
The 68000 and its interface
Alan Clements introduces the way in which a 68000 chip is interfaced

to other system components

The 68000 represents the new generation of mature
microprocessors. It is mature because it is powerful
both in terms of its facilities and its computational
throughput, and yet it is neither difficult to program nor
to design systems around. This paper provides a simple
introduction to the way in which a 68000 is interfaced
to the other components of a microcomputer system.
As the 68000 has so many facilities, only the basic
details of its interfacing capabilities are provided.

microprocessors pin functions 68000

BASIC PIN FUNCTIONS OF THE 68000

The 68000 has 64 pins which may be grouped together
as shown in Figure 1. There are nine logical groupings of
pins: power supply and clock, address bus, data bus,
asynchronous bus control, synchronous bus control,
bus arbitration control, system control, function code,
and interrupt control. Each of these groups will be dealt
with in turn.

The current trend in microprocessor systems design
is to use an asterisk to denote that a sil~nal is active-low,
so that what was once written as HALT is now written as
HALT*. Furthermore, in the past a signal was often said
to be 'forced high' or 'forced low' to effect a particular
action. This meant that the reader had to remember
whether the signal was active-high or active-low before
he could figure out what was happening. Today, the
term 'asserted' is used to indicate that a signal is put in a
state which will cause its named action (eg HALT,
RESET, STOP) to take place. Conversely, 'negated'
means that the signal is placed in the opposite state in
order to stop the named action. The reader does not
have to know the actual physical state of an input or
output when he is reading about the function of
that line.

Each pin of the 68000 can be classified as an input,
an output, or a dual-function input /output pin. When
designing interfaces to the 68000, it is necessary to

Department of Computer Science, Teesside Polytechnic, Middles-
brough TS1 3BA, UK
Presented at Applying the 68000 family, City Conference Centre,
London, UK, 30 October 1984

0141-9331/84/07324-14 $03.00 ©

know the electrical characteristics of the processor's
pins. Table I lists the pins of the 68000 and defines
their electrical nature. A pin labelled I/O can act as an
input or an output - - but not at the same time. All out-
puts are labelled TS (tristate), TP (totempole) or OD
(open drain) outputs.

POWER SUPPLY AND CLOCK INPUT

In common with most other digital logic elements
found in microprocessor systems, the 68000 requires a
single +SV power supply. Two Vcc (ie +SV) pins and
two ground (ie 0 V) pins are provided. This reduces the
voltage drop between the Vcc terminals of the chip
and the Vcc conductors within the chip itself.

The clock input is a single-phase TTL-compatible
signal from which the 68000 derives all its internal t im-
ing. As the 68000 uses dynamic storage techniques
internally, the clock input must never be stopped or its
minimum or maximum pulse widths violated. Current
versions of the 68000 have maximum clock rates bet-
ween 4 MHz and 12.5 MHz. Basic read or write
accesses require four clock cycles.

ADDRESS BUS

The address bus is provided by A01 to A23 , permitt ing
223 16-bit words to be uniquely addressed. The pro-
cessor uses the address bus to specify the location of
the word it is writ ing data into, or reading data from.
Like several other processors, the 68000 treats all
input /output transactions exactly like read/write opera-
tions, because it has no explicit input/output mechanism
in either hardware or software. Because of its tristate
outputs, the address bus can be control led by a device
other than the CPU under certain conditions. Whenever
the 68000 is interrupted, it uses address lines A01, A02
and A03 tO indicate the level of the interrupt being ser-
viced. During this so called acknowledge phase,
address lines A04 to A23 are set to a logical one
level.

1984 Butterworth & Co. (Publishers) Ltd

324 microprocessors and microsystems

FC o

t" Function FC I
code =

FC 2

System f : control

Interrupt t
control

Figure 1.

Vcc(2)

GND (2)

CLK

BERR*

RESET*

HALT*

AOl -A25

j DOO- DI5

AS*

R/W

UDS*

LDS*

DTACK*

VPA*

IPLo* VMA*

IPLI* ii
IPL2* BR*

BG*

BGACK

68000 logical arrangement of pins
The pinout of the 68000

DATA BUS

The data bus is 16 bits wide and transfers data between
the CPU and its memory and peripherals. It is bidirec-
tional, acting as an input during a CPU read cycle and as
an output during a CPU write cycle. The data bus has
tristate outputs which can be floated to permit other
devices to access the bus. When the CPU executes an
operation on a word, all 16 data bus lines are active.
When it executes an operation on a byte, only D00 to
D07 or D08 to Dis are active. During an interrupt
acknowledge cycle, the interrupt ing device identif ies
itself to the CPU by placing an interrupt vector number
on Doo to Do7.

A S Y N C H R O N O U S BUS C O N T R O L

One important difference between the 68000 and
many other microprocessors is the 68000's abi l i ty to
carry out asynchronous data transfers between itself
and memory or peripheral components. Asynchronous
data transfers between the CPU and memory (or
peripherals) are control led by five signals: address

"l

Address bus

Data bus

Asynchronous bus control

Synchronous bus control

Bus arbitration control

Do4 DO5
1303 DO6
DO2 1307
Do~ DOS
DO0 DO9
AS* Olo
UDS* DII
LDS* DI2
R/W DI3
DTACK* 014
BG* DI5
BGACK* GND
BR* A25
Vcc A2z
CLK A21
GND Vcc
HALT* A20
RESET* A 19
VMA* AI8
E AI7
VPA* A 16
BERR* AI5
IPL2* AI4
IPLI* AI3
IPLo* AI2
FC 2 All
FC I AIO
FCo Ao9

AOI A08
i Ao2 A07
A05 Ao6
Ao4 Aos

68000 pin assignment

l

strobe (AS*), upper and lower data strobes (UDS*,
LDS*), read/write (R/W), and data transfer acknow-
ledge (DTACK*). In order to understand the nature of
asynchronous data transfers, it is worth looking at syn-
chronous data transfers first.

In a synchronous data transfer, the processor pro-
vides an address and some form of t iming signal. Figure
2 demonstrates a simple synchronous data transfer - -
a CPU read from memory. At point A, a read cycle
begins with the falling edge of the clock. At B the CPU
generates an address corresponding to the memory
location being accessed.

o ck m l I I
A B ; jD

I

A Oress Addre ',,
1 ;

Data from t ~, I
memory i Data valid l

I I

I tsetup I

>-

Figure 2. Synchronous data transfer

vol 8 no 7 september 1984 325

Table 1. The input/output characteristics of the 68000's pins; TS = tristate output, TD= totempole output,
OD = open-drain output

Signal name Mnemonic Type Output

Power supply Vcc Input - -
Ground GND Input - -
Clock GLK Input - -
Address bus Ao1-A23 Output TS
Data bus Doo-D1 s I/O TS
Address strobe AS* Output TS
Read/write R/W Output TS
Upper data strobe UDS* Output TS
Lower data strobe LDS* Output TS
Data transfer acknowledge DTACK* Input - -
Enable E Output TP
Valid memory address VMA* Output TS
Valid peripheral address VPA* Input - -
Bus request BR* Input - -
Bus grant BG* Output TP
Bus grant acknowledge BGACK* Input - -
Bus error BERR* Input - -
Reset RESET* I/O OD
Halt HALT* I /O OD
Function code output FCo, FC1, FC2 Output TS
Interrupt priority level IPLo*, IPLI*, IPL2* Input - -

At C the memory yields its data for the CPU to read.
At D the current cycle ends with the falling edge of the
clock. The t ime between C and D is called the data
setup t ime of the CPU and is the t ime for which the
CPU demands that the data be valid before the end of
the cycle. In this arrangement the clock must allow
enough t ime for the memory to access its data. If suffi-
cient t ime is not al lowed and the setup t ime is violated,
the data obtained by the CPU may be invalid.

An asynchronous data transfer is rather more com-
plex as can be seen from Figure 3. At point A the pro-
cessor generates a valid address. This leads to an
address strobe being asserted at B. When the memory
detects the address strobe, it places data on the data
bus which becomes valid at point C. The memory then
informs the processor that it has valid data by asserting
a data acknowledge signal at point D. The processor
detects that the data is now ready, reads it, and negates
its address strobe to indicate that it has read the data
(point E). The memory then negates its data acknow-
ledge signal to complete the cycle. Below is a brief des-
cription of the asynchronous data transfer control
signals of the 68000.

• AS*: The address strobe is active-low and indicates
that the contents of the address bus are valid.

Address

Address
strobe

Data from
memory

Data
acknowledge

Figure 3.

A

~ 8 C Address v01id E

/

Asynchronous data transfer

• R/W: The R/VV (read/write) signal provided by the
68000 determines the nature of a memory access
cycle. Whenever the CPU is reading from memory
R/W= 1, and whenever it is writ ing to memory R/
W = 0. If the CPU is performing an internal opera-
t ion R/W is always true. That is, R/W is never in a
logical zero state unless the CPU is executing a write
to a memory location or a peripheral.

• UDS* and LDS*: The 68000 accesses memory via a
16-bit wide data bus. However, special provisions
have to be made to enable it to access a byte of data
instead of a word. When the 68000 accesses a word,
both UDS* and LDS* are asserted simultaneously. If
it wishes to access a single byte, U DS* is asserted if it
is the upper byte (D08 to Dis), or LDS* if it is the
lower byte (D00 to D07). Table 2 defines the
relationship between UDS*, LDS*, R/W and the data
bus.

• DTACK*: The active-low data transfer acknowledge
input to the 68000 is generated by the device being
accessed and indicates that the contents of the data
bus are valid, and that the 68000 may proceed.
When the processor recognises that DTACK* has
been asserted, it completes the current access and
begins the next cycle. If DTACK* is not asserted, the
processor generates wait-states until DTACK* is
asserted, or unti l an error state is declared.

S Y N C H R O N O U S BUS C O N T R O L

The 68000 also has a built- in provision for synchronous
transactions between itself and memory or peripherals.
Strictly speaking, the synchronous bus control group of
signals is not n e e d e d - - a l l data transfers may take
place asynchronously. The synchronous bus control
group has been included entirely to simplify the inter-
face between the 68000 and peripherals designed for

326 microprocessors and microsystems

Table 2. The control of the data bus by UDS* and LDS*

R/W U DS* LDS* Operation Do8 - DIs Doo - Do7

0 Negated Negated No operation Invalid Invalid
0 Negated Asserted Write lower byte Note 1 Data valid
0 Asserted Negated Write upper byte Data valid Note 2
0 Asserted Asserted Write word Data valid Data valid
1 Negated Negated No operation Invalid Invalid
1 Negated Asserted Read lower byte Invalid Data valid
1 Asserted Negated Read upper byte Data valid Invalid
1 Asserted Asserted Read word Data valid Data valid

Notes 1 and 2: During a write to a byte the processor places a copy of the data being written onto both bytes of the data bus. Thus, if a byte is written
to DO0 to D07, a copy of this byte is also placed on D08 to Dis. Motorola does not guarantee this feature on all future versions of the 68000.

use with the 6800, 6809 (or 6502) 8-bit synchronous-
bus microprocessors. That is, this group of signals
makes the 68000 look like a 6800 to certain types of
peripheral. Three signals are included in this group

• VPA* (valid peripheral address)

• VMA* (valid memory address), and E (enable)

• VPA*: The active-low valid peripheral address input
is used by a device to indicate to the 68000 that a
synchronous peripheral is being accessed. When
the processor recognises that VPA* has been asser-
ted, it initiates a synchronous data transfer by means
of VMA* and E.

• VMA*: This is an active-low output from the 68000
and indicates to the peripheral being addressed that
there is a valid address on the address bus. The
assertion of VMA* by the CPU is a response to the
assertion of VPA* by an addressed peripheral.

• E: The enable output from the 68000 is a timing
signal required by all 6800-series peripherals, and is
derived from the 68000's own clock input. One E
cycle is equal to ten 68000 clock cycles. The E clock
is non-symmetric: it is low for six clock cycles and
high for four. There is no defined phase relationship
between the processor's own clock and the E clock.
The E clock runs continuously, independently of the
state of the 68000.

A synchronous data transfer is effected by detecting an
access to a 6800-series peripheral and then asserting
the processor's VPA* input. This must be done by user-
supplied hardware. The 68000 then asserts VMA* and
E which are used to select the peripheral.

BUS ARBITRATION CONTROL

When the 68000 has control of the system address and
data buses it is said to be the bus master. Modern
microcomputer systems include a mechanism whereby
other microprocessors (or DMA controllers) can also
take control of the system bus. The 68000 has three
pins dedicated to bus arbitration control: bus request
(BR*), bus grant (BG*), and bus grant acknowledge
(BGACK*).'Arbitration' is the term used to describe the
sequence of events which take place when a number
of potential masters request the bus simultaneously
and one of them must be selected as the next bus mas-
ter. The logic necessaryto perform the arbitration does
not form part of the 68000 and must be designed to

suit the user's own application. Some 68000 users
employ the processor's bus arbitration control signals
to facilitate the design of dynamic memory refresh
circuitry.

• BR*: All devices capable of being a bus master may
drive the active-low bus request input with open-
drain outputs. Whenever a device wishes to take
control of the bus, it first asserts BR*, signalling its
intent to the 68000.

• BG*: The 68000 asserts its active-low BG* (bus grant)
output in response to the assertion of the BR* input.
This indicates to the potential bus master that the
current bus master is going to release control of the
bus at the end of the current bus cycle.

• I~GACK*: Bus grant acknowledge is an active-low
input to the 68000 and indicates that some other
device has now become the bus master. A potential
master must not assert BGACK* until the following
four conditions have been satisfied.
o a bus grant has been issued by the current bus

master
o the address strobe, AS*, is inactive (ie negated)

indicating that the microprocessor is not using
the bus

o data transfer acknowledge is inactive indicating
that neither memory nor peripherals are using the
bus

o bus grant acknowledge is inactive indicating that
no other device is still claiming bus mastery

In any system implementing a multimaster arrange-
ment, some logic is necessary to arbitrate between
competing bus masters. A 68000 microcomputer
without other devices capable of taking the role of bus
master does not need the bus arbitration control lines.
Under these circumstances both BR* and BG* are per-
manently connected to a logical one level.

SYSTEM CONTROL

The 68000 has three active-low control inputs which
are used to reset or halt the processor, or to indicate to
the processor that a 'bus error' has occurred.

Whenever power is first applied to the 68000 (or
any other microprocessor) it must execute some
initialization process in order to start up in an orderly
manner. It may also be reset while it is running.
However, this action is taken only when a system crash
has occurred and no other mechanism can be used to
regain control of the processor. Although many 8-bit

vol 8 no 7 september 1984 327

microprocessors have a front-panel reset control, I feel
that a sophisticated microprocessor such as the 68000
should be relatively diff icult to reset by the user. An 8-
bit microprocessor frequently has a simple, single-user,
single-task operating system and resetting it causes no
great harm. A more sophisticated 16-bit processor, on
the other hand, may have a mult iuser or multitasking
operating system. In this case a manual reset by one
user may cause untold harm to another user or task.

A microprocessor is said to be halted whenever it
temporari ly ceases to perform useful calculations. A
microprocessor does not halt in the normal plain
language sense of the word. It goes into an idle state
(rather like an automobile in neutral) and relinquishes
control of the bus. Some microcomputer systems use
the halt state to allow other processors to control the
system bus.

• RESET*: The active-low reset input of the 68000
forces it into a known state on the initial application
of power. For correct operation during the power-up
sequence, RESET* must be asserted together with
the HALT* input for 100 m s - - a n incredibly long
t ime by most microprocessor standards. At all other
times, RESET* and HALT* must be asserted for ten
clock periods. When a reset input is recognised by
the 68000, it loads the system stack pointer, A7,
from memory location zero ($00 0000), and then
loads the program counter from address $00 0004.

RESET* can also act as an output from the 68000 under
certain circumstances. Whenever the processor executes
the software instruction ~',I:SET, it asserts the RESET*
pin for 124 clock cycles. This resets all external devices
(ie peripherals) wired to the system RESET* line, but
does not affect the internal operation of the 68000.

• BERR*:The active-low bus error input is used by the
microcomputer system to inform the 68000 that
something has gone wrong with the bus cycle
currently being executed. It may be argued that this
feature is one of the attributes distinguishing the
68000 from all 8-bit microprocessors and some 16-
bit microprocessors. The provision of a BERR* input
permits the 68000 to recover gracefully from events
that would spell disaster to other processors.

Sometimes an access is made to a memory location
which is either faulty or nonexistent. The latter case
may occur when a spurious address is generated due to
a software error, or it may be that the actual memory in
the system is less than the operating system 'thinks'.

Whenever external logic detects such an anomaly,
it asserts BERR*. The precise nature of the action taken
by the 68000 on recognising that BERR* has been
asserted is rather complex and is also dependent on
the current state of the HALT* input. The 68000 will
either try to repeat (ie rerun) the faulty cycle, or will
generate an exception and inform the operating sys-
tem of the bus error.

• HALT*: Like the RESET* input, HALT* is bidirectional
and serves two distinct functions. In normal opera-
tion HALT* is an active-low input to the 68000.
When asserted by an external device, HALT* causes
the 68000 to stop processing at the end of the
current instruction. Then all control signals are made
inactive and all tristate outputs floated.

The recommended use of the HALT* input is to permit
the 68000 to execute a single instruction at a time. If
HALT* is negated, the 68000 will recommence normal
operation. However, if HALT* is asserted early in the
first cycle of the instruction sequence, the processor
will be forced into a halt state after a single instruction
has been executed. By negating HALT* just long
enough to permit the processor to execute a single
instruction, the 68000 can be stepped through a pro-
gram instruction by instruction. This can be used to
debug a system.

Whenever the 68000 finds itself in a situation from
which it cannot recover (the so-called double bus
error), it stops and asserts HALT* to indicate what
has happened.

FUNCTION CODE

In principle a microprocessor simple reads instructions
from memory, interprets them, and operates on data
either within the processor itself or within the
memory system. In practice the operation of the pro-
cessor is rather more complex because it may have to
interact with external events through the interrupt
mechanism. Moreover, the processor accesses dif-
ferent types of information in memory: instructions,
data, the stack etc. There are many occasions when it
would be helpful to know what the computer was
up to.

This information is called function or status informa-
tion, and is provided by microprocessors (directly or
indirectly) in varying amounts. For example, the Intel
8080A mult iplexes status information on its data bus
for a part of a cycle. The 68000 has three processor
status outputs, FC0, FC1, and]=C2, which indicate the
type of cycle currently being executed. The function
code becomes valid at the same time as the address
strobe (AS*) indicates a valid address. As a matter of
fact, it is not always necessary to use the function code
provided by the 68000 to build a working microcom-
puter. Equally, the function code can be used to
enhance the operation of the system. Table 3 shows
how FC0, FC1, and FC2 are interpreted.

Of the eight states in Table 3, three are marked
'undefined, reserved'. This is Motorola's way of tell ing
us that these states may be reassigned in future versions
of the 68000. Function code output FC2 distinguishes
between two modes of operation of the 68000: super-
visor and user.

Table 3. Interpreting the 68000's function code
output

Function code output Processor cycle type
FC2 FC1 FC0

0 0 0 (Undefined, reserved)
0 0 1 User data
0 1 0 User program
0 1 1 (Undefined, reserved)
1 0 0 (Undefined, reserved)
1 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 Interrupt acknowledge

328 microprocessors and microsystems

It can be seen from Table 3 that the 68000 is always
in one of two states: user or supervisor. The concept of
user and supervisor states does not exist for 8-bit
microprocessors or for some 16-bit devices. User and
supervisor states have a meaning only in the world of
multitasking systems, where a number of different pro-
grams are running concurrently. The supervisor state is
said to be the state of highest privilege, and certain
instructions may be executed only in this state. In
general, the supervisor state is closely associated with
the operating system, while the less privileged user
state is associated with user programs running under
the operating system.

By restricting the privileges available to user state,
individual programs are capable of causing less havoc if
they crash. The supervisor state is in force when the S-
bit of the processor status word is true. All exception
(interrupt and reset) processing is performed in the
supervisor state, regardless of the state of the pro-
cessor before the exception occurred. Consequently,
the 68000 always powers up in the supervisor state. A
change from supervisor to user state can be carried out
under program control, but it is impossible to move
from the user to supervisor state by any sequence of
instructions. Only by the generation of an exception
can a transfer from user to supervisor mode by
made.

Table 3 also shows how it is possible to determine
whether the processor is accessing program or data.
The region of memory containing data is called 'data
space' and the region containing instructions 'program
space'. The meaning of the word 'space' in this context
is closer to the mathematician's use of the word (eg
vector space) than to the everyday meaning.

The advantage of dividing memory space into pro-
gram and data spaces is that it becomes possible to
prevent a program from corrupting the data space of
another program by detecting any access to program
space which would corrupt the program.

The function code denoted by FC0 = FC1 = FC2 = 1
is called interrupt acknowledge, and is used as an
indication that the 68000 is currently acknowledging
an interrupt.

INTERRUPT CONTROL

Three interrupt control inputs (IPL0* , IPLI*, IPL2*) are
used by an external device to indicate to the 68000
that it requires service. These interrupts are encoded
into eight levels (0 to 7). Level zero has the lowest
priority and indicates that no interrupt is requested.
Level seven is the highest priority interrupt. The status
register contains three bits, 12, I1, and 10, called the
interrupt mask, which determine the level of interrupt
that will be serviced.

An interrupt request indicated by a 3-bit code on
I PL0*, I PLI*, I PL2* will be serviced if it has a higher value
than that currently indicated by the interrupt mask bits
in the status register. A level-7 interrupt is handled
rather differently because it is always serviced by
the 68000.

Many peripherals capable of generating an interrupt
have only a single interrupt request output. Con-
sequently, most 68000-based microcomputer systems
must use a priority encoder circuit to convert up to

seven levels of interrupt request into a 3-bit code,
which can then be fed into IPL0* to IPL2*.

THE TIMING DIAGRAM

The timing diagram represents the most fundamental
transactions between a processor and its external
environment. Traditionally, the timing diagram has
been used to illustrate the detailed operation of a
microprocessor or a memory component. A timing
diagram shows the relationship between the signals
involved in a read/write cycle and time. Although the
timing diagram is an educational tool, because it pre-
sents visually the relationship between a number of
signals, it is principally a design tool. It enables an
engineer to match components of different charac-
teristics so that they will work together.

In recent years the timing diagram has been supple-
mented by what may best be called a 'protocol
diagram' or 'timing flowchart'. The protocol diagram is
an abstraction of the timing diagram which seeks to
remove all detail in order to provide only the most
essential information to the reader. The read and write
cycles of the 68000 will be explained in terms both of
protocol flowcharts and timing diagrams.

THE 68000 READ CYCLE

This section considers the sequence of events taking
place when the 68000 reads a word from memory
using its address and data buses in conjunction with the
asynchronous group of bus control signals. The 68000
can read either a 16-bit word or an 8-bit word in a single
read cycle. As there is very little difference between
these operations, only a word operation is described.

Figure 4 gives the protocol flowchart for a 68000
read cycle. Any read cycle involves two parties: the
reader and the read. The reader is the 68000, and is
represented bythe bus master in Figure 4.A bus master
is the active device that is currently controlling the sys-
tem bus and at any instant there may be only one bus
master. There may be several 68000s in a system, but
only one may be the master at a time. Equally, a device
other than a CPU may simulate a 68000 to gain control
of the bus. The lefthand side of the diagram displays
the actions carried out bythe master (the 68000). Each
block is labelled by the words in its top line. The num-
bered lines below the header describe the sequence of
actions carried out by that block.

The righthand side of the diagram displays the
actions carried out by the slave during the transfer of
information. The slave is, of course, the memory being
accessed by the master. The protocol diagram is read
from top to bottom so that the action 'Address the
slave', carried out by the master, is followed by the slave
with the action 'Input the data'. Note that actions
within boxes may, or may not, take place simultaneously.

What is lacking from this diagram are precise timing
relationships, and details of critical events. For exam-
ple, in the block labelled 'output the data', it is the action
of asserting DTACK* which allows the master to con-
tinue with the action 'Acquire the data'. This is not evi-
dent from Figure 4, and therefore the diagram does not
tell the whole story.

vol 8 no 7 september 7984 329

Bus master Bus slave

I Address the slave
I)Set R/W to read
2)Place function code on FCo-FC 2
3)Place address on Ao[-A2~
4)Assert address strobe AS*
5)Assert UDS ~ and LDS*

I

I) Latch data
2)Negate UDS* and LDS*
:5)Negate AS*

I

l Start next cycle I
Figure 4.

Output the data

I I) Decode address
I 2) Place date on Doo- DI5
5) Assert DTACK*

]

Terminate the cycle I
I Remove data from Doo to DIS I Negate DTACK*

I

Protocol flowchart for a read cycle

The essential feature of a 68000 asynchronous read
cycle is the interlocked handshaking procedure taking
place between the master and the slave. A read cycle
starts with the master indicating its intentions by set-
ting up an address and forcing R/W true. By asserting
AS*, UDS* and/or LDS*, the CPU is saying, 'Here's an
address from which I wish to read the data'. The slave
detects the valid address strobe (AS*) together with
the data strobe(s), and starts to access the data. It
asserts DTACK*, informing the processor that it may
proceed. DTACK* is the handshake from the slave to
the processor, and acknowledges that the slave has (or
is about to have) valid data available. The micro-
processor systems designer must provide suitable
circuitry to generate the appropriate delay beween the
start of a read (or write) cycle and the assertion of
DTACK*. If DTACK* is not asserted, the master will
theoretically wait forever. The 68000 has provision for
dealing with the failure of a slave to complete a
handshake by asserting DTACK*. When the master
recognises DTACK*, it terminates the cycle by negating
the address and data strobes. This invites the slave to
terminate its actions by removing data from the bus
and negating DTACK*.

A highly simplif ied version of a 68000 read cycle is
presented in Figure 5. Each machine cycle consists of a
minimum of four clock cycles, and is divided into eight
states labelled So to $7. All machine cycles start in state
So with the clock high, and end in state $7 with the
clock low. The machine read cycle may be extended
indefini tely by the insertion of wait states (each of one
full clock cycle duration) between clock states $4 and
Ss. This allows the 68000 to be operated with any mix-
ture of fast and slow memory or peripherals.

Figure 5 is designed to show the relationship bet-
ween the 68000's asynchronous bus signals, and bet-
ween these signals and the states of the clock. During

the first state, So, all signals are inactive with the excep-
tion of R/W, which becomes true (ie read) for the
remainder of the current machine cycle. In the follow-
ing description of the 68000, all times given are for the
8 MHz version, unless stated otherwise.

In state S~ the address on A01 to A23 becomes valid
and remains so until state So of the fol lowing cycle. In
state $2 the address strobe, AS*, goes low, indicating
that the contents of the address bus are valid. At this
point it is tempting to ask why we need AS*, as the fall-
ing edge of $2 can be used to indicate that the address
is valid. The answer to this question lies in the varia-
tions between different versions of the 68000. In the
12.5 MHz version, it is possible that AS* wil l not go low
until state $3. It is not the relationship between the
clock and the 68000's signals that matters to the
designer. It is the relationship between the signals
themselves.

In a read cycle, the t iming specifications of the
upper and lower data strobes (UDS* and LDS*) are the
same as AS*. The falling edge of UDS* and/or LDS*
initiates the memory access and at the same time, or
after a suitable delay, triggers a data transfer acknow-
ledge, DTACK*. Remember that it is up to the designer
of the microcomputer system to provide logic to control
DTACK*. The delay between a data strobe going low
and the falling edge of DTACK* must be sufficient to
guarantee that there is enough t ime to access the
memory currently being accessed. If DTACK* does not
go low at least 20 ns before the end of state $4, wait
states are introduced between $4 and Ss unti l DTACK*
is asserted.

The assertion of the data strobe causes memory to
be accessed, and data to appear on the data bus. In
Figure 5 this happens in state $5, although the actual
t ime depends on the access t ime of the memory
being accessed.

During the final state of the current machine cycle,
$7, both AS* and LDS*/UDS* are negated, and the data
latched into the deep 68000 internally. The negation
of these strobes causes the memory to stop putt ing
data on the data bus, and to return the bus to its high
impedance (floating) state. DTACK* must be negated
after the strobes have been negated.

CLK --

AI-Az3

AS* /

LDS*
U DS* /

R/~

DTACK*:

Data
from
memory.

Figure 5.

Sz i So : Si : $2 S 3 $4 Ss

/

S e S 7 So

L_

A simplified version of the 68000 read cycle
timing diagram

330 microprocessors and microsystems

CLK

tCHAZ~" ~

Aol - A2! 5

AS*

UDS*, LDS*
(same as AS*)

R/W

FC o- FC2.

i~ tcyc =!

s, s, ;SoiS, s, s,

~-~ ~v

H i .
i - 'P! i"f"- fCHSLn

m / \
--~: ~-- tCHRH X

"- tFCVSL ~i

: itchy
DTACK*

Data input

s 6 S~ s o

~: }--
~'- fCLSH

i :

i :: tSHDA H

- - ~ tA81 4 - - ~.--

'°, iaf- i i

tSHDI

Figure 6. A more detailed version of the 68000 read
cycle t iming diagram

The address bus is floated in the fol lowing So state
and the read cycle is now complete.

The microcomputer designer needs to know the res-
trictions placed on his design by the t iming diagram of
a microprocessor. Figure 6 provides a more detailed
read cycle t iming diagram of the 68000. Table 4 gives
the value of some of the read cycle t iming parameters
for the 68000L8.

The 68000 clock input is specified by three para-
meters:

• its period, tcy o must not be less than 125 ns (for a
8 MHz clock) or more than 500 ns

• the maximum l imit is determined by the way in
which the 68000 stores data internally as a charge
on a capacitor

• if the 68000 is not clocked regularly, internal data is
lost, leading to unpredictable behaviour of the
processor

Limits are also placed on the times for which the clock
may be in either a high or a low state. Table 4 reveals that
the clock input should have an approximately symmet-
rical waveform with equal up and down times.

The address bus is floated within tCHAZ x S (80 ns max)
of the start of So. No more than tCLAV S (70 ns max)
from the start of $1, the new address is placed on the
address bus. The address strobe, AS*, is asserted no
less than tAVSLS (30 ns rain) after the address has
stabilized. This is a key parameter, because if the
designer uses AS* to latch the address, he must choose
a device with a setup t ime less than tAVSL.

R/W is set high at the beginning of a read cycle no
more than tCHRH x S (70 ns max) after the start of state
So, and stays high for the remainder of the current cycle.
In practice, this means that the designer can forget
about R/W during a read cycle, as it is true well before
the other parameters are valid and remains true until
well after they have changed.

The 68000 puts out its function code no more than
tCHFC v S (70 ns max) after the start of state So, and no
sooner than tFCVSL S (60 ns rain) before AS* is asserted.
Consequently, the function code behaves like an
address, and can be latched by AS* at the same t ime as
an address.

The key parameter governing DTACK* is its setup
time, tASl (20 ns rain) before the falling edge of state
$4. If DTACK* is asserted before its minimum setup
time, the next state wil l be Ss. If DTACK* does not meet
this setup time, the processor introduces wait states
after $4, unti l DTACK* is asserted at least tAslS before
the falling edge of the next 68000 clock input.

The data from the memory being accessed is placed
on the data bus and must satisfy setup and hold times
similar to the input of any D fl ip-flop. The data must be
valid at least tDICL S (15 ns min) before the beginning
of state $7.

C O N N E C T I N G T H E H M 6 1 1 6 P R A M T O A
6 8 0 0 0 C P U

As an example of how the 68000 read cycle parameters

Table 4. Basic read/write cycle timing parameters (ns) of the 68000L8; DS = UDS* or LDS*

Parameter name Symbol Min Max

Clock period tcy c 125 500
Clock width (low) tCL 55 250
Clock width (high) tCH 55 250

Clock high to address bus high-impedance tCHAZ x 80
Clock low to address valid tCLAV 70
Address valid to AS* valid tAVSL 30
Clock low to AS*, DS* high tcmsH 70

Clock high to R/W high tCHRH x 70

Clock high to FC valid tCHFC v 70
FC valid to AS*, DS* low tFCVSL 60

Asynchronous input DTACK* setup t ime tASl 20
AS*, DS* high to DTACK* high tSHDA H 0 245

Data in to clock low setup t ime tDICL 15
DS* high to data invalid (data hold t ime) tSHDI 0

vol 8 no 7 september 1984 331

AOI
A02
A03
A04
A05
A06
A07
AO8
A09

r

68000
CPU

DTACK *

T

AIO -
Aft I. -

_1
:1

A~3 ~1
AI4 ~1

AI 5 l AI6
AI7
AI8
AI9
A20
A21
A22 l 3
A23 t -~

Address
decoder

t r
Active low
to enable
memory

t0.o, L0_o,0r, £ I
I- High if RAM

selected

Figure 7. Connecting the HM6116P-4 RAM to a 68000 CPU

[
I

C S 1 *

?.k x8

DO° Do
DOI ID I
Do2 ½
DO3 D3
Do4 D4
Do5 D5
DO6 D6
DO7 D7

HM6116P
RAM I

, OE--

F ~ic~ w
2k x8 ~ 'Do D,

ua

D 4

I RAM2
= ! OE*
~[R/W

"1.~

A 1- AOI
^°IZ A02
~ E Ao3
221£ Ao4
".31£ Aos J
~41~ An~ J

2, i: A,,

72 I- Aria

A 4 ~

~6 E A08
~'7 I_- Ao9
~8 I: A,0

2 oi A,,

CS2"

affect its operation, consider the interface between the
68000 and a typical static RAM. Figure 7 shows how
two HM6116P 2k × 8 RAMs can be connected to a
68000 CPU. This circuit will work, although most micro-
computer systems isolate memory components from
the 68000's address and data buses by means of buffers
or data bus drivers. The data bus of the 68000 is con-
nected directly to the data buses of the HM6116Ps.
RAM1 is connected to D00 to D07, and RAM2 to D08 to
Dis.

Address lines A01 tOAl l from the 68000 are connec-
ted to the address inputs of the two HM611P RAMs.
The address inputs of the RAMs are wired in parallel, so
that the same location is accessed in each chip simul-
taneously.

The R/W input__ of each RAM is connected directly to
the 68000's R/W output via an O R gate strobed by AS*.
Each OE* is connected to the processor's R/W output
via the inverter. It is only the active-low chip select, CS*,

inputs of the two RAMs that are treated differently.
Before dealing with CS*, a litt le has to be said about
address decoding.

Address lines A01 to A11 of the 68000 select one of
2k unique locations within the RAMs. The higher-order
address lines A12 toA23 define 212 or4k possible blocks
of 2k (note that 4k blocks of 2k words = 8 M words). In
order to uniquely assign the 2k words of RAM to one of
these 4k possible blocks, address lines A12 to A23 must
take part in a decoding process whereby only one of
the 4k possible values spanned by these address lines
is used to generate CS*.

The simplest possible address decoder is formed
from a 13-input NAN D gate, whose output is active-low
only when all address inputs are true. Thus, the SELECT*
output of the NAND is asserted whenever an address
in the 2k word (ie 4 kbyte) range $FF FOOO-$FF FFFF
appears on the address bus.

Table 5 shows how the two signals UDS* and LDS*

332 microprocessors and microsystems

Table 5. Generating CSI* and CS2" from the 68000's
data strobes

SELECT* UDS* LDS* C 5 2 " C S l * Operation

1 X X 1 1 No operation
0 0 0 0 0 Word read
0 0 1 0 1 Upper byte read
0 1 0 1 0 Lower byte read
0 1 1 1 1 No operation

NB X = don ' t care (may be 1 or 0)
1 = t rue (pos i t ive logic)
0 = false (pos i t ive logic)

from the CPU are combined with the SELECT* signal
from the address decoder to generate CSI* and
CS2".

READ CYCLE C A L C U L A T I O N S

Having described the 68000's read cycle and a possible
connection between the CPU and memory, the next
step is to determine whether the CPU/RAM combina-
tion violates any t iming restrictions.

The principal t iming parameter of the RAM is its
access t ime tAA, which must be sufficient to meet the
data setup t ime of the CPU (ie tDICL). Figure 8 relates
the essential features of the 68000's t iming diagram to
those of the HM6116P RAM. From the falling edge of
So to the falling edge of $6, three full clock cycles take
place, a total t ime of 3tcyo During this time, the con-
tents of the address bus become valid (tcLAv), the
memory is accessed (tAA), and the data setup t ime met
(tDICL). Thus, the total t ime for this action is given by
tCLAV 4- tAA 4- tD iCL . Putting the two equations together
we get

o r

o r

3tcyc > tCLAV + tAA + tDICL

tAA < 3 t cyc - - tCLAV - tD ICL

(all values ns) t ~ < 3)< 125 -- 70 -- 15
< 290 ns

The RAM must have an access t ime of less than 290 ns
to work with the 68000L8 at 8 MHz. As the quoted
value of t ~ for the HM6116P is 200 ns, the access t ime
criterion is satisfied by a reasonable margin. It is
interesting to consider what the demands on tM would
have been, if a 12.5 MHz version of the 68000 had
been used. The value of t ~ is now given by

t M < 3 X 8 0 - 5 5 - 1 0
< 170 ns

The HM6116P RAM cannot be used at 12 .5MHz
wi thout the addit ion of any wait states.

The next criterion to be considered is the value of
the data hold t ime (tSHDI = 0 ns minimum) required by
the CPU fol lowing the rising edge of AS*. There is no
problem here, because it can be seen from Figure 6
that the address does not change until the start of state
So in the next cycle, which means that the data from the
RAM will be valid (nominally) throughout state S7.
Following the rising edge of AS*/UDS*/LDS* the data
bus drivers are turned off in the RAM.

However, the data bus driver wil l not be floated
instantly, and the data hold t ime of 0 ns wil l be met.

The control of CS* presents no problem. As CS* is
derived from SELECT*, and LDS*, it is asserted very
early in a read cycle, approximately 10 ns (tl) after the
fall ing edge of AS*. This turns on the data bus drivers in
the RAM early in the cycle, although the data is invalid
until after the RAM's access t ime has been met. At the
end of a read cycle, CS* is negated when AS* rises no
more than tCLSH (70 ns) after the falling edge of state
$6. The data bus is floated no more than tCLSH 4- t2 4-
tCH z S after the start of $7. The low to high transit ion of
the address decoder output occurs t2 s after the nega-
tion of AS*. For a 68000L8 and 6116P-4 combinat ion
with t2 = 10 ns and tCHz = 60 ns, the guaranteed turn-
off t ime measured from the end of $6 is 70 + 10 4- 60
= 140 ns.

As the duration of $7 is nominal ly 62.5 ns, the data
bus may not be floated unti l up to 77.5 ns into the
fol lowing So. Fortunately, the next access does not
begin until $2, and so there is no chance of bus conten-
tion occurring. That is, the next access must not try to
put data on the data bus unti l all the data bus drivers
have been turned off fol lowing the current cycle. The
write cycle of the 68000 is very similar to its read cycle
and wil l therefore not be dealt with here.

A M I N I M A L C O N F I G U R A T I O N U S I N G
THE 6 8 0 0 0

People occasionally ask, how few chips it takes to build
a microcomputer with a 68000 CPU? In some ways this
is an unfair question, because it tries to pin down the
68000 to a largely spurious figure of merit (ie a minimum
chip-count design). This question takes no account of
performance and is based on a rather dubious assump-
tion that low chip count is related to low cost or ease of
construction. Having given this warning, I am now
going to look at a low chip-count 68000 microcom-
puter. My motives are twofold. I wish to demonstrate
which pins of the 68000 are essential to a simple
microcomputer and which pins can be 'forgotten
about' in a minimal design. Second, it is sometimes
necessary to produce a really small system, either as a
teaching aid to il lustrate the processor, or as a stand-
alone controller.

While it is possible to design a 68000 microcom-
puter subject to the constraint of a minimum chip
count, this is a rather pointless exercise, as the addit ion
of one or two extra chips may result in a vastly

A
i,
!.

G
l :

Address Address valid ! ~ \

- - i

t
Data from

ato valid : - -

memory !! :; :: ii- tCHZ= i

B C E F

Figure 8. The timing diagram of a 68000 and HM6176P-4
combination

vol 8 no 7 september 7984 333

Vc c
Figure 9.

AoI-Az3

68000
CPU

ICI8

FC z

FC I
FC 0

Doo-DI5

AS*

UDS*:
LDS ~

DTACK*

Address bus

I[
l Data bus

Address NON~ Byte

IooJ I
Ic,,l%,lc Icli

L _ . _ ~ [IC2L' IC5 a

Dr ~.CK*
gen~ rator

LDS*

L ~ IC5b' IC5c
I%

VPA* Peripheral
VMA*~"~ address

decoder

I = ROMU*
I = ROML*

I = RAMU*
I ,- RAML*

CS PIA

CS ACIA

ii

ii ,
BR*
BG*
BGACK*

IPL~

IPLI*
IPL;

HALT*

RESET*

BERR*

CLK

IC 7

Power on
reset circuit

IC 4

-i Clock
generator

The block diagram of a minimal 68000-based microcomputer

11

-1-

IC 9
ROM

Lower byte

CS

RAM

Lower byte

--%
RAML*

PIA

CS
ICl3

ICjo l
ROM l

Upper byte I

RJMU*

ICI2
ROM

Upper byte

RA~MU *

~I Parallel
interface

i =J

• ICr~lSo _
Ict4 H > o - - ~ | R523ZC

I I f / I }-serial
ACIA I . ~ o < , ~ - j inter fac e

CS

ICI7

Baud-rate
generator

increased level of performance. Instead, I intend to
design a system subject to the following constraints.

• The microcomputer is to be used in a standalone
mode and requires only a power supply and an
external terminal.

• It is intended to be used as a classroom teachingaid
to demonstrate the characteristics of the 68000.

• It must have a 16 kbyte EPROM-based monitor.
• Its speed (ie clock cycle time) is of little or no

importance.
• It must have at least 4 kbytes of read/write memory.
• It must have at least one RS232C serial I/O port and

one parallel port.
• It must be possible to expand the memory and

peripheral space of the microcomputer later.
• Interrupts and multiprocessor capabilities are not

needed, but again it should be possible to add
them later.

The first step in designing our minimal system is to con-
sider the major components, the ROM, RAM and
peripherals. The ROM is provided by two 8k × 8 com-
ponents, the RAM as two 2k× 8 devices and the
peripherals as a 6821 peripheral interface adaptor

(PIA) and a 6850 asynchronous communications inter-
face adaptor (ACIA). Figure 9 shows how they are
arranged in the microcomputer module.

The next step is to consider the memory and
peripheral support circuitry. Clearly, the 16 kbytes of
ROM and the 4 kbytes of RAM have to be selected out
of the O~OO0's 16 Mbytes of memory space. The actual
location of these devices within this space is largely
unimportant, as long as the reset vectors are located at
$00 0000. Consequently, the 16 kbytes of ROM are
situated at $00 0000 to $00 3FFF.

The circuit diagram of the control circuitry of the
minimal single board computer is given in Figure I 0.
Address decoding is carried out by three integrated cir-
cuits: ICla, IClb, IC2a and IC3. These divide the memory
space in the region $OO OOOO to $01 FFFF into eight
blocks of 16 kbytes. The first three consecutive blocks
at the upper end of the memory space are devoted to
ROM, RAM and peripherals respectively.

Whenever the Y0* or YI* outputs of IC3 go active-
low, signifying the selection of ROM or RAM, the out-
put of NAN D gate IC2b goes high. This is complemented
by open-collector invertor ICsa to become the pro-
cessor's DTACK* input. Note that no delay is applied to

334 microprocessors and microsystems

Vcc

iMP:

OJ :

Gnd--

+5V

Figure 10.

+5V OV

IC4 I
Oscillotor 18
m°dule J . ~ / C

i~L..~-.~Op- ~ < IM,Q,
_1 ,c,"16 1

--2t Power o n E Z
I reset I I

: ~ 0"47J

__~.__J,_~ 0.1

I
1 i
l l i

OV

v,, v,, ~ _
A23[I
A22 ,o
A 2 , ~ I--"/ J I
A2ol ' ~ ~ 2.

A,,

15

68000
CPU
ICI8

AS* 6

AI6
AI5
AI4

,o
DTACK*

vPA"

19

0

+5V
IL

I.

I.

E
E Yo
E YI

c Y2
B 74LS1:38
A IC3

_ t +5V

E
E YO:

+ 5V E YI D
C
B 74LS1~8
A IC 6

+SV

Vcc Vcc
CLK

I
2v RESET*

L HALT*

26 FC 2

271 FC I
281 FC 0
2~1 BERR *
I} I BR*
II I BG*

12 i BGACK*

2~ l IPL2*

LDS*
UDS*

VMA"

Ao6
A05

Circuit diagram of part of a minimal 68000-based microcomputer

ROM

RAM

ROM
---- R-'A-d

l ~ • ROMU*

~- ROML*

~ '~ RAMU*

= RAML*

-'- CS ACIA
- CS PIA

DTACK*, so we must match the processor to its
memory carefully.

The Y2* output of IC3 goes active-low whenever a
peripheral is addressed. This is buffered by ICsb and
ICsc to permit the VPA* input of the CPU to be driven
by an open-col lector gate. In this way other open-
collector outputs may drive VPA* if they are added
later. Y2* is further decoded by IC6 t to generate
peripheral chip selects for the PIA and ACIA.

The power-on-reset circuit forces RESET* and HALT*
low when the system is initially switched on. A mono-

f IC 6 is enabled by VMA ° and LDS*. This means that a peripheral is
synchronised to a 68000 synchronous cycle operation (triggered
VPA* being asserted), and that the CPU must address a lower byte
to select a peripheral.

lithic DIL clock generator chip supplies the processor
with its clock signal.

In this application the interrupt request inputs, I PL0*
to IPL2*, are pulled up by resistors to their inactive
state. The function code outputs, FC0 to FC2, are not
required and are left unconnected. Finally, both the
bus request (BR*) and bus grant acknowledge (BGACK*)
inputs are pulled up into their inactive-high states by
resistors. The bus error input (BERR*) is not used and is
also pulled up by a resistor. The 6850 AClA requires its
own clock which is supplied by baud-rate generator
IC14. Its serial inputs are buffered by a line transmitter,
lC16 , and its outputs by a line transmitter, ICls.

In all, this minimal 68000 system contains 18
integrated circuits. It would work as it stands and can
be expanded to become a more sophisticated system.

vol 8 no 7 september 1984 335

ROM

CLK

.AM [~>

As. [~

To system
address bus
Aoi-Az3

To system
data bus
DOO- DI5

y,

Y2 l Activ:-Iow device
enables from IC 3

t

I RQ6* ~ -
I RQs*
IRQ4*
IRQs*
IRQ2*
IRQI*

External=DTACK*
ROM DTACK* generator

I ~°~° ~s,~, o, counter
I CLKDa Db Dc Dd

o]......I [.....I + ~ v

RAM DTACK* generator
J ENABLE J
I LOAD 74LSl61 Qd
J counter
I CLKDa Db Dc Dd

o l..,,..I I,..,,,I + ~ v

BERR* timeout generator

ic' I counter iRippl e
CLR (watch dog) JO/P

74LS244 I

74LS244 I /
bus drivel /

~OLS~O-~I~
bus driverFE~_~

OIR !

bus
tronsceiver

E

t DIRI 74LS245 I.~
bus KI

t ransce iver E ~o"

74LSI48
priority encoder

[

~ C

+5V

+5V

Address to locol
RAM, ROM, peripherals

Data to local
RAM, ROM, peripherals

I?

IPL~
IPLI*
IPLo*

I0 DTACK*

22
= BERR

6 AS*

AoI-A2$

9 R/W

vJ DO0- DI5

• " UDS*

LOS*

Figure 11. Turning the minimal microcomputer into a general-purpose SBC

336 microprocessors and microsystems

A CRITIQUE OF THE M I N I M A L COMPUTER

The minimal computer of Figures 9 and 10 is practical,
but only just. It lacks various features whose inclusion
costs l itt le in terms of the chip count, but which con-
siderably enhance the system. Some of the areas in
which the minimal computer can be improved are
as follows.

Control of DTACK*

As it stands, the circuit of Figure 10 provides a poor
implementat ion of the DTACK* input to the 68000.
Two problems have not been considered. The first con-
cerns the operational speed of the processor. If the
CPU is to run at its maximum rate and moderately fast
RAM is used, it is necessary to delay DTAC K* only when
the slower EPROM-based read-only memory is accessed.
Figure 11 shows how individual DTACK* delays can be
generated, one for RAM accesses (if necessary) and
one for EPROM accesses. The second problem con-
cerns the possibil i ty of accesses to unimplemented
memory. If a read or write access is made to memory
not decoded in Figure 10, the DTACK* input is not
asserted and the processor wil l hang up indefinitely. In
Figure 11 a watchdog circuit is used to overcome this
difficulty. When AS* is asserted, a t imer is triggered.
The t imer is reset by the rising edge of AS*. If DTACK*

is not asserted, the t imer is ' t imed-out ' and the BERR*
input to the 68000 is asserted to indicate a bus error.
This allows the processor to proceed.

Control of interrupts

While it is not necessary to operate the 68000 or any
other processor in an interrupt-driven mode, it is
worthwhi le providing some form of interrupt facility in
a general-purpose digital computer. Figure 11 shows
how seven levels of interrupt request input can be pro-
vided by a 74LS148 priority encoder.

External bus interface

If a microprocessor system is to be expanded, it must
be able to communicate with external systems via a
bus. In a large system with many memory components
or peripherals, it is impossible to connect the 68000's
pins directly to a system bus because the CPU cannot
supply the current necessary to drive the distr ibuted
capacitance of the bus and all the inputs connected to
it. Therefore, special-purpose circuits called bus drivers
or buffers are interposed between the processor and
the system bus. In addit ion to the bus drivers them-
selves, it is necessary to provide control circuitry to
avoid data bus contention, which could occur when
the CPU reads from memory local to the processor
module.

vol 8 no 7 september 1984 337

