MICROPROCESSING FUNDAMENTALS

SEMINAR WORKBOOK
A SHORT COURSE FOR

SCIENTISTS AND ENGINEERS

BY

RAYMOND N. BENNETT
AND
DR. JOSEPH B. ROSS

AMERICAN INSTITUTE
FOR
PROFESSIONAL EDUCATION

CARNEGIE BUILDING
HILLCREST RD.
MADISON, N. J. Q7940

PREFACE

As in learning to drive a car, a microprocessor must be practiced
with. You cannot really learn how to use one from just reading books
alone. This course includes a microcomputer and more information than
can be covered in a three-day seminar; because it is the authors!
purpose to give you sufficient background, written material, and
hardware to be able to design a microcomputer system. BUT THIS CANNOT
happen if the student does not study ALL the information given with the

course and build up a system using the KIM-1.

COURSE QUTLINE
READING ASSIGNMENTS

EXPERIMENTS

EXP. #1
EXP. #2
EXP. #3
EXP. #4
EXP. #5
EXP. #6

LOGIC AND INTERFACE DEVICES

BASIC 1LOGIC

I. NON-INVERTING BUFFER

II. INVERTING BUFFER

ITI. AND GATE

IV. NAND GATE
V. OR GATE

VI. NOR GATE

VII. EXCLUSIVE-OR GATE

VIII. EXCLUSIVE-NOR GATE
IX, DISCUSSION OF LOW-TRUE LOGIC

FLIP-FLOPS
I. R-S LATCH
II. R-S FLIP-FLOP
III. D-TYPE FLIP-FLOP
IV. J-K TYPE FLIP-FLOP
V. T-TYPE FLIP-FLOP

DECODERS/DEMULTIPLEXERS
ENCODERS/MULTIPLEXERS
INTERFACE DEVICES
OPEN-COLLECTOR LOGIC
TRI-STATE LOGIC
BUS TRANSCEIVERS
ANALYZING SOFTWARE PROBLEMS
5.0 THE SOFTWARE DESIGN PROCEDURE
5.1 STEP 1: DEFINE THE PROBLEM

5.2 STEP 2: PARTITION THE PROBLEM INTO FUNCTIONAL
BLOCKS

5.3 STEP 3: ALGORITHM DEVELOPMENT
FOR EACH PARTITION

1-1

2-1

3-1
3=3
3-6
3-8
3-9
3-10

5-1
5-2

5-12

ANALYZING SOFTWARE PROBLEMS (CONTINUED)

S.4 OBJECTIVES TO FLOWCHARTS

5.5 PROCEDURES AFTER ALGORITHM DEVELOPMENT

QUESTIONS

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

INTRODUCTION
6.1 HARDWARE COST

6 L] 1 L] 1 SISTEH SPEED

6.1.2 MEMORY REQUIREMENTS

6.1.3 I/0 REQUIREMENTS

6.1.4 PERIPHERAL DEVICES

6.1.5 DEVICE SUPPORT

6.1.6 MICROPROCESSOR HARDWARE
SELECTION SUMMARY

6.2 SOFTWARE COSTS
A Y

6.2.1 PROCESSOR ORGANIZATION
6.2.2 PROGRAM-STRUCTURE
6.2.3 IMPLEMENTATION LANGUAGE

6.3 SYSTEM COSTS

6.3.1 DEVELOPMENT COSTS

6.3.2 MODIFICATION COSTS

6.3.3 MAINTENANCE COSTS

6.4 A PERSPECTIVE ON COSTS

6.5 TRADING OFF SOFTWARE AND HARDWARE

6.5.1 CONDITIONS WHICH LEAD TO
DESIGN TRADE OFFS

6.5.2 SYSTEM SPEED PROBLEMS

6.5.3 SYSTEM COST PROBLEMS

6.6 HARDWARE SPEED TRADE OFFS

6.6.1 PROCESSORS AND MEMORIES

6.6.,2 DECODE LOGIC

6.6.3 MEMORY BUFFERS

6.6.4 SPECIALIZED INTERFACE DEVICES
6.6.5 INTERRUPTS

6.7 SOFTWARE TRADE OFFS

6.7.1° PROGRAM LOOPS AND SUBROUTINES

5-20
5-22
5-23

6-1
6-2
6-2
6-3
6-5
6-7
6-7
6-9
6-9
6-10
6-11
6-11
6-12
6-12
6-13
6-1
6-15
6-16
6-16

6-17
6-20

6-21
6-21
6-22
6-22
6-23
6-2
6-25

6-25

6.7.2 FUNCTIONAL COMPUTATIONS
6.7.3 REPEATED COMPUTATIONS

6.8 SUMMARY
REPRESENTING BINARY DATA

NUMBER SYSTEM CONVERSIONS

DECIMAL TO BINARY

BINARY TO DECIMAL

DECIMAL TO OCTAL

OCTAL TO DECIMAL

DECIMAL TO HEXADECIMAL

HEXADECIMAL TO DECIMAL

CONVERSIONS -
OCTAL TO BINARY,
HEXADECIMAL TO BINARY,
OCTAL TO HEXADECIMAL;
AND BACK '

BCD NUMBERS
BINARY FRACTIONS

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS
11.1 COMPUTER ARITHMETIC INSTRUCTIONS

11.1.1 TWO'S COMPLEMENT NOTATION
11l.1.2 BINARY ARITHMETIC

11.2 COMPUTER LOGIC INSTRUCTIONS

.2 LOGIC COMPLEMENT
.2 LOGIC AND
.3 IOGIC OR
4 LOGIC XOR

11

1.

.2
o2
2
11.2

APPENDICES

A. MODIFIED 6500 OP CODE TABLE

B. KIM INFORMATION
KIM PROGRAM DATA SHEET
KIM BLOCK DIAGRAM
KIM INTERFACING DATA SHEET

6-26
6-27

6-27
7-1

8-1
8-1
8-3
8-3
8-k
8-5

8-5

9-1

10-1

11-1

11-1
11-3

1-5
11-5
11-6

11-6
11-7

B-1
B-2

B-3

KIM MONITOR IMPORTANT ADDRESSES
C. COLLECTED KIM SOFTWARE

DISPLAY ROUTINE
DIRECTORY

VU TAPE

SUPERTAPE

TAPE DUPE

MOVE-A-BLOCK

HEX DUMP

FREQUENCY COUNTER

ANALOG TO DIGITAL CONVERSION DEMO
REAL-TIME CLOCK

TIMER

HEDEC

BINARY MULTIPLICATION AND DIVISION
16 BIT SQUARE ROOT

LUNAR LANDER

HORSE RACE

ONE-ARMED BANDIT

KIMMAZE

MUSIC MACHINE

HUNT THE WUMPUS

D. KIM DEMONSTRATION TAPE

INDEX
PROGRAM HEX DUMPS

E. SPECIAL APPLICATIONS

EIGHT BIT A TO D CONVERSION
MULTICHANNEL ANALOG INTERFACE

F. KIM/6500 INFORMATION SOURCES

KIM SOFTWARE SOURCES
6500 MICROPROCESSOR SUPPLIERS

G. GENERAL REFERENCE INFORMATION
H. TTL REFERENCE SHEETS

I. MOS TECHNOLOGY DATA SHEETS

J. MICROCOMPUTER BIBLIOGRAPHY

K. GLOSSARY OF COMMONLY USED TERMS

B-4

i [|
[l ol < BRSNS R =S NS

Toleloleleleoleolole
I

COURSE OUTLINE

MICROPROCESSING FUNDAMENTALS

COURSE OUTLINE

FIRST DAY

I. Introduction to Microprocessors and Microcomputers
A. Hardware
B. Software
C. Number systems

II. Operating a Typical Microcomputer: The KIM-1
A. Examining and modifying memory
B. Loading and running sample programs
C. Using the KIM audio cassette system
D. Using the single step mode

IIT. Experiment 1: Loading and Running a Simple Program

IV. Microcomputer Architecture and Elementary Programming
A. Simplified CPU model
B. Data, address, and control buses
C. Memory and I/0 addressing
D. The KIM monitor
E. A selected subset of instructions

V. Programming Examples
A. Parallel data input and output
B. Use of the KIM-1 keyboard and display

VI. Experiment 2: Parallel Data Input and Output
SECOND DAY
l.Interfacing Microcomputers to External Devices
A. Using programmable I/0 lines for device control
B. Device control software techniques
C. Common interface devices
D. Analog input and output techniques
IT. Experiment 3: Controlling External Devices

IITI. Further Software
A. Flags and conditional branches
B. Counting and timing loops

1-1

THIRD DAY

I. Advanced Software
A. Binary and decimal arithmetic
B. Indexed addressing
C. Indirect addressing

II. Interval Timers and Interrupts
A. Using an interval timer for time delays
B. The 6502 interrupt system
C. Interval timer triggered interrupts
D. Interrupt applications

II1I. Experiments 5 and 6: Using the Interval Timer and Interrupts

IV. Serial Data Input and Output
A. The KIM-1 serial I/0 system
B. 20 mA current loop and RS-232 interfaces
C. The ASCII code
D. KIM monitor routines for serial I/0

IV. Further Topics as Requested

READING ASSIGNMENTS |

READING ASSIGNMENTS

It is virtually impossible to read all the written material given
with this course in the two nights during which the course is given.
This material is given with the course to facilitate a higher level
of expertise than can be presented or absorbed in a three-day seminar.
The reading assignments listed below are highly recommended in order
to receive the most from the next day's lecture. These assignments

ONLY cover the two nights of the course. Read these assiznments for

information and understanding, NOT FOR DETAILED knowledge.

KIM-1 USER HARDWARE PROGRAM SEMINAR
MANU AL MANU AL MANU AL WORKBOOK
FIRST NIGHT Chapter 1 Sections Chapter 1 Basic Logic
Sections 1.0 thru Chapter 2 Interface
2.1 thru 2.4 125 la3sly Devices
Chapter 3 1.3.3,
Section L.l 1.4 thru
Chapter 5 Liliede2:h
SECOND NIGHT Sections Chapters Glossary of
1.3.2 thru 3,b,5,6,7 Common Terms
1.3.2.6 Section
1.5 thru 11.3
1.6.4.3 11.31
Appendix H

AFTER COMPLETION OF THE SEMINAR:

You should reread all the reading assignments FOR DETAILED KNOWLEDGE .
There are many sections of the KIM-1 USER MANUAL, HARDWARE AND PROGRAM
MANUALS, that were not made reading assignments. This DOES NOT MEAN
that they are unimportant or not relevant. The reading assignments were
made a basic understanding for the lecture material. You should read
FOR DETATLED KNOWLEDGE the entire set of manuals and the SEMINAR WORKBOOK.
You will find all the information in the WORKBOOK, highly condenced and

extremely useful.

2-1

EXPERIMENTS

WARNING!

KIM EXPERIMENTS

Your KIM-1 experimental set-up operates on low voltage only.

EXPERIMENT 1 Loading and Running a Simple Program

l.

KIM-1 Initialization:
Turn on 5V power. Press the RS key (reset). The display should
light and show some random hex numbers.

Address Selection:

Press AD to put KIM in address entry mode (address entry mode is
automatically selected after reset). Enter 0000 on the keyboard.
Observe the display see 0000 in the left four digits. You are
looking at location 0000 in the KIM-1 read/write memory. The

right two digits show the contents of this location. What are the
contents? Look at the next location by pressing +. Continue pressing
+ to see what numbers are in your memory after system start up.

Do you see a pattern to the numbers? Go to locations 0100, 0200,
0300, 0800, etc. and note the numbers you find. KIM read/write
memory ranges from 0000 to O03FF. What numbers are found in locations
where there is no physical memory?

Data Entry:

Go to address 0000. Put KIM into the data entry mode by pressing the
DA key. Press various keys and observe the display. To go to the
next address, press +. For practice enter the following data into

the KIM-1 memory:

address data
0000 00
0001 01
0002 02
0003 03

The + key allows you to increment the address in either the AD or
DA mode. How do you go to a lower address or to a much higher
address? You must return to the address mode and key in the new
address then continue data entry in the DA mode.

Loading a Canned Program:

Enter the program as listed on the coding sheet following this page.
This program will cycle through the memory and display the contents
of each location. For more information consult the program notes
in your literature package.

3-1

PROGRAM: EXPERIMENT 1 - Display Routine

MICROPROCESSOR CODING SHEET PAGE OF
LABEL ADDRESS OP CODE MNEMONIC COM: INTS
0000 A2
0001 04
0002 8A
0003 48
0004 A9
0005 62
0006 8D
0007 47
0008 17
0009 20
000A 19
000B 1F
000C 2C
000D 47
000E 17
000F 10
0010 F8
0011 68
0012 AA
0013 CA
0014 DO
0015 EC
0016 E6
0017 FA
0018 DO
0019 E6
001A E6
001B FB
001C DO
001D E2

GENERAL COMMENTS:

5. Program Execution:

Go to the beginning of the program using the AD mode (address 0000).

Press the G key.
display will show the contents of each memory location.

The address display will count up and the data

To stop

the program and return to the KIM monitor, press RS. This program
is written as a loop and will run forever.

Locate the SK-10 breadboarding socket and the LR-25 module. Plug
the LR-25 into the SK-10 socket so that it is oriented as shown in
the drawing below. Insert the flat cable plug in the center of the
SK-10 as shown. The flat cable should enter the plug from the side
away from you. This will put pin 1 on the front left side. Connec
the black lead (GND) to the GND terminal on the LR-25. Connect the
red lead (+5V) to the +5 LR-25 terminal.

6. Optional Experiment:
Select one of the game programs in the literature package and load
and run it. Lunar Lander, Horserace, and Kimaze are reasonably short.
EXPERIMENT 2 Parallel Data Input and Output
1. Prepare Experimental Equipment:

t

0/0/0/0/000e,

5V (red)
HGFEDCBA gl

sess =mms B ees sesma mESEE sEEam amEE e

LR-25 Z2°fi i in_ i

O

I e e e e T P P
B O 2 e S

clk e e e L e Pt e e F ATl amece s WA a Ty d 0
8 sands denm seaacn maen Sipis priak Games

P1(SD

SB

Kim Experimental Breadboard

_,.] vig 'J:i"' l.,i.rn.-‘{.-}:..l_s

£l

Ty

et)
J

Use 8 wires to connect the KIM PA output lines to the 8 LED
indicators on the LR-25. Connect:

PAO = pin 9 to TA
PAl = pin 10 to IB

PA2 = pin 11 to IC
PA3 = pin 12 to ID
PA4 = pin 13 to IE
PAS = pin 14 to IF
PA6 = pin 15 to IG
PA7 = pin 16 to IH

Use 6 wires to connect the KIM PB input/output lines to the
switches and pulsers on the LR-25. Connect:

PBO = pin 1 to SA

PBl = pin 2 to SB

PB2 = pin 3 to SC

PB3 = pin 4 to SD

PB4 = pin 5 to P1 (0)

PB5 = pin 6 to P2 (0) :
nc pin 7 wused in interrupt exp.

PB7 pin 8 to GND

2. Eight Bit Parallel Output:

Establish the eight PA lines as OUTPUT LINES by storing the
number S$FF in the PA data direction register at location
$1701. Use the KIM-1 keyboard to do this. Now use the
KIM-1 keyboard to write various hex numbers into the output
register and observe the effect on the 8 LED indicators.

Go to address$1700 = PAD, press DA, then press hex keys.
You will see the binary representation of the hex numbers

shown in the data display.

Note: The RS key resets the data direction registers to
$00 = INPUT, so you must reenter the $FF in $1701 each time

you use RS.

3. Parallel Input From External Switches: _
Establish PBO - PB7 as INPUT by storing $00 in the PB data
direction register at location $1703. Remember that this
is done automatically by the RS key. Use the KIM-1 keyboard
to look at the contents of the PB data register at location
$1702. Operate the external switches and observe the effect

on the memory contents.

4. Numerical Input from the Kim-1 Keyboard:
The KIM-1 keyboard is scanned by a software routine. If no key
is pressed the routine returns with $15 in the accumulator. If
a key 1s pressed, the routine returns with the hex key code in the
accumulator. The following program calls the keyboard input
routine and transfers the contents of the accumulator to the
PA output port. This will enable you to see the key codes on

the 8 LED indicators.

3=l

Keyboard Input Test Program

0000 D8 CLD set binary mode
0001 A2 LDX# establish PA as out
0002 FF SFF
0003 8E sTX@
0004 01 ¢$o01
0005 17 17
0006 20 JSR@ call keyboard input routine
0007 6A $6A
0008 1F S1F
0009 8D STA@ send contents of A out to PA
0004 00 $o00
oF 000B 17 $17
40" /000C 4C JMP@ loop back for more data
=| 000D 06 $06

L 000E 00 $00

To run this program, go to address $0000, then press G. The
display will go dark because it is not used by this program.

Program OQutput to the KIM=1 Display:

The KIM-1 display is a software driven multiplexed seven segment
display. We are going to use the display to output hex numbers.
Three memory locations hold the numbers which are displayed by
the display routine. The leftmost two digits are stored in
$00FB, the middle two in $00FA, the right two ian $00F9. To
display a number, we must store it in the appropriate location
and then call the display routine. If a continuous display is
desired, you must include the call instruction in a loop so that
it is repeatedly executed. The following program displays
010203 on the KIM-1 display.

Display Output Test Program

000F A9 LDA# load first number
0010 01 $01
0011 8D STA@ store it in left display
0012 FB S$FB
0013 00 $00
0014 A9 LDA# load second number
0015 02 $02
0016 8D STA@ store it in middle display
0017 FA SFA
0018 00 $00
~—0019 A9 LDA# load third number
[001a 03 $03
(7| 001B 8D STA@ store it in right display
| 001C F9 SF9
l_001D 00 $00
| O001E 20 Jsr@ call display routine
001F 1F §$1F
0020 1F $IF
0021 4C JMP@ loop back to call routine again
0;_J,gf'0022 1E S$1E
J 0023 00 $00

3-5

Note that this program starts ac $§000L. Co the program
beginning and run the progr Press RS to stop the
program.

As a final project, you might like to link the keyboard
entry program with the display ocutput program sc that the
hex key codes are displayed in the right hand displays.
How would the programs given need to be modified? Try

it and see what you can do.

EXPERIMENT 3 Controlling External Devicas

1. Single Step Execution of Programs: .

The KIM single step function uses the NMI interrupt feature.
In order to activate the single step function, you must load
the proper address into the NMI vector locations. This is
done by storing $00 in location $17FA and $1C in location
$17FB. Once this vector has been loaded the ST key can be
used to stop a program and retura tc the KIM monitor.
You are now ready to try the single sten function. Load
a program and set the address to point to the program start
location. Switch the keyboard switch to SSon. Press G
and one instruction will be executed. While in the SS mode
the data display will only show the first byte of each instruction.
While in the SS mode, you can use the AD and DA modes to examine
and modify any memory location. The PC key will recall the
program counter value for the next instructior to be executed.
After each instruction, the CPU registers are stored in memory
where they can be examined or mcdified. This gives you the
means of checking program execution or modifiying register
values between steps. Memory locations for register storage
are:

00EF PCL

00F0 PCH

O0F1 status register (P)

00F2 stack pointer (S)

00F3 accumulator (A)

00F4 dindex register (Y)

O00F5 index register (X)

2. We are now going to immagine that our KIM-1 is connected to an
experimental apparatus. The devices to be controlled are hooked
to the eight PA lines (used again as output). Of course we
will have to use appropriate power drivers and interface devices
to convert the TTL output signals to whatever is needed. We
will also have several feedback signals to feed into our KIM-1.
These are considered to be simple contact closures and are
connected to the PB lines which will be programmed as inputs.
The devices to be controlled and their input/output assignments
are shown in the following schematic:

PEo PAY

LEVEL HI (1 t 1o, ———OH ALARM
TEMP HI 8 1 :?'ﬁﬁ——of- COFFEE POT
DRAIN CL (0) Potls 14 fﬁ-—-Or-‘ AGITATOR
HEAT ON (1) o3 ¢ s Pae € FILL#2
START (1) -—?—PM I A P53 _op rroim
STOP (0) 251 " —%Z—-OC DRAIN VALVE

Nc Y 10}——O [HEATER

o ::::]g GHAS _ oA e

Let SA = Level, SB = Temp., SC = Drain, SD = Heat, Pl = Start,
P2 = Stop.

We are now going to use the logical instructions OR and AND
to turn individual devices on and off. Load the following
program and single step through it so you can see the effect
of each instruction on the output LED's which represent the
actual devices. Note that you will have to look up your own
op codes.

Device Control Program

0000 49 LDA# SFF establish PA as output
2 sp STA@ $1701 ~{o6 0ee
5 44 LDA# $00 turn off all devices C o '
7 gp STA@ $1700 i
A ,» LDA@ $1700 get output status Py
D &7 ORA# $40 turn on coffee pot]
F 75U STA@ $1700 -
12 4p LDA@ $1700 get status
15 4 ORA# $01 turn on pump
A17 _gp STA@ 81700
" 1A #p LDA@G §$1702 get input status -—
| 1D 29 AND# $04 check state of drain valve
_1F 0 BNEr $F9 if drain is open, loop back and check again
21 AU LDA@ $1700 get status
24 ¢ ORA# $08 drain is closed so start £il11l #1
26 ¥ STA@ $1700
29 #7 LDA@ $1700 get status
2C 2% AND# SF7 turn off fill #1
2E %% STA@ $1700
4C JMP@ S1CA4F
etc.

As you run through the program, turn switch SC on and off to simulate
having the drain valve open and closed.

Program termination: -
If you want to have a program run just once, you must end it

with a command to return to the KIM monitor. This can be
done by terminating your program with: JMP@ $1C4F.

Q

EXPERIMENT 4 Counting and Timing Loops

1.

Counting Loops:

The following example shows how to set up a counter (here the
X register) to allow execution of a program segment for some
preselected number of times. We could just as easily used the
accumulator, the Y register or any r/w memory location as a

counter.
Counting Loop Program Example

LDA# S$FF = establish PA as output

STA@ $1701

LDA# $00 turm off all LED's

STA@ $1700
COUNT LDX# $0A load counter with 10
LOOP INC@ $1700 increment the outputlgort

DEX decrement the counter

BNEr LOOP if counter not zero, jump to loop
DONE JMP@ S$1C4F return to the monitor

Run this program in the SS mode and at full speed. Change the
count value and observe the result.

Timing Loops:

'All operations in the KIM-1 system are timed by the crystal clock

oscillator operating at a nominal 1.000 MHz. The oscillator is
quite stable, but may not be exactly 1 MHz since that would require
a more expensive crystal. If you need precise - timing, check your
oscillator with a good frequency counter. Each instruction requires
a specific number of clock cycles for its execution. Thus program
segments and loops can be used to produce very precise time delays
which are as stable as the crystal clock. The number of cycles for
each instruction is found on the MCS6500 Summary card and in the
MOS Microcomputer Programming Manual. The following program yields
a delay of 502 cycles = 502 microseconds from a single leop.

Time Delay Program cycles
LDX# $64 2
LOOP DEX 2
BNEr LOOP 3

The loop is 5 cycles and is executed 100 times. The initial LDX#
adds the last 2 cycles. To obtain long delays, loops can be nested
to produce delays of any length. Now that you have the basic idea
here is a more complicated program. We put the time delay in a
subroutine so that it can be readily used by other programs. The
main program clears A then increments it and outputs it to the

PA port. Each cycle is delayed by the time delay subroutine.

You will have to look up the op codes. Start the main program at
0000 and the delay subroutine at 0013.

Time Delay Test Program with Subroutine

START LDA# SFF

T STA@ $1701
£ LDA# $00 clear A
7 SHOW STA@ $1700 look at A
K CLC clear carry before add
b Apci $01 add 1 to A
¥ JSR@ DELAY delay 0.1 sec
13 JMP@ SHOW loop back to SHOW
16 DELAY LDY# $C8 load 20070 into ¥ = T
¢ 1% LOOPY LDX# $62°° load 98, into X = T,
¥ I8 STXz §$F5' . waste 3 cycles
« 'CLOOPX' DEX 9:« _ '/ decrement X
i W . .. «YBNEr';LOOPX- if X not zero, loopx
v4 . DEY | decrement Y
1 BNEr ‘LOOPY if Y not zero, loopy
2 RTS return

The total time delay here is TD = STY(T. 42) + 14 microsec.

Run the program and try diffcrent values for T_ and Tx' You
might try to write a program that would allow §ou to enter time
constants from the keyboard in real time as the program is running.

This is a good program to use to see the effects of some of the
other accumulator instructions. Replace the CLC, ADC# sequence
with SEC, SBC#, or RORa, ROLa, ASLa, LSRa. If you replace a two
byte instruction with a one byte instruction, be sure to add

a NOP to fill the gap.

EXPERIMENT 5 The Interval Timer

1. The KIM-1 interval timer can produce a wide range of programmable
time delays from a few microseconds to 250 mSEC. The interval
timer consists of an eight bit down counter and a programmable
clock divider which produces time intervals of 1 uSEC, 8 uSEC,

64 uSEC, or 1024 uSEC. The number of counts and the count interval
are easily controlled. In this experiment we shall use the
interval timer to produce a time delay subroutine. You should

use the same main program used in EXP. 4 to test this routine.
Start with the TDLY address = $1707, then try the other values
shown in the following table:

TDLY Ty, (x) Delay
$1704 1 uSEC $64 100 uSEC
$§1705 8 uSEC $64 800 uSEC
$1706 64 uSEC $64 6400 uSEC
$1707 1 mSEC $64 100 mSEC

Interval Timer Subroutine

INTDLY PHA save the contents of A

LDX# $64 load couat

STX@ TDLY lozd counter and set divide ratio
WAIT LDA@ $1707 get timer status

BEQr WAIT 4if status = 0, wait
DONE PLA restore accumulator

RTS return

Note that the interval timer always runs in real time. If you
single step through a program contining an interval timer delay,
the program will flow right through the delay and not get hung
up for N loops as is the case with timing loops.

EXPERIMENT 6 Interrupts

1. The interval timer can be programmed to interrupt the KIM-1 system
every nnn machine cycles. 1In this experiment we are going to generate
an interrupt every 0.2 sec and use this interrupt to run a program
which will increment the PA output port, You should run a main
program which does not use the PA port. The game programs, or Lthe
display routine used in experiment 1 are good for this purpose.

Here is the interrupt routine:

Interval Timer Interrupt Program

1780 PHA save A

1781 LDA# ScC8 icad A with 200

1783 STA@ S$170F load timer and set divide ratio to 1024
1786 LDA# SFF

1788 STA@ 31701 set PA to out

178B INC@ $1700 increment PA lines

178E PLA restore original A
enable interrupt
178F RTI return from interrupt

We put this program in one of the small blocks of r/w memory mnot

used by most programs. Set the IRQ interrupt vector to point to

the above routine by storing the entry address in $17FE and $17FF

(store $80 in $17FE and $17 in $17FF). You must connect the

the interval timer output signal to the IRQ input line. This is

accomplished as follows. Attach a spare 22 pin edge connector to

the expansion lines on the KIM-1 board. Connect the orange clip

to the IRQ input (pin 4). Connect a short jumper between pins

7 and 8 of the dip plug. Make sure PB7 is programmed as an input

line even though it is used to send the timer signal out to IRQ.

After a system reset (RS key used) you must enable the interval

timer interrupt capability by reading location 3$170E once. This

can be done manually using the KIM keyboard. You are now ready

to run your main program. You should observe normal program

execution and apparently simultaneous incrementing of the PA

output indicators. Be sure the processor starts with the interrupt

enabled by storing $00 in location S0OOF1 before running the program.

THIS PROGRAM WILL NOT FUNCTION UNLESS YOU REMOVE THE GROUND WIRE FROM

PIN # 8 ON THE 16-PIN RIBBON CONNECTUR.
3-1C

2. Optional Experiment: Frequency Counter
Look up the Frequency Counter program in your literature package.
Load it, connect PB7 to IRC (jumper pins 7 and 8 and hook the orange
clip to expansion connector pin 4 as done in exp. 6-1). Connect
the LR-25 clock oscillator output to the counter input PBO (pin 1).
Run the program starting at $0000. Vary the oscillator frequency
by inserting different sizes of capacitors in the terminals marked

IIC" x

LOGIC AND INTERFACE DEVICES

BASIC LOGIC DEVICES

Although microprocessors are called (and often are used as) logic replace-
ments, basic logic gates are still needed in most microcomputer systems. They
are used for Buffers, Latches, Address Decoders, and Signal Conditioners.
Therefore, it is important to have a good understanding and working knowledge
of basic logic gates.

Digital logic operates in the binary mumber system. Therefore, any one
input or output can only be in one of two distinct states, either a "1 or
a "g". Normally, references made in regard to a digital signal, a logical
"1" is greater than 2.0 volts and a logical "@" is less than 0.8 volts;
this is called HIGH=-TRUE or POSITIVE=-TRUE LOGIC. LOW=TRUE or NEGATIVE-TRUE
LOGIC is the opposite, a logical "1" is less than 0.8 volts and logical "@"
is greater than 2.0 volts. On logical diagrams, the type of logic (Positive
or Negative) is shown by the use of a circle in the input/output lead touche
ing the logic symbol for the gate to indicate a LOW=-TRUE input/output. The
absence of this circle indicates a HIGH=-TRUE input/output.

POSITIVE LOGIC
INPUT

NEGATIVE LOGIC —0
INPUT

—
When the circle is used in an output lead of a POSITIVE-TRUE input gate
or the absence of it in a LOW-TRUE input gate, it changes the name of the
gate by adding the letter "N" in front of the gate's name, such as:
HIGH=-TRUE INPUT GATES LOW=TRUE INPUT GATES

A= = =",
@-Dﬂij}

hel=1

An explanation of the basic logic gates follows:

I. NON-INVERTING BUFFER

This device is used primarily to increase the load handling

capabilities of another device.

The output of this device will

always be the same logic level as its input.

ANALOGY

Closing the switch turns

the lamp ON. Opening the
switch turns the lamp OFF.

LOGIC SYMBOL:

The switch closed represents a high input
The switch open represents a low input
The lamp on represents a high output

The lamp off represents a low output

|/ A - Input
Q = Output
TRUTH TABLE:
A
1 1
0 0
BOOLEAN EQUATION :
A = Q

INVERTING BUFFER

This device is used primarily for logic level inversion. The

output of this device will always be the opposite logic level to

its input.
ANALOGY

T &

Closing' the switch will short
out the lamp and turn it off.
Opening the switch will remove

thnahortandturnmthslaﬁ:p.a
o

The switch closed represents a high input
The switch open represents a low input
The lamp on represents a high output

The lamp off represents a low output

LOGIC SYMBOL:

A = Input
. |l>b Q Q - Output
The small circle at the end of the
gate indicates output inversion.

TRUTH TABLE:
A Q
1 0
o 1
BOOLEAN EQUATION:
A = 7q

ITx, A
This device used primarily to indicate whether or not all of its
inputs are high at the same time., The output is HIGH=-TRUE.

ANALOGY
T e 1 A switch closed represents a high input
A switch open represents a low input
i Q The lamp on represents a high output

The lamp off represents a low output

Both switches must be closed
to twrn the lamp on. If either
or both switches are open, the
lamp will be offe

LOGIC SYMBOL:

A
A& B = INPUTS

B |
Q = QUTPUT

Lel-3

TRUTH TABLE:

A B Q
0 0 0
0 & 0
X 0 0
p & 1 1
BOOLEAN EQUATION:
A+ B = Q

IV. NAND
This device is used the same as the AND, except the output is LOW-TRUE.

ANALOGY :
i ' A switch closed represents z high input
Q A switch open represents a low input
= B The lamp on represents a high ocutput
/ The lamp off represents a low output

When both switches are closed, they

short out the lamp and turn it off.
If either or both switches open, the
short will be removed and turn the

light Ole
LOGIC SYMBOL:
A |
Q A & B = Inputs
B Q - Output
TRUTH TABLE:
A B Q
0 0 1
0 1 1
1 0 i
1 i Q0

L1~

BOOLEAN EQUATION :

Ve OR

Ol

This device is used to indicate when at least one of its imputs is

high. The output is HIGH-TRUE.

ANALOGY ¢

A

Closing of either or both switches

A switch closed represents a high input
A switch open represents a low input
The lamp on represents a high output
The lamp off represents a low output

turns the light on. All the switches
mst be open to turn the lamp off,

LOGIC SYMBOL:

A

B

TRUTH TABLE:

BOOLEAN EQUATION:

A & B - Inputs
Q = Output

2 Q
0 0
1 2 !
0 1
1 1
A + B Q

h.1-5

VIi. NOR
This device is used for the same purpose as the OR gate, except the

output is LOW=TRUE.

ANALOGY :
A switch closed represents a high input
N A B @Q A switch open represents a low input
i The lamp on represents a high output
I I The lamp off represents a low output

Closing of either or both switches
shorts out the lamp and turns it
offs Both switches must be open
to trm on the lamp.

LOGIC SYMBOL:
A :
Q A & B - Inputs
& Q - Output
TRUTH TABLE:
A B Q
0 0 1
0 3 0
1 0 0
p | 0
BOOLEAN EQUATION:
A+ B = Qq

hol-é

VII. EXCLUSIVE = OR
This device is used to indicate when one, and only one, input is high.

The output is HIGH=-TRUE.

ANALOGY:
2 2
A switch in the "1" position
represents a high input
A B Q A switch in the "2" positiomn
represents a low input
]- The lamp on represents a high output
The lamp off represents a low output

For the lamp to be on, one switch
must be in the "1" position and cne
mist be in the "2" position. Other-
wise, the lamp will be off.

LOGIC SYMBOL:
A
Q A & B - Inputs
B
Q - Qutput
TRUTH TABLEs
A B Q
0 0 0
(o] i 1
1 0 1
1 i i 0

BOOLEAN EQUATION :

A@B = BB+ 1B = Q

L.1-7

VIII. EICLUSIVE=NCR
This device is the same as the EXCLISIVE=OR gate, except the output

is LOW=TRUE.
ANALOGY :
A A switch in the "1* position represents
a high input
o Q A switch in the "2" position represents
T 1 A2 a low input
B The lamp on represents a high cutput
The lamp off represents a low cutput
The only way to shorte-cut the
lamp and tuwrn it off, is to
have one switch in the "1®
position and one switch in
the "2" position. Otherwise,
the lamp will be on.
LOGIC SYMBOL:
A
Q A & B =~ Inputs
B
Q = Cutput
TRUTH TABLE:
A B Q
0 0 1
0 i 0
5 & 0 0
| 2 § i

BOOLEAN EQUATION :
A®B = AB +# AB = Q

IX. DISSCUSSION OF LOW-TRUE LOGIC
The preceeding discussion on the basic logic gates has not discussed

gates with LOW or NEGATIVE-TRUE inputs, This is becamse there are no
I.C.'s specifically designated for LOW=-TRUE inputs, but a close examination

ly.1-8

of the truth tables shows the following rilationships:

NOTE: In the following truth tables, "L" & "H" are used instead
of "ln & mOM to reduce the confusion of what is a LOGICAL
"l" or "O" between HIGH=TRUE aznd LOW=TRUE input LOGIC.

"

An L = 008 volts and an H= 2,0 voltse

HIGH-TRUE INPUT - LOW=TRUE INPUT
HIGH-TRUE AND = LOW=TRUE OR
A__] A
Q
B B
Al B|Q A{B|Q
Ll L tL LlL]L
LI|E|L L{g|L
H|L|L H|L|L
H|{H|H H|H|H

HIGH~-TRUE NAND = LOW=TRUE NOR

A}l Bl Q A)] B| Q
LI|L|H LI L|H
LIH|H L| H| H
HIL|H Hi L| H
HiH|L H| H| L

L.1-9

LOW=TRUE AND

HIGH=-TRUE OR

m om =
m A
Lo = - -
omom m
H A m
[B == B < - |

LOW=TRUE NAND

HIGH-TRUE NOR

L.1-10

FLIP=FLOPS

I. R-8 LATCH:
The R=8 latch was probably the first type of flip-flop ever built,
(R = Reset & 3 = Set)s

s| Q| Q

, R
R f‘.," . /
Q 0| 0 1| 1
o{ 1] 11}0
‘1
' 1
¢

o011

o 4

Q

) _ 1 |NO CHANGE|{ < © , |

S I
® ' #Not allowed

To make the R-8 latch into a clocked flip-flop, a clock input must be
added.
II. RS FLIP FLOP:
The R-€ flip-flop is the simplest of the flip-flops.

3 _
S o [Bs]aqfQ
- : 0 | 0 |NO CHANGE
CLOCK o _ BEIRD L
1lo0lola

32

= 1| el 1
_.
. — #Not allowed

The addition of the two NAND gates with the clock input changes it
into a clocked R=S flip-flop The inputs (R & S) can only change the
outputs (Q & Q) during a high input clock pulsee. The R-S flip-flop is
usually drawn in this mamner:

—R Q p—e
Pt & Q

I1T1.

-LOCK

DATA OR D-TYPE FLIP-FICP:

The D-Type F. F. is used primarily for a data latch. It can be made

effectively from an R-S F. F. by:

D | Q| Q

7 [R | S
CLOCK e cL 1 (1] 0
o . o| o] 1

J-K TYPE FLIP-FLOP:

The J-K or Master-Slave F. F. is used whenever data is to be trapped

and latched at a given instant in time, such as in shift registers. It can
be effectively made from two R-S F. F.'s by:
J K Q
0 0 Qn WHERE:
Qn = value
= R Q S Q ¢ Q 0 i 0 of Q during
'_-T— CL D CL previous
> s q R aQ ¢ J l_ 0 | 1 clock cycle.
1 F 1 Qn

TOGGLE OR T-TYPE FLIP-FLOP:

The T-Type Fo Fo is used primarily in counters.

made from a J-K (Master-Slave) F. F. by:

T o—T—-J Q

CLOCK e

CL
K

Ol

©l

It can be etfectively
CL| Q | Q
! 1 0
0 1 0
1) 0 L
0 0 1

For every complete clock cycle (|), Q and Q go through % of their

cycle. Therefore,'the T-Type F. F. divides the clock frequency by 2 as long

as the "T" input is held high.

L.2-2

DECODERS /DEMULTIPLEXERS

DECODERS :
These devices are most commonly used for address decodinge They are
available in 2-line to L-line, 3-line to 8-line, L~line to 10-line, L-line

to 16-line configuration. For simplicity, a 2-line to L-line decoder is

shown below:

A ! 0
[: Bl Alo| 1] 2{ 3
L ololL| | H]|H

B 1
o1l H}| L| H| H
' 10| H| H| L| H
212 |1l BE|H| H| L

b_ i

Where "A" is the least-
significant bit and "B"
is the most-significant
bite

With this device, it only takes 2 lines to specify or enable L different
devices., The output is low-true. '

DEMULTIPLEXERS :
These gates are the same as a decoder, except the NAND gates have an

additional input for data. This device separates serial-dat.a on one line

to separate lines.

O -
A'_T—>° T B A 0 1 2 3
& 3_1‘0 O|D|{ H| H| H
Ol 1| H| D| H| H
B
. I | 1| 0| H H| D| H
: 2
14111 H H| H]| D
[
' Where "D" is the DATA
3 presented to the data
inpllto
1

DATA IN
o D:
b.3-

ENCODER/MULTIPLEXERS

ENCODERS :
These devices are used to convert several inputs into a few encoded

lines., These are used on keyboards and multi~position switchese.

1l @ € 2 3 B A
A
LJL}iLjoO 0
H{L|{L]J]O]|1
2 @
) B LIRLEEL11] O
3 e -
Li]Lj]HE]L]L
MULTIPLEXERS 3

Multiplexers or Data Selectors are used to select one of several data
sources and place the data from that source anto a single output line. These
are available in ; to 1, 8 to 1, and 16 to 1 configurations.

cg

Cl

C2

C3

L.L-1

C3

c2

Cl

cg

m

= DON'T CARE

X

L.-2

INTERFACE DEVICES

OPEN-COLLECTOR LOGIC

There are several instances where a large multiple input OR gate
is needed. In certain cases the common practice is to create a
WIRED-OR. This is done by wiring two or more gate outputs together
to create a single input into another gate. The WIRED-CR is a LOW-TRUE
output. The WIRED-OR is used frequently to OR several interrupts together.
BUT, this procedure CANNOT be done with Just any logic gate. The
standard TTL logic gate has both active pull-up and active pull-down.
Therefore, if two standard TTL outputs were tied together and one output
was high, while the other was low; each gate wonld try to make it's
output prevail until finally one of the output transistors of one of the
gates burned out.
The only type of logic that can be WIRED-OR together is OPEN-COLLECTOR

logic. The internal differences of the output driving circuits is shown

below:
STANDARD TTL OPEN~-COLLECTOR
OUTPUT DRIVER OUTPUT DRIVER

Vece

Vece
EXTERNAL
PULL-UP
RESISTCR
QUTPUT
OUTPUT
et}

L.5=1

NOTE: The open-collector logic has no internal pull-up device (neither
active nor passive). Therefore, the gate can ONLY pull what is attached
to its output to ground. Since there is no pull-up device in the gate,
several of these types of outputs can be wired together with no ill
effects. But their combined outputs must have two states (high and low)
to be of any use as an input to another gate. Therefore, an external
pull-up resistor must be added to the junction of the WIRED-OR. The
value of the resistor is calculated by:

2.6 L.6
— 2 B> it

Ir,; = Total of the leakage currents of all the gates of
the WIRED-OR when their outputs are all high.

I3 = The lowest maximum current sinking capability of

any of the gates forming the WIRED-OR when its
output is low.

TRI-STATE LOGIC

In a micro-computer system transferring of data from one part of the
system to another is done via the DATA BUS. In a large number of systems,
the number of devices attached to the data bus exceeds the load driving
capabilities of the microprocessor or other devices that are conrected to
it. Therefore, there is a need to buffer the sections of the system to
the data bus. There is always more than one section connected to the data
bus, so for intellegent communications, one and only one can communicate
to the bus at any one time. Therefore, there is a need to turn off or

disconnect all but the section that has been enabled by the processor.

Li.5-2

But a large number of devices only have two output states (high or low).
So, there is a need for a special output that has three states (high, low,
or off). This is referenced to as three-state or TRI-STATE logic. The

logic symbols for these devices are below:

HIGH-TRUE ENABLES

I

LOW-TRUE ENABLES

D>
LD
DD
DD

D
it

L.5-3

These gates when enabled, through the separate enable input, will
function like the standard gates that we have already discussed.
But, when they are disabled their outputs go to a high-impedance or
off-state. Therefore, many 3~state devices can be attached to a
common line without unwanted interaction as long as one and only one

is enabled to output to that line at any given time.

BUS TRANSCEIVZRS

The TRI-STATE devices that have been discussed are essential
to one-way communications to a bus, BUT, the processor and a number
of other devices are by-directional and need to communicate in both
directions with the by-directional data bus. This caused the creation
of BUS TRANSCEIVERS. BU3 TRANSCEIVERS are effectively two TRI-STATE
buffers strapped together in such a manner as to tie the input of each
buffer to the output of the other. One of the junctions is to be
attached to one of the data bus lines while the other junction is attached
to the same respective line of a device or section that is to be buffered.
One and only one gate is enabled at any given time. The gate that is
enabled is determined by the desired direction of communications (IN
or OUT). This is usually done by the READ/WRITE control line. There
are usually four strapped pairs in one IC. In some Bus Transceivers,
one of the junctions (input to output) is not made within the IC to
facilitate interfacing a bi-directional bus to a split data bus or

device. If this is not desired or needed, the user can externally make

the connection.

IN/QUT ® QUT

] .

¢ L.5-4

ANALYZING SOFTWARE PROBLEMS

ANALYZING SOF TWARE PROBLEMS

INTRODUCTION

The object of this chapter is to present a general procedure used to
design software to solve a problem. This procedure is completely machine
independent, and it can be applied to any software problems you are likely
to encounter. The most important thing to remember about this procedure
is that you do not concern yourself with the programming language details
until well into the solution. This is true of even the seemingly "trivial"
programs. There is no way more certain to result in a program that is
sloppy, ill1-designed, and hard to debug than to try to write the program
directly from the problem definition. To be effective software must be
designed first and then implemented using the correct techniques.

5.0 The Software Design Procedure

The systematic approach to developing a programmed system is a logical
extension of the normal problem solving cycle engineers and scientists
have employed for years. It consists of seven basic steps:

problem definition,

problem partitioning,

algorithm development for each partition,

writing the program for each partition,

debugging each program,

integrating the programs back into the system, and

e B e » T » TN~ S T N, Qe

final system debug.

Using this technique, the problem is broken down into smaller and smaller
sub-problems until they are a size which you can deal with conveniently
and effectively. This is because it is much easier to focus your atten-
tion on one small section of the system at a time. You develop each of
these blocks and sub-blocks into a group of detailed flowcharts and pro-
grams, each of which is tested and debugged. They are then interfaced

and the whole system tested. This systematic approach is intended to help
you minimize errors, since the small highly localized programs are much
easier to thoroughly check out than a single large, spread out program.

5-1

Graphically, the procedure is illustrated in Figure 5.1. You start with
a central problem and partition it into logical blocks, solve and debug
each of the blocks, and finally integrate and refine the blocks into the
final system. There may be one or many levels of blocking, depending on
the complexity of the problem. With experience, you will find this gen-
eral approach to be the most direct and consistent way to implement a
working software system, regardless of size. Less organized approaches
may work for smaller systems, but you will become hopelessly tangled as
the systems grow in size. It is best to learn the general procedure and
use it on all problems, small or large. The greatest disasters usually
occur when the whole design procedure is dispensed with because the pro-
blem is too “trivial" to warrant the general approach. Conversely, dogged
application of this approach can make many formidable problems turn out
far better and faster than anticipated.

In the remainder of this lesson we will initiate our study of the general
software solution procedure. Lessons Three through Ten will then expand
and refine the techniques used during the solution process.

§.1 Step 1: Define the Problem

As with any procedure for solving any problem, the first step is always
the same (and the hardest): define the problem. For the case of software
problems, you must decide exactly what the finished software system is to
do. This definition of the operational characteristics you want the final
system to have is called the functional specification. Naturally, it is
easier to define and specify solutions for some type of problems than for
others. Problems which are concerned with the implementation of specific
features are generally easiest. Problems which require both judgement

and implementation are the hardest. In the first case, the task is to
figure out how to do something. In the later case, it is often a question
of whether or not the job can be done, and if it can, what is the best way
to do it. For example, a program to write single data bytes onto a mag-
netic tape unit is a fairly specific problem with a similarly straight-
forward functional specification. There is 1ittle conceptual design work
to be done. It is mainly a question of using a program to control the

5-2

PROBLEM

y

MAJOR
SYSTEM BLOCK

y

SYSTEM
SUB-BLOCK

r—~

y

MAJOR
SYSTEM BLOCK

y

v

MAJOR
SYSTEM BLOCK

SYSTEM
SUB-BLOCK

|

J

y

DEVELOP
ALGORITHM

l

CODE
AND
DEBUG

4

l

|

|

SYSTEM
| SUB-BLOCK
[

r_

INTERFACE AND DEBUG
MAJOR SYSTEM BLOCK

y

SOLUTION

FIGURE S.1 GENERAL PROBLEM SOLUTION PROCESS

5-3

selected hardware. On the other hand, the program required to use this
program as part of a system to format sequences of data bytes into records
on the tabe will require considerably more design. You will have to de-
cide on record length, record marks, whether or not you want to format the
data with parity and/or check sum, and so on. Not only that, you must
decide on the probable usage of the routine. The quick format program
required to test a tape deck's operation in the lab is apt to be quite
different from a general usage exchange format for a tape library. In the
second case you must consider problems of compatibility with different
hardware, reliability, userdocumentation, and many other details. All of
these questions should be settled in the functional specification before
you proceed to the next design phase. We will examine both of these

cases as examples of general problem solutions in this and later lessons.

5.1.1 Information Required For A Functional Specification

It is difficult to give a complete definition of information that is always
required for a functional specification. It varies widely from problem

to problem. Simple systems can be specified adequately in a few pages.
Large, complex systems may have hundreds of pages of specifications and
sti11 be inadequately defined. However, the following information should

always be present.

1. A concise problem statement. One short paragraph describing
the problem the system is being designed to solve.

2. Required hardware. You must know what signals and devices are
available or required. The exact I/0 or memory addresses are
not important at this point, but you must know the hardware
you will be using.

3. Required software interfaces. When designing programs, you
will often be placing them into systems where they will have
to co-exist with or utilize other programs. If this is to be
the case, it should be noted in the specification. In this
éase, exact details are necessary; you should mention the

5=k

relevant system standard or format (i.e., all output must
conform to system 1/0 standard 1-13) for all routines to be
interfaced. These requirements will often have a significant
affect on your design.

4. A complete description of how the system is supposed to function
when complete. This is usually the longest part of the func-
tional specification. This section should include a description
of user interaction (if any), data required, output produced,
special features, error condition handling, etc. In other words,
a complete description of how the system will look to the world
from the outside with no consideration for how it will look

from the inside.

This problem makes writing the software specification sound like a rather
formidable task. It is. A good, well thought out specification is the
key to a good (i.e. successful!) project. It is well worth the time re-
quired to think the problem through completely. If you know what you have
to do, it becomes much easier to proceed directly to a solution than when
you must constantly stop and start to fill in the blanks in the problem
definition. Few specifications are ever totally compliete, but you should
strive to get as close as possible before you start the actual design.
Once you become immersed in the details of the solution, it becomes much
more difficult to separate the normal implementation problems from those
caused by a fundamental design logic error.

Example 6.1

Consider the design of a program to interface a magnetic tape
recorder to microcomputer. This program will control the transfer
of parallel data between the tape deck and the microcomputer. It
will control all tape deck hardware functions which are required to

- perform these data transfers. The following is a possible function-
al specification.

5-5

Scope: This specification covers the program required to interface
a Magbyte Model 1010 digital magnetic tape drive to an everyday
microcomputer.

Required Hardware: The interface will require the tape drive to be
connected to the computer through two input ports and two output
ports: one data input port with parallel data from the tape deck,
one data output port with parallel data out to the tape deck, one
status input port and one control output port. Status input signals
available are End of Tape, Write Protect and Ready. Control signals
required are Tape Advance, Read/Write and Transfer Data. The timing

waveforms are shown in Figure 5.2.

Software Requirements: The I/0 routines must conform to the normal
system requirements: output data to be passed via the C register

(or the appropriate register or memory location for your system) and
input data is to be returned in the A register (or the appropriate
register or memory location for your system) upon exit. The routines
must restore any registers or memory locations used.

Operational Description:

Input Operation: Upon call, the routine will generate all timing and
control signals required to transfer one data byte from the tape in
the tape drive into the processor. It will then return to the call-
ing program with that data byte. If the tape drive status indicates
End of Tape, an error indicator should be set on return. Otherwise

it should be reset.

OQutput Operation: Upon call, the routine will generate all timing

and control signals required to transfer the data byte passed from

the calling program onto the magnetic tape in the tape drive. If

the tape drive status indicates End of Tape or Write Protect, an error
indicator should be set on return. OQOtherwise it should be reset.

5-6

READ —> ADVANCE TAPE

—> READ/WRITE

<— END OF TAPE

—> TRANSFER

<— DATA(S) /00N T CAREZ/]7777//7//7DATA STABLE
<— READY] [

WRITE —> ADVANCE TAPE

———

—> READ/WRITE

<— END OF TAPE

HIGH IF PROTECTED
<— WRITE PROTECT

LOW IF ENABLED

— DATA 7//////0ON'T CARE7JJJJJJ DATA STABLE

— TRANSFER

<— READY

- — ADVANCE TAPE
END OF TAPE

~— END OF TAPE

FIGURE 5.2 TAPE DECK TIMING WAVEFORMS

cC 2

The above example is the specification for an I/0 driver routine. All an
I/0 driver does is control the transfer of data between the computer and

an I1/0 device. Note that the specification makes no mention of the re-
quirements for initialization of the tape drive, how the data is to be
formatted, etc. This is because an I/0 driver is strictly concerned with
transferring data to or from the device it interfaces. It is the responsi-
bility of those programs which utilize an I/0 driver to interpret the data
and signals returned. A complete tape I/0 system which will use this
driver will be discussed in Lesson 7.

§.1.2 Using the Functional Specification

The functional specification is the base upon which you will build your
system. If it has been properly designed, it will support and guide the
rest of your problem solving effort. If it has not been properly designed,
your project is probably doomed to failure or overrun before you even get
started. Therefore, once you have established a functional specification,
use it. If you don't, you are apt to run into that dreaded software

disease known as "creeping features". This happens when an inadequate or
disregarded problem specification allows non-specified "neat" features to
creep into the system after work has begun. This can be disastrous, be-
cause changes easily accommodated in the planning stage can require massive
effort and re-design work during the implementation stage. Usually, the
farther work has progressed, the more effort is required to make any sig-
nificant changes. The disease is often well advanced before detected and

it can be fatal to even the best software projects. (Professional engineers
note: marketing departments are notorious carriers of this disease. While
they seldom show any symptoms, they are known to infect entire departments.)

The above comments should not be construed to mean that advanced features
are to be shunned or omitted. Far from it. The microcomputer makes these
features both possible and attainable. What is meant is that they should

be designed in from the top, not added from the side. Therefore, when you
design your functional specifications, take some time. Brainstorm for a
while and come up with a list of features that the system can really accom-
plish. Try trading off some hardware and software to lower cost or increase

-

system performance. Microcomputérs make whole new fields of features
possible, and it is worth your time to see if you can find some for your
project. But once that functional specification is done, stick with it.
If really drastic changes are needed, you will probably be better off
starting over than trying to patch an inadequate specification.

5.2 Step 2: Partition The Problem Into Function Blocks

Once you have completed the functional specification for your system,

you can begin to partition it into operational blocks. An operational
block is a section of the system which is responsible for performing some
specific system function. Operational blocks can be as complex as a com-
plete floating point arithmetic package or as simple as a few instruction
data conversions. In system operations, control passes from one functional
block to another as the program executes. In this respect the block diagram
can actually be considered as a type of overall system flowchart. It dif-
fers from the flowchart in that it does not specify the actual algorithms
used to implement the functions (see Section 5.3). You first design the
structure of the program as a series of successively more detailed opera-
tional blocks until you reach a level of complexity that you can deal with
effectively. You then proceed to algorithm development for each block.

Blocking and partitioning are the cornerstone of converting a functional
specification into a functional program. You can have as many levels of
blocks and sub-blocks as the problem requires. When you are first learn-
ing, you should not hesitate to block down to sections which seem almost
trivial. As you gain experience you will be able to judge more accurately
what size blocks you can comfortably handle. Also, extremely involved

or complex sections of a system may require much more detailed blocking
than the more straightforward sections. The flexibility of blocking is
that it allows you to easily adjust the level of detail to match the com-
plexity of the problem.

5.2.1 Deciding on the System Blocks
The decision of what blocks to divide the system into initially is usually
made by referring to the characteristics defined in the functional speci-

fication. Some common initial blocks are:

q-g

a. input operations,
program functions (transfer data, search memory, do arithmetic,
etc.),
system control and timing,
output operation, and
e. major data structures (tables, lists, etc.).

These blocks are then drawn and interconnected to form the system block
diagram. It is important to remember that at this initial point you are
concerned with identification of the major system structures. You are not
yet concerned with their actual operation. The design of how the opera-
tional blocks will implement their functions will commence once the overall
system structure has been established. In theory, it should be possible
to implement the system in either hardware, software, or some combination
of hardware and software at the end of the blocking operation. This

leaves you with the maximum flexibility for actual system implementation.

Example 5.2

Let's take the specification for the magnetic tape I/0 driver we
wrote in Example 5.1 and do the block diagrams for that system.

We can see from the functional specification that we will require
blocks to input data, output data, and control the data transfers.
Figure 5.3a shows an initial block diagram for this simple system.
Note that it shows all data and control signals that are passed
through the system. Since the data is transferred to and from the
tape deck in parallel form, no further blocking is needed for the
Input and Output blocks. However, the control block is required to
perform several operations. It must detect end of tape, control
the read/write line, sense a write protect condition, and advance
the tape. This block is sufficiently complex to warrant sub-blocking.
It is shown sub-blocked in Figure 5.3b. Note how all inputs and
outputs of the sub-block diagram match those on the main block
diagram. It is the same interface expanded to show more detail.

5-10

TAPE DATA IN ———»

DATA INPUT

DATA TO SYSTEM

4

END OF TAPE ——

WRITE PROTECT ———
READY s
< R/
TAPE_ADVANCE
TRANSFER DATA

-

—

—

TIMING

AND
CONTROL

ERROR INDICATOR

TAPE DATA OUT

-

DATA OQUTPUT

FIGURE 5.3a

<——— DATA FROM SYSTEM

MAGNETIC TAPE I/0 BLOCK DIAGRAM

END OF TAPE STATUS —>

END OF
TAPE DETECT

DATA INPUT
INTERFACE

y

< TAPE ADVANCE

TAPE ADVANCE
CONTROL

A

CONTROL
DECODE

< READ/WRITE

READ/WRITE
SELECT

! | I L>ERROR

DATA OQUTPUT
INTERFACE

WRITE PROTECT

TRANSFER DATA

A

READY -

FIGURE 5.3b TIMING AND CONTROL SUB-BLOCK DIAGRAM

FIGURE 5.3
Bt

5.2.2 Checking the Block Diagram

Once you have blocked out the system, step back and see if it will meet
your functional specification. Be sure you have accounted for all inputs,
outputs, data transformations, systems functions, error conditions, and so
on. A useful test is to 1ist all the required system features and verify
that you have included all the blocks required to perform these functions.
After you have confirmed that everything is there, be certain that the
blocks are detailed enough for you to proceed on to the logic design im-
b1ementation. If some of the blocks sound vague or only partly defined,
you may need to add more sub-blocks in that area. Repeat this procedure
until you are convinced the system defined by the block diagram matches
your functional specification. Once you are satisfied that you have covered
all the required functions in sufficient detail, you are ready to proceed
to the next step and begin designing the actual logic functions required

to implement the system blocks.

At this point it is important to recognize that while we are going to
continue using the assumption that we are designing a software system, this
is not always the case. The problem specification and blocking methods we
have presented so far are perfectly general; they can be applied with equal
facility to hardware, software, and hardware/software system designs. In
the latter case, the optimum trade off between the two implementation tech-
niques will be looked for at this point. Background Section C is devoted
to how these fundamental design decisions are made.

5.3 Step 3: Algorithm Development For Fach Partition

Up to this point we have only been concerned with.the functions to be
performed on a block (or non-functional) Tevel. With algorithm develop-
ment we make the transition from logical system partitions to the actual
logic required to implement the system. Most of our algorithm development
will be done using flowcharts. The flowchart is often mentioned as the
most important step in the software problem solution. This is plainly not
true. The flowchart is simply a tool in the continuing design process
which began with the problem specification. It is no more correct to sit
down and sfart drawing flowcharts than it is to sit down and start writing

5-12

machine code. Both operations have their place in the problem solution
procedure. Neither is satisfactory alone. Flowcharts are one possible
way to conveniently develop and check the logic of the problem blocks for
correct operation. Using flowcharts it is possible to develop program
logic independent of any specific computer. It is also much easier to
find logic errors in the symbolic flowchart than to try and hunt them

down once they are committed to program implementation. (This is particu-
larly true with the relatively primitive debug facilities currently pro-

vided by microprocessor manufacturers.)

5.3.1 Flowchart Symbols
The data processing industry has a standard set of flowchart symbols and

you should adhere to these in the interest of making your work usable to
others. (IBM produces an excellent template of all the standard symbols;
it is widely available in stationery supply houses.) The most commonly
used symbols and their functions are shown in Figure 5.4 (see page 5-1L).
These symbols should prove adequate for the construction of any flow-

charts you will require.

5.3.2 Type of Flowcharts

Flowcharts can be drawn to represent algorithms at any desired level of
complexity. The two most 6ommon1y used types of flowchart are the logic
flowchart and the machine dependent flowchart. A logic flowchart repre-
sents algorithm logic in general operating terms with no reference to
specific machine features (registers, memory, flags, etc.). The machine
dependent flowchart presents algorithm logic within the context of the
features provided by some specific processor. It is advantageous to
initially draw a logic flowchart for each functional block in the block
diagram. These are then thoroughly debugged and used as the basis for the
machine dependent flowcharts required for the computer you are using.

If you program in higher level languages, you will hardly ever use machine
dependent flowcharts. The logic flowcharts required to define the algo-
rithm to be used are all that are required. This is because all of the
machine dependent details will be handled by the language processor.

5-13

SYMBOLS EXAMPLES

» PROGRAM FLOW. ARROWS INDICATE
SEQUENCE THAT THE PROGRAM FOLLOWS.

PROCESS. THE FUNCTION SPECIFIED

IN THE RECTANGLE IS TO BE PER- A=AX?2
FORMED, e.g. A IS TO BE MULI-
PLIED BY 2

v

PRE-DEFINED PROCESS. THE EXTER-
NAL ROUTINE DEFINED BY THE NAME
I\ THE RECTANGLE IS TO BE INVOKED CALL TTI
TO PERFORM ITS FUNCTION. e.g. THE
ROUTINE DEFINED BY THE NAME "TTI"

IS TO PERFORM A FUNCTION. ‘

YES Ask# 1

NO

DECISION. THE FLOW OF THE PROGRAM
WILL BE BASED ON THE CONDITION

SPECIFIED INSIDE THE DIAMOND. A=A+2 |=
e.g. IF A =2, ADD 1. OTHERWISE
ADD 2.

I/0 OPERATION. THE INPUT OR
OUTPUT OPERATION INDICATED IN THE
PARALLELOGRAM IS TO BE PERFORMED, PRINT A
e.g. THE VALUE OF THE VARIABLE
"A" IS TO BE SENT TO AN OUTPUT

DEVICE.

TERMINAL OR INTERRUPT. THE OVAL
INDICATES THE BEGINNING OR END OF ENTER TTI
A PROGRAM OR AN INTERRUPT OPERA-

TION, e.g. ENTRY POINT FOR ROUTINE "TTI".

CONNECTORS. WHEN FLOW MUST PROCEED TO ANOTHER
PAGE OR ANOTHER PLACE ON THE SAME PAGE, USE A
CONNECTOR IF IT IS AWKWARD TO USE AN ARROW.

FIGURE 5.4 FLOW CHART SYMBOLS

T~

Similarly, general algorithms and problem solutions which are to be
implemented on a variety of computers are best presented using logic flow-
charts. Any user can then take the general logic flowchart and use it as
the basis for the implementation of a solution on any computer or in any
language. As you gain experience with your particular installation, you
will be able to go directly from the block diagrams to flow charts that
are a cross between purely logical and purely machine dependent flowcharts.
However, if you intend to save the algorithm or solution for documentation
or possible use on some other system, it would be a good idea to draw a
good logic flowchart after the system is completed.

5.3.3 How to Design Algorithms

The design of program algorithms is actually the design of software, a

vast subject indeed. We will be covering a portion of that subject in the
next eight lessons. However, we can discuss some of the general procedures
used when translating a logical system block to an algorithm.

| Decide what the block is to do. This is the same step as when we
initially specified the problem. The only djfference is that it is
now being done for a small, local program rather than for the whole
system. Naturally, the label on the block will provide a good start-
ing place for this description. Usually a one or two sentence
description of the operation to be performed is all that is required.

2. Decide where the data to be operated upon is located. Is it read in,
passed from another block, looked up in a table, or what? You will
need operation blocks to input the required data. While you decide
where to get the data, decide if you need to do anything épeciaT to
it before you use it. Does it have to be complemented? Rotated?
Masked? Scaled? If so, you know you will need some data transforma-
tion blocks in the flowchart.

3. Figure out how to perform the required operation. This is the real
meat of the algorithm development. This will be where you combine
process blocks, data and decisions to convert the data from the input

5, i =

format to the output format. This part of the process will usually
account for the largest portion of your work. Remember, develcping
the algorithm is an iterative process.

It will usually take several trijes before you get the algorithm

correct. Start out by writing down the sequence of operations to

be performed in the order they must be performed, like "read in data,
then test for control characters, then test for lower case characters",
and so on. This will give you that all important feel for the se-
quences of actions which are to be performed. After you have the
general flow, add the process and decision blocks you need to actually
perform the operations. :

After you have an algorithm that should work, try it out with data
to see if it does work (all on paper, of course). Try to imagine
every possible data condition that could occur and then be sure your
algorithm can process it correctly. You must be certain your logic
is correct in the algorithm before you proceed to coding. Be parti-
cularly careful that your algorithm can handle error conditions.
This is an area which is particularly susceptible to errors which
will be very hard to detect. Be patient and thorough. Time spent
getting the logic correct in the algorithm will be time saved during
system debugging. Think first, program later.

Decide what to do with the finished data. Does it have to be specially
formatted? Do you save it? Pass it back to a calling routine? Out-
put it? Add the blocks required to get the output data ready for the
receiving routine or device.

Keep the structure simple. Make it a goal to keep the flow straight-
forward, logical and clear. Be particularly careful about how you

enter and exit from the routines. There are kea]]y only a few simple
structures you should ever need to use in construction of any algorithm.
We will examine these structures in the next few lessons.

5-16

Example 5.3

Let's develop the algorithms required for our magnetic tape drive
interface system used in Examples 5.1 and 5.2. The first thing
that becomes apparent is that the data input and output blocks are
very large blocks and very small programs. The data is to pass
through the routine in parallel without being modified. Thus the
flow charts for those blocks would be simply one block each:

: ;

INPUT DATA FROM TAPE DECK OUTPUT DATA TO TAPE DECK

; :

The obvious conclusion is that the majority of these flowcharts will
be concerned with when to read and write the data, namely the timing
and control blocks. Let's take the read block first. From the tim-
ing diagram we can see that for this tape deck the sequence of control
for reading a data byte from the tape is advance the tape (from the
manufacturer's specification we find that it automatically advances
in one byte increments), test for End of Tape, set the Read/Write
line to Read, wait for data ready, read the data, then exit. The
algorithm for this function is shown in the logic flowchart in
Figure 5.5. Note how the flowchart defines a logical solution to
the problem without reference to any specific hardware.

A similar procedure is used to design the algorithm for writing data.
For Write operation the timing waveform specifies that we advance
the tape, test for End of Tape, test for Write Protect, set the Read/
Write Tine to Write, set up the output data, strobe the data trans-
fer line, wait for Data Ready and exit. This flowchart is shown in
Figure 5.6. Using these two logic flowcharts we could then draw the
machine dependent flowcharts or proceed directly on to the actual

program.

5-17

ENTER
TAPE READ

ADVANCE
TAPE

4
INPUT

TAPE DECK
STATUS

END OF TAPE
?
NO
OUTPUT
READ
STATUS [-
A
OUTPUT
TRANSFER
SIGNAL
%
INPUT
TAPE DECK
STATUS
DATA READY
YES
INPUT
THE
DATA
!
(RETURN)

SET ERROR
INDICATOR

\
(RETURN)

FIGURE 5.5 TAPE DECK READ LOGIC FLOW CHART

B W)

ENTER

A

OUTPUT
TAPE
ADVANCE

A

INPUT
TAPE
STATUS

A

SET ERROR
PROIECT INDICATOR
y
UTPUT WRIT :j
TATUS, DAT RETURN
AND TRANS-
FER SIGNAL
INPUT
TAPE
STATUS

YES

RETURN

FIGURE 5.6 TAPE WRITE LOGIC FLOW CHART

- - -~

5.4 Objections to Flowcharts

We have been using (and will continue to use) flowcharts to represeni the
algorithms we have developed. This procedure is not universally accepted,
particularly in the data processing industry. Critics maintain, with a
certain amount of justification, that flowcharts are unnecessary and even
misleading. This position arises from the basic contention that (1) flow-
charts are only marginally useful in higher level language program develop-
ments and (2) complex flowcharts can become very difficult to follow. To
support this position they cite very valid evidence that most professional
programmers draw only very limited flowcharts prior to commencing coding.
In fact, most flowcharts for large systems are drawn for documentation
purposes after the program is complete. This situation arises from the
fact that when writing programs in modern higher level languages, algorithms
can be efficiently developed directly in the language with no intermediate
flowcharts at all.

To answer these arguments (which we really basically agree with), we must
point to two basic facts: (1) satisfactory higher level languages are
not yet generally available for microcomputers, and (2) most programmers
developing microcomputer programs are not professional programmers. The
contention that poorly structured flowcharts are hard to follow is com-
pletely true. We will always go to great lengths to keep flowchart logic

structure clear.

The first fact, the lack of higher level language availability, is obvious.
There are at present only two widely available higher level microcomputer
languages (Intel's PL/M* and various BASIC** interpreters.) Of these,
only BASIC is available for small system use. It will be some time before
common higher level languages such as FORTRAN or COBOL will be available
for microcomputers. In the interim, the work will be done in assembly
language. Even when higher level language processors become available

for microprocessors, the nature of many microprocessor applications is

*PA/Mis a registered trademark of Intel Corp.**BASIC is a registered
trademark of Dartmouth University.

5-20

such that a knowledge of assembly language will still be required. Higher
Tevel languages are only marginally effective in developing programs for

use in control or real time applications. Programs of this type require

the complete control of the computer's hardware that assembly language
provides. For assembly language, use of the flowchart provides a pseudo
higher level language for algorithm development that can be either dependent
or independent of the computer to be used. (We will have much more on

the higher level-assembly language tradeoffs in Lesson 9.)

That most microcomputer programmers are not professional programmers is
also fairly obvious. Most current microcomputer programmers are logic
designers and hobbyists, many programming for Lhe first time. Since they
will probably be forced to use assembly language, these users will be
learning programming, algorithm development, and machine structure all at
the same time. The use of assembly language programming and flowcharts
will enable us to separate these learning activities. In particular, the
initial process of teaching general algorithm development is better pre-
sented with general flowcharts than with some specific language. The
techniques presented using some specific language may reflect the compro-
mises made by the language rather than those required to solve the problem.
After some initial algorithm development training, the user may be able

to proceed to flowchart free higher level language programming. For that
initial training, however, the logic flowchart is an important teaching

tool.

To make maximum use of flowcharts without becoming unduly attached to

them we will adopt a carefully structured approach. A1l algorithms will
be presented in general logic flowcharts. We will not use machine depen-
dent flowcharts except in the context of specific examples. A1l flowchart
structures will be chosen from a small group of simple, logically suffi-
cient structures whose use can be directly transferred to most higher
level languages. In this way we will make maximum use of flowcharts while

avoiding the major objections.

5-21

5.5 Procedures After Algorithm Development

After you have completed the problem definition, block diagrams, and
algorithms, you can begin to think about writing the program required to
implement the logic system you have defined. However, it should be appar-
ent by now that if you have followed the first three steps correctly,

this step should present you with very little trouble. The blocking and
algorithm steps combined with the flow charts will have supplied the sys-
tem structure and control logic. A1l you will need to do is implement
these features using the programming language you have available. Naturally,
that is easier said than done, but if the logic is correct, the problem
will have been reduced to finding combinations of machine instructions or
higher level language statements to perform the desired operations. We
will spend the next eight lessons refining and expanding your problem
solving skills, augmenting these skills with useful programming techniques.

5.6 Summary

This lesson has presented the general approach required to solve software
problems. A1l software problems can be solved by dividing them into blocks
and sub-blocks, developing algorithms for those blocks, writing programs

to implement the algorithms and interfacing the blocks back into a system
which solves the problem. The general approach to problem definition,
blocking and algorithm development was then presented and illustrated us-
ing the example of a digital Read/Write magnetic tape deck.

5-22

QUESTIONS

1. Describe the general software problem solution process. Is this the
way you normally approach problems? Do you think the general proce-
dure can be applied to other, non-software problems?

2. Why is it important to establish and follow a functional specification
at the outset of the solution to a problem?

3. Describe "creeping features". Have you ever seen it in action? What
was the cause? What was the result?

4. Describe the difference between a logic flowchart and a machine
dependent flowchart. Which do you usually use? If you usually use

a machine dependent flowchart, do you usually draw a logic flowchart
of the solution for future use?

PROBLEMS

1. What value of A will be printed in the example flow chart below:

A=1 [“\\\f\:/i//// B = A+l
]

A = B*2-]
|
PRINT A

5-23

2. The Fibonacci series F(N) is a mathematical number sequence which is
defined for all integer values of N by the following algorithm

F(0) =0

F(1) =1

F(N) = F(N-1) + F(N - 2) for al1 N > 1
For example, F(2) = F(2 - 1) + F (2 - 2)

= F(1) + F(0)
=1+0
= 1.
Thus the Fibonacci series can be represented as follows
N0O1234567...N
F(N011235813...F(N-1)+F(N-2)

Draw the flowchart to compute F(N) for any value of N.

3. Draw a flowchart which incorporates the flowchart developed in
Problem 2, to compute and print the first 100 values of N and F(N).
(Assume that the command "Print" is sufficient to print a value.)

4. One simple method often used to multiply two numbers together is to
repeatedly add one number to itself. For example, 3 * 4 can be thought
of as 3+ 3+ 3+ 3 =12. Develop the algorithm to multiply two num-
bers using this method. Draw the flowchart. Do you feel this is an
efficient way to multiply two numbers? Is there any way to make this
basic algorithm more efficient?

THE HARDWARE/SOFTWARE APPROACH TO MICROCOMPUTER DESIGN

THE HARDWARE/SOFTWARE APPROACH
TO MICROCOMPUTER DESIGN

INTRODUCTION
In the course of designing a system there are a series of crucial decisions

which must be made regarding the ultimate system implementation. Through-
out the software course we are concerned primarily with the implementation
of the software portions of these systems and how they interact with avail-
able hardware. To be sure, this area is vital to the designer. However,
the thorniest problem initially confronting most designers of microprocessor
based systems is how to partition the system functions between hardware

and software implementations. This is understandable since most users are
far more experienced with hardware design than software design. However,
the plain truth is this: within the speed limits imposed by any computer,
anything that can be done with hardware can be done with software. In fact,
only a small percentage of applications will present speed problems.

Usually even these applications are only speed sensitive in areas which

can be readily identified and processed with discrete logic to make them
adaptable to a software solution. We thus have a sliding scale of imple-
mentation possibilities from applications with no software (i.e. no micrao-
processor) to applications where 95% of the system cost will be in the soft-
ware. Given this wide range of possibilities, how do we decide where to
draw the 1ine? Where indeed. Assuming that the objective is to do the

job and make some money, the answer is obvious: we draw the line at the
point where we find the lowest cost hardware/software system that does

the job.

Before we cdn discuss how to trade hardware cost for software cost, we
must first identify the areas that affect cost in both of these areas.

For the purposes of discussion we shall consider cost to be localized in
three areas: hardware cost, software cost, and system cost. After we
have discussed the various cost areas we will be able to discuss tradeoffs

required to modify system cost and performance.

6-1

/'. o

|V

The CPU chosen for the system will have the central effect on the hardware
cost of the system. This is not because of the cost of the processor it-
self. For most systems the actual CPU cost will be an insignificant portion
of the total system cost. It is a result of the effect of the CPU on all
other aspects of the system design, both hardware and software. It there-
fore makes the most sense to discuss these costs within the context of the
CPU itself.

6.1 Hardware Cost

Hardware cost will be considered to be all of the hardware which must be
designed to implement the required system functions. This would include
the microprocessor, memories, interfaces, clocks, power supplies, terminals,
printers, or other pre-configured peripherals.

6.1.1 System Speed

To paraphrase an old police traffic slogan, "Speed kills microcomputer
projects”. This is due to the sad fact that of all the great things micro-
processors do, doing them fast isn't their best attribute. Most commonly
available microprocessors have maximum cycle speeds in the 2MHz range.
Execution of an instruction generally requires from 4 to 10 machine cycles.
Moreover, doing anything useful will require several instructions. What
all this means is that a microprocessor operates considerably slower than

et o,

conventional sequential and combinatjonal logic. As a rough rule of thumb,

e PR T

. if your system requires the processor to do anything faster than 10usec

_—]

(100 kHz) you will need to be very careful in your design.

There are a limited number of high speed microprocessors available, but
these are sets of devices, not single package microprocessors. They are
somewhat harder to use and considerably more expensive. If youJEegin to
use these you may discover your cost rapidly exceeding the cosffof some
other form of logic implementation. Also, high speed for the CPU generally
requires high speed memories, interface logic, and peripheral devices,

further raising costs.

As we mentioned earlier, few projects have overall speed requirements that
are so severe as to preclude microprocessor use. However, they do exist,
and if you think you have one, be very careful to be certain from the start
that a microprocessor will be able to do the job. Conversely, there is no
point in paying for system speed you don't need. Speed is expensive. You
generally get a certain level of speed with the microprocessor. If you're
not using it, see if you can trade it for some interface simplicity. No
use buying a fast processor and fast interfaces if a fast processor and
some slower, dumber, and cheaper interfaces will do. We'll talk more about

this later.

6.1.2 Memory Requirements

The éystem memory is where you will store the programs and data required
for system operation. With most microcomputer systems this memory will
consist of a combination of read/write memory (RAM) and read only memory
(ROM). (With some processors the CPU itself contains a small read/write
memory, thus making it possible to implement simple systems with just the
CPU and ROM's. Larger systems will require additional read/write memory.)
The object of the game here is, as usual, to minimize cost. This is done
by getting as much of the software into ROM as possible. This is because
ROM can be left with power off and the program will still be there when
power is restored. Alas, such is not the case for RAM. Thus when you
hear people say that programs should be in ROM because ROM is cheaper then
RAM, it isn't really true. Bit for bit the costs are becoming quite com-
parable, with many types of ROM considerably more expensive than RAM. The
fact is that RAM is not practical in dedicated systems which must maintain
the program without re-loading memory every time the power is turned ON.

Read/write memory can be broadly divided into static RAM and dynamic_RA@;
A static RAM will ma1nta1n its data as Tong as power 15 applied. A dynamic

e

_RAM must_be "refrgshed" pg:lgglsgllx " This refresh operat1on is accomplished
by pulsing some of the address lines (usually the most significant bits)
periodically. To do this requires the addition of special circuitry to

the system. In general, the integrated circuit constraints are such that

a static memory requires more area on_the semiconductor chip than a dynamic

6-3

memory of similar size. Static memories also dissipate more power per bit.
The largest RAM memories are, therefore, usually dynamic, at least initially.
As the device technology improves these larger memories usually then be-
come available in static form.

The cost of both static and dynamic memories has declined and will continue
to decline. This cost is based on the absolute cost per bit for a given
amount of storage. However, the device organization and not this absolute
cost per bit is often more important in practical applications. In terms
of cost per bit, a 4096 x 1 dynamic memory may be much cheaper than a 256 x 8
static memory. However, you will need eight of the dynamic memories to do
any good. They will require refresh circuitry, and they will take up eight
times more P.C. board space in production. If you only need a 128 byte
buffer and some miscellaneous program storage, the bigger "cheaper" memory
may cost far more. For cost effective design it is imperative that you
avoid memory overkill. Design in what you need, allow some extra for un-
foreseen difficulties and reasonable future expansion and stop.

The advances in memory technology are impressive and they receive lots of
publicity. But the fact remains that few systems for mass production will
require vast amounts of RAM. Often minimum package count and ease of
system interface will be far more important than sheer volume. Buy one
development gjsféﬁ with 10ts of RAM. Use it to develop lots of systems
with only the RAM required to do the job.

With ROM's, the situation is considerably different. Read only storage is
really only useful organized in multiples of the computer's basic data word.
It doesn't make much sense to mask program two 1023 X 4 ROMs for use in an
1024 X 8 system. As a result, ROMs are widely available for eight-bit
processors in sizes from 8 x 8 to 2048 x 8. ROMs are available in three
types, each suitable for certain areas of application: EROMs, PROMs and

masked programmed ROMs.

An EROM is a ROM which can be erased and re-used. An EROM can be programmed
and, if errors are found, erased and reprogrammed. Erasure is accomplished

6-4

by exposing the EROM to intense ultraviolet 1ight for a half hour or so.
In this way the EROMs can be re-used indefinitely. EROMs are the most
expensive type of ROM. They are best used in development work or low
volume production equipment which require frequent changes to the operat-
ing program.

A PROM is a ROM which comes from the manufacturer with all locations as
one's or zero's. It can then be programmed by the user. Unlike an EROM,
however, once programmed a PROM cannot be erased. PROMs are somewhat
lower in cost than EROMs. However, frequent program changes can quickly
make them more expensive. They are best used in production systems which
will require few changes but whose production volume does not justify a

mask programmed ROM.

A mask programmed ROM is fabricated by the manufacturer to contain the
desired program. It is neither field programmable nor erasable. A ROM

is ordered by sending the semiconductor manufacturer your program. They
then generate a custom ROM from your specification. The cost of ROMs pro-
duced this way is the lowest available. However, the semiconductor manu-
facturers charge a flat fee for the generation of the required mask. This
cost makes mask programmed ROMs cost effective only for those high volume
products whose program will never (hopefully) require change.

€.1.3 I/0 Requirements

It is rapidly becoming apparent that I/0 is the soft underbelly of most
microprocessor based systems. Interfacing the microprocessor to the rest
of the system is always a requirement. The ' microprocessors. currently
ava11ab1e genera]]y prov1de only enough 1nterface capability to directly
1nté;face one normal TTL device. This means that all signals in and out
of the m1croprocessor must be buffered. Further, control signals must be
decoded, interrupts must be processed, data must be latched and held until
the processor or peripheral is ready to accept it, and many other system

requirements must be met. A1l this falls within the realm of I[/0.

The fundamental element of microprocessor /0 operations is the I/0 port.
An I/0 port is the point where the signals to and from the various I/0
devices meet their respective signals from the microprocessor. I/0 ports
provide both buffering and some control decoding. The I/0 addresses sent
out by the CPU are decoded to provide an enable signal to a specific I/0
port, thereby gating the information from that port onto the system data
bus for a read operation or gating the information on the system data bus
into the port for a write operation. The mechanics of how the port works
are not as important as the realization that all data into and out of the
microprocessor is going to have to pass through I1/0 ports. This means
that you will want to get your money's worth out of every port. To help
you do this, some processors provide a small number (usually two or four)
of I/0 ports right on the CPU chip itself. If you only need one or two
ports for a simple system, this can be a significant cost saving factor.

After you've got the I/0 ports, you then must design the special logic
required to control the devices or circuits you are interfacing. For most
microprocessor applications this is where you will do the majority of your
hardware design. If you do lots of microprocessor systems, you will
eventually arrive at some standard I/0 port design, but there will almost
always be some detailed interface design work to be done.

When making the decisions about how to implement your I/0 ports and control
logic, you may be able to obtain some cost advantage by using a specialized
interface device. Some microprocessor manufacturers have designed special
families of devices to ease I/0 design. These devices usually consist of
several I/0 ports, some defined logic functions, and all required control
logic required to interface some device directly to the microprocessor with
little or no external logic. For example, the data ports, control Tlogic,
and interface circuitry required to input and output parallel data directly
to a serial interface is one popular example. Others include interrupt
handlers, real time clocks, bi-directional data ports, and so on, with
more becoming available as the industry defines what functions are commonly
useful. If you can find someof these to fit your needs, they can save

you money.
6-6

I/0 design is the area where you can often achieve significant savings by
trading hardware for software. It is also the area where you may be able
to trade some cost for enough added speed to make a usable system. 1/0

design is an area where creative use of software and hardware will result

in optimum system performance at lowest system cost.

@.1.4 Peripheral Devices

In terms of production cost the most expensive portions of your system

can easily turn out to be those assemblies you have to buy pre-assembled.
A1l types of computer keyboards, displays, printers, tape equipment, A/D
and D/A converters, and similar peripherals are very expensive relative

to the cost of the microprocessor hardware. In the normal microprocessor
system these devices account for over 50% of the hardware cost. If you
must include these components in your system, it is very important to make
a very careful analysis of whether or not your product is still cost effec-
tive. It can be devastating to have to add a $75 keyboard to a micropro-
cessor system where the total component cost is only $50. In this type
of situation you might see if you can use a less expensive device and add
the other features with software. All these types of decisions must be
weighed carefully before you start the actual design.

6.1.5 Device Support
Into this category we toss all those microprocessor system details that

drive your system cost up. These are particularly obnoxious because they
are often overlooked until it is too late. The three most common offenders
in this category are clocks, power supplies and interface requirements.

The system clock is used to provide the timing signals required to run the
CPU and some of the other system logic. From a cost standpoint, there are
two areas of interest: who generates the clock and how good does it have
to be. In the first case the answer is either the CPU or the system. If
the CPU generates its own clock (it may need an external resistor and
capacitor), you don't have to worry about the seéond question. If you have
to generate the clock, you definitely have to worry about it. Some micro-
processors are very finicky about their clocks. This means special driver
6-7

chips, crystals, logic, power supplies (i.e. money). If you are in a
very cost sensitive operation, this can make a significant difference.

In addition to the main CPU clock, certain interfaces will require their
own clocks. This includes serial interfaces, real time clocks, and many
special interfaces. In some cases you may be able to derive the required
clock(s) from the main system clock. If not, you will have to plan on
the added cost of the required additional clock(s).

Power supplies are another area where requirements differ widely from
microprocessor to microprocessor. Some microprocessors will run off

the same +5V power supply that is used for all the Togic. Some require
up to three different power supplies. Power supplies are not cheap and
you can quickly add a large cost to the system that you may be able to
avoid entirely by chosing a different processor. (Note: after you go to
the trouble of picking a microprocessor., be sure the rest of the system
runs on the same voltages. It doesn't make much sense to cut corners to
get a single supply microprocessor and discover the memories chosen need

three supplies anyway.)

Besides paying attention to the number of system power supplies, you must
be aware of the overall system current requirements. These requirements
can vary widely, depending upon the CPU, memories, and interface logic
used. You must be certain that your power supplies can supply enough
current to meet peak system usage. Conversely, you don't want to pay for
more capability than you need. To solve this problem, you usually don't
settle on the final production power supply ratings until the system is

complete and its power requirements are characterized. This is in contrast

to the selection of the system hardware, where the number of supplies to
be used in the system is determined before beginning the design.

Interface requirements relate to support circuitry required to use the
microprocessor with other devices in the system. A microprocessor that
is very easy to use among the members of its own family of devices may
turn out to be a horror to interface to the rest of the world. This is

6-8

particularly true of P-channel devices to be used in N-channel or TTL
systems. Incompatibilities among system components can lead to problems
and increased costs all over the system, including the previously mentioned

clock and power supply areas.

©.1.6 Microprocessor Hardware Selection Summary

It should be obvious from the preceding brief discussion that picking
microprocessor hardware is a tricky business. Even ignoring the software
criteria, you must be very certain you get a devicewhichwill meet your
system requirements at the lowest cost. It is important to remember at
this point that lowest system cost may not always be the same as lowest
possible hardware cost. Modification ease, maintenance and other factors
may enter into the picture. There are times when you may want to knowingly
allow some extra hardware cost to lower the costs in some other area. . We
will point out these areas as we go along. '

6.2 Software Costs

Software costs are insidious. You can't see it, or feel it, or hear it,
but software can break your microcomputer project faster than almost any-
thing. As hardware systems and peripheral devices become more and more
standard, more and more of the design-to-price burden is going to fall on
the designer who has to design the software to hold these hardware blocks

together.

Software is characterized by a very high development cost and a very low
duplication cost. By way of example, IBM's software development of 0S 360
(a very large and complex software project, to put it mildly) is estimated
to have taken over 5000 man years of development time. However, the entire
system can easily be duplicated and stored on $1000 worth of magnetic tape.
As we said, duplication is cheap, development is expensive. This character-
istic brings with it the following generalization: software for use in
high volume products must be fixed. It is absolutely not possible to pro-
duce low cost custom software. Once you commit a program to ROM, don't
consider changing the program unless you are prepared to change every other
identical ROM in every other system. (Not to mention updating all

6-9

reference documentation.) The cost of custom software (unless you are in
that business) is so high as to completely preclude it from volume systems.
The software development cost very quickly completely overshadows the hard-

ware cost.

Software exerts cost pressure on projects in two basic ways. The first

is when poor technique and analysis lead to systems with inefficient use
of expensive hardware resources. This causes the system to end up with
more memory than it really needed, high speed interfaces that could have
been eliminated with good software, extra I/0 ports that some software
multiplexing could have eliminated, and so on. The second way software
raises cost is in the development/support cycle. This results in late
projects due to inadequate time requirement forecasting, program bugs that
turn up just after you take delivery on 10,000 mask programmed ROMs,
documentation that requires a complete software system redesign when the
program has to be changed a year after release, and other gory, expensive
examﬁ]es. O0f the two areas software causes problems, the second is far
more serious than the first. The first set of problems will naturally
become less severe as you become more familiar with hardware/software
system designs. (After all, that's what this course is here to teach you.)
The second set belong to that group of problems that the entire computer
community suffers along with year after year. Some progress is being

made, but it is still a thorny problem. Good engineering practice is

your best defense. Remember this basic rule: hardware and software design
are equally complicated. The only difference is the rules.

Let's Took at those areas where software can raise (or lower) your hardware
costs. Remember we are considering a sliding cost scale from all hardware

to virtually all software.

6.2.1 Processor Organization

The architecture of the processor you choose for your system can have a
significant effect on your software costs. This is felt primarily in two
areas: memory and I/0. A processor which is deficient in memory address-
ing modes will require larger programs to accomplish the same job as a

6-10

processor with more flexible addressing. More program means more memories,
and more memories means more cost. A lack of on-chip registers may re-
quire you to use memory for temporary data storage. These memory references
take more time during program execution and may make the difference between
a simple (i.e. cheap) interface and a more complex (i.e. expensive) one.

A versatile interrupt system may enable you to do most of the interrupt
decoding with logic built into the CPU. Otherwise, you will have to add
more service routines, I/0 devices and money. A processor with a versa-
tile instruction set may enable you to implement your programs much more
efficiently, thereby saving memory space. The list goes on and on. Any
area of the microprocessor's architecture can become a cost sensitive

point in certain applications. The ultimate goal is to find the cost
sensitive areas in your application and pick a processor that is strong

in those areas.

6.2.2 Program Structure _
The program structure, just as with the processor architecture, exerts its

primary effect on the system memory requirements and I/0 structure. Poorly
designed programs will often take twice the memory of more carefully de-
signed programs. You must balance the time and cost required to optimize
programs against the cost of memory saved. Ideally, you will become
skilled enough to design near optimum code the first time, thereby avoid-
ing the expensive refinement procedure. Also, different program structures
can be used to get maximum speed of program execution in speed sensitive
areas. Failure to take advantage of these structures can result in the

use of more expensive I/0 interface hardware than is actually needed.

The different program structures and their tradeoffs in speed and memory
usage are discussed throughout the software lessons.

6.2.3 Implementation Language

The level at which you develop your programs has its primary effect on
system memory size and overall system speed. Programs developed in higher
level languages will generally be faster to develop, but they will take
more time to .execute and occupy from two to ten times more memory than the
same program done in assembly language. Assembly language programs can

6-11

be designed for optimum memory usage and system speed but they take more
time to develop. A data processing industry estimate is that assembly
language programs take from two to five times longer to develop than com-
parable higher level language programs. This is particularly true of
large, complex systems. You must balance the cost of development against
the cost of the additional hardware resources. As a general rule, higher
Tevel languages will be lower in cost for small quantities of systems with
assembly language becoming more cost effective as production quantity
increases. (This assumes the higher level language programs can meét all
system speed requirements without extra work.) The higher level language/
assembly language tradeoffs are discussed in Lessons 9 and 10.

6.3 Systems Cost

Beyond the costs associated with producing the hardware are those costs
associated with developing and maintaining the product. Unlike production
costs, which are incurred as a function of how many units are produced,
these costs are largely independent of production. Indeed, it is possible
to incur very large costs in this area and never produce a single unit.

6.3.1 Development Costs

System Development Costs include all of the expenses you incur during the
design of the product. Since these costs will be incurred prior to pro-
duction, they will usually have to be met from your available resources.
The areas of cost in this phase are all well known. However, the addition
of software development adds a few extra categories.

Hardware Selection

A1l time and money spent evaluating various microprocessors and
system components prior to commencing the actual system design.
This would also include all analysis of crucial timing and inter-
faces and the initial partitioning of the system into hardware and

software blocks.

Hardware Design
A1l time and money spent designing and cebugging the hardware required

to implement the system hardware.
e_19

Software Design

All time and money spent designing and debugging the programs
required for use in the system. This may include a significant
amount of expense for timesharing computér usage if you do not
have the required program translation facilities available in

house.

Development Tools

This includes any special hardware (such as a microcomputer
development system or special test hardware) you have to buy
for debugging and checking out the system design. Some of
this cost will actually be spread out over all developments
which end up based on the same microprocessor.

Documentation

A1l cost spent in developing the user manuals, production
documents, reference specifications, and other documents
essential to converting a working lab project into a viable
product. This cost should not be underestimated. Thorough
documentation will probably consume 20-25 percent of your
development budget. However, it will be money well spent as
your product matures and requires changes.

Marketing
This is the cost incurred in taking your finished product

from the lab and presenting it to the world. This is not
usually an engineering activity.

6.3.2 Modification Costs

Once you have a working product, there is always the possibility that you
will want to issue a new, improved version. This is one area where a
microprocessor based system can really save yoﬁ time and money. In a
total hardware system, a design extension or re-design will usually mean
an almost total re-investment of the initial development costs. However,
with a microprocessor based system you may be able to make substantial

6-13

functional changes with 1ittle or no changes to the hardware. This is
because a software system can be re-configured by changing the program.
Bearing in mind that all the software cost rules still apply, this is
still usually a very effective technique. Expanding or changing an exist-
ing system is one area where you will find that the money spent on docu-
mentation was well spent. It can often make the difference between a
successful and cost effective design modification or a complete re-design.

Program changes will often not be effective in products which were optimized
so completely initially that there is not much extra hardware left to work
with. The program can, after all, only perform functions which use avail-
able hardware. No matter how clever your programmer, if there isn't

enough memory or I/0 ports, some things just won't be feasible. If you

have a product which looks like it is a candidate for later expansion, you
may wish to incur a little higher production cost initially by adding some

hardware for later use.

6.3.3 Maintenance Costs

Any cost you incur when your product fails in the field comes under this
heading. ATl those field servicemen, return clerks, rework lines, and
other support are expensive. Here too, the microprocessor can save you
money. Almost by definition, the microprocessor must communicate with

the entire system. This means that with the addition of some programming,
memory, and some small amounts of hardware you can convert your micropro-
cessor based system into its own diagnostic tester. You may not need to
provide thorough tests, but even some simple tests can make troubleshooting
a lot easier. Anything you can do to make testing and servicing easier

will Tower your maintenance costs.

Naturally, you must weigh the benefits of self-testing against the cost
it will add. Often, however, you will discover at the end of the project
that you have some extra I/0 lines or a partially full ROM. Since these
are going to be there anyhow, you may as well use them if you can. Since
this type of thing is not usually discovered until well into the project,
the addition of self test features at that point is one of the few times

6-14

when it may be desirable to add features after the design has started.

However, if you want to be sure you have self-testing you should never

wait to see what is left over. In that case, the self-testing features
should be designed in like any other system feature.

6.4 A Perspective On Costs

Now that we have examined the various component costs, let's see how they
relate to the total cost per unit of our proposed product. Over the total
life of a product, the cost can be represented by the following general
equation:

TC = %§-+ VC where TC is the total cost per unit,
FC is the fixed cost required to develop
and maintain the product,
VC is the variable cost associated with
producing each unit, and
N 1is the number of units.

The terms in this equation can now be further broken down into those cost
areas we discussed in the previous sections. Thus the fixed cost portions
of the equation would turn out to be the development costs of the hard-
ware and software, the documentation, the modification costs to the line
of products, marketing, and all other cost which is incurred regardless
of the volume of product produced. These costs are amortized over the
number of units produced; the larger the number of units produced, the
lower the fixed cost per unit.

The variable costs would be the cost of all the hardware components, produc-
tion labor, field service for the percentage of units which prove defective,
and all those other costs which vary based upon the number of units pro-

duced.

It is clear from this equation that the area where we will want to direct
our cost reduction effort is dependent upon the quantity of units produced.
For small quantities of units, we will want to minimize the fixed costs.

6-15

In practical terms this means using higher level languages (when available),
hardware that is designed for ease of debugging and high reliability, and

a general emphasis on development speed rather than low cost production.
Conversely, for high volume production we will want to absolutely minimize
production costs. This means highly optimized programs to minimize memory
use, maximum use of program controlled interfaces to eliminate unneeded
hardware, mechanical designs for easy production and any other technigues
which can be used to hold the cost down.

The exact point at which the emphasis shifts from fixed cost reduction to
variable cost reduction naturally changes for every product. In general,
the more expensive the final product, the lTower the emphasis on the variable

costs.

6.5 Trading Off Software and Hardware

Now that we have discussed the main factors affecting system performance
and cost, we can discuss the areas where system problems will force us to
trade off hardware and software to modify system performance and cost.

As we mentioned earlier, high speed (programmed, hardware, or whatever),
large numbers of parcs, and complex software are é}] expensive. We will
be trying to implement all required system functions using the minimum
cost combination of these items.

6.5.1 Conditions Which Lead to Design Trade Offs

In the course of the design we will be faced with several possible project
conditions, some of which will require us to consider the various possible
system tradeoffs. These conditions can be summarized as follows:

system speed too low, system cost too high,
system speed too Tow, system cost acceptable,
system speed acceptable, system cost too high,
system speed acceptable, system cosi acceptable,
system speed excessive, system cost too high,
system speed excessive, system cost acceptable.

o o AW N
e a0 w0 e e

6-16

Clearly, each of these conditions requires different remedial action.
Condition one is an obvious crisis situation. Unless some major break-
through can be discovered, the project is probably doomed. Condition
two is also fairly critical. It can be worked on only if the necessary
speed can be acquired without driving cost into the unacceptable range.
Very careful analysis will be required. Conditions three and five are
probably both solvable by application of some hardware/software trade offs.
Conditions four and six can be left alone. They may also be examined to
see if extra features might be added to utilize the excess system speed
without increasing the cost to an unacceptable level. If you elect to
try this, be very careful not to go overboard. Any additions are best
made in very small controlled increments. Avoid “"creeping features"
(see Lesson 2). If you aren't sure what to add, don't. Be happy you
brought this one in under budget and save your money for next time.

After you figure out which condition your project is in, you have three
alternatives: built it, change it, or cancel it. Building it or cancel-
ing it are decisions that you have to make on a situation by situation
basis. Changing it may help you postpone that decision for awhile, but
ultimately you will still have to decide. We can now examine how to
change it so that hopefully you can decide to build it.

6.5.2 System Speed Problems

As we have emphasized all along, speed usually costs money. There are
very few situations where increasing system speed Towers the cost. If you
have a project which has to have increased speed, you might consider the
title of this section to be "Trade Offs that Increase Cost". With that

in mind, we can examine where to look to increase system speed.

System speed problems can be broadly divided into data transfer rate
problems and data manipulation rate problems. In system operation these
two types of problems will require distinctly different solutions. However,
the same general techniques will apply to correcting both.

6-17

©.5.2.1 Data Transfer Rate Problems
Data transfer problems are encountered when transferring data between the

computer and system I/0 devices. This class of speed problem can be fur-
ther subdivided into processor rate limited problems and peripheral rate
limited problems. Processor rate limited problems arise when the compu-
ter is transferring data to a device which must have a high, non-varying
transfer rate. This is characteristic of many real time interfaces, disk
drives, and high speed buffered [/0 devices. In the case of the disk
drive, for example, it is not practical for the computer to vary the speed
of disk rotation. Therefore, the processor must be able to read the data
as fast as the rotating disk presents it to the read head. Data transfer
rate problems of this type will result in lost or erroneous data. They
represent the most serious system speed problems and they must be detected
and corrected before the system will function properly.

Curing processor. rate Timited problems where the speed differential is
excessive requires the addition of hardware:to transfer some of the speed
burden from the CPU. If the speed differential is close, restructuring
the program sections which perform the actual data transfers may provide
the speed margins you need. However, since instructions execute in fixed
multiples of system cycle times, it will be impossible to adjust the sys-
tem speed any more accurately than the execution time of the fastest
instructions. For this type of problem, adjusting system speed by varying
the program structure will only be effective over a fairly narrow range

of timing.

Unlike processor rate problems, peripheral rate limited problems turn up
when the computer is able to process the data at a much higher rate than
the I/0 devices can supply or accept it. This problem is most commonly
encountered when the microcomputer is communicating with peripherals which
are mechanical or which require user interaction, i.e. printers, tape
readers, teletypewriters, etc. For example, many small microcomputer
systems rely on the Teletype Corporation's model ASR 33 teletype as the
main system peripheral. It serves as the keyboard, display, punch and
reader for all program I[/0 operations. Now the teletype can only transfer

6-18

data at the rate of ten characters per second, or one data byte every 100
milliseconds. Printing 2500 characters (a small program listing) will
take over four minutes. In this case, the computer will be spending most
of its time waiting for the teletype to finish printing.

Peripheral rate problems are probably the most commonly encountered system
speed problems. Fortunately, they seldom present a critical design pro-
blem. The cure is usually to add a faster 1/0 device. Even this solution
has Timitations. Most computer peripherals involve mechanical davices,
and these will almost always be slower than the computer. You must trade
off the cost of the faster peripheral against the time saved. If you
discover you have a system which spends most of its time waiting for 1/0
transfers (a condition referred to as I/0 bound), you may want to see if
You can come up with some features to utilize what is essentially free
processor time. Even better, you may be able to use some of that time to
replace some hardware and further lower system cost. On the other hand,
if the system can do everything it needs to at a cost you can afford, who
cares if it spends 95% of its time waiting for the user to press a key?
Microprocessor hardware is going to become so inexpensive that it will
probably become far more economical to underutilize several microprocessors
than to spend the development cost to optimize the use of one.

6.5.2.2 Data Manipulation Rate Problems

Where data transfer rate problems were related to how fast we can get data
in and out of the computer, the data manipulation rate problems are con-
cerned with how fast the data is processed once the computer has it.
Where data transfer rate problems will be solved mainly be adding or
changing system hardware, data manipulation rate problems will be solved
mainly by restructuring the system's software.

The typical data manipulation problem arises when some section (or sections)
of the system program takes an excessive amount of time to execute. The
more commonly used that portion of the program, the worse the problem.

This type of problem is characterized by your pushing a button and waiting
for fifteen seconds until the teletypewriter prints the ten digit answer

e-19

to your equation. Using some hand held scientific calculators for complex
calculations (try SIN 890) provides some excellent examples of data mani-
pulation rate limitations.

Some problems of this type are unavoidable in microprocessor systems.

Their low speed (relative to minicomputers and large computers), modest
instruction sets, and small data element size limit the efficiency with
which any program will run. They are simply not designed for complex data
processing applications. No matter how good the algorithm, certain classes
of operations are going to take up significant amounts of computing time.
Some examples of this group are complex mathematics routines (anything

more complicated than a sixteen-bit integer divide can safely be considered
complex), large memory searches, array operations, and moving blocks of
data around in memory. In the large and minicomputer world, another
primary cause of this problem is multiple user systems. Fortunately, to
date the microprocessor world has been spared this particular problem.

If your system requires any of these types of operations, you will end up
paying some speed penalty. You will be able to minimize it to some extent,
but it will be there. Fortunately, the types of applications which will
use microprocessors do not normally require large numbers of complex opera-
tions. If you have one that does, you might seriously consider one of the
sixteen-bit microprocessors or a low end minicomputer.

6.5.3 System Cost Problems

System cost problems become significant when you have a working system
which must be made more economical for practical production. The term
"problems" in this context is probably misleading. Virtually all systems
intended for high volume production will go through some cost optimization
procedure between prototype and final production. Usually you will have
decided that the cost range for the product is acceptable before proceeding
with the development. This decision is based on market studies, compari-
son with existing products, and other evaluations of what is a reasonable
final selling price of the product. This number can then be projected
back to arrive at a cost range for the product.

6-20

In general, the techniques for lowering product cost will be the reverse
of techniques to increase speed. You will want to remove extraneous hard-
ware, compact all programs into minimum memory space, and in general,

make the maximum use of the processor and software to implement system
functions. This must all be done without creating any system speed pro-
blems. Therefore, the proceedure is best carried out in discrete steps.
You refine one section of the system, make sure the system still works,
and move on to the next section. Ultimately you will reach a point where
no further cost economies can be achieved without compromising system

performance.

Cost optimization should always be undertaken with the firm realization
that the end must justify the means. It is an expensive process that is
usually only vigorously applied to products whose high volume will justify
the expense. Otherwise the cost of the optimization will overshadow any
savings made in production.

6.6 Hardware Speed Trade 0ffs

When you must modify system speed using hardware, you will be trying to
either increase or decrease the amount of work done by the processor. In
the first case you will be trying to simplify the system hardware or re-
place much of it with software. This results in decreased hardware cost
and lower system speed. In the second case you will be trying to trans-
fer some of the work being performed by the software out to the hardware.
This will result in higher system cost. Within this framework let's
examine some of the alternatives available.

6.6.1 Processors and Memories

A simple solution to some system speed problems may be to change processors
within the same family. Some manufacturers provide microprocessors which
are graded by speed. If the nominal processor speed is 2 MHz, some devices
may be available in selected speed ranges from 1 to 4 MHz. Since the
processor cost goes up with the speed, using this method you only have to
pay for Fhe speed you require.

6-21

If you are considering a faster (or slower) processor, you must also
consider the effect that memory speed has on program execution. The
computer must get all instructions and data from memory. If the memory
is not at least as fast as the processor, there is no point in increasing
processor speed. Similarly, you may be able to increase system speed by
using the same processor with faster memories.

6.6.2 Decode Logic

Decode logic is required for a variety of purposes in a microcomputer
system. Most decoding is done to determine I/0 device addresses and
memory addresses. This logic is almost all done with hardware, and it
can usually be minimized in a dedicated system. For example, many micro-
processors can address 65K bytes of memory using 16 address lines. Very
few applications will require this much memory, so after you determine
how much memory the system requires, you can eliminate the excess decod-
ing. For example, if you only need 4096 bytes of memory, you need only
decode 12 address lines to access all valid memory addresses in your '
system. Similar minimization can be applied to the I/0 device addresses.

One added benefit of reducing the decoding is that the undecoded 1ines
can be used as extra control lines in the system. Usually the full
address bus runs everywhere in the system. If system speed permits, the
undecoded address lines may be used to eliminate further hardware control
logic. In the case of the system with 4096 bytes of memory we mentioned
earlier, the four unused address Tines could be used individually (or
even decoded) to provide system control signals. Similar trade offs can
be performed in systems which require fewer I/0 devices than the maximum

available.

6.6.3 Memory Buffers

Memory buffers are used to collect or hold data that is in transit between
the CPU and system peripheral devices. The addition of a high speed buffer
dedicated to a specific peripheral can be used to solve processor data
transfer rate problems. This is particularly effective if the peripheral
has a low average data rate with high speed burst transfers of data. A

6-22

buffer can be used to collect the data during the burst transmission,
with the CPU reading the individual data elements from the buffer after
the transmission is complete. This type of buffering can also be used in
conjunction with the computer's DMA facility. In this case, the buffer
accumulates the data and transfers it into the main computer memory in a

single block transfer.

Buffers can also be used to solve peripheral data réfe problems. In this
case, the CPU transfers the data out to the peripheral buffer. The peri-
pheral can then take the characters at its own rate with no further processor

intervention.

Addition of buffers to the system requires the addition of considerable
hardware expense. Accordingly, they should only be added if the system
really needs them. As long as speed is not a problem, most microprocessors
can do a good job of implementing buffers. They can do this using already
present main memory and some programming. Data is transferred into and
out of this type of buffer using an interrupt. The device interrupts

when it is ready for a transfer and the CPU performs a single transfer.
When the buffer becomes full or empty, the data is then processed, just

as with a dedicated buffer. This is always much cheaper than an external
buffer system. In the course of the design, if you think you need data
buffering, look very carefully to see if it can be done using software.
Even after the design is done you may discover that a hardware buffer
initially thought necessary can actually be done in this way. It may be
worth the redesign cost to save the hardware cost, particularly if pro-

duction volume will be high.

6.6.4 Specialized Interface Devices

A specialized interface device is designed to perform some defined function
in the system. Usually the function to be performed could be performed
using either software or the specialized device. You will consider a trade
off when you either find yourself with a speed problem and no interface
device or the interface device and lots of program time available. In the
first case you design in the device to free up the program time that

6-23

performing the functicn is tying up. In the second case you take out
the device and replace the function with software.

A common example of this type of device is the UART (Universal Asynchronous
Receiver Transmitter). This device accepts parallel data and converts it
to a serial bit stream conforming to the EIA RS232C data transmission stan-
dard. The function can easily be performed under program control, but as
mentioned earlier, each character sent or received will take up 100 milli-
seconds of computer time. During this time the software must convert a
character from parallel to serial, add start and stop bits and generate

all timing and control signals required to perform the transfer. If your
system has the time, fine. If it doesn't, you add a UART. The only time
required now is the time required to write one parallel byte out to the
UART. After that, the UART generates all those functions that were done

by the software, freeing your processor to do other things. Similar trade
offs can be made using other pre-defined functional devices.

6.6.5 Interrupts

In many systems the computer must spend considerable time responding to
interrupts. If there is more than one possible interrupting device, the
processor must determine which device generated the interrupt before it
can process any data. This identification can be done in a combination
of hardware and software that can be varied to meet system speed/cost

requirements.

For maximum system speed you design the hardware so that each interrupting
device responds to CPU acknowledgement with the address of its own dedi-
cated service routine. This gives maximum response speed, since no time
is spent decoding any device identification codes. In some processors
this can be reduced to the interrupting device providing an actual sub-
routine call instruction, making the interrupt almost transparent in terms
of overhead time loss.

To lower hardware expense, the device identification can be moved into
the service routines. In this case, the interrupting devices all provide

6-24

the same routine address. The software must then poll all devices in the
system to see who generated the interrupt. This adds a significant amount
of overhead time to the routine, and will probably not be satisfactory for

faster devices.

As a compromise, the system can be implemented as a combination of direct
and indirect interrupt decoding. In this case, you assign your highest
priority or fastest (usually the same) devices their own identification
address. They will then interrupt directly to their routines with mini-
mum time loss. The lower priority devices can then be assigned to a common
address and these can be decoded under slower, cheaper software control.

6.7 Software Trade Offs

Software trade offs are made for the same reason as hardware trade offs,
namely modifications of system cost and speed. Where we traded off hard-
ware for different hardware or a combination of less hardware and some
software, with software we will usually be'trading off program speed for
memory size. Increases in program speed will often take more memory,
thereby costing more money. Conversely, if speed is not a problem, certain
program types can be replaced by markedly less code, with a subsequent
lowering of memory size and cost. It must be kept in mind, however, that
not all decfeases in program size lower memory cost nor do all increases

in program size increase cost. The only time changes in program size
affect memory cost at all is when the change results in the saving or use
of an entire memory. For example, if your program is to be located in

2K x 8 mask programmed ROMs, the only time that your cost will change is
when your program size exceeds multiples of 2048 bytes. Up to that point,
the memory is essentially free. Similarly, if you discover your new, im-
proved, program is now 2075 bytes long, you may want to expend some time
eliminating those 27 extra bytes. (The terms and techniques discussed in
the next few sections are covered in greater detail in the software lessons.)

6.7.1 Program Loops and Subroutines
Program loops and subroutines are used to minimize program size and control
execution. A sequence of operations which is to be executed a fixed number

f-2K

of times can be placed in a loop. A section of code common to several
portions of the program can be placed in a subroutine. The actual coding
is thereby only written one time no matter how many times the loop is
executed or the subroutine is called. Loops and subroutines minimize
program size at the expense of some program speed.

The instructions which must be executed to control execution of the loop
or the calling of the subroutine take a certain amount of time that is

not required for the actual function being performed. In speed critical
situations the effect of these overhead instructions can be eliminated or
modified to increase execution speed. This is done by replacing the loop
or subroutine with the actual straight T1ine code that was originally there.
This eliminates the overhead instructions completely. Alternatively, a
loop may be modified to use a lower percentage of its time for overhead.
This is done by partially replacing the loop with the straight line code
and lowering the number of times through the loop. For example, say a
certain function is to be performed 10 times, once for each execution of
the loop. In this case, say loop overhead is 20%. By duplicating the
function and Towering the loop count to five we would do the same process-
ing with only 10% overhead. The price would be a doubling of the amount
of memory occupied by the function.

6.7.2 Functional Computations

Throughout your program you will use functional computations to evaluate
data and decide on program responses to input conditions. You will be

able to vary the execution speed and memory usage of many of these blocks
based on how you evaluate the data. For example, let's say we have an
application where we need to multiply two eight-bit integers. One solution
is to write an algorithm which will multiply the two numbers. If for some
reason the speed of the algorijthm execution was not adequate for our appli-
cation, we might consider storing all possible results in a ROM (or part

of a ROM). We would then use our two numbers to compute the address of

the product, thus removing most of the computations. This method should
execute cqnsiderab]y faster. Again, the price is more memory usage.

6-26

In practice, not many mathematical functions can be produced in the manner
Just described. However, the technique is very often applicable to memory
addresses. A required address can often be computed as part of the pro-
gram execution or stored as fixed data. Computation by algorithm is more
efficient, but fetching defined data is faster. These types of alternatives
can be traded off throughout the course of system software design.

6.7.3 Repeated Computations

Related to functional computations is the class of program operations
called repeated computations. Analysis of programs over the years has
shown that in most programs 90% of the execution time is spent executing
10% of the program. These software "critical paths" are what we call
repeated computations. If your system has a speed problem, the first
thing to do is to see if you have any repeated computations. You can then
devote your optimization effort in those areas where it will do the most
good. Some common types of repeated computations are common mathematical
functions, table searches, data movement routines, and data sorts.

If you find you have a clearly defined repeated computation, you may find
it worthwhile to study it. See if you can find a better algorithm in the
data processing literature. If you can't find one, do your best to devise
one. Time spent thoroughly optimizing a repeated calculation can be far
more valuable than partially optimizing several sections of less frequently

executed code.

6.8 Summary

The hardware/software design procedure is something that you only learn
by practice. You must gain first hand experience in the real world. It
is a process which becomes more than designing the hardware and then de-
signing the software. It is an integrated proceedure which will allow you
to implement some of the most creative digital systems ever imagined. We
" have only scratched the surface of what is available, and what is avail-

able is just the beginning.

6-27

REPRESENTING BINARY DATA

REPRESENTING BINARY DATA

When working with digital computers it is necessary to work with binary
data. Computer components are built up from electronic devices which can
only represent data as 0's and 1's. This means you will have to use
binary to represent numbers. In spite of this, it is impossible to
escape from the fact that binary data is not overly convenient to use.
We have all used base 10 numbers for years and the base 2 number system
seems quite inefficient by comparison. It takes 6 binary digits to rep-
resent the number 5010 (1100102), and it gets worse. In this section we
will discuss how the individual binary data elements are represented and
how they can be grouped together for more convenient use. Binary arith-
matic and logic are discussed in the following supplementary section.

7.1 - Binary Data Elements
A computer data element of arbitrary length N is shown below.

The right most bit (bit 0) is considered to be the least significant bit.
Bit N, at the left most position, is considered to be the most signifi-
cant bit. Thus a computer with a 16-bit data element would have data in

bit positions 0-15:

15114 | 13|12 |11 (10| 98| 7| 6|5|4]|3|]2|1]0

16-Bit Data Word

Similarly, an 8-bit microcomputer would have data in bit positions 0-7:

716514 ((3]2|1(0

8-Bit Data Word

Thus when we speak of loading one's into bits five and seven of an eight-
bit register, we will be loading the following pattern.

7-1

7 6 5 4 3 2 1 0 Bit Position

References to the bit positions of a register or memory location rather
than to the binary number in a register or memory location are common in

control and legic applications.

7.2 - Binary Numbers
A1l number systems (including binary) represent numbers as a function of
the radix (number base) and the position of the individual digits. Any
number composed of digits AH-AO in a radix R can be represented as

follows:

N-1 1 0

_ N
APro - - - AjAg = AR+ AL XRTT 4L+ AXRT + AR

N'N-1 10 N
where A is any digfit in the range 0 to R-1 and N is the digit position.
For example, consider the number 136 in base 10. We have digits in posi-
tions 0, 1 and 2. In this case, all values of A must be in the range
0-9, and R = 10. We thus have a number represented as

1 0

136, = 1 x RZ+ 3 x R1 + 6 x R
®(subscript to identify number base.)
=1 x (10)% + 3 x (10) + 6 x 1
100 + 30 + 6

136

10

Binary numbers can be similarly represented. The difference is that where
in decimal we have ten possible numbers (0-9), in binary we only have two
(0 and 1). This means that representing a given number in binary will re-
quire more digit positions than representing the same number in decimal.
Thus the binary number 10110 is represented as

10110, = 1 x 2% + 0 x 2° + 1 2 +1x2l+1x20
v el 16+ 0 %8 +2% D

= 2210

T=2

NUMBER SYSTEM CONVERSIONS

NUMBER SYSTEM CONVERSIONS

DECIMAL TO BINARY

To convert any decimal number to a binary number, take the decimal
number and successively divide by "2" and write down the remainder (1

or 0) as you continue dividing until the number becomes "O".

EXAMPLE :

Convert h3210 to a binary number.

2) L32
) 216 /o
) 108 /0
) 54 /o
) 27 /0
) 213 /1
) 6 /A
) 3 /0
) 1 /1
) © /1-—-—1’
2y - (YYITIYYY

BINARY TO DECIMAL
As in the decimal number system, the least significant digit is on
the right and the most significant digit is on the left and each digit

is a multiple of a certain power of 10.

b32, = L x 0° + 3 x 108 + 2 x 207

8-1

This is also true for a binary number, except that it is a multiple

of a certain power of "2".

10112 = 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

So to convert a binary number to a decimal number, take each power

of "2" and change it to its respective decimal number.

L = 3
2l - 2
22 -)
2 - 38
2o 16
2 = 32
216 = 65,536
etc.
EXAMPLE :
Take the number 101101

1x25+0x e1x23+1x2240x2l41x2°

1011012

1x32+0x16+1x8+1xL+0x2+1x1

32+0+8+L+04+1

lOllOl2 = hle

8-2

CONVERTING DECIMAL TO OCTAL

Use the same method as to convert decimal to binary except divide

by the base of M"8" instead of "2%,
EXAMPLE:

Convert 13110 to Octal

8) 131
) 16 /3
)2 /0
) 0O /2
1311 " = 203B

CONVERTING OCTAL TO DECIMAL

To convert from octal to decimal use the same method as for

binary to decimal conversion, except use the powers of "g" instead of "2".

EXAMPLE :

R
[

L096
32768
26214l

o [= =]
o v
u [}

EXAMPLE:

Convert 2038 to decimal

203, = 2x 82 + 0 x Bl + 3 x 80
2x 6 +0x8+3x1

128 + 0 + 3

= 131

CONVERTING DECIMAL TO HEXADECIMAL

Again, use the same method for decimal to binary conversion, except
use the base "16" instead and replace the remainders of "107 to "15" by
the letters A to F respectively.

10 = A
11 = B
12 = C
13 = J
n = E

EXAMPLE:
Convert 919210 to hexadecimal

16) 9192
) 57 / 8
) 35/ 1
). 2./°3
) 0/2

919210

]

"]
w o m

'] L]
n
| g
(9,3

R_),

ONVERTING HEXADECIMAL TO DECIMAL

Again, use the same method for binary to decimal conversion,

except use the powers of 16 instead, and convert the letters A through

F to 10 through 15 respectively.

162

16
16°
16°

16"

1

EXAMPLE :

= 1
= 16

= 256

= Logé
= 65536

Convert 23E816 to decimal

2388 ¢

2388, ¢

2x163 +3x 162+ E x 16> + 8 x 16°
2 x 163 +3x 162 + 1 x 161 + 8x 160
2 x 4096 + 3 x 256 + 1y x 16 + 8§ x 1
8192 + 768 + 22, + 8 |

919210

CONVERTING OCTAL TO BINARY, HEXADECIMAL TO BINARY,

OCTAL TO HEXADECIMAL; AND BACK

Convert to binary first, then if needed, regroup the binary numbers

into the desired groups of three or four binary digits, (three for octal

or four for hexadecimal).

These translate directly to the desired number

system. Always start the regrouping with the LSB.

8-5

Binary Octal Binary Hexadecimal

000 0 0000 0
001 1 0001 51
010 2 0010 2
011 3 0011 3
100 L 0100 L
101 5 0101 5
110 6 0110 6
111 7 0111 7
1000 8
1001 9
1010 A
1011 B
1100 ¢
1101 D
1110 E
1111 F

EXAMPLE:

1) Convert hAZBClé to Octal

0100 1010 0010 1011 1100

LA2BC, ¢
= 01/00 1/010 /001/0 10/11 1/100
= (01 001 010 001 010 111 100
= 112127L

LA2BC ¢ = 112127hg

8-6

2) Convert 1h358 to Hexadecimal

135,

W35,

]

001 100 011 101
001 1/00 01/1 101
0011 0001 1101

3 L D

APy

8-17

BCD NUMBERS

BCD NUMBERS

In some applications it is desirable to be able to directly rep-
resent decimal numbers in the binary ccmputer. This is done using

Binary Coded Decimal, BCD. When using BCD we do not use all possible

data values that the binary data element can represent. Instead, we

limit ourselves to the following four bit patterns:

Decimal BCD
0 0000
1 0001
2 0010
3 0011
L 0100
5 0101
6 0110
% 0111
8 1000
9 1001

The other six four bit combinations (1010-1111) are not used in BCD.

An eight-bit data element can hold two BCD digits. This means it can
represent decimal numbers from 0-99. BCD is very commonly encountered in
control and instrument interface applications. As a result, many computers

provide instructions to allow direst arithmetic with BCD numbers.

y=-1

BINARY FRACTIONS

BINARY FRACTIONS

Binary numbers are generally considered as whole integers (i.e., 1,
2, 3, «+.). However, it often becomes necessary to represent numbers

other than whole numoers. Binary fraction representation is analagous to

cecimal fraction representation. In decimal numbers a fraction ccasists
of digits to the right of a decimal point; in binary, we consider the bits
to the right of the binary point to be a fraction. In a binary fraction
the bits represent E‘N, where N = the bit position to the right of the
binary point. The powers of 2N are shown in the number tables. Con-

sider the following binary number:

Binary Point

1101.1101

This binary number representation means
23 +224+042042 422,04 273

8+L+ 1+ .5+ .25+ .0625

13.8125

Numbers can be converted to and from binary fractions using the
techniques already shown for converting whole binary numbers. Unfortunately,
not all fractions are as well behaved as the above example. Consider the

decimal number 3 1/3. When we try to convert it we end up with -

3 1/310 = 3'3333‘!.!.!310
3134 = 11.01010101......01,

The fraction repeats and there is obviously no exact result. We
will have to choose a bit position where we truncate the value. For

example, if we choose bit position six, we end up with an approximation.

3 1/310 N11l+010101

10-1

The rounding error introduced by this truncation can be computed by

converting the truncated fraction.

11.01010101=2+1+ .25+ .,0625 + .015625

=3.328125

The error is about .1%. The possibility of this type of rounding
error must always be taken into consideration when using binary fractions,
particularly in division operations. Very few numbers result in exact

binary fractions, so the possibility of error will be ever present.

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

BINARY ARITHMETIC AND LOGIC INSTRUCTIONS

A1l computers provide a number of instructions which are used to perform
arithmetic and logic operations on data. As discussed elsewhere, computer
data consists of patterns of bits in registers and memory locations. How-
ever, there is a fundamental difference between the way the arithmetic
instructions and logic instructions treat this binary data. The arithmetic
instructions interpret the data as numbers. The logic instructions, on

the other hand, interpret the data as a collection of individual bits.

1l.1l Computer Arithmetic Instructions

The most basic computer arithmetic instruction is addition. This instruction
and the logic complement instruction can be used to implement any known
mathematical function. As a result, many computers offer addition as

their only arithmetic instruction. After addition, the next most common
arithmetic instruction is subtraction. This is because subtraction can

be performed using the same basic hardware as addition. After addition

and subtraction you have to go to a considerably more complex computer

to get multiplication and division as built-in functions. The hardware
required for these operations is considerably more complex than that used

for addition and subtraction. As of this writing (July 1976) there are

no microprocessors with built-in multiply and divide hardware. This will
certainly change. Al1 of these operations use the contents of the computer's
accumulator(s) and another data source as operands with the result ending

up in the accumulator.

d1.1.1 Twos Complement Notation

The most common way of representing numbers for arithmetic operations in

the computer is twos complement notation. To understand twos complement

notation let's consider the binary numbers that can be represented by an

8-bit data element. We know that an 8-bit data element can represent 256
individual values. When we use a register as a counter, we can count up

to 256 different values. The binary number counting method follows.

Binary Count

00000000 0
00000001 L=
00000010 2
00000011 3
00000100 4
11111110 254
11111111 255

This is an example of using the data element as an unsigned number. The
numbers in the register are interpreted as being in the range +0 to +255.
Now this method is convenient for counting, but awkward for arithmetic
because there is no way to represent negative numbers. To circumvent
this ‘problem we change the way in which we interpret the 256 possible.
numbers in the registers so that we will be able to represent both posi-
tive and negative numbers. This revised scheme will be called signed

twos complement.

Any binary number is converted to its negative by complementing it,

adding one, and ignoring any carry out causd by the addition. For example,
consider the binary number +5 in an 8-bit microcomputer; 00000101. To
convert +5 to -5 we first complement 11111010, and then add 1; 11111011.

If we'perform the procedure on the result we get back our original number.
The 256 possible numbers in an 8-bit register now represent positive and
negative numbers in the range -128 to +127 as follows:

00000000=0
00000001=1
01111111 =%127
12 113114 %]
11111110=-2
11111101 =3
10000000 = -128

Notehow bit 7 (the most significant bit) is always a zero for all positive
numbers and always a one for negative numbers. The most significant bit
in a twos complement number is called the sign bit, because by testing

it you can determine if a number is positive or negative.

11.1.2 Binary Arithmetic
Binary arithmetic is performed using the ALU and two operands. The
operation can be performed using either unsigned numbers or signed twos
complement numbers, depending upon the operation being performed. Most
computers perform addition and subtraction as unsigned operations. They
do provide flags to indicate the result in signed twos complement, but
it is up to you to keep track of the sign and magnitude.

Addition is performed by adding the contents of an operand to the contents
of the accumulator. If the result is greater than the largest number

" which can be represented in the accumulator, a flag will be set to indi-
cate a carry out has occurred. For example, consider the operation of
adding the number 1510 to an 8-bit accumulator which contains 2510. The
operation would be performed as follows.

Accumulator 00011001
+0Operand 00001111
Result 00101000 -= 4010

Now consider the addition of 11110 to 14510 in the accumulator.

Accumulator 10010001
+0perand 01101111
/00000000

carry out

The result of this operation is 25610. It causes a carry out to indicate
that the accumulator overflowed.

Subtraction is performed by taking the twos complement of the subtrahend
and adding it to the minuend in the accumulator. Thus to subtract 1010
from 2510 we would perform the following operation. :

Subtrahend 00001010
Form Twos Complement 11110110
Add To Accumulator 00011001
1/00001111-= 1510
carry out

Ignoring the carry out, we have a result of 1510. Now consider the
subtraction of 35 from 15.

Subtrahend 00100011
Form Twos Complement 11011101
Add To Accumulator 00001111
0/11101100

no carry

No carry indicates a negative result. If we convert the number using our
twos complement rules, we obtain the correct result, -20.

13-4

A mivuine
— B subtzhend

| K u:}—l-/‘-ffh

Result 11101100
Complement 00010011
Addl 00010100 = 2010

Notice that the sense of the carry after a subtraction is reversed from
that of addition. A carry out indicates that the subtrahend was smaller
than the minuend ggd the result of the subtraction was positive. No carry
out indicates that the subtrahend was larger than the minuend and that

the result was negative. This is called a borrow condition, and it is
analagous to overflow in an addition operation. To avoid confusion about
the reversal of the state of the carry flag, many computer ALU's auto-
matically complement the carry flag after a subtraction. This makes its
state after a subtraction match more closely its state after an addition
(i.e. carry set if result cause a borrow, clear if the result did not

cause a borrow).

11.2 Computer Logic Instructions

In contrast to the arithmetic instructions, the logic instructions perform
their operations with no regard for the number representation being used.
The numbers being operated upon are simply treated as strings of bits.
That is why these operations are often referred to as bit by bit opera-
tions. The operation performed on one bit in no way affects the operation

upon adjacent bits.

The four most common computer logic instructions are Complement, AND, OR,
and Exclusive OR. These operations (except complement) use the contents
of the accumulator and another data source as operands, with the result
ending up in the accumulator.

11.2.1 Logic Complement
The complement instruction replaces each bit in the accumulator with its

logic complement. Thus if the accumulator contains 1 01 011 01, the
complement operation yields the following result.

1-5

Accumulator 10101101
Complement 01010010

11.2.2 Logic AND
The Logic AND operations (Symbol A) operates upon the bit; of the accumulator
and an operand according to the following truth table.

Accumulator Bit |0011
Operand Bit |01 01
‘Result Bit I 0001

Thus only those bit positions which are logic ones in both the accumulator
and the operand will be logic ones in the accumulator after a Logic AND
operation has been performed. For example, consider the following Logic
AND operation.

Accumulator 01101101
AOperand 11011011
Result 01001001

Only those bits which were ones in both operands are in the result.

11.2.3 Logic OR

The Logic OR operation (Symbol V) operates upon the bits of the
accumulator and an operand according to the following truth table.

Accumulator Bit |001 1
Operand Bit |01 01
Result Bit | 0111

Bit positions which are logic ones in either the accumulator or the operand
will be Logic ones in the accumulator after a Logic OR operation has been
performed. For example, consider the following Logic OR operation.

11-6

Bit positions which are Logic ones in either the accumulator or the operand
will be Logic ones in the accumulator after a Logic OR operation has been
performed. For example, consider the following Logic OR operation.

Accumulator 1 0110110
VOperand 00110011
Result 11110111

A1l bits which were ones in both operands are ones in the results.

11.2.4 Logic XOR

The Logic Exclusive OR operation (Symbol A, o-ten called XOR) is not
found in all computers. It operates upon the bits of the accumulator
and an operand according to the following truth tabdZ.

Accumulator Bit [0 01 1
Operand Bit [0 1 0 1
Result Bit | 0110

Bit positions which are a Logic one in either the accumulator or the
operand but not both will be Logic ones in the accumulator after a logic
XOR operation has been performed. For example, consider the following
Exclusve OR operation.

Accumulator 01100101
%0Operand 10110110
Result 11010011

Those bits which were ones in only one of the operands are ones in the
result.

APPENDIX A

MODIFIED 6500 OP CODE TABLE

BRK
BPLr
JSR@
BMIr
RTI
BVCr
RTS

BVSx

BCCr
LDY#
BCSK
CPY#
BNEr
CPX#

BEQr

ORAx1
ORALy
ANDxi
ANDiy
EORxi
EOR1iy
ADCxi
ADCly
STAx1i

STAly

LDAly
CMPxi
CMP1y
SBCxi

SBCiy

STYz
STYzx
LDYz
LDYzx

CPYz

CPXz

Key

ORAz

ORAzx

ANDz

ANDzx

EORz

EORzx

ADCz

ADCzx

STAz

STAzx

LDAz

LDAzx

CMPz

CMPzx

SBC=z

SBCzx

to addressing symbols:

HHB D%

MODIFIED 6500 OP CODE TABLE

ASLz
ASLzx
ROLz
ROLzx
LSRz
LSRzx
RORz
RORzx
STXz
STXzy
LDXz
LDXzy
DECz
DECzx
INCz

INCzx

immediate
absolute
accumulator
relative
Zero page

PHP
CLC
PLP
SEC
PHA
CLI
PLA
SEI
DEY
TYA
TAY
CLV
INY
CLD
INX

SED

@x, @y
zx, zy
xi
iy

9 A B c

ORA# ASLa * *
ORA@y * * *
AND# ROLa * BIT@
Aﬂu@y * * *
EOR# LSRa * JMP@
EORRy * * *
ADCH# RORa * JMPL
ADCRy * * *
* TXA ¥ STY@
STARy TXS ¥ *
LDA# TAX * LDY@
LDAGy TSX * LDY@x
CMP# DEX * cPY@
CMP@y * * *
SBC# NOP * CPXE@
SBC@y ¥ * *

9 A B c

absolute indexed
zero page indexed
indexed indirect
indirect indexed

ORA@
ORAGx

ANDG@x
EOR@
EOR@x
ADC@
ADC@x
STAR
STAGEx
LDA@
LDA@x
CMP@
CMP@x
SBC@

SBC@x

ASL@
ASL@x
ROLE
ROL@x
LSR@
LSR@x
ROR@
ROR@x
STX@

LDX@
LDX@y
DEC@
DEC@x
INC@
INC@x

APPENDIX B

KIM INFORMATION

rk'.

0
0 BRK
1 BPLr
2 JSR@
3 BEMIr
4 RTI
5 BVCr
6 RTS
7 BVSr
s -
9 BCCr
A LDY#
B BCSr
c CPY#
D BNEx
E CcPxe
F BEQr

0

1 2 3
ORAxi -
ORAly *
ANDx{ * -
ANDLy @ * -
EORxi * *
EORiy * *
ADCxi *» *
ADCiy * *
STAxi » *
STAly *
LDAx{ LDX# *
LDALy * *
CMPxi * *
CMPly * *
SBCxi =+ *
SBCLly * *

1 2 3

STATUS REGISTER

P: NV
765

D

BDIzZc
43210

IMPORTANT ADDRESSES

00EF PCL 17FA NMI-L ss=00
00F0 PCH 17FB NMI-H ss=1C
O00F1L p» 17FC RST-L
00F2 s 17FD RST-H
00F3 A 17FE IRQ/BRK-L
00F4 Y 17FF IRQ/BRK-H
00F5 X
oy 00F1= 00 (LD)
-~ ~—=-1700 PAD 17F5 SAL
_~ 1701 PADD 17F6 SaH
1702 PBD 17F7 EAL+1
'1703 PBDD 17F8 EAH
o o 17F9 ID#
T L 1800 DUMPT
A //’ Tl ¥ 1873 LOADT
‘ T

INTERVAL TIMER

WRT to @: /N INT
1704 1 D
1705 8§ D
1706 64 D
1707 1024 D
170C 1 E
170D 8 E
170E 64 E
170F 1024 E

READ @ INT
1707 STATUS
1706 COUNT D
170E COUNT E

5TYz

STYzx

LDY=z

LDYzx

CPYz

CPXz

KIM PROGRAMMING DATA SHEET

6500 OP CODE TABLE

5 & 7
ORAz ASLz *
URAzx ASLzx ¥
ANDz ROLz *
ANDzx ROLzx *
EORz LSRz *
EORzx LSRzx *
ADCz RORz *
ADCzx RORzx *
5TAz 57Xz =
5TAazx STXzy *
LDAz LDXz -
LDAzx LDXzy *
CMPz DECz *
CMPzx DECzx *
SRCz INCz *
SBCzx INCzx *

5 6 7

DECIMAL HEX BINARY HEX

0000
0001
0010
0011
0100
0101
0il0
0111
1000
1001
1010
1011
1100
1101
1110
1111

VOONOL L WN O

10
11
12
13
14
15

MEHOOEP>OOAOW WO

DISPLAY OUTPUT:

XX p.0.¢ b.0.4
O0OFB 0QOFA OOF9

JSR@ S$1IFIF
KEYBOARD INPUT:
JSRZ $1F6A
OUTPUT TO TTY:

char in A
JSR@ S1EAQ

INPUT FROM TTY:

JSR@ $1ESA
char into A o

PHP
CLC
PLP
SEC
PHA
CLI
PLA
SEI
DFY
TYA
TAY
CLv
INY
CLD
INX

SED

OCHMNMLIAPVOYDOYE O UMM

ORAGy
ANDY
ANDAY
ECR#

EOREy

ADCRy

STAGy
LDA#
LDACy
CMP#
CMP@y

Anot

SBORy

A B c
ASLa * *
w " *
ROLa #* BIT@
* * *
LSRa * JMP@
* * *
RORa » el
* * &
TXA * STY@
TXS * *
TAX * Loy
TSX * LDV@x
DEX * cma
w - W
NOP . CINE
* * *

A B c

ORAZ
ORAGX
AND@E
ANDEx
EOR@

ECR:3x

ADCEx
STAG
STAZx
LDAE
LDAPX
CMP2
CMICGx
sous
5B0@x

E F
ASLE * [+]
ASLEx * 1
ROL3 * 2
ROLZx * 3
LSR2 * &
LSR3x 5
RORG * 6
ROREx * 7
STX@ * 8
* * 9
LDx@ * A
LDKay * B
DEC@ * c
DECEx * D
mweE * E

INCBx 4

ASCII/HEX CONVERSION TABLE

180 | 780 | 780 7.80
Heox Hes Haw Hex
Char No. | Char Na. | Chaer No. | Char M.
NUL 00]
SOM 01 ' 2 A A 2 61
STX 02 G 22 s a2 & &2
ETX 03 = 2 c a3 e 83
EQT o4 s 24 0D 4 d B4
ENQ 05 s E 45 e 65
ACK 06 & 26 F 46 ! 66
BEL 07 . 27 G & 9 87
BS 08 | 28 Mo 48 N B8
HT 08 1 29 | a9 ' -]
LF oA - 24 4 44 i A
vT o8 . 8 K 48 & 68
FE 0OC ' x L 4 1 BC
CR 00 - 0 M 4D m 80
S0 e F 2€ N 4 n GE
st oF ; 2F 0 aF o BF
DLE 15 [} 30 P50 o 10
oc1 11 1 n Q 51 a m
o2 X2 2 2 AR 52 " 2
Dc: 13 3 n 5 53 [13
DC4 14 ¢« 1. T 54 ' 74
NAK 15 s 15 [V v 75
SYN 16 3 36 v % - 76
ETB 17 ? n w s w 77
CAN 18 a] x 58 x ™
EM 19 9 39 y sa v 7
SUB 1A L 3A Z s5A z 74
ESC 1B i 3. [58 78
FS 1c - ac A SC <
Gs 1D o ko]] 50 ALT 7D
RS 1E - 3€ * SE ESC TE
us 1F ’ IF sF DEL, 7F
s 20 & 40 \ s RUBOUT
CHAR 1 DEFINITION cml.u]' DEFINITION
NUL [NuLL 50 SHIFT QUT
SOH START OF HEADING, ALSO START | St SHIFT iN
OF MESSAGE DLE | DATA LINK ESCAPE
5TX START CF TEXT; ALSO EOA, END feled DEYVICE CONTROL 1
OF ADDRESS
ETX | END OF TExT. ALSO EOM, END OF | oo: | DEVICE CONTROL 2
meseang . v oc3 CEVICE CONTROL 3
EOT | END OF TRANSMISSION (END) OCe | DEVICE CONTROL 4
ENQ ENQUIAY (ENQRYI, ALSO WRU Nay NEGATIVE ACKNCWLEDGE
ACK | ACKNOWLEOGE. ALSO AU SYN | 5YNCHRONOUS IDLE ISYNC)
BEL RINGS THE BELL ETE END JF TRANSWVISSION BLOCK
8s BACKSPACE can CANCEL (CANCL)
HT HORIZONTAL TAE EM END OF MEDILM
LF LINE FEED OR LINE SPACE Ingw | SU8 | SUSSTITUTE
LINE] ADVANCES PAPZA TO EscC ESCAPE PAEFIX
NEXT LINE BEGINNING OF LINE F5 FILE SEPARATOR
VT VERTICAL TAB (VTAB) Gs GAOUP SEPARATOR
FF FORM "E5D TO TOP OF NEXT RS RECORD SEPARATOR
PAGE (PAGE) us UNIT SEPARATOR
cR CARRIAGE AETURN - i

- KIM BLOCK DIAGRAM

MICROPROCESSOR A
6502 :
Y
01 S
PCH PCL
P
#_. " 6530~
k 8 002
7 1K ROM
TIMER 8:
64B RWM B Tk
8L 15 15 PIO £
PBO - PB7
6530-
8 * 003
‘ y]
P4
-1K ROM
T 8
648 RWM | pro - pa7
15 PIO -67?‘—’-
PBO - PB7
L 8
A 1K
F RWM

DBO - DB7 ~ IRQ NMI

B

R/W RAM R/W ABO - AB15

B=2

KEYBOARD/
DISPLAY

TTY/TAPE
INTERFACF

APPLICATION CONNECTOR PLUG

FUNCTION PIN ¢ FUNCTION
PBO 1 PA7
PB1 2 PAG6
PB2 3 PAS
PB3 4 PASL
PB4 5 PA3
PBS 6 "PA2
INT (orange) 7 PAL
PBT* PAO

PIN #

16
15
14
13
12
11
10

9

*see p. H-7 for details about this line

EXPANSION CONNECTOR PLUG

FUNCTION PIN # FUNCTION
ABRO 1 DB7
AB1 2 DB6
AB2 3 DBS
5] AB3 4 DB4
W K(green) 5 DB3
6 DB2
92 7 DB1
RAM R/W 8 DBO
PROGRAMMABLE I/0 LINES
PA DATA REGISTER 1700
PB DATA REGISTER 1702
TAPE RECORDER CONNECTIONS
FUNCTION PIN # COLOR CODE
GND K GREY
AUDIO IN L BLUE
AUDIO OUT M RED
TTY/CRT CONNECTIONS
FUNCTI10N PIN # COLOR CODE
KEYBD RET, R BROWN
PRINTER RET. S BROWN
KEYBOARD T VIOLET
PRINTER u YELLOW

PA DIRECTION REGISTER

PIN #

16
15
14
13
12
11
10

9

1701

PB DIRECTION REGISTER 1703

NOTES

GND
FROM EARPHONE OUTPUT
TO MIC INPUT

NOTES

+)
+)
20 mA current loop
20 mA current loop

KIM INTERFACIN DATA SHEET

BAUD

17F2
17F3

TTY

(0=input, 1=output) ouT

TTY
DATA
IN

- KIM

TTY BAUD RATE CONTROL

DATA ——

110

300 600 1200 2400 4800 9600
79 EA 75 38 18 oA 02
02 00 00 00 00 00 00
I
;ﬂ mic !
I
M - AUDIO DATA OUT (LO) 2 \
]
1
yes g L
! T ® oot
= EARPHONE |
i AUDIO DATA IN o :
P |———AUDIO DATA OUT (HI)
RN '('ﬂs 1S _J2
PRINTER RETURN e
NN |- 9?40
1500 78| | :
20MA) I i
i |
o lU__ PRINTER " L3 L |
- Ll - s b
1500 R_KEYBOARD RETURN | | |TTY-ASR 33

20MA)

we
6]]
[Rp—— Y

-
T 416
® |a KEYBOARD -04@ .——{—__‘_
15 J2
2 OR PICK
ONE
TTyo\ KB
v M
® -
h L
EXTERNAL SWITCH TO SELECT

EITHER MODE

JUMPER FOR TTY OPERATION

00EF
00FO
00F1
00F2
00F3
O00FL
00F5
00F6
00F7

00F9
00FA
00FB

1700
1701
1702
1703
1704-1707
170C-170F
1744-1747
174C-174F
LIF2-17F3
17F5
17F6
17F7
17F8
17F9

17FA
17FB

17FE
17FF

1800
1873
1C00
1C4F
1EAQ
1E5A
1F1F

1F6A

KIM MONITOR IMPORTANT ADDRESSES

USER PC LOW BYTE
USER PC HIGH BYTE
USER STATUS REGISTER
USER STACK POINTER
USER ACCUMULATOR
USER Y REGISTER

USER X REGISTER
CHECKSUM

CHECKSUM

STORAGE FOR RIGHTHAND DISPLAY DIGIT PAIR
STORAGE FOR CENTER DISPLAY DIGIT PAIR
STORAGE FOR LEFTHAND DISPLAY DIGIT PAIR

PORT A:DATA
PORT A DIRECTION CONTROL REGISTER

PORT B DATA
PORT B DIRECTION CONTROL REGISTER

INTERVAL TIMER #1

INTERVAL TIMER #1

INTERVAL TIMER 2

INTERVAL TIMER #2

SERIAL I/0 BAUD RATE CONTROL

TAPE DUMP STARTING ADDRESS LOW BYTE

TAPE DUMP STARTING ADDRESS HIGH BYTE
TAPE DUMP ENDING ADDRESS+1 LOW BYTE

TAPE DUMP ENDING ADDRESS+1 HIGH BYTE
TAPE FILE INDENTIFICATION NUMBER

NMI VECTOR LOW BYTE
NMI VECTOR HIGH BYTE

IRQ VECTOR LOW BYTE
IRQ VECTOR HIGH BYTE

ENTRY POINT FOR TAPE DUMP ROUTINE
ENTRY POINT FOR TAPE LOAD ROUTINE
NONDESTRUCTIVE MONITOR ENTRY POINT
DESTRUCTIVE MONITOR ENTRY POINT
SERTAL OUTPUT ENTRY POINT

SERIAL INPUT ENTRY POINT

ENTRY POINT FOR DIGIT DISPLAY ROUTINE

ENTRY POINT FOR KEYBOARD READ ROUTINE

APPENDIX ¢

C. KIM SOFTWARE COLLECTION

KIM User Notes vl #3

Cass R. Lewart
Holmdel, N, J.
DISPLAY ROUTINE

This routine will display any program showing each successive
location and the contents of that location. The routine is fully
relocatable. By storing in the 17FA and 17FB locations the

starting address of this routine one can use the ST key to start

the program. The display can be stopped by pressing RS and continued
by pressing ST again. The program starts displaying consecutive
locations starting with the location shown in the display by
pressing ST. The second program MULT controls the displav time.

With value 04 it is 0.4 sec per location.

00 A2 04 THREE LDX3# MULT

02 8A TWO TXA

03 48 PHA

04 A9 62 LDA# $62 .1 sec/cycle
06 8D 47 17 STA@ S1747 Load timer
09 20 19 1F ONE JSR@ SCANDS Display

0C 2C 47 17 BIT@ $1747 Check timer
OF 10 F8 BI'Lr ONE

11 68 PLA

12 AA TAX

13 CA DEX

14 DO EC BNET ™WO

16 E6 FA INCz SFA

18 DO E6 BNET THREE

1A E6 FB INCz SFB

1C DO E2 BNET ™WO

e.g. to start displayipg at 210: AD,0,2,1,0,ST
if the DISPLAY starts at 300: AD, 1,7,F,A,DA,0,0,+,0,3,AD,go0
to desired location,ST,....

-

q j /({’-C. ft L L Uﬁ.-‘_- \'I Ly WLA

N
W

KIM User Notes vl #4

Jim Butterfield
Toronto

DIRECTORY: A KIM-1 UTILITY PROGRAM

Program DIRECTORY allows you 254 program IDs to choose from ... enough
for most program libraries with some to spare. The program is fully
relocatable, so put it anywhere convenient. Start at the first instruction
(0000 in the listing). Incidentally, 0001 to 001D of this program are
functionally identical to the KIM monitor 188C to 18Cl.

After you start the program, start your audio tape input. When
DIRECTORY finds a program, it will display the Start Address (first
four digits) and the Program ID, Hit any key and it will scan for
the next program.

0000 D8 GO CLD

0001 A9 07 LDA# $07 Directional reg
0003 8D 42 17 STA@ SBD

0006 20 41 1A SYN JSR@ RDBIT Scan thru bits...
0009 46 F9 LSRz INH ..shifting new bit
000B 05 F9 ORAz INH ..into left of
000D 85 F9 STAz INH ..byte INH

000F C9 16 TST CMP# $16 SYNC character?
0011 DO F3 BNEr SYN no, back to bits
0013 20 24 1A JSR@ RDCHT get a character
0016 C6 F9 DECz INH count 22 SYNC's
0018 10 F5 BPLr TST

001A C9 2A CMPi# $2A then test astk
001C DO F1 BNEr TST ..or SYNC

001E A2 FD LDX# $FD if asterisk,
0020 20 F3 19 RD JSR@ RDBYT stack 3 bytes
0023 95 FC STAzx POINTH+l1 into display
0025 E8 INX area

0026 30 F8 BMIr RD

0028 20 1F 1F SHOW JSR@ SCANDS ...and shine
002B DO D3 BNEr GO until keyed

002D FO F9 BEQr SHOW at's all folks

KIM User Notes vl #2

VU TAPE Jim Butterfield
Toronto

Program VUTAPE lets you actually see the contents of a KIM format tape
as it's going by. It shows the data going by very quickly, because of the
tape speed .. but you can at least 'sense' the kind of material on the tape.
In case of tape troubles, this should give you a hint as to the area of
your problem: nothing? noise? dropouts? And you can prepare a test tape
(see below) to check out the tape quality and your recorder. The test
tape will also help you establish the best settings for vour volume and
tone controls.

Perhaps VUTAPE's most useful function,though, is to give you a
'feeling' for how data is stored on tape. You can actually watch the
processor trying to synchronize into the bit stream. Once it's synched,
you'll see the characters rolling off the tape ... until an END or illegal
character drops you back into the sync mode again. It's educatiomal to
watch. And since the program is fairly short, you should be able to trace
out just how the processor tracks the input tape.

VUTAPE starts at location 0000 and is fully relocatable (so you can
load it anyplace it fits).

0000 D8 START CLD

0001 A9 7F LDA# ST7F

0003 8D 41 17 STA@ PADD set display dir reg
0006 A9 13 SYN LDA# $13 . .window 6 and tape in
0008 85 EO STAz POINT and keep pointer

000A 8D 42 17 STA@ SBD

000D 20 41 1A JSR@ RDBIT get a bit and

0010 46 F9 LSRz INH ..slip it into

0012 05 F9 ORAz INH ..the right-hand

0014 85 F9 STAz INH . .side;

0016 8D 40 17 STA@ SAD show bit flag on display
0019 C9 16 TST CcMP# $16 ..is it a SYNC?

001B DO E9 BNEr SYN nope, keep 'em rolling
001D 20 24 1A JSR@ RDCHT yup, start grabbing...
0020 C9 2A CMP# $2A .8 bits at a time and..
0022 DO F5 BNET TST L AE ths not an "Ry
0024 A9 00 STREAM LDA# $00 ..then start showing
0026 8D E9 17 STA@ SAVX ..characters 1 at a time
0029 20 24 1A JSR@ RDCHT

002C 20 00 1A JSR@ PACKT ..converting to hexadec..
002F DO D5 BNEr SYN ..if legal

0031 A6 EO LDXz POINT

0033 E8 INX

0034 E8 INX Move along to mext..
0035 EO 15 CPX# $15 ..display position
0037 DO 02 BNEr OVER (if last digit,..

0039 A2 09 LDX# $09 ..reset to first)

003B 86 EO OVER STXz POINT

003D 8E 42 17 STX@ SBD ,

0040 AA TAX change character read
0041 BD E7 1F LDA@Gx TABLE ..to segments and..
0044 8D 40 17 STA@ SAD send to the display
0047 DO DB BNEr STREAM unconditional jump

PROGRAM TO CHECK OUT TAPES/RECORDERS

Make a test tape containing an endless stream of SYNC characters
with the following program:

0000 AOQ BF GO LDY# $BF directional..
0002 8C 43 17 STY@ PBDD ..registers
0005 A9 16 LP LDA# $16 SYNC

0007 20 7A 19 JSR@ OUTCH ..out to tape
000A DO F9 BNET LP

Now use program VUTAPE. The display should show a steady synchronization
pattern. Try playing with your controls and see over what range the
pattern stays locked in. The wider the range, the better your cassette/
recorder,

SUPERTAPE

0100
0102
0105
0108
010A
0locC
010E
0111
0113
0115
0118
0l1a
011D
0120
0123
0126
0129
012C
012F
0132
0135
0138
013B
013E
0141
0144
0146
0148
0148
0l4E
0151
0154
0157
0159
015B
015E

0161
0163
0164
0167
0168
016A
016C

A9
8D
20
A9
85
A9
8D
A2
A9
20
A9
20

20
20

20
20
20
20

CD
AD
ED
90
A9
20
AD
20

20
A2
A9
20
4C

86
48
20
68
cé6
DO
60

AD
EC
32
27
El
BF
43
64
16
61
2A
88
F9
70
F5
6D
F6
6D
EC
6D

ED
F7
EE
F8
E9
2F
88
E7
70
E8
70
02
04
61

5C

EO

17
19

17

17

01
17
01
17
0l

18

DUMPT

DUMPT4

HIC
HIC1

LDA#
STA@
JSR@
LDA#
STAz
LDA#
STA@
LDX#
LDA#
JSR@
LDA#
JSR@
LDA@
JSR@
LDAG@
JSR@
LDA@
JSR@
JSR@
JSR@
JSR@
LDA@
CMP@
LDA@
SBC@
BCCr
LDA#
JSR@
LDA@
JSR@
LDA@
JSR@
LDX#
LDA#
JSR@
JMP@

subroutines

STXz
PHA
JSR@
PLA
DECz
BNET
RTS

KIM User Notes vl#2

Jim Butterfield

Toronto
SAD op code LDA
VEB
INTVEB set up subrtn
$27
GANG flag to go to SBD
SBF
PBDD open the channels
$64 send 100...
$16 ..SYNC chars
HIC
$2A send asterisk
OUTCHT
ID then the ID
OUTBIT
SAL followed by
OUTBTC the start address
SAH (low and high)
OUTBTC
VEB get memory word
OUTBTC and send it
INCVEB on to next address
VEB+1
EAL is the address..
VEB+2 ..at the end?
EAH
DUMPT4 no, go back;
$2F yes, send end-data
OUTCHT
CHKL ..and checksum
OUTBT
CHKH ..hi and low..
OUTBT
$02 send two..
$04 EOT characters
HIC
DISPZ and we're finished

follow here
TIC

OUTCHT

TIC
HIC1

count

send character
..and bring it back

do it again

016D
0170
0171
0172
0173
0174
0175
0178
0179
017¢C

017D
017F
0181
0182
0184
0186
0188
018A
018C
018E
0190
0193
0194
0197
0199
019C
019F
01A1
01A3
01A6
01A8
01A9
01AB
01AC
01AE
01BO
01B2
01B3
01B5
01B7
01B9
01BB
01BD

01BE
O1BF

20
48
LA
4A
4A
4A
20
68
20
60

29
Cc9
18
30
69
69
A0
84
AO
84
BE
48
2C
10
B9
8D
A5
49
8D
85
CA
DO
68
Cé6
FO
30
4A
90
A0
FO
Cé
DO
60

02
C3

Speed

X3
X6

CHKT

HEXOUT

HEXOUT

$OF
$0A

HEX1
$07
$30
$08
COUNT
$02
TRIB
NPUL

CLKRDI
ZON1
TIMG
CLK1T
GANG
$80
SBD
GANG

ZON1

TRIB
SETZ
ROUT

ZON
$00
ZON
COUNT
TRY

compute checksum
save the character

..and take its

four left bits..
write 'em ...
now the 4 right bits..

remove unwanted bits
change to ASCII by..
adding:

$37 if A to F
$30 if numeric
for the eight bits..

send 3 units
starting at 3600 hertz
number of half cycles

keep the character
wait for the previous..
cycle to complete
get the time to the.,
..next pulse ($7E or C3)

flip between 1 and 0

have we sent all the cycles?
nope, send another ome
get back the character
one less unit to send

and the last one's here
none left? quit

take next bit

..and if it's a one..
switch to 2400 cycles/sec
unconditional return

one less bit

any more? go back

; frequency/density controls

4C 19 OUTBTC JSR@
OUTBT PHA
LSRa
LSRa
LSRa
LSRa
7D 01 JSR@
PLA
7D 01 JSR@
RTS
OF HEXOUT AND#
0A CMP
CIC
02 BMIr
07 ADC#
30 HEX1 ADC#
08 OUTCHT LDV#
E2 STYz
02 TRY LDY#
E3 STYz
BE 01 ZON LDX@y
PHA
47 17 ZON1 BITA
FB BPLxr
BF 01 LDAay
44 17 STAQ@
El LDAz
80 EOR#
c% 0 b STA@
El STAz
DEX
E9 BNET
PLA
E3 DECz
05 BEQr
07 BMIr
LSRa
DB BCCr
00 SETZ LDY#
D7 BEQr
E2 ROUT DECz
CF BNETr
RTS
NPUL .BYTE
03 7E TIMG

end

$02

Timing Data: $01BE

04
02

two pulses; one cycle!

.BYTE $C3,$03,$7E

$01CQ
06
03

KIM-1 User Notes vl #4

TAPE DUPLICATION PROGRAM Jim Butterfield
1780 A9 27 START LDA# $27 SBD value
1782 A2 3F GO LDX# $3F set directional register to
1784 8E 43 17 STX@ PBDD input
1787 A2 07 LDX# $07 PB5 (cont) set for input
1789 8E 42 17 STX@ SBD
178C AO 5E LDY# 94 high frequency
178E 2C 42 17 BIT@ SBD zero or one?
1791 10 02 BPLr OVER
1793 AQ A3 LDY# 163 low frequency
1795 A2 BF OVER LDX# SBF set directional register to
1797 8E 43 17 STX@ PBDD output
179A 49 80 EOR# $80 reverse output bit
179C 8D 42 17 STA@ SBD and send it
179F 8C 44 17 STY@ CLKIT set timer
17A2 2C 47 17 WAIT BIT@ CLKSTAT and wait
17A5 10 FB BPLr WAIT
17A7 30 D9 BMIr GO

Connect your two cassette recorders in the usual way at the AUDIO IN
and AUDIO OUT points. With the program running, start the recorders.
All programs will be copied from one tape to the other. This program
works on speeds up to 3X, If bad copies are obtained, try reducing

the volume on the playback machine.

KIM User Notes vl #4

MOVE-A-BLOCK Edward J. Bechtel, M.D.
Newport Beach, Calif,

The MOVE-A-BLOCK program will move a block of bytes up to 256 bytes
long forewards or backwards any distance. The block can be across page
boundaries -- it does not have to reside in one page. The starting
address and ending address of the block is entered in 00E0 - OOE3. The
NEW starting address of the moved block (i.e., where you want to move
it) is entered at OOE4 - 0OE5. I located it in 1780 to be generally
out of the way, but if you wish, you can use it to relocate itself anywhere.

The program calculates whether the move is forewards or backwards,
then moves from the top up, or from the bottom down. The number of spaces
the block is moved (in signed notation) is stored by the program in
OOE6 - O0E7, and the number of bytes that were moved is stored in OOES.
Also, the new ending address of the moved block is automatically placed

in O0E2 - OOE3, for subsequent use.

1780 38 SEC
1781 A5 E4 LDAz $E4
1783 E5 EO SBCz $EO
1785 85 E6 STAz S$E6
1787 A5 E5 LDAz $E5
1798 E5 E1 SBCz $E1
178B 85 E7 STAz SE7
178D 90 18 BCCr MOVEB
178F 38 MOVEF SEC

1790 A5 E2 LDAz $E2
1792 E5 EO SBCz $EO
1794 A8 TAY

1795 84 E8 STYz SES8
1797 E6 E8 INCz $E8
1799 Bl EO LOOP1 LDAiy S$EO
179B 91 E4 STAiy S$E4
179D 88 DEY

179E DO F9 BNEr LOOP1
17A0 Bl EO LDAiy $EO
17A2 91 E4 STAiy $E4
17A4 88 DEY

17A5 30 14 BMIr END
17A7 38 MOVEB SEC

17A8 A5 E2 LDAz $E2
17AA E5 EO SBCz S$EO
17AC 85 E8 STAz SE8
17AE E6 E8 INCz S$E8
17B0 A0 00 LDY# $00
17B2 B1 EO LOOP2 LDAiy $EO
17B4 91 E4 STAiy S$E4
1786 C8 INY

17B7 C4 E8 CPYz SES8
17B9 DO F7 BNEr LOOP2
17BB 18 END CciC

17BC A5 E2 LDAz $E2
17BE 65 E6 ADCz $Eé6
17C0 85 E2 STAz SE2
17C2 A5 E3 LDAz $E3
17C4 65 E7 ADCz SE7
17C6 85 E3 STAz . SE3
17C8 4C 4F 1C JMP@ START

00EO
00E1

00E2
00E3

00E4
00E5

O0OE6
00E7

00E8

nn

SAL)

SAH) Original
) block of

EAL) bytes

EAH)

= SAL) New location

non

SAH)

dif L) Number of spaces

dif H) block is moved
(signed notation)

Number of bytes in block

HEX DUMP

by J.B. Ross

Here is a program to print out machine language programs in
hexadecimal format. To use the program, load the starting address
of the dump in $17F5 (SAL) and $17F6 (SAH), the ending address +1
in $17F7 (EAL+1l) and $17F8 (EAH), then run HEX DUMP starting at
$0100. HEX DUMP is relocateable so you can move it to other memory
locations as needed. As written, HEX DUMP centers the print-out on
an 80 character line with 11 spaces on the left. The print-out itself
requires 53 spaces. To modify the left margin, change the data in
locations $0113 and $0137.

BEEX DUMP

100 AD F5 17 START LDAG 317F5 get low starting address
103 85 FA STAZ POINTL save it in POINTL

105 AD F6 17 LDA@ $17F6 get high starting address
108 B5 FB STAZ POINTH save it in POINTH

104 20 2F 1E JSR@ CRLF print CR/LF

10D A9 0A LDA# 'LF’ print another LF

10F 20 A0 1E JSR@ OUTCH

112 A2 OF LDX# 30F print 15 spaces on left
114 20 9E 1E LOOP1 JSR@ OQUTSP

117 CA DEX

118 DO FA BNER 1,00P1

11A A2 10 LDX# $10 print heading:

11C A9 FF LDA# $FF start with A at -1

11E 48 PHA save A

11F 20 9E 1E JSR@ OUTSP print 1 space

122 20 9E 1E LOOP2 JSR@ OUTSP print 1 space

125 68 PLA restcore A

126 18 CLC

127 69 01 ADC# $01 add 1 to A

129 48 PHA save A

12A 20 3B 1E JS5R@ PRTBYT print 4 as hex number
12D CA DEX

12E DO F2 BNER LOOP2

130 20 2F 1E JSR@ CRLF print CR/LF

133 20 2F 1E LOOP5 JSR@ CRLF print CR/LF

136 A2 OB LDX# $0B print 11 spaces on left
138 20 9E 1E LOOP3 JSR@ ouTsSP

13B CA DEX

13C DO FA BNER LOOP3

13E A2 10 LDX# $10 set up data counter

140 20 1E 1E JSRE PRTPNT print address

143 20 9E 1E JSR@ OUTSP space

146 20 9E 1E LOOP4 JSR@ QUTSP space

149 A0 00 LDY# $00 zero Y

14B B1 FA LDAIY POINTL get data from address
14D 20 3B 1E JSR@ PRTBYT print data

150 20 63 1F JSRE@ INCPT increment address pointer
153 A5 FB ILDAZ POINTH test for maximum address
155 CD F8 17 CMP@ §17F8

158 90 09 BCCR IMORE

15A A5 FA LDAZ POINTL

18C CD F7 17 CHP@ $17F7

15F 90 02 BCCR MORE

161 BO 06 BCSR DONE

163 CA MORE DEX decrement data counter
164 DO EO BNER LGCOP4 repeat if counter not zero
166 18 CLC go to LOOPS

167 20 CA BCCR LOOPS

169 20 2F 1E DONE JSR@ CRLF print two blank lines
16C 20 2F 1E JSR@ CRLF

16F 4C 4F 1C JHP@ EIM return to monitor

C=-10

KIM-1 User Notes vl #3

Joe Laughter
Memphis, Tenn.

FREQUENCY COUNTER ROUTINE

This routine counts frequency using input PBO at a maximum rate
of 20 KHz. It counts DATA for 1 second. To count for 10 seconds
load $29 into address 60, It uses PB7 for int. req. (connect PB7
to IRQ.).

0000 A9 01 LDA# $01

0002 85 65 STAz TMECNT

0004 F8 SED

0005 A9 36 LDA# INTLOW set int. vector

0007 8D FE 17 STA@ S17FE

000A A9 00 LDA# INTHIGH

000C 8D FF 17 STA@ $17FF

000F 58 CLI

0010 00 BRK

0011 EA NOP

0012 AD 02 17 CKLOW LDA@ PB check for input low
0015 29 01 AND# $01

0017 DO F9 BNETr CKLOW

0019 AD 02 17 CKHIGH LDAG PB check for input high
001C 29 01 AND# S0L

001lE FO F9 BEQr CKHIGH

0020 18 CLC add count to total
0021 A9 01 LDA# $01

0023 65 F9 ADCz SF9

0025 85 F9 STAz SF9

0027 A9 00 LDA# $00

0029 65 FA ADCz SFA

002B 85 FA STAz SFA

002D A9 00 LDA# $00

002F 65 FB ADCz SFB

0031 85 FB STAz SFB

0033 4C 12 00 JMP@ CKLOW

0036 48 INT PHA check time

0037 A9 90 LDA# $90

0039 8D 04 17 STA@ 51704

003C 2C 07 17 BIT@ $1704

003F 10 FB BPLr DELAY

0041 A9 F4 LDA# SF4 set timer for another int.
0043 8D OF 17 STA@ $170F

0046 C6 65 DECz TMECNT check remaining time
0048 FO 02 BEQr DISP if zero display counts
004A 68 PLA

004B 40 RTI

004C A9 FF DISP LDA# SFF set display loop count
004E 85 66 STAz SCANCT

0050 20 1F 1F OUT JSR@ SCANDS output data

0053 C6 66 DECz SCANCT dec. loop count

0055 DO F9 BNEr OUT rept. display till loop
0057 A9 00 LDA# $00 count is zero

0059
005B
005D
005F
0061
0063
0064
0065
0066

85 F9
85 FA
85 FB
A9 05
85 65
68
40
05

STAz
STAz
STAz
LDA#
STAz
PLA

RTI

SF9 set total counts to zero
SFA

SFB

$05 reset 1 sec timer

TMECNT

*DATA (TMECNT)
*DATA (SCANCT)

ANALOG TO DIGITAL CONVERSION DEMONSTRATION PROGRAM

Display ADC OQutput in HEX Format

0000
0002
0005
0008
000A
000D
0010
0012
0015

A9
8D
AD
29
8D
20
85
20
4C

Display

0020
0022
0025
0028
0024
002D
0030
0032
0034
0036
0039
003B
003D
003F
0041
0043
0045
0048

note:

A9
8D
AD
29
8D
20
85
A2
86
20
A6
86
A6
86
A2
86
20
4C

FF
01
03
EF
03
80
F9
1F
0D

17
17

17
00

1F
00

START

LOOP

LDA#
STA@
LDA@
AND#
STA@
JSR@
STAz
JSR@
JMP@

$FF
$1701
$1703
$EF
$§1703
ADC
$F9
SCANDS
LOOP

ADC Output in BCD Format

FF
01
03
EF
03
80
E7
00
E6
00
El
FB
E2
FA
00
F9
1F
2D

17
17

17
00

02

1F
00

START

READ

LDA#
STA@
LDA@
AND#
STA@
JSR@
STAz
LDX#
STXz
JSR@
LDXz
STXz
LDXz
STXz
LDX#
STXz
JSR@
JMP@

$FF
PADD
PBDD
$SEF
PBDD
ADC
HEDEC-L
$00
HEDEC-H
HEDEC
$E1

$FB

$E2

SFA

$00

$F9
SCANDS
READ

set PA port to output

set PB4 to be input

call ADC subroutine

store ADC output in right display
display data

loop back for more data

set PA port to output

set PB4 to be input

read ADC
set up data for binary to BCD conversion

call binary to BCD conversion routine
get BCD result high

store result in left display

get BCD result low

store result in middle 3isp1ay

zero the right display

display final BCD value
loop back for more data

In order to perform the binary to BCD conversion, you must load

the HEDEC program into the memory starting at address $0200.

¥1-0

REAL-TIME CLOCK

KIM-1 User Notes v.l1 #4
Charles H, Parsons

80 Longview Rd,

Monroe, CT 06468

This program utilizes the interval timer to produce an NMI interrupt
every 249,856 microseconds. A fine adjustment to 1/4 second is done with
the same time in the interuppt program. This fine adjustment can be varied
by changing the number in location $03AB. A display routine is included
which shows the time on the KIM-1 display. You can exit this routine
and get back to the monitor by pressing the "1" key.

To run the clock program you must connect PB7 to expansion connector
Pin 6 and set up the NMI interrupt vector by storing $AS5 in $17FA and
$03 in $17FB. The clock is set by using the KIM monitor to enter the
current time into the HR, MIN, and SEC locations given below.

1/4 SEC = $0080 1/4 second counter

SEC = $0081 second counter
MIN = $0082 minute counter
HR = $0083 hour counter
1/2 DAY = $0084 day counter for am-pm

. Run the display program once starting at $0370 to get the interrupt

routine going, then re-enter the display routine at $0379 whenever
you want to show the time.

REAL-TIME CLOCK - DISPLAY ROUTINE

0370 A9 00 START LDA# $00 zero 1/4 second memory

0372 85 80 STAZ QSEC '

0374 A9 F& LDA# $F4 set timer to interrupt in 1/4 sec.
0376 8D OF 17 STAG TIMEF

0379 A5 81 DSPLY LDAZ SEC get seconda

0378 85 F9 STAZ S$F9 send to right display pair
037D A5 82 LDAZ MIN get minutes

037F 85 FA STAZ SFA send to middle display pair
0381 A5 83 LDAZ HR get hours

0383 85 FB STAZ S$FB sent to left display pair

0385 20 6A 1F JSR@ GETKEY check for "1" key pressed

0388 c9 01 CMP# $01

038A DO OD BNER ENDR

038C 20 IF IF JSR@ SCANDS display time and delay

038F 20 6A 1F JSR@ GETKEY check for "1" key pressed again
0392 ¢9 01 CMP# 501

0394 DO 03 ; BNER ENDR

0396 4C 4F 1¢ JMPE@ MONTR Jjump back to monitor if "1" pressed
0399 20 1F 1F JSR@ SCANDS display time again

039C 18 CLC jump back to DSPLY to comtinue
039D $0 DA BCCR DSPLY

REAL-TIME CLOCK - INTERRUPT ROUTINE

03A5 48 RTCLK PHA

0346 8A TXA

03A7 48 PHA

03A8 98 TYA

03A9 48 PHA

03AA A9 83 LDA# 583
03AC 8D 04 17 STA@ TIME4
03AF 2C 07 17 ™ BIT@ TIMES
0382 10 FB BPLR TM
03B4 E6 80 INCZ QSEC
03B6 A9 04 LDA# $04
03B8 C5 80 CMPZ QSEC
03BA DO 38 BNER RTN
03BC A9 00 LDA# $00
03BE 85 80 STAZ QSEC
03C0 18 CLC

03Cl F8 SED

03C2 A5 81 LDAZ SEC
03C4 69 01 ADC# $01
03C6 85 81 STAZ SEC
03C8 C9 60 CMP# 60
03CA DO 28 BNER RTN
03CC A9 00 LDA# 00
03CE 85 81 STAZ SEC
03D0 A5 82 LDAZ MIN
03D2 18 CLC

03D3 69 01 ADC# 0L
03D5 85 82 STAZ MIN
03D7 C9 60 CMP$¢ 60
03D9 DO 19 BNER RTH
03DB A9 00 LDA¢ 00
03DD 85 82 STAZ MIN
03DF A5 83 LDAZ HR
03El 18 CLC

03E2 69 01 ADC# 01
03E4 85 83 STAZ HR
03E6 C9 12 CMP# 12
03E8 DO 02 BNER TH
03EA E6 84 INCZ DAY
03EC C9 13 TH CMP# 13
03EE DO 04 BNER RTN
03F0 A9 01 LDA# 01
03F2 85 83 STAZ HR
03F4 D8 RTN CLD

03F5 A9 FA LDA# SFA
03F7 8D OF 17 STA@ TIMEF
03FA 68 PLA

03FB A8 TAY

03FC 68 PLA

O3FD AA TAX

03FE 68 PLA

03FF 40 RTI

save A
save X

save Y
fine adjust timing

test timer status
loop until time out

count 1/4 seconds
do four times before updating seconds

zero QSEC and update clock

change to decimal mode
increment seconds

until seconds = 60
reset seconds to 00

increment minutes

until minutes = 60

reset minutes to 00

increment hours

until hours = 12

increment 1/2 day
check for 13 hours

start again with one

Teturn to binary mode
set timer to interrupt in 249,856 sec

restore Y
restore X

restore A
return from interrupt

ST-O

TIMER (STOPWATCH)

Kim-1 User Notes Joel Swank #186

v, 1 #2 4655 S. W. l42nd
Beaverton, OR 97005

TIMER turns KIM-1 into a digital stopwatch showing up to 99 minutes 0342 C9 02

NOPRT CMP# $02 key 2
and 59.99 seconds. It is designed to be accurate to 50 microseconds per 0344 FO C4 BEQR RESET back to zero
second. The KIM-1 interval timer is used to count 9984 machine cycles 0346 C9 01 CMP# $01 key 1
and the instructions between time-out and the reset of the timer make 0348 DO C8 BNER HOLD
up the remaining 16 cycles needed to produce a time delay of 0.0100 sec. 034A A9 9C LDA# $9C
The keyboard controls the routine as follows: 034C 8D 06 17 STA@ TIMSET set timer
034F 20 1F 1F DISPL JSR@ SCANDS display value
KEY FUNCTION 0352 AD 07 17 EXPCK LDA@ TIMGET check timer
0 stop 0355 FO FB BEQR EXPCK wait loop
1 start 0357 8D 00 1C STA@ ROM delay 4 usec.
2 reset 035A A9 9C LDA# $9C set timer
3 print time on terminal 035C 8D 06 17 STA@ TIMSET
4 return to KIM monitor J35F 18 CLC set flags
2360 F8 SED decimal mode
STOFWATCH 2361 A5 F9 LDAZ INH
0363 69 01 ADC# $01 increment hundredths
0300 A9 79 BAUDR LDA# $79 set baud rate to 110 for printer 0365 85 F9 STAZ INH
0302 8D F2 17 STA@ $17F2 0367 A5 FA LDAZ POINTL
0305 A9 02 LDA# $02 G369 69 00 ADC# S00 increment seconds
0307 8D F3 17 STA@ $17F3 036B 85 FA STAZ POINTL
0304 A9 00 RESET LDA# $00 zero display 036D C9 60 CMP# $60 stop at 60
030C 85 F9 STAZ 1INH 036F DO OB BNER CKEY
030E 85 FA STAZ POINTL 0371 A9 00 LDA# 300
0310 85 FB STAZ POINTH 0373 85 FA STAZ POINTL zero seconds
0312 20 1F 1F HOLD JSR@ SCANDS light display 0375 A5 FB LDAZ POINTH
0315 20 6A 1F JSR@ GETKEY read keyboard 0377 18 cLC
0318 C9 04 CMP# $04 key & 0378 69 01 ADC# $01 increment minutes
031A DO 03 . BNER NOQUIT C37A 85 FB STAZ POINTH
031C 4C 64 1C JMP@ CLEAR return to KIM monitor C37C D8 CKEY CLD
031F C9 03 NOQUIT CMP# $03 key 3 - C37D 20 6A 1F JSR@ GETKEY read keyboard
0321 DO 1F BNER NOPRT C380 C9 00 CMP# $00 key 0
0323 A5 FB LDAZ POINTH . 0382 DO CB BNER DISPL
0325 20 3B 1E JSR@ PRTBYT print time on terminal 0384 FO 8C BEQR HOLD stop
0328 A9 3A LDA# ' . !
032A 20 A0 1E JSR@ OUTCH
032D A5 FA LDAZ POINTL
032F 20 3B 1E JSR@ PRTBYT
0332 A9 2E LDA# ', !
0334 20 A0 1E JSR@ OUTCH
0337 A5 F9 LDAZ INH
0339 20 3B 1E JSR@ PRTBYT
033C 20 2F 1lE JSR@ CRLF end of print routine
033F 38 SEC jump to HOLD

0340 BO DO BCS HOLD

KIM User Notes vl # 1

H. T. Gordon
Berkeley, Calif.

HEDEC

HEDEC converts a 4-digit hex number in 00 E6 (hi byte) and 00 E7
(lo byte) into a decimal equivalent stored in 00 EO, 00 El, and 00 E2,.
It uses 00 E3, 00 E4, and 00 E5 to store calculated conversion factors
for each of 16 binary bits. Length: 67 bytes. Conversion times: 0.7
millisec for hex 0000, 1.5 ms for hex 1111, 1.4 ms for hex 8080, and
2.12 ms for hex FFFF, Times are proportional to the number of binary
1 bits, not to the numerical value,

0200 F8 (sets decimal mode)
98 (pushes Y, then X index into stack)
48
8A
48
0205 A9 00 (zeros 00 EO to 00 E5 in a loop)
A2 06 (sets X~index for 6 operations)
95 DF (zero~-page, X storing)
CA
020C DO FB
E6 E5 (increments 00 E5 to 01, to be first conversion factor)
0210 A5 E7 (accumulator pick-up of lo hex byte)
0212 48 (stored in stack)
A0 08 (sets Y-index for testing of 8 bits)
0215 68 (pulls hex byte from stack)
4A (one logical shift right, lowest bit in carry)
48 (stores shifted hex byte in stack)
0218 90 OC (if carry clear, bit was a zero. skip to 0226)
A2 03 (if not, do triple-precision add of conversion factor
18 to the decimal locations)
021D B5 E2
75 DF .
95 DF
CA
0224 DO F7
0226 A2 03 (next conversion factor always calculated, doubling
18 previous factor by adding it to itself, giving a
B5 E2 sequence 1, 2, 4, 8, to final 65536 (not used))
75 E2
95 E2
CA
0230 DO F7
88 (DEY)
0233 DO EO (if not zero, back to 0215 for next bit)
0235 68 (this PLA stack pull needed to equalize PHAs and PLAs)
A5 E3 (LDA highest conversion factor location)
0238 DO 04 (if not zero, job is finished, so exit)
A5 E6 (if zero, load hi hex byte)
023C DO D4 (if not zero, back to 0212 for bit testing)
023E 68 (restore X, then Y, indexes)
AA
68
A8
0242 D8 (clear decimal mode)
0243 60 (RTS)

C-16

BINARY MATH ROUTINES KIM-1 User Notes vl #3
H., T. Gordon
Berkeley, Calif

MULTIA SUBROUTINE

Program MULTIA (second, revised version) does binary multiplication
of two 8-bit numbers that have been stored (before the JSR to MULTIA)
in OOE3 and OOE4 and are destroyed by the operation of the subroutine.
The hi 8 bits of the product are stored in O0EQ and the low 8 bits in
00E1l; the subroutine initially zeros these locations, and also 00E2.
Operations use LSRs on the multiplier in OOE4 to move up to 8 bits in
sequence into the carry flag. If the carry is set, the multiplicand
(in OOE2 and O0E3) is double-precision added to the product locationms.
If bits remain in the multiplier (OOE4 mot zero), the multiplicand is
shifted left in the 16 bits of 00E2-00E3; otherwise the subroutine
exits. Program length: 36 bytes. Maximum product (FF X FF) is FEOl
or decimal 65025, with execution time about 380 microseconds. Time
declines to 240 microseconds for 80 X 80. 160 microseconds for 10 X 10,
70 microseconds for 01 X 01, 40 microseconds for 00 X 00.

000A A9 00 (zeros locations 00LEQ to 0CE2)
85 E2
85 E1
85 EO
0012 46 E4 (LSR 00E4, lowest bit into carry)
0014 90 OD (if carry clear, skip the addition, go to 0023)
0016 18 (CLC starts double-precision add)
A5 E1
65 E3 (running totals stored in OOE0-00EL)
85 E1
001D A5 EO
65 E2
85 EO
0023 A5 E4 (LDA of O0OE4, zero flag set if zero)
FO 06 (exit to 002D if zero)
0027 06 E3 (ASL shifts highest bit of O0E3 into carry,
26 E2 ROL shifts carry into lowest bit of 00E2)
002B 90 E5 (carry is always clear, so back to 0012)
002D 60 (RTS exit)

NOTE: This subroutine assumes that the processor is in the binary
(not the decimal mode)! It should not be necessary for subroutines
to protect themselves (by a CLD) from this problem.

H, T. Gordon
Berkeley, Calif.

SUBROUTINE DIVIDA

This software gives the quotient, to 16-bit or better precision,
from division of any hex number from 0001 to FFFF by any hex number
from 01 to FF., It uses 10 locations from COEO to 00E9. The quotient
appears in the lowest 5, with a fixed decimal implied between El and
E2. The range of quotients is from $ 0000,010101 (from division of
0001/FF) to $ FFFF.000000 (from division of FFFF/0l). Quotient locatioms
are initially zeroed by a JSR to SUBROUTINE ZEROER, which must also be
in memory and is coded separately for use in other programs. Before
the JSR DIVIDA, & locations must be filled by the calling program. The
dividend high byte is set in E6, the low byte in E7, and the divisor in
E8. The "precision byte", with a value from 01 to 05, is set in
location E9; it is not altered by the program, but the other 3 bytes
usually are. The purpose of the precision byte is to allow the user to
control the number of quotient locations to be calculated by DIVIDA,

A value of 0l causes exit after the proper quotient value in location
EO (which may be 00) has been calculated. A value of 02 limits the
calculation to quotient locations EQ and El, and gives "integer
arithmetic'". A value of 03 allows only one location to the right of
the implied decimal, etc.. The chief use is to shorten the execution
time, winich can approach 2000 microseconds at a precision of 05.
However, DIVIDA always exits when the calculated remainder is zero, since
calculation of higher-precision locations is then unnecessary. No
"rounding-off'" operations are included. E.g., the quotient of FEFE/FF
is OOFF.FDOOQOO at a precision of 03, although it should be OOFF.FE
since the quotient is OOFF.FDFDFD at a precision of 05.

DIVIDA exits in less than 150 microseconds if the dividend is 0000.
It provides no protection against a divisor of 00, so the calling
program should guard against this! A guard could be inserted in
DIVIDA, but I feel it is better for the calling program to decide
what should be done if such an error occurs,

Operation of DIVIDA involves addition of a shifting single-bit
"Bit-Byte" in location 05, to the quotient location controclled by the
X-register, whenever a positive remainder is obtained. The X-register
is not protected by DIVIDA, so it is better to use Y-indexed loops in
the calling program (that otherwise will have to store and restore the
X value), The final remainder is in location E6 when DIVIDA exits.
The divisor value is not altered if it is $ 80 or more; otherwise
it is left shifted by DIVIDA,

DIVIDA is very long (70 bytes, or 78 if one includes ZERCER; if
the zeroing operation were made an integral part of DIVIDA the length
would be 74 bytes and execution a shade faster). It 1Is also slow
compared to hardware arithmetic, but relatively inexpensive. It is
meant to handle data, that are never precise, and not the kind of
complex math for which calculators are designed. Since the ROR
instruction is not used, it will rum in any 6502 system.

Much of the length of DIVIDA is caused by special logic designed
to reduce the execution time-~~a deliberate trade-~ocff of more program
bytes for a lower average time, that has the effect of prolonging the
time of divisions wher no early exit is possible.

Execution time depends both on the number of quotient locations to
be filled and on the number of 1-bits to be inserted. Thus FFFF/0l runs
slowly because it requires insertion of 16 1-bits into two locations.
The "hi/lo exchange" operation at 0228 speeds up many operations with
a dividend of 00XX. In general, higher speed will require sacrificing
precision, and a precision-byte of 04 will be adequate. My reason for
limiting the dividend to 16 bits and the divisor to 8 bits was that data
more precise than 1 part in 256 will be rare, so that most data will be
single-byte, and data sets with more than 256 items will be uncommon.
Calculation of the average of 255 one-byte data items is within the
capacity of DIVIDA. When there are more, they can be divided into subsets
of 255 or fewer, the averages for all subsets added, and the average of the
set of subsets calculated. We are now in the time range of seconds!
With more bits, it would be minutes. People who need arithmetic speed
had better get a 16-bit microprocessor (or better stili, shell out for
hardware multiply-divide).

Those who want integer arithmetic operations will do better using
a dividend of type XX00 and precision-byte of 01, However, similar
effects can usually be obtained more quickly and by other logic, not
division. The number of possible ways of doing division is incredibly
large, but I will be surprised if an operation like that of DIVIDA can
be done with many fewer bytes or much higher speed, although using the

ROR instruction might help.

SUBROUTINE ZEROER

0200 A9 00 (LDA# 00)

95 DF (STA zero-page, X)
0204 CA (DEX)

DO FB (BNE, if # 0, back to 0202)
0207 60 (RTS)

SUBROUTINE DIVIDA
(Note that 3 locations are unused between the end of ZEROER and the

start of DIVIDA. This is to allow users (if the subroutines are in
RAM) to insert 3 instructions following the LDA divisor instruction
at 0213, 1If the divisor is 00, DIVIDA is wrong. The instructions
DO 01 00 substitute for this a BREAK to 1C00, If something more
complex is needed, the 3 instructions can be a JMP or JSR to a
longer sequence of instructioms,)

020B A2 06 (LDA# 06)

20 00 02 (JSR ZEROER, to zero 0OEO to OOE5)
0210 38 (SEC)

26 E5 (ROL sets Bit-Byte to 0l and clears carry)
0213 A5 E8 (LDA divisor byte)

30 05 (BMI, if bit 7 = 1, skip to 021C)
0217 26 E5 (ROL Bit-Byte)

0A (ASL, left-shift divisor in accumulator)
021A DO F9 (BNE, 1f # 0, back to BMI at 0215)

85 E8 (STA bit-pattern IXXX XXXX into divisor location)
021E A5 E6 (LDA dividend-hi)

BO OF (BCS, if carry set, go to subtraction at 0231)
0222 DO 09 (BNE, if # 0, go to CMP at 022D)

A5 E7 (LDA dividend~1o)
0226 FO 28 (BEQ, dividend = 0 so exit to 0250)

85 Eb6 (STA dividend-lo into dividend-hi location)
022A 86 E7 (STX zeros dividend-1lo)

E8 (INX to shift to next higher quotient location)
022D C5 E8 (CMP dividend~hi with divisor)

90 0B (BCC, divisor too large, bypass to 023C)
0231 E5 E8 (SBC, subtract divisor from dividend-hi)

85 Eb6 (STA remainder into dividend-hi)
0235 18 (CILC for additionm)

B5 EO (LDA zero-page, X the proper quotient byte)
0238 65 E5 (ADC the Bit~-Byte)

95 EO (STA zero-page, X back into quotient location)
023C 46 E5 (LSR the Bit-Byte)

DO 09 (BNE, if # 0, bypass resetting)
0240 E8 (INX to shift to next higher quotient location)

E4 E9 (CPX to precision-byte)
0243 FO 0B (BEQ, if equal exit to 0250)

A9 80 (LDA# 80 to reset)
0247 85 E5 (STA into E5 resets Bit-Byte)

0249 06 E7 (ASL dividend-lo starts dividend left-shift)
26 E6 (ROL dividend-hi completes the shift)
024D 4C 1E 02 (JMP to 021E for next test sequence)

0250 60 (RTS)

2Z-0

16 BIT SQUARE ROOT

Here is a program which takes the square root of a 16 bit binary
number and yields an eight bit integer plus eight bit binary fraction
result. This routine was translated by J.B. Ross from an 8080 program
written by R.E. DuPuy, The program is written as a subroutine and
communicates with other programs via memory locations. All cpu reglisters
are changed by this routine. Input and output data are located as

follows:

8 bit input (high) $00E0
8 bit input (low) $00E1

8 bit output (integer) $00EO
8 bit output (faction) $00El

other locations used are : $00E2 - $00E8

SQUARE ROOT SUBROUTINE

0100 A% 00

0102 85
0104 85
0106 A9
0108 85
010A 85
0L0Cc A9
010E 85
0110 A2
0112 06
0114 26
0116 26
0118 26

0114 ca

011B DO
011D 06
011F 26
0121 Eé
0123 AS
0125 85
0127 AS
0129 85
012B 06
012D 26
012F E6
0131 18
0132 AS
0134 65
0136 85
0138 A5
013A 65
013cC 85
013E 90
0140 c6
0142 A5
0144 85
0146 AS
0148 85
014A C6
014C FO
O14E 18
014F 90
0151 AS
0153 49
0155 85
0157 A5
0159 49
015B 85
015D 60

SQRT

LOOP
SHFT

NOGO

DONE

LDA#
STAZ
STAZ
LDA{#
STAZ
STAZ
LDA%
STAZ
LDX{#
ASLZ
ROLZ
ROLZ
ROLZ
DEX

BNER
AsSLz
ROLZ
INCZ
LDAZ
STAZ
LDAZ
STAZ
ASLZ
ROLZ
INCZ

LDAZ
ADCZ
STAZ
LDAZ

STAZ
BCCR
DECZ
LDAZ
STAZ
LDAZ
STAZ
DECZ
BEQR

BCCR
LDAZ
EOR#
STAZ
LDAZ
EOR#
STAZ
RTS

$00
$E2
$E3
$FF
SE4
$ES
$10
COUNT
$02
$E1
$EO
$E3
$E2

SHFT

$E4
$E5
$E4
SE6

$E7
$E7

$E7

$E7
$E3
$E7
$E6

SE6
NOGO
$E5
$E7
$E3
$E6
$E2
COUNT
DONE

LooP
$SE4
$FF
$EO
$E5
§FF
§EL

initialize extended argument
initialize complemented result

initialize loop count

double left shift of E2-E3-EQ-El

shift partial result left

shift in a one on the right
make a copy of shifted partial result

shift copy of partial result left

shift in a one on the right

subtract shifted partial result from
high 16 of current remainder (by
adding complement)

test subtraction result

tack a z2ro onto complemented result

replace high order 16 of current
remainder with subtraction result

decrement and test loop count

jump to loop

complement result and store in EQ-El

return

TUPDATE oCCuR

S
-

-
|

KIM CGaoes

START

INITIALIZE ALTI-
TUDE, RATE OF

DESCENT, FUEL
AND THRUST

P

UPDATE
RATE OF
DESCENT

I

UPDATE
ALTITUDE

BYTE April 1977

Figure 1: A general block
diagram of a simple lunar
lander program. It can be
seen that a lunar lander
program basically breaks
down into a number of
updating routines. These
updating routines are con-
tinuously repeated until
the lunar lander has
reached the surface.

ALTITUDEN YES ALTITUDE = 0
NEG#? MOTOR OFF
F
NO
\ |
UPDATE
FUEL
FUEL FUEL=0
NEGATIVE oo THRUST + 0
,/ MOTOR OFF
NO
i)
A
ILLUMINATE
DISPLAY, DETECT
AND DECODE
INPUT

)

I n
LA i'\\:/“-.‘fi'{,"‘;i,t
e b N L\ NG Uk

Jim Butterfield
14 Brookiyn Av
Toronto Ontario M4M 2X5 CANADA

There are quite a few lunar landing pro-
grams available nowadays: some for pocket
calculators, others using graphic displays.
The one | wrote for my KiM-1, based on the
MOS Technology 6502 microprocessor, illus-
trates many of the techniques needed to
develop the program.

The KIM-1 comes with a six digit LED
display, which can be accessed by the user. }
used the first four digits to represent the
craft’s altitude, and optionally, the fuel
remaining. The last two digits, which are
slightly separated from the rest of the
display, are used for rate of descent. Both
values change continually as the craft moves.

The KIM-1 keyboard is used as the pilot’s
control panel. Thrust is set by pressing
controls 1 to 9. A value of 1 is minimum
thrust, and the craft's rate of descent will
increase due to gravity. Nine is maximum
thrust, which slows the rate of descent
sharply. In addition to power control, the
pilot can elect to view either current alti-
tude, by pressing A, or remaining fue!, by
pressing F,

The Equations of Motion

The craft, of course, moves in accordance
with the forces acting upon it: thrust and
gravity.. A physics textbook shows some
rather formidable equations. However, they
can”be beiled down to the following simple
procedure:

Every 0.01 second,
add 0.01 of the acceleration to the
velocity;
add 0.01 of the velocity to the alti-
tude;
subtract 0.01 of the thrust from the
fuel.

The acceleration is set equal to thrust minus
gravity, and gravity is set at the constant
value 5.

The time period of 0.01 s is arbitrary,
Since KIM can operate in decimal mode,
dividing by 100 becomes an elementary
operation. Everything would work just as
well if it were done in any other small time
increment.

Figure 1 shows an elementary block

diagram of the program. After setting the .

initial flight values, we settle into three main
jobs: updating the flight, lighting the dis-
play, and detecting input from the pilot.

Setting Initial Values

An interesting flight can be obtained by
starting the lunar module at a height of
4,500 feet with 800 pounds of fuel. That's
more than sufficient fuel for a safe landing,
but not enough to allew for prolonged
hovering.

It's not difficult to set all the initial
values by programming them individually.
However, a faster method is to set them all
together in memory and use a loop to
initialize ail of them. This is what | did as
shown in listing 1 on hexadecimal lines 0000
to 0007.

Updating the Flight

Every 0.01 s we must update our rate of
descent, altitude and fuel. As previously
indicated, we have to add 0.01 of various
values into the totals. We can accomplish
this quite easily by using a gimmick. Instead
of holding the altitude, for example, in feet,
let’s use two more digits and store it as
multiples of 0.01 feet. Now we can add the
rate of ascent directly into the six digit
number; and the division by 100 happens
automatically. For display purposes, of
course, we drop the last two digits, so that
we're back to height in feet. Using the same
technique on the other parameters, we find
that the updating job becomes relatively
easy.

During the updating task, we must also
detect two special conditions: touchdown
and out of fuel. This scems fairly simple

Listing 1. An example lunar lunder program written for the KIM-1
microprocessor that uses the flowchart of figure I as a base. The input und
output of this program is handled by routines that are inherent to the KIM-1
system. The data display is seen on the keyvpad and LED dispiay of the KIM-1
assembly. This display continuously shows the rate of descent, und on

command will display either the amount of fuel left, or the altitude of the

craft. Keys 1 through 9 are used tc input thrust commands, while key A

chooses the altitude display mode and the F key chooses the fuel display
mode. All the numbers in this listing are in hexadecimal uniess otherwise

stated,

Arddress Op Operand

0000
0002
0004
0006
0007
0009
0008
200D
GO0E
000F
0011
0013
0015
0016
0017
Co19
o018
001D
001F
0021
0023
0024

0026

0028

GO2A
ooz2c
002€
0030
0032
0033
0035
0036
0038
003A
Q03C
QO3E
0040
0042
0044
onas

0049
(048

O04F
0050
0052
0055
0067

0059
0058
005D
COsF
0081

00863

00es
o067
ooeg
0068
(06D
Q06F
0071

0073

OU7E
0076

aoTE

A2
B85
95
CA
10
A2
AD
F8
18
85
75
95

CA |

88
10
85
10
A
75
95
CA
10

a5

ES

ac
88
E2

FS
05
01

€2
E4
E2

F&
ES
02
29
E2
E2

E5
E2

ce
00
02
E2
£8

F9

ED
EA
ED
01

EB
00

EB

F7
0ocC
00
03
EA

FB
AA 0O
EE
oA

E2
E3
08
08
A6
EB
EC
FB8
Fa
ES
08
E6
07
05

00
EB6

Label

GO
LP1

CALC
RECAL

DIGIT

INCR

DD

up

LP3

TANK

LINK
SHOFL

DOWN

Mrsmonic

LDX #0C
LDA INIT,X
STA ALT.X
DEX

BPL LP1

LDX 05
LDY =01

SED

cLC

LDA ALT,X
ADC ALT+2,X
STA ALT.X
DEX

7 REY:

BPL DIGIT
LDA ALT+3.X
BPL INCR
LDA =09
ADC ALT, X
STA ALTX
DEX

BPL RECAL

LDA ALT

BPL UP

LDA 200
LDX #02
STA ALTX
STA TH2,X
DEX

BPL DD

SEC

LDA FUEL+2
SBC THAUST
STA FUEL+2
LDX #01
LA FUELX
SBC #00
5TA FUELX
DEX

BPL LP2

BCS TANK
LOA #00
LDX 202
STA THRUST, X
DEX

BPL LP3

JSR THRSET
L& MODE
BNE SHOFL

LDA ALT
LDX ALTH
BEQ ST

BNE ST

GEQ CALC
LDA FUEL
LDX FUEL+1
STA POINTH
STX POINTL
LDA VEL
BMI DOWN
LDA VEL+1
BEQ FLY
BME FLY
sEC

LOA #00
S8C VEL+

Commentary
} initialize values;

X:=05;

Y:=01;

set decimal mode;
clear carry;

" add each digit;

} sut up next digiz;

counter:=counter - 1;

if counter positive go 1o
RECAL;

else check if altitude is
positive;

if aititude positive go to UP;
zise altitude:=00;

X:=02

f else turn off engine;
set carry;

% ubdate fuel;

check if fusl left;
if fuel left go to TANK;

slse turn off engine;

go to THRSET;
A:=display mode;

if mode not 00 go to
SHOFL;

} AX:=location of altitude;

} go to ST;

AxsFUEL:
KimFUEL+;

display values;

Arwvglocity sign;
if sign negative go to DOWN;
A:sfvalocity/;

} go to FLY;

} velocity: = /velogity/;

Listing 1, continued:

Address Op Operand

007A
007C
007E
0080
0083
0085
0oga
0088
008D

008F
0091
0093

0095
0097
0098
009A
009C
00%E

00AQ .

00A1
00A3
00A4
00AS6
00A8
00AA
00AC
00AD
O0AF
ooB1
0083
0085
0oB7
00B8
0089
00BA
00BB
00BC
008D
00BE
00BF
00C0
00C1
00C2
00C3
00Cc4a

85
A9
85
20
FO
20
20
c6
Do

FO
c9
DO

85
60
cs
DO
A9
85
60
10
AA
AS
FO
86
A5

38
E9
85
A9
ES
85
60
45
00
00
99
80
00
99
98
02
08
00
00
00

F9
02
E1
1F 1F
06
6A 1F
91 00
E1
F1

DO
15
03

EE

10
05
00
EE

FD

EA
F8
EA
EA

05
E9
00
00
EB

Label

ELY

FLITE

NOKEY

DOKEY

NALT

RET1

NALZ

THRSET

INIT

Mnemonic Commantsry

STA INH

‘S-‘IQAA SE%K DECK:=02; [counter]

JSR SCANDS look for depressed key;

BEQ NOKEY if no input go to NOKEY:

JSR GETKEY else go to GETKEY;

JSR DOKEY go to DOKEY;

DEC DECK DECK:=DECK-1;

BNE FLITE if DECK not equal to 0 go to
FLITE;

BEQ LINK else go to LINK;

CMP =15 A:=fuel mode?;

BNE NALT if not fuel mode go 1o
NALT;

STA MODE else MODE:= fuel mode;

RTS return;

CMP =10 A:=altitude mode?;

BNE NALZ2 if not go 1o NALZ;

LDA =00 else mode:=altitude mode;

STA MODE MODE:=A;

RTS return;

BPL RET1 return; [illegal mode]

TAX else X:=A;

LDA THRUST A:=THRUST;

BEQ RET1 if thrust:=0 go 1o RET1;

STX THRUST else THRUST:=X;

LDA THRUST A:=THRUST;

SEC set carry;

SBC =05 THRUST:=THRUST -05;

STA TH2+1 TH2+1:=THRUST;

LDA =00 . x

SBC =00 } A:=00;

STA TH2 TH2:=00;

RTS return;

[initial height]

[initial-speed]

} [initial acceleration]

[initial thrust]
{initial fuel]

mode]

until we realize that both the altitude and
the fuel gauge will probably go right past the
zero mark, jumping directly from a positive
to a negative value; so a zero test is out.
Instead, we take action the instant the
number goes negative, restoring it to zero
and then taking whatever other action is
called for.

Lighting the Display

The display is quite straightforward; in
fact, the KIM-1 monitor program has a
subroutine to do the job.

Depending on the display mode flag, all
we need to do is to move altitude or fuel to
the display area, together with rate of
descent. Then we call the sihroutine to
transfer it to the LEDs.

Of course, we must remember to drop the
last two digits from the displayed values

C=25

(0.01 of units, remember?) and to negate the
rate of descent, where necessary, so that it
shows as a positive number.

Detecting Input

The KIM-1 monitor subroutine that lights
the display gives us a frec bonus: It also tells
us whether or not a key is depressed on the
keyboard. To find out which key, we must
cali another subroutine in the monitor pro-
aram.

If we discover that the user has input a
thrust command, buttons 1 to 9, we first
check to sce that the motor is on and that
we have fuel. Then we set the thrust, and
also calculate the acceleration as thrust
minus 5, where 5 represents the force of
gravity.

The two other legal keys, A and F, set the
display mode to altitude or fuei. The pro-
gram sets a memory location which will be
tested by the display routine.

The program doesn't need to worry about
when a button is released. Although the
guestion can be quite important for pro-
grams that must distinguish between, sav, 9
and 99 on the input, the lunar lander doesn’t
really care. If you leave your finger on the
button, it will keep on setting the thrust
over and over to the same value, without
affecting the flight.

Coming Down

The program doesn't stop. If you run out
of fuel, you will watch yourself freefall to
the surface. When vou land, with or without
fuel, your rate of descent freezes so that you
can see how hard you landed.

It would be easy to have the display
change after you land, to show words such
as “SAFE"” or “DEAD.” The KIM-1 display
is segment driven so that you can easily
produce special combinations.

The novice astronaut who would like to

‘try his or her hand at flying this, or other,

craft should keep the following rules in
mind:

1. Always conserve fuel at the beginning
by reducing power to minimum thrust.

2. Don’t let your rate of descent get
excessively high; with my program, it’s
wise to steady up with a thrust value
of 5 when your speed gets over 90 feet
per second.

3. As you get to lower altitudes, try to
balance your altitude against your rate
of descent. At 1000 feet, a rate of

.descent of 500 feet per second will
bring you down in 20 seconds, which
is reasonable. Keep that sort of
balance.®

HORSERACE KIM-1 User Notes vl #3
Charles K. Eaton
19606 Gary Ave.
Sunnyvale, CA 94086
Eight lap horse race and you can be the jockey and
whip your horse to go faster. Warning--whip the horse

too much and he probably poops out.

Horse Track Whipping button
Prince Charming top PC
Colorado Cowboy middle C

Irish Rair bottom 4

Start program at 027F. Race is eight laps.

HORSE RACE
00 01 02 03 04 05 06 07 08 09 OA OB O0C 0D OE OF

0270 00 00 00 00 00 00 OO0 OO OO OO OO OO 00 00 00 D8
0280 A2 13 BD 7C 03 95 7C CA 10 F8 A9 7F 8D 41 17 AOD
0290 00 A2 09 B9 7C 00 84 FC 20 4E 1F C8 CO 06 90 F3
02A0 20 3D 1F A5 8F 30 E3 A2 03 CA 30 DE Db 86 DO F9
02B0 86 99 A4 99 B6 83 B9 90 03 35 7C EA EA EA EA EA
02C0 95 7C E8 96 83 B9 90 03 49 FF 15 7C 95 7C EO0 05
02D0 30 38 DO 0b A5 8F FO 28 DO 30 A2 02 38 B5 83 E9
02E0 06 95 83 CA 10 F6 A2 06 B5 7C 95 76 A9 80 95 7C
02F0 CA DO F5 EA EA EA EA EA EA EA EA EA EA EA EA EA
0300 C6 8F DO 06 A5 81 09 06 85 81 EA EA EA EA EA EA
0310 B9 89 00 FO 0B 20 68 03 29 3C DO 1B 99 89 00 EA
0320 20 68 03 29 38 85 9A B9 8C 00 30 0B 29 38 C5 9A
0330 BO 05 A9 FF 99 86 00 20 3D 1F A0 FF A6 99 3D 93
0340 03 FO 01 88 98 55 89 85 9A EA EA 20 58 03 38 29
0350 01 65 9A 18 Ab 99 75 8C EA EA EA EA EA EA EA EA
0360 95 8C 95 86 4C A9 02 38 38 A5 92 65 95 65 96 85
0370 91 A2 04 B5 91 95 92 CA 10 F9 60 80 80 80 80 80
0380 80 80 80 FF FF FF 80 80 80 00 00 00 80 80 80 08
0390 FE BF F7 01 02 04

ONE-ARMED BANDIT

0200
0202
0204
0207
0209

0208
020E
0210
0212
0215
0217
0219
021B
021C
021D
0Z1F
0221
0223
0226
0228
0228
022D
0227
0231
0233
0235
0237
239
0238
623D
0237

0241
0243
0245
0247
0249
0248
024D
024F
06251
0253
0255
0257
0259
0258
025D

A9
85
20
AS
85

20
Do
E6
20
FO
AS
85
F8
38
A5
ES
85
20
26
20
cé
Do

Ab
A5
25
05
95
46
46
ch
Do

A5
C5
B4
c5
bpo
A2
c9
FO
A2
co
FO
A2
c9
FO
CA

25
05
BA
00
06

8D
FB
09
6D
F9
03
06

GO LDA# $25
STAz AMT
02 JSR@ CVAMT CHANGE TGO DISP
) LDA{ $00
STAz ARROW
H MAIN DISPLAY LOOP
0z LP1 JSRE@ DISPLY
BMEY L
ROLL INCz TUMBLE
02 JSR@ DISPLAY
BEQr ROLL
LDA# s03
5TAz ARROW
SED
SEC
LDAz AMT
SRCH 501 CHARGE A BUCK
STAz AMT
02 JSR@ CVAMT
ROLz TUMBLE
02 LP2 JSR@ DISPLY
DECz STALLL WAIT
BHET 1p2
LDz ARROM
LDAz TUMELE
AND# 536
ORAd 340 SPIN RESULY
STAzx WINDOW+1 TO DISPLAY
LSRz TUMBLE
1SRz TUMBLE
- DECz ARRCGH
BNEr LP2
ALL WHEELS STOPPED ~ COMPUTE PAYOr®
1Az WINDOW+G:
CtiPz WINDGH-3
BNET NOMAT
CHPz WINDOW+2
BHEr NOMAY
LDX# $10
CMP# 540 $15 IF 3 BARS
BEQr PAY
LDX# soe
CMP# 542 $10 IF 3 uUPS
BEQr PAY
LDX# $06
CMP# $44 $5 IF 3 DOWNS
BEQr PAY

DEX

J. Butterfield
Toronto

86
A9
85
20
cé
Do
cé
FO

F8
89

BO
85

20

Do

c9
FG
20
a5
oo
FQ

07
80

8D
08
F&
07
9c

03
01
94
05
BA

03
46
DA
8D
05
80
7

02

G2

Start program at $0200
Press any key to spin wheels

H A WIN! PAY AMOUNT IN X
PAY STz RUYD
PAX LDA# 580
STAz STALLL
LP9 JSR@ DISPLY
DECz STALLL
RNEr LP9
DECz RWD
BEQr LPL
CLC
SED
LDAz AMT
ADCH $01
RCSr LPL
STAz AMT
JSRE CVAMT
BNEx PAX
- WHEELS NOT AL SAME - CHECK FOR SHALL. WIN
NOMAT 1DX{ $03
CHP# §46 CHEERRY
BEQr PAY
LOK JERE DISPLY
1DAz AT
BHEx Le:
BEQr L%

028D
028F
0291
0293
0294
0296
0298
0298
029D
029F
02A1
02A4
02A7
0ZA8
02AA
02AC
02AFE
0281

02R2 ¢

O2B3
02B4

02B6 -

02183

02BA
02BC
02BE
02BF
02c2
02C4
02ca
02¢7
02c8
02c9
02CA
H2CB
02CE
02D0

CA

29

BD
85

LA

LA
4A

BD

60

06
0z
0z

FE
F
41
OB

60
42

oo e s
P) kg

EQ

40 2

E7

ot
l

o
£

1F

1F

s

DISPLAY SUBROUTINE

DISPLY LDXz

ARRGH

BPLr INDIS
OVER INCzx WINDOW+2
INDIS DEX

BPLr OVER

Lbatt §7F

STAd PADD

Lby# S0

LDX# S04
LITE LDAzx WINDOW

STy SBD

STAG sAn

CLD

LDA% 37F
ZIP se# S01

BNEx zie

STAR SBD

Ny

Iy

DEXY

BPLr LITE

JSRE KEYIR

RTS

AMOUNT CONVERSION

CVAMT LDAz

Ay
ANDF $OF
TAX
LDA@x TABLE
STAz WINDOW
LhAz AMT
LSHa
I.SRa
LSRa
LSRa
TAX
1DARx TABLE
STAz WINDOW+1
RTS

KIMMAZE

Find your way out of the maze.

KIM-1 User Notes vli#4

Stan Ockers
Jim Butterfield

You're the flashing light in the

center of the display. As you move up (key 9), down (key 1), left

(key 4), or right (key 6), KIM will keep you in the central display;
you'll see the walls of the maze moving by as you travel. Like walking
through a real maze, you'll only see a small part of the maze as you
pass through it. If you can get out, you'll find yourself in a large

open area; that means you've won.
Program starts at address 0200,

0200 D8 START CLD
0201 A2 02 LDX# 2 3 values
0203 BD B5 02 SETUP IDA@x INIT from init
0206 95 D2 STAzx MZPT ..to maze ptr
0203 CA DEX
0209 10 F8 BPLr SETUP
;-=-pick out specific part of maze
020B A0 OB MAP Lov# 11
020D B1 D2 GETMOR 1DAiy MZPT 6 rows X 2
020F 99 D8 00 STAay WORK
0212 88 DEY
0213 10 F8 BPLr GETMOR
;==-shift to position vertically
0215 A2 0A LDX# 10 for each of 6 rows..
0217 A4 D4 NXDIG 1DYz POSIT shift Y positionms
0219 AS FF LDAF SFF filling with 'walls'
021B 38 REROL SEC ..on both sides
021C 36 D9 ROLzx WORK+1
021E 36 D8 ROLzx WORK roll 'em
0220 2A ROLa
0221 88 DEY
0222 DO F7 BNEr REROL
;==calculate segments
0224 29 07 ANDF 7 take 3 bits
0226 A8 TAY & change to
0227 B9 A0 02 LDA@y TABL segment pattern
022A 95 D8 STAzx WORK ..and store
022C CA DEX
022D CA DEX
022E 10 E7 BPLr NXDIG
;--test flasher
0230 C6 D5 LIGHT DECz PLUG time out?
0232 10 OA BPLr MUG . «NO
0234 A9 05 LDAF 5 ..yes, reset
0236 85 D5 STAz PLUG
0233 A5 DE LDAz WORK+6 ..and.,
023A 49 40 EORE $40 5 1 . 79
023C 85 DE STAz WORK+6 ...flasher,,

023E
0240
0243
0245
0247
0249
024C
024F
0251
0253
0254
0255
0256
0257

0259
025C
025F
0261
0263

0265
0267
026A
026C
026D
026F
0271
0272

0274
0277
027A
027D

027F
0280
0282
0284
0286
0288
028A
028C
028D
028F
0291
0293
0295
0297
0299

TAB1
TAB2
TAB3

TAB4

A9
8D
AO
A2
B5
8D
8C
C6
DO
c8
C8
CA
CA
10

20
20
C5
FO
85

A?
DD
FO
CA
10
30
CA
30

BC
B9
3D
DO

CA
10
C6
DO
DO
E6
DO
CA
DO
Cé
Cé
DO
E6
E6
DO

7F
41
09
0A
D8
40
42
D6
FC

EE

40
6A
D7
CD
D7

04
A8
05

F8
BC

8C

D8
Bl
Bl

04
D4
85
04
D4
F8

06
D2
D2
EF
D2
D2
E9

02A0
02A8
02AD

02B1

17

17
17

1F
1F

02

02
00
02

;==light display

open the gate

tiptoe thru..
..the segments

...pausing

set dir reg
key?
..same as last?

no, record it

5 items in tahle

go key?

upward move
l-o-n~g branch!

downward move

right move

left move

MUG LDA# $7F
STA@ SADD
LDY# $09
LDX# 10
SHOW LDAzx WORK
STA@ SAD
STY@ SBD
ST1 DECz STALL
BNETr ST1
INY
INY
DEX
DEX
BPLr SHOW
;--test new key depression
JSR@ KEYIN
JSR@ GETKEY
CMPz SOK
BEQr LIGHT
STAz SOK
;--test which key
LDX# 4
SCAN CMP@x TAB2
BEQr FOUND
DEX
BPLxr SCAN
BMIr LIGHT
FOUND DEX
BMIr START
;--test if wall
LDY@x TAB3
LDA@Gy WORK
AND@x TAB4
BNET LIGHT
;==move
DEX
BPLr NOTUP
DECz POSIT
MLINK BNETr MAP
NOTUP BNEr SIDEWY
INCz POSIT
BNEr MLINK
SIDEWY DEX
BNEr LEFT
DECz MZPT
DECz MZPT
BNEr MLINK
LEFT INCz MZPT
INCz MZPT
BNEr MLINK

;=-tables (hex listed)
00 08 40 48 01 09 41 49

13 09 01 06 04
06 06 04 08

01 08 40 40

;=-sample maze follows
;==first 3 bytes are initial cursor pointer
INIT 02B5 B4 02 08
MAZE 02B8 FF FF 04 08 F5 7E 15 00 41 FE S5F 04
51 7D 5D 04 51 B6 54 14 F7 D5 04 54
7F 5E 01 00 FD FF 00 00 00 00 00 00
00 00 00 00 00 00

Maze construction: every two bytes, starting at MAZE, represents a
complete cross section of the maze; a one bit in any position represents
a wall.

In the example above, the first cross section is FF FF (all one
bits) - this would be an impassable section of wall. The next cross
section (04 03) has only two pieces of wall in it, at positions 6 and
13. The zeros at the end represent the 'open space’.

L e

MUSIC MACHINE F.

Description

This program plays one or several tunes via the 'Audio Out'
interface of KIM-1. Use the same connection as that for
recording on cassette tape. If your tape recorder has a
'monitor' feature, you can listen to the tune as well as

record it. Alternatively, an amplifier can be used to play
the tune through a speaker,.

J. Butterfield
Toronto

How to Run

Load the program. Load the tune(s) from cassette or from
the keyboard. Tunes start at location$0000. Be sure to
store the value $FA at the end of each tune, and behind the
last tune, store: §FF, $00. Since this program uses the
Break instruction to transfer control back to the monitor
after each tune is played, you must set up the software
interrupt vector by storing $00 in $17FE, and $1C in $17FF.

The starting address for the program is $0200. To play the
next tune, press GO.

How to Write your own Tune

Each note goes into a byte of storage, starting at location

- $0000 of memory. Each tune should end with the value §$FA

which stops the program until GO is pressed.

Special codes are incorporated in the program to allow
certain effects - adjustment of speed, tone, etc. The codes
are followed by a value which sets the particular effect.
The codes are listed below:

Code Effect _ Initially Examples
FB sets speed ol tune $30 18 is quick; 60 is slow
FC sets length of $02 2 means 'long'note lasts
'long'notes twice as long'as'short'
FD sets pitch $01 2 is bass; 4 is deep bass
FE sets instrument $FF FF is piano, 00 is clarinet
FFP sets address for $00 00 will take you back to
tune first tune; like a 'jump'

For example, at any time during a tune, you may insert the
sequence $FB $18 and the tune will begin to play at a fast
speed. Inserting $FF $45 will cause a switch to the tune at
zero page address $0045. The initial values shown can be
reset at any time by starting at address $0200.

No tune should extend beyond address $00DF, since program
values are stored at $00E0 and up.

The program can be easily converted to a subroutine by
replacing the BRK instruction with RTS.

programmer to play various
quite complex tunes.

This allows the
'phrases' of music to produce

The lowest note you can play is A below middle C.
play short notes and long notes (a long note is twice as

long as a short note).

Sample Tunes -

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

FB
3D
14
0o
3A
5F
56
SA
F2
30

middle

18

Some of the notes are as follows:

FE

51
BD
51
51
48

66
44
72
5A

You can

If you want to stretch out a note
even longer than a long note allows, put a 'pause' note
after it,

4c
2D

5A
60
E6
aC
SA
72
0o

C4

80
48
DA
00
4C
56
cC

MUSIC MACHINE

0200
0202
0205
0207
o208

020A
020C
020F
0211
0213
0215
0217
0219
| 021A
| 0218
| 021D
0 021F
I 0221
o | 0222
.0224
‘0226
10228

022A
022cC
022E
0230
0231
0233
0235
0237

0239

023B
023D
023F
0241
0243
0245
0247
0249
0248
024D
0250

05
86
EO

F8

EO
El

02
01
E6
7F
E9
02
EA
E9

04
EA
E9
E9
A7
5D
B8

02

17

02

; initialize

»
START
LP1

main

Clws ws ws

NEXT

e we e

OTE

LDX#
LDAeX
STAZX
DEX
BPLR

F. J. Butterfield
Toronto

$05

INIT

WORK

LP1

routine here - WORK not reset

LDA#
STA®
LDY#
LDAIY
INCZ
CMP#
BNER
BRK
NOP
BEQR
BCCR
SBCH#
TAX
LDAIY
INCZ
STAZX
BCSR

LDXZ
STXZ
LDXZ

- TAY

OVER

HUSH

ON

BMIR
LDX #
STXZ
AND#
STAZ
BEQR
STAZ
LDAZ
ANDZ
BEQR
INCZ
DECZ
LDX#
LDA#
JSRe
BMIR

$BF

PBDD open output channel

$00

WORK+4 get next note

WORK+4

$FA test for halt

NEXT
(or RTS if used as subroutine)

Go resume when GO pressed

NOTE is it a note?

$FB if not, decode instruction
and put into X

WORK+4 get parameter

WORK+4 and

WORK store in work table

GO jump to GO

set up timing for note

WORK timing

LIMIT+1

WORK+1 long note factor
test accumulator

OVER long note?

$01 nope, get short note

LIMIT store length factor

$7F remove short/long flag

VAL2

HUSH is it a pause?

VALl no, set pitch

VAL2 get timing and

WARK+3 bypass if muted

ON

VALl else fade the

VALZ note

VAL2

$A7

SOUND

GO

0252
0254
0256
0259
025B

025D
025F
0261
0263
0265
0267
0269
0268
026D
026F
0272
0273
0275
0277
0279
027B
027D
027F
0281
0283
0285

0286
0287
0288
0289
028A
028B

00EO0
00E6
00E9
00EA
00EB
Q0EC

EA
27
5D

E2

E2
EB
EC
00

EC
EB
Fé
16
42

E8

E7
E8

E7
E6
E0
FF

02

17

VALl

LDX#
LDA# $27
JSR@ SOUND
BMIR GO
BPLR HUSH
E]
3 subroutine to send a bit
»
SOUND LDYZ WORK+2 octave flag
STYZ TIMER
. STXZ XSAV
SLOOP CPX# $00
: BNER CONT
LDXZ XSAV
DECZ TIMER
BNER SLOOP
BEQR SEX
CONT STAQ SBD
DEX
DECZ LIMIT+2
BNER SLOOP
DECZ LIMIT+1
BNER SLOOP
LDYZ WORK
STYZ LIMIT+1
"DECZ LIMIT
BNER SLOoOP
LDA# $FF
SEX RTS
’
; initial constants
H
H
; work areas reserved
»
WORK Sl speed/length ratio/octave/tone
LIMIT *=* +3 timing of note
VAL2 *ak &1 marking and spacing
VAL1 *=* 4] durations
TIMER *=* 4] octave counter
XSAV *at 4]

€€-0

HUNT THE WUMPUS

Game by Gregory Yob Stan Ockers
Adapted for the KIM-1 by Stan Ockers R.R. #4 Box 209
Lockport, I11 60441

I first ran across the WUMPUS in THE BEST OF CREATIVE
COMPUTING where it is programmed in basic. The following is
based on this program with modifications so I could fit the
program and messages in the KIM-1 memory. The messages appear

on the display in scanning form with "sort-of" alphanumeric
letters.

The WUMPUS lives in a cave of 16 rooms (labeled 9 - F).
Each room has four tunnels leading to other rooms (see the
map below). When the program is started, you and the
WUMPUS are placed at random. Also placed at random are two
bottomless pits (they don't bother the WUMPUS, he has sucker-
type feet) and two rooms with SUPERBATS, (also no trouble to

. WUMPUS, he's too heavy). If you enter a room with a pit, you

fall in and lose. If you enter a BAT'S room you are picked

up and flown at random to another room. You will be warned
when BATS, PITS, or the WUMPUS are nearby. If you enter the
room with WUMPUS, he wakes and either moves to an adjacent

room or just eats you up (you lose). In order to capture the
WUMPUS and win, you must use "MOOD CHANGE" gas. When thrown
into a room containing the WUMPUS, the gas causes him to turn
from a vicious snarling beast into a meek and loveable creature,
He will even come out and give you a hug. Beware though, you
have only three cans of gas and once you toss a can of gas into

a room it is contaminated and you cannot enter or you will be
turned into beast (you lose)!

The program starts at $0300. If you lose and want every-
thing to remain the same, (except the room you are in), resart
at $0316. Use the reset key to stop the program because about
half of page one is used and if you just use the ST key the
stack will eventually work its way down into the program. The

byte at $0229 controls the speed of the display. Once you get

used to the characters you can speed things up by putting in a
lower number. The message normally given tells you what room
you are in and what the choices are for the next room. In order
to fire the mood gas, press PC (pitch can) when the rooms to he
selected are displayed. Then indicate the room into which you
want to pitch the can, It takes a fresh can of gas to get the
WUMPUS (he may move into a room already gassed). GOOD HUNTING!

Kim-1 User Notes v.1 #2

CAVE MAP

£3 8 L 2
c q 2 3 N\
2
D A 7
4
F

APPENDIX D.

KIM DEMONSTRATION TAPE

Index

Notes:

KIM-1 DEMONSTRATION TAPE

ID# Name Entry Point Address Range
01 DIRECTORY $1780 $1780-$17AF
02 VU TAPE $0000 $0000-$0049
03 SUPER TAFE (3X speed) $0100 $0100-$01C2
04 MOVE A BLOCK $1780C $1780-$17CB
05 HEDEC $0200 $0200-$0244
06 ADC DEMONSTRATION - BINARY $0000 $0000-$00A%
- BCD $0020
07 FREQUENCY COUNTER $0000 $0000-$0067
08 TAPE DUPE $1780 $1780-$17A9
09 REAL TIME CLOCK $0370 $0370-$0400
0A STOP WATCH $0300 $0300-$0386
10 LUNAR LANDER $0000 $0000-$00C6
11 HORSE RACE $027F $027F-$0396
12 ONE ARMED BANDIT $0200 $0200-$02D1
13 KIMAZE $0200 $0200-$02F0
14 MUSIC MACHINE $0200 $0000-$028C
15 HUNT THE WUMPUS $030C $0000-$0400

Supertape is set for 3X speed. To obtain the 6X speed change
location $01BE to $02 and $01CO to $03.

Move A Block uses data stored in memory as follows:

S00EO SAL old SO00E1 SAH old
SO00E2 EAL old $00E3 EAH old
SO0E4 SAL new S00ES SAL new

Frequency Counter: Connect IRQ to PB7. Signal input is PBO.

Music Machine: Be sure to set up the BRK vector by storing
$00 in $17FE and $1C in $17FF.

Real Time Clock: Connect NMI to PB7, store $A5 in $17FA and
$03 in $17FB. Restart display program at $0379. Press "1"
to return to the KIM monitor,

DIRECTORY

00 01 02 03
1780 D8 A9 07 8D
1790 16 DO F3 20
17A0 20 F3 19 95
VU TAPE

00 01 02 03
0000 D8 A9 7F 8D
0010 46 F9 05 F9
0020 C9 2A DO F5
0030 D5 Ab EO0 E8
0040 AA BD E7 1F
SUPER TAPE (3X)

00 01 02 03
0100 A9 AD 8D EC
0110 17 A2 64 A9
0120 20 70 01 AD
0130 EC 17 20 6D
0140 17 ED F8 17
0150 01 AD E8 17
0160 18 86 EO 48
0170 48 LA LA LA
0180 O0OA 18 30 02
0190 BE BE 01 48
01A0 E1 49 80 8D
0180 30 07 &4A 90
01C0 06 7E
MOVE A BLOCK

00 01 02 03
1780 38 A5 E4 E5
1790 A5 E2 ES5 EO
17A0 B1 EO 91 E&4
17B0 A0 00 B1 EO
17C0 85 E2 A5 E3
HEDEC

00 01 02 03
0200 F8 98 48 8A
0210 A5 E7 48 A0
0220 DF 95 DF CA
0230 DO F7 88 DO
0240 68 A8 D8 60

o4

42
24
FC

o4

41
85
A9
E8
8D

04
17

FS
01
90
20
20
LA
69
2C
L2
DB

o4

EO
A8
88
g1
65

04

L8
08
DO

EO-

05

17
1A
E8

05

17
F9
00
EQ
4o

05

20
20
1if
20
E9
70
88
20
07
L7
17
A0

05
85
30

E4
E7

05
A9

F7
68

06

20
C6
30

06

A9
8D
8D
15
17

06
32

20
EA
AS
01
01
7D
69
17
85
00

06

E6
E8
14
C8
85

06

00
LA

A2

A5

07

41
F9
F8

07

13
4o
E9
DO
DO

07

19
01
6D
19
2F
A2
68
01
30
10
El
FO

07

A5
E6
38
Ch
EJ

07

A2
48
03
E3

08

1A
10
20

08

85
17
17
02
DB

08

A9
A9
01
AD
20
02
Cb
68
AD
FB
CA
D7

08

E5
ES8
A5
E8
kC

08

06
90
18
DO

09

46
F5
if

09

EO
C9
20
A2

09

27
2A
AD
ED
88
A9
EOQ
20
08
B9
DO
(o

09

E5
B1
E2
DO
4F

09

95
ocC
B5
0L

0A

F9
c9
1]

0A

8D
16
24
09

0A

85
20
Fé
17
01
oL
DO
7D
84
BF
E9
E2

0A

£
EO
E5
F7
1C

0A

DF
A2
E2
A5

0B

05
2A
DO

0B

L2
Do
1A
86

0B

E1l
88
17
CD
AD
20
F7
01
E2
01
68
DO

0B

85
91
EO
18

0B

CA
03
75
E6

ocC
E9

DO
D3

oC

17
E9

20

EOQ

0cC

A9
01
20
F7
E7
61
60

A0
8D
Cé
CF

0C

E7
EL
85
A5

0oC

DO
18
E2
DO

0D

85
Fl
FO

0D

20
20
00
8E

0D

BF
AD
6D
17
17
01
20
29
02
bl
E3
60

oD

90
88
E8
E2

0D

FB
B5
95
D4

0E

F9
A2
F9

0E

L1
24
1A
L2

OE

8D
F9
01
AD
20
4C
4c
OF
84
17
FO
0L

0E

18
Do
E6
65

OE

E6
E2
E2
68

OF

Cc9
FD

0F

1A
1A
DO
17

0F

43
17
20
EE
70
5C
19
Cc9
E3
A5
05
C3

OF
38
F9

E8
Eb6

OF

ES5
75

AA

ADC DEMONSTRATION
00 01 02 03

0000 A9 FF 8D 01
0010 85 F9 20 1F
0020 A9 FF 8D 01
0030 85 E7 A2 00
0040 FA A2 00 86
0050 00 00 00 0O
0060 00 00 00 00
0070 00 00 00 0O
0080 A9 80 85 EE
0090 10 DO 09 AD
00A0 EE 90 E3 60

FREQUENCY COUNTER
00 01 02 03

0000 A9 01 85 65
0010 00 EA AD 02
0020 18 A9 01 65
0030 FB 85 FB L4C
0040 FB A9 F4 8D
0050 20 1F 1F C6

0060 05 85 65 68
TAPE DUPE

00 01 02 03
1780 A9 27 A2 3F
1790 17 10 02 A0
17A0 44 17 2C 47

REAL-TIME CLOCK
00 01 02 03

0370 A9 00 85 80
0380 FA A5 83 85
0390 6A 1F C9 01
03A0 00 00 00 OO
03B0 07 17 10 FB
03C0 18 F8 A5 81
03D0 A5 82 18 69
03E0 83 18 69 01
03F0 A9 01 85 83

o4

17
1F
17
86
F9
00
00
00
A9
00

04

F8
17
F9
12
OF
66
Lo

o4

8E
A3
L7

04

A9
FB
DO
00
Eb
69
01
85
D8

AD
Lc
AD
E6
20
00
00
00
00
17

05

A9
29
85
00
17
DO
03

05

43
A2
10

05

Fli
20
03

80
01
85
83
A9

06

03
0D
03
20
1F
00
00
00
18
38

06

36
01
F9
438
Co
F9
00

06

17
BF
FB

06

8D
6A
4
8A
A9
85
82
c9
Fl

07

17
00
Ly
00
1F
00
00
00
65
ES

07

8D
DO
A9
A9
65
AS

07

A2
8E
30

07

0F
1F
LF
48
04
81
C9
12
8D

08

29
00
29
02
4C
00
00
00
EE
EE

08

FE
F9
00
90
FO
00

08

07
43
D39

08

7§
Cc9
1C
98
C5
Cc9
60
DO
OF

EF
00
EF
Ab
2D
00
00
00
8D
Lc

09

17
AD
65
8D
02
85

09

8E
1.7

09

A5
01
20
438
80
60
DO
02
17

GA

ab
0o
8D
El
00
00
00
00
00
9F

0A

AS
02
FA
ol
68
F9

0A

42
49

0A

81
DO
1F
A9
DO
DO
19
Eb6
68

0B

03
00
03

00
00
00
00
17
00

0B

00
17
85
17
Lo
85

0B

17
80

85
0D
1F
83
38
28
A9
84
A8

ocC

17
00
17

FB
00
00
00
00
AD
AD

ocC

8D
29
FA
2C
A9
FA

0C

A0
8D

ocC

F9
20
18
8D
A9
A9
00
CS
68

0D

20
00
20
Ab
00
00
00
00
02
00

0D

FF
01
A9
07
FF
85

0D

5E
L2

0D

A5
/5
90
04
00
00
85
13
AA

0E

80
00
80
E?2
00
00
00
00
17
17

0E

17
FO
00
17
85
FB

OE

2C
17

0E
82

DA
17
85
85
82
DO

68

OF
00

00
86
00
00
00
00
29
46

0F

58
F9
65
10
66
AS

OF

L2
8C

OF

85
20
00
2C
80
81
A5
04
4o

STOP WATCH

0300
0310
0320
0330
0340
0350
0360
0370
0380

LUNAR

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00A0
00BO
00CO

00

A9
85
03
3B
BO
1F
F8
0B
Cc9

01

76
FB
DO
1E
DO
1F
A5
A9
00

8D
20
1F
A9
C9
AD
F9
00
DO

LANDER

00

A2
E2
E2
95
E9
10
06
E6
20
DO
60
£9
02

01

ocC
75
95
E8
00
FB
FO
FO
1F
C9
10
A9
08

02

B5
E4
E2
CA
95
20
Ab
07
1F
15
FD
00
00

03

F2
1F
A5
2E
02
07
69
85
CB

03

B8
95
CA
10
EB
AA
A5
DO
FO
DO
AA
E9
00

04

17
1F
FB
20
FO
17
01
FA
FO

04

95
EZ
10
F9
CA
00
EB
05
06
03
A5
00
00

05

A9
20
20
A0
Ch
FO
85
A5
8C

05

E2
CA
E5
38
10
A5
A6
38
20
85
EA
85
00

06

02
bA
3B
1E
c9
FB
F3
FB

06

CA
88
A5
A5
Eif
EE
EC
AS

EE
FO
E8

07

8D
1F
IE
A5
01
8D
A5
18

07

10
10
EZ
ED
BO
DO
85
00
1F
60
F8
60

08

F3
€9
A9
F9
DO
00
FA
69

08

F9
Fb
10
E5
0C
0A
FB
E5
20
C9
86
45

09

17
04
3A
20
c8
1C
69

01

09

A2
B5
0B
EA
A9
A5

E6
91
10
EA
00

0A

A9
DG
20
3B
A9
A9
00
85

0A

05
£5
A9
85
00
E2
FA
85
00
DO
A5
00

00
03
A0
1E
9cC
9C
85
FB

0B

A0
10
00
ED
A2
Ab
A5
F9
o
05
EA
99

0cC

85
Lc
1E
20
8D
8D
FA
D8

0cC

01
02
A2
A2
03
E3
E5
AS
E1l
A9
38
80

oD

F9
b4
A5
2F
06
06
C9
20

oD

F8
A9
02
01
95
FO
30
02
DO
00
E9
00

OE

85
1C
FA
1E
17
17

6A

OE

18
99
95

EA
08

85
F1
85
05
89

OF

FA
c9
20
38
20
18
DO
1F

OF

B5
75
E2
EB
CA
DO
A5
El
FO
EE
85
98

HORSE

0270
0280
0290
02A0
0280
02C0
02D0
02EO
02F0
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390

RACE

00

00
A2
00
20
86
95
30
06
CA
Cé
B9
20
BO
03
01
95
91
80
FE

01

00
13
A2
3D
99
7C
38
95
DO
8F
89
68
05
FO
65
8C
A2
80
BF

02

00
BD
09
1F
AL
E8
DO
83
F5
DO
00
03

A9

01
gA
95
04
80
F7

03

00
7€
B9
A5
99
96
06
CA
EA
06
FO
29
FF
88
18
86
BS
FF
01

ONE ARMED BANDIT

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02A0
02B0
02C0
02D0

00

A9
E6
01
06
E/
0D
A9
F8
C9
02
00
17
E7
60

01

25
09
85
A5
A5
A2
80
A5
46
Fb6
8C
C8
1F

02

85
20
05
09
0L
0B
85
05
FO
02
42
C8
85

03

05
8D
20
29
C5
C9
08
69
DA
CA
17
CA
00

04

00
03
7C
8F
B6
83
A5
10
EA
A5
0B
38
99
98
A6
4C
91
FF
02

0L

20
02
BA
06
03
42
20
01
20
10
8D
10
A5

00
95
00
30
83
B9
8F
F6
EA
81
20
85
86
55
99
A9
95
FF
0Y4

05

BA
FO
02
09
DO
FO
8D
BO
8D
FB
40
ESQ
05

06

00
7C
8L
E3
B9
90
FO
A2
EA
09

9A
00
89
75
02
22
80

06

02
F9
26
4o
27
07
02
94
02
A9
17
20
LA

07

00
CA
FC
A2
90
03
28
06
EA
06
03
B9
20
85
8C
38
CA
80

07

A9
A9
09
95
C5
A2
Cbt
85
A5
7F
D8
4o
LA

08

00
10
20
03
03
L9
DO
B5
EA
85
29
8C
3D
9A
EA
38
10
80

08

00
03
20
01
02
06
08
05
05
8D
A9
LI
LA

09

00
F8
4E
CA
35
FF
30
7C
EA
81
3C
00
1F
EA
EA
A5
F9
00

09

85
8%
8D
46
DO
C9
DO
20
DO
41
o
60
LA

0A

00
A9
IE
30
/C
15
A2
95

EA
DO
30
AQ
EA
EA
92
60
00

0A

0€E
06
02
09
33
Ly
F9
BA
80
17
E9
A5

0B

00
7F
c8
DE
EA
7C
02
76
EA
EA
1B
08
FF
20
EA
65
80
00

20
F8
Céb
46
A2
FO
Cé6
02
FO
A0
01
05
8D

0cC

00
8D
co
D6
EA
95
38
A9
EA
EA
99
29
A6

EA
93
80
80

0C

8D
38
08
09
10
01
07
DO
F7
0B
DO
29
E7

0D

00
41
06
86
EA
7C
B5
80
EA
EA
89
38
99
03
EA
65
80
80

0D

02
A5
Do
Cb6
c9
CA
FO
E2
Ab
A2
FE
OF
1F

0E

00
17
90
DO
EA
EOQ
83
95
EA
EA
00
C5
3D
38
EA
96
80
80

0E

DO
05
F9
06
40
86
9C
A2
06
o4
8D
AA
85

OF

D8
A0
3
F9
EA
05
E9
7C
EA
EA
EA
A
93
29
EA
85
80
08

OF

FB
ES
Ab
DO
FO
07
18
03
10
B5
42
BD
01

KIMAZE

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02A0
02B0
02C0
02D0
02E0

MUSIC

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

0200
0210
0220
0230
0240
0250
0260
0270
0280

00

D8
D8
2A
C6
8D
D6
D7
BC
10
D2
00
08
L1
7F
00

01

A2
00
88
D5
41
DO
FO
CA
04
cé6
08
01
EE
5E
00

02

02
88
DO
10
17
FC
CcD
30
Cb
D2
4o
08
5F
01
00

MACHINE

00

FB
BD
b
00
5A
FF
56
5A
F2
80

00

A2
00
FB
A8
E9
30
EB
42
E6

01

18
BD
B3
FB
5A
5A
56
56
80
4C

01

05
Bl
AA
30
25
B8
86
17
DO

02

FE
BD
80
28
51
5A
56
L
FE
56

02

BD
Eg4
B1
02
E%
Ab
EC
CA
EO

03

BD
10
Fi7
0A
AD
c8
85
8C
D4
DO
43
4o
0L
00
00

03

FF
00
80
5A
48
5A
56
00
00
5A

03

86
E6
E4
A2
Fo
EA
EO
Cb

A9

04

B5
F8
29
A9
09
C8
D7
BC
DO
EE
01
40
o
FD
00

0k

4
Ll
Ll
5A

5A
5A
Ch
00
56

0k

02
Eh
E6
01
04
A9
00
E8
FF

05

02
A2
07
05
A2
CA
A2
AD
85

09
B4
7D
FF
0o

05

51
BD
51
51
48
5A
66
Ly
72
5A

05

95
C9
Eh4
86
E6
27
DO
DO
60

06

95
0A
A8
85
0A
CA
04
02
DO
D2
41
02
5D
0¢C
00

06

E6
00
Ch
L8
51
5A
D9
4c
SA
E6

06

EQ
FA
9%
E6
EA
20
08
EC
30

07

D2
Al
B9
D5
B5
10
DD
B9
o4
EB
L9
08
04
00
00

07

E6
A
80
5A
5A
66
80
56
cc
F2

07

CA
DO
EO
29
(o
5D
Ab
Cb
02

08

CA
D4
A0
A5
D8
EE
A8
D8
E6
D2

FF
51
00

08

66
3D
80

60
72
80
5A
72

08

10
04
BO
7F
E9
02
EC
E7
01

09

10
A9
02
DE
8D
20
02
00
D4
DO
09
FF
B6
00
00

09

5A
36
5A
D1
79
79
LC
5A
5A
FA

09

F8
00
EQ
85
Ab
30
Cé
DO
F¥

0A

F8
FF
95

Lo
40
FO
3D
DO
E9
01
04
54
00
00

0A

51
33

5A
6C
E6
48
56
cc
FF

0A

A9
EA
Ab
E9
E9
AF
EB
E8
00

AD
38
D8
40
17
1F
05
Bl
F8
00
06
08
14
00
00

0B

LC
2D
E6
5A
60
E6
Ll
5A
i
00

0B

BF
FO
EO
Fo
A9
10
DO
AL
00

0C

0B
36
CA
85

20
CA
02
CA
00
0L
Fh
F7
00
00

ocC

ch

A8
80
51
DA
80
4C
66
5A

ocC

8D
ED
86
02
A7
E2
Fb
EO

0D

B1
D9
CA
DE
42
6A
10
DO
DO
00
06
pé <
D5
00
00

0D

Ch
80
80
48
DA
56
4C
56
cc

0D

L3
90
Ei
85
20
AL
FO
84

D2
36
10
A9
17
LF
F8
B1l
06
00
06
15
04
00
00

0E

Ch
80
FA
DA
FA
56
LC
5A
80

0E

17
0B
Ab
EA
5D
E2
16
E7

OF

99
D8
2 |
7F
Cé
C5
30
CA
Cb
00
04
00
54
00
00

0F

D1
33
FE
EO
FE
56

66
B8

OF

A0
E9
El
A5
02

8D
ol

HUNT THE

00
0000 80
0010 F8
0020 F7
0030 B7Y
0040 00
0050 02
0060 05
0070 08
0080 0B
0090 80
00A0 80
00BO 80

00
0100 80
0110 84
0120 DO
0130 63
0140 F3
0150 EE
0160 F3
0170 B7

00
0200 84
0210 DO
0220 20
0230 17
0240 8D
0250 CoO
0260 20
0270 E7
0280 FD
0290 Ok
02A0 30
02B0 CB
02C0 B5
02D0 01
02E0 F9
02F0 BE

WUMPUS

01

EE
BE
B9
F3
00
02
03
04
OE
B7
B9
B8

01

9C
F8
1E
1E
F9
EE
84
80

01

DE
01
28
20
41
06
s5E
60
Fo
D5
0D
60
80
20
F7
BD

02

DC
D4
F9
=9
00
00
01
03
05
84
F7
DC

02

BE
80
DO
6C
DO
84
F8
00

02

85
60
02
3E
17
90
02
A5
05
CB
20
AB
85
00
F8
80

03

BE
D4
Fl
DE
00
01
02
04
06
ED
D4
ED

03

B7
B9
1E
1C
FC
84
80
80

03

DD
95
AL
02
A0
F3
FO
co
06
FO
B2
CA
c9
02
Cco
=l

oL

80
F9

80
00
01
03
07
0F
ED
ED
F9

04

F3
B8
DO
BD
Eq
F9
00
DC

04
A9

DC
Z€
00
20
FB
DO
Cco
03
02
B5
60
AD
80
DO

F7
B8
00
7
00
00
02
06
08
F9
80
80

05

BE
DC
1E
DC
F8
F9
80
BE

05
07

Lc
07
A2
3D
20
04
A5
CA
AD
50
A2
00
EE
DC

06

DO
ED
80
80
00
03
05
07
09
DE
B8
00

06

ED
ED
L8
F8
80
F9
BD
F8

06

85
CA
0A
17
09
1F
It
E6
Cco

10.

06
85
03
A9
DC
B7

07

F9
80
DC
9C
00
04
06
0A
OF
80
F9

07

85
F9
22
80
ED
80
Ed
80

07

DF
10
02
10
B9
60
02
Cco
60
F9
17
(of
D5
AC
BE
80

08

80
B8
DC
BE
00
00
05
09
0B
co
F:l
DO

08

BY
00
OF
EE
D4
F1
ED
DC

08

AOD
F3
A2
F8
E8
20
FO
DO
06
60
29
B5
Cb
20
80
9C

09

84
F9
F3
B7
00
06

08"

0A
0cC
80
F8
DC

09

B8
80
E6
DC
F7
£9
80
F1

09

05
D8
06
Cb
00
8C
Fé
F8
co
20
03
60
FO
00
BD
BE

0A

D4
F7
ED
F3
00
07
09
0F
0D
DC
en
DC

0A

DC
FC
63
BE
F8
B8
84
80

QA

A2
18
86
DB
8L
1E
20
29
Eb
72
AA
85
03
02
F9
B7

0B

80
DE
80
BE
00
00
08
0cC
0E
D4
00
B7

0B

ED
F7
1E
80
B9
B8
D4
BD

0B

05
98
DB
DO
FC
20
6A
8E
co
02
B5
c7
CA
Lc
F8
F3

ocC

DE
80
co
ED
00
09
0B
oD
0E
B8
80
D3

0C

FY
F8
6C
00
F6
80
80
F7

0C

Bl
65
A9
EF
20
3E
1F
FO
A5
29
C6
B5
10
D4
80
BE

0D

85
F8
80
80
00
0A
0C
0E
OF
EE
EE
80

0D

00
ED
1€
80
80
84
Do
ED

0D

DD
DF
52
60
LE
02
Cc9
05
co
0F
85
70
F9
02
F7
ED

0E

co
DC
FC
80
00
01
0B
0cC
0D
80
DC
00

0E

80
80
0F
ED
00
D4
DC
80

0E

c9
85
8D
A9
IF
DO
15
0A
60
c9
CB
85
60
BD
80
80

OF

80
85
BE
00
00
o4
07
0A
0D
DB
BE
00

0F

=3
B9
E6
BE
80
80
DC
00

0F

00
DC
07
/F
Cc8
F8
10
90
A2
o4
A5
c8
AQ
DO
Fb
00

HUNT THE

0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03A0
0380
03CO
03D0
03E0
03F0

00

AD

85

CA
03
A9
20
A2
00
EB
30
02
3D
02
8A
1A
6C

WUMPUS (CONT.)

01

06
EOQ
FO
8L
19
00
03
02
Ab5
SA
20
20
AQ
30
AL
03

02

17
A0
F5
El
10
02
B4
20
CA
EO
99
00
00
EE
EO
A0

03

85
05
CA
B9
0A
Cb6
Cc6
58
A2
03
02
02
A9
A5
B9
02

04

co
10
10
Cb6
EO
E1l
B9
02
o4
10
C5
4C
B7
D1
E7
A9

05

A9
02
F9
00
01
AL
E7
c9
D5
17
CA
16
20
Ab
1F
DE

06

FF
AO
99
20
30
El
1F
14

c1.

EQ
DO
03
00
EO
85
20

07

A2
00
CA
8F
oL
10
95
FO
FO
01
84
A9
02
95
9F
00

08

0E
A2
00
02
A9
DA
20
438
33

A9
4LF
20
Cco
A0
02

09

95
05
88
8A
0E
AL
CA
20
CA
1D
26
20
58
C5
00
FO

0A

Cl
20
10
30
10
CA
10
C5
10
A0
20
CF
02
CcB
A9
F7

0B

CA
72
EC
17
02
B9
F6
02
F9
00
CF
02
20
FO
90
A9

10
02
20
EOQ
A9
E7
A0
85
20
A9
02
A9
C5
15
20
73

0D

FB
29
B2
03
00
1F
00
CA
8F
26
A0
65
02
Cb6
00
20

A9
OF
02
30
A0
85
98
8A
02
20
01
20
85
EOQ
02
CF

03
D5
A0
04
01
ocC
20
30
8A
00
A9
CE
D1
FO
4¢C
02

APPENDIX E.

SPECIAL APPLICATIONS

Single Channel Analog to Digital Conversion

SUBROUTINE ADC - 8 Bit Analog to Digital Conversion

0080 A9 80 ADC LbAa# $80 enter trial no,

0082 85 EE STAz TRIAL save it

0084 AS 00 LDA# $00 clear A

0086 18 NXTBIT CLC clear carry before add
0087 65 EE ADCz TRIAL add trial to A

0089 8D 00 17 STAR PAD output to DAC

008C AD 02 17 LDAR PBD check comparator

008F 29 10 AND{ $10 mask all but bit &

0091 DO 09 BNEr SAVE if comp. = 1, save result
0093 AD 00 17 LDA@ PAD too big, get no. from DAC
0096 38 SEC set carry before subtract
0097 E5 EE SBCz TRIAL subtract trial no,

0099 4C 9F 00 JMP@ SHIFT-

009C AD 00 17 SAVE LDA@ PAD load DAC into A

009F 46 EE SHIFT LSRz TRIAL divide trial by 2

00Al1 90 E3 BCCr NXTBIT done if trial less than 1
0043 60 RTS return with final no, in A
Hardware:

"PAO - PA7 are out to DAC
PB4 is in from comparator

Ref. input #Ha v
-0y =
15| 14 3@
4 16
a7 [O—— i 7570 -
6 6
PAS O 741 V output
7 3 +
A OO
PA3 D———-—S -15V
P2 ['
7 R - TS @
2.2 K
]'—'\/V\/* +5 vV
— -{> PB4

Comparator output

V input

ANALOG TO DIGITAL CONVERSION DEMONSTRATION PROGRAM

Display ADC Output in HEX Format

0000 A9 FF
0002 8D 01 17

0005
0008

AD
29

03 17
EF

000A 8D 03 17

000D
0010
0012
0015

20
85
20
4C

Display

0020
0022
0025
0028
0024
002D
0030
0032
0034
0036
_ 0039
003B
003D
003F
0041
0043
0045
0048

note:

A9
8D
AD
29
8D
20
85
A2
86
20
A6
86
A6
86
A2
86
20
4C

80 00
F9

1F 1F
oD 00

START

LOOP

LDA#
STA@
LDA@
AND#
STA@
JSR@
STAz
JSR@
JMP@

$FF
$1701
$1703
$EF
$1703
ADC
$F9
SCANDS
LOOP

ADC Output in BCD Format

FF
01 17
03 17
EF
03 17
80 00
E7
00
E6
00 02
El
FB
E2
FA
00
F9
1F 1F
2D 00

START

READ

LDA#
STA@
LDA@
AND#
STA@
JSR@
STAz
LDX#
STXz
JSR@
LDXz
STXz
LDXz
STXz
LDX#
STX=z
JSR@
JMP@

$FF
PADD
PBDD
SEF
PBDD
ADC
HEDEC-L
$00
HEDEC-H
HEDEC
SE1

$FB

$E2

S$FA

$00

SF9
SCANDS
READ

set PA port to output

set PB4 to be input

call ADC subroutine

store ADC output in right display
display data ’
loop back for more data

set PA port to output

set PB4 to be input

read ADC
set up data for binary to BCD conversio

call binary to BCD conversion routine
get BCD result high

store result in left display

get BCD result low

store result in middle display

zero the right display

display final BCD value
loop back for more data

In order to perform the binary to BCD conversion, you must load

the HEDEC program into the memory starting at address $0200.

This program uses.the. circuit and ADC subroutine ﬁhowg on page E-1.

MULTICHANNEL ANALOG INPUT/OUTPUT SYSTEM FOR KIM-1

by J.B. Ross

A multichannel analog I/0 system which is ideally suited to the
KIM-1 system was developed by Douglas R. Kraul (BYTE June 1977, pp. 18-23).
This system (see diagram on p,E-7) provides 8 channels of analog input
and output. The circuit uses standard components and can be constructed
using wire-wrap techniques for less than $50.00.

The multichannel I/0 system is interfaced to KIM-1 via the
programmable I/0 lines as follows:

Connect the 8 data lines driving the DAC to port PA--

DAC O to PAO
DAC 1 to PAl

DAC 7 to PA7

Connect the remaining control lines to port PB--
SELECT 0 to PBO
SELECT 1 to PB1
SELECT 2 to PB2
STROBE to PB3
SIGN BIT to PB4

The complete driver software is given on the following pages.

The interface driver uses the KIM-1 interval timer to trigger an NMI
interrupt to update the inputs and outputs every 50 mSec so you must
also connect PB7 to pin 6 of the expansion connector. The NMI interrupt
vector is set up by the initializing routine starting at $0380.

To make the interface system operate, load the Analog Interface Driver
Routine, the Analog to Digital Conversion Subroutine, and the Initialization
Routine. Start the program at $0380. Control will be transferred immediately
back to the KIM monitor. If the display begins to flicker, the program

is operating properly. Eight bit data to be sent to.output channels 0

through 7 is stored in locations $00CO through $00C7, eight bit'input

data from channels O through 7 is written into locations $00C8 through
$00CF. When the interface driver is operating, the keyboard monitor
can be used to enter data for the analog outputs and to examine data
from the analog inputs. This feature makes calibration of the interface
very convenient.

Since the analog data is transferred to and from the memory table
by the interface driver software, users need concern themselves only
with the details of how to use the digital data contained in the table.
Programs can readily be written to examine input data and generate output
data. If a user program does any critical timing, there is a possibility
of interference by the interfaée driver. A complete update of all inputs
and outputs requires about 5 mSec and takes place automatically every
-50 mSec. If a timming loop is used, it may be lengthened by 5 mSec,

The interface driver uses the interval timer located at $1704 - $170F
so this sould not be used‘by gnother program. The other timer at
$1744 - $174F is available for general timing use, but has no signal
output for interuppting the processor.

The driver software also includes an eight bit counter in location
$00D0 which increments by one each time the interface is serviced, and

a four digit BCD '"clock" in locations $00D1 and $00D2 which is incremented

once-each 0.1 Sec (approximately).

ANALOG INTERFACE DRIVER ROUTINE

0300
0301
0302
0303
0305
0306
0308
030B
030D
0310
0313
0315
0318
031A
031D
0320
0322
0325
0327
032A
032B
032D
032F
0332
0335
0337
0338
0334
033C
033E
0341
0343
0344
0345
0347
0349
0348
034D
034F
0351
0353
0354
0355
0356
0357

48
8A
48
A2
8A
09
8D
B5
8D
AD
29
8D
A9
8D
AD
FO
AD
09
8D
E8
EO
DO
8E
20
95
E8
EO
DO
A9
8D
E6
18
F8
AS
29
65
85
A9
65
85
D8
68
AA
68
40

00

08
02
co
00
02
F7
02
64
04
07
FB
02
08
02

08
D6
02
58
co

10
F3
30
OF
DO

DO
01
D1

00
D2
D2

17

17
17

17

Ly
17

17

17

17
03

17

START

OUTPUT

DELAY

WAIT

INPUT

EXIT

CLOCK

PHA
TXA
PHA
LDX#
TXA
ORA#
STA@
LDAzx
STA@
LDA@
AND#
STA@
LDA#
STA@
LDA@
BEQr
LDA@
ORA#
STA@
INX
CPX#
BNEr
STX@
JSR@
STAzx
INX
CPX#
BNEr
LDA#
STA@
INCz
CLC
SED
LDAz
AND#
ADCz
STAz
LDA##
ADCz
STAz
CLD
PLA
TAX
PLA

RTI

$00

$08
$1702
$co
$1700
$1702
SF7
$1702
$64
$1704
$1707
WAIT
$1702
308
$1702

$08
OUTPUT
$1702
ADC
$co

$10
INPUT
$30

$170F
COUNT

COUNT
$01

TIME-L
TIME-L
$00

TIME-H
TIME-H

save A

save X

clear X

get channel number

disable output multiplexer
select output channel

get number from memory table
send it to DAC

enable output multiplexer

set up time delay for charging
use microsecond timer

get status

wait until timer is done
disable output multiplexer

increment channel in X

check for maximum X=8

if less than maximum, repeat output

select input channel

convert analog V to binary

save number in memory table

increment channel in X

check for maximum X=$10

if less than maximum, repeat input

reload interval timer with refresh
value (msec)

increment sample count

clear carry before addition

switch to BCD mode

get count number

mask all but low bit

add bit to low order time

save result

clear A

add carry to high order time
save result

return to binary mode

restore X

restore A _
return from interrupt

ANALOG TO DIGITAL CONVERSION SUBROUTINE

0358
035A
- 035C
035E
035F
0361
0364
0366
0369
0368
036D
0370
0371
0373
0374
0376
0379
037B
037D

INITIALIZATION ROUTINE

0380
0382
0385
0387
038A
038C
038E
0390
0392
0395
0397
039A
039D

A9
85
A9
18
65
8D
C6
AD
29
DO
AD
38
E5
18
90
AD
46
90
60

A9
8D
A9
8D
A9
85
85
85
8D
A9
8D
AD
4C

80
EE
00

EE
00 17
E3
02 17
10
09
00 17

EE

03
00 17
EE
El

FF
01 17
OF
03 17
00
DO
D1
D2
FA 17
03
FB 17
OE 17
4F 1C

ADC

NXTBIT

SAVE
SHIFT

INTLZ

LDA#
STAz
LDA#
CLC

ADCz
STA@
DECz
LDA@
AND#
BNEr
LDA@
SEC

SBCz
CLC

BCCr
LDA@
LSRz
BCCr
RTS

$80
TRIAL
$00

TRIAL
DAC
$F3
COMP
$10
SAVE
DAC

TRIAL

SHIFT
DAC
TRIAL
NXTBIT

enter trial number

save it

clear A

clear carry before addition
add trial value to A

send trial value to DAC
waste 5 microseconds

get comparator status

mask to recover bit &4

save result if comparator = 1
too big, get number from DAC
set carry before subtraction
subtract trial number

jump to shift

get number from DAC

divide trial number by 2
done if carry is 1

return with final value in A

FOR INTERFACE DRIVER

LDA#
STA@
LDA#
STA@
LDAg#
STAz
STAz
STAz
STAQ@
LDA#
STA@
LDA@
JMP@

$FF
$1701
$OF
$1703
$00
COUNT
TIME-L
TIME-H
NMI-L
$03
NMI-H.
$170E
$1C4F

set PA port to output
set PBO - PB3 to output

clear A

clear COUNT

clear TIME-L

clear TIME-H

set up NMI interrupt vector

enable timer interrupt
jump to monitor (or user program)

MULTICHANNEL ANALOG INTERFACE

+15V +ISY
10K —
- e -3V
ict T $10K I
g; 1000 pF ______1 2 F
.4 Ext
s ‘ ;
1c2 o 4 5
/fn_rL\ 1000 pF 10pF > ouT Msge ?C T
—<) 6
M ice rcis 2y _veer T:'G 3
- & 18
c3 e €04051 DI 5 4\ outpur
ouT 2.7k IcH —<3 3 { poRT
AR MCI408L-8 |10
;l; d 04 1w COMP COMP 2
1
L i 6 ENABLE : - ‘a v ;;Qé
ChS i N I |ﬁl_ comp_ vEEl =
e g;HJOOpF 2| 5 aplF 18 ¥
OUTPUTS 3 A 2.2K
s 5> c2 1‘ 100pF &
e 1000pF :: : wgu foax N
P <
0 -
;,r; o0 NGz SIGN BIT o 10
4 100K
ce I gt
iIOOOpF
K 3 +15V
SELECT 2 210 &
IC’I :\ _]'_"._m’:> ” SELECT | 1 PORT > +15V
b N I 3 SELECT © P
/
o ‘ 149 i o > +5V
| o cD40S5I
o \lca™~
~o P J_'IO,.:F T 10uF
-’ — 1000pF 4 1]
. X o—7 10
Z 2 6 > GND
[IC1 TO B D-H-"‘;_)-G ENABLE 3 ,}’ | I
Qur CA3I30 D—Ift c o 10uF Ty 1OuF
ANALOG | >—o4 8 | B
2 weuTs | 1215 Al Fy < O -5Y
A e ok
) i i {>-15V
Oo-—i0 6
100pF -5V

Number Type +5V |GND |-15V [+15V | -5V
1108 CA3130 ¥ 4
9 CD4051 16. 8 7
10 CD4051 16 8 7
1 MCl408L-8 13 2
12 LM311 1 4 8
13 LM318 4 8

APPENDIX F.

KIM/6500 INFORMATION SOURCES

.

KIM SOFTWARE SOURCES

KIM-1/650X User Notes
109 Centre Ave.
West Norriton, PA 19401
Published every 5 to 8 weeks. Subscription: $5.00 for
six issues. Back issues may be available. Highly
recommended,

ARESCO

314 Second Ave,

Haddon Heights, NJ 08035
4K version of FOCAL for $40, 2.5K assembler (nonstapdard
mnemonics) for $30, 6K assembler/text editor (standard
mnemonics) for $60. Send $2.00 for literature.

6502 PROGRAM EXCHANGE

2920 Moana

Reno, Nevada 89509
4K FOCAL (FCL-65), scientific routine package (written in
FOCAL), games and general software for 6500 systems using
the KIM and TIM monitors. Send $0.50 for program list.

THE COMPUTERIST

P.0. Box 3

S. Chelmsford, MA 01824
High quality software. PLEASE game package for KIM-1:
$10.00 (cassette). HELP text editors and word processing
programs-send for description-$15.00 per cassette. MICRO-
CHESS Chess playing program for KIM-1: $15.00.

PYRAMID DATA SYSTEMS
6 Terrace Avenue

New Egypt, NJ 08533
"XIM" extended I/0 monitor package for KIM (requires more

than 1K of memory) $12 for manual and cassette.

MICRO-WARE LTD.
27 Firstbrooke Road
Toronto, Ontario
Canada M4E 212
Assembler, dissassembler, and text editor for 6502 with

4K memory. Manual and KIM cassette: $25, source listing:
$25. Well documented,

Kenneth W. Ensele

1337 Foster Rd.

Napa, CA 94558
Source for Tom Pittmans 2K TINY BASIC on KIM cassette.
Specify starting address $0200 or $2000. $9.50 for
tape plus $1.00 handling and postage.

Fe]

ORB

P.0. Box 311

Argonne, IL 60439
THE FIRST BOOK OF KIM by Stan Ockers, Jim Butterfield, and
Eric Rehnke. The book includes a beginners guide to KIM,
several tutorials on hooking things up to KIM, and a large
number of game and utility type programs. 180 pages,
8 1/2 X 11 format: $9.00 plus $0.50 postage.

Johnson Computer
P.0. Box 523
Medina, Ohio 44258
4,.5K assembler/text editor and other 6502 software. Write

for current information.

6500 MICROPROCESSOR SUPPLIERS

MOS Technology
950 Rittenhouse Rd.
Norristown, PA 19401 (215) 666-7950

Rockwell Microelectronic Devices
P.0. Box 3669

Anaheim, CA 92803 (714) 632-3729
Synertek

3050 Coronado Dr.

Santa Clara, CA 95051 (408) 984-8900

6500 BASED MICROCOMPUTER SUPPLIERS

Apple Computer Inc.

20863 Stevens Creek Blvd.

Bldg. B3-C

Cupertino, CA 95014 (408) 996-1010

Commodore Business Machines
901 California Ave,.

Palo Alto, CA 94304 (415) 326-4000
ECD Corp.

196 Broadway

Cambridge, MA 02139 (617) 661-4400

Ohio Scientific
11679 Hayden
Hiram, Ohio 44234

APPENDIX G

G. GENERAL REFERENCE INFORMATION

653@ TIMER FUNCTIOHS AND PROFPERTIES
A. TIME-CUT FLAG AND INTERRURPT ENABLE REGISTER:
1. ALL WRITE CPERATIONE TN THE COUNTER TOUCH THE INTERRUPT
~ ENABLE REGISTER (ADIRESS BIT 3, THE ’8’ BIT, IS COPIED INTO
THE INTERRUFT ENABLE REGISTER).

e ALL READ OPERATIONS CN THE COUNTER (EVEN ADDRESSES) TOUCH
THE INTERRUPT ENABLE REGISTER.

ALL READ OPERATIONS ON THE TIME-OUT FLAG (ODD ADDRESSES)
LEAVE THE IWNTERRUPT ENAPLE REGISTER 'NTOUCHED.

(3

4. AFTER COMPLETION OF TIME-OUT, FLAG READ OPERATIONS DO NOT
CLEAR THE TIME-QUT FLAG.

5 AFTER COMPLETIONM OF TIME-QUT, COUNTER READ OPERGTIONS CLEAR THE
TIME-OUT FLAG.

6. ALL COUNTER WRITE OPERATIONS CLEAR THE TIME-OUT FLAG.

B. PRE-SCALER BITS:

1. PRE-SCALER BITS ARE TOUCHED ONLY BY WRITE OPERATIONS
(ADDRESS BITS @ AND 1., THE ’1’ AND ’27 BITS. ARE COPIED INTO
THE PRE-SCALER REGISTER).
<. THE COUNTER CAMN EBE LOALED AT ALL ADDRESSES FROM 1704-1707 AND
FROM 17@C-17@F, BUT IT CAN BE READ ONLY AT THE EVEN ADDRESSES.
3 THE TIME-OUT FLAG CAN BE REARD OMLY AT QDD ADDRESSES: SUCH
READ OPERATICONS ALWAYS RETURN EITHER 20 OR 2@ (HEX).
CONSEQUENCES: !
% SETTING THE PRE-SCALER BITS REQUIRES A WRITE OPERATION.
2. ENABLING THE INTERRUPT REGUIRPES A WRITE OPERATION AT ADDRESSES

170C-170F, OR A REALDL OPERATION AT EITHER 170C OR 179E.

3. DISABLING THE IMTERRUPT REQUIRES A WRITE OPERPATION AT ADDRESSES
1704-17%7, OR A READ OFERATION AT EITHER 17¢4 OR 170%.

4. ALL TRANSACTIONS AT EVEN ADDRESSES CLE4R THE TIME-OUT FLAG
IF IT HAPPENED TO BE 3ET.

0000
eeoz
@005
0007
CO0A
000D
QO0F
eeiz
0015
@016
@o17
0019
©@O1B
291D
GO1F
0020
RO22
0024
vwo26
0az28
202A
002ZB
202D
e22F
0031
0034
V036
0938

NOW THE

0040
©ed1
0044
@045
@R48
©048
Qa4n
994D
vese
ae51

NOTES:
p 45
i

40
FE
00
FF
03
FF
01
oF

17

12
172

17 |
17

1F

| L

INTERRUPT EXPERIMENT

LDAL $40
STh@ $17FE
LDA¥ $00

STA@ $17FF —

STAG $1703 -
LDAt %FF
STAE $1701
STAG $170F 4
CLI

SED

LDAk $00
STHZ $F9
STAZ $FA
STAZ 5FB
STC

LDX$ SFD
LDAZX $FC
ADCE 500
STAZY $FC
BCC 803

INX

ENE #F5

LDAL 320

STAZ $39
JSR@ B1F1F
DECZ %89
ENE %F9
EEQ $ES

INTERRUPT-DRIVEN PROGRAM:

48
AD
QA
oA
Do
A9
8D
EE
638
49

o2

02
FF
oOF
09

17

17
17

PHA :
LDAR #1702
ASL A

ASL A

ENE %02
LDA% $FF
STA@ $179F
INC@ $1700
PLA

RTI

~START UP TIMER

IR@ VECTOR INSTALLED

PORT B INPUT ¢

(8

PORT A OUTPUT ain . WL
10}'\11 et BB &

ENABLE INTERRUPTS

DECIMAL MODE

ZERO OUT DISPLAY DIGITS

USE CARRY TO DO THE INCREMENT
NOTE WRAP-AROUND INDEXING '
TO GET TO LOCATION F9 FIRST

WRITE BACK UPDATED DIGIT PAIR
FALL OUT IF NO CARRY-OUT
UPDATE INDEX IF NEED BE

FALL OUT IF ALL DIGITS DONE

USE LOC. 80 AS DISPLAY LOOP CTR.
CALL TO DISPLAY DIGITS

COUNT DOWN DISPLAY CALLS

DO ANOTHER DISPLAY CALL

UPDATE DISPLAY CONTEMTS

SAVE ACCUMULATOR

GET SWITCHES

SHIFT UP

TWICE

IF ALL SWITCHES ARE ZERO
USE #FF FOR DEFAULT
RESTART TIMER

UPDATE PORT A

RETRIEVE ACCUMULATOR
RETURN FROM INTERRUFT

GROUNDING SWITCHES WILL SPEED UP THE UPDATES ON PORT A.
LOCATION @Q2E CONTROLS THE COUNTING RATE ON THE DIGIT DISPLAY.

CODE COMPARLCON CHART

DECIMAL 4-BIT SIGN AND 5-BIT 1s COMPL. 2s COMP. 5-BIT
BINARY ~ MAGNITUDE OFFSET ~ BINARY BINARY GRAY
(+ = O BINARY

= 1)
15 1111 Q: 1911 1 1111 O 111} Q 1111 01000
14 1110 0 1110 11110 0 1110 0 1110 01001
13 1101 O 1101 1 1101 01101 O 1101 01011
12 1100 01100 1 1100 0 1100 0O 1100 01010 -
11 1011 0 1011 11011 0 1011 0 1011 01110
10 1010 0 1010 11010 0 1010 O 1010 01111 °
9 1001 0 1001 11001 01001 O 1001 - 01401
8 1000 0 1000 11000 0 1000 0 1000 01100
7 0111 0 0111 1 0111 00111 0 0111 00100
6 0110 0 0110 1 0110 00110 0 0110 00101
5 0101 0 0101 10101 00101 0 0101 00111
I 0100 0 0100 10100 00100 00100 00110
3 0011 0 0011 1 0011 0 0011 O 0011 -00010
2 0010 0 0010 1 0010 00010 0 0010 . 00011
0001 0 0001 1 0001 0 0001 O 0001 00001
0 0000 0 0000 1 0000 f f??? 0 0000 00000
-1 1 0001 0 1111 1 1110 1°'1111 10000
-2 1 0010 0 1110 1 1101 1 1110 10001
-3 1 0011 0 1101 11100 1 1101 10011
-l 1 0100 0 1100 1 1011 1 1100 10010
-5 1 0101 0 1011 1 1010 1 1011 10110
-6 1 0110 0 1010 t 1001 1 1010 10111
-7 1 0111 01001 11000 1 1001 10101
-8 1 1000 01000 10111 1 1000 10100
-9 1 1001 00111 10110 1 0111 11100
-10 1 1010 00110 10101 1 0110 11101
-11 1 1011 00101 10100 10101 11111
-12 1 1100 0 0100 10011 1 0100 11110
-13 1 1101 00011 10010 1 0011 11010
-14 1 1110 0 0010 1 0001 1 0010 11011
-15 1 1111 0 0001 10000 1 0001 11001
-16 0 0000 1 0000 11000

Offsct blnary and 2s complement differ only in the state of the sign bit.
Gray code 13 not weighted; it can only be converted into a binary bit string,

which must then be further interpreted.

OVERFLOW AND UNDERFLOW WITH SIGHLD ARITHMETIC

. For the purpose at hand we will use a 3-tit binary adder which will

accept a pair of 3-bit inputs (the addends) to form a i-bit output by
the rules of straight ("unsigned") binary addition. In addition to the
10 bits making up the inputs and the output, we will define one more.

signal, vhich is the carry into the leftmost bit position of the addends:

cin
+22=+L
Ao A1 A2
~22=-L +21=+gg 42041
B0 El 82
—22=-h +21=+2 +2%=+1
+.
. <
Mo Ml M2 cout “o Sl S2
16| |+27=48] |42%4s Pt | liptesn] 2%t

To keep a running count of overflow and underflow events we will need
one more register, here also shown as 3 bits wide. Because spill-out from

the adder may have a weight of +4 of -4 (overflow or underflow), it will

. be convenient to assign a weight of 4 to MZ' and t¢ treat the contents

of M as another signed number which may be incremented or decremented
by the same add/subtract strategy we will develop for A, B, and S. The
bit weights for all bits are shown in the diagram; they correspond to
the standard convention for two's complement signed integers; In the
examples below, the bit locations and formats will be as shown above,
but the bit weights will not be shown.

Two factors may be held accountable for most of the confusion around

signed arithmetic:

1. The term MS3 (most significant bit) is often used with an implicit
convention which may assign the name MSB to either bit O or bit 1 of
a word. In recognition of this, we will not use the term MSB here.

2. The signals in the O column may have either a positive weight (Cin)
or a negative weight (AO, Bo). The adder makes no such distinction;

the interpretation of bits as weighted numbers is strictly ours.

G-4

signed arithmetic p. 2

Having recognized the sources of confusion, let us attempt to create

some order by inspecting all possible combinations of sign bits and

carry-in signals:

A.

Cin = Q; AO = Qs Bo = 0
0
010 +2
001 +1
000 O 011 +3
Cin=0i A& =0; B =1
0]
010 +2
101 -3
000 O 1 U et B
Cin=0i A =1; B =1
0
101 -3
110 -2
000 B 01 1 -5
17T I
3 s R 111 =4+ -1
la 1 Ao = 0% BO =0
1
U1k +3
‘ 001 +1
000 O 100 +4
001 000 +l + O
Cin =1; A =0; B, =1
1
010 +2
110 =2
000 1 000 0

[o158 ~

Addition of two small positive

numbers,
No overflow, no underflow

(OI‘ AO = 1; BO = O)
Addition of a positive and a
negative number, result negative.

No overflow, no underflow

Addition of two negative numbers,

Underflow
CO has a weight of 2 x -4, which

is redistribtuted to Mz and Sa

Addition of two positive numters,
Overflow
So as formed has a weight of +i,

which is moved to M2

B =0)

(or A, = 1; B

Addition of a positive and a negative
nunter,

Ho overflow, no underflow

lote that the weight of C0 is zerog

1 e : I G N UL n"
C0 is produced by "addition! of cin

F.

signed arithmetic pe 3

with weight +4 and Bo vith weight -4,

in o (o}
3
110 ~2 Addition of two small negative
; O -1 nunbers, '
000 1 101 =3 No underflow, no overflow

Again Cin neutralizes one of the
sign bits. The other sign bit

reappears as SO.

In summary:

1.

2.

3.

k.

5.

If carry-in is produced, but no carry-out is generated, then
overflow has occurred.

If a carry-out is produced without helon from a carry-in, then
underflow occurred. .

If no carries are generated, neither overflow nor underflow occurred.
If a carry-in produces a carry-out, this amounts to neutralization |
of the positive weight of the carry-in by the negative weight of

one of the sign bits. Neither overflow nor underflow has occurred.
Whenever overflow or underflow occurs, SO must be complemented,

to make S suitable as input to the adder for further arithmetic

operations., If Cou£=l’ M must be decremented; if Cout=0’ M must

be incremented.

In logical terms, spill-out can be detected as Cin ® Cout' The sign of

the spill-out is given by Cout'

When all additions have been made, we should combine the spill-out
counter with the S register to make a double-length bit string rerresenting

the. end result in two's complement format. Now there are two bit positions

with an absolute weight of 4: the low-order sign bit, S, and the LSB
of the spill-out counter, Mz. These two bits must be combined, and then

the vacated bit position must be climinated to shift the high order bits

into positions corresponding to their assigned weight.

APPENDIX H

TTL REFERENCE SHEETS

TTL REFERENCE SHEET #1

7400 7402 7474
oL N TR AL) a A 3¥ Ve &Y 43 44 Iy I8 3A W é 0 2cK 2PA 20 '£
SnEnSnioininin Enininininin o bz e rf.f“‘._l o] (ol fwi el o,
i | — P | i ! ! ==
- i ll'rd H | - I -_il INPUTS OUTPUTS i Y SR e B
l[e i’ | 1 = PRESET CLEAR CLOCK D | @ @ | i
f i L H X X | H L !
” [—m'l;_,—% i "“'CLHE l‘{]r‘ J H L X x| v H !
¢ = | !_ l ~ ! — | J' L L X X | v H® i
BaligEinDallalint 1 H H * M ”]
R T N D B O] E
H H L X a
7404 7408 2
Wi &A 5v 54 5Y - 4y
I,J wl[o] fol Ml el o] [el s -._J_'I_'_’._ImT
: i el |
| D> DY DI J ﬂ 7490 DECADE COUNTER
et
4 ne Oa 8 8D 0 O
! i ll:{ LH 1] lll 9 L
> P Do
e s s s
& v 34 'W[_ITAIJLF‘H " " W A m T oo
4> ' ——
7432
8 e & W o L
,_ﬁi]u[ln”n] fwl el [el —r
= e !
]
— i 2 3 lo Il ' ?
| ;'D—I Wt oAb Al n Veo neitl L H]
! | | - '
IpEpEgDpiigDieil BCD COUNT SEQUENCE
W o W W W v e {Sea Note Al RESET/COUNT TRUTH TABLE
g oUTPUT RESET INPUTS oUTFUT
8095 TRI-STATE BUFFER Gp Q¢ Gy Q. RO(1] RO(2) ROI1} RI2| Gy Qe QO Qa
Ve B2 - “ “ " 0 ot i B - L -3 T O] S
I ’ l ' 1 Bk A W H H X [P T R N 3
. i} 1 " 12 " 10 2 L L H L x x H H|lH L L H
3 L L H H X E X L COUNT
4 t H OB Lk L X L X COUNT
5 L H L H L X X L COUNT
5 L H H L X E L % COUNT
7 L H H H
8 T O O
9 H L L H
' lz r]. 74138 1-0F-8 DECODER
4] Al YT ll "t l.'l \"3 1.1] DATA CUTPUTS
A
vee ‘vo. vy w2 o ¥3 ¥vs v
7475 QUAD LATCH ' 15 9
EnvasLe l l L l i

LL s

L [is] [l o] ful [l [n][s] i
l r Y6
L——]’—I L] _, < A GI8 GV ¥7

liLQ o 0o a £ 1 ﬁ l

[— - '
G G ! g| G | | I [] | IRIERIERIERIRAIR
| _J 3] €T nGiA GIB Gl, Y1 GND
e \""_V_‘/Du'l'ﬂ.ﬁ
B a { ‘ a L Q ’ﬂ_-l SELECT ENABLE
L f] f INPUITS oUTPUTS
1 2 3 4 5] 7 8 ENABLE SELECT
10 0 2D ENABLE vce i 40 40 Gl G| C B Al Yo Y1 Y2 ¥3 Y4 ¥5 Y6 Y7
14
X H|[Xx %X X|H H H H H H H H
FUNCTION TABLE L X |x % X|H H H H H H H H
{Each Lateh) H L | 1 L L H H H H H H H
INPUTS QUTPUTS H E L L H H L H H H H H H
D 6|l a a H L L W L|lH H L H H H H H
L H L H H LJL H H|{H H H L H H H H
H H HH L H L H E L H H H H L H H H
I3 H H H H H H
x L Qo do H LW L H|H L
H L H H L H H H H H H L H
™ = high level. L = iow lavel, X = irrslevant H L H H H| H H H H H H H L

Qg = the |evel of Q betore the high-to-low transition ot G
*G?=G74 + Q7R

74153 MULTIPLEXER

TTL REFERENCE SHEET #2

74148 PRIORITY ENCODER

TRPUTS

DATA INPUTS - - ouTPYT
TROBE A ouTtPUT
vee e SELECT ‘ 2y Vee " & 3 H 1 H An
16 Ils]n II:I [!: 'n I|| {.
O
T [| T T
STROBE B
IG SELECT DATA INPUTS w [Iz 1 [Is Is Ir ‘l
s § ol A A an RE
e e
FUNCTION TABLE PuTS QUTPUTS
ELECT
SELE DATA INPUTS STROBE | OUTPUT
INPUTS
] A o _c1 cz2 o G ¥ 54148/74148
x X b 4 X X X H L —
L L | 5 X X X L L QUTPUTS
.) 7 5 % x L H € ,0 1 2 3 4 5 6 7|A2 A1 A0|GS EO
L oHlx ¢ x x L i Hlx x x x X X X X|M H H|H H
I I GFe B 5 o2 5 e dlll k5
L
L = x i - * + " tfx x x % % x L H|L L ML W
1 L x X H x E Lfx x x x x L H H|L H L|L ™
H H X Xx X L L Lfx x x x L H H H|lL w HlL w
H H X X X H L H Llx x x L H H H H|H L L]L H
Selact inputs A and B are 10 both secti L{x X L H W H H H|lH L H|L =n
H = high level, L = low level, X = irrelevant L x L H H H H H H H H L L H
LjL W W H H M H HlH H HlL =
*
DUAL PERIPHERAL DRIVERS 300 ma, 20 V

;g L rrr
a L " ne ar n " SR
Tor vitw

75452

RELAY DRIVERS

11 [: Inl

fl
At " FURT'T A " N ams

]I i! ia i

L " L] a

rorr
Ll ” tna
Tar e

75454

R5-232C - TTL CONVERTERS

iR o St T

b LTl |

DS3686 DS3687 1489 1488

APPENDIX |

MOS TECHNOLOGY SHEETS

MO.TIOHNOLOO%!NO
VALLEY FORGE CORPORATE CENTER (215) 666.7950
950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401

PRELIMINARY
DATA

SHEET

MAY, 1976

MCS6500 MICROPROCESSORS

The MCS6500 Microprocessor Family Concept --—

The MCS6500 Series Microprocessors represent the first totally software compatible

microprocessor family. This family of products includes a range of software compatible
microprocessors which provide a selection of addressable memory range, interrupt input
options and on-chip clock osscillators and drivers. All of the microprocessors in the
MCS6500 group are software compatible within the group and are bus compatible with the

M6800 product offering.

The family includes five microprocessors with on-board clock oscillators and drivers
and four microprocessors driven by external clocks. The on-chip clock versions are

aimed at high performance, low cost applications where single phase inputs, crystal

vr KC tnpuls provide the Lime base. The external clock versions are geared for the

multi processor system applications where maximum timing control is mandatory. All

versions of the microprocessors are available in 1 MHz and 2 MHz ("A" suffix

on product numbers) maximum operating frequencies.

Featﬁres of the MCS6500 Family

. Single five volt supply

- N channel, silicon gate, de-
pletion load technology

. Eight bit parallel processing

. 56 Instructions

. Decimal and binary arithmetic

. Thirteen addressing modes

- True indéxing capability

. Programmable stack pointer

. Variable length stack

. Interrupt capability

. Non-maskable interrupt

. Use with any type or speed memory

. Bi-directional Data Bus

Instruction decoding and control
Addressable memory range of up to
65K bytes

'""Ready" input

Direct memory access capability
Bus compatible with MC6800

Choice of external or on-board clocks
IMHz and 2MHz operation

On-the-chip clock options

* External single clock input

* RC time base input

* Crystal time base input

40 and 28 pin' package versions
Pipeline architecture

Members of the Family

Microprocessors with
On-Board Clock Oscillator
—MCS6502

—MCS6503

——MCS6504

— MCS6505

— MCS6506

Microprocessors with
External Two Phase
Clock Input
—MCS6512

— MCS6513

—MCS6514

— MCS6515

L.1-1

Comments on the Data Sheet

The data sheet is constructed to review first the basic "Common Characteristics' - those

features which are common to the general family of microprocessors.

Subsequent to a

review of the family characteristics will be sections devoted to each member of the group
with specific features of each.

ADDRESS
BUS

ABp -=—

AB| --t—

AB2 -

AB} -t

-,

ABL

ABY

ABS

AB6 g

AB7 -t

AR =

ARD -

AB10D -=i—

ARl -t

AB12 et

ABH

ABI13 -

ABl4 g

ABIS -

LEGEND

ﬂ = § BIT LINE

' = 1 BIT LINE

INTERNAL ADH

COMMON CHARACTERISTICS

INTERNAL ADL

REGISTER SECTION

CONTROL SECTION —— &

| nf

| A A AA

Note: 1. Clock Generator is not included on MCS6512,13,14,15
2. Addressing Capability and control options vary with each

of the MCS6500 Products.

MCSE500 Internal Architecture

RES RT ~wi
o b4
INDEX = INTERRUPT
REGISTER LOGIC
Y oy
Yvy
INDEX
REGISTER [
i £ .————————— RDY
T STACK
” POINT (A
REGISTER |
151 | L
INSTRUCTION
DECODE
q ALU w
= —
ACCUMULATOR TIMING
A - 4+ CcONTROL
=i
10| |— @ (IN)
e [T i o
- P21IN)
> PCH L~
CLOCK La- CLOCK
REGISTER GENERATOR INPUT
TNFUT - £ >
- DATA I giiais
LATCH —]
{DL) L 9 0UT
| I——> RW
c; DBE
DATA BUS INSTRUCTION
BUFFER = REGISTER

MCS6512,13,14.15

] MCS6502,3,4,5,»

D i Y

1.1-2

COMMOCN CHARACTERISTICS

Al
AND
ASL

BCC
BCS
BEQ
BIT
BMIL
BXE
BPL
BRE
BVC
BVS

CLC
CcLD
CLI
CLY
o
cPX
CPY

INSTRUCTION SET — ALPHABETIC SEQUENCE

Add Memory to Accumulator with Carry DEC Decrement Memury by One PHA Push Accumulator on Stack
UARD" Memory with Accumulator DEX Decrement Index X by One PHP Push Frocessor Status on 5tack
Shifr left One Bit {Memory or Accumulator) DEY Uecrement Index ¥ by One PLA Pull Accumulator from Stack
PLP Pull Processor Status from Stack

Kranch on Carry Clear EOR "Exclusive-or' Memory with Accumulator
Branch un Carry Set ROL Rotate One Bit Left (Memory or Accumulator)
Hranch un Result Zero INC Increment Memory by One ROR Rotate One Bit Right (Memory or Accumulater}
Test Bits in Memory with Accumulator INX Increment Index X by Ome fTl Return from Interrupt
Branch on Result Minus INY Increment Index Y by One . RTS Return from Subroutine
Branch on Result not Zero
Branch on Result Plus JMP Jump to New Locatlon SBC Subtract Memory from Accumulator wich Borrow
Force Break JSR Jump to New Location Saving Return Address SEC Set Carry Flag
hranch on Overflow Cleur SED Set Decimal Mode
branch uon Overfluw Suvi LDA Load Accumulator with Memory SEI Set Interrupt Disable Status

LDX Load Index X with Memory STA Store Accumulator in Memory
Clear Carry Flag LDY Load Index Y with Memory STX Store Index X in Memory
Clear lecimal Mrde LSK Shift Une Bit Right (Memory or Accumulator) STY Store Index Y in Memory
Clear Interrupt Disable Bit
vlear Overflow Flag NOP No Operation TAX Transfer Accusulater te Index X
Compare Memory and Accumulator TAY Transfer Accumulator to Index Y
Compare Memory and Index X URA "OR Memory with Accumulator 18X Transfer Stack Fointer to Index X

IXA Transfer Index X to Accumulatoer
TX5 Transfer Index X te Stack Pointer
T:A Trensfer Index Y to Accumulator

Compare Hemory and Index Y

ADDRESSING MODES

AUCUMULATUR ADDRESSING - This-form of addressing is represented with a one byte instruction, implying an

operation on the accumulator.

IMMEDIATE ADDRESSING - In immediate addressing, the operand is contained in the
with no further memory addressing required.

ABSOLUTE ADDRESSING - In absolute addressing, the second byte of the instruction specifies the eight low order
bits of the effective address while the third byte specifies the eight high order bits. Thus, the
absolute addressing mode allows access to the entire 65K bytes of addressable memory.

second byte of the inmstruction,

ZERO PAGE ADDRESSING - The zero page instructions allow for shorter code and execution times by only fetching
the second byte of the instruction and assuming a zero high address byte. Careful use of the zero
page can result in significant increase in code efficiency.

INDEXED ZERO PAGE ADDRESSING - (X, Y indexing) - This form of addressing is used in conjunction with the index
register and is referred to as "Zero Page, X" or "Zero Page, Y'. The effective address is calculated
by adding the second byte to the contents of the index register. Since this is a form of "Zero Page"
addressing, the content of the second byte references a location in page zerc. Additionally due to
the '"Zero Page' addressing nature of this mode, no carry is added to the high order § bits of memary

and crossing of page boundaries does not occur.

INDEXED ABSOLUTE ADDRESSING - (X, Y indexing) - This form of addressing is used in conjunction with X and Y
index register and is referred te as "Absolute, X", and "Absolute, Y". The effective address is
formed by adding the contents of X or Y to the address contained in the second and third bytes of the
instruction. This mode allows the index register to contain the index or count value and the in-
struction to contain the base address. This type of indexing allows any location referencing and
the index to modify multiple fields resulting in reduced coding and execution time.

IMPLIED ADDRESSING - In the implied addressing mode, the address containing the operand is implicitly stated
in the operation code of the imstruction.

RELATIVE ADDRESSING - Relative addressing is used only with branch instructions and establishes a destination
for the conditional branch.

The second byte of the instruction becomes the operand which is an "Offset" edded to the contents of
the lower eight bits of the program counter when the counter is set at the next fnstruccion. The
range of the offset is -128 to +127 bytes from the next instruction.

INDEXED INDIRECT ADDRESSING - In indexed indirect addressing (referred to as (Indirect,X)), the second byte of
the instruction is added to the contents of the X index register, discarding the carry. The result
of this addition points to a memory location on page zero whose contents is the low order eight bite
of the effective address. The next memory location in page zero contains the high order eight bits
of the effective address. Both memory locations specifying the high and low order bytes of the
effective address must be in page zero. .

INDIRECT INDEXED ADDRESSING - In indirect indexed addressing (referred to as (Indirect),Y), the second byte
of the instruction peints to a memory location in page zero. The contents of this memory location
1s added to the contents of the Y index register, the result being the low order eight bits of the
effective address. The carry from this addition is added to the contents of the next page zerc
memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT - The second byte of the Instruction contains the low order eight bits of a memory location.
The high order eight bits of that memory location is contained in the third byte of the instruction.
The contents of the fully specified memory location is the low order byte of the eifective addreess.
The next memory location contains the high order byte of the effective address which is loaded

into the sixteen bits of the program countey,

T

| COMMON GHARACTERISTICS |

PROGRAMMING MODEL
L 4
[n]v] e [o] [2]c PROCESSOR 5TATUS 7
i . IS REG b
; J N T J
L : ___] ACCUMULATOR A ! P i g
7 . § ‘ ' t |
[Y] INDEX REGISTER % I'] [CARRY 1= TRUE
7 £z I ZERO 1= RESULT ZERQ
L X INDEX REGISTER X I l______.. 1RO DISABLE 1= DISABLE
15 3 __Q'l DECIMAL MODE 1= TRUZ
PCH] PCL | PROGRAM COUNTER “pe |]\ BRK COMMAND
87 i J
L] 5 .] STACK POINTER 5 ! OVERFLOW 1= TRUE
—+ NEGATIVE 1= NEG [
INSTRUCTION SET — OP CODES, Execution Time, Memory Reguirements
AESOLUTE | FEROPAGE | ACCUM MPLIED | {IND X {INDYY | 2. PAGE X AR X AREY JRELATIVE | imtearcT | B PAGE Y CONDITION CODES
semeuonic orERATION oo M| # forln T# forTn [fonl n [Jor]w |# e[nj= Joulw | JorTn T foeln [a ool w]o Jor]n 1o orfnlalor[ule v 2 ¢ | o v
ADC |AMC=8 i (6322 aa|'<'z 655.1[3 r 7 | I Jeis]zfm slz 75 42 m[': 2 u[-]: ! | i i I e
AND [aam=a wije |z mi-f; w7 f o : Mief2fafslz]mia;z 0 4 3{39) e ’ ' 1 ‘i e
ASL | S | 0|8 10 Jasls |2 oa2 e f " siz 1, 713 H j " R ~
BCC [BRANCHONC:S ! ‘ ! J | i | i ! ! ® 22 J =
BCS |ORANCHONC-1 in [| | | ! | r i] 887 12 L pE= 5 =
BEQ [BRANCHONZ:)] |] | [] T 1 f] [CENE 5 B P = '
BIT [aam I | xial:l u!;: ' !) | . | I J | I W, s - W !
BM | |BRANCHON Nt 1 |' | ! ; I i ; I: ! | ’ woz|z] | | - - - §
BNE |BRANCHONZ: | | | | f [| | || [i oo;:la | J : 2 = = =
BPL |saancuowne m| | | i L | | ! | | | ! N LIERE ' | - -
BRK |iSeefyg 1l [! |] | | i o 1] 1 | [I I | Ir - - = 0 -
BV € [SRANCHONVeB | I! : : ; | i . ’ i J l s :J:] : Sy
BV S [BRANCHONVs1 | | ! | | ’ | | " :]: . | - - -
cLe |o-c 1 [1 | / e 7| § | [| | | | l } e
€Lo fo~o (1] | |l oz o) | S 0 G0 108 IO O 8 1 O 0 O
CLl o= ! T i] | %i2(1] | TI- i ; J [I | I S o
cLv fowv | ! J {2 us!:l'i i | i : G lerarcy, mcenrd
cMp |am mleo |2 |7 feof afafeslafa] |] A S P slafosia :no]a:nou: IJI ! L
cex fxm a2 |2 [ec| 4|4 fee]a|2 | | (| i ! | [i 1 A
cry |vom oo |z |2 fec s :uJ:Jz | i | o | | | &= | ! |
(DEC |Miaw | ce-aj:caia;‘: I] 5 T o6 8 2 |oF 7| 3] | id A i |
DEX [W-1=x [| | i | J ca| | |] ! | } Fowli= |
DEY |Y-r=¥ | | £ L ' t i | S = =
EOR [AvM=a o e ?J)-D-|3ns 3’) i [o oslalo|s 2l ol §0F4 Isela |y ; | FIW T = {
ING (Mot =w | fe=le]2 55'5}: I || ‘ 6 5!? ATRAE | ! ! | ¢ 2 = |
INX [xe1 =x] | : : I | [TIER 1 ’ f J ¢ = 25 {
INY |[reramy ! | |1 | e 2|1 | | i L H = s
JM P e ToNEW LOC 4:,3[3 | | I 1 (1 | - - - "
ISR |t big 2ume sus } wlala| | 1] - L ‘ f | | F 4 {
LOA [M=a S IR | ‘ HE | j AI[sI? 5| s :as}x[: LIENERLIRNE! [il | S ¥ s s !
AEBOLUTE | BEMOPACE | Atcuw) [IND_X) {INDLY |2 raceE x Aps X ABS Y | RELATIVE COMDTION COOLE |
R ORI FERATION orl N uo-ulloohaoﬁutnpucopu:oﬂnau']ulo-aloouruaul M CJ)DwW
LDX [wex oifazta f 2 lagla |3 [as]s |2 1 BE] 4 |3 ! u4|: I -
Lo [M=v Mlag|z |2 facie (3 |aaja |2 Bafe |2 faclals I ‘ (e & o . e l
LSR | pel——ec | ME[8s]|3]a6,5]2 ba 1 y ! 616 |2 fse|2)3 h | e+« o
NOP |NOOPERATION Ealz |1 | I . r ! i - - - i
ORA |AVM =2 99 |7 |7 @0 4 (3 fps| 32 Pije 2 sj2ps 4 7 ipjajalwe s { [A b i
PHA [a=m & 1—=5 25| b [3] 1 T [I i e - I
PHP [reewm 51— | - LR : f . |] o ;
PLA [Siems M—ea i I esja s ! 1 I A 4.0
PLP [Siies W—ep] : Fo | I R i ' " | i (RESTORED:
rRoL | L | | | fre 8 afes siafamjatag [R e ! ! PR
ek i 685 |3 “F‘i?e“”' (] | | N CCTENCETEN A f 1 [11
RT1 [iSwrg ATan vy | || | i o5 i N i } IRESTORED! I
RTS |isesrgziaransue | | | i : o9l6 i i [|
SBC |A-MC—a Mles 7! 2lE0 o 3jes 1 3 |t s :vli::r-al 2 Y{F2 ¢ 3 = | . 4| '
SEc [1-¢C pl :a‘!: L y il Il J 1 [H
SED |'=D ; I i L | i — L {
SE1 |1~ et ! DR | : I ! ! | { 1 |
STA [A=wm 'oleo aiales's 2 B1le 209 6 2086 4 7130 5 31logs 3 | | ! !
STx {xem U e A | ; ! i f fos 02 H |
STY |v=m Dofscia 3w g 1' | LRI I : i
TAX |4 =x i} e el ! . l
TAY [A=v y RN I :] = | ! P i |
TSXx [s=x 13 | VER i | i |F | ‘e
TRA [x=a | | iz i i : | e
TS [x=5 1 b Jiauln y |+ 13 | i |
TYA Iv=a | | = 3 Eol fmpts i e I | | }]) | ! 15 . | i
(L} ADO I TO N :F PAGE BOUNDARY 15 CHOSSED ¥ohfiks . - LI 2] wi b N KO CYCLES] f f
121 ADD | TO 'N' iF BRANCH OCCURS TO SAME FAGE PN 7 Al e i & N0 BYTLS r ! {
ADDITO N IF BRANCH DCCUAS TO DIEFEAFNT fank 5 ARl i i ot s | : |
131 CARAY NOT - BORADW A A e T — A Ay g] ! !
141 1PN DECIMAL MODE 2 FLAD IS INVALID AN] t
ACCUMULATOR MUST BE CHUCKE [FOR pFag ausy) : OMEURY LR Ars PN i . MEMORY BITY __l I |
oA
1

I.1-8

MCS6502 — 40 Pin Package

Vs — | 40}|- RES
ROY 42 39| @2(0uT)
@,(ouT)43 38 s.0
IRGH4 37} 890N
N.C. - 5 36 N.C.
NMI-6 351 N.C.
SYNC-7 34 R/W
Vee {8 33} D8O
ABO-9 32 D8I
ABl <10 3||-DB2
AB2-ll 301-DB3

AB3 12 29\ DB4
AB4-i3 28}-DBS
AB5-14 271-DB6
AB6-15 26} DB7
ag7r-ie 25- aBis
aB8-{I7 24 ABI4
AB9-18 23 ABI3
ABIO-19 22| ABI2
ABll+H20 2l Vss

MCSe502

% 65K Addressable Bytes of Memory
* ‘fﬁa Interrupt * NMI Interrupt
* On-the~chip Clock
v TTL Level Single Phase Input
v RC Time Base Input
Y Crystal Time Base Input
* SYNC Signal

(can be used for single instruction

execution)
* RDY Signal

(can be used for single cycle

execution)
* Two Phase OQutput Clock for

Timing of Support Chips
Features of MCSG502

MCS6503 — 28 Pin Package

MCS6504

Features of MCS6504

RES— | 28}~ @,(0UT)
Vss — 2 27p @o(IN)
IRQ—3 26 R/ W * 4K Addressable Bytes of
NMI—<4 25080 Memory (ABOO-AB11)
Vce 45 24— DB
o ABO-6 231-DB2 * On-the-chip Clock
N ABIl ~7 22~ D83
AB2-8 2I+—DB4 S
AB3— o 20085 IRQ Interrupt
AB4 10 |9} DB6 —
AB5 11 18~ DB7 * NMI Interrupt |
AB& —I2 17 ABII
AB7 -3 16~ ABIO * 8 Bit Bi-Directional Data Bus
ABB —I4 15/~ AB9
MCS6503 Features of MCS6503
MCS6504 — 28 Pin Package
e g
RES {1 28} @z(0um) i
Vss < 2 27 @g(IN) |
iRQ 43 26R/W
Vee 44 251 DBO * 8K Addressable Bytes of
ABO- S5 24} DBI Memory (AB00O-AB12) |
ABl 46 23-DB2
AB2 T 22-DB3 * On-the~chip Clock
AB3 8 2i—~DB4
AB4 -9 20~DB53 * IRQ Interrupt
AB5 <10 |9} DB6
AB6 11 I8} DB7 * .
AB7 |2 17l ABi2 8 Bit Bi=-Directional Data Bus
ABE I3 16— ABII
AB9 <14 |15}~ AB|O

MCS6505 — 28 Pin Package

RES — | 28— 92(0UT)
Vss —2 27— @p(IN)
RDY < 3 26 R/ W
TRQ {4 25 DBO
Vee —5 24— DBI
ABO -6 23} DB2
ABI 7 22+ DB3
AB2-8 2~ DB4
AB3 <9 20+ DB5
AB4 -0 19~ DB6
AB5 11 I8+ DB7
AB6 12 17 ABII
AB7—I13 16— ABIO
AB8 14 I5 ABS
MCS8505

* 4K Addressable Bytes of

Memory (ABOO-AB11)

* On-the-chip Clock
* IRQ Interrupt
* RDY Signal

* 8 Bit Bi-Directional Data Bus

Features of MCS6505

MCS6506 — 28 Pin Package

AB3—l2 29+ DB4
AB4g 13 28+ 0B3
ABS— 14 27— D86

SYNC Signal

RES — | 28 22(0UT)
Vss 2 27— @0fIN)
@,(0UT)=3 26 R/W
IRG 4 25— DBO
Vee - 5 24-pBI * 4K Addressable Bytes of
ABO— 6 23— DB2 Memory (ABQ0-AB11) -
ABI 7 221~ DB3 * .
AB2 -8 21l-DBa On-the-chip Clock
AB39 20085 * IRQ Interrupt
AB4 10 i9DBs
AB5—I] I8 DB7 * Two phases off
ABG Iz |7 ABII : . " .
AB7 — 13 16— ABIO * 8 Bit Bi-Directional Data Bus
AB B—‘M 15—~ AB9
MCS6506 Features of MCS6506
MCS6512 — 40 Pin Package
_ =)
vss 1| 40 RES i
B . e 65K Addressable Bytes of Memory |
IRG 4 371~ @ i |
vss 15 36 o8E IRQ Interrupt '
Wl —<86 351 NC S |
SYNC {7 34k R/W NMI Interrupt r
vee 48 33 DBO i
ABO-9 321 DBI RDY Signal |
AB! =10 31} DB2 ..
AB2 41l 30/-083 8 Bit Bi-Directional Data Bus ’ f

ABB—I5 261~ DB7
ABT—I6 25— ABIS
ABB 17 24 ABiI4
ABSiB 23— ABI3
ABIO—H19 22 ABI12
ABIlIH20 21— Vss

MCSé512

Two phase input
Data Bus Enable

Features of MCS6512

11-10

MCS6513 — 28 Pin Package

Vss —1 28| RES
2, —2 27— @2
1() IRQ -3 26 R/W
NMI—4 25} DBO
Vee 45 24 D8I * 4K Addressable Bytes of
oY e Memory (ABOO-AB11)
ABI 7 221~ DB3
AB2 -8 21084 * Two phase clock input
AB3—9 20+ DBS . A
AB4-{l0 19k 0DBs IRQ Interrupt
Aag-Hl 184 DAE * N\MI Interrupt
AB6 —I2 17 ABII
ABT HI3 16~ ABIO * 8 Bit Bi-Directional Data Bus
aBg8 14 I5—AB9
MCSE513 Features of MCS6513
MCS6514 — 28 Pin Package
Vss —| 28 RES
8, -2 27~@;
iRG 43 26FR/W
:T;o ‘: ::" ggo * 8K Addressable Bytes of
— — DB
-AB12
ABI 46 23}-DB2 Metioxy ‘(ABOD)
ABz2 47 22+ DB3 * Two phase clock input
AB3 48 2i}|-DB4 &
ABa 49 20}-DB5 IRQ Interrupt
AB5 <10 19} DB6 " . e pvs .
ABB 11 18lpB7 8 Bit Bi-Directional Data Bus
AB7 <12 I7} ABI2
AB8 —{i3 |61 ABII
AB9 —|14 5} ABIO
MCS6514 Features of MCS6514

MCS6515 — 28 Pin Package

Vss — | 28| RES

RDY 42 271 @2

@) -3 26 R/W

IRG 44 251 DBO .

Vec -5 241 DBI 4K Addressable Bytes of
ABO - 6 23 DB2 Memory (ABOO-AB11)

23; _; if _,ggf * Two phase clock input
AB3 49 20} DB5 * TRQ Interrupt

AB4 10 19| DB6

AB5 —II 181 DBT * 8 Bit Bi-Directional Data Bus
AB6 12 7} ABII

AB7 I3 I6f ABIO

ABB —14 I5F AB9

MCS6515 Features of MCS6515

Ti-11

b

TIME BASE GENEHATION OF iNPUT CLOCK

MCS6502

7404
39 & Do—o—cb—- SYSTEM 0,
el

Ry

37|

PN
37 Q,(N)

[crysTAL 39 Q)(0uUT)

MCS6502 Parallel Mode Crystal Controlled Oscillator

PIN
37 @, 3N)
39 @1(0UT)

7404
19 .T. ~|r>o—<r—b—- SYSTEM Q.

Cr Ry
1?...__________:I:__;1f\ﬂ P I
: AT 0, (IN)
19 91 (0UT)

MCS6502 Time Base Generator — RC Network

——

MCSE503, MCS6504, MCS6505, MCS6506

7404
28 j_ Do—w—CD—-p SYSTEM (2,
G

Ry

PN
27 QuiIN)

O crysTAL 3Ry 0um)

L Ve

MCS6503,4,5,6 Parallel Mode Crystal
Controlled Oscillator

7404
]) —
i 2 I Do—‘r—cb—.. SYSTIM 0,

Cy

2 1 LidhY
270N
i X0y

CRYSTAL

MCS6503,4,5,6 Series Mode Crystal
Controlled Oscillator

7404
28 l »-CD—. SYSTEM 0,

c
37 PIN

37 @y (IN)
3H0s oury

MC86503, MCS6504, MCS6505, MCS6506 Time Base Genera tion
RC Network

1.1-12

PRODUCY

ANNOUNCEMENT
MOS TECHNOLOGY, INC. BULLETIN
Mot Ll Rl UL
- A SEPTEMBER, 1976

MCS6520 PERIPHERAL ADAPTER

DESCRIPTION

The MCS6520 Peripheral Adapter is designed to solve a broad range of peripheral
control problems in the implementation of microcomputer systems. This device allows
a very effective trade-off between software and hardware by providing significant
capability and flexibility in a low cost chip. When coupled with the power and
speed of the MCS6500 family of microprocessors, the MCS6520 allows implementation

of very complex systems at a minimum overall cost.

Control of peripheral devices is handled primarily through two 8-bit bi-direc-
tional ports. Each of these lines can be programmed to act as either an input or
an output. 1n addition, four peripheral control/interrupt input lines are provided.
These lines can be used to interrupt the processor or for 'hand-shaking' data

between the processor and a peripheral device.

High performance replacement for
Motorola/AMI/MOSTEK/Hitachi peripheral
adapter.
N channel, depletion load technology,
single +5V supply. MCS6520
Completely Static and TTL compatible.
Vgg e 40 3 CAl
CMOS compatible peripheral control lines. PAg =1 2 39 B3 CA2
Fully automatic "hand-shake' allows very PAL (9 3 58 =3 I_!_{Qﬁ
positive control of data transfers between PA2 1 4 37 =3 IRUB
processor and peripheral devices. PA3 3 5 36 3 RS¢
PA4 C 6 35 3 RSl
PAS 7 34 = RES
PA6] 8 3383 DY
PA7 33 9 323 DI
PBY =1 10 31 3 D2
| PB1 & 11 30 3 D3
7 h PB2 £ 12 29 =3 D4
conTmo PB3 [13 28 =3 DS
s D e PB4 L 14 27 b= 6
MICROPROCESSORS | L FDEE?E'BML PBS : 15 26 : D7
MCS$6520 7
" i PBs 5 10 =Nz
CONTROL <> Dm:aur;u'r PB7 C 7 24 : b
cBl =318 23) (Cs2
f | C:"’“’J cB2 £ 19 22 3 csy
: Vee £ 20 21 3 R/W
Basic MCS6520 Interface Magra

SUMMARY OF MCS6520 OPERATION

See MOS TECHNOLOGY Microcomputer Hardware Manual for detailed description of MCS6520 operation.

CA1/CBI CONTROL
CRA (CRB)

Active Transition IRQA (IRQB)
Bit 1 Bit 0 of Input Signal* Interrupt Outputs
0 0 negative Disable--remain high
0 1 negative Enable--goes low when bit 7 in CRA (CRB) is set by
active transition of signal on CAl (CB1)
1 0 positive Disable--remain high
1 1 positive Enable--as explained above

*Note: Bit 7 of CRA (CRB) will be set to a logic 1 by an active transition of the CAl (CBI1)
signal. This is independent of the state of Bit 0 in CRA (CRB).

CA2/CB2 INPUT MODES
CRA_(CRB)

Active Transition LROA (IRGB)
Bit 5 Bit 4 Bit 3 of Input Signal* Interrupt Output

0 0 0 negative bDisable--remains high

0 0 1 negative Enable--goes low when bit & in CRA (CRB) is set by

active transition of signal on CA2 (CB2)

0 1 0 positive Disable--remains high

0 1 1 positive Enable--as explained above

*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2)
signal. This is independent of the state of Bit 3 in CRA (CRB).
- CA2 OUTPUT MODES
Bit 5 Bit 4 Bit 3 Mode Description
1 0 0 "Handshake!' CA2 is set high on an active transition of the CAl interrupt
on Read input signal and set low by a microprocessor "Read A Data'
operation. This allows positive control of data transfers
from the peripheral device to the microprocessor.

1 0 1 Pulse Output CA2 goes low for one cycle after a "Read A Data' operation.
This pulse can be used to signal the peripheral device that
data was taken.

1 1 0 Manual Qutput CA2 set low

1 1 1 Manual Qutput CA2 set high

CB2 OGUTPUT MODES
CRB
Bit 5 Bit 4 Bit 3 Mode Description
1 0 0 "Handshake" CB2 is set low on microprocessor "Write B Data' operation and
on Write is set high by an active transition of the CBl interrupt
input signal. This allows positive control of data transfers
from the microprocessor to the peripheral device.

1 0 1 Pulse Output CB2 goes low for one cycle after a microprocessor "Write B
Data'" opreration. This can be used to signal the peripheral
device that data is available.

1 1 0 Manual Output CB2 set low

1 1 1 Manual Output CB2 set high

1.2-2

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage Ve -0.3 to +7.0 Vde This device contains circuitry
to protect the inputs against

Input Voltage Vin -0.3 to +7.0 Vde damage due to high static
voltages, however, it is

Operating Temperature Range Ty 0 to +70 % advised that normal precautions
be taken to avoid application

Storage Temperature Range Tstg =55 to +150 O of any voltage higher than
maximum rated voltages to this
circuit.

STATIC D.C. CHARACTERISTICS (Vgc = 5.0 V + 5%, Vgg = 0, Ty = 25°C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Input High Voltage (Normal Operating Levels) Vin +2.0 - Vee Vde
Input Low Voltage (Normal Operating Levels) ViL -0.3 = +.8 Vde
Input Threshold Voltage VIT 0.8 - 2.0 Vdc
Input Leakage Current IIN uAdc
Vin = 0 to 5.0 Vdc - +1.0 +2.5
R/W,Reset ,RS@,RS1,CSP,CS1,C52,CA1,CB1, 62 - B
Three-State (Off State Input Current Its]
(Vin = 0.4 to 2.4 Vdc, Vee = max) D@-D7,PB@-PB7,CB2 . - +2.0 +10 pAde
Input High Current Iy
(Vig = 2.4 Vde) PAP-PAT ,CA2 -100 -250 - uAdc
Input Low Current Iy
(Vyp = 0.4 Vdc) PAR-PAT ,CA2 - -1.0 -1.6 mAdc
Qutput High Voltage Vo
(Vee = min, lLoad = -100 pAdc) 2.4 - - Vde
Output Low Voltage VoL
(Vcg = min, lypo.q = 1.6 mAdc) - - +0.4 Vde
Qutput High Current (Sourcing) IOH
(Voy = 2.4 Vdc) -100 -1000 - vAde
(Vo = 1.5 Vdc, the current for driving other than -1.0 -2.5 - mAdc
TTL, e.g., Darlington Base) PB@-PB7,CB2
Output Low Current (Sinking) IoL
(Vor, = 0.4 vVdc) N 1.6 - - mAdc
Output Leakage Current (Uff Statc) 1RQA, IRQB loff - 1.0 10 uAde
Power Dissipation Pp - 200 500 mW
Input Capacitance Cin pF
(Vin - 0, Ty = 25°%, f = 1.0 MHz)
DP-D7, PAR-PAT ,PBP-PR7,CA2,CB2 - - 10
R/W,Reset ,RS@,RS1,CS0,051,C52, - - 7.0
CA1,CB1, %2 > = 20
Output Capacitance Cout
(Vin - 0, Ty = 25°C, f = 1.0 MHz) - : 10 pF

NOTE: Negative sign indicutes outward current flow, positive indicates inward flow.

FIGURE 1 — READ TIMING CHARACTERISTICS

TaEw —d s
t
A Do/ ’_/___
= —
—o ED F— 2.4V
Address 04V
Tpusul ’
24V
Peripheral 20v
Data L 0.8 V o4y
—
24v
Data Bus a: : \
o 0.4 v
=Tcaz™
CA2 24V
Pulss Out} 20V
—— DAV
o
Ty, by —d
cA 2
(Han Shakel \

1.2-3

FIGURE 2 — WRITE TIMING CHARACTERISTICS

n--TE

Tnew-l pop— ke— 'psU

0.4 v
TWEL—
24V
Read/Write 0.8 v /
0.4V

= = Thw
2.4 v
I 2.0V Y
eta Bus | 08V Tcmos e
A . .4 v
b v
TEew 4 ——————————.—.-———cc—z.‘:ov%
Azov ’
Peripheral Data x cav
= 0.4V
|-——T|:32 —am Trot
cB 2 k' 2.0V Ry
(Pulse Out) \
0.4 v
—al Tpe pe— b, by ——
% 2.4v
TV
2 0.4V
T RS 2—am
24y
CB 2 q 20v 20V
{Hand Shake) \
0.4v

A.C. CHARACTERISTICS

Read Timing Characteristics (Figure 1, Loading 130 pF and one TTL load)

Characteristics Symbol Min Typ Max Unitc
Delay Time, Address valid to Enable positive transition TAEW 180 - - ns
Delay Time, Enable positive transition to Data valid on bus TEDR - - 395 ns
Peripheral Data Setup Time Tppsy 300 - - ns
Data Bus Hold Time THR 10 =3 - ns
Delay Time, Enable negative transition to CA2 negative transition Tgaz - - 1.0 us
Delay Time, Enable negative transition to CA2 positive transition Tgg) - 4 1.0 us
Rise and Fall Time for CAl and CA2 input signals tr.tE = = 1.0 us
Delay Time from CAl active transition to CAZ positive transition Tgsgp - - 2.0 us
Rise and Fall Time for Enable input trE,LFE - - 25 us

Write Timing Characteristics (Figure 2)

Symbol Min Typ Max Unit

Characteristics
Enable Pulse Width TE 0.470 - 25 1S
Delay Time, Address valid to Enable positive transition TAEW 180 - - ns
Delay Time, Data valid to Enable negative transition Tpsu 300 = = ns
Delay Time, Read/Write negative transition to Enable positive TWE 130 = = ns
transition
Data Bus Hold Time Tiw w - - ns
Delay Time, Enable negative transition to Peripherdl Data valid Tepw - - 1.0 s
Delay Time, Enable negative transition to Peripheral Data Valid, Tgmps - - 2.0 us
CMOS (Vee - 30%) PAP-PAT, CA2
Delay Time, Enable positive transition to CB2 negative transition Trp2 - - 1.0 us
Delay Time, Peripheral Data valid to CB2 negative transition Tpe 0 = 1.5 pus
Delay Time, Enable positive transition to CBZ positive transition Tpg) - - 1.0 ps
Rise and Fall Time for CBl and CB2 input signals tp,tg - - 1.0 s
Delay Time, CBl active transition to CB2 positive transition Tps2 - - 2.0 us

i.2-4

PRELIMINARY

A DATA
MO8 TECHNOLOGY, INC.
ah TEEHNO MARCH, 1976

VALLEY FORGE CORPORATE CENTER (215) 666-7950
950 RITTENHOUSE ROAD, NORRISTOWN, PA. 18401

MCS8530 (MEMORY, 1/0, TIMER ARRAY)

The MCS6530 is designed to operate in conjunction with the MCS650X Microprocessor

Family.

It is comprised of a mask programmable 1024 x 8 ROM, a 64 x 8 static RAM,

two software controlled 8 bit bi-directional data ports allowing direct interfacing
between the microprocessor unit and peripheral devices, and a software programmable
interval timer with interrupt, capable of timing in various intervals from

1 to 262,144 clock periods.

* 8.bit bi-directional Data Bus for direct communication

with the microprocessor

1024 x 8 ROM

64 x 8 static RAM

Two 8 bit bi-directional data ports for interface to peripherals
Two programmable I/0 Peripheral Data Direction Registers
Programmable Interval Timer

Programmable Interval Timer Interrupt

TTL & CMOS compatible peripheral lines

Peripheral pins with Direct Transistor Drive Capability

High Impedance Three-State Data Pins

Allows up to 7K contiguous bytes of ROM with no external decoding

Figure 1. MCS6530 Block Diagram

Péo PAT P§0 P?
DATA 1/0 PERIPHERAL INTERVAL PERIPHERAL 170
CONTROL REGISTER DATA BUFFER TIMER DATA BUFFER REGISTER
REGISTER A A B = B
A
l 3 H v g
DATA ADDRESS CHIP 64 X 8 1K X8 DATA
BUS DECODER SELECT RAM ROM EONTROL
St EGISTER
R/W
B
: ’ A0 A9 CSI CS2 @2 R/W RES

MAXIMUM RATINGS

RATING SYMBOL VOLTAGE UNIT
Supply Voltage vcc -.3 to +7.0 v
Input/Output Voltage Von -.3 to +7.0 v
Operating Temperature Range TOP 0 to 70 %
Storage Temperature Range TSTG =55 to +150 28

All inputs contain protection circuitry to prevent damage due to high
static charges. Care should be exercised to prevent unnecessary application
of voltage outside the specification range.

ELECTRICAL CHARACTERISTICS (VCC = 5.0v * 5%, VSS = Ov, T4 = 25°C)

CHARACTERISTIC SYMBOL MIN. TYP: MAX. |UNIT
Input High Voltage VIH Vss+2.4 vVcce
Input Low Voltage VIL VSS—.3 VSS+.4
Input Leakage Current; VIN = VSS + 5v IIN 1.0 2.5 HA
AP-A9, RS, R/W, RES, @2, PB6*, PBS*
Input Leakage Current for High Impedance State ITSI +1.0 [+10.0 | pA

(Three State); VIN = .4v to 2.4v; D@-D7
Input High Current; VIN = 2.4v IIH -100. ~-300. UA
PA@-PA7, PB@-PB7
Input Low Current; VIN = 4y 1 -1.0 -1.6 MA
PAG-PA7, PB@I-PB7 IL
Output High Voltage VOH v

= < o =
VCC = MIN, I;,.p & -100uA(PA@-PA7,PB@-PB7,DP-D7) VSS+2. 4
Iroap < -3 MA (PAQ,PB@) VSS+1.5

Output Low Voltage

VCC = MIN, I, . < 1.6MA Ve VSS+.4(v
Output High Current (Sourcing); Lon

VOH 2 2.4v (PAP-PA7,PB@-PB7,D@-D7) -100 | -1000 HA

2 1.5v Available for other than TTL -3.0 =k MA
(Darlingtons) (PA@,PB@)
inki : PAQ-PA7

Output Low Current (Sinking); VOL j_.AvEPB 5871 Lop 1.6 MA
Clock Input Capacitance CClk 30 pf
Input Capacitance CIN 10 pf
Output Capacitance COUT 10 pf
Power Dissipation PD 500 |1000 MW

*When programmed as address pins
All values are D.C. readings

1.3-2

WRITE TIMING CHARACTERISTICS

CHARACTERISTIC SYMBOL|MIN. | TYP. {MAX. |UNIT
Clock Period TCYC 1 10 us
Rise & Fall Times TR, TF 25 NS
Clock Pulse Width TC 470 NS
R/W valid before positive transition of clock TWCW | 180 NS
Address valid before positive transition of clock | TACW |180 NS
Data Bus valid before negative transition of clock | TDCW 300 NS
Data Bus Hold Time THW 10 NS
Peripheral data valid after negative transition TCPW 1| wus
of clock
Peripheral data valid after negative transition TCMOS 2 uS
of clock driving CMOS (Level=VCC-30%)
READ TIMING CHARACTERISTICS
CHARACTERISTIC SYMBOL|MIN. | TYP. | MAX. JUNIT
R/W valid before positive transition of clock TWCR |180 NS
Address valid before positive transition of clock TACR 180 NS
Peripheral data valid before positive transition TPCR 300 NS
of clock
Data Bus valid after positive tramsition of clock | TCDR 395 | NS
Data Bus Hold Time THR 10 NS
IRQ (Interval Timer Interrupt) valid before TIC 200 NS
positive transition of clock

Loading = 30 pf + 1 TTL load for PA(-PA7, PB@-PB7
=130 pf + 1 TTL load for D@-D7

I.3-3

CLOCK

R/W

ADDRESS

DATA BUS

PERIPHERAL
DATA

CLOCK INPUT

ADDRESS

PERIPHERAL
DATA

DATA BUS

PB7(TRQ)

INPUT

Teye

Tr - T ~g— T
2.4V
0.4V
Twew (<&—
2.4V
1‘0.8\!
0.4V
—>| Tacw [=—
0.8V o
—l l‘fTHw
>¢2.0V K 2.4V
2.8Y 0.4V
Tcew e Vee ~30%
Tocw FTT T TS i e
0.8V 0.4V
—& Tcmos [«—
WRITE TIMING CHARACTERISTICS
Figure 2
24V
/ 4V A 24V
R/W 20 "j“ \
Twcr [— o4V
TacrR [€—
20V 2.9V
0.8V
0.4V
Tecr [w—
= 2.4V
0.8V
0.4V
Tcor—1 THR
vk 20V G
0.8V
N 0.4V
- TIC f—
2.4V
0.4V

READ TIMING CHARACTERISTICS
Figure 3
1.3-4

INTERFACE SIGNAL DESCRIPTION

Reset (RES)

During system initialization a Logic "0" on the RES input will cause
a zeroing of all four 1/0 registers. This in turn will cause all 1/0
buses to act as inputs thus protecting external components from possible damage
and erroneous data while the system is being configured under software control.
The Data Bus Buffers are put into an OFF-STAIE during Reset. Interrupt
capability is disabled with the RES signal. The RES signal must be held
low for at least one clock period when reset is required.

Input Clock

The input clock is a system Phase Two clock which can be either a

. n' -

low level i}gck (VIL < 0.4, VIH > 2.4) or high level clock (VlL < 052,
le = Vece _ 2).

Read /Write (R/W)

The R/W signal is supplied by the microprocessor array and is used to
control the transfer of data to and from the microprocessor array and the
MCS6530. A high on the R/W pin allows the processor to read (with proper
addressing) the data supplied by the MCS6530. A low on the R/W pin allows

a write (with proper addressing) to the MCS6530.

Interrupt Request (IRQ)

The IRQ pin is an interrupt pin from the interval timer. This same pin,
if not used as an interrupt, can be used as a peripheral I/0 pin (PB7). When
used as an interrupt, the pin should be set up as an input by the data direction
register. The pin will be normally high with a low indicating an interrupt from
the MCS6530. An external pull-up device is not required; however, if collector-OR'd
with other devices, the internal pullup may be omitted with a mask option.

Data Bus (D0-D7)

The MCS6530 has eight bi-directional data pins (D0-D7).
connect to the system's data lines and allow transfer of data to and from
the microprocessor array. The output buffers remain in the off state except

when a Read operation occurs.

These pins

Peripheral Data Ports

The MCS6530 has 16 pins avallable for peripheral 1/0 operations. Each

pin is individually software programmable to act as either an input or an
output. The 16 pins are divided into 2 8-bit ports, PAO-PA7 and PBO-FB7.
PB5, PB6 and PB7 also have other uses which are discussed in later sections.
The pins are set up as an input by writing a "0" into the corresponding bit
of the data direction register. A "1" into the data direction register will
cause its corresponding bit to be an output. When in the input mode, the

1.3-5

peripheral output buffers are in the "1" state and a pull-up device acts as
less than one TTL load to the peripheral data lines. On a Read operation,
the microprocessor unit reads the peripheral pin. When the peripheral
device gets information from the MCS6530 it receives data stored in the
data register. The microprocessor will read correct information if the
peripheral lines are greater than 2.0 volts for a "1" and less than 0.8
volts for a '"0" as the peripheral pins are all TTL compatible. Pins PAQ
and PBO are also capable of sourcing 3 ma at 1.5v, thus making them capable

of Darlington drive.

Address Lines (AQ- A9)

There are 10 address pins. In addition to these 10, there is the
ROM SELECT pin. The above pins, A0-A9 and ROM SELECT, are always used as
addressing pins. There are 2 additional pins which are mask programmable
and can be used either individually or together as CHIP SELECTS. They are
pins PB5 and PB6. When used as peripheral data pins they cannct be used as

chip selects.

INTERNAL ORGANIZATION

A block diagram of the internal architecture is shown in Figure 1.
The MCS6530 is divided into four basic sections, RAM, ROM, I/0 and TIMER.
The RAM and ROM interface directly with the microprocessor through the
system data bus and address lines. The I/0 section consists of 2 8-bit
halves. Each half contains a Data Direction Register (DDR) and an I/0

Register.

ROM 1K Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines A0-A9, as
well as RSO are needed to address the entire ROM. With the addition of CS1
and CS2, seven MCS6530's may be addressed, giving 7168 x 8 bits of
contiguous ROM.

RAM - 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS6530. It is addressed
by AO-A5 (Byte Select), RSO, A6, A7, A8, A9 and, depending on the number
of chips in the system, CS1 and CS2.

Internal Peripheral Registers

There are four internal registers, two data direction registers and
two peripheral I1/0 data registers. The two data direction registers
(A side and B side) control the direction of the data into and out of
the peripheral pins. A "1" written into the Data Direction Register sets
up the corresponding peripheral buffer pin as an output. Therefore, anything
then written into the I/O Register will appear on that corresponding peripheral

1.3-6

pin. A "O0" written into the DDR inhibits the output buffer from trans-
mitting data to or from the I/0 Register. For example, a "1'" loaded into
data direction register A, position 3, sets up peripheral pin PA3 as an
output. If a "0" had been loaded, PA3 would be configured as an input

and remain in the high state. The two data I/O registers are used to
latch data from the Data Bus during a Write operation until the peripheral
device can read the data supplied by the microprocessor array.

During a read operation the microprocessor is not reading the I/0
Registers but in fact is reading the peripheral data pins. For the
peripheral data pins which are programmed as outputs the microprocessor
will read the corresponding data bits of the I/0 Register. The only way
the I/0 Register data can be changed is by a microprocessor Write operation.
The I/0 Register is not affected by a Read of the data on the peripheral pins.

Interval Timer

The Timer scection of the MOS6530 contains three basic parts:
preliminary divide down register, programmable 8-bit register and
interrupt logic. These are illustrated in Figure 4.

The interval timer can be programmed to count up to 256 time intervals.
Each time interval can be either 1T, 8T, 64T or 1024T increments, where T
is the system clock period. When a full count is reached, an interrupt
flag is set to a logic "1." After the interrupt flag is set the internal
clock begins counting down to a maximum of -255T. Thus, after the
interrupt flag is set, a Read of the timer will tell how long since the
flag was set up to a maximum of 255T.

The 8 bit system Data Bus is used to transfer data to and from the
Interval Timer. If a count of 52 time intervals were to be counted, the
pattern 0 0 1 1 C 1 0 0 would be put on the Data Bus and written into the

Interval Time register.

At the same time that data is being written to the Interval Timer, the
counting intervals of 1, 8, 64, 1024T are decoded from address lines AO and
Al. During a Read or Write operation address line A3 controls the interrupt
capability of PB7, i.e., A, = 1 enables IRQ on PB7, A3 = 0 disables LRQ on
PB7. When PB7 is to be uséd as an interrupt flag with the interval timer
it should be programmed as an input. If PB7 is enabled by A2 and an
interrupt occurs PB7 will go low. When the timer is read prior to the
interrupt flag being set, the number of time intervals remaining will be
read, i.e., 51, 30, 49, etc.

When the timer has counted down to 0 0 0 0 0 O O O on the next count
time an interrupt will occur and the counter will read 1 1 1 1 | 1 11
After interrupt, the timer register decrements at a divide by "1" rate of
the system clock. Lf after interrupt, the timer is read and a value of
11100100 is read, the time since interrupt is 28T. The value read
is in two's complement.

11100l 00
00011011

1l

Value read

Complement

00011100= 28,

]

ADD 1

Thus, to arrive at the total elapsed time, merely do a two's complement add
to the original time written into the timer. Again, assume time written as
00110100 (=52). With a divide by 8, total time to interrupt is

(52 x 8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T, assum-
ing the value read after interrupt was 1 1/1 0 0 1 0 O.

After the interrupt, whenever the timer is written or read the interrupt
is reset. However, the reading of the timer at the same time the interrupt
occurs will not reset the interrupt flag. When the interrupt flag is read on
DB7 all other DB outputs (DBO thru DB6) go to '0",

Figure 5 illustrates an example of interrupt.

R/W Ai D7 D6 D5 Df D3 [iz DI [lo R/W aﬂi Af
m < INTERRUPT -t PROGRAMMABLE DIVIDE 0>
CONTROL REGISTER 5 DOWN

ForrrrYYy

De D5 D4 D3 D2 DI DO

BASIC ELEMENTS OF INTERVAL TIMER - Figure 4

0) ® ® @ ®

g2 N o | [+ _J2_1]3 |_”J2|3L__]sz,]msLImeLJsoo]_[so;[_

Figure 5

1. Data written into interval timer is 0 0 1 1 0 1 0 0 = 52;9
2. Data in Interval timer is 0 0 0 1 1 0 0 1 = 255
52 - 213 - 1 = 52-26-1 = 25
8

3. Data in Interval timer is 0 0 0 0 0 0 0 O = 0,
52 - 415 - 1 = 52-51-1 =10
8
4. Interrupt has occurred at @, pulse #416
Data in Interval timer = 1 1111111
5. Data in Interval timer is 10 101100
two's complement is 0 1 0 1 0 1 0 0 = 84y,

84 + (52 x 8) = 500,

When reading the timer after an interrupt, A3 should be low so as to
disable the IRQ pin. This is done so as to avoid future interrupts until
after another Write timer operation.

1.3-8

ADDRESSING

Addressing of the MCS6530 offers many variations to the user for
greater flexibility. The user may configure his system with RAM in lower
memory, ROM in higher memory, and I/0 registers with interval timers between
the extremes. There are 10 address lines (A0-A9). In addition, there is
the possibility of 3 additional address lines to be used as chip-selects
and to distinguish between ROM, RAM, I/0 and interval timer. Two of the
additional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select
pins can also be PB5 and PB6. Whether the pins are used as chip-selects or
peripheral I/0 pins is a mask option and must be specified when ordering
the part. Both pins act independently of each other in that either or both
pins may be designated as a chip-select. The third additional address line
is RSO. The MCS6502 and MCS6530 in a 2-chip system would use RSO to dis-
tinguish between ROM and non-ROM sections of the MCS6530. With the
addressing pins available, a total of 7K contiguous ROM may be addressed
with no external decode. Below is an example of a l-chip and a 7-chip

MCS6530 Addressing Scheme.

One-Chip Addressing

Figure 6 illustrates a l-chip system decode for the MCS6530.

Seven-Chip Addressing

In the 7-chip system the objective would be to have 7K of contiguous
ROM, with RAM in low order memory. The 7K of ROM could be placed between
addresses 65,535 and 1024. For this case, assume Al3, Al4 and Al5 are all
1 when addressing ROM, and O when addressing RAM or I/0. This would place
the 7K ROM between Addresses 65,535 and 58,367. The 2 pins designated
as chip-select or I/0 would be masked programmed as chip-select pins.

Pin RSO would be connected to address line Al10. Pins CS1 and CS2 would
be connected to address lines All and Al2 respectively. See Figure 7.

The two examples shown would allow addressing of the ROM and RAM;
however, once the I/0 or timer has been addressed, further decoding is
necessary to select which of the I/0 registers are desired, as well as
the coding of the interval timer.

1/0 Register - Timer Addressing

Figure 8 illustrates the address decoding for the internal
elements and timer programming. Address lines A2 distinguishes 1/0
registers from the timer. When A2 is high and I/0 timer select is high, the
1/0 registers are addressed. Once the 1/0 registers are addressed, address
lines Al and AO decode the desired register.

When the timer is selected Al and AQ0 decode the divide by matrix.
This decoding is defined in Figure 8. In addition, Address A3 is
used to enable the interrupt flag to PB7.

i

Y

INT. TIMER SEL.
A3

INTERVAL
Al iMER
AP
I/O TIMER SEL.
- I/O SEL.
, Al 1/O
ﬁ‘sﬂ A9
RAM SEL.
- AS
TR A B A
I | A3 RAM
! |
I ' A2
Cs2 . Al
|
| i Ap
C51 [e l
| L.D} — |
s I : ROM SEL.
| '
Ay 1o A9
| I
| I
A8 A8
I I
| I
A7 3 A7
| I
|]
A6 % A6
1 N I
I |
AS AS
b o e e e e e e =
A4 A4
A3 A3
A2 A2
Al Al
Ap A9

A. Xindicates mask programming
i.e. ROM select = CS1eRSO
RAM sclect = CS19RSOsAGeA78AG
1/0 TIMER SELECT = CS1eRS0OeA9eA8eA 7oA
B. Notice that A8 is a don’t care for
RAM select
C. CS2 can be used as PBS in this example.

MCSG6530 One Chip Address Encoding Diagram
Figure 6

1.3-10

The addressing of the ROM select, RAM select and I/0 Timer select lines

would be as follows:

Cs2 Cs1 RS

Al2 All A0 A9 A8 A7 A6

MCS6530 #1, ROM SELECT 0 0 1 X X X X
RAM SELECT 0 0 0 0 0 0 o

I/0 TIMER 0 0 0 1 0 0 0

MCS6530 #2, ROM SELECT 0 1 0 X X X X
RAM SELECT 0 0 0 0 0 0 1

1/0 TIMER 0 0 0 1 o0 o0 1

MCS6530 #3, ROM SELECT 0 1 1 X X X X
RAM SELECT 0 0 0 o o0 1 o0

I/0 TIMER 0 0 0 1 0 1 0

MCS6530 #4, ROM SELECT i 0 0 X X % x
RAM SELECT 0 0 0 o o0 1 1

I/0 TIMER 0 0 0 1 0 1 1

MCS6530 #5, ROM SELECT 1 0 1 ¥ £ X ¥
RAM SELECT 0 0 0 o 1 0 0

I/0 TIMER 0 0 0 1 1 0 0

MCS6530 #6, ROM SELECT 1 1 0 X X X X
RAM SELECT 0 0 0 o 1 o0 1

I/0 TIMER 0 0 0 1 1 0 1

MCS6530 #7, ROM SELECT 1 1 1 X X X X
RAM SELECT 0 0 0 o 1 1 o0

1/0 TIMER 0 0 0 1 1 1 o0

* RAM select for MCS6530 #5 would read = A12+Al1-Al0-A9-A8-A7+A6

MCS6530 Seven Chip Addressing Scheme
Figure 7

1.3-11

ADDRESSING DECODE

ROM SELECT RAM SELECT /0 TIMER SELECT R/W A3 A2 Al A0
READ ROM I 0 o] I X X X X
WRITE RAM 0 I o o] X X X X
READ RAM o] I 0 [X X X X
WRITE DDRA 0o o] o] X 0] o] I
READ DDRA 0 o] | I X 0] 0 I
WRITE DDRB 0 0 1 o] X o] | I
READ DDRB o] 0 I I X o] I I
WRITE PER. REG. A o} o} I o] X 0 0 o]
READ PER. REG. A o] o} [I X o} o] o}
WRITE PER. REG. B 0 0] 0 X o] I 0
READ PER. REG. B o] 0 I [X o] I 0
WRITE TIMER
= IT o o} | 0 * | o] 0
+ 8T o] 0 1 o ® I 0 I
+ 64T 0 0 I 0 * I | o]
+1024T o] 0 [0 3 ! I I
READ TIMER 0 o]] I * I X 0
READ INTERRUPT FLAG o 0] 1 I X I X I
% A3 =1 Enables IRQ to PB7 Addressing Decode for |/0 Register and Timer
Az =0 Disables IRQ to PB7 FIGURE 8
o
10 vss (]I 40 Pai
40 \ \ 21 i PAO [J2 391 PA2
Dot or Notch : o 2 (3 381 PA3
To Locate .600max. | |(15.87) .625
Bin No. =l (5.24mm)| |51 595 Rso []4 3rQ) PA4
2 _—_i_ A9 [s 36[] PA5
‘ YA ol A As Oe 350 PA6
T — A7 [O7 g 34[] PA7
(3 93mm) Ae [18 & 331 DBO
. 2.020 max. 5
(51.30 mm) 190 max. R/W [9 3 32 08I
(4.82mm) As (Jio © 31 oB2
'\ | A4 i 300]) 083
.310max.
WW_—,‘;F_LF (7.87mm) A3 [z 29[] DB4
Lr I a2 13 28[] DBS
(1.65) .065
(_'-0_” m .100min. Al 4 271 DBé6
(2.54mm) A0 [I5 26[] DB7
(.55) .022 : —=
a5 ois TP —— 010 min. RES [Jis 251 PBO
-45) .018 1.910 (48.51mm) (.25mm)
1.890 (48.00mm) IRQ/PB7 [I17 24 PBI
I9 Equal Spaces csi/zPBs []I8 230 PB2
.100 ¢ Tol. Noncum. cs2/PB5 []I19 221 PB3
(2,64 mm) vee []20 210 PB8a
NOTE: Pin No.| is in lower left corner when
symbolization is in normal orientation
PACKAGE OUTLINE PIN DESIGNATION
1.3-12

PRODUCT

ANNOUNCEMENT
ik BULLETIN
MOS TIGHNOLOOV INC. :
VALLEY FORGE CORPORATE CENTER (215) 666 7950 SEPTEMBER _ 1876

950 RITTENHOUSE ROAD, NORRISTOWN, PA 19401

MCS6532 RAM/IO/INTERVAL TIMER CHIP

The MCS6532 is designed to operate in conjunction with the MCS650X Microprocessor Family. It is
comprised of a 128 x 8 static RAM, two software controlled 8 bit bi-directional data ports
allowing direct interfacing between the microprocessor unit and peripheral devices, a software
programmable interval timer with interrupt, capable of timing in various intervals from 1 to 262,
144 clock periods, and a programmable edge detect circuit.

* 8 bit bi-directional Data Bus for direct communication with the microprocessor
* Edge Sense Interrupt (Pusitive ur Negative Edge: Programmable)

* 128 x 8 static Ram

* Two 8 bit bi-directional data ports for interface to peripherals

* Two programmable 1/0 Peripheral Data Directim Registers

* Programmable Interval Timer

* Programmable Interval Timer Interrupt

* TTL & CMOS compatible peripheral lines

* Peripheral pins with Direct Transistor Drive Capability

* High Impedance Three-State Data Pins

TO
PROCESSOR

MCS6532 INTERFACE DIAGRAM Vss & 1 o=
AS 1 2 IV 62

B A4] 3 SEE) C5)
A3] 4 57) /€52

: A2Ens m RS

. AlC] 6 3SE3 R/W

— | NT= EEEE = B
(. PAO . 8 6 35 £33 DBO

| -IC> 10 PALLH S g 32§ DRI

2 ¢ ey PA2EH 10 4 313 DB2
: DEVICES PAI L] 11 2 30 =3 DB3

I K——> PA4 C 12 29 83 D4

| <] PAS T 13 28 1 DBS
pA6] 14 27 3 DB6

PA7 1 15 20 3 DB7

PB7 . 16 25 1kQ

PB6 T 17 24 I PBO

PB5] 18 233 pBl

PB4] 19 223 PB2

Vi O 20 2183 PB3

MCS6522 VERSATILE INTERFACE ADAPTER

The MOS Technology, Inc. MCS6522 is a second-generation peripheral adapter designed to
bring increased capability to the microcomputer system designer for the solution of peripheral
control and system timing problems. It combines the general purpose peripheral ports, hand-
shaking, interrupt handling, etc. of the MCS6520 with a pair of very flexible interval timers
and a serial-out/serial-in shift register. In addition, the chip is organized to simplify the
software involved in controlling the many functions provided by this device.

Some of the important features of the MCS6522 are as follows:

* Compatible with the MCS650X and MCS651X family of microprocessors.

* Eight-bit bi-directional data bus for communication with the microprocessor.
* Two eight-bit bi-directional ports for interface to peripheral devices.

* Data Direction Registers allow each peripheral pin to act as either an input or an
output.

* Interrupt Flag Register allows the microprocessor to determine the source of an
interrupt very conveniently.

* Interrupt Enable Register allows very convenient control of interrupts within the
chip.

* Handshake control logic for input and output peripheral data transfer operations.
* CMOS-compatible "A'" and '"B" peripheral ports.

* Data latching on peripheral ports.

* Two fully-programmable interval timers.

* Eight-bit Shift Register for serial interface.

* Forty-pin plastic or ceramic DIP package.

1.4-2

APPENDIX J

“MICROCOMPUTER BIBLIOGRAPHY

BUGBOOK III book $15.00
by Rony, Larsen, & Titus
published by K. & L. Instruments

A complete introduction to operation, programming and
interfacing of an 8080 based microcomputer. Text is keyed to
the use of the E. & L. MD-1 microcomputer, but is a very
useful reference for all seeking hardware information about

8080 based systems.

BUGBOOK V and BUGBOOK VI books
by Rony, Larsen, and Titus
published by E. & L. Instruments

A complete and novel treatment of microprocessors and
digital circuitry. 8080 oriented but contains much useful
material on interfacing microcomputers to external devices.

CMOS COOKBOOK book $9.95
by Don Lancaster
Howard W. Sams
1977

HOW TO BUY AND USE MINICOMPUTERS & MICROCOMPUTERS book $9.95
by William Barden, Jr.
Howard W. Sams
1976
pp. 240

INTEL 8080 ASSEMBLY LANGUAGE PROGRAMMING MANUAL Manuf. Data $5.00
1975

pp. 75
obtain from--Intel Corp.
3065 Bowers Avenue
Santa Clara, Ca. 95051
or
Local Intel Representative or Distributor

INTEL 8080 MICROCOMPUTER SYSTEMS USER'S MANUAL Manuf. Manual $5.00

obtain from--Intel Corp.
or
Local Intel Representative or Distributor

AN INTRODUCTION TO MICROCOMPUTERS: books $7.50 each
by Adam Osborne
#*Volume I - Basic Concepts #2001
Volume II - Some Real Products #3001
8080 Programming for Logic Design #4001
6800 Programming for Logic Design #5001
Osborne & Associates, Inc.
P.0. Box 2036
Berkeley, CA 94702

MICROCOMPUTER APPLICATIONS HANDBOOK handbook
by David J. Guzeman
Iasis Inc.
815 W. Maude Avenue
Sunnyvale, CA 94086

A complete description of hardware and software for
Iasis's single borad microcomputer.

MICROCOMPUTER DESIGN book $25.00
by Donald P. Martin
1976
pp. 400

Martin Research
3336 Commercial Avenue
4 Northbrook, IL 60062

A comprehensive treatment of hardware and software for
small microcomputer systems using the 8008 and 8080 micro-
processors. This is the only book giving detailed infor-

mation on the 8008.

MICROCOMPUTER AND MICROPROCESSOR book
by Hilburn and Julick
Copyright 1976 by Prentice Hall, Inc.
pp. 375

The book 1s intended for all persons involved in the
design, use, or maintenance of digital systems using micro-
computers. The book is written at a level which can be
understood by persons with little previous experience.

Topics include: digital logic, number systems and codes,
microcomputer architecture, software, interfacing and peripheral
devices, microcomputer systems [4040, 8080, 8008, 6800, IMP-4, PPS4, COSMAC,

PPS~8, PACE] design methodology and applications.

MICROPROCESSORS & MICROCOMPUTERS book $23.00
by Branko Soucek
Wiley=Interscience
1976
pp. 607

A general introduction to digital systems and microcomputers
with detailed descriptions of popular 4,8,12 and 16 bit micro-
processors including the 6800, 8080, and LSI-11.

J=-2

"MICROPROCESSORS: MEW DIRECTIONS FOR DESIGNERS collected articles
Edited by Edward A. Torrero $8.95
1975
pp. 135

Selected articles reprinted from Electronic Design Magazine.

SCELBI SOFTWARE MANUALS book $19.95
Machine Language Programming for the 8008
Scelbi Computer Consulting Inc.
1322 Rear Boston Post Rd.
Milford, CT 06460
pp. 170

Intro. to assembly language programming. Includes discussion
of binary and floating point arithmetic.

SCELBI SOFTWARE MANUALS 8080 books
8080 Monitor Routines $11.95 ppd
An 8080 Assembler Program $17.95 ppd
An 8080 Editor Program $14,.95 ppd
Scelbi Computer Consulting Inc. all three for $39.50 ppd

Well documented software packages with program listings
in Octal (paper tapes abailable). Uses non-standard memonic

codes.

SCELBI'S '8080' SOFTWARE GOURMET GUIDE AND COOKBOOK pgook $9.95

Machine Language Programming for the 8080

pp. 170
Scelbi Computer Consulting Inc.

Introduction to assembly language programming for the 8080.
Includes several routines which can be used for number conversion
floating point arithmetic and I/0O processing.

SC/MP MICROPROCESSOR APPLICATIONS HANDBOOK - MANUFACTURER DATA BOOK
published by National Semiconductor Corp. .
2900 Semiconductor Drive
Santa Clara, CA. 95051
available from local National Semiconductor Technical representative

Hardware and softward applications of the SC/MP.

SCELBI'S '6800' SOFTWARE GOURMET GUIDE AND COOKBOOK book $9.95
Machine Language Programming for the 6800.
Scelbi Computer Consulting Inc.

J=3

SOFTWARD DESIGN FOR MICROPROCESSORS

by John G. Wester and William D. Simpson
copyright 1976 by Texas Instrument Inc.
pp. 372
order from: Texas Instruments
P.0. Box 3640, M/S-84
Dallas, TX 75285

Book was written to assist technical and non-technical people
in taking their first steps toward designing with mircroprocessors
and related software. Topics range from basic binary numbers to
complex examples of microcomputer applications. Book was written
primarily for those with little or no programming experience but
it contains excellent application examples which should be of
interest even to seasoned programmers.

reference book

TTL COOKBOOK

by Don Lancaster

1974
pp. 335
published by Howard W. Sams & Co., Inc.

reference book

TV TYPEWRITER COOKBOOK

by Don Lancaster

1976
published by Howard W. Sams & Company, Inc.

. Lo ; 4 et Lo - ;‘-};5 {‘_.é/.&') .'
(i ot AL = 5 /

J=l

book $12.95

$8.95

$8.95

PERIODICALS

AMERICAN LABORATORY

BYTE
published monthly by - Byte Publications, Inc.

70 Main Street

$12.00 per year Peterborough, N.H. 03458

COMPUTER DESIGN
published monthly by - Computer Design Publishing Company
circulation address - Computer Design
Circulation Department

P.0. Box A

free to qualified persons - others $20 per Winchester, MA 01890

year

CONTROL ENGINEERING
published monthly by - Control Engineering
subscription address - 666 Fifth Avenue
free to qualified personms " New York. NY 10019
’

Contains useful articles on applications of microcomputers to
industrial control. -

DIGITAL DESIGN
published monthly by -~ Benwill Publishing Corp.
Circulation Director
DIGITAL DESIGN
167 Corey Road
Brookline, MA 02146

[free to qualified persons, $25.00 to others, request qualification card
on company letterhead]

Dr. Dobbs Journal of COMPUTER CALISTHENICS & ORTHODONTIA

published ten (10) times per year by -
Peoples Computer Company

Box E
Menlo Park, CA 94025

$12.00 per year
Devoted to publication of microcomputer oriented software such as

TINY BASIC.

J-5

ELECTRONIC DESIGN
published biweekly by - Hayden Publishing Company, Inc.

50 Essex Street
Rochelle Park, NJ 07662

[free if qualified, otherwise, $30.00 per year]

ELECTRONIC DESIGN NEWS
published monthly by - Cahners Publishing Company

[free to qualified persons; very hard to get]

ELECTRONIC ENGINEERING TIMES

published biweekly by - CMP Publications
suscription address - Electronic Engineering Times

. 280 C i i
free to qualified persons GreatogggzlthDiiggl

[useful for news and announcements of new microprocessor products.
Has bingo card for new product ads]

ELECTRONICS :
published biweekly by - McGraw-Hill, Inc.
suscription address - ELECTRONICS
McGraw-Hill Building
1221 Avenue of the Americas

$12.00 per year to qualified persons New York, NY 10020

INTERFACE
published monthly by = Southern California Computer Society

[free with $10.00 membership in SCCS]

INTERFACE AGE [new magazine by publisher of original INTERFACE]

published monthly by - McPheters, Wolfe & Jones
6515 Sunset Blvd.

Suite 202
$10.00 per year Hollywood, CA 90028

INSTRUMENTS & CONTROL SYSTEMS
published monthly by - Chilton Company
' suscription address - Chilton Company
Chilton Way
P.0. Box 2025
Radnor, PA 19089
Attention: Circulation Dept.

[free to qualified persons, others $25.00 per year]

J-6

APPENDIX K

GLOSSARY OF COMMONLY USED TERMS

GLOSSARY OF COMMONLY USED MICROPROCESSOR TERMS

ABSOLUTE ADDRESSING - SEE DIRECT ADDRESSING

ABSOLUTE INDEXED ADDRESSING - The effective address is formed by
adding the index register (X or Y) to the second and third byte

of the instruction.

ACCUMULATOR - A register that holds one of the operands and the
result of arithmetic and logic operations that are performed
by the central processing unit. Also commonly used to hold
data transferred to or from I/0 devices.

ACCUMULATOR ADDRESSING ~ One byte instruction operating on the
accumulator.

ACIA - 1Is an Asynchronous Communications Interface Adapter. This
is an NMOS LSI device produced by Motorola for interfacing
Serial ASCII devices to a micro-processor system.

ADDRESS - A number that designates a memory or I/0 location.

ADDRESS BUS =~ A multiple-bit output Bus for transmitting an address
from the CPU to the rest of the system.

AILGORITHM - The sequerce of operations which defines the solution
to a problem.

ALPHANUMERIC -~ Pertaining to a character set that contains both
letters and numerals and usually other characters.

ALU (ARITHMETIC/LOCIG UNIT) - The unit of a computing system that
performs arithmetic and logic operationms.

ASCII CODE - The American Standard Code for Information Interchange.
A seven-bit character code without the parity bit, or an eight-
bit character code with the parity bit.

ASSEMBLER - A program that translates symbolic operation codes into
machine language, symbolic addresses to memory addresses and
assigns values to all program symbols. It translates source
programs to object programs.

ASSEMBLY DIRECTIVE - A mnemonic that modifies the assembler operation
but does not produce an object code (e.g., a pseudo instruction).

ASSEMBLY LANGUAGE - A collection of symbolic labels, mnemonics, and

data which are to be translated into binary machine codes by the
assembler.

K-1

ASYNCHRONOUS - Not occurring at the same time, or not exhibiting
a constant repetition rate; irregular.

BASE - "SEE RADIX".

BCD - Binary Code Decimal. A means by wnich decimal numbers are
represented as binary values, where integers in the range 0-9
are represented by the four-bit binary codes from 0000-1001.

BIDIRECTIONAL DATA BUS - A data bus in which digital information can
be transferred in either direction.

BINARY - The base two number systems. All numbers are expressed as
powers of two. As a consequence, only two symbols (0 & 1) are
required to represent any number.

BIT - The smallest unit of information which can be represented.
A bit may be in one of two states, represented by the binary
digits O and 1.

BLOCK DIAGRAM - A diagram in which the essential units of any
system are drawn in the form of blocks, and their relationship
to each other is indicated by appropriately connected lines.

BRANCH INSTRUCTION -~ An instruction that causes a program jump to a
specified address and execution of the instruction at that address.
During the execution of the branch instruction, the central proces-
sor replaces the contents of the program counter with the specified

address.

BREAKPOINT - Pertaining to a type of instruction, instruction digit,
or other condition used to interrupt or stop a computer at a
particular place in a program. A place in a program where such
an interruption occurs or can be made to occur.

BUFFER - A noninverting digital circuit element that may be used to
handle a large fan-out or to invert input and output levels.

A storage device used to compensate for a difference in rate
of flow of data, or time of occurrence of events, when transmitting
data from one device to another.

BYTE - A sequence of eight adjacent binary digits operates upon as a
unit.

CALL - A special type of jump in which the central processor is
logically required to "remember" the contents of the program
counter at the time that the jump occurs. This allows the
processor later to resume execution of the main program, when
it is finished with the last instruction of the subroutine.

K-2

CASCADE - 4An arrangement of two or more similar circuits in which
the ocutput of one circuit provides the input of the next.

CLOCK - A device or a part of a device that generates all the timing
pulses for the coordinaticn of a digital system. System clocks
usually generate two or more clock phases. Each phase is a sep-
arate square wave pulse train output.

CODING - The process of prepsring a program from the flow chart
defining an algorithm.

COMPILER - A language translator which converts individual source
statements into multiple machine instructions. A compiler
ranslates the entire program before it is exscuted.

COMPLEMENT - Reverse all binary bit values (ones become zeros, zeros
become ones).

CONDITIONAL - In a computer, subject to tne result of a comparison
made during computation.

CONDITIONAL BREAKPOINT INSTRUCTION - A conditional jump instruction
that causes a computer to stop if a specified switch is set.
The routine then may be allowed to proceed as coded, or a jump
may be forced.

CONDITIONAL JUMP - Also talled conditional transfer of control. 4An
instruction to a computer which will cause the proper one of
two (or more) addresses to be used in obtaining the next instruc-
tion, depending on some property of one or more numerical expres-
sions or other conditions.

CONTACT BOUNCE - The uncontrolled making and breaking of a contact
when the switch or relay contacts are closed. An important
problem in digital circuits, whers bounces can act as clock pulses.

CPU (CENTRAL PROCESSING UNIT) - The unit of a computing system that
cantrols the interpretation and execution of instructions; incldes
the ALU.

DATA BUS - A multi-line, parallel path over which digital data is
transferred, from any of several destinations. Only one transfer
of information can take place at any one time. While such trans-
fer is taking place, all other sources that are tied to the bus
must be disabled.

DEBUG - Detect, locate, and correct problems in a program or nardware.

DEBOUNCED - Refers to a switch or relay that no longer exhibits con-
tact bounce.

DECODER/DRIVER - A code conversion device that can also has sufficient
voltage or current output to drive an external device such as a

display or a lamp monitor.

DEMULTIPLEXER - A digital device that directs information from a single
input to one of several outputs. Information for output-channel
selection usually is presented to the device in binary weighted
form and is decoded internally. The device also acts as a single-
pole multiposition switch that passes digital information in a
direction opposite to that of a multiplexer.

DESTINATION - Register, memory location or I/0 device which can be
used to receive data during instruction execution.

DEVICE SELECT PULSE -~ A software-generated positive or negative
clock pulse from a computer that is used to strobe the operation
of one or more I/0 devices, including individual integrated

circuit chips.

DIRECT ADDRESSING - The second and third
byte of the instruction contain the address of operand to be
used.

DMA (DIRECT MEMORY ACCESS) - Suspension of processor operation to
allow peripheral units external to the CPU to exercise control
of memory for both READ and WRITE without altering the internal

state of the processor.

DYNAMIC RAM - A random access memory that uses a capacitive element
for storing a data bit. They requires REFRESH.

EBCDIC =~ The Extended Binary Coded Decimal Interchange Code, a
digital code primarily used by IBM. It closely resembles the

half-ASCII code.

EDGE - The transition from logic O to logic 1, or from logic 1
to logic O, in a clock pulse.

EDITOR =~ A program used for preparing and modifying a source
program or other file by addition, deletion or change.

EFFECTIVE ADDRESS -~ The actual address of the desired location in
memory, usually derived by some form of calculation.

EXPANSION - The process of inserting a sequence of operations
represented PY a macro name when the macro name is referenced

in a program.

FALL TIME - The time required for an output voltage of a digital
circuit to change from a logic 1 to a logic O state.

FAN-OUT - The number of parallel loads within a given logic family
that can be driven from one output mode of a logic circuit.

FETCH - One of the twec functional parts of an instruction cycle.
The collective actions of acquiring a memory address, and then
an instruction or data byte from memory.

FIELD - An area of an instruction mnemonic.
FILE - A collection of data records treated as a single unit.

FIFO (FIRST IN, FIRST OUT) - The term applies to the sequence of
entering data into and retrieving data from data storage.
The first data entered is the first data obtainable with FIFO.

FLAG - A status bit which indicates that a certain condition has
arisen during the cource of arithmetic or logical manipulations
or data transmission between a pair of digital electronic
devices. Some flags may be tested and thus be used for deter=-
mining subseguent actionse.

FLAG REGISTER - A register consisting of the flag flip-flops.

FLOW CHART - A symbolic representation of the algorithm required to
solve a problem.

FREQUENCY - The number of recurrences of a periodic phenomencn in
a unit of time. Electrical frequency is specified as so many
cycles per second, or Hertz.

FULL DUPLEX - A data transmission mode which provides simultaneous
and independent transmission and reception.

HALF-ASCII - A 8i-character ASCII code that containsthe code words
for numeric digits, alphabetic characters, and symbols but not
keyboard operations.

HALF DUPLEX - A data transmission mode which provides both trans-
mission and reception but not simultaneously.

HANDSHAKE -~ Interactive communication between two system components,
such as between the CPU and a peripheral; often required to prevent

loss of data.

HARDWARE - Physical equipment mechanical, electrical, or electronic
devices. :

HEXADECIMAL - A number system based upon the radix-16, in which the

decimal numbers O through 9 and the letters A through F represent
the sixteen distinct states in the code.

K-5

HIGH ADDRESS BYTE - The eight most significant bits in the 16-bit
memory address word. Abbreviated H or HI,

IC (INTEGRATED CIRCUIT) - (1) A combination of interconnected
circuit elements inseparably associated on or within a con-
tinuous substrate. (2) Any electronic device in which both
active and passive elements are contained in a single package.
In digital electronics, the term chiefly applies to circuits
containing semiconductor elements.

IMMEDIATE ADDRESSING ~ The Operand is the second byte of the
instruction, rather than its address.

IMPLIED ADDRESSING - A one-byte instruction that stipulates an
operation internal to the processor. DOES NOT require any
additional operand.

INCREMENT - To increase the value of a binary word. Typically,
to increase the value by 1.

INDEXED ADDRESS ~ An indexed address is a memory address formed
by adding immediate data included with the instruction to the
contents of some register or memory location.

INDEXED INDIRECT ADDRESSING - The second byte of the instruction
is added to the contents of the "X" index register, discarding
the carry, to form a zero-page effective address.

INDIRECT ABSOLUTE ADDRESSING =~ The second and third bytes of the
instruction contain the address for the first of two bytes in
memory that contain the effective address.

INDIRECT INDEXED ADDRESSING - The second byte of this instruction
is a zero-page address. The contents of this zero-page address
are added to the "I" index register to form the lower 3 bits
of the effective address. Then the carry (if any) is added
to the contents of the next zero-page address to form the
higher 8 bits of the effective address.

INDIRECT ADDRESS - An address used with an instruction that indicates
a memory location or a register that in turn contains the actual
address of an operand. The indirect address may be included with
the instruction, contained in a register (register indirect
address) or contained in a memory location (memory directed
indirect address).

INTERFACING =~ The joining of members of a group (such as people,

instruments, etc.) in such a way that they are able to
function in a compatible and coordinated fashion.

K-6

INSTRUCTION - A statement that specifies an operation and the values
or locations of its operands.

INSTRUCTION CODE «~ A unique binary number that encodes an operation
that a computer can perform.

INSTRUCTION CYCLE - A successive group of machine cycles, as few
as one or as many as seven, which together perform a single
microprocessor instruction within the microprocesser chip.

INSTRUCTION DECODER - A decoder within a CPU that decodes the
instruction code into a series of actions that the computer

performs.

INSTRUCTION REGISTER - The register that contains the instruction
code.

INTERPRETER - A language translator which converts individual source
statements into multiple machine instructions by translating and
executing each statement as it is encountered. Can not be used
to generate object code. .

INTERRUPT -~ In a computer, a break in the normal flow of a system
or routine such that the flow can be resumed from that point
at a later time. The source of the interrupt may be. internal

or external.

I/0 DEVICE - Input/output device - any digital device, including
a single integrated circuit chip, that transmits data or strobe
pulses to a computer or receives data or strobe pulses from a

COmpuLEr .

JUMP - (1) To cause the next instruction to be selected from a
specified storage location in a computer. (2) A deviation
from the normal sequence of execution of instructions in a

computer

LABEL - One or more characters that serve to define an item of
data or the location of an instruction or subroutine. A
character is one symbol of a set of elementary symbols, such
as those corresponding to typewriter keys.

LATCH - A simple logic storage element. A feedback loop used in
a symmetrical digital circuit, such as a flip-flop, to retain
a state.

LEADING EDGE =~ The transition of a pulse that occurs first.

K-7

LED (LIGHT-EMITTING DIODE) - A pn junction that emits light when
biased in the forward direction.

LEVEL-TRIGGERED - The state of the clock input, being either logic
O or logic 1 carries out a transfer of information or completes

an action.

LIFO (LAST IN, FIRST OUT) - The latest data entered is the first
data obtainable from a LIFO stach or memory section.

LSB (LEAST SIGNIFICANT BIT) - The digit with the lowest weighting
in a binary mumber.

LISTING - An assembler output containing a listing of program
mnemonics, the machine code produced, and diagnostics, if any.

LOGIC - (1) The science dealing with the basic principles and
applications of truth tables, switching, gating, etc. (2) See
Logical Design. (3) Also called symbolic logic. A mathematical
approach to the solution of complex situations by the use of
symbols to define basic concepts. The three basic logic symbols
are AND, QR, and NOT. When used in Boolean algebra, these symbols
are somewhat analogous to addition and multiplication. (4) 1In
computers and information-processing networks, the systematic
method that governs the operations performed on information,
usually with each step influencing the one that follows. (5)

The systematic plan that defines the interactions of signals
in the design of a system far automatic data processing.

LOGICAL DECISION - The ability of a computer to make a choice
between two alternatives; basically, the ability to answer
yes or no to certain fundamental questions concerning equality

and relative magnitude.

LOGICAL DESIGN .- The synthesizing of a network of logical elements
to perform a specified function. In digital electronics, these
logical elements are digital electronic devices, such as gates,
flip-flops, decoders, counters, etc.

IOGICAL ELEMENT =~ 1In a computer or data-processing system, the
smallest building blocks which operators can represent in an
appropriate system of symbolic logic. Typical logical elements
are the AND gate and the "flip-flop". -

LOOP - A sequence of instructions that is repeated until a con-
ditional exit situation is met.

LOW ADDRESS BYTE =~ The eight least significant bits in the 16-bit
memory address word. Abbreviated L or LO.

LSI (LARGE SCALE INTEGRATION) =~ .Integrated circuits that perform
complex functions. Such chips usually contain 100 to 2,000

gates.

MACHINE CODE - A binary code that a computer decodes to execute a
specific function.

MACHINE CICLE - A subdivision of an instruction cycle during which
time a related group of actions occur within the microprocessor
chip. In the 8080 microprocessor, there exist nine different
machine cycles. All instructions are combinations of one or
more of these machine cycles.

MACRC ASSEMBLER ~ 4An assembler routine capable of assembling
programs which contain and reference macro instructions.

MACRO INSTRUCTION - A symbol that is used to represent a specified
sequence of source instructions.

MAGNETIC CORE -~ A type of computer storage which employs a core of
magnetic material with wires threaded through it. The core can
be magnetized to represent a binary 1 or O.

MAGNETIC DRUM -~ A storage device consisting of a rapidly rotating
cylinder, the surface of which can be easily magnetized and
which will retain the data. Information is stored in the form
of.magnetized spots (or no spots) on the drum suface.

MAGNETIC DISC - A flat circular plate with a magnetic surface on
which data can be stored by selective magnetization of portions
of the flat surface.

MAGNETIC TAPE - A storage system based on the use of magnetic
spots (bits) on metal or coated-plastic tape. The spots are
arranged so that the desired code is read out as the tape
travels past the read-write head.

MASKING ~ A process that uses a bit pattern to select bits from
a data byte for use in a subsequent operation.

MEMORY - Any device that can store logic 1 and logic O bits in such
a mamner that a single bit or group of bits can be accessed
and retrieved.

MEMORY ADDRESS -~ A 16-bit binary number that specifies the precise
memory location of a memory word among the 65,536 different
possible memory locations.

MEMORY CELL -~ A single storage element of memory, capable of storing
one bit of digital information.

MICROCOMPUTER - A computer system based on a microprocessor and
contains all the memory and interface hardware necessary to
perform calculations and specified information transformations.

MICROPROCESSOR =~ A central processing unit fabricated as one
integrated circuit.

MICROPROGRAM - A computer program written in the most basic
instructions or subcommands that can be executed by the
computer. Frequently, it is stored in a read-only memory.

MNEMONIC - Symbols representing machine instructions designed
to allow easy identification of the functions represented.

MODULC -~ The modulo of a counter is simply n, the number of dis-
tinct states the counter goes through before repeating. A
four-bit binary counter has a modulo of 16; a decade counter
has a modulo of 10; and a divide by-7 counter has a modulo
of 7. In a variable modulo counter, n can be any value within
a range of values.

MONITOR - Software or hardware that observes, supervises, controls,
or verifies system operation.

MONGCSTABLE MULTIVIBRATOR - Also called one-shot multivibrator,
single-shot multi-vibrator, or start-stop multivibrator. A
circuit having only one stable state, from which it can be
triggered to change the state, but only for a predetermined
interval, after which it returns to the original state.

MSI (MEDIUM SCALE INTEGRATION) - Integrated circuits that perform
simple, self-contained logic systems, such as counters and

flip-flopse.

MSB (MOST SIGNIFICANT) - The digit with the highest weighting in a
binary humber.

MULTIPLEXER - A digital device that can select one of a number of
inputs and pass the logic level of that input on to the output.
Information for input-channel selection usually is presented to
the device in binary weighted form and decoded internally.

The device acts as a single-pole multiposition switch that
passes digital information in one direction only.

NEGATIVE EDGE - The transition from logic 1 to logic O in a clock
pulse.

NEGATIVE-EDGE TRIGGERED -~ Transfer of information occurs on the
negative edge of the clock pulse.

NEGATIVE LOGIC ~ A form of logic in which the more positive voltage
level represents logic O and the more negative level represents

logic 1.

NESTING - A sequential calling of subroutines without returning
to the main program.

K-10

NIBBLE - A sequence of four adjacent bits, or half a byte, is a
nibble. A hexadecimal or BCD digit can be represented in
a nibble.

NON-OVERLAPPING TWO-PHASE CLOCK - A two-phase clock in which the
clock pulses of the individual phases do not overlap.

NON-VOLATILE MEMORY - A semiconductor memory device in which the
stored digital data is not lost when the power is removed.

OCTAL - A number system based upon the radix 8, in which the
decimal numbers O through 7 represent the eight distinct
states.

ONE-BYTE~INSTRUCTION - An instruction that consists of eight
contiguous bits occupying one successive location.

OPEN-COLLECTQR OUTPUT - An output from an integrated circuit
device in which the final "pull-up" resistor in the output
transistor for the device is missing and must be provided
by the user before the circuit is completed.

OPERAND - Data which is, or will be, operated upon by an arithmetic/
logic instruction; usually identified by the address portion of
an instruction, explicitly or implicitly.

OPERATION -~ Moving or manipulating data in the CPU or between the
CPU and perirherals.

PAGE - A page consists of gll the locations that can be addressed
by 8-bits (a total of 256 locations) starting at O and going
through 255. The address within a page is determined by the
lower 8-bits of the address and the page number (O through
255) is determined by the higher 8-bits of a 16-bit address.

PARITY - A method of checking the accuracy of binary numbers. If
even parity is used, the sum of all the 1's in a number and
its corresponding parity bit is always even. If odd parity.
is used, the sum of all the 1l's and the parity bit is always odd.

PARTITIONING - The process of assigning specified portions of a
system responsibility for performing specified functions.

PC - See "PROGRAM COUNTER"
PIA - PERIPHERAL INTERFACE ADAPTOR (MOS Technology's MPS 6520)

PERIPHERAL - A device or subsystem external to the CPU that provides
additional system capabilities.

POLLING -~ Periodic interrogation of each of the devices that share
a communications line to determine whether it requires servicing.
The multiplexer or control station sends a poll that has the
effect of asking the selected device, "Do you have anything
to transmit?"

POP - Retrieving data from a stack.

r 13

PORT - A device or network through which data may be transferred
or where device or network varisbles may be observed or measured.

POSITIVE EDGE =~ The transition from logic O to logic 1 in a clock
pulse.

POSITIVE-EDGE TRIGGERED - Transfer of information occurs on the
positive edge of the clock pulse.

POSITIVE LOGIC - A foarm of logic in which the more positive voltage
level represents logic 1 and the more negative level represents

logic C.

PRIORITY - A preferential rating. Pertains to operations that are
given preference over other system operations.

PROCESSOR =~ Shorthand word for microprocessor

PROGRAM ~ A group of instructions which causes the computer to per-
form a specified function.

PROGRAM COUNTER - A register containing the address of the next
instruction tc be executed. It is automatically incremented
each time program instructions are executed.

PROGRAM LABEL =~ A symbol which is used to represent a memory address.

PROM (PROGRAMMABLE READ-ONLY MEMORY) - A read-only memory that. is
field programmable by the user.

PROPAGATION DELAY - A measure of the time required far a logic
signal to travel through a logic device or a series of logic
devices. It occurs as the result of four types or circuit
delays - storage, rise, fall, and turn-on-delay - and is
the time between when the input signal crosses the threshold -
voltage point and when the responding voltage at the output
crosses the same voltage point.

PSEUDO-INSTRUCTION - A mnemonic that modifies the assembler opera-
tion but does not produce an object code.

PULL-UP RESISTOR -~ A resistor connected to the positive supply
voltage to the output collector of open-collector logic. Also
used occasionally with mechanical switches to insure the
voltage of one or more switch positions.

PULSE WIDTH - Also called pulse length. The time interval between
the points at which the instantaneous value on the leading and
trailing edges bears a specified relationship to the peak pulse
amplitude.

K-12

TrNy - 2t : - : 1
PUSH - Putting dzts into a steck.

3

3

RADIX - Alsc called the base. The total number of distinct marks
or symbcls used in a numbering system. For examcle, since the
decimal numbering system uses ten symbols, the radix is 10.

In the binary nunmtering system, the radix is 2, becsuse there
are only two marks or symbol: (O and 1). In the octal number-
ing system, the radix is 8, and in the hexadecimal numbering
system, the radix is 16.

RAM (RANDOM ACCESS MEMORY) - A semiconductor memory inte which
logic O and logic 1 stztes can be written (stored) and then
read out agzin (retrieved).

READ - In semiconductecrs: To transmit data from a semiconductor
memory to some other digital electronic device. The term,
"'read", also applies to computers and other types of memory
devices.

REFRESH <« The process by which dynamic R2M cells recharge the
czpacitive node to maintain the stored information. The
charged nodes discharge due to leakage currents and without
refresh, the stored data would be lost. This process must
reoccur every so many microseconds. During refresh, the RAM
cannot be accessed.

REFRESH LOGIC - The logic required to generate all the refresh
signals and timing.

REGISTEE - A hardware element used to temporarily stcre data.

RELATIVE ADDRESS =~ 4 relgtive adcdress is a memory address formed
by adding the immediate data included with the instruction to
the contents of the program counter or some other register.

RESET - A computer system input that initislizes and sets up
certain registers in the CPU and throughout the computer
system. One of the initizlizations, is to load a specific
address into the Program Counter. The two bytes of information
in that and the succeeding address is the starting address
for the system program (for the MOS TECHNOLOGY processors).

RETURN - Aspecial type of jump in which the central processor
resumes execution of the main progrsm at the contents of the
program counter zt the time that the jump occured.

RIPPLE COUNTER - A binary counting system in which flip-flops are
connected in series.

RISE TIME - The time required for an output voltage of a dlpltal
c¢ircuit to change from a logic O to a logic 1 state.

ACM (READ-ONLY MEMORY) .- A semiconducter memory from which digital

data csn be repeatedly read out, but cannot be written into,
as 1is the case for 2 RaM.

K-13

ROUTINE - A group o instructions that causes the computer to
perform a specified function, e.g. a program.

SCRATCH PAD - The term applies to memory that is used temporarily
by the CPU to store intermediate results.

SEVEN-SEGMENT DISPLAY ~ An electronic display that contains seven
lines o¥ segments spatially arranged in such a manner that
the digits O through 9 can be represented through the selective
lighting of certain segments to form the digit.

SEMICONDUCTOR MEMORY - A digital electronic memory device in which
1's and O's are stored, that is a product of semiconductor

manufacturing.

SHIFT REGISTER - A digital storage circuit in which information is
shifted from one flip-flop of a chain to the adjacent flip-flop
upon application fo each clock pulse. Data may be shifted
several places to the right or left, depending on additional
gating and the number cf clock pulses applied to the register.
Depending on the number of positions shifted, the rightmost
characters are lost in a right shift, and the leftmost char-
acters are lost in a left shift.

SIMULATOR -~ A program which represents the functioning of one
computer system utilizing another computer system.

SOFTWARE ~ The means by which any defined procedure is specified
for computer execution.

SOURCE - Register, memory location or I/0 device which can be
used to supply data for use by an instruction.

SOURCE PROGRAM -~ A group of statements conforming to the syntax
requirements of a language processor.

SPLIT DATA BUS - Is two data buses, one for incoming communica-
tions and one for outgoing communications. An 8-bit data bus
in split data bus system takes 16 lines.

STACK - A specified section of sequential memory locations used
as a LIFO (Last In, First Out) file. The last element entered
is the first one available for output. A stack is used to store
program data, subroutine return addresses, processor status, etc.

STACK POINTER (SP) - A register which contains the address of the
system read/write memory used as a stack. It is automatically
incremented or decremented as instructions perform operations

with the stack.
K-14

STATEMENT - An instruction in source language.

STATIC RAM -~ A random access memory that uses a flip-flop for
storing a binary data bit. Does not require refresh.

STRING - A series of values.

SUBROUTINE - A routine that causes the execution of a specified
function and which also provides for transfer of control back
to the calling routine upon completion of the function.

SYMBOL =~ Any character string used to represent a label, mnemonic,
or data constant.

SYMBOLIC ADDRESS - Alsc called floating address. In digital com-
puter programming, a label chosen in a routine to identify a
particular word, function, or other information that is inde-
pendent of the location of the information within the routine.

SYMBOLIC CODE - A ccde by which programs are expressed in source
language; that is, storage locations and machine operations
are referred to by symbolic names and addresses that do not
depend upon their hardware-determined names and addresses.

SYMBOLIC CODING - In digital computer programming, any coding
system using symbolic rather than actual computer addressese

SYNCHRONOUS - Operation of a switching network by a clock pulse
generator. All circuits in the network switch simultaneously,
and all actions take place synchronously with the clock.

SYNTAX ERROR =~ An occurrence in the source program of a label
expression, or condition that does not meet the format
requirements of the assembler program.

TABLE - A data structure used to contain sequences of instruc-
tions, addresses, or data constants.

TRATLING EDGE - The transition of a pulse that occurs last, such
as the high-to-low transition of a positive clock pulse.

TRANSITION - The instance of changing from one state to a second
state.

THREE-STATE DEVICE or TRI-STATE DEVICE - A semiconductor logic
device in which there are three possible output states: (1)
a "logic O" state, (2) a "logic 1" state, or (3) a state in
in which the output is, in effect, disconnected from the rest
of the circuit and has no influence upon it.

K-15

THREE-BYTE INSTRUCTION - An instruction that consists of twenty-
four contiguous bits occupying three successive memory locations.

TRUTH TABLE - A tabulation that shows the relation of all output
logic levels of a digital circuit to all possible combinations
of input logic levels in such a way as to characterize the
circuit functions completely.

TWO-BYTE INSTRUCTION -~ An instruction that consists of sixteen
contiguous bits occupying two successive memory locations.

TWO-PHASE CLOCK -~ A two-cutput timing device that provides two
continuous series of timing pulse from the second series
always following a single clock pulse from the first series.
Depending on the type of two-phase clock, the pulses in the
first and second series may or may not overlap each other.
Usually identified as Phase'l & Phase 2.

UNCONDITIONAL =~ Not subject to conditions external to the specific
computer instruction.

UNCONDITIONAL CALL - A call instruction that is unconditional.

UNCONDITIONAL JUMP - A computer instruction that interrupts the
normal process of obtaining the instructions in an ordered
sequence and specifies the address from which the next
instruction must be taken.

UNCONDITIONAL RETURN - A return instruction that is unconditional.

VLSI (VERY LARGE-SCALE INTEGRATION) - Monolithic digital integrated
circuit chips with a typical complexity of two thousand or more

gates or gate-equivalent circuits.

VOLATILE MEMORY - A semiconductor memory device in which the stored
digital data is lost when the power is removed.

WEIGHTING - Most counters in the Th0O series of integrated circuit
chips are weighted counters, that is, we can assign a weighted
value to each of the flip-flop outputs in the counter.
sumning the product of the logic state times the weighting
value for each of the flip-flops, we can compute the counter
state. For example, the weighting factars for a L-bit binary

" counter are D = weight of 8, C = weight of L, B = weight of 2,
and A = weight of 1. The binary output, DCBA = 1101,, from a
L-bit binary counter would therefore be 13. 8

WIRED-OR CIRCUIT =~ A circuit consisting of two or more semiconductor
devices with open collector outputs in which the outputs are
wired together. The output from the circuit is at a logic O
if device A or device B or device Cor « » . . . is at a logic

0 state.

K-16

WORD =~ The maximum number of binary digits that can be stored in a
single addressable memory location of a given computer system.

WRITE - In semiconductors and other types of memory devices - to
transmit data into a memory device from some other digital
electronic device. To WRITE is to STORE.

ZERO-PAGE - The lowest 256 address locations in memory. Where
the highest 8-bits of address are always O's and the lower
8-bits identify any location from O to 255. Therefore, only
a single byte is needed to address a location in zero-page.

ZERO-PAGE ADDRESSING - The second byte of the instruction con-
tains a zero-page address.

ZERO-PAGE INDEXED ADDRESSING - The second byte of the instruction

is added to the index register (X or Y) to form a zero-page
effective address. The carry (if any) is dropped.

K-17

	Table of Contents
	Course Outline
	Reading Assignments
	KIM Experiments
	Exp 1. Loading and Running a Simple Program
	Exp 2. Parallel Data Input and Output
	Exp 3. Controlling External Devices
	Exp 4. Counting and Timing Loops
	Exp 5. The Interval Timer
	Exp 6. Interrupts

	Logic and Interface Devices
	Decoders/Demultiplexers
	Encoders/Multiplexers
	Interface Devices
	Tri-State Logic
	Open-Collector Logic
	Bus Transceivers

	Flip-Flops
	I. R-S Latch
	II. R-S Flip-Flop
	III. Data or D-Type Flip-Flop
	IV. J-K Type Flip-Flop
	V. Toggle or T-Type Flip-Flop

	Basic Logic Devices
	I. Non-Inverting Buffer
	II. Inverting Buffer
	III. AND
	IV. NAND
	V. OR
	VI. NOR
	VII. Exclusive-OR
	VIII. Exclusive-NOR
	IX. Discussion of Low-True Logic

	Analyzing Software Problems
	The Software Design Procedure
	Step 1: Define the Problem
	Step 2: Partition the Problem into Functional Blocks
	Step 3: Algorithm Development for Each Partition
	Objections to Flowcharts
	Procedures After Algorithm Development
	Questions

	The Hardware/Software Approach to Microcomputer Design
	Hardware Speed Trade Offs
	Processors and Memories
	Decode Logic
	Memory Buffers
	Specialized Interface Devices
	Interrupts

	Software Trade Offs
	Program Loops and Subroutines
	Functional Computations
	Repeated Computations

	Summary
	Introduction
	A Perspective On Costs
	Trading Off Hardware and Software
	Conditions Which Lead to Design Trade Offs
	System Speed Problems
	System Cost Problems

	Systems Costs
	Modification Costs
	Development Costs
	Maintenance Costs

	Hardware Cost
	System Speed
	Memory Requirements
	I/O Requirements
	Peripheral Devices
	Device Support
	Microprocessor Hardware Selection Summary

	Software Costs
	Processor Organization
	Program Structure
	Implementation Language

	Representing Binary Data
	Binary Data Elements
	Binary Numbers

	Number System Conversions
	Decimal to Binary
	Decimal to Octal
	Decimal to Hexadecimal
	Hexadecimal to Decimal
	More Conversions

	BCD Numbers
	Binary Fractions
	Binary Arithmetic and Logic Instructions
	Computer Arithmetic Instructions
	Twos Complement Notation
	Binary Arithmetic

	Computer Logic Instructions
	Logic Complement
	Logic AND
	Logic OR
	Logic XOR

	Appendices
	A. Modified 6500 Opcode Table
	B. KIM Information
	KIM Programming Data Sheet
	KIM Block Diagram
	KIM Interfacing Data Sheet
	KIM Monitor Important Addresses

	C. KIM Software Collection
	Display Routine
	Directory
	VU Tape
	Supertape
	Tape Dupe
	Move-A-Block
	Hex Dump
	Frequency Counter Routine
	Analog-to-Digital Demo Program
	Real-Time Clock
	Timer
	HEDEC
	Binary Multiplication and Division
	16 Bit Square Root
	Lunar Lander
	Horse Race
	One-Armed Bandit
	Kimmaze
	Music Machine
	Hunt the Wumpus

	D. KIM Demonstration Tape
	Index
	Hex Dumps

	E. Special Applications
	Eight Bit A to D Conversion
	Multichannel Analog Input/Output System for KIM-1

	F. KIM/6500 Information Sources
	G. General Reference Information
	H. TTL Reference Sheets
	I. MOS Technology Sheets
	J. Microcomputer Bibliography
	K. Glossary of Commonly Used Terms

