legister to make a double-length bit string renresenting

the. end result in tr.rors conplernen| format" llorv there are !t,,'o bit positions

with an acsolute treight of 4; the lor,r-oz'der sign bit, So, and the LSB

of the spll1-oub counter, l'{r. These tvro bits rnust be cornblned, and then

the vacafed bit position must be climinated to shift ihe high order bits

into posif ions corresponcling to their assigned weight,

G-5

slrll{s 3cNlrulrJlu lu.

H Xl0NSddv

TTL REFEREI'ICE SHXET #1

7402 7474

7490 DECADE COT'NTER

2!

. j r -
: rF 2q

1-r5
lcx

Gi'G"I
!!t
i€ l!Bl

7408

7432

BUFFER

H' high laval, L - low lavat. X - i r rr lavrnr
qt

- thr level ol O bato.! th. high-tg. low rr .6. l t ion ol G

6CD COUNT SEOU€NCE
(S.. t{otc Al

74L38 1-OF-8 DECODER

FUI\ICTION TABLE

INPUTS OUTPU'S
PRESET CLEAR CLOCX D oo

LHXX

HLXX

LLXX

HHTII

HHIL

HHLX

HL

LH

HL

LH

ooq7t+04

hh

i l l
l r ! i
l f \ |

l ru i I
t . . - I i
i l i l

I r l -
I IJ_

' . I_

---.
t7 I
lL I

8095 TRI-STATE
Gz 16 ya 15

COUIYT
OUTPU'

Oo Qc Oa Oa

0
I

2
1

5

6

8
q

LLLL

LLLH

LLHL

LLHH

LHLL

LHLH

LHHL

LHHI{

HLLL

r.r L L r,{

FESE',/COUN''RUTH IASLE

RES€T TNPUTS i OUrpUr

R0(il Ror2l R9{', i l F9{21 Q6 Q6 06 Oa

H

H

X

X

X

H

H

x

X

L

x
H

L

x
L

\
L

t{

L

x
L

x

LLLI
LLLL

HLLH

COUNT
COUNT

COUNT

COUNT

INPUTS OUTPUTS

OG oo
L

H

X

H

H

L

Ll{

HL

os 60

INPUTS
OUTPU'S

ENAELE SELECT

GI G?' c8A YO Yl Y2 Y3 Y4 Y5 Y6 Y7

XH

LX
|tL

HL

HL

HL
HL
HT

HL

HL

xxx
xxx
LLL

LI.H

LHL

LHH

HLL

IILH

HHL

HHH

HHHHHHI{H

HHHHHHHH

LHHI. IHH}IH

HLHHHHHH

HTILHTIHHH

HHHLHIIHH

IIHHHLHHH

IIHHHHLHH

HHHHHHLH

HHHHHHHI

.Gt-G?A.GrE

74L53 MUI.TIPI"EXER
stRcgf A DArA lN?lrls

vcc lG st lEcr -^-

Gno

TTL REFERENCE SHEET #2

:E
s€L€ct

sTqoBf
IG

DUAL PERIPI1ERAT DRTVERS 300 trA'' 20 V

REI"AY DRTVERS

-v

74148 PRIORITY E.NCODER

!trrgtt

75454

RS-232C - rTL CoTWERTERS

oa?a rttuts

S.rH idgur! A afrd La c066on lo bolh clisr

H
-

hi$ fi.f, t -
ld lst, X' i.rdffi

rtt tt

7545L

+v

- r .d6r
dryld

-
.d l r rdqa

aa
DC

FUilCTTOil TAALE

SELEC"

INPUTS
OATA I'I?I'TS sTnoSE ouTn r

I A ct cil c:lco o v
x
L

L

L

L

H

H

H

H

x
L

L

H

H

L

L

H

*l

x
x
x
L

H

x
x
x
x

x
x
x
x
x
L

tl

x
x

x
x
x
x
x
x
x
L

H

x
L

H

x
x
x
x
x
x

H

L

L

L

L

L

L

L
I

L

H

L

tl

L

H

tt

tatalrtaraa

$tPt Ts outrur3
EI 0 2 3 4 5 5 7 A2 AI AO (;:3 €O

H

L

L

L

L

L

L

L
I

L

xx
HH

xx
xx
xx
xx
xx
xx
XL

L l l

x
tl

x
x
x
x
x
L

H

H

x
H

x
x
x
x
L

|l

H

H

x
H

x
x
x
L
il
H

lt

H

x
H

x
x
L

t{
t{

t{
H

H

x
H

x
L

H

l{

H

H

H

H

x
H

X

H

H

X

H

x
H

H

H

L

L

L

L

H

H

H

A

H

l"l

L

L

H

H

L

H

H

H

H

L

H

I

H

I

H

t
H

x
ll

L

L
L
L

L

L

t{

H

!!

x
tl
x
H

X
H

75452 75453

DS3686 DS36E7

H-2

L489 1488

st3ltHs A0010NHc3r SoH

I xtoNtddv

g
Hw

moa TEGf{XOLOOY. tXC.
vAtltv foncE co8ponArE CEtrtR {21t| $6.rtt0
950 BrTTtlfi0us€ R0A0. ftonRtsTowil. pA. t9a0t

PRELIifiIIUABY

OATA

SHEET

MAY. 19?6

MC$6500 iilCR OPF0CE||So BS

The MC$6500,Microprocesor Family Concept ---

The l-1CS6500 Series Microprocessors represent the first totally software compatible
rnicroprocessor fani ly. This faniTy of products includes a range of sof twarL compat ib le
microprocessors which provide a select ibn of addressable nenory range, interrupt input
oPt ions and on-chip c lock ossci l lators and dr ivers. Al l of the microprocessors in the
II{CS6500 grouP are software cornpatibl.e within the group and are bus compatible with the
M6800 product of fer ing.

The fami ly includes f ive microprocessors wi th on-board c lock osci lLators and dr ivers
and four microprocessors dr iven by external c locks. The on-chip c lock versions are
ained at h igh performance, low cost appl icat ions where s ingle phase inputs, crysral
ur. ' RU rrrpuLs pr luvir . - le Llre Liure base. The er. ternal c locl : versions arc geared for the
nul t i processor system appl icat ions where naxinum t in ing control is mandatory. Al l
versions of the microprocessors are avai lable in 1 MHz and 2 MHz ("At ' suf f ix
on product numbers) rnaxinun operating frequencies.

Features of the MCS6500 Family

Single f ive vol t supply
N channel , s i l icon gate, de-
plet ion load technology
Eight bi t paral1e1 processing
56 Instruct ions
Deciural and binary arithmetic
Thir teen addressing modes
True ind€xing capabil ity
Progranmable stack pointer
Var lable length stack
Interrupt capabl l i ty
Non-maskable interrupt
Use with any type or speed memory
Bi-direct ional Data Bus

Instruct ion decoding and control
Addressable memory range of up to
65K bytes
"Ready" input
Direct memory. acce.ss capabil lty
Bus compatible with MC6800
Choice of external or on-board c locks
IJl{dz and 2tl}lz operation
On-the-chl.p cLock optlcns
* External elngle clock input
* RC time base input
* Cryetal t ine base lnput
40 and 28 pln, package veraions
Pipel ine archi tecture

Members of the Family

Microprocessors
On-Board Clock

with
0sci1 lator

Microprocessors with
External Two Phase
Clock Input

I
|- ucsosrz

l-"rrur*
I
f-r'rcsosr+
I
l- ucsosrs

MCS6s02

MCS6s03

MCS6s04

MCS6505

MCS6s06

L1- l

Comments on the Data Sheet

The data sheet is constructed to review f i rst the basic "Comnon Character ist ics" - those
features which are common to the general fami ly of microprocessors. Subsequent to a
review of the fani ly character ist ics wl1l be sect ions devoted to each member of the group

with speci f ic features of each.

COMMO N CHAHACTERISTICS

.- RgctsT[RsEcTtoN CONTROL SECTION

Pg rtrq rta

ADDRESS
BUS

ABO

A8 |

AB2

ABJ

A8,l

AB5

A86

A8?

AB'I

A I}.,

A 810

ABI I

A8t2

ABI]

ABI4

ABI 5

gr rrrr I
I

er { tnr
J

aroa* I
rNPr.r J

f1 oUr

fi:-

MCS6512,13,14.15

MCS6502,3,4,s,r

fl =, ,,,,,n,

|
=rnrrr-rr i r

DB'
DBI
DA2
oB3
D84
DB'
lr86
D61

OATA

8US

Note: l . Clock (lenerator is not included on MCS6512'13' l4, lS

2. Addressing Capabi l i ty and control opl ions vary wi th each
of the Mcs6500 Products.

MC56500 | nternal Arehitectu re

IN5TRUCTION
DECODE

'1,.1-2

COMMON G}IARACTE HISTICS

ADC
AN!)
ASL

ECC
BCS
BEQ
Btl

BMI
8NF:
lrPt.
BRK
BVC
8VS

Add HeBrry io Accumulator plr .h Carry
" iL\u" Mcnrrry wi th Accumulnt(, r
Slr l f ! Ief t On€ B1t (Memort or Accumulstor)

I l rdur l l on Cdrry C I ear
granch 0n Carry set
l i rdnch o0 Resui ! Zero
Test IJ. i ts in }{ercrt wl th Accumulncor
Branch on Result Hlnus
Br,rDch on Resul t not Zero
Brai lc l r oo Resul t Plus
Forcc Break
Erench on overf lou C1(ar
IJLdnch un Overf lou S(t

INSTRUCTION SET _ ATPHABETIC SEOUEHCE

DIC Decrenent l retury by Ooe
oEX Decrehent Index X by one
DIY D€crenenl lndex Y by One

UOR " l ixc1!s ive-or ' r Menory r i th Accuhulatot

ln_C Increnent Menory by 01e
Ir_X Incranenc Index X by 0n€
I l{Y Incremett Inde}: Y hy One

Junp to Neu Locatton
Jump !o Nea Locat lon Savlng Relurn Address

Lo6d Accunulator ui th Memory
Load Indea X wlth Mercr) '
Load Index Y si th l lemort
Shif t ooe 8ir Rlghr (I tercry or Accwulator)

l iOP l io operat lon

oF.A "OR Menory el th Accuulator

Pusb Acc@ulator on S:ack

Puah Proceasg! Status on Scack
Pul l Acc@slator froh stack
Pul l Proceesor Status f ron Stack

Rotste Otrc Blt L. f ! (Ue@ry or Accuelator)

Rotate Gre Bit Righ? {Venor) ' or Accuhulator}
Retulo f loD Inlerrupt
Return f ron Subrou! lne

Ssbtract Mesory f lcm -Accunuletoi l l th Eorroq

set Csrry FIag
set Decl@t Uode
set IntefruPt Dl.sable ststs
Store Accumulator ln He@rY
Slore Index X la MehorY
Stole lodct Y ln ltemrt

Transfer Accmulalor !u fndet x

trrnafer Accaslator to lndex Y

Tlaasfer Stack Polnter to Index x
fran€fer Index X to AccuNlator

TranEfer Indcx X to Stack Polnter

Trsafer lnd.a Y to Accdqlator

JMP
JSR

LDA
LDX
LDY
LSR

FHA
PHP

?LP

ROL

ROR
{Tt
RTS

s8c

STA

STY

TAX
TAY

rxA
TXS

CLC Ciear Carry FlaS
C!-D Clear DeciMl Hode
CLI Clear Interrupt D. isable 8i . t
C,,V (l lear Overf lou l lag
CMP Conpare Hemcrt and AccuDulator
CPX Conpar(' ! lem(,r ! rnd lnd€x X
CPI Cohpare i lemry and lndex Y

ADORESSIi lG MODES

AucU!4ULATUlt ADDRESSING - lh ls. form of addres6ing ls repreaenred wlth a one byte lnatruct lon' l rnplytng an
operal ion on the accumulator,

IMMEDIATE ADDRESSING - In lmredlate sddresslng, the operand 1s confalned ln the second byte of ghe instructloR'
ui th no further menory addresslng required.

ABSOLUTE ADDRESSINC - In absolute addressing, rhe second byte of the lnstruct{on apecl f les the €lght 1o* ordcr
bl ts of the ef fect lve address nhLle rhe thlrd byte ep€c{f lee the elght hlgh order bl tE. Thus' th€
ebsolute addreBelng mode a1lows acceeE to the ent l re 65K bytee of addreaesble nemory.

zERo PACE ADDRESSING - The zero page lnstructlone allord for ehorter code l.ld ex€cstlon tln€s by only fetchtng
the eecond byte of the lnstruct lon and aseunlng a zero htgh addreee byte. Careful use of the zero
page cen reeul t ln s lgni f lcant lncrease l -n code ef f ic lency.

INDEXED ZERO PAGE ADDRESSING - (X, Y indexlng) - Thls forur of addresalng 18 u6€d ln conjunctton ttlth the lndex
register and ls referred to as "Zeio Page, X" ort tzero Page, \" . The ef fect lve eddrese is ealculated'
by addlng the oecond byte to the contenrs of the lndex t . l l " t " r . Slnce thle le a forn of "Zero Page"

addreseing, the eontent of the second byce references a locagion ln page zero. Addl t lonal ly due to
che "Zero Page" addreesing nature of this node, no carry la edded to the hlgh order I blts of ntet:ory

. and croselng of page boundar les doe6 not occur.

INDEXED ABSOLUTE ADDRESSINC - (X, Y lndexing) - This form of addresslng lB used ln eorijuoction with X end Y
lndex regleter and ls referred to as rrAbsolute, Xrr , and "Abaolute, Y'r , ?he ef fect lve addreae ls
formed by addlng the content.s of x or Y to the addrese contalned 1Ir the gecond and thlrd bytes of the
lnstrucelon. Thls mode al lowe the i .ndex reg{ster to concain lhe lndex or count vaXuc and the ln-
structlon to contaln the base address. Thls type of Lndexlng a1lo!r8 any locetlon ref€f,e$clng and
the index to modi. fy mult ip le f te lds resul t ing In reduced codlng and execut lon t l f te.

IHPLIED ADDRESSING - In the lmpl ied addreeslng mode, the addresB contalnlng the operand 18 lnpl lc l t ly t t l ted
ln the operat lon code of the ln8truct lon,

RELATIVE ADDRESSING - Relat lve addresalng is used only wi th branch lnstruct lons rnd asrabl lshes a dert lnst{on
for the condl t lonal branch.

The second byte of the lnetruction becones the operand rhlch la .n [Offlct't sdded !o qhc contentd of

the lower elght bl ts of the progran counter when the counter ls set at th€ next ln i t ruct f* f l " The
range of the of fset 1g -128 Eo +L27 bytes f rom the next lnEtruct lon,

INDEXED INDIRECT ADDRESSINC - In indexed lndirect addreseing (referred to as (Ind{rec! ,X)) , the geeond byte of
' the instruct lon is added to the contents of the X lndex reglater, d l rcardlng the earry. Tha re8ul t

of th ls addl t lon polncs to a hemory local ion on page zero nhose contents ls tha Lolr ordcr elght bl te
of the effective address. The next menory location in page zero contalns the high order €ltht bltr
of the ef fect lve address. Both nemory locat lons specl fy lng the hl .gh and lon order bytes of the
effect lve address must be 1n page zero.

INDIRECT INDEXED ADDRESSING - In lndlrect lndexed addres8tng (referrcd to. . (Indlr€cg)rY), thc t .coad byt .

of the lnr t ruct ion polnts to a $emory locat lon ln page zero. thc contcnta of ghls aqlory locat lon

ia added to the coni€nt8 of rhe Y lndex regisrcr , ihe rerul t bolng th6 lo l t order el tht b l t t of tha

effect lvc rddress. The carry f rom thls addl t lon 1g addrd to thc contcnta of th. naxt prSc t i ro

n.nory locrt ion, the rasul t belng the hlgh ordar elght bl t r of thr r f f€ct lvc eddr. l r '

ABSOLUTE INDIRECT - The tccond byce of the inatrucrlon contalna thc low ordrr Gttht bltc of r ttremory locatlon'

The hlgh order elghr bi ts of rhar memory locar lon le contained ln the th l rd byte of the lnstructLon'
The concents of r f ,e fu l ly specl f led mernory locat lon Ls the low order byte of the ef fect lve addr.ee'

The next memory locat lon contalns the hlgi order byte of thc cf fect lve rddrcst rh lch ls loeded
into the s lxtcen bl t r of the program counter.

1r,

I c0MM0N UHARACTERTSTTCS I

PHOGNAMMING MOOET

r--T-:-_l
r---;------l

8l
r.r_l+
lr l s

- . l
I I "J

PROCESSOA STATTJS f . i€c

ACCUMULATOR

INDEX REGISIER

INDEX REGISTER

PROGFA[,? COUNTEB

S-IACK FOJNTER

I = RESUL; ZEBO

IRODIS,ABLE]=DISASL€

DECIM.AL I !4ODE 1= TRUE

BRK COMMAND

OV€RFLOW

NTGATIVE

ltusrBusrlslu sET - sp sODEs, fxecution Time" Mennory Requlrements
rNSttwTtdE

t
It

,
t

i
;

t

i
f

TSX

it A

YI S

u) aoo 1 ro N. rr pac6 touN06y :s cFoss{D

rzr Aoo 1 tc r" r : tFANch occ!nt to tAtuja raa€
Aoo, lo N

' f
anANCH OCCUFS ?O OrraiF€!r r i6!

{ ! r CAirY NOT, 3OAfiOw 4 A(rr 'uL; i^ i i re

. r r (r l r r \ i t !

[.1-8

i { i r ' ' \ f i r r , !Y B' i

--*_-J

Vaa
RDY

61(OUT)
I RO,
N.C,
t tMl

sYl{c
Vcc
480
A8l
482.

RES
e Z(OUTI
s.o.
oq(ltr)
N. C.
N. C.
R/W
0Bo
o8r
o82
D85
DB4
oB5
DB6
DA7
a8 t5
ABI4
AAr3
ABI 2
v3S

AB3
484
aa5
A86
a87
a8s
AB
AEtO
ABII

r40

6!5

93?
ro 5l
i l30

t6 2a
t7 24
r t 2
f9 2
20 2l

MCS650 2

* 65K Addressable Bytes of Memory

't IRa Interrupt * mf Interrupr
* On-the-chip Clock

/ TTL Level Single Phase Inpur
/ RC Tlme Base Input
/ Crystal Time Base Input

?t SYNC Signal
(can be used for single instruction
executlon)

* RDY Signal
(can be used for single cycle
executlon)

x Two Phase Output Clock for
Tining of Supporr Chips

Feafires of il{C$6b02

t2
227

425
5?4
623
722
821

ro l

l4 l

i l l8
t2 t7
t3 16

R-3
Vcr
m6'
NMI
Vcc
ABO
ABI
AA?
AB3
AB4
AB5
A86
AB7
AB8

O2(a0Tl
oq(lN)
R/W
080
DBI
DB2
oB3
D84
D85
D86
Dts7
ABI I
AB IO
AB9

MCS6503

* 4K Addressable Bytes of
Memory (A800-A'811)

* On-the-chlp CLock

* EQ' tnterrupt

't m Interrupt

* 8 Bit Bi-Dlrect ional- Data 8us

Featurss ot [tCS6503

MGS6504 - 28 Pin Package

* 8K Addressabl-e Bytes of
Memory (A800-A812)

* On-the-chip Clock

* TEQ. rnterrupt

* 8 Btt Bl-Dlrectlonal Data

?8
27
26
23
24
23
z2
2l l
201
re l
r8 l
t7 l
16l
t5 l

I r
l2
3
4
s
6
7
I
9
lo
l l
12
t3
t4

RE
Vss
TFT
Vcc
ABO
ABI
A82
AB3
AB4
A85
AB6
AB7
A88
A89

o2@UTl
OO(lN,
R/W
080
DBI
oa2
083
DB4
DB5
o86
oa7
AB 12
ABI I
AB IO

MCS6304 Featuru of MCS6504

ItlCS6505 - 28 Pin Package

RE
Vss
RDY
rm
Vcc
ABO
ABI
AB2
483
AB4
A85
A86
AB7
A88

bZ@UTl
09(lN)
R/Vt
DBO
DBI
082
D83
D84
085
DB6
DB7
ABII
A8 to
489

4K Addressable Bytes of
Memory (A800-A811)

On-the-chip Clock

TQ rnterrupr

RDY Signal

8 Bit Bi-Direct ional- Data

Features of &tiG$$505

Bus

MCS6505

ryqqq506 - 28 Pin Fackage

0n-t

m0

4K Addressable Bytes of
Memory [A800-A811]

he-chip Clock

Interrupt

Trrro phases off

8 Bi t Bi-Direct ional Data

Feetuyes sf MS$6506

Bus

RES
vs5

O r (OUT)

tRc
Vcc
ABO
ABI
AB2
AB3
AB4
AB5
486
AB7
AB8

I
z
3
4
E

6
7
€t

9

28
27
26
25
24

a2(aUTl
9o(lN)
R/w
0Bo
DBI
082
DB3
DB4
DB5
D86
oa7
ABII
ABIO
/t B9

23
22
2l
2A
t9
t8

t . .

t5

MCS6506

MCS65I1- 40 Pin Package

65K

TN'E
mn
RDY

Addressa!:1e Bytes of Memor,v

Interrupt

Interrupt

Signal

8 Bi t Bi-Direct i "onal Data Bus

SYNC Signal

Two phase input

Data Bus Enable

Lt-10

F*at$res of MS$S51f

MCS65|3 - 28 Pin Package

*

*

*

*

4K Addressable Bytes of
Menory (A800-AB11l

Tvo phase clock input

TRQ Interrupt

ffi Interrupt

B Bit Bi-Directional Data

Features of lbtCS65f3

I

2
?

4
5
6
7
I
9
ro
t l
t2
,3
t4

28
27
26
?5
24
23
22
?l
20
l9
t8
t7
t6
t5

Vss
A1
rF-o
ffii
Vcc
A80
ABI
AB?
AB3
A84
A85
A86
AA7
AB8

RES
A2
R/W
DBO
DBI
D82
oB3
DB4
D85
oB6
0ts7
ABI I
AtsIO
A99

MCS65 | 3

ll,lg$0514 - 28 Pin Packase

tza
227
3 26
425
524
6?3
722
azl
920
lo 19
l{ r8
12 t7
t3 16
t4 15

Vsg
A1
iRE
Vcc
ABO
ABI
AAz
AB3
A84
A85
AB6
AB7
AB8
AA9

HE3
O2
R/W
080
DBI
D82
DB3
084
085
DB6
0ts7
ABIz
ABII
AB IO

M CS65 t4

* 8K Addressable Bytes of
Mennory (A800-A812)

* T\+o phase clock input
* IIQ Interrupt
* 8 Bit Bi-DirectionaL Data Bus

Fcatures of MC$65N4

MCS6515 - 28 Pin Fackage

Vss
RDY
O1
I.FN
Vcc
ABO
ABI
ABE
A83
AB4
A85

RES
6Z
R/W
080
DBI
DA2
DB3
DB4
085
D86
087

4K Addressable Bytes of
Menory (A800-A811)

Troo phase cLock input

TIQ Interrupt

I Bit Bi*Directional Data Bus

*

*

*

128
227
326
425
524
623
722
a2l
920
ro 19
i l t8
t2 t7
t3 t6
14 t5

MCS65 r 5

I l -11

Fosturss of MC$6515

TIME tsASE GEf{EhnTIfiN ffiF ;ru$}g.r OLCIrK

ry.g$gLff?, ryf;$q504, MC$6SSS, M$$65SS

MCS 65 03, 4, 5, 6 Parailet Mode Crv stdl
Cont"clleC Osillator

SYSTF[, I C ,

SYSTF,M

MCS 6 5 A3_,4,5, 6 S eries M ode Crystat
Controlled Oscillator

MC56503, lttcs6S04, MCS6S0S, M€56506 Time Base Generation
RC Network

trl|CS6502

sYsTEil{ 02

0o (lN)

0: (our l

MCS6502 Paralle! Mode Crystal Contrclled'Oscillator

SYSTEM O]

@,, (lN)

O: (OUT)

MCS6502 Series Mode Crystal Contolled Oscillator

SYSTEM OJ

0, ' (lN)

0: (ouT)

fl cnvsrnl

MCS6502 Time Base Generator _ RC Network

I r'Rvsrnl

lBl&$
not r tc l tBNoLooY. t l tc .
v^rtEy FofiGt coRpoRAT€ ctxTER (2l l) 6c8.t9t0
tto RrrTtf,flousE R0A0. flonnlsTor,t. pA. t9a0r

PROCIUCT

ANiTOUNCEMETUT

BUU-ETtt

SEPTEMBEB, Ig?S

MCE652O PERIPHERAL ADAPTER

9ESCRTPTTON

The MCS6520 Peripheral Adapter is designed to solve a broad range of peripheral
control problens in the inplementation of microcomputer systerns. This device al lows
a vety effect ive trade-off between software and hardware by providing signif icant
capabil i ty and f lexibi l i ty in a low cost chip. l{hen coupled with the power and
speed of the MCS6500 family of rnicroprocessors, the MCS6520 al lows inplementation
of very conplex systems at a nininum overall cost.

Control of peripheral devices is handled prinari ly through two 8-bit bi-direc-
tional ports. Each of these lines can be prograrmed to act as either an input or
atr output. ln addit ion, four peripheral contnol/ interrupt input l ines are provided.
these l ines can be used to interrupt the processor or for rhand-shakingrr data
between the processor and a peripheral device.

High perfornance replacenent for
Mot o ro I a,/Alrl I /liOSTE K/H i t ach i p e ri phe ral
adapter.

N channel, deplet ion load technology,
single +5V supply.

Completely Stat ic and TTL conpatible.

CttllS conqratible peripheral control lines.

Ful ly automatic ?thand-shake'r al lows very
posit ive control of data transfers between
processor and peripheral devices.

f ",,,I I,ATA lus
MtcnoPnocEssoRs I

Hcr6snx
1

| -r.r.o,t
?€TIPIIEn^L
DEVTCES ..

'RINTERg.OAPLAYS. ETC,

Sosic NC5653o Intcl\<'(Dioglaa

I

3

5
6
1

I
9
l0
1t
l l

72
13
14
15
l6
1'7

l8
TY

2A

4A
39
38

36

34

31
JU

LJ

28
aa
at

26
25
. ,4

MCS65 2O

vss
PAg
PAl
PA2
PA3
PA4
PA5
PA6
PA7
PB9
PBI
PB2
PB3
PB4
P85
P86
P87
cBt
cB2
vcc

CA1
wnL

rm,-A
i RiiB
RSg
RSl
RES
D9
D1
D2
D3
D4
D5
D6
D7
02
CSi
csz
CSfi
R/ft'

SUMMARY OF MCS652O OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of MCS6520 operation.

cAl/CBt CONTROT_
cR4 tc_RB)

Bit I Bir 0

0

I

I

*Note:

0

t

Bit 7 of
^l ^-^1>rtrrdl .

Act i ve Tra-ns i t i on
of Input Signal*

of Inout Sicnal*

IRQA (IRQB)

l":s::gPlqgg:E

rRQA (lRQB)
Interrupt Output

negat ive Disable--renrain high

negat ive Enable--goes low when brt 7 in CRA (CRB) is set by,
act ive t . ransi t ion of s ignal on CAI (CBl l

posi t ive Oisable--remain high

posi t ive Enable--as explained above

CRA (CRB) wi l l be set to a logic i by an act ive t ransi t ion of the CA_t
This is jndependent of the state of Bi t 0 in CRA (CRB).

cA2lCBz
Act ive Transi t i on

I I \ |PUT MODES
CRA (CRB)

Bit 5 Bir 4 Bi t 3

000

001

0t0

011

*Note: Bi t 6 of CRA
signal . This

negat lve i) isable--remains high

negat ive Enab1e--goes low when bi t 6 in CR-A (CRB) is set by
act ive t ransi t ion of s ignal on CA2 (CB2)

posi t ive Disable--renains high

posi t ive Enable--as explained above

iCRB) wi l l be set to a logic 1 by an acr ive t ransi t ion of the CA2 (CtsZ)
is independent of thc state of Bi t 3 in CRA (CRB).

CAz OUTPUT MODES

Bit 5 Bit 4 Bit 3 Mo<ie !:-:Jl:1:igl

I 0 0 " i landshake" CA2 is set h igh on an act ive t ransi t ion oF the Cnl t l l rcrrupt
on Read input s ignal and set low by a microorocessor t 'Read A Data"

operat ion. This al lows posi t ive cor l t ro l of data t ransfers
from the per ipheral device to the microprocessor.

I 0 I Pulse Output CA2 goes low for one cycle af ter a "Read A Datar iorrerat ion.
This pulse can be used to s ignal the per i .pheral device that
data was taken.

i I 0 Manual Output CA2 set low

I I I Manual Output CA2 set high

CRA

CRB

Bit 5 Bi t 4 Bi t 3

t00

Mode

'rHandshake"
on Wri tc

Pul-se Output

Manrral Output CB2 set low

Marrual Output CB2 set high

CBz OUTPIJT MODES

I les cr ipt i on

CB2 is set low on nicroprocess<.rr " l { r i te B Datai l operat ion and
is set h igh by an act ive t ransi t ion of the CBI interrupt
input s ignal . lh is al iows posi t ive control of data t ransfers
from the microprocessor to the per ipherai device.

CB2 goe.s low for one cycle af ter a microprocessor ' ,Wri te ts
Data[opr:rat ion. Thi ,s can be used to s ignal the 1;er ipheral
device ihat . data is avai lable.

0

I

tn1
t .L '2

MAXIMUM RATINGS

Ratin.g Symbol Value Unit

supply vol tage Vcc -0-3 to +7,0 vdc This device contains c i rcui t ry
to protect lhe inputs against

Input Vol tage Vin -0.3 to +7.0 Vd. danage due to high stat ic
vol tages, however, i t is

operat ing TenPerature Ratrge T4 0 to +70 oC advised that normal precaut ions
bc taken to avoid annl icat ion

Storage TemPerature Ranse Trtg -55 to +ls0 oc of any vol tage highei than
naximun rated vol tages to th is
ci rcui t .

STATIC D.C. CHARACTERISTICS (VCC = 5.0 V + 5%, VSS =

Character ist ic

Input High Vol tagc (Nornal Operat ing Levels)
Input Low Voltage (NormaI Operat ing Levels)
Input Threshold Vol tage
Input Leakage Current

vin = o to 5.0 Vdc
R/l{ ,Resea,RSo,RSr,cso,csr,eSZ,clr ,c} t ,o2

Three-State (Off Srate Input Current

_
(Vin-. : 0.4 to 2.4 Vdc, V66 = rnax) D0-D7,PB9-?B7,CB2

Input High Current
(.Yy1 = 2.4 vdc) pA[-pA7,CAz

Input Low Current
(vr l = 0.4 Vdc) PA1-PA7,CA}

Output High Vol tage
(VCC = min, ILoat l = - I00 pAdc)

Output Low Voltage
IVCC = nin, l load = 1.6 mAdc)

Output High Current (Sourcing)
(von = 2.4 Vdc)
(VO = 1.5 Vdc, the current for dr iv ing other than

TTL, e.g. , Dar l ington Base) p}g-pB7.,CB2
Output Low Current (Sinking. l

(voL = o-4 Vdc)
Output Leakagc Currcnt {Uff Statc.) I&a-A-, InaE
Powcr Dissipat ion
Input Capaci tance

(Vin - o, TA = 25oc, f = i .0 Ml. tz)
D9-D7 , PA0-qA7 ,PB4-PB7 ,CAz,CB2
R/t i ,Resct, kS0,RSl,CSO,r;Sl ,CS2,
(;AI ,CBI ,

'2Output Capaci tance
(Vin - 0, Tn = 25oC, f = 1.0 MHz)

0, TA = 25oC unless otherwise noted)

Symbol Min Typ Max Unit

vtH +2.0 - vcc vdc
VIL -0.3 - +.8 Vdc
Vtt 0.8 - 2.0 Vdc
I It't pAdc

.1.0 +2.5

Irs t
+2.0

' iH
-100 -250

IIL
_ _1.0

vott
1A

Vol

IoH
-100 - t000
-1.0 -2.5

IoL
1.6 mAdc

lof f - 1.0 l0 uAdc
P9 - 2OO 500 mW
cin PF

+ l0 pAdc

- uAdc

-1.6 nAdc

- Vdc

+0.4 Vdc

- pAdc

- mAdc

Cout

IU

7.0
1A

l0 l)F

N0TF: Negat ive s ign indicates outward current f low, posi t ive indicatcs. inward f low.

FIGURE 1 _ READ TIMING CHARACTERISTICS

Oai6

Ortr Bur

ca2
(Puts Out)

cal

CA?
(r i ."d Shrr.)

o.4 v

2.4 V

2.4 V

0.4 v

2,4 v

o.a v

z,a v

o.a v

2,4 V

aav

t.L3

FIGURE 2 - WFITE TIMTNG CHAFACTERISTICS

Addr€ss

o.4 v

2-a v

o.4 v

2.4 V

o.4 v

30%
2.4 V

o.4 v

2-4 V

o.4 v

R€od/Write

oab Bus

P€riph6ral Data

cB2
(Pul* Out l

TPDw _ _vcc_

cBl

cB2
(Hand Shrko)

rnsz

2.4 V

o.4 V

?.1v

o.4 v

A.C. CHAMCTERISTICS

Read Timing Character ist ics (Figure .1, Lcading f30 pF and one TTL load)

Characterrst ics Syrnbol M1n Typ

Delay Time, Address val id to Enable posi t ive t ransi t ion TnfW 180
Delay Tine, Enable posi t ive t ransi t ion to Data val id on bus TEOq
Peripheral Data Setup Tine TPDSU 300
Data Bus Hold Tine THn l0
DeLay Time, Enable negat ive t ransi t ion to CA2 negat ive t ransi t ion ' ICA.Z

Delay Tine, Enable negat ive t ransi t ion to CA2 posi t ive t ransl t lon TnSt
Rise and Fal l Time for CAI and CA2 input s i .gnals t r , t f
Delay Time fron CAI act ivc t ransi t ion to CA2 posi t i .ve t ransi t ion TRSZ
Rise and Fal l Ti ine for Enable input t rE, t fE

Wri te Timing Character ist ics (Figure 2)

Max Unlc

-ns
395 ns

-ns
1.0 us
1.0 us
1.0 us
2.0 us

25 us

Min' typ Max UnitCh aract er i st i cs

Enable Pulse Width
Delay Tirne, Address val id to Enable posi t ive t ransi t ion
Delay Tine, Data val id to Enable negat ive t ransi t ion
Delay Time, Read/ l { r ' i te negat ive t ransi t ion to Enable posi t ive

transi t ion
Data Bus Hold Time
Delay Tirne, Enable negat j .ve t ransi t ion to Per ipherdl Data
DeIay Time, Enable negat ivc t ransi t j .on to Per ipheral Data

Ttll,l
val ici TpOW
Valid, TCMOS

Synbol

TF

Terw
Tosu
Twe

a.470
180
300
130

10

25 us
- l t5

-ns

-ns
I 'o us
2,O us

I .0 l is
1.5 us
1.0 us
I .0 l rs
2.0 us

cMos (vcc - 30e,) PA0-PA7, CAz
Delay ' l ime, Enable posi t ive t ransi t ion to CB2 ncgat ive t ransi t ion TCAI
0eiay Tirne, Per ipheral Data val id to CBz negat ive t ransi t ion TOC
Delay Tine, Enable posi t ive t ransi t ion to CB2 posi t ive t ransi t ion TRSi
Rise and Fal l Tine for CB. l and CB2 input s ignal5 t1, t f
Delay Timc, CBI act ive t ransi t ion ra C82 posi t ive t ransi t ion TRSZ

1.2-4

rB&@ffi
xoa r*c} | i lo l - (Dov, l rc.
vAu.Ev foRG€ coffrofiATE ccfirtF (2r51 66c-t9t0
t50 ElTTfr{}rousE 80A$, r088rsT0!Yfl. PA. rtaSl

PBELIf,IIIUARY

OATA

SHEET

ilARCH, tt73

MCS653(! (MEMORY,I/0, TIMER ARRAY}

The MCS6530 is designed to operate in conjunct ion with the MCS650X Microprocessor
Farnily. It is comprised of a mask progranmable L024 x 8 ROM, a 64 x B static Ml"t,
two software control led B bi t b i -d i rect ional data ports al lowing direct interfacing
between the microprocessor unit and peripheral devices, and a software programmable
interval t imer wi th interrupt, capable of r iming in var ious intervals f rom
L co 262,L44 cLock per iods.

x 8.bi t b i*direct ional Data Bus for di rect communicat ion
with the microprocessor

*1024x8ROM

x 64 x 8 stat ic RAM

* Two 8 bi t b i -d i rect j -onal daLa ports for lnterface to per ipherals

* Two prograrunable I /O Peripheral Daca Dlrect lon Regist .ers

* Programmable Interval Timer

* Programmable Intervai Timer Interrupt

* TTL & CMOS compatible peripheral l ines

* Per ipheral p ins wi th Direet TranslsLor Dr ive Capabi l l ty

* High Impedance Three-StaEe Data Pins

* Al lows up to 7K cont iguous bytes of ROM with no external decoding

PAO P47

OATA
BUS
BUFFER

A9 CSr CSz 02 R/W R.Fs

Figrrre 1. MCS6530 Block 0iagranr

DATA
CONTROL
REG ISTER

A

PERI PHERAL
DATA BUFFER

INTERVAL
TI MER

PERI PHERAL
DATA BUFFER

B

A ODRESS
DECODER

CHIP
SE LECT
R/W

Supply Voltage - .3 ro +7.0
Input/Output Vol tage - .3 to +7.0

OperaLing Temperature Range

Storage Temperature Range -55 to +150

A11 inputs contain protect ion circui try to prevent damage due to high
stat ic charges. Care should be exercised to prevent unnecessary appl icat ion
of vol tage outside the speci f icat ion range.

MAXIMUM RATINGS

*When programmed as address pins
A1l values are D.C. readings

ELECTRICAL CHARACTERISTICS (VCC = 5.0v + b%, VSS = 0v, T4 = 25' Cl

CHARACTERISTIC STMBOL MIN. TYP. I'{N(. IJNIT

Input High VolLage VtH vss+2. 4 vcc \ /
Input Low Voltage vrr. vsr- ' 3 vss+.4 I t

rnput Leakage Current i Vt ' = VsS + 5v-
A0-A9, RS., R/w, m, 02, pB6*, pB5rr

_
Input Leakage Current for High Impedance StatE

(Three Stare) i VIH = .4v to 2,4v; D0-D7

rru 1.0 2.5 PA

rrs t t1 .0 r10.0 uA

Input High Currenr; VIN = 2.4v
PA6-PA7, PB6-PB7

rttt -100. -300. UA

Input Low Current; VIN = .4v
PAa-PA7, PBa-PB7

rri, -1. 0 -1.6 MA

Output High Vol tage
vcc = MrN, rroao 1 -rooul(pA0-pL7,pBo-pBT rDa-D7

ItOnn : -3 I',tA (pA0,pB6)

Vott

vss+2. 4
VSS+1.5

v

OutpuE Low Voltage
VCC = MIN, I IORO < 1.6MA vot vss+.4 v

Output High Current (Sourcing);
vo[a 2.4v (PAo-PA7,PB0-PB7,D0-D7)

I t .5v Avai lable for other rhan TTL
(Darl ingtons) (PL6,PB0)

1ot
-100
-3. 0

-1000
-5. 0

UA
UA

out,pur Low Currenr (Sinking); VoL ' .4vTHll:Eg rot 1.6 MA
Clock Input Capaci tance cctt 30 pf
Input Capaci tance ctt't 10 pf
Output Capaci tance cout 10 pf
Power Dissipat ion Po 500 1000 MW

r.3-2

CHARACTERISTIC SYMBOLMIN. TYP. l,IAt(. I]NIT

Ciock Per iod Tcvc I 10 uS

Rise & Fal1 Times TR, TF 25 NS

Clock Pulse Width T\J 470 NS

R/W val id before posi t ive t ransi t ion of c lock TWCW 180 NS

Address val id before posi t ive t ransi t j -on of c lock TACW 180 NS

Dat.a Bus val id before negat ive t ransi t ion of c lock TDCW 300 NS

Data Bus Hold Time THI{ 10 NS

Peripheral data val id af ter negat ive t ransi t ion
of c lock

TCPW I uS

Peripheral data val id af ter negat ive t ransi t ion
of clock dri-ving CMOS (Level=VCC-302)

TCMOS uS

WR ITE TIMING CHARACTER ISTICS

R EAD TIM ING CHARACTER ISTICS

CITAMCTERISTIC SYI''IBOLMIN. TYP. MAX" IJNIT

R/W val id before posi- t ive t ransi t ion of c lock TWCR 180 NS

Address val id before posi t i -ve t ransj- t ion of c lock TACR 180 NS

Peripheral data val id before posi t ive t ransi t ion
of c lock

TPCR 300 NS

Data Bus val id af ter posi t ive t ransi t ion of c lock TCDR 395 NS

Data Bus Hold Tine THR 10 NS

EQ (fttt.rval Timer Interrupt) valid before
posit ive fransi t ion of c lock

TIC 200 NS

Loading = 30 pf + 1 TTL load for pAg-PA7, PB'-PB7

=130 pf + 1 TTL load for D0-D7

I.3-3

Tcyc

l*-"CLOCK INPUT

R/W

ADDRE SS

DATA BUS

PERIPHERAL
DATA

CLOCK INPUT

R/W

ADDR E SS

PE R IPHERAL
DATA

DATA BUS

PB7(TRO)

THw

Tocw
Tcpw

Tcuos

WHITE TIMING CHARACTERISTICS
Figure 2

Twcn
T

Tpcn

Tcon

BEAD TIMING CHARACTEBISTICS
Figure 3

t.3-4

Twcw

o.8v

Tncw

Vcc -30o/"

2.4V

o.4v

?.4 V

o.4 v

2.4V

o.4 v

2.4V

o.4v

2.4V

o.4v

2.4V

o.4 v

INTERFACE SIGIVAL O ESCRIPTION

During system ini t ia l izat ion a Logic "0" on the RES input wi l l cause

a zeroLng of al l four I IO registers. This in turn wi l l eause aLJ' I /O

buses to act as inputs Ehus protect ing external comPonents from possible damage

and erroneous data whi le the system i ; being conf igured under software control '

The Data Bus Buffers are puE int-o an OFF-STATE dtt t t tg Reset ' Interrupt

capabi l i ty is disabled with the REF signal. The RES signal must be held

low for at least one clock Period when reset is required'

Input Clock

The input clock is a system Phase Two clock which can be ei ther a

low level g. lgck (Vt l .0.4. Urr , > 2.4 ' , or h igh level c lock (VtL < 0 '2.

VrH = v"" l ' j) .

Read /Write (R /W)

The R/W signal is suppl ied by the nicroprocessor atray and is used to

control the transfer of data to and from the microProcessor atray and the

MCS6530. A high on Ehe R/I , I pin al1ows the processor to read (with proper

addressing) the data suppl ied by the MCS6530. A low on the n/W pin al lows

a wri te (with proper addressing) to the MCS6530.

Interrupt Request (lRO)

The IRQ pin is an interrupt pin from the interval t imer. This same pin'

i f not used as an interrupt, can be used as a per ipheral- I /O pin (PB7). When

used as an interrupE, the pin shouLd be set up as an i-nput by the data direct lon

register. The pin wi l l be normal ly high with a low indicat ing an interrupt f rom

the MCS6530. An external pul l -up device is not required; however, i f col leccor-OR'd

with other devices, the internal pul lup may be omit ted with a mask opt ion'

0ata Bus (D0-07)

The MCS6530 has eighr bi-direct ional data pins (D0-D7). These pins

connect to the systemt" a"ta l ines and al low transfer of data to and from

the microprocessor attay. The output buffers remain in the off state except

when a Read operat ion occurs.

P_egghelq!Data Ports

' t ' l r t r MCS6530 l ras I6 yr lns av{r l lablc for per lpheraL I /A operat lonc. [iacl t

p ln is lncl lv ldual ly e<.r f tware programmable to act as el lher an lnpur or 8n

ourpur. ' l 'he 16 plns are divlded lnto 2 B-bi t ports ' PAO-PA7 and PB0-P87.
pB5, PlJ6 and PB7 also have other uses which are dlecussed 1n later aect lone.

The pins are set up as an input by wri t ing a "0" lnto the corresponding bl t

of the data direct ion regi-ster. A rr l r t inEo Che data dlrect ion reglster w111

cause i ts corresponding Uit to be an output. Wtren in the input mode, the

Eeset (BES)

r.3-5

per ipheral output buffers are in the "1" state and a pul l -up device acts as
less Ehan one TTL load to the per ipheral data l ines. On a Read operat ion,
the microprocessor uni t reads the per ipheral p in. When the per i .pheral
device geLs informat ion f rom the MCS6530 i t receives data stored in the
data register. The mj-croprocessor wi l l read correct informat ion i f the
per ipheral l ines are greater than 2.0 vol ts for a "1" and less than 0.8
vol ts for a "0" as the per ipheral- p ins are al l TTL compat ib le. Pins PAO
and PBO are also capable of sourcing 3 na at 1.5v, thus making then capable
of Dar l ington dr ive.

Address Lines (A0- A9)

There are 10 address pins. In addi t ion to these 10, there is the
ROM SELECT pin. The above pins, A0-A9 and ROM SELECT, are always used as
addressing pins. There are 2 addic ional p ins which are mask prograrnmable
and can be used ei ther indiv idual ly or together as CHIP SELECTS. They are
pins PB5 and PB6. When used as per ipheraL data pins they cannor be used as
chip selects.

INTERNAI OBGANIZATION

A block diagram of the internal architecture is shorvn in Figure l.
The MCS6530 is divided into four basic sections, RAll, ROl"l, I/O and TII.{ER.
The RAI'I and ROM interface directly with the microprocessor through the
system data bus and address l ines. The I /O sect ion consists of 2 8-bi t
halves. Each half contains a Data Direct ion Register (DDR) and an I /0
Registe r .

HOM lK Byte (8K Bi ts)

The BK ROM is in a L024 x 8 conf igurat ion. Address l ines A0-A9, as
wel l as RSO are needed to address the ent ire ROM. With the addit lon of CSl
and CS2, seven MCS6530's may be addressed, gi-v ing 7168 x 8 bi ts of
cont iguous ROM.

RAM-64 Bytes (512 Bi ts)

A 64 x 8 stat ic RAM is contained on the MCS6530. I t is addressed
by A0-A5 (Byte Select) , RS0, A6, A7, A8, A9 and, depending on rhe number
of chips in the system, CSl and CS2.

Internal Peripheral Registers

There are four internal registers, thro data direct ion registers and
tvo per ipheral r /o data registers. The two data direct lon registers
(A side and B slde) conErol the dlrect ton of the data into and out of
t l te per lp l reral p lns. A r '1 ' r wr l t ten tnto the Data Di rect lon Regl ster sets
up the correspondlng per lpheral buf fer pln as arr output. Therefore, anythlng
then wri t ten l -nto the I /O Reglster wl11 appear on t t rat corresponding per lpheral

r.3-6

pin. A rr0rt wr i t . ten into the DDR inhibi ts the output buffer f rom trans-
rni t t ing data to or f rom the I /0 Register. For example, a "1" loaded into
data direct ion regi-ster A, posi t ion 3, sets up per ipheral p in PA3 as an
output. I f a "0" had been loaded, PA3 would be conf igured as an input
and remain in the high state. The two data I /O registers are used ro
latch data f rom the Data Bus dur ing a Wri te operat ion unEi l the per ipheral
device can read the data suppl ied by the microprocessor array.

Dur ing a read operat ion the microprocessor is noE reading the I /O
Registers but in fact is reading the per ipheral data pins. For the
per ipheral data pins which are programmed as outputs the rnicroprocessor
wi l l read the corresponding data bi ts of the I10 Register. The only way
the I /0 Register data can be changed is by a microprocessor Wri te operat ion.
The I /O Register is not af fected by a Read of the data on the per ipheral p ins.

!nlerygl ljrnet

The T i rnr : r r ;ccL. i on of the) fCS6 5 30 containn f h ree bas ic parts :
prel iminary div ide down register, programmable B-bi t register and
interrupt 1ogic. These are i l lustrated in Figure 4.

The interval t imer can be prograulrned to count up to 255 t ime interval s
Each t ime in lerval can be ei ther 1T, BT, 64T or LO24T increments, where T
i 's the system clock per iod. h 'hen a fu11 count is reached, an interrupt
f lag is set to a logic "1." Af ter the interrupt f lag is set the internal
c lock begins count ing dovm to a maxi-mum of -255T. Thus, af ter : t i te
interrupt f lag is set , a Read of the t imer wi l l te1l how long since the
f lag was set up to a maximum of 255T.

The 8 bi t system Data Bus is used to t ransfer data to and from the
Interval Timer. I - f . a count at 52 t ime intervals were to be counted, r-he

pattern 0 0 1 I C I 0 0 v iould be put on the Data Bus and wri t ten into Ehe
Interval Time register.

At Ehe same t ime that data is being wri t ten to the Interval Timer, Lhe

count ing intervals of 1, B, 64, 1-024T are decoded from address l ine: ; A0 an<. i

A1. Dur ing a Read or Wri te operaEion address l ine A3 conLrols the interrupt

capabi l i ty of PB7, i .e. , A" = 1 enables IRQ on PB7, A" = 0 dlsables IRQ on
PB7. When PB7 is to be usdd as an interrupt f lag wi td-Ehe interval t imer

i t should be programmed as an input. I f PB7 is enabled by 43 and an

interrupt occurs PB7 wi l l go 1ow. When the t imer is read pr ior to the

interrupt f lag being set, the number of t iure intervals remaining wi l . l be

read, i .e. , 51, -50, /+9, etc.

When the t imer has r :ounted down to 0 0 0 0 0 0 0 0 on the next count

t ime an interrupt wi l l <-rcr .cur and the <:ounter wi lL read I I I I I I I I

Af ter inEerrupt, thei t . imer registr : r decrements at a div ide by "1" ralc () f

the system clock. fJ: afcer interrupt, the Limer is read and a value t l f

1 I 1 0 0 I 0 0 is read, t t re t ime since interrupt is 28T. lhe value read
is in twots complemenc.

Valueread=11100100

Complement=00011011

ADD 1. = 0 0 0 I I r 0 0 = 28.

Thus, Lo arr ive at the total e lapsed t ime, merely do a twors complement add
to the or ig inal t ime wri t ten into the t imer. Again, assume t ime wri t ten as
0 0 1 I 0 1 0 0 (=52;. With a div ide by 8, total t ime to interrupt is
(52 x 8) + 1 = 4L7T. Total e lapsed t ime would be 416T + 28T = 444T, assum-
ing the value read af ter interrupt was I l i l 0 0 1 0 0.

After the interrupt, whenever the t i -ngr is wr l t ten or read the interrupt
is reset. However, the reading of the timer at the same tirne the interrupt
occurs wi l l not reset the interrupt f lag. When the interrupt f lag is read on
DB7 aLL other DB outputs (DBO thru DB6) go to t r0r ' .

Figure 5 i l lustrates an exarple of int 'errupE.

R/W A3 D7 D6 D5 D4 D3D2U DO R/W AI AO

IRQ

D6 D5 D4 D3 D2 DI DO

BASIC ELEMENTS 0F INTERVAt TIMER - Fisure 4

Jt'n-l'- L/-"t--J.'1

PROGRAMMAELE

REGI STER

DIVIDE

DOWN

02 tN

WRITE T

rRo

1.

2,

Figure 5

Data wri t ten inEo interval t imer

Data i .n Interval t imer is 0 0 0 I
52-213- l=52-26-7=25

8
Data in Interval timer is 0 0 0 0

52-4L5- l=52-51-1=0
8

Interrupt has occurred at 0Z puLse
Data in Interval t lmer = I 1 I 1 1

Data in Interval t imer is 1 0 I 0 1
twots comptement is 0 1 0 I 0

84+(SZx8)=5001s

= 84to

should be low so as to
fuEure Lnterr t rpts unt i l

ls0011

1001=

00 00=

0 I 0 0 = 5219

25to

oro3.

4.

5.

l l416
111

100
100

When reading the t imer af ter an interrupt, 43
disable the IRQ pin. This is done so as to avold
al ' ter another Wri te Eimr:r t lDer i r t l -on.

r.3-8

ADI}RESSING

Addressing of the MCS6530 of fers many var iat ions to the user for
greater f lexibi l i ty . The user may conf igure his system with RAM in lower
memory, ROM in higher memory, and I /O registers wi th interval t imers between
Ehe exEremes. There are 10 address l ines (A0-A9). In addi t ion, there is
the possibi l i ty of 3 addi t ional address l ines to be used as chip-selects
and to dist inguish between ROM, RAM, I /O and interval t imer. Two of the
addi t ional l ines are chip-selects I and 2 (CS1 and CS2). The chip-select
pins can also be PB5 and PB6. Whether Ehe pins are used as chip-selects or
per ipheral f /O pins is a mask opt ion and must be speci f ied when order ing
the part . Both pins act independent ly of each other in that e i ther or both
pi-ns may be designated as a chip-select . The third addi t ional address l ine
is RSO. The MCS6502 and MCS6530 in a 2-chlp systern would use RSO to dis-
t inguish between ROM and non*ROM seCtiurrn of uhe I ' {US6530. With Ehe
addressing pins avai lable, a total of .7K cont iguous ROM may be addressed
with no external decode. Below is an example of a l -chip and a 7-chip
MCS6530 Addressing Sc-heine.

0ne-Chip Addressing

Figure 6 i l lusLrates a l -chip system decode for the MCS6530.

s're!-c$p-.1Al!!1esr!s

In the 7-chip system the object i .ve would be to have 7K of cont iguous
ROM, with RAI'I in low order memory. The 7K of ROM could be placed between
addresses 651535 and IA24. For Ehis case, assume A13, A14 and A15 are al l
1 when addressing ROM, and 0 when addressing RAM or I/0. This would place
the 7K ROM between Addresses 65,535 and 58,367. The 2 pins designated
as chip-select ot I /O would be rnasked programmed as chip-select p ins.
Pin RSO would be connected to address l ine A10. Pins CSl and CS2 would
be connected to address l ines Al1 and A12 respect ively. See Figure 7.

The two examples shown would allow addressing of the ROM and MI"I;
however, once the I /O or t imer has been addressed, further decoding is
necessary to select which of the I /O registers are desired, as wel l as
the coding of the interval t imer.

l/0 Register - Timer Addressing

Figure B i l lustrates the address decoding for the lnternal
elements and t imer programming. Addrese l lnes A2 dlat lngulshes L/O
registers f rom the t inter. l ,Jhen A2 is high and I /O t lmer select is h lgh, the
l /o registers are addressed. Once the I /O reglsters are addressed, address
l ines A1 and A0 decode the desired register.

When the t imer is selected A1 and A0 decode the div ide by macr ix.
This decoding is def ined in Figure 8. In addi t ion, Address 43 is
used to enable the interrupt f lag Eo PB7.

r
I
I
I

I /O TIMER SEL.

INT. TIMER SEL.

A3
INTERVAL

AI
TIMER

A9

r/o sEL.
Al uo
A9

RAM SEL.

A5

44

A'3 RAM

A2

AI

A9

I
I
I
I
I
I
I
I
I
t

ROM SEL.

A9

A8

A7

A6
A6

A5

A4

A3

A2

AI

A9

A. X indicates mask programming
i.e. ROM select = eSloRSO

RAM select = gSloRSObA9.A7.A6

I/O TIMER SELECT = ffi.p5g.A9.A8.A7.A6
B. Noticc that A8 is a d<,rn't care for

RAM select

C. CS2 can be used as pB5 in this example.

MCS6530 0ne Chip Addres Encoding Diagram
Figure 6

r .3_10

The addressing of the ROM select , RAM select and I /O Timer select l ines

would be as fo l lows:

MCS6530 /11, ROM SELECT

RAM SELECT

I/O TIMER

ROM SELECT

RA,M SELECT

I/O TII 'f iR

ROM SELECT

RAI'{ SELECT

I/O TImR

ROM SELECT

RAI.{ SELECT

I/O TIMER

ROM SELECT

RAI.{ SELECT

I/O TIMER

ROM SELECT

RAM SELECT

I/O TIMER

ROM SELECT

RAM SELECT

I/O TIMER

v1cs6530 ll2,

MCS6s30 / i 3,

MCS6s30 / t4,

MCS6530 /15,

MCS6530 /16,

MCS6530 / /7,

* RAM select for MCS6530 l t5 would

cs2 csl Rso
A72 A11 A10 A9

00lx

0000

0001

010x

0000

0001

01lx

0000

0001

100x

0000

0001

10lx

0000

0001

110x

0000

0001

111X

0000

0001

A8 A7

XX

00

00

XX

00

00

XX

01

01

XX

01

01

XX

10

10

XX

10

10

XX

T1

11

A6

]1'

0

0

x

1

I

X

0

0

X

1

I

X

0

0

X

1

1

X

0

0

read = A12.A11.A10.eg.ee . N. A6

MCS6530 Seven Ghip Addressing Scheme
Figure 7

I.3"1 I

ADDRESSING OECODE

ROM SELECT RAM SELECT I /O TIMER SELECT

READ ROM

WRITE RAM

READ RAM

WRITE ODRA

READ DDRA

WRITE DDRB

READ DDRB

WRITE PER. REG. A

REAO PER. REG. A

WRITE PER. REG. B

READ PER. REG. B

WRITE TIMER
+lr
+87
+ 647
+ to24T

READ TIMER
READ INTERRUPT FLAG

I

o
o
o
o
o
o
o
o
o
o

o
I

I

o
o
o
o
o
o
o
o

o
o
o

AO

X

x
X

I

I

I

I

o
o
o
o

o
I
o

A3 A2 AI

xxx
XXX

XXX

xoo
xoo
xol
xot
xoo
xoo
xol
xol

)(to
t (lo
*r l
xrr

w
I

o
I

o
I

o
I

o
I

o
I

o
o
o
o

o
o
o
o

o
o
o
o

o
o

X

X

o
o

x
x

o
I

* As = | Enobles IRQ to PB7
A3 = O Disobles IRQ to PB7

I
.6OOmox.

(15.24mm)

-T-

2.O2O mox.
(51.30 mm)

Pin No. I i r in lowcr lcf l corncr wtcn
symbol lzot ion is in normol or lcnfot ion

PACKAGE OUTLINE

,l 55 mox.
(3 93mm)

Vss
PAO

o2

RSO

A9

A8

A7

A6

l /w
A5
A4

A3
A2

AI

AO
FEs

IRQ/PS7

cst/ PB6

cs2l PB5

Vcc

. l90 mox.
(4.82mm)

PAI

PA2

PA3

PA4

PA5

PA6

PA7

DBO

D8l

o8'2

D83

DB4

DB5

DB6

DB7

PBO

PBI

P8?

PB3

PB4

.3lOmor.
(7.87mm)

(r .65) .o65
i l .or) .o40
(.551 ,O22
(.45).Or8

. lOOmln.
(2.54mm)

.OlO min.
(.25mm)

Addrcrsing Occode tor | /O RcAister ond Timcr
FIGURE 8

lOomor.

\

tffi";J
I l trcL rt sss
td- t

40

39

38

37

36

35
M
c34
s
633
6

5 32
o 3l

30

t2 29

f328

t4 27

f326

f625

t7 24

f823

19 ?2

20 2l

t.3-12

PIN DESIGNATION

flmw
ro l TCcl . tHoloov. txc.
vAtrty fonc€ C0Rp0RATI CEtrrfs {?r5} 666 1950
050 RrrTtiH0ust RoA0. i l0RBtsToryt. pA t9401

PROOUCT

Ail i lOUNCEMENT

BULLETIN

SEPTEMEER , 1976

MCS6532 RAM/IO/INTERVAL TIMER CI.IIP

The MCS6532 is designed to operate in conjuncEion with the MCS650X Microprocessor Family. l t is
comprised of a 128 x 8 scat ic RA.f , l , rwo soft .ware controLLed 8 bi t b i -d i rect ional data ports
al lowing direct interfacing beEween the mi(: roprocessor uni t and per ipheral devices, a sofcware
prograrnmable incerval t imer wi th interrupt, capable of c iming in var ious j .ntervals f rom I co 262,
144 clock per iods, and a programable edge deteci : c i rcui t .

* 8 bi t b i -d i reccional Daca Bus for di rect corurunicaEion with the microprocessor

* Edge Sense Interrupt (Pcrsi . t ive or l . {egat ive Edge: Programmable)

* I28 x I sEat ic Ram

* Two 8 bi t b i -d i rect ional daca porrs for incerface to per lPherals

* Two programmable I /0 Per ipheral Data Direct ior Regisrers

* Programmable lnterval ' I im(.r

* ProgrammabLe lnterval Timer ln lerrupt

* TTL & CMOS compat ib le per ipheral l ines

t Per ipheral p ins wi th Direct Transisror Dr ive Capabi l lEy

* HiSh lmpedance Three-StaLe Data Pins

I

MCS6532 INTERFACE DIAGRAM

TO
PROCESSOR

TO
PIRI PTIERAL

DEVICES

I
IRAM

I
I

2
3
4
5
6
7
8
9
10
1i
t2

14
l5
l(;
t7
t8
i9
zt)

4U

39
.38
37
36
55

s3
32
3t
30
:v

28
27
26
l5
24

22
?l

Vss
A5
A4
A3
A2
AI
AO

PAO
PAI
PA2
PA3
PA4
PA5
PA6
PA7
P87
PB(r
PB5
PI}4
vcc

/ \o

62
CSl
LJZ

F5
R/iv
l (l ;)

DBO
DBl
DB2
I)11.5
UIJ4
Dl l5
t) l]6
DltT
na
PBO
Pr] I
Pt]2
PB3

MCS6522 VERSATILE INTERFACE ADAPTER

Thc ttl0S Tcchnology, Inc. lfCS6522 is a second-g€neration pcriphcral adapter dcsigned to
bring increased capability to the nicrocouputer systen designer for the solution of pcripheral
control and systen tining problens. It conbines thc gencral purposc pcripheral ports, hand-
shaking, intc"rupt handling, etc. of the !1CS6520 rlth a pair of very flexiblc interval tiaers
and a scrial-out/scrial- in shift rcgister. In addit ion, thc chip is organized to sirpl i fy the
software involvcd in controlling the nany functions provided by thi.s deyicc.

Sorne of the iuportant fcatures of the MCS6522 axe as follows:

r Coupat ible ui th the MCS650X and MCS6SlX family of nicroprocessors.

r Eight-bi t bi-di tcct ional data bus for cormunicat ion with the nicroprocessor.

r Tno eight-bi t bi-direct ional ports for interface to peripheral devi .ces.

' Data Direction Registers allou each peripheral pin to act as eithcr an input or an
output.

r Interrupt Flag Register allors the microprocessor to deternine the source of an
intcrrupt vcry conveniently.

r Interrupt Enable Register allows very convenient control of interrupts within the
chip.

r Handshake control logic for input and output peripheral data transfer operntlons.

r Cl lOS-compatible rrArr and "8" peripheral ports.

r Data latching on pcr ipheral ports.

r Two ful ly-programable interval t imers.

r Eight-bi t Shif t Register for ser ial interface.

' Forty-pin plast ic or ceramic DIP package.

t.4-2

Arfdvu0otlsts ulrndilocou3ru,

r iloNltddu

BUGBOOK rI I book $15.00
by Rony, Larsen, & Ti tus
published by X. & L. Instruments

A complete inLroduction to operation, prograrlming and
interfacing of an 8080 based microcomputer" TexL is keyed to
the use of the E. & L. IvlD-I microcomputer, but is a very
useful reference for al l seeking hardware information about
8080 based systems.

BUGBOOK V and BUGBOOK VI books
by Rony, Larsen, and Ti tus
published by E. & L. Instruments

A complete and novel treatment of microprocessors and
digi ta l c i rcui t ry. 8080 or iented but contains much useful
mater ia l on j -nterfacing microcomputers to external devices.

CMOS COOKBOOK book $9.95
by Don Lancaster

Howard W. Sams
I977

HOW TO BUY AND USE MINICOMPUTERS & IvIICROCOMPUTERS book $9.95
by Wil l iam Barden, Jr .
Howard W. Sams
I97 6
pp. 240

INTEL EOBO ASSEMBLY LANGUAGE PROGRAMMING MANUAL Manuf. Data S5.OO
7975
pp. 75
obtain from--fnteI Corp.

3065 Bowers Avenue
Santa C1ara, Ca. 95051

or
Local Intel Representative or Distr ibutor

rNTEL 8O8O I\4ICROCO},IPUTER SYSTEMS USER'S }IANUAL Manuf . Manual $5.00
obtain f rom--Intel Corp.

or
Local Intel Representative or Distr ibutor

AN INTRODUCTION TO IUICROCOMPUTERS: books $7.50 each
by Adam Osborne

*Volume I - Basic Concepts #20AL
Volume II - Some Real Products #3001
8080 Programming for Logic Design #400f
6800 Programming for Logic Design #5001 i

Osborne & Associates, fnc.
P.O. Box 2036
Berkeley, CA 94702

J-1

MICROCOMPUTER APPLICATI0NS HANDBOOK handbook
by David J. Guzeman

Iasis Inc.
815 W. Maude Avenue
Sunnyvale, CA 94085

A complete deseript ion of hardware and software for
Iaslsts s ingle borad microcomputer.

MICR0C0MPUTER DESIGI, I book $25.00
by Donald P, Mart in
7976
pp. 400

Mart in Research
3336 Comnerci .al Avenue

' Northbrook, IL 60062

A conprehensive treatment of hardware and software for
snal l - microcomputer systems uslng the 8008 and 8080 micro-
processors, This ls the only book givlng detai led i .nfor-
matlon on the 8008.

MiCR0C0MPUTER AND MICR0PROCESS0R book
by Hilburn and Julick
Copyr lght 1976 by Prent ice Ha11, Inc.
pp. 375

Ttre book ls intended for al l persons involved in the
deslgn, use, or mainLenance of d ig l ta l systerns using micro-
computers. The book is wri t ten at a leve1 r,rhich can be
understood by persons with 11tt le prevlous exper ience.

Topics include: digi ta l 1ogic, nurnber systems and codes,
mi crocomputer archi tecture, software, interfacing and peripheral
devlces, microcomputer systems [4040, 8080, 8008, 5800, IMP-4, PPS4, COSMAC,'
PPS-8, PACEI design methodology and appl icat ions.

MICROPROCESSORS & MICROCOMPUTERS
by Branko Soucek
Wiley-Intersc j .ence

1976
pp. 607

book $23.00

A general lntroducclon to digl tal systems and mlcroconputers
nl th detal led descr ipElons of popular 4,8112 and 16 bi t rn icro-
processorg lncludlng rhe 6800, 8080, and LSI-11.

J-2

'MICR0PR0CESSORS: NI} 'J DIRECTI0NS FOR DESIGNERS col lected art ic les

Edited by Edward A. Torrero $8.95
L97 5
PP. 135

seleeted art lc les reprinted frou @ Design Magazine.

SCELBI S0FTI, IARE MANUALS book $1e.e5
Machine Language Prograrnmiag for the 8008
Scelbi Co4uter Consult ing Ine.
7322 Rear Bostcn Post Rd.
l t i l ford, CT 05460
pP. 170

Intro. to assernbly language Programlng. Includes discussion

of biuary and fl"oating point arlthmetlc.

SCELBi S0FTI,IARE MANIjALS B0B0 books
8080 Monitor Rout ines $f1.95 ppd
An 8080 Assembler Program $f7.95 ppd
An 8080 Editor Prograur $14.95 PPd
Scelbi Couputer Consult ing Inc. al l three for $39.50 ppC

well docuBented software packages with program listings

in octal (paper tapes abai lable). uses non-standard memonic

codes

SCELBI 'S '8080' SOFTWARE GOURMET GUIDE AND COOKBOOK book $9.95

Machine Language Programing for the 8080
pP. 170

SceLbi ComPuter Consult ing Ine.

Introduetlon to assernbly language prograrnnring for the 8080.

Includes several routlnes which can be used for number conversion

f loat lng point ar i thnet lc and I /OProcessing.

sc/MP MICRoPR0CESS0R APPLICATI0NS HANDBooK - I4ANUFACTURER DATA B00K
pubJ-ished by National Serniconductor Corp.

2900 Seulconductor Drive
Santa C1ara, CA. 95051

available from loca1 National Sernicooductor TechnicaL representative

Hardwane and softward applicatlons of the SC/l@'

SCELBI 'S '6800' SOFTWARE GOURMET GUrDE AND COOKBOOK book $9.95
I4achine Language Programming for the 6800

Scelbi Computer Consult ing Inc.

J._3

SOFi lARD DESiGN FOR MICROPR0CESS0R5 book $12'es
by John G. Wester and Wi11lam D. Simpson
copyright 197.6 by Texas Instrument Inc.

PP. 372
order from: Texas Instruments

P.O. Box 3640, M/S-84
Dal1as, TX 75285

Book was wri i ten to assist Eechnical and non-technieal people

in taking their f i rst steps toward designing with mircroprocessors

and related software. Topics range from basic binary numbers Eo

eomplex examples of microcgmputer applications. Book was written

prinar i ly for those with l i t t l -e or no prograrnrning experience but

it conEains excellent application exampl-es which should be of

interest even to seasoned Programmers.

TTL C00KB00K
reference book $8.95

by Don Lancaster
r97 4
pp. 335

publ ished by Howard W. Sams & Co. r Inc.

TV TYPEbJRITER C00KB00K reference book s8'9s

by Don Lancaster
L976
publlshed by Howard W. Saurs & Conrpanyr Inc.

k'f,o* '*-*"gr*-'a * ?'4'+{"l''+ *r*"'""pe' *e"#'*vs"

r l '1
0n\}*
v

- . (
|

w

,i r '* '0"*'
l ' r iv

f*'r"f:"{"L'

{t-

',t
' tll
r tfl,

dr"i|"'r.r

11 ' j

l/, . ' L,{J
l iv l t
a:

I
r l-.

f 1.ru
' .4'

J-L

t

B. PERIODICALS

AMERICAN LABORATORY

BYTE
publ lshed monthly by.- Byte Publ lcat lons, fnc.

70 Maln Street

$12.00 per year Peterborough, N'H' 03458

COMPUTER DESIGN
published eonthly by - Conputer Deslgn Publishing Conpany

clrculatton address - Compueer Deslgn
Circulatlon Department
P.O. Box A

free to quallfied persons - others g20 per l^Ilnchester, llA 01890

year

CONTROL ENGINEERING
publlshed nonthly by - Control Englneering

free to qualifled p.."ori"tb"eriptlon
address ' 666 Fifth Avenue

New York, NY 10019

Contains useful artlcles on appllcatlons of nlcrocomputers to
lndustr ial control

DIGITAL DESIGN
publi.shed nonthly by - Benwlll Publlshing Corp.

Clrculatl .on Dlrector
DIGITAL DESIGN
167 Corey Road
Brookllne, l,tA 02146

lfree to quall f ied persons, $25.00 Eo others, request quall f lcatlon card
on company letterhead]

Dr. Dobbs Journal of COMPUTER CALISTHENICS & ORTH0D0NTIA
publlshed ten (10) tlnes per year bY -p"opres computer company

Box E

$L2.oo per year
Menlo Park ' cA 94025

Devoted to publlcatlon of nicrocornputer oriented software such as
TIIIY BASIC.

J-5

ELECTRONIC DESIGN
publ j .shed biweekly by - Hayden publ ishlng Company, Inc.

50 Essex Street,
Rochel le Park, NJ 07662

Ifree i f qual i f ied, othensise, $30.00 per year]

ELECTRONIC DESIGN NEI,IS
publ ished nonthly by - Cahners Publ ishing Company

[free to qual i f ied persons; very hard to get]

ELECTRONIC ENGINEERING TII4ES
publ ished biweekly by - CMP Publ icat ions

suscript ion address - Electronic Englneeri .ng Tirnes
free' to qual i f led persons 280 community Dr ive

Great Neck, I IY 11021

[useful for news and announcements of new mlcroprocessor products.
Has bingo card for new product ads]

ELECTRON IC5
published biweekly by - McGraw-ltil l, Inc.

suscr ipr ion address - ELECTR0NICS
McGraw-Hi11 BuiLiing
L22L Avenue of the Americas

$12.00 per year to qual i f led persons New York, l fY 10020

INTERFACE
publ ished Eonthly by - southern cal- l . foruia computer society

I f ree wl th $10.00 menbership ln SCCS]

INTERFACE AGE Inew magazine by publ isher of or igina't INTERFACE]
publ ished nonthly by - McPheters, Wolfe & Jones

6515 Sunset B1vd.
Suite 202

$10.00 per year Hol lywood, CA 90028

INSTRUMENTS & CONTROL SYSTEMS
publ ished monthly by - Chi l ion Company

suscr ipcion address - Chi lcon Company
Chl l ton Way
P.O. Box 2025
Radnor, PA 19089
AEcenEion: Clrculat ion Dept,

I f ree to qual i f ied persons, others g25.00 per year]

J-6

str'|uil 01sn AlNom}{oc J0 Auvssolg

x xtoNsddv

GIISSARY OF COMMONI,Y USED I,ECNOPROCESSOR TER,}4S

ABSOLUTE ADDRESSI}Xi - SEE DIREC? ADDRESSING

aBSOLirtE rNDExm TDDRLSSTNG - the effective address is formed
adding the index regi.ster (x or T) to the second and third
of the instruction.

Acctil'ltILATOR - A register that holds one of the operands and the
result of aritbnetic and logic operations that are perforned
by the central processing unit. Also cor'uronly used to hold
data tna.nsfemed to or fron I/O devi.ces.

AccuMUr.lftOn .rDDRESsrNc - ore byte instructioa operating on the
acsuuulator.

ACIA - fs an Asynchronous Corumrnications Interface Adapter. This
is an NMOS I,SI device produced by Motorola for interfa.ciag
Seria-l. ISCII cievices to a micro*processor systen.

ADDRESS - A nunber that designates a memory or T/o rocatj-on.

ADDRESS BUS - A multiple-bit output Bus for transmittir€ an ad.dress
from the CPU to the rest of the system.

AIS0RfT$'I - The sequerEe of operatj.ons which defines the solutj.on
to a problem.

ALFHANID{xnrc - Pertainjng to a character set that contains both
letters a:rd numerals and usually other characters.

AIU (AnIfiS'IETIc/I.r,cTG I'IIIT) - The unit of a computing system that
perfcnms arittrmetic and logic operations.

A^SCII CODE - the America-n Standard Code for Infornati.on Interchange.
.a seven-bi.t character code without the parity bit, or an eight-
bit character code with the parity bit.

.0.ssn'IBLER - a program tha.t traaslates symbolic operation codes into
machine languager syurbolic addresses to memory addresses and
assigns values to all progran symbols. rt translates source
prograns to objeet prograns.

.[9SF.I4BLY DIRECffgE - A nnenonic that nodifles the assenbler operation
but does not produce an object code (e.g,1 a pseudo instruction).

A.ssn'lBLr tAl[cuAGE - A corlection of symbolic IabeIs, mnemonics, and
data which are to be translated into binary machlne codes by the
assembl-er.

by
byte

K-1

&SI-NCi{R0N0US - Not occurring at the sane time, or not exhibiting
a constant repetltion rat'e; irregular.

BesE _ 'rsEE R.S,DIX!r.

BCD - Binary Code Decj.nal-. A means by wirich decjma.L nunbers are
represented as binary values, where j-:rtegers i-:r the raage 0-!
are represented by the four-bit binary codes from 0@0-1001,

BIDIRECTIONAL DATA BUS - A data bus in which digital information can
be transferred in either direction

BIN.C.Hf - The base two nunber systems. All nunbers are eryressed as
polrers of two. ls a consequeneer only two symbols (0 & 1) are
requ,ired to represent any nunber.

BIT - the smallest unit of jrtformation which can be represented.
A bit may be in one of tro states, represented by the binary
digits 0 and 1,

BIOCK DIAOR.AI,I - A diagrarn in rhlch the essential units of any
systen are drawn in the forn of blocks, and thejr relationship
to each other is indicated by appropriately connected lines.

BR.II'ICH INSTRUCTION - i" lnstructi.on that causes a program Jump to a
specified address and execution of the instruction at that address.
During the executicar of the br.neb instruction, the central proces-
sor replaces itre contents of the progran counter with the specified
address.

BREAKP0INT - Pertaining to a type of instruction, i.nstruction digit,
or other condition used to intenupt or stop a computer at a
particular place i-u a prugram. A place in a program where such
an iaterrupticn occurs or can be made to oecur.

BUFTER - .[noniaverting digital circuj.t elenent that uray be used to
hanile a large fan-out or to invert i-nput and output levels.

A storage derj.ce used to corpensate for a difference irr rate
of flow of data, qr time of occurrence of events, when transraitting
data from one devi.ce to another.

BITE - .{ seqrrence of eight adJacent binary diglts operates upon as a
unit.

Clr.L - A special type of junp il which the central processor is
logical.ly requJred to rrremembern the contents of the progran
counter at the time that the junp occurs. ltris "]lous the
processor later to res@e execution of. the main program, when
it is flnished rlth the last instruction of the subroutlne.

K-2

: i

l

--/

, .,'-'1

CASC.A'TE - An arra.ngement of two or more similar circuits in uhi-ch
the cutput of one circuit provides the input of ihe next.

CLOCK - A device ctr a part of a device that generates all the timing
pulses for the coorciination of a digital system. System clocks
usually generate i:wo or more clock phases. Each phase is a sep-
arate square wave pulse train output.

CODI}IG - ?he prccess of pnepari;rg a prograln from the flow ehart
defining an algorithm.

COIIPILER - A language translator wh.ich converts individual- source
statements into multipie machine instructions. A compiler
translates the entire progialn before it is executed,

CCMPLII{EbIT - Re'rerse aIL binary bii values (ones become zerosr zeros
become ones).

CONDITIONAI - In a. conrputer, subject to tire result of a comparison
made during computation'

coNDITIOltAt BREAKPOINT L{STBUCTION - A conditional jump instructj.on
tha'r, c4tlses a computer to stop if a specified switch is sef,
The routine then mqy be allswed to proceed as coded, or a jump
may be forced.

C0IIDfTIONAI JUI,IP - AIso caLled conditional transfer of control. An
instruction to a computer which will cause the prsper one of
two (or more) addresses to be used ir.r obtaining the next instruc-
ticn, depending on some property of one or more nunerical exFres-
sions or other conditions.

CONTAC? tsOmfcE - The unconirolled ma.king and breakirg of a. contact
when the switch or relay contacts are closed. An important
probl-em i:r digi'tal cjrsuits, where bounces can aet as clock pulses.

CPU (3E[,ITRAI, pR0CE$SING UNIT) - The r:nit of a. cornputing system that
csrtrols the interpretation and executicn of j:rstructions; lncldes
the AJ,U.

DATA BUS - A multi-li,ner para1le1 path over which digital daLa is
transferred, fron any of several destinations. 0n1y one transfer
of infcrmation can take place at any one tine.. While such brans-
.fer is taking p1ace, aIL other sources that are tied to the bus
rmrst be disabled.

DEBUO - Detect, lccate, end correct problens

DEBOUNCED - Refers to a switeh or relay that
tact bor:nce.

a program or hardnare.

longer exhibits con-

K-3

tn

DECODER/DRffER - A code eonversion device that can also has sufficient
voltage or current output to drive an external device such as a
di.splay or a lamp monltor

DE4IILTIPLE$R - A digital device that directs infornation from a s5.ng1e
i.aput to one of several outputs. Information for output-channel
selection us-ually is pesented to the device in binary weigh,ted
forn a.nd is decoded internally. lhe deyice also acts as

"
single-

pole rnrltipositi.on sodtcb that passes digital i-nfca"raation in a
di.rection opposite to tbat of a rnultiplexer.

DESIINATION - Register, memory location or I/A devlse shich can be
used to recei.ve dat,a during instruciion execution"

DEVICE SE[,EC? PUI,SE - A softr+are-generated positlve or negative
clock pulse frora a ccmputer ihat is used to strobe the operation
of one or nore I/0 devices, includirg i-ndividual integrated
circuit chips.

DInEgI ADDRESSISrc - The second and third
byte of the instruction contain the address of operand to be
used.

DD,fA (DI&ECT MW0RI ACCESS) - Suspension of processcrr operatioa to
a'l'low peripheral units exberaal to the CPU to exercise control
of nencry for botlt RE.AD and l,RIlE rithout altering the lnterna1
state of the processor.

DINAMIC 8.Al'{ - .d random access nemory that uses a capaciti're element
for storing a data bit. They reqrira REISBSH.

EECDIC - The Extendeo Binary Coded Decirnal Interclusrge Cocie, a
di€itaJ- code prinari.ly used by Sli[. It c]osely resenbles t]re
half-.A,SCII code.

mGE - The transition fror logic 0 to logic 1, or from logic 1
to logic 0, in a cLock pulse.

EDIIOR - A program used foc preparing and modifying a sourc€
progran or other fiJe by additlon, deletion or change.

EflFECTM iDDRESS The actual address of ihe desired location Ln
memory, usually derived by smre forn of calculation.

ilP.tl{SION - The process of inseriing a sequence of operations
representea bI a macro nane when the macro nagre is refereneed
in a trrrogran.

FALL TIME - The tirne requi.red for an output voltage of a digital
clrcult to change from a loglc I to a logic 0 state'

K*ll

FAII-OU? - The nunber of para]le1 loads uifhin a given logic f anily
that caa be drlven fron one output mode of a logic cjrcuit.

FETCH - One of tim twc functional parts of an instruction cycIe.
fhe collectj.ve actions of acquiring a mencry a<idress, and then
an instnuctisn cr data byte from nemory.

FTT:T.D - An area of an instruction mnenonic.

FTr.n A collection of data reeords treated as a single u-nit.

ruFO (I'IRST IN, F'IRSI 0UT) - ?he terrn applies to the sequence of
enteriag data into and retri.eviag dat,a from data storage"
The flrst data entered is the first data obtaiaable wi.th FIFO.

FT,AG - A status bit which indicates that a certaln condition has
arisen during the cource af aritlmetic or logical marriprrlations
or data transmission between a pair of digi.tal. electronj.c
devices" $ome flags uray be tested and thus be used for deter-
mfnlr€ subsequeat, actlons"

ELlo RffiISTER - A reglster consisting of the flag flip-flops.

ELOW CHIRf - A symbolie representation of tbe algorithn required to
solve a problear"

FRQUENCY - fhe rnrnber of recumences of a perlod,ic phenornenon in
a unii of tirne. Electrical frequency is specified as so neny
cycles per second, 3r llertz.

FUIL DUPLEX - A <iata transnission mode which provides simultaneous
and independent transm:i,ssion and reception.

HALF-.ASCfi - A 6l+-character A,SCII code that contalnsttre code rords
for nusleric d5gits, alphabetie characters, and symbols but not
keyboard operatlons"

HAIF DUPLE{ - 4 data tnansnnlsslon mode which provides both trans-
mlsslon and reception but not simultaneously.

zuNDSHAKE - Interactive conmr:nicatlon betrreen two system conponents,
such as betseen the CPU and a peripheral; often required to prevent
loss of data.

HeRDI'tlRE - Physical equS.pment nechanical, eleetrlcal., or electronic
devices

HH$DECII,IAI - A nunber system based upon the radlx-16, ln whlch the
declmal nunbers 0 ttnough 9 and the letters A through F represent
the slxteen distlnct states ln the code.

K-5

HIGH .ADDRESS BYTE - ?he eight most si.gn-ificant bits in ttre 15-bit
memory address wtrd. *bbreviated H or E.

Ic (wrmaetnn elRcuII) * (f) A conrbination of i:rterconaected
circui.t elements inseparably associated on or rj.t&1n a con-
tjrmous substrate. (a) ^Any electronic derrice in which botb
active and passi.ve elements ae contained in a single package.
In di€i.ta: el"e*tronies, tire term ehiefly applies io circuits
c ontaisliag senriconductor eleraents.

IMMEDIJITE ADDaESSE'I* - lbe operand is the second byte of Lbe
instruction, rather tha:i its address.

IMPilm .ADDRESSI]&3 - A one-byte instruction that stipulates an
operation i:rternal t,o the processor. DOES NOT require ary
addltlonal" operand"

INCRET{E$IT - ?o inerease the value of a binary word" Typically,
to iacrease the vaiue by 1,

INDE@ ATDRESS - SJa ind*xed address is a m,enory address forned
by adding lmnediaie daia j.ncluded rith the i-nstruction to the
contents of sorqe register or menory location.

Il$DF:lm) $IDIP,$CT ADDRE*9G{G - The secq:d byte of the inst'ru.ction
is added to the e ontents of the rtXrt ind€x register, d.lscardfulg
the earryu tc forrn a aero-Fa€e effectlve address"

INDIRECT AESAIU"IE AIDRESSISIS - ?he secsrd a::d third bytes of the
insirucii"*n con?,ei:l the address for the first of ilro bytes ln
nemor-v tha,t, s*ntsin ihe effective address *

IllDIRneT mFElmD IDDRF"SSfiffi - fhe second byt,e of tluis insiructlon
is a aero-pege adfu*ss. fhe eontents of this a*ro*pege address
are added to the ilYil ind.ex reglster to fcrn the lcr*er I Uits
of the effective acidress. Then the caruy (:f any) is added
to the conteats of the nexi aero-page address to form the
h"lgher I bits of ile effective address"

INDIRECT ADDRE$S - An ad.dress used. rnith an instructlon that indlcates
a nanory locatim or a register that ln turn conta:i.ns the actual
address of an operand" ?he i.ndirect address may be lncluded with
the j-nstruction, contalned ln a register (regl.ster indirect
address) or conta-3::ed ist a memqry locatlon (menory directed
iadj-z'*ct address)

IIITERfAC:IiG - The jot"nSng nf members of a group {suci: ae people,
instn*neats n eac ") ::l su.cb a ray that they are able ta
fuaction 1n a r:ompat*ble and coordlaated fEnh{ oR,

*-o

INSTRU0TI0$ * A statement t'hat specifies an operation
or locaii"ons of its operaoreis.

INSTRUCTIOH CCSS * A rxri.que binary nus&er that encodes
tha.i a comp:,ter can grerform"

and the values

an operation

INSTRUC?IO}I CYCLE - A s::ccessive groep of mach:ine cyclese as few
as on€ or as many as sesen, whlch together perforn a single
miers_socess<>:r j.nstruetion lrithjn ilie rnicroprcces$tr chip.

n'lSTAUCfI0l{ FECSDER - A de*oder withi-n a 6?U that deeodes the
lnstrucilorr code rnta a series of actions ihat ihe conputer
performs*

INSTBUffiIG$ f-{SGi$mR - The resister that contaLms the instruction
code.

INTERPRETffi * A language translaior whj.ch converts indieidua1 source
statements ilto mul"tiple machj$e instruetions by translating and
executlag each staieraent as it is encountered. Can not be used
to generate ohje*t code.

INISERUPT - In a compr:.ter, a break in the normal fl"on of a system
or routine such that the flow ca.n be resusred frqrr that polnt
at a]ater tj"me" ?he soulce of the lnternupt nay 1:e-.internal
cnr external"

I/0 DEVICE - input/output, devi,ce - any *igii.ta-l device, 1-neludiag
a si.lrgle i-ntegrated. circuit chip, ihat transnits data on strobe
prlses i.s 8, *€npuhe:: ar receises ciata or sirabe puSses from a
e cEnpui*r -

JUMP - (1) To cause the next instructioa to be seleesed from a
specified storage location in a computer " (2) A ciev-iation
fron the acrmal $equence of execution of instructions ia a
coraputer

L{FEL - One or more characters that, serve ta define an i.tem of
data or the location of an instructlon or subroutine. A
character is cne symbol of a set of elementary symbols, such
as those corresponding to typewriter keys

I,ATCH - & simple logic st,orage element. A feedback loop used ln
a q'nmnetrical d.igital e!'cu-it, such as a flip*fJ-op, to retai.n
^ ^+^+^4 DU(LUq.

LnaDING mGE - the transi"tion of a oulse ihat oecurs first.

K-7

t@ (LIGIIT-S{ITTEG DIoDE) - A pn junction that ernits light when
biased in the forward direction.

LEVEL-IRIGCERED - The state of the clock inputr bebg either logi.c
O or logie I carries out a transfer of i.nformation or completes
an action.

tffo (UtsT S, FInST oUT) - The latest data entered is the first
data obiainable frcrn a LIFO stach or nemory section.

I.SB (IJ.LST SIGNITIC.ANT BIT) - Tlre digit with the lowest weight,ing
1u a binary nnber.

TISTING - An assenbler output containlng a listing of prograrn
mnemoa-ics, the nachine code produced, and diagnostics, i.f an;r.

ItrfC - (1) The science deal.ing wlth the basic princlples and
applications of truth tables, orltchingl gatlng, etc. (2) See
Icglcal Deslgn. (3) 41so called symbolic logic. A nathenatical
approach to the soluti-on of complex situations by the use of
spnbols to defile basic concepts. The three basic logic syrnbols
are AND, oR, and [gt. l{hen u,sed in Boolean algebrap these synbols
are somewhat analogous to addition.and nultiplication, (L) fn
conrputers and fufornation-processing networks, the systematic
nethod ttrat governs the operati.ons perforned on lnformatlon,
usually with each step influencing the one that follows. (5)
The systenatlc plan that, defines the iateractions of slgnals
in the design of a system fe automatic data processlng.

tGICeI, DECISIOII - The ability of a computer to make a cholce
between tro alternatives; basically, the ability to ansner
yes or no to certain fundanental questions concerrring equality
and relative magnitude.

LOGIC.0L DESEIV ,- fhe syntheslzing of a network of logical elements
to perforrr a specifi.ed fuoction. h digltal electronics, these
logical- elements are digltal electronic devlces, zuch as gates,
flip-flops, decoders, counters, etc.

IOGICAI ELEMENT - Iio a computer cr data-pnocessing system, the
saral'lest buildiag blocks which operators can represent in an
appropriate system of symboJ.ic Iogic. gpical logical. elements
are ttre IND gate ard the nflip-flopn.

IOOP - A sequease of instructlons that is repeated unti-L a ccn-
diticaral exit situatloa is met.

I,0i{ ADDRESS BIYIE - The eight least slgn'l ficant bits ln the 16-blt
memory address rord. Abbreviated L or LO.

K-B

LSI (tAmE scALE tr{TSGe"egIS:{} ..Iategrated circuits tirat perforro
cornplex functions" Such chips usually contain l"0O to 2r0O0
gates "

MACHI$5 C0.18 * A binarp c,;de that a computer deco<ies to execute a
specific fu::.*tion"

MACHINE CYULE * A subdlv'ision of an instructj.on cycle dr:ring r*hich
ti.rne a relaied gr*up of ac',ions occur nithj-a ttre microprocessor
chlp" In the 8080 ruicroproeessor, t,here exi.st aine different
glacirJ"ne *ycles" .&}tr i-nstructions are combinations of one e
more ef tbese maehi.ae cycles.

MACRC ,qFSSm'mLffi * rh assembler routi:re capable of assembli-ng
progra&s whj"ch seata*i"n and referen e raaero instructions"

I4ACRO INSfRIJC?TO$ - 3 s"ombcl that is used to represent a specifled
seque&ce of sor:rc* instx"uetions.

I,UGNETIC C0S,E - .{ iype of eonputer storage whi.ch empl-ays a core of
magnetic unator*aL trj"Lir i*ires threa'Jed Llu.uugh lt. the core can
be magnetized to represent a biaary I or 0.

M.AONETIC DRUl,t - A storage device coasisting of a rapidly rotating
cylinder, the su"rface of whieh can be easlly magnetlzed and
strlch tri.Il retain the data. Infornation is stored in the form
of,nagneti"zed spots (or nc spots) on the drugr suface,

M.AOIIETIC DtrSC - *1 f,lat eircr.[ar plate wittr a magnetic surface on
**hich data can be sterei by selective magneij.zation of portions
of the flat surface"

MIG$EEI0 ?iFH - ,t siorage system based on the" use of magnetic
spots {Ut*s} cn meta: cr coated-plastic tape, The spots are
arranged so that the d,es*red code is rea.d out as the tape
travels past the read-write head.

MA,SKII{$ - A proeess that uses a bit pattern to select bits from
a data byte for use jrr a subseqrrent operation.

I,IEI{0RI - "kry derrice that can store logic 1 and logic C bits ln such
e ma:rner the.t a singj.e bit or group of bits can be accessecl
and retrieved*

M$,{OBI IDDRFSS - A 16-bit bJ"nary number that speclfies the precise
menory location of a nemory wcrd among the 65,536 different

possible memory locations.

MEMORI CEIJ. - A singl* storage element of memory, capable of storing
one bi"t of digieal jnformation.

!r _Q

MICROCOI{PUIER - A courputer system based oa a nicroprocessor and
contains al1 the memory and interface hardware necessary to
perforrn calculat,ions and specified j-nformation transformations.

MICROPBOCESSOR - A central processing rrnit fabricated as one
integrated circuit.

MICROP8OGRAM - A cwrputer progran written i^n the most basic
iastructions or subcoumands that can be executed by the
cwrprter. tr?eguently, it is stored in a read-only nenory.

MNEONIC - Syabols representing machine instructions designed
to allcm easy identification of the functions represented.

UODIILO - The nodulo of a counter is simply ne the number of dis-
tinct states the counter goes ttrough before repeatLng. A
fos-611 biaary counter has a rnodulo of 16; a decade counter
has a uodulo of 10; arrd a divide by-? corrnter has a nodrrlo
of 7" In a varia.ble urodulo cor:nter, n can be a-qy value within
a ranae of values

UONIIOR - Sofbcare or hardware that observes, supervises, coatrols,
. or verifies sysLem operation.

UOIIGTABLE MIII,?IVIBRAIOR - AIso called one-shot multivibrator,
single-shot nulti-rribrator, or start-stop multivibrator. A
circuit havfg oaly one stabl'e statel fron whi.ch'it can be
triggered to change the state, but only for a predeternal-aed
interval, after which it returns to the orlgi-aal state.

usl (umui$ scal,E INIERdTIoN) - Iategrated circuits that perfornr
simple, seJf-con1,a'ined logic systemsl such as couaters and
fllp-flops.

llsB (uosr srcNffrc.$rr) * rhe dlglt rith ttre |righest weightlng in a
binary iu:mber.

llutllPlalrER - a dlg:ital devlce that can select one of a nunber of
lnput,s aira pass the logic 1evel of that input on to the output,
Information for iaput-channel selaction usually is presented to
the device in binary weighted forrr and decoded lnternal)y.
The devj.ce acts as a single-pole nrrltiposition $ritch that
passes digital lnfornatlon 1n one direction only.

ilHiA?fYE EDOE - The transLtion froa logic 1 to log:i.c 0 ln a elock
pulse.

NgiATfqE-EDOE ?nl(nEnm - Fansfer of infomation
negative edge of the clock pulse.

NmATIitE IOOIC - A forn of logic in rltrich the more
level represents logic 0 and the more negati.ve
Ioglc 1..

occurs on ttre

positive voltage
ievel rElresents

NESTII\E - .4, sequentiaL calling of srrbroutines wlthout retr:rning
to the main pnogra.un,

K-10

NIBBLE - A sequsr:.ce ef fcu:r acija*ent bits,
ribble" *, hex*-decimal- m FCF ciieit can
a s:ibbl"e.

PiRTITIONII'& - The Froeess of assiguing specified.
systen respcnsibi.lity for perform:ing specified

PC - See TTPAGRAM e0U$?ERtt

be
half a byie, is
represented ilr

NON-OVEEI.AFFSIG TI{#*FHA$H el,(]Str * A, tr.ro*phase cloc}t i-a nh1ch the
clock pulses of *I:e indiv-idual phases do not overlap.

NON-VOLA?II& tffilfiRY - A semieonduc'i;cr nenory devi.ce in wirj.ch the
stored d*glt'*3 data j.s not lost when the power is removed.

OCTAL A nrmber: sysi*m based upon the radix 8, fu which the
decisral snmbers 0 through f represent ihe eight distinet
states "

0IIE-BYTE-INSfffJC?IC31 - An jrstructicn that ccarslsfs of eight
contigu,cus hits oc*upging one successive location.

OPSI-COIJ,ECTOR Ct?fF:JT * *n outlrut, frst an integrated circult
device in r,rirlcS: ihe f*nal ttpu1l-upn resistor in the ou+.put
transi,stor fry the Cesiee is nissing and imsi be provided
by tirc user before the cjrcuit j.s cmiple*"ed.

0PEA.A],ID - Eata wh*eh is, or wllI beo operated upon by an arlthnetic/
logic i:r,structj"on; usually identified by the address portion of
an instruction, explic*tJ"y or implicitly.

OPEAAIIOS - Moving or manS.pulating data ln tbe CPU or betrceen the
CPU and periphe'aJs.

P.AGE - A page consists of aJJ the locations that can be addressed
Uy 8-U1ts (a- total at 256 Locatj.ons) startiag ai 0 and going
through ?55" iix,e address witiein a page is determined by the
lorer 8-Alts of the adCress and the page nunber i0 tiraugh
255) is determined. by ihe higher B-bits of a i5-bit address.

PARITY - "4, metleed. *f checking the accuraey of binary nr-rilbers, tf
even parity is used, the sun of all the 3t s in a nunber and
its cerespondS-ng partty bi-t is always ev€oo If odd parlty.
is used, the sum cf all the lrs alrd the parity bit is always odd.

portions of a
fi:nctions"

PIe

PERIPHER"AI, - A devi*e sr subsystem external to the 0PU rha*" prwldes
additional sysiem capablliti.es.

POLLINC - Pe:'iodlc interrcgation of each of the devices that share
a cormrunications l-i^ne to deternlne r*hether it reqrires servlcirtg.
the mmlttplexer er *ontrol statlon sends a po}l tirat has the
effect of asklng the selected devlce, ttDo you havo anything
to transrlt?fr

POP - Retrieving ciaf."a fron a stack.

PORT A device or netnork through wh-ich data raay be transferred
sr where device or network variables may be observe<i or measured.

POSI?fVE EDGE The tnansition fronr logic 0 to logtc 1 in a clock
pulse.

POSfTfqE-mCiE TRIGGERED - I?ansfer of infornation occurs on tbe
positive edge of the clock pulse.

POSITfYE IOOIC - A feur of logic irt rhich the more positlve voltage
level represents logic 1 and the nor€ negative 1evel represents
logic 0.

PRIORIIY - A preferentiaL ratlng. Pertains to operati.ons that are
given trrreferenc otheq system operations.

PROCESSOR - Shorthand word for nicroprocessor

PRqiR.A$ - A group of ilstructdons rhtch causes the compute,r to per-
form a specified furction.

P86R"A!,1 O0UIITER - A register contedniry the address of the next
instruetion to be executed. It ls automatically lncrenented
each time progran instructions are executed,

PRGzu!{ ljIBEL - A strrnbol w}tlch is used to repesent a memory address.

Pn@{ (Pn*zu},lM4BLg RE0MNIJr MneBI) .C, read-or'}y..nenortrr,that:.is
fJ.eJ:d: programnable. by, fhe,. lrE€F r

PROP.{GATION DETAI A measure of t'he tlme required fe a logi.c
slgnal to travel thnough a logic devlce or a seri-es d J.ogic
devices. It occurs as the result of four types of cLrcult
delays - storagep riser fe]], srd turn-gn-delay - and is
the tir:e betseen when the inprrt signal crosses the threshold -
voltage point aad when the responding voltage at the output
crosses the same voltage point.

PSEIIDO-INSTRUCTION A mnemonic that modifies the assenbler opera-
t'j.on but does not produce an object code.

PULL-IIP RESIST0B - A resistor connected to the positlve supply
voltage to the outgut coLJ-ector of open-collector logic. Also
used occaslonally rith nnechanical slriiches to insnre the
voltage of one or more swi.tch positlons.

P{ILSE WIDXtI - .A,lso called pulse length. lhe td.ue lnterval between
tile polnts at whLch the lnstantaneous vslue on the leading and
t'ra"lling edges bears a specifled relatlonship to the peak prrlse
ar:Plltude.

K-T2

Pui i i - Fut, t --r :g ia: ; j -nlc a st ,ec<,
)

eiJIX - Aisc cal- led the base. f i re tot ,al nwrber of i i .s i inct marks
o:" e;'rnbcls usec i-n a n';ilberi-'rg sysiern" For exarple, since the
c.ecirnaL nun'oe:'xlg systen uses ten synbois, *,he raciix j.s lC.
in tne bi-nar-v n';rbe:i-ng systenr the radi.x is 2, because there
a:.e onry iwc na.:'ks cr synboL" (O ana t). In lhe octal number-
llg systen, ihe raiix is 8, anci in the hexaciecimaJ" nunibering
<rrcton +he f ad:X iS 16.eJJevr.r , v.^v ! srdt +J :v.

R.,U,i (R&\Doi.I ACCESS t{il"{ORY) - A semiconiuctor m€mory inic which
logic 0 anq lesic I srates can be r,r i t ten (sterei) and ihen
read o:-u agai"n (retr ieved).

P.El', - in semiconciuctcrs: To transmit da+.a frcm a semiconductor
memory to sone othe:' digital electronic device" fhe term,
frreaCfl I aisc applies lo computers and other types of memory
cievices.

REFRESH - The process by which dynamic R.AJtr cells recharge the
ca.pacitive node io r'raintaln the stored j.:rformailon. The
chargeci nodes discharge ciue t,o leakage cwrents and tq'ithout
refresh, Lhe siored data wouici be 1ost. thi .s process must
reoccur every so na-ny microseconCs. Durlng refresh, fhe R4M
car.: :ot be accesseci.

REFP.ESH L6IC - The logic required to generate all ihe refresh
signals ano r,ining.

FEGiSTEP - A harciware eleraent used to temporarily store data.

F-Ei,riTM }TDRF^SS - A rela.iive anCness i.s a memory adciress formed
r*' -;;i-- :he i"nmeciia.te date. incluCed with the ir:sLrucii"on tovJ Gu! i6 i

the ecntents of ihe prograa counter or some otLrer registei'.

RESET - A conputer system input lha,t j-nitiaLizes and sets up
certa-r regisNers in fhe CPU and throughout the computer
sysiern. One of the i:rj"lializationsl is to load a speciflc
acidress into the Prog:'an Coun,',er. The two bytes of i-nforma.+.ion
L4 that ald the succeeciing a.<ioress is the starting a-ddress
for the systen progran (for the MOS TECIfl0LOGI processors) "

PJTUzu{ - Aspecial i,ype of jurap in which the central processor
resumes execution of the ma.in progran at, the contents of the
program counter a't ',,he time that the jmp occured.

RIPPLI COUIITER - A binary caunting systen irr wli:ich flip-flops are
connecteci i l t seri-es.

RISE TIl,lE - The t,ime required for an ou.tput voliage of a digital
clrcuit to change frcm a logic 0 io a Loglc I stater

ACM (Rg.AD-OliLY tfri,loRf) - A ser,rj-conctuctcr memory from which digital
data can be repeatedly reaci ou'r,, but, earnot be vrritten 1nto,
as is the case for a RA)4.

K- | (

ROIITIIIE - A group od lnstructi-ons that causes tbe courputer to
perforrn a specified frrnction, eogr €L progran.

SCRA?CH P.AD - the temr applies to nemory that is used tenporarily
by the CPU to store i.:etermedi.ate results.

SE'IIEII-SEG]{BI? DISPTAI - ln electroni.c display that contains seven
lines ot segnents spati-a.Lly arranged in such a manner that
the digits O through 9 can be represented through tJre selective
laghtiq of certain segnents to form. the diglt.

S${IC0NDUCTOR MEMOFf - A di€ital. eLectronic memory d,evice ln nhich
lrs and Ors are stored, that ls a product of semiconductor
marrufacturlng"

SUIF? RE0ISISR - A digltal storage cjrcuit in which infomatlon is
slui:flted from one f]ip-f1op of a chain to the adjacent flip-flop
rryon appllcation fo each clock puIse. Data may be shtfted
several places to the rigbt or left, depending on addltlonal
gatjlg and the nunber of clock pulses applled to the 3'pgi s!s1'.
Depead:ing oa the nunber of positions shifted, the rightmost
characters are lost ln a right shift, and the lef,tnrost char-
acters are lost i.n a left shifb.

S$flIt.{IOR A progran whicb re,presenbs ttre finctioruing of one
coryuter systern ltilizi-ag a.rcther coqruter system.

SOflfmRE - fhe means by which any defined grocedure is speclfied
for conputer execution"

SOURCE - Register, memory locatioa or T/O device whtch can be
used to supply data for use by al instruction.

SOURCE PRGR.AI{ .* group of statenents confor&ing to the syntax
requiremrents of a language processor.

SFLIT D^{IA BiF - Is two data buses, one for lncoming commutdca-
tions aBd one for outgoing corrunulrications. An 8-bit data bus
in split data bus system talces 16 llles.

STACK - A speclfied section of sequential neaory Locations used
as a LIFO (fast T.a, !'irst Out) file. The last elenent entered
is the fjrst one agaiLabLe for output,. A stack is used to store
program datae subroutine return arlrt'ess6s, processor statusl etc.

Sti0f POINTER (S) - A register rh-i.ch contains the address of the
system read/write menory used as a stack. It is autoruatlcalty
increnented or decremented as instructions penforrn operations
H:ith tbe stack"

f-Ir

ST.AIEMA{I - An instruction ia source language.

STATIC R"Att - A rqrdom access memory tbat uses a flip-f1op fcn
storlng a binary daia bit. Does not require reibesh.

STRINO A series of values.

$fBBOUTINE - A routine that causes the execution of a specified
firnction and uhJ.ch also provides fc transfer of control back
to the ca-ll5ng routine upon sompletj.on of the function,

SIlBOf, lny character string used to represent a Iabel, menonic,
or data constant"

SYI'lBOtfC ADDRESS - Also caaled floaiing a.ddressn In digita1 co6-
puter prograrndngr a 1abe1 chosen in a routine to ideatify a
particular word, function, or other informatj-on that ls inde-
pendent of the location of the information w'it}.in the routine"

STI,IBOTIC COD8 - A code by which programs are exFressed ln source
language; that is, storage locations and machine operations
are referred to by sprboli"c nanes and addresses that do not
depend upon their hardware-deterzrjned nanee and address€so

S$4BOIJC CODING - In digital conputer programring, aq cod,fng
systen usfug symbolic rather tttan actual conputer addresses"

Sgl{C}lRChlOUS - Operatipn of a s:*itchiag network by a clock pulse
generator" .Lll cjrcuits in the netlrork sritcb sjmuLtaneously,
and all actions take plaee synchronously rdith the clock"

SWT.AX ERROR - An occurrence in the source progran of a label
e4pression, or conditj.on that does not meet the .f,orrnat
requirernents of the assembler program.

TABLE A data structure used to contaj.nr sequences of lnstruc-
tions, addresses, or data constants.

TR{IIING EDGE The transition of a pulse that occurs last, such
as the hlgb-to-low transltion of a posi.tive clock pulse.

IAAIISITIOI{ The jrstanee of chang"jng fbon one state to a second
state.

IIiREE-STATE DEVICE or IRI-STATE DEVICE A serricqrductor logic
device j.n wbich there are three possible output, states: (1)
a nlggC.c 0n state, (Z) a ttlog:Lc ltt state, or (3) a state irr
i.n rhicb the ouSut is, jn effect, disconnected frorn the rest
of the circrrlt ard has no j.nfluence upon it.

K-l:5

ITIREE-BEfE INSTRIICTION - An instruction that, conslsts of trenty-
four colrtiguous bits oecupying tbree successive nemory locations.

TBUIU TIBLE A tabulation that shows the relati.on of all output
loglc levels of a *igitaf. circuit to all possible conbinatj.ons
of iaput logi-c levels in such a lray as to charactenize tbe
circuit fi:nctioas c crryletely.

1'IfO-BIITE INSTRUCTION - 4n instructLon that consists of sirtdeti
contlguous bits occupying tro successive nemory locations.

IWO-PHASE CLOCtr A tro-outpu'b tinine device that prorides trlo
continuous series of timing pulse from the second serles
alrays foll.ocing a siagle clock pulse frcn the first series.
Depending on the type of two-phase clock, the pulses in the
first and second series nay or nay not orerlap each other.
Usually i.derrbified as Phase'I & Phase 2.

ITNCOMiITIONAI llot srrbject to conditLons external to the speclfic
c ornputer jlstructi-on .

ttilCOl\DIfIONAI CALL - A ca]] Lustructlon that is uncondltional.

ItNcqilErrro$.qr, fiffP I connputer instruction tbat iaterrupts the
normaL process of obtai-njng the inst,ructlons in an ordered.
sequence and specifi.es the address frosr whlch the ne:cb
instruction must be taken. :r

UNCOIIDITIOilAL RE'IIAN - A retrrrn instructlon that ls unconditional.

nsl (VERT tAncE-scAla I}IImRATIoN) Monolithlc dlglta-l integrated
circuit chips rith a typtcal conplexJ.ty of tro thousard or nore
gates or gate-equivalent circuits.

VOIATIIE I{El"l0RI A seniconductor memory derrLce ln lrhich t}p stored
digital data is lost when the power is remwed.

IIEIGIITING - ltost corrnters in the 71100 serles of integrated cjrcult
chips are weighted counters, that is, re can asslgn a nelghted
value to each of the fl:ip-flop outputs tn the counter. By
nm*ng the product of the logic state times the relghtln-g
value for each of the fllp-flops, re c€ur conpute tlre courter
state. For exanple, the weighting factcs fe a h-bit binary

' cornter are D - neight of 8, C = weight of l+, B . relght of 2,
ard A = weight of 1. The binary output, DCBA = 1101A, frm a
lr-Uit binary counter would therefone be 13. - #',

I{IRED-OR CIRCUIT - A clrcuit consistlng of two or more sernlconductor
devlces wittr cpen.colLector outputs ln rhj.ch the outputs are
rlred together. The output frcn tbe circuLt is at a logtc O
if devlce A or device B or derrice C or " is at a loglc
O state. - :-

K-16

WORD - lre naxilmn ntnber of bjoary dlgits that can be stored ira a
sLngle addressable nemory locatlon of a given conputer system.

fAnS In semiconductors and ot}er types of menory derices - to
transmit data lnto a nrnory device frsr some otlrer digital
electrmtc device. To l{RIlE ls to SICIRE.

ZERO-P{}E The lonest 256 address locations ln neuory. Where
the highest 8-bits of address are alrays Ots and the loner
8-bits identif,y any location flour O to 255. lbereforer onlY
a single byte is needed to address a locatiou in zero-Page.

ZUnO-f.Cg .|DDBEIISING - I.he second byte of the instruction con-
taLns a zero-page address.

ZEnO-P.CCE INDEXED OnnbSSUqi - The second-byte of the Lnstaruction
is added to ttre index register (X or I) to form a zeto-page
effective address. The carry (i-f

"tqf)
is drcpped.

K-I7

	Table of Contents
	Course Outline
	Reading Assignments
	KIM Experiments
	Exp 1. Loading and Running a Simple Program
	Exp 2. Parallel Data Input and Output
	Exp 3. Controlling External Devices
	Exp 4. Counting and Timing Loops
	Exp 5. The Interval Timer
	Exp 6. Interrupts

	Logic and Interface Devices
	Decoders/Demultiplexers
	Encoders/Multiplexers
	Interface Devices
	Tri-State Logic
	Open-Collector Logic
	Bus Transceivers

	Flip-Flops
	I. R-S Latch
	II. R-S Flip-Flop
	III. Data or D-Type Flip-Flop
	IV. J-K Type Flip-Flop
	V. Toggle or T-Type Flip-Flop

	Basic Logic Devices
	I. Non-Inverting Buffer
	II. Inverting Buffer
	III. AND
	IV. NAND
	V. OR
	VI. NOR
	VII. Exclusive-OR
	VIII. Exclusive-NOR
	IX. Discussion of Low-True Logic

	Analyzing Software Problems
	The Software Design Procedure
	Step 1: Define the Problem
	Step 2: Partition the Problem into Functional Blocks
	Step 3: Algorithm Development for Each Partition
	Objections to Flowcharts
	Procedures After Algorithm Development
	Questions

	The Hardware/Software Approach to Microcomputer Design
	Hardware Speed Trade Offs
	Processors and Memories
	Decode Logic
	Memory Buffers
	Specialized Interface Devices
	Interrupts

	Software Trade Offs
	Program Loops and Subroutines
	Functional Computations
	Repeated Computations

	Summary
	Introduction
	A Perspective On Costs
	Trading Off Hardware and Software
	Conditions Which Lead to Design Trade Offs
	System Speed Problems
	System Cost Problems

	Systems Costs
	Modification Costs
	Development Costs
	Maintenance Costs

	Hardware Cost
	System Speed
	Memory Requirements
	I/O Requirements
	Peripheral Devices
	Device Support
	Microprocessor Hardware Selection Summary

	Software Costs
	Processor Organization
	Program Structure
	Implementation Language

	Representing Binary Data
	Binary Data Elements
	Binary Numbers

	Number System Conversions
	Decimal to Binary
	Decimal to Octal
	Decimal to Hexadecimal
	Hexadecimal to Decimal
	More Conversions

	BCD Numbers
	Binary Fractions
	Binary Arithmetic and Logic Instructions
	Computer Arithmetic Instructions
	Twos Complement Notation
	Binary Arithmetic

	Computer Logic Instructions
	Logic Complement
	Logic AND
	Logic OR
	Logic XOR

	Appendices
	A. Modified 6500 Opcode Table
	B. KIM Information
	KIM Programming Data Sheet
	KIM Block Diagram
	KIM Interfacing Data Sheet
	KIM Monitor Important Addresses

	C. KIM Software Collection
	Display Routine
	Directory
	VU Tape
	Supertape
	Tape Dupe
	Move-A-Block
	Hex Dump
	Frequency Counter Routine
	Analog-to-Digital Demo Program
	Real-Time Clock
	Timer
	HEDEC
	Binary Multiplication and Division
	16 Bit Square Root
	Lunar Lander
	Horse Race
	One-Armed Bandit
	Kimmaze
	Music Machine
	Hunt the Wumpus

	D. KIM Demonstration Tape
	Index
	Hex Dumps

	E. Special Applications
	Eight Bit A to D Conversion
	Multichannel Analog Input/Output System for KIM-1

	F. KIM/6500 Information Sources
	G. General Reference Information
	H. TTL Reference Sheets
	I. MOS Technology Sheets
	J. Microcomputer Bibliography
	K. Glossary of Commonly Used Terms

