MICROPROCESSING FUNDAMENTALS

SEMINAR WORKBOOK

A SHORT COURSE FOR

SCIENTISTS AND ENGINEERS

BY

RAYMOND N. BENNETT

AND

DR. JOSEPH B. ROSS

AMERICAN INSTITUTE

FOR

PROFESSIONAL EDUCATION

CARNEGIE BUILDING HILLCREST RD. MADISON, N. J. 07940

PREFACE

As in learning to drive a car, a microprocessor must be practiced with. You cannot really learn how to use one from just reading books alone. This course includes a microcomputer and more information than can be covered in a three-day seminar; because it is the authors' purpose to give you sufficient background, written material, and hardware to be able to design a microcomputer system. BUT THIS CANNOT happen if the student does not study <u>ALL</u> the information given with the course and build up a system using the KIM-1.

COURSE OUTLINE		1-1
READING ASSIGNMENTS	a 5 K	2-1
EXPERIMENTS	а а	<u>)</u> '
EXP. #1 EXP. #2 EXP. #3 EXP. #4 EXP. #5 EXP. #6		3-1 3-3 3-6 3-8 3-9 3-10
		-

LOGIC AND INTERFACE DEVICES

BASIC LOGIC I. NON-INVERTING BUFFER II. INVERTING BUFFER III. AND GATE IV. NAND GATE V. OR GATE VI. NOR GATE VII. EXCLUSIVE-OR GATE VII. EXCLUSIVE-NOR GATE IX. DISCUSSION OF LOW-TRUE LOGIC	4.1-1 4.1-2 4.1-2 4.1-3 4.1-4 4.1-5 4.1-6 4.1-7 4.1-8 4.1-8
FLIP-FLOPS	
I. R-S LATCH	4.2-1
II. R-S FLIP-FLOP	4.2-1
III. D-TYPE FLIP-FLOP	4.2-2
IV. J-K TYPE FLIP-FLOP	4.2-2
V. T-TYPE FLIP-FLOP	4.2-2
DECODERS/DEMULTIPLEXERS	4.3-1
ENCODERS/MULTIPLEXERS	4.4-1
TIMEDRACE DEVICES	2
INTERFACE DEVICES OPEN-COLLECTOR LOGIC	4.5-1
TRI-STATE LOGIC	4.5-2
BUS TRANSCEIVERS	4.5-4
BOS INANGOBIARIO	4.)-4
	2
ANALYZING SOFTWARE PROBLEMS	
5.0 THE SOFTWARE DESIGN PROCEDURE	5-1
5.1 STEP 1: DEFINE THE PROBLEM	5-2
5.2 STEP 2: PARTITION THE PROBLEM INTO FUNCTIONAL BLOCKS	5-9
5.3 STEP 3: ALGORITHM DEVELOPMENT	5-12

FOR EACH PARTITION

5-12

x

ANALYZING SOFTWARE PROBLEMS (CONTINUED)

	5.4 OB	JECTIVES TO FLOWCHARTS		5-20
	5.5 PR	OCEDURES AFTER ALGORITHM DEVELOP	PMENT	5-22
	QU	ESTIONS		5-23
THE	HARDWARE	SOFTWARE APPROACH TO MICROCOMPU	TTER DESIGN	
	IIIII (1) (1 (ALLA)	Sol Inall A TROADE TO HEROTORIE		30
	INTRODU	CTION	÷	6-1
	6.1 HA	RDWARE COST		6-2
	6.1.1	SYSTEM SPEED	a	6-2
		MEMORY REQUIREMENTS		6-3
		I/O REQUIREMENTS		6-5
		PERIPHERAL DEVICES		6-7
	6.1.5	DEVICE SUPPORT		6-7
2		MICROPROCESSOR HARDWARE		6-9
	0.1.0	SELECTION SUMMARY		
		ODDOTION DOMINIT		
	6.2 50	TWARE COSTS		6-9
	1			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
54	100 Con 1000	PROCESSOR ORGANIZATION	•	6-10
		PROGRAM-STRUCTURE		6-11
		IMPLEMENTATION LANGUAGE		6-11
	0.2.15	The Present of the Present		
	6.3 SYS	STEM COSTS	2 A	6-12
	6.3.1	DEVELOPMENT COSTS		6-12
		MODIFICATION COSTS		6-13
		MAINTENANCE COSTS		6-14
	6.4 A P	ERSPECTIVE ON COSTS		6-15
	6.5 TRA	DING OFF SOFTWARE AND HARDWARE		6-16
	6 6 7	CONDITIONS WHICH LEAD TO		6-16
	0.9.1	DESIGN TRADE OFFS		0-10
	6 6 0			6-17
		SYSTEM SPEED PROBLEMS		6-20
	0.5.3	SYSTEM COST PROBLEMS		0-20
	6.6 HAR	DWARE SPEED TRADE OFFS		6-21
	6.6.1	PROCESSORS AND MEMORIES		6-21
		DECODE LOGIC		6-22
		MEMORY BUFFERS		6-22
		SPECIALIZED INTERFACE DEVICES	* 1 z 100	6-23
	6.6.5	INTERRUPTS		6-24
				n
	6.7 SOF	TWARE TRADE OFFS		6-25
	6.7.1	PROGRAM LOOPS AND SUBROUTINES		6-25

6.7.2 FUNCTIONAL COMPUTATIONS 6.7.3 REPEATED COMPUTATIONS	6-26 6-27
6.8 SUMMARY	6-27
REPRESENTING BINARY DATA	7-1
NUMBER SYSTEM CONVERSIONS	
DECIMAL TO BINARY BINARY TO DECIMAL DECIMAL TO OCTAL OCTAL TO DECIMAL DECIMAL TO HEXADECIMAL HEXADECIMAL TO DECIMAL CONVERSIONS -	8-1 8-1 8-3 8-3 8-4 8-5
OCTAL TO BINARY, HEXADECIMAL TO BINARY, OCTAL TO HEXADECIMAL; AND BACK	8-5
BCD NUMBERS	9-1
BINARY FRACTIONS	10-1
BINARY ARITHMETIC AND LOGIC INSTRUCTIONS	
11.1 COMPUTER ARITHMETIC INSTRUCTIONS	11-1
11.1.1 TWO'S COMPLEMENT NOTATION 11.1.2 BINARY ARITHMETIC	11-1 11-3
11.2 COMPUTER LOGIC INSTRUCTIONS	11-5
11.2.2 LOGIC COMPLEMENT 11.2.2 LOGIC AND 11.2.3 LOGIC OR 11.2.4 LOGIC XOR	11-5 11-6 11-6 11-7
APPENDICES	
A. MODIFIED 6500 OP CODE TABLE	A-1
B. KIM INFORMATION	
KIM PROGRAM DATA SHEET	B-l
KIM BLOCK DIAGRAM	B-2
KIM INTERFACING DATA SHEET	B-3

KIM MONITOR IMPORTANT ADDRESSES

C. COLLECTED KIM SOFTWARE

DISPLAY ROUTINE C-1 DIRECTORY C-2 VU TAPE C-3 SUPERTAPE C-4 TAPE DUPE. C-7 MOVE - A - BLOCK C - 8 HEX DUMP C-10 FREQUENCY COUNTER C-11 ANALOG TO DIGITAL CONVERSION DEMO C-13 REAL-TIME CLOCK C-14 TIMER C-15 HEDEC C-16 BINARY MULTIPLICATION AND DIVISION C-17 16 BIT SQUARE ROOT C-22 LUNAR LANDER C-23 HORSE RACE C-26 ONE-ARMED BANDIT C-27 KIMMAZE C - 28MUSIC MACHINE C-31 HUNT THE WUMPUS C-33 D. KIM DEMONSTRATION TAPE INDEX D-1 PROGRAM HEX DUMPS D-2 E. SPECIAL APPLICATIONS EIGHT BIT A TO D CONVERSION E-1 MULTICHANNEL ANALOG INTERFACE E-3 F. KIM/6500 INFORMATION SOURCES KIM SOFTWARE SOURCES F-1 6500 MICROPROCESSOR SUPPLIERS F-3 GENERAL REFERENCE INFORMATION TTL REFERENCE SHEETS MOS TECHNOLOGY DATA SHEETS

J. MICROCOMPUTER BIBLIOGRAPHY

G.

Η.

Ι.

Κ. GLOSSARY OF COMMONLY USED TERMS B-4

COURSE OUTLINE

MICROPROCESSING FUNDAMENTALS

COURSE OUTLINE

FIRST DAY

- I. Introduction to Microprocessors and Microcomputers A. Hardware
 - B. Software
 - C. Number systems
- II. Operating a Typical Microcomputer: The KIM-1
 - A. Examining and modifying memory
 - B. Loading and running sample programs
 - C. Using the KIM audio cassette system
 - D. Using the single step mode
- III. Experiment 1: Loading and Running a Simple Program
- IV. Microcomputer Architecture and Elementary Programming A. Simplified CPU model
 - B. Data, address, and control buses
 - C. Memory and I/O addressing
 - D. The KIM monitor
 - E. A selected subset of instructions

V. Programming Examples

- A. Parallel data input and output
- B. Use of the KIM-1 keyboard and display
- VI. Experiment 2: Parallel Data Input and Output

SECOND DAY

1. Interfacing Microcomputers to External Devices

- A. Using programmable I/O lines for device control
- B. Device control software techniques
- C. Common interface devices
- D. Analog input and output techniques
- II. Experiment 3: Controlling External Devices
- III. Further Software
 - A. Flags and conditional branches

B. Counting and timing loops

THIRD DAY

- I. Advanced Software
 - A. Binary and decimal arithmetic
 - B. Indexed addressing
 - C. Indirect addressing

II. Interval Timers and Interrupts

- A. Using an interval timer for time delays
- B. The 6502 interrupt system
- C. Interval timer triggered interrupts
- D. Interrupt applications

III. Experiments 5 and 6: Using the Interval Timer and Interrupts

IV. Serial Data Input and Output

- A. The KIM-1 serial I/O system B. 20 mA current loop and RS-232 interfaces
- C. The ASCII code
- D. KIM monitor routines for serial I/O

IV. Further Topics as Requested

READING ASSIGNMENTS

READING ASSIGNMENTS

It is virtually impossible to read all the written material given with this course in the two nights during which the course is given. This material is given with the course to facilitate a higher level of expertise than can be presented or absorbed in a three-day seminar. The reading assignments listed below are highly recommended in order to receive the most from the next day's lecture. These assignments ONLY cover the two nights of the course. <u>Read these assignments for</u> information and understanding, NOT FOR DETAILED knowledge.

	KIM-1 USER MANUAL	HARDWARE MANUAL	PROGRAM MANUAL	SEMINAR WORKBOOK
FIRST NIGHT	Chapter 1 Sections 2.1 thru 2.4 Chapter 3 Section 4.1 Chapter 5	Sections 1.0 thru 1.2, 1.3.1, 1.3.3, 1.4 thru 1.4.1.2.4	Chapter 1 Chapter 2	Basic Logic Interface Devices
SECOND NIGHT		Sections 1.3.2 thru 1.3.2.6 1.5 thru 1.6.4.3	Chapters 3,4,5,6,7 Section 11.3, 11.3.1 Appendix H	Glossary of Common Terms

AFTER COMPLETION OF THE SEMINAR:

You should reread all the reading assignments FOR DETAILED KNOWLEDGE. There are many sections of the KIM-1 USER MANUAL, HARDWARE AND PROGRAM MANUALS, that were not made reading assignments. This DOES NOT MEAN that they are unimportant or not relevant. The reading assignments were made a basic understanding for the lecture material. You should read FOR DETAILED KNOWLEDGE the entire set of manuals and the SEMINAR WORKBOOK. You will find all the information in the WORKBOOK, highly condensed and extremely useful.

2-1

EXPERIMENTS

,) i

KIM EXPERIMENTS

WARNING! Your KIM-1 experimental set-up operates on low voltage only.

EXPERIMENT 1 Loading and Running a Simple Program

1. KIM-1 Initialization:

Turn on 5V power. Press the RS key (reset). The display should light and show some random hex numbers.

2. Address Selection:

Press AD to put KIM in address entry mode (address entry mode is automatically selected after reset). Enter 0000 on the keyboard. Observe the display see 0000 in the left four digits. You are looking at location 0000 in the KIM-1 read/write memory. The right two digits show the contents of this location. What are the contents? Look at the next location by pressing +. Continue pressing + to see what numbers are in your memory after system start up. Do you see a pattern to the numbers? Go to locations 0100, 0200, 0300, 0800, etc. and note the numbers you find. KIM read/write memory ranges from 0000 to 03FF. What numbers are found in locations where there is no physical memory?

3. Data Entry:

Go to address 0000. Put KIM into the data entry mode by pressing the DA key. Press various keys and observe the display. To go to the next address, press +. For practice enter the following data into the KIM-1 memory:

address	data	
0000	00	
0001	01	
0002	02	
0003	03	

The + key allows you to increment the address in either the AD or DA mode. How do you go to a lower address or to a much higher address? You must return to the address mode and key in the new address then continue data entry in the DA mode.

4. Loading a Canned Program:

Enter the program as listed on the coding sheet following this page. This program will cycle through the memory and display the contents of each location. For more information consult the program notes in your literature package.

MICROPROCESSOR CODING SHEET

PAGE ___ OF ___

ADDRESS	OP CODE	MNEMONIC	COMMENTS
0000	A2		
0001	04		
0002	8A		
0003	48		
0004	A9		
0005	62		
0006	8D		
0007	47		
0008	17		
0009	20		
000A	19		
000B	lF	1	
000C	2C		
000D	47		
000E	17		
000F	10		and the second sec
0010	F8		
0011	68		
0012	AA		
0013	CA		
0014	DO		
0015	EC		
0016	E6	-	
0017	FA		
0018	DO		
0019	E6		
No. of Concession, Name of Street, or other	E6		
	0000 0001 0002 0003 0004 0005 0006 0007 0008 0007 0008 0009 0008 0009 000A 0008 0009 000A 0008 0000 000D 000C 000D 000E 000F 000F 0000F 0000F 00011 0012 0011 0012 0013 0014 0015 0016 0017 0018	0000 A2 0001 04 0002 8A 0003 48 0004 A9 0005 62 0006 8D 0007 47 0008 17 0008 17 0008 1F 0000 2C 0000 47 0000 47 0000 47 0000 47 0000 17 0000 47 0000 47 0000 17 0001 F8 0011 68 0012 AA 0013 CA 0014 D0 0015 EC 0016 E6 0017 FA 0018 D0 0019 E6 001A E6 001B FB 001C D0	0000 A2 0001 04 0002 8A 0003 48 0004 A9 0005 62 0006 8D 0007 47 0008 17 0009 20 0000 19 0000 2C 0000 2C 0000 17 0000 2C 0000 47 0000 47 0000 17 0000 17 0000 17 0000 47 0000 17 0001 F8 0010 F8 0011 68 0012 AA 0013 CA 0014 D0 0015 EC 0016 E6 0017 FA 0018 D0 0018 FB 0016

GENERAL COMMENTS:

5. Program Execution:

Go to the beginning of the program using the AD mode (address 0000). Press the G key. The address display will count up and the data display will show the contents of each memory location. To stop the program and return to the KIM monitor, press RS. This program is written as a loop and will run forever.

6. Optional Experiment:

Select one of the game programs in the literature package and load and run it. Lunar Lander, Horserace, and Kimaze are reasonably short.

EXPERIMENT 2 Parallel Data Input and Output

1. Prepare Experimental Equipment:

Locate the SK-10 breadboarding socket and the LR-25 module. Plug the LR-25 into the SK-10 socket so that it is oriented as shown in the drawing below. Insert the flat cable plug in the center of the SK-10 as shown. The flat cable should enter the plug from the side away from you. This will put pin 1 on the front left side. Connect the black lead (GND) to the GND terminal on the LR-25. Connect the red lead (+5V) to the +5 LR-25 terminal.

Kim Experimental Breadboard

EtL Instruments 61 first st. Dechy, Commo 06418

3-3

Use 8 wires to connect the KIM PA output lines to the 8 LED indicators on the LR-25. Connect:

PA0 = pin 9 to IA PA1 = pin 10 to IB PA2 = pin 11 to IC PA3 = pin 12 to ID PA4 = pin 13 to IE PA5 = pin 14 to IF PA6 = pin 15 to IG PA7 = pin 16 to IH

Use 6 wires to connect the KIM PB input/output lines to the switches and pulsers on the LR-25. Connect:

PBO = pin 1 to SA PB1 = pin 2 to SB PB2 = pin 3 to SC PB3 = pin 4 to SD PB4 = pin 5 to P1 (0) PB5 = pin 6 to P2 (0) nc pin 7 used in interrupt exp. PB7 pin 8 to GND

2. Eight Bit Parallel Output:

Establish the eight PA lines as OUTPUT LINES by storing the number \$FF in the PA data direction register at location \$1701. Use the KIM-1 keyboard to do this. Now use the KIM-1 keyboard to write various hex numbers into the output register and observe the effect on the 8 LED indicators. Go to address\$1700 = PAD, press DA, then press hex keys. You will see the binary representation of the hex numbers shown in the data display.

Note: The RS key resets the data direction registers to \$00 = INPUT, so you must reenter the \$FF in \$1701 each time you use RS.

- 3. Parallel Input From External Switches: Establish PBO - PB7 as INPUT by storing \$00 in the PB data direction register at location \$1703. Remember that this is done automatically by the RS key. Use the KIM-1 keyboard to look at the contents of the PB data register at location \$1702. Operate the external switches and observe the effect on the memory contents.
- 4. Numerical Input from the Kim-1 Keyboard: The KIM-1 keyboard is scanned by a software routine. If no key is pressed the routine returns with \$15 in the accumulator. If a key is pressed, the routine returns with the hex key code in the accumulator. The following program calls the keyboard input routine and transfers the contents of the accumulator to the PA output port. This will enable you to see the key codes on

the 8 LED indicators.

Keyboard Input Test Program

0000	D8 (CLD	set binary mode
0001	. A2	LDX#	establish PA as out
0002	FF	\$FF	
0003	8E	STX@	
0004	01	\$01	
0005	17	\$17	
0006	20	JSR@	call keyboard input routine
0007	6A	\$6A	1999,1999,999, • One-Service - 2019 • 1999 - 1999,999,999,999,999
0008	1F	\$1F	
0009	8D	STA@	send contents of A out to PA
000A	00	\$00	
000B	17	\$17	
200 (000C	4C	JMP@	loop back for more data
(P, - 000D	06	\$06	
000E	00	\$00	
21,			
To run this	Drog	r om 00	to address \$0000 then press (

To run this program, go to address \$0000, then press G. The display will go dark because it is not used by this program.

5. Program Output to the KIM-1 Display:

The KIM-1 display is a software driven multiplexed seven segment display. We are going to use the display to output hex numbers. Three memory locations hold the numbers which are displayed by the display routine. The leftmost two digits are stored in \$00FB, the middle two in \$00FA, the right two in \$00F9. To display a number, we must store it in the appropriate location and then call the display routine. If a continuous display is desired, you must include the call instruction in a loop so that it is repeatedly executed. The following program displays 010203 on the KIM-1 display.

Display Output Test Program

0(-

	000F	A9	LDA#	load first number
	0010	01	\$01	
	0011	8D	STA@	store it in left display
	0012	FB	\$FB	
	0013	00	\$00	
	0014	A9	LDA#	load second number
	0015	02	\$02	
	0016	8D	STA@	store it in middle display
	0017	FA	\$FA	
	0018	00	\$00	
	-0019	A9	LDA#	load third number
	001A	03	\$03	
EA	001B	8D	STA@	store it in right display
	001C	F9	\$F 9	
	001D	00	\$00	
	001E	20	JSR@	call display routine
	001F	lF	\$1F	
	0020	1F	\$1F	5. 1
	0021	4C	JMP@	loop back to call routine again
	- 0022	1E	\$1E	
3	0023	00	\$00	

Note that this program starts at \$000F. Go the program beginning and run the program. Press RS to stop the program.

As a final project, you might like to link the keyboard entry program with the display output program so that the hex key codes are displayed in the right hand displays. How would the programs given need to be modified? Try it and see what you can do.

EXPERIMENT 3 Controlling External Devices

1. Single Step Execution of Programs: The KIM single step function uses the NMI interrupt feature. In order to activate the single step function, you must load the proper address into the NMI vector locations. This is done by storing \$00 in location \$17FA and \$1C in location \$17FB. Once this vector has been loaded the ST key can be used to stop a program and return to the KIM monitor. You are now ready to try the single step function. Load a program and set the address to point to the program start location. Switch the keyboard switch to SSon. Press G and one instruction will be executed. While in the SS mode the data display will only show the first byte of each instruction. While in the SS mode, you can use the AD and DA modes to examine and modify any memory location. The PC key will recall the program counter value for the next instruction to be executed. After each instruction, the CPU registers are stored in memory where they can be examined or modified. This gives you the means of checking program execution or modifiying register values between steps. Memory locations for register storage are:

OOEFPCLOOF0PCHOOF1status register (P)OOF2stack pointer (S)OOF3accumulator (A)OOF4index register (Y)OOF5index register (X)

2. We are now going to immagine that our KIM-1 is connected to an experimental apparatus. The devices to be controlled are hooked to the eight PA lines (used again as output). Of course we will have to use appropriate power drivers and interface devices to convert the TTL output signals to whatever is needed. We will also have several feedback signals to feed into our KIM-1. These are considered to be simple contact closures and are connected to the PB lines which will be programmed as inputs. The devices to be controlled and their input/output assignments are shown in the following schematic:

3-6

Let SA = Level, SB = Temp., SC = Drain, SD = Heat, Pl = Start, P2 = Stop.

3. We are now going to use the logical instructions OR and AND to turn individual devices on and off. Load the following program and single step through it so you can see the effect of each instruction on the output LED's which represent the actual devices. Note that you will have to look up your own op codes.

Device Control Program

0000	A9	LDA#	\$FF	establish PA as output
2	6D	STA@	\$1701	0100 0000
5	AG	LDA#	\$00	turn off all devices
7	8D	STA@	\$1700	010
A	AD	LDA@	\$1700	get output status
D	09			turn on coffee pot
F	8D	STA@	\$1700	->> 1 A
12	AD	LDA@	\$1700	get status 1 2
15	Øg	ORA#	\$01	turn on pump
、大17	80	STA@	\$1700	I D
IA	AD	LDA@	\$1702	get input status
1D		AND#	\$04	check state of drain valve
1F	Dø	BNEr	\$F 9	if drain is open, loop back and check again
21	AD	LDA@	\$1700	get status
24	59	ORA#	\$08	drain is closed so start fill #1
26	80	STA@	\$1700	
29	AD	LDA@	\$1700	get status
2C	29	AND#	\$F7	turn off fill #1
2E	82	STA@	\$1700	
	40	JMP@	\$1C4F	
		etc.		

As you run through the program, turn switch SC on and off to simulate having the drain valve open and closed.

Program termination: +

0000

If you want to have a program run just once, you must end it with a command to return to the KIM monitor. This can be done by terminating your program with: JMP@ \$1C4F.

01

0000

EXPERIMENT 4 Counting and Timing Loops

1. Counting Loops:

The following example shows how to set up a counter (here the X register) to allow execution of a program segment for some preselected number of times. We could just as easily used the accumulator, the Y register or any r/w memory location as a counter.

Counting Loop Program Example

LDA#	\$FF	establish PA as output
STA@	\$1701	
LDA#	\$00	turn off all LED's
STA@	\$1700	and a second
LDX#	\$0A	load counter with 10,0
INC@	\$1700	increment the output port
DEX		decrement the counter
BNEr	LOOP	if counter not zero, jump to loop
JMP@		return to the monitor
	STA@ LDA# STA@ LDX# INC@ DEX BNEr	STA@ \$1701 LDA# \$00 STA@ \$1700 LDX# \$0A INC@ \$1700 DEX BNEr LOOP

Run this program in the SS mode and at full speed. Change the count value and observe the result.

2. Timing Loops:

All operations in the KIM-1 system are timed by the crystal clock oscillator operating at a nominal 1.000 MHz. The oscillator is quite stable, but may not be exactly 1 MHz since that would require a more expensive crystal. If you need precise timing, check your oscillator with a good frequency counter. Each instruction requires a specific number of clock cycles for its execution. Thus program segments and loops can be used to produce very precise time delays which are as stable as the crystal clock. The number of cycles for each instruction is found on the MCS6500 Summary card and in the MOS Microcomputer Programming Manual. The following program yields a delay of 502 cycles = 502 microseconds from a single loop.

Time Delay Program

cycles

	LDX#	\$64	2
LOOP	DEX		2
	BNEr	LOOP	3

The loop is 5 cycles and is executed 100 times. The initial LDX# adds the last 2 cycles. To obtain long delays, loops can be nested to produce delays of any length. Now that you have the basic idea here is a more complicated program. We put the time delay in a subroutine so that it can be readily used by other programs. The main program clears A then increments it and outputs it to the PA port. Each cycle is delayed by the time delay subroutine. You will have to look up the op codes. Start the main program at 0000 and the delay subroutine at 0013. Time Delay Test Program with Subroutine

000	• START	LDA# \$FF	
	2	STA@ \$1701	
	5	LDA# \$00	clear A
	7 SHOW	STA@ \$1700	look at A
	K.	CLC	clear carry before add
	к b	ADC# \$01	add 1 to A
	10	JSR@ DELAY	delay 0.1 sec
	13	JMP@ SHOW	loop back to SHOW
	DELAY	LDY# \$C8	load 200 ₁₀ into $Y = T_v$
66	8 LOOPY	LDX# \$62 1	load 98 ₁₀ into $X = T_x^y$
-11	IA	STXz \$F5	waste 3 cycles
41	LOOPX	DEX PA	decrement X
< ``	10 IF EA. (1	BNET LOOPX	if X not zero, loopx
	19 . 0	DEY	decrement Y
	11	BNET LOOPY	if Y not zero, loopy
	24	RTS	return

The total time delay here is $TD = 5T_y(T_x + 2) + 14$ microsec.

Run the program and try different values for T_y and T_x . You might try to write a program that would allow you to enter time constants from the keyboard in real time as the program is running.

This is a good program to use to see the effects of some of the other accumulator instructions. Replace the CLC, ADC# sequence with SEC, SBC#, or RORa, ROLa, ASLa, LSRa. If you replace a two byte instruction with a one byte instruction, be sure to add a NOP to fill the gap.

EXPERIMENT 5 The Interval Timer

1. The KIM-1 interval timer can produce a wide range of programmable time delays from a few microseconds to 250 mSEC. The interval timer consists of an eight bit down counter and a programmable clock divider which produces time intervals of 1 uSEC, 8 uSEC, 64 uSEC, or 1024 uSEC. The number of counts and the count interval are easily controlled. In this experiment we shall use the interval timer to produce a time delay subroutine. You should use the same main program used in EXP. 4 to test this routine. Start with the TDLY address = \$1707, then try the other values shown in the following table:

TDLY	T _{int}	(X)	Delay
\$1704	1 uSEC	\$64	100 uSEC
\$1705	8 uSEC	\$64	800 uSEC
\$1706	64 uSEC	\$64	6400 uSEC
\$1707	1 mSEC	\$64	100 mSEC

C B

SA

Interval Timer Subroutine

INTDLY	PHA	save the contents of A
	LDX# \$64	load count
	STX@ TDLY	load counter and set divide ratio
WAIT	LDA@ \$1707	get timer status
	BEQr WAIT	if status = 0, wait
DONE	PLA	restore accumulator
	RTS	return

Note that the interval timer always runs in real time. If you single step through a program contining an interval timer delay, the program will flow right through the delay and not get hung up for N loops as is the case with timing loops.

EXPERIMENT 6 Interrupts

 The interval timer can be programmed to interrupt the KIM-1 system every nnn machine cycles. In this experiment we are going to generate an interrupt every 0.2 sec and use this interrupt to run a program which will increment the PA output port. You should run a main program which does not use the PA port. The game programs, or the display routine used in experiment 1 are good for this purpose. Here is the interrupt routine:

Interval Timer Interrupt Program

1780	PHA		save A
1781	LDA#	\$C8	load A with 20010
1783	STA@	\$170F	load timer and set divide ratio to 1024
1786	LDA#	\$FF	
1788	STA@	\$1701	set PA to out
178B	INC@	\$1700	increment PA lines
178E	PLA		restore original A
178F	RTI		enable interrupt return from interrupt

2

We put this program in one of the small blocks of r/w memory not used by most programs. Set the IRQ interrupt vector to point to the above routine by storing the entry address in \$17FE and \$17FF (store \$80 in \$17FE and \$17 in \$17FF). You must connect the the interval timer output signal to the IRO input line. This is accomplished as follows. Attach a spare 22 pin edge connector to the expansion lines on the KIM-1 board. Connect the orange clip to the IRQ input (pin 4). Connect a short jumper between pins 7 and 8 of the dip plug. Make sure PB7 is programmed as an input line even though it is used to send the timer signal out to IRQ. After a system reset (RS key used) you must enable the interval timer interrupt capability by reading location \$170E once. This can be done manually using the KIM keyboard. You are now ready to run your main program. You should observe normal program execution and apparently simultaneous incrementing of the PA output indicators. Be sure the processor starts with the interrupt enabled by storing \$00 in location \$00F1 before running the program. THIS PROGRAM WILL NOT FUNCTION UNLESS YOU REMOVE THE GROUND WIRE FROM PIN # 8 ON THE 16-PIN RIBBON CONNECTOR.

2. Optional Experiment: Frequency Counter

Look up the Frequency Counter program in your literature package. Load it, connect PB7 to IRQ (jumper pins 7 and 8 and hook the orange clip to expansion connector pin 4 as done in exp. 6-1). Connect the LR-25 clock oscillator output to the counter input PB0 (pin 1). Run the program starting at \$0000. Vary the oscillator frequency by inserting different sizes of capacitors in the terminals marked "C".

LOGIC AND INTERFACE DEVICES

BASIC LOGIC DEVICES

Although microprocessors are called (and often are used as) logic replacements, basic logic gates are still needed in most microcomputer systems. They are used for Buffers, Latches, Address Decoders, and Signal Conditioners. Therefore, it is important to have a good understanding and working knowledge of basic logic gates.

Digital logic operates in the binary number system. Therefore, any one input or output can only be in one of two distinct states, either a "1" or a "Ø". Normally, references made in regard to a digital signal, a logical "1" is greater than 2.0 volts and a logical "Ø" is less than 0.8 volts; this is called HIGH-TRUE or POSITIVE-TRUE LOGIC. LOW-TRUE or NEGATIVE-TRUE LOGIC is the opposite, a logical "1" is less than 0.8 volts and logical "Ø" is greater than 2.0 volts. On logical diagrams, the type of logic (Positive or Negative) is shown by the use of a circle in the input/output lead touching the logic symbol for the gate to indicate a LOW-TRUE input/output. The absence of this circle indicates a HIGH-TRUE input/output.

When the circle is used in an output lead of a POSITIVE-TRUE input gate or the absence of it in a LOW-TRUE input gate, it changes the name of the gate by adding the letter "N" in front of the gate's name, such as:

HIGH-TRUE INPUT GATES

LOW-TRUE INPUT GATES

An explanation of the basic logic gates follows:

I. NON-INVERTING BUFFER

This device is used primarily to increase the load handling capabilities of another device. The output of this device will always be the same logic level as its input.

ANALOGY :

The switch closed represents a high input The switch open represents a low input The lamp on represents a high output The lamp off represents a low output

Closing the switch turns the lamp ON. Opening the switch turns the lamp OFF.

LOGIC SYMBOL:

A - Input Q - Output

TRUTH TABLE :

A	Q
1	1
0	0

BOOLEAN EQUATION:

A = Q

II. INVERTING BUFFER

This device is used primarily for logic level inversion. The output of this device will always be the opposite logic level to its input.

ANALOGY :

Closing the switch will short out the lamp and turn it off. Opening the switch will remove the short and turn on the lamp. The switch closed represents a high input The switch open represents a low input The lamp on represents a high output The lamp off represents a low output

1.1-2

LOGIC SYMBOL:

A	-	Input
Q	-	Output

The small circle at the end of the gate indicates output inversion.

TRUTH TABLE:

BOOLEAN EQUATION:

 $A = \overline{Q}$

III. AND

This device used primarily to indicate whether or not <u>all</u> of its inputs are high at the same time. The output is HIGH-TRUE.

ANALOGY :

Both switches must be closed to turn the lamp on. If either or both switches are open, the lamp will be off.

LOGIC SYMBOL:

A switch closed represents a high input A switch open represents a low input The lamp on represents a high output The lamp off represents a low output

> A & B - INPUTS Q - OUTPUT

TRUTH TABLE:

A	В	Q
0	0	0
0	l	o
1	0	0
1	1	ı

BOOLEAN EQUATION:

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{Q}$

IV. NAND

This device is used the same as the AND, except the output is LOW-TRUE.

ANALOGY:

A switch closed represents a high input A switch open represents a low input The lamp on represents a high output The lamp off represents a low output

When both switches are closed, they short out the lamp and turn it off. If either or both switches open, the short will be removed and turn the light on.

LOGIC SYMBOL:

A & B - Inputs Q - Output

TRUTH TABLE:

A	B	Q
0	0	1
0	1	11
1	0	1 1
1	1	0

BOOLEAN EQUATION:

$$A \circ B = Q$$

V. OR

This device is used to indicate when at least one of its inputs is high. The output is HIGH-TRUE.

ANALOGY:

A switch closed represents a high input A switch open represents a low input The lamp on represents a high output The lamp off represents a low output

Closing of either or both switches turns the light on. All the switches must be open to turn the lamp off.

LOGIC SYMBOL:

A & B - Inputs Q - Output

TRUTH TABLE:

A	В	Q
0	0	0
0	l	1
l	0	1
1	l	1

BOOLEAN EQUATION:

A + B = Q

VI. NOR

This device is used for the same purpose as the OR gate, except the output is LOW-TRUE.

ANALOGY :

A switch closed represents a high input A switch open represents a low input The lamp on represents a high output The lamp off represents a low output

Closing of either or both switches shorts out the lamp and turns it off. Both switches must be open to turn on the lamp.

LOGIC SYMBOL:

A	&	В	-	Inputs
	Q		-	Output

TRUTH TABLE:

A	В	Q
0	0	1
0	l	0
ı	0	0
ı	l	0

BOOLEAN EQUATION:

 $A + B = \overline{Q}$

VII. EXCLUSIVE - OR

This device is used to indicate when one, and only one, input is high. The output is HIGH-TRUE.

ANALOGY:

A switch in the "1" position represents a high input A switch in the "2" position represents a low input The lamp on represents a high output The lamp off represents a low output

For the lamp to be on, one switch must be in the "l" position and one must be in the "2" position. Otherwise, the lamp will be off.

LOGIC SYMBOL:

A	&c	В	•	Inputs
	Q		-	Output

TRUTH TABLE:

A	В	Q
0	0	0
0	ı	11
l	0	11
ı	1	0

BOOLEAN EQUATION:

$A \bigoplus B = A\overline{B} \clubsuit \overline{A}B = Q$

VIII. EXCLUSIVE-NOR

This device is the same as the EXCLUSIVE-OR gate, except the output is LOW-TRUE.

ANALOGY:

The only way to short-out the lamp and turn it off, is to have one switch in the "l" position and one switch in the "2" position. Otherwise, the lamp will be on.

LOGIC SYMBOL:

A switch in the "l" position represents a high input

A switch in the "2" position represents a low input

The lamp on represents a high output The lamp off represents a low output

A	&	В	-	Inputs
	Q		-	Output

mom mone	TH TABLE:
----------	-----------

A	B	Q
0	0	1
0	ı	0
l	0	0
l	ı	ı

BOOLEAN EQUATION:

 $\mathbf{A} \oplus \mathbf{B} = \mathbf{A}\overline{\mathbf{B}} + \overline{\mathbf{A}}\mathbf{B} = \overline{\mathbf{Q}}$

IX. DISSCUSSION OF LOW-TRUE LOGIC

The preceeding discussion on the basic logic gates has not discussed gates with LOW or NEGATIVE-TRUE inputs. This is because there are no I.C.'s specifically designated for LOW-TRUE inputs, but a close examination of the truth tables shows the following relationships:

NOTE: In the following truth tables, "L" & "H" are used instead of "l" & "O" to reduce the confusion of what is a LOGICAL "l" or "O" between HIGH-TRUE and LOW-TRUE input LOGIC. An $L \leq 0.8$ volts and an $H \geq 2.0$ volts.

-

HIGH-TRUE INPUT

LOW-TRUE INPUT

LOW-TRUE OR

HIGH-TRUE AND

0

10				
	L	L	L	
	L	н	L	
	H	L	L	
	H	н	н	3

HIGH-TRUE NAND

38

LOW-TRUE NOR

A	B	Q
L	L	H
L	H	H
H	L	H
н	н	L

4.1-9

HIGH-TRUE OR

HIGH-TRUE NOR

LOW-TRUE AND

LOW-TRUE NAND

4.1-10

FLIP-FIOPS

RS

QQ

Ø

I. R-S LATCH:

The R-S latch was probably the first type of flip-flop ever built, (R = Reset & S = Set). R S Q \overline{Q}

To make the R-S latch into a clocked flip-flop, a clock input must be added.

II. R-S FLIP FLOP:

The R-S flip-flop is the simplest of the flip-flops.

The addition of the two NAND gates with the clock input changes it into a clocked R-S flip-flop. The inputs (R & S) can only change the outputs (Q & \overline{Q}) during a high input clock pulse. The R-S flip-flop is usually drawn in this manner:

III. DATA OR D-TYPE FLIP-FLOP:

The D-Type F. F. is used primarily for a data latch. It can be made effectively from an R-S F. F. by:

IV. J-K TYPE FLIP-FLOP:

The J-K or Master-Slave F. F. is used whenever data is to be trapped and latched at a given instant in time, such as in shift registers. It can be effectively made from two R-S F. F.'s by:

V. TOGGLE OR T-TYPE FLIP-FLOP:

The T-Type F. F. is used primarily in counters. It can be effectively made from a J-K (Master-Slave) F. F. by:

For every complete clock cycle ($\[\] \]$), Q and \overline{Q} go through $\frac{1}{2}$ of their cycle. Therefore, the T-Type F. F. divides the clock frequency by 2 as long as the "T" input is held high.
DECODERS :

These devices are most commonly used for address decoding. They are available in 2-line to 4-line, 3-line to 8-line, 4-line to 10-line, 4-line to 16-line configuration. For simplicity, a 2-line to 4-line decoder is shown below:

With this device, it only takes 2 lines to specify or enable 4 different devices. The output is low-true.

DEMULTIPLEXERS :

These gates are the same as a decoder, except the NAND gates have an additional input for data. This device separates serial data on one line

ENCODER/MULTIPLEXERS

ENCODERS :

These devices are used to convert several inputs into a few encoded lines. These are used on keyboards and multi-position switches.

MULTIPLEXERS :

Multiplexers or Data Selectors are used to select one of several data sources and place the data from that source onto a single output line. These are available in 4 to 1, 8 to 1, and 16 to 1 configurations.

Э	A	cø	Cl	C2	C3	Y
0	0	0	x	x	x	0
o	0	l	x	x	x	1
0	l	x	0	x	x	0
0	l	x	1	x	x	l
ı	0	x	x	0	x	0
ı	0	x	x	lı	x	ı
l	l	x	x	x	0	0
l	ı	x	x	x	1	1

X = DON'T CARE

OPEN-COLLECTOR LOGIC

There are several instances where a large multiple input OR gate is needed. In certain cases the common practice is to create a WIRED-OR. This is done by wiring two or more gate outputs together to create a single input into another gate. The WIRED-OR is a LOW-TRUE output. The WIRED-OR is used frequently to OR several interrupts together.

BUT, this procedure CANNOT be done with just any logic gate. The standard TTL logic gate has both active pull-up and active pull-down. Therefore, if two standard TTL outputs were tied together and one output was high, while the other was low; each gate would try to make it's output prevail until finally one of the output transistors of one of the gates burned out.

The only type of logic that can be WIRED-OR together is OPEN-COLLECTOR logic. The internal differences of the output driving circuits is shown below:

4.5-1

NOTE: The open-collector logic has no internal pull-up device (neither active nor passive). Therefore, the gate can ONLY pull what is attached to its output to ground. Since there is no pull-up device in the gate, several of these types of outputs can be wired together with no ill effects. But their combined outputs must have two states (high and low) to be of any use as an input to another gate. Therefore, an external pull-up resistor must be added to the junction of the WIRED-OR. The value of the resistor is calculated by:

$$\frac{2.6}{I_{TL}}$$
 > R > $\frac{4.6}{I_{S} - I_{TL}}$

WHERE:

- ITL = Total of the leakage currents of all the gates of the WIRED-OR when their outputs are all high.
- Is = The lowest maximum current sinking capability of any of the gates forming the WIRED-OR when its output is low.

TRI-STATE LOGIC

In a micro-computer system transferring of data from one part of the system to another is done via the DATA BUS. In a large number of systems, the number of devices attached to the data bus exceeds the load driving capabilities of the microprocessor or other devices that are connected to it. Therefore, there is a need to buffer the sections of the system to the data bus. There is always more than one section connected to the data bus, so for intellegent communications, one and only one can communicate to the bus at any one time. Therefore, there is a need to turn off or disconnect all but the section that has been enabled by the processor. But a large number of devices only have two output states (high or low). So, there is a need for a special output that has three states (high, low, or off). This is referenced to as three-state or TRI-STATE logic. The logic symbols for these devices are below:

HIGH-TRUE ENABLES

4.5-3

These gates when enabled, through the separate enable input, will function like the standard gates that we have already discussed. But, when they are disabled their outputs go to a high-impedance or off-state. Therefore, many 3-state devices can be attached to a common line without unwanted interaction as long as one and only one is enabled to output to that line at any given time.

BUS TRANSCEIVERS

The TRI-STATE devices that have been discussed are essential to one-way communications to a bus, BUT, the processor and a number of other devices are by-directional and need to communicate in both directions with the by-directional data bus. This caused the creation of BUS TRANSCEIVERS. BUS TRANSCEIVERS are effectively two TRI-STATE buffers strapped together in such a manner as to tie the input of each buffer to the output of the other. One of the junctions is to be attached to one of the data bus lines while the other junction is attached to the same respective line of a device or section that is to be buffered. One and only one gate is enabled at any given time. The gate that is enabled is determined by the desired direction of communications (IN or OUT). This is usually done by the READ/WRITE control line. There are usually four strapped pairs in one IC. In some Bus Transceivers, one of the junctions (input to output) is not made within the IC to facilitate interfacing a bi-directional bus to a split data bus or device. If this is not desired or needed, the user can externally make the connection.

ANALYZING SOFTWARE PROBLEMS

ANALYZING SOFTWARE PROBLEMS

INTRODUCTION

The object of this chapter is to present a general procedure used to design software to solve a problem. This procedure is completely machine independent, and it can be applied to any software problems you are likely to encounter. The most important thing to remember about this procedure is that you <u>do not</u> concern yourself with the programming language details until well into the solution. This is true of even the seemingly "trivial" programs. There is no way more certain to result in a program that is sloppy, ill-designed, and hard to debug than to try to write the program directly from the problem definition. To be effective software must be designed first and then implemented using the correct techniques.

5.0 The Software Design Procedure

The systematic approach to developing a programmed system is a logical extension of the normal problem solving cycle engineers and scientists have employed for years. It consists of seven basic steps:

- 1. problem definition,
- 2. problem partitioning,
- 3. algorithm development for each partition,
- writing the program for each partition,
- 5. debugging each program,
- 6. integrating the programs back into the system, and
- 7. final system debug.

Using this technique, the problem is broken down into smaller and smaller sub-problems until they are a size which you can deal with conveniently and effectively. This is because it is much easier to focus your attention on one small section of the system at a time. You develop each of these blocks and sub-blocks into a group of detailed flowcharts and programs, each of which is tested and debugged. They are then interfaced and the whole system tested. This systematic approach is intended to help you minimize errors, since the small highly localized programs are much easier to thoroughly check out than a single large, spread out program.

Graphically, the procedure is illustrated in Figure 5.1. You start with a central problem and partition it into logical blocks, solve and debug each of the blocks, and finally integrate and refine the blocks into the final system. There may be one or many levels of blocking, depending on the complexity of the problem. With experience, you will find this general approach to be the most direct and consistent way to implement a working software system, regardless of size. Less organized approaches may work for smaller systems, but you will become hopelessly tangled as the systems grow in size. It is best to learn the general procedure and use it on all problems, small or large. The greatest disasters usually occur when the whole design procedure is dispensed with because the problem is too "trivial" to warrant the general approach. Conversely, dogged application of this approach can make many formidable problems turn out far better and faster than anticipated.

In the remainder of this lesson we will initiate our study of the general software solution procedure. Lessons Three through Ten will then expand and refine the techniques used during the solution process.

5.1 Step 1: Define the Problem

As with any procedure for solving any problem, the first step is always the same (and the hardest): define the problem. For the case of software problems, you must decide exactly what the finished software system is to do. This definition of the operational characteristics you want the final system to have is called the <u>functional specification</u>. Naturally, it is easier to define and specify solutions for some type of problems than for others. Problems which are concerned with the implementation of specific features are generally easiest. Problems which require both judgement and implementation are the hardest. In the first case, the task is to figure out how to do something. In the later case, it is often a question of whether or not the job can be done, and if it can, what is the best way to do it. For example, a program to write single data bytes onto a magnetic tape unit is a fairly specific problem with a similarly straightforward functional specification. There is little conceptual design work to be done. It is mainly a question of using a program to control the

FIGURE 5.1 GENERAL PROBLEM SOLUTION PROCESS

selected hardware. On the other hand, the program required to use this program as part of a system to format sequences of data bytes into records on the tape will require considerably more design. You will have to decide on record length, record marks, whether or not you want to format the data with parity and/or check sum, and so on. Not only that, you must decide on the probable usage of the routine. The quick format program required to test a tape deck's operation in the lab is apt to be quite different from a general usage exchange format for a tape library. In the second case you must consider problems of compatibility with different hardware, reliability, userdocumentation, and many other details. All of these questions should be settled in the functional specification before you proceed to the next design phase. We will examine both of these cases as examples of general problem solutions in this and later lessons.

5.1.1 Information Required For A Functional Specification

It is difficult to give a complete definition of information that is always required for a functional specification. It varies widely from problem to problem. Simple systems can be specified adequately in a few pages. Large, complex systems may have hundreds of pages of specifications and still be inadequately defined. However, the following information should always be present.

- A concise problem statement. One short paragraph describing the problem the system is being designed to solve.
- Required hardware. You must know what signals and devices are available or required. The exact I/O or memory addresses are not important at this point, but you must know the hardware you will be using.
- 3. Required software interfaces. When designing programs, you will often be placing them into systems where they will have to co-exist with or utilize other programs. If this is to be the case, it should be noted in the specification. In this case, exact details are necessary; you should mention the

relevant system standard or format (i.e., all output must conform to system I/O standard 1-13) for all routines to be interfaced. These requirements will often have a significant affect on your design.

4. A complete description of how the system is supposed to function when complete. This is usually the longest part of the functional specification. This section should include a description of user interaction (if any), data required, output produced, special features, error condition handling, etc. In other words, a complete description of how the system will look to the world from the outside with no consideration for how it will look from the inside.

This problem makes writing the software specification sound like a rather formidable task. It is. A good, well thought out specification is the key to a good (i.e. successful!) project. It is well worth the time required to think the problem through completely. If you know what you have to do, it becomes much easier to proceed directly to a solution than when you must constantly stop and start to fill in the blanks in the problem definition. Few specifications are ever totally complete, but you should strive to get as close as possible before you start the actual design. Once you become immersed in the details of the solution, it becomes much more difficult to separate the normal implementation problems from those caused by a fundamental design logic error.

Example 5.1

Consider the design of a program to interface a magnetic tape recorder to microcomputer. This program will control the transfer of parallel data between the tape deck and the microcomputer. It will control all tape deck hardware functions which are required to perform these data transfers. The following is a possible functional specification.

<u>Scope:</u> This specification covers the program required to interface a Magbyte Model 1010 digital magnetic tape drive to an everyday microcomputer.

<u>Required Hardware:</u> The interface will require the tape drive to be connected to the computer through two input ports and two output ports: one data input port with parallel data from the tape deck, one data output port with parallel data out to the tape deck, one status input port and one control output port. Status input signals available are End of Tape, Write Protect and Ready. Control signals required are Tape Advance, Read/Write and Transfer Data. The timing waveforms are shown in Figure 5.2.

<u>Software Requirements:</u> The I/O routines must conform to the normal system requirements: output data to be passed via the C register (or the appropriate register or memory location for your system) and input data is to be returned in the A register (or the appropriate register or memory location for your system) upon exit. The routines must restore any registers or memory locations used.

Operational Description:

Input Operation: Upon call, the routine will generate all timing and control signals required to transfer one data byte from the tape in the tape drive into the processor. It will then return to the calling program with that data byte. If the tape drive status indicates End of Tape, an error indicator should be set on return. Otherwise it should be reset.

4

Output Operation: Upon call, the routine will generate all timing and control signals required to transfer the data byte passed from the calling program onto the magnetic tape in the tape drive. If the tape drive status indicates End of Tape or Write Protect, an error indicator should be set on return. Otherwise it should be reset.

READ	> ADVANCE TAPE				
	> READ/WRITE				
	- END OF TAPE				
	> TRANSFER				
	- DATA(S) 7///////DON'T CARE/////////DATA STABLE				
	- READY				
WRITE	> ADVANCE TAPE				
	> READ/WRITE				
	- END OF TAPE				
HIGH IF PROTECTED WRITE PROTECT					
	> DATA //////DON'T CARE////// DATA STABLE				
	← READY				
					
END OF TA	> ADVANCE TAPE				
	- END OF TAPE				

FIGURE 5.2 TAPE DECK TIMING WAVEFORMS

The above example is the specification for an I/O driver routine. All an I/O driver does is control the transfer of data between the computer and an I/O device. Note that the specification makes no mention of the requirements for initialization of the tape drive, how the data is to be formatted, etc. This is because an I/O driver is strictly concerned with transferring data to or from the device it interfaces. It is the responsibility of those programs which utilize an I/O driver to interpret the data and signals returned. A complete tape I/O system which will use this driver will be discussed in Lesson 7.

5.1.2 Using the Functional Specification

The functional specification is the base upon which you will build your system. If it has been properly designed, it will support and guide the rest of your problem solving effort. If it has not been properly designed, your project is probably doomed to failure or overrun before you even get started. Therefore, once you have established a functional specification, use it. If you don't, you are apt to run into that dreaded software disease known as "creeping features". This happens when an inadequate or disregarded problem specification allows non-specified "neat" features to creep into the system after work has begun. This can be disastrous, because changes easily accommodated in the planning stage can require massive effort and re-design work during the implementation stage. Usually, the farther work has progressed, the more effort is required to make any significant changes. The disease is often well advanced before detected and it can be fatal to even the best software projects. (Professional engineers note: marketing departments are notorious carriers of this disease. While they seldom show any symptoms, they are known to infect entire departments.)

The above comments should not be construed to mean that advanced features are to be shunned or omitted. Far from it. The microcomputer makes these features both possible and attainable. What is meant is that they should be designed in from the top, not added from the side. Therefore, when you design your functional specifications, take some time. Brainstorm for a while and come up with a list of features that the system can really accomplish. Try trading off some hardware and software to lower cost or increase

~ 0

system performance. Microcomputers make whole new fields of features possible, and it is worth your time to see if you can find some for your project. But once that functional specification is done, stick with it. If really drastic changes are needed, you will probably be better off starting over than trying to patch an inadequate specification.

5.2 Step 2: Partition The Problem Into Function Blocks

Once you have completed the functional specification for your system, you can begin to partition it into operational blocks. An operational block is a section of the system which is responsible for performing some specific system function. Operational blocks can be as complex as a complete floating point arithmetic package or as simple as a few instruction data conversions. In system operations, control passes from one functional block to another as the program executes. In this respect the block diagram can actually be considered as a type of overall system flowchart. It differs from the flowchart in that it does not specify the actual algorithms used to implement the functions (see Section 5.3). You first design the structure of the program as a series of successively more detailed operational blocks until you reach a level of complexity that you can deal with effectively. You then proceed to algorithm development for each block.

Blocking and partitioning are the cornerstone of converting a functional specification into a functional program. You can have as many levels of blocks and sub-blocks as the problem requires. When you are first learning, you should not hesitate to block down to sections which seem almost trivial. As you gain experience you will be able to judge more accurately what size blocks you can comfortably handle. Also, extremely involved or complex sections of a system may require much more detailed blocking than the more straightforward sections. The flexibility of blocking is that it allows you to easily adjust the level of detail to match the complexity of the problem.

5.2.1 Deciding on the System Blocks

The decision of what blocks to divide the system into initially is usually made by referring to the characteristics defined in the functional specification. Some common initial blocks are:

- a. input operations,
- program functions (transfer data, search memory, do arithmetic, etc.),
- c. system control and timing,
- d. output operation, and
- e. major data structures (tables, lists, etc.).

These blocks are then drawn and interconnected to form the system block diagram. It is important to remember that at this initial point you are concerned with <u>identification</u> of the major system structures. You are not yet concerned with their actual operation. The design of how the operational blocks will implement their functions will commence once the overall system structure has been established. In theory, it should be possible to implement the system in either hardware, software, or some combination of hardware and software at the end of the blocking operation. This leaves you with the maximum flexibility for actual system implementation.

Example 5.2

Let's take the specification for the magnetic tape I/O driver we wrote in Example 5.1 and do the block diagrams for that system. We can see from the functional specification that we will require blocks to input data, output data, and control the data transfers. Figure 5.3a shows an initial block diagram for this simple system. Note that it shows all data and control signals that are passed through the system. Since the data is transferred to and from the tape deck in parallel form, no further blocking is needed for the Input and Output blocks. However, the control block is required to perform several operations. It must detect end of tape, control the read/write line, sense a write protect condition, and advance the tape. This block is sufficiently complex to warrant sub-blocking. It is shown sub-blocked in Figure 5.3b. Note how all inputs and outputs of the sub-block diagram match those on the main block diagram. It is the same interface expanded to show more detail.

FIGURE 5.3

5.2.2 Checking the Block Diagram

Once you have blocked out the system, step back and see if it will meet your functional specification. Be sure you have accounted for all inputs, outputs, data transformations, systems functions, error conditions, and so on. A useful test is to list all the required system features and verify that you have included all the blocks required to perform these functions. After you have confirmed that everything is there, be certain that the blocks are detailed enough for you to proceed on to the logic design implementation. If some of the blocks sound vague or only partly defined, you may need to add more sub-blocks in that area. Repeat this procedure until you are convinced the system defined by the block diagram matches your functional specification. Once you are satisfied that you have covered all the required functions in sufficient detail, you are ready to proceed to the next step and begin designing the actual logic functions required to implement the system blocks.

At this point it is important to recognize that while we are going to continue using the assumption that we are designing a software system, this is not always the case. The problem specification and blocking methods we have presented so far are perfectly general; they can be applied with equal facility to hardware, software, and hardware/software system designs. In the latter case, the optimum trade off between the two implementation techniques will be looked for at this point. Background Section C is devoted to how these fundamental design decisions are made.

5.3 Step 3: Algorithm Development For Each Partition

Up to this point we have only been concerned with the functions to be performed on a block (or non-functional) level. With algorithm development we make the transition from logical system partitions to the actual logic required to implement the system. Most of our algorithm development will be done using flowcharts. The flowchart is often mentioned as the most important step in the software problem solution. This is plainly not true. The flowchart is simply a tool in the continuing design process which began with the problem specification. It is no more correct to sit down and start drawing flowcharts than it is to sit down and start writing

machine code. Both operations have their place in the problem solution procedure. Neither is satisfactory alone. Flowcharts are one possible way to conveniently develop and check the logic of the problem blocks for correct operation. Using flowcharts it is possible to develop program logic independent of any specific computer. It is also much easier to find logic errors in the symbolic flowchart than to try and hunt them down once they are committed to program implementation. (This is particularly true with the relatively primitive debug facilities currently provided by microprocessor manufacturers.)

5.3.1 Flowchart Symbols

The data processing industry has a standard set of flowchart symbols and you should adhere to these in the interest of making your work usable to others. (IBM produces an excellent template of all the standard symbols; it is widely available in stationery supply houses.) The most commonly used symbols and their functions are shown in Figure 5.4 (see page 5-14). These symbols should prove adequate for the construction of any flowcharts you will require.

5.3.2 Type of Flowcharts

Flowcharts can be drawn to represent algorithms at any desired level of complexity. The two most commonly used types of flowchart are the <u>logic</u> flowchart and the <u>machine dependent</u> flowchart. A logic flowchart represents algorithm logic in general operating terms with no reference to specific machine features (registers, memory, flags, etc.). The machine dependent flowchart presents algorithm logic within the context of the features provided by some specific processor. It is advantageous to initially draw a logic flowchart for each functional block in the block diagram. These are then thoroughly debugged and used as the basis for the machine dependent flowcharts required for the computer you are using.

If you program in higher level languages, you will hardly ever use machine dependent flowcharts. The logic flowcharts required to define the algorithm to be used are all that are required. This is because all of the machine dependent details will be handled by the language processor.

FIGURE 5.4 FLOW CHART SYMBOLS

Similarly, general algorithms and problem solutions which are to be implemented on a variety of computers are best presented using logic flowcharts. Any user can then take the general logic flowchart and use it as the basis for the implementation of a solution on any computer or in any language. As you gain experience with your particular installation, you will be able to go directly from the block diagrams to flow charts that are a cross between purely logical and purely machine dependent flowcharts. However, if you intend to save the algorithm or solution for documentation or possible use on some other system, it would be a good idea to draw a good logic flowchart after the system is completed.

5.3.3 How to Design Algorithms

The design of program algorithms is actually the design of software, a vast subject indeed. We will be covering a portion of that subject in the next eight lessons. However, we can discuss some of the general procedures used when translating a logical system block to an algorithm.

- Decide what the block is to do. This is the same step as when we initially specified the problem. The only difference is that it is now being done for a small, local program rather than for the whole system. Naturally, the label on the block will provide a good starting place for this description. Usually a one or two sentence description of the operation to be performed is all that is required.
- 2. Decide where the data to be operated upon is located. Is it read in, passed from another block, looked up in a table, or what? You will need operation blocks to input the required data. While you decide where to get the data, decide if you need to do anything special to it before you use it. Does it have to be complemented? Rotated? Masked? Scaled? If so, you know you will need some data transformation blocks in the flowchart.
- 3. Figure out how to perform the required operation. This is the real meat of the algorithm development. This will be where you combine process blocks, data and decisions to convert the data from the input

format to the output format. This part of the process will usually account for the largest portion of your work. Remember, developing the algorithm is an iterative process.

It will usually take several tries before you get the algorithm correct. Start out by writing down the sequence of operations to be performed in the order they must be performed, like "read in data, then test for control characters, then test for lower case characters", and so on. This will give you that all important feel for the sequences of actions which are to be performed. After you have the general flow, add the process and decision blocks you need to actually perform the operations.

After you have an algorithm that should work, try it out with data to see if it does work (all on paper, of course). Try to imagine every possible data condition that could occur and then be sure your algorithm can process it correctly. You must be certain your logic is correct in the algorithm before you proceed to coding. Be particularly careful that your algorithm can handle error conditions. This is an area which is particularly susceptible to errors which will be very hard to detect. Be patient and thorough. Time spent getting the logic correct in the algorithm will be time saved during system debugging. Think first, program later.

- 4. Decide what to do with the finished data. Does it have to be specially formatted? Do you save it? Pass it back to a calling routine? Output it? Add the blocks required to get the output data ready for the receiving routine or device.
- 5. Keep the structure simple. Make it a goal to keep the flow straightforward, logical and clear. Be particularly careful about how you enter and exit from the routines. There are really only a few simple structures you should ever need to use in construction of any algorithm. We will examine these structures in the next few lessons.

Example 5.3

Let's develop the algorithms required for our magnetic tape drive interface system used in Examples 5.1 and 5.2. The first thing that becomes apparent is that the data input and output blocks are very large blocks and very small programs. The data is to pass through the routine in parallel without being modified. Thus the flow charts for those blocks would be simply one block each:

The obvious conclusion is that the majority of these flowcharts will be concerned with <u>when</u> to read and write the data, namely the timing and control blocks. Let's take the read block first. From the timing diagram we can see that for this tape deck the sequence of control for reading a data byte from the tape is advance the tape (from the manufacturer's specification we find that it automatically advances in one byte increments), test for End of Tape, set the Read/Write line to Read, wait for data ready, read the data, then exit. The algorithm for this function is shown in the logic flowchart in Figure 5.5. Note how the flowchart defines a logical solution to the problem without reference to any specific hardware.

A similar procedure is used to design the algorithm for writing data. For Write operation the timing waveform specifies that we advance the tape, test for End of Tape, test for Write Protect, set the Read/ Write line to Write, set up the output data, strobe the data transfer line, wait for Data Ready and exit. This flowchart is shown in Figure 5.6. Using these two logic flowcharts we could then draw the machine dependent flowcharts or proceed directly on to the actual program.

5.4 Objections to Flowcharts

We have been using (and will continue to use) flowcharts to represent the algorithms we have developed. This procedure is not universally accepted, particularly in the data processing industry. Critics maintain, with a certain amount of justification, that flowcharts are unnecessary and even misleading. This position arises from the basic contention that (1) flowcharts are only marginally useful in higher level language program developments and (2) complex flowcharts can become very difficult to follow. To support this position they cite very valid evidence that most professional programmers draw only very limited flowcharts prior to commencing coding. In fact, most flowcharts for large systems are drawn for documentation purposes after the program is complete. This situation arises from the fact that when writing programs in modern higher level languages, algorithms can be efficiently developed directly in the language with no intermediate flowcharts at all.

To answer these arguments (which we really basically agree with), we must point to two basic facts: (1) satisfactory higher level languages are not yet generally available for microcomputers, and (2) most programmers developing microcomputer programs are not professional programmers. The contention that poorly structured flowcharts are hard to follow is completely true. We will always go to great lengths to keep flowchart logic structure clear.

The first fact, the lack of higher level language availability, is obvious. There are at present only two widely available higher level microcomputer languages (Intel's PL/M* and various BASIC** interpreters.) Of these, only BASIC is available for small system use. It will be some time before common higher level languages such as FORTRAN or COBOL will be available for microcomputers. In the interim, the work will be done in assembly language. Even when higher level language processors become available for microprocessors, the nature of many microprocessor applications is

^{*}PL/M is a registered trademark of Intel Corp.**BASIC is a registered trademark of Dartmouth University.

such that a knowledge of assembly language will still be required. Higher level languages are only marginally effective in developing programs for use in control or real time applications. Programs of this type require the complete control of the computer's hardware that assembly language provides. For assembly language, use of the flowchart provides a pseudo higher level language for algorithm development that can be either dependent or independent of the computer to be used. (We will have much more on the higher level-assembly language tradeoffs in Lesson 9.)

That most microcomputer programmers are not professional programmers is also fairly obvious. Most current microcomputer programmers are logic designers and hobbyists, many programming for the first time. Since they will probably be forced to use assembly language, these users will be learning programming, algorithm development, and machine structure all at the same time. The use of assembly language programming and flowcharts will enable us to separate these learning activities. In particular, the initial process of teaching general algorithm development is better presented with general flowcharts than with some specific language. The techniques presented using some specific language may reflect the compromises made by the language rather than those required to solve the problem. After some initial algorithm development training, the user may be able to proceed to flowchart free higher level language programming. For that initial training, however, the logic flowchart is an important teaching tool.

To make maximum use of flowcharts without becoming unduly attached to them we will adopt a carefully structured approach. All algorithms will be presented in general logic flowcharts. We will not use machine dependent flowcharts except in the context of specific examples. All flowchart structures will be chosen from a small group of simple, logically sufficient structures whose use can be directly transferred to most higher level languages. In this way we will make maximum use of flowcharts while avoiding the major objections.

5.5 Procedures After Algorithm Development

After you have completed the problem definition, block diagrams, and algorithms, you can begin to think about writing the program required to implement the logic system you have defined. However, it should be apparent by now that if you have followed the first three steps correctly, this step should present you with very little trouble. The blocking and algorithm steps combined with the flow charts will have supplied the system structure and control logic. All you will need to do is implement these features using the programming language you have available. Naturally, that is easier said than done, but if the logic is correct, the problem will have been reduced to finding combinations of machine instructions or higher level language statements to perform the desired operations. We will spend the next eight lessons refining and expanding your problem solving skills, augmenting these skills with useful programming techniques.

5.6 Summary

This lesson has presented the general approach required to solve software problems. All software problems can be solved by dividing them into blocks and sub-blocks, developing algorithms for those blocks, writing programs to implement the algorithms and interfacing the blocks back into a system which solves the problem. The general approach to problem definition, blocking and algorithm development was then presented and illustrated using the example of a digital Read/Write magnetic tape deck.

QUESTIONS

- Describe the general software problem solution process. Is this the way you normally approach problems? Do you think the general procedure can be applied to other, non-software problems?
- 2. Why is it important to establish and follow a functional specification at the outset of the solution to a problem?
- 3. Describe "creeping features". Have you ever seen it in action? What was the cause? What was the result?
- 4. Describe the difference between a logic flowchart and a machine dependent flowchart. Which do you usually use? If you usually use a machine dependent flowchart, do you usually draw a logic flowchart of the solution for future use?

PROBLEMS

1. What value of A will be printed in the example flow chart below:

2. The Fibonacci series F(N) is a mathematical number sequence which is defined for all integer values of N by the following algorithm

F(0) = 0 F(1) = 1 F(N) = F(N - 1) + F(N - 2) for all N > 1For example, F(2) = F(2 - 1) + F(2 - 2) = F(1) + F(0) = 1 + 0= 1.

Thus the Fibonacci series can be represented as follows

N 0 1 2 3 4 5 6 7 . . . N F(N) 0 1 1 2 3 5 8 13 . . . F(N - 1) + F(N - 2)

Draw the flowchart to compute F(N) for any value of N.

- 3. Draw a flowchart which incorporates the flowchart developed in Problem 2, to compute and print the first 100 values of N and F(N). (Assume that the command "Print" is sufficient to print a value.)
- 4. One simple method often used to multiply two numbers together is to repeatedly add one number to itself. For example, 3 * 4 can be thought of as 3 + 3 + 3 + 3 = 12. Develop the algorithm to multiply two numbers using this method. Draw the flowchart. Do you feel this is an efficient way to multiply two numbers? Is there any way to make this basic algorithm more efficient?

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

INTRODUCTION

1

In the course of designing a system there are a series of crucial decisions which must be made regarding the ultimate system implementation. Throughout the software course we are concerned primarily with the implementation of the software portions of these systems and how they interact with available hardware. To be sure, this area is vital to the designer. However, the thorniest problem initially confronting most designers of microprocessor based systems is how to partition the system functions between hardware and software implementations. This is understandable since most users are far more experienced with hardware design than software design. However, the plain truth is this: within the speed limits imposed by any computer, anything that can be done with hardware can be done with software. In fact, only a small percentage of applications will present speed problems. Usually even these applications are only speed sensitive in areas which can be readily identified and processed with discrete logic to make them adaptable to a software solution. We thus have a sliding scale of implementation possibilities from applications with no software (i.e. no microprocessor) to applications where 95% of the system cost will be in the software. Given this wide range of possibilities, how do we decide where to draw the line? Where indeed. Assuming that the objective is to do the job and make some money, the answer is obvious: we draw the line at the point where we find the lowest cost hardware/software system that does the job.

Before we can discuss how to trade hardware cost for software cost, we must first identify the areas that affect cost in both of these areas. For the purposes of discussion we shall consider cost to be localized in three areas: hardware cost, software cost, and system cost. After we have discussed the various cost areas we will be able to discuss tradeoffs required to modify system cost and performance.

The CPU chosen for the system will have the central effect on the hardware cost of the system. This is <u>not</u> because of the cost of the processor itself. For most systems the actual CPU cost will be an insignificant portion of the total system cost. It is a result of the effect of the CPU on all other aspects of the system design, both hardware and software. It therefore makes the most sense to discuss these costs within the context of the CPU itself.

6.1 Hardware Cost

Hardware cost will be considered to be all of the hardware which must be designed to implement the required system functions. This would include the microprocessor, memories, interfaces, clocks, power supplies, terminals, printers, or other pre-configured peripherals.

6.1.1 System Speed

To paraphrase an old police traffic slogan, "Speed kills microcomputer projects". This is due to the sad fact that of all the great things microprocessors do, doing them fast isn't their best attribute. Most commonly available microprocessors have maximum cycle speeds in the 2MHz range. Execution of an instruction generally requires from 4 to 10 machine cycles. Moreover, doing anything useful will require several instructions. What all this means is that a microprocessor operates considerably slower than conventional sequential and combinational logic. As a rough rule of thumb, if your system requires the processor to do anything faster than 10µsec (100 kHz) you will need to be very careful in your design.

There are a limited number of high speed microprocessors available, but these are sets of devices, not single package microprocessors. They are somewhat harder to use and considerably more expensive. If you begin to use these you may discover your cost rapidly exceeding the cost of some other form of logic implementation. Also, high speed for the CPU generally requires high speed memories, interface logic, and peripheral devices, further raising costs.

As we mentioned earlier, few projects have overall speed requirements that are so severe as to preclude microprocessor use. However, they do exist, and if you think you have one, be very careful to be certain from the start that a microprocessor will be able to do the job. Conversely, there is no point in paying for system speed you don't need. Speed is expensive. You generally get a certain level of speed with the microprocessor. If you're not using it, see if you can trade it for some interface simplicity. No use buying a fast processor and fast interfaces if a fast processor and some slower, dumber, and cheaper interfaces will do. We'll talk more about this later.

6.1.2 Memory Requirements

The system memory is where you will store the programs and data required for system operation. With most microcomputer systems this memory will consist of a combination of read/write memory (RAM) and read only memory (ROM). (With some processors the CPU itself contains a small read/write memory, thus making it possible to implement simple systems with just the CPU and ROM's. Larger systems will require additional read/write memory.) The object of the game here is, as usual, to minimize cost. This is done by getting as much of the software into ROM as possible. This is because ROM can be left with power off and the program will still be there when power is restored. Alas, such is not the case for RAM. Thus when you hear people say that programs should be in ROM because ROM is cheaper then RAM, it isn't really true. Bit for bit the costs are becoming quite comparable, with many types of ROM considerably more expensive than RAM. The fact is that RAM is not practical in dedicated systems which must maintain the program without re-loading memory every time the power is turned ON.

Read/write memory can be broadly divided into static RAM and dynamic RAM. A static RAM will maintain its data as long as power is applied. A dynamic RAM must be "refreshed" periodically. This refresh operation is accomplished by pulsing some of the address lines (usually the most significant bits) periodically. To do this requires the addition of special circuitry to the system. In general, the integrated circuit constraints are such that a static memory requires more area on the semiconductor chip than a dynamic
memory of similar size. Static memories also dissipate more power per bit. The largest RAM memories are, therefore, usually dynamic, at least initially. As the device technology improves these larger memories usually then become available in static form.

The cost of both static and dynamic memories has declined and will continue to decline. This cost is based on the absolute cost per bit for a given amount of storage. However, the device organization and not this absolute cost per bit is often more important in practical applications. In terms of cost per bit, a 4096 x 1 dynamic memory may be much cheaper than a 256 x 8 static memory. However, you will need eight of the dynamic memories to do any good. They will require refresh circuitry, and they will take up eight times more P.C. board space in production. If you only need a 128 byte buffer and some miscellaneous program storage, the bigger "cheaper" memory may cost far more. For cost effective design it is imperative that you avoid memory overkill. Design in what you need, allow some extra for unforeseen difficulties and reasonable future expansion and <u>stop</u>.

The advances in memory technology are impressive and they receive lots of publicity. But the fact remains that <u>few systems for mass production will</u> require vast amounts of RAM. Often minimum package count and ease of system interface will be far more important than sheer volume. Buy one development system with lots of RAM. Use it to develop lots of systems with only the RAM required to do the job.

With ROM's, the situation is considerably different. Read only storage is really only useful organized in multiples of the computer's basic data word. It doesn't make much sense to mask program two 1023 X 4 ROMs for use in an 1024 X 8 system. As a result, ROMs are widely available for eight-bit processors in sizes from 8 x 8 to 2048 x 8. ROMs are available in three types, each suitable for certain areas of application: EROMs, PROMs and masked programmed ROMs.

An EROM is a ROM which can be erased and re-used. An EROM can be programmed and, if errors are found, erased and reprogrammed. Erasure is accomplished

by exposing the EROM to intense ultraviolet light for a half hour or so. In this way the EROMs can be re-used indefinitely. EROMs are the most expensive type of ROM. They are best used in development work or low volume production equipment which require frequent changes to the operating program.

A PROM is a ROM which comes from the manufacturer with all locations as one's or zero's. It can then be programmed by the user. Unlike an EROM, however, once programmed a PROM cannot be erased. PROMs are somewhat lower in cost than EROMs. However, frequent program changes can quickly make them more expensive. They are best used in production systems which will require few changes but whose production volume does not justify a mask programmed ROM.

A mask programmed ROM is fabricated by the manufacturer to contain the desired program. It is neither field programmable nor erasable. A ROM is ordered by sending the semiconductor manufacturer your program. They then generate a custom ROM from your specification. The cost of ROMs produced this way is the lowest available. However, the semiconductor manufacturers charge a flat fee for the generation of the required mask. This cost makes mask programmed ROMs cost effective only for those high volume products whose program will never (hopefully) require change.

6.1.3 I/O Requirements

It is rapidly becoming apparent that I/O is the soft underbelly of most microprocessor based systems. Interfacing the microprocessor to the rest of the system is always a requirement. The microprocessors currently available generally provide only enough interface capability to directly interface one normal TTL device. This means that all signals in and out of the microprocessor must be buffered. Further, control signals must be decoded, interrupts must be processed, data must be latched and held until the processor or peripheral is ready to accept it, and many other system requirements must be met. All this falls within the realm of I/O. The fundamental element of microprocessor I/O operations is the <u>I/O port</u>. An I/O port is the point where the signals to and from the various I/O devices meet their respective signals from the microprocessor. I/O ports provide both buffering and some control decoding. The I/O addresses sent out by the CPU are decoded to provide an enable signal to a specific I/O port, thereby gating the information from that port onto the system data bus for a read operation or gating the information on the system data bus into the port for a write operation. The mechanics of how the port works are not as important as the realization that all data into and out of the microprocessor is going to have to pass through I/O ports. This means that you will want to get your money's worth out of every port. To help you do this, some processors provide a small number (usually two or four) of I/O ports right on the CPU chip itself. If you only need one or two ports for a simple system, this can be a significant cost saving factor.

After you've got the I/O ports, you then must design the special logic required to control the devices or circuits you are interfacing. For most microprocessor applications this is where you will do the majority of your hardware design. If you do lots of microprocessor systems, you will eventually arrive at some standard I/O port design, but there will almost always be some detailed interface design work to be done.

When making the decisions about how to implement your I/O ports and control logic, you may be able to obtain some cost advantage by using a specialized interface device. Some microprocessor manufacturers have designed special families of devices to ease I/O design. These devices usually consist of several I/O ports, some defined logic functions, and all required control logic required to interface some device directly to the microprocessor with little or no external logic. For example, the data ports, control logic, and interface circuitry required to input and output parallel data directly to a serial interface is one popular example. Others include interrupt handlers, real time clocks, bi-directional data ports, and so on, with more becoming available as the industry defines what functions are commonly useful. If you can find some of these to fit your needs, they can save you money.

I/O design is the area where you can often achieve significant savings by trading hardware for software. It is also the area where you may be able to trade some cost for enough added speed to make a usable system. I/O design is an area where creative use of software and hardware will result in optimum system performance at lowest system cost.

6.1.4 Peripheral Devices

In terms of production cost the most expensive portions of your system can easily turn out to be those assemblies you have to buy pre-assembled. All types of computer keyboards, displays, printers, tape equipment, A/D and D/A converters, and similar peripherals are very expensive relative to the cost of the microprocessor hardware. In the normal microprocessor system these devices account for over 50% of the hardware cost. If you must include these components in your system, it is very important to make a very careful analysis of whether or not your product is still cost effective. It can be devastating to have to add a \$75 keyboard to a microprocessor system where the total component cost is only \$50. In this type of situation you might see if you can use a less expensive device and add the other features with software. All these types of decisions must be weighed carefully before you start the actual design.

6.1.5 Device Support

Into this category we toss all those microprocessor system details that drive your system cost up. These are particularly obnoxious because they are often overlooked until it is too late. The three most common offenders in this category are clocks, power supplies and interface requirements.

The system clock is used to provide the timing signals required to run the CPU and some of the other system logic. From a cost standpoint, there are two areas of interest: who generates the clock and how good does it have to be. In the first case the answer is either the CPU or the system. If the CPU generates its own clock (it may need an external resistor and capacitor), you don't have to worry about the second question. If you have to generate the clock, you definitely have to worry about it. Some micro-processors are very finicky about their clocks. This means special driver

chips, crystals, logic, power supplies (i.e. money). If you are in a very cost sensitive operation, this can make a significant difference.

In addition to the main CPU clock, certain interfaces will require their own clocks. This includes serial interfaces, real time clocks, and many special interfaces. In some cases you may be able to derive the required clock(s) from the main system clock. If not, you will have to plan on the added cost of the required additional clock(s).

Power supplies are another area where requirements differ widely from microprocessor to microprocessor. Some microprocessors will run off the same +5V power supply that is used for all the logic. Some require up to three different power supplies. Power supplies are not cheap and you can quickly add a large cost to the system that you may be able to avoid entirely by chosing a different processor. (Note: after you go to the trouble of picking a microprocessor, be sure the rest of the system runs on the same voltages. It doesn't make much sense to cut corners to get a single supply microprocessor and discover the memories chosen need three supplies anyway.)

Besides paying attention to the number of system power supplies, you must be aware of the overall system current requirements. These requirements can vary widely, depending upon the CPU, memories, and interface logic used. You must be certain that your power supplies can supply enough current to meet peak system usage. Conversely, you don't want to pay for more capability than you need. To solve this problem, you usually don't settle on the final production power supply ratings until the system is complete and its power requirements are characterized. This is in contrast to the selection of the system hardware, where the number of supplies to be used in the system is determined before beginning the design.

Interface requirements relate to support circuitry required to use the microprocessor with other devices in the system. A microprocessor that is very easy to use among the members of its own family of devices may turn out to be a horror to interface to the rest of the world. This is

particularly true of P-channel devices to be used in N-channel or TTL systems. Incompatibilities among system components can lead to problems and increased costs all over the system, including the previously mentioned clock and power supply areas.

6.1.6 Microprocessor Hardware Selection Summary

It should be obvious from the preceding brief discussion that picking microprocessor hardware is a tricky business. Even ignoring the software criteria, you must be very certain you get a device which will meet your system requirements at the lowest cost. It is important to remember at this point that lowest system cost may not always be the same as lowest possible hardware cost. Modification ease, maintenance and other factors may enter into the picture. There are times when you may want to knowingly allow some extra hardware cost to lower the costs in some other area. We will point out these areas as we go along.

6.2 Software Costs

Software costs are insidious. You can't see it, or feel it, or hear it, but software can break your microcomputer project faster than almost anything. As hardware systems and peripheral devices become more and more standard, more and more of the design-to-price burden is going to fall on the designer who has to design the software to hold these hardware blocks together.

Software is characterized by a very high development cost and a very low duplication cost. By way of example, IBM's software development of OS 360 (a very large and complex software project, to put it mildly) is estimated to have taken over 5000 <u>man years</u> of development time. However, the entire system can easily be duplicated and stored on \$1000 worth of magnetic tape. As we said, duplication is cheap, development is expensive. This characteristic brings with it the following generalization: software for use in high volume products must be fixed. It is absolutely not possible to produce low cost custom software. Once you commit a program to ROM, don't consider changing the program unless you are prepared to change every other identical ROM in every other system. (Not to mention updating all

reference documentation.) The cost of custom software (unless you are in that business) is so high as to completely preclude it from volume systems. The software development cost very quickly completely overshadows the hard-ware cost.

Software exerts cost pressure on projects in two basic ways. The first is when poor technique and analysis lead to systems with inefficient use of expensive hardware resources. This causes the system to end up with more memory than it really needed, high speed interfaces that could have been eliminated with good software, extra I/O ports that some software multiplexing could have eliminated, and so on. The second way software raises cost is in the development/support cycle. This results in late projects due to inadequate time requirement forecasting, program bugs that turn up just after you take delivery on 10,000 mask programmed ROMs, documentation that requires a complete software system redesign when the program has to be changed a year after release, and other gory, expensive examples. Of the two areas software causes problems, the second is far more serious than the first. The first set of problems will naturally become less severe as you become more familiar with hardware/software system designs. (After all, that's what this course is here to teach you.) The second set belong to that group of problems that the entire computer community suffers along with year after year. Some progress is being made, but it is still a thorny problem. Good engineering practice is your best defense. Remember this basic rule: hardware and software design are equally complicated. The only difference is the rules.

Let's look at those areas where software can raise (or lower) your hardware costs. Remember we are considering a sliding cost scale from all hardware to virtually all software.

6.2.1 Processor Organization

The architecture of the processor you choose for your system can have a significant effect on your software costs. This is felt primarily in two areas: memory and I/O. A processor which is deficient in memory addressing modes will require larger programs to accomplish the same job as a

processor with more flexible addressing. More program means more memories, and more memories means more cost. A lack of on-chip registers may require you to use memory for temporary data storage. These memory references take more time during program execution and may make the difference between a simple (i.e. cheap) interface and a more complex (i.e. expensive) one. A versatile interrupt system may enable you to do most of the interrupt decoding with logic built into the CPU. Otherwise, you will have to add more service routines, I/O devices and money. A processor with a versatile instruction set may enable you to implement your programs much more efficiently, thereby saving memory space. The list goes on and on. Any area of the microprocessor's architecture can become a cost sensitive point in certain applications. The ultimate goal is to find the cost sensitive areas in your application and pick a processor that is strong in those areas.

6.2.2 Program Structure

The program structure, just as with the processor architecture, exerts its primary effect on the system memory requirements and I/O structure. Poorly designed programs will often take twice the memory of more carefully designed programs. You must balance the time and cost required to optimize programs against the cost of memory saved. Ideally, you will become skilled enough to design near optimum code the first time, thereby avoiding the expensive refinement procedure. Also, different program structures can be used to get maximum speed of program execution in speed sensitive areas. Failure to take advantage of these structures can result in the use of more expensive I/O interface hardware than is actually needed. The different program structures and their tradeoffs in speed and memory usage are discussed throughout the software lessons.

6.2.3 Implementation Language

The level at which you develop your programs has its primary effect on system memory size and overall system speed. Programs developed in higher level languages will generally be faster to develop, but they will take more time to execute and occupy from two to ten times more memory than the same program done in assembly language. Assembly language programs can

be designed for optimum memory usage and system speed but they take more time to develop. A data processing industry estimate is that assembly language programs take from two to five times longer to develop than comparable higher level language programs. This is particularly true of large, complex systems. You must balance the cost of development against the cost of the additional hardware resources. As a general rule, higher level languages will be lower in cost for small quantities of systems with assembly language becoming more cost effective as production quantity increases. (This assumes the higher level language programs can meet all system speed requirements without extra work.) The higher level language/ assembly language tradeoffs are discussed in Lessons 9 and 10.

6.3 Systems Cost

Beyond the costs associated with producing the hardware are those costs associated with developing and maintaining the product. Unlike production costs, which are incurred as a function of how many units are produced, these costs are largely independent of production. Indeed, it is possible to incur very large costs in this area and never produce a single unit.

6.3.1 Development Costs

System Development Costs include all of the expenses you incur during the design of the product. Since these costs will be incurred prior to production, they will usually have to be met from your available resources. The areas of cost in this phase are all well known. However, the addition of software development adds a few extra categories.

Hardware Selection

All time and money spent evaluating various microprocessors and system components prior to commencing the actual system design. This would also include all analysis of crucial timing and interfaces and the initial partitioning of the system into hardware and software blocks.

Hardware Design

All time and money spent designing and debugging the hardware required to implement the system hardware.

Software Design

All time and money spent designing and debugging the programs required for use in the system. This may include a significant amount of expense for timesharing computer usage if you do not have the required program translation facilities available in house.

Development Tools

This includes any special hardware (such as a microcomputer development system or special test hardware) you have to buy for debugging and checking out the system design. Some of this cost will actually be spread out over all developments which end up based on the same microprocessor.

Documentation

All cost spent in developing the user manuals, production documents, reference specifications, and other documents essential to converting a working lab project into a viable product. This cost should not be underestimated. Thorough documentation will probably consume 20-25 percent of your development budget. However, it will be money well spent as your product matures and requires changes.

Marketing

This is the cost incurred in taking your finished product from the lab and presenting it to the world. This is not usually an engineering activity.

6.3.2 Modification Costs

Once you have a working product, there is always the possibility that you will want to issue a new, improved version. This is one area where a microprocessor based system can really save you time and money. In a total hardware system, a design extension or re-design will usually mean an almost total re-investment of the initial development costs. However, with a microprocessor based system you may be able to make substantial

functional changes with little or no changes to the hardware. This is because a software system can be re-configured by changing the program. Bearing in mind that all the software cost rules still apply, this is still usually a very effective technique. Expanding or changing an existing system is one area where you will find that the money spent on documentation was well spent. It can often make the difference between a successful and cost effective design modification or a complete re-design.

Program changes will often not be effective in products which were optimized so completely initially that there is not much extra hardware left to work with. The program can, after all, only perform functions which use available hardware. No matter how clever your programmer, if there isn't enough memory or I/O ports, some things just won't be feasible. If you have a product which looks like it is a candidate for later expansion, you may wish to incur a little higher production cost initially by adding some hardware for later use.

6.3.3 Maintenance Costs

Any cost you incur when your product fails in the field comes under this heading. All those field servicemen, return clerks, rework lines, and other support are expensive. Here too, the microprocessor can save you money. Almost by definition, the microprocessor must communicate with the entire system. This means that with the addition of some programming, memory, and some small amounts of hardware you can convert your microprocessor based system into its own diagnostic tester. You may not need to provide thorough tests, but even some simple tests can make troubleshooting a lot easier. Anything you can do to make testing and servicing easier will lower your maintenance costs.

Naturally, you must weigh the benefits of self-testing against the cost it will add. Often, however, you will discover at the end of the project that you have some extra I/O lines or a partially full ROM. Since these are going to be there anyhow, you may as well use them if you can. Since this type of thing is not usually discovered until well into the project, the addition of self test features at that point is one of the few times

when it may be desirable to add features after the design has started. However, if you want to be sure you have self-testing you should never wait to see what is left over. In that case, the self-testing features should be designed in like any other system feature.

6.4 A Perspective On Costs

Now that we have examined the various component costs, let's see how they relate to the total cost per unit of our proposed product. Over the total life of a product, the cost can be represented by the following general equation:

$TC = \frac{F}{2}$	$\frac{1}{N}$ +	VC	where	тс
				FC

FC is the fixed cost required to develop and maintain the product,

is the total cost per unit,

- VC is the variable cost associated with producing each unit, and
- N is the number of units.

The terms in this equation can now be further broken down into those cost areas we discussed in the previous sections. Thus the fixed cost portions of the equation would turn out to be the development costs of the hardware and software, the documentation, the modification costs to the line of products, marketing, and all other cost which is incurred regardless of the volume of product produced. These costs are amortized over the number of units produced; the larger the number of units produced, the lower the fixed cost per unit.

The variable costs would be the cost of all the hardware components, production labor, field service for the percentage of units which prove defective, and all those other costs which vary based upon the number of units produced.

It is clear from this equation that the area where we will want to direct our cost reduction effort is dependent upon the quantity of units produced. For small quantities of units, we will want to minimize the fixed costs. In practical terms this means using higher level languages (when available), hardware that is designed for ease of debugging and high reliability, and a general emphasis on development speed rather than low cost production. Conversely, for high volume production we will want to absolutely minimize production costs. This means highly optimized programs to minimize memory use, maximum use of program controlled interfaces to eliminate unneeded hardware, mechanical designs for easy production and any other techniques which can be used to hold the cost down.

The exact point at which the emphasis shifts from fixed cost reduction to variable cost reduction naturally changes for every product. In general, the more expensive the final product, the lower the emphasis on the variable costs.

6.5 Trading Off Software and Hardware

Now that we have discussed the main factors affecting system performance and cost, we can discuss the areas where system problems will force us to trade off hardware and software to modify system performance and cost. As we mentioned earlier, high speed (programmed, hardware, or whatever), large numbers of parts, and complex software are all expensive. We will be trying to implement all required system functions using the minimum cost combination of these items.

6.5.1 Conditions Which Lead to Design Trade Offs

In the course of the design we will be faced with several possible project conditions, some of which will require us to consider the various possible system tradeoffs. These conditions can be summarized as follows:

- system speed too low, system cost too high,
- 2. system speed too low, system cost acceptable,
- 3. system speed acceptable, system cost too high,
- system speed acceptable, system cost acceptable,
- 5. system speed excessive, system cost too high,
- 6. system speed excessive, system cost acceptable.

Clearly, each of these conditions requires different remedial action. Condition one is an obvious crisis situation. Unless some major breakthrough can be discovered, the project is probably doomed. Condition two is also fairly critical. It can be worked on only if the necessary speed can be acquired without driving cost into the unacceptable range. Very careful analysis will be required. Conditions three and five are probably both solvable by application of some hardware/software trade offs. Conditions four and six can be left alone. They may also be examined to see if extra features might be added to utilize the excess system speed without increasing the cost to an unacceptable level. If you elect to try this, be very careful not to go overboard. Any additions are best made in very small controlled increments. Avoid "creeping features" (see Lesson 2). If you aren't sure what to add, don't. Be happy you brought this one in under budget and save your money for next time.

After you figure out which condition your project is in, you have three alternatives: built it, change it, or cancel it. Building it or canceling it are decisions that you have to make on a situation by situation basis. Changing it may help you postpone that decision for awhile, but ultimately you will still have to decide. We can now examine how to change it so that hopefully you can decide to build it.

6.5.2 System Speed Problems

As we have emphasized all along, speed usually costs money. There are very few situations where increasing system speed lowers the cost. If you have a project which has to have increased speed, you might consider the title of this section to be "Trade Offs that Increase Cost". With that in mind, we can examine where to look to increase system speed.

System speed problems can be broadly divided into <u>data transfer rate</u> <u>problems</u> and <u>data manipulation rate problems</u>. In system operation these two types of problems will require distinctly different solutions. However, the same general techniques will apply to correcting both.

6.5.2.1 Data Transfer Rate Problems

Data transfer problems are encountered when transferring data between the computer and system I/O devices. This class of speed problem can be further subdivided into processor rate limited problems and peripheral rate limited problems. Processor rate limited problems arise when the computer is transferring data to a device which must have a high, non-varying transfer rate. This is characteristic of many real time interfaces, disk drives, and high speed buffered I/O devices. In the case of the disk drive, for example, it is not practical for the computer to vary the speed of disk rotation. Therefore, the processor must be able to read the data as fast as the rotating disk presents it to the read head. Data transfer rate problems of this type will result in lost or erroneous data. They represent the most serious system speed problems and they must be detected and corrected before the system will function properly.

Curing processor rate limited problems where the speed differential is excessive requires the addition of hardware to transfer some of the speed burden from the CPU. If the speed differential is close, restructuring the program sections which perform the actual data transfers may provide the speed margins you need. However, since instructions execute in fixed multiples of system cycle times, it will be impossible to adjust the system speed any more accurately than the execution time of the fastest instructions. For this type of problem, adjusting system speed by varying the program structure will only be effective over a fairly narrow range of timing.

Unlike processor rate problems, peripheral rate limited problems turn up when the computer is able to process the data at a much higher rate than the I/O devices can supply or accept it. This problem is most commonly encountered when the microcomputer is communicating with peripherals which are mechanical or which require user interaction, i.e. printers, tape readers, teletypewriters, etc. For example, many small microcomputer systems rely on the Teletype Corporation's model ASR 33 teletype as the main system peripheral. It serves as the keyboard, display, punch and reader for all program I/O operations. Now the teletype can only transfer data at the rate of ten characters per second, or one data byte every 100 milliseconds. Printing 2500 characters (a small program listing) will take over four minutes. In this case, the computer will be spending most of its time waiting for the teletype to finish printing.

Peripheral rate problems are probably the most commonly encountered system speed problems. Fortunately, they seldom present a critical design problem. The cure is usually to add a faster I/O device. Even this solution has limitations. Most computer peripherals involve mechanical devices, and these will almost always be slower than the computer. You must trade off the cost of the faster peripheral against the time saved. If you discover you have a system which spends most of its time waiting for I/O transfers (a condition referred to as I/O bound), you may want to see if you can come up with some features to utilize what is essentially free processor time. Even better, you may be able to use some of that time to replace some hardware and further lower system cost. On the other hand, if the system can do everything it needs to at a cost you can afford, who cares if it spends 95% of its time waiting for the user to press a key? Microprocessor hardware is going to become so inexpensive that it will probably become far more economical to underutilize several microprocessors than to spend the development cost to optimize the use of one.

6.5.2.2 Data Manipulation Rate Problems

Where data transfer rate problems were related to how fast we can get data in and out of the computer, the data manipulation rate problems are concerned with how fast the data is processed once the computer has it. Where data transfer rate problems will be solved mainly be adding or changing system hardware, data manipulation rate problems will be solved mainly by restructuring the system's software.

The typical data manipulation problem arises when some section (or sections) of the system program takes an excessive amount of time to execute. The more commonly used that portion of the program, the worse the problem. This type of problem is characterized by your pushing a button and waiting for fifteen seconds until the teletypewriter prints the ten digit answer

to your equation. Using some hand held scientific calculators for complex calculations (try SIN 89°) provides some excellent examples of data manipulation rate limitations.

Some problems of this type are unavoidable in microprocessor systems. Their low speed (relative to minicomputers and large computers), modest instruction sets, and small data element size limit the efficiency with which any program will run. They are simply not designed for complex data processing applications. No matter how good the algorithm, certain classes of operations are going to take up significant amounts of computing time. Some examples of this group are complex mathematics routines (anything more complicated than a sixteen-bit integer divide can safely be considered complex), large memory searches, array operations, and moving blocks of data around in memory. In the large and minicomputer world, another primary cause of this problem is multiple user systems. Fortunately, to date the microprocessor world has been spared this particular problem. If your system requires any of these types of operations, you will end up paying some speed penalty. You will be able to minimize it to some extent, but it will be there. Fortunately, the types of applications which will use microprocessors do not normally require large numbers of complex operations. If you have one that does, you might seriously consider one of the sixteen-bit microprocessors or a low end minicomputer.

6.5.3 System Cost Problems

System cost problems become significant when you have a working system which must be made more economical for practical production. The term "problems" in this context is probably misleading. Virtually all systems intended for high volume production will go through some cost optimization procedure between prototype and final production. Usually you will have decided that the cost range for the product is acceptable before proceeding with the development. This decision is based on market studies, comparison with existing products, and other evaluations of what is a reasonable final selling price of the product. This number can then be projected back to arrive at a cost range for the product.

In general, the techniques for lowering product cost will be the reverse of techniques to increase speed. You will want to remove extraneous hardware, compact all programs into minimum memory space, and in general, make the maximum use of the processor and software to implement system functions. This must all be done without creating any system speed problems. Therefore, the proceedure is best carried out in discrete steps. You refine one section of the system, make sure the system still works, and move on to the next section. Ultimately you will reach a point where no further cost economies can be achieved without compromising system performance.

Cost optimization should always be undertaken with the firm realization that the end must justify the means. It is an expensive process that is usually only vigorously applied to products whose high volume will justify the expense. Otherwise the cost of the optimization will overshadow any savings made in production.

6.6 Hardware Speed Trade Offs

When you must modify system speed using hardware, you will be trying to either increase or decrease the amount of work done by the processor. In the first case you will be trying to simplify the system hardware or replace much of it with software. This results in decreased hardware cost and lower system speed. In the second case you will be trying to transfer some of the work being performed by the software out to the hardware. This will result in higher system cost. Within this framework let's examine some of the alternatives available.

6.6.1 Processors and Memories

A simple solution to some system speed problems may be to change processors within the same family. Some manufacturers provide microprocessors which are graded by speed. If the nominal processor speed is 2 MHz, some devices may be available in selected speed ranges from 1 to 4 MHz. Since the processor cost goes up with the speed, using this method you only have to pay for the speed you require. If you are considering a faster (or slower) processor, you must also consider the effect that memory speed has on program execution. The computer must get all instructions and data from memory. If the memory is not at least as fast as the processor, there is no point in increasing processor speed. Similarly, you may be able to increase system speed by using the same processor with faster memories.

6.6.2 Decode Logic

Decode logic is required for a variety of purposes in a microcomputer system. Most decoding is done to determine I/O device addresses and memory addresses. This logic is almost all done with hardware, and it can usually be minimized in a dedicated system. For example, many microprocessors can address 65K bytes of memory using 16 address lines. Very few applications will require this much memory, so after you determine how much memory the system requires, you can eliminate the excess decoding. For example, if you only need 4096 bytes of memory, you need only decode 12 address lines to access all valid memory addresses in your system. Similar minimization can be applied to the I/O device addresses.

One added benefit of reducing the decoding is that the undecoded lines can be used as extra control lines in the system. Usually the full address bus runs everywhere in the system. If system speed permits, the undecoded address lines may be used to eliminate further hardware control logic. In the case of the system with 4096 bytes of memory we mentioned earlier, the four unused address lines could be used individually (or even decoded) to provide system control signals. Similar trade offs can be performed in systems which require fewer I/O devices than the maximum available.

6.6.3 Memory Buffers

Memory buffers are used to collect or hold data that is in transit between the CPU and system peripheral devices. The addition of a high speed buffer dedicated to a specific peripheral can be used to solve processor data transfer rate problems. This is particularly effective if the peripheral has a low average data rate with high speed burst transfers of data. A

buffer can be used to collect the data during the burst transmission, with the CPU reading the individual data elements from the buffer after the transmission is complete. This type of buffering can also be used in conjunction with the computer's DMA facility. In this case, the buffer accumulates the data and transfers it into the main computer memory in a single block transfer.

Buffers can also be used to solve peripheral data rate problems. In this case, the CPU transfers the data out to the peripheral buffer. The peripheral can then take the characters at its own rate with no further processor intervention.

Addition of buffers to the system requires the addition of considerable hardware expense. Accordingly, they should only be added if the system really needs them. As long as speed is not a problem, most microprocessors can do a good job of implementing buffers. They can do this using already present main memory and some programming. Data is transferred into and out of this type of buffer using an interrupt. The device interrupts when it is ready for a transfer and the CPU performs a single transfer. When the buffer becomes full or empty, the data is then processed, just as with a dedicated buffer. This is always much cheaper than an external buffer system. In the course of the design, if you think you need data buffering, look very carefully to see if it can be done using software. Even after the design is done you may discover that a hardware buffer initially thought necessary can actually be done in this way. It may be worth the redesign cost to save the hardware cost, particularly if production volume will be high.

6.6.4 Specialized Interface Devices

A specialized interface device is designed to perform some defined function in the system. Usually the function to be performed could be performed using either software or the specialized device. You will consider a trade off when you either find yourself with a speed problem and no interface device or the interface device and lots of program time available. In the first case you design in the device to free up the program time that performing the function is tying up. In the second case you take out the device and replace the function with software.

A common example of this type of device is the UART (Universal Asynchronous Receiver Transmitter). This device accepts parallel data and converts it to a serial bit stream conforming to the EIA RS232C data transmission standard. The function can easily be performed under program control, but as mentioned earlier, each character sent or received will take up 100 milliseconds of computer time. During this time the software must convert a character from parallel to serial, add start and stop bits and generate all timing and control signals required to perform the transfer. If your system has the time, fine. If it doesn't, you add a UART. The only time required now is the time required to write one parallel byte out to the UART. After that, the UART generates all those functions that were done by the software, freeing your processor to do other things. Similar trade offs can be made using other pre-defined functional devices.

6.6.5 Interrupts

In many systems the computer must spend considerable time responding to interrupts. If there is more than one possible interrupting device, the processor must determine which device generated the interrupt before it can process any data. This identification can be done in a combination of hardware and software that can be varied to meet system speed/cost requirements.

For maximum system speed you design the hardware so that each interrupting device responds to CPU acknowledgement with the address of its own dedicated service routine. This gives maximum response speed, since no time is spent decoding any device identification codes. In some processors this can be reduced to the interrupting device providing an actual subroutine call instruction, making the interrupt almost transparent in terms of overhead time loss.

To lower hardware expense, the device identification can be moved into the service routines. In this case, the interrupting devices all provide

the same routine address. The software must then poll all devices in the system to see who generated the interrupt. This adds a significant amount of overhead time to the routine, and will probably not be satisfactory for faster devices.

As a compromise, the system can be implemented as a combination of direct and indirect interrupt decoding. In this case, you assign your highest priority or fastest (usually the same) devices their own identification address. They will then interrupt directly to their routines with minimum time loss. The lower priority devices can then be assigned to a common address and these can be decoded under slower, cheaper software control.

6.7 Software Trade Offs

Software trade offs are made for the same reason as hardware trade offs, namely modifications of system cost and speed. Where we traded off hardware for different hardware or a combination of less hardware and some software, with software we will usually be trading off program speed for memory size. Increases in program speed will often take more memory, thereby costing more money. Conversely, if speed is not a problem, certain program types can be replaced by markedly less code, with a subsequent lowering of memory size and cost. It must be kept in mind, however, that not all decreases in program size lower memory cost nor do all increases in program size increase cost. The only time changes in program size affect memory cost at all is when the change results in the saving or use of an entire memory. For example, if your program is to be located in 2K x 8 mask programmed ROMs, the only time that your cost will change is when your program size exceeds multiples of 2048 bytes. Up to that point, the memory is essentially free. Similarly, if you discover your new, improved, program is now 2075 bytes long, you may want to expend some time eliminating those 27 extra bytes. (The terms and techniques discussed in the next few sections are covered in greater detail in the software lessons.)

6.7.1 Program Loops and Subroutines

Program loops and subroutines are used to minimize program size and control execution. A sequence of operations which is to be executed a fixed number

of times can be placed in a loop. A section of code common to several portions of the program can be placed in a subroutine. The actual coding is thereby only written one time no matter how many times the loop is executed or the subroutine is called. Loops and subroutines minimize program size at the expense of some program speed.

The instructions which must be executed to control execution of the loop or the calling of the subroutine take a certain amount of time that is not required for the actual function being performed. In speed critical situations the effect of these overhead instructions can be eliminated or modified to increase execution speed. This is done by replacing the loop or subroutine with the actual straight line code that was originally there. This eliminates the overhead instructions completely. Alternatively, a loop may be modified to use a lower percentage of its time for overhead. This is done by partially replacing the loop with the straight line code and lowering the number of times through the loop. For example, say a certain function is to be performed 10 times, once for each execution of the loop. In this case, say loop overhead is 20%. By duplicating the function and lowering the loop count to five we would do the same processing with only 10% overhead. The price would be a doubling of the amount of memory occupied by the function.

6.7.2 Functional Computations

Throughout your program you will use functional computations to evaluate data and decide on program responses to input conditions. You will be able to vary the execution speed and memory usage of many of these blocks based on how you evaluate the data. For example, let's say we have an application where we need to multiply two eight-bit integers. One solution is to write an algorithm which will multiply the two numbers. If for some reason the speed of the algorithm execution was not adequate for our application, we might consider storing all possible results in a ROM (or part of a ROM). We would then use our two numbers to compute the address of the product, thus removing most of the computations. This method should execute considerably faster. Again, the price is more memory usage.

In practice, not many mathematical functions can be produced in the manner just described. However, the technique is very often applicable to memory addresses. A required address can often be computed as part of the program execution or stored as fixed data. Computation by algorithm is more efficient, but fetching defined data is faster. These types of alternatives can be traded off throughout the course of system software design.

6.7.3 Repeated Computations

Related to functional computations is the class of program operations called repeated computations. Analysis of programs over the years has shown that in most programs 90% of the execution time is spent executing 10% of the program. These software "critical paths" are what we call repeated computations. If your system has a speed problem, the first thing to do is to see if you have any repeated computations. You can then devote your optimization effort in those areas where it will do the most good. Some common types of repeated computations are common mathematical functions, table searches, data movement routines, and data sorts.

If you find you have a clearly defined repeated computation, you may find it worthwhile to study it. See if you can find a better algorithm in the data processing literature. If you can't find one, do your best to devise one. Time spent thoroughly optimizing a repeated calculation can be far more valuable than partially optimizing several sections of less frequently executed code.

6.8 Summary

The hardware/software design procedure is something that you only learn by practice. You must gain first hand experience in the real world. It is a process which becomes more than designing the hardware and then designing the software. It is an integrated proceedure which will allow you to implement some of the most creative digital systems ever imagined. We have only scratched the surface of what is available, and what is available is just the beginning.

REPRESENTING BINARY DATA

REPRESENTING BINARY DATA

When working with digital computers it is necessary to work with binary data. Computer components are built up from electronic devices which can only represent data as 0's and 1's. This means you will have to use binary to represent numbers. In spite of this, it is impossible to escape from the fact that binary data is not overly convenient to use. We have all used base 10 numbers for years and the base 2 number system seems quite inefficient by comparison. It takes 6 binary digits to represent the number 50_{10} (110010₂), and it gets worse. In this section we will discuss how the individual binary data elements are represented and how they can be grouped together for more convenient use. Binary arithmatic and logic are discussed in the following supplementary section.

7.1 - Binary Data Elements

A computer data element of arbitrary length N is shown below.

N		 6	5	4	3	2	1	0
							0	

The right most bit (bit 0) is considered to be the <u>least significant bit</u>. Bit N, at the left most position, is considered to be the <u>most signifi</u>-<u>cant bit</u>. Thus a computer with a 16-bit data element would have data in bit positions 0-15:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Survey and State						in a second second	lane second					1	learning and a second	

16-Bit Data Word

Similarly, an 8-bit microcomputer would have data in bit positions 0-7:

	7	6	5	4	3	2	1	0
--	---	---	---	---	---	---	---	---

8-Bit Data Word

Thus when we speak of loading one's into bits five and seven of an eightbit register, we will be loading the following pattern.

References to the bit positions of a register or memory location rather than to the binary number in a register or memory location are common in control and logic applications.

7.2 - Binary Numbers

All number systems (including binary) represent numbers as a function of the radix (number base) and the position of the individual digits. Any number composed of digits $A_N - A_0$ in a radix R can be represented as follows:

$$A_N A_{N-1} \dots A_1 A_0 = A_N R^N + A_{N-1} \times R^{N-1} + \dots + A_1 \times R^1 + A_0 \times R^0$$

where A is any digit in the range O to R-1 and N is the digit position. For example, consider the number 136 in base 10. We have digits in positions O, 1 and 2. In this case, all values of A must be in the range O-9, and R = 10. We thus have a number represented as

$$136_{10} = 1 \times R^{2} + 3 \times R^{1} + 6 \times R^{0}$$
(subscript to identify number base.)
= 1 × (10)² + 3 × (10) + 6 × 1
= 100 + 30 + 6
= 136_{10}

Binary numbers can be similarly represented. The difference is that where in decimal we have ten possible numbers (0-9), in binary we only have two (0 and 1). This means that representing a given number in binary will require more digit positions than representing the same number in decimal. Thus the binary number 10110 is represented as

$$10110_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 1 \times 16 + 0 + 4 + 2 + 0$$
$$= 22_{10}$$

NUMBER SYSTEM CONVERSIONS

NUMBER SYSTEM CONVERSIONS

DECIMAL TO BINARY

To convert any decimal number to a binary number, take the decimal number and successively divide by "2" and write down the remainder (1 or 0) as you continue dividing until the number becomes "0".

EXAMPLE:

Convert 43210 to a binary number.

BINARY TO DECIMAL

As in the decimal number system, the least significant digit is on the right and the most significant digit is on the left and each digit is a multiple of a certain power of 10.

$$432_{10} = 4 \times 10^2 + 3 \times 10^1 + 2 \times 10^0$$

This is also true for a binary number, except that it is a multiple of a certain power of "2".

 $1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

So to convert a binary number to a decimal number, take each power of "2" and change it to its respective decimal number.

2 ⁰	=	l
2 ¹	=	2
2 ²	=	4
2 ³	=	8
2 ⁴	=	16
2 ⁵	-	32
•		
•		
•		
2 ¹⁶	=	65 , 536
etc.		

EXAMPLE:

Take the number 101101

$$101101_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

 $= 1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$
 $= 32 + 0 + 8 + 4 + 0 + 1$
 $101101_2 = 45_{10}$

CONVERTING DECIMAL TO OCTAL

Use the same method as to convert decimal to binary except divide by the base of "8" instead of "2".

EXAMPLE:

Convert 13110 to Octal

8

$$\begin{array}{c}) 131 \\ \hline) 16 /3 \\ \hline) 2 /0 \\ \hline) 0 /2 \\ 131_{10} = 203_8 \end{array}$$

CONVERTING OCTAL TO DECIMAL

To convert from octal to decimal use the same method as for binary to decimal conversion, except use the powers of "g" instead of "2".

EXAMPLE:

$$8^{0} = 1$$

 $8^{1} = 8$
 $8^{2} = 64$
 $8^{3} = 512$
 $8^{4} = 4096$
 $8^{5} = 32768$
 $8^{6} = 262144$

EXAMPLE:

Convert 203₈ to decimal

$$203_8 = 2 \times 8^2 + 0 \times 8^1 + 3 \times 8^0$$

$$= 2 \times 64 + 0 \times 8 + 3 \times 1$$

$$= 128 + 0 + 3$$

$$= 131$$

CONVERTING DECIMAL TO HEXADECIMAL

Again, use the same method for decimal to binary conversion, except use the base "16" instead and replace the remainders of "10" to "15" by the letters A to F respectively.

10	=	A
11	=	B
12	=	С
13	=	D
1/1		E
15	n	F

EXAMPLE:

Convert 919210 to hexadecimal

CONVERTING HEXADECIMAL TO DECIMAL

Again, use the same method for binary to decimal conversion, except use the powers of 16 instead, and convert the letters A through F to 10 through 15 respectively.

16 ⁰	=	l
16 ¹	=	16
16 ²	=	256
16 ³	=	4096
164	28	65536

EXAMPLE:

Convert 23E816 to decimal

$$23E8_{16} = 2 \times 16^{3} + 3 \times 16^{2} + E \times 16^{1} + 8 \times 16^{0}$$

= 2 \times 16^{3} + 3 \times 16^{2} + 14 \times 16^{1} + 8 \times 16^{0}
= 2 \times 4096 + 3 \times 256 + 14 \times 16 + 8 \times 1
= 8192 + 768 + 224 + 8
$$23E8_{16} = 9192_{10}$$

CONVERTING OCTAL TO BINARY, HEXADECIMAL TO BINARY,

OCTAL TO HEXADECIMAL; AND BACK

Convert to binary first, then **if needed**, regroup the binary numbers into the desired groups of three or four binary digits, (three for octal or four for hexadecimal). These translate directly to the desired number system. Always start the regrouping with the LSB.

Binary	Octal	Binary	Hexadecimal
000	0	0000	0
001	l	0001	1
010	2	0010	2
011	3	0011	3
100	Ц	0100	4
101	5	0101	5
110	6	0110	6
111	7	0111	7
		1000	8
		1001	9
104 M		1010	A
		1011	В
÷.		. 1100	C
		1101	D
		1110	E
		1111	F

EXAMPLE:

1) Convert 4A2BC to Octal

4A2BC16	=	0100 1010 0010 1011 1100
	=	01/00 1/010 /001/0 10/11 1/100
	-	01 001 010 001 010 111 100
	=	1121274
LA2BC	=	11212748

2) Convert 14358 to Hexadecimal

1435₈ = 001 100 011 101 = 001 1/00 01/1 101 = 0011 0001 1101

= 3 1 D

1435₈ = 31D₁₆

BCD NUMBERS
BCD NUMBERS

In some applications it is desirable to be able to directly represent decimal numbers in the binary computer. This is done using <u>Binary Coded Decimal, BCD</u>. When using BCD we do not use all possible data values that the binary data element can represent. Instead, we limit ourselves to the following four bit patterns:

Decimal	BCD
0	0000
l	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

The other six four bit combinations (1010-1111) are not used in BCD. An eight-bit data element can hold two BCD digits. This means it can represent decimal numbers from 0-99. BCD is very commonly encountered in control and instrument interface applications. As a result, many computers provide instructions to allow direct arithmetic with BCD numbers.

9-1

BINARY FRACTIONS

BINARY FRACTIONS

Binary numbers are generally considered as whole integers (i.e., 1, 2, 3, ...). However, it often becomes necessary to represent numbers other than whole numbers. Binary fraction representation is analagous to decimal fraction representation. In decimal numbers a fraction consists of digits to the right of a decimal point; in binary, we consider the bits to the right of the binary point to be a fraction. In a binary fraction the bits represent 2^{-N} , where N = the bit position to the right of the binary point. The powers of 2^{-N} are shown in the number tables. Consider the following binary number:

Binary Point

1101.1101

This binary number representation means

 $2^{3} + 2^{2} + 0 + 2^{0} + 2^{-1} + 2^{-2} + 0 + 2^{-3}$ = 8 + 4 + 1 + .5 + .25 + .0625 = 13.8125

Numbers can be converted to and from binary fractions using the techniques already shown for converting whole binary numbers. Unfortunately, not all fractions are as well behaved as the above example. Consider the decimal number 3 1/3. When we try to convert it we end up with -

 $3 \frac{1}{3}_{10} = 3.3333....3_{10}$ $3 \frac{1}{3}_{10} = 11.01010101....01_{2}$

The fraction repeats and there is obviously no exact result. We will have to choose a bit position where we truncate the value. For example, if we choose bit position six, we end up with an approximation.

31/3₁₀N11.010101

10-1

The rounding error introduced by this truncation can be computed by converting the truncated fraction.

11.010101=2+1+.25+.0625+.015625 = 3.328125

The error is about .1%. The possibility of this type of rounding error must always be taken into consideration when using binary fractions, particularly in division operations. Very few numbers result in exact binary fractions, so the possibility of error will be ever present.

70 0

f.

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

All computers provide a number of instructions which are used to perform arithmetic and logic operations on data. As discussed elsewhere, computer data consists of patterns of bits in registers and memory locations. However, there is a fundamental difference between the way the arithmetic instructions and logic instructions treat this binary data. The arithmetic instructions interpret the data as numbers. The logic instructions, on the other hand, interpret the data as a collection of individual bits.

11.1 Computer Arithmetic Instructions

The most basic computer arithmetic instruction is addition. This instruction and the logic complement instruction can be used to implement any known mathematical function. As a result, many computers offer addition as their only arithmetic instruction. After addition, the next most common arithmetic instruction is subtraction. This is because subtraction can be performed using the same basic hardware as addition. After addition and subtraction you have to go to a considerably more complex computer to get multiplication and division as built-in functions. The hardware required for these operations is considerably more complex than that used for addition and subtraction. As of this writing (July 1976) there are no microprocessors with built-in multiply and divide hardware. This will certainly change. All of these operations use the contents of the computer's accumulator(s) and another data source as operands with the result ending up in the accumulator.

11.1.1 Twos Complement Notation

The most common way of representing numbers for arithmetic operations in the computer is twos complement notation. To understand twos complement notation let's consider the binary numbers that can be represented by an 8-bit data element. We know that an 8-bit data element can represent 256 individual values. When we use a register as a counter, we can count up to 256 different values. The binary number counting method follows.

Binary	Count
00000000	0
00000001	1 ·
00000010	2
00000011	3
00000100	4
÷	٠
	•
11111110	254
11111111	255

This is an example of using the data element as an <u>unsigned number</u>. The numbers in the register are interpreted as being in the range +0 to +255. Now this method is convenient for counting, but awkward for arithmetic because there is no way to represent negative numbers. To circumvent this problem we change the way in which we interpret the 256 possible. numbers in the registers so that we will be able to represent both positive and negative numbers. This revised scheme will be called <u>signed</u> twos complement.

Any binary number is converted to its negative by complementing it, adding one, and ignoring any carry out causd by the addition. For example, consider the binary number +5 in an 8-bit microcomputer; 00000101. To convert +5 to -5 we first complement 11111010, and then add 1; 11111011.

If we perform the procedure on the result we get back our original number. The 256 possible numbers in an 8-bit register now represent positive and negative numbers in the range -128 to +127 as follows:

11-2

1 0 0 0 0 0 0 0 = -128

Note how bit 7 (the most significant bit) is always a zero for all positive numbers and always a one for negative numbers. The most significant bit in a twos complement number is called the <u>sign bit</u>, because by testing it you can determine if a number is positive or negative.

11.1.2 Binary Arithmetic

Binary arithmetic is performed using the ALU and two operands. The operation can be performed using either <u>unsigned numbers</u> or <u>signed twos</u> <u>complement</u> numbers, depending upon the operation being performed. Most computers perform addition and subtraction as unsigned operations. They do provide flags to indicate the result in signed twos complement, but it is up to you to keep track of the sign and magnitude.

Addition is performed by adding the contents of an operand to the contents of the accumulator. If the result is greater than the largest number which can be represented in the accumulator, a flag will be set to indicate a carry out has occurred. For example, consider the operation of adding the number 15_{10} to an 8-bit accumulator which contains 25_{10} . The operation would be performed as follows.

11-3

Accumulator	0	0	0	1	1	0	0	1		
+ Operand	0	0	0	0	1	1	.1	1		
Result	0	0	1	0	1	0	0	0	=	⁴⁰ 10

Now consider the addition of 111_{10} to 145_{10} in the accumulator.

The result of this operation is 256_{10} . It causes a carry out to indicate that the accumulator overflowed.

Subtraction is performed by taking the twos complement of the subtrahend and adding it to the minuend in the accumulator. Thus to subtract 10_{10} from 25_{10} we would perform the following operation.

Subtrahend	0	0	0	0	1	0	1	0		
Form Twos Complement	1	1	1	1	0	1	1	0		
Add To Accumulator	0	0	0	1	1	0	0	1		
<u>1</u> /	0	0	0	0	1	1	1	1	=	¹⁵ 10
cari	rу	0	ıt							

Ignoring the carry out, we have a result of 15_{10} . Now consider the subtraction of 35 from 15.

 Subtrahend
 0
 1
 0
 0
 1
 1

 Form Twos Complement
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

No carry indicates a negative result. If we convert the number using our twos complement rules, we obtain the correct result, -20.

A minuend - B subtrahend R result

Result 1 1 1 0 1 1 0 0 Complement 0 0 0 1 0 0 1 1 Add 1 0 0 0 1 0 1 0 0 = 2010

Notice that the sense of the carry after a subtraction is reversed from that of addition. A carry out indicates that the subtrahend was smaller than the minuend and the result of the subtraction was positive. No carry out indicates that the subtrahend was larger than the minuend and that the result was negative. This is called a borrow condition, and it is analagous to overflow in an addition operation. To avoid confusion about the reversal of the state of the carry flag, many computer ALU's automatically complement the carry flag after a subtraction. This makes its state after a subtraction match more closely its state after an addition (i.e. carry set if result cause a borrow, clear if the result did not cause a borrow).

11.2 Computer Logic Instructions

In contrast to the arithmetic instructions, the logic instructions perform their operations with no regard for the number representation being used. The numbers being operated upon are simply treated as strings of bits. That is why these operations are often referred to as <u>bit by bit</u> operations. The operation performed on one bit in no way affects the operation upon adjacent bits.

The four most common computer logic instructions are Complement, AND, OR, and Exclusive OR. These operations (except complement) use the contents of the accumulator and another data source as operands, with the result ending up in the accumulator.

11.2.1 Logic Complement

The complement instruction replaces each bit in the accumulator with its logic complement. Thus if the accumulator contains 1 0 1 0 1 1 0 1, the complement operation yields the following result.

Accumulator 1 0 1 0 1 1 0 1 Complement 0 1 0 1 0 0 1 0

11.2.2 Logic AND

The Logic AND operations (Symbol Λ) operates upon the bits of the accumulator and an operand according to the following truth table.

Accumulator B	it () () 1	1	
Operand B					
Result B	it () () 0	1	

Thus only those bit positions which are logic ones in both the accumulator and the operand will be logic ones in the accumulator after a Logic AND operation has been performed. For example, consider the following Logic AND operation.

Accumulator	0	1	1	0	1	1	0	1
A Operand	1	1	0	1	1	0	1	1
Result	0	1	0	0	1	0	0	1

Only those bits which were ones in both operands are in the result.

11.2.3 Logic OR

The Logic OR operation (Symbol V) operates upon the bits of the accumulator and an operand according to the following truth table.

Accumulator	Bit	0	0	1	1	
Operand	Bit	0	1	0	1	
Result	Bit	0	1	1	1	

Bit positions which are logic ones in either the accumulator or the operand will be Logic ones in the accumulator after a Logic OR operation has been performed. For example, consider the following Logic OR operation.

11-6

Bit positions which are Logic ones in either the accumulator or the operand will be Logic ones in the accumulator after a Logic OR operation has been performed. For example, consider the following Logic OR operation.

Accumulator	1	0	1	1	0	1	1	0	
V Operand	0	0	1	1	0	0	1	1	
Result	1	1	1	1	0	1	1	1	

All bits which were ones in both operands are ones in the results.

11.2.4 Logic XOR

The Logic Exclusive OR operation (Symbol A, o-ten called XOR) is not found in all computers. It operates upon the bits of the accumulator and an operand according to the following truth table.

Accumulator	Bit	0	0	1	1
Operand	Bit	0	1	0	1
Result	Bit	0	1	1	0

Bit positions which are a Logic one in either the accumulator or the operand but not both will be Logic ones in the accumulator after a logic XOR operation has been performed. For example, consider the following Exclusve OR operation.

> Accumulator 01100101 + Operand 10110110 Result 11010011

Those bits which were ones in only one of the operands are ones in the result.

APPENDIX A

MODIFIED 6500 OP CODE TABLE

MODIFIED 6500 OP CODE TABLE

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	
0	BRK	ORAxi	*	*	*	ORAz	ASLz	*	PHP	ORA#	ASLa	*	*	ORA@	ASL@	*	0
1	BPLr	ORAiy	*	*	*	ORAzx	ASLzx	*	CLC	ORA@y	*	*	*	ORACX	ASL@x	*	1
2	JSR@	ANDxi	*	. *	BITZ	ANDz	ROLz	*	PLP	AND#	ROLa	*	BITO	ANDO	ROLO	* /	2
3	BMIr	ANDiy	*	*	*	ANDzx	ROLzx	*	SEC	AND@y	*	*	*	AND@x	ROL@x	*	3
4	RTI	EORXI	*	*	*	EORz	LSRz	*	PHA	EOR#	LSRa	*	JMP@	EOR@	LSR@	*	4
5	BVCr	EORiy	*	*	*	EORzx	LSRzx	*	CLI	EOR@y	*	*	*	EOR@x	LSR@x	*	5
6	RTS	ADCxi	*	*	*	ADCz	RORz	*	PLA	ADC#	RORa	*	JMPi	ADC@	ROR@	*	6
7	BVSr	ADCiy	*	*	*	ADCzx	RORzx	*	SEI	ADC@y	*	*	*	ADC@x	ROR@x	*	7
8	*	STAxi	*.	*	STYz	STAz	STXz	*	DEY	*	TXA	*	STY@	STAQ	STX@	*	8
9	BCCr	STAiy	*	* .	STY2x	STAzx	STXzy	*	TYA	STA@y	TXS	*	*	STA@x	*	*	9
A	LDY#	LDAxi	LDX#	*	LDYz	LDAz	LDXz	*	TAY	LDA#	TAX	*	ldy@	LDAQ	LDX@	*	A
в	BCSr	LDAiy	*	*	LDYzx	LDAzx	LDXzy	*	CLV	LDAQy	TSX	*	LDY@x	LDA@x	LDX@y	*	в
С	CPY#	CMPxi	*	*	CPYz	CMPz	DECz	*	INY	CMP#	DEX	*	CPY@	CMP@	DEC@	*	с
D	BNEr	CMPiy	*	*	*	CMPzx	DECzx	*	CLD	CMP@y	*	*	*	CMP@x	DEC@x	*	D
E	CPX#	SBCx1	*	*	CPXz	SBCz	INCz	*	INX	SBC#	NOP	*	CPX@	SBC@	INCO	*	E
F	BEQr	SBCiy	*	*	*	SBCzx	INCzx	*	SED	SBC@y	*	*	*	SBC@x	INC@x	*	F
	0	1	2 ·	3	4	5	6	7	8	9	A	В	С	D	E	F	

Key to addressing symbols:

#	immediate	@x. @y	absolute indexed
0	absolute	ZX, ZY	zero page indexed
8	accumulator	xi	indexed indirect
r	relative	iy	indirect indexed
z	zero page	10	

APPENDIX B

KIM INFORMATION

KIM PROGRAMMING DATA SHEET

6500 OP CODE TABLE

							1.00									
0	1	2	3	4	5	6	7	8	9	А	в	с	D	Е	F	
BRK	ORAXI	2 ★	•	*	ORAz	ASLz	*	PHP	ORA#	ASLA	*	*	ORAG	ASLO	* 1	0
BPLr	ORALY	*	*	*	ORAZX	ASLzx	*	CLC	ORACy	*	*	*	ORAGX	ASLOX	*	1
JSR3	ANDx i	*	*	BITZ	ANDZ	ROLz	*	PLP	AND	ROLA	*	BITQ	AND@	ROLO	*	2
BMIr	ANDiy	*	*	*	ANDzx	ROLIX	*	SEC	ANDON	*	* 3	*	AND3×	ROLЭx	*	3
RTI	EORXI	*	*	*	EORz	LSRz	*	PHA	EOR∉	LSRa	*	JMP@	EOR@	LSRG	*	4
BVCr	EORiy	*	*	*	EORzx	LSRzx	*	CLI	EOR@y	*	*	*	ECROx	LSRƏx	*	5
RTS	ADCXI	*	*	*	ADCz	RORz	*	PLA	ADC#	RORa	*	JMPi	ADCO	RORQ	*	6
BVSr	ADCiy	*	*	*	ADCzx	RORZX	*	SEI	ADOCHY	*	*	*	ADC@x	ROR	*	7
*	STAXI	*	*	STYz	STAz	STXz	*	DFY		TXA	*	STYC	STAC	STX@	*	8
BCCr	STALY	*	*	STYzx	STAZX	STXzy	*	TYA	STAGy	TXS	*	*	STAC	*	*	9
LDY∌	LDAxi	LDX#	*	LDYz	LDAZ	LDXz	*	TAY	LDA#	TAX	*	TDAG	LDAG	LDX@	*	A
BCSr	LDAiy	*	*	LDYZX	LDAzx	LDXzy	*	CLV	LDACy	TSX	*	LDI@x	LDA@x	rdx:9A	*	Б
CPY#	CMPxi	*	*	CPYz	CMPz	DECz	*	INY	CMP#	DEX	*	CPI@	CMPd	DECO	*	с
BNEr	CMPiy	*	*	★ 9	CMPzx	DECzx	*	CLD	CMP@y	*	-	*	CMPOx	DECOx	*	D
CPX#	SBCx1	*	*	CPXz	SBCz	INCz	*	INX	SBC#	NOP		CPM	5803	INCE	*	E
BEQT	SBCiy	*	*	. ★	SECzx	INCzx	*	SED	SBOQy	*	*	*	SBO@x	INCOr	*	7
0	1	2	3	4	5	6	7	8	9	A	в	с	D	E	P	
	BRK BPLr JSR3 BMIr RTI BVCr RTS BVSr * BCCr LDY4 BCSr CPY4 BNEr CPX4 BEQr	BRK ORAX1 BPLr ORA19 JSR3 ANDX1 BMIr AND19 RTI EORX1 BVCr EOR19 RTS ADC19 * STAX1 BCCr STA19 LDY3 LDAX1 BCSr LDA19 CPY4 CMPX1 BNEr CMP19 CPX4 SBCX1	BRKORAX1*BPLrORA1Y*JSR3ANDX1*BMIXAND1Y*BMIXEORX1*BVCrEOR1Y*BVCrADC1Y*BVSrADC1Y*BCCrSTA1Y*BCSrLDA1Y*CPY\$CMPX1*BNEXCMP1Y*CPX4SBCX1*BNEXSBC1Y*	BRK ORAXI * BPLr ORAIY * JSR3 ANDXI * JSR3 ANDXI * BMIr ANDIY * BMIr ANDIY * BMIr EORXI * BVIr EORXI * BVCr EORIY * BVSr ADCIY * BCCr STAXI * BCSr LDAY * BNEx CMPiy * BNEx CMPiy * BNEx SBCXI * BEQr SBCIY *	BRKORAXI***BPLrORAIY***JSR3ANDXI**BITZBMIrANDIY***RTIEORXI***BVCrEORIY***RTSADCXI***BVSrADCIY****STAXI**STYZBCCrSTAIY**LDYZLDYJLDAXILDXJ*LDYZBCSrLDAIY**CPYZBNExCMPIY***CPXJSBCXI**CPXZBEQrSBCIY***	BRKORAXI***ORAZBPLrORAIY***ORAZXJSR3ANDXI**BITZANDZBMIrANDIY***ANDZXRTIEORXI***ANDZXRTIEORXI***EORZXBVCrEORIY***ADCZBVSrADC1Y***ADCZX*STAXI**ADCZX*STAXI**ADCZXBCCrSTAIY**STYZZLDY#LDAXILDX#*LDYZXBCSrLDAIY**LDYZXLDY#CMPII**CPYZBNExCMPIY**SCIPZBEQrSBC1Y**SECZX	BRKORAx1***ORAzASLzBPLrORAty***ORAzxASLzxJSR3ANDx1**BITzANDzROLzBMIrANDiy***ANDzxROLzxBMIrANDiy***ANDzxROLzxRTIEORx1***ANDzxROLzxBVCrEORiy***EORzxLSRzxRTSADCx1***ADCzxRORzxBVSrADC1y***ADCzxRORzx*STAx1**STYzzSTAzzSTXzBCCrSTAiy**LDYzxLDAzxLDXzyLDY#LDAiiLDX#**CPYzCMPzDECzxBNExCMPiy***CNPzxDECzxBNExSBCii**CPXzSRczINcz	BRKORAX1***ORAZASLZ*BPLrORALY***URAZXASLZX*JSR3ANDX1**BITZANDZROLZ*BMIrAND1y***ANDZXROLZX*BMIrAND1y***ANDZXROLZX*RTIEORX1***EORZLSRZ*BVCrEOR1y***EORZXLSRZX*RTSADCX1***ADCZRORZ*BVSrADC1y***ADCZXRORZX**STAX1**STYZXSTAZSTXZ*BCSrLDA11LDXP*LDYZLDAZXLDXZ*BNExCMP11**CPY2CMP2DECZ*BNExCMP1y**CPX2SBC2INCZ*BEQrSBC1y**CPX2SBC2XINCZX*	BRKORAX1***ORAZASLZ*PHPBPLrORAty***URAZXASLZX*CLCJSR3ANDX1**BITZANDZROLZ*PLPBMIrAND1y***ANDZXROLZX*SECRTIEORX1***ANDZXROLZX*SECRTIEORX1***EORZLSRZ*PHABVCrEOR1y***ADCZRORZ*PLABVSrADC1y***ADCZRORZX*SEI*STAx1**STYZZSTAZSTXZPFYBCSrLDA1y**LDYZLDAZLDXZ*TAYBCSrLDA1y**CFYZCMPZDECZ*INYBNExCMP1y***CNPZXDECZX*CLDCPX4SBC11**CPXZSBC2INCZX*SED	BRKORAx1***ORAzASLz*PHPORA#BPLrORAiy***ORAzxASLzx*CLCORA@yJSR3ANDx1**BITzANDzROLz*PLPAND#BMIrANDiy***ANDzxROLz*PLPAND#BMIrANDiy***ANDzxROLz*SECAND#BMIrEORx1***ANDzxROLz*SECAND#BMIrEORx1***ANDzxROLz*SECAND#BMIrEORx1***EORzLSRz*SECAND#BVCrEORiy***ADCzRORz*CLIEOR#BVCrEORiy***ADCzRORz*PLAADC#BVSrADCiy***ADCzRORz*PLAADC#BVSrADCiy***ADCzRORz*PLAADC#BVSrADCiy***ADCzRORz*PLAADC#BVSrADCiy***ADCzRORz**SEIADC#BVSrADCiy***STYzSTAzSTXz*TYASTA#BCrSTAii**STYzSTAzSTXz* <t< td=""><td>BRKORAx1***ORAzASLz*PHPORA#ASLaBPLrORAiy***URAzxASLzx*CLCORA@y*JSR3ANDx1**BITzANDzROLz*PLPAND#ROLaBNIrANDiy***BITzANDzROLz*PLPAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*PLPAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNTEORx1***EORzLSRz*PLAEOR#LSRaBVCrEORiy***ADCzRORz*PLAADC#RORa#BVSrADCii***ADCzRORz*PLAADC#RORa#BVSrADCiy***ADCzRORz*SEIADC#ROR#BCCrSTAx1**STYzzSTAzSTXz*TXASTA#TXABCSrLDAx1LDX#*<</td><td>BRKORAX1***ORAZASLZ*PHPORAØASLA*BPLrORAiy***ORAZXASLZ*CLCORAØASLA*JSRØANDx1**BITZANDZROLZ*PLPANDØROLA*BMIrAND19***BITZANDZROLZ*PLPANDØROLA*BMIrAND19****ANDZXROLZ*PLPANDØROLA*BMIrAND19****BITZANDZXROLZ*PLPANDØROLA*BMIrAND19****ANDZXROLZ*PLPANDØROLA*BVSrEOR19****EORZXLSRZ*CLIEORØLSRa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORA*BVSrADC19***ADC2RORZ*TYASTAØ**BVSr<</td><td>BRKORAX1***ORAZASLz*PHPORA#ASLa**BPLrORAIY***WURAzxASLz*CLCORA#ASLa**JSR3ANDx1**BITzANDzROLz*PLPAND#ROLa*BIT3BMIrAND1Y****ANDzxROLz*PLPAND#ROLa*BIT3BMIrAND1Y****ANDzxROLzx*SECAND2Y****RTIEORX1****EORzLSRz*PHAEOR#LSRa*JMP9BVCrEOR1Y****EORzLSRz*CLIEOR#*BVSrADCx1***ADCzxRORzx*SEIADC#RORa*JMP1BVSrADC1y***ADCzxRORzx*SEIADC#****BCCrSTA1**STYzzSTAzSTXz*DFY*TXA***BCSrLD4i**STYzzSTAzSTXz*TAYLDA#TAX*LDY#BCSrLDAiy***LDYzzLDAzLDXzy*CLVLDA#yTSX***<</td><td>BRKORAXI**ORAZASLz*PHPORAØASLa**ORAØBPLrORAIy***ORAZXASLz*CLCORAØy***ORAØJSR3ANDXI**BITZANDZROLZ*PLPANDØROLa*BITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*BITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*MTØBITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*MTØEORØBMITANDIY***ANDZROLZ*PLPANDØY***ANDØBMITANDIY***ANDZROLZ*PLPANDØY***ANDØBVCrEORXI***EORZLSRZ*CLIEORØLSRa*JMPØEORØBVCrEORXI***ADC2RORZLSRZ*CLIEORØLSRa*JMPØEORØBVCrEORYI***ADC2RORZ*PLAADCØRORa*JNPIADO3BVSrADCIY**ADC2RORZRORZ*<td< td=""><td>BRKORAXI***ORAZASLZ*PHPORA#ASLZ*CDDBRKORAY***ORAZASLZ*CLCORA#ASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASL#XYORA#ASLZASLZASLZ*ORA#ASLZASLZASLZSECAND#ASLZASLZASLZASLZSECAND#ASLZASLZASLZASLZASLZASLZASLZXASLZ</td></td<></td></t<> <td>BRKORAX1***ORAZASLZ*PHPORA#ASLa**ORAGASLQ*BPLrORAY1***ORAZXASLZ*CLCORAØASLa**ORAØASLQ*JSR3ANDX1**BITZANDZROLZ*PLPANDØROLA*BIT3ANDØROL3*JSR3ANDX1**BITZANDZROLZ*PLPANDØROL4*BIT3ANDØROL3*BNITAND17***ANDZZROLZ*PLPANDØROL4*BIT3ANDØROL3*BNITAND17***ANDZZROLZROLZ*PLPANDØROL4**ANDØROL3*BNITAND17***BITZANDZZROLZ*PLAADDØROL4**ANDØROL3*RTIEOR14***EOR2LSRZ*CLIEOR0LSRa*JMP4ADO3ROL3*RTIEOR14**ADC2RORZLSRZ*CLIEOR0LSRa*JMP4ADC3ROR3*RTSADC11**ADC2RORZRORZ*FLTXA*STA9TXP3ROR3*RTSADC11*<!--</td--></td>	BRKORAx1***ORAzASLz*PHPORA#ASLaBPLrORAiy***URAzxASLzx*CLCORA@y*JSR3ANDx1**BITzANDzROLz*PLPAND#ROLaBNIrANDiy***BITzANDzROLz*PLPAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNIrANDiy***ANDzROLz*PLPAND#ROLaBNIrANDiy***ANDzROLz*SECAND#ROLaBNTEORx1***EORzLSRz*PLAEOR#LSRaBVCrEORiy***ADCzRORz*PLAADC#RORa#BVSrADCii***ADCzRORz*PLAADC#RORa#BVSrADCiy***ADCzRORz*SEIADC#ROR#BCCrSTAx1**STYzzSTAzSTXz*TXASTA#TXABCSrLDAx1LDX#*<	BRKORAX1***ORAZASLZ*PHPORAØASLA*BPLrORAiy***ORAZXASLZ*CLCORAØASLA*JSRØANDx1**BITZANDZROLZ*PLPANDØROLA*BMIrAND19***BITZANDZROLZ*PLPANDØROLA*BMIrAND19****ANDZXROLZ*PLPANDØROLA*BMIrAND19****BITZANDZXROLZ*PLPANDØROLA*BMIrAND19****ANDZXROLZ*PLPANDØROLA*BVSrEOR19****EORZXLSRZ*CLIEORØLSRa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORa*BVSrADC19***ADC2RORZ*PLAADCØRORA*BVSrADC19***ADC2RORZ*TYASTAØ**BVSr<	BRKORAX1***ORAZASLz*PHPORA#ASLa**BPLrORAIY***WURAzxASLz*CLCORA#ASLa**JSR3ANDx1**BITzANDzROLz*PLPAND#ROLa*BIT3BMIrAND1Y****ANDzxROLz*PLPAND#ROLa*BIT3BMIrAND1Y****ANDzxROLzx*SECAND2Y****RTIEORX1****EORzLSRz*PHAEOR#LSRa*JMP9BVCrEOR1Y****EORzLSRz*CLIEOR#*BVSrADCx1***ADCzxRORzx*SEIADC#RORa*JMP1BVSrADC1y***ADCzxRORzx*SEIADC#****BCCrSTA1**STYzzSTAzSTXz*DFY*TXA***BCSrLD4i**STYzzSTAzSTXz*TAYLDA#TAX*LDY#BCSrLDAiy***LDYzzLDAzLDXzy*CLVLDA#yTSX***<	BRKORAXI**ORAZASLz*PHPORAØASLa**ORAØBPLrORAIy***ORAZXASLz*CLCORAØy***ORAØJSR3ANDXI**BITZANDZROLZ*PLPANDØROLa*BITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*BITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*MTØBITØANDØBMITANDIY***ANDZROLZ*PLPANDØROLa*MTØEORØBMITANDIY***ANDZROLZ*PLPANDØY***ANDØBMITANDIY***ANDZROLZ*PLPANDØY***ANDØBVCrEORXI***EORZLSRZ*CLIEORØLSRa*JMPØEORØBVCrEORXI***ADC2RORZLSRZ*CLIEORØLSRa*JMPØEORØBVCrEORYI***ADC2RORZ*PLAADCØRORa*JNPIADO3BVSrADCIY**ADC2RORZRORZ* <td< td=""><td>BRKORAXI***ORAZASLZ*PHPORA#ASLZ*CDDBRKORAY***ORAZASLZ*CLCORA#ASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASL#XYORA#ASLZASLZASLZ*ORA#ASLZASLZASLZSECAND#ASLZASLZASLZASLZSECAND#ASLZASLZASLZASLZASLZASLZASLZXASLZ</td></td<>	BRKORAXI***ORAZASLZ*PHPORA#ASLZ*CDDBRKORAY***ORAZASLZ*CLCORA#ASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASLZASLZASLZ*ORA#ASL#XYORA#ASLZASLZASLZ*ORA#ASLZASLZASLZSECAND#ASLZASLZASLZASLZSECAND#ASLZASLZASLZASLZASLZASLZASLZXASLZ	BRKORAX1***ORAZASLZ*PHPORA#ASLa**ORAGASLQ*BPLrORAY1***ORAZXASLZ*CLCORAØASLa**ORAØASLQ*JSR3ANDX1**BITZANDZROLZ*PLPANDØROLA*BIT3ANDØROL3*JSR3ANDX1**BITZANDZROLZ*PLPANDØROL4*BIT3ANDØROL3*BNITAND17***ANDZZROLZ*PLPANDØROL4*BIT3ANDØROL3*BNITAND17***ANDZZROLZROLZ*PLPANDØROL4**ANDØROL3*BNITAND17***BITZANDZZROLZ*PLAADDØROL4**ANDØROL3*RTIEOR14***EOR2LSRZ*CLIEOR0LSRa*JMP4ADO3ROL3*RTIEOR14**ADC2RORZLSRZ*CLIEOR0LSRa*JMP4ADC3ROR3*RTSADC11**ADC2RORZRORZ*FLTXA*STA9TXP3ROR3*RTSADC11* </td

STATUS REGISTER

P: NV BDIZC 76543210

dis outr date dis

IMPOR	TANT AD	DRESSE	S	DECIMAL	HEX	BINARY	HEX
OOEF	PCL	17FA	NMI-L ss=00	0	0	0000	F
00F0	PCH	17FB	NMI-H ss=1C	1	1	0001	E
00F1	P	17FC	RST-L	2	2	0010	D
00F2	S	17FD	RST-H	2 3	3	0011	C
00F3	A	17FE	IRQ/BRK-L	4	4	0100	В
00F4	Y	17FF		5	5	0101	A
00F5	X ·		Construction and Constr	6	6	0110	9
81 U.		00F1=	00 (LD)	7	7	0111	
1700	PAD	17F5	SAL	8	8	1000	8 7 6 5 4 3
/ 1701	PADD	17F6	SAH	9	9	1001	6
1702	PBD	17F7		10	A	1010	5
1703	PBDD	17F8	EAH	11	В	1011	4
21	4	17F9	ID#	12	č	1100	3 .
alle	in the	1800	DUMPT	13	D	1101	2
all	1 . 16 .	1873	LOADT	14	E	1110	ĩ
200	5041	10/5	LOUDI	15	P	1111	ò
	WAL TIM	1ER				****	v
WRT to	@: /N	INT		DISPLA	Y OUT	PUT:	
1704		D					
1705	-	D		XX	XX	XX	
1706		D		OOFB (OOFA	00F9	
1707		D					
1700		E		JSR@ \$	\$1F1F		
170D		E					
170E	-	E		KEYBOAR	D INI	PUT:	
170E		E					
1701	1024	E		JSR@ \$	F6A		
READ @		INT		01000	-		
1707	STATUS	S		OUTPUT	TO TT	Y:	
1706	COUNT	D					
170E	COUNT	E		char in			
	1000	151		JSR@ S	1EAO		

INPUT FROM TTY:

ר ס

JSR@ \$1E5A char into A

ASCII/HEX CONVERSION TABLE

Char	7-Bit Mex No.	Char	7-Bit Hes No.	Cher	7-8-1 Hex No.	Char	7-Bi Hex No.
NUL	00	1	2010-00-00-00-00-00-00-00-00-00-00-00-00-	1			1.1.1.1
SOH	01		21	A	41		61
STX	02		22	8	42	6	62
ETX	03		23	C	43	- e	63
EOT	04	\$	24	O	44	d	64
ENQ	05	5	25	E	45		65
ACK	06	8	26	F	46	1	66
BEL	07	•	27	G	47	1 9	67
85	08	1	28	H	48	n	68
HT	09	1	29		49	1.	69
LF	0A		2A	J	4A	1.1	6A
VT	08	•	28	ĸ	48	k	68
FF	OC		2C	L	4C	1	6C
CR	00	-	20	м	4D	m	60
SO	30	•	2E	N	45	n	6E
SI	OF	1	2F	0	4F	0	6F
DLE	10	0	30	P	50	D	70
DCI	11	1	31	0	51	q	71
DC2	12	2	32	R	52		72
DC3	13	3	33	S	53		73
DC4	14	4	34	т	54	1	74
NAK	15	5	35	U	55	U.	75
SYN	16	6	36	v	56		76
ETB	17	7	37	w	57	*	77
CAN	18	8	33	×	58	×	78
EA1	19	9	39	Y	59	٧	79
SUB	1A	1	3A	z	SA	z	7A
ESC	18	1	38	C	58		78
	IC I	*	3C		5C		7C
GS	ID I		30	ì	50	ALT	7D
	IE		3E	-	SE	ESC	7E
	IF		3F		SF		7F
5.51	20		40	1	60	RUBO	

CHAR	DEFINITION	CHAR	DEFINITION
NUL	NULL	I SO	SHIFT OUT
SOH	START OF HEADING. ALSO START	SI	SHIFT IN
1000	OF MESSAGE	DLE	DATA LINK ESCAPE
STX	START OF TEXT: ALSO EOA, ENO	001	DEVICE CONTROL 1
	OF ADDRESS	DC2	DEVICE CONTROL 2
ETX	END OF TEXT: ALSO EOM, END OF MESSAGE	DC3	DEVICE CONTROL 3
EOT	END OF TRANSMISSION (END)	DC4	DEVICE CONTROL 4
ENQ	ENQUIRY (ENORY), ALSO WAU	NAK	NEGATIVE ACKNOWLEDGE
ACK	ACKNOWLEDGE, ALSO RU	SYN	SYNCHRONOUS IDLE ISYNCI
BEL	RINGS THE BELL	ETB	END OF TRANSVISSION BLOCK
es	BACKSPACE	CAN	CANCEL ICANCLI
HT	HORIZONTAL TAE	EM	END OF MEDIUM
F	LINE FEED OR LINE SPACE INEW	SUB	SUSSTITUTE
	LINEL ADVANCES PAPER TO	ESC	ESCAPE. PREFIX
1	NEXT LINE BEGINNING OF LINE	FS	FILE SEPARATOR
n	VERTICAL TAB (VTAB)	GS	GROUP SEPARATOR
F	FORM CEED TO TOP OF NEXT	RS	RECORD SEPARATOR
	PAGE (PAGE)	US	UNIT SEPARATOR
R	CARRIAGE RETURN	1	

KIM BLOCK DIAGRAM

B-2

APPLICATION CONNECTOR PLUG

FUNCTION	PIN #	FUNCTION	PIN #
PBO	1	PA7	16
PB1	2	PA6	15
PB2	3	PAS	14
PB3	4	PA4	13
PB4	5	PA3	12
PB5	6	PA2	11
INT (or an	nge) 7	PA1	10
PB7*	8	PAO	9

*see p. H-7 for details about this line

EXPANSION CONNECTOR PLUG

	FUNCTION	PIN	₽	FUNCTION	PIN #
	ABO	1		DB7	16
	AB1	2		DB6	15
	AB2	3		DB5	14
1	AB 3	4		DB4	13
د	K(green)	5		DB3	12
	R/W	6		DB2	11
	Ø2	7		DB1	10
	RAM R/W	8		DBO	9

PROGRAMMABLE I/O LINES

PA DATA REGISTER	1700	PA DIRECTION REGISTER	1701	(Osinput la	output)
PB DATA REGISTER	1702	PB DIRECTION REGISTER	1703	(o input, i	ourpur)

TAPE RECORDER CONNECTIONS

FUNCTION	PIN #	COLOR CODE	NOTES
GND	ĸ	GREY	GND
AUDIO IN	L	BLUE	FROM EARPHONE OUTPUT
AUDIO OUT	M	RED	TO MIC INPIRT

TTY/CRT CONNECTIONS

FUNCTION	PIN #	COLOR CODE	NOTES
KEYBD RET.	R	BROWN	(+)
PRINTER RET.	S	BROWN	(+)
KEYBOARD	Т	VIOLET	20 mA current loop
PRINTER	U	YELLOW	20 mA current loop

BAUD	110	300	600	1200	2400	4800	9600	
17F2	79	EA	75	38	18	0A	02	
17F3	02	00	00	00	00	00	00	

TTY BAUD RATE CONTROL

5-3

KIM MONITOR IMPORTANT ADDRESSES

00EF 00F0 00F1 00F2 00F3 00F4 00F5 00F6 00F7	USER PC LOW BYTE USER PC HIGH BYTE USER STATUS REGISTER USER STACK POINTER USER ACCUMULATOR USER Y REGISTER USER X REGISTER CHECKSUM CHECKSUM
00F9 00FA 00FB	STORAGE FOR RIGHTHAND DISPLAY DIGIT PAIR STORAGE FOR CENTER DISPLAY DIGIT PAIR STORAGE FOR LEFTHAND DISPLAY DIGIT PAIR
	PORT A DATA PORT A DIRECTION CONTROL REGISTER PORT B DATA PORT B DIRECTION CONTROL REGISTER INTERVAL TIMER #1 INTERVAL TIMER #1
174C-174F	INTERVAL TIMER #2 INTERVAL TIMER #2 SERIAL I/O BAUD RATE CONTROL TAPE DUMP STARTING ADDRESS LOW BYTE TAPE DUMP STARTING ADDRESS HIGH BYTE TAPE DUMP ENDING ADDRESS+1 LOW BYTE TAPE DUMP ENDING ADDRESS+1 HIGH BYTE TAPE FILE INDENTIFICATION NUMBER
17FA 17FB	NMI VECTOR LOW BYTE NMI VECTOR HIGH BYTE
17FE 17FF	IRQ VECTOR LOW BYTE IRQ VECTOR HIGH BYTE
1800	ENTRY POINT FOR TAPE DUMP ROUTINE
1873	ENTRY POINT FOR TAPE LOAD ROUTINE
1C00	NONDESTRUCTIVE MONITOR ENTRY POINT
1C4F	DESTRUCTIVE MONITOR ENTRY POINT
1EA0	SERIAL OUTPUT ENTRY POINT
1E5A	SERIAL INPUT ENTRY POINT
1F1F	ENTRY POINT FOR DIGIT DISPLAY ROUTINE
1F6A	ENTRY POINT FOR KEYROADD DEAD DOUTINE

APPENDIX C

C. KIM SOFTWARE COLLECTION

Cass R. Lewart Holmdel, N. J.

DISPLAY ROUTINE

This routine will display any program showing each successive location and the contents of that location. The routine is fully relocatable. By storing in the 17FA and 17FB locations the starting address of this routine one can use the ST key to start the program. The display can be stopped by pressing RS and continued by pressing ST again. The program starts displaying consecutive locations starting with the location shown in the display by pressing ST. The second program MULT controls the display time. With value 04 it is 0.4 sec per location.

00	A2	04		THREE	LDX#	MULT	
02	8A			TWO	TXA		
03	48			in in	PHA		
04	A9	62			LDA#	\$62	.l sec/cycle
06	8D	47	17		STA@	\$1747	Load timer
09	20	19	1F	ONE	JSR@	SCANDS	Display
0C	2C	47	17		BIT@	\$1747	Check timer
OF	10	F8			BPLr	ONE	
11	68				PLA		
12	AA				TAX		
13	CA				DEX		
14	DO	EC			BNEr	TWO	
16	E6	FA			INCz	\$FA	
18	DO	E6			BNEr	THREE	
1A	E6	\mathbf{FB}			INCz	\$FB	
1C	DO	E2			BNEr	TWO	

e.g. to start displaying at 210: AD,0,2,1,0,ST if the DISPLAY starts at 300: AD, 1,7,F,A,DA,0,0,+,0,3,AD,go to desired location,ST,....

1747 loc of interval times

Jim Butterfield Toronto

DIRECTORY: A KIM-1 UTILITY PROGRAM

Program DIRECTORY allows you 254 program IDs to choose from ... enough for most program libraries with some to spare. The program is fully relocatable, so put it anywhere convenient. Start at the first instruction (0000 in the listing). Incidentally, 0001 to 001D of this program are functionally identical to the KIM monitor 188C to 18C1.

After you start the program, start your audio tape input. When DIRECTORY finds a program, it will display the Start Address (first four digits) and the Program ID. Hit any key and it will scan for the next program.

0000	D8			GO	CLD		
0001	A9	07			LDA#	\$07	Directional reg
0003	8D	42	17		STA@	SBD	
0006	20	41	1A	SYN	JSR@	RDBIT	Scan thru bits
0009	46	F9			LSRz	INH	shifting new bit
000B	05	F9			ORAz	INH	into left of
000D	85	F9			STAz	INH	byte INH
000F	C9	16		TST	CMP#	\$16	SYNC character?
0011	D0	F3			BNEr	SYN	no, back to bits
0013	20	24	1A		JSR@	RDCHT	get a character
0016		-			DECz	INH	count 22 SYNC's
0018					BPLr	TST	
001A	C9	2A			CMP#	\$2A	then test astk
001C	DO	F1			BNEr	TST	or SYNC
001E	A2	FD			LDX#	\$FD	if asterisk,
0020	20	F3	19	RD	JSR@	RDBYT	stack 3 bytes
0023	95	FC			STAzx	POINTH+1	into display
0025	E8				INX		area
0026					BMIr	RD	
0028			1F	SHOW	JSR@	SCANDS	and shine
002B					BNEr	GO	until keyed
002D	FO	F9			BEQr	SHOW	at's all folks

VU TAPE

Jim Butterfield Toronto

Program VUTAPE lets you actually see the contents of a KIM format tape as it's going by. It shows the data going by very quickly, because of the tape speed .. but you can at least 'sense' the kind of material on the tape. In case of tape troubles, this should give you a hint as to the area of your problem: nothing? noise? dropouts? And you can prepare a test tape (see below) to check out the tape quality and your recorder. The test tape will also help you establish the best settings for your volume and tone controls.

Perhaps VUTAPE's most useful function, though, is to give you a 'feeling' for how data is stored on tape. You can actually watch the processor trying to synchronize into the bit stream. Once it's synched, you'll see the characters rolling off the tape ... until an END or illegal character drops you back into the sync mode again. It's educational to watch. And since the program is fairly short, you should be able to trace out just how the processor tracks the input tape.

VUTAPE starts at location 0000 and is fully relocatable (so you can load it anyplace it fits).

0000	D8			START	CLD		
0001	A9	7F			LDA#	\$7F	
0003	8D	41	17		STA@	PADD	set display dir reg
0006	A9	13		SYN	LDA#	\$13	window 6 and tape in
0008	85	EO			STAz	POINT	and keep pointer
000A	8D	42	17		STA@	SBD	
000D	20	41	1A		JSR@	RDBIT	get a bit and
0010					LSRz	INH	slip it into
0012					ORAz	INH	the right-hand
0014					STAz	INH	side;
0016			17		STA@	SAD	show bit flag on display
0019	C 9	16		TST	CMP#	\$16	is it a SYNC?
001B	DO	E9			BNEr	SYN	nope, keep 'em rolling
001D			1A		JSR@	RDCHT	yup, start grabbing
0020					CMP♯	\$2A	.8 bits at a time and
0022					BNEr	TST	if it's not an '*'
0024	A9	00		STREAM	LDA#	\$00	then start showing
0026					STA@	SAVX	characters 1 at a time
0029	20	24	1A		JSR@	RDCHT	
002C	20	00	1A		JSR@	PACKT	converting to hexadec
002F	DO	D5			BNEr	SYN	if legal
0031	A6	EO			LDXz	POINT	
0033	E8				INX		
0034	E8				INX		Move along to next
0035	EO	15			C PX#	\$15	display position
0037	DO	02			BNEr	OVER	(if last digit,
0039	A2	09			LDX#	\$09	reset to first)
003B	86	EO		OVER	STXz	POINT	N DECOMPTED FOR X 1
003D	8E	42	17		STX@	SBD	
0040	AA				TAX		change character read
0041	BD	E7	1F		LDA@x	TABLE	to segments and
0044	8D	40	17		STA@	SAD	send to the display
0047	DO	DB			BNEr	STREAM	unconditional jump

PROGRAM TO CHECK OUT TAPES/RECORDERS

Make a test tape containing an endless stream of SYNC characters with the following program:

0000 0002			17	GO	LDY# STY@	\$BF PBDD	directional registers
0005	A9	16		LP	LDA#	\$16	SYNC
0007	20	7A	19		JSR@	OUTCH	out to tape
000A	DO	F9			BNEr	LP	

Now use program VUTAPE. The display should show a steady synchronization pattern. Try playing with your controls and see over what range the pattern stays locked in. The wider the range, the better your cassette/ recorder.

Jim Butterfield Toronto

SUPERTAPE

0100				DUMPT	LDA#	\$AD	op code LDA
0102					STA@	VEB	
0105					JSR@	INTVEB	set up subrtn
0108					LDA#	\$27	
010A					STAz	GANG	flag to go to SBD
010C	A9	BF	1		LDA#	\$BF	
010E	8D	43	17		STA@	PBDD	open the channels
0111	A2	64			LDX#	\$64	send 100
0113	A9	16			LDA#	\$16	SYNC chars
0115					JSR@	HIC	
0118	A9	2A			LDA#	\$2A	send asterisk
011A	20	88	01		JSR@	OUTCHT	
011D	AD	F9	17		LDA@	ID	then the ID
0120	20	70	01		JSR@	OUTBIT	
0123	AD	F5	17		LDA@	SAL	followed by
0126	20	6D	01		JSR@	OUTBTC	the start address
0129	AD	F6	17		LDA@	SAH	(low and high)
012C	20	6D	01		JSR@	OUTBTC	
012F	20	EC	17	DUMPT4	JSR@	VEB	get memory word
0132	20	6D	01		JSR@	OUTBTC	and send it
0135	20	EA	19		JSR@	INCVEB	on to next address
0138	AD	ED	17		LDA@	VEB+1	
013B	CD	F7	17		CMP@	EAL	is the address
013E	AD	EE	17		LDA@	VEB+2	at the end?
0141	ED	F8	17		SBC@	EAH	
0144	90	E9			BCCr	DUMPT4	no, go back;
0146	A9	2F			LDA#	\$2F	yes, send end-data
0148	20	88	01		JSR@	OUTCHT	1. Construction Statistical Contents
014B A	AD	E7	17		LDA@	CHKL	and checksum
014E 2					JSR@	OUTBT	
0151					LDA@	СНКН	hi and low
0154					JSR@	OUTBT	
0157 4		-			LDX#	\$02	send two
0159 A					LDA#	\$04	EOT characters
015B 2			01		JSR@	HIC	
015E 4					JMP@	DISPZ	and we're finished
				· subro		follow l	nere
0161 8	86	EO		HIC	STXz	TIC	count
0163 4				HIC1	PHA		
0164 2		88	01		JSR@	OUTCHT	send character
0167 6					PLA		and bring it back
0168 0		EO			DECz	TIC	
016A I					BNEr	HIC1	do it again
0160 6		17			RTS	III OI	do it again
0100 0	10				K15		

016	D 20) 40	: 19	OUTBTC	JSR@	CHKT	compute checksum
017	0 48	3		OUTBT	PHA		save the character
017	1 44	A			LSRa		
017	2 44	A			LSRa		and take its
017	3 4 <i>A</i>	7			LSRa		four left bits
0174	4 4 <i>A</i>	7			LSRa		
017	5 20) 7D	01		JSR@	HEXOUT	write 'em
0178	8 68	3		-1	PLA		now the 4 right bits
017	9 20) 7D	01		JSR@	HEXOUT	
0170				•2.	RTS		
10127-220	-	1.0205			0.000000		
0171				HEXOUT		\$0F	remove unwanted bits
0171			ų.		CMP#	\$0A	change to ASCII by
0181					CLC		adding:
0182					BMIr	HEX1	And the second second second
0184					ADC#	\$07	\$37 if A to F
0186				HEX1	ADC#	\$30	\$30 if numeric
0188				OUTCHT		\$08	for the eight bits
018A				1000000	STYz	COUNT	
0180				TRY	LDY#	\$02	send 3 units
018E					STYz	TRIB	starting at 3600 hertz
0190		_	01	ZON	LDX@y	NPUL	number of half cycles
0193					PHA		keep the character
0194				ZON1	BIT@	CLKRDI	wait for the previous
0197					BPLr	ZON1	cycle to complete
0199					LDAay		get the time to the
0190					STA@	CLK1T	next pulse (\$7E or C3)
019F					LDAz	GANG	
01A1					EOR#	\$80	flip between 1 and 0
01A3			17		STA@	SBD	
01 A6					STAz	GANG	
01A8					DEX		have we sent all the cycles?
01A9					BNEr	ZON1	nope, send another one
01 AB	68				PLA		get back the character
01AC					DECz	TRIB	one less unit to send
01AE					BEQr	SETZ	and the last one's here
01B0	30	07			BMIr	ROUT	none left? quit
01B2	4A				LSRa		take next bit
01B3	90	DB			BCCr	ZON	and if it's a one
01 B5	A0	00		SETZ	LDY#	\$00	switch to 2400 cycles/sec
01B7	FO	D7			BEQr	ZON	unconditional return
01B9	C6	E2		ROUT	DECz	COUNT	one less bit
01 BB	DO	CF			BNEr	TRY	any more? go back
01BD	60			1	RTS		
				; frequ	ency/de	nsity con	trols
01BE	02			NPUL	BYTE	\$02	two pulses; one cycle!
01BF			7E	TIMG	BYTE	\$C3,\$03,	
					end		
Snoo	A			Timing	Data	\$01BE	\$01C0
Spee	u			TTWITING	Data.	901BE 04	·
X3						02	06 03
X6						02	0.5

TAPE DUPLICATION PROGRAM

Jim Butterfield

1780 A9 27	START LDA#	\$27	SBD value	
1782 A2 3F	GO LDX#	\$3F	set directional register	to
1784 8E 43 17	STX@	PBDD	input	
1787 A2 07	LDX#	\$07	PB5 (cont) set for input	
1789 8E 42 17	STX@	SBD		
178C A0 5E	LDY#	94	high frequency	
178E 2C 42 17	BIT@	SBD	zero or one?	
1791 10 02	BPLr	OVER		
1793 AO A3	LDY#	163	low frequency	
1795 A2 BF	OVER LDX#	\$BF	set directional register	to
1797 8E 43 17	STX@	PBDD	output .	
179A 49 80	EOR#	\$80	reverse output bit	
179C 8D 42 17	STA@	SBD	and send it	
179F 8C 44 17	STY@	CLKIT	set timer	
17A2 2C 47 17 W	WAIT BIT@	CLKSTAT	and wait	
17A5 10 FB	BPLr	WAIT		
17A7 30 D9	BMIr	GO		

Connect your two cassette recorders in the usual way at the AUDIO IN and AUDIO OUT points. With the program running, start the recorders. All programs will be copied from one tape to the other. This program works on speeds up to 3X. If bad copies are obtained, try reducing the volume on the playback machine.

C-7

KIM User Notes v1 #4

MOVE-A-BLOCK

Edward J. Bechtel, M.D. Newport Beach, Calif.

The MOVE-A-BLOCK program will move a block of bytes up to 256 bytes long forewards or backwards any distance. The block can be across page boundaries -- it does not have to reside in one page. The starting address and ending address of the block is entered in OOEO - OOE3. The NEW starting address of the moved block (i.e., where you want to move it) is entered at OOE4 - OOE5. I located it in 1780 to be generally out of the way, but if you wish, you can use it to relocate itself anywhere.

The program calculates whether the move is forewards or backwards, then moves from the top up, or from the bottom down. The number of spaces the block is moved (in signed notation) is stored by the program in 00E6 - 00E7, and the number of bytes that were moved is stored in 00E8. Also, the new ending address of the moved block is automatically placed in 00E2 - 00E3, for subsequent use.

1780 38		SEC	
1781 A5 E4		LDAz	\$E4
1783 E5 E0		SBCz	\$E0
1785 85 E6		STAz	\$E6
1787 A5 E5		LDAz	\$E5
1798 E5 E1		SBCz	\$E1
178B 85 E7		STAz	\$E7
178D 90 18		BCCr	MOVEB
178F 38	MOVEF	SEC	
1790 A5 E2		LDAz	\$E2
1792 E5 E0		SBCz	\$E0
1794 A8		TAY	
1795 84 E8		STYz	\$E8
1797 E6 E8		INCz	\$E8
1799 B1 E0	LOOP1	LDAiy	\$E0
179B 91 E4		STAiy	\$E4
179D 88		DEY	
179E DO F9		BNEr	LOOP1
17A0 B1 E0		LDAiy	\$E0
17A2 91 E4		STAiy	\$E4
17A4 88		DEY	
17A5 30 14		BMIr	END
17A7 38	MOVEB	SEC	
17A8 A5 E2		LDAz	\$E2
17AA E5 E0		SBCz	\$E0
17AC 85 E8		STAz	\$E8
17AE E6 E8		INCz	\$E8
17B0 A0 00		LDY#	\$00
17B2 B1 E0	LOOP2	LDAiy	\$E0
17B4 91 E4		STAiy	\$E4
17B6 C8		INY	
17B7 C4 E8		CPYz	\$E8
17B9 D0 F7		BNEr	LOOP2
17BB 18	END	CLC	
17BC A5 E2		LDAz	\$E2
17BE 65 E6		ADC z	\$E6
17CO 85 E2		STAz	\$E2
17C2 A5 E3		LDAz	\$E3
17C4 65 E7		ADC z	\$E7
17C6 85 E3		STAz .	\$E3
17C8 4C 4F 1C		JMP@	START

HEX DUMP

by J.B. Ross

Here is a program to print out machine language programs in hexadecimal format. To use the program, load the starting address of the dump in \$17F5 (SAL) and \$17F6 (SAH), the ending address +1 in \$17F7 (EAL+1) and \$17F8 (EAH), then run HEX DUMP starting at \$0100. HEX DUMP is relocateable so you can move it to other memory locations as needed. As written, HEX DUMP centers the print-out on an 80 character line with 11 spaces on the left. The print-out itself requires 53 spaces. To modify the left margin, change the data in locations \$0113 and \$0137.

HEX DUMP

100		P	5 17	START	LDAG	\$17F5	get low starting address
	8 85			OTMAT	STAZ	POINTL	
			5 17		LDA@	\$17F6	get high starting address
	8 85				STAZ	POINTH	
			7 1E		JSR@	CRLF	print CR/LF
	A9				LDA#	'LF'	print another LF
101	20	AC) 1E		JSR@	OUTCH	print another br
	A2				LDX#	SOF	print 15 spaces on left
			1E	LOOP1		OUTSP	print is spaces on fort
	CA			DOOL T	DEX	00101	
	DO				BNER	LOOP1	
	A2				LDX#	\$10	print heading:
	A9	1000			LDA#	SFF	start with A at -1
	48				PHA	4	save A
			1E		JSR@	OUTSP	print 1 space
122	20	9E	1E	LOOP2	JSR@	OUTSP	print 1 space
	68				PLA		restore A
126	18				CLC		
127	69	01			ADC#	\$01	add 1 to A
129	48				PHA	10100	save A
12A	20	3B	1E		JSR@	PRTBYT	print A as hex number
12D	CA				DEX		
12E					BNER	LOOP2	
130					JSR@	CRLF	print CR/LF
133				LOOP5	JSR@	CRLF	print CR/LF
136					LDX#	\$0B	print 11 spaces on left
138			1 E	LOOP3	JSR@	OUTSP	
13 B					DEX		
13C					BNER	LOOP3	
13 E					LDX#	\$10	set up data counter
140					JSR@	PRTPNT	print address
143					JSR@	OUTSP	space
146			1E	LOOP4	JSR@	OUTSP	space
149		100.001			LDY#	\$00	zero Y
14B			1990		LDAIY		get data from address
14D					JSR@	PRTBYT	A the second sec
150			lF		JSR@	INCPT	increment address pointer
153					LDAZ	POINTH	test for maximum address
155			17		CMP@	\$17F8	
158					BCCR	MORE	
15A					LDAZ	POINTL	
15C			17		CMP@	\$17F7	
15F					BCCR	MORE	
161		06		WODE	BCSR	DONE	
163		EO		MORE	DEX	10004	decrement data counter
164 166		EO			BNER	LOOP4	repeat if counter not zero
165		~			CLC	10005	go to LOOP5
169			15	DONE	BCCR	LOOP5	nuint two black bins
16C			1E	DOUR	JSR@	CRLF	print two blank lines
16C					JSR@ JMP@	CRLF KIM	noturn to monitor
TOL	20	-21	10		omre	IX T M	return to monitor

FREQUENCY COUNTER ROUTINE

This routine counts frequency using input PBO at a maximum rate of 20 KHz. It counts DATA for 1 second. To count for 10 seconds load \$29 into address 60. It uses PB7 for int. req. (connect PB7 to IRQ.).

0000) A9	9 01			LDA#	\$01	
0002	2 85	5 65			STAz	TMECNT	
0004	F8	3			SED		
0005	5 A 9	36			LDA#	INTLOW	set int. vector
0007	8D) FE	17		STA@	\$17FE	
000A	A 9	00			LDA#	INTHIGH	
0000	8D	FF	17		STAC	\$17FF	
000F	58	;			CLI		
0010	00				BRK		
0011	EA	6			NOP		
0012	AD	02	17	CKLOW	LDA@	PB	check for input low
0015	29	01			AND#	\$01	
0017	DO	F9			BNEr	CKLOW	
0019	AD	02	17	CKHIGH	LDA@	PB	check for input high
001C	29	01			AND#	\$01	15 25
001E	FO	F9			BEQr	CKHIGH	
0020	18				CLC		add count to total
0021	A9	01			LDA#	\$01	
0023	65	F9			ADCz	\$F9	
0025	85	F9			STAz	\$F9	
0027	A9	00			LDA#	\$00	
0029	65	FA			ADCz	\$FA	
002B	85	FA			STAz	\$FA	
002D	A9	00			LDA#	\$00	
002F	65	FB			ADCz	\$FB	
0031	85	FB			STAz	\$FB	
0033	4C	12	00		JMP@	CKLOW	
0036	48			INT	PHA		check time
0037	A9	90			LDA#	\$90	
0039	8D	04	17		STA@	\$1704	
003C	2C	07	17		BITO	\$1704	
003F	10	FB			BPLr	DELAY	
0041					LDA#	\$F4	set timer for another int.
0043			17		STA@	\$170F	
0046					DECz	TMECNT	check remaining time
0048					BEQr	DISP	if zero display counts
004A		100000			PLA	1343554.024	
004B					RTI		
004C		FF		DISP	LDA#	\$FF	set display loop count
004E					STAz	SCANCT	
0050			1F	OUT	JSR@	SCANDS	output data
0053					DECz	SCANCT	dec. loop count
0055					BNEr	OUT	rept. display till loop
0057					LDA#	\$00	count is zero
5051		00			1011	100	econte no deno

0059	85	F9	STAz	\$F9	set total counts to zero
005B	85	FA	STAz	\$FA	
005D	85	FB	STAz	\$FB	
005F	A9	05	LDA#	\$05	reset 1 sec timer
0061	85	65	STAz	TMECNT	
0063	68		PLA		
0064	40		RTI		
0065	05		*DATA	(TMECNT)	
0066	FF		*DATA	(SCANCT)	

ANALOG TO DIGITAL CONVERSION DEMONSTRATION PROGRAM

Display ADC Output in HEX Format

0000 A9 FF STAL	RT LDA# \$FF	set PA port to output
0002 8D 01 17	STA@ \$1701	
0005 AD 03 17	LDA@ \$1703	set PB4 to be input
0008 29 EF	AND# \$EF	
000A 8D 03 17	STA@ \$1703	
000D 20 80 00 LOOP	P JSR@ ADC	call ADC subroutine
0010 85 F9	STAz \$F9	store ADC output in right display
0012 20 1F 1F	JSR@ SCANDS	display data
0015 4C 0D 00	JMP@ LOOP	loop back for more data

Display ADC Output in BCD Format

							4
0020	A9	FF		START	LDA#	\$FF	set PA port to output
0022	8D	01	17		STAG	PADD	
0025	AD	03	17		LDA@	PBDD	set PB4 to be input
0028	29	EF			AND#	\$EF	
002A	8D	03	17		STA@	PBDD	
002D	20	80	00	READ	JSR@	ADC	read ADC
0030	85	E7			STAz	HEDEC-L	set up data for binary to BCD conversion
0032	A2	00			LDX#	\$00	2
0034	86	E6			STXz	HEDEC-H	
0036	20	00	02		JSR@	HEDEC	call binary to BCD conversion routine
0039	A6	EÌ			LDXz	\$E1	get BCD result high
003B	86	FB			STXz	\$FB	store result in left display
003D	A6	E2			LDXz	\$E2	get BCD result low
003F	86	FA			STXz	\$FA	store result in middle display
0041	A2	00			LDX#	\$00	zero the right display
0043	86	F9			STXz	\$F9	
0045	20	1F	1F		JSR@	SCANDS	display final BCD value
0048	4C	2D	00		JMP@	READ	loop back for more data

note: In order to perform the binary to BCD conversion, you must load the HEDEC program into the memory starting at address \$0200.

C-13

REAL-TIME CLOCK

KIM-1 User Notes v.1 #4 Charles H. Parsons 80 Longview Rd. Monroe, CT 06468

This program utilizes the interval timer to produce an NMI interrupt every 249,856 microseconds. A fine adjustment to 1/4 second is done with the same time in the interuppt program. This fine adjustment can be varied by changing the number in location \$03AB. A display routine is included which shows the time on the KIM-1 display. You can exit this routine and get back to the monitor by pressing the "1" key.

To run the clock program you must connect PB7 to expansion connector pin 6 and set up the NMI interrupt vector by storing \$A5 in \$17FA and \$03 in \$17FB. The clock is set by using the KIM monitor to enter the current time into the HR, MIN, and SEC locations given below.

	SEC	-	\$0080	1/4 second counter
	SEC	*	\$0081	second counter
	MIN	-	\$0082	minute counter
	HR	-	\$0083	hour counter
1/2	DAY	=	\$0084	day counter for am-pm

Run the display program once starting at \$0370 to get the interrupt routine going, then re-enter the display routine at \$0379 whenever you want to show the time.

REAL-TIME CLOCK - DISPLAY ROUTINE

2012 B C C C C

0

1

14

0070 10 11		* · · · · · · · · · · · · · · · · · · ·	0300 45 00	LUAF	and the second second	reset minutes to 00
0370 A9 00 START	LDA# \$00	zero 1/4 second memory	03DD 85 82	STAZ	MIN	
0372 85 80	STAZ QSEC		03DF A5 83	LDAZ	HR	increment hours
0374 A9 F4	LDA# \$F4	set timer to interrupt in 1/4 sec.	03E1 18	CLC		
0376 8D OF 17	STA@ TIMEF	the same to incertage in 1/4 sec.	03E2 69 01	ADC#	01	
0379 A5 81 DSPLY	LDAZ SEC	get seconda	03E4 85 83	STAZ	HR	
037B 85 F9	STAZ \$F9	send to right display pair	03E6 C9 12	CMP#	12	until hours = 12
037D A5 82	LDAZ MIN		03E8 D0 02	BNER	TH	
037F 85 FA	STAZ \$FA	get minutes	03EA E6 84	INCZ	DAY	increment 1/2 day
0381 A5 83	LDAZ HR	send to middle display pair	03EC C9 13 T	CH CMP#	13	check for 13 hours
0383 85 FB	STAZ \$FB	get hours	03EE D0 04	BNER	RTN	check for 15 hours
0385 20 6A 1F	A CORRECT OF A COR	sent to left display pair	03F0 A9 01	LDA#	01	start again with and
0388 C9 01		check for "1" key pressed	03F2 85 83			start again with one
038A DO OD	CMP# \$01			RTN CLD		
038C 20 1F 1F	BNER ENDR		03F5 A9 FA		Ó TE A	return to binary mode
038F 20 6A 1F	JSR@ SCANDS	display time and delay	03F7 8D OF 17	LDA#	\$FA	set timer to interrupt in 249,85
	JSR@ GETKEY	check for "1" key pressed again	03FA 68	STAQ	TIMEF	
0392 C9 01	CMP# \$01	8 16		PLA		restore Y
0394 D0 03	BNER ENDR		O3FB A8	TAY		
0396 4C 4F 1C	JMPG MONTR	jump back to monitor if "1" pressed	03FC 68	PLA		restore X
0399 20 1F 1F	JSR@ SCANDS	display time again	O3FD AA	TAX		
0390 18	CLC	jump back to DSPLY to continue	03FE 68	PLA		restore A
039D 90 DA	BCCR DSPLY	,	03FF 40	RTI		return from interrupt
						and an

REAL-TIME CLOCK - INTERRUPT ROUTINE

03A5 48

03A6 8A

03A7 48

03A8 98 03A9 48

03AA A9 83

03B2 10 FB

03B4 E6 80

03B6 A9 04 03B8 C5 80

03BA DO 38

03BC A9 00

O3BE 85 80

03C2 A5 81 03C4 69 01 03C6 85 81 03C8 C9 60 03CA D0 28 03CC A9 00

03CE 85 81

03D0 A5 82

03DB A9 00

03D2 18 03D3 69 01 03D5 85 82 03D7 C9 60 03D9 D0 19

03C0 18 03C1 F8

03AC 8D 04 17

03AF 2C 07 17

RTCLK	PHA		save A
100000000000000000000000000000000000000	TXA		
	PHA		save X
	TYA		bave n
	PHA		save Y
	LDA#	\$83	
	STAG		fine adjust timing
TM	BITO		test timer status
	BPLR		
		QSEC	loop until time out
	LDA#		count 1/4 seconds
		QSEC	do four times before updating seconds
	BNER		
	LDA#		and an
	STAZ	NTREE DOLLARS	zero QSEC and update clock
	CLC	QSEC	
	SED	070	change to decimal mode
	LDAZ		increment seconds
	ADC#		
	STAZ		
	CMP#		until seconds = 60
	BNER		100 T / A
	LDA#	and the second se	reset seconds to 00
	STAZ		
	LDAZ	MIN	increment minutes
	CLC		
	ADC#		24
	STAZ		
	CMP#	60	until minutes = 60
	BNER	RTN	
	LDA#	00	reset minutes to 00
	STAZ	MIN	
	LDAZ	HR	increment hours
	CLC		
	ADC#	01	
	STAZ	HR	
	CMP#	12	until hours = 12
	BNER	TH	
	INCZ	DAY	increment 1/2 day
TH	CMP#	13	check for 13 hours
	BNER	RTN	
	LDA#	01	start again with one
	STAZ	HR	Bern aren one
RTN	CLD		return to binary mode
	LDA#	\$FA	set timer to interrupt in 249,856 sec
	STAO		set that to interrupt in 249,030 sec
	PLA		restore Y
	TAY		COLUTE 1
	PLA		Fastora V
	TAX		restore X
	PLA		Tostava A
	RTI		restore A
	ALL		return from interrupt

TIMER (STOPWATCH)

Kim-1 User Notes v. 1 #2

Joel Swank #186 4655 S. W. 142nd Beaverton, OR 97005

TIMER turns KIM-1 into a digital stopwatch showing up to 99 minutes and 59,99 seconds. It is designed to be accurate to 50 microseconds per second. The KIM-1 interval timer is used to count 9984 machine cycles and the instructions between time-out and the reset of the timer make up the remaining 16 cycles needed to produce a time delay of 0.0100 sec. The keyboard controls the routine as follows:

KEY	FUNCTION
0	stop
1	start
2	reset
3	print time on terminal
4	return to KIM monitor

STOPWATCH

0300				BAUDR	LDA#	\$79	set baud rate to 110 for printe	r
0302			17		STAQ	\$17F2		
0305	A9	02			LDA#	\$02		
0307	8D	F3	17		STA@	\$17F3		
030A	A9	00		RESET	LDA#	\$00	zero display	
030C	85	F9			STAZ	INH		
030E	85	FA			STAZ	POINTL		
0310	85	FB			STAZ	POINTH		
0312	20	1F	1F	HOLD	JSR@	SCANDS	light display	
0315	20	6A	1F		JSR@	GETKEY	read keyboard	
0318	C9	04			CMP#	\$04	key 4	
031A	DO	03			BNER	NOQUIT		
031C	4C	64	1C		JMP@	CLEAR	return to KIM monitor	
031F	C9	03		NOQUIT	CMP#	\$03	key 3	
0321	DO	1F		on annona con c	BNER	NOPRT		
0323	A5	FB			LDAZ	POINTH	4	
0325	20	3B	1E		JSR@	PRTBYT	print time on terminal	
0328	A9	3A			LDA#	1 : 1		
032A	20	AO	1E		JSR@	OUTCH		
032D	A5	FA			LDAZ	POINTL		
032F	20	3B	1E		JSR@	PRTBYT		
0332	A9	2E			LDA#	1 . 1		
0334	20	A0	1E		JSR@	OUTCH		
0337	A5	F9			LDAZ	INH		
0339	20	3B	1E		JSR@	PRTBYT		
0330	20	2F	1E		JSR@	CRLF	end of print routine	
033F	38				SEC		jump to HOLD	
0340	BO	DO			BCS	HOLD		
						040-02525-027		

0342	C9	02		NOPRT	CMP#	\$02	key 2
0344	FO	C4			BEQR	RESET	back to zero
0346	C9	01			CMP#	\$01	key 1
0348	DO	C8			BNER	HOLD	
034A	A9	9C			LDA#	\$9C	
034C	8D	06	17		STA@	TIMSET	set timer
034F	20	1F	1F	DISPL	JSR@	SCANDS	display value
0352	AD	07	17	EXPCK	LDA@	TIMGET	check timer
0355	FO	FB			BEQR	EXPCK	wait loop
0357	8D	00	1C		STA@	ROM	delay 4 usec.
035A	A9	9C			LDA#	\$9C	set timer
035C	8D	06	17		STA@	TIMSET	
335F	18				CLC		set flags
2360	F8				SED		decimal mode
0361	A5	F9			LDAZ	INH	
0363	69	01			ADC#	\$01	increment hundredths
0365	85	F9			STAZ	INH	
0367	A5	FA			LDAZ	POINTL	
0369	69	00			ADC#	\$00	increment seconds
036B	85	FA			STAZ	POINTL	
036D	C9	60			CMP#	\$60	stop at 60
036F	DO	OB			BNER	CKEY	
0371	A9	00			LDA#	\$00	
0373	85	FA			STAZ	POINTL	zero seconds
0375	A5	FB			LDAZ	POINTH	
0377	18				CLC		
0378	69	01			ADC#	\$01	increment minutes
C37A	85	FB			STAZ	POINTH	
C37C	D8			CKEY	CLD		
C37D	20	6A	1F		JSR@	GETKEY	read keyboard
0380	C9	00			CMP#	\$00	key 0
0382	DO	CB			BNER	DISPL	State (
0384	FO	80			BEQR	HOLD	stop

H. T. Gordon Berkeley, Calif.

HEDEC

HEDEC converts a 4-digit hex number in 00 E6 (hi byte) and 00 E7 (lo byte) into a decimal equivalent stored in 00 E0, 00 E1, and 00 E2. It uses 00 E3, 00 E4, and 00 E5 to store calculated conversion factors for each of 16 binary bits. Length: 67 bytes. Conversion times: 0.7 millisec for hex 0000, 1.5 ms for hex 1111, 1.4 ms for hex 8080, and 2.12 ms for hex FFFF. Times are proportional to the number of binary 1 bits, not to the numerical value.

0200	98 48	1	(sets decimal mode) (pushes Y, then X index into stack)
	8A 48		
0205			(zeros 00 E0 to 00 E5 in a loop)
		06	(sets X-index for 6 operations)
		DF	(zero-page, X storing)
0200	CA		
020C		E5	(increments 00 E5 to 01, to be first conversion factor)
0210			(accumulator pick-up of lo hex byte)
0212			(stored in stack)
0212		08	(sets Y-index for testing of 8 bits)
0215			(pulls hex byte from stack)
1970 - TA (TA (TA (TA (TA (TA (TA (TA (TA (TA	4A		(one logical shift right, lowest bit in carry)
	48		(stores shifted hex byte in stack)
0218	90	OC	(if carry clear, bit was a zero. skip to 0226)
	A2	03	(if not, do triple-precision add of conversion factor
	18		to the decimal locations)
021D			
		DF .	
		DF	
	CA		
0224			(
0226		03	(next conversion factor always calculated, doubling
	18 P5	E2	previous factor by adding it to itself, giving a sequence 1, 2, 4, 8, to final 65536 (not used))
		E2	sequence 1, 2, 4, 0, to final 05550 (not used))
		E2	
	CA		
0230			
	88		(DEY)
0233		EO	(if not zero, back to 0215 for next bit)
0235	68		(this PLA stack pull needed to equalize PHAs and PLAs)
	A5	E3	(LDA highest conversion factor location)
0238	DO	04	(if not zero, job is finished, so exit)
	A5	E6	(if zero, load hi hex byte)
023C	DO	D4	(if not zero, back to 0212 for bit testing)
023E			(restore X, then Y, indexes)
	AA		
	68		
	A8		
0242			(clear decimal mode)
0243	60		(RTS)
BINARY MATH ROUTINES

KIM-1 User Notes v1 #3 H. T. Gordon Berkeley, Calif

MULTIA SUBROUTINE

Program MULTIA (second, revised version) does binary multiplication of two 8-bit numbers that have been stored (before the JSR to MULTIA) in 00E3 and 00E4 and are destroyed by the operation of the subroutine. The hi 8 bits of the product are stored in 00E0 and the low 8 bits in 00E1; the subroutine initially zeros these locations, and also 00E2. Operations use LSRs on the multiplier in 00E4 to move up to 8 bits in sequence into the carry flag. If the carry is set, the multiplicand (in 00E2 and 00E3) is double-precision added to the product locations. If bits remain in the multiplier (00E4 not zero), the multiplicand is shifted left in the 16 bits of 00E2-00E3; otherwise the subroutine exits. Program length: 36 bytes. Maximum product (FF X FF) is FE01 or decimal 65025, with execution time about 380 microseconds. Time declines to 240 microseconds for 80 X 80. 160 microseconds for 10 X 10, 70 microseconds for 01 X 01, 40 microseconds for 00 X 00.

000A A9 00	(zeros locations OOEO to OOE2)
85 E2	
85 E1	
85 E0	
0012 46 E4	(LSR 00E4, lowest bit into carry)
0014 90 OD	(if carry clear, skip the addition, go to 0023)
0016 18	(CLC starts double-precision add)
A5 E1	
65 E3	(running totals stored in OOEO-OOE1)
85 E1	
001D A5 E0	
65 E2	
85 E0	
0023 A5 E4	(LDA of OOE4, zero flag set if zero)
F0 06	(exit to 002D if zero)
0027 06 E3	(ASL shifts highest bit of OOE3 into carry,
26 E2	ROL shifts carry into lowest bit of OOE2)
002B 90 E5	(carry is always clear, so back to 0012)
002D 60	(RTS exit)

NOTE: This subroutine assumes that the processor is in the binary (not the decimal mode)! It should not be necessary for subroutines to protect themselves (by a CLD) from this problem.

SUBROUTINE DIVIDA

This software gives the quotient, to 16-bit or better precision, from division of any hex number from 0001 to FFFF by any hex number from 01 to FF. It uses 10 locations from 00E0 to 00E9. The quotient appears in the lowest 5, with a fixed decimal implied between El and E2. The range of quotients is from \$ 0000.010101 (from division of 0001/FF) to \$ FFFF.000000 (from division of FFFF/01). Quotient locations are initially zeroed by a JSR to SUBROUTINE ZEROER, which must also be in memory and is coded separately for use in other programs. Before the JSR DIVIDA, 4 locations must be filled by the calling program. The dividend high byte is set in E6, the low byte in E7, and the divisor in E8. The "precision byte", with a value from 01 to 05, is set in location E9; it is not altered by the program, but the other 3 bytes usually are. The purpose of the precision byte is to allow the user to control the number of quotient locations to be calculated by DIVIDA. A value of 01 causes exit after the proper quotient value in location EO (which may be 00) has been calculated. A value of 02 limits the calculation to quotient locations EO and El, and gives "integer arithmetic". A value of 03 allows only one location to the right of the implied decimal, etc.. The chief use is to shorten the execution time, which can approach 2000 microseconds at a precision of 05. However, DIVIDA always exits when the calculated remainder is zero, since calculation of higher-precision locations is then unnecessary. No "rounding-off" operations are included. E.g., the quotient of FEFE/FF is OOFF.FD0000 at a precision of 03, although it should be OOFF.FE since the quotient is OOFF.FDFDFD at a precision of 05.

DIVIDA exits in less than 150 microseconds if the dividend is 0000. It provides no protection against a divisor of 00, so the calling program should guard against this! A guard could be inserted in DIVIDA, but I feel it is better for the calling program to decide what should be done if such an error occurs.

Operation of DIVIDA involves addition of a shifting single-bit "Bit-Byte" in location 05, to the quotient location controlled by the X-register, whenever a positive remainder is obtained. The X-register is not protected by DIVIDA, so it is better to use Y-indexed loops in the calling program (that otherwise will have to store and restore the X value). The final remainder is in location E6 when DIVIDA exits. The divisor value is not altered if it is \$ 80 or more; otherwise it is left shifted by DIVIDA.

DIVIDA is very long (70 bytes, or 78 if one includes ZEROER; if the zeroing operation were made an integral part of DIVIDA the length would be 74 bytes and execution a shade faster). It is also slow compared to hardware arithmetic, but relatively inexpensive. It is meant to handle data, that are never precise, and not the kind of complex math for which calculators are designed. Since the ROR instruction is not used, it will run in any 6502 system.

Much of the length of DIVIDA is caused by special logic designed to reduce the execution time---a deliberate trade-off of more program bytes for a lower average time, that has the effect of prolonging the time of divisions wher no early exit is possible.

Execution time depends both on the number of quotient locations to be filled and on the number of 1-bits to be inserted. Thus FFFF/01 runs slowly because it requires insertion of 16 1-bits into two locations. The "hi/lo exchange" operation at 0228 speeds up many operations with a dividend of 00XX. In general, higher speed will require sacrificing precision, and a precision-byte of 04 will be adequate. My reason for limiting the dividend to 16 bits and the divisor to 8 bits was that data more precise than 1 part in 256 will be rare, so that most data will be single-byte, and data sets with more than 256 items will be uncommon. Calculation of the average of 255 one-byte data items is within the capacity of DIVIDA. When there are more, they can be divided into subsets of 255 or fewer, the averages for all subsets added, and the average of the set of subsets calculated. We are now in the time range of seconds! With more bits, it would be minutes. People who need arithmetic speed had better get a 16-bit microprocessor (or better still, shell out for hardware multiply-divide).

Those who want integer arithmetic operations will do better using a dividend of type XX00 and precision-byte of 01. However, similar effects can usually be obtained more quickly and by other logic, not division. The number of possible ways of doing division is incredibly large, but I will be surprised if an operation like that of DIVIDA can be done with many fewer bytes or much higher speed, although using the ROR instruction might help.

0200 A9 00	(LDA# 00)
95 DF	(STA zero-page, X)
0204 CA	(DEX)
DO FB	(BNE, if \neq 0, back to 0202)
0207 60	(RTS)

SUBROUTINE DIVIDA

(Note that 3 locations are unused between the end of ZEROER and the start of DIVIDA. This is to allow users (if the subroutines are in RAM) to insert 3 instructions following the LDA divisor instruction at 0213. If the divisor is 00, DIVIDA is wrong. The instructions DO 01 00 substitute for this a BREAK to 1C00. If something more complex is needed, the 3 instructions can be a JMP or JSR to a longer sequence of instructions.)

020E				(LDA# 06)
	20	00 (02	(JSR ZEROER, to zero 00E0 to 00E5)
0210	- 200			(SEC)
		E5		(ROL sets Bit-Byte to Ol and clears carry)
0213				(LDA divisor byte)
		05		(BMI, if bit $7 = 1$, skip to 021C)
0217	26	E5		(ROL Bit-Byte)
	0A			(ASL, left-shift divisor in accumulator)
021A				(BNE, if \neq 0, back to BMI at 0215)
	85	E8		(STA bit-pattern 1XXX XXXX into divisor location)
021E	A5	E6		(LDA dividend-hi)
	BO	OF		(BCS, if carry set, go to subtraction at 0231)
0222	DO	09		(BNE, if $\neq 0$, go to CMP at 022D)
	A5	E7		(LDA dividend-1o)
0226	FO	28		(BEQ, dividend = 0 so exit to 0250)
		E6		(STA dividend-lo into dividend-hi location)
022A	86	E7		(STX zeros dividend-lo)
	E8			(INX to shift to next higher quotient location)
022D	C5	E8		(CMP dividend-hi with divisor)
	90	OB		(BCC, divisor too large, bypass to 023C)
0231	E5	E8		(SBC, subtract divisor from dividend-hi)
	85	E6		(STA remainder into dividend-hi)
0235	18			(CLC for addition)
	B5	EO		(LDA zero-page, X the proper quotient byte)
0238	65	E5		(ADC the Bit-Byte)
	95	E0		(STA zero-page, X back into quotient location)
023C	46	E5		(LSR the Bit-Byte)
	DO	09		(BNE, if $\neq 0$, bypass resetting)
0240				(INX to shift to next higher quotient location)
	E4	E9		(CPX to precision-byte)
0243	FO	OB		(BEQ, if equal exit to 0250)
	A9	80		(LDA# 80 to reset)
0247	85	E5		(STA into E5 resets Bit-Byte)

0249 024D	26	E6	(ROL	di	vidend	l-hi	comp	letes	vidend the sl sequer	Et)
0250	60		(RTS)	Ĩ						

C-21

16 BIT SQUARE ROOT

SQUARE ROOT SUBROUTINE

\$00

\$E3

\$FF

\$E4

\$E5

\$10

\$02

\$E1

\$EO

\$E3

\$E2

\$E5

\$E4

\$E5

\$E4

\$E6

\$E5

\$E7

\$E7

\$E6

\$E7

\$E3

\$E7

\$E6

\$E2

\$E6

\$E5

\$E7

\$E3

\$E6

\$E2

COUNT

DONE

LOOP

\$E4

\$FF

\$E0

\$E5

\$FF

NOGO

Here is a program which takes the square root of a 16 bit binary number and yields an eight bit integer plus eight bit binary fraction result. This routine was translated by J.B. Ross from an 8080 program written by R.E. DuPuy. The program is written as a subroutine and communicates with other programs via memory locations. All cpu registers are changed by this routine. Input and output data are located as follows:

8	Dit	input	(high)	ŞOOEO	
8	bit	input	(1ow)	\$00E1	
8	bit	output	(integer)	\$00E0	
			(faction)		

100-01-01-0

other locations used are : \$00E2 - \$00E8

0100 A9 00 SQRT LDA# 0102 85 E2 STAZ \$E2 0104 85 E3 STAZ 0106 A9 FF LDA# 0108 85 E4 STAZ 010A 85 E5 STAZ 010C A9 10 LDA# 010E 85 E8 STAZ COUNT 0110 A2 02 LOOP LDX# 0112 06 E1 SHFT ASLZ 0114 26 E0 ROLZ 0116 26 E3 ROLZ 0118 26 E2 ROLZ 011A CA DEX 011B D0 F5 BNER SHFT 011D 06 E5 ASLZ 011F 26 E4 ROLZ 0121 E6 E5 INCZ 0123 A5 E4 LDAZ 0125 85 E6 STAZ 0127 A5 E5 LDAZ 0129 85 E7 STAZ 012B 06 E7 ASLZ 012D 26 E6 ROLZ 012F E6 E7 INCZ 0131 18 CLC 0132 A5 E7 LDAZ \$E7 0134 65 E3 ADCZ 0136 85 E7 STAZ 0138 A5 E6 LDAZ 013A 65 E2 ADCZ 013C 85 E6 STAZ 013E 90 OA BCCR 0140 C6 E5 DECZ 0142 A5 E7 LDAZ 0144 85 E3 STAZ 0146 A5 E6 LDAZ 0148 85 E2 STAZ 014A C6 E8 NOGO DECZ 014C FO 03 BEQR 014E 18 CLC 014F 90 BF BCCR 0151 A5 E4 DONE LDAZ 0153 49 FF EOR# 0155 85 EO STAZ 0157 A5 E5 LDAZ 0159 49 FF EOR# 015B 85 E1 STAZ SE1 015D 60 RTS

extended argument
initialize complemented result
initialize loop count
double left shift of E2-E3-E0-E1
shift partial result left
shift in a one on the right
make a copy of shifted partial result
shift copy of partial result left
shift in a one on the right subtract shifted partial result from high 16 of current remainder (by adding complement)
test subtraction result
tack a zero onto complemented result
replace high order 16 of current remainder with subtraction result
decrement and test loop count
jump to loop
complement result and store in EO-E1

initialize extended argument

return

0 1 22

KIM Goes to the Moon

Jim Butterfield 14 Brooklyn Av Toronto Ontario M4M 2X5 CANADA

There are quite a few lunar landing programs available nowadays: some for pocket calculators, others using graphic displays. The one I wrote for my KIM-1, based on the MOS Technology 6502 microprocessor, illustrates many of the techniques needed to develop the program.

The KIM-1 comes with a six digit LED display, which can be accessed by the user. I used the first four digits to represent the craft's altitude, and optionally, the fuel remaining. The last two digits, which are slightly separated from the rest of the display, are used for rate of descent. Both values change continually as the craft moves.

The KIM-1 keyboard is used as the pilot's control panel. Thrust is set by pressing controls 1 to 9. A value of 1 is minimum thrust, and the craft's rate of descent will increase due to gravity. Nine is maximum thrust, which slows the rate of descent sharply. In addition to power control, the pilot can elect to view either current altitude, by pressing A, or remaining fuel, by pressing F.

The Equations of Motion

The craft, of course, moves in accordance with the forces acting upon it: thrust and gravity. A physics textbook shows some rather formidable equations. However, they can be boiled down to the following simple procedure:

UPDATE OCCURS

Every 0.01 second,

- add 0.01 of the acceleration to the velocity;
- add 0.01 of the velocity to the altitude:
- subtract 0.01 of the thrust from the fuel.

The acceleration is set equal to thrust minus gravity, and gravity is set at the constant value 5.

The time period of 0.01 s is arbitrary. Since KIM can operate in decimal mode, dividing by 100 becomes an elementary operation. Everything would work just as well if it were done in any other small time increment.

Figure 1 shows an elementary block diagram of the program. After setting the . initial flight values, we settle into three main jobs: updating the flight, lighting the display, and detecting input from the pilot.

Setting Initial Values

An interesting flight can be obtained by starting the lunar module at a height of 4,500 feet with 800 pounds of fuel. That's more than sufficient fuel for a safe landing, but not enough to allow for prolonged hovering.

It's not difficult to set all the initial values by programming them individually. However, a faster method is to set them all together in memory and use a loop to initialize all of them. This is what I did as shown in listing 1 on hexadecimal lines 0000 to 0007.

Updating the Flight

Every 0.01 s we must update our rate of descent, altitude and fuel. As previously indicated, we have to add 0.01 of various values into the totals. We can accomplish this quite easily by using a gimmick. Instead of holding the altitude, for example, in feet, let's use two more digits and store it as multiples of 0.01 feet. Now we can add the rate of ascent directly into the six digit number; and the division by 100 happens automatically. For display purposes, of course, we drop the last two digits, so that we're back to height in feet. Using the same technique on the other parameters, we find that the updating job becomes relatively easy.

During the updating task, we must also detect two special conditions: touchdown and out of fuel. This seems fairly simple Listing 1: An example lunar lander program written for the KIM-1 microprocessor that uses the flowchart of figure 1 as a base. The input and output of this program is handled by routines that are inherent to the KIM-1 system. The data display is seen on the keypad and LED display of the KIM-1 assembly. This display continuously shows the rate of descent, and on command will display either the amount of fuel left, or the altitude of the craft. Keys 1 through 9 are used to input thrust commands, while key A chooses the altitude display mode and the F key chooses the fuel display mode. All the numbers in this listing are in hexadecimal unless otherwise stated.

	Addre	ss C)p Opera	ind L	abel	Mnemonic	Commentary
	0000 0002 0004 0006	A2 85 95 CA	88 E2	GO LP1	LC	X #0C A INIT,X A ALT,X) initialize values;
	0007 0009 0008 000D	10 A2 A0 F8	05 01	CALC REC/	C LD AL LD SE	L LP1 IX #05 IY #01 D	X:=05; Y:=01; set decimal mode;
	000E 000F 0011 0013 0015	18 85 75 95 CA	E4 E2	DIGI	AD	A ALT,X IC ALT+2,X A ALT,X	clear carry; } add each digit;
	0016 0017 0019 0018 0010 0015	83 10 85 10 A9 75	E2	INCR	LD SPI LD AD	LDIGIT AALT+3,X LINCR A#99 CALT,X	<pre>\$ set up next digit;</pre>
	0021 0023 0024	95 CA 10	E2 E5		DE	A ALT,X X RECAL	counter:≖counter - 1; if counter positive go to RECAL;
	0026	A5	E2		LD	AALT	else check if altitude is positive;
24	0028 002A 002C	10 A9 A2	08 00 02		LDA	.UP 4 #00 4 #02	if altitude positive go to UP; else altitude:=00; X:=02
	002E 0030 0032 0033	95 95 CA 10	E2 E8 F9	DD	STA STA DEX	ALT,X TH2,X	else turn off engine;
	0035 0036 0038 003A	38 A5 E5 85	ED EA ED	UP	SEC LDA SBC STA	A FUEL+2 THRUST FUEL+2	set carry; } update fuel;
	003C 003E 0040 0042 0044	A2 85 E9 95 CA	01 EB 00 EB	LP2	LD/ SBC	(#01 FUEL,X #00 FUEL,X	check if fuel left;
	0045 0047 0049 0048	10 80 A9 A2	F7 0C 00 03	1.00	BCS LDA LDX	LP2 TANK #00 #03	if fuel left go to TANK;
	004D 004F 0050	95 CA 10	EA FB	LP3	DEX		else turn off engine;
10000	0052 0055 0057	20 A5 D0	AA 00 EE 0A	TANK	JSR LDA	THRSET MODE SHOFL	go to THRSET; A:=display mode; if mode not 00 go to SHOFL;
1	0059 0058 005D	A5 A6 F0	E2 E3 08			ALT ALT+1 ST	AX:=location of altitude;
(005F 0061 0063	D0 F0 A5	06 A6 EB	LINK		ST CALC FUEL	} go to ST; A:∞FUEL:
- 3	0065 0067	A6 85	EC FB	ST	LDX	FUEL+1 POINTH	X:=FUEL+1;
(0069	86	FA		STX	POINTL	display values;
000	068 060 065	A5 30 A5	E5 06 E6	*	BMI	VEL DOWN VEL+1	A:=velocity sign; if sign negative go to DOWN; A:=/velocity/;
0	071 073 075	F0 D0 38	07 05	DOWN	BEQ BNE SEC		go to FLY;
0	076 078	A9 E5	00 E6		LDA	#00 /EL+1	<pre>velocity:=/velocity/;</pre>

Listing 1, continued:

Address	Op	Operand	Label	Mnemonic	Commentary
007A 007C 007E	85 A9 85	F9 02 E1	FLY	STA INH LDA =02 STA DECK	DECK:=02; (counter)
0080 0083 0085	20 F0 20	1F 1F 06 6A 1F	FLITE	JSR SCANDS BEQ NOKEY JSR GETKEY) look for depressed key; if no input go to NOKEY: else go to GETKEY;
0088 0088 008D	20 C6 D0	91 00 E1 F1	NOKEY	JSR DOKEY DEC DECK BNE FLITE	go to DOKEY; DECK:=DECK-1; if DECK not equal to 0 go to
008F	FO	DO		BEQ LINK	FLITE;
0091	C9	15	DOKEY	CMP =15	else go to LINK; A:=fuel mode?;
0093	DO	03		BNE NALT	if not fuel mode go to NALT:
0095	85 60	EE		STA MODE RTS	else MODE:= fuel mode; return;
0098	C9	10	NALT	CMP =10	A:=altitude mode?;
009A	DO	05		BNE NAL2	if not go to NAL2;
0090	A9	00 EE		LDA =00	else mode:=altitude mode;
009E	85 60	EE	RET1	STA MODE RTS	MODE:=A; return;
00A1	10	FD	NAL2	BPL RET1	return; [illegal mode]
00A3	AA			TAX	else X:=A;
00A4	A5	EA		LDA THRUST	A:=THRUST;
00A6	FO	F8		BEQ RETI	if thrust:=0 go to RET1;
00A8	86	EA	THRSET	STX THRUST	else THRUST:=X;
00AA 00AC	A5 38	EA	IHRSEI	LDA THRUST SEC	A:=THRUST; set carry;
OOAD	E9	05		SBC #05	THRUST:=THRUST - 05;
OOAF	85	E9		STA TH2+1	TH2+1:=THRUST;
00B1	A9	00		LDA #00	} A:=00:
00B3	E9	00		SBC #00	,
00B5	85	E8 .		STA TH2	TH2:=00;
00B7 00B8	60 45		INIT	RTS	return;
0089	00		INT		{initial height]
OOBA	00) [mining mining]
OOBB	99)
OOBC	80				<pre>{ [initial speed]</pre>
008D 008E	00 99				1
OOBF	98				<pre>{ [initial acceleration]</pre>
00C0 00C1	02 08				[initial thrust]
00C2	00				{initial fuel]
00C3 00C4	00				/ [mode]

until we realize that both the altitude and the fuel gauge will probably go right past the zero mark, jumping directly from a positive to a negative value; so a zero test is out. Instead, we take action the instant the number goes negative, restoring it to zero and then taking whatever other action is called for.

Lighting the Display

The display is quite straightforward; in fact, the KIM-1 monitor program has a subroutine to do the job.

Depending on the display mode flag, all we need to do is to move altitude or fuel to the display area, together with rate of descent. Then we call the subroutine to transfer it to the LEDs.

Of course, we must remember to drop the last two digits from the displayed values

(0.01 of units, remember?) and to negate the rate of descent, where necessary, so that it shows as a positive number.

Detecting Input

The KIM-1 monitor subroutine that lights the display gives us a free bonus: It also tells us whether or not a key is depressed on the keyboard. To find out which key, we must cali another subroutine in the monitor program.

If we discover that the user has input a thrust command, buttons 1 to 9, we first check to see that the motor is on and that we have fuel. Then we set the thrust, and also calculate the acceleration as thrust minus 5, where 5 represents the force of gravity.

The two other legal keys, A and F, set the display mode to altitude or fuel. The program sets a memory location which will be tested by the display routine.

The program doesn't need to worry about when a button is released. Although the question can be quite important for programs that must distinguish between, say, 9 and 99 on the input, the lunar lander doesn't really care. If you leave your finger on the button, it will keep on setting the thrust over and over to the same value, without affecting the flight.

Coming Down

The program doesn't stop. If you run out of fuel, you will watch yourself freefall to the surface. When you land, with or without fuel, your rate of descent freezes so that you can see how hard you landed.

It would be easy to have the display change after you land, to show words such as "SAFE" or "DEAD." The KIM-1 display is segment driven so that you can easily produce special combinations.

The novice astronaut who would like to try his or her hand at flying this, or other, craft should keep the following rules in mind:

- 1. Always conserve fuel at the beginning by reducing power to minimum thrust.
- 2. Don't let your rate of descent get excessively high; with my program, it's wise to steady up with a thrust value of 5 when your speed gets over 90 feet per second.
- 3. As you get to lower altitudes, try to balance your altitude against your rate of descent. At 1000 feet, a rate of
- . descent of 500 feet per second will bring you down in 20 seconds, which is reasonable. Keep that sort of balance.

HORSERACE

KIM-1 User Notes v1 #3 Charles K. Eaton 19606 Gary Ave. Sunnyvale, CA 94086

Eight lap horse race and you can be the jockey and whip your horse to go faster. Warning--whip the horse too much and he probably poops out.

Horse	Track	Whipping button
Prince Charming	top	PC
Colorado Cowboy	middle	С
Irish Rair	bottom	4

Start program at 027F. Race is eight laps.

HORSE RACE

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0270 03 95 7C CA 10 F8 A9 7F 8D 41 17 A0 0280 A2 13 BD 7C 00 A2 09 B9 7C 00 84 FC 20 4E 1F C8 C0 06 90 F3 0290 02A0 3D 1F A5 8F 30 E3 A2 03 CA 30 DE D6 86 D0 F9 20 02B0 86 99 A4 99 B6 83 B9 90 03 35 7C EA EA EA EA EA 95 7C E8 96 83 B9 90 02C0 03 49 FF 15 7C 95 7C E0 05 30 38 D0 06 A5 8F F0 28 D0 30 A2 02 38 B5 83 E9 02D0 02E0 06 95 83 CA 10 F6 A2 06 B5 7C 95 76 A9 80 95 7C 02F0 C6 8F D0 06 A5 81 09 06 85 81 EA EA EA EA EA EA 0300 B9 89 00 F0 0B 20 68 03 29 3C D0 1B 99 89 00 EA 0310 20 68 03 29 38 85 9A B9 8C 00 30 0B 29 38 C5 9A 0320 B0 05 A9 FF 99 86 00 20 3D 1F A0 FF A6 99 3D 93 0330 03 F0 01 88 98 55 68 03 38 29 89 85 9A EA EA 20 0340 01 65 9A 18 A6 99 75 8C EA EA EA EA EA EA EA EA EA 0350 0360 95 8C 95 86 4C A9 02 38 38 A5 92 65 95 65 96 85 91 A2 04 B5 91 95 92 CA 10 F9 60 80 80 80 80 80 0370 0380 80 80 80 FF FF FF 80 80 80 00 00 00 80 80 80 08 0390 FE BF F7 01 02 04

ONE-ARMED BANDIT	J. Butterfield Start program at \$0200 Toronto Press any key to spin wheels
0200 A9 25 GO LDA# \$25	the start we show the spin wheels
0202 85 05 STAz AMT	
0204 20 BA 02 JSR@ CVAMT CHANGE TO DISP	
0207 A9 00 LDA# \$00	A
0209 85 06 STAz ARROW	
: MAIN DISPLAY LOOP	255 86 07 : A WIN! PAY AMOUNT IN X : DISPLAY SUBROUTINE
020B 20 8D 02 LP1 JSR@ DISPLY	UZDE 00 07 PAY STAZ RWD
O2OE DO FB BNET LP1 O210 E6 09 ROLL INCZ TUMBLE	0260 A9 80 PAX LDA# \$80 028D A6 06 DISPLY LDXz ARROW
	0262 85 08 STAZ STALLI 028F 10 02 BPLr INDIS
	0264 20 8D 02 LP9 JSR@ DISPLY 0291 F6 02 OVER INCax WINDOW+?
	0287 C6 08 DEC2 STALL1 0293 CA INDIS DEX
	0289 DO F9 BNEr LP9 0294 10 FB BPLr OVER
0219 85 06 STAz ARROW 0218 F8 SED	0258 C6 07 DEC2 RWD 0296 A9 7F LDA# S7F
021C 38 SEC	020D FO 9C BEQT LP1 0298 8D 41 17 STAQ PADD
021D A5 05 LDAZ AMT	025F 18 CLC 029B AG 0B LDY∯ \$0B
021F E9 01 SRC# \$01 CHARGE A BUCK	0271 A5 05
0221 85 05 STAZ AMT	0273 60 01 LIDAZX WINDOW
0223 20 BA 02 JSRG CVAME	0275 PO 04 02AL 86 42 17 STV@ SBD
0226 26 09 ROLZ TUMBLE	0277 85 05 STAR AND
0228 20 8D 02 LP2 JSR@ DISPLY	0279 20 BA 02 ISPG CUART 02247 D8 CLD
022B C6 08 DECz STALLI WAIT	027C DO F2 PNE DAY
022D DO F9 BNEr LP2	WHERE NOT ALL SAME CURRY FOR OWNER THE OUT ALL SUCH SOL
022F A6 06 LDXz ARROW	927E A2 03 NOWAT TOV/ COS
0231 A5 09 LDAz TUMBLE	0280 C9 46 CMD2 C44 CTIMPER
0233 29 06 AND# \$36	0282 FO DA BEOT FAY
0235 09 40 ORA# \$40 SPIN RESULT	0284 20 8D 02 LOK JSRG DISPLY 0283 CA DEV
0237 95 01 STA2x WINDOW+1 TO DISPLAY 0239 46 09 LSRz TUMBLE	0267 AD 05 LDAZ AMT 0286 10 50 PRIM TOTAL
	DADY DU CU BNET [P]
023B 46 09 LSR2 TUMBLE	0288 F0 F7 BEQY LOK 0289 60 RTS
023D C5 06 · DECz ARROW 023F D0 E7 BNEr LP2	
	AMOUNT CONVERSION
: ALL WREELS STOPPED - COMPUTE PAYOFF 0241 A5 04 LDAz WINDOW+4	, induit contention
0241 A5 04 LDAz WINDOW+4 0243 C5 03 CMPz WINDOW+3	O2BA A5 05 CVAMT LDAZ AMT
0245 DO 37 BNEr NOMAT	O2BC 29 OF AND# SOF
0247 C5 02 CMPz WINDOW+2	O2BE AA TAX
0249 DO 33 BNEr NOMAT	02BF BD E7 1F LDAGA TABLE
024B A2 10 IDX# \$10	02C2 85 00 STAz WINDOW
024D C9 40 CMP# \$40 \$15 IF 3 BARS	02C4 A5 05 LDAz AMT
024F FO OD BEQr PAY	02C6 4A LSRa
0251 A2 OB LDX# \$0B	02C7 4A I.SRa
0253 C9 42 CMP# \$42 \$10 IF 3 UPS	02C8 4A LSRa
0255 F0 07 BEQr PAY	02C9 4A LSRa
0257 A2 06 LDX# \$06	O2CA AA TAX
0259 C9 44 CMP# \$44 \$5 IF 3 DOWNS	O2CB BD E7 1F LDAGX TABLE
025B FO 01 BEQT PAY	O2CE 85 01 STAz WINDOW+1
025D CA DEX	02D0 60 RTS

KIM-1 User Notes v1#4 Stan Ockers Jim Butterfield

KIMMAZE

Find your way out of the maze. You're the flashing light in the center of the display. As you move up (key 9), down (key 1), left (key 4), or right (key 6), KIM will keep you in the central display; you'll see the walls of the maze moving by as you travel. Like walking through a real maze, you'll only see a small part of the maze as you pass through it. If you can get out, you'll find yourself in a large open area; that means you've won.

Program starts at address 0200.

0200	D8			START	CLD	6	
0201	A2	02			LDX#	2	3 values
0203	BD	B5	02	SETUP	LDA@x	INIT	from init
0206	95	D2			STAzx	MZPT	to maze ptr
0203	CA				DEX		
0209	10	F8			BPLr	SETUP	
				;pick	out sp	pecific	part of maze
020B	A0	OB		MAP	LDY#	11	
020D	B1	D2		GETMOR	LDAiy	MZPT	6 rows X 2
020F	99	D8	00		STAay	WORK	
0212	88				DEY		
0213	10	F8			BPLr	GETMOR	L .
				;shif	t to po	sition	vertically
0215	A2	0A			LDX#	10	for each of 6 rows
0217	A4	D4		NXDIG	LDYz	POSIT	
0219	A9	FF			LDA#	\$FF	filling with 'walls'
021B	38			REROL	SEC		on both sides
021C	36	D9			ROLzx	WORK+1	
021E		D8			ROLzx	WORK	roll 'em
0220					ROLa		
0221					DEY		
0222	DO	F7			BNEr	REROL	
				;calcu			
0224		07			AND#	7	take 3 bits
0226					TAY		& change to
0227			02		LDA@y	TAB1	segment pattern
022A		D8			STAzx	WORK	and store
022C					DEX		
022D					DEX		
022E	10	E7			BPLr	NXDIG	
				;test	flashe	r	
0230				LIGHT	DECz	PLUG	time out?
0232					BPLr		no
0234					LDA#		yes, reset
0236					STAz		
0233						WORK+6	
023A					EOR#	\$4 0	flip
023C	85	DE			STAz	WORK+6	flasher

	. 1		4	
0000 40 70		ht disp	10.00	unioned and recorder
023E A9 7F	MUG	LDA#	\$7F	open the gate
0240 8D 41	17	STA@	SADD	
0243 A0 09		LDY#	\$09	
0245 A2 0A		LDX#	10	
0247 B5 D8	SHOW	LDAzx	WORK	tiptoe thru
0249 8D 40		STA@	SAD	the segments
024C 8C 42	17	STY@	SBD	
024F C6 D6	ST1	DECz	STALL	pausing
0251 D0 FC		BNEr	ST1	
0253 C8		INY		
0254 C8		INY		
0255 CA		DEX		
0256 CA		DEX		
0257 10 EE		BPLr	SHOW	
UZJ/ IU EE	t-toot			a i an
0259 20 40			ey depres	
		JSR@		set dir reg
025C 20 6A	T.F.	JSR@		key?
025F C5 D7		CMPz	SOK	same as last?
0261 F0 CD		BEQr		
0263 85 D7		STAz	SOK	no, record it
	;test	which	key	
0265 A2 04		LDX#	4	5 items in table
0267 DD A8	02 SCAN	CMP@x	TAB2	
026A F0 05		BEQr	FOUND	
026C CA		DEX		
026D 10 F8		BPLr	SCAN	
026F 30 BC		BMIr	LIGHT	
0271 CA	FOUND	DEX	BIOHI	
0272 30 8C	TOORD	BMIr	START	go key?
0272 50 00	;test			go key:
0274 BC AD (
		LDY@x	TAB3	
0277 B9 D8 (LDA@y		
027A 3D B1 (52	AND@x	TAB4	
027D D0 B1		BNEr	LIGHT	
	;move			
027F CA		DEX		
0280 10 04		BPLr	NOTUP	
0282 C6 D4		DECz	POSIT	upward move
0284 D0 85	MLINK	BNEr	MAP	1-o-n-g branch!
0286 D0 04	NOTUP	BNEr	SIDEWY	
0288 E6 D4		INCz	POSIT	downward move
028A D0 F8		BNEr	MLINK	
028C CA	SIDEWY	DEX		
028D D0 06	O I D LIN I	BNEr	LEFT	
028F C6 D2		DECz		wight mayo
0291 C6 D2			MZPT	right move
성업 비원이 있었는 것 같은 것은 것은 것이 없다.		DECz	MZPT	
0293 D0 EF	a standard	BNEr	MLINK	
0295 E6 D2	LEFT	INCz	MZPT	left move
0297 E6 D2		INCz	MZPT	
0299 DO E9		BNEr	MLINK	
	;table	es (hex	listed)	
TAB1 02A0	00 08 40			
TAB2 02A8	13 09 01			
TAB3 02AD	06 06 04			
TAB4 02B1	01 08 40			
100- 0201	01 00 40	10		

C-29

;--sample maze follows ;--first 3 bytes are initial cursor pointer INIT 02B5 B4 02 08 MAZE 02B8 FF FF 04 08 F5 7E 15 00 41 FE 5F 04 51 7D 5D 04 51 B6 54 14 F7 D5 04 54 7F 5E 01 00 FD FF 00 00 00 00 00 00 00 00 00 00 00

Maze construction: every two bytes, starting at MAZE, represents a complete cross section of the maze; a one bit in any position represents a wall.

In the example above, the first cross section is FF FF (all one bits) - this would be an impassable section of wall. The next cross section (04 03) has only two pieces of wall in it, at positions 6 and 13. The zeros at the end represent the 'open space'.

MUSIC MACHINE

F. J. Butterfield Toronto

Description

This program plays one or several tunes via the 'Audio Out' interface of KIM-1. Use the same connection as that for recording on cassette tape. If your tape recorder has a 'monitor' feature, you can listen to the tune as well as record it. Alternatively, an amplifier can be used to play the tune through a speaker.

How to Run

2

Load the program. Load the tune(s) from cassette or from the keyboard. Tunes start at location\$0000. Be sure to store the value \$FA at the end of each tune, and behind the last tune, store: \$FF, \$00. Since this program uses the Break instruction to transfer control back to the monitor after each tune is played, you must set up the software interrupt vector by storing \$00 in \$17FE, and \$1C in \$17FF.

The starting address for the program is \$0200. To play the next tune, press GO.

How to Write your own Tune

Each note goes into a byte of storage, starting at location \$0000 of memory. Each tune should end with the value \$FA which stops the program until GO is pressed.

Special codes are incorporated in the program to allow certain effects - adjustment of speed, tone, etc. The codes are followed by a value which sets the particular effect. The codes are listed below:

Code	Effect Ini	tially	Examples
FB	sets speed of tune	\$30	18 is quick; 60 is slow
FC	sets length of 'long'notes	\$02	2 means 'long'note lasts twice as long'as'short'
FD	sets pitch	\$01	2 is bass; 4 is deep bass
FE	sets instrument	\$FF	FF is piano, 00 is clarinet
FF	sets address for tune	\$00	00 will take you back to first tune: like a 'jump'

For example, at any time during a tune, you may insert the sequence \$FB \$18 and the tune will begin to play at a fast speed. Inserting \$FF \$45 will cause a switch to the tune at zero page address \$0045. The initial values shown can be reset at any time by starting at address \$0200.

No tune should extend beyond address \$00DF, since program values are stored at \$00E0 and up.

The program can be easily converted to a subroutine by replacing the BRK instruction with RTS. This allows the programmer to play various 'phrases' of music to produce quite complex tunes.

The lowest note you can play is A below middle C. You can play short notes and long notes (a long note is twice as long as a short note). If you want to stretch out a note even longer than a long note allows, put a 'pause' note after it. Some of the notes are as follows:

	Note	Short	Long
	A	- 79	- F9
	A#	72	F 2
	B	- 6C	- EC
middle	C	66	E6
	C#	- 60	- E0
	D	5A	DA
	D#	- 56	- D6
	E	51	D1
	F	- 4C	- CC
	F#	48	C8
	G	- 44	- C4
	G#	40	CO
	A	- 3D	- BD
	A#	39	B9
	B	- 36	- B6
	C	33	B 3
	C#	- 30	- BO
	D	2 D	AD
-	E	- 28	- A8
	F	26	A6
	PAUSE	- 00	- 80

Sample Tunes

 0000
 FB
 18
 FE
 FF
 44
 51
 E6
 E6
 66
 5A
 51
 4C
 C4
 C4
 C4
 D1

 0010
 BD
 BD
 BD
 00
 44
 BD
 00
 44
 3D
 36
 33
 2D
 A8
 80
 80
 33

 0020
 44
 B3
 80
 80
 44
 51
 C4
 80
 50
 51
 E6
 80
 80
 53
 2D
 A8
 80
 80
 33

 0020
 44
 B3
 80
 80
 44
 51
 C4
 80
 50
 51
 E6
 80
 80
 FA
 FE

 0030
 00
 FB
 28
 SA
 5A
 51
 48
 51
 5A
 60
 79
 6C
 60
 DA
 DA
 FA
 FE

 0050
 FF
 5A
 5A
 5A
 5A
 5A
 5A
 5A
 66
 72
 79
 E6
 E6
 80
 00
 56
 56

MUSIC MACHINE

F. J. Butterfield ; initialize Toronto 0200 A2 05 START LDX# \$05 0252 A6 EA LDX# VAL1 0202 BD 86 02 LP1 LDACX INIT 0254 A9 27 LDA# \$27 0205 95 E0 STAZX WORK 0256 20 5D 02 **JSR@** SOUND 0207 CA DEX 0259 30 AF BMIR GO 0208 10 F8 BPLR LP1 025B 10 E2 BPLR HUSH ; main routine here - WORK not reset ; subroutine to send a bit 020A A9 BF GO LDA# \$BF 025D A4 E2 SOUND LDYZ 020C 8D 43 17 WORK+2 octave flag STA® PBDD open output channel 025F 84 EB STYZ TIMER 020F A0 00 LDY# \$00 0261 86 EC STXZ XSAV 0211 B1 E4 LDAIY WORK+4 get next note 0263 E0 00 SLOOP CPX# \$00 0213 E6 E4 INCZ WORK+4 0265 D0 08 BNER CONT 0215 C9 FA CMP# \$FA test for halt 0267 A6 EC LDXZ XSAV 0217 D0 04 BNER NEXT 0269 C6 EB DECZ TIMER 0219 00 BRK (or RTS if used as subroutine) 026B D0 F6 BNER SLOOP 021A EA NOP 026D F0 16 BEOR SEX 0218 F0 ED BEQR GO resume when GO pressed 026F 8D 42 17 CONT STAO SBD 021D 90 OB NEXT BCCR NOTE is it a note? 0272 CA DEX ∩ 021F E9 FB SBC# \$FB if not, decode instruction 0273 C6 E8 DECZ LIMIT+2 0221 AA TAX and put into X 0275 D0 EC BNER SLOOP 0222 B1 E4 LDAIY WORK+4 N get parameter 0277 C6 E7 DECZ LIMIT+1 0224 E6 E4 INCZ WORK+4 and 0279 DO E8 BNER SLOOP 0226 95 E0 STAZX WORK store in work table 027B A4 E0 LDYZ WORK . 0228 BO EO BCSR GO jump to GO 027D 84 E7 STYZ LIMIT+1 027F C6 E6 DECZ LIMIT ; set up timing for note 0281 D0 E0 BNER SLOOP 0283 A9 FF LDA# \$FF 022A A6 E0 NOTE LDXZ WORK timing 0285 60 SEX RTS 022C 86 E7 STXZ LIMIT+1 022E A6 E1 LDXZ WORK+1 long note factor : initial constants 0230 A8 TAY test accumulator 0231 30 02 BMIR OVER long note? 0286 30 0233 A2 01 LDX# \$01 0287 02 nope, get short note 0235 86 E6 OVER STXZ LIMIT store length factor 0288 01 0237 29 7F AND# \$7F remove short/long flag 0289 FF 0239 85 E9 STAZ VAL2 028A 00 023B F0 02 BEQR HUSH is it a pause? 028B 00 023D 85 EA STAZ VAL1 no, set pitch 023F A5 E9 HUSH LDAZ VAL2 get timing and ; work areas reserved 0241 25 E3 WORK+3 bypass if muted ANDZ 0243 F0 04 BEOR ON 00E0 WORK *=* +6 speed/length ratio/octave/tone 0245 E6 EA INCZ VAL1 else fade the 00E6 LIMIT *=* +3 timing of note 0247 C6 E9 DECZ VAL2 note 00E9 VAL2 *=* +1 marking and spacing 0249 A6 E9 ON LDX# VAL2 OOEA VAL1 *=* +1 durations 024B A9 A7 LDA# \$A7 OOEB TIMER *=* +1 octave counter 024D 20 5D 02 JSRO SOUND OOEC XSAV *=* +1 0250 30 B8 BMIR GO

HUNT THE WUMPUS

Game by Gregory Yob Adapted for the KIM-1 by Stan Ockers

Q.

Stan Ockers R.R. #4 Box 209 Lockport, Ill 60441

I first ran across the WUMPUS in THE BEST OF CREATIVE <u>COMPUTING</u> where it is programmed in basic. The following is based on this program with modifications so I could fit the program and messages in the KIM-1 memory. The messages appear on the display in scanning form with "sort-of" alphanumeric letters.

The WUMPUS lives in a cave of 16 rooms (labeled \emptyset - F). Each room has four tunnels leading to other rooms (see the map below). When the program is started, you and the WUMPUS are placed at random. Also placed at random are two bottomless pits (they don't bother the WUMPUS, he has suckertype feet) and two rooms with SUPERBATS, (also no trouble to WUMPUS, he's too heavy). If you enter a room with a pit, you fall in and lose. If you enter a BAT'S room you are picked up and flown at random to another room. You will be warned when BATS, PITS, or the WUMPUS are nearby. If you enter the room with WUMPUS, he wakes and either moves to an adjacent room or just eats you up (you lose). In order to capture the WUMPUS and win, you must use "MOOD CHANGE" gas. When thrown into a room containing the WUMPUS, the gas causes him to turn from a vicious snarling beast into a meek and loveable creature. He will even come out and give you a hug. Beware though, you have only three cans of gas and once you toss a can of gas into a room it is contaminated and you cannot enter or you will be turned into beast (you lose)!

The program starts at \$0300. If you lose and want everything to remain the same, (except the room you are in), resart at \$0316. Use the reset key to stop the program because about half of page one is used and if you just use the ST key the stack will eventually work its way down into the program. The byte at \$0229 controls the speed of the display. Once you get used to the characters you can speed things up by putting in a lower number. The message normally given tells you what room you are in and what the choices are for the next room. In order to fire the mood gas, press PC (pitch can) when the rooms to be selected are displayed. Then indicate the room into which you want to pitch the can. It takes a fresh can of gas to get the WUMPUS (he may move into a room already gassed). GOOD HUNTING! CAVE MAP

APPENDIX D,

KIM DEMONSTRATION TAPE

KIM-1 DEMONSTRATION TAPE

Index	ID#	Name	Entry Point	Address Range
	01	DIRECTORY	\$1780	\$1780-\$17AF
	02	VU TAPE	\$0000	\$0000-\$0049
	03	SUPER TAFE (3X speed)	\$0100	\$0100-\$01C2
	04	MOVE A BLOCK	\$1780	\$1780-\$17CB
	05	HEDEC	\$0200	\$0200-\$0244
	06	ADC DEMONSTRATION - BINARY - BCD	\$0000 \$0020	\$0000-\$00A4
	07	FREQUENCY COUNTER	\$0000	\$0000-\$0067
	08	TAPE DUPE	\$1780	\$1780-\$17A9
	09	REAL TIME CLOCK	\$0370	\$0370-\$0400
	0A	STOP WATCH	\$0300	\$0300-\$0386
	10	LUNAR LANDER	\$0000	\$0000-\$00C6
	11	HORSE RACE	\$027F	\$027F-\$0396
	12	ONE ARMED BANDIT	\$0200	\$0200-\$02D1
	13	KIMAZE	\$0200	\$0200-\$02F0
	14	MUSIC MACHINE	\$0200	\$0000-\$028C
	15	HUNT THE WUMPUS	\$0300	\$0000-\$0400

Notes:

Supertape is set for 3X speed. To obtain the 6X speed change location \$01BE to \$02 and \$01C0 to \$03.

Move A Block uses data stored in memory as follows: \$00E0 SAL old \$00E1 SAH old \$00E2 EAL old \$00E3 EAH old \$00E4 SAL new \$00E5 SAL new

Frequency Counter: Connect IRQ to PB7. Signal input is PBO.

Music Machine: Be sure to set up the BRK vector by storing \$00 in \$17FE and \$1C in \$17FF.

Real Time Clock: Connect NMI to PB7, store \$A5 in \$17FA and \$03 in \$17FB. Restart display program at \$0379. Press "1" to return to the KIM monitor.

DIRECTORY

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 1780
 D8
 A9
 07
 8D
 42
 17
 20
 41
 1A
 46
 F9
 05
 F9
 85
 F9
 C9

 1790
 16
 D0
 F3
 20
 24
 1A
 C6
 F9
 10
 F5
 C9
 2A
 D0
 F1
 A2
 FD

 17A0
 20
 F3
 19
 95
 FC
 E8
 30
 F8
 20
 1F
 1F
 D0
 D3
 F0
 F9

 VU
 TAPE
 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 00000
 D8
 A9
 7F
 8D

 0020
 C9
 2A
 D0
 F5
 A9
 00
 8D
 E9
 17
 20
 24
 1A
 20
 00
 1A
 D0

 0030
 D5
 A6
 E0
 E8
 E0
 15
 D0
 02
 A2
 09
 86
 E0
 8E
 42
 17

 0040
 AA
 BD
 E7
 1F
 8D
 40
 17
 D0
 DB

SUPER TAPE (3X)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0100 A9 AD 8D EC 17 20 32 19 A9 27 85 E1 A9 BF 8D 43 0110 17 A2 64 A9 16 20 61 01 A9 2A 20 88 01 AD F9 17 0120 20 70 01 AD F5 17 20 6D 01 AD F6 17 20 6D 01 20 0130 EC 17 20 6D 01 20 EA 19 AD ED 17 CD F7 17 AD EE 0140 17 ED F8 17 90 E9 A9 2F 20 88 01 AD E7 17 20 70 0150 01 AD E8 17 20 70 01 A2 02 A9 04 20 61 01 4C 5C 0160 18 86 E0 48 20 88 01 68 C6 E0 D0 F7 60 20 4C 19 0170 48 4A 4A 4A 4A 20 7D 01 68 20 7D 01 60 29 0F C9 0180 OA 18 30 02 69 07 69 30 A0 08 84 E2 A0 02 84 E3 0190 BE BE 01 48 2C 47 17 10 FB B9 BF 01 8D 44 17 A5 01A0 E1 49 80 8D 42 17 85 E1 CA D0 E9 68 C6 E3 F0 05 0180 30 07 4A 90 DB A0 00 F0 D7 C6 E2 D0 CF 60 04 C3 01C0 06 7E

MOVE A BLOCK

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 1780
 38
 A5
 E4
 E5
 E0
 85
 E6
 A5
 E5
 E1
 85
 E7
 90
 18
 38

 1790
 A5
 E2
 E5
 E0
 A8
 84
 E8
 E6
 E8
 B1
 E0
 91
 E4
 88
 D0
 F9

 17A0
 B1
 E0
 91
 E4
 88
 30
 14
 38
 A5
 E2
 E5
 E0
 85
 E6
 E8
 B1
 E0
 91
 E4
 88
 D0
 F9

 17A0
 B1
 E0
 91
 E4
 C8
 C4
 E8
 D0
 F7
 18
 A5
 E2
 65
 E6

 17B0
 A0
 00
 B1
 E0
 91
 E4
 C8
 C4
 E8
 D0
 F7
 18
 A5
 E2
 65
 E6

 17C0
 <td

HEDEC

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 0200
 F8
 98
 48
 8A
 48
 A9
 00
 A2
 06
 95
 DF
 CA
 D0
 FB
 E6
 E5

 0210
 A5
 E7
 48
 A0
 08
 68
 4A
 48
 90
 0C
 A2
 03
 18
 B5
 E2
 75

 0220
 DF
 95
 DF
 CA
 D0
 F7
 A2
 03
 18
 B5
 E2
 75
 E2
 95
 E2
 CA

 0220
 DF
 95
 DF
 CA
 D0
 F7
 A2
 03
 18
 B5
 E2
 75
 E2
 95
 E2
 CA

 0230
 D0
 F7
 88
 D0
 E0
 68
 A5
 E3
 D0
 04
 A5
 E6
 D0
 D4
 68
 AA

 0240
 68
 A8
 D8
 <td

ADC DEMONSTRATION

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 A9 FF 8D 01 17 AD 03 17 29 EF 8D 03 17 20 80 00 0010 85 F9 20 1F 1F 4C 0D 00 00 00 00 00 00 00 00 00 00 0020 A9 FF 8D 01 17 AD 03 17 29 EF 8D 03 17 20 80 00 0030 85 E7 A2 00 86 E6 20 00 02 A6 E1 86 FB A6 E2 86 0040 FA A2 00 86 F9 20 1F 1F 4C 2D 00 00 00 00 00 00 0050 0060 0070 0080 A9 80 85 EE A9 00 18 65 EE 8D 00 17 AD 02 17 29 0090 10 D0 09 AD 00 17 38 E5 EE 4C 9F 00 AD 00 17 46 00A0 EE 90 E3 60

FREQUENCY COUNTER

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 00000
 A9
 01
 85
 65
 F8
 A9
 36
 8D
 FE
 17
 A9
 00
 8D
 FF
 17
 58

 0010
 00
 EA
 AD
 02
 17
 29
 01
 D0
 F9
 AD
 02
 17
 29
 01
 F0
 F9

 0020
 18
 A9
 01
 65
 F9
 85
 F9
 A9
 00
 65
 FA
 85
 FA
 A9
 00
 65

 0030
 FB
 85
 FB
 4C
 12
 00
 48
 A9
 90
 8D
 04
 17
 2C
 07
 17
 10

 0040
 FB
 A9
 F4
 8D
 0F
 17
 C6
 65
 F0
 02
 68
 40
 A9
 FF
 85
 66

 0050
 20
 1F
 1F
 <t

TAPE DUPE

 00
 01
 02
 03
 04
 05
 06
 07
 08
 09
 0A
 0B
 0C
 0D
 0E
 0F

 1780
 A9
 27
 A2
 3F
 8E
 43
 17
 A2
 07
 8E
 42
 17
 A0
 5E
 2C
 42

 1790
 17
 10
 02
 A0
 A3
 A2
 BF
 8E
 43
 17
 49
 80
 8D
 42
 17
 8C

 17A0
 44
 17
 2C
 47
 17
 10
 FB
 30
 D9

REAL-TIME CLOCK

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0370 A9 00 85 80 A9 F4 8D 0F 17 A5 81 85 F9 A5 82 85 0380 FA A5 83 85 FB 20 6A 1F C9 01 D0 0D 20 1F 1F 20 0390 6A 1F C9 01 D0 03 4C 4F 1C 20 1F 1F 18 90 DA 00 03A0 00 00 00 00 00 48 8A 48 98 48 A9 83 8D 04 17 2C 03B0 07 17 10 FB E6 80 A9 04 C5 80 D0 38 A9 00 85 80 03C0 18 F8 A5 81 69 01 85 81 C9 60 D0 28 A9 00 85 81 A5 82 18 69 01 85 82 C9 60 D0 19 A9 00 85 82 A5 03D0 83 18 69 01 85 83 C9 12 D0 02 E6 84 C9 13 D0 04 03E0 03F0 A9 01 85 83 D8 A9 F4 8D 0F 17 68 A8 68 AA 68 40

STOP WATCH

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0300 A9 76 8D F2 17 A9 02 8D F3 17 A9 00 85 F9 85 FA 0310 85 FB 20 1F 1F 20 6A 1F C9 04 D0 03 4C 64 1C C9 03 D0 1F A5 FB 20 3B 1E A9 3A 20 A0 1E A5 FA 20 0320 0330 3B 1E A9 2E 20 A0 1E A5 F9 20 3B 1E 20 2F 1E 38 B0 D0 C9 02 F0 C4 C9 01 D0 C8 A9 9C 0340 8D 06 17 20 0350 1F 1F AD 07 17 F0 FB 8D 00 1C A9 9C 8D 06 17 18 F8 A5 F9 69 01 85 F9 A5 FA 69 00 85 FA C9 60 D0 0360 OB A9 00 85 FA A5 FB 18 69 01 85 FB D8 20 6A 1F 0370 0380 C9 00 D0 CB F0 8C

LUNAR LANDER

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0000 A2 OC B5 B8 95 E2 CA 10 F9 A2 05 A0 01 F8 18 B5 0010 E2 75 E4 95 E2 CA 88 10 F6 B5 E5 10 02 A9 99 75 0020 E2 95 E2 CA 10 E5 A5 E2 10 0B A9 00 A2 02 95 E2 0030 95 E8 CA 10 F9 38 A5 ED E5 EA 85 ED A2 01 B5 EB 0040 E9 00 95 EB CA 10 F7 B0 0C A9 00 A2 03 95 EA CA 10 FB 20 AA 00 A5 EE D0 0A A5 E2 A6 E3 0050 FO 08 D0 0060 06 F0 A6 A5 EB A6 EC 85 FB 86 FA A5 E5 30 06 A5 0070 E6 F0 07 D0 05 38 A9 00 E5 E6 85 F9 A9 02 85 E1 0080 20 1F 1F F0 06 20 6A 1F 20 91 00 C6 E1 F1 F0 DO D0 C9 15 D0 03 85 EE 60 C9 10 D0 05 A9 0090 00 85 EE 00A0 60 10 FD AA A5 EA F0 F8 86 EA A5 EA 38 E9 05 85 E9 A9 00 E9 00 85 E8 60 45 00 00 99 80 00 99 98 00B0 0000 02 08 00 00 00 00

HORSE RACE

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0270 0280 A2 13 BD 7C 03 95 7C CA 10 F8 A9 7F 8D 41 17 A0 0290 00 A2 09 B9 7C 00 84 FC 20 4E 1F C8 C0 06 90 F3 02A0 20 3D 1F A5 8F 30 E3 A2 03 CA 30 DE D6 86 D0 F9 02B0 86 99 A4 99 B6 83 B9 90 03 35 7C EA EA EA EA EA 02C0 95 7C E8 96 83 B9 90 03 49 FF 15 7C 95 7C E0 05 02D0 30 38 D0 06 A5 8F F0 28 D0 30 A2 02 38 B5 83 E9 02E0 06 95 83 CA 10 F6 A2 06 B5 7C 95 76 A9 80 95 7C 02F0 0300 C6 8F D0 06 A5 81 09 06 85 81 EA EA EA EA EA EA 0310 B9 89 00 F0 0B 20 68 03 29 3C D0 1B 99 89 00 EA 0320 20 68 03 29 38 85 9A B9 8C 00 30 OB 29 38 C5 9A B0 05 A9 FF 99 86 00 20 3D 1F A0 FF A6 99 3D 93 0330 0340 03 F0 01 88 98 55 89 85 9A EA EA 20 68 03 38 29 EA EA 0350 01 65 9A 18 A6 99 75 8C EA EA EA EA EA EA 95 8C 95 86 4C A9 02 38 38 A5 92 65 95 65 96 85 0360 0370 91 A2 04 B5 91 95 92 CA 10 F9 60 80 80 80 80 80 0380 80 FF FF FF 80 80 80 00 00 00 80 80 80 08 80 80 0390 FE BF F7 01 02 04

ONE ARMED BANDIT

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0200 A9 25 85 05 20 BA 02 A9 00 85 06 20 8D 02 D0 FB 0210 E6 09 20 8D 02 F0 F9 A9 03 85 06 F8 38 A5 05 E9 0220 01 85 05 20 BA 02 26 09 20 8D 02 C6 08 D0 F9 A6 0230 06 A5 09 29 06 09 40 95 01 46 09 46 09 C6 06 D0 0240 E7 A5 04 C5 03 D0 37 C5 02 D0 33 A2 10 C9 40 F0 0250 0D A2 0B C9 42 F0 07 A2 06 C9 44 F0 01 CA 86 07 0260 8D 02 C6 A9 80 85 08 20 08 D0 F9 C6 07 F0 9C 18 0270 F8 A5 05 69 01 B0 94 85 05 20 BA 02 D0 E2 A2 03 0280 C9 46 F0 DA 20 8D 02 A5 05 D0 80 F0 F7 A6 06 10 0290 02 F6 02 CA 10 FB A9 7F 8D 41 17 A0 OB A2 04 B5 02A0 00 8C 42 17 8D 40 17 D8 A9 7F E9 01 D0 FC 8D 42 02B0 17 C8 C8 CA 10 E9 20 40 1F 60 A5 05 29 OF AA BD 02C0 E7 1F 85 00 A5 05 4A 4A 4A 4A AA BD E7 1F 85 01 02D0 60

KIMAZE

	00	01	02	03	04	05	06	07	08	09	0A	0 B	0 C	0 D	0E	0 F	
0200	D8	A2	02	BD	В5	02	95		CA			A0	0 B	B 1	D2	99	
0210	D8	00	8.8	10	F8	A2	0A	A4	D4	A9	FF	38	36	D9	36	D8	
0220	2A	88	DO	F7	29	07	A8	B9	A0	02	95	D8	CA	CA	10	E7	
0230	C6	D5	10	0A	A9	05	85	D5	A5	DE	49	40	85	DE	A9	7F	
0240	8D	41	17	A0	09	A2	0A	B5	D8	8D	40	17	8C	42	17	C6	
0250	D6	DO	FC	C 8	C8	CA			EE	20	40	1F	20	6A	1F	C5	
0260	D7	FO	CD	85	D7	A2	04	DD	A8	02	FO	05	CA	10	F8	30	
0270	BC	CA	30	80	BC	AD	02	B9	D8	00	3D	B1	02	DO	B1	CA	
0280	10	04	C6	D4	DO	85	DO	04	E6	D4		F8	CA	DO	06	C6	
0290	D2	C6	D2	DO	EF	E6	D2	E6	D2	DO	E9	00	00	00	00	00	
02A0	00	08	40	48	01	09	41	49		.09	01	06	04	06	06	04	
02B0	08	01	08	40	40	B4	02	08	FF	FF	04	08	F5	7E	15	00	
0200	41	FE	5F	04	51	70	5D	04	51	в6	54	14	F7	D5	04	54	
02C0	7F	5E	01	00	FD	FF	00	00	00	00	00	00	00	00	00	00	
	00	00	00	00	00	00	00	00	00		00	00	00	00	00	00	\$
02E0	00	00	00	00	00		00	00	00	00	00	00	00	00	00	00	
MUSIC	мΔ(HTH	NF														
10310	EI/A		1								3						
	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0 D	0E	0 F	
	*																
0000	FB	18	FE	FF	44	51	E6	E6	66							D1	
0010	BD	BD	BD	00	44	BD	00	44	3D	36	33		A8	80	80	33	
0020	44	B3	80	80	44	51	C4	80	80	5A	51	E6	80	80	FA	FE	
0030	00	FB	28	5A	5A	51	48	5A	48	D1	5A	5A	51	48	DA	E0	
0040	5A	5A	51	48	44	48	51	5A	60	79	6C	60	DA	DA	FA	FE	
0050	FF	5A	5A	5A	5A	5A	5A	66	72	79	E6	E6	80	56	56	56	
0060	56	56	56	56	5A	66	D9	80	80	4C	4B	4C	4C	4C	4C	56	
0070	5A	56	4C	00	C4	44	4C	56	5A	5A	56	5A	66	56	5A	66	
0080	F2	80	FE	00	00	72	5A	ĊC	72	5A	CC	72	5A	CC	80	B 8	
0090	80	4C	56	5A			E6			FA	FF	00					
0050								19									
	00	01	02	03	04	05	06	07	08	09	0A	0 B	00	0D	0E	0F	
0200	A2	05	BD	86	02	95	E0	CA	10	F8	A9	BF	8D	43	17	A0	
0210	00			E6				DO	04	00	EA	F0	ED	90	0 B	E9	
0220	FB			E4		E4	95	E0	B0	E0	A6	EO	86	E7	A6	E1	
0230	A8	30		A2	01	86	E6	29	7F	85	E9	F0	02	85	EA	A5	
0240	E9			FO		E6	EA		E9	A6	E9	A9	A7	20	5D	02	
0250	30			EA		27	20	5D	02	30	AF	10	E2	A4	E2	84	
0250	EB	86		EO		DO		A6	EC	C6	EB	DO	F6	FO	16	8D	
				C6				60			E8		EO		E7		
0270	42	17		A9		60			01	FF	00	00	-0	01	- /		
0280	E6	DO	EU	AY	FF	00	50	02	01	11	00	00					

HUNT THE WUMPUS

	00	01	02	03	04	05	06	07	08	09	0A	0 B	00	0 D	0E	0 F	
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 00A0 00B0	80 F 8 F 7 00 02 05 08 08 80 80 80	BE B9	D4 F9 00 01 03 05 84 F7	D4 F1 DE 00 01 02 04 06 ED	80 F9 80 00 01 03 07 ED ED F9	B8 00 F7 00 02 06 08 F9 80	ED 80 80 00 03	F9 80 9C 9C 00 04 06 0A 0F 80 F9 80	B 8		F7 ED F3 00 07 09	DE 80	DE 80 C0 ED 00 09 0B 0D 0E 88 80 D3	F 8 80 80 00 0A 0C	DC FC 80 00	85 BE 00 04 07 0A	
	00	01	02	03	04	05	06	07	08	09	0 A,	0 B	0 C	0 D	0 E	0 F	
0100 0110 0120 0130 0140 0150 0160 0170	80 84 D0 63 F3 EE F3 B7	9C F8 1E F9 EE 84 80	BE 80 D0 6C D0 84 F8 00	B7 B9 1E 1C FC 84 80 80	F7 F9 00	BE DC DC F8 F9 80 BE	ED 48 F8 80 F9 BD F8	85 F9 22 80 ED 80 F7 80	89 00 0F EE D4 F1 ED DC	88 80 E6 F7 F9 80 F1	DC FC 63 BE F8 88 84 80	ED F7 1E 80 B9 B8 D4 BD	F9 F8 6C 00 F6 80 80 F7	00 ED 1C 80 80 84 D0 ED	80 80 ED 00 D4 DC 80	F 3 B9 E6 BE 80 80 DC 00	
	00	01	02	03	04	05	06	07	08	09	0A	0 B	0 C	0 D	0 E	0 F	
0200 0210 0220 0230 0240 0250 0260 0270 0280 0290 02A0 0280 0280 02A0 02B0 02C0 02C0 02C0 02E0 02F0	84 D0 20 17 8D 20 E7 FD 04 30 CB B5 01 F9 BE	DE 01 28 20 41 06 3E 60 F0 50D 60 80 20 F7 BD	85 60 02 3E 17 90 02 A5 05 CB 20 A6 85 00 F8	DD 95 A4 02 A0 F3 F0 C0 6 F0 B2 C9 02 C0 F1	E8 DC 2C 00 20 FB D0 C0		CA 0A 17 09 1F 3E E6 C0 10 06 85 03 A9	60	A0 F3 E8 20 F0 06 29 BC6 20 80 90	05 D8 06 C6 8C F6 F8 C0 20 03 60 F0 00 BD BE	A2 18 86 DB 4 1E 20 29 E6 72 AA 503 02 F9 B7	05 98 D0 FC 20 6A 8C 02 B5 CA 4C 85 F3	B1 65 A9 EF 20 3E F0 A5 C6 B10 D4 BE	DD 52 60 4E 02 05 05 05 05 70 F9 02 F7 ED	C9 85 8D 1F D0 15 0A 60 C9 CB 85 60 8D 80 80	00 DC 07 7F C8 F8 10 90 A2 04 A5 C8 A0 D0 F6 00	

HUNT THE WUMPUS (CONT.)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F AD 06 17 85 C0 A9 FF A2 0E 95 C1 CA 10 FB A9 03 0300 85 E0 A0 05 10 02 A0 00 A2 05 20 72 02 29 OF D5 0310 CA F0 F5 CA 10 F9 99 CA 00 88 10 EC 20 B2 02 A0 0320 03 84 E1 B9 C6 00 20 8F 02 8A 30 17 E0 03 30 04 0330 A9 19 10 0A E0 01 30 04 A9 0E 10 02 A9 00 A0 01 0340 20 00 02 C6 E1 A4 E1 10 DA A4 CA B9 E7 1F 85 0C 0350 A2 03 B4 C6 B9 E7 1F 95 20 CA 10 F6 A0 00 98 20 0360 00 02 20 58 02 C9 14 F0 48 20 C5 02 85 CA 8A 30 0370 EB A5 CA A2 04 D5 C1 F0 33 CA 10 F9 20 8F 02 8A 0380 30 9A E0 03 10 17 E0 01 10 1D A0 00 A9 26 20 00 0390 02 20 99 02 C5 CA D0 84 A9 26 20 CF 02 A0 01 A9 03A0 3D 20 00 02 4C 16 03 A9 4F 20 CF 02 A9 65 20 CF 03B0 02 A0 00 A9 B7 20 00 02 20 58 02 20 C5 02 85 D1 03C0 8A 30 EE A5 D1 A6 E0 95 C0 C5 CB F0 15 C6 E0 F0 03D0 1A A4 E0 B9 E7 1F 85 9F A0 00 A9 90 20 00 02 4C 03E0 6C 03 A0 02 A9 DE 20 00 02 F0 F7 A9 73 20 CF 02 03F0

APPENDIX E.

SPECIAL APPLICATIONS

SUBROUTINE ADC - 8 Bit Analog to Digital Conversion

	0080	A9	80		ADC	LD A#	\$80	enter trial no.
	0082	85	EE			STAz	TRIAL	save it
	0084	A9	00			LDA#	\$00	clear A
	0086	18			NXTBIT	CLC		clear carry before add
	0087	65	EE			ADCz	TRIAL	add trial to A
	0089	8D	00	17		STAC	PAD	output to DAC
	008C	AD	02	17		LDAC	PBD	check comparator
	008F	29	10			AND#	\$10	mask all but bit 4
	0091	DO	09			BNEr	SAVE	if comp. = 1, save result
	0093	AD	00	17		LDAC	PAD	too big, get no. from DAC
	0096	38				SEC		set carry before subtract
	0097	E5	EE			SBCż	TRIAL	subtract trial no.
	0099	4C	9F	00		JMP@	SHIFT ·	
	009C	AD	00	17	SAVE	LDA@	PAD	load DAC into A
	009F	46	EE		SHIFT	LSRz	TRIAL	divide trial by 2
	00A1	90	E3			BCCr	NXTBIT	done if trial less than 1
ļ	00A3	60				RTS		return with final no. in A

Hardware:

PAO - PA7 are out to DAC PB4 is in from comparator

V input

ANALOG TO DIGITAL CONVERSION DEMONSTRATION PROGRAM

Display ADC Output in HEX Format

0000 A9 FF	START LDA#	\$FF	set PA port to output
0002 8D 01 17	STAG	\$1701	
0005 AD 03 17	LDA@	\$1703	set PB4 to be input
0008 29 EF	AND#	\$EF	
000A 8D 03 17	STA@	\$1703	
000D 20 80 00	LOOP JSR@	ADC	call ADC subroutine
0010 85 F9	STAz	\$F9	store ADC output in right display
0012 20 1F 1F	JSR@	SCANDS	display data
0015 4C 0D 00	JMP@	LOOP	loop back for more data

Display ADC Output in BCD Format

0020 A9	FF		START	LDA#	\$FF	set PA port to output
0022 8D	01	17		STA@	PADD	
0025 AD	03	17		LDA@	PBDD	set PB4 to be input
0028 29	EF			AND#	\$EF	a Merina en Transminis a forma de la mara de la mara de
002A 8D	03	17		STA@	PBDD	
002D 20	80	00	READ	JSR@	ADC	read ADC
0030 85	E7			STAz	HEDEC-L	set up data for binary to BCD conversio
0032 A2	00			LDX#	\$00	
0034 86	E6			STXz	HEDEC-H	
0036 20	00	02		JSR@	HEDEC	call binary to BCD conversion routine
0039 A6	E1			LDXz	\$E1	get BCD result high
003B 86	FB			STXz	\$FB	store result in left display
003D A6	E2			LDXz	\$E2	get BCD result low
003F 86	FA			STXz	\$FA	store result in middle display
0041 A2	00			LDX#	\$00	zero the right display
0043 86	F9			STXz	\$F9	
0045 20	1F	1F	*	JSR@	SCANDS	display final BCD value
0048 4C	2D	00		JMP@	READ	loop back for more data

note: In order to perform the binary to BCD conversion, you must load the HEDEC program into the memory starting at address \$0200.

This program uses the circuit and ADC subroutine shown on page E-1.

MULTICHANNEL ANALOG INPUT/OUTPUT SYSTEM FOR KIM-1

by J.B. Ross

A multichannel analog I/O system which is ideally suited to the KIM-1 system was developed by Douglas R. Kraul (BYTE June 1977, pp. 18-23). This system (see diagram on p.E-7) provides 8 channels of analog input and output. The circuit uses standard components and can be constructed using wire-wrap techniques for less than \$50.00.

The multichannel I/O system is interfaced to KIM-1 via the programmable I/O lines as follows:

Connect the 8 data lines driving the DAC to port PA--

DAC	0	to	PAO
DAC	1	to	PA1
•		•	•
•		•	•
DAC	7	to	PA7

Connect the remaining control lines to port PB--

SELECT 0	to	PBO
SELECT 1	to	PB1
SELECT 2	to	PB2
STROBE	to	PB3
SIGN BIT	to	PB4

The complete driver software is given on the following pages. The interface driver uses the KIM-1 interval timer to trigger an NMI interrupt to update the inputs and outputs every 50 mSec so you must also connect PB7 to pin 6 of the expansion connector. The NMI interrupt vector is set up by the initializing routine starting at \$0380.

To make the interface system operate, load the Analog Interface Driver Routine, the Analog to Digital Conversion Subroutine, and the Initialization Routine. Start the program at \$0380. Control will be transferred immediately back to the KIM monitor. If the display begins to flicker, the program is operating properly. Eight bit data to be sent to output channels 0 through 7 is stored in locations \$00C0 through \$00C7, eight bit input

E-3

data from channels 0 through 7 is written into locations \$00C8 through \$00CF. When the interface driver is operating, the keyboard monitor can be used to enter data for the analog outputs and to examine data from the analog inputs. This feature makes calibration of the interface very convenient.

Since the analog data is transferred to and from the memory table by the interface driver software, users need concern themselves only with the details of how to use the digital data contained in the table. Programs can readily be written to examine input data and generate output data. If a user program does any critical timing, there is a possibility of interference by the interface driver. A complete update of all inputs and outputs requires about 5 mSec and takes place automatically every 50 mSec. If a timming loop is used, it may be lengthened by 5 mSec. The interface driver uses the interval timer located at \$1704 - \$170F so this sould not be used by another program. The other timer at \$1744 - \$174F is available for general timing use, but has no signal output for interuppting the processor.

The driver software also includes an eight bit counter in location \$00D0 which increments by one each time the interface is serviced, and a four digit BCD "clock" in locations \$00D1 and \$00D2 which is incremented once each 0.1 Sec (approximately).

E-4

ANALOG INTERFACE DRIVER ROUTINE

0300 48	START	PHA		save A
0301 8A		TXA		
0302 48		PHA		save X
0303 A2 00		LDX#	\$00	clear X
0305 8A	OUTPUT	TXA		get channel number
0306 09 08		ORA#	\$08	disable output multiplexer
0308 8D 02 17		STA@	\$1702	select output channel
030B B5 C0		LDAzx	\$C0	get number from memory table
030D 8D 00 17		STA@	\$1700	send it to DAC
0310 AD 02 17		LDA@	\$1702	enable output multiplexer
0313 29 F7		AND#	\$F7	
0315 8D 02 17		STA@	\$1702	
0318 A9 64	DELAY	LDA#	\$64	set up time delay for charging
031A 8D 04 17		STA@	\$1704	use microsecond timer
031D AD 07 17	WAIT	LDA@	\$1707	get status
0320 F0 FB		BEQr	WAIT	wait until timer is done
0322 AD 02 17		LDA@	\$1702	disable output multiplexer
0325 09 08		ORA #	\$08	
0327 8D 02 17		STA@	\$1702	
032A E8		INX		increment channel in X
032B E0 08		CPX#	\$08	check for maximum X=8
032D D0 D6		BNEr	OUTPUT	if less than maximum, repeat output
032F 8E 02 17	INPUT	STX@	\$1702	select input channel
0332 20 58 03		JSR@	ADC	convert analog V to binary
0335 95 CO		STAzx	\$C0	save number in memory table
0337 E8		INX		increment channel in X
0338 E0 10		CPX #	\$10	check for maximum X=\$10
033A DO F3		BNEr	INPUT	if less than maximum, repeat input
033C A9 30	EXIT	LDA#	\$30	reload interval timer with refresh
033E 8D OF 17		STA@	\$170F	value (msec)
0341 E6 D0		INCz	COUNT	increment sample count
0343 18	CLOCK	CLC		clear carry before addition
0344 F8		SED		switch to BCD mode
0345 A5 D0		LDAz	COUNT	get count number
0347 29 01		AND#	\$01	mask all but low bit
0349 65 D1		ADCz	TIME-L	add bit to low order time
034B 85 D1		STAz	TIME-L	save result
034D A9 00		LDA#	\$00	clear A
034F 65 D2		ADCz	TIME-H	add carry to high order time
0351 85 D2		STAz	TIME-H	save result
0353 D8		CLD		return to binary mode
0354 68		PLA		restore X
0355 AA		TAX		
0356 68		PLA		restore A
0357 40	24	RTI		return from interrupt
577242EX754 C-5384E		10.500.477		n ne en sen el sen set el l'estre de l'article de la constant d'Estre de la constant d'Estre de la constant de

ANALOG TO DIGITAL CONVERSION SUBROUTINE

0358	A9	80	ADC	LDA#	\$80	enter trial number
035A	85	EE		STAz	TRIAL	save it
035C	A9	00		LDA#	\$00	clear A
035E	18		NXTBIT	CLC	Alternation Co.	clear carry before addition
035F	65	EE		ADCz	TRIAL	add trial value to A
0361	8D	00 1	.7	STA@	DAC	send trial value to DAC
0364	C6	F3		DECz	\$F3	waste 5 microseconds
0366	AD	02 1	.7	LDA@	COMP	get comparator status
0369	29	10		AND#	\$10	mask to recover bit 4
036B	DO	09		BNEr	SAVE	<pre>save result if comparator = 1</pre>
036D	AD	00 1	7	LDA@	DAC	too big, get number from DAC
0370	38		1000. 1001. UNI	SEC		set carry before subtraction
0371	E5	EE		SBCz	TRIAL	subtract trial number
0373	18			CLC		
0374	90	03		BCCr	SHIFT	jump to shift
0376	AD	00 1	7 SAVE	LDA@	DAC	get number from DAC
0379	46	EE	SHIFT	LSRz	TRIAL	divide trial number by 2
037B	90	E1		BCCr	NXTBIT	done if carry is 1
037D	60			RTS		return with final value in A

INITIALIZATION ROUTINE FOR INTERFACE DRIVER

0380 A9	FF	INTLZ LD	A# \$FF	set PA port to output
0382 8D	01 17	ST	A@ \$1701	
0385 A9	OF	LD	A# \$OF	set PBO - PB3 to output
0387 8D	03 17	ST	A@ \$1703	7 · · · · ·
038A A9	00	LD	∖ # \$00	clear A
038C 85	D0	STA	z COUNT	clear COUNT
038E 85	D1	STA	z TIME-L	clear TIME-L
0390 85	D2	STA	z TIME-H	clear TIME-H
0392 8D	FA 17	STA	@ NMI-L	set up NMI interrupt vector
0395 A9	03	LDA	∦ \$03	
0397 8D	FB 17	STA	Q NMI-H	*
039A AD	OE 17	LDA	@ \$170E	enable timer interrupt
039D 4C	4F 1C	JM	@ \$1C4F	jump to monitor (or user program)

Number	Туре	+5 V	GND	-15 V	+15 V	-5 V
1 to 8	CA3130	7				4
9	CD4051	16.	8			7
10	CD4051	16	8	1 8		7
11	MCI408L-8	13	2	1		
12	LM311	10.02	1	4	8	
13	LM318			4	8	

E-7

APPENDIX F.

KIM/6500 INFORMATION SOURCES

•

KIM SOFTWARE SOURCES

KIM-1/650X User Notes

109 Centre Ave.

West Norriton, PA 19401

Published every 5 to 8 weeks. Subscription: \$5.00 for six issues. Back issues may be available. Highly recommended.

ARESCO

314 Second Ave.

Haddon Heights, NJ 08035

4K version of FOCAL for \$40, 2.5K assembler (nonstandard mnemonics) for \$30, 6K assembler/text editor (standard mnemonics) for \$60. Send \$2.00 for literature.

6502 PROGRAM EXCHANGE

2920 Moana

Reno, Nevada 89509

4K FOCAL (FCL-65), scientific routine package (written in FOCAL), games and general software for 6500 systems using the KIM and TIM monitors. Send \$0.50 for program list.

THE COMPUTERIST

P.O. Box 3

S. Chelmsford, MA 01824

High quality software. PLEASE game package for KIM-1: \$10.00 (cassette). HELP text editors and word processing programs-send for description-\$15.00 per cassette. MICRO-CHESS Chess playing program for KIM-1: \$15.00.

PYRAMID DATA SYSTEMS

6 Terrace Avenue

New Egypt, NJ 08533

"XIM" extended I/O monitor package for KIM (requires more than 1K of memory) \$12 for manual and cassette.

MICRO-WARE LTD.

27 Firstbrooke Road Toronto, Ontario

Canada M4E 2L2

Assembler, dissassembler, and text editor for 6502 with 4K memory. Manual and KIM cassette: \$25, source listing: \$25. Well documented.

Kenneth W. Ensele 1337 Foster Rd. Napa, CA 94558

> Source for Tom Pittmans 2K TINY BASIC on KIM cassette. Specify starting address \$0200 or \$2000. \$9.50 for tape plus \$1.00 handling and postage.
ORB

P.O. Box 311 Argonne, IL 60439

> THE FIRST BOOK OF KIM by Stan Ockers, Jim Butterfield, and Eric Rehnke. The book includes a beginners guide to KIM, several tutorials on hooking things up to KIM, and a large number of game and utility type programs. 180 pages, 8 1/2 X 11 format: \$9.00 plus \$0.50 postage.

Johnson Computer

P.O. Box 523

Medina, Ohio 44258

4.5K assembler/text editor and other 6502 software. Write for current information.

6500 MICROPROCESSOR SUPPLIERS

MOS Technology 950 Rittenhouse Rd. Norristown, PA 19401 (215) 666-7950

Rockwell Microelectronic Devices P.O. Box 3669 Anaheim, CA 92803 (714) 632-3729

Synertek 3050 Coronado Dr. Santa Clara, CA 95051 (408) 984-8900

6500 BASED MICROCOMPUTER SUPPLIERS

Apple Computer Inc. 20863 Stevens Creek Blvd. Bldg. B3-C Cupertino, CA 95014 (408) 996-1010 Commodore Business Machines 901 California Ave.

Palo Alto, CA 94304 (415) 326-4000

ECD Corp. 196 Broadway Cambridge, MA 02139

(617) 661-4400

Ohio Scientific 11679 Hayden Hiram, Ohio 44234

F-3

APPENDIX G

G. GENERAL REFERENCE INFORMATION

6530 TIMER FUNCTIONS AND PROPERTIES

- A. TIME-OUT FLAG AND INTERRUPT ENABLE REGISTER:
- 1. ALL WRITE OPERATIONS TO THE COUNTER TOUCH THE INTERRUPT ENABLE REGISTER (ADDRESS BIT 3, THE '8' BIT, IS COPIED INTO THE INTERRUPT ENABLE REGISTER).
- 2. ALL READ OPERATIONS ON THE COUNTER (EVEN ADDRESSES) TOUCH THE INTERRUPT ENABLE REGISTER.
- 3. ALL READ OPERATIONS ON THE TIME-OUT FLAG (ODD ADDRESSES) LEAVE THE INTERRUPT ENABLE REGISTER UNTOUCHED.
- 4. AFTER COMPLETION OF TIME-OUT, FLAG READ OPERATIONS DO NOT CLEAR THE TIME-OUT FLAG.
- 5. AFTER COMPLETION OF TIME-OUT, COUNTER READ OPERATIONS CLEAR THE TIME-OUT FLAG.
- ALL COUNTER WRITE OPERATIONS CLEAR THE TIME-OUT FLAG.
- B. PRE-SCALER BITS:
- PRE-SCALER BITS ARE TOUCHED ONLY BY WRITE OPERATIONS (ADDRESS BITS Ø AND 1. THE '1' AND '2' BITS, ARE COPIED INTO THE PRE-SCALER REGISTER).
- THE COUNTER CAN BE LOADED AT ALL ADDRESSES FROM 1704-1707 AND FROM 170C-170F, BUT IT CAN BE READ ONLY AT THE EVEN ADDRESSES.
- 3. THE TIME-OUT FLAG CAN BE READ ONLY AT ODD ADDRESSES; SUCH READ OPERATIONS ALWAYS RETURN EITHER 30 OR 80 (HEX).

CONSEQUENCES:

- SETTING THE PRE-SCALER BITS REQUIRES A WRITE OPERATION.
- ENABLING THE INTERRUPT REQUIPES A WRITE OPERATION AT ADDRESSES 170C-170F, OR A READ OPERATION AT EITHER 170C OR 170E.
- DISABLING THE INTERRUPT REQUIRES A WRITE OPERATION AT ADDRESSES 1204-1207, OR A READ OPERATION AT EITHER 1204 OR 1206.
- ALL TRANSACTIONS AT EVEN ADDRESSES CLEAR THE TIME-OUT FLAG IF IT HAPPENED TO BE SET.

FO ILIN

INTERRUPT EXPERIMENT

0000	A9	40		LDA# \$40	
0002	8D	FE	17	STA@ \$17FE	2
0005	A9	00		LDA# \$00	
0007	8D	FF	17	STA@ \$17FF	IRQ VECTOR INSTALLED
000A	8D	03	17	STA@ \$1703 -	and an and an an an and an
000D	A9	FF		LDA# #FF	tot .
000F	8D	01	17 .	STA@ \$1701	PORT A OUTPUT
0012	8D	ØF	17	STA@ \$170F *	PORT & OUTPUT PORT A OUTPUT START UP TIMER 1014 tour data, when the ENABLE INTERRUPTS PECIMOL MODE
		OF	1/		START OF TIMER IV
0015	58			CLI	ENABLE INTERRUPTS
0016	F8	9600 000 T		SED	DECIMAL MODE
0017	A9	00		LDA# \$00	
0019	85	F9		STAZ \$F9	
001B	85	FA		STAZ \$FA	
001D	85	FB	*	STAZ \$FB.	ZERO OUT DISPLAY DIGITS
001F	38			STC	USE CARRY TO DO THE INCREMENT
0020	AZ	FD.		LDX# \$FD	NOTE WRAP-AROUND INDEXING
0022	BS	FC		LDAZX SFC	TO GET TO LOCATION F9 FIRST
					TO GET TO LOCHITON PS FIRST
0024	69	00		ADC# \$00	
0026	95	FC		STAZX SFC	WRITE BACK UPDATED DIGIT PAIR
0028	90	03		BCC \$03	FALL OUT IF NO CARRY-OUT
002A	E8			INX	UPDATE INDEX IF NEED BE
002B	DØ	F5		BNE \$F5	FALL OUT IF ALL DIGITS DONE
002D	A9	20		LDA# \$20	
002F	85	80		STAZ \$80	USE LOC. 80 AS DISPLAY LOOP CTR.
0031	20	1F	1F	JSR@ \$1F1F	CALL TO DISPLAY DIGITS
0034	Č6	80		DECZ \$80	COUNT DOWN DISPLAY CALLS
0036	DØ	F9		BNE \$F9	DO ANOTHER DISPLAY CALL
0038	FØ	E5		EEQ \$E5	UPDATE DISPLAY CONTENTS
NOW THE	INTE	ERRUI	PT-DRIVE	N PROGRAM	
0040	48			PHA	SAVE ACCUMULATOR
0041	AD	02.	17	LDA@ \$1702	GET SWITCHES
0044	0A	1.1		ASL A	SHIFT UP
0045	ØA			ASL A	TWICE
0046	DØ	02		BNE #02	IF ALL SWITCHES ARE ZERO
0048	A9	FF		LDA# \$FF	USE \$FF FOR DEFAULT
			17	사람은 안동이 집을 알려요. 이 집에 가지 않는 것이 가지지 않는 것이 같이 하는 것이 같이 있다.	
004A	8D	0F	17	STA@ \$170F	RESTART TIMER
004D	EE	00	17	INC@ \$1700	UPDATE PORT A
0050	68			PLA	RETRIEVE ACCUMULATOR
0051	40			RTI	RETURN FROM INTERRUPT
NOTES:					
1.	GROU	INDIN	NG SWITC	HES WILL SPEED U	JP THE UPDATES ON PORT A.
6					

2. LOCATION 002E CONTROLS THE COUNTING RATE ON THE DIGIT DISPLAY.

G-2

CODE COMPARISON CHART

		00		JOIN ONIMICI		
DECIMAL	14-BIT BINARY	SIGN AND MAGNITUDE (+ = 0 - = 1)	5-BIT OFFSET BINARY	13 COMPL. BINARY	2s COMP. BINARY	5-BIT GRAY
15	1111	0 1111	1 1111.	0 1111	0 1111	01000
14	1110	0 1110	1 1110	0 1110	0 1110	01001
13	1101	0 1101	1 1101	0 1101	0 1101	01011
12	1100	0 1100	1 1100	0 1100	0 1100	01010 -
11	1011	0 1011	1 1011	0 1011	0 1011	01110
10	1010	0 1010	1 1010	0 1010	0 1010	01111 •
9	1001	0 1001	1 1001	0 1001	0 1001	01101
8	1000	0 1000	1 1000	0 1000	0 1000	01100
7	0111	0 0111	1 0111	0 0111	0 0111	00100
6	0110	0 0110	1 0110	0 0110	0 0110	00101
5	0101	0 0101	1 0101	0 0101	0 0101	00111
4	0100	0 0100	1 0100	0 0100	0 0100	00110 [.]
3	0011	0 0011	1 0011	0 0011	0 0011	·00010
2	0010	0 0010	1.0010	0 0010	0 0010	. 00011
1	0001	0 0001	1 0001	0 0001	0 0001	00001
0	0000	0 0000	1 0000	0 0000 1 1111	0 0000	000000
-1	<u>*:</u>	1 0001	0 1111	1 1110	1 1111	10000
-2.		1 0010	0 1110	1 1101	1 1110	10001
-3		1 0011	0 1101	1 1100	1 1101	10011
-4	20	1 0100	0 1100	1 1011	1 1100	10010
-5		1 0101	0 1011	1 1010	1 1011	10110
-6		1 0110	0 1010	1 1001	1 1010	10111
-7		1 0111	0 1001	1 1000	1 1001	10101
-8		1 1000	0 1000	1 0111	1 1000	10100
-9	3 - F	1 1001	0 0111	1 0110	1 0111	11100
-10		1 1010	0 0110	1 0101	1 0110	11101
-11		1 1011	0 0101	1 0100	1 0101	11111
-12		1 1100	0 0100	1 0011	1 0100	11110
-13		.1 1101	0 0011	1 0010	1 0011	11010
-14		1 1110	0 0010	1 0001	1 0010	11011
-15		1 1111	0 0001	1 0000	1 0001	11001
-16	5. 1	- 1947 - 1949 (1947) 1	0 0000		1 0000	11000
			ಲ ನಾರನ್ನು			

Offset binary and 2s complement differ only in the state of the sign bit. Gray code is not weighted; it can only be converted into a binary bit string, which must then be further interpreted. For the purpose at hand we will use a 3-bit binary adder which will accept a pair of 3-bit inputs (the addends) to form a 4-bit output by the rules of straight ("unsigned") binary addition. In addition to the 10 bits making up the inputs and the output, we will define one more. signal, which is the carry into the leftmost bit position of the addends:

To keep a running count of overflow and underflow events we will need one more register, here also shown as 3 bits wide. Because spill-out from the adder may have a weight of +4 or -4 (overflow or underflow), it will be convenient to assign a weight of 4 to M_2 , and to treat the contents of M as another signed number which may be incremented or decremented by the same add/subtract strategy we will develop for A, B, and S. The bit weights for all bits are shown in the diagram; they correspond to the standard convention for two's complement signed integers. In the examples below, the bit locations and formats will be as shown above, but the bit weights will not be shown.

Two factors may be held accountable for most of the confusion around signed arithmetic:

- 1. The term MSB (most significant bit) is often used with an implicit convention which may assign the name MSB to either bit 0 or bit 1 of a word. In recognition of this, we will not use the term MSB here.
- 2. The signals in the O column may have either a positive weight (C_{in}) or a negative weight (A_o, B_o) . The adder makes no such distinction; the interpretation of bits as weighted numbers is strictly ours.

G-4

signed arithmetic p. 2

Addition of two small positive

Having recognized the sources of confusion, let us attempt to create some order by inspecting all possible combinations of sign bits and carry-in signals:

A.
$$C_{in} = 0; A_{o} = 0; B_{o} = 0$$

0
0 10 +2
0 01 +1
+3

B.
$$C_{in} = 0; A_{o} = 0; B_{o} = 1$$

0
0 1 0 +2
1 0 1 -1
0 0 0 0 1 1 1 -1

numbers.

 $(or A_0 = 1; B_0 = 0)$

Addition of a positive and a negative number, result negative. No overflow, no underflow

$$C_{in} = 0; A_{o} = 1; B_{o} = 1$$

$$0$$

$$1 0 1 -3 \qquad \text{Addi}$$

$$\frac{1 1 0}{1 \ 0 1 1} -\frac{2}{-5} \qquad \text{Under}$$

111

 $C_{in} = 1; A_{o} = 0; B_{o} = 1$

010

1 1 0

000

tion of two negative numbers. erflow

has a weight of 2×-4 , which is redistributed to M2 and S2

$$C_{in} = 1; A_{o} = 0; B_{o} = 0$$

$$1$$

$$0 1 1 +3$$

$$0 0 1 1 +3$$

$$0 0 1 \frac{1}{1} +1$$

$$0 0 0 \frac{1}{1} \frac{1}{1} +4$$

$$0 0 1 \frac{1}{1} \frac{1}{1} +4$$

$$S_{o} \text{ as formed has a weight of } +4,$$

$$0 0 1 0 0 0 +4 +0$$
which is moved to M₂

-4 + -1

= 0

$$(or A_0 = 1; B_0 = 0)$$

Addition of a positive and a negative number.

No overflow, no underflow

Note that the weight of Co is zero; Co is produced by "addition" of Cin

C-5

+2

C.

D.

Ε.

000

1

1 1 1

1 1 1

signed arithmetic p. 3

with weight +4 and B with weight -4.

 $C_{in} = 1; A_{o} = 1; B_{o} = 1$ 110 -2

Addition of two small negative numbers.

No underflow, no overflow Again C, neutralizes one of the sign bits. The other sign bit reappears as So.

In summary:

F.

- If carry-in is produced, but no carry-out is generated, then 1. overflow has occurred.
- If a carry-out is produced without help from a carry-in, then 2. underflow occurred.
- If no carries are generated, neither overflow nor underflow occurred. 3.
- If a carry-in produces a carry-out, this amounts to neutralization 4. of the positive weight of the carry-in by the negative weight of one of the sign bits. Neither overflow nor underflow has occurred.
- Whenever overflow or underflow occurs, S must be complemented, 5. to make S suitable as input to the adder for further arithmetic operations. If Cout=1, M must be decremented; if Cout=0, M must be incremented.

In logical terms, spill-out can be detected as Cin @ Cout. The sign of the spill-out is given by Cout.

When all additions have been made, we should combine the spill-out counter with the S register to make a double-length bit string representing the end result in two's complement format. Now there are two bit positions with an absolute weight of 4: the low-order sign bit, So, and the LSB of the spill-out counter, M2. These two bits must be combined, and then the vacated bit position must be eliminated to shift the high order bits into positions corresponding to their assigned weight.

G-6

APPENDIX H

TTL REFERENCE SHEETS

TTL REFERENCE SHEET #1

7432

7490 DECADE COUNTER

7474

BCD COUNT SEQUENCE

COUNT	OUTPUT							
COONT	00	Qc	QB	QA				
0	L	L	L	L				
1	L	L	L	н				
2	L	L	н	L				
3	L	L	н	н				
4	L	н	L	L				
5	L	н	L	н				
6	L	н	н	L				
7	L	н	н	н				
8	н	L	L	L				
9	н	L	L	н				

	RES	ET/COU	JTH 1	TABL	E	inces.	
	RESET	INPUTS			OUT	TUP	
R0(1)	R0(2)	R9(1)	R9(2)	Qo	QC	0 _B	QA
н	н	L	x	L	L	L	L
н	н	×	L	L	L	L	L
x	x	н	н	н	L	L	н
×	L	×	L		CO	JNT	
L	×	L	×		CO	JNT	
Ł	x	x	L		CO	JNT	

×

COUNT

74138 1-OF-8 DECODER

x

L

L

INPUTS												
ENA	BLE	S	SELECT					001	PUIS			
G1	G2*	с	в	Α	YO	Y1	¥2	¥3	Y4	Y5	¥6	¥7
x	н	×	×	x	н	н	н	н	н	н	н	н
L	x	x	x	x	н	н	н	н	н	н	H	н
н	L	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	L	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	н
н	L	L	н	н	н	н	н	L	н	н	н	н
H	L	н	L	L	+1	н	н	н	L	н	н	н
н	L	н	L	н	14	H	H	н	н	L	н	н
н	L	н	н	L	н	н	н	н	н	н	L	н
н	L	н	н	H	н	н	н	н	н	н	н	L

*G7 = G7A + G7R

8095 TRI-STATE BUFFER

FUNCTION TABLE

INPUTS		OUT	PUTS
D	G	٥	ā
L	н	L	н
н	н	н	L
×	L	00	ão

H = high level, L = low level, X = irrelevant Ω_0 = the level of Ω before the high-to-low transition of G

TTL REFERENCE SHEET #2

74148 PRIORITY ENCODER

FUNCTION TABLE

	ECT	1	DATA	INPUT	s	STROBE	OUTPUT
8	A	CO	C1	C2	C3	G	Y
x	x	X	x	x	X	н	L
L	L	L	×	×	x	L	- L
L	L	H	×	x	x	L	н
L	н	x	L	X	x	L	L
L	н	×	н	х	x	L	н
н	L	×	x	L	x	L	L
н	L	×	×	н	x	L	н
н	н	×	×	x	L	L	L
н	н	X	x	x	н	L	н

Select inputs A and B are common to both sections. H = high level, L = low level, X = irrelevant

54148/74148

INPUTS									0	UTPU	75		
EI	0	1	2	3	4	5	6	7	A2	A1	AO	GS	EO
н	×	x	x	x	x	x	x	x	н	н	н	н	H
L	н	н	н	н	н	н	н	н	н	н	н	н	L
L	x	×	×	×	x	×	x	L	L	L	L	L	н
L	x	x	x	x	x	x	L	н	L	L	н	L	н
L	x	x	x	x	x	L	н	н	L	н	L	L	н
L	x	×	×	x	L	н	н	н	L	н	н	L	H
L	x	×	x	L	н	н	н	H	н	L	L	L	н
L	x	×	L	н	н	н	H	н	н	L	н	L	н
L	x	L	н	н	н	н	н	н	н	н	L	L	н
L	L	11	н	H	н	н	н	H	н	н	H	L	н

DUAL PERIPHERAL DRIVERS 300 mA, 20 V

RS-232C - TTL CONVERTERS

.....

RELAY DRIVERS

+V

DS3686

DS3687

1489

1488

APPENDIX I

MOS TECHNOLOGY SHEETS

VALLEY FORGE CORPORATE CENTER (215) 666-7950 950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401 PRELIMINARY

SHEET

MAY, 1976

MCS6500 MICROPROCESSORS

The MCS6500 Microprocessor Family Concept ----

The MCS6500 Series Microprocessors represent the first totally software compatible microprocessor family. This family of products includes a range of software compatible microprocessors which provide a selection of addressable memory range, interrupt input options and on-chip clock osscillators and drivers. All of the microprocessors in the MCS6500 group are software compatible within the group and are bus compatible with the M6800 product offering.

The family includes five microprocessors with on-board clock oscillators and drivers and four microprocessors driven by external clocks. The on-chip clock versions are aimed at high performance, low cost applications where single phase inputs, crystal or RC inputs provide the time base. The external clock versions are geared for the multi processor system applications where maximum timing control is mandatory. All versions of the microprocessors are available in 1 MHz and 2 MHz ("A" suffix on product numbers) maximum operating frequencies.

Features of the MCS6500 Family

- . Single five volt supply
- . N channel, silicon gate, depletion load technology
- . Eight bit parallel processing
- . 56 Instructions
- . Decimal and binary arithmetic
- . Thirteen addressing modes
- . True indéxing capability
- . Programmable stack pointer
- . Variable length stack
- . Interrupt capability
- . Non-maskable interrupt
- . Use with any type or speed memory
- . Bi-directional Data Bus

- Instruction decoding and control
 Addressable memory range of up to
- 65K bytes
- . "Ready" input
- . Direct memory access capability
- . Bus compatible with MC6800
- . Choice of external or on-board clocks
- . 1MHz and 2MHz operation
- . On-the-chip clock options
- * External single clock input
- * RC time base input
- * Crystal time base input
- . 40 and 28 pin package versions
- . Pipeline architecture

Members of the Family

Microprocessors with	Microprocessors with
On-Board Clock Oscillator	External Two Phase
	Clock Input
	MCS6512
MCS6503	
MCS6504	
MCSCEDE	
MCS6505	
MCS6506	- MCS6515

Comments on the Data Sheet

The data sheet is constructed to review first the basic "Common Characteristics" - those features which are common to the general family of microprocessors. Subsequent to a review of the family characteristics will be sections devoted to each member of the group with specific features of each.

COMMON CHARACTERISTICS

INSTRUCTION SET – ALPHABETIC SEQUENCE

DEC Decrement Memory by One PHA Push Accumulator on Stack ADC Add Memory to Accumulator with Carry AND "AND" Memory with Accumulator Push Processor Status on Stack PHP DEX Decrement Index X by One ASL Shift left One Bit (Memory or Accumulator) DFY Decrement Index Y by One Pull Accumulator from Stack PLA Pull Processor Status from Stack PLP EOR "Exclusive-or" Memory with Accumulator Branch on Carry Clear BCC Branch on Carry Set Branch on Result Zero ROL Rotate One Bit Left (Memory or Accumulator) BCS Rotate One Bit Right (Memory or Accumulator) Return from Interrupt BEO INC Increment Memory by One ROR Test Bits in Memory with Accumulator BIT Increment Index X by One Branch on Result Minus Branch on Result not Zero INY Increment Index Y by One BMI RTS Return from Subroutine RNF Branch on Result Plus SBC Subtract Memory from Accumulator with Borrow BPL JMP Jump to New Location JSR Jump to New Location Saving Return Address BRK Force Break SEC Set Carry Flag Branch on Overflow Clear Branch on Overflow Set BVC Set Decimal Mode SED Set Interrupt Disable Status RVS LDA Load Accumulator with Memory SEI Load Index X with Memory Load Index Y with Memory Store Accumulator in Memory LDX STA Store Index X in Memory CLC Clear Carry Flag STX CLD. Clear Decimal Mode LSR Shift One Bit Right (Memory or Accumulator) STY Store Index Y in Memory CLI Clear Interrupt Disable Bit CLV clear Overflow Flag CMP Compare Memory and Accumulator CPX Compare Memory and Index X NOP No Operation TAX Transfer Accumulator to Index X Transfer Accumulator to Index Y TAY ORA "OR Memory with Accumulator Transfer Stack Pointer to Index X TSX CPY Compare Memory and Index Y Transfer Index X to Accumulator TXA TXS Transfer Index X to Stack Pointer Transfer Index Y to Accumulator TA

ADDRESSING MODES

- ACCUMULATON ADDRESSING This form of addressing is represented with a one byte instruction, implying an operation on the accumulator.
- IMMEDIATE ADDRESSING In immediate addressing, the operand is contained in the second byte of the instruction, with no further memory addressing required.
- ABSOLUTE ADDRESSING In absolute addressing, the second byte of the instruction specifies the eight low order bits of the effective address while the third byte specifies the eight high order bits. Thus, the absolute addressing mode allows access to the entire 65K bytes of addressable memory.
- ZERO PACE ADDRESSING The zero page instructions allow for shorter code and execution times by only fetching the second byte of the instruction and assuming a zero high address byte. Careful use of the zero page can result in significant increase in code efficiency.
- INDEXED ZERO PAGE ADDRESSING (X, Y indexing) This form of addressing is used in conjunction with the index register and is referred to as "Zero Page, X" or "Zero Page, Y". The effective address is calculated by adding the second byte to the contents of the index register. Since this is a form of "Zero Page" addressing, the content of the second byte references a location in page zero. Additionally due to the "Zero Page" addressing nature of this mode, no carry is added to the high order 8 bits of memory and crossing of page boundaries does not occur.
- INDEXED ABSOLUTE ADDRESSING (X, Y indexing) This form of addressing is used in conjunction with X and Y index register and is referred to as "Absolute, X", and "Absolute, Y". The effective address is formed by adding the contents of X or Y to the address contained in the second and third bytes of the instruction. This mode allows the index register to contain the index or count value and the instruction to contain the base address. This type of indexing allows any location referencing and the index to modify multiple fields resulting in reduced coding and execution time.
- IMPLIED ADDRESSING In the implied addressing mode, the address containing the operand is implicitly stated in the operation code of the instruction.
- RELATIVE ADDRESSING Relative addressing is used only with branch instructions and establishes a destination for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" added to the contents of the lower eight bits of the program counter when the counter is set at the next instruction. The range of the offset is -128 to +127 bytes from the next instruction.

- INDEXED INDIRECT ADDRESSING In indexed indirect addressing (referred to as (Indirect,X)), the second byte of the instruction is added to the contents of the X index register, discarding the carry. The result of this addition points to a memory location on page zero whose contents is the low order eight bits of the effective address. The next memory location in page zero contains the high order eight bits of the effective address. Both memory locations specifying the high and low order bytes of the effective address must be in page zero.
- INDIRECT INDEXED ADDRESSING In indirect indexed addressing (referred to as (Indirect),Y), the second byte of the instruction points to a memory location in page zero. The contents of this memory location is added to the contents of the Y index register, the result being the low order eight bits of the effective address. The carry from this addition is added to the contents of the next page zero memory location, the result being the high order eight bits of the effective address.
- ABSOLUTE INDIRECT The second byte of the instruction contains the low order eight bits of a memory location. The high order eight bits of that memory location is contained in the third byte of the instruction. The contents of the fully specified memory location is the low order byte of the effective address. The next memory location contains the high order byte of the effective address which is loaded into the sixteen bits of the program counter.

COMMON CHARACTERISTICS

x

"PC"

"S"

TSX 5+x

ADD I TO N" IF PAGE BOUNDAY IS CROSSED

CARRY NOT . BORROW

121 ADD I TO "N" IF BRANCH OCCURS TO SAME PAGE ADD 2 TO IN IF BRANCH OCCURS TO DIFFERENT PAGE

IF IN DECIMAL MODE 2 FLAG IS INVALID ACCUMULATOR MUST BE CHECKED FOR 2FRD RESULT

TXA X + A

TXS x + s

TYA Y = A

11)

(3)

141

1. 2

1 1

N NO CYCLES

NO BYTES

INSTRUCTION SET - OP CODES, Execution Time, Memory Requirements IMMEDIATE Actual Immeted (IND,X) (IND),Y 2,PACE X ABS, X Actance Immeted 2,PACE Y COMDITION CODES OP N # OP N <t INSTRUCTIONS MNEMONIC OPERATION ADC A+M+C + A (41 m I D V AND AAM+A 29 20 4 3 25 3 2 11 2 2 35 4 2 30 4 3 39 4 16 6 2 1E, 7 3 21 6 2 31 5 7 4 Cat ¥ ASL -0E 6 3 86 5 2 8A 2 1 5 BCC BRANCH ON C+ a 12 99 2 2 BCS BRANCH ON C+1 121 80 2 2 BEO BRANCH ON 2-1 12 F# 2 2 BIT 4.A.M 20 4 3 24 3 2 м. м. BRANCH ON N+1 12 BMI 30 2 2 BNE BRANCH ON 2+0 121 09 2 -BPL BRANCH ON N+0 13 10 2 BRK (See Fig 1) 00 BV C BRANCH ON V-B 121 -58 2 BV S BRANCH ON V=1 121 70 2 2 CLC 0+C 18 2 8 CLD 0+D 08 2 CLI 0+1 56 2 CLV 0+v 88 2 CMP AM 111 09 2 2 CO 4 3 68 3 2 01 5 2 05 4 00 2 3 09 2 2 EC 4 3 E4 3 2 2 2 CC 4 3 C4 3 2 ÷ CPX X M EØ 1 CPY Y ... M C0 2 2 DEC M-1+M CE 6 3 C8 5 06 6 2 DE X-1 + X DEX CA 1.1 DEY Y-1+Y 1.1 -EOR AWHAA 2 4D 4 3 45 3 7 EE 8 3 EE 5 2 11 49 55 4 2 50 4 3 F8 6 2 FE 7 3 41 6 2 51 5 2 3 59 V V = = M - 1 - M INC X+1 + X INX E8 1 1 Y + 1 + Y INY C8 2 2 X 2 JMP JUMP TO NEW LOC. 4C 3 8C 5 3 ISee Fig. 21JUMP SUS JSR 20 6 LDA M + A ADI 4 UNMEDIATE ASSOLUTE CERD PACE ACCUM IMPLIED (IND,X) IND),Y Z,PAGE,X ABS, X ABS, Y RELATIVE INDIRECT Z,PAGE,Y OP N # CONDITION CODES MISENORIC OPERATION N 2 M + X LDX (1) A2 2 2 AE 4 3 AB 3 BE 4 LDY M + Y 111 A0 2 2 AC 4 3 A4 1 2 4 4 2 4 134 BC 1 , 1 200 Dec LSR 48 5 3 46 5 2 56 6 2 58 7 3 4 1 7 NOP NO OPERATION ORA AVM +A 2 05 3 2 10 . 1 15 2 PHA A---- Mi 5 1----5 48 PHP P-+ Mi 5.1-+5 Ø.B 3 1 PLA 5-1-05 MI 68 4 1 1 PLP 5.1-S M1----28 RESTORED 60 3.00 ROL 6 3 26 5 2 2A 2 1 26 ISHE FIG. 1) RTRN INT 6E 6 3 66 5 2 6A 2 ROR 76 6 2 78 7 3 1 1 1 RTI 48 6 IRESTORED! RTS (See Fig 2) RTRN SUB 60 6 1 1 S 8 C A-M C -+ A (1) E9 2 2 ED 4 3 E5 3 7 2 F1 5 2 F5 4 2 FD 4 3 6 F9 4 3 4 (3) SEC 1 + C 38 2 1 £ ÷ SED 1 + D F8 2 SEI 1-1 78 2 A - M STA 80 4 1 3 85 3 2 81 6 2 91 6 7 95 4 7 90 5 3 99 5 3 STX X + M 86 4 3 86 3 2 81.2 STY Y+M 80 4 3 84 1 2 4 2 94 TAX A +X TAY A-Y A8 2 ł 1 1

I.1-8

V. MEMORY PER EFFECTIVE Appoints.

WE WERE THE CARE PRIME

t

ADD

AND

(11)

SUBTRACT

-

142

Fathering the

NOT MODIFIED

ATLMM BIT .

Y. MEMORY BITE

MODIFIED

BA 7

84 2

WHITE & ×

T NUES T

A ACLUMAN ATTOR

94 2

$ \begin{array}{c} \begin{array}{c} V_{SS} & -1 & 40 - RES \\ RDY & 2 & 39 - 02(0UT) \\ 2 & 39 - 02(0UT) \\ 3 & 38 - S.O. \\ \hline IRQ - 4 & 37 - 00(IN) \\ N.C 5 & 36 - N.C. \\ \hline NMI - 6 & 35 - N.C. \\ \hline SYNC - 7 & 34 - R/W \\ Vcc - 8 & 33 - DBO \\ ABO - 9 & 32 - DB1 \\ AB1 - 10 & 31 - DB2 \\ AB2 - 11 & 30 - DB3 \\ AB3 - 12 & 29 - DB4 \\ AB4 - 13 & 28 - DB5 \\ AB5 - 14 & 27 - DB6 \\ AB6 - 15 & 26 - DB7 \\ AB7 - 16 & 25 - AB15 \\ AB8 - 17 & 24 - AB14 \\ AB9 - 18 & 23 - AB13 \\ AB1 - 20 & 21 - Vss \\ \end{array} $	<pre>* 65K Addressable Bytes of Memory * IRQ Interrupt * NMI Interrupt * On-the-chip Clock</pre>
--	--

$\begin{array}{c cccc} RES & -1 & 28 - \theta_2(OUT) \\ Vss & -2 & 27 - \theta_0(IN) \\ \hline IRQ & -3 & 26 - R/W \end{array}$	* 4K Addressable Bytes of
NMI 4 25 DBO Vcc 5 24 DBI	Memory (AB00-AB11)
ABO 6 23 DB2 ABI 7 22 DB3	* On-the-chip Clock
AB2 - 8 21 - DB4 AB3 - 9 20 - DB5	* IRQ Interrupt
AB4-10 19-DB6 AB5-11 18-DB7	* MMI Interrupt
AB6-12 17- AB11	
AB7 13 16 AB10 AB8 14 15 AB9	* 8 Bit Bi-Directional Data Bus
MC\$6503	Features of MCS6503

RES - 1 28- 02(OUT)	
Vss - 2 27 - 00(IN)	
IRQ - 3 26- R/W	
Vcc - 4 25 - DBO	* 8K Addressable Bytes of
ABO- 5 24- DBI	Memory (AB00-AB12)
ABI - 6 23 - DB2	
AB2 7 22 DB3	* On-the-chip Clock
AB3-8 21-DB4	
AB4 9 20 DB5	* IRQ Interrupt
AB5-10 19-DB6	
AB6 -11 18 - D87	* 8 Bit Bi-Directional Data Bus
AB7-12 17-AB12	" o bit bi-Directional baca bus
AB8-13 16-AB11	
AB9-14 15-ABIO	

NEWS DEFINE WHEN THE
Addressable Bytes of
nory (AB00-AB11)
8
the-chip Clock
erre erre er erre
Interrupt
interrupt
Signal
it Bi-Directional Data Bus

1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 * 4K Addressable Bytes of Memory (AB00-AB11) * On-the-chip Clock * IRQ Interrupt * Two phases off * 8 Bit Bi-Directional Data Bus
MCS6506	Features of MCS6506

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 * 65K Addressable Bytes of Memory * IRQ Interrupt * NMI Interrupt * RDY Signal * 8 Bit Bi-Directional Data Bus * SYNC Signal * Two phase input
ABB-17 24 - AB14 AB9-18 23 - AB13 AB10-19 22 - AB12 AB11-20 21 - Vss	* Data Bus Enable

	19-086 18-087 17-ABII	 * 4K Addressable Bytes of Memory (AB00-AB11) * Two phase clock input * TRQ Interrupt * TRI Interrupt * 8 Bit Bi-Directional Data Bus
MCSE	513	Features of MCS6513

$V_{SS} = \begin{bmatrix} 1 & 28 & -RES \\ RDY & -2 & 27 & 02 \\ 01 & -3 & 26 & -R/W \\ IRQ & -4 & 25 & -DB0 \\ Vcc & -5 & 24 & -DB1 \\ AB0 & -6 & 23 & -DB2 \\ AB1 & -7 & 22 & -DB3 \\ AB2 & -8 & 21 & -DB4 \\ AB3 & -9 & 20 & -DB5 \\ AB4 & -10 & 19 & -DB6 \\ AB5 & -11 & 18 & -DB7 \\ AB6 & -12 & 17 & -AB11 \\ AB7 & -13 & 16 & -AB10 \\ AB8 & -14 & 15 & -AB9 \\ \end{bmatrix}$	 * 4K Addressable Bytes of Memory (AB00-AB11) * Two phase clock input * IRQ Interrupt * 8 Bit Bi-Directional Data Bus
---	---

TIME BASE GENERATION OF INPUT CLOCK

-23

VALLEY FORGE CORPORATE CENTER (215) 666-7950 950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401 PRODUCT

ANNOUNCEMENT

BULLETIN

SEPTEMBER, 1976

MCS6520 PERIPHERAL ADAPTER

DESCRIPTION

The MCS6520 Peripheral Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing significant capability and flexibility in a low cost chip. When coupled with the power and speed of the MCS6500 family of microprocessors, the MCS6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8-bit bi-directional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral control/interrupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

High performance replacement for . Motorola/AMI/MOSTEK/Hitachi peripheral adapter. N channel, depletion load technology, single +5V supply. MCS6520 Completely Static and TTL compatible. 40 1 CA1 VSS CMOS compatible peripheral control lines. 2 39 CA2 PAØ 3 IRQA 38 PA1 Fully automatic "hand-shake" allows very 37 4 IROB PA2 positive control of data transfers between processor and peripheral devices. 5 36 RSØ PA3 35 RS1 6 PA4 7 34 RES PA5 8 33 DØ PA6 C 9 32 D1 ٦ PA7 10 31 D2 PBØ 30 11 D3 PB1 29 12 D4 PB2 CONTROL 28 13 D5 PB3 27 14 D6 PB4 8 BIT 8 BIT DATA BUS DATA PORT PERIPHERAL PB5 15 26 D7 MICROPROCESSORS DEVICES MCS650X MCS6520 PRINTERS 16 25 02 PB6 DISPLAYS, ETC. 8 BIT DATA PORT 17 24 CS1 PB7 CONTROL C 23 18 CS2 CB1 CONTROL 19 22 CSØ CB2 20 21 R/W VCC Basic MCS6520 Interface Diagram

SUMMARY OF MCS6520 OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of MCS6520 operation.

CR	A (CRB)		
D		Active Transition	IRQA (IRQB)
Bit 1	Bit O	of Input Signal*	Interrupt Outputs
0	0	negative	Disableremain high
0	1	negative	Enablegoes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1)
1	0	positive	Disableremain high
1	1	positive	Enableas explained above

signal. This is independent of the state of Bit 0 in CRA (CRB).

(CRA (CRB	3)	59. - 72	32 INPUT MODES
Bit 5	Bit 4	Bit 3	Active Transition of Input Signal*	IRQA (IRQB) Interrupt Output
0	0	0	negative	Disableremains high
0	0	1	negative	Enablegoes low when bit 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	1	0	positive	Disableremains high
0	1	1	positive	Enableas explained above

	CRA		CA	2 OUTPUT MODES
Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocessor "Read A Data" operation. This allows positive control of data transfers from the peripheral device to the microprocessor.
1	0	1	Pulse Output	CA2 goes low for one cycle after a "Read A Data" operation. This pulse can be used to signal the peripheral device that data was taken.
1	1	0	Manual Output	CA2 set low
1	1	1	Manual Output	CA2 set high

CB2	OU	TPUT	MOD	ES
CDZ	00	IFUI	IVIUL	

CRB

14					
	Bit 5	Bit 4	Bit 3	Mode	Description
	1	0	0	"Handshake" on Write	CB2 is set low on microprocessor "Write B Data" operation and is set high by an active transition of the CB1 interrupt input signal. This allows positive control of data transfers from the microprocessor to the peripheral device.
	1	0	1	Pulse Output	CB2 goes low for one cycle after a microprocessor "Write B Data" operation. This can be used to signal the peripheral device that data is available.
	1	1	0	Manual Output	CB2 set low
	1	1	1	Manual Output	CB2 set high

MAXIMUM RATINGS										
Rating	Symbol	Valu	ie	Unit						
Supply Voltage	upply Voltage V _{CC} -0.3 to +7.0							circuitr against	-	
Input Voltage	Input Voltage Vin -0.3 to +7.0							atic		
Operating Temperature Range	crating Temperature Range T_{A} 0 to +70						voltages, however, it is advised that normal precautions be taken to avoid application			
Storage Temperature Range	T _{stg}	°C	of any	voltage m rated	higher					
STATIC D.C. CHARACTERISTICS	$(V_{CC} = 5.$	0 V <u>+</u> 5%,	$V_{SS} = 0$	$T_{A} = 25^{\circ}$	^D C unles	ss other	wise no	ted)		
CF	naracteris	tic		Symbol	Min	Тур	Max	Unit		
Input High Voltage (Normal C	perating	Levels)		VIH	+2.0	2	VCC	Vdc		
Input Low Voltage (Normal Op	erating L	evels)		VIL	-0.3	_	+.8	Vdc		
Input Threshold Voltage	11.250 Pro Cons a - 199			VIT	0.8	-	2.0	Vdc		
Input Leakage Current				IIN			1.00	µAdc		
$V_{in} = 0$ to 5.0 Vdc				114	-	+1.0	+2.5	pride		
R/W,Reset,RSØ,R Three-State (Off State Input (V _{in} = 0.4 to 2.4 Vdc, V _{CC} Input High Current	Current			I _{TSI} . I _{IH}	-	<u>+</u> 2.0	<u>+</u> 10	µAdc		
$(V_{IH} = 2.4 \text{ Vdc})$	1	PAØ-PA7,CA2	2	(76.5)	-100	-250	-	μAdc		
Input Low Current	2			IIL		2				
$(V_{IL} = 0.4 \text{ Vdc})$	ł	PAØ-PA7,CA2			-	-1.0	-1.6	mAdc		
Output High Voltage				VOH						
$(V_{CC} = \min, 1_{Load} = -100 \mu$	Adc)		s		2.4	070	-	Vdc		
Output Low Voltage	121-121			VOL						
$(V_{CC} = \min, 1_{Load} = 1.6 \text{ mA})$	dc)				Ξ.	(H)	+0.4	Vdc		
Output High Current (Sourcin	g)			IOH						
$(V_{OH} = 2.4 \text{ Vdc})$						-1000	-	uAdc		
$(V_0 = 1.5 \text{ Vdc}, \text{ the current}$	for drivi	ng other t	han		-1.0	-2.5	<i>.</i>	mAdc		
TTL, e.g., Darlington	n Base) P	BØ-PB/.,CB2		2						
Output Low Current (Sinking)				IOL	13.7					
$(V_{OL} = 0.4 \text{ Vdc})$					1.6	-	аны на	mAdc		
Output Leakage Current (Off S	state) 1	RQA, IRQB		loff	-	1.0	10	uAdc		
Power Dissipation				PD	1.75	200	500	mW		
Input Capacitance $(V_{in} - 0, T_A = 25^{\circ}C, f = 1.$	0 MH-2)			Cin				pF		
DØ-D7, PAØ-F	0 0012	7 642 682			12		10			
R/W, Reset, RS	A DS1 CCA	1, CA2, CB2					10			
CA1,CB1, +2	, KSI, CSØ	,031,032,				5	7.0			
Output Capacitance				c		-	20			
$(V_{in} - 0, T_A = 25^{\circ}C, f = 1.$	0 MHz)			Cout	-	-	10	рF		

NOTE: Negative sign indicates outward current flow, positive indicates inward flow.

A.C. CHARACTERISTICS

Read Timing Characteristics (Figure 1, Loading 130 pF and one TTL load)

Characteristics	Symbol	Min	Тур	Max	Unit	
Delay Time, Address valid to Enable positive transition	TAEW	180	ЭĽ		ns	
Delay Time, Enable positive transition to Data valid on bus	TEDR	-	-	395	ns	
Peripheral Data Setup Time	TPDSU	300	-	-	ns	
Data Bus Hold Time	THR	10	1.50	2	ns	
Delay Time, Enable negative transition to CA2 negative transition		3	-	1.0	us	
Delay Time, Enable negative transition to CA2 positive transition		-	÷	1.0	us	
Rise and Fall Time for CA1 and CA2 input signals	tr,tf	2	-	1.0	us	
Delay Time from CAl active transition to CA2 positive transition	TRS2	-	-	2.0	us	
Rise and Fall Time for Enable input		6 -	-	25	us	
Write Timing Characteristics (Figure 2)						
Characteristics	Symbol	Min	Тур	Max	Unit	
Enable Pulse Width	TE	0.470		25	μs	
Delay Time, Address valid to Enable positive transition	TAEW	180	1.00	(*)	ns	
Delay Time, Data valid to Enable negative transition	TDSU	300	-	-	ns	
Delay Time, Read/Write negative transition to Enable positive	TWE	130	-		ns	

transition Data Bus Hold Time THW 10 ns Delay Time, Enable negative transition to Peripheral Data valid 1.0 TPDW -μs Delay Time, Enable negative transition to Peripheral Data Valid, TCMOS 2.0 μS CMOS $(V_{CC} - 30\%)$ PAØ-PA7, CA2 Delay Time, Enable positive transition to CB2 negative transition T_{CB2} 1.0 μs Delay Time, Peripheral Data valid to CB2 negative transition TDC 0 1.5 μs Delay Time, Enable positive transition to CB2 positive transition TRS1 _ 1.0 μs Rise and Fall Time for CB1 and CB2 input signals 1.0 tr,tf μs Delay Time, CBI active transition to CB2 positive transition T_{RS2} 2.0 μs

MCS6530 (MEMORY, I/O, TIMER ARRAY)

The MCS6530 is designed to operate in conjunction with the MCS650X Microprocessor Family. It is comprised of a mask programmable 1024 x 8 ROM, a 64 x 8 static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, and a software programmable interval timer with interrupt, capable of timing in various intervals from 1 to 262,144 clock periods.

- * 8 bit bi-directional Data Bus for direct communication with the microprocessor
- * 1024 x 8 ROM
- * 64 x 8 static RAM
- * Two 8 bit bi-directional data ports for interface to peripherals
- * Two programmable I/O Peripheral Data Direction Registers
- * Programmable Interval Timer
- * Programmable Interval Timer Interrupt
- * TTL & CMOS compatible peripheral lines
- * Peripheral pins with Direct Transistor Drive Capability
- * High Impedance Three-State Data Pins
- * Allows up to 7K contiguous bytes of ROM with no external decoding

Figure 1. MCS6530 Block Diagram

MAXIMUM RATINGS

RATING	SYMBOL	VOLTAGE	UNIT
Supply Voltage	VCC	3 to +7.0	v
Input/Output Voltage	V _{IN}	3 to +7.0	v
Operating Temperature Range	TOP	0 to 70	°c
Storage Temperature Range	TSTG	-55 to +150	°c

All inputs contain protection circuitry to prevent damage due to high static charges. Care should be exercised to prevent unnecessary application of voltage outside the specification range.

ELECTRICAL CHARACTERISTICS (VCC = $5.0v \pm 5\%$, VSS = 0v, T_A = 25° C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input High Voltage	VIH	V _{SS} +2.4		VCC	v
Input Low Voltage	VIL	V _{SS} 3		V _{SS} +.4	v
Input Leakage Current; $V_{IN} = V_{SS} + 5v$ AØ-A9, RS, R/W, RES, Ø2, PB6*, PB5*	IIN		1.0	2.5	μA
Input Leakage Current for High Impedance State (Three State); V _{IN} = .4v to 2.4v; DØ-D7	I _{TSI}		±1.0	±10.0	μA
Input High Current; $V_{IN} = 2.4v$ PAØ-PA7, PBØ-PB7	IH	-100.	-300.		μA
Input Low Current; $V_{IN} = .4v$ PAØ-PA7, PBØ-PB7	IIL		-1.0	-1.6	MA
Output High Voltage VCC = MIN, $I_{LOAD} \leq -100\mu A (PA\emptyset - PA7, PB\emptyset - PB7, D\emptyset - D7)$ $I_{LOAD} \leq -3 MA (PA\emptyset, PB\emptyset)$	V _{OH}	VSS+2.4 VSS+1.5			V
Output Low Voltage VCC = MIN, $I_{LOAD} \leq 1.6MA$	V _{OL}			VSS+.4	v
Output High Current (Sourcing); VOH ^{>} 2.4v (PAØ-PA7,PBØ-PB7,DØ-D7) ^{>} 1.5v Available for other than TTL (Darlingtons) (PAØ,PBØ)	ГОН	-100 -3.0	-1000 -5.0		µА МА
Output Low Current (Sinking); VOL < .4v(PAØ-PA7 (PBØ-PB7)	I OL	1.6			MA
Clock Input Capacitance	Clk			30	pf
Input Capacitance	CIN			10	pf
Output Capacitance	COUT			10	pf
Power Dissipation	PD		500	1000	MW

*When programmed as address pins All values are D.C. readings

WRITE TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Period	т _{сус}	l		10	μS
Rise & Fall Times	TR, TF			25	NS
Clock Pulse Width	TC	470			NS
R/W valid before positive transition of clock	TWCW	180			NS
Address valid before positive transition of clock	TACW	180			NS
Data Bus valid before negative transition of clock	TDCW	300			NS
Data Bus Hold Time		10			NS
Peripheral data valid after negative transition of clock	TCPW			1	μS
Peripheral data valid after negative transition of clock driving CMOS (Level=VCC-30%)	TCMOS			2	μS

READ TIMING CHARACTERISTICS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
R/W valid before positive transition of clock	TWCR	180			NS
Address valid before positive transition of clock	TACR	180			NS
Peripheral data valid before positive transition of clock	TPCR	300			NS
Data Bus valid after positive transition of clock	TCDR			395	NS
Data Bus Hold Time	THR	10			NS
IRQ (Interval Timer Interrupt) valid before positive transition of clock	TIC	200			NS

Loading = 30 pf + 1 TTL load for PAØ-PA7, PBØ-PB7

=130 pf + 1 TTL load for DØ-D7

READ TIMING CHARACTERISTICS

Figure 3 I.3-4

INTERFACE SIGNAL DESCRIPTION

Reset (RES)

During system initialization a Logic "O" on the RES input will cause a zeroing of all four I/O registers. This in turn will cause all I/O buses to act as inputs thus protecting external components from possible damage and erroneous data while the system is being configured under software control. The Data Bus Buffers are put into an OFF-STATE during Reset. Interrupt capability is disabled with the RES signal. The RES signal must be held low for at least one clock period when reset is required.

Input Clock

The input clock is a system Phase Two clock which can be either a low level clock ($V_{IL} < 0.4$, $V_{IH} > 2.4$) or high level clock ($V_{IL} < 0.2$, $V_{IH} = Vcc -.2$).

Read / Write (R/W)

The R/W signal is supplied by the microprocessor array and is used to control the transfer of data to and from the microprocessor array and the MCS6530. A high on the R/W pin allows the processor to read (with proper addressing) the data supplied by the MCS6530. A low on the R/W pin allows a write (with proper addressing) to the MCS6530.

Interrupt Request (IRQ)

The IRQ pin is an interrupt pin from the interval timer. This same pin, if not used as an interrupt, can be used as a peripheral I/O pin (PB7). When used as an interrupt, the pin should be set up as an input by the data direction register. The pin will be normally high with a low indicating an interrupt from the MCS6530. An external pull-up device is not required; however, if collector-OR'd with other devices, the internal pullup may be omitted with a mask option.

Data Bus (DO-D7)

The MCS6530 has eight bi-directional data pins (D0-D7). These pins connect to the system's data lines and allow transfer of data to and from the microprocessor array. The output buffers remain in the off state except when a Read operation occurs.

Peripheral Data Ports

The MCS6530 has 16 pins available for peripheral I/O operations. Each pin is individually software programmable to act as either an input or an output. The 16 pins are divided into 2 8-bit ports, PAO-PA7 and PBO-PB7. PB5, PB6 and PB7 also have other uses which are discussed in later sections. The pins are set up as an input by writing a "O" into the corresponding bit of the data direction register. A "1" into the data direction register will cause its corresponding bit to be an output. When in the input mode, the peripheral output buffers are in the "1" state and a pull-up device acts as less than one TTL load to the peripheral data lines. On a Read operation, the microprocessor unit reads the peripheral pin. When the peripheral device gets information from the MCS6530 it receives data stored in the data register. The microprocessor will read correct information if the peripheral lines are greater than 2.0 volts for a "1" and less than 0.8 volts for a "0" as the peripheral pins are all TTL compatible. Pins PAO and PBO are also capable of sourcing 3 ma at 1.5v, thus making them capable of Darlington drive.

Address Lines (AO-A9)

There are 10 address pins. In addition to these 10, there is the ROM SELECT pin. The above pins, AO-A9 and ROM SELECT, are always used as addressing pins. There are 2 additional pins which are mask programmable and can be used either individually or together as CHIP SELECTS. They are pins PB5 and PB6. When used as peripheral data pins they cannot be used as chip selects.

INTERNAL ORGANIZATION

A block diagram of the internal architecture is shown in Figure 1. The MCS6530 is divided into four basic sections, RAM, ROM, I/O and TIMER. The RAM and ROM interface directly with the microprocessor through the system data bus and address lines. The I/O section consists of 2 8-bit halves. Each half contains a Data Direction Register (DDR) and an I/O Register.

ROM 1K Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines AO-A9, as well as RSO are needed to address the entire ROM. With the addition of CS1 and CS2, seven MCS6530's may be addressed, giving 7168 x 8 bits of contiguous ROM.

RAM - 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS6530. It is addressed by AO-A5 (Byte Select), RSO, A6, A7, A8, A9 and, depending on the number of chips in the system, CS1 and CS2.

Internal Peripheral Registers

There are four internal registers, two data direction registers and two peripheral I/O data registers. The two data direction registers (A side and B side) control the direction of the data into and out of the peripheral pins. A "1" written into the Data Direction Register sets up the corresponding peripheral buffer pin as an output. Therefore, anything then written into the I/O Register will appear on that corresponding peripheral pin. A "O" written into the DDR inhibits the output buffer from transmitting data to or from the I/O Register. For example, a "1" loaded into data direction register A, position 3, sets up peripheral pin PA3 as an output. If a "O" had been loaded, PA3 would be configured as an input and remain in the high state. The two data I/O registers are used to latch data from the Data Bus during a Write operation until the peripheral device can read the data supplied by the microprocessor array.

During a read operation the microprocessor is not reading the I/O Registers but in fact is reading the peripheral data pins. For the peripheral data pins which are programmed as outputs the microprocessor will read the corresponding data bits of the I/O Register. The only way the I/O Register data can be changed is by a microprocessor Write operation. The I/O Register is not affected by a Read of the data on the peripheral pins.

Interval Timer

The Timer section of the MCS6530 contains three basic parts: preliminary divide down register, programmable 8-bit register and interrupt logic. These are illustrated in Figure 4.

The interval timer can be programmed to count up to 256 time intervals. Each time interval can be either 1T, 8T, 64T or 1024T increments, where T is the system clock period. When a full count is reached, an interrupt flag is set to a logic "1." After the interrupt flag is set the internal clock begins counting down to a maximum of -255T. Thus, after the interrupt flag is set, a Read of the timer will tell how long since the flag was set up to a maximum of 255T.

The 8 bit system Data Bus is used to transfer data to and from the Interval Timer. If a count of 52 time intervals were to be counted, the pattern 0 0 1 1 C 1 0 0 would be put on the Data Bus and written into the Interval Time register.

At the same time that data is being written to the Interval Timer, the counting intervals of 1, 8, 64, 1024T are decoded from address lines A0 and A1. During a Read or Write operation address line A3 controls the interrupt capability of PB7, i.e., $A_3 = 1$ enables IRQ on PB7, $A_3 = 0$ disables IRQ on PB7. When PB7 is to be used as an interrupt flag with the interval timer it should be programmed as an input. If PB7 is enabled by A3 and an interrupt occurs PB7 will go low. When the timer is read prior to the interrupt flag being set, the number of time intervals remaining will be read, i.e., 51, 50, 49, etc.

When the timer has counted down to 0 0 0 0 0 0 0 0 on the next count time an interrupt will occur and the counter will read 1 1 1 1 1 1 1 1 1 . After interrupt, the timer register decrements at a divide by "1" rate of the system clock. If after interrupt, the timer is read and a value of 1 1 1 0 0 1 0 0 is read, the time since interrupt is 28T. The value read is in two's complement.

> Value read = $1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$ Complement = $0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1$ ADD 1 = $0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 = 28$.

Thus, to arrive at the <u>total</u> elapsed time, merely do a two's complement add to the original time written into the timer. Again, assume time written as $0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ (=52)$. With a divide by 8, total time to interrupt is $(52 \ x \ 8) \ + \ 1 \ = \ 417T$. Total elapsed time would be $416T \ + \ 28T \ = \ 444T$, assuming the value read after interrupt was $1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0$.

After the interrupt, whenever the timer is written or read the interrupt is reset. However, the reading of the timer at the same time the interrupt occurs will not reset the interrupt flag. When the interrupt flag is read on DB7 all other DB outputs (DB0 thru DB6) go to "0".

Figure 5 illustrates an example of interrupt.

2. Data in Interval timer is 0 0 0 1 1 0 0 1 = 25_{10} 52 - $\frac{213}{8}$ - 1 = 52-26-1 = 25

- 3. Data in Interval timer is 0 0 0 0 0 0 0 0 = 0₁₀ $52 - \frac{415}{8} - 1 = 52 - 51 - 1 = 0$
- 4. Interrupt has occurred at Ø₂ pulse #416 Data in Interval timer = 1 1 1 1 1 1 1 1
- 5. Data in Interval timer is $1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$ two's complement is $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 = 84_{10}$ $84 \ + \ (52 \ x \ 8) \ = \ 500_{10}$

When reading the timer after an interrupt, A3 should be low so as to disable the \overline{IRQ} pin. This is done so as to avoid future interrupts until after another Write timer operation.

1.3-8

ADDRESSING

Addressing of the MCS6530 offers many variations to the user for greater flexibility. The user may configure his system with RAM in lower memory, ROM in higher memory, and I/O registers with interval timers between the extremes. There are 10 address lines (AO-A9). In addition, there is the possibility of 3 additional address lines to be used as chip-selects and to distinguish between ROM, RAM, I/O and interval timer. Two of the additional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins can also be PB5 and PB6. Whether the pins are used as chip-selects or peripheral I/O pins is a mask option and must be specified when ordering the part. Both pins act independently of each other in that either or both pins may be designated as a chip-select. The third additional address line is RSO. The MCS6502 and MCS6530 in a 2-chip system would use RSO to distinguish between ROM and non-ROM sections of the MCS6530. With the addressing pins available, a total of 7K contiguous ROM may be addressed with no external decode. Below is an example of a 1-chip and a 7-chip MCS6530 Addressing Scheme.

One-Chip Addressing

Figure 6 illustrates a 1-chip system decode for the MCS6530.

Seven-Chip Addressing

In the 7-chip system the objective would be to have 7K of contiguous ROM, with RAM in low order memory. The 7K of ROM could be placed between addresses 65,535 and 1024. For this case, assume A13, A14 and A15 are all 1 when addressing ROM, and 0 when addressing RAM or I/O. This would place the 7K ROM between Addresses 65,535 and 58,367. The 2 pins designated as chip-select or I/O would be masked programmed as chip-select pins. Pin RSO would be connected to address line A10. Pins CS1 and CS2 would be connected to address lines A11 and A12 respectively. See Figure 7.

The two examples shown would allow addressing of the ROM and RAM; however, once the I/O or timer has been addressed, further decoding is necessary to select which of the I/O registers are desired, as well as the coding of the interval timer.

I/O Register - Timer Addressing

Figure 8 illustrates the address decoding for the internal elements and timer programming. Address lines A2 distinguishes 1/0 registers from the timer. When A2 is high and I/O timer select is high, the 1/O registers are addressed. Once the I/O registers are addressed, address lines A1 and AO decode the desired register.

When the timer is selected Al and AO decode the divide by matrix. This decoding is defined in Figure 8. In addition, Address A3 is used to enable the interrupt flag to PB7.

- i.e. ROM select = $\underline{CS1}$ RSO
 - RAM select = CS1•RSO•A9•A7•A6
 - I/O TIMER SELECT = $\overline{CS1} \cdot \overline{RSO} \cdot A9 \cdot A8 \cdot A7 \cdot A6$
- B. Notice that A8 is a don't care for

RAM select

C. CS2 can be used as PB5 in this example.

MCS6530 One Chip Address Encoding Diagram Figure 6 The addressing of the ROM select, RAM select and I/O Timer select lines would be as follows:

		CS2 A12	CS1 <u>A11</u>	RSØ <u>A10</u>	<u>A9</u>	<u>A8</u>	<u>A7</u>	<u>A6</u>
MCS6530 #1,	ROM SELECT	0	0	1	х	х	х	х
	RAM SELECT	0	0	0	0	0	0	0
	I/O TIMER	0	0	0	1	0	0	0
MCS6530 #2,	ROM SELECT	0	1	0	Х	Х	Х	х
	RAM SELECT	0	0	0	0	0	0	1
	I/O TIMER	0	0	0	1	0	0	1
MCS6530 #3,	ROM SELECT	0	1	1	Х	Х	х	Х
	RAM SELECT	0	0	0	0	0	1	0
	I/O TIMER	0	0	0	1	0	1	0
MCS6530 #4,	ROM SELECT	1	0	0	х	х	Х	х
	RAM SELECT	0	0	0	0	0	1	1
	I/O TIMER	0	0	0	1	0	1	1
MCS6530 #5,	ROM SELECT	1	0	1	Х	Х	Х	Х
	RAM SELECT	0	0	0	0	1	0	0
	I/O TIMER	0	0	0	1	1	0	0
MCS6530 #6,	ROM SELECT	1	1	0	х	х	Х	Х
	RAM SELECT	0	0	0	0	1	0	1
	I/O TIMER	0	0	0	1	1	0	1
MCS6530 #7,	ROM SELECT	1	1	1	х	х	х	х
	RAM SELECT	0	0	0	0	1	1	0
	I/O TIMER	0	0	0	1	1	1	0

* RAM select for MCS6530 #5 would read = $\overline{A12} \cdot \overline{A11} \cdot \overline{A10} \cdot \overline{A9} \cdot A8 \cdot \overline{A7} \cdot \overline{A6}$

MCS6530 Seven Chip Addressing Scheme Figure 7
	ROM SELECT	RAM SELECT	1/0 TIMER SELECT	R/W	<u>A3</u>	<u>A2</u>	AL	<u>A 0</u>
READ ROM	1	0	0	I.	x	x	x	x
WRITE RAM	0	1	0	0	х	x	х	x
READ RAM	0	1	0	1	×	x	x	х
WRITE DDRA	0	0	1	0	×	0	0	I.
READ DDRA	0	0		1	x	0	0	1
WRITE DDRB	0	0	1	0	x	0	Ĩ	i.
READ DDRB	0	0	1	1	x	0	1	1
WRITE PER. REG. A	0	0	1	0	х	0	0	0
READ PER. REG. A	0	0	1	1	x	0	0	0
WRITE PER. REG. B	0	0	1	0	x	0	ī	0
READ PER. REG. B	0	0		1	x	0	Ê	0
WRITE TIMER								
÷IT	0	0	1	0	×	1	0	0
÷BT	0	0	1	0	×	1	0	1
÷ 64T	0	0	1	0	×	1	1	0
÷ 1024T	0	o	1	0	×	I.	1	1
READ TIMER	o	0		ĩ	×	ĩ	x	0
	27.2	•				8. 	274	U
READ INTERRUPT FLA	G O	0	E	1	x	1	×	1

ADDRESSING DECODE

A3 = I Enables IRQ to PB7 A3 = 0 Disables IRQ to PB7

Addressing Decode for I/O Register and Timer FIGURE 8

Vss

PAO

02

RSO

A9

A8

A7

A6

R/W

Α5

A4

A3

A2

AI

AO

RES

IRQ/PB7

dı.

2

D

08

5

7

9

010

012

013

014

015

017

M

0000000

40 日

39 🗋

37

38

36 🗍

35

340

33

32口

300

28

270

25 🗋

26 🗍

24 0

31

290

П

PAI

PA2

PA3

PA4

PA5

PA6

PA7

DBO

DBI

DB2

DB3

DB4

DB5

DB6

DB7

PB0

PBI

NOTE: Pin No.1 is in lower left corner when symbolization is in normal orientation

PACKAGE OUTLINE

CSI/PB6 | 18 23 | PB2 CS2/PB5 | 19 22 | PB3 Vcc | 20 21 | PB4

PRODUCT ANNOUNCEMENT

BULLETIN

SEPTEMBER, 1976

MCS6532 RAM/IO/INTERVAL TIMER CHIP

The MCS6532 is designed to operate in conjunction with the MCS650X Microprocessor Family. It is comprised of a 128 x 8 static RAM, two software controlled 8 bit bi-directional data ports allowing direct interfacing between the microprocessor unit and peripheral devices, a software programmable interval timer with interrupt, capable of timing in various intervals from 1 to 262, 144 clock periods, and a programmable edge detect circuit. * 8 bit bi-directional Data Bus for direct communication with the microprocessor * Edge Sense Interrupt (Positive or Negative Edge: Programmable) * 128 x 8 static Ram * Two 8 bit bi-directional data ports for interface to peripherals * Two programmable I/O Peripheral Data Direction Registers * Programmable Interval Timer * Programmable Interval Timer Interrupt * TTL & CMOS compatible peripheral lines * Peripheral pins with Direct Transistor Drive Capability * High Impedance Three-State Data Pins MCS6532 INTERFACE DIAGRAM RAM

* 4 4

TO PROCESSOR TO PERIPHERAL DEVICES

V _{SS} 1 A5 A4 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3	$\begin{array}{c cccc} 40 & A6 \\ 39 & \phi^2 \\ \hline 38 & CS1 \\ \hline 37 & CS2 \\ \hline 36 & RS \\ \hline 37 & RS \\ \hline 37 & RS \\ \hline 37 & RS \\ \hline 31 & DB0 \\ \hline 31 & DB2 \\ \hline 30 & DB3 \\ \hline 29 & DB4 \\ \hline 28 & DB5 \\ \hline 27 & DB6 \\ \hline 26 & DB7 \\ \hline 1RQ \\ 24 & PB0 \\ \hline 21 & PB2 \\ \hline 21 & PB3 \\ \hline \end{array}$
---	---

MCS6522 VERSATILE INTERFACE ADAPTER

The MOS Technology, Inc. MCS6522 is a second-generation peripheral adapter designed to bring increased capability to the microcomputer system designer for the solution of peripheral control and system timing problems. It combines the general purpose peripheral ports, handshaking, interrupt handling, etc. of the MCS6520 with a pair of very flexible interval timers and a serial-out/serial-in shift register. In addition, the chip is organized to simplify the software involved in controlling the many functions provided by this device.

Some of the important features of the MCS6522 are as follows:

- * Compatible with the MCS650X and MCS651X family of microprocessors.
- * Eight-bit bi-directional data bus for communication with the microprocessor.
- * Two eight-bit bi-directional ports for interface to peripheral devices.
- * Data Direction Registers allow each peripheral pin to act as either an input or an output.
- Interrupt Flag Register allows the microprocessor to determine the source of an interrupt very conveniently.
- Interrupt Enable Register allows very convenient control of interrupts within the chip.
- * Handshake control logic for input and output peripheral data transfer operations.
- * CMOS-compatible "A" and "B" peripheral ports.
- * Data latching on peripheral ports.
- * Two fully-programmable interval timers.
- * Eight-bit Shift Register for serial interface.
- Forty-pin plastic or ceramic DIP package.

APPENDIX J

MICROCOMPUTER BIBLIOGRAPHY

book \$15.00

books

book \$9.95

BUGBOOK III by Rony, Larsen, & Titus published by K. & L. Instruments

> A complete introduction to operation, programming and interfacing of an 8080 based microcomputer. Text is keyed to the use of the E. & L. MD-1 microcomputer, but is a very useful reference for all seeking hardware information about 8080 based systems.

BUGBOOK V and BUGBOOK VI by Rony, Larsen, and Titus published by E. & L. Instruments

> A complete and novel treatment of microprocessors and digital circuitry. 8080 oriented but contains much useful material on interfacing microcomputers to external devices.

CMOS COOKBOOK

by Don Lancaster Howard W. Sams 1977

HOW TO BUY AND USE MINICOMPUTERS & MICROCOMPUTERS book \$9.95 by William Barden, Jr. Howard W. Sams 1976 pp. 240

INTEL 8080 ASSEMBLY LANGUAGE PROGRAMMING MANUAL Manuf. Data \$5.00 1975 pp. 75

obtain from--Intel Corp. 3065 Bowers Avenue Santa Clara, Ca. 95051

or

or

Local Intel Representative or Distributor

INTEL 8080 MICROCOMPUTER SYSTEMS USER'S MANUAL Manuf. Manual \$5.00 obtain from--Intel Corp.

Local Intel Representative or Distributor

AN INTRODUCTION TO MICROCOMPUTERS: by Adam Osborne ¥Volume I - Basic Concepts #2001 Volume II - Some Real Products #3001 8080 Programming for Logic Design #4001 6800 Programming for Logic Design #5001 Osborne & Associates, Inc. P.O. Box 2036 Berkeley, CA 94702

MICROCOMPUTER APPLICATIONS HANDBOOK

by David J. Guzeman Iasis Inc. 815 W. Maude Avenue Sunnyvale, CA 94086

A complete description of hardware and software for Iasis's single borad microcomputer.

MICROCOMPUTER DESIGN

by Donald P. Martin 1976 pp. 400

> Martin Research 3336 Commercial Avenue Northbrook, IL 60062

A comprehensive treatment of hardware and software for small microcomputer systems using the 8008 and 8080 microprocessors. This is the only book giving detailed information on the 8008.

MICROCOMPUTER AND MICROPROCESSOR

book

by Hilburn and Julick Copyright 1976 by Prentice Hall, Inc. pp. 375

The book is intended for all persons involved in the design, use, or maintenance of digital systems using microcomputers. The book is written at a level which can be understood by persons with little previous experience.

Topics include: digital logic, number systems and codes, microcomputer architecture, software, interfacing and peripheral devices, microcomputer systems [4040, 8080, 8008, 6800, IMP-4, PPS4, COSMAC, PPS-8, PACE] design methodology and applications.

MICROPROCESSORS & MICROCOMPUTERS

book \$23.00

by Branko Soucek Wiley-Interscience 1976 pp. 607

A general introduction to digital systems and microcomputers with detailed descriptions of popular 4,8,12 and 16 bit microprocessors including the 6800, 8080, and LSI-11.

handbook

book \$25.00

MICROPROCESSORS: NEW DIRECTIONS FOR DESIGNERS Edited by Edward A. Torrero 1975 pp. 135

Selected articles reprinted from Electronic Design Magazine.

SCELBI SOFTWARE MANUALS

book \$19.95

books

collected articles

\$8.95

Machine Language Programming for the 8008 Scelbi Computer Consulting Inc. 1322 Rear Boston Post Rd. Milford, CT 06460 pp. 170

Intro. to assembly language programming. Includes discussion of binary and floating point arithmetic.

SCELBI SOFTWARE MANUALS 8080

8080 Monitor Routines\$11.95 ppdAn 8080 Assembler Program\$17.95 ppdAn 8080 Editor Program\$14.95 ppdScelbi Computer Consulting Inc.all three for \$39.50 ppd

Well documented software packages with program listings in Octal (paper tapes abailable). Uses non-standard memonic codes.

SCELBI'S '8080' SOFTWARE GOURMET GUIDE AND COOKBOOK book \$9.95 Machine Language Programming for the 8080 pp. 170

Scelbi Computer Consulting Inc.

Introduction to assembly language programming for the 8080. Includes several routines which can be used for number conversion floating point arithmetic and I/Oprocessing.

SC/MP MICROPROCESSOR APPLICATIONS HANDBOOK - MANUFACTURER DATA BOOK published by National Semiconductor Corp. 2900 Semiconductor Drive Santa Clara, CA. 95051 available from local National Semiconductor Technical representative

Hardware and softward applications of the SC/MP.

SCELBI'S '6800' SOFTWARE GOURMET GUIDE AND COOKBOOK book \$9.95 Machine Language Programming for the 6800. Scelbi Computer Consulting Inc.

book \$12.95

SOFTWARD DESIGN FOR MICROPROCESSORS by John G. Wester and William D. Simpson copyright 1976 by Texas Instrument Inc. pp. 372 order from: Texas Instruments P.O. Box 3640, M/S-84 Dallas, TX 75285

> Book was written to assist technical and non-technical people in taking their first steps toward designing with mircroprocessors and related software. Topics range from basic binary numbers to complex examples of microcomputer applications. Book was written primarily for those with little or no programming experience but it contains excellent application examples which should be of interest even to seasoned programmers.

> > reference book \$8.95

TTL COOKBOOK by Don Lancaster 1974 pp. 335 published by Howard W. Sams & Co., Inc.

TV TYPEWRITER COOKBOOK

reference book \$8.95

by Don Lancaster 1976 published by Howard W. Sams & Company, Inc.

Mine Computers - neucro computers.

Byte 8050 Kiloband more Kini

B. PERIODICALS

AMERICAN LABORATORY

BYTE

published monthly by - Byte Publications, Inc.

70 Main Street Peterborough, N.H. 03458

\$12.00 per year

COMPUTER DESIGN

published monthly by - Computer Design Publishing Company circulation address - Computer Design Circulation Department P.O. Box A free to qualified persons - others \$20 per Winchester, MA 01890

year

CONTROL ENGINEERING

published monthly by - Control Engineering subscription address - 666 Fifth Avenue free to qualified persons New York, NY 10019 Contains useful articles on applications of microcomputers to

industrial control.

DIGITAL DESIGN

published monthly by - Benwill Publishing Corp. Circulation Director DIGITAL DESIGN 167 Corey Road Brookline, MA 02146

[free to qualified persons, \$25.00 to others, request qualification card on company letterhead]

Dr. Dobbs Journal of COMPUTER CALISTHENICS & ORTHODONTIA published ten (10) times per year by -

Peoples Computer Company Box E Menlo Park, CA 94025

\$12.00 per year

Devoted to publication of microcomputer oriented software such as TINY BASIC.

ELECTRONIC DESIGN published biweekly by - Hayden Publishing Company, Inc. 50 Essex Street Rochelle Park, NJ 07662 [free if qualified, otherwise, \$30.00 per year] ELECTRONIC DESIGN NEWS published monthly by - Cahners Publishing Company [free to qualified persons; very hard to get] ELECTRONIC ENGINEERING TIMES published biweekly by - CMP Publications suscription address - Electronic Engineering Times 280 Community Drive free to qualified persons Great Neck, NY 11021 [useful for news and announcements of new microprocessor products. Has bingo card for new product ads] ELECTRONICS published biweekly by - McGraw-Hill, Inc. suscription address - ELECTRONICS McGraw-Hill Building 1221 Avenue of the Americas \$12.00 per year to qualified persons New York, NY 10020 INTERFACE published monthly by - Southern California Computer Society [free with \$10.00 membership in SCCS] INTERFACE AGE [new magazine by publisher of original INTERFACE] published monthly by - McPheters, Wolfe & Jones 6515 Sunset Blvd. Suite 202 Hollywood, CA 90028 \$10.00 per year INSTRUMENTS & CONTROL SYSTEMS published monthly by - Chilton Company suscription address - Chilton Company Chilton Way P.O. Box 2025 Radnor, PA 19089 Attention: Circulation Dept.

[free to qualified persons, others \$25.00 per year]

APPENDIX K

GLOSSARY OF COMMONLY USED TERMS

GLOSSARY OF COMMONLY USED MICROPROCESSOR TERMS

ABSOLUTE ADDRESSING - SEE DIRECT ADDRESSING

- ABSOLUTE INDEXED ADDRESSING The effective address is formed by adding the index register (X or Y) to the second and third byte of the instruction.
- ACCUMULATOR A register that holds one of the operands and the result of arithmetic and logic operations that are performed by the central processing unit. Also commonly used to hold data transferred to or from I/O devices.
- ACCUMULATOR ADDRESSING One byte instruction operating on the accumulator.
- ACIA Is an Asynchronous Communications Interface Adapter. This is an NMOS LSI device produced by Motorola for interfacing Serial ASCII devices to a micro-processor system.
- ADDRESS A number that designates a memory or I/O location.
- ADDRESS BUS A multiple-bit output Bus for transmitting an address from the CPU to the rest of the system.
- ALGORITHM The sequence of operations which defines the solution to a problem.
- ALPHANUMERIC Pertaining to a character set that contains both letters and numerals and usually other characters.
- ALU (ARITHMETIC/LOCIG UNIT) The unit of a computing system that performs arithmetic and logic operations.
- ASCII CODE The American Standard Code for Information Interchange. A seven-bit character code without the parity bit, or an eightbit character code with the parity bit.
- ASSEMBLER A program that translates symbolic operation codes into machine language, symbolic addresses to memory addresses and assigns values to all program symbols. It translates source programs to object programs.
- ASSEMBLY DIRECTIVE A mnemonic that modifies the assembler operation but does not produce an object code (e.g., a pseudo instruction).
- ASSEMBLY LANGUAGE A collection of symbolic labels, mnemonics, and data which are to be translated into binary machine codes by the assembler.

ASYNCHRONOUS - Not occurring at the same time, or not exhibiting a constant repetition rate; irregular.

BASE - "SEE RADIX".

- BCD Binary Code Decimal. A means by which decimal numbers are represented as binary values, where integers in the range 0-9 are represented by the four-bit binary codes from 0000-1001.
- BIDIRECTIONAL DATA BUS A data bus in which digital information can be transferred in either direction.
- BINARY The base two number systems. All numbers are expressed as powers of two. As a consequence, only two symbols (0 & 1) are required to represent any number.
- BIT The smallest unit of information which can be represented. A bit may be in one of two states, represented by the binary digits 0 and 1.
- BLOCK DIAGRAM A diagram in which the essential units of any system are drawn in the form of blocks, and their relationship to each other is indicated by appropriately connected lines.
- BRANCH INSTRUCTION An instruction that causes a program jump to a specified address and execution of the instruction at that address. During the execution of the branch instruction, the central processor replaces the contents of the program counter with the specified address.
- BREAKPOINT Pertaining to a type of instruction, instruction digit, or other condition used to interrupt or stop a computer at a particular place in a program. A place in a program where such an interruption occurs or can be made to occur.
- BUFFER A noninverting digital circuit element that may be used to handle a large fan-out or to invert input and output levels.

A storage device used to compensate for a difference in rate of flow of data, or time of occurrence of events, when transmitting data from one device to another.

- BYTE A sequence of eight adjacent binary digits operates upon as a unit.
- CALL A special type of jump in which the central processor is logically required to "remember" the contents of the program counter at the time that the jump occurs. This allows the processor later to resume execution of the main program, when it is finished with the last instruction of the subroutine.

CASCADE - An arrangement of two or more similar circuits in which the output of one circuit provides the input of the next.

- CLOCK A device or a part of a device that generates all the timing pulses for the coordination of a digital system. System clocks usually generate two or more clock phases. Each phase is a separate square wave pulse train output.
- CODING The process of preparing a program from the flow chart defining an algorithm.
- COMPILER A language translator which converts individual source statements into multiple machine instructions. A compiler translates the entire program before it is executed.
- COMPLEMENT Reverse all binary bit values (ones become zeros, zeros become ones).
- CONDITIONAL In a computer, subject to the result of a comparison made during computation.
- CONDITIONAL BREAKPOINT INSTRUCTION A conditional jump instruction that causes a computer to stop if a specified switch is set. The routine then may be allowed to proceed as coded, or a jump may be forced.
- CONDITIONAL JUMP Also called conditional transfer of control. An instruction to a computer which will cause the proper one of two (or more) addresses to be used in obtaining the next instruction, depending on some property of one or more numerical expressions or other conditions.
- CONTACT BOUNCE The uncontrolled making and breaking of a contact when the switch or relay contacts are closed. An important problem in digital circuits, where bounces can act as clock pulses.
- CPU (CENTRAL PROCESSING UNIT) The unit of a computing system that controls the interpretation and execution of instructions; incldes the ALU.
- DATA BUS A multi-line, parallel path over which digital data is transferred, from any of several destinations. Only one transfer of information can take place at any one time. While such transfer is taking place, all other sources that are tied to the bus must be disabled.

DEBUG - Detect, locate, and correct problems in a program or hardware.

DEBOUNCED - Refers to a switch or relay that no longer exhibits contact bounce.

- DECODER/DRIVER A code conversion device that can also has sufficient voltage or current output to drive an external device such as a display or a lamp monitor.
- DEMULTIPLEXER A digital device that directs information from a single input to one of several outputs. Information for output-channel selection usually is presented to the device in binary weighted form and is decoded internally. The device also acts as a singlepole multiposition switch that passes digital information in a direction opposite to that of a multiplexer.
- DESTINATION Register, memory location or I/O device which can be used to receive data during instruction execution.
- DEVICE SELECT PULSE A software-generated positive or negative clock pulse from a computer that is used to strobe the operation of one or more I/O devices, including individual integrated circuit chips.
- DIRECT ADDRESSING The second and third byte of the instruction contain the address of operand to be used.
- DMA (DIRECT MEMORY ACCESS) Suspension of processor operation to allow peripheral units external to the CPU to exercise control of memory for both READ and WRITE without altering the internal state of the processor.
- DYNAMIC RAM A random access memory that uses a capacitive element for storing a data bit. They require REFRESH.
- EBCDIC The Extended Binary Coded Decimal Interchange Code, a digital code primarily used by IBM. It closely resembles the half-ASCII code.
- EDGE The transition from logic 0 to logic 1, or from logic 1 to logic 0, in a clock pulse.
- EDITOR A program used for preparing and modifying a source program or other file by addition, deletion or change.
- EFFECTIVE ADDRESS The actual address of the desired location in memory, usually derived by some form of calculation.
- EXPANSION The process of inserting a sequence of operations represented by a macro name when the macro name is referenced in a program.
- FALL TIME The time required for an output voltage of a digital circuit to change from a logic 1 to a logic 0 state.

FAN-OUT - The number of parallel loads within a given logic family that can be driven from one output mode of a logic circuit.

FETCH - One of the two functional parts of an instruction cycle. The collective actions of acquiring a memory address, and then an instruction or data byte from memory.

FIELD - An area of an instruction mnemonic.

- FILE A collection of data records treated as a single unit.
- FIFO (FIRST IN, FIRST OUT) The term applies to the sequence of entering data into and retrieving data from data storage. The first data entered is the first data obtainable with FIFO.
- FLAG A status bit which indicates that a certain condition has arisen during the cource of arithmetic or logical manipulations or data transmission between a pair of digital electronic devices. Some flags may be tested and thus be used for determining subsequent actions.
- FLAG REGISTER A register consisting of the flag flip-flops.
- FLOW CHART A symbolic representation of the algorithm required to solve a problem.
- FREQUENCY The number of recurrences of a periodic phenomenon in a unit of time. Electrical frequency is specified as so many cycles per second, or Hertz.
- FULL DUPLEX A data transmission mode which provides simultaneous and independent transmission and reception.
- HALF-ASCII A 64-character ASCII code that contains the code words for numeric digits, alphabetic characters, and symbols but not keyboard operations.
- HALF DUPLEX A data transmission mode which provides both transmission and reception but not simultaneously.
- HANDSHAKE Interactive communication between two system components, such as between the CPU and a peripheral; often required to prevent loss of data.
- HARDWARE Physical equipment mechanical, electrical, or electronic devices.
- HEXADECIMAL A number system based upon the radix-16, in which the decimal numbers 0 through 9 and the letters A through F represent the sixteen distinct states in the code.

- HIGH ADDRESS BYTE The eight most significant bits in the 16-bit memory address word. Abbreviated H or HI.
- IC (INTEGRATED CIRCUIT) (1) A combination of interconnected circuit elements inseparably associated on or within a continuous substrate. (2) Any electronic device in which both active and passive elements are contained in a single package. In digital electronics, the term chiefly applies to circuits containing semiconductor elements.
- IMMEDIATE ADDRESSING The Operand is the second byte of the instruction, rather than its address.
- IMPLIED ADDRESSING A one-byte instruction that stipulates an operation internal to the processor. DOES NOT require any additional operand.
- INCREMENT To increase the value of a binary word. Typically, to increase the value by 1.
- INDEXED ADDRESS An indexed address is a memory address formed by adding immediate data included with the instruction to the contents of some register or memory location.
- INDEXED INDIRECT ADDRESSING The second byte of the instruction is added to the contents of the "X" index register, discarding the carry, to form a zero-page effective address.
- INDIRECT ABSOLUTE ADDRESSING The second and third bytes of the instruction contain the address for the first of two bytes in memory that contain the effective address.
- INDIRECT INDEXED ADDRESSING The second byte of this instruction is a zero-page address. The contents of this zero-page address are added to the "Y" index register to form the lower 8 bits of the effective address. Then the carry (if any) is added to the contents of the next zero-page address to form the higher 8 bits of the effective address.
- INDIRECT ADDRESS An address used with an instruction that indicates a memory location or a register that in turn contains the actual address of an operand. The indirect address may be included with the instruction, contained in a register (register indirect address) or contained in a memory location (memory directed indirect address).
- INTERFACING The joining of members of a group (such as people, instruments, etc.) in such a way that they are able to function in a compatible and coordinated fashion.

- INSTRUCTION A statement that specifies an operation and the values or locations of its operands.
- INSTRUCTION CODE A unique binary number that encodes an operation that a computer can perform.
- INSTRUCTION CYCLE A successive group of machine cycles, as few as one or as many as seven, which together perform a single microprocessor instruction within the microprocessor chip.
- INSTRUCTION DECODER A decoder within a CPU that decodes the instruction code into a series of actions that the computer performs.
- INSTRUCTION REGISTER The register that contains the instruction code.
- INTERPRETER A language translator which converts individual source statements into multiple machine instructions by translating and executing each statement as it is encountered. Can not be used to generate object code.
- INTERRUPT In a computer, a break in the normal flow of a system or routine such that the flow can be resumed from that point at a later time. The source of the interrupt may be internal or external.
- I/O DEVICE Input/output device any digital device, including a single integrated circuit chip, that transmits data or strobe pulses to a computer or receives data or strobe pulses from a computer.
- JUMP (1) To cause the next instruction to be selected from a specified storage location in a computer. (2) A deviation from the normal sequence of execution of instructions in a computer
- LABEL One or more characters that serve to define an item of data or the location of an instruction or subroutine. A character is one symbol of a set of elementary symbols, such as those corresponding to typewriter keys.
- LATCH A simple logic storage element. A feedback loop used in a symmetrical digital circuit, such as a flip-flop, to retain a state.

LEADING EDGE - The transition of a pulse that occurs first.

- LED (LIGHT-EMITTING DIODE) A pn junction that emits light when biased in the forward direction.
- LEVEL-TRIGGERED The state of the clock input, being either logic O or logic l carries out a transfer of information or completes an action.
- LIFO (LAST IN, FIRST OUT) The latest data entered is the first data obtainable from a LIFO stach or memory section.
- LSB (LEAST SIGNIFICANT BIT) The digit with the lowest weighting in a binary number.
- LISTING An assembler output containing a listing of program mnemonics, the machine code produced, and diagnostics, if any.
- LOGIC (1) The science dealing with the basic principles and applications of truth tables, switching, gating, etc. (2) See Logical Design. (3) Also called symbolic logic. A mathematical approach to the solution of complex situations by the use of symbols to define basic concepts. The three basic logic symbols are AND, OR, and NOT. When used in Boolean algebra, these symbols are somewhat analogous to addition and multiplication. (4) In computers and information-processing networks, the systematic method that governs the operations performed on information, usually with each step influencing the one that follows. (5) The systematic plan that defines the interactions of signals in the design of a system for automatic data processing.
- LOGICAL DECISION The ability of a computer to make a choice between two alternatives; basically, the ability to answer yes or no to certain fundamental questions concerning equality and relative magnitude.
- LOGICAL DESIGN The synthesizing of a network of logical elements to perform a specified function. In digital electronics, these logical elements are digital electronic devices, such as gates, flip-flops, decoders, counters, etc.
- LOGICAL ELEMENT In a computer or data-processing system, the smallest building blocks which operators can represent in an appropriate system of symbolic logic. Typical logical elements are the AND gate and the "flip-flop".
- LOOP A sequence of instructions that is repeated until a conditional exit situation is met.
- LOW ADDRESS BYTE The eight least significant bits in the 16-bit memory address word. Abbreviated L or LO.

- LSI (LARGE SCALE INTEGRATION) Integrated circuits that perform complex functions. Such chips usually contain 100 to 2,000 gates.
- MACHINE CODE A binary code that a computer decodes to execute a specific function.
- MACHINE CYCLE A subdivision of an instruction cycle during which time a related group of actions occur within the microprocessor chip. In the 8080 microprocessor, there exist nine different machine cycles. All instructions are combinations of one or more of these machine cycles.
- MACRO ASSEMBLER An assembler routine capable of assembling programs which contain and reference macro instructions.
- MACRO INSTRUCTION A symbol that is used to represent a specified sequence of source instructions.
- MAGNETIC CORE A type of computer storage which employs a core of magnetic material with wires threaded through it. The core can be magnetized to represent a binary 1 or 0.
- MAGNETIC DRUM A storage device consisting of a rapidly rotating cylinder, the surface of which can be easily magnetized and which will retain the data. Information is stored in the form of.magnetized spots (or no spots) on the drum suface.
- MAGNETIC DISC A flat circular plate with a magnetic surface on which data can be stored by selective magnetization of portions of the flat surface.
- MAGNETIC TAPE A storage system based on the use of magnetic spots (bits) on metal or coated-plastic tape. The spots are arranged so that the desired code is read out as the tape travels past the read-write head.
- MASKING A process that uses a bit pattern to select bits from a data byte for use in a subsequent operation.
- MEMORY Any device that can store logic 1 and logic 0 bits in such a manner that a single bit or group of bits can be accessed and retrieved.
- MEMORY ADDRESS A 16-bit binary number that specifies the precise memory location of a memory word among the 65,536 different possible memory locations.
- MEMORY CELL A single storage element of memory, capable of storing one bit of digital information.

- MICROCOMPUTER A computer system based on a microprocessor and contains all the memory and interface hardware necessary to perform calculations and specified information transformations.
- MICROPROCESSOR A central processing unit fabricated as one integrated circuit.
- MICROPROGRAM A computer program written in the most basic instructions or subcommands that can be executed by the computer. Frequently, it is stored in a read-only memory.
- MNEMONIC Symbols representing machine instructions designed to allow easy identification of the functions represented.
- MODULO The modulo of a counter is simply n, the number of distinct states the counter goes through before repeating. A four-bit binary counter has a modulo of 16; a decade counter has a modulo of 10; and a divide by-7 counter has a modulo of 7. In a variable modulo counter, n can be any value within a range of values.
- MONITOR Software or hardware that observes, supervises, controls, or verifies system operation.
- MONOSTABLE MULTIVIBRATOR Also called one-shot multivibrator, single-shot multi-vibrator, or start-stop multivibrator. A circuit having only one stable state, from which it can be triggered to change the state, but only for a predetermined interval, after which it returns to the original state.
- MSI (MEDIUM SCALE INTEGRATION) Integrated circuits that perform simple, self-contained logic systems, such as counters and flip-flops.
- MSB (MOST SIGNIFICANT) The digit with the highest weighting in a binary number.
- MULTIPLEXER A digital device that can select one of a number of inputs and pass the logic level of that input on to the output. Information for input-channel selection usually is presented to the device in binary weighted form and decoded internally. The device acts as a single-pole multiposition switch that passes digital information in one direction only.
- NEGATIVE EDGE The transition from logic 1 to logic 0 in a clock pulse.
- NEGATIVE-EDGE TRIGGERED Transfer of information occurs on the negative edge of the clock pulse.
- NEGATIVE LOGIC A form of logic in which the more positive voltage level represents logic 0 and the more negative level represents logic 1.
- NESTING A sequential calling of subroutines without returning to the main program.

- NIBBLE A sequence of four adjacent bits, or half a byte, is a nibble. A hexadecimal or BCD digit can be represented in a nibble.
- NON-OVERLAPPING TWO-PHASE CLOCK A two-phase clock in which the clock pulses of the individual phases do not overlap.
- NON-VOLATILE MEMORY A semiconductor memory device in which the stored digital data is not lost when the power is removed.

OCTAL - A number system based upon the radix 8, in which the decimal numbers 0 through 7 represent the eight distinct states.

- ONE-BYTE-INSTRUCTION An instruction that consists of eight contiguous bits occupying one successive location.
- OPEN-COLLECTOR OUTPUT An output from an integrated circuit device in which the final "pull-up" resistor in the output transistor for the device is missing and must be provided by the user before the circuit is completed.
- OPERAND Data which is, or will be, operated upon by an arithmetic/ logic instruction; usually identified by the address portion of an instruction, explicitly or implicitly.
- OPERATION Moving or manipulating data in the CPU or between the CPU and peripherals.
- PAGE A page consists of all the locations that can be addressed by 8-bits (a total of 256 locations) starting at 0 and going through 255. The address within a page is determined by the lower 8-bits of the address and the page number (0 through 255) is determined by the higher 8-bits of a 16-bit address.
- PARITY A method of checking the accuracy of binary numbers. If even parity is used, the sum of all the l's in a number and its corresponding parity bit is always even. If odd parity. is used, the sum of all the l's and the parity bit is always odd.
- PARTITIONING The process of assigning specified portions of a system responsibility for performing specified functions.
- PC See "PROGRAM COUNTER"
- PIA PERIPHERAL INTERFACE ADAPTOR (MOS Technology's MPS 6520)
- PERIPHERAL A device or subsystem external to the CPU that provides additional system capabilities.
- POLLING Periodic interrogation of each of the devices that share a communications line to determine whether it requires servicing. The multiplexer or control station sends a poll that has the effect of asking the selected device, "Do you have anything to transmit?"

7 77

POP - Retrieving data from a stack.

- PORT A device or network through which data may be transferred or where device or network variables may be observed or measured.
- POSITIVE EDGE The transition from logic 0 to logic 1 in a clock pulse.
- POSITIVE-EDGE TRIGGERED Transfer of information occurs on the positive edge of the clock pulse.
- POSITIVE LOGIC A form of logic in which the more positive voltage level represents logic 1 and the more negative level represents logic 0.
- PRIORITY A preferential rating. Pertains to operations that are given preference over other system operations.

PROCESSOR - Shorthand word for microprocessor

- PROGRAM A group of instructions which causes the computer to perform a specified function.
- PROGRAM COUNTER A register containing the address of the next instruction to be executed. It is automatically incremented each time program instructions are executed.

PROGRAM LABEL - A symbol which is used to represent a memory address.

- PROM (PROGRAMMABLE READ-ONLY MEMORY) A read-only memory that is field programmable by the user.
- PROPAGATION DELAY A measure of the time required for a logic signal to travel through a logic device or a series of logic devices. It occurs as the result of four types or circuit delays - storage, rise, fall, and turn-on-delay - and is the time between when the input signal crosses the threshold voltage point and when the responding voltage at the output crosses the same voltage point.
- PSEUDO-INSTRUCTION A mnemonic that modifies the assembler operation but does not produce an object code.
- PULL-UP RESISTOR A resistor connected to the positive supply voltage to the output collector of open-collector logic. Also used occasionally with mechanical switches to insure the voltage of one or more switch positions.
- PULSE WIDTH Also called pulse length. The time interval between the points at which the instantaneous value on the leading and trailing edges bears a specified relationship to the peak pulse amplitude.

PUSH - Putting data into a stack.

RADIX - Also called the base. The total number of distinct marks or symbols used in a numbering system. For example, since the decimal numbering system uses ten symbols, the radix is 10. In the binary numbering system, the radix is 2, because there are only two marks or symbols (0 and 1). In the octal numbering system, the radix is 8, and in the hexadecimal numbering system, the radix is 16.

4

- RAM (RANDOM ACCESS MEMORY) A semiconductor memory into which logic 0 and logic 1 states can be written (stored) and then read out again (retrieved).
- READ In semiconductors: To transmit data from a semiconductor memory to some other digital electronic device. The term, "read", also applies to computers and other types of memory devices.
- REFRESH The process by which dynamic RAM cells recharge the capacitive node to maintain the stored information. The charged nodes discharge due to leakage currents and without refresh, the stored data would be lost. This process must reoccur every so many microseconds. During refresh, the RAM cannot be accessed.
- REFRESH LOGIC The logic required to generate all the refresh signals and timing.

REGISTER - A hardware element used to temporarily store data.

- RELATIVE ADDRESS A relative address is a memory address formed by adding the immediate data included with the instruction to the contents of the program counter or some other register.
- RESET A computer system input that initializes and sets up certain registers in the CPU and throughout the computer system. One of the initializations, is to load a specific address into the Program Counter. The two bytes of information in that and the succeeding address is the starting address for the system program (for the MOS TECHNOLOGY processors).
- RETURN Aspecial type of jump in which the central processor resumes execution of the main program at the contents of the program counter at the time that the jump occured.
- RIPPLE COUNTER A binary counting system in which flip-flops are connected in series.
- RISE TIME The time required for an output voltage of a digital circuit to change from a logic 0 to a logic 1 state.
- RCM (READ-ONLY MEMORY) A semiconductor memory from which digital data can be repeatedly read out, but cannot be written into, as is the case for a RAM.

- ROUTINE A group of instructions that causes the computer to perform a specified function, e.g. a program.
- SCRATCH PAD The term applies to memory that is used temporarily by the CPU to store intermediate results.
- SEVEN-SEGMENT DISPLAY An electronic display that contains seven lines or segments spatially arranged in such a manner that the digits 0 through 9 can be represented through the selective lighting of certain segments to form the digit.
- SEMICONDUCTOR MEMORY A digital electronic memory device in which l's and 0's are stored, that is a product of semiconductor manufacturing.
- SHIFT REGISTER A digital storage circuit in which information is shifted from one flip-flop of a chain to the adjacent flip-flop upon application fo each clock pulse. Data may be shifted several places to the right or left, depending on additional gating and the number of clock pulses applied to the register. Depending on the number of positions shifted, the rightmost characters are lost in a right shift, and the leftmost characters are lost in a left shift.
- SIMULATOR A program which represents the functioning of one computer system utilizing another computer system.
- SOFTWARE The means by which any defined procedure is specified for computer execution.
- SOURCE Register, memory location or I/O device which can be used to supply data for use by an instruction.
- SOURCE PROGRAM A group of statements conforming to the syntax requirements of a language processor.
- SPLIT DATA BUS Is two data buses, one for incoming communications and one for outgoing communications. An 8-bit data bus in split data bus system takes 16 lines.
- STACK A specified section of sequential memory locations used as a LIFO (Last In, First Out) file. The last element entered is the first one available for output. A stack is used to store program data, subroutine return addresses, processor status, etc.
- STACK POINTER (SP) A register which contains the address of the system read/write memory used as a stack. It is automatically incremented or decremented as instructions perform operations with the stack.

STATEMENT - An instruction in source language.

- STATIC RAM A random access memory that uses a flip-flop for storing a binary data bit. Does not require refresh.
- STRING A series of values.
- SUBROUTINE A routine that causes the execution of a specified function and which also provides for transfer of control back to the calling routine upon completion of the function.
- SYMBOL Any character string used to represent a label, mnemonic, or data constant.
- SYMBOLIC ADDRESS Also called floating address. In digital computer programming, a label chosen in a routine to identify a particular word, function, or other information that is independent of the location of the information within the routine.
- SYMBOLIC CODE A code by which programs are expressed in source language; that is, storage locations and machine operations are referred to by symbolic names and addresses that do not depend upon their hardware-determined names and addresses.
- SYMBOLIC CODING In digital computer programming, any coding system using symbolic rather than actual computer addresses.
- SYNCHRONOUS Operation of a switching network by a clock pulse generator. All circuits in the network switch simultaneously, and all actions take place synchronously with the clock.
- SYNTAX ERROR An occurrence in the source program of a label expression, or condition that does not meet the format requirements of the assembler program.
- TABLE A data structure used to contain sequences of instructions, addresses, or data constants.
- TRAILING EDGE The transition of a pulse that occurs last, such as the high-to-low transition of a positive clock pulse.
- TRANSITION The instance of changing from one state to a second state.
- THREE-STATE DEVICE or TRI-STATE DEVICE A semiconductor logic device in which there are three possible output states: (1) a "logic O" state, (2) a "logic 1" state, or (3) a state in in which the output is, in effect, disconnected from the rest of the circuit and has no influence upon it.

THREE-BYTE INSTRUCTION - An instruction that consists of twentyfour contiguous bits occupying three successive memory locations.

- TRUTH TABLE A tabulation that shows the relation of all output logic levels of a digital circuit to all possible combinations of input logic levels in such a way as to characterize the circuit functions completely.
- TWO-BYTE INSTRUCTION An instruction that consists of sixteen contiguous bits occupying two successive memory locations.
- TWO-PHASE CLOCK A two-output timing device that provides two continuous series of timing pulse from the second series always following a single clock pulse from the first series. Depending on the type of two-phase clock, the pulses in the first and second series may or may not overlap each other. Usually identified as Phase 1 & Phase 2.
- UNCONDITIONAL Not subject to conditions external to the specific computer instruction.

UNCONDITIONAL CALL - A call instruction that is unconditional.

UNCONDITIONAL JUMP - A computer instruction that interrupts the normal process of obtaining the instructions in an ordered sequence and specifies the address from which the next instruction must be taken.

UNCONDITIONAL RETURN - A return instruction that is unconditional.

- VLSI (VERY LARGE-SCALE INTEGRATION) Monolithic digital integrated circuit chips with a typical complexity of two thousand or more gates or gate-equivalent circuits.
- VOLATILE MEMORY A semiconductor memory device in which the stored digital data is lost when the power is removed.
- WEIGHTING Most counters in the 7400 series of integrated circuit chips are weighted counters, that is, we can assign a weighted value to each of the flip-flop outputs in the counter. By summing the product of the logic state times the weighting value for each of the flip-flops, we can compute the counter state. For example, the weighting factors for a 4-bit binary counter are D = weight of 8, C = weight of 4, B = weight of 2, and A = weight of 1. The binary output, DCBA = 1101₂, from a 4-bit binary counter would therefore be 13.
- WIRED-OR CIRCUIT A circuit consisting of two or more semiconductor devices with open collector outputs in which the outputs are wired together. The output from the circuit is at a logic 0 if device A or device B or device C or is at a logic 0 state.

- WORD The maximum number of binary digits that can be stored in a single addressable memory location of a given computer system.
- WRITE In semiconductors and other types of memory devices to transmit data into a memory device from some other digital electronic device. To WRITE is to STORE.
- ZERO-PAGE The lowest 256 address locations in memory. Where the highest 8-bits of address are always 0's and the lower 8-bits identify any location from 0 to 255. Therefore, only a single byte is needed to address a location in zero-page.
- ZERO-PAGE ADDRESSING The second byte of the instruction contains a zero-page address.
- ZERO-PAGE INDEXED ADDRESSING The second byte of the instruction is added to the index register (X or Y) to form a zero-page effective address. The carry (if any) is dropped.