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PREFACE

INTRODUCTION

The rapid spread of microprocessors in society has both simplified and compli-

cated our lives. Whether we rely on a computer at work or come in contact with

one for other reasons, most of us have used a computer at one point or another.

Most people know that a microprocessor is lurking somewhere inside the ma-
chinery, but what a microprocessor is and what it does remains a mystery.

This book is intended to help remove the mystery concerning the 68000
microprocessor through detailed coverage of its hardware and software and by

means of examples of many different applications. Some of the more elaborate

applications include the Apple Macintosh computer, commercial video games
and network communications controllers. Industry has also adopted the 68000
for use in digital flight control computers and other high-level applications.

The book is intended for two- or four-year electrical engineering, engineer-

ing technology, and computer science students. Professionals such as engi-

neers and technicians would also find it a handy reference. The material is

intended for a one-semester course in microprocessors.

Prior knowledge of digital electronics, including combinational and se-

quential logic, decoders, memories, Boolean algebra, and operations on binary

numbers, is required. This presumes knowledge of standard computer-related

terms, such as RAM, EPROM, TTL, and so on. Some prior experience with

microprocessors is helpful but not necessary.

CHAPTER TOPICS

For those individuals who have no previous knowledge of microprocessors,

Chapter 1, Microprocessor-Based Systems, and Appendix E, A Review of the

6800 Microprocessor, are a good introduction to the microprocessor, how it

IX
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functions internally, and how it is used in a small system. Chapter 1 is a study

of the overall operation of a microprocessor-based system, and includes a sec-

tion on integrated circuits commonly found in such systems. Appendix E is a

review—or an introduction—to the 6800 CPU, the 8-bit forerunner of the

68000. Some programming examples are included to familiarize you with the

6800.

Chapter 2, An Introduction to the 68000 Microprocessor, highlights the

main features of the 68000. Data types, addressing modes, and instructions are

surveyed. Also, the 68000 is compared with another processor, the 8086. Other
processors in the 68000 family are examined, including the newest one, the

68030.

Chapter 3, Software Details of the 68000, provides the foundation for all

programming in the remaining chapters. The 68000's instruction set and ad-

dressing modes are covered in detail, with more than 70 examples provided to

help the student grasp the material. A number of simple programming appli-

cations are also presented, to lay the groundwork for additional programming
in Chapters 5, 9, and 10.

Chapter 4 covers Exception Processing. The basic sequence of an exception

is covered, as are multiple exceptions, prioritized exceptions, and exception

handlers. This chapter may be covered after Chapter 3 and before Chapter 5, or

between Chapters 5 and 9.

The first real programming efforts are found in Chapter 5, An Introduction

to Programming the 68000. Numerous programming examples are included to

show how the 68000 performs routine functions involving binary and BCD
mathematics, string operations, data table manipulation, and control applica-

tions. Instruction timing is also covered. Each program is written in such a

way that its operation may be grasped quickly. Most examples, however, leave

much room for improvement. The improvements are deliberately left for the

student. The end-of-chapter study questions require modifications or additions

to existing routines and the creation of new ones. Chapter 5 was written in this

way to challenge the student to writing his or her own code.

The hardware operation of the 68000 is covered in Chapter 6, Hardware
Details of the 68000. All CPU pins are discussed, as are timing diagrams.

Chapter 7, Memory System Design, and Chapter 8, I/O System Design,

extend the information presented in Chapter 6, and utilize it in the design of

custom memory and I/O circuitry. Memory system topics include bus buffering,

full- and partial-address decoding, RAM and EPROM interfacing, and Dy-

namic RAM. I/O System topics include memory-mapped I/O, parallel data

transfer, serial data transfer, and memory-mapped video.

Advanced Programming Using 68000 Peripherals is the subject of Chapter

9. In this chapter, a number of peripherals designed for the 68000 are exam-

ined. These peripherals implement serial and parallel I/O, memory manage-

ment, DMA, and floating-point operations. Programming and interfacing are

discussed for each peripheral. Interfacing a non-Motorola peripheral is also

covered.
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Other textbooks rarely pay equal attention to both hardware and software.

This book was written to give equal treatment to both, culminating in a practi-

cal exercise: building and programming your own single-board computer!

Chapter 10, Building a Working 68000 System, is included to give students a

chance to design, build, and program their own 68000-based computer. The
system contains 2K words of EPROM, 2K words of RAM, and a serial I/O

device. The hardware is designed first, followed by design of the software mon-
itor program. Some books choose to explain the operation of a commercial

system, such as the MC68000 Educational Computer. This approach is cer-

tainly worthwhile, but does not give the student the added advantage of know-

ing why certain designs were used. The hardware and software designs in

Chapter 10 are sprinkled with many questions, which are used to guide the

design toward its final goal.

The single-board computer presented in Chapter 10 has been built by a

number of senior students at Broome Community College, in an average of six

weeks. It is reasonable to say that most students can build a working system in

one semester.

Because of the information presented, some chapters are much longer than

others. Even so, it is possible to cover certain sections of selected chapters out

of sequence, or to pick and choose sections from various chapters. Chapter 3

could be covered in this way, with emphasis placed on additional addressing

modes, or groups of instructions, at a rate deemed appropriate by the instruc-

tor. Also, some sections in Chapter 9 may be skipped, depending on the in-

structor's choice of peripheral. Some instructors may wish to cover hardware
before (Chapter 6) programming (Chapters 3 and 5). There is no reason this

cannot be done.

The appendixes present a full list of 68000 instructions, their allowed ad-

dressing modes, flag usage, and instruction times. In addition, they contain

data sheets for three 68000-based peripherals, the 68681 Dual UART, the

68230 PI/T, and the 68881 floating-point coprocessor. This avoids the need for

secondary references.

In summary, more than 175 illustrations and 35 different applications are

used to give the student sufficient exposure to the 68000. The added benefit of

Chapter 10, where a working system is developed, makes this book an ideal

choice for a student wishing to learn about microprocessors. The old saying

that 8-bit machines are easier to learn on is outdated now. The instruction sets

of the newer 16-bit machines, though more complex, are easier to learn and
code with. Furthermore, even though this book deals only with the 68000 fam-

ily, the serious microprocessor student should be exposed to other CPUs as

well. But to try to cover two or more different microprocessors in one text does

not do justice to either. For this reason, attention is focused on the 68000
family and not on other CPUs.

An instructor's solutions manual is available from the publisher, contain-

ing solutions to all end-of-chapter questions. In addition, a program diskette

may be ordered from the publisher upon adoption, which contains all example
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programs used in the text, plus source and object code files for the minimal
68000 system designed in Chapter 10. The disk allows the instructor to release

programming examples to the students for studying purposes. It also allows

the EPROMs required by the 68000 system to be programmed, via the supplied

object code files, without having to first assemble the source.

CHANGES AND ADDITIONS FOR THE SECOND EDITION

A number of changes and additions were made to the text in this edition. The
changes mostly involve the renumbering of several chapters, and have not

removed any information that was present in the first edition. The old Chapter

2, A Review of the 6800 Microprocessor, has been moved to become Appendix

E. The old Chapter 4, Hardware Details of the 68000, is now Chapter 6. The old

Chapter 8, Memory and I/O Systems, has been split into separate chapters:

Chapter 7, Memory System Design, and Chapter 8, I/O System Design. Old

Chapters 3, 5, 6, and 7 have become Chapters 2 through 5. This reordering

places the major software and hardware chapters into two groups (Chapters 2

through 5, and Chapters 6 through 8).

Many of the additions include new software examples. These examples

cover sorting, binary and BCD number conversions, and stack and queue oper-

ations. In addition, a special topic called the Calculator Project appears in

several chapters, and is included to help show how the 68000 is used in a

complete system.

Many chapters now also contain additional study questions to further chal-

lenge the student.

To insure that students get the opportunity to solve the study questions on

their own, the answers to selected study questions have been removed. This

was done to discourage access to answers before a real attempt is made to solve

the study question. All study questions are solved in the instructors solution

manual.
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CHAPTER

1

Microprocessor-Based Systems

Objectives

In this chapter you will learn about:

The block diagram of a microprocessor-based system and the function of each

section

The processing cycle of a microprocessor

The way software is used to initialize hardware and peripherals

The history of the microprocessor and of the different generations of computers

Some of the integrated circuits used in microprocessor-Pased systems

The calculator project

1.1 INTRODUCTION

The invention of the microprocessor has had a profound impact on many as-

pects of our lives, since today even the most mundane chores are being accom-

plished under its supervision—something that allows us more time for other

productive endeavors. Even a short list of the devices utilizing the micropro-

cessor shows how dependent we have become on it:

1. Pocket calculators

2. Digital watches 'some with calculators built in

»

3. Automatic tellers I at banks and food stores

4. Smart telephones

5. Compact disk players

6. Home security and control devices
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7. Realistic video games

8. Talking dolls and other toys

9. VCRs

10. Home computers

The purpose of this chapter is to show how the microprocessor is used as a

master controller in a small system. While no specific hardware or software

will be presented, we will see what types of hardware functions are most desir-

able to include in a small system and what jobs must be performed by the

software to control the hardware. Section 1.2 covers the block diagram of a

microprocessor-based system and explains each functional unit. Section 1.3

reviews the basic operation of a microprocessor. Section 1.4 discusses the hard-

ware and software requirements of a small microprocessor control system. Sec-

tion 1.5 shows how the microprocessor has evolved over time, from the initial

4-bit machines to today's 16- and 32-bit processors. Section 1.6 presents a num-
ber of special logic gates well suited for use in a microprocessor-based system.

Finally, an introduction to the calculator project is given in Section 1.7.

1.2 SYSTEM BLOCK DIAGRAM

Any microprocessor-based system must of necessity have some standard ele-

ments such as memory, timing, and input/output (I/O). Depending on the ap-

plication, other exotic circuitry may be necessary as well. Analog-to-digital

(A/D) converters and their counterpart, digital-to-analog (D/A) converters, in-

terval timers, math coprocessors, complex interrupt circuitry, speech synthe-

sizers, and video display controllers are just a few of the special sections that

may also be required. Figure 1.1 depicts a block diagram of a system contain-

ing some of the more standard circuitry and functions normally used.

As the figure shows, all components communicate via the system bus. The

system bus is composed of the processor address, data, and control signals. The

central processing unit (CPU) is the heart of the system, the master control-

Parallel

I/O

Serial

I/O

Interrupt

circuitry

System bus

i

\ i

i i t i

1

Timing CPU Memory

FIGURE 1.1 Standard block diagram of a microprocessor-based system
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ler of all operations that can be performed. The CPU executes instructions that

are stored in the memory section. For the sake of future expansion, the system

bus is commonly made available to the outside world (through a special con-

nector). Devices may then be added easily as the need arises. Commercial

systems have predefined buses that accomplish this. All devices on the system

bus must communicate with the processor, usually within a tightly controlled

period of time. The timing section governs all system timing and thus is really

responsible for the proper operation of all system hardware. The timing section

usually consists of a crystal oscillator and timing circuitry (counters designed

to produce the desired frequencies) set up to operate the processor at its speci-

fied clock rate. Using a high-frequency crystal oscillator and dividing it down
to a lower frequency provides for greater stability. Figure 1.2 shows the distri-

bution of timing signals throughout the microprocessor-based system. The
timing section supplies timing signals for a number of different sections.

The CPU section consists of a microprocessor and the associated logic cir-

cuitry required to enable the CPU to communicate with the system bus. These

logic elements may consist of data and address bus drivers, a bus controller to

generate the correct control signals, and possibly a math coprocessor. Copro-
cessors are actually microprocessors themselves; their instruction set consists

mainly of simple instructions for transferring data and complex instructions

for performing a large variety of mathematical operations. Coprocessors per-

form these operations at very high clock speeds with a great deal of precision

(80-bit results are common). In addition to the basic add/subtract/multiply/

divide operations, coprocessors are capable of finding square roots, logarithms,

a host of trigonometric functions, and more.

The actual microprocessor used depends on the complexity of the task that

will be controlled or performed by the system. Simple tasks require nothing

more complicated than an 8-bit CPU. A computerized cash register would be a

good example of this kind of system. Nothing more complicated than binary

coded decimal (BCD) addition and subtraction—and possibly some record

keeping—is needed. But for something as complex as a flight control computer
for an aircraft or a digital guidance system for a missile, a more powerful 16- or

32-bit microprocessor must be used.

FIGURE 1.2 Distribution of

timing signals in a small system CPu
, *.

Serial

I/Oi i

Timing
section

Memory

~T
1

Other sections
Interrupt

section
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The memory section usually has two components: read-only memory
(ROM) and random access memory (RAM). Some systems may be able to

work properly without RAM, but all require at least a small amount of ROM.
The ROM is included to provide the system with its intelligence, which is

ordinarily needed at start-up (power-on) to configure or initialize the periph-

erals, and sometimes to help recover from a catastrophic system failure (such

as an unexpected power failure). Some systems use the ROM program to down-
load the main program into RAM from a larger, external system, such as a
personal computer (PC) or a mainframe computer. In any event, provisions are

usually made for adding additional ROM as the need arises.

There are three types of RAM. For small systems that do not process a

great deal of data, the choice is static RAM. Static RAM is fast and easy to

interface but comes in small sizes of 32 kilobytes (KB) or less as of this writing.

Larger memory requirements are usually met by using dynamic RAM, a dif-

ferent form of memory that has high density (256K bits per chip or more) but

that unfortunately requires numerous refreshing cycles to retain the stored

data. Even so, dynamic RAM is the choice when large amounts of data must be

stored, as in a system gathering seismic data at a volcano or in one receiving

digitized video images from a satellite.

Both static and dynamic RAM lose their information when power is turned

off, which may cause a problem in certain situations. Previous solutions in-

volved adding battery backup circuitry to the system to keep the RAMs sup-

plied with power during an outage. But batteries can fail, so a better method
was needed. Thus came the invention of nonvolatile memory (NVM), which

is memory that retains its information even when power is turned off. NVM
comes in small sizes and therefore is used to store only the most important

system variables in the event of a power outage.

We will not consider other storage media such as disks or tape, since they

require complex hardware and software to operate and are not required in

most control applications.

When a microprocessor is used in a control application, sometimes the

system must respond to special external circumstances. For example, a power

failure on a computer-controlled assembly line requires immediate attention

by the system, which must contain software designed to handle the unexpected

event. The event actually interrupts the processor from its normal program

execution in order to service the unexpected event. The system software is

designed to handle the power-fail interrupt in a certain way and then return to

the main program. An interrupt thus is a useful way to grab the processor's

attention, get it to perform a special task, and then resume execution from

where it left off.

Not all types of interrupts are unexpected. Many are used to provide the

system with useful features such as real-time clocks, multitasking capability,

and fast input/output operations.

The interrupt circuitry needed from system to system will vary depending

on the application. A system used for keeping time only has to use a single

interrupt line connected to a timing source. A more complex system, such as an
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assembly line controller, which may need to monitor multiple sensors,

switches, and other items, may require many different prioritized interrupts

and would therefore need more complex interrupt circuitry.

Some systems may require serial I/O for communication with an operator's

console or with a host computer. In Figure 1.3 we see how a small system

might communicate with other devices or systems via serial communication.

While this type of communication is slow, it has the advantage of simplicity:

Only two wires (for receive and transmit) plus a ground are needed. Serial

communication is easily adapted for use in fiber-optic cables. Parallel I/O, on

the other hand, requires more lines (at least eight) but has the advantage of

being very fast. A special parallel operation called direct memory access

(DMA) is used to transfer data from a hard disk to a microcomputer's memory.
Other uses for parallel I/O involve reading switch information, controlling

indicator lights, and transferring data to A/D and D/A converters and other

types of parallel devices.

All of these sections have their uses in a microprocessor-based system.

Whether or not they are actually utilized depends on the designer and the

application.

Printer

FIGURE 1.3 Serial communication possibilities in a small system
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1.3 MICROPROCESSOR OPERATION

No matter how complex microprocessors become, they will still follow the same
pattern of operations during program execution: endless fetch, decode, and
execute cycles. During the fetch cycle the processor loads an instruction from

memory into its internal instruction register. Some advanced microprocessors

load more than one instruction into a special buffer to decrease program execu-

tion time. The idea is that while the microprocessor is decoding the current

instruction, other instructions can be read from memory into the instruction

cache, a special type of internal high-speed memory. In this fashion the micro-

processor performs two jobs at once, thus saving time.

During the decode cycle the microprocessor determines what type of in-

struction has been fetched. Information from this cycle is then passed to the

execute cycle. To complete the instruction, the execute cycle may need to read

more data from memory or write results to memory.
While these cycles are proceeding, the microprocessor is also paying atten-

tion to other details. If an interrupt signal arrives during execution of an in-

struction, the processor will usually latch onto the request, holding off on

interrupt processing until the current instruction finishes execution. The
processor also monitors other signals such as WAIT, HOLD, or READY inputs.

These are usually included in the architecture of the microprocessor so that

slow devices, such as memories, can communicate with the faster processor

without loss of data.

Most microprocessors will also include a set of control signals that allow

external circuitry to take over the system bus. In a system where multiple

processors share the same memory and devices, these types of control signals

are necessary to resolve bus contention (two or more processors needing the

system bus at the same time). Multiple-processor systems are becoming more

popular now as we continue to strive toward faster execution of our programs.

Parallel processing is a term often used to describe multiple-processor sys-

tems and their associated software.

Special devices called microcontrollers are often used in simple control

systems because of their many features. Microcontrollers are actually souped-

up microprocessors with built-in features such as RAM, ROM, interval timers,

parallel I/O ports, and even A/D converters. Microcontrollers are not used for

really big systems, however, because of their small instruction sets. Unfortu-

nately, we have yet to get everything we want on a single chip!

1.4 HARDWARE/SOFTWARE REQUIREMENTS

We saw earlier that it is necessary to have at least some ROM in our system to

take care of peripheral initialization. What type of initialization is required by

the peripherals? The serial device must have its BAUD rate, parity, and num-

ber of data and stop bits programmed. Parallel devices must be configured

because most allow the direction (input or output) of their I/O lines to be pro-
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grammed in many different ways. It is then necessary to set the direction of

these I/O lines when power is first applied. For a system containing a digital-

to-analog converter it may be important to output an initial value required by

the external hardware. Since we can never assume that correct conditions

exist at power-on, the microprocessor is responsible for establishing them.

Suppose a certain system contains a video display controller. Start-up soft-

ware must select the proper screen format and initialize the video memory so

that an intelligent picture (possibly a menu) is generated on the screen of the

display. If the system uses light-emitting diode (LED) displays or alphanu-

meric displays for output, they must be properly set as well. High-reliability

systems may require that memory be tested at power-on. While this adds to the

complexity of the start-up software and the time required for initialization, it

is a good practice to follow. Bad memory devices will certainly cause a great

deal of trouble if they are not identified.

Other systems may employ a special circuit called a watchdog monitor.

This circuit operates like this: During normal program execution the watchdog

monitor is disabled. Should the program veer from its proper course, the moni-

tor will automatically reset the system. A simple way to make a watchdog

monitor is to use a binary counter, clocked by a known frequency. If the

counter is allowed to increment up to a certain value, the processor is automat-

ically reset. The software's job, if it is working correctly, is to make sure that

the counter never reaches this count. A few simple logic gates can be used to

clear the counter under microprocessor control, possibly whenever the CPU
examines a certain memory location.

For flexibility, the system may have been designed to download its main
program from a host system. If this is the case, the system software will be

responsible for knowing how to communicate with the host and place the new
program into the proper memory locations. To guarantee that the correct pro-

gram is loaded, the software should also perform a running test on the incom-

ing data, requesting the host to retransmit portions of the data whenever it

detects an error.

Sometimes preparing for a power-down is as important as doing the start-

up initialization. A power supply will quite often supply voltage in the correct

operating range for a few milliseconds after the loss of AC. It is during these

few milliseconds that the processor must execute the shutdown code, saving

important system data in nonvolatile RAM or doing whatever is necessary for

a proper shutdown. If the system data can be preserved, it may be possible to

continue normal execution when power is restored.

For systems that will be expanded in the future, the system bus must be

made available to the outside world. To protect the internal system hardware,
all signals must be properly buffered. This involves using tristate buffers or

similar devices to isolate the internal system bus from the bus available to the

external devices. Sometimes optoisolators are used to completely separate the

internal system signals from the external ones. The only connection in op-

toisolators is a beam of light, which makes them ideal when electrical isolation

is required.
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Figure 1.4 sums up all of these concepts with an expanded block diagram of

a microprocessor-based control system. Notice once again that all devices in

the system communicate with the CPU via the system bus.

1.5 EVOLUTION OF MICROPROCESSORS

We have come a long way since the early days of computers, when ENIAC (for

Electronic Numerical Integrator and Computer) was state of the art and occu-

pied thousands of square feet of floor space. Constructed largely of vacuum
tubes, it was slow, prone to breakdown, and performed a limited number of

instructions. Even so, ENIAC ushered in what was known as the first genera-
tion of computers.

Today, thanks to advances in technology, we have complete computers that

fit on a piece of silicon no larger than your fingernail and that far outperform

ENIAC.
When the transistor was invented, computers shrank in size and increased

in power, leading to the second generation of computers. Third-generation

computers came about with the invention of the integrated circuit, which al-

lowed hundreds of transistors to be packed on a small piece of silicon. The
transistors were connected to form logic elements, the basic building blocks of

digital computers. With third-generation computers we again saw a decrease

in size and increase in computing power. Machines like the 4004 and 8008 by

Intel found some application in simple calculators, but they were limited in

power and addressing capability. When improvements in integrated circuit

technology enabled us to place thousands of transistors on the same piece of

silicon, computers really began to increase in power. This new technology,

called large-scale integration (LSI), is even faster than the previous medium-
and small-scale integration (MSI and SSI) technologies, which dealt with only

tens or hundreds of transistors on a chip. LSI technology has created the

fourth generation of computers that we use today. An advanced form of LSI

technology, VLSI, meaning very-large-scale integration, is also being used to

increase processing power.

The first microprocessors that became available with third-generation

computers had limited instruction sets and thus restricted computing abilities.

Although they were suitable for use in electronic calculators, they simply did

not have the power needed to operate more complex systems, such as guidance

systems or scientific applications. Even some of the early fourth-generation

microprocessors had limited capabilities because of the lack of addressing

modes and instruction types. Eight-bit machines like the 8080, Z80, and 6800

were indeed more advanced than previous microprocessors, but they still did

not possess multiply and divide instructions. How frustrating and time con-

suming to have to write a program to do these operations when needed!

Within the last decade microprocessor technology has improved tremen-

dously, however. Sixteen-bit processors can now multiply and divide, operate

on many different data types (4-, 8-, 16-, and 32-bit numbers), and address
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FIGURE 1.4 Expanded block diagram of a microprocessor-based system

millions of bytes of information. Processors of the 1970s were limited to 64KB,
a small amount of memory by today's standards.

Each new microprocessor to hit the market boasts a fancier instruction set

and faster clock speed, and indeed our needs for faster and better processors

keep growing. A new technology called RISC (for reduced instruction set com-

puter) has recently gained acceptance. This technology is based on the fact that
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most microprocessors utilize only a small portion of their entire instruction set.

By designing a machine that uses only the more common types of instructions,

processing speed can be increased without the need for a significant advance in

integrated circuit technology.

Why the need for superfast machines? Consider a microprocessor dedicated

to displaying three-dimensional color images on a video screen. Rotating the

three-dimensional image around an imaginary axis in real time (in only a few

seconds or less) may require millions or even billions of calculations. A slow

microprocessor would not be able to do the job.

Eventually we will see fifth-generation computers. The whole artificial

intelligence movement is pushing toward that goal, with the desired outcome

the production of a machine that can think. Until then we will have to make
the best use of the technology we have available.

1.6 SPECIAL GATES FOR MICROCOMPUTER USE

Unfortunately we cannot simply throw a CPU, memory chips, and a handful of

peripherals together and come up with a working computer. Other chips are

needed to control the system timing and support communication between the

peripherals and the processor. In this section we will examine some of the most

common integrated circuits used in the design of a microprocessor-based sys-

tem. Since most of the available microprocessors are designed for TTL (transis-

tor transistor logic) compatibility, we will examine TTL integrated circuits

only. You are encouraged to keep a TTL data book handy as you read this

section.

The Octal Buffer

Figure 1.5 shows the schematic diagram of a commercial 74LS244 octal buffer.

This chip is very useful in many ways. It can be used to buffer address lines

and control the flow of information onto a data bus. When a system is designed

with multiple memory devices, all of which require address and data lines, the

FIGURE 1.5
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1

fan-out of the microprocessor's output lines can easily be exceeded. Having a

CPU address line drive three or four inputs is not unreasonable, but trying to

drive twenty or twenty-five inputs with an unbuffered output will certainly

not work. This is because of the output current limitation of the processor's

signal lines; most CPUs cannot supply more than a few mA. The 74LS244 is

designed to correct this problem. Each of its outputs is able to sink 24 mA,
more than enough to satisfy our design needs.

The octal buffer is placed between the CPU and the memory chips (or pe-

ripherals), as we can see in Figure 1.6. This design actually serves two pur-

poses. It not only provides the necessary drive capability to the CPU address

lines, but also serves to isolate the CPU from the system bus. If we consider a

system that will have other devices (or processors) using its system bus, the

host CPU can be easily disconnected by tristating its octal buffers.

The Octal Bus Transceiver

The 74LS245 is an octal bus transceiver. Figure 1.7 shows that this device is

used to buffer signals in two directions, making it suitable for use in buffering

a bidirectional data bus. The transceiver is controlled by two inputs: EN* (en-

able) and DIR (direction). If EN is high, the transceiver is tristated in both

directions and will not pass data either way. When EN is low, data is passed in

the direction specified by DIR.

Normally the CPU's R/W line^ is used to control the direction of data

through the transceiver. When R/W is high, the 74LS245 passes data into the

processor. When R/W is low, data is output from the processor.

*The overbar in EN is used to show that the asserted (active) state of this signal is low. EN
would be an active high signal.

Memory Octal Memory

A
buffer

A

/ A„

fr
f

A

CPU

A A

Ao

CPU

A

A A

A A

(ai (b)

FIGURE 1.6 Microprocessor address line: (a) cannot drive required number of

memory devices and (b) drives all memory devices via octal buffer
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FIGURE 1.7 The 74LS245 octal bus transceiver

The 74LS245's 24-mA drive capability on each output makes it ideal for

driving the CPU's bidirectional data bus.

The Octal D-Type Flip-Flop

Figure 1.8 shows the schematic of a 74LS273 octal D-type flip-flop. This device

is very useful when constructing 8-bit output ports (or 16-bit ports by using

two devices). All eight flip-flops share a common clock and clear line. This

makes it easy to either capture a byte of data or clear all outputs at the same

FIGURE 1.8 The 74LS273 octal

D-type flip-flop

Inputs ) Outputs

CLK



1 .6 Special Gates for Microcomputer Use 1

3

FIGURE 1.9 The 74LS138 3- to

8-line decoder
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time. When only 8 bits must be latched, the 74LS273 is a perfect choice, being

cheaper and easier to use than a full-blown parallel device.

The 3- to 8-Line Decoder

The 74LS138 3- to 8-line decoder is very useful when designing memory cir-

cuitry. Figure 1.9 shows the schematic for this device, which activates one of

its outputs at a time, depending on the binary code present at the inputs. When
used in a memory circuit, the A, B, and C inputs will be connected to three

upper address lines (with the lower address lines going directly to the ROM
and RAM chips). The outputs will be connected to the CE inputs of the memory
chips. This will cause different memory devices—or maybe none—to be en-

abled, depending on the condition of the upper address lines.

The Priority Encoder

The 74LS148 8- to 3-line priority encoder, pictured in Figure 1.10, finds appli-

cation in interrupt circuitry. Quite often a system will be presented with a

FIGURE 1.10 The 74LS148
priority encoder r
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number of interrupt signals. What should the processor do when more than one
interrupt signal is active at the same time? The 74LS148 solves the problem by
prioritizing the interrupts. Normally a single input will go to the low state,

causing the A through A2 outputs to represent the binary code of the input

that became active. If two or more inputs go low at the same time, the outputs

will represent the number of the highest active input (for example, this would
be input 5, if 5, 4, and 2 are all active).

The Parity Generator/Checker

Figure 1.11 shows the schematic diagram of the 74LS180 even/odd parity gen-

erator/checker. This device is most useful in memory circuitry that requires

high reliability. Instead of storing just 8-bit values in each memory location,

9 bits are used, with one dedicated to the parity of the stored data. When the

CPU writes data to a memory location, the 74LS180 generates the parity bit

for the data, which is then stored. When the processor reads the same location,

the parity of the 8 data bits is recomputed by the 74LS180 and compared with

the parity bit that was stored. A parity error results when the two bits fail to

match. This type of memory failure is usually catastrophic because there is no

way to recover the good data.

Parity generators/checkers are also used in serial transmission circuitry,

and are usually contained within the transmitter/receiver sections.

1.7 THE CALCULATOR PROJECT

Although the following chapters contain numerous hardware and software

design examples and applications, a book-long example called the calculator

FIGURE 1.11 The74LS180
parity generator/checker

Inputs <

Outputs
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project will be utilized to show how an entire 68000-based system is developed.

The common features and operations of a calculator are known to all, and this

familiarity is used to bring in new concepts and ideas as they are presented in

each chapter. For example, the display and keypad sections of the calculator

are designed in the chapter on peripherals. The calculator's mathematical rou-

tines are developed in the chapters on programming and exceptions. Through-

out the project, numerous questions are asked and answered to guide the de-

sign toward a final product. Room for improvement is deliberately included, to

encourage original thought.

A simplified block diagram of the calculator is shown in Figure 1.12. Spe-

cific interfaces for the RAM, EPROM, and input/output sections will be de-

signed, as will the software to run the entire system. Since the design is broken

up into specific sections, every effort is made to ensure that out-of-sequence

treatment does not affect the reader's understanding of any single section.

1.8 SUMMARY

In this chapter we have examined the operation of microprocessor-based sys-

tems. We saw that the complexity of the hardware, and thus of the software, is

a function of the type of application. Through the use ofmany different types of

peripherals, such as parallel and serial devices, analog-to-digital converters,

and others, a system can be tailored to perform almost any job. We also re-

viewed the basic fetch, decode, and execute cycle of a microprocessor, and ex-

amined the other duties the CPU performs, one of which was interrupt han-

dling.

We also covered the initialization requirements of peripherals used in a

microprocessor-based system, and why it is necessary to perform initializa-

FIGURE 1.12
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tion in the first place. Other types of hardware and software requirements

were also examined, such as the use of a watchdog monitor and a nonvolatile

memory.
Four different generations of computers were presented and their differ-

ences highlighted. Current computing trends dealing with parallel processing

and artificial intelligence were also introduced.

We then looked at a number of different TTL gates that for various reasons

find their way into many microcomputer designs. This was followed by a de-

scription of the calculator project, a hardware/software design concept that will

reappear in the following chapters.

STUDY QUESTIONS

1. Make a list of 10 additional products containing microprocessors that we use every-

day.

2. Why would an oscillator circuit utilizing a resistor-capacitor network to control its

frequency be unstable and unsuitable for use in a microprocessor-based system?

3. Speculate on the uses for timing signals in the serial I/O, memory, and interrupt

sections.

4. Why do coprocessors enhance the capabilities of an ordinary CPU?
5. Draw a block diagram for a computerized cash register. The hardware should in-

clude a numerical display, a keyboard, and a compact printer.

6. What kind of initialization software would be required for the cash register of

Question 5?

7. What would be the difference in system RAM requirements for two different cash

registers, one without record keeping and one with?

8. What type of information should be stored in NVM during a power failure in a

system designed to control navigation in an aircraft?

9. What types of interrupts may be required in a control system designed to monitor

all doors, windows, and elevators in an office complex?

10. Name some advantages of downloading the main program into a microprocessor-

based system. Are there any disadvantages?

11. Suppose that a number of robots making up a portion of an automobile assembly

line are connected to a master factory computer. What kinds of information might

be passed between the factory computer and the microprocessors controlling each

robot?

12. A certain hard disk transfers data at the rate of 8 million bits per second. Explain

why the CPU would not be able to perform the transfer itself, thus requiring the

use of a DMA controller.

13. What kinds of problems arise if two devices attempt to use the system bus at the

same time?

14. Explain how two microprocessors might be connected so that they share the same

memory and peripherals.

15. Suppose that three microprocessors are used in the design of a new video game
containing color graphics and complex sounds. How might each microprocessor

function?

16. Why did processing speed increase with each new generation of computers?
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17. List five different applications that might need the fast computing power of a RISC-

based machine.

18. One reason 16-bit processors are faster than 8-bit machines is that they operate on

twice as many data bits at the same time. Why doesn't everyone using an 8-bit

machine just switch over to a 16-bit processor?

19. An upward-compatible microprocessor is one that can execute instructions from

earlier models. How would a designer of the new CPU implement upward compati-

bility?

20. Explain how an octal buffer may be used to load information from a set of switches

onto the CPU data bus.

21. Show how an octal latch could be used to control a 7-segment display (including the

decimal point).

22. Why use a 74LS244 instead of a 74LS245 to buffer a CPU's address lines?

23. How can two groups of three different signals each be connected to a priority en-

coder, so that one group has a priority of 6 and the other a priority of 3?

24. Why would a parity checker only recognize single, or odd-numbered, bit errors?

25. What advantages does a microcontroller have over a microprocessor? What disad-

vantages?
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An Introduction to the

68000 Microprocessor

Objectives

In this chapter you will learn about:

The register set of the 68000

The addressing capabilities and data types that may be used

The different addressing modes and instruction types available

The usefulness of exceptions

Some of the hardware and software advantages of the 68000

Some of the differences between the 68000 and the 68008 10 20 30 microproces-

sors

2.1 INTRODUCTION

The introduction of the 68000 into the arena of microprocessors came at a time

when we were reaching the limits of what an 8-bit machine could do. With
their restricted instruction sets and addressing capabilities, it was obvious

that something more powerful was needed. The 68000 contains instructions

previously unheard of in 8-bit machines, a very large address space, many
different addressing modes, and an architecture that easily lends itself to mul-

tiprocessing or multitasking (running many programs simultaneously).

In this chapter we will examine the features of the 68000 microprocessor

and its cousins, the 68008, 68010, 68020, and 68030. Only basic material will

be covered, leaving the hardware and software details for upcoming chapters.

From reading this chapter you should become aware that the 68000 is a ma-
chine with many possibilities.

19
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Section 2.2 covers the software model of the 68000. Section 2.3 provides a

brief functional description of the processor. Section 2.4 explains the various

data types that may be used (8-, 16-, and 32-bit data sizes for many instruc-

tions). Section 2.5 lists the numerous instruction types that comprise the

68000's instruction set. Section 2.6 describes the 68000's 14 different address-

ing modes. Section 2.7 introduces the concept of an exception and lists a few of

the many types of exceptions possible. Section 2.8 compares the 68000 with

another 16-bit machine—the 8086—and states its advantages. Sections 2.9

through 2.12 deal with the 68008, 68010, 68020, and 68030 microprocessors,

respectively, describing them and listing their architectural differences. Sec-

tion 2.13 begins the calculator project.

2.2 THE SOFTWARE MODEL OF THE 68000

The 68000 microprocessor contains eight data registers, referred to as DO
through D7, eight address registers, A0 through A7, a program counter, and a

status register. All registers except for the status register are 32 bits in length.

Technically speaking, there are two A7 address registers. One makes up

the user stack pointer and the other the supervisor stack pointer. These two

processing states, user and supervisor, are what make the 68000 an ideal pro-

cessor for applications involving multiprogramming, multitasking, and the

creation of operating systems. Programs running in the user state are denied

access to a few special instructions, two of them being STOP and RESET.
Trying to execute these privileged instructions in the user state causes an

error condition. The processor responds to this error condition by entering the

supervisor state and taking appropriate action, determine by software, in a

routine called an exception handler.

The processing state is determined by a special bit in the status register.

Figure 2.1 portrays the details of the 16-bit status register. The lower eight

bits form the user byte. These bits contain the five status bits that may be

directly tested by the programmer. These five bits are commonly called condi-

tion codes, or flags. X, N, Z, V, and C represent the processor's extended,

negative, zero, overflow, and carry conditions, as determined by previous in-

struction execution. The upper eight bits make up the system byte. These bits

are unavailable to the programmer unless the processor is in the supervisor

state. The processing state is controlled by the S bit (0 for user, 1 for supervi-

sor), and there are special instructions available for manipulating this bit. A

15 13 10 9 8 4 3 2 1

T - S - - I; II Io - - X N /' V c

System byte - User byte —

FIGURE 2.1 68000 status register
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nice addition to the 68000, and something not available on previous 8-bit ma-
chines, is the T bit, which enables trace mode in the processor. Trace mode
makes it possible to single-step through a program, instruction by instruction.

This is very useful when debugging a new piece of code. A trace is actually an

exception that allows the user to debug (or monitor execution of) an executing

program.

I through I2 make up the processor's interrupt mask. They are used to

determine what levels of external interrupts the 68000 will respond to.

2.3 A FUNCTIONAL DESCRIPTION OF THE 68000

The 68000 is most commonly referred to as a 16-bit machine, even though it

can perform a wide variety of operations on 32-bit data words. All external

data enters the CPU on 16 bidirectional data lines (D through D 15 ). The
68000's 23 address lines (A : through A23 ), together with two other signals

—

UDS and LDS (for upper and lower data strobe)—give the processor the ability

to address over 16 million bytes of memory. This large addressing space makes
the handling of large databases convenient, and also supports the development

of multiuser systems. Suppose that a customer needs a word processing system

capable of supporting 16 users simultaneously. The 68000 makes it possible to

give each user almost 1 million bytes of memory, enough storage space to hold

approximately 218 pages of text (with each page containing 60 lines of 80 char-

acters each). Some memory must, of necessity, be reserved for the operating

system functions.

Other signals on the 68000 provide for two different types of data trans-

fers: synchronous and asynchronous, with asynchronous being faster. The
synchronous transfers enable the 68000 to communicate with peripherals de-

signed for the earlier 6800 microprocessor.

Furthermore, the 68000 will respond to seven levels of external hardware
interrupts, and has bus arbitration logic that supports its use in multiproces-

sor systems.

All of these features come in a 64-pin package that runs on a single 5-volt

power supply. In addition, clock speeds for current versions of the 68000 run

from 4 MHz up to 12.5 MHz. The high clock frequency, together with the abil-

ity to load 16 bits of data at once (twice that of an 8-bit machine), greatly

increase the processing speed beyond the barriers encountered in the 8-bit

machines.

2.4 68000 DATA ORGANIZATION

Even though the 68000's data and address registers are 32 bits long, it is

possible to work with smaller bit quantities. Many of the processor's instruc-

tions can be directed to operate on 16, 8, or even 1 bit at a time! We generally

refer to 8-, 16-, and 32-bit data lengths as bytes, words, and long words. Telling

an assembler what data type to use in an instruction is done by following the
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instruction mnemonic with a .B, .W, or .L extension. For example, MOVE.B
means to move a byte of data, and MOVE.L means to move a long word of data.

When the 68000 is directed to use only 8 bits of a register, it will use the lower

8 bits (bits through 7). Words occupy the lower 16 bits of the register. Opera-

tions on these lower bits do not affect the higher bits in the register.

Figure 2.2 shows how the 68000 stores 16-bit data types in memory. The
upper eight bits of the word occupy a memory location that has an even ad-

dress. The lower eight bits are stored in an odd memory location one higher

than that of the upper byte. The figure indicates that the processor has stored

the word value B52D in memory locations and 1, with the next available

word boundaries starting at addresses 2 and 4. The hardware signals UDS and
LPS are used to indicate which portion of the data bus contains information:

UDS for bits 15-0 and LDS for bits 7-0.

The 68000 is capable of detecting operations that may try to violate this

storage technique (for example, trying to write a word to an odd location),

resulting in another type of exception, called an address error. Long words

are stored with the upper word occupying the first two memory locations and
the lower word the next two locations. Bytes may be stored too, in any location,

regardless of the even/odd requirement.

2.5 68000 INSTRUCTION TYPES

The 68000 contains several groups of instructions designed to make the task of

writing source code less tedious for the programmer. Older machines often

contained many different forms of instructions that all did the same thing. For

example, 8- and 16-bit additions were handled by different instructions, re-

quiring the use of different mnemonics in the source code. The 68000 elimi-

nates the need for the programmer to keep track of these differences. A single

ADD instruction mnemonic can be easily coded to perform 8-, 16-, and 32-bit

additions on either data or address registers. The same is true for data transfer

instructions as well. Instead of using different mnemonics (and therefore in-

structions) for data transfers, register to register, register to memory, and

immediate to register/memory use only one mnemonic to handle everything.

Figure 2.3 shows the three ADD instructions used to add 8-, 16-, or 32-bit

portions of D4 to D5.

The different instruction groups may be classified as arithmetic (add, sub-

tract, multiply, divide, clear, and complement), logical (AND, exclusive OR,

FIGURE 2.2 Storing words

in memory
Data Bus

Address |^—Bits 15-8 »|« Bits 7-0"

First word

Second word

Third word

Address

10 110 10 1 10 1 10 1

-

/
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FIGURE 2.3 Adding different

data sizes with ADD

ADD.B D4. D5

(a) 8-bit

ADD.W D4, D5

(b) 16-bit

w Y/X/A \\\2i\

D5M/\33\A*\

D5 Y/X/A*4\66\

D4
|
11

|
22

| 33 | 44|

+ D5 | 22 | 33 | 44 1 5J]

ADD.L D4, D5 D5 | 33 |
55

| 77 1 99|

(c) 32-bit

2 = No change in contents

OR, shifting, and rotates), data transfer (register exchange, transfers from

memory to register, register to memory, and immediate data transfers),

branches (conditional, unconditional, and special looping instructions), and

machine control (stack manipulation, bit testing, STOP, RESET, and some
other special ones for use with exceptions).

Altogether there are over 50 different types of instructions. When we add

the 14 different addressing modes—which we will cover next—and operations

on different data types, we come up with a very flexible instruction set!

2.6 68000 ADDRESSING MODES

The 68000 contains 14 different addressing modes derived from 6 basic types.

These types are register direct, absolute data, program counter relative, regis-

ter indirect, immediate data, and implied. Some of these types support the use

of address or data registers in forming the address, and the addition of an offset

as well. When different combinations of address or data registers and offsets

are used, we end up with 14 different possible addressing modes. All of the

addressing modes that follow are covered in detail in the next chapter.

Register direct addressing uses the value in one of the address or data

registers as the operand. An example would be:

M0VE.L D0.D3

which copies the contents of register DO into register D3.
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Absolute data addressing means that the operand address has been in-

cluded in the instruction itself. The following is an example:

MOVE.B INIT, COUNT

where INIT and COUNT are reserved byte locations in memory.
Program counter relative addressing works by adding an offset value to

the current program counter. This offset value may be stored in an index regis-

ter. All address and data registers may be used as index registers. Examples of

this addressing mode are:

BRA NEXT
MOVE.W DATA.D3
MOVE.B DATA(A5.L),D4

where A5 now acts as an index register, and DATA is the starting address of a

data table located somewhere in memory.
Register indirect addressing uses an address register to point to a memory

location where the operand data is stored. Offsets and index registers may also

be used, and special modes called postincrement and predecrement can be

employed as well. These modes automatically increment or decrement the ad-

dress register during execution of the instruction. Examples of this addressing

mode are:

MOVE.B (A2),D0
MOVE.W -(A0),A1
MOVE.L D6,(A4)+
MOVE.B VALUES (A0, DO. W),D1

In the fourth instruction DO acts like an index register, and VALUES is the

starting address of a data table located somewhere in memory.
Immediate data addressing means that the operand data are included in

the instruction itself. An example of this addressing mode is:

MOVE.W #1000, D3

which copies the decimal value 1000 (03E8 hex) into register D3.

Implied addressing is used in instructions that make use of processor regis-

ters (such as the program counter, stack pointer, and status register), and refer

to the register by name in the instruction mnemonic. Examples of implied

addressing include:

ANDI #2FH,SR
MOVE USP.A2

where SR stands for status register and USP for user stack pointer.

2.7 68000 EXCEPTIONS

The 68000 supports 255 different exceptions. An exception is very similar to an

interrupt, except that interrupts are usually activated by external sources.

Exceptions, on the other hand, may be externally or internally generated.
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Examples of internal exceptions are trace, divide-by-zero, illegal opcode, and

privilege violation. External exceptions include RESET, bus error, address

error, and seven levels of hardware interrupts. The hardware interrupts are

controlled by three signals—IPL , IPLj, and IPL2—which are used to specify

the level of external interrupt requested. Level 7 (all three IPL lines low) is a

nonmaskable interrupt. Level (all three high) means that no interrupt is

requested.

Normally a software routine is written to handle a particular exception.

For example, a program that relies heavily on arithmetic may frequently en-

counter the processor's division instruction. Careful programming requires

that we never allow a division by zero. Suppose that there are many different

places within the program where we might need to check for division by zero.

This could be a time-consuming process and will certainly make the program

more complex. A simple solution is to ignore the checking but include an ex-

ception handler for the divide-by-zero exception that would take care of any

errors that show up. This method eliminates a lot of duplicate coding (for all

the checking), and makes the program easier to write and debug.

When exceptions are used correctly they can make a program efficient and

reliable.

2.8 ADVANTAGES OF THE 68000

The great number of microprocessors currently available forces a designer or

programmer to choose a particular one based on its advantages over the others.

Let us briefly examine some of the 68000's advantages over another popular

16-bit machine, the 8086.

The 8086 is Intel's offering in the world of 16-bit machines. It connects to

the outside world via a 16-bit data bus that is, unfortunately, multiplexed with

16 of the 8086's address lines. Even though the remaining 4 address lines are

directly available, processing speed is somewhat reduced by the need to demul-
tiplex the address and data buses. With 20 address lines, the 8086 is capable of

accessing over 1 million bytes of memory, only a sixteenth of the 68000's ad-

dress space.

Furthermore, the registers of the 8086 are only 16 bits in length, and there

are fewer of them. Table 2.1 compares the entire register set of both machines.

The four 8086 segment registers CS (code segment), DS (data segment), ES
(extra segment), and SS (stack segment) are used to point to 64KB blocks of

memory. Thus, even though the 8086 can address over 1 million bytes of stor-

age, it only does so in 64KB chunks. This requires careful manipulation of the

segment registers, via software, and is a confusing procedure for the beginning

programmer. Figure 2.4 shows how a full 20-bit address is formed in the 8086.

Notice how the segment register is shifted 4 bits to the left. This causes

all memory references to begin on 16-byte boundaries called paragraphs.
Though this technique makes program relocation much simpler, it is still eas-

ier to directly refer to any memory location, a capability we enjoy on the 68000.
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TABLE 2.1 Register sets of the

8086 and 68000 8086 (16-bit registers) 68000 (32-bit registers)

General-purpose registers

AX DO A0
BX D1 A1

CX D2 A2
DX D3 A3
BP D4 A4
SI D5 A5
Dl D6

D7
A6

Segment registers

CS
DS
ES
SS

System control

SP (stack pointer) A7 (USP.SSP)

IP (instruction/program PC
counter)

The 8086 supports 256 levels of interrupts, which operate similar to excep-

tions. In the case of the 8086, a 1KB block ofmemory is dedicated to storing the

interrupt vector locations. Externally, only two interrupts may be generated,

one of them nonmaskable. This is much less than the seven levels of external

hardware interrupts available on the 68000.

The 8086 runs at a slower clock speed than the 68000, and requires an

external clock-generator chip to control its internal timing.

In summary, the 68000's 32-bit arithmetic, 32-bit registers, large address-

ing space, nonmultiplexed address and data buses, external interrupt features,

and faster clock speed make it a batter choice than the 8086.

FIGURE 2.4 Generating a 20-bit

address in the 8086
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2.9 THE 68008: AN 8-BIT SPINOFF

Shortly after the 68000 was introduced, it became evident that this new pro-

cessor offered computing power far beyond that of an 8-bit machine. For users

of 8-bit machines this created a problem: how to get the power and speed of the

68000 without starting over from scratch. After all, it would be a terrible waste

to get rid of existing 8-bit systems merely because a new processor required

16-bit interfacing. For this reason, and to satisfy designers who were comfort-

able working with 8-bit buses, Motorola came up with the 68008. Externally,

the 68008 is an 8-bit machine, but internally it is a full 16-bit processor, identi-

cal to the 68000. Some hardware changes were made to accommodate the 8-bit

external data bus. Since only 8 bits of data may be exchanged over the data

bus, the 68000's UDS and LDS signals were replaced by address line A and a

signal called DS (data strobe). This in no way affects the addressing capability

of the 68008; it can still access over 16 million bytes of memory.
Another hardware modification is in the use of external hardware inter-

rupts. To reduce the number of pins on the 68008's package to 48 (the 68000
comes in a 64-pin package), the designers decided to eliminate an external

signal by combining two signals into one. IPL and IPL2 have been tied to-

gether internally, resulting in only four levels of hardware interrupts, which
are indicated by Table 2.2. Another omission is that of a signal called VMA
(valid memory address). This signal is used to control 6800-type peripherals,

and must be implemented by external hardware when these peripherals are

used in a 68008 system.

From a software standpoint, the 68008 is identical to the 68000. All ad-

dress and data registers have been included, and any program written for the

68000 will run on the 68008, although at a slower speed. The decrease in speed

results from the extra memory accesses that must take place in order for the

68008 to fetch the same amount of information as the 68000.

2.10 THE 68010: A VIRTUAL-MEMORY PROCESSOR

Virtual memory is a term used to describe a technique that gives the user of a

computer the impression that the entire memory space is available for use, no

matter how much actual memory exists in the hardware. We often use the

TABLE 2.2 External interrupts

on the 68008 Request

IPL2/IPLo IPL 1 Interrupt priority level

1

1

1

1

7

5

2
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term physical memory to refer to the actual amount of storage implemented
in hardware, and logical memory to refer to the entire address space of the

microprocessor. Thus, even though a particular system may only have 512KB
of physical memory, if it is a 68000-based system, its logical memory space is

over 16 million bytes!

The 68010 virtual-memory processor was designed to bring virtual mem-
ory capability to the microprocessor level. Virtual memory had previously

been available only on larger mainframe computers. The 68010's software

model is compatible with the 68000's. All address and data registers are in-

cluded, and the instruction sets are identical, though the 68010 has some addi-

tional instructions to support its virtual-memory environment. This environ-

ment is largely implemented via some additional registers and software

functions. The VBR (vector base register) and the SFC and DFC—two addi-

tional function code registers that are only 3 bits in length—have been in-

cluded to support virtual memory in the 68010. The VBR is used to relocate the

processor's exception vector table, and the function code registers are used to

control external hardware.

In the operation of a virtual machine, a small portion of a program will

reside in the system's physical memory, the rest being stored on disk. During
execution of the program, a reference to a memory location outside of the space

allocated to the program creates a page fault. In the 68010, a page fault

instructs the processor to enter exception processing. The exception handler

will take care of loading the next portion of the program from disk into physi-

cal memory and resuming execution. Motorola calls this resumption of execu-

tion instruction continuation. In order for instruction continuation to work,

the processor must save important system information on the stack during

exception processing caused by a page fault. Data—such as the address that

caused the page fault, the contents of internal CPU data registers, and system

status information— is saved at the beginning of exception processing, to be

reloaded later when program execution resumes.

The hardware of the 68010 is identical to that of the 68000, with no signals

having been added or removed. This means that virtual-memory support can

be added to an existing 68000 system by simply changing CPUs.

2.11 THE 68020: A TRUE 32-BIT MACHINE

Motorola improved on the virtual-memory capabilities of the 68010 by expand-

ing its address and data buses into full 32-bit lengths. The 68020's 32-bit ad-

dress bus may now address almost 4.3 billion bytes of information. Together

with the ability to grab 32 bits of data at once, we see an increase in computing

power and speed.

Another improvement over the 68010 is the addition of an on-board cache

memory. A cache is a special type of high-speed memory used to decrease

execution time. To be most effective, a cache is loaded with the data of the most



2.12 The 68030: An Enhanced 32-Bit Machine 29

frequently used locations, and their addresses. Whenever the CPU tries to

access a memory location that matches one stored in the cache, a hit is made
and the cache returns the data to the CPU much faster than the external

memory system can. If no matches are found we have a miss. A miss usually

causes the least frequently used data in the cache to be replaced by the new
data that caused the miss. The idea is to fill up the cache so that the hits far

outnumber the misses. The 68020 uses this memory as an instruction cache,

storing as many instructions as it can in its 256 bytes of internal cache mem-
ory. Programs that employ any kind of looping will run faster, because the

instructions of the loop will be stored in the cache. Thus, as the loop repeats

itself over and over, the CPU continually fetches the repeated instructions

from the cache, resulting in a program that runs much faster.

The 68020 has two additional registers that are used to control the cache.

They are the CACR (cache control register) and the CAAR (cache address

register). The CACR is used to clear, modify, freeze, and enable the cache. The
CAAR points to the cache entry to be cleared.

Memory transfers may take place in 8-, 16-, or 32-bit quantities. Processor

signals SIZ and SlZi are used by the 68020 to inform external hardware about

the remaining number of bytes to be transferred in a memory access. Two other

signals, DSACK and DSACK^, are used by the external memory system to

tell the 68020 how many bytes may be transferred during the current opera-

tion. The use of these signals makes it possible for the 68020 to interface with

bytewide memories (seen on earlier systems) and with the larger 16- or 32-bit-

wide memories as well.

In addition, the 68020 contains some new instructions that enhance the

use ofBCD numbers and manipulate groups of bits. Previous instructions were

able to change or test just one bit at a time. Even with these new functions,

programs written on the 68000, 68008, and 68010 will still execute properly on

the 68020.

2.12 THE 68030: AN ENHANCED 32-BIT MACHINE

All of the features found in the 68020 are included in the 68030, with addi-

tional improvements. Like the 68020, the 68030 employs full 32-bit address

and data buses. The cache memory of the 68020 has been expanded into two
separate caches, one for instructions and the other for data, both of which are

256 bytes wide. The 68030 will use cache information whenever it can, mini-

mizing the need for external memory references.

The architecture of the 68030 is designed to allow many operations to be

performed in parallel, thus reducing execution time. The 68030 is equipped for

easy interfacing with the 68881 floating-point coprocessor, as was the 68020,

and contains an internal memory management unit (MMU). The MMU is used
to control memory accesses in multiprocessing applications.

All previous instruction sets are compatible with the 68030, from the
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68000 up. When the parallel architecture, internal caches, MMU, and copro-

cessor support are combined with a processor clock speed that may exceed

20 MHz, we truly have an enhanced machine.

2.13 BEGINNING THE CALCULATOR PROJECT

We have only been briefly introduced to the capabilities of the 68000 in this

chapter, but there is enough information at our disposal to begin asking ques-

tions about the calculator project. For example, how much memory will the

calculator need? How much of the calculator's memory will be EPROM, and
how much will be RAM? Even though the 68000 can access over 16 million

bytes of memory, it would be impractical and prohibitively expensive to design

a calculator with this much memory.
To get a clearer idea of our memory requirements, we need to know what

kind of operations will be available on the calculator. A calculator capable of

performing only the standard mathematical functions +, — , *, and / will re-

quire less EPROM than that of a calculator that can compute sine and cosine

values, square roots, and logarithms.

Furthermore, will the calculator perform its math using binary numbers
or BCD numbers? The 68000 can perform the standard four operations on

binary numbers, but can only add and subtract BCD numbers. BCD multipli-

cation and division require software subroutines (stored in EPROM on the

calculator) for implementation. We must also decide on how a number will be

stored in the calculator. Storing a BCD number in a register results in a range

of to 99,999,999 (since each BCD digit requires four bits and a 68000 register

is 32 bits wide). Storing a binary number in a register gives an unsigned range

of to 4,294,967,206 (2
32

). Storing numbers in scientific notation almost cer-

tainly necessitates the use of multiple memory locations (say eight bytes per

number) and even more software for coding and manipulation.

Will it be possible to utilize some of the 68000's fancy addressing modes in

the calculator, to help with the conversion and manipulation of numbers and

data? Will the calculator have its own internal memories where the user can

store numbers for use in later calculations? If so, where will these memories

reside, in registers or actual RAM locations. How many memories should there

be and how will they be accessed?

Some questions require a knowledge of the 68000's digital architecture.

For example, the calculator could have an automatic power-down feature, a

mechanism that shuts the calculator off if no keypad keys have been pushed

for a number of minutes. This feature would require a timing circuit capable of

signaling the processor when the allotted time is up, possibly through the use

of a dedicated hardware interrupt.

Clearly, we have only touched the surface of what is involved in the calcu-

lator project. In the next chapter we will be introduced to the instruction set of

the 68000. This will enable us to begin answering some of the questions raised

here, and to begin asking new ones.
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2.14 SUMMARY

In this chapter ire have been introduced to a powerful new process:: the

68000. We saw that the 68000 contair.s eight lata registers and eight address

registers, all 32 bits in length. Furthermore, the 6S00Q communicates via a

16-bit data bus and 24-bit address bus A- through A-.. (JDS, and LD5 . capa-

ble of addressing over 16 million bytes of memory. The 68000 is equipped with

7 levels of external hardware interrupts and 255 different Types of exceptions

The processors 14 addressing modes and .irge instruction set give the pro-

grammer flexibility when writing new code.

*ftw> states of operation, user and supervisor, make the 68000 an ideal

choice for multiuser and multitasking systems.

The 68000 has many advantages over the 8086. and is only the first proces-

sor in a family whose later models—the 68010, 68020, and 6809C —support

virtual-memory systems. For compatibility, all models support the 68000"s in-

struction set

STUDY QUESTIONS

1. Why restrict certain instructions, such as STOP and RESET, from programs run-

ning in the user state? What kind of problems could occur in a multiuser system

thai did not have any restrictions of this kind?

2. How might the trace function help in debugging a new piece of code?

-: system contains 1024KB ofRAM to be divided among c_ nsa ? B : m

does each user get? Should any of the RAM be dedicated to the operat-

Name :he two types of memory transfers available in the 68000.

Data registef Z ; initially contains the value 5F67DC0A. What are the contents of

6. How many bytes ofstorage are available just using the 68000"s data regis:-:-

— any words of storage are possible?

7. Table 2.3 shows the data in a few selected memory locations. What is the long word
stored at location 30? What is the word stored at location 30?

& I ; .ain how a single instruction mnemonic can be used with different dati

TABLE 2.3 For Question 3.7
Address Data

IE

s:

32



32 Chapter 2
|
An Introduction to the 68000 Microprocessor

9. Identify the addressing mode in the following instructions:

a) MOVE.B A2.D1
b)M0VE.W HI.LO
c) BRA TOP
d) MOVE.B D7,(A5)+
e) MOVE.W #3000, D4

10. Classify the following values as byte, word, or long word. It may be possible to use

more than one classification for a single value.

a) 3C29A0H
b) 1554290
c) 10600H
d) 10600
e) 6

11. What happens when the 68000 attempts to write a word to an odd location?

12. What is an exception?

13. What is an advantage offered by the illegal opcode exception?

14. What kind of corrective action should be taken during handling of a divide-by-zero

exception?

15. How are the three IPL inputs used to signal a level-4 interrupt?

16. What is the main reason the 68000 operates much faster than the 8086?

17. Why can the 68000 directly address any location with one of its registers? Can the

8086 do the same?

18. Why will a 68008 run slower than a 68000 even if they have the same clock speeds?

19. Is it possible to generate a level-4 interrupt on the 68008?

20. What is virtual memory?
21. What is a page fault?

22. Compare two 68010 systems, one containing 128KB of RAM and the second con-

taining 512KB of RAM. How would the number of page faults compare when:

a) an 80KB program is executed on both machines?

b) a 640KB application is executed on both systems?

Assume that both machines will use all available RAM when trying to run a pro-

gram.

23. Which has a greater effect on the number of page faults, physical memory size or

the size of the program being executed?

24. How does the 68010 perform instruction continuation?

25. What is the main reason we fail to implement a physical memory that is the same

size as the processor's logical memory? Use the 68020 when explaining your an-

swer.

26. Why would anyone possibly need 4.3 billion bytes of memory for a program? Can
you think of any applications that may require this much memory?

27. What is a cache memory?
28. Why should a cache's hit/miss ratio be high?

29. What advantages does the 68030 have over the 68020?

30. Make a list of functions you would like to see in the calculator project. Assume that

each function ( + , -, *, /, etc.) requires 256 bytes of machine code. If the control

program requires an additional 2K bytes, how much EPROM is needed for your

calculator?
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Objectives

In this chapter you will learn about:

The style of source files written in 68000 assembly language

The 14 available addressing modes

The various groups of instructions available

• The special operation of privileged instructions

How an assembler generates machine code

3.1 INTRODUCTION

This chapter introduces the instruction set of the 68000 microprocessor, and
the ways that different addressing modes and data types may be used to make
the instructions do the most work. The 68000 contains instructions not previ-

ously available with other processors, instructions that perform 32-bit multi-

plications and divisions, multiple register transfers, and special types of excep-

tions. Together with the 14 different addressing modes, these instructions

make the job of writing code much easier and more efficient than before. Pro-

gramming examples will be shown to explain the use of different addressing

modes with some instructions.

Section 3.2 introduces the conventions followed when writing 68000 as-

sembly language source code. Section 3.3 explains the different instruction

types available; this is followed by coverage of all 14 different addressing

modes in Section 3.4. The entire instruction set is explained in Section 3.5. The
internal operation of an assembler is described in Section 3.6. Finally, Section

3.7 presents a few simple programming examples.
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3.2 ASSEMBLY LANGUAGE PROGRAMMING

Program execution in any microprocessor system consists of fetching binary

information from memory and decoding that information to determine the in-

struction represented. The information in memory may have been pro-

grammed into an EPROM, or downloaded from a separate system. But where
did the program come from and how was it written? As humans, we have
trouble handling many pieces of information simultaneously and thus have
difficulty writing programs directly in machine code, the binary language

understood by the microprocessor. It is much easier for us to remember the

mnemonic TRAP #9 than the corresponding machine code 4E49. For this rea-

son, we write source files containing all the instruction mnemonics needed to

execute a program. The source file is converted into an object file containing

the actual binary information the machine will understand by a special pro-

gram called an assembler. Some assemblers allow the entire source file to be

written and assembled at one time. Other assemblers, called single-line as-

semblers, work with one source line at a time and are restricted in operation.

These kinds of assemblers are usually found on small microprocessor-based

systems that do not have disk storage and text-editing capability.

The assembler discussed here is not a single-line assembler but a cross-

assembler. Cross-assemblers are programs written in one language, such as

FORTRAN or Pascal, that translate source statements into a second language:

the machine code of the desired processor. Figure 3.1 shows this translation

process. The source file in the example, TOTAL.ASM, is presented as input to

the assembler. The assembler will convert all source statements into the cor-

rect binary codes and place these into the object file TOTAL.OBJ. Usually the

object file contains additional information concerning program relocation and

external references, and thus is not yet ready to be loaded into memory and

executed. A second file created by the assembler is the list file, TOTAL.LST,
which contains all the original source file text plus the additional code gener-

ated by the assembler.

Let us look at a sample source file, a subroutine designed to find the sum of

16 bytes stored in memory. It is not important at this time that we understand

FIGURE 3.1 Source

program assembly \^J Source file

(TOTAL.ASM)

Object file

(TOTAL.OBJ)
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what each instruction does. We are simply trying to get a feel for what a source

file might look like and what conventions we should follow when we write our

own programs.

ORG 8000H
TOTAL CLR.W DO

MOVE.B #16, Dl
MOVEA.L #DATA,A0

LOOP ADD.B (A0)+,D0
SUBI.B #1,D1
BNE LOOP
MOVEA.L #SUM,A1
MOVE.W DO, (Al)

RTS
SUM WORD
DATA BLOCK

END
16

;clear result
;init loop counter
;init data pointer
;add data value to result
: decrement loop counter

;point to result storage
; save sum
;and return
;save room for result
; save room for 16 data bytes

The first line of source code contains a command that instructs the assembler

to load its program counter with 8000H. The ORG (for origin) command is

known as an assembler pseudo-opcode, a fancy name for a mnemonic that is

understood by the assembler but not by the microprocessor. ORG does not

generate any source code; it merely sets the value of the assembler's program

counter. This is important when a section of code must be loaded at a particu-

lar place in memory. The ORG statement is a good way to generate instruc-

tions that will access the proper memory locations when the program is loaded

into memory.
Hexadecimal numbers are followed by the letter H to distinguish them

from decimal numbers. This is necessary since 8000 decimal and 8000 hexa-

decimal differ greatly in magnitude. For the assembler to tell them apart, we
need a symbol that shows the difference. Some assemblers use $8000; others

use &H8000. It is really a matter of whose software you purchase. All exam-

ples in this book will use the 8000H form.

The second source line contains the major components normally used in a

source statement. The label TOTAL is used to point to the address of the first

instruction in the subroutine. Other labels in this example are LOOP, SUM,
and DATA. Single-line assemblers do not allow the use of labels.

The opcode is represented by CLR.W and the operand field by DO. So far we
have three fields: label, opcode, and operand. The fourth field, if it is used,

usually contains a comment explaining what the instruction is doing. Com-
ments are preceded by a semicolon (;) to separate them from the operand field.

In writing source code, you should follow the four-column approach. This will

result in a more understandable source file.

Two more pseudo-opcodes, WORD and BLOCK, appear at the end of the

source file. WORD is used to define a 2-byte value that will be placed in the

object file. BLOCK is used to reserve a section of memory. Since we do not

know what data will be placed in memory when we are writing our program,
we simply reserve room for it with the BLOCK statement.

The final pseudo-opcode in most source files is END. The END statement

informs the assembler that it has reached the end of the source file. This is
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important, since many assemblers usually perform two passes over the source

file. The first pass is used to determine the lengths of all instructions and data

areas, and to assign values to all symbols (labels) encountered. The second pass

completes the assembly process by generating the machine code for all instruc-

tions, usually with the help of the symbol table created in the first pass. The
second pass also creates and writes information to the list and object files. The
list file for our example subroutine looks like this:

8000 R
2 00008000 4240
3 00008002 123C0010
4 00008006 207C0000

8020
5 0000800C DO 18
6 0000800E 04010001
7 00008012 66F8
8 00008014 227C0000

801E
9 0000801A 3280

10 0000801C 4E75
11 0000801E 0000
12 00008020
13

10

ORG 8000H
TOTAL CLR.W DO

MOVE.B #16, Dl
MOVEA .

L

#DATA . AO

LOOP ADD.B (A0)+,D0
SUBI.B #1,D1
BNE LOOP
MOVEA.

L

#SUM,A1

MOVE.W DO, (Al)
RTS

SUM WORD
DATA BLOCK

END
16

Normally the comments would follow the instructions, but they have been
removed for the purposes of this discussion.

The first column of numbers represents the original source line number.
The R in statements 1, 4, and 8 indicate that these instructions are relocat-

able. A relocatable instruction requires modification if the program is loaded

in a different place in memory than what vas specified in the ORG statement.

The assembler will put information into the object file concerning these relo-

catable instructions. This information consists of what data must be modified,

where to find it within the object file, and what type of modification is needed

(that is, should a byte, word, or long word be changed?).

The second column of numbers represents the memory addresses of each

instruction or data area. Notice that the first address matches the one specified

by the ORG statement.

The third column of numbers are the machine codes generated by the as-

sembler. The machine codes are intermixed with data and address values. For

example, 4240 on line 2 represents the instruction CLR.W DO. On line 3, the

4-byte string 123C0010 is a mix of machine code and data. 123C means
MOVE.B to Dl, and 0010 is the hexadecimal representation of the decimal

number 16. If you examine the rest of the list file carefully, you should be able

to spot other interesting points. For instance, can you determine the relation-

ship between line 4 and line 12, and between lines 8 and 11?

Following the code on each line is the original source line. Having all of

this information available is very helpful during the debugging process.

A final point about the source file concerns the placement of reserved data

areas. The storage for SUM and DATA is declared at the end of the subroutine.

In the past it was impossible for some assemblers to correctly generate ma-
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chine code when source files were written in this way. The 68000 assembler

does not have this problem because the data size is indicated in the instruction.

Even so, a generally accepted programming practice is to define the data areas

before the instructions that will use them. Rewriting the example slightly

results in this source file:

same room for result
save room for 16 data bytes

clear result
init loop counter
init data pointer
add data value to result
decrement loop counter

point to result storage
save sum
and return

The ORG 7000H statement tells the assembler where to put the data areas. It

is not necessary for this ORG value to be smaller than the ORG of the subrou-

tine. ORG 87C0H would have also worked in place ofORG 7000H. It is all a

function of where RAM exists in your system.

The addition of the TOTAL label in the END statement informs the assem-

bler that TOTAL, not SUM, is the starting execution address. This information

is also included in the object file. When a large program must be written by a

team of people, each will be assigned a few subroutines to write. They must all

assemble and test their individual sections to ensure the code executes cor-

rectly. When all portions of the program (called modules, after a technique

called modular programming) are assembled and tested, their object files are

combined into one large object file via a program called a linker. Figure 3.2

represents this process. The linker examines each object file, determining its

length in bytes, its proper place in the final object file, and what modifications

should be made to it.

In addition, a special collection of object files is sometimes available in a

ORG 7000H
SUM WORD
DATA BLOCK 16

ORG 8000H
TOTAL CLR.W DO

MOVE.B #16. Dl
MOVEA .

L

#DATA,A0
LOOP ADD.B (A0)+,D0

SUBI.B #1,D1
BNE LOOP
MOVEA .

L

#SUM,A1
MOVE.W DO, (Al)

RTS
END TOTAL

FIGURE 3.2 Linking multiple

object files together

Object files

Final object file
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library file. The library may contain often used subroutines, or patches of

code. Instead of continuously reproducing these code segments in a source file,

a special pseudocode is used to instruct the assembler that the code must be

brought in at a later time (by the linker). This helps keep the size of the source

file down, and promotes quicker writing of programs.

When the linker is through, the final code is written to a file called the

load module. Another program called a loader takes care of loading the pro-

gram into memory. Usually the linker and loader are combined into a single

program called a link-loader.

So, writing the source file is actually only the first step in a long process.

But even before a source file can be written, the programmer must obtain an
understanding of the instructions that will be used in the source file. The
remaining sections will cover this important topic.

3.3 68000 INSTRUCTION TYPES

The instruction set of the 68000 microprocessor is composed of eight different

groups:

1. Data transfer

2. Arithmetic

3. Logical

4. Shift and rotate

5. Bit manipulation

6. BCD operations

7. Program control

8. System control

The data transfer group contains instructions that transfer data from

memory to register, register to register, and register to memory. Data may be

8, 16, or 32 bits in length. Address and data registers may be used, as well as

the system registers CCR (condition code register), USP (user stack pointer),

and SR (status register).

The arithmetic group provides addition and subtraction of 8-, 16-, and 32-

bit values, signed and unsigned 16- by 16-bit multiplication, signed and un-

signed 32- by 16-bit division, 8-, 16-, and 32-bit clears, compares, tests, and

negation (a 2s complement operation). An additional operation called sign ex-

tension is also available. These operations may be performed on all address

and data registers and memory locations.

The logical group is used to perform AND, OR, EOR (exclusive OR), and

NOT (Is complement) operations on 8-, 16-, and 32-bit data contained in data

registers, memory, and the CCR and SR system registers.

Shift and rotate operations may be performed on 8-, 16-, and 32-bit data

values contained in data registers or memory.
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The bit manipulation group works only with 8- and 32-bit data types. The
data to be manipulated may be in a data register or memory. Individual bits

may be tested, set, cleared, or complemented.

BCD operations are implemented with instructions that add, subtract, and

negate (10s complement) 8-bit data values (2 BCD digits). Data registers or

memory may be used to hold the data.

The program control group makes use of the processor condition codes in

its branch and set-byte instructions, and also contains unconditional branches

and jumps. Subroutine call and return instructions are also included in this

group.

The last group, system control, is composed mainly of privileged instruc-

tions used to modify the SR and USP system registers, stop or reset the proces-

sor, and return from an exception. Other instructions are included to allow

manipulation of the CCR through logical AND, OR, and EOR operations.

TRAP instructions, some of which are used to check a certain condition (such

as checking a register against bounds), are found here too.

Many different addressing modes can be used with most instructions, and
in the next section we will examine these addressing modes in detail.

3.4 68000 ADDRESSING MODES

The power of any instruction set is a function of both the types of instructions

implemented, plus the number of addressing modes available. Suppose that a

microprocessor could not directly manipulate data in a memory location. The
data would have to be loaded into a processor register, manipulated, and writ-

ten back into memory. If an addressing mode were available that could directly

operate on data in memory, the task could be done more effectively. In this

section we will examine the 14 different addressing modes available in the

68000, and see how each is used. The examples presented make use of the

MOVE instruction, which has the following syntax: MOVE. (size) (source),

(destination). It will be obvious in the examples what is being accomplished

with each MOVE instruction, so a detailed description is not included here.

Also, whenever the contents of a memory location or an address or data regis-

ter is referred to, assume that the value or address is hexadecimal.

Data Register Direct

In all types of addressing modes the main objective is to identify the location of

the operand that will be operated on by the instruction. In this addressing

mode the operand is one of the eight data registers. An example of this ad-

dressing mode is:

MOVE D3 , D4

where D3 is the source register and D4 is the destination register.
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Example 3.1: If register D3 contains 100030FF and register D4 contains

8E552900, what is the result of MOVE.W D3,D4?

Solution: Since a word operation is specified, the upper half ofD4 will not be

changed. The lower half will be loaded with the lower half of D3. Thus, D3 will

remain unchanged and D4 will contain 8E5530FF.

Address Register Direct

This addressing mode uses an address register as the operand.

Example 3.2: What will A2 contain after execution of MOVEA.L A5,A2?

Solution: A2 will contain the same value as register A5, since a 32-bit trans-

fer was specified by the .L suffix on the instruction.

Address Register Indirect

In this addressing mode an address register holds the address of the memory
location that contains the operand data. The assembler will recognize this

addressing mode whenever the address register is surrounded by parentheses.

Example 3.3: If A0 contains 00007F00, what happens when MOVE.B
(A0),D7 is executed?

Solution: The contents of memory location 007F00 are copied into the lower

byte of D7. The upper 24 bits of D7 remain unchanged. Figure 3.3 illustrates

this principle, assuming that D7 initially contains 1234FEDC. Note that even

though address registers are 32 bits long, only the lower 24 are used to address

memory in the 68000. There are no external address lines for the upper 8

address bits!

FIGURE 3.3 For Example 3.3 MOVE.B (A0).D7

A0
|

() () 7 F 00
Memory

Old D7 1234FEDC

New 07 I234FE09
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Address Register Indirect with Postincrement

This addressing mode works in much the same way as address register indi-

rect, except that the address register is incremented after the data transfer is

accomplished. The 68000 will automatically increment the address register by

1, 2, or 4, depending on the data type specified. The assembler will use this

addressing mode if the indirect register notation is followed by a plus sign.

Example 3.4: If A5 contains the value 00007F00 and D2 contains

4E4F2000, what will each register contain after MOVE.W (A5) + ,D2 exe-

cutes? See Figure 3.4 for more details.

FIGURE 3.4 For Example 3.4 MOVE.W (A5R.D2

Old A5 00007F00 |-

1
New A5

|
00007F02

|

New D2 |4E4F09BaT

Memory

Solution: The upper word of D2 will remain unchanged and the lower word
will be replaced by 09BA. Since this is a word operation, A5 will be incre-

mented by 2, making its value after the instruction 0007F02.

Address Register Indirect with Predecrement

The operand in this addressing mode is found by first decrementing the speci-

fied address register by 1, 2 or 4, depending on the data type involved. The
address register is then used to point to the memory location that contains the

operand data. Precede indirect register notation with a minus sign to specify

this addressing mode.

Example 3.5: A2 and D4 initially contain 00007F00 and F3052BC9. What
will they contain after execution of MOVE.B -(A2),D4? See Figure 3.5 for

details.

Solution: Since a byte transfer is called for, A2 is decremented by 1, making
its new value 00007EFF. Data is then copied from memory location 007EFF
into the lower byte of D4.
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FIGURE 3.5 For Example 3.5 MOVE.B -(A2).D4

New A2

A2

00007EFF^^
t ^

Old
|
00007F00

New D4 |F3 05 2B3Cf

Memory

These two addressing modes, address register indirect with postincrement

and predecrement, are useful for maintaining stacks or queues in memory.
When an address register is used as a stack pointer, it will be incremented or

decremented by 2 even if byte addressing is specified, so that the processor can

maintain an even address within the register.

Address Register Indirect with Displacement

In this addressing mode, the operand address is found by adding a 16-bit

signed displacement value to the address register, and then using this result as

the operand address. The 16-bit signed displacement may range from -32768

to 32767. The contents of the address register remain unchanged.

Example 3.6: Registers A0 and DO initially contain 00007F00 and

02040608. What will DO contain after MOVE.W 100H(A0),D0 executes? Use
Figure 3.6 for the operand information you will need.

FIGURE 3.6 For Example 3.6 MOVE.W 100H(A0).D0

A0
|
Q Q 7 F 0|

+ 100

00008000

New DO 2 04 1 0B B

Memory

007EFF 3C

007F00 09

007F01 BA

008000 f"\
008001 Wv
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Solution: The operand address is found by adding 100H to AO, giving

00008000. This becomes the address of the operand in memory. Locations

008000 and 008001 contain the data that will replace the lower word of DO.

Address Register Indirect with Index

This addressing mode combines many of the ones we have just seen. The oper-

and address is specified by the sum of an address register, a signed index

register (which may be an address or data register), and a signed 8-bit dis-

placement. This particular addressing mode is very useful for implementing

two-dimensional arrays in memory. A two-dimensional array can be thought

of as a matrix, containing a number of rows and columns. A technique is used

to combine the row and column numbers into a unique index into the data

area.

Example 3.7: If address register A0 contains 00007F00 and data register D4
contains 00000100, what will D3 contain after MOVE.L 2(A0,D4.W),D3 exe-

cutes? See Figure 3.7 for more details.

FIGURE 3.7 For Example 3.7 MOVE.L 2(A0,D4.W),D3

A0
|

7 F o|

D4
|

1
0~0~]

2

00008002

Memory

007EFF 3C

007F00 09

007F01 BA

New D3 2F902204

008000 10

008001 BB

008002 /2F\

008003
[

90 \

008004 I 22 jl

008005 \P4/

Solution: The operand address is found by adding 007F00 +100 + 2, giv-

ing 008002 as the final location. Data is then read from locations 008002
through 008005 to complete the 32-bit transfer.
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Absolute Short Address

This addressing mode is used to directly access data in two specific ranges of

memory. Both memory spaces are 32KB in length. The first memory space

occupies addresses 000000 through 007FFF. The second memory space occu-

pies locations FF8000 through FFFFFF. Addresses in either space may be

specified by a single 16-bit quantity. The 68000 will automatically sign extend

the 16-bit value into 24 bits, the size required for an address. If the address

supplied in the instruction is between 0000 and 7FFF, the MSB (most signifi-

cant bit) is zero. The 68000 extends this zero into the upper 8 bits. If the

address is between 8000 and FFFF, the processor will fill the upper 8 bits with

Is (because the MSB is now high). A direct benefit of this addressing mode is

that less machine code is required to fetch the operand address, thus saving

valuable storage space and decreasing execution time.

Example 3.8: What memory locations are accessed when these two instruc-

tions are used: MOVE.B 3C00H,D1 and MOVE.W 9AE0H,D2?

Solution: The sign extended address for the first instruction is 003C00. The
byte stored at this location is copied into the lower 8 bits of register Dl. The
sign extended address for the second instruction is FF9AE0. The byte at this

location and the one at FF9AE1 are copied into the lower 16 bits of D2.

Absolute Long Address

The difference between this addressing mode and absolute short address is

that no sign extension takes place. The full 24-bit address is included in the

machine code (by using two additional words after the opcode). Any address

within the range 000000 to FFFFFF may be used with this instruction. For

example, MOVE.B 2E000H,D0 would cause the byte stored at location

02E000 to be copied into the lower 8 bits of register DO. This addressing mode
increases execution time, because of its 6-byte machine code length (2 bytes for

the opcode and 4 bytes for the address), so it should be used sparingly.

Program Counter with Displacement

This addressing mode uses the 68000's program counter, together with a

signed 16-bit displacement, to form the operand address. The signed 16-bit

displacement allows accessing of memory 32768 locations behind and 32767

locations forward of the program counter. While the 68000 uses this address-

ing mode to implement branch instructions, it is also useful for memory refer-

ences as well. It should be possible to place the program's data area within the

displacement range, thus avoiding the need for other types of addressing

modes to access the data.
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Example 3.9: Figure 3.8 shows how this addressing mode might be used to

read data from a memory location. In this example, a data byte pointed to by

the label DATA is referenced in the MOVE instruction. The actual machine

code for MOVE.B DATAtPC),D4 is 183A001C, where 183A is the opcode that

instructs the processor to MOVE.B into D4 using program counter with dis-

placement addressing mode, and 001C is the displacement. D4 initially con-

tains 00000000.

FIGURE 3.8 For Example 3.9 MOVE.B DATA(PC).D4

DATA
- PC

0009 IE

000902

Memory

000900 18

000901 3A

000902 00

000903 1C

000904

Displacement 0000 1C

New D4
1

1~5~]

0009 IE Gy
0009 IF 22

Machine code for

instruction

During assembly, the value of DATA and the program counter will be

subtracted. The result becomes the displacement used in the machine code.

During program execution, the displacement value is added to the current

program counter (000902) to determine the operand address. It is important to

note that the program counter is advanced by 2 after each instruction fetch.

This accounts for the difference between the instruction address (000900) and
the current program counter (000902).

Program Counter with Index

There are two differences between this addressing mode and the previous one.

First, the signed displacement is now only 8 bits wide. Second, any address or

data register may be used as an index register. The operand address is found
by adding the current program counter, the signed displacement, and the

signed index register.
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Example 3.10: What is the address of the operand for MOVE.W
DATA(PC,A0.L),D1? The instruction is located at address 002044, register A0
contains 00000002, and the displacement is 10.

Solution: Adding the displacement and the current program counter gives

us 002056. Remember that the program counter is always advanced by 2 after

the instruction fetch! Adding the index register (A0) value to 002056 gives

002058. This is the operand address.

The signed displacement gives a - 128/+ 127 location range and the signed

index register gives a range that exceeds 8 million bytes in either direction.

Another example will show how data areas located before the instruction may
be accessed.

Example 3.11: What is the operand address for MOVE.B
SINE(PC,D6.L),D0? The instruction is located at address 001058,D6 contains

00000004, and the displacement is F2.

Memory

SINE 00104C

00104D

00104E

00104F

New DO
I

000 0044"!"

Address of MOVE.B SINE(PC.D6.L).D()

Address o\ next instruction

00 1 05

1

001058

001(154

00 1 05

A

2B

001 050 T^H)"
Displacement

of F2

J

SINE 00104C

PC 00 1 05

A

FIGURE 3.9 For Example 3.1

1

00104C

+ 000004-

00 1 050

D6

Solution: Adding the displacement to the current program counter gives

00104C. Note that this address is smaller than the address of the instruction.
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The signed displacement has caused this. Adding the index register (D6 this

time) to 00104C gives 001050 as the operand address. Figure 3.9 summarizes

this address calculation.

If all this appears a bit tricky, remember that it is done automatically by

the 68000. You need only write the source code, making sure that the data

area, SINE in this case, is not located outside the -128/+127 byte range.

Immediate Data

It is possible to include the operand value within an instruction. This form of

addressing is useful for loading constant values into registers. Immediate data

is preceded by a # sign for recognition by the assembler. Without it, the assem-

bler would not be able to tell the difference between immediate data and abso-

lute short or long addressing.

Example 3.12: Data register D5 initially contains 12345678. What are its

contents after the following instructions are executed?

a) M0VE.B #3AH,D5
bi M0VE.W #9E00H,D5
c) M0VE.L #1,D5

Solution: The byte transfer in (a) only affects the lower 8 bits of D5. Thus, it

contains 1234563A after execution. The word transfer in (b) causes D5 to be-

come 12349E00. The long word transfer in (c) loads D5 with 00000001.

Quick Immediate Data

This addressing mode is similar to the previous one, except that only byte

values may be specified in the instruction. These byte values are sign extended

to 32 bits before use. The advantage of this addressing mode is that only 2

bytes are needed for the entire instruction! This helps to keep program execu-

tion time down (fewer bytes to fetch).

Example 3.13: What will register D3 contain after execution of

a) MOVEQ #2CH,D3
bt MOVEQ #8FH,D3

Solution: Since the MSB of the immediate data in (a) is zero, D3 is loaded

with 0000002C. In (b) the MSB is high, indicating a signed number. D3 is thus
loaded FFFFFF8F.
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Implied Addressing

The last of the 14 addressing modes is implied addressing. In this mode the

instruction makes a reference to a processor register within its mnemonic. For

example, ANDI #27H,SR (AND immediate data to the status register),

MOVE CCR,CODES (move a copy of the condition code register to memory),
and TRAPV (TRAP if the overflow bit is true) all make reference to processor

registers or flags within their mnemonics.

In the next section we will see how these addressing modes are used with

the 68000's many instructions.

3.5 THE 68000'S INSTRUCTION SET

As with any microprocessor, a detailed presentation of available instructions is

important. Unless you have a firm grasp of what can be accomplished with the

instructions you may use, your programming will not be efficient. Indeed, you
may even create problems for yourself.

Still, there is no better teacher than experience. If you have a 68000-based

computer, you should experiment with these instructions and examine their

results. Compare what you see with the manufacturer's data. A difficult con-

cept often becomes clear in practice.

Each of the following eight sections deals with a separate group of instruc-

tions. Information about the instruction, how it works, how it is used, what its

mnemonic looks like, how it affects the condition codes, and more will be pre-

sented for each instruction. Even so, it is strongly suggested that you con-

stantly refer to Appendix B as you read about each new instruction. Most of the

material in this appendix, such as allowable addressing modes and condition

code effects, is not reproduced here.

In some cases the machine code for the instruction will be included. This is

not for any purpose other than to compare instruction lengths and explain new
features about the 68000.

Examples will also be given for each instruction.

The Condition Codes

Most 68000 instructions affect the state of the five flags that make up the

condition code register. The flags and their meaning are as follows:

N: The negative flag is set if the MSB of the result is set, and

cleared otherwise. Note that the actual MSB used depends on the

size of the operand involved. Byte operations use bit 7. Word
operations use bit 15, and long word operations use bit 31.

Z: The zero flag is set if the result of an operation equals zero, and

cleared otherwise.

V: The overflow flag is set whenever a result cannot be represented

by the selected operand. It is cleared otherwise. An example of
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how an overflow is created would be adding 1 to 7F in a signed-

byte addition operation.

C: The carry flag is the carry out of the MSB of the result, during an

addition. In a subtraction, the carry flag is set if a borrow

occurred.

X: The extend flag is not directly set by the results of an operation.

Many instructions have no effect on the extend flag, and those

that do usually set it the same as the carry flag.

The condition codes contain valuable information concerning the operation

of a program, on an instruction-by-instruction basis. Thus, you should make
good use of the flags when writing programs. Employ the conditional branch

instructions where possible, and pay attention to how the flags are affected by

all instructions in your program. Sometimes a well-written program that ap-

pears completely logical in its method will still yield incorrect results because

a flag condition was overlooked.

Keep the condition codes in mind as you study the remaining sections, and

be sure to use Appendix B as you examine each new instruction.

The Data Transfer Group

The first instruction in this group is EXG (exchange registers). Any of the 16

general-purpose data or address registers may be exchanged. The exchange is

always a 32-bit transfer. None of the condition codes are affected.

Example 3.14: How can registers D3 and D5 be swapped?

Solution: Either EXG D3,D5 or EXG D5,D3 may be used to swap these

registers. Swapping address registers A3 and A5 could be accomplished by

EXG A3,A5.

The second instruction in the data transfer group is LEA (load effective

address). It is used to load a 24-bit address into an address register. Whenever
an addressing mode is used to compute the address of an operand, the result is

called the effective address. Usually this address is used internally by the

processor and then forgotten. LEA gives us a way to obtain the effective ad-

dress used in an instruction. No condition codes are affected.

Example 3.15: What are the effective addresses for each of these instruc-

tions?

a) LEA 8500H.A1
b) LEA lOH(PC) ,A1
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Solution: In (a), the address is sign extended into 32 bits, giving Al the

value FFFF8500. In (b), Al is loaded with a value equal to 10H plus the cur-

rent program counter.

The third instruction in the data transfer group is LINK (link and allo-

cate). This instruction is used to allocate stack space and implement linked

lists. An example of this instruction might be LINK A3,#20H. The operation

of LINK is as follows: The specified address register is pushed onto the stack.

Next, the stack pointer is copied into the specified address register. Then the

signed 16-bit displacement is added to the stack pointer. No condition codes are

affected.

Example 3.16: Address registers A0 and A7 contain 00006200 and
0000FFC4, respectively. What will their values be after execution of LINK
A0,#0FFF0H?

Solution: In any stack push, the stack pointer is first decremented. Since an

address register value is being pushed, the stack pointer is decremented by 4,

making A7 equal to 0000FFC0. A0 is then written into memory locations

00FFC0 through 00FFC3. Next, A0 is loaded with 0000FFC0, the current

stack pointer. Then the signed displacement (FFF0) is added to the stack

pointer, giving 0000FFB0 as the final stack pointer (the value in A7). Note:

The processor uses A7 by default in stack operations.

The next instruction in the data transfer group is MOVE (move data). This

instruction is used to move byte, word, and long word data between data regis-

ters, address registers, and memory.
Examples of the MOVE instruction are:

M0VE.B #29H,D3
M0VE.W D3.D6
M0VE.L (A0)+.D0

Many more MOVEs are possible because this instruction supports all ad-

dressing modes in the source field. Since this instruction was used in many
different ways in Section 3.4 to illustrate addressing modes, no additional ex-

amples will be presented here. Instead, we will examine the effect on the condi-

tion codes during a MOVE instruction.

Example 3.17: What are the states of the five condition codes after execu-

tion of MOVE.B #86H,D2?

Solution: Since the MSB of the immediate data (86H) is high, the data is

interpreted as negative, and N becomes 1. Z is cleared because the data is not

zero. Both V and C are also cleared, and X remains unchanged.
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The next instruction in the data transfer group is MOVEA (move address).

The destination operand in this instruction is always an address register. Word
and long word sizes may be used. When the data size is word, the source oper-

and is sign extended into 32 bits before being placed into the address register.

For example, MOVEA.L #9F00H,A2 causes 00009F00 to be placed into A2,

and MOVEA.W #9F00,A2 causes FFFF9F00 to be stored. Recall that a nega-

tive number, represented via 2s complement, has its MSB set. No condition

codes are affected by MOVEA.
The next instruction in the data transfer group is MOVEM (move multiple

registers). This instruction is used to transfer data and address registers to and

from memory. Only word and long word operations are allowed. When a word

operation is specified during a read from memory, the word data are sign ex-

tended before being loaded into the register. For example, if 3500 is read from

memory, the register is loaded with 00003500. Likewise, if AF10 is read, the

register is loaded with FFFFAF10.
The addressing modes that may be used with this instruction are limited.

The three modes allowed are postincrement, predecrement, and control mode
addressing. Control mode addressing refers to all addressing modes other than

postincrement and predecrement. Postincrement addressing is used for trans-

ferring data from memory to specified registers. Predecrement addressing may
only be used for register-to-memory transfers. These two addressing modes
may be used to implement a stack with MOVEM. Since the order of reading

and writing are reversed in a stack operation (last in becomes first out),

predecrement addressing may only be used when writing register data to

memory, and postincrement for reading.

No matter what addressing mode is used, the user must specify a list of

registers to be transferred or loaded. Transfer of individual registers is accom-

plished by separating the registers by a /. For example, registers DO, D2, D3,

D5, A4, and A6 may be specified by D0/D2/D3/D5/A4/A6 in the source state-

ment. Using A6/D5/D0/A4/D3/D2 instead will do the same job, regardless of

the different order. The 68000 writes from A7 to A0, and then from D7 to DO,

and reads in reverse order (DO through D7, then A0 through A7).

Specifying a sequence of registers is done differently. Suppose that DO
through D4 and A2 through A5 are to be transferred. All nine registers may be

easily listed by using D0-D4/A2-A5 in the source statement. Once again the

order is unimportant. No condition codes are affected by this instruction.

Example 3.18: Suppose that data registers DO through D3 are loaded as

follows: DO: 55556666, Dl: 77778888, D2: 9999AAAA, D3: BBBBCCCC, and

that TAB1 refers to a data area in memory that is located at address 0030B8.

What data is written into memory if MOVEM.W D0-D3,TAB1 is executed?

Solution: This is an example of control mode addressing. The indicated reg-

isters are written into memory starting at address 0030B8. Since the data size

is word, the processor uses two locations for each register value. Figure 3.10

shows the contents of memory after execution. Notice that only the lower half

of each register has been transferred.
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FIGURE 3.10 For Example 3.18 MOVEM.W D0-D3.TAB;

TABl

Memory

0030B8 66 66

0030BA 88 88

0030BC AA AA

0030BE CC CC

Example 3.19: This is a repetition of Example 3.18 except that the instruc-

tion executed is now MOVEM.L D0-D3,TAB1. What are the contents ofmem-
ory this time?

Solution: Figure 3.11 shows the new results. Since the data size is long

word, twice as many memory locations are used.

FIGURE 3.11 For Example 3.19 Memory

TABl - 0030B8

0030BA

0030BC

0030BE

0030C0

0030C2

0030C4

0030C6

55 55

66 66

77 77

88 88

99 99

AA AA

BB BB

CC CC

Exactly the same results may be accomplished by the following sequence of

instructions:

MOVEA.L #TAB1.A0
MOVEM.L D0-D3,(A0)

Here the 68000 will automatically increment A0 by 4 during execution of

MOVEM. On completion, A0 is restored to its original value (that of TABl).

Another method that will yield the same results is to use predecrement

addressing. Since memory locations will be used in a decreasing direction, the

address register must initially point to the end of the reserved data area. The

following two instructions will do the same job as the previous ones:

MOVEA.L #30C8H.A1
MOVEM.L D0-D3.-U1)
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Even though DO is specified first in the instruction mnemonic, the 68000 auto-

matically writes D3 into memory first, having already decremented Al by 4.

When done, Al will contain 000030B8.

Example 3.20: The previous two examples involved writing data into mem-
ory. This example illustrates how MOVEM reads data from memory. Consider

a data area, called DATA, set up as shown in Figure 3.12. Data registers DO
and Dl may be loaded via MOVEM.L DATA,D0/D1. In this case, DO will

contain 11112222, and Dl will contain 88889999. These two registers may be

loaded the same way by using this sequence of instructions:

or by

MOVEA.L
MOVEM.L

MOVEA .

L

MOVEM.L

#DATA,A0
(AO) .D0/D1

#DATA,A0
(A0)+,D0/D1

The use of postincrement addressing in the last two instructions causes AO to

be incremented by 4, twice.

FIGURE 3.12 For Example 3.20

Data 004100

004102

004104

004106

Memory

11 11

22 22

88 88

99 99

Four data registers may be loaded from the same set of data by using a

word size instruction: MOVEM.W DATA,D0-D3. Remember that each 16-bit

value now read from memory will be sign extended into 32 bits. The data

registers will now be loaded as follows: DO: 00001111, Dl: 00002222, D2:

FFFF8888, and D3: FFFF9999.
DO through D3 can also be loaded by either of these two pairs of instruc-

tions:

MOVEA.L
MOVEM .

W

#DATA,A0
(A0),D0-D3

MOVEA.L
MOVEM.W

#DATA,A0
(A0)+,D0-D3

with both pairs causing AO to be incremented by 2 a total of 4 times.

The next instruction in the data transfer group is MOVEP (move periph-

eral data). When a system's hardware has been designed so that all peripherals
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communicate with only one-half of the system data bus, this instruction be-

comes useful. Systems such as these may very well have been leftovers from
the 8-bit era that were upgraded to 16-bit architecture.

MOVEP accesses memory in groups of two locations at a time. For exam-
ple, if an even address is specified in the instruction, only even locations will be

accessed. Only word and long word data sizes may be used with MOVEP, and
no condition codes are affected. Furthermore, only register indirect with dis-

placement addressing is allowed.

Example 3.21: What memory locations are affected by MOVEP.W
D2,0(AD? The contents of D2 are 12345678, and Al contains 00045000.

Solution: Two memory locations will be accessed since word size is indicated

in the instruction. The two locations begin at the address pointed to by the

contents of address register Al plus the displacement. The zero displacement

causes the first location to be 045000. The data byte written to this location is

56, obtained from bits 8-15 of D2. The second location accessed is 045002 (the

next even address). Bits 0-7 of D2 (78) are written into this location.

If the instruction had been coded as MOVEP.W 0(A1),D2, data from loca-

tions 045000 and 045002 would have been loaded into the lower word of D2,

with location 045000's data going into bits 8-15, and 045002's into bits 0-7.

The next instruction in the data transfer group is MOVEQ (move quick).

This instruction is only used to move 8 bits of data into a data register. Before

the transfer is made, the immediate data are sign extended into a full 32-bit

value. The advantage of MOVEQ over MOVE is that MOVEQ requires fewer

bytes of machine code. Consider the following example: MOVE.L #36H,D0
assembles into 6 bytes of machine code: 20 3C 00 00 00 36. The 20 3C bytes

represent the instruction and the other 4, the data. MOVEQ #36H,D0 is

much more efficient, assembling into only 2 bytes of machine code: 70 36. The

MOVEQ into DO is represented by 70, and the data by 36. Good assemblers will

examine the source instruction and use the more efficient form (MOVE or

MOVEQ) where possible. All condition codes except X are affected.

Example 5.22: What does register D4 contain after execution of MOVEQ
#0B7H,D4?

Solution: Since B7 has its MSB set, the 68000 assumes it is a negative num-
ber and loads D4 with FFFFFFB7.

The next instruction in the data transfer group is PEA (push effective

address). The effective address of the operand is computed and translated into



3.5 The 68000's Instruction Set 55

a 32-bit value before being pushed onto the processor's stack. No condition

codes are affected.

Example 3.23: What is the effective address pushed onto the stack during

execution of PEA 40H(A5)? Address register A5 contains 00003060.

Solution: Adding 40 to 003060 gives 0030A0. This is the effective address

computed by the 68000. Translation into 32 bits yields 000030A0, the 4 bytes

pushed onto the stack.

The next instruction in the data transfer group is SWAP (swap register

halves). The upper and lower words of a data register are swapped. No condi-

tion codes are affected.

Example 3.24: If D5 contains 3CFF9100, what are its contents after execu-

tion of SWAP D5?

Solution: Swapping the halves of D5 results in 91003CFF.

The last instruction in the data transfer group in UNLK (unlink). It is

used to complement the operation LINK. The value contained in the address

register specified in the instruction is copied into the stack pointer. The long

word on top of the new stack is then popped and placed in the specified address

register. No condition codes are affected.

Example 3.25: Address register A2 contains 0009FFB4. What occurs when
UNLK A2 executes?

Solution: The processor stack pointer is loaded with 0009FFB4. The long

word stored at locations 0009FFB4 through 0009FFB7 is then copied into A2.

The final stack pointer is 0009FFB8.

The Arithmetic Group

The first instruction in this group is ADD (add binary). It is used to add 8-, 16-,

and 32-bit values. A data register must be specified as the source or destina-

tion. All condition codes are affected.

Example 3.26: If D2 and D3 contain 12345678 and 5F02C332, respectively,

what are the results of ADD.B D2,D3? How are the condition codes affected?
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Solution: The instruction specifies that D2 should be added to D3 and the

result stored in D3. Since the data size is byte, only the lower 8 bits of D3 will

be affected. D2 will remain unchanged, and D3 will have a final value of

5F02C3AA. The condition codes after execution will be: N: 1, Z: 0, V: 1, C:

and X: 0. The N flag is set because the MSB of the lower 8 bits of D3 is high.

The second instruction in the arithmetic group is ADDA (add address).

This instruction is used to add data to an address register. All addressing

modes may be used, but only word and long word data sizes are possible. The
condition codes are not affected.

Example 3.27: What are the results of ADDA.W A0,A3, if A0 contains

CE001A2B and A3 contains 00140300?

Solution: The lower 16 bits of both address registers are added, and the

result replaces the lower word of A3. A0 remains unchanged and A3 has a final

value of 00141D2B.

The third instruction in the arithmetic group is ADDI (add immediate).

Byte, word, or long word values may be added to the destination operand. PC
relative addressing is not allowed and the destination may not be an address

register (hence the need for ADDA). All condition codes are affected.

Example 3.28: What is the difference between ADDI.B #10H,D2 and

ADDI.W #10H,D2, when D2 contains 250C30F7?

Solution: The first instruction causes only the lower 8 bits of D2 to be af-

fected. Adding 10 to F7 gives 07 (with the C flag set). This causes D2 to become

250C3007. The second instruction uses the lower 16 bits in the addition, re-

sulting in 250C3107 as D2's final value.

The fourth instruction in the arithmetic group is ADDQ (add quick). This

instruction is identical to ADDI, except that the immediate data must be in the

range 1 to 8. Adding immediate data to an address register with this instruc-

tion affects all 32 bits of the address register, no matter what data size is

specified.

The fifth instruction in the arithmetic group is ADDX (add extended).

When using this instruction only two forms of addressing are allowed: data

register to data register, and memory to memory using address register indi-

rect with predecrement. The contents of the X flag are included in the addition

operation. All three data sizes may be used. All condition codes are affected.
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Example 3.29: What occurs during execution of each of these instructions:

ADDX.B D2,D3 and ADDX.W -(A0),-(A1)?

Solution: In the first instruction the lower byte of each data register, plus

the X bit, are added together, and the result stored in D3. In the second in-

struction, both address registers are first decremented by 2. Then the data at

the locations pointed to by AO and Al are fetched and added, including the X
bit. The result is stored in the location pointed to by Al.

The next instruction in the arithmetic group is CLR (clear an operand).

This instruction writes zeros into the location specified. All three data sizes

may be used. All condition codes except X are affected.

Example 3.30: What are the results of these three instructions?

a) CLR.B DO
b) CLR.W A4
c) CLR.L ARRAY

Solution: The first instruction clears the lower 8 bits of DO. The second

instruction clears the lower 16 bits of A4. The third instruction writes 4 bytes

of zeros into memory starting at location ARRAY.

The next instruction in the arithmetic group is CMP (compare). This in-

struction is used to compare data with a data register and set the condition

codes accordingly. The compare is accomplished by subtracting the source op-

erand from the destination operand, without affecting either operand. All

three data sizes may be used. All condition codes except X are affected.

Example 3.31: What is the state of the zero flag after execution of CMP.W
#29AFH,D6, if D6 contains 485C29AF?

Solution: Since the immediate data and the lower word of D6 are identical,

the subtraction produces 0, which causes the Z flag to be set.

The next instruction in the arithmetic group is CMPA (compare address).

This instruction operates similar to CMP, except that data is compared with an
address register only. Both word and long word data sizes may be used. When a

word operand is specified it is sign extended into 32 bits before the comparison
is made. All condition codes except X are affected.
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Example 3.32: What does this instruction do: CMPA.L A2,A3?

Solution: The contents of both address registers are compared. The Z flag

will be set if both registers contain identical data.

The next instruction in the arithmetic group is CMPI (compare immedi-

ate). This instruction is used to compare immediate data with the destination

operand and set the condition codes accordingly. PC relative addressing may
not be used to specify the destination. In addition, the destination operand may
not be an address register (CMPA should be used in that case). All three data

sizes may be used, and all condition codes are affected.

Example 3.33: If A3 contains 00015030, what occurs when CMPI.W
#5,(A3) executes?

Solution: The word stored in locations 015030 and 015031 is compared with

5, and the condition codes set accordingly.

The next instruction in the arithmetic group is CMPM (compare memory).

This instruction operates similarly to the other compare instructions we have

seen, except that the source and destination operands must be specified using

address register indirect with postincrement. All three data sizes may be used,

and all condition codes except X are affected.

Example 3.34: Two data areas of 10 bytes each reside in memory. Address

registers Al and A2 point to the first byte in each data table. How can we tell if

the data tables are identical?

Solution: Since we are comparing two pieces of memory data, we should use

CMPM.B (A1) + ,(A2)+ to compare a byte from each data table. If we can

execute the CMPM instruction 10 times and never see a zero in the Z flag

(which becomes 1 when the data bytes are the same), the tables are identical.

The next instruction is DIVS (signed divide). This instruction allows a

signed 32-bit number to be divided by a signed 16-bit number. The destination

operand, which must be a data register, is divided by the source operand. Only

the word data size may be used. After execution, the lower 16 bits of the desti-

nation contain the quotient, and the upper 16 bits the remainder. The sign of

the remainder is always the same as the sign of the dividend, unless the re-
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mainder is equal to zero. Division by zero causes a special exception to be

generated (see Chapter 4). All condition codes except X are affected.

Example 3.35: Four data registers are loaded in the following way:

D2
D3
D4
D5

FFFFFC18 (-1000 decimal)

000186A0 (100000 decimal)

000001F4 (500 decimal)

000009C4 (2500 decimal)

What are the results of DIVS D2,D3 and DIV D4,D6?

Solution: The first instruction divides D3 by D2 and stores the result in D3,

whose final value is 0000FF9C. The upper word is zero because the two regis-

ters divide evenly. The lower word (FF9C) represents -100 decimal in 2s com-

plement notation.

The second instruction divides D6 by D4, storing the result in D6. After

execution, D6 contains 00000005. Again the upper word is zero because the

two registers divide evenly. Since both registers contained positive numbers,

the result (5) is also positive.

The next instruction in the arithmetic group is DIVU (unsigned divide).

This instruction is almost identical to DIVS. The difference is that the oper-

ands are treated as unsigned binary numbers. The condition codes are affected

in the same way as they are for DIVS.

Example 3.36: What is the result of DIVU D4,D5 if D4 and D5 initially

contain 0000019A and 0007A120, respectively?

Solution: The value 7A120 in D5 equals 500000 decimal. The value 19A in

D4 equals 410 decimal. Thus, the DIVU instruction is dividing 500000 by 410.

Since the registers do not divide evenly, the remainder will be placed in the

upper word of D5. After execution, D5 contains 00D204C3. The 04C3 word
equals 1219 decimal, which is correct. The 00D2 word equals 210 decimal, the

remainder left over as a result of the non-even division. To check this for

yourself, subtract 410*1219 from 500000. You will get 210.

The next instruction in the arithmetic group is EXT (sign extend). This

instruction is used to extend the sign bit of a data register into the remaining
upper bits of the register. Word and long word operations are allowed. When
extending the sign of a byte, bits 8 and 15 will match the state of bit 7. When
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extending the sign of a word, bits 16 through 31 will match the state of bit 15.

All condition codes except X are affected.

Example 3.37: What is the result of EXT.W D3, if D3 initially contains

000000C6? What if EXT.L D3 were used instead?

Solution: The first instruction extends the sign into bits 8 through 15 only,

resulting in D3 containing 0000FFC6. The second instruction causes D3 to be

000000C6.

The next instruction in the arithmetic group is MULS (signed multiply).

This instruction performs a 16- by 16-bit signed multiplication between a data

register (used as the destination) and the source operand. The lower word of

the data register is used during the multiply. All condition codes except X are

affected.

Example 3.38: What is the result of MULS D4,D5, if D4 contains

0000FFF0 and D5 contains 0000FFF6?

Solution: FFFO represents -16 decimal, and FFF6 represents -10. The
product of these two numbers is positive 160. The result placed in D5 is

000000A0 (A0 equals 160 decimal).

The next instruction in the arithmetic group is MULU (unsigned multi-

ply). This instruction is identical to MULS, except that now the operands are

treated as unsigned binary numbers. Larger products may be produced this

way. The condition codes are affected the same way they are for MULS.

Example 3.39: What will D5 contain after MULU D4,D5 executes, if D4
and D5 initially contain 0000000A and 00000064?

Solution: D4 and D5 represent 10 and 100 respectively. The product of 1000

is saved in D5 as 000003E8.

The next instruction in the arithmetic group is NEG (negate). This in-

struction is used to generate the 2s complement of the destination by subtract-

ing the destination from zero. All three data sizes may be used. All condition

codes are affected.
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Example 3.40: What is the result of NEG.B D2, when D2 contains

052055C6?

Solution: Negating the lower byte of D2 (C6) gives 3A. The final result is

0520553A.

The next instruction in the arithmetic group is NEGX (negate with ex-

tend). In this instruction, the destination operand and the X bit are subtracted

from zero. Since the X bit may have been affected by a previous NEGX, we see

that this instruction may be used to implement multiprecision operations on

large numbers. All three data sizes may be used. All condition codes are af-

fected.

The next instruction in the arithmetic group is SUB (subtract binary). The
source operand is subtracted from the destination operand. One of the oper-

ands must be a data register. All three data sizes may be used. All condition

codes are affected.

Example 3.41: What will register Dl contain after SUB.W D0.D1 exe-

cutes, if DO contains 0000E384 and Dl contains CC3EF385?

Solution: Subtracting the lower word of DO from the lower word of Dl gives

1001. The upper word of Dl remains unaffected. The final result in Dl is

CC3E1001.

The next instruction in the arithmetic group is SUBA (subtract address).

In this instruction, the source operand is subtracted from the destination oper-

and, which must be an address register. Only word and long word sizes may be

used. When the data operand size is word, the operand is sign extended to 32

bits before the subtraction is performed. The condition codes are not affected.

Example 3.42: A unique data table has entries that consist of 7-byte groups

of data. Suppose that A3 points to any entry in this data table. How can A3 be

made to point to the previous entry?

Solution: To point to the previous entry A3 must be decreased by 7. This

may be accomplished by using SUBA.W #7,A3.

The next instruction in the arithmetic group is SUBI (subtract immedi-
ate). In this instruction the immediate data are subtracted from the destina-

tion operand. All three data sizes may be used. All condition codes are affected.
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Example 3.43: What will D2 contain after execution of SUBI.B #2CH,D2,
if D2 initially contains 03059A2E?

Solution: Subtracting 2C from the lower byte of D2 results in 02. The result

placed in D2 is 03059A02.

The next instruction in the arithmetic group is SUBQ (subtract quick).

This instruction should be used whenever the immediate data is between 1 and
8. All three data sizes may be used. All condition codes are affected.

The next instruction in the arithmetic group is SUBX (subtract with ex-

tend). In this instruction the source operand and the X bit are subtracted from
the destination operand. Only two choices of operands are available. The oper-

ands must be data registers, or memory locations pointed to by address register

indirect with predecrement addressing mode. All three data sizes may be used.

All condition codes are affected.

Example 3.44: What does SUBX.W D2,D2 do? What does SUBX.L
-(A0),-(A1) do when A0 and Al contain the same address? Before execution,

X equals 0.

Solution: The first instruction clears the lower word of D2. The second in-

struction first decrements both address registers by 4, and then clears 4 succes-

sive memory locations.

The next instruction in the arithmetic group is TAS (test and set an oper-

and). The lower 8 bits of the operand are tested and the condition codes modi-

fied accordingly. Bit 7 of the destination operand is then set. Only byte size

operands are tested. All condition codes except X are affected.

Example 3.45: What are the condition codes, and the contents of D5, after

TAS D5 executes? D5 initially contains 2CC3E500.

Solution: Since the lower byte of D5 is 00, the zero flag will be set and the

negative flag cleared. Then bit 7 of D5 will be set, resulting in a final register

value of 2CC3E580.

The last instruction in the arithmetic group is TST (test an operand). The
destination operand is compared with zero and the condition codes affected

accordingly. The destination operand is not changed. All three data sizes may
be used. All condition codes except X are affected.
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The Logical Group

The first instruction in the logical group is AND (AND logical ). A logical AND
is performed on the source and destinations operands and the result placed in

the destination. All three data sizes may be used. One of the operands must be

a data register. Neither operand may be an address register. All condition

codes except X are affected.

Example 3.46: What is the result of AND.W D0,D1, if DO and Dl contain

3795AC5F and B6D34B9D, respectively?

Solution: Only the lower words of each register will be used. The logical

AND of AC5F and 4B9D is 081D. The final value of Dl is B6D3081D.

The instruction in the logical group is ANDI (AND immediate). This in-

struction operates similar to AND, except that immediate data is supplied for

the source operand. All three data sizes may be used. The condition codes are

affected the same way they are for AND.

Example 3.47: What will ANDI.B #0F0H,D7 do to the lower byte of D7?

Solution: ANDing the lower byte of D7 with F0 will clear bits through 3

and leave bits 4 through 7 unaffected.

The next instruction in the logical group is OR (inclusive OR logical). This

instruction is used to OR the source and destination operands together. One of

the operands must be a data register. Neither operand may be an address

register. All three data sizes may be used. All condition codes except X are

affected.

Example 3.48: What is the result of OR.L D3,D4, when D3 contains

55555555 and D4 contains AAAAAAAA?

Solution: The logical OR of these two registers is FFFFFFFF. This is the

result that will be placed in D4.

The next instruction in the logical group is ORI (inclusive OR immediate).

This instruction is similar to OR, except the source operand is now supplied as

immediate data. All three data sizes may be used.

The condition codes are affected the same way as they are for OR.
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Example 3.49: How can the MSB of the lower byte of D2 be set using ORI?

Solution: To set bit 7 of D2 without affecting any other bits, use ORI.B
#80H,D2.

The next instruction in the logical group is EOR (exclusive OR logical). In

this instruction the source operand must be a data register. The source and
destination operands are exclusive-ORed and the result placed in the destina-

tion location. All three data sizes may be used. All condition codes except X are

affected.

Example 3.50: What is the result of EOR.W D2,D3, if D2 contains

02040608 and D3 contains 10121416?

Solution: The exclusive OR of 0608 and 1416 is 121E. The final contents of

D3 are 1012121E.

The next instruction in the logical group is EORI (exclusive OR immedi-

ate). As in EOR, the source and destination operands are exclusive-ORed, ex-

cept the source operand must be immediate data. All three sizes may be used.

The condition codes are affected the same way they are for EOR.

Example 3.51: How can bits 0, 3, 4, 8, 12, and 15 be complemented in regis-

ter D4, with all other bits remaining unchanged?

Solution: Exclusive-ORing a data bit with preserves its value. Exclusive-

ORing it with 1 complements its value. The immediate data must then contain

Is in bit positions 0, 3, 4, 8, 12, and 15, and 0s elsewhere. This results in the

following instruction: EORI.W #9119H,D4.

The last instruction in the logical group is NOT (logical complement).

Each bit in the destination is complemented. All three data sizes may be used.

All condition codes except X are affected.

Example 3.52: What is the result of NOT.B Dl, when Dl contains

000000FF?

Solution: The lower byte of Dl is complemented, resulting in Dl containing

00000000.
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The Shift and Rotate Group

All of the instructions in this group may use byte, word, and long word data

sizes. Shifts and rotates are possible in both directions. Only data registers and

memory locations may be used as operands. When a data register is to be

shifted or rotated, a count must be supplied that specifies the number of bits to

shift or rotate. When a memory location is the destination, only 1 bit may be

shifted at a time, and the data size is restricted to word operands only.

The shift count may be specified in two ways. When shifting or rotating

between 1 and 8 bits, use the immediate form. All of the following instructions

illustrate this form:

ASL.B #4,D2 Arithmetic shift left of 4 bits

LSR.W #6,D1 Logical shift right of 6 bits

ROL.L #3,D5 Rotate left 3 bits

ROXR.B #5,D4 Rotate right with extend 5 bits

When the shift/rotate count is greater than 8, it must be placed in a data

register. ASL.L D2,D3 is an example of this form, with D2 containing the

number of bits that D3 should be shifted.

When the operand is a memory location, only one bit may be shifted or

rotated at a time, through a word operand. ROR.W (AO) will rotate the word
pointed to by AO one bit to the right.

The N and C flags are affected by all eight instructions in the same way. If

the MSB of the result is high, the N flag will be set. It will be cleared other-

wise. If the result is zero, the Z flag will be set. It will be cleared otherwise. The
V flag will always be cleared, except when ASL or ASR is used. In this case, it

will be set if a sign change occurs during shifting (if the MSB changes value at

any time).

Figure 3.13 shows how bits are moved through an operand for each of the

eight instructions in the shift and rotate group. Notice that all eight instruc-

tions affect the C bit, and that six of them also change the X bit.

Figure 3.13(a) shows the effect of an ASL (arithmetic shift left). In this

instruction, a zero is shifted into the LSB, while all bits move to the left. The
bit shifted out of the most significant bit position replaces the X and C flags.

Note that the MSB is bit 7 for byte operations, bit 15 for word, and bit 31 for

long word.

Figure 3.13(b) shows the effect of an ASR (arithmetic shift right). All bits

are shifted to the right. The bit that leaves the LSB position replaces the X and
C flags. The MSB is shifted back into itself. This is very important for preserv-

ing the sign of the original binary number. If a register initially contained a

negative value (MSB high), and a zero was shifted in during an ASR, the sign

of the number would change.

Figure 3.13(c) and 3.13(d) show how the LSL (logical shift left) and LSR
(logical shift right) instructions operate. These instruction are used to move Os
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FIGURE 3.13 Shift and rotate

instructions: (a) ASL; (b) ASR;
(c) LSL; (d) LSR; (e) ROL;
(f) ROR; (g) ROXL; (h) ROXR
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into either end of a register or memory location, much as a shift register would

do in a digital circuit.

Figure 3.13(e) and 3.13(f) show the effect of the ROL (rotate left) and ROR
(rotate right) instructions. Unlike the shift instructions, no new data enter the

register or memory location. Instead, the data is circulated through the regis-

ter or memory location. After enough data rotates, the original binary data

appears again. For example, rotating a byte eight times gets all the bits back

into the same place again. These two instructions are the only ones that do not

also affect the X bit.
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Figure 3.13(g) and 3.13(h) show the last two instructions in the shift and

rotate group, ROXL (rotate with extend left) and ROXR (rotate with extend

right). The operand data in these two instructions rotates through the X bit,

giving the programmer the chance to insert data during rotation by playing

with the value of the X bit. Thus, the final contents of the register or memory
location may be very different from what they were initially.

Example 3.53: What is the result of ASL.B #3,D2, if D2 contains

2375A2B4?

Solution: The lower 8 bits will be shifted three positions to the left. As they

shift, zeros will enter from the right. Thus, the final contents of D2 are

2375A2A0.

Example 3.54: What does DO contain after execution of ROR.W D4,D0?
The count in D4 is 9, and DO contains 3F2E5983 to start.

Solution: Rotating the lower word right 9 bits results in 3F2EC1AC.

Example 3.55: What is caused by execution of LSR.L #4,D2, if D2 con-

tains 31415926?

Solution: The LSR instruction causes all bits in D2 to move four positions to

the right, with zeros entering from the left. This has the effect of moving all

4-bit nibbles to the right. The final D2 contents are 03141592.

The Bit Manipulation Group

The first instruction in the bit manipulation group is BCHG (test a bit and
change). A specified bit in the destination is examined and the Z flag is ad-

justed accordingly. Actually, the bit is tested to see if it is 0. If so, the Z flag is

set. If the tested bit is 1, the Z flag is cleared. It is easy to see that the Z flag is

loaded with the complement of the bit that is tested.

Once the specified bit is tested and the Z flag adjusted, it is replaced by its

complement. For instance, if bit 6 is when it is tested, it will be a 1 when the

instruction finishes execution.

Only byte and long word data sizes may be used. When the bit to be tested

is in the lower byte of the destination (bit positions through 7), the bit num-
ber may be specified as immediate data within the instruction. For example,
BCHG.B #3,D1 causes bit 3 in register Dl to be tested. When the bit position
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is from 8 to 31, it must be placed into a data register and that register used in

the instruction as follows: BCHG.L D0,D1. In this example, DO contains the

number of the bit to be tested in Dl.

Only the Z flag is affected by BCHG.

Example 3.56: Data register D5 contains 2C3459A7. What is the state of

the Z flag, and what are the contents of D5, after BCHG #6,D5 executes?

Solution: The binary representation of the lower byte of D5 is 10100111. Bit

6, 1(0)100111, is a 0. This will cause the Z flag to be set and the final state of

bit 6 to be a 1. This will result in D5 containing 2C3459E7 once bit 6 is comple-

mented.

The second instruction in the bit manipulation group is BCLR (test a bit

and clear). This instruction is similar to BCHG, except the specified bit is

examined and then cleared. Only the zero flag is affected, just as it is in BCHG.

Example 3.57: Data registers D6 and D7 contain 0000000C and 75793290,

respectively. What is the result of BCLR D6,D7?

Solution: Register D6 specifies that the 12th bit position should be tested

and cleared. The lower 16 bits of D7, with the 12th bit position indicated, are:

001(1)001010010000. Since this bit is a 1, the Z flag will be cleared. Then bit 12

of D7 will be cleared, resulting in a final value of 75792290.

The third instruction in the bit manipulation group is BSET (test a bit and

set). This instruction is identical to BCLR, except the specified bit is tested and

then set. Once again only the Z flag is affected.

Example 3.58: What is accomplished by BSET #2,(A3)?

Solution: The bit in position 2 of the memory location pointed to by A3 is

tested and then set.

The last instruction in the bit manipulation group is BTST (test a bit). In

this instruction, the specified bit in the destination is tested and the Z flag

adjusted depending on its state. No other flags are affected, and the tested bit

retains its value.
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Example 3.59: Register D4 contains 0429595A. What is the state of the

Z flag after BTST #5,D4 executes?

Solution: The lower 8 bits ofD4 with bit 5 highlighted are 01(0)11010. Since

this bit is zero, the Z flag will be set. The contents of D4 are unchanged.

The BCD (Binary Coded Demical) Group

The first instruction in the BCD group is ABCD (add demical with extend).

This instruction is used to add BCD numbers together. Using the X flag in the

operation allows multiprecision additions to be performed. Only bytes may be

added together. No other data sizes may be used. Also, only two addressing

modes may be used: register direct (using data registers) or address register

indirect with predecrement. All condition codes are affected.

Example 3.60: Registers DO and Dl contain 00000034 and 00000068. What
are the contents of Dl and the condition codes after ABCD D0,D1 executes?

Assume that X is cleared to begin with.

Solution: A straight binary addition of DO and Dl would result in 9C. This

value, however, is not a BCD number. The result of ABCD using decimal

addition instead results in 00000002 replacing the contents of Dl. Since 34

plus 68 is 102, we see that Dl contains only a partial answer, because the

entire result cannot fit into the lower byte of Dl. This is reflected in the state of

the condition codes. Since the result is nonzero, the Z flag is cleared. The C flag

(and thus X also) is set because the result did not fall into the range 00 to 99.

The second instruction in the BCD group is NBCD (negate decimal with
extend). When we wish to represent a negative number in binary, we use 2s

complement notation. This is accomplished by the NEG instruction. When
working with BCD, we use 9s or 10s complement notation to represent a nega-

tive BCD number. The number we wish to find the 10s complement of is sub-

tracted from 0. Since the X bit is also included in the subtraction, we get the

10s complement when X = and the 9s complement when X = 1. NBCD oper-

ates only on byte operands, and all condition codes are affected, with N and V
undefined.

Example 3.61: What is the 10s complement of the lower byte in D3, if D3
contains 00000034?
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Solution: To get the 10s complement, we must make sure the X flag is

cleared before executing NBCD D3. The result is 00000066. Notice that add-

ing 34 to 66 (the 10s complement of 34) gives 00. This is what we hope to get

when we find the 10s complement of a BCD number. The 9s complement,
which we would get if X = 1 prior to executing NBCD, would be 00000065.

The last instruction in the BCD group is SBCD (subtract decimal with

extend). Like ABCD, only two addressing modes are possible. In this case, the

source operand and the X flag are subtracted from the destination. All condi-

tion codes are affected, with N and V undefined.

Example 3.62: Registers D2 and D4 contain 00000034 and 00000068. What
is the result of SBCD D2,D4 if the X flag is set prior to execution?

Solution: Subtracting D2 and the X flag from D4 gives 00000033. This re-

sult is placed in D4.

The Program Control Group

The first three instructions in the program control group make use of a set of

predefined conditions whose individual states are determined by the current

value of the processor's condition codes. These 16 conditions are:

Lower or same
Less than

Minus
Not equal

Plus

Always true

Overflow clear

Overflow set

The instructions that make use of these conditions are called conditional

instructions, because they may or may not perform a desired function, de-

pending on the state of the condition.

The first conditional instruction is Bcc. In this mnemonic the B stands for

branch and cc the condition. Thus, BCC means branch if carry clear, BNE
means branch is not equal, and so on. All of the conditions may be used in this

instruction except for T and F. The purpose of the conditional branch is to

transfer control to a new location in the program, depending on a certain con-

dition. The range of the conditional branch is represented by a signed 8- or

16-bit displacement. The 8-bit displacement permits transfer to locations up to

CC: Carry clear LS
CS: Carry set LT
EQ: Equal MI

F: Never true (false) NE
GE: Greater than or equal PL
GT: Greater than T
HI: High VC
LE: Less or equal vs
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127 forward and -128 behind the current program counter. The 16-bit dis-

placement allows a 32767, -32768 location range.

The condition codes are not affected by any of the conditional branches.

Conditional branches are very useful when implementing loops. Figure

3.14 shows how a BNE instruction is used to perform a loop operation as long

as the Z flag is cleared. In this example control is passed back to the address of

AGAIN (the MULU instruction) as long as D2 is not 0. When the condition

fails to be met, the conditional branch is ignored, and program execution con-

tinues at the address following the branch instruction.

As a point of interest, if data register D3 is loaded with 1 prior to entering

the loop of Figure 3.14, the result is that D3 contains the factorial of the num-
ber in D2 when the loop completes. Thus, if D2 started at 5, then D3 will

contain 120 (1 * 2 * 3 * 4 * 5) at the end of the loop.

The second conditional instruction in the program control group is DBcc
(test condition, decrement, and branch). This instruction provides a looping

function that may be terminated in two ways. Figure 3.15 shows the use of this

instruction in a loop. Here the DBCS instruction is used to perform the looping

function. If the carry flag is set during a pass through the loop, the DBCS
instruction will automatically cause the loop to terminate, and execution will

continue with the first instruction after DBCS. If the carry flag is not set, the

DBCS instruction will then decrement the specified data register (D5 in this

case). If the lower word of D5 does not equal — 1, program execution will re-

sume at the beginning of the loop (NEXT in this example). If D5 did equal — 1,

the loop will terminate. The use of a counter in this instruction limits the

maximum number of passes through the loop to 32768. We get an extra pass

because the counter is tested for -1 instead of 0. No condition codes are af-

fected by this instruction.

Example 3.63: Assuming that the tested condition is always false, how
many passes through the loop will be performed in Figure 3.14, if D5 initially

contains 00000064?

Solution: D5 contains a count of 100. Since it must go negative for the loop

to terminate, 101 passes will be performed.

The last conditional instruction in the program control group is Sec (set

according to condition). Sec first tests the specified condition. If true, the desti-

FIGURE 3.14 Use of conditional AGAIN MULU D2.D3 * 1

branch in a loop

SUBQ # l ,D2 Branch here if Z =

BNE AGAIN '
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FIGURE 3.15 Example of loop NEXT • <«—
mode with DBCS

Branch to next if carry is

not set and if D5 *-l.

DBCS D5. NEXT

nation byte is loaded with Is. If false, the destination byte is loaded with 0s. No
condition codes are affected by this instruction.

Example 3.64: What happens to D3 if SEQ D3 executes, and the zero flag

was set prior to execution?

Solution: The lower bvte of D3 is loaded with Is.

The next instruction in the program control group is BRA (branch always).

This type of instruction is unconditional; it will always execute. We also refer

to this as an unconditional branch. BRA directly affects the processor's pro-

gram counter with execution continuing at the address specified in the instruc-

tion. Since BRA is a relative instruction, the range of locations that we may
transfer control to is limited. If an 8-bit signed displacement is used to specify

the new execution address, the range of locations becomes 127 forward and
-128 backward. If the address to branch to is outside this range, a signed

16-bit displacement will be used, resulting in a range of 32767 to -32768

locations. None of the condition codes are affected.

Example 3.65: Consider these short sections of code:

ORG 1000H ORG 2000H
BRA HERE THERE NOP

ORG 1030H ORG 7000H
HERE NOP BRA THERE

What type of signed displacement is needed for the BRA HERE instruction?

How is the BRA THERE instruction different?

Solution: The machine code for the BRA HERE instruction is 60 00 00 2E.

The first word (60 00) is the opcode for BRA. The second word (00 2E) is the

signed 8-bit displacement. The assembler computes the displacement by sub-
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tracting 1002H '2 plus the address of the BRA instruction i from the address of

the HERE label (1030H). Subtracting 1002H from 1030H gives 002EH. This

value represents a positive signed displacement, which causes the processor to

branch forward.

The machine code for the BRA THERE instruction is 60 00 AF FE. Sub-

tracting 7002H from 2000H gives AFFEH. Since the MSB of the displacement

is a 1. the processor branches backward.

The next instruction in the program control group is BSR 'branch to sub-

routine i. This instruction is similar to BRA, except that the address immedi-

ately following the BSR instructions is pushed onto the stack <as the return

address for the subroutines Again the displacement is stored in 8- or 16-bit

signed notation.

Example 3.66: A BSR instruction at address 80006H calls a subroutine as

located at address 80500H. What address is pushed onto the stack? Address

register AT contains 6004H.

Solution: The processor uses A7 as the default stack pointer. When the BSR
instruction is executed. AT will be decremented by 4 and its address used to

point to the memory locations where the return address will be stored. The
return address for the BSR will be 8000AH, since the BSR codes into a 4-byte

instruction. Once the return address is written into stack memory the program
counter will be loaded wtih 80500H. the address of the subroutine. Figure 3.16

shows the resulting stack activity during execution of the BSR instruction.

Before: After:

Memory

6000 11 22 New USP — 6000

6002 ?? 44 6002

USP — 6004
(A7)

55 66 6004

FIGURE 3.16 Stack activity during execution of BSR

Memory

00 08

00 OA

55 66

Return address

The next instruction in the program control group is JMP (jump). This

unconditional instruction causes execution to continue at the location speci-

fied. Any location in the entire address space of the processor may be reached
with this instruction. Also, a limited number of addressing modes may also be

used with JMP. Address register indirect <and with displacement!, absolute,

indexed, and PC relative may all be used. None of the condition codes are

affected.
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Example 3.67: If A5 contains 0001F400, at what location does the processor

resume execution if JMP (A5) is encountered?

Solution: This form of JMP instructs the processor to resume execution at

the location specified in A5. Thus, 01F400 becomes the new address in the

program counter.

The next instruction in the program control group is JSR (jump to subrou-

tine). This is similar to JMP, except that the subroutine's return address is

pushed onto the stack. The return address is the address following the JSR
instruction. None of the condition codes are affected.

The next instruction in the program control group is RTR (return and

restore condition codes). During execution, the condition codes are popped off

the stack. The condition codes are replaced by the stack information. Then the

new program counter value is popped off the stack (a return address previously

pushed).

Example 3.68: The stack pointer contains 75800H when a RTR instruction

is encountered. The contents of stack memory are shown in Figure 3.17. What
is loaded into the conditions codes? What is the return address?

Before: After:

USP
(A7)

75800

75802

75804

Memory

00 8A

00 06

6A 40

New USP

75800

75802

75804

75806

Memory

00 8A

00 06

6A 40

11 22

to condition codes

Return address

FIGURE 3.17 Execution of RTR

Solution: Figure 3.17 shows the word on top of the stack to be 008AH. This

value is popped first and written into the user byte of the status register,

changing the condition codes. The next two words are popped off the stack and

placed into the program counter, giving a return address of 66A40H. The final

value of the stack pointer is 75806H.

The last instruction in the program control group is RTS (return from

subroutine). The new program counter is popped off the stack. None of the

condition codes are affected.
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Example 3.69: Memory locations 7F80 through 7F83 contain the following

bytes: 00, 04, 3E, and 2C. The stack pointer contains 007F80. Where will pro-

gram execution resume when RTS executes?

Solution: The address popped off the stack is 043E2C. Execution resumes at

that address. The stack pointer is incremented by 4.

The System Control Group

The system control group is the last group of instructions in the 68000's in-

struction set. These instructions are used to perform privileged operations on

the system byte of the status register, reset or stop the processor, implement

some useful expectations, and alter the condition codes.

The first privileged instruction is ANDI SR (AND immediate to the status

register). This instruction, like all privileged instructions, must be executed in

the supervisor state to avoid the generation of a privilege violation exception.

The purpose of ANDI SR is to alter the contents of the status register by

ANDing it with 16 bits of immediate data. Zeros in the immediate data will

clear bits in the status register; ones will not affect the same bits. How the

condition codes are affected depends on the immediate data used.

Example 3.70: What does ANDI #0FFFBH,SR do?

Solution: The only zero present in the immediate data is located in bit 2.

This corresponds to the position of the Z flag in the status register, which is

cleared.

The next privileged instruction in the system control group is EORI SR
(exclusive OR immediate to the status register). This instruction has an effect

on the status register similar to ANDI SR, except for the change in logical

operation.

Example 3.71: What immediate data is needed to complement the state of

the X bit in the status register?

Solution: The X bit is in position 4 of the status register. The instruction

needed to complement this bit without affecting the other 15 bits is EORI
#10H,SR.

Another privileged instruction in the system control group lets you load

the entire status register with new data. MOVE to SR (move to the status
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register) transfers 16 bits of data into the status register from the source oper-

and.

Example 3.72: During the execution of a subroutine, the condition codes are

stored in memory at a location called STWORD. How might the status register

be reloaded at a later time using this information?

Solution: MOVE STWORD,SR will transfer data from memory into the sta-

tus register.

The next privileged instruction in the system control group is MOVE from
SR (move from the status register). This instruction copies the contents of the

status register into memory or the specified data register. The condition codes

are not affected.

Example 3.73: What memory locations are affected by MOVE SR,-(A2),

when A2 contains 000C9008?

Solution: Since predecrement addressing is used, A2 is first decremented by

2 (because this is a word operation). The status register contents are then

copied into memory locations 0C9006 and 0C9007.

The next privileged instruction in the system control group is MOVE USP
(move user stack pointer). Setting up the user stack pointer is important when
subroutines compose parts of the user program. Using MOVE USP,A3 will

transfer a copy of the user stack pointer into A3. Setting the USP is accom-

plished by MOVE A3,USP. All addressing modes are possible. The condition

codes are not affected.

The next privileged instruction in the system control group is ORI SR
(inclusive OR immediate to the status register). Like ANDI SR and EORI SR,

this instruction is used to modify bits in the status register. Sixteen bits of

immediate data are ORed with the status register to generate its new contents.

The condition codes are affected by the immediate data used.

Example 3.74: What instruction is needed to set the interrupt priority level

to 6?

Solution: The interrupt priority level bits in the status register are bits 8, 9,

and 10. They need to be set to 110. This can be done using ORI #600H,SR.
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The next privileged instruction in the system control group is RESET
(reset external devices). This instruction causes the RESET line on the proces-

sor to come active. Since the RESET line is normally connected to external

system devices (such as peripherals), this instruction provides you with a way
to reset external circuitry through software.

The next privileged instruction in the system control group is RTE (return

from exception). This instruction is used as the last instruction in an exception

handling routine. It restores the status register and program counter to their

contents at the time the exception occurred. The data to restore the registers

are popped off the stack when RTE is encountered. The condition codes are

affected by the data popped off the stack.

The last privileged instruction in the system control group is STOP (load

status register and stop). The immediate data included in the instruction are

transferred into the status register, and the processor is halted. There are

three ways to resume execution. If the processor is in the trace state when
STOP is encountered, a trace exception is initiated. If an external RESET is

requested, the processor begins a reset exception, leaving the halted state.

Also, if an external interrupt arrives while the processor is stopped, it will be

ignored unless its priority is higher than the current priority. If the interrupt

is of sufficient priority, the processor will exit the halted state and initiate

exception processing to handle the interrupt.

Example 3.75: How may the processor be stopped with all condition codes

cleared?

Solution: Use STOP #0 to stop the processor and clear all condition codes.

Three instructions in the system control group are used specifically to gen-

erate TRAPs (exceptions). Unlike the privileged instructions, which cause an
exception when they are encountered while the processor is in the user state,

CHK, TRAP, and TRAPV can cause exceptions in either state.

CHK (check register against bounds) is used to compare a data register

with a range of values that go from to an upper bound specified in the source

operand. Exception processing is initiated if the data register contains a value

less than or greater than the upper bound. The upper bound is a 2s comple-

ment integer. Only word operands may be used.

Example 3.76: Is an exception generated by the following instruction: CHK
D4,D5? Registers D4 and D5 contain 3E552000 and 400C15A9.

Solution: Comparing the lower words of both registers shows that 15A9 does

not exceed the upper bound of 2000 specified by D4. 15A9 is also larger than 0,

so no exception processing occurs.
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Using the ILLEGAL (illegal instruction) instruction will always cause an
exception to occur. The designers of the 68000 chose a unique bit pattern,

4AFC, to implement this instruction, while at the same time reserving other

patterns for future expansion.

Another way to generate an exception is to use the TRAP (trap) instruc-

tion. A vector number from to 15 is supplied, which causes the processor to

look up the address for the specified TRAP exception routine in an exception

vector address table. This address table is located in memory from locations

000000 to 0003FF. The addresses for each of the 16 TRAP vectors are located in

locations 000080 through 0000BF. For example, if TRAP #0 is encountered,

the processor will look up the address stored in locations 000080 through

000083 and continue execution at that address.

A conditional TRAP instruction is available. TRAPV (trap on overflow)

will initiate exception processing only if the overflow flag is set.

We will cover exception processing in detail in the next chapter.

Three instructions are included that operate only on the condition code

byte of the status register. ANDI CCR, EORI CCR, and ORI CCR all re-

quire a byte of immediate data to perform the logical operation with the condi-

tion codes. All three instructions will affect the condition codes according to

the immediate data that is used.

Example 3.77: What are the five condition codes after execution of these

instructions? The initial states of each bit are not important.

a) ANDI #0CH,CCR
b) ORI #1.CCR
c) EORI #10H,CCR

Solution: The ANDI instruction clears the X, V, and C flags. It does not

affect N or Z. The ORI instruction sets the C flag. Finally, the EORI causes X
to change its state to a 1. So, when done, we have X: 1, N: unchanged, Z: un-

changed, V: 0, and C: 1.

One last way to affect the condition codes is to load them with new data.

MOVE to CCR (move to condition codes) is used to do this. The data contained

in the source operand is moved into the condition codes.

Example 3.78: What does MOVE (A2),CCR do?

Solution: The data byte stored in the memory location pointed to by A2 is

copied into the condition code register.

Saving the condition codes for future use is done with MOVE from CCR
(move from the condition code register). The condition codes are not affected.
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An example would be MOVE CCR,D2. The lower byte of D2 will contain a

copy of the current condition codes.

The last instruction in the entire set is NOP (no operation). This instruc-

tion does nothing at all but provide a delay in execution time. It does not affect

any condition codes or processor registers. Nonetheless, NOP is an ideal in-

struction to use in a timing loop.

3.6 HOW AN ASSEMBLER GENERATES MACHINE CODE

At the beginning of this chapter we looked at a sample source file and its

assembled list file. During assembly, source statements are read one line at a

time and examined. If they contain legal 68000 instructions, the assembler can

determine the required machine code by filling in missing bits in a basic op-

code format. For example, the instructions MOVE.B and MOVE.W both have

the same basic opcode format: 00(size)<dst)(src), where the leading pairs of

zeros indicates MOVE. The remaining 14 bits (remember that the processor

always fetches a word) are determined by the rest of the information contained

in the operand fields. Size is a variable that takes on 01 for a byte operation, 11

for a word operation, and 10 for a long-word operation. Thus, if the assembler

reads in a source statement that contains MOVE.B, once it recognizes the

MOVE part of the instruction, it will then look for a .B, .W, or a .L to determine

the correct bit pattern for size. It is easy to see that the machine code for each

type of MOVE will be different. If the assembler does not see a .B, .W, or .L

after MOVE, it will generate an error.

The (dst) and (src) fields each contain 6-bit positions and represent the

destination and source operands. Each field is divided into a 3-bit register

number and a 3-bit mode number. These fields are described in detail in Ap-
pendix B. Example 3.79 indicates how these bits are assigned.

Example 3.79: What is the machine code produced when MOVE.B
D3,(A5)+ is assembled?

Solution: Refer to the MOVE instruction description in Appendix B and to

Figure 3.18. The .B extension indicates that the size field should be loaded

FIGURE 3.18 Creation of

MOVE.B D3,(A5)+ opcode
00 01 101 011 000 011

// / \\\
MOVE B 5 Mode Mode 3

(forA5) (An)+ Dn (for D3)

Destination Source
Effective Effective

Address Address
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with 01. The source operand is D3. The source effective address table calls for a

mode of 000 when a data register is used, and the register number is 011 (D3).

The destination effective address table calls for a mode of 011, which indicates

postincrement addressing. The register number is 101 (for A5). Combining
these individual bit patterns gives the final opcode pattern 00 01101011 000

011, which is 1AC3.

So we see that the process of assembling a program involves a great deal of

time picking the right combination of bits to place into opcode patterns. Let us

keep this in mind when we assemble our own programs later in the book.

When the assembler indicates an error, it's not because it picked the wrong
bits, it's because the information supplied by the programmer was incorrect,

missing, or of the wrong type.

3.7 PROGRAMMING EXAMPLES

Now that we have a feel for the instruction set of the 68000, we can examine

the operation of a few simple programs. These programs are designed to show

how different instructions are used to perform a simple task. More complicated

examples will be covered in the chapters to come.

Data Summing

Adding up elements in a data table is a nice way to use arithmetic and looping

instructions together, in simple routine. Even so, many practical applications

make use of this operation, particularly those of a statistical nature or in the

algebra of signal processing. In this example, a data table called VALUES,
consisting of signed words, is to be totaled, and the result stored in SUM. Then

the average of all elements will be computed and saved in AVE. COUNT con-

tains the number of entries in VALUES.

COUNT BYTE 128
SUM WORD
AVERAGE WORD
AVERAGE WORD
VALUES BLOCK 256

FINDAVE LEA VALUES. A2
CLR.B DO
CLR.W SUM

ADDL00P M0VE.W (A21+.D2
ADD.W D2.SUM
ADDQ.B #1.D0
CMP.B COUNT. DO
BNE ADDL00P
M0VE.W SUM.D2
EXT.L D2
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MOVE.B COUNT. Dl
EXT.W Dl
DIVS D1.D2
MOVE.W D2, AVERAGE

There are many ways that this routine can be simplified through the use of

different instructions, and you are encouraged to rewrite the routine yourself.

Are there other aspects of this routine that can be improved? For instance, the

largest sum of all data values is limited to a signed 16-bit value. How can the

routine be rewritten so that the sum may be larger? What other changes would

be made if the number of items in the table is fixed—for example, if there are

always 20 items?

Searching a List

This example illustrates how a list of items may be searched. The list consists

of a series of data bytes. The last byte will have the value FF. This byte is used

to indicate the end of the list, and no other bytes may have this value. The
search subroutine is written in such a way that, upon entry, A6 contains the

starting address of the list, and the lower byte ofD6 the item to be searched for.

Upon exit the zero flag will indicate the success (Z = 1) or failure (Z = 0) of the

search.

SEARCH MOVE.B (A6)+,D5
CMP.B D5.D6
BEQ FOUND
CMP.B #0FFH,D5
BNE SEARCH
AND I #0FBH,CCR

FOUND RTS

Since RTS is used as the final instruction, SEARCH is a subroutine. This

means that a valid stack must exist before SEARCH is called, so the processor

has a place to store the return address. The stack area can be defined by load-

ing the address of a free block of RAM into A7.

Study the example so that you understand why the zero flag is set auto-

matically if the item is found. If the item is not found, the ANDI instruction

will clear the zero flag, indicating failure.

How might this subroutine be modified to return the position of the data

item within the list, for example, first element, second, thirtieth?

Block Move

It is sometimes necessary to move a block of data from one portion of memory
to another. In this example, a 16K word block of memory is moved. The origi-

nal data block begins at the location pointed to by A3. The destination address

is contained in A4.

BL0CKM0VE MOVE.W #16383, DO
MOVEDATA MOVE . W ( A3 ) + ,

( A4 )

+

DBF DO, MOVEDATA
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The use of the FALSE condition in the loop instruction lets the loop be con-

trolled by the count register only. Notice that the count is one less than the

number of words to move. This is because the loop will terminate when the

counter goes to -1 instead of 0.

Raise to Power

This subroutine is designed to raise 2 to any power from to 30. The power is

passed to the subroutine in D3. The resulting binary number is returned in D2.

For example, if D3 equals 6, D2 will contain 64 (00000020) upon return.

PRAISE M0VEQ #1,D2
CMP.B #0,D3
BEQ DONE
ASL.L D3.D2
RTS

We make use of the fact that a binary number doubles every time it is shifted

left.

A Subroutine Dispatcher

In this example, a set of six subroutines are available, with each one contain-

ing an RTS instruction. The subroutines are named SUB0 through SUB5. The
purpose of the dispatcher is to call the correct subroutine, depending on the

number contained in D4. For example, if D4 contains 0, then SUB0 is called. If

D4 contains 4, then SUB4 is called. A seventh routine, ERROR, is branched to

whenever D4 is outside the range to 5.

SUBTAB LONG SUB0
LONG SUB1
LONG SUB2
LONG SUB3
LONG SUB4
LONG SUB5

DISPAT CMP.B #6.D4
BCC ERROR
M0VEQ #4,D3
MULU D3.D4
LEA SUBTAB , AO
M0VEA.L 0(A0,D4.W) ,A1

JSR (Al)

BRA DISPAT

The advantage this routine has over one that uses a loop to find the correct

subroutine address is that of time. This routine takes the same amount of time

to get any subroutine address, no matter what D4 contains. If a loop search is

used, subroutine addresses at the end of the list will take much longer to find.
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The Calculator Control Program

In the simplified calculator we have been previously introduced to, it will be

necessary to have a control program running at all times. The purpose of the

control program is to read the keypad, perform the specified mathematical

operation, and update the display. Each of these three main activities is con-

trolled by specific subroutines. For the purposes of this discussion, consider the

following collection of subroutines:

Subroutine Function

KEYPAD Read Keypad

DOMATH Perform selected math operation

DISPLAY Display results

ERROR Display Error condition

Each subroutine performs one function. KEYPAD will scan the keypad, look-

ing for numbers (0-9) or operations ( + , -, *, /, =, or CLEAR). If a number is

entered, its value is returned in DO and the lower byte of Dl is cleared. If an

operation is entered, the number of the operation is returned in DO and the

lower byte of Dl is set to OFFH. The operation numbers are assigned in the

following way:

Operation Number
+
- 1

*

/

2

3

= 4

CLEAR 5

DOMATH will attempt to perform the operation specified in Dl. If an error

occurs (as in division by 0) DOMATH will return with the zero flag set. If the

operation was performed successfully, DOMATH will return with the zero flag

cleared and the result in DO.

DISPLAY will output the number contained in DO to the display. ERROR
will output a standard error message to the display and wait for the CLEAR
button to be pushed.

The normal operation of the calculator follows this sequence:

(number)(operation)(number)( = )(result)

where (operation) is any one of +,-,*, or /, and ( = ) is either = or CLEAR.
Any deviation from this sequence results in an error.
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The following control program will implement the specified calculation

sequence:

NUMl BLOCK 4
NUM1 BLOCK 4
MATHOP BLOCK 1

GOCALC

SORRY

BSR KEYPAD ; read the keypad
CMP.B #0,D1 ;make sure it is a number
BNE SORRY
MOVE.L DO, NUMl ; save the first number
BSR KEYPAD ; read the keypad
CMP.B #0FFH,D1 ;make sure it is an operation
BNE SORRY
CMP.B #4, DO ; start over if = or CLEAR
BEQ GOCALC
CMP.B #5, DO
BEQ GOCALC
MOVE.L DO, MATHOP ; save math operation
BSR KEYPAD ; read the keypad
CMP.B #0,D1 ;make sure it is a number
BNE SORRY
MOVE.L DO , NUM2 ; save the second number
BSR KEYPAD ; read the keypad
CMP.B #0FFH,D1 ;make sure it is an operation
BNE SORRY
CMP.B #5, DO ;is it CLEAR?
BEQ GOCALC
CMP.B #4, DO ;is it=?
BNE SORRY
BSR DOMATH

;
go perform math operation

BCS SORRY ;display error if necessary
BSR DISPLAY ; otherwise display result
BRA GOCALC ; and repeat
BSR ERROR ;display error
BRA GOCALC

The software is complicated by the need to check for correct sequences of key-

pad information. Since the user may accidentally hit the wrong button from

time to time, the software must be capable of handling the out-of-sequence

keystroke in a graceful way.

3.8 SUMMARY

In this chapter we examined the format of a 68000 assembly language source

file. We saw that there are a number of predefined fields for information on any

given source line. Label, opcode, operand, and comment fields must be properly

maintained so that your source file may be easily examined.

We then looked at the operation of an assembler and the types of files

generated, which were list (.LST) and object (.OBJ) files. Many object files are

combined into one, and executed, by a link-loader.

Most of the chapter dealt with the addressing modes and instruction set of
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the 68000 microprocessor. The examples presented were intended to give you

ideas about writing your own instructions and how the instructions and ad-

dressing modes work.

The six programming examples given at the end of the chapter were in-

cluded to give you more exposure to 68000 programming. In upcoming chap-

ters we will explore programming applications in detail.

STUDY QUESTIONS

1. Explain the use of the ORG, WORD, BLOCK, and END pseudo-opcodes.

2. What happens when a source file is assembled?

3. What two files are created by the assembler?

4. What are the opcode, data type, and operand(s) in this instruction:

E0R #5CH,D6?

5. Why is it important to know what instructions are relocatable?

6. Which of these pseudo-opcodes produce code or data: ORG, BYTE, WORD, BLOCK,
EQU, END?

7. What does a linker do?

8. List the eight basic instruction types.

9. Identify the addressing mode in each of these instructions:

a) EXG D0,A2
b)M0VE.B #5,D1
c) M0VE.W D6, (A0)

d) M0VE.W D6, (A0) +
e) M0VE.W D6, - (A0)

f) JMP (PC)

g) ADD.L A0,10H(A1,D1.W)

10. Suppose that the 68000 did not have predecrement and postincrement addressing

modes available. Show how MOVE.L D0,-(A0) and MOVE.L (A0) + ,D0 could be

synthesized using other addressing modes and instructions.

11. Why are the condition codes so important in a control-type program?
12. What does this two-instruction sequence do?

EXG DO , A0
EXG D0.A1

13. What does this instruction accomplish?

M0VE.B -(A3),(A3)+

14. Memory locations 000490 through 000495 contain, respectively: 0A, 9C, B2, 78, 4F,

and C3. What does D2 contain after each instruction? Assume that A0 contains

00000492 and that D2 contains 00000000 before each instruction executes.

a) M0VE.B ( A0 ) , D2
b) MOVE .

B

-(A0) ,D2

c) M0VE.W (A0),D2
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d) MOVE.W (A0) + ,D2

e) MOVE . W - ( AO ) , D2

15. What is contained in AO after each instruction in Question 14?

16. What is accomplished by each of these instructions? Initially AO contains

0028C504.

a) MOVE.L (A0)+,A1
b) MOVE.L AO, (AO)

c) MOVE.L (AO) ,A0

d) MOVE.L -(AO) ,A1

17. What are the sign extended addresses for these address values?

a) 004000
b) 007C00
c) 008400
d) 00CB00
e) 140000
f) EF00O0

18. What is the operand address in each of these instructions? Assume that AO contains

00003800 and DO contains 00000200.

a) MOVE.B 10H(A0) . D2

b) MOVE.B 1400H(A0) , D2

c) MOVE.B 9F00H(A0) , D2

d) MOVE.B lOH(AO.DO.L) ,D2

e) MOVE.B 84H(A0,D0.1) . D2

19. Memory locations 004000 through 004007 contain, respectively, 11, 22, 33, 44, 99,

AA, 55, and 66. What are the results of:

a) MOVEM.L 4000H.D0/D1
b)M0VEM.W 4000H.D0-D3

20. Suppose that these two instructions execute in sequence:

MOVEM.W D3-D7.-(A2)
MOVEM.W (A0)+,D3-D7

What exactly has happened? Be very specific.

21. How does MOVEQ result in shorter, more efficient code?

22. What is the result of SWAP DO, when DO contains 042959FD?

23. What changes are made to DO and Dl in the following series of instructions?

MOVE.W D1.D2
SWAP Dl
MOVE.W D0.D1
SWAP Dl
MOVE.W D2.D0
SWAP DO

24. Write the instructions needed to add the lower word of registers DO, D2, and D6

together, with the result saved in D6. DO and D2 must remain unchanged.

25. What is the difference between CLR.B DO and SUB.B DO.DO?
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26. Multiply the contents of D3 by 0.125. Since fractional multiplication is not avail-

able, you must think of an alternative way to solve this problem. Assume that D3
contains an unsigned binary value.

27. What does this sequence of instructions do?

MULS D0.D1
DIVS D1.D2

28. What are the contents of D2 after NEG.W D2, if D2 contains 55555555?

29. Show the results of EXT.L D6, when D6 contains 12345678 and 9ABCDEF0.
30. What are the condition codes after TAS D2, if D2 contains 0000007F? What does

D2 contain after execution?

31. What are the largest two decimal numbers that may be multiplied using MULU?
Repeat for MULS.

32. Find the volume of a cube whose length on one side has been placed in register D3.

The volume should be in D2 when finished.

33. Write the appropriate AND instruction to preserve bits 0, 3-9, and 13 of register

D2, and clear all others.

34. What OR instruction is needed to always set bits 2, 3, and 5 of Dl?
35. What is the result of this small sequence of instructions? Data register D5 initially

contains 3B25AC89.

ANDI.B #2CH,D5
ORI.W #C45H,D5
EORI.L #789ABCDEH,D5
NOT.W D5

36. Show the instructions needed to find the exclusive-OR of the upper byte of registers

D4 and D5. Do not affect any of the lower 24 bits in either register. D5 is the

destination register.

37. Data register D4 contains C9AE23A5. What are its contents after these two in-

structions execute?

ASR . L #3 , D4
ROL.W #5,D4

38. Show how ROXL can be used to rotate a 64-bit register composed on D2 and D3,

with D3 holding the upper 32 bits.

39. Why is it important for the ASR instruction to maintain the same value in the MSB
position?

40. Data register Dl contains 00000019 (25 decimal). What is its value after LSL.W
#6,D1?

41. Data registers D3 and D4 contain 56789ABC and 00000013. Determine the state of

the Z flag and the contents of D3 for:

a) BTST #4,D3
b) BCLR D4,D3
c) BSET #1,D3
d) BCHG D4,D3

42. What instruction is needed to add registers D2 and D5 together using BCD arith-

metic? The result should appear in D2.

43. What does D4 contain after NBCD D4, ifD4 initially contains 0000005 1 ? Assume
that the X flag is cleared to begin with.
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44. What does SBCD -(A3),-(A5) do? Assume that X = prior to execution.

45. What instruction will set the memory byte pointed to by A6 when the carry flag is

clear?

46. What advantage does JSR have over BSR?
47. Why must a subroutine contain RTS as the final instruction?

48. What instruction (in the supervisor state) is capable of clearing the zero flag while

leaving all other 15 bits in the status register unaffected?

49. What immediate data is needed to set the trace bit in the system byte of the status

register?

50. Show the instruction needed to copy the condition codes into memory location

OLDCODES.
51. Modify the data summing example program so that the sum may exceed the 16-bit

barrier.

52. Write a subroutine to find the most positive signed integer in a set of data. Assume
that the integers are bytes, and that D3 contains the number of items to compare.

The items begin at location POSINTS.
53. Write a subroutine to compute the area of a right triangle whose side lengths are

stored in D2 and D3. Return the result in Dl.

54. Write a subroutine that will compute the factorial of the number contained in DO.

Store the result in FACTNUM.
55. A data byte at location STATUS controls the calling of four subroutines. If bit 7 is

set, ROUT1 is called. If bit 5 is clear, ROUT2 is called. ROUT3 is called when bits 2

and 3 are high, and ROUT4 is called if bit is clear and bit 1 is set. These conditions

may all exist at one time, so prioritize the routines in this way: ROUT1, ROUT3,
ROUT2, and ROUT4.

56. Write a routine to swap nibbles in a byte operand. For example, bits 0-3 trade

places with bits 4-7 in register DO.

57. Repeat Question 56, except now swap the two lower bytes of DO.

58. Use MULU and multiprecision addition to perform a 32- by 32-bit multiply. The
numbers to be multiplied are in DO and Dl.

59. Write a subroutine that will increment the BCD values stored in COUNT and reset

it to zero whenever it reaches 60 BCD.
60. Assume that the ERROR subroutine in the calculator control program displays

only an error message. What instructions are needed to wait for the CLEAR button

to be pushed?
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Exception Processing

Objectives

In this chapter you will learn about:

• The three processing states: normal, halted, and exception

The differences between user and supervisor states

Methods used to change the privilege state

Exception processing procedures

The vector address table

Multiple exceptions and exception priorities

Special exceptions such as reset, bus and address error, and trace

The general requirements of all exception handlers

4.1 INTRODUCTION

The 68000 microprocessor provides a very flexible method for recovering from
what are known as catastrophic system faults. Through the same mechanism,
external and internal interrupts may be handled and other events not nor-

mally associated with program execution may be taken care of. The method
that does all of this for us is the 68000's exception handler. In this chapter we
will see that there are many kinds of exceptions. Some of these deal with issues

that have always plagued programmers (such as the divide-by-zero operation),

while still others may be defined by the programmer. The emphasis in this

chapter is on the definition of the numerous exceptions available. Actual pro-

gramming examples designed to handle exceptions will be covered in the next
chapter.

89
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Section 4.2 discusses the different states of execution in the 68000. Section

4.3 explains the difference between the user and supervisor states. Section 4.4

shows how the 68000 may be switched from user to supervisor and back and
the events that might cause this to happen during normal program execution.

Section 4.5 explains how exception processing works, and what is required by
the programmer for correct handling of exceptions. Multiple exceptions are

dealt with in Section 4.6. Section 4.7 deals with important, built-in exceptions

such as reset, trace, and bus error, as well as the interrupt handling excep-

tions. Section 4.8 discusses exception handlers and methods of preserving reg-

isters during exception processing.

4.2 EXECUTION STATES

The 68000 is always functioning in one of three states: normal, halted, or

exception. When in the normal processing state, the 68000 is executing in-

structions that may be part of a user program. When in the halted state, the

processor is not executing any instructions. The processor may have entered

this state due to some kind of catastrophic system failure (such as a double bus

fault or some kind of external hardware failure), or for reasons determined by

the user (the HALT line may have been asserted via external hardware). The
third state is the exception state, where the 68000 handles (processes) all ex-

ceptions. An exception may be loosely thought of as an interrupt, but we will

see that this definition does not do justice to the entire range of exceptions and

their use.

It is possible for the 68000 to enter the exception processing state, execute

some instructions, and then return to the normal execution state. It is also

possible for the 68000 to enter the halted state from the exception state, if the

conditions are correct. Figure 4.1 shows an example of a divide-by-zero excep-

tion encountered during normal program execution. In this example, the

DIVU instruction in the user program caused the exception.

The exception state provides a method of saving the current processor con-

text whenever exception handling is called for. The context of the processor, at

any instant of time, is the state of all internal flags, together with the contents

of all CPU registers, including the program counter. Knowing all of these

values, and being able to copy them into memory for safekeeping (usually via a

software stack), provides us with a snapshot of exactly what the processor was

doing when the exception occurred. Thus, reloading the processor's context at

the end of exception handling enables us to continue processing right where we
left off.

4.3 PRIVILEGE STATES

Associated with the three processing states are two privilege states: user and

supervisor. These two states are provided so that designers of operating sys-
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Divide by

exception

handler.

" J

User-defined code

determines how
exception is handled.

FIGURE 4.1 An exception occurring during normal program execution

terns, or other complex programs that deal with user programs, may enjoy

some sense of security. This is accomplished by making certain instructions

privileged. A privileged instruction may execute only in the supervisor state.

Thus, if user programs are forced to execute in the user state, their access to

the processor's instruction set is limited, and there is less chance that they

might upset some important code in memory by writing over or changing it.

Furthermore, we can design memory circuitry that distinguishes between user

and supervisor accesses, and restrict certain memory accesses if we so desire.

The 68000 uses a single bit in its status register to determine the privilege

state.

In Figure 4.2 we see how the processor's status register is organized. Bit 13

is the S bit, which is used to determine the type of privilege: user or supervisor.

If this bit is a 0, the processor executes instructions in the user state, the lower

state of privilege. If the S bit is a 1, the 68000 executes instructions in the

supervisor state, the higher state of privilege. It is very difficult for a program
executing in the user state to change the S bit. The trace bit, bit 15, and the

interrupt mask bits, I through I2 (bits 8, 9, and 10), also play an important

role in certain exceptions. These bits will be covered later in this chapter. For

now, we will concern ourselves with the privileged instructions of the supervi-

sor state. The actual instructions that are restricted from execution when in

the user state are the following:

STOP

RESET

RTE

MOVE to SR

AND immediate to SR
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System byte -«*- User byte 1

7 6 5 4 3 2 10
t|X|s|XIXM'.|'q|XIXIX Is

T: Trace mode

S: Supervisor state

l2~ Iq : Interrupt mask

FIGURE 4.2 68000 status register

Condition codes:

X: Extend

N: Negative

Z: Zero

V: Overflow

C: Carry

EOR immediate to SR

OR immediate to SR

MOVE USP

The STOP and RESET instructions are excluded from execution in the user

state because we cannot have user programs stopping or resetting the proces-

sor at will. This would certainly cause havoc, especially if the system is set up
for multiple users. The RTE instruction is excluded because all exception pro-

cessing takes place in the supervisor state, and RTE has no meaning in the user

state. The rest of the instructions that are restricted all serve to manipulate

bits in the status register, and thus would provide a way to set the S bit from

the user state if they were allowed.

Another difference between user and supervisor states is that they both

have their own stack pointer registers. These two registers are the USP (user

stack pointer) and the SSP (supervisor stack pointer). The USP is used when-

ever the processor is in the user state. Even if the user program uses address

register A7 for stack operations, the USP is still used. The 68000 really con-

tains two A7 registers, one for each privilege state, accessed according to the S

bit in the status register. The SSP is used when the 68000 is executing instruc-

tions in the supervisor state.

As mentioned before, it is possible to restrict portions of memory via some
carefully written software and some simple circuitry in the memory section.

Entire blocks of code, or data, can be excluded from access when a program is

in the user state. A useful application for this technique would be in an operat-

ing system environment. Important data concerning users on the system can

and should be hidden from the users, to provide system security and to prevent

a user from wiping out the operating system. Ifwe use the SSP for all protected

memory references, we accomplish only half our goal. There is nothing to stop
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the user code from accessing protected memory, unless we provide the memory
circuitry with some information about the current privilege state. Example 4.1

shows one simple way this may be accomplished.

Example 4.1: In Figure 4.3, we see a simplified block diagram showing how
access to user and supervisor memory sections is controlled via the processor's

FC 2 status bit. FC2 is low whenever the 68000 is in the user state and high

when it is in the supervisor state. Since FC 2 is not used at all in the user

memory section, this memory may be accessed when the processor is in either

privilege state. This is what we want to achieve, for the supervisor state should

not be denied access to any memory in the system. On the other hand, supervi-

sor memory should be accessed only when the processor is in the supervisor

state, thus the need for the inverter and the OR gate. The only way to enable

the supervisor memory section is to output a low on the OR gate, which itself

requires two low inputs, and FC 2 must also be high. Of course, both memory
sections must contain the required address decoding circuitry, and this mate-

rial will be covered in Chapter 7.

Address bus ^ZZZZZZZZZZZZZZZ?

FC2

AS

PC i User access

Supervisor access

Data bus

FIGURE 4.3 User/supervisor memory partitioning

Because we have two privilege states, we refer to memory references within
the states as user state references and supervisor state references. Once again,

these references may be distinguished from one another by the use of the proc-

essor's FCo status bit.
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4.4 CHANGING THE PRIVILEGE STATE

We saw earlier that the instructions required to change the S bit in the status

register are excluded from execution in the user state. So how does one go from
the user state to the supervisor state? The only way this can be done is for an
exception to occur (an interrupt, an illegal instruction, the occurrence of a bus

error, and so on). The first step in any exception process that the 68000 per-

forms is to save the current contents of the status register, and then to set the

S bit high, so that the processor switches to the supervisor state. Remember,
all exception processing takes place in the supervisor state. If the current state

is the supervisor state and a switch to the user state is needed, there are many
ways the processor can make the switch. First, the execution of an RTE in-

struction may take us back to the user state (if that is the state in which the

exception occurred). Second, we could load the status register with a new set of

status bits, clearing the S bit as we do so, by using the MOVE to SR instruc-

tion. The other ways involve the use of logical instructions AND and EOR to

modify bits (specifically the S bit) in the status register. Note that we cannot

use the OR instruction here, since there is no way to use the OR operation to

make a 0! Example 4.2 shows how the AND instruction is used to clear the

Sbit.

Example 4.2: What is the bit mask needed to clear the S bit in the status

register while leaving all other bits unaffected?

Solution: When using the AND operation, a input will always produce a

output, while a 1 input produces an output dependent on the other input.

Thus, the binary mask needed is 1101 1111 1111 1111. The actual instruction

would then be:

ANDI.W #0DFFFH,SR

Since ANDI is a privileged instruction, it may be executed only in the supervi-

sor state.

4.5 EXCEPTION PROCESSING

So far we have been looking at the background information we need to be

familiar with before we look into the full operation of exception processing on

the 68000. We have seen that there are two important privilege states—user

and supervisor—and have learned what the limitations of the user state are.

We are also familiar with the status register and with how the S bit is used to

control the privilege state. Let us now examine the sequence that is repeated

every time an exception occurs.
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Exception Processing Sequence

Processing an exception usually involves these four steps:

1

.

The contents of the status register are saved and the S bit is set so that the

68000 may enter the supervisor state.

2. The exception vector is obtained.

3. The program counter and status register are saved on stack.

4. Execution resumes at the address specified in the exception vector.

The next four sections will expand on these steps.

Step 1 : Adjust Status Register

A number of tasks are really performed in this step. First, a copy of the status

register is made (stored for the time being inside the processor). Then the S bit

is set so that the processor may enter the supervisor state. In addition, the

status register's T bit (bit 15: the trace bit) is cleared. This prevents tracing

from occurring during processing of the current exception. If the exception type

is a reset or interrupt exception, the status register's interrupt mask bits (8-

10) are also updated.

Step 2: Get Vector Number

Exceptions are generally referred to by their vector number, an 8-bit value

either determined by the processor or supplied by an external device. For most

exceptions, the vector number can be determined internally by the processor.

The exception vector number ranges from to 255 (00 to 0FFH), and is used to

point to a group of memory locations that contain the address of the routine

that will handle the exception. The vector numbers are assigned as shown in

Table 4.1. From Table 4.1 we see that the exception vector addresses occupy the

first IK bytes of storage in the 68000's address space (locations 000 to 3FF).

Since this area of storage is reserved by the processor, we cannot use these

locations for anything else. A common practice is to put EPROM memory in

this space, so that the exception vector addresses are always present. All ex-

ception vector numbers except vector point to a 4-byte block of memory that

contains the address of the routine the processor will execute when handling

the exception. Vector is the reset exception and is always performed at

power-up. The reset exception sequence is slightly different, in that the first

4 bytes contain the initial SSP data and the second 4 bytes contain the address

of the start-up code. For this reason, we do not see vector 1 in the table.

The actual address that the processor fetches the new program counter

from is easily computed by multiplying the vector number by 4.
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TABLE 4.1 Exception vector assignments (Reprinted with permission of Motorola Inc.

Vector

Number(s)

Address

Space6 AssignmentDec Hex

000 SP Reset: Initial SSP 2

1 4 004 SP Reset: Initial PC2

2 8 008 SD Bus Error

3 12 OOC SD Address Error

4 16 010 SD Illegal Instruction

5 20 014 SD Zero Divide

6 24 018 SD CHK Instruction

7 28 01C SD TRAPV Instruction

8 32 020 SD Privilege Violation

9 36 024 SD Trace

10 40 028 SD Line 1010 Emulator

11 44 02C SD Line 1111 Emulator

12 1 48 030 SD (Unassigned, Reserved)

13 1 52 034 SD (Unassigned, Reserved)

14 56 038 SD Format Error 5

15 60 03C SD Uninitialized Interrupt Vector

16-23 1 64 040 SD (Unassigned, Reserved)

92 05C —

24 96 060 SD Spurious Interrupt3

(Table continues on following page.)

Example 4.3: Consider the user program of Figure 4.1. The DIVU instruc-

tion references a source operand, register D5, that contains zero at execution

time. This causes a divide-by-zero exception, vector 5. The address the 68000

fetches the exception handler routine address from is vector 5, times 4. Thus,

address 20 (014H) must contain the program counter for the start of the divide-

by-zero exception handler.
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TABLE 4.1 (Continued)

Vector

Number(s)

Address

Space6 AssignmentDec Hex

25 100 064 SD Level 1 Interrupt Autovector

26 104 068 SD Level 2 Interrupt Autovector

27 108 06C SD Level 3 Interrupt Autovector

28 112 070 SD Level 4 Interrupt Autovector

29 116 074 SD Level 5 Interrupt Autovector

30 120 078 SD Level 6 Interrupt Autovector

31 124 07C SD Level 7 Interrupt Autovector

32-47 128 080 SD TRAP Instruction Vectors"

188 OBC —

48-63 1 192 oco SD (Unassigned. Reserved)

255 OFF —

64-255 256 100 SD User Interrupt Vectors

1020 3FC _

1. Vector numbers 12. 13. 16 through 23. and 48 through 63 are reserved for future enhance-
ments by Motorola. No user peripheral devices should be assigned these numbers.

2. Reset vector (0) requires four words, unlike the other vectors which only require two words, and
is located in the supervisor program space.

3. The spurious interrupt vector is taken when there is a bus error indication during interrupt pro-

cessing.

4. TRAP #n uses vector number 32 - n.

5. MC68010 only. This vector is unassigned. reserved on the MC68000 and MC680O8.

6. SP denotes supervisor program space, and SD denotes supervisor data space.

For exceptions resulting from external interrupts, the processor uses

the interrupt acknowledge cycle to fetch the vector number from external

circuitry, which must provide the 8-bit vector number on data lines D,,

through D 7 .

Step 3: Save Processor Information

For all exceptions except reset, this step is used to save the current program
counter and status register. Figure 4.4 shows how the values are saved in the

stack area of memory pointed to by the SSP. The SSP is used because the
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FIGURE 4.4 Exception stack

contents

Location Contents of memory

SSP-6* Status Register
i L

SSP-4 Program counter high word Lower
addresses

SSP-2 Program counter low word

*This will be the new SSP value.

processor has already entered the supervisor state. Remember that the SSP
will decrement as we push items onto the stack. From Figure 4.4 we should be

able to tell that the low word of the program counter is the first item pushed. In

all exceptions, except for bus error and address error, the program counter

points to the next instruction in memory that should execute when exception

processing is completed. In the cases of the bus and address error exceptions,

the value of the program counter is unpredictable, and even more information

about the processor is saved on the stack. This information includes the first

word of the aborted instruction and a record of the type of bus cycle that was
attempted. This information is included to allow for some later diagnosis, via

software, to determine the exact cause of the failure.

The high word of the program counter is pushed next, followed by the

contents of the status register that existed at the time the exception occurred.

Example 4.4: Suppose that the SSP points to location 3FC0. If an exception

occurs, the SSP is decremented and the low word of the program counter writ-

ten into memory locations 3FBE and 3FBF. Then the SSP is decremented by

2, and the high word of the program counter is written to locations 3FBC and

3FBD. The SSP is decremented by 2 again and the status register written to

locations 3FBA and 3FBB. 3FBA is the final value of the SSP (the new top of

the system stack).

Step 4: Fetch New Program Counter

All exceptions perform this step the same way: The new program counter is

fetched from memory locations pointed to by the exception vector, and normal

processing (in the supervisor state) resumes at the new address. It is assumed

that the end of the exception processing code contains the RTE instruction, so

that we may get back to the task we were running before the exception oc-

curred. The addresses for the exception handlers are stored with the high word

first, followed by the low word.

Example 4.5: A user writes code for a divide-by-zero exception handler and

places the routine at 7A238. The exception vector table must be filled in the
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following way: Addresses 014 and 015 must contain 0007 (the high word of the

starting address), and locations 016 and 017 must contain A238 (the low word

of the starting address). Even though the 68000's address bus is only 24 bits

wide, the address must occupy 32 bits in the vector table. This is accomplished

by making the upper 8 bits zero.

4.6 MULTIPLE EXCEPTIONS

If you were standing on a street corner and noticed that, simultaneously, from

one direction a runaway car was heading directly for you and from the other

direction a large, snarling dog with big teeth was also running toward you,

what would you do? This unfortunate situation is an example of what the

processor must feel like when more than one exception occurs at the same
time. For example, suppose that an interrupt request is received during execu-

tion of an instruction that is going to generate a divide-by-zero exception.

Which exception gets executed first? Is one ignored? We will soon know the

answers to these questions.

Table 4.2 shows the exception grouping and priorities that have been es-

tablished by the designers of the 68000. Group exceptions have higher priori-

ties than those of the other two groups. Group 1 exceptions take priority over

group 2 exceptions. This means that if a divide-by-zero exception were to occur

at the same time as an interrupt, the interrupt exception would be processed

first. Within a group, there are also levels of priorities. For example, if reset

and address error exceptions occur at the same time, the reset exception is

processed and the address error exception is ignored. There is a very simple

reason why there are no priorities within group 2, but this is left for you to

ponder as a homework problem. Before we take a look at some special excep-

tions in detail, let us see what happens during a multiple exception.

TABLE 4.2 Exception grouping

and priority
Group Exception Priority

reset (highest)

bus error

address error (lowest)

1 trace

interrupt

illegal

privilege

(highest)

(lowest)

2 TRAP
TRAPV
CHK
zero divide

(all four have same
priority)
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Example 4.6: During execution of a program, a multiple exception condition

occurs when the processor receives an interrupt request during execution of an

instruction in trace mode (for example, the T bit in the status register is high).

In this case, the trace exception will be executed first, because it has a higher

priority than the interrupt exception. While the trace exception is being han-

dled, the processor saves the interrupt request internally. We call this a pend-

ing request. When the trace exception finishes, the interrupt exception is fi-

nally allowed to take place. Normal program execution will resume when the

interrupt handler finishes execution. Figure 4.5 illustrates this example. The

interrupt occurs during execution of the EXG D0,D1 instruction.

User
program

(Tracing enabled)

Trace

exception

handler

FIGURE 4.5 A multiple exception occurring during normal execution

4.7 SPECIAL EXCEPTIONS

In this section we will look at some of the more important exceptions. All of

these exceptions may occur normally during execution, and it is the program-

mer's job to fully understand them and even plan for them, so that the execut-

ing program does not fail when one of them does occur. We will cover the

special exceptions in order of their appearance in the priority table (Table 4.2).

Reset

This exception must be generated at power-on by the system hardware. Since

the values of the SSP and program counter at power-on are undefined, the

reset exception loads them for us. The SSP is loaded from locations 000

through 003, and the program counter from the next four locations (the loca-
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tions referenced by vectors and 1). Execution begins at the address contained

in the program counter. In addition, the interrupt priority mask is set to level 7

to inhibit all lower interrupts from occurring during reset, and the status reg-

ister is further modified so that the processor enters the supervisor state, with

tracing disabled. Note that, if a reset exception occurs at a time when any kind

of processing is taking place, that processing is terminated and never resumed.

The reset exception is not generated automatically by the 68000 at power-

on. The external system hardware must pull RESET and HALT to ground for

at least 100 ms to initiate a reset exception.

Bus Error

We have seen before that a bus error is one type of exception that pushes more
than the standard information about the processor onto the supervisor stack.

This extra information is required, since the processor was not able to com-

pletely finish its current bus cycle. It is the job of the external hardware to

detect the bus error and to inform the processor about it by activating the

BERR line (see Chapter 6). Since bus errors are random by nature (we never

know when one might show up), there is no surefire way for the processor to

determine where to resume execution when bus error exception processing is

completed. Therefore, the programmer must include the necessary code for

determining what to do after a bus error has occurred.

Furthermore, if a second bus error occurs while the 68000 is involved in

exception processing for an initial bus error, we refer to this condition as a

double bus fault. In this case, the processor stops all exception and enters the

halt mode, where only a reset exception may be used to restart the processor.

This is done to prevent runaway processors from destroying the contents of

memory, possibly by writing bad data into it. It is not difficult to imagine the

runaway processor getting stuck in a loop that constantly writes to memory.
Double bus faults are also caused by bus errors occurring during address

error or reset exception processing.

Address Error

Address errors occur whenever the processor tries to fetch data (be it program
data or an instruction) longer than 1 byte in length from an odd addressed

memory location. For example, an address error occurs if the 68000 tries to

read a word (2 bytes) from an odd location. Once the address error is initiated,

the current bus cycle is terminated and address error exception processing

takes over. Once again, if any group exception, except for reset, occurs when
the address error exception is being processed, a double bus fault occurs and
the processor halts.

Trace

The 68000 provides a very useful way for the programmer to debug new soft-

ware. It is possible, by setting the trace bit in the status register, to generate a
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trace exception at the end of every instruction that is executed. A clever pro-

grammer will then write code that allows the trace exception to provide infor-

mation about the processor address and data registers and condition codes as

each instruction executes.

Some instructions, such as illegal and privileged instructions, disable the

trace facility. All group exceptions disable the trace facility, too. Otherwise,

the trace exception follows the priority scheme within group 1, meaning that if

a trace exception is called for and an interrupt has been received, the trace

exception is processed first, followed by the interrupt exception. We should

remember here that tracing is disabled during all exception processing, to

avoid cluttering up the supervisor stack.

Interrupts

The 68000 provides seven levels of external interrupts. Level 7 is referred to as

a nonmaskable interrupt, because it cannot be masked out via the interrupt

priority mask in the status register. Normally, the priority mask is set to a

certain interrupt level, say level 4, to disable priority interrupts (levels 1-4)

from occurring. Of course, the level is set by the programmer to satisfy pro-

gram constraints. Level is a noninterrupt condition, meaning that no inter-

rupt is requested, and also has the lowest priority. Level 7 has the highest

priority among the external interrupts.

When external logic indicates an interrupt request, the processor treats it

as a pending interrupt, and will not act on the request until the end of the

current instruction. Then the processor will compare the pending interrupt

priority with that of the priority mask in the status register, and unless the

pending interrupt level is of a higher priority than the priority mask, the

interrupt is ignored. The circuit in Figure 4.6 shows one way seven different

devices may request interrupts. In this figure a 74LS148 priority encoder is

used to generate the proper levels for the IPL lines. The LS148 has eight

inputs, all normally high, and three outputs, which are also normally high due

to the pull-up resistor on input 0. As an example, imagine that INT7 is pulled

FIGURE 4.6 Interrupt priority

encoder 68000
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low. This causes the 74LS148 to encode this into three low levels on outputs A2

through A (the 3-bit Is complement of 7, the input that is now activated). This

in turn causes the 68000 to register a level-7 interrupt request. When more
than seven interrupt lines are needed, the 74LS148s may be daisy chained

together (via control inputs and outputs), but the designer is limited to a maxi-

mum number of 192 external interrupts. Remember from Table 4.1 that there

are a number of reserved exceptions—63 in fact—that keep us from using all

255 available interrupt vectors externally.

When we use an external interrupt, the vector table address will be gener-

ated in one of two ways. Examine Figure 4.7 for a moment, and notice how the

68000 communicates with its external interrupt circuitry. The sequence of

events that take place when an external device requests an interrupt is

lengthy. Initially, the interrupt logic responds to the interrupting device by

generating a priority level for it and placing this 3-bit code on the 68000's IPL
inputs. The processor will recognize the pending interrupt request but will not

act on it until it completes execution of the current instruction. Then the pro-

cessor will enter an interrupt acknowledge bus cycle. The external interrupt

logic recognizes the interrupt acknowledge bus cycle by monitoring the func-

tion code outputs. At the beginning of the interrupt acknowledge_cycle, the

processor will output a zero on AS and LDS, a high level on R/W, and the

requested interrupt level on address lines A3 through Av At this time, the

external interrupt logic may do one of two things. It may supply the vector

number to the 68000, or it may request an autovector. To supply the vector

number, the interrupt logic must place the 8-bit vector number on data lines

D7 through D and pull DTACK low. The 68000 will monitor DTACK and load

the supplied vector number accordingly. If the interrupt logic instead requires

that the 68000 use an autovector, it will pull VPA low instead of DTACK.

Interrupt

logic

IACK

> 'PLt o\

AS V

t A3-1 \
LDS

R/W 68000

D()-7

DTACK
VPA

FC,

FC,

FC
(1

External
j

interrupt [l—

>

requests J >

o< c/

FIGURE 4.7 External interrupt circuitry block diagram
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When the 68000 sees VPA go low, it will generate its own vector, based on the

interrupt level first supplied to the IPL inputs. The autovectors occupy loca-

tions 064 through 07F in the vector address table (see Table 4.1). Autovector-

ing should be used whenever the external hardware requires only a few inter-

rupts (or a maximum of 7).

If the external logic does not respond with either DTACK or VPA, but

instead indicates a bus error, this indicates that a spurious interrupt has

occurred, and the 68000 will use vector 24 as it begins exception processing.

If more than seven levels of external interrupts are needed, autovectoring

cannot be used. Figure 4.8 gives an example of how 16 external interrupts

might be generated. This circuit employs two 74LS148 priority encoders. Each
encoder handles eight interrupt lines. You may wish to refer to the truth table

for the LS148 before continuing. The E I (input enable) of the upper 74LS148 is

grounded, so that INT15 through INT8 will always be recognized. EO (enable

output) of the upper 74LS148 controls the lower priority encoder. If none of the

upper interrupt lines are active, EO will be low_, enabling the lower priority

encoder to respond to INT7 through INT . Thus EI and EO provide a method for

prioritizing all 16 inputs.

_ If none of the interrupt lines are active (for example, they are all high), the

GS outputs of both encoders will be high. This has the effect of placing a level

request on the IPL inputs of the processor. This represents a noninterrupt

condition. If any of the INT lines go low, one of the GS outputs will go low also,

which generates a level-7 interrupt request. When either GS output goes low,

the A2 through A outputs of the priority encoder represent the encoded num-
ber of the activated input. These three outputs, together with EO, are com-

bined to form a true 4-bit code that represents the number of the INT line that

requested service. This code is latched by the 74LS374 octal D-type flip-flop.

When the 68000 enters the interrupt acknowledge cycle, the INTACK signal

will go low. This causes two things to happen. The 74LS374, previously tris-

tated, now places the vector number on the data bus. In addition, DTACK is

asserted. When the processor completes the interrupt acknowledge cycle, AS
will go high, the function code outputs will change , and INTACK will return to

a high state, tristating the LS374 and removing DTACK.
This circuit can be further analyzed and improved, and these exercises are

left for you to do as homework.

Illegal Instructions

The 68000 provides for detection of illegal instructions encountered during

program execution. An illegal instruction is any code read from memory, dur-

ing an instruction fetch, that does not match the bit patterns of any of the

predefined opcodes in the 68000's instruction set. When an illegal instruction

is encountered, exception processing begins at the address contained in vector

4, locations 010 through 013 (see Table 4.1). Illegal instructions may be en-

countered if the processor does an instruction fetch from a data area, or if the

processor begins a fetch at an undefined address.
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FIGURE 4.8 External interrupt circuitry providing 16 levels of interrupts
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Three opcodes are reserved and will generate an illegal instruction excep-

tion if encountered. They are 4AFA, 4AFB, and 4AFC. Only 4AFC should be

used by the programmer (via the ILLEGAL instruction), because the first two
are reserved by Motorola.

Unimplemented Instructions

Unimplemented instructions are not illegal instructions. Instead, they are pro-

vided to give Motorola and the user a chance to enhance the instruction set of

the 68000, by adding custom (or additional) instructions at a later time. All

unimplemented instructions begin with either A or F. F345, A200, FF5C, and
AB00 are all examples of valid unimplemented instructions. They must con-

tain A or F in their upper nibble.

When either of these types is encountered, exception processing will begin.

If the unimplemented instruction begins with A, exception vector 10 is used. If

it begins with F, exception vector 11 is used. Any instruction not beginning

with A or F, and also not contained in the instruction set, is an illegal instruc-

tion. See Table 4.1 for the vector addresses.

Privilege Violation

We saw in Table 4.1 that there are a number of instructions that the 68000

considers to be privileged. STOP, RESET, RTE, ANDI to SR, and others may
only execute in the supervisor state. Any attempt to use these instructions

from the user state results in a privilege violation exception. The 68000 will

use vector 8 to process this error condition. This exception is very valuable for

a programmer involved in the creation of an operating system, where strict

lines must be drawn between users and superusers, special users that contain

privileges that other users do not have. If a method did not exist for separating

these two kinds of users, the operating system would have a very low level of

security.

Trap

The TRAP instruction may be used by the programmer to generate exceptions

from within a program. A common term for these types of exceptions is the

software interrupt or supervisor call. The TRAP instruction gives us a

method to enter the supervisor state through a process under our control. Since

TRAP is similar in operation to an interrupt, we apply the nonmaskable term

to it, because there is no way to disallow a TRAP from occurring when it is

encountered.

The form of the TRAP instruction is:

where "vector" is a value from to 15. Thus, there are only 16 allowable

TRAPs. Each TRAP causes the 68000 to generate a unique address within the
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vector address table (Table 4.1). TRAP #0 causes the CPU to vector to the

address contained in memory locations 080 through 083. Likewise, TRAP #15
causes a vector to the address contained in locations 0BC through 0BF. Fig-

ure 4.9 shows how these addresses may be computed from the TRAP vector

number. The actual vector numbers for the TRAP instructions (per Table 4.1)

range from 32 to 47.

Being able to compute the table addresses in this fashion may save you
work someday when you are writing a 68000 program of your own. If you do

not have a reference that supplies all vector table addresses, but can remember
the pattern of bits in Figure 4.9, calculating the vector table address should be

no problem. A direct application of this technique is in the creation of assem-

blers, which must somehow generate unique codes from simple input data,

such as the to 15 vector number. Further examination of Figure 4.9 shows

that the starting address of any TRAP vector is equal to 80H plus 4 times the

vector number.

TRAPs work like any other kind of exception. The program counter and
status register contents are saved on the supervisor stack, and the 68000 con-

tinues execution at the address supplied by the vector address table.

TRAPV

This instruction is similar to the TRAP instruction, except that TRAPV does

not require an operand field and will generate an exception only if the overflow

(V) flag is set. If an exception is generated, the 68000 will continue with execu-

tion at the address specified in locations 01C through 01F. If the V bit is not

set, TRAPV will not initiate exception processing, and execution will continue

at the next instruction in the program.

TRAPV is very useful in routines that crunch numbers. For example, fol-

lowing every ADD instruction with a TRAPV will ensure that any out-of-

bound sums will be identified.

CHK

This instruction is used to check the value in a data register to see if it is

within a certain range. Only the lower word of the data register is checked.

The upper limit of the range is specified in the operand field of the instruction.

The lower limit is always 0. CHK will initiate exception processing if the

register contents do not fall within the specified range (because it is either

FIGURE 4.9 Calculating the

vector table address from the

TRAP vector number
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negative or greater than the upper limit). If exception processing is called for,

the 68000 will use vector 6; thus the CHK service routine address should be

stored at locations 018 through 01B. An example of using CHK follows.

Example 4.7: During execution of a program, CHK #300H,D6 is encoun-

tered. Register D6 contains the value 4E3001F7. Since the lower word of D6
(01F7) does not exceed 0300, no exception processing is initiated.

Divide-by-Zero

Even the best programmers cannot foresee all occurrences of errors in their

programs, or test a working version of the program with all possible input data

conditions. The divide-by-zero exception is therefore a useful tool to help the

programmer deal with future events that may supply bad data. DIVU and
DIVS are the only two instructions that may cause a divide-by-zero exception.

In both cases, the instructions will examine the contents of the source operand

and initiate the exception if the source operand is zero. Locations 014 through

017 in the vector address table (vector 5) must contain the address of the

exception handler.

4.8 EXCEPTION HANDLERS

The exception handler is the actual section of code that takes care of processing

a specific exception when it is encountered. The exception handler for a divide-

by-zero exception would then be drastically different from a handler written to

process a privilege violation, or another that handles a level-5 interrupt.

Even though these handlers are written to accomplish different goals,

there are portions of each that, lor the sake of good programming, look and

operate the same. Recall that any time an exception occurs, the 68000 enters

the supervisor state, and pushes the program counter and status register onto

the supervisor stack, before vectoring to the address of the exception handler.

Clearly, we must see that the exception handler will change the contents of

various data or address registers while it is processing the exception. Since we
desire to return to the same point in our program where we left off before the

exception occurred and resume processing, we insist that all prior conditions

exist upon return. This means that we must return from the exception with the

state of all data and address registers preserved. It is now the responsibility of

the exception handler to preserve the state of any registers that it alters. Fig-

ure 4.10 shows how this is done. In this example, TRAPV causes an exception.

The first thing the exception handler does is save the data and address regis-

ters on the stack. These registers may be saved individually, using an instruc-

tion like

M0VE.L D3.-(A7)
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FIGURE 4.10 Storing environment during exception processing

or all data and address registers except for A7 may be saved at the same time,

with the instruction

MOVEM.L D0-D7/A0-A6,-(A7)

which performs 15 pushes onto the supervisor stack. We do not bother to save

A7 because it is designed to be used as a stack pointer. Using it as a general-

purpose register automatically lowers the performance of your software.

When the body of the exception handler finishes, it is necessary to reload

the registers that were saved at the beginning of the routine. Again, this may
be done singly, with

MOVE.L ( A7 ) + . D3

or all at once, with

(A7) + ,D0-D7/A0-A6

as you so desire. Saving all registers is preferable, and will save you much
heartache in the future, when you find that saving one or two registers was
insufficient as the needs of the routine became more complex.

Example 4.8: A 60-Hz clock is connected to circuitry that generates a level-2

interrupt with each pulse. An exception handler for this interrupt must be

written to call the subroutine ONESEC whenever 60 interrupts have been
received. The handler shown here is one possible solution:

LEVEL2 MOVEHI.L D0-D7/A0
MOVE B COUNT, DO
SUBI B #1,D0
BNE NEXT
BSR ONESEC
MOVE B #60, DO

A6,-(A7)
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NEXT MOVE.B DO , COUNT
MOVEM.L (A7)+,D0-D7/A0-A6
RTE

A few points deserve mention. First, notice that all processor registers are

saved at the beginning of the handler. Why is this necessary if the only regis-

ter modified is DO? The answer has to do with ONESEC. We will call this

routine once every second. With no information about what registers are used

by ONESEC we must assume that all registers have the possibility of being

modified.

Also, we must use RTE at the end of the handler (instead of RTS) since the

routine is servicing an interrupt.

4.9 SUMMARY

We have seen that there are three processing states in the 68000: normal,

halted, and exception. In addition, the 68000 supports two privilege states

—

use and supervisor—with all exception processing being done in the supervisor

state. Some instructions are privileged and may only be executed in the super-

visor state. Any attempt to utilize them while in the user state results in a

privilege violation. Furthermore, the only way to go from the user state to the

supervisor state is through exception processing.

We also saw that there is a fixed process used by the 68000 to implement

an exception. The CPU enters the supervisor state (by setting the S bit in the

status register), saves the current program counter and status register on the

supervisor stack, and loads the exception routine address from a special vector

address table. The vector address table occupies locations 000 through 3FF in

memory and contains pairs of words that represent execution addresses for the

255 allowable exceptions. The vector number used to calculate the vector table

address may be internally generated by the 68000, or may be supplied by

external hardware during an interrupt acknowledge cycle. The 68000 supports

seven levels of external, prioritized interrupts.

Exceptions are either caused by an external hardware failure, by an exter-

nal hardware request, or through software. The software exceptions may be

generated intentionally by the user, or by accident, via a run-time error (such

as division by zero). All exceptions (except for reset and double bus faults)

allow the program to resume execution where it was interrupted.

STUDY QUESTIONS

1. What is the processor's context? Why is it important to save the context during

exception processing?

2. How does the 68000 prevent a user program from entering the supervisor state, by

any method other than exception processing?



4.9 Summary 111

3. Explain what happens if the 68000 encounters the STOP instruction while in the

user state.

4. Explain the different uses of address register A7 in both user and supervisor states.

5. How is FC 2 used to distinguish between the user and supervisor states?

6. Why must an exception handler terminate with an RTE instruction? What kinds of

stack problems would occur if RTS was used instead?

7. In Example 4.2, an ANDI instruction was used to clear the S bit and thus select the

user state. Modify the operand so that the trace bit is also cleared.

8. How may the status register be changed so that the processor goes from the super-

visor state to the user state, with no other bits affected, if an EORI to SR instruction

is used? Show the exact instruction needed.

9. Show the memory locations that are altered, and the new data in them, if exception

processing begins with the following register values: SSP = 0081FA, PC =

002578, SR = 0314.

10. Why are there only 255 exception vectors, and not 256?

11. From what locations will the exception routine address be fetched from, if vector 70

is used?

12. Figure 4.11 shows the contents of a few locations within the vector table address

space. What will the new program counter be when a TRAP #3 exception occurs?

13. Why is there no need for a priority scheme within group 2 (see Table 4.2)?

14. What happens if an external interrupt arrives during execution of a TRAP instruc-

tion?

15. Assume that each exception handler implemented in a particular system saves all

data registers and all address registers (except for A7). How many levels of nested

exceptions are possible with a stack size of 1024 words?

16. How is the trace exception useful for examining the operation of a program?
17. What hardware event signals a bus error condition?

18. What happens if a bus error is followed by an address error?

19. During an interrupt acknowledge cycle the value 7C is placed on D -D 7 . From
what locations does the processor fetch the exception routine starting address?

20. What autovector is used if the IPL inputs are at 101°

21. Design a prioritized interrupt circuit that has two inputs: INTa and INTb . INTa has

higher priority and should generate a level-6 interrupt when active. INTb should

generate a level-3 interrupt.

22. Refer to Figure 4.8. What vector number is supplied to the 68000 if INT14 is active?

Repeat if INT2 is active.

23. What vector number is generated if INT10 and INT6 are active at the same time, in

the circuit of Figure 4.8?

24. What happens if the 68000 encounters the opcode 4AFC during an instruction

fetch? What happens if A300 is encountered?

FIGURE 4.11 For Question 4.11
08A 518B
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25. The status register contains the value OC in the user byte. Will TRAPV generate an
exception?

26. Data register D2 contains the value 1FB3009A. What occurs when
CHK.W #80,D2 is encountered?

27. An exception handler changes the values of registers Dl, D4, and D5. How might a

MOVEM instruction be used to save these registers?

28. A divide-by-zero exception handler routine is placed at location 30A50. Show the

required memory contents in the appropriate locations within the vector address

table.

29. Suppose that bits 10, 9, and 8 in the status register are set to 100 and a level 2

interrupt arrives. What happens?

30. Is an RTE needed at the end of the reset exception?

31. How are the lower three address lines used during an interrupt acknowledge cycle?

32. What is the most probable exception generated if the 68000 is mistakenly directed

to fetch an instruction from an area of stack memory?

33. Design an external interrupt circuit that will bring VPA low whenever an inter-

rupt acknowledge cycle occurs.

34. Repeat Question 33, but limit autovectoring to only level-4 and level-6 interrupts.

35. Design an external circuit that places vector 9E on the data bus during an interrupt

acknowledge cycle.

36. Modify the design of Figure 4.8 so that vectors CO through CF are generated.

37. Write an exception handler that will add the contents of registers DO through D6 to

D7 and return the new value of D7. The exception handler should respond to

TRAPV.
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Objectives

In this chapter you will learn about:

Breaking a large program down into small tasks

Reading character strings from a keyboard

Packing BCD digits into a byte

Item search and lookup in a data table

Comparison of data strings

Sorting

The use of condition flags to return results from a routine

Binary and BCD math

Number conversions

Writing a routine to perform a complex mathematical function

Open- and closed-loop control systems (simplified theory)

Determining program execution time and the meaning of overhead

Simple exception handling

Insertion of an item into a linked list

The operation of a queue

The concept of multitasking

The theory behind memory management and the need for it
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5.1 INTRODUCTION

Getting the most use out of your microprocessor requires expertise, both in

designing the hardware around it and in writing the code that it will execute.

The purpose of this chapter is to familiarize you with some of the standard

programming principles as they apply to the 68000. We will limit ourselves to

writing straight code in this chapter, using only the power of the 68000's in-

struction set. You will see that many complex tasks may be performed in this

way, without the use of external peripherals, which will be covered in Chapter 9.

Section 5.2 explains how large programming jobs are broken down into

smaller tasks. Section 5.3 deals with the collection of various data strings.

Section 5.4 gives examples of how a data table (or array) may be searched.

Section 5.5 shows how a table of numbers may be sorted. Section 5.6 covers

mathematical routines capable of addition, subtraction, multiplication, and
division, in both binary and BCD. Section 5.7 shows how numbers are con-

verted from ASCII into binary and vice versa. Section 5.8 shows two examples

of the 68000 in control applications. Section 5.9 discusses instruction execution

times and the prediction of total execution time for a section of code. Section

5.10 explains the use ofsome typical exception handlers, such as divide-by-zero

and illegal instruction. Sections 5.11 through 5.14 deal respectively with

linked lists, queues, multitasking, and memory management—four important

functions employed in major operating systems. Finally, section 5.15 explores

special function keys on the calculator.

5.2 TACKLING A LARGE PROGRAMMING ASSIGNMENT

Writing a large, complex program from scratch is a difficult job, even for the

most seasoned programmers. Even if this could be done easily, other considera-

tions exist to complicate matters. The final program must be tested, to assure

correct operation. It is a rare occurrence for a new program to work perfectly

the first time.

For these reasons, a more sensible approach is to break the large program

down into smaller tasks. Each task may be thought of as a subroutine, to be

called, when needed, by the main program. The subroutines will each perform

a single task, and thus will be easier to individually test and correct, as neces-

sary. The technique for writing a large program in this way is often referred to

as structured programming. We will not concern ourselves with all the de-

tails of structured programming. Instead, we will study a sample program-

ming assignment and use the techniques previously mentioned to break the

assignment down into smaller jobs.

The Assignment

The programming assignment is presented to us in the form of a specifica-

tion. The specification describes the job that must be performed by the
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program. It also contains information concerning any input and output that

may need to be performed, and sometimes a limit on the amount of time the

program may take to execute.

Consider the following specification:

Specification: Subroutine WORDCOUNT
Purpose: To generate a data table of all different words contained

in a paragraph of text, and a second data table

containing the frequency of occurrence of each word.

Restrictions: Do not distinguish between uppercase and lowercase

characters. Ignore punctuation, except where it defines

the end of a word. No words will appear more than 255

times.

Inputs: A data table headed by symbol TEXT that contains the

paragraph to be analyzed, represented by ASCII codes.

The length of the paragraph text is undefined, but the

last character in the text will always be "$". This

character will not appear anywhere else in the text.

Outputs: A data table, headed by symbol WORDS, that contains a

list of all different words encountered in the paragraph

text. Each word ends with ".", and the entire table ends

with "$". A second data table, headed by symbol

COUNTS, containing the frequency counts for each entry

in WORDS.

There is sufficient detail in the specification for us to determine what must be

done. How to do it is another matter.

Breaking the Program Down into Modules

Once we understand what is required of the program, through information

presented in the specification, the next step is to break the program down into

smaller modules. This means that subroutine WORDCOUNT will actually

become a main subroutine, which calls other subroutines. We must identify the

other subroutines needed. This step of the process requires skill and practice.

When you have given it enough thought, you might agree that these subrou-

tines are required:

INITIALIZE Initialize all pointers, counters, and tables needed.

GETWORD Get the next word from the paragraph text.

LOOKUP Search WORDS to see if it contains the present word.

INSERT Insert new word into WORDS
MAKECOUNT Make a new entry in COUNTS.
INCREASE Increase frequency count in COUNTS for a word found

by LOOKUP.
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There may, of course, be other required routines, depending on who is writing

the code. The idea is to create a subroutine to accomplish only one task. None of

the identified routines performs more than one task.

Once the inputs and outputs for each subroutine are identified, the code

can be written for each one, and the subroutines tested.

Testing the Modules

Testing of each subroutine module is done separately, through a special pro-

gram called a driver. The driver supplies the subroutine with sample input

data, and examines the subroutine's output for correctness. It is up to the

programmer to select the type and quantity of the sample data.

When all modules have been tested and verified for proper operation, they

can be combined into one large module—WORDCOUNT in our example—and
this module can be tested also.

Creating the Final Module

WORDCOUNT, as mentioned before, will consist of calls to the subroutines

identified in the section on breaking the program down into modules. Pseudo-
code, a generic programming language, can be used to determine the struc-

ture of WORDCOUNT (and of the other subroutines as well). The following

pseudocode is one way WORDCOUNT may be implemented:

subroutine WORDCOUNT
INITIALIZE
repeat
GETWORD
if no word found then

return
LOOKUP
if word found then

INCREASE
else

INSERT
MAKECOUNT

forever
end WORDCOUNT

WORDCOUNT is implemented as an infinite loop, since the length of the

paragraph text is unknown. The only way out of the loop is to have GETWORD
fail to find a new word in the text (that is, by reaching the "$"). This approach

satisfies another requirement of structured programming: Routines should

contain one entry point and one exit point. Many of the routine examples that

we will study in this chapter will be written in this fashion. It is up to the

programmer how the repeat-forever and if-then-else statements are imple-

mented.

The if-then statement can be coded in many different ways. The actual

structure is IF <condition> THEN <action>. The condition must be satisfied

for the action to take place. In the WORDCOUNT example, the first IF state-

ment causes the subroutine to return ifGETWORD did not find a new word in
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the paragraph text. Let us assume that GETWORD returns a 00 in the lower

byte of D5 if it did find a word, and FFH if it did not. One way to code the IF

statement might look like this:

BSR GETWORD
CMP.B #0,D5
BNE NEXT
RTS

NEXT

The BSR to GETWORD will adjust the value of D5 accordingly. The CMP
instruction is used to determine if D5 contains 0. If it does not, a branch to

NEXT is performed. This will cause execution to continue (with a BSR to

LOOKUP as the next instruction). If D5 does contain the BNE will not take

place and the RTS instruction will execute instead.

IF-THEN-ELSE statements are very similar, with coding like this:

BSR LOOKUP
CMP.B #0,D5
BEQ THENCODE

ELSECODE:

Other pseudocode structures include the REPEAT-UNTIL and WHILE-
DO. The REPEAT-UNTIL structure looks like this:

repeat
<statements>

until <condition>

Coding the REPEAT-UNTIL structure depends on the type of condition being

tested. A sample structure and its associated code may look like this:

initialize counter to 100 MOVE B #100, D2
repeat
GETDATA AGAIN BSR GETDATA
PR0CESSDATA BSR PR0CESSDATA
decrement counter SUBI B #1,D2

until counter = BNE AGAIN

One important point about using loop counters is that the loop-count register

(D2 in this example) must not be altered during execution of the statements

within the loop.

The WHILE-DO structure is slightly different, performing the condition

test at the beginning of the loop instead of the end. One example of a WHILE-
DO is:

while char <> 'A' do
<statements>

end-while

The corresponding machine instructions for this loop might look like this:

WHILE CMP.B 'A'.Dl
BEQ NEXT
<loop instructions>
BRA WHILE

NEXT

Here it is important to modify the loop variable (Dl in this case) somewhere
within the loop, to avoid getting stuck inside it.



118 Chapter 5
|
An Introduction to Programming the 68000

Remember that there are no fixed methods for converting pseudocode into

machine instructions. Use your imagination and come up with your own tech-

niques.

5.3 DATA GATHERING

When a microprocessor is used in a control application, one of its most impor-

tant tasks is to gather data from the external process. This data may be com-

posed of inputs from different types of sensors, parallel or serial information

transmitted to the system from a separate source, or simply keystrokes from

the user's keyboard.

Usually a section of memory is set aside for the storage of the accumulated

data, so the processor can alter or examine it at a later time. The rate at which

new data arrives, as in keystrokes from a keyboard, may be very slow, with a

new item arriving every few milliseconds or so. When the data rate is slow, the

processor will waste valuable execution time waiting for the next new data

item. Therefore, an efficient solution is to store the data as it arrives, and only

process it when all items have been stored. We will examine two examples of

gathering data in this section. The first one deals with keyboard buffering and

the second with packing BCD numbers.

The Keyboard Buffer

One of the first things anyone involved with computers learns is that nothing

happens until you hit return. All keystrokes up to return must be saved for

processing after return is hit. The subroutine presented here, KEYBUFF, is

used to store these keystrokes in a buffer until return is hit. The processor will

then be free to examine the contents of the keyboard buffer at a later time.

KEYBUFF makes use of a subroutine called GETKEY, which is used to get a

keystroke from the keyboard. The ASCII code for the key is returned by GET-
KEY in the lower byte of DO. GETKEY takes care of echoing the key back to

the user's display. It is not necessary at this time to see the actual code for

GETKEY, but an important point to keep in mind is that GETKEY will not

return a value in DO until a key is struck.

The ASCII codes for the keys entered are saved in a buffer called KEYS,
which is limited to 128 characters. No code is provided to prevent more than

this number of keystrokes. Can you imagine what problems occur when the

129th key is entered?

CR EQU ODH ; ASCII code for return
KEYS BLOCK 128 : key buffer

KEYBUFF MOVEA.L #KEYS , A0 : A0 points to start of buffer
NEXTKEY BSR GETKEY ;get key from user

MOVE.B D0,(A0)+ ; save key in buffer
CMPI.B #CR.D0 ;continue until return is seen
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BNE
RTS

NEXTKEY

An important feature missing in this example is the use of special codes for

editing. No means are provided for editing mistaken keys entered by the user.

At the very least, the user should be able to enter a backspace to correct a

previous error. You are encouraged to solve this problem, and the other one

dealing with limiting the number of keystrokes, yourself.

Packing BCD Numbers

Any program that deals with numbers must use one of two approaches to

numeric processing. The program must either treat the numbers as binary

values or as BCD values. The use of binary operations provides for large num-
bers with a small number of bits (integers over 16 million can be represented

with only 24 bits), but is limited in accuracy when it comes to dealing with

fractions. The use of BCD provides for greater accuracy but requires software

to support the mathematical routines, and this software greatly increases the

execution time required to get a result. Even so, BCD numbers have found

many uses, especially in smaller computing systems. The example we will

study here is used to accept a multidigit BCD number from a keyboard and
store it in a buffer called BCDNUM. The trick is to take the ASCII codes that

represent the numbers through 9 and convert them into BCD numbers. Two
BCD numbers at a time are packed into a byte. So, if the user enters 53297,

three of the bytes in BCDNUM will be 05 32 97. BCDNUM will be limited to

6 bytes, thus making 12-digit BCD numbers possible. The subroutine PACK-
BCD will take care of packing the received BCD numbers into bytes and stor-

ing them in BCDNUM. No error checking is provided to ensure that no more
than 12 digits are entered, or that the user has entered a valid digit. If the

number entered is less than 12 digits long, the user enters return to complete

the entry. All numbers will be right justified when saved in BCDNUM. This

means that numbers less than 12 digits long will be filled with leading zeros.

For example, 53297 will become 00 00 00 05 32 97, with the first 00 byte being

the beginning of the buffer.

CR EQU 0DH
BCDNUM BLOCK 6 storage for 12 BCD digits

PACKBCD M0VEA.L #BCDNUM A0 point to beginning of buff
M0VEQ #5, DO init loop counter

CLEARBUFF CLR.B (A0) + clear all bytes in BCDNUM
DBF DO , CLEARBUFF with this loop

GETDIGIT BSR GETKEY get a number from the user
CMPI.B #CR,D0 done?
BEQ DONE
SUB.B #30H,D0 remove ASCII bias
M0VE.B D0.D1 save first digit
BSR GETKEY get another number
CMPI.B #CR,D0 done?
BEQ SAVEIT
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SUB.B #30H,D0 ; remove ASCII bias
ASL.B #4,D1 ;move BCD digit into upper nibble
OR.B D0.D1 ;pack both digits into Dl
MOVE.B D1,-(A0) ;save digits in buffer
BRA GETDIGIT

SAVEIT MOVE.B D1,-(A0) ;save last digit in buffer
DONE RTS

The loop at the beginning of PACKBCD writes zeros into all 6 bytes of

BCDNUM. This is done to automatically place all leading zeros into the buffer

before any digits are accepted. Notice also that A0 has been advanced to the

end of the buffer when the loop has finished. We need A0 to start at the end of

BCDNUM because we use predecrement addressing to store the digits as they

are entered. GETKEY is used to get a BCD number from the user (assuming
that no invalid digits are entered). Subtracting 30H from the ASCII values

returned by GETKEY converts the ASCII character code (35H for "5") into the

correct BCD value. The ASL and OR instructions perform the packing of two
BCD digits into a single byte. Can you spot the changes made to the BCD
number as it is stored?

5.4 SEARCHING DATA TABLES

In this section we will see a few examples of how a block of data may be

searched for single or multibyte items. This technique is a valuable tool and
has many applications. In a large database, information about many individu-

als may be stored. Their name, address, social security number, phone number,

and many other items of importance may be saved. Finding out if a person is in

the database by searching for any of the items just mentioned requires an

extensive search of the database. In an operating system, information about

users may be stored in a special access table. Their user name, account num-
ber, and password might be included in this table. When users desire to gain

access to the system, their entries in the table must be located by account

number or name and their passwords checked and verified. Once on the sys-

tem, a user will begin entering commands. The commands entered must be

checked against an internal list to see if they exist before processing can take

place. In a word processing program, a special feature might exist that allows a

search of the entire document for a desired string. Every occurrence of this

string must be replaced by a second string. For example, the author may notice

that every occurrence of "apples" must be changed to "oranges." If only one or

two of these strings exist, the author will edit them accordingly. But if "apples"

occurs in 50 different places, it becomes very time consuming and inefficient to

do this manually. Let us now look at a few examples of how a data table may be

searched.

Searching for a Single Item

The first search technique we will examine involves searching for a single

item. This item might be a byte, word, or long word value. The following sub-
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routine searches a 100-element data table for a particular byte value. Upon
entry to the subroutine, the byte to be searched for is stored in ITEM. The item

may or may not exist within the data table. To account for these two condi-

tions, we will need to return an indication of the result of the search. The carry

flag is used to do this. If the search is successful, we will return with the carry

flag set. If the search fails, we return with the carry flag cleared.

DATA BLOCK 100
ITEM BLOCK 1

FINDBYTE MOVEA.L #DATA,A0 ;init data pointer
MOVE.W #99, DO ;init loop counter
MOVE.B ITEM.D1 ;load Dl with search item

COMPARE CMP.B (AO) + ,D1 ; compare item with data in table
BEQ FOUND
DBF DO, COMPARE ; compare next item
ANDI #0FEH,CCR ;clear carry flag
RTS

FOUND ORI
RTS

#01H,CCR ;set carry flag

Notice how logical operations have been used to directly modify the carry flag,

depending on the results of the search. Using the carry flag in this manner
allows the programmer to write much simpler code. For example, only two

instructions are needed to determine the result of the search:

BSR
BCS

FINDBYTE
SUCCESS

Of course, other techniques may be used to indicate the results. The nice thing

about using the flags is that they require no external storage and can be used

whenever a binary condition (true/false) is the result.

Searching for the Highest Integer

When working with data it often becomes necessary to find the largest value in

a given set of numbers. This is useful in finding the range of the given set and
also has an application in sorting. MAXVAL is a subroutine that will search

an array called NUMBERS for the largest positive byte integer. No negative

numbers are allowed at this time. The result of the search is passed back to the

caller in the lower byte of D4.

;init data pointer
; assume is largest to begin with
; init loop counter
; compare current value with new data
;branch if new value is not greater
;load new maximum value
;point to next location
; continue until all locations checked

NUMBERS BLOCK 128

MAXVAL MOVEA.L #NUMBERS,A
CLR.B D4
MOVE.W #127, D2

CHECKIT CMP.B ( A2 ) + , D4
BCC NOCHANGE
MOVE.B -(A2) ,D4
ADDA .

L

#1,A2
NOCHANGE DBF

RTS
D2, CHECKIT
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Since postincrement addressing is used during the compare operation, it is

necessary to use predecrement addressing when loading the new maximum
value. The ADDA instruction is also necessary to ensure that we do not get

into an infinite loop when we encounter a new maximum value. Using BCC
after the compare operation treats all bytes as unsigned integers. Other forms

of the conditional branch will allow signed numbers to be detected as well.

Comparing Strings

A very important part of any program that deals with input from a user in-

volves recognizing the input data. Consider the password required by most

users of large computing systems. The user must enter a correct password or be

denied access to the system. Since the password may be thought of as a string

of ASCII characters, some kind of string comparison operation is needed to see

if the user's password matches the one expected by the system. The following

subroutine compares two strings of 10 characters each, returning with the

carry flag set if the strings are exactly the same. If you think of one string as

the password entered by the user and the other as the password stored within

the system, you will see how they are compared.

STRINGA ASCII
STRINGB ASCII

alphabetic

'

alphabet '

CHKSTRING

CHECKCHAR

NOMATCH

MOVEA.L
MOVEA.L
MOVE.W
CMPM.B
BNE
DBF
ORI
RTS
ANDI
RTS

#STRINGA,A0 ; init pointer to first string
#STRINGB,A1 ;init pointer to second string
#9, DO ;init loop counter
(A0)+,(A1)+ ;compare item from each string
NOMATCH ;even one difference causes failure
DO, CHECKCHAR ; check all elements
#01H.CCR ;strings are identical, set carry

#0FEH,CCR ; strings are different, clear carry

The two strings used in the example are not identical because the last two

characters are different.

A Command Recognizer

Consider a small single-board computer system that allows you to do all of the

following:

1. Examine/alter memory (EXAM)

2. Display memory (DUMP)

3. Execute a program (RUN)

4. Terminate program execution (STOP)

5. Load a program into memory (LOAD)
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Each of the five example commands has a specific routine address within the

memory map of the system. For example, the DUMP command is processed by

the code beginning at address 0004A2C. The command recognizer within

the operating system of the small computer must recognize that the user has

entered the DUMP command, and jump to address 0004A2C. This requires

that both a string compare operation and a table lookup be performed. The
following routine is one way this may be accomplished.

COMMANDS ASCII ' EXAM

'

ASCII 'DUMP'
ASCII 'RUN '

ASCII 'STOP'
ASCII 'LOAD'

JUMPTABLE LONG DOEXAM
LONG DODUMP
LONG DORUN
LONG DOSTOP
LONG DOLOAD

COMBUFF BLOCK 4

RECOGNIZE MOVEA.L #C0MMANDS,A0
MOVEA.L #JUMPTABLE,A4
MOVE.W #4, DO
MOVE.L COMBUFF, D2

NEXTCOM CMP.L ( AO ) + , D2
BEQ GETADDR
ADDA .

L

#4,A4
DBF DO, NEXTCOM
JMP COMERROR

GETADDR MOVE.L ( A4 ) , A2
JMP (A2)

point to command table
point to routine address table
init loop counter
load D2 with command text
compare command text
go get jump address if match
move to next routine address

command not found
load A2 with routine address
jump to command routine

The set of valid commands begins at COMMANDS. The addresses for each

command routine begin at JUMPTABLE. The command entered by the user is

saved in the 4 bytes beginning at COMBUFF. The purpose of RECOGNIZE is

to compare entries in COMMANDS with COMBUFF. Every time a match is

not found, a pointer (A4) is advanced to point to the next routine address in

JUMPTABLE. When a match is found, A4 will point to the start of the routine

address saved in memory. This routine address is then loaded into A2 for use

by JMP. If none of the commands match the user's, a jump is made to COMER-
ROR (possibly a routine that will output an error message saying "Illegal

command").

5.5 SORTING

It is often necessary to sort a group of data items into ascending (increasing) or

descending (decreasing) order. On average, the search time for a sorted list of

numbers is smaller than that of an unsorted list. Many different sorting algo-

rithms exist, with some more efficient than others. The sorting algorithm cov-

ered here is called a bubble sort. A bubble sort consists ofmany passes over the
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elements being sorted, with comparisons and swaps of numbers being made
during each pass. A short example will serve to introduce you to the bubble-

sort technique. Consider this group of numbers:

7 10 6 3 9

It is necessary to perform only four comparisons to determine the highest num-
ber in the group. We will repeatedly compare one element in the group with

the next element, starting with the first. If the second element is larger than

the first, the two numbers will be swapped. By this method we guarantee that

after four comparisons, the largest number is at the end of the array. Check
this for yourself. Initially, 7 and 10 are compared and not swapped. Then 10

and 6 are compared and swapped because 10 is greater than 6. The new array

looks like this:

7 6 10 3 9

Next, 10 and 3 are compared and swapped. Then 10 and 9 are compared and

swapped. At the end of the first pass, the array is:

It is no longer necessary to compare any of the elements in the array with the

last one, since we know it to be the largest. The next pass will only compare the

first four numbers, giving this array at the end of the second pass:

6 3 7 9 10

The third pass will produce:

3 6 7 9 10

and you may notice now that the array is sorted. However, this is due to the

original arrangement of the numbers, and for completeness a final pass must

be performed on the first two numbers. It is interesting to note that the five

numbers being sorted required four passes. In general, N numbers will require

N - 1 passes. The subroutine SORT presented here implements a bubble sort.

Dl is used as the pass counter, registers D2 and D3 are used for swapping

elements, and D4 is used as a loop counter. The number of elements to be

sorted is saved as a word count in NVAL. The appropriately sized BLOCK
statement is needed for VALUES, with only 16 locations reserved in this ex-

ample. Also, only positive integers may be sorted (because of the use ofBCC in

the comparison).

get number of data items
init loop counter
init data pointer
get first element
get second element

VALUES BLOCK 16

NVALS WORD 16

SORT M0VE.W NVALS, Dl

D0PASS M0VE.W D1.D4
M0VEA.L #VALUES,A0

CHECK M0VE.B ( A0 ) , D2
M0VE.B 1(A0) ,D3
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CMP.B D2.D3
BCC NOSWAP
MOVE.B D2 , 1 ( AO

)

MOVE.B D3
,

( AO

)

ADDA .

L

#l,AO
SUB.W #1,D4
BNE CHECK
SUB.W #1.D1
BNE DOPASS
RTS

; compare with second element

;swap elements

;point to next pair
;decrement loop counter

;decrement pass counter

By advancing AO in steps of 1, memory references (AO) and KAO) always ac-

cess the next two elements in the VALUES array. When it is necessary to swap
them, the registers are written back into memory in a swapped fashion. The
use of different conditional jump instructions will allow for negative numbers
to be sorted as well.

5.6 COMPUTATIONAL ROUTINES

This section covers examples of how the 68000 performs standard mathemati-

cal functions. Since the processor has specific instructions for both binary and
BCD operations, we will examine sample routines written around those in-

structions. Math processing is a major part of most high-level languages and
the backbone of specialized application programs, such as spreadsheets and
statistical analysis packages. Most processors, however, are limited in their

ability to perform complicated math. When complex functions such as SIN(X)

or LOG(Y) are needed, the programmer is faced with a very difficult task of

writing the code to support them. Even after the code is written and judged to

be correct, it will most likely be very lengthy and slow in execution speed. For

this reason, some systems are designed with math coprocessor chips. These

chips are actually microprocessors themselves whose instruction sets contain

only mathematical instructions. Adding a coprocessor eliminates the need to

write code to perform the math function. SIN(X) is now an instruction executed

by the coprocessor. The main CPU simply reads the result from the coproces-

sor. The coprocessor available for the 68000 is the 68881 floating-point copro-

cessor, which we will examine in Chapter 9.

The examples we will see in this section deal only with addition, subtrac-

tion, multiplication, and division. We will, however, also look at a few ways
these simple operations can be applied to simulate more complex ones.

Binary Addition

Binary addition is accomplished with any of the following instructions: ADD,
ADDI, ADDQ, or ADDX. All four perform addition on data registers and/or

memory locations. To add data to an address register, use ADDA. The example
presented here is used to find the signed sum of a set of data. The data consists

of signed 8-bit numbers. Since it is possible for the sum to exceed 127, we use

16 bits to represent the result.
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SCOKKS CLOCK 200
.MINI CLOCK 2

M0VEA.L //SCORES , AO
; init pointer to data

M0VE.W #199. D6 ; init loop counter
CLR.W 1)1 ; clear result
MOVE.B (AO) 1 .1)0 : load DO with value
EXT . W DO ;sign extend into 16 bits
ADD.W D0.D1 ;add new value to result
DBF D6.ADDEM ;do all values
MOVE.W Dl.SUM ; save result in memory
RTS

Even though the data consists of signed 8-bit numbers, we can perform 16-bit

additions if wo first use EXT to extend the signs of the input numbers (from 8

to L6 bits).

Binary Subtraction

Binary subtraction is implemented by SUB, SUBI, SUBQ, and SUBX. All of

these instructions work with memory locations and/or data registers. SUBA is

also included when subtraction involves an address register. The example pre-

sented here shows how two blocks of memory may be subtracted from each

other. One application in which this technique is useful involves digitally en-

coded waveforms. Suppose that two analog signals, sampled at an identical

rate, must be compared, [fthe difference is computed by subtracting the binary

representation of each waveform and the resultant waveform displayed by

sending the now data to an analog-to-digital converter, we will see a straight

line at the output if the waveforms are identical. WAVE1 and WAVE2 are

Labels associated with the 2K word blocks of memory that must be subtracted.

Because of the addressing mode used, the resulting data will overwrite the

data saved in WAVE2's area.

WAVEl BLOCK
WAVE2 BLOCK

1PM,,

4096
; reserve 2048 words of storage

MIHWAVK M0VEA.L #WAVE1.A0

MIHKM

ACL A 1 #2048. A0
M0VKA 1. //wavk:

1

. ai

ADDA I #2048. A 1

MOVE w #2047. DO
AND] #0EFH.CCR
SUBX . W (A0). (Al)

DB1 D0.SUBEM
RTS

init pointer to bc>f,i nni ny of WAVEl
advance pointer to end of data tabl<

repeat for second table

init loop counter
oleai x flag
Bubtraot (WAVE] WAVE2)

For the subtraction to work properly, we must ensure that the X bit m the

condition code register is cleared prior to each SUBX. Why does ANDl need to

lx> inside the loop?
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Binary Multiplication

Two instructions are available for performing binary multiplication. MULU
(unsigned multiply) is used to multiply two 16-bit operands, one of them con-

tained in a data register. MULS (signed multiply) generates a signed result

using signed operands of 16 bits each. In both cases, the result is 32 bits long.

When 32-bit precision is not enough, we must turn to an alternative method to

perform the math. One solution is to add a math coprocessor chip. The benefit

of doing this is reflected in a decrease in time needed to perform the math.

Also, many complex functions are available in the coprocessor. The disadvan-

tage is in the added cost of the hardware. Coprocessors tend to be expensive.

If the hardware cost is excessive, the only other solution is to use software.

The example presented here is used to perform 32- by 16-bit multiplication on

unsigned integers. The 48-bit result represents a significant increase over the

32 bits the processor is limited to. The method used to perform the multiplica-

tion is diagrammed in Figure 5.1. The 32-bit operand is represented by two

16-bit halves, A and B. The 16-bit operand is represented by C. Multiplying B
by C will yield a 32-bit result. The same is true for A and C, except that A is

effectively shifted 16 bits to the left, making its actual value much larger. To

accommodate this, 16 zeros are placed into the summing area in such a way
that they shift the result ofA times C the same number of positions to the left.

This is analogous to writing down a zero during decimal multiplication by

hand. The lower 16 bits of the result are the same as the lower 16 bits of the BC
product. The middle 16 bits of the result are found by adding the upper 16 bits

of the BC product to the lower 16 bits of the AC product. The upper 16 bits of

the result equal the upper 16 bits of the AC product, plus any carryout of the

middle 16 bits. In the following routine, data register DO contains the 32-bit

value we know as AB. Data register Dl contains the 16-bit multiplier C.

B

* 16

c

<—— U>

Inputs

I

< 16 —
Summing

area

48-bit result

FIGURE 5.1 Diagram of 32- by 16-bit multiplication
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LOWER BLOCK 2

MIDDLE BLOCK 2

UPPER BLOCK 2

MULTIPLY MOVE.W D1.D2
MULU D0.D2
MOVE.W D2, LOWER
MOVE.W D1.D3
SWAP DO
MULU D0,D3
SWAP D2
ADD.W D3.D2
MOVE.W D2, MIDDLE
SWAP D3
CLR.W D2
ADDX .

W

D2.D3
MOVE.W D3, UPPER
RTS

; lower 16 bits of result
imiddle 16 bits of result
; upper 16 bits of result

;let D2 equal Dl (C)

;do B times C

;save partial result
;let D3 equal Dl (C)

; exchange bits 0-15 with 16-31
;do A times C

; switch 16-bit halves of BC product
;
generate middle 16 bits of result
;and save them
; get upper bits of AC product
;clear lower word of D2
; form upper 16 bits of result
;and save them

It should be possible to relate the code of this example to Figure 5.1. Generat-

ing the individual AC and BC products is easily done via MULU. Adding the

upper 16 bits of the BC product to the lower 16 bits of the AC product is

accomplished by using SWAP before the ADD instruction. Any overflow out of

the middle 16 bits will be placed into the X flag. This carry is then added to the

upper 16 bits of the AC product to complete the operation. It is necessary to

clear a data register for use with the ADDX instruction in this case, because

ADDX does not support immediate data operands.

Binary Division

The 68000 microprocessor supports binary division with its DIVU and DIVS
(unsigned and signed division) instructions. Both instructions divide a 32-bit

quantity by a 16-bit quantity. The 32-bit result is composed of a 16-bit quotient

and a 16-bit remainder. When division by zero is attempted, an exception will

be generated on completion of the instruction. Many applications exist for the

division operation. It can be used to find averages, probabilities, factors, and

many other items that are useful when we are working with sets of data. The
following subroutine is used to find a factor of a given number, when supplied

with another factor. For example, FACTOR will return 50 as a factor, when 6

and 300 are supplied as input (because 300 divided by 6 equals 50 exactly).

FACTOR will return if no factor exists (that is, 300 divided by 7 gives

42.857143, which is not an integer; thus, both numbers cannot be factors).

NUMBER BLOCK 4

FACT0R1 BLOCK 2

FACT0R2 BLOCK 2

32-bit input number
16-bit input factor
16-bit output factor

ACTOR M0VE.L NUMBER, DO
DIVU FACT0R1.D0
SWAP DO

load DO with number
divide DO by input factor
;test remainder for zero
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CMPI.W #0,D0
BEQ SAVEDO
CLR.L DO

SAVEDO SWAP DO
MOVE.W DO , FACT0R2
RTS

;branch if factor is integer
;clear entire result
:get result back
; and save it

Since the remainder appears in the upper 16 bits of DO, we use SWAP to move
the remainder into the lower 16 bits for testing. It then becomes necessary to

do a second SWAP, in case the result was a valid factor.

BCD Addition

In the binary number system, we use 8 bits to represent integer numbers in the

range to 255 (00 to FF hexadecimal). When the same 8 bits are used to store a

binary coded decimal (BCD) number, the range changes. Integers from to 99

may now be represented, with the 10s and Is digits using 4 bits each. If we
expand this reasoning to 16 bits, we get a 0-to-65535 binary integer range, and

a 0-to-9999 BCD range. Notice that the binary range has increased signifi-

cantly. This is always the case and represents one of the major differences

between binary and BCD numbers. Even so, we use BCD to solve a nasty

problem encountered when we try to represent some numbers using binary.

Consider the fractional value 0.7. It is impossible to exactly represent this

number using a binary string. We end up with 0.101100110011. . . . The last

four bits (0011) keep repeating. So, we can get very close to 0.7 this way
(0.699999 . . .), but never actually get 0.7. When we use this binary represen-

tation in a calculation, we will automatically generate a roundoff error. The
purpose of BCD is to eliminate the roundoff error (at the cost of a slower com-

putational routine).

For the purposes of this discussion we will use a BCD representation that

consists of 4 bytes stored in consecutive memory locations. The first byte is the

most significant byte. The fourth byte is least significant. All BCD numbers
stored this way (0 to 99999999) will be right justified. Examine the following

two numbers and their memory representations to see what is meant by right

justification:

34298: 00 03 42 98

7571364: 07 57 13 64

We can increase the range of numbers by adding more bytes of storage per

number. Each new byte gives two additional BCD digits. Furthermore, we
could also add an additional byte to store the exponent of the number. A single

byte could represent exponents from 127 to -128 ifwe use signed binary num-
bers. Standards exist that define the format of a BCD number (and of binary

numbers as well, for use with math coprocessors), but we will not cover them at

this time.

The example presented here shows how two BCD numbers (each stored in

memory at NUMA and NUMB) can be added together. The ABCD (add deci-
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mal with extend) instruction is used to perform the BCD addition. ABCD will

add 2 bytes together, each containing two BCD digits. The result will also be in

BCD, with the X flag containing any carryout of the most significant digit. For
example, if 37 and 85 are added, X will equal 1 and the result operand will

contain 22. Because we have defined the 4-byte storage array for a BCD num-
ber to be right justified, it is necessary to begin adding with the least signifi-

cant byte in the array. The result is stored in NUMB, overwriting the BCD
number already saved.

NUMA BLOCK 4
NUMB BLOCK 4

ADDBCD MOVE.W #3, DO
MOVEA.L #NUMA , A0
ADDA .

L

#4,A0
MOVEA.L #NUMB,A1
ADDA .

L

#4,A1
ANDI #0EFH,CCR

DECIADD ABCD -(AO).-(Al)
DBF DO, DECIADD
RTS

init loop counter
init pointer to first BCD number
and adjust pointer to LSB
repeat for second BCD number

clear X flag
decrement pointers and add decimal

Upon return from the subroutine the X flag will contain any carryout of

the MSB.

BCD Subtraction

BCD subtraction is implemented in much the same way as BCD addition, and

the subroutine presented here uses the same 4-byte BCD number definition

covered in the previous section. The difference in this routine is that the ad-

dresses of the two BCD numbers are assumed to be contained in address regis-

ters A0 and Al upon entry. Assuming that A0 points to NUMA and Al to

NUMB, two different subtractions are possible.

AMINUSB EXG
BMINUSA MOVE.W

ANDI
DECISUB SBCD

DBF
RTS

A0.A1
#3, DO
#0EFH.CCR
-(AO).-(Al)
DO, DECISUB

; swap pointers
; init loop counter
;clear X flag
; adjust pointers and subtract decimal

Upon return, the X flag will indicate any borrow from the MSB. IfX is set upon

return, the result of the subtraction is negative. The result will replace the

contents of NUMB when BMINUSA is the entry point to the subroutine. En-

tering at AMINUSB will cause the result to replace NUMA.

BCD Multiplication

Since BCD multiplication is not directly implemented on the 68000, there are

at least two ways it can be simulated. One method is to convert both BCD
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numbers into their binary equivalents and then use MULS to find the result.

Of course, the binary result will have to be converted back into BCD. A proce-

dure to accomplish this method is as follows:

BCDMULl MOVEA.L A0.A6
BSR TOBINARY
MOVE.L D6.D0
MOVEA.L A1.A6
BSR TOBINARY
MOVE.L D6.D1
MULS DO.D1
MOVE.L D1.D6
BSR TOBCD
RTS

; convert first number

;save it in DO
; convert second number

; save it in Dl
; multiply numbers
; convert back into BCD

The two conversion routines, TOBINARY and TOBCD, operate as follows:

TOBINARY converts the BCD number pointed to by A6 into a signed binary

number and returns it in D6. TOBCD converts the signed binary number in D6
into a BCD number and saves it in memory at BCDNUM.

The advantage ofBCDMULl is its speed of execution. Its disadvantage lies

in the size of the numbers that may be multiplied. Since MULS will only

multiply signed 16-bit numbers, the range of inputs is limited (32767 to

-32768).

A second approach is to do all the math in BCD. This will require a number
of repetitive additions to generate the answer. The need for this looping will

unfortunately slow down the execution speed. This disadvantage is overcome

by the ability to multiply larger numbers than BCDMULl. BCDMUL2 will

multiply two 2-digit BCD numbers stored in the lower byte of registers DO and
Dl. The BCD result will be placed in D6. Further programming easily extends

the input numbers into additional digits.

The multiplication performed by BCDMUL2 is detailed in Figure 5.2. As
the figure shows, the product resulting from the 10s digits of the multiplier is

shifted left one BCD digit, to simulate the result of multiplying by 10.

BCDMUL2 MOVE.W D1.D5 ; find the Is product
ANDI .

W

#0FH,D5
BSR D0TIMESD5
MOVE.W D6.D7 ; save result in D7
MOVE.W D1.D5 ; find the 10s product
LSR.B #4,D5
ANDI.W #0FH,D5
BSR D0TIMESD5
LSL.W #4,D6 ; multiply D6 by 10 (o

BSR D6PLUSD7 ; find final result
RTS

D0TIMESD5 CLR.W D6 ;init result
BRA NEXT

AGAIN ANDI #0EFH,CCR ; clear X
ABCD D0.D6 ;add to result
BCC NEXT ;test for 100s carry
ADD.W #0100H,D6

NEXT DBF D5, AGAIN
RTS ; return result in D6

D6PLUSD7 ANDI #0EFH,CCR ;clear X
ABCD D7.D6 ;add lower two digits
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DO 59 Multiplicand

Dl 27

Second product
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correction
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|
80

|
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|
13

BCD
D6 + D7

D6

FIGURE 5.2 Multiplying two BCD numbers

R0R.W #8,D6
R0R.W #8,D7
ABCD D7.D6 ; add upper two digits
R0L.W #8.D6 ;correct result
RTS

Notice how subroutines are used to make the overall process easier to code and

read. Although we have not shown it in this example or in previous ones, it is

assumed that a valid stack pointer has been assigned to save the subroutine

return addresses.

BCD Division

All of the BCD operations we have examined so far have ignored treatment of

exponents. A collection of subroutines that perform BCD math must have

methods of dealing with exponents or be very limited in its applications. As
previously mentioned, we can add a single byte to our BCD format to include

exponents in the calculations. A single byte gives a signed integer range from
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-128 to 127. This slightly changes the format of the BCD numbers repre-

sented, and requires normalization of the numbers before conversion. Nor-

malization is necessary because we have no way of storing a decimal point

within the binary data we use to represent a number. Through normalization,

we end up with a standard representation by altering the mantissa and adjust-

ing the exponent accordingly. For example, 576.4 and 5.764E2 are equal, as

are 23497.28 and 2.349728E4. In these examples, both numbers have been

normalized so that the first digit of the mantissa is always between 1 and 9.

This method works for fractional numbers as well. Here we have 0.0035 equal-

ing 3.5E-3. The addition of an exponent byte to our format, together with the

new technique of normalization, will require that we now left justify our BCD
numbers. Representing these numbers in our standard format gives

576.4: 02 57 64 00 00

23497.28: 04 23 49 72 80

0.0035: FD 35 00 00 00

where the first byte is used to represent the signed binary exponent.

Notice the 2s complement representation of the exponent - 3 in the third

set of data bytes.

Adding exponent capability to our BCD format complicates the routines

we have already seen. The addition routine (as well as subtraction) will only

give valid results when we are adding two numbers whose exponents are

equal. Since this is rarely the case, we need to adjust the exponent of one

number before doing the addition. For instance, if we wish to add 5027 and
394, we must first normalize both numbers:

5027: 03 50 27 00 00

394: 02 39 40 00 00

Because the exponents are different, we have to adjust one of the numbers to

correctly add them. If we adjust the number with the higher exponent, we may
lose accuracy in our answer. It is much safer to adjust the smaller number.
This gives us

5027: 03 50 27 00 00

394: 03 03 94 00 00

It is clear now that BCD addition of the four trailing bytes will give the correct

answer. Notice that we have not changed the value of the second number, only

its representation.

BCD multiplication and division also require the use of exponents for best

results. Unfortunately, it is not a simple matter of adding exponents for multi-

plication and subtracting them for division. Special rules are invoked when we
multiply or divide two negative numbers. In any case, we must take all rules

into account when writing a routine that will handle exponents.
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The BCD division routine presented here keeps track of exponents during

its calculations. The subroutine ALIGN adjusts the dividend so that it is al-

ways 1 to 9 times greater than the divisor. ALIGN modifies the exponent of the

dividend as well. Subroutine MSUB performs multiple subtractions. The num-
ber of times (0 to 9) the divisor is subtracted from the dividend is returned in

the lower 4 bits of D6. Both routines utilize A0 and Al as pointers to the

memory locations containing the BCD representations of the dividend and
divisor. Data register D4 accumulates the individual results from MSUB into

an 8-digit BCD result. The exponent is generated by the EXPONENT subrou-

tine, which uses the initial exponent values plus the results ofALIGN to calcu-

late the final exponent, which is returned in the lower byte of D5.

DIVIDEND BLOCK 5 ; reserve 5 bytes
DIVISOR BLOCK 5

BCDDIV MOVEA.L #DIVIDEND ,A0 ; init
MOVEA.L #DIVIS0R, fcl ; init
CLR.B D5 ;clear
MOVE.W #7, DO ; init

DIVIDE BSR ALIGN ; align
BSR MSUB ;perfo
ROXL.L #4,D4 ;shift
ANDI.B #0FH,D6 ;mask
OR.B D6.D4 ; save
DBF DO, DIVIDE ; conti
BSR EXPONENT ;

gener
RTS

bytes (one byte for exponent)

first pointer
second pointer
exponent accumulator

loop counter
numbers

rm multiple subtractions
result one digit left

out result from MSUB
result in D4
nue for more precision
ate final exponent

BCDDIV does not check for division by zero, but this test could be added easily

with a few instructions.

Deriving Other Mathematical Functions

Once subroutines exist for performing the basic mathematical functions (addi-

tion, subtraction, multiplication, and division), they may be used to derive

more complex functions. Though all forms of high-level math operations are

available with the addition of a math coprocessor, there are times when we

must get by without one. The examples presented here show how existing

routines can be combined to simulate higher-level operations. All of the exam-

ples to be presented assume that the following multiprecision subroutines

exist:

Routine Operation

ADD (A2) = (A0) + (Al)

SUBTRACT (A2) = (A0) - (Al)

MULTIPLY (A2) = (A0) * (Al)

DIVIDE (A2) = (A0) / (Al)
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In all cases. AO and Al point to the two input numbers upon entry to the

subroutine and A2 points to the result. Thus, (AO) means the number pointed

to by AO, not the contents of AO. By defining the routines in this way. we can

avoid discussion about whether the numbers are binary or BCD.
The first routine examined is used to raise a number to a specified power

(for example. 5 raised to the 3rd power is 125). This routine uses the binary

number in DO as the power. The number raised to this power is pointed to by

AO. The final result is pointed to by Al.

POWER BSR COPY ; make a copy of the input number
MAKEPOW BSR MULTIPLY ; compute next power result

EXG A1.A2 ;use result as next input
DBF DO , MAKEPOW
RTS

POWER is written such that the power must be 2 or more. Negative powers

and powers equal to or 1 are not implemented in this routine ( and are left as

an exercise). COPY is a subroutine that makes a copy of the input number
pointed to by AO. The copied number is pointed to by Al.

The next routine is used to generate factorials. A factorial of a number (for

example, 5! or 10! or 37!) is found by multiplying all integers up to and includ-

ing the input number. For instance, 5! equals 1*2*3*4*5. This results in 5!

equaling 120. Do a few factorial calculations yourself, and you will see that the

result gets very large, very quickly! FACTORIAL will compute the factorial of

the integer value stored in DO. The result is pointed to by Al.

;init counter
;init result
; compute partial factorial
;use result as next input
; increment counter

INCREMENT is a subroutine that performs a specific task: Add one to the

number pointed to by AO. We use INCREMENT to generate the sequence of

integers that get multiplied together. The symbol ONE refers to a predefined

storage area in memory that contains the value 1.

The next routine, ROOT, computes square roots. The formula, and an ex-

ample of how it works, is presented in Figure 5.3. This type of formula is

iterative. This means that we must run through the formula a number of

times before getting the desired result. Notice in the figure how each new
application of the square root formula brings the estimate of the answer closer

to the correct value. After applying the formula only five times, we have a

result that comes very close to the square root. A few more iterations will

increase the accuracy of the result even more. Fewer iterations are needed
when the initial estimate is close to the desired value. For instance, if the

original estimate used in Figure 5.3 was 7 instead of 21, fewer iterations would
have been needed to get to 6.4807. The routine presented here implements the

formula of Figure 5.3.

FACTORIAL MOVEA L #0NE . AO
MOVEA L #0NE,A1

NEXTNUM BSR MULTIPLY
EXG A1.A2
BSR INCREMENT
DBF DO . NEXTNUM
RTS
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FIGURE 5.3 Finding square

roots by iteration number

w i
_.

estimate
- + estimate

2

Example: Find square root of 42

Initial estimate: 21

Number
of iterations Estimate

21

1 11.5

2 7.57608

3 6.55992

4 6.48121

5 6.4807

(6.4807)
2 = 41.999

NUMBER BLOCK 5

ESTIMATE BLOCK 5

ROOT M0VEA.L #NUMBER,A0
M0VEA.L #TW0,A1
BSR DIVIDE
M0VEA.L #ESTIMATE,A3
BSR SAVE
M0VE.W #9 , DO

ITERATE M0VEA.L #NUMBER,A0
M0VEA.L #ESTIMATE,A1
BSR DIVIDE
EXG AO , A2
BSR ADD
EXG AO , A2
M0VEA .

L

#TW0.A1
BSR DIVIDE ;

M0VEA .

L

#ESTIMATE,A3
BSR SAVE
DBF DO. ITERATE
RTS

input number
predefined constant 2

calculate original estimate
save estimate

init loop counter for 10 iterations

; number / estimate
;use result in following addition
; (number / estimate) + estimate
;use this result in following division

entire formula implemented now
save new estimate

The subroutine SAVE is used to make a copy of the number pointed to by A2.

The copy is stored in memory starting at the location pointed to by A3. The
EXG instruction is used to swap pointers, thus making the results ofADD and

DIVIDE available for the next operation.

The last example we will examine is used to compute powers of base e.

From calculus, it can be shown that an infinite series of terms can be used to

generate the result of raising e (2.7182818) to any power, as Figure 5.4 illus-

trates. Notice that only the first seven terms are needed to get a reasonable

amount of accuracy. Many complex functions can be represented by an infinite
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FIGURE 5.4 Generation of e x by

infinite series X
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Example: Find e
1

Number
of terms Result

1 1

2 2

3 2.5

4 2.66666

5 2.70833

6 2.71666

7 2.71805

te
1 = 2.7182818)

series, which we can then implement in software using a loop operation. The
following routine generates the first 10 terms of the exponential series, using

the POWER and FACTORIAL routines already discussed. We assume, how-

ever, that POWER and FACTORIAL give valid results for all input values

(including and 1).

X BLOCK 5

TEMP BLOCK 5
ETOX BLOCK 5

i-:.ye?. MOVE.W #9.D1
NEXTERM MOVEA .

L

#X,A0
MOVE.W D1.D0
BSR POWER
MOVEA.

L

#TEMP.A3
EXG A1,A2
BSR SAVE
MOVE.W #D1.D0
BSR FACTORIAL
MOVEA . L #TEMP , AO
BSR DIVIDE
EXG A1.A2
MOVEA . L #ET0X.A0
BSR ADD
MOVEA.

L

#ET0X,A3
BSR SAVE
DBF DO , NEXTERM
RTS

init loop counter
compute numerator

;save numerator

compute denominator

divide to generate term

add current term to result

save result
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Again, EXG is used to redirect output results back into the math routines.

EXG is also used to swap pointers for storing results in memory. ETOX con-

tains the final result when EPOWER finishes execution.

These examples should serve to illustrate the point that complex mathe-
matical functions can be implemented with a small amount of software. Once a

library of these routines has been defined and tested, even more complex equa-

tions and functions may be implemented. All that is needed is a BSR to the

appropriate subroutine (or collection of subroutines).

5.7 NUMBER CONVERSIONS

In the preceding section we were introduced to both binary and BCD opera-

tions. It was mentioned that routines were needed to convert from BCD into

binary and from binary to BCD. In this section we will examine a few of the

techniques used to perform these conversions.

BCD to Binary Conversion

A BCD number consists of any number of digits that can take on the values

to 9. These digits may be individually entered from a keyboard or keypad, or

they may all reside together as a group (when stored in memory or processor

registers). BCD numbers are different from hexadecimal numbers (a short-

hand way for representing binary), which utilize through 9 and also the

letters A through F. For this reason, 57 BCD and 57H do not have the same
values. As a matter of fact, 57 BCD equals 39H. To convert 57 BCD into binary,

we multiply the value of the 10s digit by 10 and add it to the value of the Is

digit. This gives 5 * 10 = 50 (32H) plus 7 (which gives 39H). The following

subroutine uses this technique to convert the lower byte of register D2 into

binary, returning the result in D3. Remember that any 68000 Data register is

capable of storing eight BCD digits.

; save a copy of initial data
;get the Is digit
;extend into 16 bits
; initialize result to Is digit
;shift 10s digit into Is place
:extend into 16 bits
:multiply digit by 10

;add to result register

The MAKEBIN subroutine can be used to convert larger BCD numbers into

binary. For example, to convert a 4-digit BCD number into binary, put the

lower 2 digits into D2 and call MAKEBIN. Save the result, put the upper 2

digits into D2, and call MAKEBIN again. Multiply the value returned in D3 by

100, and add the result of the first MAKEBIN call. The following routine will

MAKEBIN M0VE.B D2.D4
ANDI.B #0FH,D2
EXT.W D2
M0VE.W D2.D3
LSR.B #4.D4
EXT.W D4
M0VE.W #10, D2
MULU D2.D4
ADD.W D4.D3
RTS
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accomplish this, with the BCD input number in DO and the binary result in D5
upon return.

;save a copy of initial data
;load D2 for MAKEBIN
;convert lower 2 digits
; save temp result
; shift upper 2 digits down
;load D2 for MAKEBIN
; convert upper 2 digits
;multiply digits by 100

UPT09999 MOVE.W D0.D1
MOVE.W D0.D2
BSR MAKEBIN
MOVE.W D3.D5
LSR.W #8,D1
MOVE.W D1.D2
BSR MAKEBIN
MOVE.W #100, Dl
MULU D1.D3
ADD.W D3.D5
RTS

add to result register

Another technique can be used to convert BCD into binary on the fly. This

involves multiplying the result by 10 each time a new digit is received, and

then adding the digit to the result. For example, to convert 349 BCD into

binary we start with a zero result. When the 3 is received, we multiply the

result by 10 (giving 0) and add 3 to it. Next, the 4 is received. Multiplying the

result by 10 gives 30. Adding 4 to this gives 34. When the last digit comes in,

we multiply the result by 10 a last time (giving us 340) and get the final value

when we add 7 to it. This technique is favorable when the BCD number con-

tains many digits. You are encouraged to write this routine on your own.

Binary to BCD Conversion

This type of conversion is needed when a number must be displayed on a

terminal screen, which requires ASCII characters. For example, the value

7BH must be converted into the three ASCII characters 'V, '2', and '3' (since

7BH equals 123 decimal). One way to do this is to subtract powers of 10 from

the original binary value, counting the number of times it is possible to do so.

The count becomes the ASCII number that must be output. Continuing with

our example, we first subtract 100 as many times as we can. Since this can only

be done once before going negative, the first digit to output is T. The remain-

ing number to be converted is now 23. Next, we subtract 10 as many times as

we can. This can be done twice, resulting in a second digit equal to '2'. The
remainder is now 3, which does not need to be converted so we simply output it.

The following routine performs this conversion on input numbers that can be

as large as 65535. The input number must be in the lower word of DO when
TOASCII is called. The DISPLAY routine takes care of outputting the ASCII
number in D7 to the terminal screen.

go subtract 10000

go subtract 1000

go subtract 100

go subtract 10

II MOVE
BSR

W #0D8F0H
SUBTRAK

Dl

MOVE W #0FC18H Dl
BSR SUBTRAK
MOVE W #0FF9CH Dl
BSR SUBTRAK
MOVE w #0FFF6H Dl
BSR SUBTRAK
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ADD.B #30H,D0
MOVE.B D0.D7
BSR DISPLAY
RTS

SUBTRAK MOVE.B #30H,D7
AGAIN MOVE.W D0.D2

ADD.W D1.D0
BCC SKIPIT
ADD.W #1,D7
BRA AGAIN

SKIPIT MOVE.W D2.D0
BSR DISPLAY
RTS

remainder must be < 10

add ASCII bias and output

;init DY to ASCII '0'

;save copy of value
; subtract power of 10
;quit if we went negative
; otherwise count subtraction

;get last positive value back
;and display result

There is no contradiction in the ADD.W D1,D0 instruction, even though the

comment says "subtract. . .
." The number placed into Dl prior to each call to

SUBTRAK is the 2s complement representation of each power of 10 that we
want to subtract. For example, 0D8F0H is the binary representation of

-10000. Adding this to DO actually performs the desired subtraction.

You are encouraged to modify TOASCII and SUBTRAK so that they place

each new digit into a buffer in memory, instead of outputting them to the

terminal via DISPLAY.

5.8 CONTROL APPLICATIONS

In this section we will examine two examples of how the 68000 may be used in

control applications. Control systems are designed in two different ways: open-

loop and closed-loop systems. Figure 5.5 shows two simple block diagrams

outlining the main difference between these two types of control systems. An
open-loop control system uses its input data to effect changes in its outputs.

A closed-loop system contains a feedback path, where data concerning the

Inputs
Control

elements
>• Outputs

(a)

Mixer

Inputs-& Control

elements

Feedback
elements

(b)

Outputs

FIGURE 5.5 Control system block diagram: (a) open-loop and (b) closed-loop
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present output conditions is sampled and supplied along with the external

inputs. A burglar alarm is an example of an open-loop control system. The

system may be designed to monitor sensors at various windows and doors. It

may also include circuitry to digitize readings from temperature sensors.

When any of the sensors detects an abnormal condition (for example, a window

opening), the computer may be directed to dial an emergency phone number
and play a recorded help message.

A typical application of a closed-loop control system involves the operation

of a motor. Suppose that we want to control the speed of the motor by making
adjustments to an input voltage to the system. The speed of the motor is pro-

portional to the input voltage and increases as the input voltage increases. We
cannot simply apply the input voltage to the motor's windings, for it may not

be large enough to operate the motor. Usually an amplifier is involved that is

capable of driving the motor. But a problem occurs when the motor encounters

a load (for example, by connecting the motor shaft to a pump). The increased

load on the motor will cause the motor speed to decrease. To maintain a con-

stant speed in the motor at this point, we need an increase in the input voltage.

We cannot hope or expect the operator to constantly watch the motor and

adjust the input voltage accordingly. For this reason, we add a feedback loop,

which is used to sample the motor speed and generate an equivalent voltage.

An error voltage is generated by comparing the actual speed of the motor (the

voltage generated by the feedback circuit) with the desired speed (set by the

input voltage). The motor speed voltage may be generated by a tachometer

connected to the output of the motor. The error voltage is used to increase or

decrease the speed of the motor until it is operating at the proper speed.

Let us look at how the 68000 might be used to implement the two control

systems just described.

A Computerized Burglar Alarm

In this section, we will use the 68000 to monitor activity on 100 windows and
doors in a small office building. The office building consists of 4 floors, with 15

doors and 10 windows on each floor. The alarm console consists of an electronic

display containing a labeled light-emitting diode for each window and door and
a serial data terminal capable of displaying ASCII information. The operation

of the system consists of two tasks: (1) illuminating the appropriate LED for all

open doors and windows, and (2) sending a message to the terminal whenever a

door or window opens or closes. It is necessary to continuously scan all of the

windows and doors to detect any changes. The circuitry used to monitor the

doors and windows and drive the LED displays is connected to the processor's

system bus so that all I/O can be done by reading and writing to memory.
Figure 5.6 shows the assignments of all input and output devices for the first

floor of the office building.

As the figure shows, 15 door and 10 window inputs are assigned for the

first floor. Whenever a door or window is open, its associated bit will be low.

To sample the bits, the processor must do a memory read from the indicated
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Address

007000

007001

007002

007003

Bit Assignment

7

D 7 D6 D5 D4 D3 D: D, D

7

X D, 4 D, 3 D12 D,, D,o Dq D8

7

W 7 w6 Wg W4 W3 W
2 W, w

7

X X X X X X w4 w8

First-floor

doors

First-tloor

uindous

Addres

007S00

007S01

007S02

007803

Bit Assignment

7

DL 7 DL6 DU DL4 DL; DL
:

DL, DL
()

7

\ DL I4 DL I3 DL I2 DL n DL I0 DLg DL8

7

WL 7 WL6 \VL5 WL4 WL, WL :
WL, WLq

7

X X X X X X WLq WLS

First floor

door LEDs

First floor

window LEDs

FIGURE 5.6 Burglar alarm 10 assignments: (a) system inputs and (b) system outputs
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addresses (7000 to 7003). Floors 2, 3, and 4 are assigned the same way, with

the following addresses:

Floor 2

Floor 3

Floor 4

7004-7007

7008-700B

700C-700F

The door and window LEDs for the first floor are illuminated when their

respective bits are high. The processor must do a memory write to locations

7800 through 7803 to activate LEDs for the first floor. The other-floor LEDs
work the same way, with these addresses assigned to them:

Floor 2

Floor 3

Floor 4

7804-7807

7808-780B

780C-780F

The serial device used by the system to communicate with the ASCII ter-

minal is driven by a subroutine called CONSOLE. The 7-bit ASCII code in the

lower byte of data register DO is sent to the terminal when CONSOLE is

called.

Knowing these definitions, we can design a system to constantly monitor

all 100 doors and windows. The technique we will use is called polling. Each
input address will be read and examined for any changes. If a door or window
has changed state since the last time it was read, a message will be sent to the

terminal, via CONSOLE, indicating the floor and door/window number. Since

we need to remember the last state of each door and window, their states must
be saved. A block of memory, called STATUS, will be used for this purpose.

STATUS points to a 16-byte block of memory, which we will think of as

4 blocks of 4 bytes each. Each 4-byte block will store the bits for all doors and
windows on a single floor.

When the program first begins operation, the state of each door and win-

dow is unknown. For this reason, we initialize STATUS by reading all system

inputs when the program starts up. The code to perform the initialization is

contained in a subroutine called INIT, and is as follows:

STATUS BLOCK 16
INPUTS EQU 7000H
DISPLAY EQU 7800H

INIT M0VEA.L #STATUS , A0
M0VEA.L #INPUTS,A1
M0VEA.L #DISPLAY,A2
M0VE.W #15, DO

SYSREAD M0VE.B (A1)+,D1
M0VE.B Dl. (A0)+
N0T.B Dl

;init pointer to STATUS
;init pointer to system input data
;init pointer to LED display
; init loop counter
; read system information
; save it in memory
; complement input data
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MOVE.B D1,(A2)+
DBF DO , SYSREAD
RTS

update display

When INIT completes execution, the display has been updated to show the

state of all 100 doors and windows, and STATUS has been loaded with the

same information.

Once the initial states are known, future changes can be detected by using

an exclusive OR operation. Remember that exclusive OR produces only a 1

when both inputs are different. Figure 5.7 shows how state changes can be

detected with exclusive OR. To incorporate this into the program, EOR is used

during updates to detect changes. Note that up to 16 changes at once can be

detected by EORing entire words. It is then a matter of scanning the individual

bits to determine if any state changes occurred. A subroutine called DETECT
will do this for us. DETECT will sense any state changes and send the appro-

priate message (for example, first floor: door 12 opened) to the terminal. When
DETECT is called, data registers D4, D5, and D6 will be interpreted as follows:

D4

D5

D6

Lower 16 bits contain current door or window states.

Lower 16 bits contain door or window state changes.

Bit 8 cleared means D4 contains door information

Bit 8 set means D4 contains window information.

Bits and 1 contain the floor number (0—first, 1—second,

2—third, 3—fourth)

We will not cover the code involved in getting DETECT to do its job. You are

encouraged to write this routine yourself, preferably using a rotate or shift

instruction to do the bit testing. Since DETECT will have to output ASCII text

strings (for example, 'First floor', 'Second floor', 'opened'), the following code

may come in handy:

FIGURE 5.7 Detecting state

changes with exclusive OR
Previous Next
door state door state

\ /
A B F

Door stayed open.

1 1 Door closed.

1 1 Door opened.

1 1 Door stayed closed

^ J

0-Door open

1-Door dosed
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STAR EQU 2AH
MSG1 ASCII 'First floor
MSG2 ASCII 'Second floor
MSG3 ASCII 'Third floor
MSG4 ASCII 'Fourth floor
MSG5 ASCII 'door *'

MSG6 ASCII 'window *'

MSG7 ASCII 'opened *'

MSG8 ASCII 'closed *'

ASCII code for

SEND MOVE.B ( A3 ) + , DO
CMPI.B #STAR,D0
BEQ EXIT
BSR CONSOLE
BRA SEND

EXIT RTS

get a message character
end of message character?

send character to terminal
get next character

The SEND subroutine must be entered with address register A3 pointing to

the address of the first character in the text string to be sent. SEND could be a

subroutine called by DETECT during its analysis of the door and window
states.

When we use DETECT, the code to poll all doors and windows in the office

building becomes

;get initial states and update display
; start with first floor doors
;init loop counter
;init pointer to first floor doors
;init pointer to STATUS information
;init pointer to display
;
get floor door data

; update display

;get past door status
; compute state changes
; update status
; find doors that have changed
;get floor window data

; update display

;get past window status
; compute state changes
; update status
; select window detection
; find windows that have changed
; select door detection again
; go to next floor

While you write DETECT, do not forget that the main routine uses a number of

registers (AO, Al, A2, D4 through D7) and that these registers should not be
altered. The stack would be a good place to store them for safekeeping. Since

the stack must already be defined so that the processor has a place to store the

subroutine return addresses, instructions like

BSR INIT
BEGIN CLR.W D6

MOVE.W #3,D7
MOVEA.L #INPUTS,A0
MOVEA.L #STATUS,A1
MOVEA.L #DISPLAY,A2

NEWFLOOR MOVE.W ( AO ) + , D4
NOT.W D4
MOVE.W D4

,
( A2 )

+

NOT.W D4
MOVE.W (A1),D5
EOR.W D4.D5
MOVE.W D4, (Al)+
BSR DETECT
MOVE.W ( AO ) + , D4
NOT.W D4
MOVE.W D4, (A2)+
NOT.W D4
MOVE.W (A1),D5
EOR.W D4,D5
MOVE.W D4, (Al)+
ORI.W #100H,D6
BSR DETECT
ANDI.W #0FFH,D6
ADDQ .

B

#1,D6
DBF D7, NEWFLOOR
JMP BEGIN
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MOVE.L A0,-(A7)
MOVE .

L

( A7 ) + , AO
MOVE .

L

D4 , - ( A7 )

MOVE.L (A7)+,D4

can be used to save and retrieve items.

A Constant-Speed Motor Controller

In this section we will see how the 68000 may be used in a closed-loop control

system to maintain constant speed in a motor. The schematic of the system is

shown in Figure 5.8. The speed control is a potentiometer whose output voltage

varies from to some positive voltage. This voltage is digitized by an 8-bit

analog-to-digital converter, such that volts is 00H and the most positive

voltage is FF. The processor reads this data from location 8000. For a purely

digital speed control system, this circuitry is eliminated and the speed set

directly by software.

The motor speed is controlled by the output of an 8-bit digital-to-analog

converter (with appropriate output amplifier, capable of driving the motor).

The motor's minimum speed, RPM, occurs when the computer outputs 00 to

the D/A (by writing to location 8020). The motor's maximum speed occurs

when FF is sent to the D/A. A tachometer is connected to the motor shaft

through a mechanical coupling. The output of the tachometer is digitized also.

Again, the minimum and maximum tachometer readings correspond to 00 and

7F. A purely digital system would use a digital shaft encoder instead of a

tachometer and A/D.

Each converter is calibrated with respect to a common reference. In theory,

a 17 from the SPEED A/D causes a 17 to be sent to the MOTOR D/A, which in

Used if speed is not set by

+V

oftware

68000 Out
008020.

Can be replaced bj a

digital encoder

FIGURE 5.8 Constant-speed motor controller
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turn causes the TACH A/D to read 17 when at the proper speed. In practice the

relationship is not so linear, due to external effects of deadband, friction, and

other losses in the motor.

The purpose of the program is to operate the motor at a constant speed, by

comparing the SPEED data with the TACH data. When SPEED equals TACH
the motor is turning at the desired speed. When SPEED is less than TACH, the

motor is spinning too fast. When SPEED is greater than TACH, the motor is

rotating too slow. The idea is to subtract the TACH value from the SPEED
value. The difference determines how much the motor speed should be in-

creased or decreased.

SPEED EQU 8000H
MOTOR EQU 8020H
TACH EQU 8010H

SERVO MOVE.B #0,D0 ; initial motor speed is

MOVE.B DO, MOTOR
GETSPEED MOVE.B SPEED, DO ; read new speed value

MOVE.B TACH.D1 ;and new tachometer value
CMP.B D1.D0 ; SPEED minus TACH
BGT INCREASE
BEQ GETSPEED ; no change
EXG D0.D1

INCREASE SUB.B D1.D0 ; adjust motor speed
BSR GAIN
MOVE.B DO, MOTOR
BRA GETSPEED

Since the motor's speed will not change instantly from very slow to very fast, or

vice versa, the program will loop many times before the motor gets to the

proper speed. For safety or functional reasons, it may not be desirable to try to

change the motor speed from slow to fast instantly. Instead, the program
should ramp up to speed gradually by limiting the size of the error voltage

presented to the D/A during speed increases. Subroutine GAIN is used for this

purpose, to alter the contents of DO, before DO is output to the motor D/A. The
ramp up/down speed of the motor, and therefore the response of the closed-loop

system, will be a function of the operation of GAIN.

5.9 INSTRUCTION EXECUTION TIMES

An important topic in the study of any microprocessor involves analysis of the

execution time of programs, subroutines, or short sections of code. The most
direct application of this study is in the design of programs that function under
a time constraint. For example, high-resolution graphics operations, such as

image rotation, filtering, and motion simulation, require all processing to be

completed within a very short period of time (usually a few milliseconds or

less). If analysis of the total instruction execution time for the graphics routine

exceeds the allowed time of the system, a loss in image quality will most likely
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result. We will not get this involved with our analysis of the 68000's instruc-

tion times. Instead, we will look at one example subroutine and how its total

execution time may be determined.

TOBIN is a subroutine that will convert a 4-digit BCD number in the

lower word of data register DO into a binary number. The result is returned by
TOBIN in D2. TOBIN is a good example to use for execution time determina-

tion because it contains two nested loops. The number of clock cycles for each

instruction can be determined by referring to Appendix C. Table 5.1 is an
example of how clock cycles are determined. The number of clock cycles an
instruction takes to execute depends on a number of factors. Operand size is

the first variable. Look at the clock cycles required by both CLR instructions.

CLR.W requires 4 clock cycles, and CLR.L requires 6. In this case, the 32-bit

clear operation takes an additional 2 clock cycles to complete.

The addressing mode used by an instruction also affects the number of

clock cycles required. Immediate operand addressing, as in MOVEQ and
MULU, takes fewer clock cycles than an instruction that uses a memory loca-

tion as its operand. Memory references, be they read or write operations, take

4 clock cycles or more, depending on how many wait states are inserted by the

hardware. The instruction times in Appendix C assume 4 clock cycles for all

memory references.

The operand size is also a determining factor in some instructions. LSL
and ROXL both take a minimum of 6 clock cycles for byte and word operands,

plus another 2 cycles for each shift or rotate that must be performed. Since the

shift count for both instructions in TOBIN is 1, both LSL and ROXL require

8 clock cycles each to execute.

MULU is another example of an instruction whose execution time is a

function of the operand size. MULU takes 38 cycles, plus 2 additional ones for

each bit in the source operand that is a 1. In MULU #10,D2, the source

operand, in hexadecimal, is 000A. This number contains 2 bits that are 1.

TABLE 5.1 Required instruction execution clock cycles in a simple programming loop

Clock Cycles

Overhead Outer-loop Inner-loop

Instructions Cycles Cycles Cycles

TOBIN CLR.L D2 6

MOVEQ #3.D6 4

NEXTDIGIT MOVEQ #3,D5 4

CLR.W D1 4

GETNUM LSLW #1,D0 8

ROXLW #1.D1 8

DBF D5.GETNUM 10

MULU #10,D2 42

ADD.W D1,D2 4

DBF D6.NEXTDIGIT 10

RTS 16
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Thus, the instruction takes 42 clock cycles to execute. If all bits in the source

operand were high, MULU would take a maximum of 70 cycles to execute.

The fastest instructions are those that use register direct addressing. An
example of this is TOBIN's ADD instruction. The number of clock cycles is

minimized because no external memory references (outside of the instruction

fetch) are needed.

The RTS instruction takes a long time to execute due to its need to read

information from the stack. This requires a number of memory read opera-

tions, which always slow down execution.

The last instruction in TOBIN whose time varies is DBF, which takes

10 cycles to execute when the branch is taken and 14 when it is not. The
additional 4 cycles may not be ignored, particularly when nested loops are

involved. Notice how the clock cycles for each instruction are split up into

three columns. The first column contains instructions that only execute once.

These instructions, CLR.L, MOVEQ, and RTS, contribute a total of 26 clock

cycles to the overall execution time. We will see that this is a small amount
compared to what the nested loops will generate. A common term for this small

overall contribution is overhead.
The second column of numbers compose the main, or outer, loop of the

subroutine. The third column represents the inner loop. The inner loop takes a

total of 108 clock cycles to execute. Where does this number come from? The
inner loop takes 26 clock cycles to execute once. Since four loops are requested,

via D5, this number (26) must be multiplied by 4, giving 104 cycles. The last

time DBF D5,GETNUM executes, it will take an additional 4 clock cycles,

and that is where the 108 comes from.

The execution time of the outer loop will contain the execution time of the

inner loop, plus the additional cycles required by the outer loop instructions.

This gives 64 plus 108, or 172 cycles for the outer loop to execute just once. The
subroutine calls for the outer loop to execute 4 times. This gives a total of 688
clock cycles. To this number we add 4 more cycles for the last execution of DBF,
giving us 692 clock cycles. This number is added to our overhead (do you see

why the overhead is not substantial?) of 26, giving a grand total of 718 clock

cycles for the TOBIN subroutine.

How does this number translate into an execution time? Since each clock

cycle has a period determined by its frequency, we need to know the clock

frequency the processor is running at. Suppose this frequency is 8 MHz. Each
clock cycle will then have a period of 125 ns. Multiplying 125 ns by 718 gives

89.75 /us! This is the execution time of TOBIN.
In conclusion, it is interesting to note that TOBIN can convert over

11,000 BCD numbers to binary in one second.

5.10 EXCEPTION HANDLING

In Chapter 4, various kinds of exceptions supported by the 68000 were exam-
ined. In this section we will see two examples of how exceptions may be han-
dled by the programmer. The first example deals with two exceptions that, we
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hope, never occur: divide-by-zero and illegal instruction. The purpose of the

exception handler for these two routines will be to send an error message to the

user's terminal, indicating that the error has occurred. Execution will then

resume at the address following the instruction that caused the exception.

Remember: All exceptions cause the 68000 to reference its exception vector

table (located in memory from 000000 to 0003FF). In this table, the processor

will expect to find the address of the routine that will handle the designated

exception. The following routines, DIV0 and BADINST, are ORGed at 1000H
and 2000H respectively. For the 68000 to find its way to them during exception

processing, the starting addresses of these routines must be placed into the

exception vector table at the proper addresses. Divide-by-zero, vector 5, re-

quires its exception handler address to be stored in locations 000014 through

000017, with 000014 and 000015 containing the upper word of the routine

address and 000016 and 000017 the lower word. Illegal instruction, vector 4,

operates in a similar manner but uses locations 000010 through 000013. Fig-

ure 5.9 shows how these locations should be loaded with the addresses of the

exception handlers.

Once the CPU has loaded the program counter with the address of the

exception handler, it will begin executing instructions at a new location. The
exception handlers, to be on the safe side, should save all processor registers, so

that execution may resume with the proper information after exception pro-

cessing has completed. This can be done very easily with the MOVEM instruc-

tion. Once this is done, DIV0 or BADINST may perform their associated tasks.

In this example they will simply load address register A3 with the address of

an ASCII text message that will be output to the user's terminal via the SEND
subroutine. (See Section 5.8 for a review of SEND.)

FIGURE 5.9 Exception vector

table address assignments for

divide-by-zero and illegal

instruction

Memory

000010 00

()()()() 11 00

()()()() 12 20

000013 00

000014 00

000015 00

000016 10

000017 00

Illegal instruction

routine address = 002000

Divide by zero

routine address = 001000

001000 1)1 vo 002000 BADINST

RTE RTE
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DIVMSG ASCII 'Warning: divide b

BADMSG ASCII 'Illegal instructi

ORG 1000H
DIVO MOVEM L D0-D7/A0-A6,-(A7)

MOVEA L #DIVMSG,A3
PEXCEP JSR SEND

MOVEM L (A7) + ,D0-D7/A0-A6
RTE

ORG 2000H
BADINST MOVEM L D0-D7/A0-A6,-(A7)

MOVEA L #BADMSG,A3
JMP PEXCEP

save all registers on stack
point to error message
send message to user
get processor registers back
return from exception

save all registers on stack
point to error message
go process exception

Note that we save some code in BADINST's handler by using a portion of

DIVO's routine. Also, the final instruction in any exception handler must be

RTE (not RTS). This is required to load the proper information from the stack

when returning to the main routine (where the exception was initiated).

In addition to sending the error message, it may be desirable to output a

list of register contents as well. The user would then be able to see the state of

the processor registers at the instant the exception occurred. This requires a

routine capable of converting the hexadecimal register contents into a corre-

sponding string ofASCII characters to send to the user's terminal. This routine

must be called after all registers have already been saved. Otherwise we end

up destroying the contents of whatever registers we use in the conversion

routine.

Our second example, a routine called TIMER, is used to keep accurate

time. This example assumes that a stable 60-Hz clock is used to interrupt the

processor 60 times a second, generating a level-7 interrupt each time. Again,

the address of TIMER must be placed into the proper locations (00007C
through 00007F) in the processor's exception vector table.

TIMER simply increments SECONDS, MINUTES, and HOURS (all byte

locations) as necessary. These locations may be read by other routines that

need to make use of timing functions. Why is the MOVEM instruction absent

from this exception handler?

SECONDS BYTE
MINUTES BYTE
HOURS BYTE

TIMER ADDI .

B

#1, SECONDS
CMPI.B #60, SECONDS
BNE EXITIMER
CLR.B SECONDS
ADDI .

B

#1. MINUTES
CMPI.B #60, MINUTES
BNE EXITIMER
CLR.B MINUTES
ADDI.B #1, HOURS

increment seconds
has a minute passed?

reset seconds count
increment minutes
has an hour passed?

reset minutes count
increment hours
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CMPI.B #24, HOURS
BNE EXITIMER
CLR .

B

HOURS
EXITIMER RTE

; has a day passed'

; reset hour count

Since a level-7 interrupt was used, we never have to worry about losing time.

Level-7 interrupts are nonmaskable, so we never miss a 60-cycle interrupt

signal.

5.11 LINKED LISTS

A linked list is a collection of data elements called nodes that is created dy-

namically. Dynamic creation means that the size of the linked list is not fixed

when it is first created. As a matter of fact, it is empty when first created. As
an example, if we want to reserve enough room in memory for 100 integer

bytes, we use

DATA BLOCK 100

This assembler directive is utilized because we know beforehand how many
numbers are going to be used. The beauty of a linked list is that its size can be

changed as necessary, either increased or decreased, with a maximum size

limited only by the amount of free memory available in the system. This

method actually saves space in memory, since it does not dedicate entire blocks

ofRAM for storing numbers. Rather, a small piece of memory is allocated each

time a node is added to the linked list. A node is most commonly represented by

a pair of items. The first item is usually used for storing a piece of data. The
second item is called a pointer, and is used to point to the next node in the

linked list. Figure 5.10 contains an example of a three-node linked list. Each
node in the list stores a single ASCII character. The beginning of the linked

list, the first node, is pointed to by P. The nodes are linked via pointers from

one node to another. The last node in the list, node 3, contains in its pointer

field. We will interpret this as a pointer to nowhere (and thus the last node).

The empty pointer is commonly called nil.

The actual representation of the node on a particular system can take

many forms. Since the linked list must reside in memory, it makes sense to

assign one or more locations for the data part (or data field), and four locations

for the pointer part (also called the pointer field). Why four locations for the

pointer field? Because all nodes reside in memory. To point to a certain node,

we must know its address, and addresses in the 68000 occupy 32 bits.

Node 1 Node

:

Node 3

C •A' T

FIGURE 5.10 A sample linked list
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For this discussion, assume that all nodes consist of four data bytes and

four address bytes. Consider a subroutine called GETNODE that can be called

every time a new node is added to the linked list. GETNODE must find 8 bytes

of contiguous (sequential) memory to allocate the node. When it finds them, it

will return the starting address of the 8-byte block in address register A5. Let

us take another look at our example linked list, only this time addresses have

been added to each node. Figure 5.11 shows how the pointer field of each node

contains the address of the next node in the list. The address in the pointer

field of node 3 indicates the end of the list. The pointer P may be an address

register containing 00010000, the address of the first node in the list. To gener-

ate this list, GETNODE has been called three times. GETNODE returned

different addresses each time it was called. First came 00010000, then

03F78000, and finally 00020520. Linked lists do not have to occupy a single

area of memory. Rather, they may be spread out all over the processor's ad-

dress space and still be connected by the various pointer fields.

To add a node to the linked list, a simple procedure is followed. First, a new
node is allocated by calling GETNODE. Address register A5 holds the address

of this new node. The pointer field address of this new node, which will have to

be modified to add it to the list, starts at A5 plus 4 (because the data field

occupies the first 4 bytes). To add the new node to the existing list, a copy of the

pointer P is written into the pointer field of the new node. Then, to make the

new node the first node in the list, P is changed to the address of the new node.

Figure 5.12 shows this step-by-step process, assuming that address register A4
is used to store P. Once the new node has been inserted, its data field, now
pointed to by A4, may be loaded with new data. Assume that the new data

comes from data register DO. Note from Figure 5.12 that insertion of the new
node into the beginning of the linked list has changed its contents from 'CAT'

Node

00010000

c 03F78OO0

0O010OO0

Node 2

00020520

03F78000

Node 3

OOOO0OO0

00020520

FIGURE 5.11 A linked list with address assignments
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1. GETNODE returns new node.

A5

Node

007B0800

007B0800

Pointer field of new node is loaded with P.

Node

00010000

007B0800
A4 00010000

00010000

03F78000

3. Pointer P to list is changed.

P

A4 OO7B080O

00010000 03F78000

007B0800 00010000

4. Data field of new node is loaded.

P 00010000

007B0800

DO 'S'

ASCII code for S' in lower byte

FIGURE 5.12 Adding a node to a linked list

to 'SCAT'. The code to perform the insertion described in Figure 5.12 is as

follows:

INSERT BSR GETNODE
M0VEA.L A4,4(A5)
M0VEA.L A5.A4
M0VE.L D0.(A4)
RTS

:get a new node from storage pool
;load pointer field of new node
;pointer P to list is updated
;data field of new node is loaded

Linked lists are ordinarily used to represent arrays in memory. The data field

may be used to store ASCII characters (as in this example), integers, Boolean

data, and even pointers to other linked lists. Linked lists are very useful tools

employed in the functions of operation systems. They are also supported by

computer languages such as Pascal, Modula-2, and Ada.
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5.12 STACKS AND QUEUES

Many computations are greatly simplified by the use of a software-controlled

stack or queue. Expression evaluation and round-robin selection algorithms

are just two examples of where a stack and a queue are used. The method of

implementation is not critical; either may be designed as a special form of a

linked list or simply as fixed-size memory structures. The latter approach will

be used here, with address registers pointing to the stack and queue memory
structures.

Stacks

A stack is an area in memory reserved for reading and writing special data

items such as return addresses and register values. For example, a BSR in-

struction automatically pushes a return address onto the stack (using A7 with

predecrement addressing). Registers may be pushed onto the stack (written

into stack memory) with a MOVE.L instruction, as in:

MOVE.L D3.-IA7)

where the entire contents of D3 are written into the stack area pointed to by

A7. A7 is automatically decremented by 4 during execution.

Items previously pushed onto the stack can be popped off the stack (read

out of memory) in a similar fashion, as in:

MOVE.L (A7)+,D3

where stack memory is read out into D3 and A7 is automatically incremented

by 4 during execution. Thus we see that using a stack requires manipulation of

a stack-pointer register.

One characteristic of a stack is that the last item pushed is always the first

item popped. For this reason, stacks are commonly referred to as a LIFO (last

in first out) structure.

It is possible, and often necessary, for a programmer to design a custom
stack area for use within a program. For instance, suppose that a programmer
requires a stack that allows only eight long words to be pushed onto it. The
68000 has no mechanism for limiting the amount of pushes (or pops) onto a

stack. If this is necessary a set of stack procedures must be written. The follow-

ing routines implement a stack that allows a maximum of eight pushes. The
PUSH routine is used to place data onto the stack. The data pushed must be in

DO. If the push is successful, a success code of00H will be returned in the lower

byte of Dl. If more than eight pushes are attempted, the routine returns with
error code 80H in the lower byte of Dl, without pushing any data. The POP
routine is used to remove an item from the stack. If a pop is attempted on an
empty stack, error code OFFH is returned in Dl. Successful pops return data
in DO. The stack-pointer register is A0 and is assigned the address of a free

block of memory from the storage pool by a routine called MAKESTACK.
MAKESTACK must be called before the stack can be used. MAKESTACK also
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assigns addresses to Al and A2, which are used by PUSH and POP to deter-

mine when a stack operation is possible. The structure of the stack is indicated

in Figure 5.13. A2 points to the bottom of the stack structure and Al points to

the top. AO points to the stack location that will be used for the next push
or pop.

Examine the following routines to see how Al and A2 are used to check for

legal pushes and pops.

PUSH CMPA .

L

A0.A1
BEQ STKFULL
MOVE.L DO ,

-
( AO

)

CLR.B Dl
RTS

STKFULL MOVE.B
RTS

#80H,D1

POP CMPA.L A0.A2
BEQ STKEMPTY
MOVE.L ( AO ) + . DO
CLR.B Dl
RTS

STKEMPTY MOVE.L
RTS

#0FFH,D1

ok to push?
:no, go return error code
;push DO onto stack
; indicate a successful push

;stack full error code

ok to pop?
no, go return error code
pop DO off stack
indicate a successful pop

stack empty error code

Note that multiple stacks can be maintained by saving the contents of AO, Al,

and A2 and loading new addresses into each register.

Queues

Queues are also memory-based structures, but their operation is functionally

different from that of a stack. In a queue, the first item loaded is the first item

to be removed. For this reason, queues are referred to as FIFO (first in first

FIGURE 5.13 Software-

controlled stack structure
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out) structures. Figure 5.14 shows a diagram of a queue that has had the data

items 'A', 'B', and 'C loaded into it. 'A' was pushed first, 'C last. When we begin

removing items from the queue, the 'A' will come out first (unlike the stack

structure, which would have popped 'C first).

A routine called MAKEQUEUE is used to assign a block of memory from

the storage pool. MAKEQUEUE initializes four address registers, whose use

and meanings are as follows:

Register Use/Meaning

AO Pointer for write operation

Al Pointer for read operation

A2 Contains end-of-queue address

A3 Contains beginning-of-queue address

Initially, AO, Al, and A2 are all loaded with the same value. The address

placed into A2 is determined by the desired size of the queue.

Before an item can be written into the queue, AO must be compared with

A2. IfAO equals A2, it is necessary to reload AO with A3's address. This allows

AO to wrap around the end of the queue (a similar technique is used to wrap Al
around when reading). Next, AO is used to write the data item into memory.
Then AO is decremented by 4 to prepare for the next write.

Data is removed from the queue by the read-pointer register Al. After data

is read, Al is decremented by 4. Note that serious data errors result when Al
reads a location that has not been written into by AO yet. For this reason it is

necessary to pay special attention to the positions of AO and Al within the

queue. This part of the queue software is left for you to devise on your own. The

FIGURE 5.14 Software-

controlled queue structure
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routines presented here perform write and read operations with wraparound,
but with no error checking.

INQUEUE CMPA.L A0 . A2 ;need to wrap around?
BNE N0ADJA0 ; no
MOVEA.L A3.A0 ;yes, reload A0

N0ADJA0 MOVE.L DO
,

( A0

)

; write data into queue memory
SUBA . L #4,A0 ;adjust write pointer
RTS

OUTQUEUE CMPA.L A1.A2 ;need to wrap around?
BNE N0ADJA1 ; no
MOVEA.L A3.A1 ;yes. reload Al

N0ADJA1 MOVE.L (A1),D0 ; read data out of queue memory
SUBA . L #4,A1 ;adjust read pointer
RTS

In both routines, DO is used as the queue data register.

5.13 MULTITASKING

In an ever-increasing effort to squeeze the most processing power out of the

basic microprocessor, individuals have come up with ingenious techniques for

getting a single CPU to do many wonderful things. Consider a standard,

single-CPU microcomputing system. One user sits at a terminal entering com-

mands, thinking, entering more commands, waiting for I/O from the system

(as a file is loaded in from disk or tape), and on and on. When computer special-

ists discovered that in this situation the CPU was wasting a great deal of time

doing I/O, they thought of a way of getting more use out of the CPU. Suppose

that circuitry could be added to the system to perform the I/O operations under

the CPU's control. All the CPU would have to do is issue a command, such as

'read the disk', and the disk controller would do the rest of the work. This

would free up the processor for other things while the disk controller was busy

reading the disk. What other things can the CPU do? The most obvious answer

that came to mind was service another user! Thus, the age of multitasking was
born. A microprocessor system capable of performing multitasking is able to

communicate with several users, seemingly at once. Each user believes that he

or she is the only user on the system. What is actually happening is that one

user gets a small slice of the processor's time, then another user gets the same
time slice, and the same goes for all other users. Figure 5.15 shows a simple

diagram of this operation. In this figure we see that up to four users are execut-

ing their programs, seemingly at the same time. A single CPU can support

more than one person at a time because of the high processing speed of the

processor versus the slow thinking speed of the users. It is not difficult to see

that the user will spend long periods of time thinking about what to do next or

waiting for I/O to appear on the terminal. The time slice allocated to each user

is designed so that it is long enough to perform a significant number of instruc-

tions, without being so long as to be noticed by the user. For example, suppose
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FIGURE 5.15 Multitasking with a single CPU

that as many as 16 users may be on the system at once. If the CPU must
service each user once every 10th of a second, the time slice required is

6.25 ms. The processor is capable of executing many thousands of instructions

in 6.25 ms, possibly enough to complete a user's current program. So, even

though all users are forced to wait while the CPU services the other users (as

shown in Figure 5.15), the users probably do not even notice.

The software involved in supporting a multitasking system can become
very involved, so we will examine only the basic details here. What exactly

happens when one user's program is suspended so that the CPU can service a

different user? Suppose that both users have written programs that use some
of the same processor registers (for example, DO, D3, and A6 are used by both

programs). It becomes necessary to save one user's registers before letting the

other user's program take over. This is referred to as a context switch. A
context switch is used to save all registers for one user and load all registers

used by the next user. Thus, a context switch is needed every time the CPU
switches between users. The routine presented here, TSLICE, will handle con-

text switches for four different users in a round-robin fashion. This means that

user 1 will not execute again until all other users have had their chance. To get

the processor to do a context switch, we have to inform it that the user's time

slice has expired. The easiest way to do this is to periodically interrupt the

processor (by connecting a timer circuit to the processor's interrupt input).

TSLICE is then actually an exception handler that is executed every time a

time slice is used up. TSLICE first saves all processor registers on the stack

(the program counter is already there thanks to the 68000 exception handling

scheme), and then finds the next user that should execute. The registers for

this user are then loaded from its stack area and execution resumes.

USERl BLOCK 128
USER2 BLOCK 128
USER3 BLOCK 128
USER4 BLOCK 128
WHO BLOCK 1

STACK1 BLOCK 4
STACK2 BLOCK 4

user stack areas

current user number (1-4)
storage for user stack pointers
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STACK3 BLOCK 4
STACK4 BLOCK 4

TSLICE MOVEM .

L

D0-D7/A0-A6,-(A7)
MOVE.B WHO , DO
EXT.W DO
SUBI.B #1,D0
MOVE.B D0.D1
MULU #4, DO
MOVEA.L #STACK1,A0
MOVEA.L A7 , ( AO , DO )

ADD.B #4, DO
CMPI.B #3,D1
BNE GETSTACK
CLR.W DO

GETSTACK MOVEA.L ( AO , DO ) , A7
ADD.B #2,D1
CMPI.B #5.D1
BNE SAVENUM
MOVEQ #1,D1

SAVENUM MOVE.B Dl.WHO
MOVEM .

L

(A7)+,D0-D7/A0-A6
RTE

save all registers
get user number
extend lower word
user number now 0-3
make a copy of this number
needed for proper indexing
point to stack pointer buffer
save user stack pointer
go to next stack address
is current user 4?

point to STACK1
get new stack pointer
generate next user number
should we go to user 1?

load user 1 number
save new user number
restore new user's registers

The complexity of this code results from the need to wrap around the buffer

containing the stack pointers, when the context switch is from user 4 to user 1.

5.14 MEMORY MANAGEMENT

In the section on linked lists, we saw a routine called GETNODE, which was
used to get a new node from the storage pool, the storage pool being the collec-

tion of all available memory locations that are not currently being used for

something else (such as node, program, and stack storage). In this section we
will see how entire blocks of memory can be assigned through the use of a

memory management routine. This is a required feature in all operating

systems that load multiple programs into memory for shared execution (as in

multitasking). We can easily see why memory management is needed by ex-

amining the memory space of a typical system (as shown in Figure 5.16). Ini-

tially, three jobs are running (1). Since they were the first three to begin execu-

tion, all were assigned consecutive blocks of memory. In (2), we see that job B
(or program B) terminates. The memory allocated to job B is returned to the

storage pool. In (3), job D begins execution. Because the memory required by

this job exceeded what was available in the area vacated by job B, this job is

loaded into the first available space that is big enough. When job A ends in (4),

its space is also returned to the storage pool. Job E quickly takes this space

over in (5). Finally, job C terminates in (6).

The purpose of the memory manager is to keep track of all free blocks of

memory. When the operating system needs to load a new job into memory, it

will inform the memory manager of how much memory is needed by the new
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FIGURE 5.16 Memory allocation in an operating system

job. The memory manager will either find a big enough space and return the

starting address of the block, or indicate that not enough memory is available

for the job to execute at the present time. In this case, the job will have to wait

until more memory becomes available.

The subroutine MANAGE, presented here, manages a 512KB block of

RAM. Memory is assigned in 8KB blocks. Requests for memory are passed to

MANAGE in data register DO. So, if DO contains 7, MANAGE must try to find

56K of contiguous memory. If it can, it will return the starting address of the

entire block in AO. If it cannot locate enough memory, it will return 00000000
in A0. Note: MANAGE only allocates memory. Another routine is needed to

return memory to the storage pool (and this is left as an exercise).

UNITS BLOCK 64 ; 64 8K blocks are available, with
;each byte in UNITS representing an 8K
;block in the storage pool. If a byte
;contains 00, that 8K block is free. If
;a byte contains FF, that 8K block is
;not available.
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MANAGE MOVEA.L #UNITS,A1
CLR.L D2

CHECKP00L BSR FINDBLOCKS
CMP.B D0.D1
BGE GETMEM
CMPI.B #0,D1
BNE CHECKPOOL
CLR.L AO
RTS

GETMEM BSR ALLOCATE
MOVE.W #8192, D3
MULU D2.D3
EXG D3.A3
MOVEA.L #P00L,A0
ADDA .

L

A3.A0
RTS

POOL EQU 180000H ; storage pool starting address

init pointer to allocation table
clear counter
look for free memory in pool
were enough blocks found?
yes, go allocate
no free blocks at all?
maybe, keep checking
not enough memory available

allocate blocks from UNITS
calculate starting block address

The FINDBLOCKS and ALLOCATE subroutines work as follows: FIND-
BLOCKS uses D2 and Al as inputs. Each time it is called, it will look for the

first contiguous block of free memory in the storage pool. This is done by exam-
ining the bytes in UNITS. Bytes equal to 00 represent a free 8K block. Bytes

equal to FF represent allocated 8K blocks and are therefore not available.

FINDBLOCKS will look for the first string of 00 bytes it can find. Ifmemory is

available, FINDBLOCKS will return the number of contiguous 8K blocks it

found, in Dl. The starting location of the free blocks (in UNITS) will be re-

turned in Al, and the starting block number of the free blocks (in UNITS), in

D2. If FINDBLOCKS cannot find any free memory, it will return with Dl
equal to 0.

ALLOCATE is used to convert free block bytes in UNITS (bytes that are

00s) into allocated block bytes (FFs). Its inputs are D2 and DO. D2 contains the

block number (0 to 63) of the first byte to change. DO contains the number of

bytes to change (the number of 8K blocks to allocate).

These routines are also left for you to design on your own. You may wish to

experiment with a different system of keeping track of the free memory, possi-

bly by using bit operations instead.

5.15 SPECIAL CALCULATOR FUNCTIONS

Many of the programming examples presented in this chapter are well suited

for use in the calculator project. For example, the binary and BCD math rou-

tines presented in Section 5.6, the number conversion routines of Section 5.7,

and others can be modified for use with the calculator control program. A
number of decisions must be made before the modifications can take place. One
such decision involves the type of math that will be performed. Should the

calculator use binary or BCD math? The answer to this question determines

what math routines are used. The size of the binary or BCD numbers that can

be manipulated by the calculator also must be determined. A working calcula-
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tor that demonstrates a reasonable amount of precision can be programmed
with only 4 BCD digits of precision. This choice would also allow a single data

register to hold two different calculator numbers, both of which could range

from to 9999.

Let us imagine that these questions have already been asked and an-

swered, with the following results.

1

.

All calculator numbers will be stored in memory and are referenced by an

address register.

2. The math routines use two address registers to point to the input numbers,

and a third to point to the result.

3. The four math routines and their operations are as follows:

Routine Operation

CADD (A3) = (AD + (A2)

CSUB (A3) = (AD - (A2)

CMUL (A3) = (AD * (A2)

CDIV (A3) = (AD/(A2)

(You will notice a similarity to the math routines presented in Section 5.6.)

Each routine will set the processor condition codes accordingly.

The purpose of this section is to give you ideas on adding more functions to

the calculator, so that it does more than the basic four operations. For example,

using the available math routines, how would you implement a X2
function? If

we assume that the number just entered on the keypad is stored in the memory
locations pointed to by Al, then the following code will compute X2

:

XSQR MOVEA.L A1.A2 ;copy pointer to number
JSR CMUL ; multiply number by itself

Other functions may require the use of a constant in the calculation. This is

true for 1/X, 10x , e
x

, and so on. It may be useful to write a routine that returns

a pointer to a specific constant. The desire constant can be specified by a data

register. Examine the following table to see what is being proposed.

Constant Value

1 1

2 2

3 10

4 3.14159

5 2.71828

To get Al to point to a constant, you could load the constant number into DO
and then call LOADCON, the routine that assigns a constant address. LOAD-
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CON creates a copy of the desired constant, puts the copy into memory, and
sets up a pointer to it.

With constants in place, writing the code for 10x
is greatly simplified.

Assume that the value of X is pointed to by A 1 prior to calling the TENTOX
routine:

TENTOX

MUL10

DONE

MOVEA .

L

A1.A4
MOVE.B #3, DO
JSR LOADCON
MOVEA.

L

A1.A5
JSR LOADCON
MOVEA.

L

A1.A6
MOVE.B #1,D0
JSR LOADCON
MOVEA.

L

A1.A2
MOVEA.

L

A4.A1
JSR CSUB
BEQ DONE
MOVEA.

L

A3.A4
MOVEA.

L

A6.A1
MOVEA.

L

A5.A2
JSR CMUL
MOVEA.

L

A3.A5
BRA MUL10
RTS

save point*
load a 10

t to X

init A5 to 10 (temp result)

init A6 to 10 also (multiplier)
load a 1

let A2 point to 1

get the pointer to X back
decrement X
quit if X = now
otherwise, save X's pointer
get multiplier back
get temp result back
multiply temp result by 10

save result
and repeat

On exit, the result of 10
x

is pointed to by A5.

You are encouraged to rewrite TENTOX in a way that requires fewer ad-

dress registers.

5.16 SUMMARY

In this chapter we examined a number of different applications the 68000 is

capable of performing. These applications—control systems, multitasking, and
memory management—find widespread use in industrial and commercial sit-

uations. In addition, we covered many different techniques, such as code con-

version, table lookup, and mathematical processing with binary and BCD
numbers. The overall idea is to get a sense of how the 68000's instructions can

be combined to perform any task that we can imagine. Many more applications

are possible, and we have not even scratched the surface here. But the routines

presented in this chapter should serve as a foundation on which to build when
you try to write an application of your own.

STUDY QUESTIONS

In addition to the pseudocode structures already covered (IF-THEN, WHILE) is the

CASE structure. An example is

CASE Count OF
0: Statement #1
1: Statement #2
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2: Statement #3
Otherwise: Statement #4

which checks the value of the variable Count against the numbers 0. 1, and 2. If

Count equals 0, Statement #1 is executed, and so on. If none of the supplied num-
bers equals Count the Otherwise statement is executed.

Show how a CASE structure may be coded with 68000 instructions.

2. Modify the keyboard buffer routine KEYBUFF so that the user may not enter more

than 128 keys. KEYBUFF should automatically return if 128 keys are entered.

3. Modify KEYBUFF to allow for two simple editing features. If a backspace key is

entered (ASCII code 08H>. the last key entered should be deleted. What problem

occurs when backspace is the first key entered? The second editing feature is used

to cancel an entire line. If the user enters a control C (ASCII code 03H). the contents

of the entire buffer are deleted.

4. Modify KEYBUFF to include a count of the number of keys entered, including

the final return key. This number should be stored in COUNT on return from

KEYBUFF.
5. Modify KEYBUFF so that all lowercase letters (a-z) are converted to uppercase

(A—Z) before being placed in the buffer. All other ASCII codes should remain un-

changed.

6. One drawback to using KEYBUFF is that no other processing may be performed

until all keys have been entered by the user. Suppose that hardware exists to inter-

rupt the processor every time a key is struck. Write a keyboard service routine that

performs the same function as KEYBUFF. except that only one key is saved in the

buffer every time it is called. If the current key is return, call SCANBUFF before

returning.

7. Modify PACKBCD so that maximum of 12 digits may be entered. PACKBCD
should automatically return after processing the 12th digit.

8. Write a subroutine called YALDIGIT. which will determine if the ASCII code con-

tained in the lower byte of DO is a digit from to 9. If so. simply return. If not, jump
to ERROR.

9. Modify PACKBCD to include signed BCD numbers. If the first character entered by
the user is a minus sign, place 80H into SIGN. If the first character is a number, or

a plus sign, place into SIGN.
10. How must the format for storing BCD digits be changed, to allow for fractional

numbers like 0.783 or 457.05?

11. Write a routine that will scan a character buffer and determine if the characters

constitute a real number. A real number contains one or more digits followed by a

decimal point and one or more fractional digits. The entire number may be pre-

ceded by a plus or minus sign. The number is stored in memory7 beginning at

REALNUM. The last character in the buffer will always be '$'.

12. How might exponents be processed in numbers like 35E3 or 2.6E-7?
13. Write a subroutine that will convert the BCD number stored in BCDNUM into a

binary number. Return the result in D2.

14. Modify the FINDBYTE subroutine so that the length, in bytes, of the data table is

passed via LENGTH. The maximum length of the data is 1024 items.

15. Modify FINDBYTE so that the position of ITEM within DATA is returned in PO-
SITION, if the search is successful. For example, if ITEM is the first element,

POSITION should be 0. If ITEM is the 11th element, POSITION should be 000A.
16. Write a subroutine called STRSIZE that returns the number of characters in a text

string. The text string is terminated with an ASCII return character (0DH). The
string begins at address TEXTLINE. Return the character count in D3.
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17. Modify the MAXVAL subroutine so that negative numbers (represented in 2s com-
plement notation) may be included in the data.

18. The CHECKSTR subroutine is limited for two reasons. First, the starting addresses

of the two strings are set when the subroutine is entered. Second, the length of the

two strings is fixed at 10 characters apiece. Modify CHECKSTR so that address

registers A0 and Al are loaded from the addresses stored in locations STRINGl and
STRING2 and the string length loaded from LENGTH.

19. Using a modified version of CHECKSTR. write a routine that will count the num-
ber of occurrences of the word "the" in a block of text. The text block begins at

address 3000 and ends at address 37FF.

20. The command recognizer RECOGNIZE works only with uppercase commands.
Rewrite the code so that uppercase and lowercase commands may be recognized.

For example. "DUMP" and "dump" should be identical in comparison.

21. Write a command recognizer that will recognize single-letter commands. The com-

mands may be either uppercase or lowercase, and have the following addresses

associated with them:

A: 20BE

B: 3000

C: 589C

D: 2900

22. Modify the SORT routine so that is sorts positive and negative numbers.

23. Write a subroutine called BIGMUL that will compute the 64-bit result obtained by

multiplying two 32-bit integers. The two input numbers should be in data registers

D6 and D7 on entry to BIGMUL. Use the MULTIPLY subroutine in your code to

implement a process similar to that shown in Figure 5.1

24. Write a subroutine to find the average of a block of words that starts at location

SAMPLES and whose length, in words, is saved in SIZE. Place the average in

AVERAGE.
25. Use the FACTOR subroutine to find all factors of the number saved in INVALUE.

Place the factors into a data array called FACTORS.
26. Does the code for Question 25 need to be changed if the input numbers (saved in

INVALUE i are always even?

27. How are roundoff errors eliminated by using BCD?
28. Write a subroutine called JUSTIFY that will left justify any BCD number stored

in the 4-byte array called BCDIN. For example, if BCDIN contains 00

05 37 19, JUSTIFY must replace BCDIN with 53 71 90 00.

29. Write a subroutine called TOBINARY that will convert the BCD number pointed to

by A6 into an unsigned binary number. The result should be returned in D6.

30. Write a subroutine called TOBCD that converts the unsigned 16-bit binary number

in D6 into a BCD number. The result should be returned in D6 also.

31. Two sample routines for performing BCD multiplication were presented in this

chapter. Both routines had limited precision. Build on these two routines by ex-

tending their precision. For example. BCDMUL2 was limited to multiplying two-

digit numbers. Write a routine that will multiply four-digit BCD numbers, using

BCDMUL2 as a subroutine.

32. Write a subroutine called BIGADD that will perform a BCD addition of all 32 bits

in data registers DO and Dl. Place the result in D6.
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33. Modify the TOASCII routine so that leading zeros are not outputted.

34. Consider the normalization of two numbers, one positive and one negative _-'-

exponents adjusted in the same way for each number
35. In the treatment of BCD numbers, the proposed format contained no provis. n

representing negative numbers. How might the format be changed to include

them?

36. Write a subroutine called EXPONENT that will return a signed 8-bit exponent in

data register D5. Inputs to EXPONENT are -
1
. A 1 and D5. AO and Al both point

to the exponent byte of the two numbers beir.^ divided with Al pointing to the

divisor exponent . D5 initially contains an exponent adjustment value in 5:rr.rz

El-bit format that must always be added to the generated exponent value.

37. Write a subroutine called ZEROCHECK that examines the BCD number pointed to

by address register AO and returns with the zero flag set if the BCD number is

equal to 0.

38. Write a subroutine that performs BCD division by first converting the BCD num-
bers to binary. DP7S should be used to perform the division. The result should be

converted back into BCD. Use TOBCD and TOBENARY in your subroutine.

39. Modify the POWER subroutine so that any integer power can be used, including

negative powers and 0.

40. The 5-byte BCD format discussed in this chapter uses 1 byte for a signed exponent

and 4 bytes for the mantissa. What is the largest positive integer that can be repre-

sented?

41. Change FACTORIAL so that factorials of 70 or more are not allowed. Return as

the result in these cases.

42. Write a subroutine called HYPOT that computes the hypotenuse of a triangle

whose sides have lengths pointed to by AO and Al. Return the result address in A4.

43. Find the infinite series for SEN" X in a calculus book and implement it in a subrou-

tine called SLN. Use EPOWER as an example of how to do this.

44. Implement COS X via subroutine COS. Use the following formula as a guide and
solve it for COS X before writing any code:

SIN- X - COS : X = 1

Make use of ROOT and SLN in your subroutine.

45. Write the DETECT subroutine used by the computerized burglar alarm.

46. An office complex consisting of 64 offices and 16 hallways is to have its lighting

controlled by a computer. Each office has one switch to control its light. Hallways
have a switch at each end. Each switch is assigned a bit position in a particular

memory location that can be read by the computer, and a closed switch represents a

zero. Each light think of all lights in a hallway as a single light I is also assigned a

certain bit in a memory location that the computer can write to. A logic 1 is needed

to turn on any light. How many byte locations are needed for all 1 0? Write a

program that will constantly monitor all switches and adjust the complex lighting

as necessary.

47. Consider the office complex of Question 46 and its associated definitions. Suppose
for reasons of efficiency that no light may be on continuously for more than 30

minutes after 5 p.m. For example, if an office light is turned on at 6:17 the computer
automatically shuts it off at 6:47. The system has a real-time clock whose time may
be read from locations 6000 and 6001. Location 6000 contains the hour to 23 and
6001 contains the minute to 59 . Rewrite the program of Question 46 so that any
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light on for 30 minutes is automatically turned off. Note: the light may be immedi-
ately turned on again (for another 30 minutes) if someone in the office hits the

switch again. The automatic shutoff feature ends at 6 a.m.

48. What changes must be made to the program of Question 47 if hallway lights are

exempted from the 30-minute timeout feature?

49. Modify the SERVO program so that the motor's speed will ramp up during periods

where a large speed increase is needed.

50. Compute the execution time of this section of code. Assume an 8-MHz clock fre-

quency.

M0VE.W #1000H,D0
NEXT ADDQ .

B

#2 , D2
M0VE.B D2,(A0)
DBF DO , NEXT

51. Repeat Question 50, assuming that all memory references take an additional

2 clock cycles.

52. What must be done to support an exception handler for privilege violation, if the

handler has a starting address of 3B150?

53. Modify the TIMER exception handler so that a 12-hour clock is implemented.

54. Write a subroutine called SEARCH that will search the data fields of a linked list

for a certain piece of data. The data item to be located is saved in D4.

55. Modify INSERT so that new nodes are placed at the end of the linked list instead of

at the beginning.

56. Rewrite all of the stack and queue routines so that each is implemented with a

linked list. The data field in the first node of each list contains the maximum size of

the specific stack or queue.

57. Do the STACK and USER areas in TSLICE have to be loaded with initial informa-

tion for proper execution? What information might this be?

58. Modify TSLICE so that up to eight users may be active at any time.

59. Does the UNITS data table need to be initialized before any memory can be allo-

cated by MANAGE? If so, what should it be filled with? If it needs initialization,

write a subroutine called MINIT that will do the job.

60. Write the FINDBLOCKS and ALLOCATE subroutines required by MANAGE.
61. Write a subroutine that will take care of returning freed memory back to the stor-

age pool. Upon entry, DO will contain the number of 8K blocks being returned and

A0 the starting address of the entire block in the storage pool.

62. Write the code necessary to implement a 1/X function on the calculator.

63. Rewrite the TENTOX routine so that it loads constants only when they are needed.



CHAPTER

6

Hardware Details of the 68000

Objectives

In this chapter you will learn about:

The general specifications of the 68000 microprocessor

The processor's control signal names and functions

• General signal relationships and timing

• Methods in which the 68000 may interface with external devices

The external interrupt signals and their operations

The 68000's bus arbitration scheme

The method used to access a 6800 peripheral

6.1 INTRODUCTION

Before using any microprocessor, we must necessarily have an understanding
of both its hardware requirements and its software functions. In this chapter

we will examine all 64 pins of the 68000's package, learning what their use

may be in a larger system employing the 68000 as its CPU. We will not concen-

trate on interfacing, since this important topic is covered in Chapters 7, 8, and
9. Upon completion of this chapter, we should, however, know about the vari-

ous signals of the processor in order to begin interfacing it with support cir-

cuitry, which includes memories, I/O devices, and coprocessors.

Section 6.2 gives a quick overview of the capabilities of the 68000, its

memory addressing capabilities, available clock speeds, and various other

functions. Section 6.3 covers all 64 pins of the 68000 in detail. The pins are

separated into eight functional groups, such as interrupt control, system con-

trol, processor status, and so on. Block diagrams and timing waveforms are

169



1 70 Chapter 6
|
Hardware Details of the 68000

given, where applicable, except where they might apply to interfacing. Section

6.4 describes two system timing diagrams: HALT timing and bus arbitration

timing. Other system timing diagrams will be covered in Chapter 7.

6.2 CPU SPECIFICATIONS

The 68000 is a 16-bit microprocessor that communicates with the outside

world via a 16-bit, bidirectional data bus. The immediate advantage of a 16-bit

but over an 8-bit bus is that twice as much data may be exchanged at once,

which has the effect of decreasing the time required for memory accesses and
program execution. The 68000's 24-bit address bus can address over 16 million

bytes of memory (or over 8 million words of 2 bytes each). Control signals are

provided that enable external circuitry to take over the 68000's buses (a must
for DMA operations), and three interrupt lines provide seven levels of external

hardware interrupts. Three control outputs may be used to decode any of eight

internal CPU states, and there are also control signals provided that enable

the 68000 to be interfaced with existing 6800 peripherals (for those users who
may wish to upgrade their existing hardware with a minimum of fuss). The
68000 is available with maximum clock speeds from 4 to 16 MHz as of this

writing, and has been on the market long enough to be purchased at a reason-

able cost. But the power of the 68000 can be tapped only if we know how to use

it, so on to the next section, where we will examine the 68000's signals and

their usage.

6.3 CPU PIN DESCRIPTIONS

Figure 6.1 details the input and output signals of the 68000 CPU. There are

eight groups of pins that we will examine. Each group of pins (or signal lines)

performs a specific function, necessary to the proper operation of the 68000.

Vcc , GND, and CLK

This group deals with the processor power and clock inputs. Note that there

are two pins each for Vcc and GND. Each pair must be connected for proper

operation. The 68000 operates on a single supply voltage of 5 volts, plus or

minus 5 percent, and will dissipate 1.5 watts of power (with an 8-MHz clock

speed) at this voltage. Maybe this is why the designers used two power pins

each for Vcc and ground. A rough calculation yields 300 mA as the required

supply current. As for the CLK input, the rise and fall times are limited to 10

ns (on all versions except the 12.5 and 16 MHz, which limits them to 5 ns), and

must be a TTL-compatible waveform with a 50 percent duty cycle. Even

though the clock input is internally buffered, the clock signal should be kept at

a constant frequency (via an external crystal oscillator) for best operation.
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FIGURE 6.1 68000 CPU input and output signals

FC , FCu and FC2

This group of signals is used to output the encoded processor status. Outputs

FC , FC l5 and FC 2 are the function code outputs, and they indicate the current

internal processing state of the 68000 (what type of cycle it is currently execut-

ing). Table 6.1 illustrates how these three outputs are decoded. It shows the

division of processing states into user data, user program, supervisor data,

supervisor program, and interrupt acknowledge. In some systems, the function

code outputs are used to restrict memory accesses by employing them in the

memory address decoding circuitry. This is necessary when users must be kept

out of supervisor memory space.

An easy way to decode all eight processor states is to use a 3- to 8-line

decoder such as the 74LS138; this is left for you to do as a homework problem.

Normally we have no use for most of the decoded cycle states in a small system,

except for the interrupt acknowledge state (indicated by all three function code

outputs high), assuming we require interrupt capability. An easy way to de-
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Function codeTABLE 6.1

outputs
FC2 FC! FC Cycle Type

reserved*

1 user data

1 user program

1 1 reserved*

1 reserved*

1 1 supervisor data

1 1 supervisor program

1 1 1 interrupt acknowledge

*By Motorola, for future use.

code this state would be to use a three-input NAND gate, whose output will go

low only during the interrupt acknowledge cycle. Figure 6.2 shows this connec-

tion. One important note: The function code outputs are valid only when the

AS signal is active (AS is low).

E, VMA, and VPA

This group of signals is provided to give the 68000 the capability to control

older 6800 peripherals. Many of these devices were designed for use with this

earlier processor, and it would be a shame to have to replace working, and
possibly expensive, hardware just because an increase in computing power is

desired. The three signals used for 6800 peripheral control are the E clock,

VMA (valid memory address), and VPA (valid peripheral address). Of these

three signals, only VPA is an input. The E clock is used to generate the proper

timing signals for 6800 peripherals, and is derived from the 68000's clock by

dividing it by 10, with the resulting waveform having a 40 percent duty cycle

(high for 4 CLK cycles, low for 6). Figure 6.3 indicates this timing relationship.

The VPA input is used to inform the 68000 that it has addressed a 6800

peripheral and that the data transfer should be synchronized with the E clock.

FIGURE 6.2 Interrupt

acknowledge cycle decoder
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FIGURE 6.3 Timing relationship between CLK and E

This synchronization is indicated by the VMA output, which goes low when the

processor synchronizes with the E clock. Thus, the entire 6800 peripheral con-

trol sequence is as follows: The 68000 outputs the address of a 6800 peripheral

on A] through A23 . The peripheral circuitry responds by pulling VPA low.

When the processor has synchronized with the E clock, it outputs a low on

VMA and the data transfer takes place. Figure 6.4(a) shows this timing se-

quence. Figure 6.4(b) shows the block diagram connections for the 6800 pe-

ripheral interface. Of course, the length of the bus cycle depends on how long it

takes the 68000 to internally synchronize with the E clock. Figure 6.4(a) shows

the best case timing for the peripheral access. It may very well be that more w
states (wait states) are required before synchronization occurs. This would

therefore increase the entire bus cycle time.

RESET, HALT, and BERR

This group of signals is used for system control. BERR ( bus error), RESET, and

HALT are, in effect, the panic buttons of the 68000. The BERR input is used to

inform the processor that the cycle currently executing has a problem. Maybe
the processor has addressed an illegal memory location (a location that is not

mapped to EPROM, RAM, or a peripheral), or some other kind of bus error has

occurred. By asserting BERR, we inform the 68000 that an error has occurred

during execution of the current bus cycle, and that it should take appropriate

action. The 68000 will then choose between performing a bus error exception

or rerunning the bus cycle. If the HALT line is not asserted when the bus error

occurs, the 68000 starts bus error exception processing, terminating the cur-

rently failed cycle. If the HALT line was asserted before or at the same time as

the BERR signal, the 68000 will instead rerun the bus cycle. It does this by

terminating the cycle and placing the data and address buses in the high-

impedance state. The 68000 then enters a "do nothing" state until there is

activity on HALT. When the HALT line is deactivated (returned high), the

processor will rerun the previous cycle (using the same data , address, and
control codes). The design of the 68000 requires that the BERR signal be deac-

tivated at least one clock cycle before the HALT signal. The processor will not

rerun a read-modify-write cycle (used during execution of the TAS instruction)

to ensure data integrity.
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Both RESET and HALT are bidirectional signals. This means that there

are times when they act as inputs and others when they act as outputs. For

example, RESET, together with HALT, must initially (after a power-on) be

taken low for a minimum of 100 ms. Among other things, this ensures that Vcc
has stabilized. This type of reset sequence results in a total processor reset,

meaning that the 68000 loads the supervisor stack pointer from vector (at

address 000000) and the program counter from vector 1 (at address 000004).

All other registers remain unaffected except for the status register, which is

adjusted to indicate a level-7 interrupt priority. In addition, the trace bit is

cleared and the supervisor bit is set. RESET and HALT may be used again at

a later time (long after power-on, during normal execution) to reset the proces-

sor, by asserting them for at least 10 clock cycles.

The 68000 instruction set includes RESET, an instruction that, when exe-

cuted, will cause the 68000 to output a low level on RESET for 124 clock cycles.

In this case the RESET line acts as an output signal. This has the effect of

resetting external circuitry connected to RESET, without affecting the state of

the processor at all.

The HALT line may be driven low at any time by an external device. When
this happens, the processor completes the current bus cycle and halts. When
halted, all tristate signals are put into the high-impedance state, and all con-

trol signals are inactive. Execution will resume when HALT is returned to a

high level. If an internal event such as execution of the 68000's STOP instruc-

tion triggers the halt condition, the 68000 will output a low level on HALT.
Care must be taken when designing circuitry to control the RESET and HALT
lines, to ensure that they both continue to work properly when in either state

(input or output). Figure 6.5 shows a typical power-on operation and its related

timing. As the figure indicates, processing does not begin for at least 100 ms
after Vcc has stabilized at 5 volts.

IPL , IPL1, and IPL2

This group is used for interrupt control. The three inputs IPL , IPL 1; and IPL2

are used by external circuitry to indicate the encoded priority level of the

hardware interrupt. Level 7 has the highest priority. Level indicates that no

interrupts are present (and thus all three inputs should be high). Table 6.2

indicates the logic levels needed on these three inputs to achieve a certain

interrupt. As shown, IPL2 is the most significant of the three interrupt inputs .

Note that the level numbers (0-7) and the actual binary codes needed on IPL
through IPL2 are inverted. Both vectored and autovectored interrupts may be

generated via IPL through IPL2 .

BR, BG, and BGACK

This group is used for bus arbitration control. This is a fancy way of saying
that we will use these signals to place the 68000 in a wait state while we make
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FIGURE 6.5 Power-on RESET and HALT timing.

use of the hardware connected to its buses. The circuit that takes over control

of the bus may be a DMA controller or another CPU in the system. The bus

takeover must be done in an orderly fashion, by predetermined rules, or bus

contention will occur. The most likely result: Our program will fail and we
may lose all our data (and these problems may be the least of our worries if the

processor is being used to fly an airplane or rocket).

The bus arbitration protocol works like this: The requesting device, called

a bus master, requests use of the 68000's buses by activating the BJR (bus

request) input. The 68000 will respond to the bus master by taking the BG (bus

grant) output low, indicating that it will release control of its buses at the end

of the current cycle. When the new bus master wants to take control, it asserts

BGACK (bus grant acknowledge). There are four conditions that must be met
before the new

evel

bus master may activate BGACK:

TABLE 6.2 Interrupt

encoding.
Interrupt

ipl2 IPLi IPLo Interrupt level*

1 1 1 (lowest, none)

1 1 1

1 1 2

1 3

1 1 4

1 5

1 6

7 (highest,

nonmaskable)

'Note the inversion of the binary bits needed on IPL 2

IPLo.

.*
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BG must be active.

AS must be inactive, to show that the processor is not using the bus.

DTACK must be inactive, to show that no external devices are using the

bus.

BGACK must be inactive, to ensure that another bus master is not already

using the bus.

Thus, taking over control of the 68000's buses is a tricky matter and is best

approached with caution.

Releasing control of the bus is an easier matter. Once BGACK has been

asserted, the new bus master can release BR (bring BR to a high level). When
the bus operation is completed and the bus master gives control back to the

68000, it does so by negating BGACK. Figure 6.6 shows the connections for bus

arbitration.

AS, R/W, UDS, LDS, and DTACK

This group asynchronous bus control, contains five signals that are essential to

the proper operation of external hardware. Four of the signals—AS, R/W,

A,-A,

68000

BR

BG

BGACK

D -D l5

c

7v

i£

Alternate

bus

master

HH
TJ

/
AS, LDS, UDS, DTACK, etc.

FIGURE 6.6 Bus arbitration logic block diagram

? Address bus

^ Data bus

1/ Control bus
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UDS, and LDS—are outputs, and the fifth one (DTACK) is an input. The AS
(address strobe) signal is used to indicate that a valid memory address exists

on the address bus. The R/W (read/write ) signal determines whether the cur-

rent cycle is a read or write cycle. UDS (upper data strobe) and LDS (lower

data strobe) are used to gate 8 bits of information to/from selected portions of

the 68000's data bus. These signals are described more fully in Chapter 7, but

for now all we need to know is that UDS controls data on bits 8 to 15 of the data

bus, and LDS does the same for bits to 7. Thus, to transfer only 8 bits of data,

we need only activate either UDS or LDS, whichever is appropriate. To trans-

fer 16 bits at once, both UDS and LDS must be low. The last signal, DTACK
(data transfer acknowledge), is used by external circuitry to perform asyn-

chronous data transfers (we perform synchronous transfers using E, VMA,
and VPA). When DTACK is activated by external hardware, the processor

recognizes that the current bus cycle can be completed. For example, data

present on the data bus are latched by the 68000 when DTACK goes active

during a read cycle, or data are placed on the data bus and kept there for

writing until DTACK is asserted by external hardware (a memory or I/O de-

vice). It is the job of the external hardware (either memory circuitry or periph-

eral) to activate/deactivate DTACK at the proper times. When the 68000 is

operated at full speed, the timing of DTACK becomes important (to ensure the

correct capture of data), but we will not go into this topic here.

A 1
through A23 , D through D 15

The last group contains the address and data buses. As mentioned before, the

address bus, containing UDS and LDS, can be used to access more than 16

million bytes of memory. The ability to directly address this many locations

provides the programmer with a very flexible programming environment.

Older systems required that special software be used to manage memory in

"pages" that were some portion of the system's main address space. This soft-

ware is not even needed now, in some applications, because of the great in-

crease in address lines and hence memory locations. One important note: A 1

through A23 are unidirectional (output only), and are always used to transmit

a memory address, except during an interrupt acknowledge cycle. In this case,

A 1? A2 , and A3 contain the interrupt level and all other address lines are high.

The bidirectional data bus on lines D through D 15 is used to transfer

information between the processor and the outside world. D through D7 serve

double duty during an interrupt acknowledge cycle, where they then transmit

the interrupt vector number (supplied by an external device). A very impor-

tant note here is that most 68000-based systems, even small ones, will require

extensive use of the address and data lines (at least four EPROMs/RAMs re-

quiring use of the buses), and it will be very easy to exceed the maximum drive

capability of these signal lines, which is limited to a few mA each. For this

reason (see the detailed coverage of this topic in Chapter 7), we usually use

special buffering circuits between the address/data lines and the external
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hardware. The buffers give us the ability to drive many more devices than the

processor's address/data lines do.

Since this concludes the pin description section, it would be good to end

with a summary of all the CPU signals, whether they are inputs or outputs and
whether they have tristate capability. Table 6.3 does this for us. In the next

section we will examine some of the processor signals again, and see their

timing relationships to one another in some selected bus cycles.

6.4 SYSTEM TIMING DIAGRAMS

When timing is a critical issue in the design of a new 68000-based system, it

pays to know how to interpret the CPU timing diagrams supplied by the man-
ufacturer. This section will provide more details on the processor's control and
timing signals by analyzing two timing scenarios.

Since the timing of memory read and write cycles is covered in Chapter 7,

we will not study them here. Instead, we will look at some special cases, the

first being the processor's HALT timing and the second being the processor's

timing during bus arbitration.

Processor HALT Timing

Figure 6.7 shows the timing diagram that results when the 68000 enters the

halt mode. The left portion of the timing diagram represents the processor

TABLE 6.3 Summary of 68000
signals

Signal Input Output Tristate

CLK y
FC -FC 2 y y
E

VMA
y

y y
VPA y
BERR y
RESET y y
HALT y y
IPL -IPL2 y
BR y
BG y
BGACK y
AS y y
R/W
UDS

y

y

y

y
LDS y y
DTACK y
Ai-A23 y y
D -D 15 y y y
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timing during its current read cycle. States SO (CLK is high) through S7 (CLK
is low) are the eight states needed to complete this cycle. A state, sometimes
called a cycle state or state time, represents a half cycle of the CLK input to

the processor. For example, a 10-MHz 68000 would have a state time equal to

50 ns. A state is the smallest amount of time in which the processor can per-

form any function. Since all instructions are composed of a number of these

cycle states, instruction execution time depends on the CLK frequency. During
the eight states of the current instruction, we see that there are times when
the address bus is valid (SI through S7), and others when it is tristated (SO).

The activity on other processor signal lines, such as AS, DTACK, or D
through D 15 , is also related to the processor's state time. Notice that signal

levels do not change except during transitions between states.

When the processor finishes the current cycle, its control signals revert to

their inactive state (high levels for AS, UDS, and LDS). Since the HALT line

was asserted during the current cycle, the processor does not begin a new bus

cycle. It instead leaves its control lines in the inactive state and tristates its

address and data buses. The 68000 is really in a "wait" state now, where the

length of time that it "waits" before beginning a new instruction cycle is a

function of how long the external hardware keeps the HALT line low (although

there are exceptions to this rule). When the circuitry releases the HALT line,

the processor uses a few states to do some internal housekeeping, and then

begins execution of the next instruction. Exceptions to this rule are the arrival

of either a RESET or an interrupt during the halt state. Both of these cases

cause the halt state to terminate.



6.5 Summary 181

While there do not seem to be any useful applications for the halt state, it

is actually quite helpful when debugging programs. A simple circuit may be

designed to assert the HALT line during execution of every instruction, which

results in a single-step mode of operation. This is left for you to design as a

homework problem.

Bus Arbitration Timing

This section deals with the timing involved when another bus master wishes to

take over the 68000's buses. The timing signals in Figure 6.8 show what hap-

pens when the processor receives a bus request during execution of an instruc-

tion. We see that the processor finishes the current bus cycle, even though it

has received a bus request (BR active), and has granted it (BG active). When
the_current bus cycle finishes, the processor's control lines (AS, UDS, LDS,
R/W, and FC -FC2 ), as well as the address and data buses, all go into the

high-impedance state. This permits OR-tying of these signal lines with other

signal lines (from another processor or a DMA device), which themselves must
be tristated when the 68000 has control, or we would have a major bus conten-

tion problem. While the new bus master has control of the 68000's buses, it

may do whatever it wishes with them. The 68000 will not respond to activity

on the buses while BGACK is active. Only when the bus master finishes, and
releases BGACK, does the 68000 come back to life and begin execution of the

next instruction. One attractive application of this process is in the use of

dynamic RAMs, which need to be continually refreshed in order to retain their

data. Since the RAMs have to be refreshed when the processor is not accessing

them, one solution is to employ refresh circuitry designed to implement the bus

arbitration scheme of the 68000. The refresh circuit actually becomes the bus

master.

While these two timing examples fall short of completely describing the

timing relationships between the numerous signal lines of the 68000, they

should serve as a starting point for further exploration. A very good exercise at

this point would be to hook a 68000-based system up to a logic analyzer and
examine the states of AS, DTACK, R/W, UDS, LDS, the address and data lines,

and any other signals you can think of. Watch their activity as the 68000
accesses memory and I/O devices and handles external interrupts.

6.5 SUMMARY

In this chapter we examined the signal lines of the 68000, and saw how they

were separated into eight functional groups. Those groups were power and
clock, processor status, 6800 peripheral control, system control, interrupt con-

trol, bus arbitration control, asynchronous bus control , and finally the address

and data buses. Some of the signals, such as RESET and HALT, are bidirec-

tional
, while others are simply inputs (CLK, VPA, BERR) or outputs (BG,

VMA, E). All signals are summarized in Table 6.3
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We also looked at two examples of the 68000's timing: one while it entered

HALT mode and the other while it released its bus to an external bus master.

We will examine timing waveforms again in Chapter 7.

STUDY QUESTIONS

1. Design a 4-MHz clock oscillator for the 68000's CLK input. Use an 8-MHz crystal

and a flip-flop in your design.

2. Draw one complete cycle of the E clock waveform, assuming an 8-MHz CLK fre-

quency.

3. Design a function code decoder using a 3- to 8-line decoder. Make sure that AS is

used to enable disable the decoder.

4. Redesign the circuit of Figure 6.2 so that AS is also used to generate ENTACK.
5. Design a circuit that will turn on an LED during the 68000*s interrupt acknowl-

edge cycle. The LED should be off at all other times.

6. Explain how YPA. VMA. and E might be used to control a non-6800 type peripheral

such as the Intel 8251 or 8255

7. Design a circuit using a seven-segment display so that the display shows a lower-

case r while the processor is running < segments e and g on>. and a lowercase h while

it is halted 'segments c. e. f and g oni.

8. Design a circuit that will reset the processor after 16 CLK cycles, unless a word
write to address C8000H is performed.

9. Design a circuit that uses a single-pole, single-throw switch to switch the processor

from running to halted, and vice versa. Note: Do not directly ground the HALT line

with the switch!

10. Design a circuit that will encode seven different interrupt signals i ENTA through
INTG' into three binary bits that may be connected to IPL-j through IPL 2 . ENTA is

least significant.

11. Four 68000 microprocessors are wired together in a system with one address and
data bus. Show how one 68000 can be wired as the master processor, with the other

three having the capability of becoming bus masters if they wish.

12. What do you suppose happens to program execution with frequent, alternate bus

master activity?

13. What is the state of signal lines AS. UDS. LDS. and R W. when the 68000 is writing

data from D^ to D 15?

14. Repeat Question 13 if the processor is reading data from D to D 7 .

15. Repeat Question 13 if the processor is writing data from D to D 15 .

16. Repeat Question 13 if the processor is in a halt state.

17. What special function is performed by A : to A3 during an interrupt acknowledge
cycle9

18. What special function is performed by D to D 7 during an interrupt acknowledge
cycle

19. Three signals must all have the capability of generating a level-7 interrupt. The
signals are L7 a . L7 b . and L7 C . with L7a having the highest priority. Design a circuit

that will generate a level-7 interrupt if any of the three signals go low. The circuit

should also have outputs L, and lx, which indicate which of the three L7 inputs

caused the interrupt.
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FIGURE 6.9 For Question 6.20

J ^\\ +5V

20. Examine the proposed single-step circuit of Figure 6.9. Will it work? If not, what
changes need to be made? The processor should execute one instruction every time

the button is pushed.

21. Sketch the timing diagram for the single-step circuit. Be sure to show expected

activity on HALT, AS, and DTACK.

1 MHz

FIGURE 6.10 For Question 6.22
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+5V

INT

FIGURE 6.11 For Question 6.24

22. Figure 6.10 shows a proposed BERR time-out circuit. How long is a bus cycle al-

lowed to take?

23. Modify the design of Figure 6.10 so that the timer can be disabled by throwing an

external switch.

24. Which two interrupt levels are possible with the circuit of Figure 6.11?

25. What is the advantage of tristating the processor's signal lines during a bus re-

quest?

26. Explain how BR (and BG and BGACK) can be used to single-step the 68000. What
other uses can you find for BR?

27. Explain how the user/supervisor data/program processor states, as indicated by the

function code outputs, could be used to restrict accesses to certain blocks ofmemory.
28. Design a circuit that will generate a bus error (BERR) whenever a user program

reference or user data reference is made to any address above 80000H.

29. The 68000 does not have an external A address bit but does have an internal A
bit. Speculate on the state of the internal A bit as the processor accesses even and
odd locations in memory.

30. Use LDS and UDS to generate a synthetic A bit outside the processor. Will A be

valid during word operations?





CHAPTER

7

Memory System Design

Objectives

In this chapter you will learn about:

The importance of bus buffering

How the 68000 addresses (accesses) memory

The design of custom memory address decoders

The difference between full- and partial-address decoding

How wait states may be inserted into memory read/write cycles

The differences between static and dynamic RAMs

How a dynamic RAM is addressed and what refresh cycles are for

DMA (direct memory access)

7.1 INTRODUCTION

The internal memory capacity of any microprocessor, with the exception of

single-chip microprocessors, is severely limited. The 68000 itself has only a

handful of 32-bit locations in which it can store numbers, and these locations

are the actual data and address registers available to the programmer. The
need for larger, external memories quickly becomes apparent, especially if an
application involves number crunching or word processing. The purpose of this

chapter is to explore ways of adding external memory to 68000-based systems .

We will examine how the 68000's various control signals (AS, DTACK, UDS,
LDS, and R/W) are used to supply memory read and write signals to read-only

memories and both static and dynamic random access memories.

187
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In addition we will see how an external device called a bus master takes

over control of the 68000's memory system during a process called direct

memory access.

The information provided in this chapter should enable you to design fu-

ture memory systems from scratch.

Section 7.2 explains the 68000's address and data buses. The importance of

bus buffering is discussed in Section 7.3. Section 7.4 shows how the 68000

accesses memory, Section 7.5 covers the design of a memory address decoder,

and Section 7.6 introduces the partial-address decoder. Section 7.7 explores the

use of a shift register to generate the DTACK signal. Section 7.8 contains a

complete 2K word RAM/EPROM memory. In Section 7.9, we show how dy-

namic RAM can be used with the 68000. Finally, Section 7.10 explains how
DMA works.

7.2 THE 68000 ADDRESS AND DATA BUSES

The 68000 microprocessor has a 16-bit-wide data bus capable of reading or

writing 8 and 16 bits of information at a time, and a 24-bit address bus that can

address 16MB of external memory. Only 23 of these address lines, A 1 through

A23 , are available for use. Address line A is used inside the processor to con-

trol two other signals: UDS and LPS . Byte and word memory transfers are

controlled by these signals. The UDS and LDS address lines indicate which

part of the CPU's data bus is transferring information. Table 7.1 details the

operation of the UDS and LDS signals.

The levels of the UDS and LDS lines are controlled by the state of the

68000's internal A bit. If byte addressing is required, A is used to access

odd/even memory locations. Word addressing ignores the state of the internal

A bit.

When designing a memory system to be both byte and word addressable,

good use is made of UDS and LDS to enable individual odd/even RAMs or

EPROMs.

TABLE 7.1 UDS and LDS functions (Reprinted with permission of Motorola Inc.)

UDS LDS R/W D8-D15 D -D7

High High No valid data No valid data

Low Low High Valid data bits 8-15 Valid data bits 0-7

High Low High No valid data Valid data bits 0-7

Low High High Valid data bits 8-15 No valid data

Low Low Low Valid data bits 8-15 Valid data bits 0-7

High Low Low Valid data bits 0-7* Valid data bits 0-7

Low High Low Valid data bits 8-15 Valid data bits 8-15*

* These conditions are a result of current implementation and may not appear on future devices.
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7.3 BUS BUFFERING

Every microprocessor-based memory system, whether EPROM or RAM, will

have standard buses connecting it to the microprocessor, whose functions are

to direct the flow of information to and from the memory system. These buses

are generally called the control bus, the data bus, and the address bus.

Figure 7.1 shows the relationship between the CPU, the buses, and the mem-
ory system. Note that the address bus is unidirectional, which means that data

on the address bus goes one way, from the CPU to the memory system. The
data and control buses, on the other hand, are bidirectional. Data may be

written to or read from memory, hence the need for a bidirectional data bus.

We will soon see why the control bus is also bidirectional.

Whether they are bidirectional or not, some care must be taken when the

buses are connected to the memory section. It is possible to overload an address

or data line by forcing it to drive too many loads. As always, it is important to

not exceed the fanout of a digital output. If, for example, a certain output is

capable of sinking 2 mA, how many 0.4 mA input can it drive? The answer is

5, which we get by dividing the output sink current by the required input

current. If more than 5 inputs are connected, the output is overloaded and its

ability to function properly is diminished. Clearly, the possibility of overload-

ing the 68000's address or data buses exists when they are connected to exter-

nal memory. For this reason, we will buffer the address and data buses.

Figure 7.2 shows how the address lines are buffered by connecting them to

a standard high-current buffer, the 74LS244 octal line driver/receiver. An ad-

dress line on the 68000 is capable of sinking 3.2 mA all by itself. When the

output of the 74LS244 is used instead, the address line has an effective sink

current of 24 mA. This means that six times as many gates can be driven.

Buffering the address lines allows the CPU to drive all the devices in our

memory system, without the added worry of overloading the address line.

Buffering the data bus is a little trickier because the data bus is bidirec-

tional. Data must now be buffered in both directions. Figure 7.3 shows how
this bidirectional buffering is accomplished. The 74LS245 is an octal bus

FIGURE 7.1 Memory bus

structure
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Data

Addres

Memory
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FIGURE 7.2 Address bus

buffering
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A*

CPU

74LS244

>

transceiver. Data flow through this device is controlled by the DIR signal,

which tells the buffer to pass data from left to right, or from right to left.

Left-to-right data is CPU output data. Right-to-left data is considered CPU
input data. The_natural choice for controlling the direction of the 74LS245 is

the 68000's R/W line, which always indicates the direction of data on the

68000's data bus.

In conclusion, then, remember that address and data buses should be buf-

fered so that many gates can be connected to them instead of the few that can

be directly driven by the unbuffered address or data line. All designs presented

in this chapter will assume that the buses are already well buffered.

7.4 ACCESSING MEMORY

In addition to well-buffered address and data buses, a control bus must also be

used to control the operation of the memory circuitry. The three operations we
have to consider are the following:

1. Read data from memory

2. Write data to memory

3. Do not access memory

The first two cases represent data (bytes or words) that gets transferred be-

tween the 68000 and memory. The third case occurs when the 68000 is per-

forming some other duty, internal instruction execution perhaps, and has no

need for the memory section. Thus, it appears that the 68000 either accesses
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FIGURE 7.3 Data bus buffering

memory or does not access it. Does a processor signal exist that tells external

circuitry the 68000 needs to use its memory? Yes, the AS output. A low on AS
indicates that the 68000 wishes to access memory. A high shows that the

68000 is busy doing something else. When the memory circuitry sees a low on

AS, it will assume that the 68000 is outputting a valid memory address on the

address bus. If the memory address falls inside the range of allowable memory
addresses, the memory circuitry will tell the 6800 to proceed with the data

transfer by pulling the DTACK line low. DTACK is used to synchronize the

68000 with slow memory devices. After issuing a valid memory address and
AS signal, the 68000 will enter a wait loop until it sees a low on DTACK. It is

the responsibility of the memory circuitry to activate DTACK. During normal
operation, the 68000 will complete the data transfer shortly after receiving

DTACK.
Figure 7.4 shows the timing signals for a memory read cycle. The cycle is

divided into a minimum of 8 states, SO through S7. Every two states equal one

cycle of the system clock (therefore, the state times are equal to one-half the

period of the clock).

During SO, the beginning of the read cycle, the address bus and the func-

tion code outputs are in a high-impedance state, and the processor's R/W line is

set to a logic 1 (to indicate the read operation).
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FIGURE 7.4 Memory read cycle timing

At the start of state SI, the function codes become valid (to indicate the

type of bus cycle being performed), and the address bus leaves its high-imped-

ance state to point to the desired memory location.

One-half clock cycle later, the beginning of state S2, the AS, UDS, and

LDS signals become active (the last two depending on the type of read being

performed, byte or word). At this point, the external hardware should be in the

process of decoding the memory address and activating the selected memory
component.

During states S3 and S4, no new signals are issued by the processor. It is

during these states that the external hardware will most likely inform the

processor to continue with the cycle. It will do this by placing data onto the

processor's data bus and by asserting DTACK . The processor will look for

DTACK at the beginning of state S5. If DTACK is not asserted (not a logic 0)

.-v
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by this time, the processor will insert wait states into the cycle, two states at a

time, before trying to continue with state S5.

If DTACK is asserted, the processor will continue through to state S7,

where the data on the data bus becomes internally latched, and control signals

AS, UPS, and LPS are negated. This should cause the external hardware to

negate PTACK and also remove data from the data bus. It is necessary that

this happen within one clock cycle after the completion of state S7 (somewhere

in SO or SI at the latest), to ensure proper operation of the processor.

In Figure 7.5, the details of the processor's memory write cycle are shown.

This cycle requires a minimum of 10 states (SO through S9). Puring state SO,

the function code outputs and the address bus are tristated. At the beginning of

state SI, these signals become active. At the start of state S2, the processor

asserts AS, and takes R/W low, to indicate a memory write cycle. Notice that

the issuing of UPS and LPS do not occur at this time, nor is any data placed

onto the processor's data bus. This has the double advantage of letting the

external hardware prepare the memories for the write operation, as well as

giving the bidirectional data bus drivers time to switch directions without bus

conflicts.

If PTACK is asserted by the time state S7 begins, the cycle will continue

normally. IfPTACK is not asserted , the processor will insert wait states for S7
and S8 until it is. Signals AS, UPS, and LPS are all negated at the start of S9,

the last state in the cycle.

J
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FIGURE 7.5 Memory write cycle timing
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In both cases (read and write), the actual time between negations of AS
and DTACK will vary, depending on the external hardware used to implement
the design, but is not allowed to exceed the time of one clock period.

In the next section we will see how a memory address decoder uses the

address bus and AS to enable ROM and EPROM memories.

7.5 DESIGNING A MEMORY ADDRESS DECODER

The sole function of a memory address decoder is to monitor the state of the

address bus and determine when the memory chips should be enabled. But
what is meant by memory chips'? These are the actual RAMs or EPROMs the

designer wants to use in the computer. So, before the design begins, it must be

decided how much memory is needed. If 8K words of EPROM is enough, then

the designer knows that 13 address lines are needed to address a specific loca-

tion inside the EPROM (because 2 raised to the 13th power is 8192). How many
address lines are needed to select a specific location in a 32K memory? The
answer is 15, because 2 to the 15th is 32768! The first step in designing a

memory address decoder is determining how many address lines are needed

just for the memory device itself. Any address lines remaining are used in the

address decoder.

Figure 7.6(a) shows a block diagram of a memory address decoder con-

nected to a memory chip. Figure 7.6(b) shows a simplified timing diagram

representing the activity on the address bus and the AS output. The memory
address decoder waits for a particular pattern on the address lines and a low on

AS before making SEL low. When these conditions are satisfied, the low on

SEL causes the CS (chip select) input on the memory chip to go low, which

enables its internal circuitry, thus connecting the RAM or EPROM to the

processor's data bus. When the address bus contains an address different from

the one the address decoder expects to see, or if AS is high, the output of the

decoder will remain high, disabling the memory chip and causing its internal

buffers to tristate themselves. Thus, the RAM or EPROM is effectively discon-

nected from the data bus.

The challenge presented to us, the designers of the memory address de-

coder, is to chip-enable the memory device at the correct time. The following

example illustrates the steps involved in the design of a memory address de-

coder.

Example 7.1: A circuit containing 64K words (128KB bytes) ofRAM is to be

interfaced to a 68000-based system, so that the first address of the RAM (also

called the base address) is at 480000H. What is the entire range of RAM
addresses? How is the address bus used to enable the RAMs? What address

lines should be used?

Solution: Figure 7.7 shows how the memory lines are assigned. Two 64K
RAM devices must be used in order to get the 16-bit-wide data bus required by

the 68000. UDS and LDS will be used to select one of the devices, with each

device containing 64K locations.
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FIGURE 7.6 Simple memory address decoder: (a) block diagram and (b) timing
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Since we are using 64K locations per device, we need 16 address lines to

select one of 64K possible addresses. We always use the lowest-numbered ad-

dress lines first (the least significant ones). We start with Aj (because A is not

available), and use the next 15 just for the RAM. This means that A x through

A16 go directly to the RAM circuitry, where they will be used to select a loca-

tion inside the RAM. The remaining 7 address lines, A 17 through A23 , are used

to select the specific 64K word bank located at address 480000.

To determine the entire range of addresses, first make all the don't cares

(the X's in Figure 7.7) zeros. That gives address 480000, the first address in the

range of addresses. Next, make all don't cares high to generate the last ad-

dress, which becomes 49FFFF.
Note that A22 and A19 are high when the 64K word RAM bank is being

accessed, while the other 5 upper address bits are low. This particular pattern

of Is and 0s is one of 128 possible binary combinations that may occur on the

upper 7 address bits. We need to detect a single pattern, so that the RAM
circuit responds only to the address range 480000H to 49FFFFH. The circuit of

Figure 7.8 is one way to do this. The output of the 8-input NAND gate is the

output of the memory address decoder, which in turn gets connected to the

chip-enable inputs of the 64K word RAM bank. The only time the output of the

NAND gate will go low is when all of its inputs are high. Since some of the

upper address bits are low when the desired memory range is present on the

address bus, they must be inverted before they reach the NAND gate. Even
though A23, A2 i, A20 , A 18 , and A 17 are low, the NAND gate receives five Is

from them, via the inverters. Since A22 and A 19 are already high, there are

now seven Is present on the input of the NAND gate. When AS goes low,

indicating a valid memory address, the last required logic 1 is presented to the

NAND gate, and its output goes low, enabling the 64K word RAM bank.

FIGURE 7.8 Memory address

decoder for 480000-to-49FFFF

range
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In general, a memory address decoder is used to reduce many inputs to a

single output. The inputs are address lines and control signals. The single

output is usually an enable signal sent to the memory section. Various TTL
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gates are used depending on the addressing requirements, and the following

examples present only a few of the hundreds of ways we can design memory
address decoders to suit our needs.

Example 7.2: A 16K word EPROM section, with a starting address of

300000, is to be added to an existing memory system. The following circuitry

will properly decode the entire address range, 300000 to 307FFF. Note that the

address range indicates 32KB of memory. The 8-input NAND gate in Figure

7.9 is used to detect the 30 pattern on the upper 8 address bits, and the 3-input

OR gate is used to detect the last address bit (A 15 ) and AS signal. Nine address

lines are used in this decoder, because the other 14 are needed to address one of

16K possible byte locations in each EPROM. Two EPROMs are needed for the

same reason two RAMs were needed in Example 7.1, and these EPROMs are

directly addressed by A 1 through A14 .

A 23 - o

A->i

A->n
^\

\-n

n

Am J<y

n An

A,

A

A 15

AS — I

SEL

FIGURE 7.9 Memory address decoder for 300000-to-307FFF range

Example 7.3: Two 16K word memories, an EPROM with a starting address

of 600000 and a RAM with a starting address of 700000, are needed for a new
memory system. Figure 7.10(a) shows how the EPROM is enabled, and Figure

7.10(b) shows how the RAM section is enabled.

It is useful to perform a timing analysis on the address decoder to deter-

mine exactly how long it takes the output (ROMSEL or RAMSEL) to become
active once the address bus is stable. The time it takes the address decoder to

activate its output is a function of the number of cascaded gate propagation
delays in the circuit. In Figure 7.3, there is an initial delay of 15 ns due to the

inverters at the inputs of the 8-input NAND gate. The NAND gate itself intro-

duces another 20 ns of delay. Finally, the 3-input OR gate adds an additional

15 ns. The total propagation delay of the circuit is 50 ns. This is how long it
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FIGURE 7.10 Memory address decoders for two different ranges: (a) EPROM bank at

600000 and (b) RAM bank at 700000

takes the output to become active once the address bus is stable. For a high-

speed 68000 system it may be necessary to redesign the address decoder if the

delay introduces wait states in the bus cycle.

The propagation delay times shown here are worst-case times for typical

74LSxxx logic gates.
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Experienced digital designers can detect binary patterns, and the reward

in finding a pattern is generally a reduction in the digital circuitry needed to

implement a desired function. Did you notice that the address ranges for the

RAM and EPROM in the previous example are very similar? In fact, they are

identical, except for the A20 address bit. Let us look at another example to see

how we can use pattern detection to simplify the required hardware.

Example 7.4: The EPROM and RAM sections of Example 7.3 are enabled by

the simplified decoder presented in Figure 7.11. Do you see how the NAND
gate is used to detect the 60H pattern, and how the A20 address line is used to

enable the RAM or the EPROM?

6/7

[
° A 23

' A 22

I 1 A2 i

(
" A19

A,

8

A,

7

A ]6

I o Ais

AS

FIGURE 7.11 Combined RAM EPROM address decoder

In this case, we were able to eliminate one integrated circuit, an 8-input

NAND gate. The next example shows how we can design a decoder to respond
to eight different address ranges.

Example 7.5: A 256K byte RAM memory is composed of sixteen 16KB
RAMs. The address ranges for the RAMs are as follows:

1. 00000 to 07FFF

2. 08000 to 0FFFF
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3. 10000 to 17FFF

4. 18000 to 1FFFF

5. 20000 to 27FFF

6. 28000 to 2FFFF

7. 30000 to 37FFF

8. 38000 to 3FFFF

How might all eight RAMs be selectively enabled by one device?

Solution: Our first thought may be to use eight individual memory address

decoders, one for each address range and 16KB RAM pair. But this would be an

unnecessary waste of circuitry. If we instead look for a pattern, we see that

address lines A23 through A 18 (the upper six address lines) are always low in

the memory range 00000 to 3FFFF. In addition to this important piece of infor-

mation, each RAM requires 14 address lines, A l through A 14 , to select one of

FIGURE 7.12 Multibank address

decoder

74LS138

o RAM0 (00000-07FFF)

Jo RAM7 (38000-3FFFF)
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16K locations within the RAM. This leaves us with address lines A15, A 16 . and

A 17 actually indicating a specific 32KB memory range. When these three ad-

dress lines are all low. address range 00000 to 07FFF is selected. When A 15 is

high, and A 16 and A 17 are low. address range 08000 to 0FFFF is selected. The
last range. 38000 to 3FFFF. is selected when A 15 . A 16 . and A17 are all high.

What we need then is a circuit that can decode these eight possible conditions

by using only the three address lines. Figure 7.12 shows the required circuitry.

In this circuit, a 74LS138 3- to 8-line decoder is used to decode the different

memory ranges. The 74LS138 has three select inputs and three control inputs.

The select inputs are connected to address lines A 15 . A 16 . and A 17 . The 3-bit

binary number present on the select inputs will pull the selected output of the

74LS138 low (assuming that the 74LS138 is enabled^ thus activating a spe-

cific RAM bank. To enable the 74LS138. two lows and a high must be placed on

its control inputs. The two lows are generated by three-input OR gates, whose
outputs are low only when the upper six address lines are low. The AS signal is

inverted to generate the last control input.

By using special integrated circuits like the 74LS138 and a simple pattern

recognition technique, we are able to greatly simplify the hardware required to

generate all of our memory enables.

The last four examples have shown how we can decode a specific range of

memory addresses using the full address bus of the 68000. In the next section,

we will see how to further simplify our decoder, by using a technique called

partial address decoding.

7.6 PARTIAL-ADDRESS DECODING

Although the 68000 is capable of addressing over 16 million bytes of memory,
it would be safe to assume that most applications would require much smaller

memories. A good example might be an educational 68000 single-board com-

puter, much like the one presented in Chapter 10. which requires only 2K
words of EPROM and 2K words of RAM. This type of system needs only 12

address lines. The first 11, A] through An . go directly to the EPROM and
RAM, and the last address line, A 12 , is used to select either the EPROM or the

RAM. Figure 7.13 details this example system. _
In this figure, A 12 is connected directly to the CS input of the EPROM. and

is inverted before it gets to the CS input of the RAM. So, whenever A 12 is low,

the EPROM is enabled, and whenever A12 is high, the RAM is enabled. We
only have to use an inverter to do all the decoding in our memory section!

But what about the other address lines, Aia through A23? They are ig-

nored, and here is why: When the 68000 is powered up. a reset exception is

generated, and the processor looks first at memory location 000000. The 68000
is looking at memory location 000000 to get part of its initial supervisor stack
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FIGURE 7.13 Partial-address
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pointer. We had better make sure good data is in that location at power-up. If

we use a RAM with a starting memory address of 000000, its contents are

random at power-up, and we have only a 1 in 256 chance of seeing the correct

data in any location. The chances of fetching a correct long word is 1 in

4,294,967,296! If we instead use an EPROM at 000000, we can be assured that

the correct information will be present.

Going back to Figure 7.13, it is clear that the EPROM will be enabled at

power-on, since A 12 will be low when the processor tries to access location

000000.

But we still do not know why the other 11 upper address lines, A 13 through

A23 in this case, can be ignored. The answer lies in Figure 7.13. Do you see any
address lines other than A 12 being used to enable or disable the EPROM or

RAM memories? No! Since we ignore these address lines, it does not matter if

they are high or low. In this fashion we can read from memory locations

000000, 006000, 3E7000, or FF2000 and get the same data each time. The
upper address bits have no effect on our memory circuitry, since we are only

using the lower 12 address lines.

Partial-address decoding gives us a way to get the job done with a mini-

mum of hardware. Since fewer address lines have to be decoded, less hardware

is needed. This is its greatest advantage. A major disadvantage is that future

expansion of memory is difficult, and usually requires a redesign of the mem-
ory address decoder. This may turn out to be a difficult, or even impossible, job.

The difficulty lies in having to add hardware to the system. If the system has

been manufactured by some company, and distributed to a number of users,

making changes to all systems becomes a challenge. Furthermore, individuals

wanting to make changes themselves may mistakenly place a new memory
device into a partially decoded area. This will unfortunately result in two

memories being accessed at the same time, probably resulting in invalid data

during reads.

As long as these dangers and limitations are understood, partial-address

decoding is a suitable compromise and acceptable in small systems.

Two more examples are presented to further show the simplicity of partial-

address decoding.
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Example 7.6: Two 8KB EPROMs are to have a starting address of 4000H.

Figure 7.14(a) shows the required partial-address decoding circuitry needed.

Whenever A 14 is high and AS is low, the output of the NAND gate will be low,

which in turn will enable the EPROM pair. Address lines A x through A 13 are

connected directly to the EPROMs, together with UDS and LDS. Figure

7.14(b) shows how the two EPROMs are connected to the system. It is neces-

sary to always implement two EPROMs at a time, to allow for the 68000's word

size instruction fetches.

AM

AS
ROMSEL

(a)

Address bus

A,-A 13

LDS

ROMSEL

(b)

FIGURE 7.14 8K word EPROM storage: (a) partial-address decoder and (b) EPROM
circuitry

Example 7.7: A 32KB EPROM pair needs a starting address of 30000, and a

32KB RAM pair needs a starting address of 20000. The circuitry in Figure 7.15

shows how these addresses are partially decoded. In this example, three-input

NAND gates are used to do the decoding. All three inputs must be high for the

output to go low (and enable the memories). AS is inverted, so that it presents

a 1 when low. A 17 is connected directly, because it is high in both the RAM and
EPROM address ranges. Only A 16 changes. It is low for the RAM range and
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FIGURE 7.15 Partial-address

decoder for 32K EPROM at 30000,

and 32K RAM at 20000

A, 6

A,7

AS

RAMSEL

ROMSEL

high for the EPROM range. Address lines A x through A 15 are used by the

memories themselves.

7.7 GENERATING DTACK

DTACK (data transfer acknowledge) is a signal that tells the 68000 CPU that

data may be read from or written into memory. We have ignored this signal so

far, so that we could develop an understanding of how memory address decod-

ers work. The first function of the memory address decoder is to monitor the

address bus and activate the RAMs or EPROMs when a specific address, or

range of addresses, is seen. The second function of the decoder is to tell the

CPU to wait until the memories have been given enough time to become com-

pletely active. A typical RAM might require 200 ns to become active after it

gets enabled. This is due to the time required by the internal RAM circuitry to

correctly decode the supplied address and turn on its internal buffers. If the

decoder did not tell the CPU to wait for 200 ns while this was happening,

problems such as data loss might arise. The DTACK signal gives us a way to

slow down the 68000 so that it can use slow memories.

In Figure 7.16(a) we see that the output of the address decoder is connected

to the memory and to a delay circuit. The delay circuit is used to delay the

generation of the DTACK signal for a time equal to the access time of the

memories. This is shown in Figure 7.16(b), where Tacc clearly shows that

DTACK goes low after AS goes low. Notice also that DTACK goes high when
AS goes high. DTACK should never be asserted unless the 68000 is accessing

memory. For this reason, AS is also connected to the delay circuit.

How do we delay the generation of DTACK? A very simple solution is to

use a shift register. Consider the 2-bit shift register of Figure 7.17. It will take

two clock pulses for information at the first D input (SEP to get to the second

Q output (DTACK). So, if SEL goes low, we expect DTACK to go low two clock

pulses later. If an 8-MHz clock is used, the flip-flops are clocked every 125 ns,

which results in DTACK being asserted 250 ns after AS!
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AS
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FIGURE 7.16 DTACK operation during memory access: (a) block diagram of delay

circuit and (b) timing

But we are not finished yet. Remember that we want DTACK to go high

when AS goes high. Since AS controls the address decoder , and hence the SEL
signal, SEL will go high when AS goes high, but DTACK will not go high for

another 250 ns. Since we want DTACK to go high when AS does, we must
modify our shift register.

In Figure 7.18, we see that connecting AS to the flip-flops through an
inverter presets the flip-flops whenever AS is high. The high on AS causes a

low on the preset inputs, which force the Q outputs, and thus DTACK, to be
high. When AS goes low at the start of a memory reference, the preset inputs

are pulled high and data may be clocked through the shift register. The instant

AS goes high (indicating the completion of the memory cycle), the flip-flops

will be preset, causing DTACK to go high.
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SEL
(from address decoder)

MHz

FIGURE 7.17 DTACK delay generator composed of 2-bit shift register

The delay time needed depends on the type of memory being used, the

clock frequency, and the size (in stages) of the shift register. A one-shot (mono-

stable multivibrator) could be used as well, but would not be as stable as the

digital circuit due to the nature of the resistor/capacitor network needed.

We finish this section with an example of a delay circuit. In our next sec-

tion we will see a complete schematic of a 2K word RAM/EPROM memory.

AS

SEL

MHz

FIGURE 7.18 Improved DTACK delay generator

Example 7.8: A delay circuit is composed of three D-type flip-flops connected

as a 3-bit shift register driven by a 4-MHz clock. Compute the length of the

delay generated by this circuit.

Solution: The length of delay is three times the period of the clock. A 4-MHz
clock has a period of 250 ns; therefore the delay time is 750 ns.

Can the delay time in this circuit be doubled (to 1.5 ixs) by adding only one

more flip-flop? The answer is yes, and is left for you to prove as a homework
problem.

7.8 A COMPLETE RAM EPROM MEMORY

Now that we have covered all of the required basics, a complete memory design

is presented. Figure 7.19(a) details the EPROM section, and Figure 7.19(b)
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FIGURE 7.19 Complete RAM/EPROM memory: (a) 2K word EPROM at 0000 and (b)

2K word RAM at 8000
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details the RAM section. The partially decoded address of the EPROM section

is 0000 and is 2K words long. The partially decoded address of the RAM section

is 8000 and is also 2K words long.

Note that each section has its own decoder and DTACK delay generator. It

is possible to use a single circuit to generate DTACK for both sections. Can you
figure out how?

The OR gates in the EPROM section are used to output-enable the 2716s,

depending on the state of LDS and UDS and the state of the R/W line. We only

output-enable the EPROMs when the 68000 is doing a memory read from the

EPROM address range.

The RAM section contains two 6116-type memories, which are 2KB RAMs.
Some extra circuitry is needed in this section to allow for memory write opera-

tions.

In both sections, one memory chip is connected to the lower data bus bits

(D through D7 ), and the other to the upper data bus bits (D8 through D 15 ).

This scheme allows for byte and word transfers between the 68000 and the

memory section.

It is important to note that the EPROM section must be 16 bits wide,

because all 68000 instructions are multiples of 2 bytes in length. The RAM
section, on the other hand, may be cleverly designed as a bytewide memory, if

the software used always performs byte reads and writes to the RAM section.

In the next section we will see how dynamic RAM can be interfaced to the

68000 CPU.

7.9 DYNAMIC RAM INTERFACING

What is Dynamic RAM?

Dynamic RAM is a special type of RAM memory that is currently the most

popular form of memory used in large memory systems for microprocessors. It

is important to discuss a few of the specific differences between static RAMs
and dynamic RAMs. Static RAMs use digital flip-flops to store the required

binary information, whereas dynamic RAMs use MOS capacitors. Because of

the capacitive nature of the storage element, dynamic RAMs require less space

per chip, per bit, and thus have larger densities. At the time of this writing,

static RAMs are available in 28-pin packages in the 32K by 8-bit size, and

dynamic RAMs are available in 16-pin packages, with 256K bit storage densi-

ties, at a much lower price!

In addition, static RAMs draw more power per bit. Dynamic RAMs employ

MOS capacitors that retain their charges (stored information) for short periods

of time, whereas static RAMs must saturate transistors within the flip-flop to

retain the stored binary information, and saturated transistors dissipate maxi-

mum power.

A disadvantage of the dynamic RAM stems from the usage of the MOS
capacitor as the storage element. Left alone, the capacitor will eventually dis-
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charge, thus losing the stored binary information. For this reason the dynamic

RAM must be constantly refreshed to avoid data loss. During a refresh opera-

tion, all of the capacitors within the dynamic RAM (called DRAM from now on)

are recharged.

This leads to a second disadvantage. The refresh operation takes time to

complete, and the DRAM is unavailable for use by the processor during this

time.

Older DRAMs required that all storage elements inside the chip were re-

freshed every 2 ms. Newer DRAMs have an extended 4-ms refresh time, but

the overall refresh operation ties up an average of 3 percent of the total avail-

able DRAM time, which implies that the CPU only has access to the DRAM 97

percent of the time. Since static RAMs require no refresh, they are available to

the CPU 100 percent of the time, a slight improvement over DRAMs.
In summary, we have static RAMs that are fast, require no refresh, and

have low bit densities. DRAMS are slower and require extra logic for refresh

and other timing controls, but are cheaper, consume less power, and have very

large bit densities.

Accessing Dynamic RAM

A major difference in the usage of DRAMs lies in the way in which the DRAM
is addressed. A 64K bit DRAM requires 16 address bits to select one of 65536
possible bit locations, but its circuitry contains only 8 address lines. A study of

Figure 7.20 will show how these 8 address lines are expanded into 16 address

lines with the help of 2 additional control lines: RAS and CAS.
The 8 address lines are presented to row and column address buffers, and

latched accordingly by the application of the RAS and CAS signals. To load a

CAS

RAS

Column
decoder

256 lines

64K-bit

storage

array

Data out

Data in

R/W

FIGURE 7.20 Internal block diagram of a 64K bit dynamic RAM
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16-bit address into the DRAM, 8 bits of the address are first latched by pulling

RAS low. Then the other 8 address bits are presented to A through A7 , and
CAS is pulled low. By adding just one more address line to the DRAM, the

addressing capability is increased by a factor of 4, since one extra address line

signifies an extra row and column address bit. This explains why DRAMs tend

to quadruple in size with each new release.

The actual method for addressing the DRAM is presented in Figure 7.21.

First the 8 row address bits are applied to A through A7 , and RAS is pulled

low. Then A through A 7 receive column address information, and CAS is

pulled low. After a short delay, the circuitry inside the DRAM will have de-

coded the full 16-bit address, and reading or writing may commence.
The row address strobe and column address strobe signals must be gener-

ated within 100 ns of each other to avoid data loss. The specific timing require-

ments for the DRAM depend on the manufacturer.

External logic is needed to generate the RAS and CAS signals, and also

take care of presenting the right address bits to the DRAMs. The circuit of

Figure 7.22 shows an example of the required logic.

The operation of this circuit is as follows: The address decoder monitors the

address bus for an address in the desired DRAM range, and outputs a logic

when it sees one. Normally the three Q outputs of the shift register are all

high. The first clock pulse will shift the logic from the address decoder to the

output of the first flip-flop, causing RAS to go low. Since the output of the

second flip-flop is still high, the 74LS157s (quad 2-line to 1-line multiplexers)

are told to pass processor address lines A through A7 . This is how we load the

ROW address bits into the DRAM.

—i

(< 1 00

RAS L_ /

CAS L /

A -A 7 X S,ab,c X S»b.e

FIGURE 7.21

Row address hits I

Columi

DRAM cycle timing

add

i

vss bits
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1

To DRAM

CAS

FIGURE 7.22 Address bus selector for DRAM

The second clock pulse will shift the logic to the second Q output (the first

is still low also), which causes the 74LS157s to select the processor address

lines A8 through A 15 . These address bits are recognized and latched by the

DRAM when the third clock pulse occurs, because the logic has been shifted
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to the third Q output, which causes CAS to go low. The DRAM has been loaded

with a full 16-bit address, and reading or writing may commence. At the end of

the read or write cycle, AS will go high, presetting all three flip-flops via the

preset line, and the shift register reverts back to its original state.

This sequence will repeat every time the address decoder detects a valid

address.

Figure 7.23 shows a complete DRAM addressing circuit with read-write

logic. When the 74LS138 detects a valid memory address, one of its 8 outputs

will go low, removing the 74LS175 quad D flip-flop from its forced-clear state.

All four Q outputs are high at this time. As a logic l_shifts through the

74LS175 (connected as a 4-bit shift register), the RAS, RW, and CAS signals

will be generated. The resistors in the address and control lines are called

damping resistors, and are used to control the waveshape of the digital sig-

nals to the DRAMs. The damping resistors reduce ringing and other noise that

would normally occur in a high-speed digital system. The only circuitry miss-

ing from Figure 7.23 is the required refresh logic, which we will study in the

next section.

Refreshing Dynamic RAM

Previously we learned that DRAMs need to be refreshed, or the MOS capaci-

tors that retain the binary information will discharge and data will be lost.

Older DRAMs required that all cells (storage elements) be refreshed within

2 ms. Though the process of reading or writing a DRAM cell is a form of

refresh, it is possible that entire banks of DRAM remain inactive while the

CPU addresses other memories or I/O devices, so a safe designer will include a

refresh circuit in the new DRAM system.

Newer DRAMs (such as the MCM6664) contain a single control line called

REF that automatically refreshes the DRAM whenever it is pulled low. We
will instead look at the process that is used to refresh a DRAM and the cir-

cuitry needed to control the process.

DRAMs are internally designed as a grid of memory cells arranged as a

matrix, with an equal number of rows and columns (hence the RAS and CAS
control signals). A 4K bit DRAM would need 12 address lines: 6 for the row

decoder and 6 for the column decoder. Each decoder would pick one row and

column out of a possible 64. During a refresh operation, all 64 column cells

would be refreshed by the application of a single RAS signal. This is called

RAS-only refresh. To refresh all 4096 bits, it is only necessary to RAS select

all 64 rows. A larger DRAM, a 64K bit one for example, would require RAS
selecting more rows (256 in this case). The easiest way to ensure that all rows

get selected during a refresh operation is to use a binary counter and connect

the output of the counter to the DRAM address lines during a refresh. To

ensure that the DRAMs get refreshed periodically, a timer is needed to gener-

ate a REFRESH signal. The REFRESH signal will suspend processor activity

while the DRAM is refreshed. Figure 7.24 shows how a 555 timer can be used

to generate a REFRESH signal every 100 /jls. The 555 timer clocks a D-type

.
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FIGURE 7.23 Complete DRAM addressing circuit

flip-flop , whose output is REFRESH. When the refresh cycle is completed.

DONE is used to preset the flip-flop and remove the REFRESH request, until

the 555 times out again. Figure 7.25 shows how the refresh timer, together

with the RAS refresh circuitry, is used to refresh the DRAMs. When the 555

timer initiates a refresh cycle, REFRESH will go low, issuing a BR (bus re-

quest) to the 68000. The processor will respond by asserting BG, which allows
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a to be clocked into the 2-bit shift register used to control RAS and DONE.
When RAS is active, bits A x through A8 of the address bus will contain the

8-bit counter value (the current state of the 74LS393). When DONE is active,

the refresh flip-flop is preset, which removes the BR signal. This causes the

processor to release BG, which in turn causes the 2-bit shift register to be

loaded with Is. At this point, the bus request is over, and the processor re-

sumes execution. Since the 555 timer also clocks the 8-bit counter, a unique

row address is generated each refresh cycle.

A Dynamic RAM Controller

We may conclude that the circuitry required to address, control, and refresh

DRAMs is both complicated and extensive (which may translate into expen-

sive). There must be a simpler way.

There is!

Various companies make DRAM controller devices that take care of all

refreshing and timing requirements needed by the dynamic RAMs. Most will

support 16K, 64K, and 256K dynamic RAMs. All circuitry is contained in a

single package in most cases. The DRAM controller does its work indepen-

dently of the processor. This means that the DRAM controller will issue a wait

to the processor when the processor tries to access memory during a refresh

cycle. Figure 7.26 shows how a DRAM controller is used in a 68000-based

system. Using a dedicated DRAM controller minimizes the time required to

design, debug, and eventually troubleshoot DRAM memory systems. It may
also be more cost effective in the long run.

Dynamic RAM Summary

Our study of DRAMs has shown that they are slow and require complicated

circuitry to get them to work (unless a DRAM controller is used). On the other

hand, DRAMs are cheaper, per bit, than static RAM, they consume less power,

68000
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FIGURE 7.26 DRAM controller interfacing
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and have much larger bit densities. With the advance of the microcomputer
into the word processing arena, where very large memories are needed to store

and manipulate text, dynamic RAM becomes a very economical solution.

Image processing, large informational databases, and virtually any large stor-

age system is an ideal choice for the use of dynamic RAMs. Furthermore,

interfacing dynamic RAMs is made easier with the use of a DRAM controller.

7.10 DIRECT MEMORY ACCESS

Direct memory access, usually called DMA for short, is a process in which a

device external to the CPU requests the use of the CPU's buses (address bus,

data bus, and control bus), for its own use. Examples of external circuits that

might wish to perform DMA are video pattern generators, which share video

RAM with the CPU, and high-speed data transfer circuits such as those used in

hard disks.

In general, a DMA process consists of a slave device requesting the use of

the master's buses. In a microprocessor-based system, the master is usually

the CPU. Once the slave device has control of the bus it can read or write to the

system memory as necessary. When the slave device is finished, it releases

control of the master's buses, and system operation returns to normal.

An example of why DMA is a useful technique can be illustrated in the

following way: Suppose that you wish to add a hard disk storage unit to your

microcomputer. The hard disk boasts a data transfer rate of 5 million bytes per

second. This comes to one byte transferred every 200 ns! Most microprocessors

would be hard put to execute even one instruction in 200 ns, much less the

multiple number of instructions that would be required to read the byte from

the hard disk, place it in memory, increment a memory pointer, and then test

for another byte to read. A DMA controller would be very handy in this exam-

ple. It would merely take over the CPU's buses, write all the bytes into mem-
ory very quickly, and then return control to the CPU.

_ To perform DMA on the 68000, three signals must be used. They are the

BR (bus request), BG (bus grant), and BGACK (bus grant acknowledge) sig-

nals. The flowchart in Figure 7.27 shows how an external device requests the

68000's bus, gets it, and finally gives it back. Figure 7.28 shows the typical bus

timing during a DMA operation. It is important to note that the device per-

forming the DMA is responsible for maintaining the DRAM refresh require-

ments, either by performing them itself, or by allowing them to happen nor-

mally with existing circuitry.

7.11 SUMMARY

In this chapter we studied some of the most common methods used in the

design of memory circuitry for microprocessor-based systems. Bus buffering,

full- and partial-address decoding, direct memory access, and the logical re-

quirements for static and dynamic RAMs were covered. A good designer will
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FIGURE 7.27 Bus arbitration

cycle flowchart (Reprinted with
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employ many of these techniques in an effort to construct a new system that is

logically simple and elegant and also functional and easy to troubleshoot. The
end-of-chapter questions are designed to further test your knowledge of these

topics, and you are encouraged to work all of them to increase your ability to

design memory address decoders, partial-address decoders, and complete mem-
ory systems.

In the next chapter you will see how a different technique, memory-
mapped I/O, is used to implement serial and parallel communication, through

the use of specialized peripherals.

STUDY QUESTIONS

1. Explain the different functions of the internal Ao bit when used for:

a) byte addressing

b) word addressing

2. How does the R/W line in Figure 7.3 control the direction of the 74LS245?
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FIGURE 7.28 Bus arbitration cycle timing

3. Show the states of UDS and LDS, when the 68000 is involved in the following

memory accesses:

a) a byte write to address 3000

b) a byte write to address 3001

c) a word write to address 3000

4. Explain the difference between synchronous and asynchronous data bus transfers,

and what processor signals are used in each method.

5. If a state time in a 68000-based system is 250 ns, what is the minimum time spent

doing a memory read?

6. When (and why) are wait states inserted into memory accesses?

7. Calculate the worst-case delay time for each address decoder in Figure 7.29.

8. Why do wait states always come in twos?
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FIGURE 7.29 For Questions 7.7, 7.15, and 7.16

(d)

9. For the state time of Question 5, what is the time spent doing a memory read with

two wait states?

10. Two 2K by 8 EPROMs are used to make a 2K word memory. How many address

lines are needed for the EPROMs? What upper address lines must be used for the

decoder?

11. For the memory of Question 10, what is the address of the last memory location, if

the starting address of the EPROM is E04000?
12. Design a memory address decoder for the EPROM memory of Question 9, using a

circuit similar to that in Figure 7.8.

13. Repeat Questions 10 through 12 for these memory sizes and starting addresses:

a) 8K words, base address of CD0000
b) 32K words, base address of 8C0000
c) 256K words, base address of 180000

14. Explain why it is not possible for an 8K word memory to have a starting address of

1000H.

15. What are the decoded address ranges for the circuits in Figure 7.29?

16. What signal (or signals) is missing from the address decoder in Figure 7.29? Modify

the decoders to include the missing signal (or signals).

17. What are the address range groups for the decoder in Figure 7.30?
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FIGURE 7.30 For Question 7.17
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18. Use a circuit similar to that of Figure 7.30 to decode these address ranges:

108000 to 1087FF
108800 to 108FFF
109000 to 1097FF
109800 to 109FFF
10A000 to 10A7FF
10A800 to 10AFFF
10B000 to 10B7FF
10B800 to 10BFFF

19. Why is RAM preferred in memory from to 3FF, instead of EPROM?
20. What are two main advantages gained in using partial-address decoding? Two dis-

advantages?

21. Give three possible address ranges for each decoder in Figure 7.31. Address lines A x

through A 13 are used by the memories.

22. Suppose that three different memory decoders have output signals RAMA, RAMB,
and ROM. Design a circuit to generate a DTACK delay of 200 ns using a 100-ns-

period clock and a circuit similar to that of Figure 7.17. Any of the three signals

going low triggers the generator.

23. Why is the delay circuit eliminated in synchronous bus transfers?

24. Design a 16K word memory using 8K-byte EPROMs. Show the address and data

line connections to all EPROMs and the circuitry needed to switch between the two

8K word sections .

25. How do the RAS and CAS lines on a DRAM eliminate half of the required chip

address lines?

26. Why does the size of a DRAM go up by a factor of 4 for each single address line that

is added?

27. Why do DRAMs consume less power that static RAMs?
28. Explain how DRAM refreshing could be accomplished using an interrupt service

routine.

29. Find a memory data book and determine the size of static and dynamic RAMs that

are available. Also look up their access times.

30. How does program execution change on a system that supports DMA?
31. What is the 68000 doing while its external buses are involved in a DMA transfer?

32. Name at least three operations that might require the high data-transfer rate of

DMA.
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CHAPTER

8

I/O System Design

Objectives

In this chapter you will learn about:

Memory-mapped I/O

Parallel data transfer

Serial data transfer

The basics of memory-mapped video

8.1 INTRODUCTION

In the last chapter we saw how memory systems were designed for use with the

68000. I/O systems are designed in a similar way. I/O peripherals are inter-

faced with the 68000 through the same kind of address decoders we used in the

previous chapter. These I/O address decoders are used to map hardware pe-

ripheral registers to specific memory locations. When the processor reads or

writes into one of these memory-mapped I/O locations, some action will

be taken by the peripheral device. The techniques involved in performing

memory-mapped I/O will be introduced in this chapter through the use of

6800-based peripherals. More I/O interfacing will be shown in Chapter 9.

Section 8.2 describes the way memory-mapped I/O is used to transfer infor-

mation between the processor and the outside world. Sections 8.3 and 8.4 detail

two specific types ofmemory-mapped I/O: parallel data transfer and serial data
transfer. A special kind of I/O called memory-mapped video is covered in Sec-

tion 8.5.
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8.2 MEMORY-MAPPED I/O

Normally, a memory location, or group of locations, is used to store program
data and other important information. Data is written into a particular mem-
ory location and read later for use. Through a process called memory-mapped
I/O, we remove the storage capability of the memory location and instead use it

to communicate with the outside world. Imagine that you have a keyboard that

supplies an 8-bit ASCII code (complete with parity) whenever you press a key.

Your job is to somehow get this parallel information into your computer. By
using memory-mapped I/O, a memory location may be set aside that, when
read, will contain the 8-bit code generated by the keyboard. Conversely, data

may be sent to the outside world by writing to a memory-mapped output loca-

tion. The 68000 CPU is capable of performing memory-mapped I/O in either

byte or word lengths. All that is required is a memory address decoder, coupled

with the appropriate bus circuitry. For a memory-mapped output location, the

memory address decoder provides a clock pulse to an octal flip-flop capable of

storing the output data. A memory-mapped input location would use the mem-
ory address decoder to enable a tristate octal buffer, placing data from the

outside world onto the CPU's data bus when active. Figure 8.1 shows the cir-

cuitry for an 8-bit memory-mapped I/O location, sometimes referred to as a

memory-mapped I/O port. The memory address decoder may be used for both

input and output. Study Figure 8.1 and see how the R/W line is used to control

the operation of the memory-mapped I/O port. The design of the address de-

coder is shown in Figure 8.2. Note the number of address lines used in the

decoder. Partial-address decoding would greatly simplify the logic needed

here.

8.3 PARALLEL DATA TRANSFER: THE 6821 PIA

In the previous section we examined the operation of a simple I/O port that

used a technique called memory-mapped I/O to send and receive data with the

outside world. Although the hardware was simple and dedicated to fixed 8-bit

I/O, the message is clear: Memory addresses may be used to perform external

CPU I/O. In this section we will look at parallel I/O again, now seeing how a

dedicated peripheral, the 6821 peripheral interface adapter (PIA), uses a num-

ber of memory-mapped locations to implement parallel I/O with the external

system hardware. The 6821 was initially designed for use in 6800-based sys-

tems, but we will examine the method used to interface it with the 68000.

Figure 8.3 shows a simple block diagram of the 40-pin 6821, and also a

pinout of the device. The block diagram contains a fair amount of symmetry

between the logical functions. That is because the 6821 supports two separate

8-bit ports. These two ports (A and B) are configured by software and may
drive two TTL loads. In addition, port A will also drive CMOS loads.
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FIGURE 8.1 Memory-mapped I/O circuitry

In the next two sections we will examine both the software and hardware

requirements for operating this device and the method needed to connect the

6821 to a 68000-based system.

Programming the 6821

Did you notice that the block diagram of the 6821 contained control and data

direction registers for both the A and B interfaces? Together, these two regis-

ters give the programmer a very flexible I/O system. Each bit in the A and B
interfaces may be programmed as either an input or an output bit. By writing
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the appropriate data into the data direction register, the programmer may
configure each signal line (PA through PA7 , and PB through PB7 ). This has

the great advantage of allowing the software to adjust to new system require-

ments, without having to make changes to the actual output circuitry. In addi-

tion, there are additional signal lines (CA 1( CA2 , CB X , and CB2 ) that may be

programmed to allow interrupts, and strobe signals for each port.

Selecting any configuration involves the exchange of data between the

CPU and the 6821 control/data direction registers. This is accomplished by

writing the appropriate data to specific memory locations. These locations act

like memory locations that we utilize to make up EPROM or RAM memory,
except they reside in the 6821 peripheral and therefore we make use of two

new processor signals to control the data exchange. We will get to these signals

in the next section. For now, all we have to understand is that once the hard-

ware is installed, we may use the 6821 like a handful of memory locations:

writing data to the 6821 may output data on the port A or B lines, and reading

data from the 6821 may input data from port A or B.

To learn how to configure the 6821, let us look only at the port A side. The
programming of port B is identical, except for the memory addresses that se-

lect the port B registers.

Figure 8.4 shows the bit assignments within the side A control register.

The first bit of importance is bit 2, DDR access. This bit controls the path that
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FIGURE 8.3 The 6821 PIA: (a) pin assignments and (b) internal block diagram

(Reprinted with permission of Motorola Inc.)

output data takes when written to the 6821. If bit 2 is low, the data direction

register gets the output data, and when it is high the output register receives

the data. When the 6821 receives a RESET signal, all bits in each port are set

up for input. To make a particular bit an output bit, a logic 1 must be written

into the corresponding bit in the data direction register. For example, writing

a OFH into the data direction register for side A makes PA through PA3

outputs and PA4 through PA7 inputs.

The short code sequence that follows may be used to program the side A
data lines, assuming that no programming of the 6821 has been attempted

since power-on:

: Control word to select DDR
: memory address for control register A
;write data to control register A

;I/0 configuration
; memory address for DDRA
;write data to DDRA

MOVE.B #00H,D3
MOVEA.L #20002H A5
MOVE.B D3

, ( A5

)

MOVE.B #0FH,D5
MOVEA.L #20000H A5
MOVE.B D5, (A5)
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Determine Active CA1 (CB1) Transition for Setting

Interrupt Flag IRQAIBI1 - (bit 71

bl =0 IRQAIBI1 set by high-to-low transition on CA1
ICB1)

b1 = 1 IRQAIBI1 set by low-to-high transition on CA1
ICB1I

FIGURE 18 - CONTROL WORD FORMAT

IRQA(B) 1 Interrupt Flag (bit 7)

Goes high on active transition of CA1 (CB 1 1. Automa-
tically cleared by MPU Read of Output Register AIB)

May also be cleared by hardware Reset

CA1 (CB1I Interrupt Request Enable/ Disable

b0 = Disables IRQAIBI MPU Interrupt by CA1
ICB1I active transition 1

b0= 1 Enable IRQAIBI MPU Interrupt by CA1 ICB1I

active transition

1 IRQAIBI will occur on next (MPU generated) positive

transition of bO if CA1 (CB1I active transition oc-

curred while interrupt was disabled

Control Register

b7 b6 b5 1 b4 b3 b2 bl bO

IRQAIB11

Flag

IRQAIBI2

Flag

CA2 ICB2I

Control

DDR
Access

CA1 (CB1I

Control

IRQAIBI2 Interrupt Flag (bit 6)

When CA2 (CB2) is an input. IRQAIBI goes high on ac-

tive transition CA2 (CB2I. Automatically cleared by

MPU Read of Output Register AIBI May also be

cleared by hardware Reset

CA2 ICB2) Established as Output Ib5=1l IRQAIBI

2 = 0. not affected by CA2 ICB2I i

CA2 (CB2) Established as Output by b5 1

(Note that operation of CA2 and CB2 output

b5 b4 b3 functions are not identical!

»>CA2

1 b3 = Read Strobe with CA1 Restore

CA2 goes low on first high-to-low

E transition following an MPU read

ol Output Register A. returned high

by next active CA1 transition, as

specified by bit 1

b3-l Read Strobe with E Restore

CA2 goes low on first high-to-low

E transition following an MPU read

of Output Register A, returned high

by next high-to-low E transition dur-

ing a deselect

I » CB2

b3 = Write Strobe with CB1 Restore

CB2 goes low on first low to-high

E transition following an MPU write

into Output Register B. returned

high by the next active CB1 transi-

tion as specified by bit 1 CRB-b7

must first be cleared by a read of

data

b3=l Write Strobe wcth E Restore

CB2 goes low on first low-to-high

E transition following an MPU write

into Output Register B, returned

b5 M b 3 high by the next low-lo-high E tran

sition following an E pulse which

occurred while the part was de

selected

1 1
I »> Set/ Reset CA2 (CB2I

CA2 1 CB2I goes low as MPU writes

b3 = into Control Register

CA2 I CB2) goes high as MPU writes

b3=l into Control Register

Determines Whether Data Direction Register Or Outpu

Register is Addressed

b2 = Data Direction Register selected

b2= 1 Output Register selected

CA2 (CB2) Established as Input by b5 =

b5 b4 b3

l—** CA2 ICB2I Interrupt Request Enable/ Disable

b3 = Disables IRQAIBI MPU Inte'rupt by

CA2 (CB2I active transition
•

b3= 1 Enables IRQAIBI MPU Interrupt by

CA2 ICB2I active transition

•iRQAlBI will occur on next IMPU generat

tedl positive transition of b3 if CA2 ICB2I

active transition occurred while interrupt

was disabled

Determines Active CA2 (CB2I Transition for

Setting Interrupt Flag IRQA(BI2 - (Bit b6l

b4 = IRQAIBI2 set by high to low transi

tion on CA2 ICB2I

b4= 1 IRQAIBI2 set by low-to-high transi-

tion on CA2 ICB2I

FIGURE 8.4 Control register bit assignments for the 6821 (Reprinted with permission

of Motorola Inc.)
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The code sequence assumes that the 6821 has a base address of 20000. This

makes 20000 the location for peripheral data direction registers A, 20002 con-

trol register A, 20004 peripheral data direction registers B, and 20006 control

register B.

All other bits in the control register select different configurations that

may be used for handshaking with circuitry connected to the 6821. For exam-

ple, bit 1 selects the activity needed on the CA X input (rising-edge or falling-

edge > needed to set an interrupt flag. This of course assumes that the interrupt

has already been enabled to bit in the control register.

Bits 3. 4, and 5 select whether the CA2 line is an input or an output, and

what type of interrupt strobing option is used. Bits 6 and 7 are interrupt flags

that are set by various actions on the CA : and CA2 lines.

Since simple parallel I O without handshaking is our requirement here.

we will not go into detail on these special functions. We need only concern

ourselves with the function of bit 2. Ifwe use zeros for all other control bits, we
will always disable the special interrupt strobing features when we write data

into the control register.

To access the 6821 through the previous memory locations we must have

an address decoder that will become activated by the presence of the 6821"s

memory-mapped addresses on the 68000's address bus. We will see how this is

accomplished in the next section.

Interfacing the 6821

You may wish to review the pinout of the 6821 PIA in Figure 8.3(b>. Pins 2

through 19, 39. and 40 are all I P pins. The CPU data bus connects to D
through D 7 (pins 33 through 26 1. IRQA and IRQB are interrupt outputs that

may be used to interrupt the 68000. RS and RS X are the register select inputs.

We normally use lower address bits A x and A2 on these lines to control the

selection of internal 6821 registers. Table 8.1 shows how RS and RS X point to

these registers.

The 6821 also contains three chip-select inputs CS , CS^ and CS2 . When
these signals are in their active state <high, high, and low), the 6821 will

communicate with the CPU data bus. However, it must do its data transfer at

TABLE 8.1 Internal 6821

addressing RS1 RS0 Register Selected

peripheral data direction A*

1 control A
1 peripheral data direction B*

1 1 control B

'Depending on state of CRA(B) bit 2.
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a much slower rate than normal memory. This is because the 6821 is a periph-

eral designed for use with the slower 6800 CPU. But this does not matter; the

designers of the 68000 took this into account and supplied CPU signals that

allow us to complete the interfacing. These signals are the E clock, VMA (valid

memory address), and VPA (valid peripheral address).

The E clock is controlled by the main CPU clock, except that its frequency

is 10 times smaller and has a 40 percent duty cycle. This means that an 8-MHz
68000 will have an E clock equal to 800-kHz that is high for 500 ns and low for

750 ns. The E clock synchronizes the faster 68000 with the slower 6821 logic

circuitry. Data transfers that use the E clock in this fashion are called syn-

chronous data transfers, and take additional time to complete because of the

need to wait for synchronization to occur.

The VPA signal is an input to the 68000 that tells it the address bus con-

tains the address of a slow peripheral and that its bus cycle must be modified to

allow synchronization with the E clock. The VPA signal is generated by the

address decoder for the 6821 (or other peripheral) in much the same way we
generated the DTACK signal, except there is no need to delay before pulling

VPA low.

When the processor detects the active VPA signal, it will respond by pull-

ing VMA low. This output signal may be used to complete the enabling of the

peripheral device. Figure 8.5 shows a general interfacing scheme for the 6821.

PA0

PA7

PB0

PB7

A,-A»tr>

AS

LDS

Address

decoder

-VPA

FIGURE 8.5 6821 -to-68000 interface
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Notice how the remaining address lines, as well as AS and LDS, are used

as inputs to the address decoder. These signals determine the base address of

the 6821 (we assume that RS and RSi are Os).

Another 16 bits of I/O may be added easily by connecting a second 6821 to

the existing circuitry. In this case, the second PIA may communicate over the

upper half of the data bus, providing the ability for full 16-bit data transfers if

so desired.

A simple I/O application utilizing the 6821 is shown in Figure 8.6. Port A
has been programmed for input and is connected to a set of switches. An open

switch makes a logic 1 and a closed switch makes a 0. Port B is connected to a

set of light-emitting diodes. A logic 1 on any port B output will turn on its

associated LED. The following routine reads the switch byte from port A and
uses it to load a counter with an initial value. The counter is used to provide

some delay between outputs to port B. A binary count is output to port B to

flash the LEDs in a specific pattern. The purpose of the switches is to control

the speed at which the LEDs count. A circuit such as this is very useful for

exploring the operation of the 6821.

The software assumes that the 6821 has already been programmed and
that A0 and Al point to port A and port B, respectively.

BINCNT
GETSW

CLR.B
MOVE.B

Dl
(A0) ,D0

; clear display counter
; read switches

150 „

:r^W\r-^hL

150

Switches

LEDs

FIGURE 8.6 6821 I/O Application
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ANDI.W #OFFH,DO
ROL.W #8, DO
MOVE.B Dl, (Al)

ADDQ .

B

#1,D1
NOP
NOP
DBF DO, WAIT
BRA GETSW

; clear bits 8-15
;shift switch data into bits 8-15
; output to LEDs
; increment display counter

WAIT ;waste a little time

;stay in loop until DO = -1

;
go read switches again

The routine is written to allow the speed to be changed while the program is

running.

When parallel data I/O is not enough, we may wish to add serial I/O. The
next section will show how this other standard form of communication may
take place.

8.4 SERIAL DATA TRANSFER: THE 6850 ACIA

Our digital experience has shown us that there are dedicated integrated cir-

cuits called UARTs (for universal asynchronous receiver/transmitter), whose
function is to convert parallel data (usually in the form of ASCII characters)

into a serial data stream, and vice versa. The UARTs operate over a wide range

of data rates and are easily configured for different data sizes, parity checks,

and so on. In this section we will examine the operation of the Motorola 6850

ACIA (asynchronous communications interface adapter), which is a UART
initially designed for the 6800.

Figure 8.7 shows the pinout and block diagram of the 6850, which consists

mainly of a control section and data transmitter/receiver sections. The control

section allows the 6850 to be programmed by enabling special bits in a control

register. Through this register we can modify the internal timing of the 6850,

reset it, choose 7 or 8 data bits per character, and also control the parity and

stop bits. In order to use the control register, we must be able to write data into

it. For this reason we select a memory-mapped address for the 6850, and use it

like a regular memory location.

We will look first at the methods used to program the 6850, and then at the

hardware requirements that must be satisfied to interface the 6850 with the

68000.

Programming the 6850

The 6850 is configured by writing a particular binary control word into its

control register. Figure 8.8 shows the control bit assignments within the

6850's control register. Before any programming of the 6850 is attempted, it is

a good idea to give the device a master reset command. This ensures that the

timing signals inside the 6850 are synchronized and that the device is ready

for programming. To issue the master reset command, bits 1 and of the

control word should be high, with all other bits low. This control word (03) is

then written into the memory-mapped location that selects the control reg-

ister.
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(a) (b)

FIGURE 8.7 The 6850 ACIA: (a) pin assignments and (b) internal block diagram

(Reprinted with permission of Motorola Inc.)

The BAUD rate of the 6850 is determined by both the external BAUD rate

clock applied to the RxC and TxC pins and also the setting of bits 1 and in the

control register. If these bits are both low, no frequency division occurs. If bit

is high with bit 1 low, the 6850 operates on an internal BAUD rate that is

l/16th that of the external clock frequency. Example 8.9 shows how the divide

select bits are used.

Example 8.1: A 6850 has a 38.4-kHz clock connected to its RxC and TxC
pins, and bits 1 and in the control register have been set to and 1, respec-

tively. What is the BAUD rate?

Solution: Dividing 38.4 kHz by 16 gives 2400 Hz, causing the 6850 to oper-

ate at 2400 BAUD (2400 bits/second).

Control register bits 2, 3, and 4 are used to select the number of data bits

per character (7 or 8), the type of parity used (odd, even, or none), and the

number of stop bits. A 110 code on bits 4, 3, and 2 results in 8 data bits, even
parity, and 1 stop bit.
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CR7 CR6 CR5 CR4 CR3 CR

1

1

1

1

RTS

1

CR1 CRO

1

1

Data

7

7

7

7

8

8

8

8

1

1

Parity

Even

Odd
Even

Odd
None

None

Even

Odd

16

64

Master reset

Stop

Transmitting interrupt disabled

Transmitting interrupt enabled

Transmitting interrupt disabled

Transmitting interrupt disabled and

transmit break level on T\D

Receive interrupt disabled

1 Receive interrupt enabled

FIGURE 8.8 The 6850 control register

The remaining bits are used in special handshaking and interrupt schemes

that we will not go into here. A low on these three bits disables their functions.

Once the 6850 is configured, its operational status may be checked by

examining various bits in its status register. Figure 8.9 shows the bit assign-

ments in this register.

Bit indicates receive data register full (RDRF) when high. The 6850 has

received and decoded a character, which may be read from the 6850's data

register.

Bit 1 indicates transmit data register empty (TDRE) when high. A new
character may be transmitted by writing it into the 6850's data register.

Bit 2 is data carrier detect (PCD) when low. When the 6850 is used to

communicate with a MODEM, PCD indicates the presence of a carrier via the

PCP input of the 6850 (pin 23). PCP may be used to generate an interrupt

request via the receive interrupt enable bit in the control register.

Bit 3 indicates clear to send (CTS) when low. Again an external input (CTS
on pin 24), together with a MOPEM, may be used to control this bit. CTS will

inhibit the TPRE bit when it is high.
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FIGURE 8.9 The 6850 status

register

7

IRQ PE OVRN FE CTS DCD TDRE RDRF

Bit 4, framing error (FE), indicates that a problem has occurred with the

most recently received character. When high, problems such as a missing stop

bit, break character detection, or loss of synchronization may have occurred.

Bit 5 indicates receiver overrun (OVRN) when high. If more than one char-

acter is received before the data register is read, data is lost and only the last

character received is available.

Bit 6, when high, shows that a parity error (PE) has occurred. This means
that the most recently received character's parity did not match the parity

selected by the control register.

Bit 7 is interrupt request (IRQ), and is used to show the state of the IRQ
output (pin 7). Interrupt conditions enabled via the control register will affect

this status bit.

The programmer must utilize the 6850's status bits in order to ensure

proper serial data communication. Figure 8.10 shows how the first two bits are

used to implement a simple serial input/output procedure.

Both flowcharts indicate that repeated testing of the RDRF/TDRE bits

may be necessary. An example to show the importance of this repeated testing

follows.

Example 8.2: Suppose that a 6850 is configured to transmit and receive data

at 1200 BAUD, with 7 data bits, odd parity, and 1 stop bit. How long does it

take to fully transmit or receive a character?

Solution: At 1200 BAUD, the bit time is just over 833 |xs, and the selected

word length of 10 bits makes the total time to receive or transmit a single

character roughly 8.3 ms.

It is not difficult to imagine how many instructions the 68000 might be

able to execute in 8.3 ms. Would a few thousand be unreasonable? Probably

not. Therefore, we use the status bits to actually slow down the 68000, so that

it does not try to send or receive data from the 6850 faster than the 6850 can

handle.

The two short routines that follow show how a character input and a char-

acter output routine might be written in 68000 code.

;point to ACIA status register
;load status byte into D2
;test RDRF bit
;loop until high (char rec'd)

;
point to ACIA data register

CIN M0VEA.L #18000H A4
GET_ST M0VE.B (A4),D2

ANDI.B #01H,D2
BEQ GET_ST
M0VEA.L #18002H A4
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Check TDRE.

(a) (b)

* This clears RDRF. ** This clears TDRE.

FIGURE 8.10 I O flowcharts: (a) serial reception and (b) serial transmission

GET_ST2

MOVE.B (A4) ,D1
ANDI.B #7FH,D1
RTS

MOVEA.L #18000H A A

MOVE.B (A4) .D2

ANDI.B #02H.D2
BEQ GET_ST2
MOVEA.L #18002H A4

MOVE.B Dl, (A4)

RTS

load character into Dl
clear MSB

;point to ACIA status register
;load status byte into D2
;test TDRE bit
; transmitter busy, try again
;point to ACIA data register
; transmit character from Dl

The routines assume a 6850 with decoded register addresses at 18000 and
18002. They also assume that the 6850 has been properly initialized. Usually

this is done at the beginning of code execution (power-up) but is not limited to

a single time. The 6850 may be reconfigured by first issuing a master reset

command. The following code may be used to initialize the 6850 for 8 data bits,

no parity, 1 stop bit, and an X16 clock.

INIT MOVEA.L
MOVE.B
MOVE.B
RTS

#18000H,A4
#03H, (A4)

#15H. (A4)

point to ACIA control register
Master reset command
configuration pattern
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Now that we have an understanding of the software needs of the 6850, we
will next examine the hardware needs, and see that interfacing the ACIA is a

rather simple task.

Interfacing the 6850

Take another look at Figure 8.7(b). The 6850 communicates with the host

processor (the 68000 in our case) via its 8-bit data bus, D 7 through D (pins 15

through 22). Reading or writing data is controlled by the R/W input (pin 13).

The chip itself is enabled when its three chip-select inputs—CS , CS^ and

CS2—are all active. The internal registers of the 6850 are selected by the R/W
input and by the RS (register select) input. A low on this input selects the

control/status registers, and a high selects the receiver/transmitter data regis-

ters. Pin 14 is the E clock input, which controls all internal 6850 timing.

BAUD rate timing is controlled by the separate RxC and TxC inputs, which

means that the 6850 may be configured to transmit and receive at different

BAUD rates. RxD and TxD are the receiver and transmitter serial data lines.

The IRQ output (when low) may be used to interrupt the 68000 to inform it of

special conditions occurring inside the 6850. The CTS, DCD, and RTS pins (of

which only TRS is an output) are normally used to interface the 6850 with a

MODEM. In Figure 8.11 we see an example ofhow the 6850 is interfaced to the

68000.

In this example, the 6850 is connected to the lower half of the data bus

(thus requiring the use of LDS in the address decoder). When the 68000 out-

puts an address that corresponds to the one that will activate the address

decoder, the SEL output will go low. This will cause two things to happen.

First, two of the 6850's enables (CS and CS^ will be taken high via the in-

verter. Second, the VPA (valid peripheral address) signal will go low, indicat-

ing to the 68000 that it has addressed a 6800 peripheral. This will cause the

68000 to extend its read or write cycle until it has synchronized with the

E clock. When this occurs, the 68000 will proceed with the peripheral read or

write by issuing VMA (valid memory address). Since a low on this line will

complete the chip-select requirements of the 6850, we will now see data trans-

fer occur. If address line A 1 is low, control/status information will be trans-

ferred, depending on the state of the R/W line. IfA
:
is high, receiver/transmit-

ter data will be transferred.

The BAUD rate is controlled by the clock supplied by a special BAUD rate

chip, the 14411. This integrated circuit contains internal frequency dividers,

and when coupled with a special crystal, will produce the exact clocks needed
for many common BAUD rates. In this example, the 14411 is configured to

output clocks that are 16 times the required BAUD rate. When we select X16
operation inside the 6850, we will get back the original BAUD rate clock.

The CTS and DCD inputs are grounded to ensure proper operation, since

we are not interested in any fancy handshaking with a MODEM.
The 1488 and 1489 integrated circuits are used to convert the TTL compat-

ible TxD and RxD signals to RS232C levels that swing plus and minus. If for
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FIGURE 8.11 6850-to-68000 interface

some reason you desire to send and receive data via the upper half of the data

bus, simply connect D8 through D 15 to the 6850, and use the UDS signal in the

address decoder.

This concludes our study of the 6850 ACIA. Together with the 6821 PIA,

we have a very powerful and flexible way of communicating with the outside

world. In Chapter 9 we will examine the serial and parallel peripherals de-

signed specifically for the 68000.
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8.5 MEMORY-MAPPED VIDEO I/O: THE 6845 CRT CONTROLLER

When parallel and serial data communications alone are not enough, the de-

signer/programmer must turn to a different approach to I/O. Since pictures

convey a gigantic amount of information at once, it would be nice if we could

take an electronic snapshot of the contents ofmemory and somehow display all

the information at once on a single display. This technique is called memory-
mapped video. A portion of memory is dedicated to performing this video I/O

for us. We will soon see how a special peripheral, the 6845 CRT controller, uses

this memory to create an image composed of ASCII characters on a television

screen.

Ordinary monitors employ a technique called raster scan to deflect the

electron beam to various parts of the screen in an orderly fashion. The beam is

moved rapidly (63 (xs for a single trace) from left to right, and slowly down, so

that an image composed of 512 lines is created in l/30th of a second. By vary-

ing the intensity of the beam, we can control the brightness of each line as it

is traced out. After l/30th of a second we have an entire image, which will

quickly fade if we do not repeat the process. To simulate motion we will

slightly change the information we present in the next image; therefore, in one

second we may see 30 different images. Since our eyes cannot respond quickly

enough to the changing images, they will average the information they see,

and there will appear to be smooth transitions from one moment to the next.

Suppose now that we want to display only stationary images. This would
mean that we can avoid having to change the image information every scan. To
further simplify matters, we also display the information in two shades only,

black and white. These two requirements serve to point the way to digital

circuitry to store and generate the image. The circuitry would need to accom-

plish many complex tasks to correctly generate the video image. First, it needs

to be able to synchronize its timing with that of the television monitor. Second,

it would have to contain circuitry to generate the video image from informa-

tion stored in system memory (which would also involve circuitry to access

that memory). Third, it would have to do all of this very quickly, in order to

pack useable information into one scan-line time of 63 |xs.

Figure 8.12 shows the pinout and internal block diagram of the 6845 CRT
controller. The various counters, sync circuits, and registers within the device

all work to implement the raster scan technique. During normal operation,

this involves repeated accessing of the system's video RAM. Data read out from
the RAM is interpreted as ASCII data, which the internal circuitry uses to

create a dot-matrix image of the character in a location on the screen corre-

sponding to the location in memory that is being scanned. Thus, we divide the

video memory up into rows and columns, and use sequential memory locations

to fill the screen. The 6845 gives the option of choosing the number of rows and
columns used. One option gives 24 lines by 80 characters. We would then need
1920 memory locations to store all of the ASCII information we could place on
the screen.
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FIGURE 8.12 The 6845 CRT controller: (a) pin assignments and (b) internal block

diagram (Reprinted with permission of Motorola Inc.)

The data written into these 1920 locations constitutes what we see on the

screen of the display. CRT controllers are designed to interpret the data within

screen memory as ASCII characters (in some modes of operation). Thus, by

writing the correct ASCII values into memory we actually put the desired

characters on the screen. Two useful routines are usually included in any
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memory-mapped video package. These routines are used for clearing the

screen and for scrolling the screen. CLEAR and SCROLL are used for this

purpose. Both routines assume that the proper video mode has already been set

up and that A4 points to the beginning of a 24-by-80 character screen memory.

CLEAR MOVE.W #1919, DO
BLANK MOVE.B #20H, (A4)4

DBF DO , BLANK
RTS

SCROLL MOVEA.L A4.A5
ADDA .

L

#80, A5
MOVE.W #1839, DO

ROLLUP MOVE.B ( A5 ) + , ( A4 )

DBF DO, ROLLUP
MOVE.W #79, DO

NEWLYN MOVE.B #20H, (A4)+
DBF DO , NEWLYN
RTS

init loop counter
write ASCII blank into
repeat to clear screen

>mory

copy starting address
advance to 2nd line
init loop counter
copy character from next line
repeat for 23 lines
init loop counter
write blanks into last line

In the CLEAR routine, the initial loop counter value 1919 is one less than the

number of screen characters. In the SCROLL routine, the initial loop counter

value 1839 is one less than 1920 - 80. To get scrolling to work we have to copy

the characters from line 2 to line 1. Then the characters from line 3 are copied

to line 2. By the time the ROLLUP loop is finished the entire screen has been

scrolled up, leaving lines 23 and 24 identical. Line 24 is then blanked out to

prepare it for the next new line of characters.

Since the 6845 will be constantly scanning this video RAM to refresh the

screen image, what happens when the CPU also tries to access it? Usually the

designer will include circuitry to detect this illegal condition and then do one of

two things: (1) the CPU gets priority and blank image data is sent back to the

6845, tricking it into thinking it has read memory, or (2) the 6845 gets priority,

forcing the 68000 into a wait state until the 6845 is finished reading the video

RAM. The second case is ordinarily used because it generates clearer images.

To move data around on the screen (very useful in screen-oriented text

editors), we need only move it around in the video RAM. This function is

supplied by software. We must write routines to perform the necessary editing

that we wish to perform. The software may also interact with the 6845 regis-

ters that control its cursor, light pen, and hardware scrolling circuitry. Since

the operation of the 6845 is very complex (the software must control 17 differ-

ent internal registers), we will not examine the operation of this device fur-

ther. More information may be found by reading the rather lengthy and com-

prehensive data sheets for the 6845 and its relative, the 6847 video display

generator, which can generate color, bit-mapped images.

8.6 SUMMARY

In this chapter we examined the operation of memory-mapped I/O devices.

These devices communicate with the processor through the use ofmemory read
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and write cycles, and thus utilize similar address decoding logic. Examples of

these address decoders were given.

Two 6800-based peripherals were examined in detail. The hardware and
software interfacing requirements of the 6821 peripheral interface adapter

and 6850 asynchronous communications interface adapter were examined and
examples given to demonstrate their use. A third peripheral, the 6845 CRT
controller, also was discussed to introduce the technique of memory-mapped
video.

Peripherals designed specifically for the 68000 will be covered in the next

chapter.

STUDY QUESTIONS

1. What is the difference between a memory location and a memory-mapped I O loca-

tion?

2. Modify the I O circuitry of Figure 8.1 so that 16 bits of data are transferred.

3. What is the memory-mapped I O address of the decoder shown in Figure 8.2?

4. What is the memory-mapped address range for the decoder of Figure 8.2 if address

lines A\ through A4 are not used?

5. Why are latches needed for the output section of an I device?

6. Design a partial address decoder for a memory-mapped I O device that will respond

to addresses 8000H through 80FFH.

7. Show how the 6821 is programmed for port A out and port B in. Assume a base I

address of 40000H.

8. Show how an 8-by-8 matrix of LED's can be controlled with the 6821.

9. What initialization is needed for the LED matrix circuit of question 8?

10. Rewrite the BINCNT program so that the LEDs generate the following display:

XXX
-XXX
—XXX

XXX—
XXX-
XXX

XXX-
XXX—

—XXX
-XXX
XXX

An X indicates a LED that is on.

11. Show how the 6821 could be used to drive two 7-segment LED displays.

12. Write a BCD counter for the circuit of Question 11.

13. Design an address decoder for a 6821 that will respond to addresses CE040H
through CE04FH.

14. What is needed to program the 6850 for 8 data bits, no parity, and 2 stop bits'.'

15. In Example 8.1, what is the BAUD rate if the RxC and TxC clocks are running at

76.8 KHz
16. Modify the CIN routine so that it checks the receiver overrun and parity error flags.

Return an FF in Dl if either error is found.
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17. Repeat Example 8.2 for a 6850 running at 9600 BAUD.
18. Write a routine that continually calls CIN and COUT (to echo all input characters

to the output). If the input character is a carriage return (ODH) and output a ODH
and a OAH (line feed).

19. Show how a second 6850 may be added to the circuitry of Figure 8.11.

20. Why is it necessary for the 6850 to utilize synchronous bus transfers?

21. When is it necessary to call the SCROLL routine?

22. Eight 1920-byte blocks of memory have been loaded with screen characters. To

simulate animation, each block is copied, one at a time, to screen memory. A short

delay is included between copies. Assume that A4 points to the beginning of screen

memory and A5 to the beginning of the eight image blocks. Write an ANIMATE
routine to perform the copying.

23. Write a routine called MIRROR that swaps the left and right side of the display

screen. Thus, a line that looks like this:

The quick brown fox jumps over the lazy cat.

becomes:

. tac yzal eht revo spmuj xof nworb kciuq ehT





CHAPTER

9
Advanced Programming
Using 68000 Peripherals

Objectives

In this chapter you will learn about:

Controlling DMA operations

Managing memory

Parallel and serial data transmission

Hardware interrupt handling

Floating-point coprocessor functions

Interfacing non-Motorola devices

Additional 68000-based peripherals

9.1 INTRODUCTION

The power of a microprocessor can be increased by the use of peripherals de-

signed to implement special functions, functions that may be very difficult to

implement via software. A good example of this principle would be in the use of

a coprocessor. The coprocessor comes equipped with the ability to perform com-

plex mathematical tasks, such as logarithms, exponentials, and trigonometry.

The 68000, though powerful, would require extensive programming to imple-

ment these functions, and even then would not compute the results with the

same speed. Thus, we see that there are times when we have to make a hard-

ware/software trade-off. In this chapter we will concentrate on applications

that employ the use of standard peripherals, designed specifically for the

68000. In each case, we will examine the interfacing requirements of the pe-

ripheral, and then see how software is used to control it.

You are encouraged to refer to Appendix D as you read the chapter.

245
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Sections 9.2 through 9.8 cover, respectively, the following peripherals:

1. The 68440 Dual DMA Controller

2. The 68451 Memory Management Unit

3. The 68681 Dual UART (Universal Asynchronous Receiver/ Transmitter)

4. The 68230 PI/T (Parallel Interface/Timer)

5. The 68901 Multifunction Peripheral

6. The 68153 Bus Interrupt Module

7. The 68881 Floating-point Coprocessor

Section 9.9 explains how a non-Motorola peripheral can be interfaced to the

68000, and Section 9.10 gives a brief summary of other peripherals designed

for use with the 68000.

9.2 THE 68440 DUAL DMA CONTROLLER

Ifwe stop to consider the operation of a multiuser microprocessor system capa-

ble of supporting user terminals, a printer, and a disk storage system, it is

clear that the system will spend a great deal of time performing input/output

operations. These I/O operations result from transfers between the CPU, mem-
ory, and all other devices connected to the system bus. When a single CPU is

utilized, the users must all be given a small slice of CPU time in which their

respective jobs may be processed. If a user is in the middle of a disk read

operation, many time slices will be used simply to transfer data from the disk

to memory, as shown in Figure 9.1. This method unfortunately wastes CPU
time. Even when multiple CPUs are used, we still have the problem of dedicat-

ing large amounts ofCPU time for I/O operations. To improve the situation we
need to remove the CPU from the I/O operations. This is accomplished with the

addition of a direct memory access controller.

FIGURE 9.1 A system using the

CPU to perform all I/O

C

Device

7\T

CPU

System bus

Data read

7v
;>

Memory
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Figure 9.2 shows the addition of a DMA controller in a microprocessor-

based system. The DMA controller is used to supervise high-speed data trans-

fers between the devices connected to the system bus and to the system's mem-
ory. It is not uncommon for one of the devices to have a very fast data rate (that

is, 5 million bytes per second in a hard disk device). This data rate is much
faster than the CPU can handle by itself. It is not possible for the CPU to

directly transfer the data from the high-speed device to memory (or vice versa).

This leads to the addition of the DMA controller, a hardware chip designed to

manipulate the system bus in a way similar to the processor's read and write

operations, but at a much faster speed. The DMA controller will directly ad-

dress the memory and peripheral devices. The CPU will simply program the

DMA controller with information concerning how much data should be trans-

ferred, where the data should come from, and where it should go. Once the

DMA controller is told to begin the transfer, the CPU is free to perform other

processing. The DMA controller allows the processor to spend more time pro-

cessing information, instead of transferring it.

A device capable of performing DMA in a 68000-based system is the 68440
dual channel DMA controller. A channel is a data path between memory and a

peripheral, a peripheral and memory, or memory and memory. Memory-to-

peripheral transfers were the subject of our previous discussion. Memory-to-
memory transfers are also necessary operations. Consider an operating system

that needs to constantly relocate user programs within memory, due to its

memory management scheme. We cannot have the CPU performing the data

transfers, since this will result in a great loss of performance.

Interfacing the 68440

The 68440 has a number of signals that connect directly to the 68000 and
additional signals for communication with peripherals. Figure 9.3 shows the

various signal groups that must be properly interfaced to obtain DMA capabil-

itie s. The signals in the asynchronous bus control group are already known to

us. UDS and LDS (A and DS) have two functions, depending on the size of the

FIGURE 9.2 A system employing

a DMA controller to perform I/O



248 Chapter 9
|
Advanced Programming Using 68000 Peripherals

FC -FC2 f ^

A 8/D -A23/D,5 S y

A,A 7 <^>

Asynchronous
bus control

CS

AS

BEC0-BEC2

OWN

Mutiplex

control

UAS

R/W

UDS/AD <-

LDS/DS +
DTACK *-

HIBYTE <-

CLK -

:

68440

REQO
I Device control

ACKO f channel

PCLO J

REQ1
I Device control

ACK1 f channel 1

PCL1 J

" D1L
Device control

* DONE
i

|
IRQ

Interrupt control
IACK

1

1

!-.,->
• Bus arbitrationBG

* BGACK -)

FIGURE 9.3 The 68440 DMA controller (Reprinted with permission of Motorola Inc.)

data bus. UDS and LDS are used with a 16-bit data bus. A and DS are used

with an 8-bit data bus (found on the 68008). A x
through A7 are used to select

the internal 68440 registers. BEC through BEC 2 (bus exception control) are

used to indicate to the 68440 what type of abnormal bus cycle has occurred

—

that is, bus error or RESET.
The 68440 employs a multiplexed address/data bus (A8/D through

A23/D 15 ) for all communication. When the 68440 is receiving commands from

the CPU, the multiplexed bus is a data bus. When the 68440 is transferring

data during a DMA operation, the multiplexed bus acts as both an address and

data bus. External buffering and latching circuitry is needed, together with

control signals from the 68440, to demultiplex the bus. Before we examine the

external circuitry required, we must examine the control signals involved. The
multiplex control signals are used to control the buffering and latching of data

and addresses used by the 68440. OWN is an active low signal that indicates

when the 68440 controls the system bus. It is used to enable the external

address latches and data buffers. UAS (upper address strobe) is used to latch

A8 through A23 when they appear on the multiplexed bus. DBEN (data buffer

enable) controls the operation of the external data bus buffer. Since the data
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bus is bidirectional, an additional signal is needed to control its direction dur-

ing read and write operations . The signal that performs this function is DDIR
(data direction). When DDIR is low, data is being read by the 68440. When
DDIR is high, the 68440 is outputting data. The last signal in the multiplex

control group is HIBYTE, which is used in two ways. During a RESET opera-

tion, HIBYTE is used as an input, to indicate the size of the data bus (8 bits

when low, 16 bits when high). Once the 68440 has been initialized, HIBYTE is

used as an output, to gate data onto the correct half of the data bus when the

68440 is accessing an 8-bit device. All of the multiplex control signals work
together to control the multiplexed bus. Figure 9.4 shows how external address

latches and data buffers can be controlled with these signals. The two 74LS373
octal transparent latches are used to store the 68440's A8 through A23 address

A8/D - A23/D

Note: 74LS373 is an octal latch

74LS245 is a bidirectional buffer

FIGURE 9.4 External circuitry needed to demultiplex A8/Do-A23/D 15 (Reprinted with

permission of Motorola Inc.)
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information, when it appears on the multiplexed bus. These latches are con-

trolled by UAS (to latch the address) and OWN (to output enable them during

memory/peripheral accesses).

The three 74LS245 bidirectional buffers control the transfer of data be-

tween the 68440 and the system bus. DBEN and DDIR are used to enable the

245s and control their direction (input or output). HIBYTE is used with the

third 245 to swap the upper and lower halves of the data bus during accesses to

8-bit peripherals.

The bus arbitration signals are used by the 68440 to take control of the

system bus during DMA operations. They allow the 68440 to become the bus

master, placing the 68000 into a wait state while the system bus is being used.

BR (bus request) is active when the 68440 is requesting the bus. The processor

(or other bus master) will respond to BR by asserting BG (bus grant). When the

68440 does take control of the bus, it will assert BGACK (bus grant acknowl-

edge).

The interrupt control signals IRQ and IACK are used to support vectored

interrupts. The 68440 can be programmed to interrupt the processor when a

number of events occur, one of which is the completion of a DMA transfer

operation.

The two groups of device control channel signals (REQ, ACK, and PCD are

used to control two peripherals that may be connected to the system bus. DTC
and DONE are additional device control signals that are shared by both chan-

nels. REQ and REQ X (request) is used by the peripheral to request data trans-

fer between itself and memory. ACK and ACK X (acknowledge) is asserted by

the 68440 when it is transferring the data. PCL and PCL^ are peripheral

control lines whose functions are programmed for various kinds of status indi-

cations. DTC (data transfer complete) is asserted by the 68440 whenever a

successful data transfer has been complete. DONE is a bidirectional signal

used to indicate that the last data transfer completed a block operation (that is,

all data has been transferred).

Since timing is critical to proper operation, a CLK signal is provided to

generate all internal 68440 timing.

Programming the 68440

Seventeen internal registers are used by the 68440 to control a single DMA
channel (with a second group of 17 controlling the other channel). These regis-

ters control the channel priority, the type ofDMA operation used, and the size

of the data transfer (in bytes or words). They are also used to hold the source

and destination addresses for the block transfers, the interrupt vector num-

bers, and channel status bits.

The general control register (GCR), located at internal address FF, selects

the burst transfer time (the number of clock cycles allowed during a data

transfer) and the system bus bandwidth available to the 68440. The bus band-

width indicates how much activity is found on the system bus. A portion of this

activity will be due to the 68440 executing DMA transfers. Figure 9.5 indicates
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FIGURE 9.5 The 68440s 7 6 5 4 3-2 1 -0
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the bit assignments within the GCR, and how they must be coded to select

specific functions.

The channel priority register (CPR), located at internal address 2D, sets

the channel priority. When both channels have been programmed for transfer

and request the bus at the same time, the CPR is used to break the tie and
decide which channel gets priority. Priority 00 is higher than 01. When the

priority is the same for each channel, a round-robin approach is used, with

each channel alternately receiving use of the bus.

Two interrupt vector registers are used by the 68440. The normal interrupt

vector register (NIVR), located at internal address 25, contains the interrupt

vector used when the 68440 completes an operation, such as a block transfer.

The error interrupt vector register (EIVR), located at internal address 27, con-

tains the interrupt vector used when the 68440 encounters an error during a

DMA operation. When both channels request an interrupt, the highest priority

channel is serviced first.

Three registers are used to hold addresses used during DMA operations.

The memory address register (MAR), located at internal address 0C, holds the

address of the memory location to be used during the data transfer. The device

address register (DARi, located at internal address 14, contains the address of

the peripheral used during a data transfer. The base address register (BAR),

located at internal address 1C, is used to access special tables in a chain
operation. A chain operation is a special type of DMA, in which 68440 registers

are loaded from a data table in memory.
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Each address register (MAR, DAR, and BAR) is associated with a 4-bit

function code register. The memory (MFCR), device (DFCR), and base (BFCR)
function code registers, located respectively at internal addresses 29, 31, and
39, are used by the 68440 during a DMA operation to provide additional infor-

mation to external circuitry connected to the system bus. The contents of the

function code register involved in the operation are output on the FC through

FC 2 lines during the DMA operation.

The size of the block of data to be transferred is contained in the memory
transfer count register (MTCR), located internally at address 0A. This 16-bit

register is decremented each time data is transferred by the 68440. When the

MTCR reaches zero, the channel operation terminates.

The channel error register (CER), located at internal address 01, indicates

the type of error that may have occurred during a channel operation. The lower

5 bits are used to code the error. If all bits are low, no error has occurred. The
CER indicates configuration, operation timing, address, bus, and counter er-

rors. Software and external abort errors are also indicated. Figure 9.6 shows

how these errors are coded within the CER.
The 68440's channel status register (CSR), located at internal address 00,

indicates the status of the channel and its current operation. Figure 9.7 shows

how the bits in the CSR are assigned. All status bits are active high. COC
(channel operation complete) indicates the current state of the channel opera-

tion (completed when high). BTC (block transfer complete) indicates the status

of the current block transfer operation. NDT (normal device termination),

when high, indicates that the device has been terminated with DONE. ERR
(error) indicates that an error has occurred (and the CER must be read). ACT

4-0

Error

No error

<R
1

1

1

R

1

1

R

Configuration error

Operation timing error

Undefined

Address error

1

1

1

1

MAR/DAR
MAR/MTCR
DAR
BAR/BTCR

1

1

1

1

1 1

1

R
R

1

R
R

1

^

Bus error

Count error

External abort

Software abort

Undefined

I I 1

FIGURE 9.6 Types of 68440 channel errors indicated by the channel error register



9.2 The 68440 Dual DMA Controller 253

7 6 5 4 3 2 1

coc BTC NDT ERR ACT RLD PCT PCS

FIGURE 9.7 68440 channel status register

(channel active) indicates when the channel is active. RLD (reload) indicates

when a reload has occurred. PCT (PCL transition) is high when a high-to-low

transition occurred on PCL. PCS (PCL state) indicates the current state of the

PCL line.

Four additional registers are used to control DMA in a 68440 channel.

Each register holds 8 bits and controls a different aspect of the channel opera-

tion. The entire channel is controlled by the channel control register (CCR),

located at internal address 07. The sequence control register (SCR), located at

internal address 06, controls the sequencing of the MAR and DAR. The se-

quencing indicates how the register is adjusted during a DMA operation. The
register may remain unchanged or be programmed to increment after each

transfer is performed. Bit assignments for the CCR and SCR are listed in

Figure 9.8.

The device control register (DCR), located at internal address 04, selects

the operation of the device used in the channel operation. The DCR defines the

size of the data transfer (byte or word), the type of DMA operation imple-

mented (burst or cycle steal), and the type of device used (6800- or 68000-based

peripheral). Burst operation means that DMA is performed in small bursts,

with a number of bytes or words transferred during each burst. Cycle stealing

involves accessing the system bus when the processor is not using it. The pro-

cessor is not using the bus during times when it is performing internal instruc-

tion execution (register-to-register transfers, for example). Cycle-stealing

DMA is much slower than burst DMA. Even so, it still has its advantages.

Burst DMA requires control of the system bus from time to time, and this

involves placing the processor into a wait state for the duration of the burst

cycle. This technique slows down program execution when large blocks of data

must be transferred. Figure 9.9 shows the bit assignments for the DCR. In

device-type selection we see choices between explicit and implicit addressing.

Explicit addressing requires that the 68440 output the address of the device to

select it. Implicit addressing utilizes the five control lines (REQ, ACK, PCL,
DTC, and DONE) to control the peripheral. The function of the PCL line is

programmed by bits to 2 in the DCR.
The last control register is the operation control register (OCR), located at

internal address 05. The OCR determines the direction of the data transfer

(memory to device, or device to memory), the data size (byte or word), and the

way in which transfer requests are detected. Chaining is not allowed in the

68440, though it is supported in other DMA controllers such as the 68450.

Figure 9.10 shows the bit assignments for the operation control register.

So far we have been exposed to the registers used to control DMA in a

68440 channel. Example 9.1 will show how we can use the 68440 to transfer a

32KB block of RAM from one location to another.
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7 6 5 4 3 2 1

STR CNT HLT SAB INT

INTERRUPT ENABLE

Channel will not generate interrupts.

1 Channel will generate interrupts.

SOFTWARE ABORT

Normal channel operation

1 Abort channel operation

HALT Operation

Normal channel operation

1 Halt channel operation

CONTINUE Operation

No continue is pending.

1 Continue operation at end of block

START Operation

No effect

1 Start channel

(a)

1-0

MAC DAC

I DEVICE ADDRESS COUNT

_0

No count

1 Increment

Reserved
</}

MEMORY ADDRESS COUNT

1

1

No count

1 Increment

u I Reserved
1 J

(b)

FIGURE 9.8 Bit assignments for the (a) channel control register and (b) sequence

control register
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7-6 5^ 2-0
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Status

1 Interrupt
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1 Abort
Reload

i
Undefined

DEVICE PORT SIZE

8 bits

1 16 bits

DEVICE TYPE
4

Explicit address
68000
6800
Device with ACK
Device with ACK and RDY r Impli

EXTERNAL REQUEST MODE
6

Burst transfer mode
Reserved

Cycle steal

Reserved

FIGURE 9.9 68440 device control register

Example 9.1: Consider the following segment of code, which is used to copy

a 32KB block of RAM from BLOCKA to BLOCKB:

BL0CKA EQU 10000H
BLOCKB EQU 20000H
SIZE EQU 32768

M0VEA.L #BL0CKA,A0
M0VEA.L #BL0CKB,A1
MOVE.W #SIZE-1,D0

TRANSFER MOVE.B (A0)+. (Al)+
DBF DO, TRANSFER

; starting address of first block
.starting address of second block
;size of block

init source pointer
init destination pointer
init loop counter
transfer a bytes

From a previous discussion of instruction execution times, we recall that the

MOVE.B and DEF instructions will take a certain number of clock cycles to

execute. Since they are in a loop, this number will be multiplied by 32768. The
minimum number of clock cycles required to execute MOVE.B and DBF comes
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5^ 3-2
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Memory to device

1 Device to memory

OPERAND SIZE

1-0
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_0

Limited internal rate

1 Maximum internal rate

External request

1 Reserved

CHAIN OPERATION

Disabled

1

1
Reserved

I bits

16 bits

[ Reserved

FIGURE 9.10 Bit assignments for the operation control register

to 22. When this number is multiplied by 32768, we get a total of 720896 clock

cycles required. Ignoring overhead, and assuming an 8-MHz clock, the time

required for the processor to transfer the 32K block is over 90 ms! Compare
this with a 68440, transferring the same block at a 5 million-byte-per-second

rate. Only 6.5 ms are needed to complete the transfer. This simple example
shows how the 68440 greatly increases system performance by dedicating it to

the transfer of large blocks of data.

A routine to implement the transfer of the same block of data is listed here.

The code assumes that the 68440 has a base address of 3000, and the channel

used for the DMA operation is channel 0.

MAR EQU 300CH
DAR EQU 3014H
MTCR EQU 300AH
MFCR EQU 3029H
DFCR EQU 3031H
NIVR EQU 3025H
EIVR EQU 3027H
GCR EQU 30FFH
SCR EQU 3006H
OCR EQU 3005H
DCR EQU 3004H
CCR EQU 3007H
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MOVEA.L #BLOCKA,MAR
MOVEA.L #BLOCKB,DAR
MOVE.W #SIZE,MTCR
MOVEQ.B #l,DO
MOVE.B DO.MFCR
MOVE.B DO,DFCR
MOVE.B #90H,NIVR
MOVE.B #91H,EIVR
MOVE.B #06H,GCR
MOVE.B #05H,SCR
MOVE.B #l,OCR
MOVE.B #0,DCR
MOVE.B #88H,CCR
RTS

load MAR with source address
load DAR with destination address
load MTCR with size of block

load 'user data' function code into MFCR
load 'user data' function code into DFCR
load NIVR with vector number
load EIVR with vector number
select 32-cycle burst, 12.5% bandwidth
let MAR and DAR increment
select memory-to-device byte transfer
select explicit 68000 burst, byte device
start DMA and enable interrupt

DMAMOVE initializes ail control registers and provides for generation of

a vector 90H interrupt when the DMA operation completes.

9.3 THE 68451 MEMORY MANAGEMENT UNIT

A multiuser operating system may consist ofmany users running programs on

a single processor, or even more users running on multiple processors. Either

way, the system's memory, at any point in time, may contain code and data for

several users. Figure 9.11 shows two examples of how memory might be allo-

cated for a number of users on two different occasions. Notice that memory in

both cases has not been allocated sequentially to each user. This is due to the

asynchronous nature of the users. User 5 may have submitted his or her job at

a later time than users 1 and 2. Also, the location of each user's block of code in

memory depends on what memory is available when the user's job is submit-

ted. We can see from Figure 9.11 that the users, at a later point in time, have

been allocated memory differently. This brings up an important point: User
programs must be able to run anywhere in memory. If this were not possible,

the operating system would always have to wait for a specific block of memory

FIGURE 9.11 Memory allocation
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to become available before assigning it to a specific user. The only other option

would be to reassemble or recompile the user's program each time it was
loaded into memory at a new address. This would be time consuming and very

inefficient. Also, though the 68000 is capable of relative addressing, there are

times when absolute memory addresses must be used.

Consider a program that has been assembled into machine code from a

source file containing an ORG 2000H statement. The program must be loaded

into memory beginning at address 2000 for proper operation. Examine Figure

9.12, which shows the same program loaded into memory at two different ad-

dresses (and at two different times). Initially the program is loaded at the

address it was assembled to run at, address 2000. The next time the program is

submitted for execution, the operating system places it in memory beginning

with address 9800, most likely due to the lack of free memory from 2000 to

3FFF. Two methods are commonly used to enable correct program execution in

this case. The first method requires that all absolute addresses in the program

be modified before it is loaded into memory. The absolute addresses within the

program are changed by adding or subtracting an offset, the difference be-

tween the desired load address and the available load address. Figure 9.12

shows that the difference between these two load addresses is 7800. Each abso-

lute address within the program must be modified by adding 7800 to it. For

example, an instruction such as JMP 2B14 would become JMP A3 14, where

A314 equals 2B14 plus 7800. This address translation ensures that the JMP
instruction goes to the proper location, no matter where the program is loaded.

To save time, a second technique called dynamic address translation is

used to accomplish the same goal. The difference is that the addresses are

modified as they are used, during execution. The JMP 2B14 instruction is

still loaded as JMP 2B14. During execution, the 2B14 is changed into A3 14.

This process saves time, since the entire program does not have to be altered

before loading. A device capable of performing this dynamic address transla-

tion is the 68451 memory management unit.

The 68451 will perform translation over the entire 16MB address space of

the 68000. The 68451 breaks this address space into 32 segments. The size of

FIGURE 9.12 A program

encounters two different load
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each segment is variable but limited to block size multiples of 2, starting with

256 bytes. Thus 256, IK, 16K, 64K, 128K, and 1024KB are all valid segment

sizes. The 68451 also allows segments to be combined to form different lengths

as well. For example, if a user program requires 36K of memory, two segments

of size 32K and 8K can be combined to obtain the required memory. If this

were not possible, a 64K segment would have to be used, with 28K of the 64K
segment wasted. The operating system defines segments by writing data to

special registers called descriptors.

Another feature provided by the 68451 is protection. When many user

programs reside in memory simultaneously, it must be possible to restrict

memory references between programs. Otherwise, one user's program might

be able to write over another's code, with certainly disastrous results. The
68451 is capable of providing this protection and interrupting the processor

when an out-of-bounds address is generated from within any segment.

The 68451 performs memory management with a mixture of hardware and
software. Details are presented in the next two sections.

Interfacing the 68451

Figure 9.13 shows a simplified diagram of a 68000 system utilizing the 68451.

The 68451 is inserted between the processor and memory. This gives the 68451
control over all addresses presented to the memory section. Notice that only

processor address lines Ai through A7 go directly to the memory circuitry.
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68000
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FIGURE 9.13 Interfacing the 68451 to the 68000
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Since the size of any segment must be at least 256 bytes, these seven address

lines do not require translation. The remaining address lines, A8 through A23 ,

must be translated and thus become inputs to the 68451. An address decoder is

used to enable the 68451 when it is being programmed (more on this in the

next section). For the 68451 to recognize processor memory requests, it must
have access to the signals that govern such requests. The signals used for this

purpose are DTACK, AS, and R/W. RESET is also connected to ensure that the

68451 comes up in a valid state, and will respond to commands from the pro-

cessor when it is initialized.

Programming the 68451 is accomplished by loading its internal registers

with the necessary data to maintain the various segments required by the

operating system. These registers are addressed via the five register-select

lines, RS X through RS5 . All data enters and leaves the 68451 through the

multiplexed address/data bus on lines PAD through PAD 15 . When these 16

lines are used for bidirectional data transfer between the 68451 and the pro-

cessor, the ED (enable data) output will be low. This output is used to enable

and disable a bidirectional data bus buffer. The buffer is used to gate data on

the 68000's data bus onto the 68451's data bus. When ED is high, the 68451 is

indicating that PAD through PAD 15 represent translated address informa-

tion, and should be interpreted as address lines A8 through A23 . Address infor-

mation present on these lines is latched externally, whenever HAD (hold ad-

dress) is low. Two additional outputs, WIN (write inhibit) and MAS (mapped

address strobe), are not shown on the simplified schematic in Figure 9.13 but

are required for correct operation of the memory section. MAS indicates to

external circuitry that a valid physical address exists on PAD through

PAD 15 (similar to what AS does for the 68000). WIN is used to inhibit writes to

protected sections of memory.
FAULT is used to generate a bus error exception in the processor, when-

ever an attempt is made to write to protected memory. FAULT is also active

when the processor tries to access a segment that has not yet been defined.

IRQ (interrupt request) is used to interrupt the processor when an access is

made to a segment whose descriptor indicates that interrupts are enabled. This

means that the 68000 can detect any read or write requests to a block of mem-
ory, something we may wish to avoid in a multiuser system. Remember that no

user should be able to alter another user's code. The 68451 supplies the proces-

sor with an exception vector number during the interrupt acknowledge cycle

(initiated by a low on the 68451's IACK input).

Three signals are included to allow for multiple 68451s to be used in a

single system. They are GO (global operation), ANY, and ALL. These three

signals are all bidirectional and are used by the 68451s to communicate with

each other. It becomes necessary, at times, for one 68451 to become a master

and the other 68451s slaves. This hierarchical approach is used to prevent

memory addressing errors in multiple 68451 systems.

One last signal deserves mention before we examine the software opera-

tion of the 68451. MODE, an input, is used to tell the 68451 which mode of

operation it should be in. MODE is used to indicate one of three modes in the
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following way: If MODE is left open, mode A is selected. If MODE is tied to

ground, mode S2 is enabled. IfMODE is tied high, mode Sx is selected. Modes A
and Sx are used for asynchronous operation. Mode S2 is used for synchronous

operation. The design of the memory circuitry determines which mode should

be used for proper operation.

Programming the 68451

The 68451 performs address translation by mapping logical addresses into

physical addresses. A logical address is any address issued by the processor

(or by a DMA device). A physical address is an actual address in the memory
section. Logical to physical translation is performed by mapping logical ad-

dresses into physical addresses. This is accomplished inside the 68451 by spe-

cial registers called descriptors. A descriptor is a set of six registers (9 bytes

total) containing information about a single segment. The descriptor is loaded

with data indicating the base logical and physical addresses of the segment,

the segment size, the address space number (each segment occupies a particu-

lar address space), and some status information. There are a total of 32 de-

scriptors available, and all are defined as shown in Figure 9.14.

The logical base address register (LBA) contains the upper 16 bits repre-

senting the starting address of the logical segment. The logical address mask
register (LAM) is used to specify the length of the segment. This is done by

writing Is into certain bit positions within the LAM. These Is are used to

compare bits in the LBA with the incoming logical address. When a match
occurs, the 68451 knows a segment is being addressed. The physical base ad-

dress register (PBA) contains the starting address of the physical memory
segment. Address bits in the incoming logical address that do not require

translation will pass straight through to the physical address outputs. These
bits are indicated by Os in the LAM. Logical address bits that require transla-

tion are replaced by the corresponding bits from the PBA. Figure 9.15 shows
an example of how a logical address is translated into a physical address. The
upper 16 bits of the logical address yield C5C8. The LBA register contains

C5C0, and the LAM register indicates that logical address bits 23 through 14

should be used to find an address match. Since these 10 bits in both the logical

FIGURE 9.14 Descriptor definition
Logical base address
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Logical address bits 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

Logical address 110 10 1 11 1 1 o"|

Logical base address 1 1000101 11000000
Logical address mask 1 11 1 1 11 1 11000000
Physical base address |o 1 1 10 10 1 o]

Physical address 0011 1010 10001000
Logical address C 5 C 8 X X

Physical address 3 A 8 8 X X
Segment size 16384 bytes

FIGURE 9.15 Mapping a logical address into a physical address

address and the LBA register match, we know that an address translation

should be performed. The 0s in the LAM register indicate two things. First,

logical address bits 13 through 8 should not be used to find an address match,

and thus pass through to the physical address, without translation. Second,

they indicate that the segment size is 16384 bytes. Since 6 bits in the LAM are

0, we are requesting 64 (2 raised to the 6th power) 256-bytes blocks for this

segment.

The Is in the LAM indicate that logical address bits 23 through 14 should

be translated. Translation is accomplished by using the upper 10 bits of the

PBA register to complete the physical address, which becomes 3A88xx.

If no match occurs between the logical address and the LBA register, this

process is repeated for every descriptor that has been defined. If no match
occurs in any descriptor, the 68451 will indicate an undefined segment error by

activating FAULT. When more than one 6845 1 is used in a system, they must
all fail to match the address, before FAULT is activated.

The address space number (ASN) is an 8-bit value used to assign a number
to the segment. Segments can be grouped by giving them the same ASN. A
previous example required the use of a 32K segment and an 8K segment so a

36K program could be loaded into memory. In this case, each segment would be

given the same ASN. The ASN is used in conjunction with a table called the

address space table, to determine if the memory request should be allowed to

proceed. This makes it possible for us to protect certain segments, since the

address space table contains a list of the allowable address space numbers. The
address space mask (ASM) is used to determine which bits in the ASN are used

in comparisons.

The segment status register (SSR) is an 8-bit register containing the fol-

lowing status bits:

U: (U)sed. This bit is set if the segment has been accessed since

it was defined.
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I: (Dnterrupt control. If set, an interrupt is generated when the

segment is accessed.

IP: (I Interrupt (P)ending. This bit is set if the I bit is set, and the

segment is accessed.

M: (M)odified. This bit is set if the segment has been written to

since it was defined.

WP: (W)rite (P)rotect. Writes to the segment are not allowed if this

bit is set.

E: (E)nable. If set, the segment is enabled and can be used in

logical address comparisons.

An operating system will make good use of these status bits. To illustrate,

suppose that a multiuser system has filled its entire memory with user pro-

grams, and another program is submitted. It becomes necessary to determine

which user program should be swapped out, to make room for the new pro-

gram. When the program to be replaced is determined, the operating system

must decide if it should save the memory used by the program or simply over-

write it with the new program. If the old program did not change its memory
image (by writing data into its segment), it can be overwritten by the new code.

If it has modified its contents, it must be saved on disk before the new program
can be loaded. The operating system will make use of the M status bit when
deciding if it should back up the old program on disk.

Each of the 32 descriptors is written to by first loading the data into the

68451's accumulator. The accumulator consists of nine 8-bit registers that are

defined in the following way:

Logical base address (MSB): Address 20

Logical base address (LSB): Address 21

Logical address mask (MSB): Address 22

Logical address mask (LSB): Address 23

Physical base address (MSB): Address 24

Physical base address (LSB): Address 25

Address space number (ASN): Address 26

Segment status register (SSR): Address 27

Address space mask (ASM): Address 28

The internal 68451 addresses (20 through 28) are selected by register select

lines RS 2 through RS5 .

The address space table (AST) is a collection of sixteen 8-bit registers that

begin at address 00 and occupy even addresses up to IE. The AST is loaded

with address space numbers by the operating system. The AST is then ac-

cessed, depending on the state of the processor's function codes. For example,
when the function code outputs indicate a request to user program memory,
the 68451 will examine the third number in the AST. If this number does not
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match the address space number in the segment being addressed, an error will

result.

Descriptors are loaded by writing all required information for the segment
into the accumulator, and then loading the number of the descriptor (0 through

31) into the 68451's descriptor pointer register (DP). Once this has been done,

the descriptor can be saved using a load descriptor command. The load descrip-

tor command is issued by an access to address 3F.

A routine to load descriptor 7 from the 9 bytes stored in memory (begin-

ning at NEWSEG) follows. The 68451's address decoder responds to a base

address of 8000 in this example.

NEWSEG BLOCK

LBAHI EQU 8020H
LOAD EQU 803FH

L0ADES M0VE.W #8, DO
M0VEA.L #NEWSEG,A0
M0VEA.L #LBAHI.A1

FILLA M0VE.B (A0)+, (Al)+
DBF DO, FILLA
M0VE.B L0AD.D1
CMP.B #0,D1
BNE FAILED
RTS

FAILED JMP L0ADFAULT

;A 9-byte area containing the data to be placed
; into the descriptor

init loop counter
init pointer to descriptor data
init pointer to 68451 accumulator
load accumulator with data

begin load descriptor operation
was load successful?

The load descriptor operation begins by reading address 3F. If the load is suc-

cessful, the 68451 will return 00. If the load fails because a previously defined

descriptor is mapped to the same logical address (called a collision), the 68451

will return FF.

When the 68451 detects a protection violation, or if a logical address does

not match any of the descriptor LBAs, it will issue an interrupt request to the

processor. When the processor enters into its interrupt acknowledge cycle, the

68451 will place an 8-bit vector number on data lines D through D7 . The
vector number used by the 68451 comes from its interrupt vector register

(IVR), located at address 2B. The operating system must have code capable of

handling the interrupt, and this code must be accessed by the exception gener-

ated by the IVR vector number.

The following section of code can be used to load a new vector number into

the IVR. This may not be necessary, since the IVR is loaded with vector num-
ber OF after a RESET. Once again, the 68451 has a base address of 8000.

VECTOR BLOCK
IVR EQU

1

802BH
place vector number here

L0ADVEC M0VEA.L #IVR,A0
M0VE.B VECTOR. DO
M0VE.B D0.(A0)
RTS

init pointer to IVR
load vector number into DO

load IVR with new vector number
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The 68451 is a very complicated device. Even so, use of the 68451 in a new
operating system will provide the designers with a reliable method of manag-

ing memory, with a minimum of hardware and software.

9.4 THE 68681 DUAL UART (UNIVERSAL ASYNCHRONOUS
RECEIVER/TRANSMITTER)

Serial data transmission offers the convenience of running a small number of

wires between two points (three will do the job in most cases), while at the

same time being very reliable. Though we must wait longer to receive our

data, since it is transmitted only 1 bit at a time, we are able to place our

communication devices (computers, terminals, and so on) far away from each

other. Worldwide networks now exist, connected via satellites, based on serial

data transmission. The peripheral covered in this section, the 68681 Dual

UART, implements serial data transmission in two separate channels, in a

variety of formats. The standard serial data transmission waveform for any

UART is depicted in Figure 9.16.

The normal state of the line is a logic 1. This level indicates that no activ-

ity is present (that is, no data being transmitted). When the line level falls to

a logic (the start bit), the receiving UART knows that a new character is

being transmitted. The data bits representing the character (or data) being

transmitted are clocked out in the order shown, least significant to most signif-

icant. Following the data bits is the parity bit, which will be used by the

receiving UART to determine the accuracy of the data it received. The parity

bit in Figure 9.16 shows that the data has even parity. The last bits in any
transmission are the stop bits, which are always high. This gets the line back

into its inactive state. We are able to set the number of data bits, the type of

parity used, the number of stop bits, and the bit time through software. Before

we consider how to do this, let us examine the hardware operation of the

68681.

STARTJ
-H V-

Bn Bi B 2 B 3 B4 B 5 B6

Parity '

1-bit

time

FIGURE 9.16 Standard TTL serial data waveform
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Interfacing the 68681

Figure 9.17 shows a simplified block diagram of the 68681 connected to the

68000. Asynchronous data transfers between the 68681 and the 68000 are

implemented via DTACK, R/W, LDS, AS, and the lower half of the processor's

data bus. An address decoder is used to place the 68681 at the desired location

within the address space of the system. The lower four address lines (A x

through A4 ) are used to select the internal registers that configure the UART.
The 68681 may request interrupt processing via IRQ. Timing for the 68681 can

be generated in two ways. A crystal may be directly connected to the 68681 (on

Xi and X2 ). An internal oscillator will then generate the required timing sig-

nals. If a crystal is not used, a TTL clock may be connected to X x (and its

complement to X2 ).

Two separate serial data channels are implemented. Both channels are

capable of simultaneous transmission and reception. Six parallel inputs and

eight parallel outputs are also provided. These pins can be programmed for

standard parallel I/O, or they can be used to implement handshaking required

by some serial systems. An internal clock/timer circuit is also available and

can be programmed to generate square waves on OP3 . Figure 9.18 shows each

function available on the parallel input and output lines. The six parallel in-

puts (IP through IP5 ) can be programmed as clear-to-send inputs for each

channel, or as transmitter/receiver clock inputs (for use with custom BAUD
rates). The eight parallel outputs can be programmed as request-to-send out-

DTACK
R/W

RESET

LDS

A1-A23

AS
68000

D(,-D7

TpTs"

c

A, -A.

Address

decoder

Interrupt

logic

;>

DTACK x
i

R/W

RESET X
2

RS,-RS4

cs

TxDA

RxDA

TxDB

68681 RxDB

Dn-D7

IRQ

IACK

IZH Crystal

Channel A

Channel B

< I IP0-IP5

H> OP0-OP7

FIGURE 9.17 Using the 68681 in a 68000-based system
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/lP
IPi

IP2

IP3

IP4

IPs

OP
OP,

68681

OP2

OP3

OP4

OP5

op6
—

OP7

(CTSA)

(CTSB)

(RxCBATimer clock)

(TxCA)

(RxCA)

(TxCB)

or can be parallel

input lines

(RTSA)

(RTSB)

(Channel A clock out)

(Channel B clock/timer out)

(RxRDYA)

(RxRDYB)

(TxRDYA)

(TxRDYB)

or can be parallel

output lines

FIGURE 9.18 Alternate function pins on the 68681

puts, as transmitter/receiver clock outputs, or as status outputs indicating

when characters have been transmitted or received.

Programming the 68681

Due to the identical nature of the dual serial channels, we will only discuss

how channel A may be programmed. Channel A's mode register 1, located at

internal address 00, is selected after a RESET operation. Figure 9.19 shows the

bit assignments for this register. Mode register 1 allows selection of the num-
ber of data bits used for each character, the type of parity (if any), and what
type of interrupt is generated. A RxRDY (receiver ready) interrupt is gener-

ated when a new character has been received. A FFULL (FIFO Full) interrupt

indicates that the three-character FIFO and receiver buffer are full (four char-

acters have been received but not read from the UART yet and a fifth one is

now arriving).

Channel A may be programmed to operate in multidrop mode. This mode
of operation is used to connect many receivers, with each one receiving the

same data. The receivers will ignore the received data until they detect their

individual address characters, at which point they begin capturing received

data until a block of characters has been received.

A second register is used to further specify operational characteristics for

channel A. Channel A mode register 2 is located at the same address as mode
register 1, and will be accessed only after mode register 1 has been written to.

Mode register 1 will not be accessed again, unless a RESET is performed by the

CPU. The bit assignments for mode register 2 are shown in Figure 9.20. The
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7 6 5 4-3 2 1-0

Rx RTS
control

Rx IRQ
select

Error

mode Parity mode Parity type Bits-per-character

- With parity

1 - Forced parity

1 - No parity

1 1 - Multidrop mode

0-5
1 -6

1 0-7

Even

0-
Char

Block

Odd

Low
High

Data

Address

With parity

Forced parity

Multidrop mode

RxRDY
1 FFULL

Disabled

1 Enabled

FIGURE 9.19 Mode register 1 bit assignments (Reprinted with permission of Motorola

Inc.)

lower 4 bits of mode register 2 select the number of stop bits. Usually this

number will be 1, 1.5, or 2, but it is possible to select a portion of a stop bit

between these values. For example, if bits through 3 are all low, 0.563 stop

bits are used in a 6-8 bits/character transmission, and 1.063 stop bits are used

in a 5 bits/character transmission. We will not consider any of these fractional

stop bit selections in this discussion.

A channel may operate in one of four modes: normal, automatic echo, local

loopback, and remote loopback. Normal mode means that the transmitter and

receiver operate independently of each other. In automatic echo mode, the

channel transmits data as it is received, on a bit-by-bit basis. No data may be

sent to the transmitter by the CPU in this mode. Local loopback mode inter-

nally connects the output of the transmitter to the input of the receiver. Thus,

as a character is transmitted, it is also received. This mode is useful for testing

the channel via software. The CPU may continue to use the transmitter and

receiver sections. The last mode, remote loopback, is used to test a remote
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7-6 5 4 3-0

Channel mode
TxRTS
control

CTS
enable

Stop bit length

Normal

1 Auto echo

i Local loopback Disabled

l 1 Remote loopback 1 Enabled

Disabled

Enabled

6-8 bits/

character

< 1

FIGURE 9.20

Motorola Inc.)

Mode register 2 bit assignments (Reprinted with permission of

5 bits/

character

< 1.5

1.5

1.5

device. The channel automatically transmits received data on a bit-by-bit

basis. The CPU may not access the receiver. Both local and remote loopback

modes are useful for channel testing through software.

BAUD rates for the transmitter and receiver are programmed through the

clock-select register. Figure 9.21 shows the bit assignments for this register,

which is located at internal address 02. The BAUD rates in parentheses are

selected when bit 7 in the auxiliary control register is set. All other rates are

selected when it is cleared. We will assume that bit 7 is cleared for this discus-

sion. The auxiliary control register is used to select counter/timer clock

sources, and will not be discussed here.

One last register is used to control channel A. The channel A command
register, located internally at address 04, is used to enable/disable the trans-

mitter and receiver sections and to reset various functions in the channel.

Figure 9.22 shows the bit assignments for this register. The lower 4 bits are

used to enable/disable the transmitter and receiver. Once these two sections

have been enabled, writing zero to the lower 4 bits will have no effect on their
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7-4 3-0

Receiver clock select Transmitter clock select

1

1

BAUD rate

50(75)

110

134.5

200(150)

1 300

1 1 600

1 1 1200

1 1 1 1050(2000)

2400

1 4800

1 7200(1800)

1 1 9600

38.4k (19.2k)

Timer

IP4-16X
IP4-1X

1

1

1 1

BAUD rate

50(75)

110

134.5

200(150)

1 300

1 1 600

1 1 1200

1 1 1 1050(2000)

2400

1 4800

1 7200(1800)

1 1 9600

FIGURE 9.21

Motorola Inc.)

Bit assignments in clock select register (Reprinted with permission of

38.4k (19.2k)

Timer

IP3- 16X

IP3 - IX

operation. In this way, the upper bits can be changed to issue new commands to

the channel without disabling the transmitter or receiver.

When interrupts are not used to indicate the completion of a transmission

or the reception of a new character, the CPU must be able to examine the

status of the channel to determine these conditions. The channel A status

6-4 3-2

X Misc. commands Transmitter command Receiver command

No command No action No action

1 Reset MR pointer 1 Trans, enabled 1 Rec. enabled

1 Reset receiver 1 Trans, disabled 1 Rec. disabled

1

1

1

1

1

1

1

1

1

1

Reset transmitter

Reset error status

Reset channel break

Start break

Stop break

1

interrupt

1 Do not use 1 1 Do not use

FIGURE 9.22 Bit assignments for channel A command register (Reprinted with

permission of Motorola Inc.)
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7 6 5 4 3 j l

Received

break

Framing
error

Parity

error

Overrun

error
TxEMT TxRDY FFULL RxRDY

Note: All bits are active when high.

FIGURE 9.23 Channel A status register (Reprinted with permission of Motorola Inc.

register, located at internal address 02, can be used for this purpose. The chan-

nel A status register indicates the states of the transmitter and receiver sec-

tions, and their associated FIFOs, and also any error conditions that may have

arisen in the channel, such as parity, overrun, and framing. Figure 9.23 shows
the bit assignments for the status register.

Any routine that desires access to the transmitter or receiver sections

must first check the appropriate status bit, to see if the section is busy. When
it is acceptable to read the received data, or send new data to the transmitter,

the channel A receiver/transmitter buffer, located at internal address 06, must
be accessed. Reading address 06 places a received character onto the proces-

sor's data bus. This character will either come directly from the receiver or

from the receiver's FIFO (if more than one character has arrived since the last

read). To transmit a character, data must be written to address 06.

The two examples that follow show how channel A in the 68681 can be

initialized, and how a character-input routine can be written to implement
serial data reception.

Example 9.2: The following code is used to program channel A for normal
mode operation, 1200 BAUD in both transmitter and receiver, 7 data bits/

character, even parity, and 2 stop bits. A base 68681 address of 6000 is used.

Odd external addresses are used to generate the correct internal addresses.

M0DER1 EQU 6000H
CLKSEL EQU 6002H
COMMAND EQU 6004H

INITA M0VE.B
M0VE.B
MOVE.B
M0VE.B
RTS

#2,M0DER1
#0FH.M0DER1
#66H, CLKSEL
#5 , COMMAND

mode registers 1 and 2

clock select register
command register

select even parity, 7 data bits
select normal mode, 2 stop bits
select 1200 BAUD
enable transmitter/receiver

Once the channel has been initialized, a a routine similar to CHARIN, pre-

sented in the next example, can be used to read received characters.
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Example 9.3:

STATUS EQU 6002H ; status register
RECDATA EQU 6006H ; receiver buffer

CHARIN MOVE B STATUS , DO ;get channel status
AND I B #01H,D0 ;mask off all other bits
BEQ CHARIN ;loop until character received
MOVE B RECDATA, Dl ; read received character
AND I B #7FH,D1 ; clear MSB for true ASCII
RTS

Note that CHARIN will not return until a character has been received.

9.5 THE 68230 Pl/T (PARALLEL INTERFACE/TIMER)

Parallel input and output differs from serial I/O in a number of ways. Serial

data transfer occurs 1 bit at a time, and thus requires multiple bit times (based

on the BAUD rate) to transfer an entire chunk of data. With parallel I/O, all

bits get transferred at the same time, resulting in a much faster data transfer

rate. As an example, a serial output line, running at 19200 BAUD, takes al-

most 417 |xs to transmit 8 bits. At 417 \xs per byte, the serial output would take

over .4 second to transmit 1024 bytes. A parallel output port, capable of send-

ing 8 bits at once, would take a much smaller amount of time. If the parallel

port could output a new byte every 10 ixs (under CPU control), only .01 second

is needed to transfer all 1024 bytes. This is almost 42 times faster than the

serial output rate. When high-speed data transfers are needed (as is the case

during DMA operations), parallel I/O is usually used.

Though parallel I/O is faster than serial I/O, it still contains a slight disad-

vantage. Parallel I/O often requires the use of handshaking signals to ensure

that the data gets transferred properly. Serial I/O, due to its asynchronous

nature, does not. We will see, however, that parallel I/O devices come equipped

with the necessary handshaking logic already implemented. The handshaking

signals are usually represented by strobes, or by clock pulses. Figure 9.24

shows the action of handshaking signals on parallel input and output ports.

Figure 9.24 indicates that the external circuitry sending or receiving the par-

allel data will make use of the handshaking signal during the transfer.

One device capable of performing parallel I/O is the 68230 parallel inter-

face/timer. The 68230 contains three parallel ports, with each port consisting

of eight parallel lines. The three ports are called PA, PB, and PC. Ports A and

B can be programmed as output or input ports (or even both at the same time).

The direction of individual bits can also be programmed, and a special mode of

operation allows for combining ports A and B into a single 16-bit port. The

68230 can be programmed to interrupt the processor when any port receives
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FIGURE 9.24 Handshaking

signals used in parallel I/O: (a)

input port and (b) output port

Do

D7

Input

port

^

> Data

Input strobe (load new data)

(a)

Output

port

Data out

- Output strobe (new data available)

(b)

new data. This is very helpful and eliminates the need for the CPU to con-

stantly poll the port as it looks for new data.

The 68230 also contains a 24-bit counter. The counter is loaded by the

programmer and counts down each time it is clocked. The 68230 can be pro-

grammed to interrupt the processor when the counter reaches a count of

000000. Other programming modes exist that can turn the output of the

counter into a square-wave generator whose frequency is controlled by the

initial value of the counter.

In the next two sections, we will see how the 68230 is connected to the

68000 and how it is programmed.

Interfacing the 68230

Figure 9.25 shows a simplified diagram detailing the required connections

between the 68000 and the 68230. Since the 68230 is designed for use with the
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System clock

D -D7

DTACK

R/W

D„-D7

DTACK

R/W

CLK

c
'

4

RESET

68000
AS

A,-A23

^ RESET

68230
PI/T

CS

RS,-RS 5

4

\ >

A6-A23
Address

decoder\\\\SV^

I

*

\v
A,-A5

PA..-PA-

PB„-PB 7

H,

H2

H3

H 4

PC 7/TIACK

PC^/PIACK

PC 5/PIRQ

PC4/DMAREQ
PC/TOUT
PC 2/TIN

PCJ
PC,,

Note : PC2-PC 7 are dual

function pins

FIGURE 9.25 Interfacing the 68230 PI/T

68000, most connections go directly from one chip to the other. The exception is

the CS (chip-select) pin, which requires an external address decoder. The ad-

dress decoder will place the 68230 at the desired location within the address

space of the processor. The 68230 is then programmed and used by reading and
writing data to the correct memory-mapped locations. These locations are se-

lected by the state of the five register-select inputs (RS X
through RS5 ). The

register-select inputs address the 23 internal registers of the 68230. H
l
and H2

are the handshaking signals associated with port A (PA through PA7 ). H3 and

H4 are the handshaking signals for port B (PB through PB7 ). A number of

signals on port C (PC through PC 7 ) can be programmed to provide special

functions. PC5/PIRQ can be programmed as a parallel I/O pin, or as an inter-

rupt request output. PC 6 and PC 7 may be programmed as parallel I/O, timer

(PC 7 ), or port (PC6 ) interrupt acknowledge inputs. PC 4 has an alternate func-

tion as DMAREQ (DMA request). Finally, PC3 and PC 2 can be programmed to

serve as the timer output and input signals.

Programming the 68230

The 68230 is programmed after a CPU RESET by writing the appropriate

control codes to its internal registers. Ports A and B are capable of operating in

one of four modes. These modes offer the following functions:
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Mode 0: Unidirectional 8-bit transfers on A and B.

Mode 1: Unidirectional 16-bit transfers. Port A is the MSB, port B the

LSB.

Mode 2: Bidirectional 8-bit transfers on B, bit I/O on A.

Mode 3: Bidirectional 16-bit transfers. Port A is the MSB, port B the

LSB.

Each mode contains an additional submode that defines the operation of the

four handshaking signals (Hi through H4 ). The mode is programmed by writ-

ing a control word to the 68230's port general control register (PGCR). Figure

9.26 shows how the bits in the PGCR are defined. Bits 6 and 7 are used to select

the mode of operation for the ports. Bits 4 and 5 are used to enable/disable the

handshaking pins for each port. The remaining bits control the sense of each

handshaking line. For example, if bit (Hx sense) is zero, Hi will become

activated by a low-level (logic 0) voltage at its input. If bit is high, t^ will

be activated by a high-level (logic 1) voltage. H2 , H3 , and H4 operate the

same way.

When programming the mode bits, the 68230 requires that the H 12 and

H34 enable bits be zero. Only after the mode has been programmed can these

two bits be changed. The following section of code shows how the 68230 can be

programmed for mode 1, H 12 and H34 enabled, and active high handshaking:

M0VEA.L #PGCR,A0
M0VE.B #40H,(A0)
M0VE.B #7FH,(A0)

point to PGCR address
select port mode 1

enable H12 and H34, active high handshaking

The PGCR address is a function of the CS circuitry and the 68230's internal

address for the PGCR register (0). Thus, if the address decoder has been de-

signed to respond to addresses 4000 through 403F, the PGCR can be pro-

grammed by writing data to location 4001.

Interrupts and DMA are controlled by the port service request register

(PSRR). The PSRR defines the operation of multifunction pins PC4 through

7 6 5 4 3 2 1

Port mode
control

H34

ENABLE
H P

ENABLE
H4

sense

H3
sense

H 2

sense

Hi
sense

Mode
1 Mode 1

1 Mode 2

1 1 Mode 3

DISABLE
1 ENABLE

Pin is at a low voltage

when active.

1 Pin is at a high voltage

when active.

FIGURE 9.26 PGCR bit assignments
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6-5 4-3 2-0

* SVCRQ select Operation select Port interrupt priority control

X PQ/DMAREQ
is PC4 .

PC4/DMAREQ
is DMAREQ.
Transfers are

controlled by Hi

1 PCyDMAREQ.

is DMAREQ.
Transfers are

controlled by Hv

PC5/PIRQ is PC 5 .

PQ/PIACK is PC6 .

1 PC 5/PIRQ is pTrq.

PCf/PlACK is PC6 .

PC
5
/PlRQ is PC 5

.

PQ/PIACK is PIACK

1 PCs/PTRQ is PIRQ.

PQ/PIACK is PIACK.

FIGURE 9.27 The port service request register

Highest Lowest

HIS H2S H3S H4S

1 H2S HIS H3S H4S

1 HIS H2S H4S H3S

1 1 H2S HIS H4S H3S

1 H3S H4S HIS H2S

1 1 H3S H4S H2S HIS

1 1 H4S H3S HIS H2S

1 1 1 H4S H3S H2S HIS

No interrupts supported.

Autovectored interrupts supported.

Vectored interrupts supported.

PC7 . Interrupt priority levels are also programmed by the PSRR. Figure 9.27

shows how the PSRR is defined. Bit 7 is unused and thus thought of as always

low.

Bits 5 and 6 control the operation of the PC4/DMAREQ pin. Two modes of

DMA are possible, one controlled by H! and the other by H3 . If no DMA is

required, PC4 is available for parallel I/O.

Bits 3 and 4 control the operation ofPC 5/PIRQ and PC6/PIACK. When port

interrupts are required, these pins should be programmed as PIRQ and

PIACK. Otherwise, PC5 and PC6 may be used as parallel I/O lines.
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The three lower bits in the PSRR are used to select the port interrupt

priority. Eight priority schemes are available, with each one ranking the four

handshake lines from highest to lowest.

The PSRR has an internal 68230 address of 02. To continue with the ad-

dress decoding example previously used, the PSRR is accessed by writing to

location 4003. The following section of codes shows how this can be done. In

this example the 68230 is being programmed for I/O on PC4 (no DMA), vec-

tored interrupts, and an interrupt priority of H2S . . . HIS . . . H4S . . . H3S.

PSRR EQU 4003H

M0VE.B #1BH,D0 ;bit pattern 00 11 011 for PSRR
M0VE.B DO, PSRR ;write pattern to the PSRR

When vectored interrupts have been selected, the vector number should be

written into the 68230's port interrupt vector register (PIVR), located inter-

nally at address 0A. Only the upper 6 bits of the PIVR can be written to by the

programmer. The lower 2 bits generated depend on which handshaking line

produced the interrupt request, as shown in Figure 9.28. The programmer sets

the base vector number. H 1 through H4 are then used to determine the actual

vector number when the interrupt is acknowledged.

A base vector number of 50 can be written to the 68230 by the following

code:

PIVR EQU 400BH ; example 68230 PIVR address

M0VE.B #50H,D2
M0VE.B D2.PIVR

The four interrupt vectors possible after execution of this code sequence are 50,

51, 52, and 53. When using the timer to generate interrupts, the timer inter-

rupt vector register (TIVR), located within the 68230 at address 22, should be

loaded with an 8-bit vector number. Port and timer interrupts are serviced

separately.

FIGURE 9.28 The port interrupt 7-2 1-0

service register
Interrupt vector number

o

1

1

1 1

If interrupt generated by H!
If interrupt generated by H

2

If interrupt generated by H3

If interrupt generated by HA
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Each of the three parallel ports has a data direction register associated

with it. The data direction register (DDR) is used to program the direction of

I/O on each bit in the port. Each bit in the DDR controls the direction of the

corresponding pin in the I/O port. For example, bit in port A's DDR controls

the direction of PA . To program a pin for output, its corresponding bit in the

DDR should be a 1. A in any bit of a DDR programs the pin for input.

The three data direction registers and their internal 68230 addresses are:

Port A DDR (PADDR)
Port B DDR (PBDDR)
Port C DDR (PCDDR)

Address 04

Address 06

Address 08

The following section of code programs all bits on port A as output, all bits on

port B as input, and half of port C (the lower 4 bits) as input and the other half

as output:

PADDR EQU 4005H ; example DDR address

;init pointer to DDR
;set lower byte to all Is

;
program port A for all output

; lower byte is all 0s now

;
program port B for all input
;pattern is 0000 1111
;program port C half and half

Once the ports have been programmed, they are accessed via their respec-

tive port data register. If port A has been programmed for output, writing data

into the port A data register (PADR) will send the data to the output lines.

Reading port input data is done by reading its port data register. Each port has

its own data register and internal 68230 address, as seen here:

M0VEA.L #PADDR,A0
ST DO
M0VE.B DO

,
( A0

)

CLR.B DO
M0VE.B DO , 2 ( A0

)

M0VE.B #0FH,D0
M0VE.B DO , 4 ( A0

)

Port A data register (PADR)
Port B data register (PBDR)
Port C data register (PCDR)

Address 10

Address 12

Address 18

Assuming that port B has been programmed for output, the following code will

output an 8-bit binary count to the port:

PBDR EQU 4013H ; example 68230 PBDR address

COUNT M0VE.B DO . PBDR ; output count to port
ADDQ.B #1,D0
BRA COUNT

A more exotic parallel application involves the use of a digital-to-analog

converter (DAC). In Figure 9.29(a), a 1408 8-bit DAC is connected to port B of

the 68230. A 741 operational amplifier is used to convert the 1408's output
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^5V
+5V

PB -PB- ANALOG OUT

00 -2.5V

80

FF +2.5V

(a)

Square Ramp

Triangle Sine

(b)

FIGURE 9.29 8-bit digital to analog converter circuit: (a) schematic; (b) generated

waveforms

current into a proportional voltage. The table within Figure 9.29(a) indicates

that the analog output voltage will be -2.5 volts when a zero byte is output

to port B. Voltage steps of 19.6 millivolts are possible by adjusting the LSB of

port B.

With an 8-bit DAC connected to the output of the 68230 we can generate

some useful and interesting waveforms (see Figure 9.29(b)). First is the square

wave:
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SQRWAVE

The use of a DELAY between outputs allows the user to control the frequency
of the waveform that is generated.

Then next waveform is the ramp:

MOVE .B #0 , PBDR ; output low level
JSR DELAY ;and delay
MOVE .B #0FFH,PBDR ; output high level
JSR DELAY ;and delay
BRA SQRWAVE ; repeat cycle

RAMP CLR.B DO ;init output register
NEXTR MOVE.B DO , PBDR ; output pattern

JSR DELAY ;and delay
ADDQ .

B

#1,D0 ; increment output register
BRA NEXTR ;and repeat

TRIANGLE CLR.B DO
TRIONE MOVE.B DO , PBDR

JSR DELAY
ADDQ.B #1,D0
CMP.B #0,D0
BNE TRIONE
SUBQ.B #1,D0

TRITWO MOVE.B DO , PBDR
JSR DELAY
SUBQ.B #1,D0
CMP.B #0,D0
BNE TRITWO
BRA TRIONE

The ramp waveform drops sharply at the end of every cycle when the output

register wraps around from FF to 00.

A triangle waveform is generated by repeatedly ramping up and down:

ramp up until 00 is seen

;exit TRIONE loop if 00

; ramp down until 00 is seen

; start over if 00

Other interesting waveforms can be generated (such as sine waves and
synthesized speech) with the use of a data table. These are left for you to

implement on your own.

So far we have only examined the operation of the parallel ports on the

68230. In addition to these 24 I/O lines, the 68230 contains an internal 24-bit

counter. The counter circuitry can be programmed for a variety of functions to

generate square waves and various kinds of interrupts.

The counter is loaded by writing the 24-bit value into three 8-bit registers.

These three registers are called the counter preload registers, with each one

holding eight counter bits. The addresses of the three counter registers are:

CPRH (upper 8 bits of counter value): Address 26

CPRM (middle 8 bits of counter value): Address 28

CPRL (lower 8 bits of counter value): Address 2A

To load the counter, write individual bytes into each preload register.

CPRH EQU 4027H ; example 68230 CPRH address
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MOVEA.L #CPRH,AO
MOVE.B #3CH,(A0)
MOVE.B #05H,2(A0)
MOVE.B #2FH,4(A0)

init pointer to CPRH
fill CPRH
fill CPRM
fill CPRL

Once the counter has been loaded, its mode of operation is selected by

writing a control word to the 68230's timer control register (TCR), located at

internal address 20. Figure 9.30 shows how the bits in the TCR are defined.

7-5 2-1

Z.D.

control
* CLOCK control

Timer
enable

TOUT/TIACK control

X PC3 /TOUT isPC3 .

PC 7 /TIACKisPC 7 .

1 X PC3 /TOUTisTOUT.
TOUT is used as a

square wave output.

PC 7 /TIACKisPC 7 .

PC,/TOLTisTOUT.
PC 7 /TIACKisTIACK.
TOUT is a timer interrupt

request output, but is

disabled.

1 PC 3 /TOUT is TOLT.

PC 7 /TIACKisTIACK.
Vectored interrupts are

enabled.

PC3 /TOUT is TOUT
PC7 /TIACKisPC7 .

Interrupts are disabled.

1 PC3 /TOUT is TOUT.

PC 7 /TIACKisPC7 .

Autovectored interrupts

are enabled.

Disabled

1 Enabled

PC 2 /TINisPC 2 .

Counter is clocked b\

of prescaler.

output

PCi/TIN is TIN and used to

enable the counter.

The counter is clocked by the

output of the prescaler.

PC 2 / TIN is TIN and used to

clock the prescaler.

PC 2 /TINisTINandusedto
clock the counter.

Counter is loaded from preload registers

when it reaches 000000 and continues

counting.

1 Counter rolls over

when it reaches 000000 and continues

counting.

FIGURE 9.30 The timer control register
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Bits 5-7 select one of six modes of operation. While doing so, they configure

multifunction pins PC3/TOUT and PC 7/TIACK on port C. The timer is capable

of supporting vectored interrupts, autovectored interrupts, or no interrupts

at all.

Bit 4 is the zero detect control bit, which decides what the counter will do

when it has been decremented to 000000. When 0, it allows for automatic

reloading of the counter (from the preload registers). When high, the counter

rolls over (to FFFFFF). Counting resumes in both cases.

Bits 2 and 1 control the method used to clock the counter. The 68230 con-

tains an internal 5-bit prescaler (a second counter) that may be programmed to

clock the 24-bit counter. Figure 9.31 shows the four possible ways the 24-bit

counter can be clocked. The prescaler divides its input clock by 32. Thus, if bits

2 and 1 are both low and the CLK frequency is 2 MHz, the counter's clock rate

is 62.5 kHz.

Bit is the timer enable bit. When low, it prevents the counter from count-

ing even if clock pulses are supplied. The counter will count only when bit is

high.

Some sample control words and their resulting operations are:

101 00 1: Periodic vectored interrupts are generated each time the

counter reaches 000000.

010 00 1: A square wave is generated at TOUT. Its period is twice

the time needed for the counter to count down to 000000.

Ill 1 00 1: Generate a single autovectored interrupt when the counter

reaches 000000.

000 10 111: Clock pulses arriving at TIN are counted. Can be used for

keeping time or measuring frequency.

Now that most of the basics have been covered, we can examine two appli-

cations for the 68230. The first application uses the 68230 to scan 16 pushbut-

FIGURE 9.31 Four ways the

counter can be clocked: (a) by

CLK and prescaler; (b) by CLK
and prescaler (TIN enables

counting); (c) TIN clocks the

prescaler; (d) TIN clocks the

counter

CLK

CLK

TIN

TIN

Counter

(a)

Prescaler Counter

(b)

i k

Counter* Pros caier

TIN Counter

(d)
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tons (arranged as a hexadecimal keypad). The second application uses the

68230 to multiplex four 7-segment displays.

Example 9.4: Figure 9.32 shows the schematic of a 68230 interfaced to 16

pushbuttons, arranged in a 4-by-4 matrix. The pushbuttons are all normally

open, momentary contact. The four rows of buttons are scanned by port A bits

0-3. The four columns are sensed by port B bits 0-3. Initialization software for

the 68230 requires that port A be programmed for output and port B for input.

The technique used to scan the keyboard matrix assumes that only one button

is pushed at any instant.

+ 5V

4.7 K

PA:

PA-

PA;

68230

PA,

PB3

PB 2

PB,

PB

2.

*f2
2-

lf2
2.&

2-

2-

2-

2-

4.7 K

2-

*f22-

2—
'2

4.7 K

C

4.7 K

j5

FIGURE 9.32 Sixteen-key keypad scanner using 68230

From the schematic, you will see that whenever a button is pushed it will

short out its connecting row and column lines. For example, if button "5" is

pushed, the column connected to PBj and the row connected to PA X are shorted

together. To detect any button pushed in a single row, we must output a to

the row line. Any button connected to that row will place a on its associated

port B pin. So, to scan the second row of buttons—buttons 7, 6, 5, and 4—we
output a on PA X (and Is on PA , PA2 , and PA3 ), and look for 0s on PB
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through PB3 . Table 9.1 shows how all 16 buttons may be scanned with this

technique.

TABLE 9.1 Keyboard scanning

codes Parallel Outputs

PA3 PA2 PA! PA Buttons Scanned

1

1

1

1

1

1

1

1

1

1

1

1

3, 2, 1,

7, 6, 5, 4

B, A, 9, 8

F, E, D, C

The subroutine READKB, which follows, scans the keypad matrix using

the technique just described. If a single button is pushed, the number of the

button (0 through F) will be returned in the lower byte of DO. If no buttons are

pushed, DO will contain 80H in its lower byte. The column bits are checked by
rotating them into the carry flag and checking for a 0.

; sample 68230 port A address
; sample 68230 port B address

init DO to button
init row counter
init row-pattern generator
init column counter
select a row to scan
read button information
move column bit into carry

next button number
check other columns
generate next row pattern
check other rows
no buttons pushed
return with button code in DO

PADR EQU 4011H
PBDR EQU 4013H

READKB CLR.B DO
M0VEQ #3,D1
M0VE.B #0FEH,D2

NEXTR0W M0VEQ #3,D3
M0VE.B D2 , PADR
M0VE.B PBDR.D4

NEXTC0L R0R.B #1,D4
BCC GOTKEY
ADDQ.B #1,D0
DBF D3.NEXTC0L
R0L.B #1,D2
DBF D1.NEXTR0W
M0VE.B #80H,D0

G0TKEY RTS

Since mechanical contact bounce is always a problem, we will need to read the

keypad a number of times, hoping that each read produces the same button

information. Usually a short delay of 10 ms between reads is used to eliminate

contact bounce. The following subroutine, GETKEY, reads the keypad twice,

returning only when it gets the same button code each time. DELAY is a

subroutine that produces 10 ms of delay.

GETKEY BSR READKB
CMPI.B #80H.D0
BEQ GETKEY
M0VE.B DO. KEY
BSR DELAY

;get a button code
;was a button pushed;
;no. keep reading
save button codes
wait 10 ms
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BSR READKB
CMP.B KEY, DO
BNE GETKEY
RTS

; check keypad again
;do we have a match?

Example 9.5: Figure 9.33 shows the 68230 connections required to imple-

ment a multiplexed display. A multiplexed display consists of a number of

displays connected in parallel, so that each display receives the same informa-

tion. Only one display will actually become energized, however, because we
only enable one display at a time. When the data on the segment lines of the

displays is changed rapidly and they are enabled in a round-robin fashion, our

eyes perceive the illusion of all displays being on at the same time. If the

displays are not multiplexed quick enough, they will flicker (as the segments

dim during disabled periods). To avoid flicker, the displays should be enabled

at least 60 times every second.

Figure 9.33 shows that port A is used to drive the segments of each display,

and port B controls the common pin. We need to output a 1 on one of the PB
through PB3 lines to enable any display. The other three port B outputs should

be low to keep their displays off. For example, to turn display 3 on, the pattern

output to port B must be 0100. The subroutine TIMERINT is used to multiplex

the displays. The 68230's timer will be initialized so that it generates a vec-

tored interrupt once every 4 ms. TIMERINT will take care of enabling the next

display in sequence, with a scan order of 1 ... 2 ... 3 ... 4. TIMERINT will

automatically wrap around to display 1, after display 4 has been enabled for its

time period. Initialization software is required to program ports A and B for

output, to load the 24-bit timer counter with the proper value needed to gener-

ate 4-ms vectored interrupts, and to load the timer interrupt vector register

with the interrupt vector number that will cause TIMERINT to be serviced.

DISPLAY BLOCK 1

SEGMENTS BLOCK 4
SEGPTR BLOCK 4
PADR EQU 4011H
PABR EQU 4013H

; storage for display enable pattern
;buffer area for segment information
; segment pointer address buffer
; example 68230 port A address
; example 68230 port B address

TIMERINT M0VE.B DISPLAY, DO
CLR.B PADR
R0R.B #1,D0
BCC NEXTDISP
M0VE.B #08H,D0
M0VEA.L #SEGMENTS

,

M0VEA.L A0 , SEGPTR
NEXTDISP M0VE.B DO , PBDR

M0VEA.L SEGPTR, A0
M0VE.B (A0)+,D1
M0VE.B Dl.PADR
M0VEA.L A0, SEGPTR
M0VE.B DO, DISPLAY
RTS

;get enabled display pattern
; turn off segments in current display
;
generate next display enable pattern

; scanned all four yet?
;load initial enable pattern
;load initial segment data pointer
; save it

; turn on next display
;get address of next segment data
;get segment data
; display new data
; save segment pointer
; save current enable pattern
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FIGURE 9.33 A four-digit multiplexed display
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9.6 THE 68901 MULTIFUNCTION PERIPHERAL

The previous two sections dealt with peripherals capable of supporting serial

and parallel I/O. The usefulness of programmable I/O is clear. Many different

applications can be performed with the same hardware, with the hardware
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configured differently by the software, for each application. The peripheral

covered in this section brings parallel and serial I/O together in one chip. The
68901 multifunction peripheral contains a programmable 8-bit port and a

single-channel serial transmitter/receiver. In addition, the 68901 contains four

internal timers, which can be used to generate square waveforms, perform

pulse width measurements, and generate periodic interrupts. Since we have

covered parallel and serial I/O in some detail in the previous sections, we will

not spend a great deal of time on them here. Instead, we will concentrate on the

other features of the 68901. These features include a daisy-chained prioritized

interrupt structure and 16 types of maskable interrupts.

Interfacing the 68901

Figure 9.34 shows a simplified schematic of how the 68901 is connected to a

68000-based system. The 68901 communicates with the processor via an 8-bit

bidirectional data bus. This data bus is connected to the lower half (D through

D7 ) of the processor's data bus when the 68000, 68008, and 68010 are used. The
68020 requires that the 68901 be connected to D24 through D31 for proper

operation.

Five register-select inputs (RSi through RS5 ) are used to select the 24

internal registers used by the 68901. Interrupts are generated and acknowl-

edged by the IRQ and IACK pins. Prioritized (daisy-chained) interrupts are

made possible by the IEI (interrupt enable in) and IEO (interrupt enable out)

pins. Multiple 68901s can be cascaded together by connecting the IEO of one

D -D7
D0-D7 I0-I7

TAI

TBI
TAO
TBO
TCO
TDO

XTAL,

XTALo
01

SI

so
RC
TC

TR
RR

IEO

C^> parallel I/Or

\)

CLK —
RESET

R/W

Ids

RESET

R/W
DS

Timer
control

DTACK

AJ-A23

68000

AS

IPLs

DTACK

RS,-RS5

689

CS

IRQ

IACK

IEI

Ai-A5

O rystal

—L,
>

Address
decoder

4

> Serial I/OA6 A 23 *

:— 1

control

—».
*i

Interrupt

circuitry : \
DMA control

r
w J

nterrupt control

FIGURE 9.34 Interfacing the 68901 to the 68000
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Highest priority

68901

FIGURE 9.35 Daisy chaining multiple 68901s

Lowest priority

68901

To
additional

68901s

68901 to the IEI of another (as shown in Figure 9.35). The IEI pin of the

highest priority 68901 must be grounded to make interrupts possible. The first

68901 in the chain will disable all others, via IEO, should it request an inter-

rupt. By connecting the 68901s in this fashion, we end up with a prioritized

interrupt scheme. The first 68901 will have the highest priority. The last

68901 in the chain will have the lowest interrupting priority.

Returning to Figure 9.34, we see four separate functional sections. The
first section is composed of eight programmable I/O lines, I through I7 . The
direction of each one of these bits is programmable through an internal data

direction register. Furthermore, each line is capable of generating a separate

vectored interrupt when activated.

The second section is composed of signals connected to the four internal

timers. TAI and TBI are clock inputs to timers A and B. TAO, TBO, TCO, and

TDO are the four timer outputs. The timers are also capable of generating

vectored interrupts. Timing signals for the timers are derived from a crystal

connected to XTAL^ and XTAL2 .

The third section is composed of signals associated with the serial trans-

mitter and receiver. SI (serial in) and SO (serial out) are the data lines con-

nected to the receiver and transmitter. RC and TC are receiver and transmit-

ter clock inputs, used to control the bit rate of each section. Alternatively, the

transmitter and receivers may be clocked by a timer output.

_ The last section is used to control DMA operations and consists of two pins,

TR (transmitter ready) and RR (receiver ready).

Programming the 68901

The 68901 is configured for various modes of operation through the use of 24

internal registers. The registers, and their external addresses, are listed here:

Address Register

01 GPDR, general-purpose I/O data register

03 AER, active edge register

05 DDR, data direction register

07 IERA, interrupt enable register A
09 IERB, interrupt enable register B
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OB IPRA, interrupt pending register A
OD IPRB, interrupt pending register B
OF ISRA, interrupt in-service register A
11 ISRB, interrupt in-service register B
13 IMRA, interrupt mask register A
15 IMRB, interrupt mask register B
17 VR, vector register

19 TACR, timer A control register

IB TBCR, timer B control register

ID TCDCR, timers C and D control register

IF TADR, timer A data register

21 TBDR, timer B data register

23 TCDR, timer C data register

25 TDDR, timer D data register

27 SCR, synchronous character register

29 UCR, USART control register

2B RSR, receiver status register

2D TSR, transmitter status register

2F UDR, USART data register

The GPDR is used to send and receive data from the parallel port (pins I

through I7 ). The direction of data on these lines is controlled by the DDR. Each
bit in the DDR specifies the direction of the corresponding bit in the I/O port. A

is used to program a pin for input, and a 1 to program the pin for output. The
AER is used to program the transition required on a parallel input to generate

an interrupt. High-to-low and low-to-high transitions are programmed by

writing 0s and Is to the desired bits in the AER.
The four timers are controlled by seven registers: TACR, TBCR, TCDCR,

TADR, TBDR, TCDR, and TDDR. Timers A and B are programmed via the

TACR and TBCR. Each control register consists of 5 user-programmed bits.

Bit 4 is used to reset the timer. Bits through 3 select the timer mode. Sixteen

modes are possible with timers A and B, and are as follows:

Timer stopped

Delay mode, /4 prescaler

Delay mode, /10 prescaler

Delay mode, /16 prescaler

Delay mode, /50 prescaler

Delay mode, /64 prescaler

Delay mode, /100 prescaler

Delay mode, /200 prescaler

Event count mode
Pulse width mode, /4 prescaler

Pulse width mode, /10 prescaler

Pulse width mode, /16 prescaler

Pulse width mode, /50 prescaler
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Pulse width mode, /64 prescaler

Pulse width mode, /100 prescaler

Pulse width mode, /200 prescaler

The delay mode of operation causes the timer to be decremented at a rate

determined by the prescaler output. When the timer reaches a count of 01, it is

reloaded from its data register. Additionally, the associated timer output will

toggle and an interrupt may be generated if enabled by the interrupt mask
register.

Timers C and D are limited in operation, and each timer's mode is specified

via two groups of three bits in the TCDCR. Bits through 2 control timer D,

and bits 4 through 6 control timer C. Only timer modes through 7 are avail-

able with timers C and D.

The USART (universal synchronous/asynchronous receiver/transmitter)

section is controlled by a number of registers. The UCR selects the clock rate

(IX or 16X), the character length (5 to 8 bits), the number of stop bits, and the

parity. Two status registers are included (RSR and TSR) to provide status

concerning the receiver and transmitter (buffers empty or full, parity and

framing errors, and so on). The interrupt mask registers can be programmed to

allow USART interrupts when a character is received or transmitted.

Vectored interrupts are generated by 16 different conditions. The vector

number generated depends on the condition and the number stored in the VR.

The upper 4 bits of the VR form the base vector number. The lower 4 bits are

generated by the type of interrupt requested. All possible interrupts are listed

here:

General-purpose interrupt 7 (I7 )

General-purpose interrupt 6 (I6 )

Timer A
Receiver buffer full

Receive error

Transmitter buffer error

Transmit error

Timer B
General-purpose interrupt 5 (I5 )

General-purpose interrupt 4 (I4 )

Timer C
Timer D
General-purpose interrupt 3 (I3)

General-purpose interrupt 2 (I2 )

General-purpose interrupt 1 (1^

General-purpose interrupt (I
() )

As shown, all major sections of the 68901 are capable of generating interrupts.

The actual vector number generated is a combination of the upper 4 bits in the
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VR (that are supplied by the programmer) and the lower 4 bits (the interrupt

type from the previous list). For example, if the upper bits have been set to

1000 (8) and timer C generates an interrupt, the vector number produced is

8A.

When a small system requires parallel I/O, serial I/O, and timing func-

tions, the 68901 is an ideal way to provide all functions with a minimum of

hardware.

9.7 THE 68153 BUS INTERRUPT MODULE

In the previous sections, we have seen that many peripheral interrupts exist

and need to be serviced. Designing hardware to service a large number of

interrupts can easily become a complicated task. Additionally, the hardware

will be designed to produce certain fixed results. Future changes are thus

difficult to implement without changing the hardware.

A peripheral designed to handle independent interrupt requests for up to

four devices and be configured through software is the 68153 bus interrupt

module. Asynchronous interrupts coming from the four sources will cause the

68153 to interrupt the processor and supply a preprogrammed vector number.

If the system requirements change sometime in the future, no hardware rede-

sign is needed: The 68153 must simply be initialized differently to handle the

new requirements.

Interfacing the 68153

Figure 9.36 shows the interfacing required to connect the 68153 to the 68000.

As usual, the asynchronous bus signals are used to control the transfer of data

between the CPU and the peripheral, with the address decoder setting the base

address for the device. Address lines A 1 through A3 serve two purposes. First,

they are used to select one of eight internal registers used by the 68153 to

control generation of vectored interrupts. Second , they supply the interrupt

level during interrupt acknowledge cycles. IACK (interrupt acknowledge) is

driven low during an interrupt acknowledge cycle to inform the 68153 that it

must supply an interrupt vector. IACKIN and IACKOUT are included to im-

plement daisy chaining of the 68153 with other devices (for example, a second

68153). When IACKIN is high, the 68153 will not respond to an interrupt

acknowledge cycle. When low, the 68153 will check its internal registers (dur-

ing an interrupt acknowledge cycle) to see if it should respond. If the interrupt

levels stored in the internal registers match the level supplied by A 1 through
A3 , the 68153 will respond with a vector number and output a high on
IACKOUT (to disable other devices in the chain). If no match is found,

IACKOUT will be driven low, enabling other devices in the chain and allowing

them to respond instead. Figure 9.37 shows two 68153s daisy chained together.
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FIGURE 9.36 Interfacing the 68153 to the 68000

Getting back to Figure 9.36, we see seven bus interrupt request outputs,

IRQ! through IRQ7 . The level of the interrupt being serviced determines which
of these outputs goes low. Since IRQi through IRQ 7 are open-collector outputs,

a pull-up resistor is required for proper operation.

Device interrupt request signals INT through INT3 are used by up to four

external devices (peripherals) to request a bus interrupt. The 68153 will out-

put the encoded device number (0 through 3) it is responding to on outputs

INTAL and INTAL^ These two outputs are valid when INTAE (interrupt

acknowledge enable) is active. These outputs are provided to allow the exter-

nal device the option of supplying its own vector number.

Programming the 68153

The 68153 contains eight internal registers that must be programmed to pro-

vide interrupt processing. These registers are assigned as follows:

Control register (for INT )

Control register 1 (for INT^
Control register 2 (for INT2 )
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Control register 3 (for INT3 )

Vector register

Vector register 1

Vector register 2

Vector register 3

Each control register is paired with a vector register. The vector register is

loaded with an 8-bit vector number that will be supplied when the appropriate

interrupt is requested. The control register, depicted in Figure 9.38, is used to

store the interrupt level and other control information. The IRQ output that

will be active when the interrupt is acknowledged is coded in the lower 3 bits.

Device interrupts are enabled/disabled through bit 4, IRE. Bit 3, IRAC, is used

to automatically clear the IRE bit when an interrupt is acknowledged. This

will require the interrupt service routine to set IRE again, if further interrupts

are desired.

If the external device is going to supply the vector number instead of the

68153, the IN/X bit should be set. When cleared, the 68153 supplies the vector

number from the appropriate vector register.

The 68153 is an ideal device for use with older peripherals or non-68000-

based devices that are incapable of generating interrupt vector numbers by

themselves.

Example 9.6: The subroutine INTSET, listed here, is used to set up all four

interrupt vector registers and their respective control registers for a 68153
located at base address B000.

C0NTR0L0 EQU 0B000H base 68153 register address
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INTSET MOVEA.L #CONTROLO,AO
MOVE.B #11H,1(A0)
MOVE.B #1CH,3(A0)
MOVE.B #0B7H,5(A0)
MOVE.B #22H,7(A0)
MOVE.B #94H,9(A0)
MOVE.B #95H,11(A0)
MOVE .

B

#96H,13(A0)
MOVE.B #97H,15(A0)
RTS

init register
INTO enabled,
INT1 enabled,
INT2 enabled,
INT3 disabled,
vector number
vector number
vector number
vector number

pointer
level IRQ1
level IRQ4
level IRQ7
level IRQ2

for INTO
for INT1
for INT2
for INT3

2-0

F FAC IN/X IRE IRAC Interrupt level

2

() Disabled

() 1 IRQ,

IRQ,

1 IRQ,

1 (

1 (

)

) 1

IRQ4

IRQ5
1

1 1

IRQ6

IRQ7
INTERRUPT AUTO-CLEAR

Disabled

1 Clears IRE when interrupt is acknowledged.

INTERRUPT ENABLE

Disabled (no interrupt service)

1 Enabled

INTERNAL/EXTERNAL

68153 supplies vector.

1 External device supplies vector.

FLAG AUTO-CLEAR

Disabled

1 Clears F when interrupt is acknowledged.

FLAG

A status Hag available

lor general use (as in

processor-to-processor

communication)

FIGURE 9.38 68153 control register
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9.8 THE 68881 FLOATING-POINT COPROCESSOR

Coprocessors have been mentioned numerous times throughout this text. A
coprocessor is used to enhance the power of its host processor, which, by design,

does not include an extensive set of instructions capable of handling floating-

point numbers. A floating-point number (defined by the IEEE Standard for

Floating-Point Arithmetic, and implemented by the 68881) consists of up to 64

bits of mantissa, a sign bit, and a 15-bit exponent. This 80-bit number does not

fit into any of the processor's registers. For this reason, the 68881 contains a

set of internal floating-point registers, each 80 bits long, that are accessed and

manipulated by the coprocessor's set of floating-point instructions. These in-

structions are mixed in with the instructions of the host processor, and when
encountered, cause the coprocessor to perform the specified function. As far as

the programmer is concerned, the combination of processor and coprocessor

(any 68000 family CPU connected to the 68881) operate as a single processor,

capable of executing the additional floating-point instructions. The 68881 is

most efficiently operated when interfaced to the 68020, but may also be con-

nected to the 68000, 68008, 68010, and 68030. The only difference is the

amount of hardware required in the interface.

The 68881 has a large set of floating-point instructions (a total of 40),

composed of move, arithmetic, branch, and other miscellaneous instructions.

Seven data formats are supported. Three of these formats—byte, word, and
long word—are already known to us. The other four are single-, double-, and
extended-precision, and packed decimal. A floating-point instruction extension

is used to specify the data format.

Many of the 68881's floating-point instructions require less than 100 clock

cycles to execute. Others require many hundreds of clock cycles to complete.

Even so, the coprocessor offers a great speed advantage not available when
performing similar operations with an ordinary processor.

Interfacing the 68881

Figure 9.39 shows the required connections used to interface the 68881 to the

68000. The size difference between the processor's 16-bit data bus and the

coprocessor's 32-bit data bus requires that the upper and lower halves of the

6888 l's data bus be wired in parallel. A and SIZE are used to configure the

68881 for the size of the processor's data bus. DS (data strobe) is used to indi-

cate that valid information exists on the data bus. The AND gate is used to

assert DS whenever UDS or LDS goes low. DSACKi (data transfer and size

acknowledge) is used to signal the completion of an asynchronous bus transfer.

When the host processor is the 68020, DSACKj and a second signal, DSACK
,

are used to indicate the size of the data transfer between the processor and the

68881.

Both the host processor and the coprocessor are capable of running at dif-

ferent speeds. It is therefore not necessary to provide both with an identical

clock signal.
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D8-D, 5

D -D7

FIGURE 9.39 Floating-point coprocessor connections to the 68000

Programming the 68881

The 68881 contains a number of internal registers that can be accessed by the

programmer. Eight floating-point registers (FP0 through FP7) are used to

store 80-bit numbers for use in 68881 calculations. A 32-bit control register is

used to program the types of exceptions the 68881 will generate (that is, di-

vide-by-zero, operand error, inexact decimal input), and also selects the type of

rounding to be used in calculations (toward zero, toward positive or negative

infinity). A 32-bit status register contains the floating-point condition codes,

quotient bits, and exception status data, all accessible by the programmer.

Another 32-bit register is used to save the host processor's address of the last

floating-point instruction that was executed.

The floating-point instructions available with the 68881 are separated into

four groups: monadic (one operand); dyadic (two operands); branch, set, and

trap-on-condition; and miscellaneous. All instructions are listed according to

group as follows:

Monadic

FABS, absolute value

FACOS, arc cosine

Dyadic

FADD, add

FCMP, compare
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FASIN, arc sine

FATAN, arc tangent

FATANH, hyperbolic arc tangent

FCOS, cosine

FCOSH, hyperbolic cosine

FETOX, e to the xth power

FETOXM1, e to the (x - l)th power

FGETEXP, get exponent

FGETMAN, get mantissa

FINT, integer part

FINTRZ, integer part (truncated)

FLOG10, log base 10

FLOG2, log base 2

FLOGN, log base e

FLOGNPI, log base e of (x + 1)

FNEG, negate

FSIN, sine

FSINCOS, simultaneous

sine/cosine

FSINH, hyperbolic sine

FSQRT, square root

FTAN, tangent

FTANH, hyperbolic tangent

FTENTOX, 10 to the xth power
FTST, test

FTWOTOX, 2 to the xth power

FDIV, divide

FMOD, modulo remainder

FMUL, multiply

FREM, IEEE remainder

FSCALE, scale exponent

FSGLDIV, single-precision divide

FSGLMUL, single-precision multiply

FSUB, subtract

Branch, set, and trap-on-condition

FBcc, branch-on-condition

FDBcc, decrement and branch-on-

condition

FScc, set byte-on-condition

FTRAPcc, trap-on-condition

Miscellaneous

FMOVE, move to/from 68881 register

FMOVEM, move multiple registers

FSAVE, save virtual machine state

FRESTORE, restore virtual machine

state

FNOP, no operation

The 68881 also contains 22 internal constants. These constants may be

directly loaded into a floating-point register, without the need for an external

access. The 22 constants are as follows:

Pi logl0(2) e

log2(e) loglO(e) 0.0

ln(2) ln(10) 1

10 100 10 (to 4th)

10 (to 8th) 10 (to 16th) 10 (to 32nd)

10 (to 64th) 10 (to 128th) 10 (to 256th)

10 (to 512th) 10 (to 1024th) 10 (to 2048th

10 (to 4096th)

Seven data types are supported by the 68881. The first three—byte, word,

and long word—are also supported by the host processor. These three data

types allow binary integers to be specified in the following ranges:

8 bits: -128 to +127
16 bits: -32768 to +32767
32 bits: -2147483648 to +2147483647
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Note that these ranges are for signed (2s complement) numbers.

Single-precision real numbers are specified by a 23-bit fraction, an 8-bit

exponent, and a sign bit. Since all 68881 numbers are internally normalized,

they each contain an additional bit of precision. For example, the fraction part

of a single-precision number may look like this: 1.11010110001011010100101

(1. followed by 23 data bits). The fractional part of a normalized number al-

ways begins with 1; therefore we do not need to specify the first bit of any
number. We can use the 23 bits available for the fractional part only.

The eight exponent bits specify an unsigned exponent (in the range

to 255). An internal exponent bias of 127 is subtracted from the specified

exponent to determine the true, signed exponent. For example, if the eight

exponent bits represent an exponent of 100, the actual exponent of the single-

precision number is 100 — 127, or —27. The signed exponent is a base 2

exponent.

Double-precision real numbers are specified by a 52-bit fraction, an 11-bit

exponent, and a sign bit. The exponent bias for these numbers is 1023.

Extended-precision real numbers, the largest possible in the 68881, are

specified by a 64-bit fraction, a 15-bit exponent (with a bias of 16383), and a

sign bit. The 68881 performs all calculations involving real numbers, in ex-

tended-precision format. Single- and double-precision numbers are converted

into this format before the calculations begin and reconverted back when fin-

ished. This ensures the smallest loss of accuracy.

The seventh data type supported is packed decimal real. BCD numbers are

specified with this data type. These numbers may contain up to 17 digits in the

mantissa and a three-digit exponent. The mantissa and exponent signs are

specified with separate bits.

The data type (or format) of an operand is specified in the instruction, by

use of a single-character extension. Each data format has its own extension

character as follows:

Byte .B

Word .W
Long word X
Single .S

Double .D

Extended X
Packed Decimal .P

The best place for floating-point numbers to be saved is in the internal

floating-point registers (FP0 through FP7), although the 68881 is also capable

of accessing external memory as well. The 68881 supports all addressing

modes available on 68000-based systems. Thus, instructions such as those

listed here are possible:

FSUB.B #3,FP0
FADD.L D4,FP2
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FADD.L NUMBER, FP6
FADD.S #2.7182818,FP1

FADD.D (A2) + ,FP5

FSUB.E -(A1),FP4

The 68881 is too complicated to cover in detail in this discussion. Even so,

two simple examples will serve to show how powerful this coprocessor is, and,

hopefully, how much easier it is to use. Remember that floating-point instruc-

tions would need to be implemented in software, through complicated time-

consuming subroutines, if the 68881 were not available.

Example 9.7; The floating-point instructions in this example are used to

calculate the standard deviation of a group of samples. There are n samples in

the group, and they are saved in memory beginning at SAMPLES. The follow-

ing equation will be used to compute the standard deviation (assuming that n

is larger than 10):

S.D. = Vii^ xr
n i=1

where n_ = the number of samples

X = the average of the samples

First the average (X) will be computed, since this is needed during the calcula-

tions. The final result (the standard deviation) is found in FP2.

; the number of samples goes here
;the samples go here

;init pointer to samples
;init loop counter
; clear FP1
; total samples

; compute average
; clear FP2
; init loop counter
;init sample pointer
;get sample into FP3
; subtract sample average
; square result
; total result

; divide by N

;use square root to get standard deviation

Note: It is possible to eliminate the second MOVEA instruction by using

predecrement addressing during the second loop.

N EQU ?

SAMPLES BLOCK ?

MOVEA .

L

#SAMPLES,A0
MOVE.W #N-1.D0
FSUB . D FP1.FP1

DPADD FADD.D (A0)+,FP1
DBF DO , DPADD
FDIV.D #N,FP1
FSUB . D FP2.FP2
MOVE.W #N-1 , DO
MOVEA. L #SAMPLES.A0

SQRSUM FMOVE.D (A0)+,FP3
FSUB . D FP1,FP3
FMUL .

D

FP3 , FP3
FADD .

D

FP3.FP2
DBF DO , SQRSUM
FDIV.D #N,FP2
FSQRT .

D

FP2
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Example 9.8: A resistor-capacitor circuit is shown in Figure 9.40 (a). It con-

sists of a resistor, a capacitor, and a DC voltage source, E. At time t equal to 0,

the switch is closed and the capacitor begins to charge. The time constant for

the circuit, which determines how fast the capacitor charges, is found by the

product ofR and C (and is 1 ms in this example). Figure 9.40(b) shows a sketch

of the charging curve for the capacitor. Notice that Vc reaches the applied

voltage E in five time constants.

FIGURE 9.40 Exponential

charging in a resistor-capacitor

network: (a) a resistor-capacitor

circuit and (b) capacitor charging

curve

S R
-a o ^M
Switch

! KQ

=^- 10V

RC

uF

Vc =E(l-e-"T
)

i— time (in ms)

The equation that governs the capacitor's charging rate is also shown in

Figure 9.40(b). This is the equation implemented by CHARGE, the 68881 rou-

tine listed here, which is used to compute the capacitor's voltage at any time T.

The result is returned in FP1.

R EQU 1000
C EQU 1E-6
E EQU 10

T BLOCK ?

CHARGE FM0VE.D #R,FP0
FMUL .

D

#C.FP0
FM0VE.D #T,FP1
FDIV.D FP0.FP1
FNEG .

D

FP1
FET0X.D FP1
FNEG .

D

FP1
FADD .

D

#1.0. FP1
FMUL.D #E.FP1
RTS

; resistance value
; capacitance value
; voltage source value
: storage for time value

;load FP0 with resistance value
; multiply FP0 by capacitance
;load time into FP1
; compute exponent for e (time/time-constant!
;make exponent sign negative
; compute e to xth power
: change sign
; compute difference
; calculate capacitor's voltage
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9.9 INTERFACING WITH NON-MOTOROLA PERIPHERALS

A common frustration encountered in the hardware and software fields is the

lack of compatibility between equipment produced by different manufacturers.

For example, Motorola peripherals are designed to work with Motorola proces-

sors. Intel peripherals are designed for use with Intel processors. It is difficult

but not impossible to get one manufacturer's devices to work on another's

system. In this section we will see how a non-Motorola peripheral, the 8279

programmable keyboard/display interface, can be interfaced to a 68000-based

system. Figure 9.41 shows one way this non-Motorola device can be connected.

As usual, an address decoder is included to chip-select the device when a spe-

cific address is encountered on the address bus. Notice that address line A 1

does not go to the decoder but instead connects to the A input on the 8279.

Both address lines {A 1 on the 68000 and A on the 8279) represent the least

significant address bit for our purposes, and are thus connected together. A is

used on the 8279 to select control/data operations within the device.

One common hardware feature of Intel peripherals is the use of separate

RDjread) and WR (write) signals. Since the 68000 outputs a single signal,

R/W, we must artificially create RD and WR. This is accomplished with the two

NAND gate s. Only one of the NAND gates is allowed to output a zero at any
time. Since LDS is used to control this circuit, we must transfer data bytes

to/from the 8279 over the lower half of the data bus.

D -D7

AS

A.-Ar,

DTACK

68000

LDS

R/W

C

>
Address

decoder

>
DB -

DB-

CS

RLq-
RL 7

SHIFT

CNTL/STB

8279

RD

WR

SL -

SL,

OUT
A0-A3

OUT
B0-B3

bd

c
Keyboard
inputs

i> sc

^> 1

> Display

outputs

FIGURE 9.41 Interfacing the 8279 with the 68000
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Software interfacing is not a problem, since it only requires the transfer of

data between the device and the processor. The 8279 is thus treated like any
other memory-mapped device.

Being able to interface non-Motorola devices with the 68000 increases the

flexibility of the system during the design stage, since a non-Motorola may be

used, if necessary, to perform some desired function. We will see, however, that

this possibility is remote, given the wide pool of devices available for 68000
systems. These devices are summarized in the next section.

9.10 A SUMMARY OF OTHER 68000-BASED PERIPHERALS

This section summarizes a number of 68000-based peripherals. The intention

is to let you know what kinds of devices are available. As you read this section

you will see that, through its peripherals, the 68000 is capable of performing

many complex functions in many different environments. Ideally, you should

obtain a copy of a peripheral handbook and look up the data sheets for each

peripheral.

The 68652 Multiprotocol Communications Controller

This device is used to provide several communication formats. Bit- and byte-

oriented protocols are available, as is synchronous serial data transmission

and reception. The 68652 will also generate and check 16-bit CRC codes.

The 68184 Broadband Interface Controller

When used with the 68824 token bus controller, the 68184 implements a

broadband IEEE 802.4 token bus node. Bit rates up to 10 million bits per

second are available, as are scrambling/descrambling capability and posterror

correction.

The 68824 Token-Passing Bus Controller

This device implements the media access control portion of the IEEE 802.4

standard and the receiver portion of the IEEE 802.2 logical link control. The

68824 is the interface between the CPU, its memory, and the token bus. This

device implements high-speed serial data communication in a local area net-

work.

The 68452 Bus Arbitration Module

The 68452 allows up to eight users access to a common system bus in a 68000-

based system. The 68452 is suitable for use in a multiprocessor environment,

controlling each CPU's access to the main system address and data bus.
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The 68590 LAN Controller for Ethernet

The device implements the required communication protocols for Ethernet

LAN data transmission and reception. Ethernet is a widely used communica-

tion network that can easily link thousands of users together.

The 68465 Floppy Disk Controller

This device is used to interface two single- or double-density floppy disk drives

to the 68000. The 68465 performs all hardware functions required by the

floppy disk drives. The 68000 must supply the software required to implement

a disk operating system.

The 68486/68487 Raster Memory System

These two peripherals are used to implement raster scan graphics on a 68000-

based system. Color graphics, collision detection, and light-pen input are pro-

vided. The 68486/68487 use a block of system RAM as a video memory.

9.11 SUMMARY

In this chapter we have looked at a number of peripherals in some detail. Each
peripheral performs a different, necessary function. Parallel and serial I/O,

memory management, DMA, interrupt handling, and floating-point opera-

tions were all covered. Any 68000-based system may include any or all of these

functions. Each peripheral required some hardware interfacing, consisting of

an address decoder. In some cases, other hardware was needed to get the pe-

ripheral to communicate with the processor or the external circuitry connected

to the peripheral. Examples of software routines, designed to program the

devices for specific functions, were included to complete the interface.

An example showing how a non-Motorola peripheral could be connected to

the 68000 was also covered. In addition, a brief summary of other peripherals

in the 68000 family was given.

STUDY QUESTIONS

1. Modify DMAMOVE so that it uses channel 1 instead of channel 0. All channel 1

registers are offset by 40H.

2. What instructions must be included in DMAMOVE to ensure that channel is the

highest priority channel?

3. What is the GCR code for a 64-cycle burst rate and a bus bandwidth of 25.00 per-

cent?

4. Explain the differences between burst DMA and cycle-steal DMA. Is one technique

better for transferring large blocks of data?
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5. The processor can read the channel status register at any time to determine the

channel status. Write the required code to detect a complete channel operation.

6. How can the 68440 be used to load a 1KB block of RAM from a device, using

implicit addressing?

7. What is the largest block of data that can be transferred with the 68440 with a

single-channel operation? Explain how larger blocks could be transferred.

8. What are the possible segment sizes available with the 68451?

9. What must the contents of a LAM register be to define a segment size of 256KB?
10. How can any number of segments be combined to make a 94KB block with a mini-

mum of wasted space?

11. What is the physical address mapped by the following descriptor?

LBA: A000
LAM: F000
PBA: E000

12. What is the segment size in Question 11?

13. Show the contents of the LBA, LAM, and PBA to allow translation from a logical

address of 28E000 to a physical address of C90000 in a 64KB segment.

14. Suppose that the SSR of a descriptor has been copied into the lower byte of D3.

Write a section of code that will JMP to NOTUSED if the U bit is cleared, and to

MODIFIED if the M bit is set. Jump to CONTINUE if neither condition holds.

15. What channel A mode register 1 byte is needed to program channel A for 8 data

bits, no parity, and FFULL interrupts?

16. What channel A mode register 2 byte is needed to program channel A for 1 stop bit

and automatic echo mode?
17. How can channel A be programmed for 9600 BAUD in the receiver and 600 BAUD

in the transmitter?

18. What channel A command code is needed to reset the error status?

19. Modify the CHARIN subroutine so that the RxRDY status bit is checked by a BTST
instruction.

20. Write a subroutine called CHAROUT that will transmit the ASCII character lo-

cated in the lower byte of D3.

21. Write a routine called ERRORDET that will examine the contents of channel A's

status register, and enter exception processing with a TRAP #5 instruction if any

error bit is set. The error bits consist of parity, overrun, and framing. If no errors

are present, simply return from ERRORDET
22. Explain how two different functions are possible with the multifunction pins on

port C of a 68230.

23. Generate a data table of sinewave values that contains 32 bytes. The 32 bytes

should be spread evenly through a complete cycle (e.g., evaluate the sine function

every 11 degrees).

24. What are the port A pin directions for each of the following data direction register

byte values: 11111111, 00000000, 11110000, 10101010, and 10000001?

25. How might two-key rollover be implemented in the keypad scanner?

26. Write the initialization code for the keypad scanner. The 68230 must be configured

for port A out and port B in.

27. What hardware and software is required to detect a pushed button at any time?

Show how the processor can be interrupted by action on the keypad.

28. Rewrite KEYBD so that it supports scanning of a 64-key matrix.
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29. Rewrite TIMERINT so that the display scanning order is 4 ... 3 ... 2 ... 1.

30. Write the initialization code required for TIMERINT. The 68230 must be config-

ured for ports A and B out and vectored interrupts from the timer. Assume that

loading the counter with 1400H will generate the proper timing, if the counter is

clocked by the output of the prescaler. The TIVR should be loaded with vector

number 86H to service TIMERINT.
31. Modify TIMERINT to support eight multiplexed displays.

32. Write a routine that will flash HELP on the four displays (described in Figure 9.33).

33. Explain how the general-purpose I/O lines on the 68901 can function as inputs or

outputs. How is the direction programmed?

34. What timer modes must be selected so that timers A, B, and C generate frequencies

that differ by a factor of 4 (that is, A equals 100 Hz, B equals 400 Hz, and C equals

1600 Hz)?

35. What is the advantage of interrupting the processor when a character is received by

the USART? If the VR contains lOllxxxx, what vector is generated by USART
when a character is received?

36. Explain how the 68901 can be used to service interrupt requests from eight differ-

ent devices.

37. How many parallel I/O lines are available when four 68901s are daisy chained?

How many interrupts? How many serial channels?

38. How many vectored interrupts are available with five daisy-chained 68153s?

39. Which control registers in INTSET have the FLAG bit set?

40. Write a set of instructions that will enable interrupts in control register 2 without

affecting any other bits. Assume CR2 is located at address B002.

41. Which control registers in INTSET are set up to allow an external device to supply

the vector number?
42. Write a 68881 routine to convert degrees into radians. The number of degrees are

passed to your routine in DEGREES. Return the number of radians in FP4.

43. Write a floating-point routine to compute the volume of a sphere with radius R.

44. Write a floating-point routine to convert a polar number (magnitude and phase

angle) into a rectangular number (X and Y axis values).

45. Write a floating-point routine to normalize a set of data values. The data set is

normalized by dividing each number in the set by the largest number. Assume that

the data is sorted in ascending order and begins at POINTS.
46. Write a floating-point routine to compute the final velocity of an object that starts

out with an initial velocity, V;, and accelerates due to gravity, for a period of time T
47. What changes need to be made to the 8279 interface if data is to be transferred over

the upper half of the processor's data bus?

48. What peripherals would you choose to use in a new system that required four levels

of interrupts, two serial channels, a timer, and 16 bits of parallel I/O?

49. What kind of initialization would be needed in the system of Question 48?

50. In a system employing multiple peripheral devices, is there any design advantage

in putting all peripheral I/O addresses close to each other?

51. Explain how the circuits of Figures 9.32 and 9.33 are ideal for use in the calculator

project.
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10

Building a Working 68000 System

Objectives

In this chapter you will learn about

The main parts of a single-board computer

The design of custom circuitry for the major sections of the microcomputer system

How to generate and answer the necessary questions for the design or modifica-

tion of a single-board computer

The operation of a software monitor program

How to modify an existing monitor program by whiting additional routines

10.1 INTRODUCTION

This final chapter deals exclusively with the design of a custom 68000-based
microcomputer system. The system is an ideal project for students wishing to

get some hands-on experience, and is also a very educational way of utilizing

all of the concepts we have studied so far.

Ideally, we wish to design a system that is easy to build, has a minimal
cost, and yet gives the most for the money. The very least we expect the system
to do is execute programs written in 68000 code. It is therefore necessary to

have some kind of software monitor that will provide us with the ability to

enter 68000 code into memory, execute programs, and even aid in debugging.

This chapter then will consist of two parts. The first deals with the design of

the minimal system, and the second with the design of a software monitor and
the use of its commands.

Pay close attention to the trade-offs that we will be making during the

design process. A difficult hardware task can often be performed by cleverly

written machine code, and the same goes for the reverse. Do not forget our
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main goal: to design a minimal 68000-based system suitable for custom pro-

gramming.

Section 10.2 covers the minimum requirements of the system we will de-

sign. Section 10.3 describes the design of the system hardware. Section 10.4

contains the parts list for the system. Section 10.5 gives hints on how the

system may be constructed. Section 10.6 shows how a PAL might be used to

generate several system signals. Section 10.7 deals with the design of the soft-

ware monitor program for the system. Section 10.8 explains how additional

commands may be added to the monitor program. Finally, Section 10.9 gives

examples of some simple programs that can be used to test the hardware and
software.

10.2 MINIMAL SYSTEM REQUIREMENTS

The requirements of our minimal system are the same as those of any com-

puter system, and consist of four main sections: timing, CPU, memory, and
input/output. Since we are the designers, building this system for our personal

use, it is up to us to answer the following questions:

1. How fast should the CPU clock speed be?

2. How much EPROM memory is needed?

3. How much RAM memory is needed?

4. Should we use static or dynamic RAMs?

5. What kind of I/O should be used—parallel, serial, or both?

6. Do we want interrupt capability?

7. Will future expansion (of memory, I/O, and so on) be required?

8. What kind of software is required?

It should be clear that we have a big task ahead of us. During the design,

all of these questions will be answered and the reasons for choosing one answer

over another explained. Make sure you understand each step before proceeding

to the next one. In this fashion, you should be able to design your own com-

puter system, from scratch, and without any outside help.

10.3 DESIGNING THE HARDWARE

In this section, the four main functional sections of the system will be de-

signed. In each case, there will be questions to answer regarding specific

choices that must be made. You may want to make a list of all important

questions as you go.

.
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The Timing Section

The timing section has the main responsibility of providing the CPU with a

nice, stable clock. Any type of digital oscillator will work. It is then necessary

to decide on an operating frequency for the oscillator. Many times this fre-

quency is the operating frequency of the CPU being used. Microprocessors are

commonly available in different clock speeds, two examples being the 8- and

12-MHz versions of the 68000.

One important factor limiting the clock speed is the speed of the memories

being used in the system. A 12-MHz CPU might require RAMs or EPROMs
with access times less than 100 ns! In our design, we will use a 4-MHz clock.

This is fast enough to provide very quick execution of programs, while at the

same time allowing for the use of less expensive RAMs with longer access

times (250 ns).

The circuit of Figure 10.1 shows a 4-MHz oscillator package driving two

inverters. This is done so that any loading from external sources will not affect

its operation. One of the outputs, CPU-CLK, is the master CPU clock signal.

Since many other circuits in our system might also require the use of this

master clock, we make the CLK signal available, too. The CPU therefore gets

its own clock signal. It is desirable to separate the clocks in this fashion, to aid

in any digital troubleshooting that may need to be done. By making multiple

clocks available, it is easier to trace the cause of a missing clock, should that

problem occur.

In addition to the clock, wTe will need a circuit to provide the CPU with a

reset pulse upon the application of power. It is very important to properly reset

the CPU at power-up. to ensure that it begins executing its main program
correctly. There are two requirements that must be met to correctly reset the

68000 upon power-on. One is to pull both the HALT and RESET pins on the

CPU low at the same time. The second is to keep them low for at least 100 ms.

The circuit of Figure 10.2 satisfies both of these needs. Figure 10.2 showrs a 555

timer connected as a monostable multivibrator. The R-C combination on pins 6

and 7 sets the output pulse width to at least 100 ms. The instant power is

applied, pin 3 of the 555 timer will go high. This causes the output of the

inverter to go low, which causes the outputs of the open-collector buffers con-

4 MHz
I lui

CPU-CLK

CLK

FIGURE 10.1 4-MHz system timing clock
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68000

FIGURE 10.2 Power-on reset circuitry

nected to HALT and RESET to also go low. These open-collector gates are

needed here, because HALT and RESET are bidirectional signal pins.

The instant the 68000 recognizes the reset request, it will force the RESET
pin low, which causes the RESET pin to act like an output! If a regular TTL
gate is used instead of an open-collector gate, fireworks may result when this

happens.

When the 555 times out, pin 3 will go low. This will cause the inverter to

send a logic 1 to the open-collector buffers, which (via their 4.7 K ohm pull-up

resistors) will pull both HALT and RESET high, ending the reset request.

Since we may want to reset the processor at a random point in time (maybe
during the execution of a runaway program), we can get the 555 timer to

repeat this process by momentarily grounding pin 2. The normally open push-

button connected to pin 2 will accomplish this for us, and provide a panic

button for those hard-to-fix programs.

If we want a visual indication that the processor has entered the HALT
state, we can also add the circuitry of Figure 10.3. A buffer is used here to drive

a light-emitting diode. A zero on the HALT line will cause the LED to glow.

The LED will also light when we reset the processor, since HALT is pulled low

by the open-collector gate. If the HALT LED always stays lit, no matter what
we do, we have an indication that something is wrong with the system hard-

ware or software.

The buffer is used to provide forward-bias current for the LED. Directly

connecting the LED to the HALT pin may draw too much current and possibly

result in erratic operation of the CPU. We must remember to always protect

the CPU from this kind of problem by buffering the signal lines whenever

possible.
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FIGURE 10.3 HALT indicator
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The CPU Section

Now that we have a working timing section, we must design the CPU portion

of our system. It is during the design of this section that we answer our ques-

tion about interrupts, and pose a few more important questions. For instance,

do we need to buffer the address and data lines? Do we want to give bus-grant

capability to an external device? How will the CPU respond to a bus error?

Take a good look at Figure 10.4 before continuing with the reading.

The figure details the connections we must make to the CPU for it to

function in our minimal system. On the right side of the CPU we see the data

and address lines. These signal lines are used in both the memory and I/O

sections. Since we are working with a minimal system, there is no need to

buffer them with high-current drivers, which are required for large memory
systems. Our memory section will contain four EPROMs and RAMs, and the

68000 will have no difficulty driving the handful of loads these devices will

present.

The top left side of the CPU shows the BR and BGACK signals pulled up to

5 volts. The logic Is on these inputs will disable the CPU from ever granting its

buses to another system master. Again we choose this condition for simplicity.

If it were important to provide bus-grant capability, so that an external pe-

ripheral can perform DMA, extra logic would be needed here to provide the

correct signals to BR and BGACK .

The three interrupt lines (IPL through IPL2 ) are also pulled high to pre-

vent an external interrupt request. For systems that may need only one inter-

rupt, the three inputs may be tied together to form a single interrupt input

(INT). If this input line is left floating, all three IPL lines will be high. The
68000 recognizes this state as a level-0 priority and thus takes no action. But
pulling the INT line to ground makes all the IPL inputs zero, which creates a

level-7 request. We must remember to provide the necessary software to han-

dle a level-7 interrupt when we write the monitor program.
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The last bit of circuitry in our CPU section is a counting circuit that helps

to detect errors on the 68000's address bus. Remember, the BERR input in-

forms the 68000 that a problem exists with the current bus cycle. Maybe a

problem has occurred in the memory section and the DTACK signal has not

been properly generated. For whatever the reason, once the bus error has been

detected, we inform the CPU of the error by pulling BERR low. The circuitry

connected to the BERR input is designed to do this. Here is how it works: The

68000 begins a bus cycle with AS high. This causes the clear input on the

74LS393 binary counter to be high, which forces its four outputs low. The

BERR input of the_68000 will then be high, via the inverter and the 74LS393's

C output. When AS goes low, to indicate a stable memory address, the 74LS393
will be allowed to count at a rate determined by the E clock of the 68000. If the

74LS393 is allowed to reach the binary count 0100, the C output will go high.

This causes BERR to go low and a bus error to be recognized by the CPU.
During normal bus operation, the AS signal will remain low only for short

periods of time, and the 74LS393 will be cleared before reaching the 0100

state. Circuits like these are commonly called watchdog monitors, and are

usually utilized to reset the processor when things begin to go wrong.

You may have noticed that we are not using the function code outputs

(FC , FCx, and FC2). Since they are primarily used to indicate user/supervisor

states, we have no need for them in our minimal system. Even the interrupt

acknowledge function code is not needed, since we have no elaborate interrupt

generating circuitry. Thus we have designed the simplest CPU section for our

needs, and may now move on to the design of our memory section.

The Memory Section

There are a number of questions that must be answered before we get involved

in the design of our memory section. For instance, how much EPROM memory
is needed? How much RAM? Should we use static or dynamic RAM? Should we
use full- or partial-address decoding? Will we allow DMA operations?

The answer to each one of these questions will help to specify the required

hardware for the memory section. Ifwe first consider what applications we will

be using our computer for, the previous questions will almost answer them-

selves. Our application at this time is educational. We desire a 68000-based

system that will run short machine language programs. Keeping this point in

mind, we will now proceed to come up with answers to our design questions.

A programmer, through experience, can estimate the required amount of

machine code needed to perform a desired task. The software monitor that we
will need to control our system will have to be placed in the EPROMs of our

memory section. Two standard 2716 EPROMs will provide us with 2048 words
of programmable memory. This is more than enough EPROM to implement
our software monitor. We will still have space left over in the EPROMs in case

we want to add more functions to the monitor in the future.

The amount of RAM required also depends on our application. Since we
will be using our system only to test short, educational programs, we can get
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by with a few hundred words or so. Since dynamic RAMs are generally used in

very large memory systems (64K, 256K, and more), we will not use them be-

cause most of the memory would go to waste. Other reasons exist for not choos-

ing dynamic RAMs at this time. They require complex timing and refresh

logic, and will also need to be wired very carefully to prevent messy noise

problems from occurring. Even ifwe use a DRAM controller, we will need some
external logic to support the controller, which itself could be a very costly item.

For these reasons, we decide to use static RAM. Even though a few hun-

dred words will cover our needs, we will use two 6116 static RAMs, thus mak-
ing our RAM memory 2048 words long also. The 6116s are low-power static

RAMs, with pinouts almost exactly identical to the 2716s we are using for our

EPROM memory. So, by adding only four more integrated circuits (plus a few

for control), our memory needs are taken care of.

Figure 10.5(a) shows how we use a 2- to 4-line decoder to perform partial-

address decoding for us. Since we are not concerned with future expansion on a

large scale, partial-address decoding becomes the cheapest way to generate our

addressing signals. Address lines A 15 and A 16 are used because they map the

68000's memory into convenient ranges. With both A 15 and A 16 low, the

74LS139 decoder will output a on the PROM line; thus PROM will be low

whenever the 68000 addresses memory in the 00000 to 07FFF range. If A15 is

high while A 16 is low, the RAM signal will go low. This corresponds to an

address range from 08000 to 0FFFF. The SERIAL signal is low whenever the

68000 addresses memory from 10000 to 17FFF, and this signal is used in the

serial section. That leaves the fourth output of the 74LS139 free for use in the

future. If we need to put more EPROM, RAM, or memory-based I/O into our

system, we will be able to stick it into the 18000 to 1FFFF address range. Note

in Figure 10.5(a) that the enable input of the 74LS139 (G) is connected to AS.

This ensures that the 74LS139 will work only during valid bus cycles (when

AS is low). If we were allowing DMAoperations we might not want the

74LS139 to operate the same way. The G input gives us a way to disable the

74LS139 during a DMA operation, so that the DMA hardware will have full

control of the memory section.

Figure 10.5(b) shows how we generate the required memory read and write

signals. We need separate read and write signals for both lower and upper

addresses, to allow for byte operations in memory. By using only four OR gates

and an inverter, we are able to generate these signals rather easily.

Figure 10.6 details the design of the DTACK circuitry we will need for our

memory section. We must generate a short time delay before issuing DTACK,
to allow for the internal access time of the memories. The 2-bit shift register

formed by the D flip-flops will produce 500 ns of dealy before issuing DTACK,
if either PROM or RAM goes low. Normally these signals are both high. If

either of them goes low (as one will during a valid memory reference), the

output of the AND gate will go low, and a zero will get clocked through the

shift register. Note that the AS signal is used to disable the DTACK circuitry

whenever it is high.
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FIGURE 10.5 Memory section circuitry: (a) partial address decoder and (b) read write

signal generators

And now only the actual EPROM and RAM chips need to be connected.

Figure 10.7 shows how we use the four memories to finish our memory section.

Notice that the EPROMs and RAMs are separately labeled upper and lower.

The lower memories have their data bus pins connected to D through D 7 . and
the upper memories have their pins connected to D s through D 15 . To perform a

byte read from memory, only one of the four memories will be fully enabled by

the signals present on LORD. UPRD. PROM, and RAM. Address bits Aj
through An are used to point to 1 of 204S locations within the memories. The
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LOWR and UPWR signals are only connected to the RAMs because we cannot

write into the EPROMs once they are programmed.
Before we continue, let us examine how the whole memory system works.

For instance, what happens when the 68000 tries to read a word of data from

location 81F4? The decoder (in Figure 10.5a) will pull the RAM signal low, due

to A 15 being high and A 16 being low in the address 8 1F4. This low on RAM will

chip-enable both 6116s, and also start the DTACK signal generator working.

Since LDS and UDS will be low, both LORD and UPRD will go low to enable

the output circuitry of the 6116s. This will place 16 bits of data from RAM
location 1F4 onto the data bus. When the memory cycle finishes and AS goes

high again, the outputs of the D flip-flops will be forced high, and DTACK will

revert to its inactive, high state.

Since the address and data lines in our memory section are connected only

to four chips, we need not buffer the address or data lines from the CPU, since

the 68000 is capable of driving this many loads by itself.

The Serial Section

The serial section of our computer will contain all hardware required to com-

municate with the outside world (via a EIA-compatible data terminal). The
only question that must be answered concerns the BAUD rate we will be trans-

mitting and receiving at. A very acceptable speed is 2400 BAUD. Speeds

higher than this will be too fast to read on the screen, and slower speeds will

take too long to read.

The circuit that will take care of transmitting and receiving the serial data

is the 6850 ACIA chip. We only have to supply external logic to enable the chip

and generate its required BAUD rate clocks. The SERIAL output of our mem-
ory address decoder (see Figure 10.5a) must be connected to the processor's

VPA input. Asserting VPA indicates to the 68000 that it is addressing a slow

Motorola peripheral and must therefore synchronize its bus cycle with that of

the slower E clock.

Figure 10.8 shows how the BAUD rate clocks are generated. We will use

software to select an X16 clock inside the ACIA. This means we must supply
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FIGURE 10.8 Serial section timing circuitry

2400 x 16, or 38.4 kHz to the ACIA to get our desired speed of 2400 BAUD.
The crystal oscillator uses a special BAUD rate crystal (2.4576 MHz), whose
frequency is an even multiple of all usable BAUD rates. The two D flip-flops

and the other half of the 74LS393 binary counter are used to divide the 2.4576-

MHz frequency by 64, which results in the 38.4 kHz that we need for the ACIA.
The separate oscillator is needed, since we have no way of evenly dividing the

master system clock (4 MHz) down to usable BAUD rates.

In Figure 10.9 we see the remainder of the circuitry that makes up the

serial section. Here we can see that the upper 8 bits of the data bus carry

information to and from the ACIA. Address bit A t is used to select the internal

registers of the ACIA (status/control and data). The ACIA's timing is synchro-

nized with the E clock from the 68000, which is one-tenth the speed of the

master CPU clock. The ACIA is chip-enabled when CS2 is low and CS and CSi
are high. UDS is used to provide the logic on CS2 , since we are already using

the upper data bus bits for data transfer. The 68000VVMA output is used to

complete the enabling of the ACIA. Remember that VMA will go low after the

CPU receives a low on VPA (which has already been generated by the circuit of

Figure 10.5a).

For simplicity the CTS and DCD pins on the ACIA are grounded. If hand-

shaking is required, these pins may be wired accordingly, depending on the I/O

device used. Both TxC and RxC (the transmitter and receiver clocks) are tied

together and driven by the same BAUD rate clock. That leaves just the serial

in and out pins. Here we use a MAX232 chip to convert the TTL serial informa-
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FIGURE 10.9 Serial transmitter/receiver circuitry

tion into RS232C levels that swing plus and minus 10 volts. The MAX232 has

an internal oscillator circuit that generates these voltages from a single 5-volt

source. This lets us eliminate the need for a negative power supply, whose only

job would be to drive the RS232C outputs.

If more than one serial channel is needed, a second one may be added very

easily by duplicating the circuitry of Figure 10.9, and making some small

wiring changes. Connect the lower data bus bits to the ACIA's data lines, and
use LDS to enable the ACIA. This second serial channel could be used to down-

line machine code into the system's RAM.

10.4 THE MINIMAL SYSTEM'S PARTS LIST

Now that we have finished designing the minimal system, we can look back on

all of the figures and decide how many ICs we will need to build it. It might not

have been clear to you at the time why we used halves of the 74LS393 binary

counter, one in the BERR circuit and the other in the BAUD rate circuit. We
could have used two 74LS93 binary counters instead, but the 74LS393 lets us

do both jobs with one IC, not two! The whole idea behind the design was to

build a working system with a minimum of parts. The following list summa-
rizes all ICs that are needed. Pull-up resistors, discrete components, and sock-

ets are not included.
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one 68000 CPU
two 2716 EPROMS
two 6116 2K by 8 RAMs
one 6850 ACIA

one 555 timer

two 74LS04 hex inverters

one 74LS07 open-collector buffer

one 74LS393 dual binary counter

one 74LS32 quad two-input OR gate

one 74LS08 quad two-input AND gate

one 74LS139 dual 2- to 4-line decoder

two 74LS74 dual D flip-flops

one MAX232CPE TTL to RS232 converter

one 4-MHz digital oscillator

10.5 CONSTRUCTION TIPS

The easiest way to build the minimal system is to wire-wrap it. A printed

circuitboard may be used, but would be very complex and most likely double

sided!

The minimal system will work the first time power is applied, if the follow-

ing points are kept in mind:

1. Keep all wires as short as possible. Long wires pick up noise.

2. Connect 0.1-/nF bypass capacitors across +5 volts and GND on all ICs.

3. Trim all excess component leads to avoid short circuits.

4. Connect power and ground to all ICs before wiring anything else.

5. Pull all unused TTL inputs to +5 volts with 4.7 K ohm resistors.

6. Mark off connections on a copy of the schematic, as they are made.

7. Make sure no ICs are plugged in backward before applying power.

8. Use an ohmmeter to check each connection as it is made.

9. Plug in only the clock ICs first. If the clock does not work, neither will the

rest of the system.

10. Check that each IC has proper power before beginning any major trouble-

shooting.

Experience, of course, is the best teacher, but these hints should be enough

to get you started. There is nothing like the feeling of building a circuit that

works the first time! If it fails to operate properly, do not get discouraged. With
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your knowledge of TTL, you should be able to track the source of the problem

down in no time. You might be surprised that most problems will be due to

wrong wiring. Always check your wiring very carefully!

10.6 USING PROGRAMMABLE LOGIC IN THE MINIMAL SYSTEM

Although the parts requirements for the minimal system are few, it is possible

to further reduce the number of components needed, by adding programmable
logic arrays (PLAs, PALs). These devices usually consist of any number of

internal gates, such as AND, OR, exclusive OR, and flip-flops, whose inputs

are connected by blowing selected fuses in an internal grid. The designer must
write Boolean expressions that define the operation of all of the PAL outputs.

The expressions are evaluated by software in a device called a PAL program-

mer (similar to an EPROM burner), which decides exactly how the internal

PAL connections should be made.

It is not uncommon that a single PAL can be programmed to replace the

logic operation of five TTL ICs! The following examples shows how two PALs
may be used to generate some of the required memory section signals, thus

replacing the circuitry of Figures 10.5, 10.6, and 10.8(a).

Figure 10.10 shows the connections to a 10L8 PAL, a device that contains

10 inputs and 8 programmed outputs. The inputs to the PAL are on pins 1

through 9 and 11. The four NC inputs are no-connects, inputs that are not

needed for this application. The 8 programmed outputs are on pins 12 through
19. The PAL program listed in Figure 10.11 defines the input/output signal

names and the required equations needed to implement the desired functions.

The use of this single PAL eliminates the need for two ICs, the 74LS32 quad
OR gate, and the 74LS139 decoder. Even though we have only reduced our chip

count by one so far, we have gained a tremendous advantage in the area of

FIGURE 10.10 PAL connections
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PAL10L8
68K . MEM
68000 MEMORY CONTROLLER
BROOME COMMUNITY COLLEGE
A15 A16 /AS RW /UDS /LDS NC NC NC GND
NC /LOWR /UPWR /LORD /UPRD /RES /SER /RAM /PROM VCC

IF (VCC) PROM = /A16 * /A15 * AS
IF (VCC) RAM = /A16 * A15 *AS
IF (VCC) SER = A16 * /A15 * AS
IF (VCC) RES = A16 * A15 * AS

IF (VCC) LOWR = /RW * LDS
IF (VCC) UPWR = /RW * UDS
IF (VCC) LORD = RW * LDS
IF (VCC) UPRD = RW * UDS

FUNCTION TABLE
/AS A16 A15 RW /UDS /LDS
/PROM /RAM /SER /RES /LOWR /UPWR /LORD /UPRD

PAL DESIGN SPECIFICATION
JAMES L. ANTONAKOS

PROM 000000 - 007FFF
RAM 008000 - OOFFFF
SERIAL - 010000 - 017FFF
RESVD — 018000 - 01FFFF

LOWER WRITE
UPPER WRITE
LOWER READ
UPPER READ

;/AS A16 A15 RW /UDS /LDS /PROM /RAM /SER /RES /LOWR /UPWR /LORD /UPRD

H X X X X X H H H H X X X X
L L L X X X L H H H X X X X
L L L X X X L H H H X X X X
L H L X X X H H L H X X X X
L H H X X X H H H L X X X X
X X X L L L X X X X L L H H
X X X L L H X X X X H L H H
X X X L H L X X X X L H H H
X X X H L L X X X X H H L L
X X X H L H X X X X H H H L
X X X H H L X X X X H H L H

FIGURE 10.11 PAL program for 68000 memory control

flexibility. Changing the addresses of all main sections (EPROM, RAM, SE-

RIAL) is now as easy as reprogramming and replacing this one PAL!

Figure 10.12 shows the connections to a 16R4 PAL that contains four inter-

nal flip-flops, along with associated gates . This PAL is programmed to replace

the logic gates that generate the DTACK and VPA signals. Inputs to the PAL
are on pins 1 through 9. Pin 11 controls the four flip-flop outputs (pins 14

through 17). A low on pin 11 will enable all four outputs, and a 1 will tristate

them. The remaining pins (12, 13, 18, and 19) may be either inputs or outputs,

depending on how they are defined in the PAL program. Figure 10.13 shows

the PAL program needed to program the 16R4. The use of this PAL replaces

three more ICs: two 74LS74 D flip-flops, and the 74LS08 quad AND gate. Since

the 16R4 still has some input and output lines left over, the PAL program

could be modified to eliminate other gates as well. Replacing the inverter that

enables the 6850 via the VMA signal is as easy as including another Boolean

expression in the PAL program for the 16R4.
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FIGURE 10.12 PAL connections

for 16R4 timing controller

+5 V

CLK
AS

PROM

RAM
SERIAL

NC
NC
NC
NC

1 20

2 19

3 18

4 17

5 16

6 16R4 15

7 14

8 13

9 12

10 11

DTACK
VPA

(Dl)

(D2)

NC

NC
NC
NC

The use of these two PALs completely eliminates the need for many other

ICs, and also provides us with the means to alter the system hardware in the

future with a minimum of work.

PAL16R4
68K . TMG
68000 TIMING CONTROLLER
BROOME COMMUNITY COLLEGE
CLK /AS /PROM /RAM /SER NC NC NC NC GND
/0E NC NC NC NC /D2 /Dl /VPA /DTACK VCC

Dl :
= /PROM * /RAM +
/AS

D2 : = Dl + /AS
IF (VCC) DTACK = /D2 * AS

IF (VCC) VPA = SER * AS

FUNCTION TABLE
CLK /0E /AS /PROM /RAM /SER /DTACK /VPA

; CLK /0E /AS /PROM /RAM /SER /DTACK /VPA

C H X X X X X X

C L H H H H H H
C L H L H H H H
C L L L H H L H
c L H H L H H H
c L L H L H L H
c L H H H L H H
c L L H H L H L

PAL DESIGN SPECIFICATION
JAMES L. ANTONAKOS

TWO FLIP-FLOP DTACK DELAY
/AS USED AS PRESET

FIGURE 10.13 PAL program for 68000 timing control
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10.7 WRITING THE SOFTWARE MONITOR

Now that we have the system hardware designed, we must tackle the job of

writing the system software. Since our goal is to use the system for the testing

of custom 68000 programs, the monitor must be capable of performing every

step that is needed for us to get the new program into memory, edit it if needed,

display it in hexadecimal format, and also execute it. This will require the

creation of three monitor commands: PATCH (place hexadecimal data into

memory), DUMP (display memory contents in hexadecimal), and EXEC (exe-

cute a program). Two more commands, while not completely necessary, might

come in handy. They are MOVE (move data in memory) and HELP. The
MOVE command is very useful if large blocks ofmemory need to be cleared, or

filled with the same value. The HELP command is included to provide a quick

reference on command syntax.

To implement the required monitor commands, we have to write machine

language subroutines that PATCH, DUMP, EXECUTE, MOVE, and HELP. In

addition to these routines, we will need a host of smaller ones to do some
necessary chores for us, like sending data to the terminal, reading the key-

board, and doing simple conversions from hex to ASCII. These routines will be

referred to as auxiliary subroutines, and are summarized in Table 10.1. We will

study the operation of each main routine (DUMP, EXECUTE, and so on) and

TABLE 10.1 Auxiliary routines
Name Function

INIT^CIA Initialize 6850 ACIA device

INSTAT Check keyboard status for character

received

CHAFUN Read ASCII character from keyboard

CHAR_OUT Send ASCII character to display

CRLF Send ASCII CR, LF to display

BLANK Send ASCII space to display

PRINT_MSG Send ASCII text string to display

SIGN_ON Send monitor start-up message to

display

PRINT_BYTE Output hex pair to display

PRINT_WORD Output two hex pairs to display

PRINT_LONG Output four hex pairs to display

VALDIG Check input data for correct hexadecimal

range

ERROR Send error message to display and

restart monitor

TO_HEX Convert ASCII character into 4-bit hex

GET_BYTE Read a hex pair from keyboard

GET^DDR Read an address from the keyboard

PANIC Check keyboard for control C
FREEZE Check keyboard for control S
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all auxiliary routines, and then see how they are combined to become the

software monitor.

Keep in mind that the monitor has been written using simple instructions

and addressing modes. It is entirely possible that many of the routines pre-

sented can be simplified. You are encouraged to do so, after seeing all the

routines first.

The Auxiliary Subroutines

The auxiliary subroutines are used by many of the monitor command subrou-

tines. For example, all of the command subroutines must call the GET^DDR
subroutine to get their respective starting memory addresses. On the other

hand, only DUMP uses the FREEZE subroutine. The use of auxiliary subrou-

tines greatly simplifies the overal 1 task of writing the monitor.

INIT-ACIA This routine is used to initialize the 6850. Upon power-up, the

ACIA may be in some random state, with selected options (internal clock di-

vide, number of bits/character, parity) possibly very different from the options

we desire. For this reason, we give the ACIA a master reset command, followed

by a control byte that indicates the options we need for proper operation (X16
clock, 8 data bits, no parity). The following code is used to initialize the ACIA.

INIT_ACIA MOVEA.L
MOVE.B
MOVE.B
RTS

#10000H,A0
#3, (A0)

#15H. (A0)

point to ACIA control register
ACIA master reset
select options

INSTAT This routine is used to check the status of the keyboard. It is often

necessary to check the ACIA receiver status, to determine if a character is

waiting (or has been received). It is not important at this time to actually read

the character. The input status is checked by the following code. If a character

is waiting in the receiver, the zero flag will be cleared.

INSTAT MOVEA.L
MOVE.B
ANDI.B
RTS

#10000H,A0
( A0 ) , DO
#1.D0

;point to ACIA status register
;get ACIA status
;test RRDY bit

CHAR^IN This routine is used to read a character from the keyboard.

INSTAT is called to see if a character is waiting, and the character is read if

one has been received. If the receiver is empty, the routine waits for a charac-

ter to arrive, by continually calling INSTAT. The received character is in the

lower byte of register Dl upon return.

CHAR_IN BSR
BEQ
MOVEA.L
MOVE.B
ANDI.B
RTS

INSTAT
CHAR_IN
#10002H,A0
(A0) ,D1
#7FH,D1

check receiver status
loop if no character waiting
point to ACIA data register
get the ASCII character
strip off MSB
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CHAR-OUT This routine is used to send an ASCII character to the display.

The ACIA status register is checked to see if the transmitter is empty. If so, the

ASCII character is transmitted. If the transmitter is already busy transmit-

ting, the routine will wait until it is empty, and then send the new character.

The ASCII character to transmit must be in the lower byte of register Dl
before calling CHAR_OUT.

CHAR_0UT MOVEA.L #10000H,A0 point to ACIA status register
CHAFL-0UT2 MOVE.B ( A0 ) , DO read the ACIA status

ANDI.B #2, DO check the TRDY bit
BEQ CHAR_0UT2 loop if not ready
MOVEA.L #10002H.A0 point to ACIA data register
MOVE.B Dl, (A0) send the character
RTS

CRLF This routine is used to send carriage return and linefeed characters to

the display.

CRLF MOVE.B #0DH,D1
BSR CHAR_0UT
MOVE.B #0AH,D1
BSR CHAR_0UT
RTS

send ASCII CR

send ASCII LF

BLANK This routine is used to output an ASCII space character. The space is

used to separate hex characters as they are DUMPed.

BLANK MOVE.B
BSR
RTS

#20H,D1
CHAR_0UT

send ASCII SP

PRINT-MSG This routine is used to send a message to the display. The

ASCII message characters are read from memory, and sent to the display, until

a is encountered. Upon entry, register A3 must point to the first message

character in memory.

;get a character
;end of message?

;send character to display
ipoint to next character

PRINT_MSG MOVE.B (A3).D1
CMP.B #0,D1
BEQ PRINT_MSG2
BSR CHAR_0UT
ADDQ .

L

#1,A3
BRA PRINT_MSG

PRINT_MSG2 RTS

SIGN_ON This routine is used to greet the user when power is first applied to

the system (or after a RESET has occurred). It is a nice way of seeing that the

system is up and running.

;get starting message address
;send the message

; newline
Version 5.0. C1989 JLACD'

; newline and end characters

SIGN_0N M0VEA L #HELL0,A3
BSR PRINT_MSG
RTS

HELLO BYTE 0DH.0AH
ASCII '68000 Monitor
BYTE ODH.OAH.O
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It is very important that an even number of bytes are used in the HELLO
message. An odd number of bytes will cause an assembly error resulting from

the odd memory address generated by the odd length of the message data.

PRINT-BYTE This routine is used to convert a byte of binary data into two

ASCII characters that represent the hexadecimal value contained in the byte.

Suppose the byte's value is 3F. PRINT_BYTE will send the two ASCII charac-

ters '3' (30H) and 'F' (46H) to the display. PRINT_BYTE contains a subroutine

that converts the lower 4 bits of register Dl into the correct ASCII code that

represents the hex value of the 4 bits. To get the upper 4 bits of the lower byte

in Dl, a rotate command is used. The data to be converted must be in register

D2 before calling.

PRINT_BYTE MOVE.L D2.D1
ROL.B #4,D1
BSR TO-ASCII
MOVE.L D2.D1

T0_ASCII ANDI.B #0FH,D1
ADDI . B #30H,D1
CMPI.B #3AH,D1
BMI NO-ADD
ADDI.B #7,D1

N0_ADD BSR
RTS

CHAR_0UT

init conversion register
look at upper nibble first
print ASCII equivalent
repeat for lower nibble
strip off upper nibble
add ASCII bias
test for alpha conversion

correct to 41H-47H ( A-F

)

send character

PRINT-WORD This routine is used to print four ASCII characters that repre-

sent the binary data in the lower 16 bits of register D2. An 8-bit rotate is used

so that the upper 8 bits get converted first.

PRINT_W0RD ROL.W #8,D2
BSR PRINT_BYTE
ROL.W #8,D2
BSR PRINT_BYTE
RTS

get upper 8 bits
output first 2 characters
now do the lower 8 bits

PRINT-LONG This routine is used to output 8 ASCII characters represent-

ing the entire 32-bit contents of register D2. The SWAP command is used to

exchange the upper and lower 16-bit halves of D2, so that the upper word gets

converted first.

PRINT_L0NG SWAP D2
BSR PRINT_W0RD
SWAP D2
BSR PRINT_W0RD
RTS

;get upper 16 bits
;do 4-character conversion
;and repeat for lower word

VALDIG This routine is used to check the ASCII value in register Dl for the

correct hexadecimal range of values 30H-39H or 41H-47H. Any value not in

this range is interpreted as an incorrect hex value, and VALDIG jumps to the

ERROR routine to indicate this. Otherwise, good values cause a return to the

caller.
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VALDIG

NEXT-TST

CMPI.B
BPL
CMPI.B
BMI
CMPI.B
BPL
RTS
CMPI.B
BMI
RTS

#'G' ,D1

ERROR
#'0' ,D1

ERROR
#'9'+l,Dl
NEXT-TST

#'A' ,D1

ERROR

; greater than F?

;less than 0?

; is it now A-F?

; range is 0-9
;less than A?

: range is A-F

ERROR This routine is used to print an error message that indicates the user

has entered an incorrect command, or used an incorrect character when enter-

ing a hexadecimal value. A jump to the beginning of the monitor is performed

after ERROR prints the error message. A jump is used to avoid having to clean

up the stack, which may have temporary values saved on it.

;get message pointer

; restart monitor program
; newline

;newline and end characters

Once again you will notice that an even number of bytes (10) were used in the

error message (including the CR, LF, and 00). This ensures that the assem-

bler's next instruction address is even.

ERROR M0VEA.L #WHAT,A3
BSR PRINT_MSG
BRA GETCMD

WHAT BYTE 0DH,0AH
ASCII 'What?'
BYTE ODH.OAH.O

TO-HEX This routine is used to convert the ASCII value in register Dl into a

4-bit hex value. For example, if the lower byte of Dl contains 37H (an ASCII

7), Dl will be converted into 07H. If Dl contains 43H (an ASCII C), it will be

converted into 0CH.

; remove ASCII bias
;0-9?

; remove alpha bias

T0_HEX SUBI E #30H.D1
CMPI E #0AH.D1
BMI FIN-C0NV
SUBI .B #7.D1

FIN_C0NV RTS

GET-BYTE This routine is used to get a byte of hexadecimal data from the

user. Incoming characters are stripped of their ASCII bias and placed in a

temporary register. The final 8-bit value is returned in the lower 8 bits of

register Dl. Any illegal characters cause immediate restarting of the monitor.

If a carriage return or space character is entered in place of the first digit,

the routine exits with an ASCII'*' in the lower byte of D2. This character is

used to indicate that no data has been entered by the user. If two valid hex

characters are entered, D2 will contain an ASCII 0.

;get first digit
:echo it

:test for CR

;test for SP

GET_BYTE BSR CHAR-IN
BSR CHAR_0UT
CMPI.B #0DH.D1
BEQ N0_CHAN
CMPI.B #20H.D1
BEQ NO-CHAN
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BSR VALDIG
BSR T0_HEX
ROL.B #4,D1
MOVE.L D1.D2
BSR CHAR_IN
BSR CHAR_0UT
BSR VALDIG
BSR T0_HEX
ADD.B D2.D1
MOVE.B #'0',D2
RTS

NO-CHAN MOVE.B
RTS

#'*' ,D2

; check for valid digit
;
convert into hex
;move first digit
;
save first digit

;

get second digit
;echo it

; check for valid digit
; convert into hex
; form final result
; change entered

;no change character

GET—ADDR This routine is used to get an address from the user. Up to eight

hexadecimal values may be specified. The right-justified value is returned in

register D2. If an ASCII carriage return or space is received, the routine will

return with the zero flag set. All other illegal characters will cause the monitor

to restart.

GET_ADDR CLR.L Dl
CLR.L D2

NEXT_CHAR BSR CHAR_IN
BSR CHAR_0UT
CMPI.B #0DH,D1
BEQ EXIT_ADR
CMPI.B #20H,D1
BEQ EXIT_ADR
BSR VALDIG
BSR T0_HEX
ROL.L #4,D2
ANDI.B #0F0H,D2
ADD.B D1.D2
BRA NEXT_CHAR

EXIT_ADR RTS

init temp register
init result register
get a character
echo it
exit if CR

exit if SP

test for valid digit
convert digit into hex
prepare D2 for new digit

insert new digit
and continue

PANIC This routine is used to check for incoming keyboard data. If no char-

acter has been received, or if the character received is not a control C, the

routine will simply return to the caller. If the character is a control C, the

monitor will restart.

PANIC BSR INSTAT
BEQ EXIT_BRK

TEST_KEY BSR CHAR_IN
TEST_KEY2 CMPI.B #3,D1

BEQ GETCMD
EXIT_BRK RTS

check for key
return if none hit
get key
control C?
if yes, restart monitor

FREEZE This routine is used to freeze the screen during a memory dump. It

checks for a control S from the keyboard. If no character has been entered, the

routine returns to the caller. If a character has been received that is not a

control S, the routine jumps into the PANIC routine to check for a control C. If

a control S is received, the routine will wait for a second character to be re-

ceived before jumping to PANIC to check for a control C.
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FREEZE BSR INSTAT ; check for key
BEQ EXIT_FREZ ; return if none hit
BSR CHAR_IN :get key
CMPI B #13H,D1 ;control S?
BEQ H0LD_IT
BRA TEST_KEY2 ;control C?

EXIT_FREZ RTS
H0LD_IT BSR INSTAT :wait for another character

BEQ H0LD_IT
BRA TEST_KEY ;let PANIC check for control C

The use of the auxiliary routines will greatly aid in the creation of the

monitor commands. By breaking down the larger tasks required by the com-
mands into smaller ones, most of the command software may be written by
selectively calling groups of auxiliary routines, and moving data between reg-

isters. The next section will show just how the monitor command routines are

written.

The Monitor Commands

The monitor commands are really the heart of the software monitor. Through
the use of the monitor commands, the job of creating new and useful software

becomes much easier. We will now examine just how these commands are

implemented. Study the methods used to perform I/O with the user, and how
decisions are made within the routines. You should be able to gain a very good

understanding of the structure of the command routine, and be able to use that

knowledge to write your own routine to perform a job that the basic monitor

cannot perform.

The Command Recognizer

In order for us to use a command routine, we must be able to get to its starting

address in memory. It is much simpler and more convenient to enter DUMP or

EXEC, as opposed to a multidigit starting address. The purpose of the com-

mand recognizer is to determine which of the monitor commands the user has

entered, and jump to the routine for execution. The routine accepts either full

command names (DUMP, PATC, EXEC, MOVE, or HELP), or single-letter

abbreviations (D, P, E, M, or H).

Once the command is recognized, the address of that routine is read from a

table, and the routine is branched to. For this reason, the command routines

must branch back to the start of the monitor, and not return as a subroutine

would. The command recognizer is written so that additional commands may
be added to the monitor with a minimum of change in its code.

GETCMD

INC0M

M0VEA.L #STACK.A7 :init stack
BSR CRLF
M0VE.B #'*' ,D1 ; output command prompt
BSR CHAR_0UT
CLR.L D2 :init command-text buffer
BSR CHAR_IN ;get a command letter
BSR CHAR_0UT :echo it to user
CMPI.B #0DH.D1 ;test for CR
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BEQ SEARCH
CMPI.B #20H.D1
BEQ SEARCH
ROL.L #8,D2
MOVE.B D1.D2
BRA INCOM

SEARCH MOVE.L #5,D5
MOVEA.L #COMMANDS , A2
MOVEA.L #C0M_ADRS,A1

TEST-TEXT CMP.L ( A2 ) , D2
BEQ DO_JUMP
ADDQ .

L

#4,A2
CMP.L ( A2 ) , D2
BEQ DO_JUMP
ADDQ .

L

#4,A2
ADDQ .

L

#4,A1
SUBQ.L #1,D5
BNE TEST_TEXT
BRA ERROR

D0_JUMP MOVEA.L (Al) ,A1

JMP (Al)

COMMANDS ASCII ' DUMP

'

BYTE 0,0,0
ASCII 'D'

ASCII ' EXEC
BYTE 0,0,0
ASCII 'E'

ASCII 'PATC
BYTE 0,0,0
ASCII >p.

ASCII 'MOVE'
BYTE 0,0,0
ASCII 'M'

ASCII ' HELP

'

BYTE 0,0,0
ASCII 'H'

C0M_ADRS WORD O.DUMP
WORD , EXECUTE
WORD , PATCH
WORD O.MOOV
WORD O.HELP

test for SP

prepare D2 for new letter
insert it into D2
get next letter
number of commands to check
init command text pointer
init command address pointer
compare command text
branch if match
point to abbreviated command
test again

point to next command
point to next address
all commands checked yet?

illegal command entered
get command address
and go execute command
full command name
abbreviated name

DUMP execution address

Notice how the routine brings in a command. Register D2 is initially

cleared. When a valid command letter is received, D2 is rotated 8 bits to the

left, and the new ASCII letter value is placed in the lower 8 bits. If 4 characters

are received, the first letter has been rotated into the uppermost byte position

of D2. If only 1 letter is entered (as is the case for abbreviated command recog-

nition), it will appear in the lower 8 bits of D2, with all other bits equal to zero.

The COMMANDS table contains the values that will appear in D2 for any of

the acceptable command entries.

Additional commands may be added very easily by increasing the initial

value put into D5, and extending the data table sizes of COMMANDS and
COM_ADRS.

The DUMP Routine

This routine is used to display a range of memory locations and their associ-

ated ASCII values. The format of the output is as follows: 8 hex characters
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representing the address, followed by 16 hex pairs, which indicate the data

contained in the memory locations following the printed address. These 16 hex
pairs are followed by 16 ASCII characters that are the printable ASCII equiva-

lents of the 16 bytes. The ASCII output is very useful in determining when the

code displayed is simply hex data, and not machine code. A sample output line

might look like this:

00008100 4E 75 El 5A 61 D8 El 5A 61 D4 4E 75 48 42 61 F2 Nu . Za . . Za . NuHBa

.

The user must specify a starting and ending address in the DUMP command
line. The command to DUMP the previous data would be DUMP 8100 810F.

For starting addresses that do not start on an even 16-byte address (such as

8136), the DUMP routine will convert the starting address, by making the

lower digit of the address (thus making 8136 into 8130). For ending ad-

dresses that do not end on an even 16-byte address, the routine will show the

remaining locations also. Thus, an ending address of 82F7 will cause DUMP to

continue to 82FF (and so end on the even address 8300).

To freeze the display during a DUMP, just enter control S. Any key other

than control C may then be used to restart the DUMP.
Study the routine carefully. You may already have ideas on how to im-

prove the output format.

:get the starting address
;make lower nibble zero
;A4 is memory read register
;get the ending address

; new line please
;print address

;and some blanks

;get a byte and increment A4
;print the byte

;done 16 yet?

back up 16 bytes

get a byte
is it printable?

DUMP BSR GET-ADDR
ANDI.B #0F0H,D2
M0VE.L D2.A4
BSR GET-ADDR
M0VE.L D2.A5

ADR-0UT BSR CRLF
M0VE.L A4.D2
BSR PRINT-LONG
BSR BLANK
BSR BLANK

BYTE-OUT M0VE.B (A4)+,D2
BSR PRINT-BYTE
BSR BLANK
M0VE.L A4.D1
ANDI.L #0FH.D1
BNE BYTE-OUT
SUB.L #16. A4
BSR BLANK

ASCII-OUT M0VE.B (A4)+.D1
CMPI.B #20H,D1
BMI UN-PRINT
CMPI.B #7DH.D1
BMI SEND-IT

UN-PRINT M0VE.B #2EH.D1
SEND-IT BSR CHAR_0UT

M0VE.L A4.D2
ANDI.L #0FH.D2
BNE ASCII-OUT
BSR FREEZE
CMPA.L A4.A5
BMI GETCMD
BRA ADR-OUT

use period for unprintables
print the ASCII equivalent
done 16 yet?

;hold display?
;done with dump'
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The DUMP routine could be modified to output words (2 hex pairs) for each

even address location, or just hex data with no ASCII equivalent. The format of

the output is designed specifically to help the user understand what informa-

tion presently resides in a section of memory.

The EXECUTE Routine

This routine is used to execute a user program stored in memory. The starting

address of the user routine must be entered in the command. For example,

EXEC 8500 will cause execution of whatever code starts in location 8500. The
routine makes use of an instruction that permits an absolute jump to a specific

address.

EXECUTE BSR GET_ADDR ;get execution address
M0VE.L D2.A1
JMP (Al)

It is possible to modify the EXECUTE routine to load any or all of the CPU
registers (data or address) before performing the jump. This would give a nice

way of executing your custom program with starting data.

The MOVE Routine

This routine is used to move data around in memory. Suppose a section of code

needs to be placed in a higher memory area. If the starting and ending ad-

dresses of the data block are 8000 and 80FF, and the new starting address

should be 8650, MOVE 8000 80FF 8650 will make the required copy of the

data.

;get starting address

;get ending address

; include last location
;get destination address

;move and increment pointers
; at ending address yet?

The routine name is not MOVE, since this is a reserved assembler name.

The PATCH Routine

This routine is used to place user program data into memory. The starting

address must be specified in the command. The PATCH routine will output an
address and the byte of data contained there. After the data byte is printed

comes a question mark. This indicates to the user that the data at the present
location may be changed. To change the data, the user simply enters a hex
pair. Any illegal characters will cause the monitor to restart. The only excep-

M00V BSR GET_ADDR
M0VE.L D2.A1
BSR GET_ADDR
M0VE.L D2.A2
ADD.L #1,A2
BSR GET_ADDR
M0VE.L D2,A3

M00VEM M0VE.B (Al)+. (A3
CMPA.L A1.A2
BNE M00VEM
BRA GETCMD
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tions are the carriage return and space keys. Entering either of these immedi-
ately following the question mark causes PATCH to skip over the current

address and not alter the data contained there. A sample PATCH command
might look like this:

*PATC 8200
00008200 3E? 16
00008201 27? 00
00008202 FE? <CR>
00008203 9A? 20
00008204 2B? <Ctrl-C>

Notice that the user changed the first two bytes, kept the third one the

same, changed the fourth, and then exited when the fifth byte was printed. The
following code implements the last of the monitor commands.

PATCH BSR GET_ADDR get starting address
MOVE L D2.A2 A2 is the memory pointer

NEW_DATA BSR CRLF new line please
MOVE L A2.D2 print data address
BSR PRINT_LONG
BSR BLANK
MOVE B ( A2 ) , D2 get the data
BSR PRINT_BYTE and show it
MOVE B #'? ,D1 output change prompt
BSR CHAR_0UT
BSR GET_BYTE get new data
CMPI B #'*' ,D2 no change requested?
BNE ENTER_IT jump if new data entered
MOVE B (A2) ,D1 get old byte back

ENTER_IT MOVE
BSR

B Dl, (A2)+
NEW_DATA

save data and increment pointer

The only exit out of this routine is to enter an illegal character after the

question mark, which GET_BYTE will detect.

The Body of the Monitor

At this point we have covered the creation of all the routines (auxiliary and
command) that we need inside our monitor. The last step we need to perform is

to collect all the routines and organize them into a source file. The source file

must provide an exception vector table, which must (at the very least) contain

initial SSP and PC addresses for the RESET exception. Since these exceptions

are at addresses and 4, the exception vector table must be ORGed at 0. The
256 possible exception vectors will occupy the first 1024 locations (0-3FF),

making address 400H the first usable address for the machine code of the

monitor. The following software details the creation of the exception vector

table and startup monitor code.

RESET: initial SSP
;RESET: initial PC

ORG
WORD STACK
WORD START
WORD BUS-ERROR
WORD ADRS-ERR0R
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WORD O.ILLEGAL_INST
WORD 0,DIV_ZERO
WORD , START
WORD , TRAP_FIVE
ORG 7CH
WORD , LEVEL_7
WORD O.TO_CHAR_IN
WORD , TO_CHAR_OUT
WORD , TO_CRLF
WORD , TO_PRINT_MSG
WORD , T0_PRINT_BYTE
WORD , TO_PRINT_WORD
WORD , TO_PRINT_LONG
WORD , TO_GET_BYTE
WORD , TO_GET_ADDR
WORD , TO_GETCMD
ORG 400H
STACK EQU 8800H
START MOVEA.L #STACK,A7

BSR INIT_ACIA
BSR SIGN_ON

CHK not implemented

skip reserved vectors

TRAP vector
TRAP vector 1

TRAP vector 2

TRAP vector 3

TRAP vector 4
TRAP vector 5

TRAP vector 6

TRAP vector 7
TRAP vector 8

TRAP vector 9

start of monitor

init stack
init serial chip
greet user

Notice that we have provided vectors for major system exceptions such as

bus and address errors, and also for the first 10 TRAP vectors. Since the vec-

tors represent usable auxiliary routine addresses, we have provided an easy

way for the user to use system software that already exists. To use CHAR_IN,
we just have to include TRAP #0 in our code. To call PRINT_LONG, we use

TRAP #6.

An example of the code that lets us use the TRAPs is as follows:

T0_CHAR_IN BSR CHAR_IN
RTE

Since the TRAP instruction requires exception processing, we cannot simply

use the name CHAR_IN in the vector. The RTS at the end ofCHAR_IN would
not do the same job as the required RTE needed for correct exception recovery.

If we instead vector to a routine that calls CHAR_IN, we will both use the

desired subroutine, and also return correctly to the main program.

The source statements that follow the BSR SIGN_ON instruction must
begin with the code for the command recognizer. After that, the routines may
be in any order. All auxiliary and command routines should be included. The
only remaining source code to write is the code for the exception handlers,

which is listed here:

BUS_ERR0R MOVEA
BRA

L #MSG_1
REPORT

A3

ADRS_ERR0R MOVEA
BRA

L #MSG_2
REPORT

A3

ILLEGAL_INST MOVEA
BRA

L #MSG_3
REPORT

A3

DIV_ZER0 MOVEA
BRA

L #MSG_4
REPORT

A3

TRAP_FIVE MOVEA
BRA

L #MSG_5
REPORT

A3

LEVEL_7 MOVEA
BRA

L #MSG_6
REPORT

A3
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HELP
REPORT

MSG_1
MSG_2
MSG_3
MSG_4
MSG_5
MSG_6
H_MSG

MOVEA.L #H_MSG , A3
BSR CRLF ; new line, thank you
BSR PRINT_MSG ; print message pointed to by A3
BSR CRLF
BRA GETCMD
ASCII 'Bus Error' ,0

ASCII 'Address Error' ,0

ASCII 'Illegal Instruction Error',
ASCII 'Divide-by-Zero Error ',0
ASCII 'TRAPV Error' ,0

ASCII 'Level 7 Interrupt',
ASCII 'The HELP message goes here! !

!

' ,0

Notice that the HELP command routine is implemented here. Since we
need only output a help message (possibly containing the syntax of all com-

mands), we include HELP in the exception processing code.

The next section will give ideas on how to improve the basic monitor by
adding more commands, and making changes to existing ones. But ifyou plan

to build the minimal system, make sure the basic monitor works before you
begin changing it!

10.8 ADDING COMMANDS TO THE MONITOR

This section will describe some possible ways the power of the monitor may be

increased. A good understanding of the 68000's instruction set is required be-

fore any attempt is made to change the operation of the monitor. Barring this

slight warning, let us proceed with some details.

You may have noticed that the monitor only accepts uppercase letters.

Entering "dump" instead of "DUMP" will surely confuse the command recog-

nizer. It would be more convenient if the software accepted both. One possible

way to do this would be to add more entries to the command recognizer's data

table. Duplicate entries would have to be made for each instruction. This

method therefore is undesirable for two reasons. It wastes bytes, and it does

not solve the whole problem. We would also need to change the check charac-

ters in the hexadecimal input routines.

A second solution is needed to avoid making changes to numerous rou-

tines. The easiest thing to do is attack the problem at the source, CHAR_IN.
All characters must be input through this routine. If the instruction BSR
UPPER_CASE were inserted before CHAR_IN's RTS, we would have a way of

checking every character that enters the monitor. Any lowercase characters

would be detected by the UPPER_CASE subroutine, and changed into their

respective uppercase equivalents. Thus, the monitor will interpret uppercase

and lowercase letters as equals. The actual code needed for the subroutine is

left for you to work out in the end-of-chapter questions.

One command that might be useful to add could be called XREG. This

would be the examine-register command. Suppose that all eight data registers

are saved every time the monitor is restarted. If the monitor is restarted as the

result of a user program exception, it would be very desirable to see what data



10.9 Example Programs 337

was in the data registers prior to the exception. The XREG command would

display the contents of the registers. A sample format might be:

DO
Dl
D2
D3
etc.

05687786
FFFFFFFE
01040345
4E4060FA

A third command, LREG, could be used to load the eight data registers

(either singly via LREG 2 or LREG 6, or all at once) with program data prior to

using the EXEC instruction. LREG would provide a means for getting data

into a user program. A change to the EXECUTE routine would be needed to

load all eight registers before JMPing to the user program. Using XREG and
LREG, we can test a custom program for proper operation very quickly.

If downline loading is needed, a LOAD command could be used to load

received data into successive memory locations. The LOAD routine could load

data from CHAR_IN, or from a second serial section that would have to be

added to the system hardware.

Even more advanced commands that would provide breakpoints, and pos-

sibly assembly or disassembly, could be added. All that is required is cleverly

written code. The more functions available in the monitor, the easier the job of

writing new software becomes.

10.9 EXAMPLE PROGRAMS

The following routines are included to test the operation of the monitor. They
make use of the TRAP instructions and exercise the auxiliary routines.

TV Typewriter

This routine simply echoes all received characters.

ORG 8000H
TOP TRAP #0 ;get a character

TRAP #1 ;send it to display
BRA TOP

Improved TV Typewriter

This routine echoes all received characters also. When CR is received, both CR
and LF are sent to the display. This causes the screen to scroll.

ORG 8000H
TOP TRAP #0 ;get a character

CMPI.B #0DH,D1 ;test for CR
BNE SKIP
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TRAP #2
BRA TOP

SKIP TRAP #1
BRA TOP

;send CR and LF to display

;echo character

Counter with Message

This routine outputs a constant message saying 'This is message number
with a different number at the end of each message.

TOP

MESS

ORG 8000H
MOVE.L #0,D2
MOVEA.L #MESS , A3
TRAP #3
TRAP #6
ADDQ .

L

#1,D2
TRAP #2
BRA TOP
ASCII 'This is message number'
BYTE

init counter
get message pointer
print message
output count
increment counter
get a new line

Hexadecimal Adder

This routine asks for two hexadecimal bytes, adds them together, and displays

the result.

TOP

NUMA

ANSWER

ORG 8000H
MOVEA.L #NUMA,A3 ; display first message
TRAP #3
TRAP #7 ;get first number
MOVE.B D1.D6 ; save it here
MOVEA.L #NUMB . A3 ; display second message
TRAP #3
TRAP #7 ;get second number
ADD.B D6.D1 ;add numbers together
MOVE.W D1.-(A7) ; save Dl on stack
MOVEA.L #ANSWER,A3 ; display answer message
TRAP #3
MOVE.W (A7)+.D1 ;pop Dl off stack
TRAP #4 ; display answer
BRA TOP
ASCII 'Enter first number: '

BYTE
ASCII 'Enter second number: '

BYTE
ASCII 'The sum is:

BYTE

Memory Search

This routine asks the user for a byte value, and then proceeds to find all mem-
ory locations that contain the same value. When a location is found, its address

is displayed.

ORG
MOVEA.L

8000H
#ASKIT,A3 ask for data byte
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TRAP #3
TRAP #7 ;

get data byte
MOVE.B D1.D6 ; save data byte here
MOVEA.L #0,A0 ; start comparing at address

CHECK CMP.B ( AO ) , D6 ; compare
BNE NEXT ;skip if not equal
MOVE.L A0.D2 ; display address
TRAP #6

NEXT ADDA
BRA

#1,A0
CHECK

;point to next location

ASKIT ASCII
BYTE

'Enter search byte: '

Other examples, such as multiplying binary numbers, entering data for

sorting, hi-lo games, interactive programs, and more may be written effi-

ciently with good use of the TRAP auxiliary routines. Can you think of still

more auxiliary routines that may be added (and called with a TRAP), to fur-

ther improve the monitor? How about one for converting binary data to deci-

mal (much like PRINT_LONG, except the output would be decimal and not

hex), or others for sorting, comparing, or doing math?

10.10 SUMMARY

This chapter dealt with the design of a single-board computer, equipped with

2K words of EPROM and RAM, and a 2400-BAUD serial I/O section. Many
digital design ideas were suggested, and reasons for choosing one design over

another were given.

The software design proceeded in the same fashion. Minimum system re-

quirements were established, and the software commands were implemented

in groups of code that made good use of a number of auxiliary subroutines.

Example programs were included to show the ease and power of using the

working system, through the use of special system calls and monitor com-

mands. There is room for improvement in the monitor program, which should

be done after the basic monitor is up and running.

STUDY QUESTIONS

1. Explain how the RESET circuitry shown in Figure 10.14 works.

2. How can the BERR circuit of Figure 10.4 be disabled when an external DMA signal

is low?

3. Explain how interrupts are enabled/disabled by the ENABLE signal in the circuit

shown in Figure 10.15.

4. Show how octal buffers (74LS244) may be added to the 68000's address lines to

buffer them. Assume the buffers are always enabled.

5. Modify the circuitry of Question 4 so that the buffers are enabled only when an
external DMA signal is high.

6. What type_of circuitry is needed to buffer the bidirectional data bus? Can the proc-

essor's R/W signal be used to control the direction?
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FIGURE 10.14 For Question 10.1

FIGURE 10.15 For Question 10.3 External interrupt signal

ENABLE

INT

7. Design a circuit to fully decode the processor's address bus, before enabling the

74LS139 decoder of Figure 10.5(a).

8. Modify the memory decoder of Figure 10.5(a) so that it only works when an exter-

nal DMA signal is high.

9. Redesign the memory R/W signal generator of Figure 10.5(b), and use only NAND
circuitry.

10. Would it be possible to build a minimal system without RAM?
11. What circuitry is needed to add another 2K words of RAM to the minimal system?

12. How must the memory section be changed to allow the use of 2732 EPROMs? How
about 2764s?

13. Since the 68000 always reads words during instruction fetches, why is there a need

for byte addressing in the EPROM memory?
14. How must the DTACK delay generator be modified so that its output is always high

if an external DMA signal is low?

15. Finish the timing diagram in Figure 10.16 detailing the operation of the DTACK
delay generator.

16. What type of gate should replace the two-input AND gate that drives the DTACK
delay generator, if two additional signals—DRAM and IOCHAN—need to be

added?

17. The circuit shown in Figure 10.17 may be used as a 1-bit output port. How does it

work?
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Modify the serial circuit so that it communicates with the lower half of the data

bus. What signals need to be changed? How does this affect the software that con-

trols the ACIA?
Design a circuit that will control the timing circuitry in the serial section, so that

two BAUD rates (2400 or 300) may be selected by the flip of a switch. The circuit

must send either 38.4 kHz or 4800 Hz to the ACIA.
20. Show the circuitry required to add a second serial port to the minimal system.

21. Write a subroutine called UPPER_CASE that converts the lower byte of register

Dl into an uppercase ASCII character, if the lower byte is a lowercase character.

For example, 63H (c) is converted into 43H (C).

22. Modify the GETCMD routine to accept backspace (Ctrl-H) characters for editing

purposes.



342 Chapter 10
|

Building a Working 68000 System

23. Complete the following table, showing the use of registers in the auxiliary routines.

Which registers pass data to the routine, which are destroyed, and which are the

result registers?

Routine Input Data Output Data Registers Used
PRINT_MSG A3 _ DO, Dl, A0

24. Write a routine that divides a data register by 0, to check the DIV_ZERO exception.

25. How can PATC and MOVE be used to clear a block of RAM?
26. What does the following program do?

TRAP #7
M0VE.B D1.D5
TRAP #2
TRAP #7
ADD.B D1.D5
TRAP #2
M0VE.B D5.D2
TRAP #4
TRAP #9

27. Write a routine that will implement the LOAD command. The command syntax is

'LOAD address'. The routine should take two received characters at a time and

convert them into a single byte to be stored in memory. For example, if a 45H (E)

and a 37H (7) are received, an E7 is stored in memory. Any nonhexadecimal char-

acter (not 9-0 or A-F) received terminates the load.

28. Assume that the contents of all eight data registers are stored in memory begin-

ning at address DATAREG, with DO stored in the first 4 bytes and D7 stored in the

last 4 bytes of the 32-byte area. Write a subroutine that uses PRINT_LONG to

display the contents of each data register.

29. Modify the EXECUTE routine, so that only execution addresses in the 8000-to-

877F range are allowed.

30. How could PRINT_MSG be modified so that the end-of-message code is '$' instead

of 00?
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MC68000

Technical Summary
16-/32-Bit Microprocessor

This document contains both a summary of the MC68000 as well as a detailed set of parametrics The

purpose is twofold - to provide an introduction to the MC68000 and support for the sophisticated user

For detailed information on the MC68000, refer to the MC68000 16- 32-Bit Microprossor Advance Informa-

tion Data Sheet.

The MC68000 is the first implementation of the M68000 16 32 microprocessor architecture The

MC68000 has a 1 6-bit data bus and 24-bit address bus while the full architecture provides for 32-bit ad-

dress and data buses It is completely code-compatible with the MC68008 8-bit data bus implementation

of the M68000 and is upward code compatible to the MC68010 MC68012 virtual extensions and the

MC68020 32-bit implementation of the architecture Any user-mode programs written using the MC68000
instruction set will run unchanged on the MC68008, MC68010, MC68020 This is possible because the

user programming model is identical for all five processors and the instruction sets are proper sub-sets

of the complete architecture. Resources available to the MC68000 user consists of the following:

• 17 32-Bit Data and Address Registers

• 16 Megabyte Direct Addressing Range

• 56 Powerful Instruction Types

• Operations on Five Main Data Types

• Memory Mapped I

• 14 Addressing Modes
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Figure 1, User Programming Model
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INTRODUCTION

As shown in the user programming model (Figure 1).

the MC68000 offers 16 32-bit registers and a 32-bit pro

gram counter The first eight registers (D0-D7) are used

as data registers for byte (8-bit), word (16-bitl, and long

word (32-bit) operations. The second set of seven reg-

isters 1AO-A6) and the user stack pointer (USP) may be

used as software stack pointers and base address reg-

isters. In addition, the registers may be used for word
and long word operations. All of the 16 registers may be

used as index registers.

In supervisor mode, the upper byte of the status reg-

ister and the supervisor stack pointer (SSP) are also avail-

able to the programmer. These registers are shown in

Figure 2

1 * 7

ISS

STATUS REGISTER ]
Figure 2. Supervisor Programming Model Supplement

The status register (Figure 3) contains the interrupt mask
(eight levels available) as well as the condition codes:

extend (X), negative (N), zero (Z), overflow (V), and carry

(C). Additional status bits indicate that the processor is

in a trace (T) mode and in a supervisor (S) or user state.

EMU H'iKj- H33XEE]
TRACE MOOE |

SUPERVISOR

STATE

EXTENO 1

NEGATIVE
I

ZERO

0VERF10WI

CARRY

Figure 3 Status Register

DATA TYPES AND ADDRESSING MODES

• Program Counter Relative

• Immediate

• Implied

Included in the register indirect addressing modes is a

capability to do postincrementing, predecrementing, off-

setting, and indexing The program counter relative mode
can also be modified via indexing and offsetting.

Table 1 Addressing Modes

Addressing Modes Syntax

Register Direct Addressing

Data Register Direct

Address Register Direct

Dn
An

Absolute Data Addressing

Absolute Short

Absolute Long

xxx W
xxx.L

Program Counter Relative Addressing

Relative with Offset

Relative with Index Offset

d 16(PC)

d8(PC.Xn)

Register Indirect Addressing

Register Indirect

Postincrement Register Indirect

Predecrement Register Indirect

Register Indirect with Offset

Indexed Register Indirect with Offset

(An)

(An)

(An)

d16(An)

d8!An,Xn)

Immediate Data Addressing

Immediate

Quick Immediate #1-#8

Implied Addressing

Implied Register SR USPSPPC

Data Register

Address Register

Address of Data Register

Status Register

Program Counter

Stack Pointer

User Stack Pointer

Effective Address

8-8it Offset (Displacemer

16-Bit Offset IDisplacemr

Immediate Data

used as Index Register

Five basic data types are supported. These data types

are

its

• BCD Digits (4-Bits)

• Bytes (8 Bits)

• Words (16 Bits)

• Long Words (32 Bits)

In addition, operations on other data types such as mem-
ory addresses, status word data, etc. are provided in the

instruction set.

The 14 addressing modes, shown in Table 1, include

six basic types:

• Register Direct

• Register Indirect

• Absolute

INSTRUCTION SET OVERVIEW

The MC68000 instruction set is shown in Table 2. Some
additional instructions are variations, or sub-sets, of these

and they appear in Table 3. Special emphasis has been

given to the instruction set's support of structured high-

level languages to facilitate ease of programming. Each

instruction, with few exceptions, operates on bytes, words,

and long words and most instructions can use any of the

14 addressing modes. Combining instruction types, data

types, and addressing modes, over 1000 useful instruc-

tions are provided. These instructions include signed and

unsigned, multiply and divide, "quick" arithmetic oper-

ations, BCD arithmetic, and expanded operations (through

traps).
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Table 2. Instruction Set Summary Table 3 Variations of Instruction Types

Mnemonic Description

ABCD Add Decimal With Extend

ADD Add
AND Logical AND
ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

Bcc Branch Conditionally

BCHG Bit Test and Change

BCLR Bit Test and Clear

BRA Branch Always

BSET Bit Test and Set

BSR Branch to Subroutine

BTST Bit Test

CHK Check Register Against Bounds

CLR Clear Operand

CMP Compare

DBcc Test Condition. Decrement and Branch

DIVS Signed Divide

DIVU Unsigned Divide

EOR Exclusive OR
EXG Exchange Registers

EXT Sign Extend

JMP Jump
JSR Jump to Subroutine

LEA Lead Effective Address

LINK Link Stack

LSL Logical Shift Left

LSR Logical Shift Right

MOVE Move
MULS Signed Multiply

MULU Unsigned Multiply

NBCD Negate Decimal with Extend

NEG Negate

NOP No Operation

NOT One s Complement

OR Logical OR

PEA Push Effective Address

RESET Reset External Devices

ROL Rotate Left without Extend

ROR Rotate Right without Extend

ROXL Rotate Left with Extend

ROXR Rotate Right with Extend

RTE Return from Exception

RTR Return and Restore

RTS Return from Subroutine

SBCD Subtract Decimal with Extend

Sec Set Conditional

STOP Stop

SUB Subtract

SWAP Swap Data Register Halves

TAS Test and Set Operand
TRAP Trap

TRAPV Trap on Overflow

TST Test

UNLK Unlink

Instruction

Type Variation Description

ADD ADD Add
ADDA Add Address

ADDQ Add Quick

ADDI Add Immed ate

ADDX Add with Exiena

AND AND Logical AND
ANDI AND Immediate

ANDI to CCR AND Immediate to

Condition Codes

ANDI to SR AND Immediate to

Status Register

CMP CMP Compare
CMPA Compare Address

CMPM Compare Memory
CMPl Compare immediate

EOR EOR Exclusive OR
EORI Exclusive OR Immediate

EORI to CCR Exclusive OR Immediate to

Condition Codes
EORI to SR Exclusive OR Immediate to

Status Register

MOVE MOVE Move
MOVEA Move Address

MOVEM Move Multiple Registers

MOVEP Move Peripheral Data

MOVEQ Move Quick

MOVE from SR Move from Status Register

MOVE to SR Move to Status Register

MOVE to CCR Move to Condition Codes
MOVE USP Move User Stack Pointer

NEG NEG Negate

NEGX Negate with Extend

OR OR Logical OR
ORI OR Immediate

ORI to CCR OR immediate to

Condition Codes
ORI to SR OR Immediate to

Status Register

SUB SUB Subtract

SUBA Subtract Adaress

SUBI Subtract Immediate

SUBQ Subtract Quick

SUBX Subtract with Extend
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SIGNAL DESCRIPTION

The input and output signals are illustrated functionally

in Figure 4 and are described in the following paragraphs.

z

o
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(DATA BU$>
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. FCO
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11 A23

DO 015
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ASYNCHRONOUS

BUS

STATUS .BTaTk

•1
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CONTROL

M6800

PERIPHERAL
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SYSTEM

CONTROL

Em

BTTffi,

, RESET,

BUS ARBITRATION

.SSATK
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.iPTT

CONTROL

INTERRUPT

CONTROL

Figure 4. Input and Output Signals

Data Transfer Acknowledge (OTACK)

This input indicates that the dat a transfer is completed.

When the processor recognizes DTACK during a read

cycle, data is latched and the bus cycle terminated. When
DTACK is recognized during a write cycle, the bus cycle

is terminated.

BUS ARBITRATION CONTROL

The three signals, bus request, bus grant, and bus grant

acknowledge, form a bus arbitration circuit to determine

which device will be the bus master device.

Bus Request (BR)

This input is wire-ORed with all other devices that could

be bus masters. This input indicates to the processor that

some other device desires to become the bus master.

Bus Grant (BG)

This output indicates to all other potential bus master

devices that the processor will release bus control at the

end of the current bus cycle.

ADDRESS BUS (A1 THROUGH A23)

This 32-bit, unidirectional, three-state bus is capable of

addressing 16 megabytes of data. It provides the address

for bus operation during all cycles except interrupt cycles.

During interrupt cycles, address lines A1 , A2, and A3 pro-

vide information about what level interrupt is being serv-

iced while address lines A4 through A23 are set to a logic

high.

DATA BUS (DO THROUGH D15)

This 16-bit, bidirectional, three-state bus is the general

purpose data path. It can transfer and accept data in either

word or byte lenght. During an interrupt acknowledge

cycle, the external device supplies the vector number on

data lines D0-D7.

Bus Grant Acknoweldge (BGACK)

This input indicates that some other device has become
the bus master. This signal should not be asserted until

the following four conditions are met

1. a bus grant has been received,

2. address strobe is inactive which indicates that the

microprocessor is not using the bus,

3. data transfer acknowledge is inactive which indi-

cates that neither memory nor peripherals are us-

ing the bus, and

4 bus grant acknowledge is inactive which indicates

that no other device is still claiming bus master-

ship.

ASYNCHRONOUS BUS CONTROL

Asynchronous data transfers are handled using the fol-

lowing control signals: address strobe, read write, upper

and lower data strobes, and data transfer acknowledge

These signals are explained in the following paragraphs.

Address Strobe (AS)

This signal indicates that there is a valid address on

the address bus.

Read/Write (R/W)

This signal defines the data bus transfer as a read or

write cycle. The RW signal also works in conjunction with

the data strobes as explained in the following paragraph

Upper and Lower Data Strobe (UDS, LDS)

These signals control the flow of data on the data bus,

as shown in Table 4. When the RW line is high, the

processor will read from the data bus as indicated. When
the R/W line is low, the processor will write to the data

bus as shown.

Table 4 Data Strobe Control of Data Bus

UDS LDS R/W D8-D15 D0-D7

High High - No Valid Data No Valid Data

Low Low High Valid Data Bits

815
Valid Data Bits

0-7

High Low High No Valid Data Valid Data Bits

0-7

Low High High Valid Data Bits

8 -15

No Valid Data

Low Low Low Valid Data Bits

8-15

Valid Data Bits

0-7

High Low Low Valid Data Bits

0-7*

Valid Data Bits

0-7

Low High Low Valid Data Bits

8-15

Valid Data Bits

8-15"

'These condition

may not appear

iplementation and
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INTERRUPT CONTROL (IPLO. IPL1. IPL2)

These input pins indiacte the encoded priority level of

the device requesting an interrupt. Level seven is the

highest priority while level zero indicates that no inter-

rupts are requested. Level seven cannot be masked. The
least significant bit is given in IPLO and the most signif-

icant bit is contained in IPL2. These lines must remain

stable until the processor signals interrupt acknowledge

(FC0-FC2 are all high) to insure that the interrupt is rec-

ognized

SYSTEM CONTROL

The system control inputs are used to either reset or

halt the processor and to indicate to the processor that

bus errors have occurred The three system control inputs

are explained in the following paragraphs

Bus Error (BERR)

This input informs the processor that there is a problem

with the cycle currently being executed Problems may
be a result of

1 nonresponding devices.

2 interrupt vector number acquisition failure,

3 illegal access request as determined by a memory
management unit, or

4. other application dependent errors.

The bus error signal interacts with the halt signal to de-

termine if the current bus cycle should be re-executed or

if exception processing should be performed

Reset (RESTT)

This bidirectional signal line acts to reset (star' a system

initialization sequence) the processor in response to an

external reset signal An internally generated reset (result

of a RESET instruction) causes all external devices to be

reset and the internal state of the processor is not af-

fected A total system reset (processor andjjxternal de-

"vices) is the result of external HALT and RESET signals

applied at the same time

Halt (HALT)

When this bidirectional line is driven by an external

device, it will cause the processor to stop at the comple-

tion of the current bus cycle When the processor has

been halted using this input, all control signals are in-

active and all three-state lines are put in their high-imped-

ance state

When the processor has stopped executing mstruc

tions, such as in a double bus fault condition, the HALT
line is driven by the processor to indicate to external

devices that the processor has stopped

Enable (E)

This signal is the standard enable signal common to

all M6800 type peripheral devices. The period for this

output is ten MC68000 clock periods (six clocks low, four

clocks high). Enable is generated by an internal ring

counter which may come up in any state (i.e., at power
on. it is impossible to guarantee phase relationship of E

to CLK). E is a free-running clock and runs regardless of

the state of the bus on the MPU.

Valid Peripheral Address (VPA)

This input indicates that the device or region addressed

is an M68000 Family device or region addressed is an

M68000 Family device and that data transfer should be

synchronized with the enable (E) signal. This input also

indicates that the processor should use automatic vec-

toring for an interrupt during an IACK cycle

Valid Memory Address (VMA)

This output is used to indicate to M68000 peripheral

devices that there is a valid address on the address bus

and the processor is synchronized to enable This signal

only responds to a valid peripheral address (VPA) input

which indicates that the peripheral is an M68000 Family

device.

PROCESSOR STATUS (FCO, FC1. FC2)

These function code outputs indicate the state (user or

supervisor) and the cycle type currently being executed,

as shown in Table 5. The information indicated by the

function code outputs is valid whenever address strobe

IAS) is active.

Table 5. Function Code Outputs

Function Code Output
Cycle Time

FC2 FC1 FCO

Low Low Low (Undefined. Reserved)

Low Low High User Data

Low High Low User Program

Low High High (Undefined. Reserved)

High Low Low (Undefined. Reserved)

High Low High Supervisor Data

High High Low Supervisor Program

High H.gh High Interrupt Acknowledge

M6800 PERIPHERAL CONTROL

These control signals are used to allow the interfacing

of synchronous M6800 peripheral devices with the asyn-

chronous MC68000 These signals are explained in the

following paragraphs

CLOCK (CLK)

The clock input is a TTL-compatible signal that is in-

ternally buffered for development of the internal clocks

needed by the processor The clock input should not be

gated off at any time and the clock signal must conform

to minimum and maximum pulse width times
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DATA TRANSFER OPERATIONS

Transfer of data between devices involves the follow-

ing leads

1 address bus A1 through A23,

2 data bus DO through D15, and

3. control signals

The address and data buses are separate parallel buses

used to transfer data using an asynchronous bus struc-

ture. In all cycles, the bus master assumes responsibility

for deskewing all signals it issues at both the start and

end of a cycle In addition, the bus master is responsible

for deskewing the acknowledge and data signals from

the slave device.

The following paragraphs explain the read, write, and

read-modify-wnte cycles. The indivisible read-modify-

write cycle is the method used by the MC68000 for in

terlocked multiprocessor communications

READ CYCLE

During a read cycle, the processor receives data from

the memory of a peripheral device. The processor reads

bytes of data in all cases. If the instruction specifies a

word (or double word) operation, the processor reads

both upper and lower bytes simultaneously by asserting

both upper and lower data strobes. When the instruction

specifies byte operation, the processor uses an internal

AO bit to determine which byte to read and then issues

the data strobe required for that byte. For byte operations,

when the AO bit equals zero, the upper data strobe is

issued When the AO bit equals one, the lower data strobe

is issued When the data is received, the processor cor-

rectly positions it internally

WRITE CYCLE

During a write cycle, the processor sends data to either

the memory or a peripheral device. The processor writes

bytes of data in all cases. If the instruction specifies a

word operation, the processor writes both bytes. When
the instruction specifies a byte operation, the processor

uses an internal AO bit to determine which byte to write

and then issues the data strobe required for that byte

For byte operations, when the AO bit equals zero, the

upper data strobe is issued When the AO bit equals one,

the lower data strobe is issued

READ-MODIFY-WRITE CYCLE

The read-modify-wnte cycle performs a read, modifies

the data in the arithmetic-logic unit, and writes the data

back to the same address. In the MC68000, this cycle is

indivisible in that the address strobe is asserted through-

out the entire cycle The test and set (TAS) instruction

uses this cycle to provide meaningful communication be-

tween processors in a multiple processor environment

This instruction is the only instruction that uses the read

modify-wnte cycles and since the test and set instruction

only operates on bytes, all read-modify-wnte cycles are

byte operations.

PROCESSING STATES

The MC68000 is always in one of three processing

states: normal, exception, or halted

NORMAL PROCESSING

The normal processing state is that associated with

instruction execution; the memory references are to fetch

instructions and operands, and to store results A special

case of normal state is the stopped state which the pro-

cessor enters when a stop instruction is executed In this

state, no further references are made

EXCEPTION PROCESSING

The exception processing state is associatrd with in-

terrupts, trap instructions, tracing, and other exception

conditions The exception may be internally generated

by an instruction or by an unusual condition arising dur-

ing the execution of an instruction. Externally, exception

processing can be forced by an interrupt, by a bus error,

or by a reset Exception processing is designed to provide

an efficient context switch so that the processor may
handle unusual conditions

HALTED PROCESSING

The halted processing state is an indication of cata-

strophic hardware failure For example, if during the ex

ception processing of a bus error another bus error occurs,

the processor assumes that the system is unusable and

halts. Only an external reset can restart a halted proces

sor. Note that a processor in the stopped state is not in

the haltea state, nor vice versa

INTERFACE WITH M6800 PERIPHERALS

Motorola's extensive line of M6800 peripherals are di-

rectly compatible with the MC68000 Some of these de-

vices that are particularly useful are

MC6821 Peripheral Interface Adapter

MC6840 Programmable Timer Module
MC6843 Floppy Disk Controller

MC6845 CRT Controller

MC6850 Asynchronous Communications Interface

Adapter

MC6854 Advanced Data Link Controller

To interface the synchronous M6800 peripherals with the

asynchronous MC68000, the processor modifies its bus

cycle to meet the M6800 cycle requirements whenever
an M6800 device address is detected. This is possible

since both the processors use memory mapped I O
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ELECTRICAL SPECIFICATIONS

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage VCC -0.3 to +70 V

Input Voltage vm -0.3 to +7.0 V

Operating Temperature Range
MC68000
MC68000C

TA T L to TH
Oto 70

-40 to 85

°c

Storage Temperature T
S«q

-55 to 150 X

The device contains circuitry to protect the

inputs against damage due to high static volt-

ages or electric fields, however, normal pre-

cautions should be taken to avoid application

of voltages higher than maximum-rated volt-

ages to these high-impedance circuits. Tying

unused inputs to the appropriate logic volt-

age level (e.g.. either GND or Vcc) enhances

reliability of operation

THERMAL CHARACTERISTICS

Characteristic
|

Symbol Value Symbol Value Rating

Thermal Resistance (Still Air) HJA °cw
Ceramic, Type L LC 30 15*

Ceramic. Type R RC 33 15

Plastic. Type P 30 15*

Plastic. Type FN 45 25"

DC ELECTRICAL CHARACTERISTICS (Vcc = 5 Vdc * 5%; GND = Vdc; TA = T
L
to TH )

Characteristic Symbol Min Max Unit

Input High Voltage V|H 2.0 VCC V

Input Low Voltage V|L GND -0.3 08 V

Input Leakage Current BERR. BGACK. BR, DTACK. CLK. IPL0-IPL2. VPA
'" 5 25 V HALT, RESET

in _
25
20

i>A

Three-State (Off Statel Input Current AS. A1-A23. D0-D15. FC0-FC2.

In 2 4 V 4 V LDS, R W, UDS. VMA
ITSI

- 20 t^A

Output High Voltage dOH - 400 (iAI E*

(lOH = " 400 >iAI E. AS. A1-A23, BG. D0-D15,

FC0-FC2. LDS. RW, UDS, VMA

VOH Vcc -075

2.4 24

V

Output Low Voltage

(l L=16mA) HALT

(lOL = 3 2 mAI A1-A23. BG. FC0-FC2

(IOL--5 0mAI RESET

(Iql = 5 3 mAI E. AS. D0-D15. LDS. R/W, UDS, VMA

vol " 0.5

05
05
05

V

Power Dissipation (see POWER CONSIDERATIONS) pd
— - - w

Capacitance (V in = V, TA = 25 C. Frequency = 1 MHz)** Cin - 20 pF

Load Capacitance HALT
All Others

c L _
70

130

pF

•With external pullup resistor of 1 1 11.

"Capacitance is periodically sampled rather than 100% tested

'••During normal operation instantaneous Vcc current requirements may be as high as 15 A
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POWER CONSIDERATIONS

The average die-junction temperature, Tj, in °C can be

obtained from:

Tj = TA -(PD -ejA> HI
where:

TA
«JA

PD
Pint

Pio

Ambient Temperature, °C

Package Thermal Resistance, Junction-to-

Ambient, °C/W

P|NT*P|0

'CC
x VCC Watts — Chip Internal Power

Power Dissipation on Input and Output Pins

— User Determined

For most applications P\ o<piNT and can De neglected.

An appropriate relationship between Ppand Tj (if P| q
is neglected) is:

PD = K-(Tj-273 ;

C) (2)

Solving equations (1) and (2) for K gives:

K = Pd -(Ta + 273°C)-6JA-Pd2
131

where K is a constant pertaining to the particular part. K

can be determined from equation (3) by measuring Pq
(at thermal equilibrium) for a known TA . Using this value

of K, the values of Pq and Tj can be obtained by solving

equations (1) and (2) iteratively for any value of TA .

The curve shown in Figure 11-1 gives the graphic so-

lution to the above equations for the specified power
dissipation of 1.5 watts over the ambient temperature

range of -55 °C to 125 "C using a maximum Hja of 45

~CW. Ambient temperature is that of the still air sur-

rounding the device. Lower values of Hja cause the curve

to shift downward slightly: for instance, for Hja of 40 'I

W, the curve is just below 1.4 wans at 25
=

C.

The total thermal resistance of a package (hja) can be

separated into two components, Hjc and hqa, repre-

senting the barrier to heat flow from the semiconductor

junction to the package (case) surface (hjc) and from the

case to the outside ambient air (hca) These terms are

related by the equation:

«JA = HJC-"CA <4)

hjc is device related and cannot be influenced by the

user. However, hca ' s user dependent and can be min-

imized by such thermal management techniques as heat

sinks, ambient air cooling, and thermal convection. Thus,

good thermal management on the part of the user can

significantly reduce Hca so that hja approximately equals

Hj(\ Substitution of Hjc for hja in equation 1 results in

a lower semiconductor junction temperature.

Table 6 summarizes maximum power dissipation and

average junction temperature for the curve drawn in Fig-

ure 5, using the minimum and maximum values of am-
bient temperature for different packages and substituting

Hjc for hja (assuming good thermal management). Ta-

ble 7 provides the maximum power dissipation and av-

erage junction temperature assuming that no thermal

management is applied (i.e., still air).

s

^^
''•v

t»

-55-40 25 70 85 110 125

AMBIENT TEMPERATURE ITA I
- C

Figure 5. MC68000 Power Dissipation (Pp) vs Ambient Temperature (Ta)
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Table 6. Power Dissipation and Junction Temperature vs Temperature (8jc = ejA)

Package TA Range »JC <X/W)
PdIW)

(a Ta Min.

Tj IX)

(a TA Min.

Pq(W)
(a TA Max.

Tj (X)
(a TA Max.

LLC OX to 70X
- WC to 85X
OX to 85X

15

15

15

1.5

17
1.5

23

-14

23

1.2

12
1.2

88

103

103

P OX to 70X 15 1.5 23 1.2 88

RRC OX to 70X
- 40X to 85X
OX to 85X

15

15

15

1.5

1.7

1.5

23
-14

23

1.2

1.2

12

88

103

103

FN OX to 70X 25 1.5 38 1.2 101

NOTE: Table does not include values for the MC68000 12F

Table 7. Power Dissipation and Junction Temperature vs Temperature (
hjc *= *JC>

Package TA Range hja rem PO(W)
a TA Min.

Tj (X)

(a Ta Min.

PDIW)
fa TA Max.

Tj (X)

(a TA Max.

LLC OX to 70X
- 40X to 85X
OX to 85X

30

30

30

1.5

1.7

1.5

23
-14

23

1.2

1.2

1.2

88

103

103

P OX to 70X 30 1.5 23 12 88

RRC OX to 70X
- 40X to 85X
OX to 85X

33

33

33

1.5

1.7

1.5

23

-14

23

1.2

1.2

1.2

88

103

103

FN OX to 70X 40 1.5 38 1.2 101

NOTE Table does not include values for the MC68000 12F

AC ELECTRICAL SPECIFICATIONS - CLOCK TIMING (see Figure 61

Num. Characteristic Symbol
8 MHz* 10 MHz* 12.5 MHz*

16.67 MHz
•12F' Unit

Min Max Min Max Min Max Min Max

Frequency of Operation f 4 8 40 100 40 12 5 80 16 J MHz

1 Cycle Time 125 250 100 250 80 250 60 125 ns

2.3 Clock Pulse Width (Measured from 1.5 V to 1.5 V for 12FI «CL

XH
55

55

125

125

45

45

125

125

35

35

125

125

27

27

62 5

62 5

ns

4.5 Clock Rise and Fall Times 'Cr

«Cf
_

10

10

- 10

10

~ 5

5

— 5

5

ns

'These specifications represent an improvement over previously published specifications for the 8-, 10-, and 12 5-MHz MC68000 and

are valid only for product bearing date codes of 8827 and later

NOTE Timing measurements are referenced to and from a low voltage of 8 volt and high a voltage of 2 volts unless otherwise noted The

voltage swing through this range should start outside and pass through the range such that the rise or fall will be linear between 8 volt

and 2 volts

Figure 6 Clock Input Timing
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INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the M68000 instruc-

tion set. Instruction descriptions are arranged in alphabetical order with the mnemonic
heading set in large bold type for easy reference.

B.1 ADDRESSING CATEGORIES

Effective address modes can be categorized by the ways in which they are used. The
following classifications are used in the instruction definitions.

Data If an effective address mode is used to refer to data operands, it is con-

sidered a data addressing effective address mode.

Memory If an effective address mode is used to refer to memory operands, it is

considered a memory addressing effective address mode.

Alterable If an effective address mode is used to refer to alterable (writeable) operands,

it is considered an alterable addressing effective address mode.

Control If an effective address mode is used to refer to memory operands without

associated sizes, it is considered a control addressing effective address

mode.

Table B-1 shows the categories of each of the effective address modes.

Table B-1 Effective Address Mode Categories

Address Modes Mode Register Data Memory Control Alterable Assembler Syntax

Data Register Direct 000 reg. no X - - X Dn

Address Register Direct 001 reg no - - - X An

Address Register Indirect

Address Register Indirect

with Postincrement

Address Register Indirect

with Predecrement

Address Register Indirect

with Displacement

010

011

100

101

reg. no.

reg. no

reg. no.

reg. no.

X

X

X
X

X

X

X

X

X

X

X

X

X

X

(An)

(An) +

-(An)

(di6,An) or

di 6(An)

Address Register Indirect

with Index

110 reg. no. X X X X (ds.An.Xn) or

d8(An.Xn)

Absolute Short

Absolute Long

111

111

000

001

X
X

X

X
X
X

X
X

(xxx).W

(xxx).L

Program Counter Indirect

with Displacement

111 101 X X X - (d 16.PO or

di6<PC)

Program Counter Indirect

with Index

111 011 X X X - (d8.PC,Xn) or

d8(PCXn)

Immediate 111 100 X X - - #(data>
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These categories can be combined to define additional, more restrictive classifications. For

example, the instruction descriptions use such classifications as memory alterable and

data alterable. Memory alterable memory refers to addressing modes that are both alterable

and memory addresses. Data alterable refers to addressing modes that are both data and

alterable.

B.2 INSTRUCTION DESCRIPTION

The instruction descriptions in this section contain detailed information about the instruc-

tions. The format of these descriptions is shown in Figure B-1.

B.3 OPERATION DESCRIPTION DEFINITIONS

The following notation is used in the instruction descriptions.

OPERANDS
An —Address register

Dn — Data register

Rn —Any data or address register

PC — Program counter

SR — Status register

CCR — Condition codes (low-order byte of status)

SSP — Supervisor stack pointer

USP — User stack pointer

SP — Active stack pointer (equivalent to A7)

X — Extend operand condition code
N — Negative condition code
Z —Zero condition code
V — Overflow condition code
C — Carry condition code
Immediate data — Immediate data from the instruction

d —Address displacement

Source —Source contents

Destination — Destination contents

Vector — Location of exception vector

ea —Any valid effective address

SUBFIELDS AND QUALIFIERS

(bit) of (operand) Selects a single bit of the operand

((operand)) The contents of the referenced location

(operand)io The operand is binary coded decimal; operations are to be

performed in decimal

((address register;) The register indirect operator, which indicates that the operand
-((address register)) register points to the memory location of the instruction op-

((address register)) + erand

#xxx or #(data) Immediate data operand from the instruction
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INSTRUCTION NAME-

OPERATION DESCRIPTION-

ASSEMBLER SYNTAX FOR THIS INSTRUCTION-

TEXT DESCRIPTION OF INSTRUCTION OPERATION-

CONDITION CODE EFFECTS (SEE APPENDIX A CONDITION CODE

COMPUTATION)

INSTRUCTION FORMAT - SPECIFIES THE BIT PATTERN ANO FIELDS

OF THE OPERATION WORD AND ANY OTHER WORDS WHICH ARE

PART OF THE INSTRUCTION THE EFFECTIVE AOORESS EXTEN

SIONS ARE NOT EXPLICITLY ILLUSTRATED THE EXTENSIONS IIF

THERE ARE ANYI WOULD FOLLOW THE ILLUSTRATED PORTIONS

OF THE INSTRUCTIONS FOR THE MOVE INSTRUCTION THE SOURCE

EFFECTIVE ADDRESS EXTENSION IS THE FIRST FOLLOWED BY

THE DESTINATION EFFECTIVE ADDRESS EXTENSION

MEANINGS AND ALLOWED VALUES OF THE VARIOUS FIELDS RE

QUIRED BY THE INSTRUCTION FORMAT

ABCD
Operation: Sourceio + Destination^

Assembler
Syntax:

Attributes:

ABCD Dy,Dx

ABCD -(Ay), -(Ax)

Size = (Byte)

Description: Adds the source operal

and stores the result in the destinat)

decimal arithmetic. The operands,
j

different ways:

1. Data register to data register:

in the instruction.

2. Memory to memory: The op^

mode using the address.

This operation is a byte operation

Condition Codes:

X Set the same as the carry bit

N Undefined.

Z Cleared if the result is non-zero

V Undefined.

C Set if a decimal carry was gene

Normally the Z condition cod

operation. This allows success

precision operations.

Instruction Format:

R M Field Data Register to Data Reg

If R M 0. Rx and Ry are Data Registers

If R M 1, Rx and Ry are Address Registers I

Instruction Fields:

Register Ry field — Specifies the d

If R M = 0, specifies a data regi

If R M = 1, specifies an address

R M field — Specifies the operand \

— the operation is data registr

1 — the operation is memory to?

FIGURE B.1 Instruction Description Format
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BINARY OPERATIONS

These operations are written (operand) (op) (operand), where (op) is one of the following:

shifted by

rotated by

The left operand is moved to the right operand

The two operands are exchanged
The operands are added
The right operand is subtracted from the left operand

The operands are multiplied

The first operand is divided by the second operand

The operands are logically ANDed
The operands are logically ORed
Relational test, true if the left operand is less than the right operand

Relational test, true if the left operand is greater than the right operand

The left operand is shifted or rotated by the number of positions specified

by the right operand

UNARY OPERATIONS

-(operand) The operand is logically complemented
(operand)sign extended The operand is sign extended; bits equal to the high-order bit

of the operand are inserted to extend the operand to the left

(operand)tested The operand is compared to zero; the condition codes are set

to the result.

OTHER OPERATIONS

TRAP

STOP

Equivalent to: SSP - 2 I SSP; format/offset word » (SSP);

SSP - 4 » SSP; PC I (SSP); SSP - 2 » ; SR » (SSP); (vector) » PC

Enter the stopped state, waiting for interrupts

if (condition) then (operations) else (operations);

The condition is tested. If true, the operations after "then" are

performed. If the condition is false and the optional "else"

clause is present, the "else" clause operations are performed.

If the condition is false and the "else" clause is omitted, the

instruction performs no operation.

The semicolon is used to separate operations and terminate

the if/then/else operation.
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MC68000 AND MC68HC000 INSTRUCTION EXECUTION TIMES

This section contains listings of the instruction execution times in terms of external clock

(CLK) periods. In this data, it is assumed that both memory read and write cycles consist

of four clock periods. A longer memory cycle causes the generation of wait states that

must be added to the total instruction times.

The number of bus read and write cycles for each instruction is also included with the

timing data. This data is shown as

n(r/w)

where
n is the total number of clock periods

r is the number of read cycles

w is the number of write cycles

For example, a timing number shown as 18(3 1) means that the total number of clock

periods is 18. Of the 18 clock periods, 12 are used for the three read cycles (four periods

per cycle). Four additional clock periods are used for the single write cycle, for a total of

16 clock periods. The bus is idle for two clock periods during which the processor completes

the internal operations required for the instruction.

NOTE

The total number of clock periods (n) includes instruction fetch and all applicable

operand fetches and stores.

8.1 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table 8-1 lists the numbers of clock periods required to compute the effective addresses
for instructions. The total includes fetching any extension words, computing the address,

and fetching the memory operand. The total number of clock periods, the number of read

cycles, and the number of write cycles (zero for all effective address calculations) are shown
in the previously described format.

8.2 MOVE INSTRUCTION EXECUTION TIMES

Tables 8-2 and 8-3 list the numbers of clock periods for the move instructions. The totals

include instruction fetch, operand reads, and operand writes. The total number of clock

periods, the number of read cycles, and the number of write cycles are shown in the

previously described format.
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Table 8-1. Effective Address Calculation Times

Addressing Mode Byte, Word Long

Dn
An

Register

Data Register Direct

Address Register Direct

0(0/0)

0(00)

0(0'0)

0(O0)

(An)

(An) +

Memory
Address Register Indirect

Address Register Indirect with Postincrement

4(1 '0)

4(1 0)

8(2'0)

8(20)

-(An)

(d 16 ,
An)

Address Register Indirect with Predecrement

Address Register Indirect with Displacement

6(1 0)

8(20)

10(2<0)

12(30)

<d8 . An. Xn)*

(xxx).W

Address Register Indirect with Index

Absolute Short

10(20)

8(2 0)

14(30)

12(3 0)

(xxx).L

(dg, PC)

Absolute Long

Program Counter Indirect with Displacement

12(30)

8(2/0)

16(4 0)

12(30)

(d 16 . PC Xn)*

#<data)

Program Counter Indirect with Index

Immediate
10(2 0)

4(1 0)

14(30)

8(20)

•The size of the index register (Xn) does not affect execution time.

Table 8-2. Move Byte and Word Instruction Execution Times

Source
Destination

Dn An (An) (An) + -(An) (d 16 . An) (d8 . An, Xn)* (xxx).W (xxx).L

Dn
An
(An)

4(1 '01

4(10)

8(20)

4(1/0)

4(1 0)

8(2 0)

8(1 1)

8(1 1)

12(2 1)

8(1 1)

8(1 1)

12(2 1)

8(1 1)

8(1 1)

12(2 1)

12(2 1)

12(2 1)

16(3 1)

14(2 1)

14(2 1)

18(3 1)

12(2 1)

12(2 1)

16(3 1)

16(3.1)

16(3 1)

20(4 1)

(An) +

-(An)

(d 16 . An)

8(2/0)

10(2 0)

12(3/0)

8(2/0)

10(20)

12(30)

12(2 1)

14(2 1)

16(31)

12(2.1)

14(2 1)

16(3 1)

12(2 1)

14(2 1)

16(3 1)

16(3 1)

18(3 1)

20(4 1)

18(3 1)

20(3 1)

22(4 1

)

16(3 1)

18(3 1)

20(4 1)

2014 1)

22(4 1)

24(5 1)

(d8 . An. Xn)*

(xxx).W

(xxx).L

14(3/0)

12(30)

16(40)

14(3 0)

12(3 0)

16(4 0)

18(3 1)

16(31)

20(4 1)

18(3 1)

16(3 1)

20(4 1

)

18(3 1)

16(3 1)

20(4 1)

22(4 1)

20(4 1)

24(5 1)

24(4 1)

22(4 1

)

26(5 1)

22(4 1)

20(4 1)

24(5 1)

26(5 1)

24(5 1)

28(6 1)

(die. PC)

(d8 , PC, Xn)*

* data

12(30)

14(30)

8(2 0)

12(30)

14(30)

8(20)

16(3 1)

18(3 1)

12(2 11

16(3 1)

18(3 1)

12(2 1)

16(3 1)

18(3 1)

12(2 1)

20(4 1)

22(4 1)

16(3 1)

22(4 1)

24(4 1

)

18(3 1)

20(4 1)

22(4 1

)

16(3 1)

24(5 1)

26(5 1)

20(4 1)

•The size of the index register (Xn) does not affect execution time

Table 8-3. Move Long Instruction Execution Times

Source
Destination

Dn An (An) (An) + -(An) (d 16 . An) (d8 . An, Xn)* (xxx).W (xxx).L

Dn
An
(An)

4(1/0)

4(10)

12(3/0)

4(10)

4(10)

12(3.0)

12(1 2)

12(1 2)

20(3/2)

12(1 2)

12(1 2)

20(32)

12(1 2)

12(1 2)

20(3 2)

16(2 2)

16(2 2)

24(4 2)

18(2 2)

18(2 2)

26(4 2)

16(2 2)

16(2 2)

24(4 2)

20(3 2)

20(3 2)

28(5 2)

<An) +

-(An)

(d 16 , An)

12(3/0)

14(30)

16(4/0)

12(30)

14(30)

16(40)

20(3-2)

22(3 2)

24(4 2)

20(3 2)

22(3 2)

24(4 2)

20(3 2)

22(3 2)

24(4 2)

24(4 2)

26(4 2)

28(5 2)

26(4 2)

28(4 2)

30(5 2)

24(4 2)

26(4 2)

28(5 2)

28(5 2)

30(5 2)

32(6 2)

(d8 . An. Xn)*

(xxx).W

(xxx).L

18(4/0)

16(40)

20(5/0)

18(4.0)

16(4 0)

20(5/0)

26(4 2)

24(4 2)

28(5 2)

26(4 2)

24(4 2)

28(52)

26(4 2)

24(4 2)

28(5 2)

30(5 2)

28(5 2)

32(6 2)

32(5 21

30(5 2)

34(6 2)

30(5 2)

28(5 2)

32(6 2)

34(6 2)

32(6 2)

36(7 2)

(d, PC)

(d, PC. Xnl*

#<data)

16(4/0)

18(4/0)

12(3'0)

16(4/0)

18(4 0)

12(3/0)

24(4 2)

26(4 2)

20(32)

24(4 2)

26(4 2)

20(3 2)

24(42)

26(4 2)

20(3 2)

28(5 2)

30(5 2)

24(4 2)

30(52)

32(5 2)

26(4 2)

28(5 2)

30(5 2)

24(4 2)

32(5 2)

34(6 2)

28(5 2)

•The size of the index register (Xn) does not affect execution time
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8.3 STANDARD INSTRUCTION EXECUTION TIMES

The numbers of clock periods shown in Table 8-4 indicate the times required to perform

the operations, store the results, and read the next instruction. The total number of clock

periods, the number of read cycles, and the number of write cycles are shown in the

previously described format. The number of clock periods, the number of read cycles, and

the number of write cycles, respectively, must be added to those of the effective address

calculation where indicated by a plus sign ( + ).

In Table 8-4, the following notation applies:

An- Address register operand

Dn- Data register operand

ea - An operand specified by an effective address

M - Memory effective address operand

Table 8-4. Standard Instruction Execution Times

ln*tnjctkxi Size op<ea>, Ant op<ea>, Dn op Dn, <M>

ADD/ADDA
Byte. Word 8(1/0) + 4(1/0) + 8(1/11 +

Long 6(1/0)+** 6(1/0)+ ** 12(1/2) +

AND
Byte. Word - 411 0) + 8i 1 / 1 ) +

Long - 6(1/0)+ •• 12(1-2) +

CMP/CMPA
Byte. Word 6(1/0) + 4(1/01 + -

Long 611/0) + 811/0) + -

DIVS - - 158(1/01+ » -

DlVL - - 140IWOI+ -

EOR
Byte, Word - 4(1/01* •• 811/11*

Long - 8(1/0)*** 12(1/21 +

MULS - - 70(1/01+ * -

MULU - - 70(1/0)+ * -

OR
Byte. Word - 4(1/01 + Bn/D +

Long - 6(1 01+ ** 12(1/21 +

SUB
Byte. Word 8(1/01 + 4(1/01 + 8(1/1) +

Long 6(1/0)+ **
611/0) + ** 12(1/2) +

+ add effective address calculation time

t word or long only

• indicates maximum basic value added to word effective address time

** The base time of six clock periods is increased to eight if the effective address mode is

register direct or immediate (effective address time should also be added)

* * * Only available effective address mode is data register direct

DIVS. DIVU - The divide algorithm used by the MC68000 provides less than 10% difference

between the best and worst case timings

MULS. MULU - The multioly algorithm requires 38 + 2n clocks where n is defined as

MULU n= the number of ones in the <ea>
MULS n = concatanate the <ea> with a zero as the LSB. n is the resultant number of

10 or 01 patterns in the 17-bit source, i e , worst case happens when the

source is $5555
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8.4 IMMEDIATE INSTRUCTION EXECUTION TIMES

The numbers of clock periods shown in Table 8-5 include the times to fetch immediate
operands, perform the operations, store the results, and read the next operation. The total

number of clock periods, the number of read cycles, and the number of write cycles are

shown in the previously described format. The number of clock periods, the number of

read cycles, and the number of write cycles, respectively, must be added to those of the

effective address calculation where indicated by a plus sign ( + ).

In Table 8-5, the following notation applies:

# - Immediate operand
Dn- Data register operand
An- Address register operand
M - Memory operand

Table 8-5. Immediate Instruction Execution Times

Instruction Size op #,Dn op ts An 0£#,M

ADDI
Byte, Word 8(2 0) _ 12(2 1) •

Lonq 16(3 0) _ 20(3 2) •

ADDQ
Byte, Word 4(1 0) 4(10)' 8(1 D-

Lonq 8(1 0) 8(1 0) 12(1 2) -

ANDI
Byte. Word 8(2 0) _ 12(2 1) •

Lonq 14(3 0) _ 20(3 2) •

CMPI
Byte, Word 8(2 0) _ 8(2 0)-

Lonq 14(3 0) _ 12(3 0) <

EORI
Byte, Word 8(2 0) _ 12(2 1) •

Lonq 16(3 0) _ 20(3 2) •

MOVEQ Lonq 4(1 0) _ _

ORI
Byte. Word 8(2 0) _ 12(2 D-

Lonq 16(3 0) _ 20(3 2) •

SUBI
Byte. Word 8(2 0) _ 12(2 1)-»

Lonq 16(3 0) _ 20(3 2) *

SUBQ
Byte, Word 4(1 0) 8(1 or 8(1 1)4

Lonq 8(1 0) 8(1 0) 12(1 2)-
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8.5 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table 8-6 lists the timing data for the single operand instructions. The total number of

clock periods, the number of read cycles, and the number of write cycles are shown in the

previously described format. The number of clock periods, the number of read cycles, and

the number of write cycles, respectively, must be added to those of the effective address

calculation where indicated by a plus sign ( + ).

Table 8-6. Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR
Byie, Word 4(1/0) 8(1/11 +

Long 611/01 12'' 2i +

NBCD Byte 6(1/01 en/i)

+

NEG
Byte. Word 4(1/0) BU/1I +

Long 6(1/0) 12(1/21 +

NEGX
Byte. Word 411/0) K1/1J +

Long 6(1/01 12H/2I +

NOT
Byte, Word 4(1/0) 8l 1 / 1 ) +

Long 6(1/01 12(1/2) +

Sec
Byte, False 411/01 8(1/11 +

Byte. True 6(1/01 8(1/11 +

TAS Byte 411/0) 14(2 1) +

TST
Byte. Word 4(1/01 4 • :»

Long 4(1 '0) 4(1/0) +

add effective address calculation time

8.6 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table 8-7 lists the timing data for the shift and rotate instructions. The total number of

clock periods, the number of read cycles, and the number of write cycles are shown in the

previously described format. The number of clock periods, the number of read cycles, and
the number of write cycles, respectively, must be added to those of the effective address
calculation where indicated by a plus sign ( + ).

Table 8-7. Shift/Rotate Instruction Execution Times

Instruction Size Register Memory

ASR. ASL
Byte, Word 6 + 2nd 0) 8(1'H +

Long 8 + 2nd 01 -

LSR. LSL
Byte Word 6 + 2nd -0i 8( 1 / 1

1
+

Long 8 + 2nd/0l

ROR. ROL
Byte Word 6 + 2nd.0l 811/1) +

Long 8 + 2nd/0i

ROXR. ROXL
Byte Word 6 + 2n(l/0l 8d 1i-

Long 8 + 2nd 0i

+ add effective address calculation time for word operands

n is the shift count
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8.7 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table 8-8 lists the timing data for the bit manipulation instructions. The total number of

clock periods, the number of read cycles, and the number of write cycles are shown in the

previously described format. The number of clock periods, the number of read cycles, and

the number of write cycles, respectively, must be added to those of the effective address

calculation where indicated by a plus sign ( + ).

Table 8-8. Bit Manipulation Instruction Execution Times

Instruction Size
Dynamic Static

Register Memory Register Memory

BCHG
Bvte - 8H D* - 12(2 D +

Long 8H .'Oi
• - 12(2'0)* -

BCLR
Byte - 8il, li + - 12I2/D +

Long 10(1 01* - 1412/0)' -

BSET
Byte - 81 1 '

'
1 1 + - 12(2 D +

Long 8ii Oi* - 12 : j
• -

BTST
Byte - 4(1,01 + - 8(2 01 +

Long 611 Oi 10(2 01 -

add effective address calculation time

indicates maximum value, data addressing mode only

8.8 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table 8-9 lists the timing data for the conditional instructions. The total number of clock

periods, the number of read cycles, and the number of write cycles are shown in the

previously described format.

Table 8-9. Conditional Instruction Execution Times

Instruction Displacement
Branch

Taken

Branch

Not Taken

Bcc
Byte 10(2 01 8(1 0i

Word 10(2 0) 12(2 01

BRA
Byte 10(2 0i

Word 10(2,01

BSR
Bvte 18(2 2)

Word 1812/21

DBcc

cc true - 12(2 0)

cc false. Count

Not Expired
10(2 01 "

cc false, Counter

Expired
- 14(3/0)
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8.9 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table 8-10 lists the timing data for the jump (JMP), jump to subroutine (JSR), load effective

address (LEA), push effective address (PEA), and move multiple registers (MOVEM) in-

structions. The total number of clock periods, the number of read cycles, and the number
of write cycles are shown in the previously described format.

Table 8-10. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instruction Size (An) i
(An) + -(An) (d 16 , An) (dg, An, Xn) + (xxx).W (xxx).L (d 16 PC) (ds, PC, Xn)*

JMP - 8(2 0) - - 10(2 0) 14(3 0) 10(2 0) 12(3 0) 10(2 0) 14(3 0)

JSR - 16(2 2) - - 18(2 2) 22(2 2) 18(2 2) 20(3 2) 18(2 2) 22(2 2)

LEA - 4(1 0) - - 8(2 0) 12(2 0) 8(2 0) 12(3 0) 8(20) 12(2 0)

PEA - 12(1 2) - - 16(2 2) 20(2 2) 16(2 2) 20(3 2) 16(2 2) 20(2 2)

MOVEM
M»R

Word 12 + 4n

(3+n/O)

12 + 4n
(3*n0)

- 16 + 4n
|4~n0)

18 + 4n
(4-n0)

16 + 4n

(4-nO)
20 + 4n

(5-nOI
16 + 4n
(4n0)

18 + 4n

(4-n0)

Long 12 + 8n

(3-2n0)
12 + 8n

(3-2nOI

- 16 + 8n

<4-2n0)
18 + 8n

(4-2n0l
16 + 8n

(4-2n0)
20 + 8n

(5*2n0)
16 + 8n

(4-2n0)
18 + 8n

(4-2n0)

MOVEM
R»M

Word 8 + 4n

<2n)

- 8 + 4n

<2n)

12 + 4n

(3n)

14 + 4n

(3n)

12 + 4n

(3n)

16 + 4n

(4n) z
-

Long 8 + 8n

(2 2n) _
8 + 8n

(2 2n)

12 + 8n

(3 2n)

14 + 8n

(3 2n)

12 + 8n

(3 2n)

16-8n
(4 2n) _

-

n is the number of registers to i

* The size of the index register

8.10 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table 8-1 1 lists the timing data for multi-precision instructions. The number of clock periods

includes the time to fetch both operands, perform the operations, store the results, and
read the next instructions. The total number of clock periods, the number of read cycles,

and the number of write cycles are shown in the previously described format.

The following notation applies in Table 8-11:

Dn- Data register operand
M - Memory operand

Table 8-11. Multi-Precision Instruction Execution Times

Instruction Size op Dn. Dn op M. M

ADDX
-.'. .'.

: 4(1 01 183 II

Long 8'i 01 30-5 21

CMPVI
Bvte. Word 12' 3 01

.o^g 20' 5 :

SuBx
-

. • .'. : •11 18 3 "

.ong 8 ' 30'6 2

ABCD Byle 6'' j 18'3 II

SBCO Bvte 6
'

18.3 v
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8.11 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables 8-12 and 8-13 list the timing data for miscellaneous instructions. The total number
of clock periods, the number of read cycles, and the number of write cycles are shown in

the previously described format. The number of clock periods, the number of read cycles,

and the number of write cycles, respectively, must be added to those of the effective address
calculation where indicated by a plus sign ( + ).

Table 8-12. Miscellaneous Instruction Execution Times

Instruction Size Register Memory

ANDI to CCR Byte 20(3-0!

ANDI to SR W Of 3 20(3/01

CHK [No Trap) - 10(1/01 +

EORl to CCR Byte 20(3/01

EORI to SR Word 20(3'0l

ORI to CCR Byte 2013/01

ORi to SR Word 20(3/01 -

MOVE from SR 6(1/01 6(1/11 +

MOVE to CCR 12(1/0) 12(1/01 +

MOVE to SR 12(2 0) 12(2 01 +

EXG 61 1/01

EXT
Word 4(1 '01

Long 4(1 01

LINK - 16(2/21

MOVE Irom USP 4(1/01

MOVE to USP 4(1 01

NOP 4H 01

RESET 132(1 01

RTE 20(5/01

RTR 20(5 01

RTS 16(4 0)

STOP 4(0/0!

SWAP 4(1/01

TRAPV 4(1/01

UNLK 12(3/01

add effective atidress calculation time

Table 8-13. Move Peripheral Instruction Execution Times

Instruction Size Register— Memory Memory— Register

MOVEP
Word 16(2/21 16(4/01

Long 24(2/41 24(6/01
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8.12 EXCEPTION PROCESSING EXECUTION TIMES

Table 8-14 lists the timing data for exception processing. The numbers of clock periods

include the times for all stacking, the vector fetch, and the fetch of the first instruction of

the handler routine. The total number of clock periods, the number of read cycles, and the

number of write cycles are shown in the previously described format. The number of clock

periods, the number of read cycles, and the number of write cycles, respectively, must be

added to those of the effective address calculation where indicated by a plus sign ( + ).

Table 8-14. Exception Processing Execution Times

Exception Periods

Address Error 50I4/7I

BuS tr-or 50I4/7)

CHK Instruction 40(4/3) +

Divide by Zero 38(4/3) +

Illegal Instruction 34(4/31

Interrupt 44(5/3)*

Privilege Violation 34(4/31

RESET" 40(6.01

Trace 3414/3)

TRAP Instruction 3414/31

TRAPV Instruction 34(5/3)

+ add effective address calculalion time

'The interrupt acknowledge cycle is assumed

to lake four clock periods
• indica tes the time from when RESET and

HALT are first sampled as negated to when
instruction execution starts
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MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA

MC68230

Technical Summary

Parallel Interface/Timer (Pl/T)

The MC68230 parallel interface timer (PI T) provides versatile double buffered parallel interfaces

and a system oriented timer for MC68000 systems. The parallel interfaces operate in unidirectional

or bidirectional modes, either 8 or 16 bits wide. In the unidirectional modes, an associated data

direction register determines whether each port pin is an input or output. In the bidirectional modes
the data direction registers are ignored and the direction is determined dynamically by the state of

four handshake pins. These programmable handshake pins provide an interface flexible enough for

connection to a wide variety of low, medium, or high speed peripherals or other computer systems.

The PIT ports allow use of vectored or autovectored interrupts, and also provide a DMA request

pin for connection to the MC68450 direct memory access controller (DMAC) or a similar circuit. The

PI T timer contains a 24-bit wide counter and a 5-bit prescaler. The timer may be clocked by the

system clock (PI T CLK pin) or by an external clock (TIN pin), and a 5-bit prescaler can be used. It

can generate periodic interrupts, a square wave, or a single interrupt after a programmed time pe-

riod. It can also be used for elapsed time measurement or as a device watchdog.

Features of the PI T include:

• M68000 Bus Compatible

• Port Modes Include:

Bit 10
Unidirectional 8 Bit and 16 Bit

Bidirectional 8 Bit and 16 Bit

• Programmable Handshaking Options

• 24-Bit Programmable Timer Modes

• Five Separate Interrupt Vectors, Four of Which May be Dedicated to External Interrupt Serv-

ice Requests

• Separate Port and Timer Interrupt Service Requests

• Registers are Read Write and Directly Addressable

• Registers are Addressed for MOVEP (Move Peripheral) and DMAC Compatibility

This document contains information on a new product Specifications and information herein are subject to change without notice
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MC68230

INTRODUCTION

The PIAT consists of two logically independent sections:

the ports and the timer. The port section consists of port

A (PAO-PA7), port B (PBO-PB7), four handshake pins (H1,

H2, H3, and H4), two general input/output (I/O) pins, and

six dual-function pins. The dual-function pins can indi-

vidually operate as a third port (port C) or an alternate

function related to either port A, port B, or the timer. The
four programmable handshake pins, depending on the

mode, can control data transfer to and from the ports,

can be used as general-purpose I/O pins, or can be used

as interrupt-generating edge-sensitive inputs with cor-

responding interrupt vector numbers. Refer to Figure 1.

The timer consists of a 24-bit counter, optionally clocked

by a 5-bit prescaler. Three pins provide complete timer

I/O: PC2/TIN, PC3/TOUT, and PC7/TIACK. Only the ones
needed for the given configuration perform the timer

function, while the others remain port C I/O.

The system bus interface provides for asynchronous
transfer of data from the PIT to a bus master over the

data bus (DO-D7). Data transfer acknowledge (DTACK),

registe r selects (RS1-RS5), timer interrupt acknowledge
(TIACK), read/write line (R/W}, chip select (CS), or port

interrupt acknowledge (PIACK) control data transfers be-

tween the PIT and an M68000 processor.

PORT MODE DESCRIPTION

The primary focus of most applications will be on port

A, port B, the handshake pins, the port interrupt pins, and

the DMA request pin. They are controlled in the following

way: the port general control register contains a 2-bit

field that specifies one of four operation modes. These

govern the overall operation of the ports and determine
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Figure 1. Block Diagram
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MC68230

their interrelationships. Some modes require additional port mode/submode combination specifies a set of pro-

information from each port's control register to further grammable characteristics that fully define the behavior

define its operation. In each port control register, there of that port and two of the handshake pins. This structure

is a 2-bit submode field that serves this purpose. Each is summarized in Table 1 and Figure 2.

Table 1. Port Mode Control Summary

Mode (Unidirectional 8-Bit Mode)
Port A

Submode 00 — Pin-Definable Double-Buffered Input or Single-Buffered Output

H1 — Latches input data

H2 — Status interrupt generating input, general-purpose output, or operation with H1 in the interlocked or

pulsed handshake protocols

Submode 01 — Pm-Definable Double-Buffered Output or Non-Latched Input

HI — Indicates data received by peripheral

H2 — Status interrupt generating input, general-purpose output, or operation with HI in the interlocked or

pulsed handshake protocols

Submode 1X — Pin-Definable Single-Buffered Output or Non-Latched Input

HI — Status interrupt generating input

H2 — Status interrupt generating input or general-purpose output

Port B

H3 and H4 — Identical to port A. HI and H2

Mode 1 (Unidirectional 16-Bit Mode)
Port A — Most Significant Data Byte or Non-Latched Input or Single Buffered Output

Submode XX — (Not Used)

HI — Status interrupt generating Input

H2 — Status interrupt generating input or general-purpose output

Port B — Least-Significant Data Byte

Submode X0 — Pin-Definable Double-Buffered Input or Single- Buffered Output

H3 — Latches input data

H4 — Status interrupt generating input, general-purpose output, or opereation with H3 in the interlocked or

pulsed handshake protocols

Submode X1 — Pin-Definable Double-Buffered Output or Non-Latched Input

H3 — Indicates data received by peripheral

H4 — Status interrupt generating input, general-purpose output, or operation with H3 in the interlocked or

pulsed handshake protocols

Mode 2 (Bidirectional 8-Bit Mode)
Port A — Bit I

Submode XX — (Not Used)

Port B — Double-Buffered Bidirectional Data

Submode XX — (Not Used)

H1 — Indicates output data received by the peripheral and controls output drivers

H2 — Operating with H1 in the interlocked or pulsed output handshake protocols

H3 — Latches input data

H4 — Operation with H3 in the interlocked or pulsed input protocols

Mode 3 (Bidirectional 16-Bit Mode)
Port A — Double-Buffered Bidirectional Data (Most-Significant Data Byte)

Submode XX — (Not Used)

Port B — Double Buffered Bidirectional Data (Least-Significant Data Byte)

Submode XX — (Not Used)

HI — Indicates output data received by peripheral and controls output drivers

H2 — Operation with HI in the interlocked or pulsed output handshake protocols

H3 — Latches input data

H4 — Operation with H3 in the interlocked or pulsed input handshake protocols
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Figure 2. Port Mode Layout
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MC68230

SIGNAL DESCRIPTION

The input and output signals are illustrated functionally

in Figure 3 and described in the following paragraphs.

DO 07

RSI RS5

R/W

cs

DTACK

RESET

idividually Programmable Dual-Funclion Pin

Figure 3. Logical Pin Assignment

BIDIRECTIONAL DATA BUS (D0-D7)

The data bus pins, D0-D7, form an 8-bit bidirectional

data bus to from an M68000 bus master. These pins are

active high.

REGISTER SELECTS (RS1-RS5)

The register select pins, RS1-RS5, are active high high-

impedance inputs that determine which of the 23 internal

registers is being selected. They are provided by the

M68000 bus master or other bus master.

READ/WRITE (R/W)

R W is a high-impedance read write input signal from

the M68000 bus master, indicating whether the current

bus cycle is a read (high) or write (low) cycle.

CHIP SELECT (CS)

CS is a high-impedance input that selects the PIT reg-

isters for the current bus cycle. The data strobe (upper

or lower) of the bus master, along with the appropriate

address bits, must be included in the chip-select equa-

tion. A low level corresponds to an asserted chip select.

DATA TRANSFER ACKNOWLEDGE (DTACK)

DTACK is an active low output that signals the

completion of the bus cycle . During read or interrupt

acknowledge cycles, DTACK is asserted after data has

been provided on the data bus; during write cycles it is

asserted after data has been accepted at the data bus.

Data transfer acknowledge is compatible with the
MC68000 and with other M68000 bus mastsers such as

the MC68450 direct memory access contro ller (DMAC).
A pullup resistor is required to maintain DTACK high

between bus cycles.
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RESET (RESET)

RESET is a high-impedance input used to initialize all

Pl/T functions. All control and data direction registers are

cleared and most in ternal operations are disabled by the

assertion of RESET (low).

CLOCK (CLK)

The clock pin is a high-impedance TTL-compatible signal

with the same specifications as the MC68000. The Pl/T

contains dynamic logic throughout, and hence this clock

must not be gated off at any time. It is not necessary that

this clock maintain any particular phase relationship with

the M68000 system clock. It may be connected to an

independent frequency source (faster or slower) as long

as all bus specifications are met.

PORT A AND PORT B (PA0-PA7 and PB0-PB7)

Ports A and B are 8-bit ports that may be concatenated

to form a 16-bit port in certain modes. The ports may be

controlled in conjunction with the handshake pins H1-H4.

For stabilization during system power up, ports A and B

have internal pullup resistors to Vqq. All port pins are

active high.

HANDSHAKE PINS (H1-H4)

Handshake pins H1-H4 are multi-purpose pins that (de-

pending on the operational mode) may provide an in-

terlocked handshake, a pulsed handshake, interrupt-

generating edge-sensitive inputs (independent of data

transfers), or simple I/O pins. For stabilization during sys-

tem power up, H2 and H4 have internal pullup resistors

to Vqq. The sense of H1-H4 (active high or low) may be

programmed in bits 3-0 of the port general control reg-

ister. Independent of the mode, the instantaneous level

of the handshake pins can be read from the port status

register.

PORT C (PC0-PC7/ALTERNATE FUNCTION)

This port can be used as eight general purpose I/O pins

(PC0-PC7) or any combination of six special function pins

and two general purpose I/O pins (PC0-PC1). Each dual-

function pin can be a standard I/O or a special function

independent of the other port C pins. When used as a

port C pin, these pins are active high. They may be in-

dividually programmed as inputs or outputs by the port

C data direction register. The dual function pins are de-

fined in the following paragraphs.

The alternate functions TIN, TOUT, and TIACK are timer

I/O pins. TIN may be used as a rising-edge triggered ex-

ternal clock input or an external run/halt control pin (the

timer is in the run state if run/halt is high and in the halt

state if run/halt is low). TOUT may provide an active low

timer interrupt request output or a general-purpose

square-wave output, initially high. TIACK is an active low

high-impedance input used for timer interrupt acknowl-

edge.

The port functions of the Pl/T (ports A and B) have an

independent pair of active low interrupt request (PIRQ)

and interrupt acknowledge (PIACK) pins.
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The DMAREQ (direct memory access request) pin pro-

vides an active low direct memory access controller re-

quest pulse for three clock cycles, completely compatible
with the MC68450 DMAC. Note that if these pins are used
for an alternate function, the corresponding bit in the Port

C Data Direction Register must be programmed as an

input (0).

SIGNAL SUMMARY
Table 2 is a summary of al

the previous paragraphs.

the signals discussed in

The following signals generate normal read and write

cycles to the PIT: CS (chip select), R "W (read/wrfte), RS1-
RS5 (five register select bit s), DO-D7 (the 8-bit bidirec-

tional data bus), and DTACK (data transfer acknowledg e).

To generate interrupt acknowledge cycles, PC6 PIACK or

PC7 TIACK is used instead of CS, and the register select

pins are ignored. No combination of the followi ng pin

fu nctions may be asserted simultaneously: CS, PIACK,

or TIACK.

TIMER OPERATION

BUS INTERFACE OPERATION

The PIT has an asynchronous bus interface, primarily

designed for use with an MC68000 microprocessor. With

care, however, it can be connected to synchronous
microprocessor buses.

In an asynchronous system the PI T clock may operate

at a significantly different frequency, either higher or

lower, than the bus master and other system compo-
nents, as long as all bus specifications are met. The
MC68230 CLK pin has the same specifications as the

MC68000 CLK pin, and must not be gated off at any time.

The MC68230 timer can provide several facilities needed
by MC68000 operating systems. It can generate periodic

interrupts, a square wave, or a single interrupt after a

programmed time period. Also, it can be used for elapsed

time measurement or as a device watchdog.

The PI timer contains a 24-bit synchronous down
counter that is loaded from three 8-bit counter preload

registers. The 24-bit counter may be clocked by the output

of a 5-bit (divide-by-32) prescaler or by an external timer

input (TIN). If the prescaler is used, it may be clocked by

the system clock (CLK pin) or by the TIN external input.

The counter signals the occurrence of an event primarily

Table 2. Signal Summary

Signal Name Input/Output Active State Edge/Level Sensitive Output States

CLK Input Falling and Rising Edge

CS Input Low Level

D0-D7 Input Output High=1, low = Level High, Low, High Impedance

Output Low High, LowDMAREQ

DTACK Output Low High, Low, High Impedance"

HKH3C" Input Low or High Asserted Edge

H2)H4** Input or Output Low or High Asserted Edge High, Low, High Impedance

PA0-PA7", PB0-PB7"
PC0-PC7

Input Output

Input or Output

High = 1, Low = Level High. Low, High Impedance

PiACK Input Low Level

PJRQ Output Low Low, High Impedance*

RS1-RS5 Input High = 1. Low = Level

R/W Input High Read, Low Write Level

RESET Input Low Level

TIACK Input Low Level

TIN (External Clock) Input Rising Edge

TIN (Run/Halt) Input High Level

TOUT (Square Wave) Output Low High, Low

TOUT (TIRQ) Output Low Low, High Impedance*

•Pullup resistors required.

"Note these pins have internal pullup resistors.

•••HI is level sensitive for output buffer control in modes 2 and 3
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through zero detection. (A zero is when the counter of

the 24-bit timer is equal to zero). This sets the zero detect

status (ZDS) bit in the timer status register. It may be

checked by the processor or may be used to generate a

timer interrupt. The ZDS bit can be reset by writing a one

to the timer status register in that bit position independ-

ent of timer operation.

The general operation of the timer is flexible and easily

programmable. The timer is fully configured and con-

trolled by programming the 8-bit timer control register.

It controls: 1) the choice between the port C operation of

three timer pins, 2) whether the counter is loaded from

the counter preload register or rolls over when zero detect

is reached, 3) the clock input, 4) whether the prescaler is

used, and 5) whether the timer is enabled.

REGISTER MODEL

A register model that includes the corresponding reg-

ister selects is shown in Table 3.

Table 3. Register Model (Sheet 1 of 2)

Register

Select

Bits

5 4 3 2 1

Register

Value

After

RESET
(Hex

Value)

Port Mode
Control

H34
Enable

H12

Enable

H4

Sense

H3

Sense

H2

Sense

H1

Sense

Port General

Control Register

1 SVCRQ
Select

IPF

Select

Port Interrupt

Priority Control

Port Service

Request Register

10 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit Port A Data

Direction Register

11 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit Bit

n

Port B Data

Direction Register

10 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit Port C Data

Direction Register

10 1

Interrupt Vector Number
* * F Port Interrupt

Vector Register

110
Port A

Submode
H2 Control

H2

Int

Enable

HI

SVCRQ
Enable

H1

Stat

Control

Port A Control

Register

111
Port B

Submode
H4 Control

H4
Int

Enable

H3

SVCRQ
Enable

H3

Stat

Control

Port B Control

Register

10 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit * * Port A Data

Register

10 1 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit Bit Port B Data

Register

10 10 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit Port A Alternate

Register

10 11 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit Port B Alternate

Register

110 Bit

7

Bit

6

Bit

5

Bit

4

Bit

3

Bit

2

Bit

1

Bit Port C Data

Register

110 1 H4
Level

H3

Level

H2

Level

HI

Level

H4S H3S H2S H1S Port Status

Register

1110 ' * ' • * * • •
(Null)

1111 • * * • * * •
(Null)

•Unused, read as zero

"Value before RESET
'••Current value on pins

'••Undetermined value
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Register

Select

Bits

5 4 3 2 1

Table 3. Register Model (Sheet 2 of 2)

Register

Value

After

RESET
(Hex

Value)

10 TOUTTIACK
Control

ZD
Control

Clock

Control

Timer
!

Timer Control

Enable 1 Register

10 1 B.t Bit 1 Bit

6 5

Bit

4

Bit

3

Bit

2

Bit Bit F Timer Interrupt

Vector Register

10 10 * * *
(Null)

10 11 Bit

23

Bit

22

Bit
[

Bit

21
: 20

Bit

19

Bit Bit

18 ! 17

Bit

16

* * Counter Preload

Register (High)

10 10 B.t

15

Bit

14

Bit ! Bit

13
1

12

Bit

11

Bit Bit

10 9

Bit I * Counter Preload

8 Register (Mid)

10 10 1 Bit Bit

6

Bit

5

Bit

4

Bit

3

Bit 1 Bit

2 1

Bit Counter Preload

Register (Low)

10 110 * * * * * (Null)

10 111 Bit

23

Bit

22

Bit

21

Bit

20

Bit

19

Bit

18

Bit

17

Bit * * Count Register

16 (High)

110 Bit

15

B't

14

Bit

13

Bit

12

Bit

11

Bit

10

Bit Bit * Count Register

9 8 (Mid)

110 1 Bit Bit

6

Bit

5

Bit

4

Bit Bit

3
|

2

Bit Bit * * Count Register

1 (Low)

110 10 • • • • •
1 ZDS Timer Status

110 11 • • (Null)

1110 • • • • (Null)

1110 1
• • • • (Null)

11110 * • • (Null)

11111 • • *
|

(Null)

'Unused, read as zero

•Value before RESET

ELECTRICAL SPECIFICATIONS

MAXIMUM RATINGS

Characteristic Symbol Value Unit

Supply Voltage vcc 3 to -70 V

Input Voltage v
in

-0.3 to -7 V

Operating Temperature Range TA Oto 70 °c

Storage Temperature Tstg -55 to -150 c

THERMAL CHARACTERISTICS

Chaiacteristic Symbol
Value

(Max) Symbol
Value

(Max) Rating

Thermal Resistance

Ceramic (LLC)

Plastic (P)

eJA
40

|

40

9JC
15*

20'

CW

This device contains circuitry to protect the

inputs against damage due to high static volt-

ages or electric fields; however, it is advised

that normal precuations be taken to avoid

application of any voltage higher than max-

imum-rated voltages to this high impedance

circuit Reliability of operation is enhanced if

unused inputs are tied to an appropriate logic

voltage level (e g ,
either GND or Vcc l
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MC68681

TechnicalSummary

Dual Asynchronous
Receiver/Transmitter (DUART)

The MC68681 dual universal asynchronous receiver transmitter (DUART) is part of the M68000
Family of peripherals and directly interfaces to the MC68000 processor via an asynchronous bus

structure. The MC68681 consists of eight major sections: internal control logic, timing logic, inter-

rupt control logic, a bidirectional 8-bit data bus buffer, two independent communication channels (A

and B), a 6-bit parallel input port, and an 8-bit parallel output port.

Figure 1 illustrates the basic block diagram of the MC68681 and should be referred to during the

discussion of its features which include the following:

• M68000 Bus Compatible

• Two Independent Full-Duplex Asynchronous Receiver Transmitter Channels

• Maximum Data Transfer

— 1X— 1 MB second
— 16X—125 kB second

• Quadruple-Buffered Receiver Data Registers

• Double-Buffered Transmitter Data Registers

• Independently Programmable Baud Rate for Each Receiver and Transmitter Selectable From:
— 18 Fixed Rates: 50 to 38.4k Baud
— One User Defined Rate Derived from a Programmable Timer Counter
— External 1X Clock or 16X Clock

• Programmable Data Format
— Five to Eight Data Bits plus Parity

— Odd, Even, No Parity, or Force Parity

— One, One and One-Half, or Two Stop Bits Programmable in One-Sixteenth Bit Increments

• Programmable Channel Modes
— Normal (Full Duplex)
— Automatic Echo
— Local Loopback
— Remote Loopback

• Automatic Wake-up Mode for Multidrop Applications

• Multi-Function 6-Bit Input Port

— Can Serve as Clock or Control Inputs

— Change-of-State Detection on Four Inputs

• Multi-Function 8-Bit Output Port

— Individual Bit Set Reset Capability

— Outputs Can be Programmed to be Status Interrupt Signals

• Multi-Function 16-Bit Programmable CounterTimer

• Versatile Interrupt System
— Single Interrupt Output with Eight Maskable Interrupting Conditions
— Interrupt Vector Output on Interrupt Acknowledge
— Output Port Can be Configured to Provide a Total of Up to Six Separate Wire-ORable Interrupt

Outputs

This document contains information on a new product. Specifications and information herein are subiect to change without notice.
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DTACK •+-

R/W —

RESET

RS1-RS4

Internal Control Logic

Processor

Interface

Data Bus
Buffer

Interrupt

Control

Logic

GND

Timing Logic

Crystal

Oscillator

Baud Rate

Generator

Clock-

Selectors

Counter/

Timer

Channel A

4 Character

Rx Buffer

External

Interface

TxDA

RxDA

Channel B

2 Characte

Tx Buffer

4 Character

Rx Buffer

-» TxDB

— RxDB

Input Port

Change of

State

Detectorsl4)

3—L
Output Port

|

Figure 1. Block Diagram
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FEATURES (Continued)

• Parity, Framing, and Overrun Error Detection

• False-Start Bit Detection

• Line-Break Detection and Generation

• Detects Break Which Originates in the Middle of a Char-

acter

• Start-End Break Interrupt/Status

• On-Chip Crystal Oscillator

• TTL Comaptible

• Single + 5 V Power Supply

INTERNAL CONTROL LOGIC

The internal control logic receives operation com-
mands from the central processing unit (CPU) and gen-

erates appropriate signals to the internal sections to

control device operation. It allows the registers within the

DUART to be accessed and various commands to be per-

formed by decoding the four register-select lines (RS1

through RS4). Besides the four register-select lines, there

are three other inputs to the internal control logic from

the CPU: read/write (R/W), which allows read and write

transfers between the^CPU and DUART via the data bus

buffer; chi p select (CS), which is the DUART chip select;

and reset (RESET),which is used to initialize or reset the

DUART. Output from the intern al control logic is the data

transfer acknowledge (DTACK) signal which is asserted

during read, write, or interrupt acknowledge cycles.

DTACK indicates to the CPU that data has been latched

on a CPU write cycle or that valid data is present on the

data bus du ring a CPU read cycle or interrupt acknowl-

edge (IACK) cycle.

TIMING LOGIC

The timing logic consists of a crystal oscillator, a baud-
rate generator (BRG), a programmable 16-bit counter

timer (C/T), and four clock selectors. The crystal oscillator

operates directly from a 3.6864 MHz crystal connected
across the X1/CLK and X2 inputs or from an external clock

of the appropriate frequency connected to X1CLK. The
clock serves as the basic timing reference for the baud-
rate generator, the counter/timer, and other internal cir-

cuits. A clock signal, within the limits given in ELECTRI-
CAL SPECIFICATIONS, must always be supplied to the

DUART.
The baud-rate generator operates from the oscillator

or external clock input and is capable of generating 18

commonly used data communication baud rates ranging
from 50 to 38.4k by producing internal clock outputs at

16 times the actual baud rate. The counter/timer can be
used in the timer mode to produce a 16X clock for any
other baud rate by counting down the crystal clock or

external clock. Other baud rates may also be derived by
connecting 16X or 1X clocks to certain input port pins

which have alternate functions as receiver or transmitter

Reprinted with permission of Motorola Inc.

clock inputs. The four clock selectors allow the inde-

pendent selection, for each receiver and transmitter, of

any of these baud rates.

The 16-bit counter/timer (C/T) included within the

DUART and timing logic can be programmed to use one

of several timing sources as its input. The output of the

counter/timer is available to the internal clock selectors

and can also be programmed to be a parallel output at

OP3. In the timer mode, the counter/timer acts as a pro-

grammable divider and can be used to generate a square-

wave output at OP3. In the counter mode, the contents

of the counter timer can be read by the CPU and it can

be stopped and started under program control. The

counter counts down the number of pulses stored in the

concatenation of the counter/timer upper register and

counter/timer lower register and produces an interrupt.

This is a system oriented feature which may be used to

keep track of timeouts when implementing various ap-

plication protocols.

INTERRUPT CONTROL LOGIC

The following registers are associated with the inter-

rupt control logic: interrupt mask register (IMR), interrupt

status register (ISR), auxiliary control register (ACR), and

interrupt vector register (IVR).

A single active-low interrupt output (IRQ) is provided

which can be used to notify the processor that any of

eight internal events has occurred. The interrupt mask
register (IMR) can be programmed to select only certain

conditions which cause IRQ to be asserted while the in-

terrupt status register (ISR) can be read by the CPU to

determine all currently active interrupting conditions .

When an active-low interrupt acknowledge signal (IACK)

from the processor is assserted while the DUART has an

interrupt pending, the DUART will place the contents of

the interrupt vector register (IVR) (i.e., the interrupt vec-

tor) on the d ata bus and assert the data transfer acknowl-

edge signal (DTACK).

In addition, the DUART offers the ability to program
the parallel outputs OP3 through OP7 to provide discrete

interrupt outputs for the transmitters, the receivers, and
the counter/timer.

DATA BUS BUFFER

The data bus buffer provides the interface between the

external and internal data buses. It is controlled by the

internal control logic to allow read and write data transfer

operations to take place between the controlling CPU and

DUART by way of the eight parallel data lines (DO through

D7).

COMMUNICATION CHANNELS A AND B

Each communication channel comprises a full-duplex

asynchronous receiver transmitter (UART). The operat-

ing frequency for each receiver and each transmitter can

be selected independently from the baud-rate generator,

the counter/timer, or from an external clock.
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The transmitter accepts parallel data from the CPU,
converts it to a serial bit stream, inserts the appropriate

start, stop, and optional parity bits, and outputs a com-
posite serial stream of data on the TxD output pin. The
receiver accepts serial data on the RxD pin, converts this

serial input to parallel format, checks for a start bit, stop

bit, parity bit (if any), or break condition, and transfers

an assembled character to the CPU during read opera-

tions.

INPUT PORT

The inputs to this unlatched 6-bit port (IPO through IP5)

can be read by the CPU by performing a read operation.

High or low inputs to the input port result in the CPU
reading a logic one or logic zero, respectively; that is

there is no inversion of the logic level. Since the input

port is a 6-bit port, performing a read operation will result

in D7 being read as a logic one and D6 reflecting the logic

level of IACK. Besides general-purpose inputs, the inputs

to this port can be individually assigned specific auxiliary

functions serving the communication channels.

Four change-of-state detectors, also provided within

the input port, are associated with inputs IPO, IP1, IP2,

and IP3. A high-to-low or low-to-high transition of these

inputs lasting longer than 25 to 30 microseconds (best-

to-worst case times) will set the corresponding bit in the

input port change register (IPCR). The bits are cleared

when the register is read by the CPU. Also, the DUART
can be programmed so any particular change of state can

generate an interrupt to the CPU. The DUART recognizes

a level change on an input pin internally only after it has

sampled the new level on the pin for two successive

pulses of the sampling clock. The sampling clock is 38.4

kHz and is derived from one of the baud-rate generator

taps. The resulting sampling period is slightly more than

25 microseconds (this assumes that the clock input is

3.6864 MHz). Subsequently, if the level change occurs on

or just before a sampling pulse, it will be recognized

internally after 25 microseconds. However, if the level

change occurs just after a sampling pulse, it will be sam-

pled the first time after 25 microseconds. Thus, in this

case the level change will not be recognized internally

until 50 microseconds after the level change took place

on the pin.

OUTPUT PORT

This 8-bit multi-purpose output port can be used as a

general-purpose output port. Associated with the output

port is an output port register (OPR).

All bits of the output port register can be individually

set and reset. A bit is set by performing a write operation

at the appropriate address with the accompanying data

specifying the bits to be set (one equals set and zero

equals no change). Similarly, a bit is reset by performing

a write operation at another address with the accompa-

nying data specifying the bits to be reset (one equals reset

and zero equals no change).

The output port register stores data that is to be output

at the output port pins. Unlike the input port, if a particular

bit of the output port register is set to a logic one or logic

zero the output pin will be at a low or high level, re-

spectively. Thus, a logic inversion takes place internal to

the DUART with respect to this register. The outputs are

complements of the data contained in the output port

register.

Besides general-purpose outputs, the outputs can be
individually assigned specific auxiliary functions serving

the communication channels. The assignment is accom-
plished by appropriately programming the channel A and

B mode registers (MR1A. MR1B, MR2A, and MR2B) and

the output port configuration register (OPCR).

SIGNAL DESCRIPTION

The following paragraphs contain a brief description

of the input and output signals.

NOTE
The terms assertion and negation will be used

extensively. This is done to avoid confusion

when dealing with a mixture of "active low"

and "active high" signals. The term assert or

assertion is used to indicate that a signal is

active or true, independent of whether that

level is represented by a high or low voltage.

The term negate or negation is used to indi-

cate that a signal is inactive or false.

Vcc AND GND
Power is supplied to the DUART using these two sig-

nals. Vqq is power ( + 5 volts) and GND is the ground

connection.

CRYSTAL INPUT OR EXTERNAL CLOCK (X1/CLK)

This input is one of two connections to a crystal or a

connection to an external clock. A crystal or a clock, within

the specified limits, must be supplied at all times. If a

crystal is used, a capacitor of approximately 10 to 15

picofarads should be connected from this pin to ground.

CRYSTAL INPUT (X2)

This input is an additional connection to a crystal. If an

external TTL-level clock is used, this pin should be tied

to ground. If a crystal is used, a capacitor of approxi-

mately to 5 picofarads should be connected from this

pin to ground.

RESET (RTSET)

The DUART can be reset by asserting the RESET signal

or by programming the appro priate command register.

A hardware reset, assertion of RESET, clears status reg-

isters A and B (SRA and SRB), the interrupt mask register

(IMR), the interrupt status register (ISR), the output port

register (OPR), and the output port configuration register

(OPCR). RESET initializes the interrupt vector register (IVR)

to 0F 16 , places parallel outputs OP0 through OP3 in the

high state, places the counter timer in timer mode, and
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places channels A and B in the inactive state with the

channel A transmitter serial-data output (TxDA) and

channel B transmitter serial-data output (TxDB) in the

mark (high) state.

Software resets are not as encompassing and are

achieved by appropriately programming the channel A
and'or B command register. Reset commands can be pro-

grammed through the command register to reset the re-

ceiver, transmitter, error status, or break-change interrupts

for each channel

mode. (Mark is high and space is low ) Data is shifted

out this pm on the falling edge of the programmed clock

CHANNEL A RECEIVER SERIAL-DATA INPUT (RxDAl

This signal is the receiver serial-data mpui for char,'

A The least-significant bit is received first Data or tr

pm is sampled on the rising edge o* the prog-am-,,

clock source

CHIP SELECT (CS)

This active low input signal, when low, enables data

transfers between the CPU and DUART on the data lines

(DO through D7) These data transfers are controlled by

read write (R W) and the register-select inputs I RSI

through RS4). When chip select is high the DO through

D7 data lines are placed in the high-impedance state

READ/WRITE (R/W)

When high, this input indicates a read cycle, and when
low, it indicates a write cycle. A cycle is initiated by as-

sertion of the chip-select input.

DATA TRANSFER ACKNOWLEDGE (DTACK)

This three-state active low open-dram output is as -

serted in read, write, or interrupt acknowledge (lACKi

cycles to indicate the proper transfer of data between the

CPU and DUART.

REGISTER-SELECT BUS (RS1 THROUGH RS4)

The register-select bus lines during read write opera-

tions select the DUART internal registers, ports, or com-
mands.

DATA BUS (DO THROUGH D7)

These bidirectional three-state data lines are used to

transfer commands, data, and status between the CPU
and DUART. DO is the least-significant bit.

INTERRUPT REQUEST (IRQ)

This active low, open-drain output signals the CPU that

one or more of the eight maskable interrupting conditions

are true.

INTERRUPT ACKNOWLEDGE (JACK)

This active low input indicates an interrupt acknowl-

edge cycle. If there is an interrupt pending (IRQ asserted)

and this pin asserted, the DUART responds by placing

the inte rrupt vector on the data bus and then asserting

DTACK. If there is not an interrupt pending (IRQ negatedl,

the DUART ignores the status of this pin.

CHANNEL A TRANSMITTER SERIAL-DATA OUTPUT
(TxDA)

This signal is the transmitter serial-data output for

channel A. The least-significant bit is transmitted first.

This output is held high (mark condition) when the trans-

mitter is disabled, idle, or operating in the local loopback
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CHANNEL B TRANSMITTER SERIAL-DATA OUTPUT
(TxDB)

This signal is the transmute' senai-aata output fc>'

channel B The least-significant bn is uansmirtec ' rs;

The output is held high imark condition 1 when the trans-

mitter is disabled, idle, or operating ,n the loca 1 'oopback

mode Data is shifted out this p,n or the failing edge of

the programmed dock source

CHANNEL B RECEIVER SERIAL-DATA INPUT (RxDB)

This signal is the receiver se^ai-data input for channel

B. The least-significant bn is received first Data on this

pm is sampled on the rising edge of the programmed
clock source

PARALLEL INPUTS (IPO THROUGH IP5)

Each of the parallel inputs HPO through I P5i can be used

as general-purpose inputs However, each one has an

alternate functionisl which is described in the following

paragraphs

IPO This input can be used as t he channel A clear-to-

send active low input 1CTSA1. A change-of-state de-

tector is also sassociated with this input.

IP1 This input can be used as the channel B clear-to-

send active low input (CTSBl. A change-of-state de-

tector is also associated with this input.

IP2 This input can be used as the channel B receiver

external clock input (RxCBL or the counter timer

external clock input. When this input is used as the

external clock by the receiver, the received data is

sampled on the rising edge of the clock. A change-

of-state detector is also associated with this input.

IP3 This input can be used as the channel A transmitter

external clock input (TxCA). When this input is used

as the external clock by the transmitter, the trans-

mitted data is clocked on the falling edge of the

clock A change-of-state detector is also associated

with this input.

IP4 This input can be used as the channel A receiver

external clock input (RxCAl When this input is used

as the extern. 'I clock by the receiver, the received

data is sampled on the rising edge of the clock

IP5 This input can be used as the channel B transmitter

external clock (TxCB). When this input is used as

the external clock by the transmitter, the transmit-

ted data is clocked on the falling edge of the clock
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PARALLEL OUTPUTS (OPO THROUGH OP7)

Each of the parallel outputs can be used as general-

purpose outputs. However, each one has an alternate

function(s) which is described in the following para-

graphs.

OPO This output can be used a s the channel A active

low request-to-send (RTSA) output. When used for

this function, it is automatically negated and reas-

serted by either the receiver or transmitter.

OP1 This output can be used as the channel B active low
request-to-send (RTSB) output. When used for this

function, it is negated and reasserted automatically

by either the receiver or transmitter.

OP2 This output can be used as the channel A trans-

mitter 1X-clock or 16X-clock output, or the channel

A receiver 1X-clock output.

OP3 This output can be used as the open-drain active

low counter-ready output, the open-drain timer out-

put, the channel B transmitter 1X-clock output, or

the channel B receiver 1X-clock output.

OP4 This output can be used as the channel A open-
drain active-low receiver-ready or buffer-full inter-

rupt outputs (RxRDYAFFULLA) by appropriately

programming bit 6 of mode register 1A.

OP5 This output can be used as the channel B open-
drain active-low receiver-ready or buffer-full inter-

rupt outputs (RxRDYB FFULLB) by appropriately

programming bit 6 of mode register 1B.

OP6 This output can be used as the channel A open-
drain active-low transmitter-ready interrupt output

(TxRDYA) by appropriately programming bit 6 of

the output port configuration regiser.

OP7 This output can be used as the channel B open-

drain active-low transmitter-ready interrupt output

(TxRDYB) by appropriately programming bit 7 of

the output port configuration register.

SIGNAL SUMMARY
Table 1 provides a summary of all the MC68681 signals

described above.

Table 1. Signal Summary (Sheet 1 of 2)

Signal Name Mnemonic Pin No. Input/Output Active State

Power Supply ( * 5 VI VCC 40 Input High

Ground GND 20 Input Low

Crystal Input or External Clock X1 CLK 32 Input -
Crystal Input X2 33 Input -
Reset RESET 34 Input Low

Chip Select CS 35 Input Low

Read/Write RW 8 Input High Low

Data Transfer Acknowledge DTACK 9 Output* Low

Register-Select Bus Bit 4 RS4 6 Input High

Register-Select Bus Bit 3 RS3 5 Input High

Register-Select Bus Bit 2 RS2 3 Input High

Register-Select Bus Bit 1 RS1 1 Input High

Bidirectional-Data Bus Bit 7 D7 19 Input Output High

Bidirectional-Data Bus Bit 6 D6 22 Input Output High

Bidirectional-Data Bus Bit 5 05 18 Input Output High

Bidirectional-Data Bus Bit 4 D4 23 Input Output High

Bidirectional-Data Bus Bit 3 D3 17 Input Output High

Bidirectional-Data Bus Bit 2 02 24 Input/Output High

Bidirectional Data Bus Bit 1 D1 16 Input Output High

Bidirectional-Data Bus Bit

(Least-Significant Bit)

DO 25 Input Output High

Interrupt Request IRQ 21 Output* Low

Interrupt Acknowledge JACK 37 Input LOW

Channel A Transmitter Serial Data TxDA 30 Output -

Channel A Receiver Serial Data RxDA 31 Input -
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Table 1. Signal Summary (Sheet 2 of 2)

Signal Name Mnemonic Pin No. Input/Output Active State

Channel B Transmitter Serial Data TxDB 11 Output -

Channel B Receiver Serial Data RxDB 10 Input

Parallel Input 5 IP5 38 Input -

Parallel Input 4 IP4 39 Input

Parallel Input 3 IP3 2 Input

Parallel Input 2 IP2 36 Input

Parallel Input 1 IP1 4 Input _

Parallel Input IPO 7 Input

Parallel Output 7 OP7 15 Output** -
Parallel Output 6 OP6 26 Output** -
Parallel Output 5 OP5 14 Output** -
Parallel Output 4 OP4 27 Output** -
Parallel Output 3 OP3 13 Output** -
Parallel Output 2 OP2 28 Output

Parallel Output 1 OP1 12 Output -
Parallel Output OPO 29 Output

•Requires a pullup resistor.

•May require a pullup resistor, depending upon its programmed ft

PROGRAMMING AND
REGISTER DESCRIPTION

The operation of the DUART is programmed by writing

control words into the appropriate registers. Operational

feedback is provided by way of the status registers which
can be read by the CPU. The DUART register address and
address-triggered commands are described in Table 2.

Figure 2 illustrates a block diagram of the DUART from
a programming standpoint and details the register con-

figuration for each block. The locations marked "do not

access" should never be read during normal operation.

They are used by the factory for testing purposes.

Tables 3 and 4 are provided to illustrate the various

input port pin functions and output port pin functions

respectively.

Table 5 is provided to illustrate the various clock sources

which may be selected for the counter and timer. More
detailed information can be obtained from Table 6.

Care should be exercised if the contents of a register

is changed during receiver transmitter operation since

certain changes may cause undesired results. For ex-

ample, changing the number of bits-per-character while

the transmitter is active may cause the transmission of

an incorrect character. The contents of the mode registers

Reprinted with permission of Motorola Inc.

(MR), the clock-select register ICSR), the output port con-

figuration register (OPCR), and bit 7 of the auxiliary con-

trol register (ACR[7]) should only be changed after the

receiver(s) and transmitter(s) have been issued software

Rx and Tx reset commands. Similarly, certain changes to

the auxiliary control register (ACR bits six through four)

should only be made while the counter timer (CT) is not

used (i.e., stopped if in counter mode, output and or in-

terrupt masked in timer mode).

Mode registers one and two of each channel are ac-

cessed via independent auxiliary pointers. The pointer is

set to channel A mode register one (MR 1A) and channel

B mode register one (MR1B) by RESET or by issuing a

"reset pointer" command via the corresponding com-
mand register. Any read of write of the mode register

while the pointer is at MR1A or MR1B switches the pointer

to channel A mode register two (MR2A) or channel B

mode register 2 (MR2B). The pointer then remains at

MR2A or MR2B. So, subsequent accesses will address
MR2A or MR2B, unless the pointer is reset to MR1A or

MR1B as described above.

Mode, command, clock-select, and status register are

duplicated for each channel to provide total independent
operation and control. Refer to Table 6 for descriptions

of the register and input and output port bits.
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Figure 2. Programming Block Diagram
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Table 2. Register Addressing and Address-Triggered Commands

RS4 RS3 RS2 RS1 Read(R/W=1) Write IR/W = 0)

Mode Register A (MR1A. MR2A) Mode Register A (MR1A. MR2AI

Status Register A (SRA) Clock-Select Register A (CSRA)

Do Not Access* Command Register A CRA)

Receiver Buffer A (RBA) Transmitter Buffer A (TBA)

1 Input Port Change Register (IPCR) Auxiliary Control Register (ACR)

1 Interrupt Status Register (ISR) Interrupt Mask Register (IMR)

1 Counter Mode: Current MSB of Counter (CUR) CounterTimer Upper Register (CTURI

1 Counter Mode/ Current LSB of Counter (CLR) Counter Timer Lower Register (CTLR)

Mode Register B (MR1B, MR2B) Mode Register B (MR1B, MR2B)

Status Register B (SRB) Clock-Select Register B (CSRB)

Do Not Access* Comand Register B (CRB)

Receiver Buffer B (RBB) Transmitter Buffer B (TBB)

1 Interrupt-Vector Register (IVR) Interrupt-Vector Register (IVR)

1 Input Port (Unlatched) Output Port Configuration Reg ster (OPCR)

1 Start-Counter Command** Output Port Register (OPR) Bit Set Command**

1 Stop-Counter Command** Output Port Register (OPRI Bit Reset Command**

•This address location is used for factory testing of the DUART and should not be read. Reading this location will result in undesired

effects and possible incorrect transmission or reception of characters. Register contents may also be changed.

•Address triggered commands.

Table 3. Programming of Input Port Functions

Function

Input Port Pin

IP5 IP4 IP3 IP2 IP1 IPO

General Purpose Default Default Default Default Default Default

Change-of-State

Detector

Default Default Default Default

External Counter

1X Clock Input

ACR[6 4)»=000

External Timer

16X Clock Input

ACR[6 4)* = 100

External Timer

1X Clock Input

ACR[6 4]* = 101

RxCA 16X CSRA17 4]= 1110

RxCA 1X CSRA(7 4)= 1111

TxCA 16X CSRA(30]= 1110

TxCA IX CSRAI3 0]= 1111

RxCB 16X CSRB17 41= 1110

RxCB IX CSRBI7 4] = 1111

TxCB 16X CSR8[3 01= 1 110

TxCB IX CSRBO 01= 1111

TxCTSA MR2A|4]= 1

TxCTSB MR2B[4]= 1

NOTE: Default refers to the function the input port pins perform when not used in one of the other modes Only those functions which
show the register programming are available for use

In these modes, because IP2 is used for the counter/timer-clock input, it is not available for use as the channel B receiver-clock input
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Table 4. Programming of Output Port Functions

Function

Output Port Pin

0P7 0P6 0P5 0P4 0P3 0P2 OP1 OP0

General Purpose OPCR|7] = OPCR[6] = OPCR[51 = OPCR[41 = 0PCRI3 21 = 00 OPCRI1 01 = 00 MR1B17| =

MR2BI5l =

MR1A|71 =

MR2A(51 =

CTRDY OPCR|3 2) = 01.

ACR|6l = 0*

Timer Output 0PCRI3 21 = 01.

ACW61-1"
TxCB 1X OPCR13 21= 10

RxCB IX 0PCR13 21=11

TxCA 16X OPCRI1 01 = 01

TxCA IX OPCRI1 01=10

RxCA IX OPCRI1 01=11

TxRDYA 0PCR[61=1*

TxRDYB OPCR[7] = 1*

RxRDYA 0PCR[4|=1.
MR1A[6) = 0*

RxRDYB 0PCR|5I = 1.

MR1B16I = 0*

FFULLA 0PCR|4|=1.
MR1A[6] = *

FFULIB OPCR|5]=l.

MR1BI6I=1*

AxftTSA MR1A|7]= 1

T.pT^i MR2A151=1

RxRTSB MR1B|7]= 1

TxRTSB MR2BI5I=1

Note Onlv those functions which show the register programming are available for use

'Pin requires a pullup resistor it used for this function

Table 5. Selection of Clock Sources for the Counter and Timer Modes

Counter Mode Clock Sources ACR(5:4| =

External Input via Input Port Pin 2 (IP2) 00

Channel A IX Transmitter Clock TxCA 01

Channel B IX Transmitter Clock TxCB 10

Crystal Oscillator Divide by 16 via

X1/CLK and X2 Inputs

11

External Input Divide by 16 via

X1/CLK Input Pin

11

1
Timer Mode Clock Sources ACR[5:41 =

External Input via Input Port Pin 2 IIP2I 00

External Input Divide by 16 via Input

Port Pin 2 (IP2)

01

Crystal Oscillator via X1/CLK and X2

Inputs

10

Crystal Oscillator Divide by 16 via

X1/CLK and X2 Inputs

11

External Input via X1/CLK Input Pin 10

External Input Divide by 16 via

X1/CLK Input Pin

11

NOTE Only those functions which show the register programming are available for use
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Table 6. Register Bit Formats (Sheet 1 of 5)

CHANNEL A MODE REGISTER 1 (MR1A) AND CHANNEL B MODE REGISTER 1 (MR1B)

Rx RTS
Control

Rx IRQ

Select

Error

Mode Parity Mode Parity Type Bits-per-Character

Bil 7

0= Disabled

1 = Enabled

B.t 6

0=RxRDY
1 = FFULL

Bn 5

0=Char
1 = Block

B. 4 Bit 3

r T
Bit 2

With Parity

0= Even

_ J WPl6

Force Parity

0= Low
1 = High

Multidrop Mode
0=Data
1 = Address

Bit 1 3n

0=5
1=6

10=7
1i = 8

\r
=

1 =

1 =

1 1 =

With Parity

Force Parity

No Parity

Multidrop Mode*

The parity bit is used as the address/data bit in multidrop mode

CHANNEL A MODE REGISTER 2 (MR2A) AND CHANNEL B MODE REGISTER 2 (MR2B)

Tx RTS
Control

CTS
Enable

Transmitter Stop Bit Length

-> • z

J
Normal

Automatic Echo

Local Loopback

Remote Loopback

0= Disabled

1 = Enabled

0= Disabled

1 = Enabled

NOTE
II an external IX clock is used for the

transmitter. MR2 bit 3 = selects one stop

bit and MR2 bit 3= 1 selects two stop bits

to be transmitted

(Ci

ID

(21

(31

(41 1

(5) 1

(6) 1

(7) 1

(8) 1

(9) 1

(Al

an i tail u

6-8 Bus 5 Bus

r,.H' , !>- Charactei

663 ! 063

625 1 125

0688 1 188

750 1 250

0813 1 313

875 1 375

938 1 438

1 000 1 500

1 563 1 563

1 625 1 625

1 688 1 688

1 750 1 750

1 813 1 813

1 875 1 875

1 938 1 938

2000 2000
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Table 6. Register Bit Formats (Sheet 2 of 5)

CLOCK-SELECT REGISTER A (CSRA)

Receiver-Clock Select Transmitter-Clock Select

jaj

1

1

Bi 5 Bit 4

Set 1

ACR Bit 7 =

134 5

200

300

600

1200

1050

2400

4800

7200

9600

38 4k

Timer

IP4-16X

IP4-1X

Set 2

ACR Bit 7 =

300

600

1200

2000

2400

4800

1800

9600

19 2k

Timer

IP4-16X

Bit 3

1

10
11

10
10 1

110
111

1

1

1 1

if
BrtJ bold

1345

200

300

600

1200

1050

2400

Timer

IP3-16X

300

600

1200

2000

2400

19 2k

Timer

IP3-16X

NOTE Receiver clock is alwavs a 16X clock except

when CSRA bits seven through four equal

1111

NOTE Transmitter clock is always a 16X clock except

when CSRA bits three through zero equal

1111

CLOCK SELECT REGISTER B (CSRBI

Receiver-Clock Select Transmitter-Clock Select

1

1

10
1

1 1

1 1

1

1 1

1

1

J-
Bit.5 Bit 4

ACR Bit 7 =

134 5

200

300

600

1200

1050

2400

4800

7200

9600

38 4k

IP2-16X

IP2-1X

Set 2

ACRBH7-

134 5

150

300

600

1200

2000

2400

IP2 16X

IP2-1X

Bit 3

1

1

1

1

1

1

1 1

1 1

1 1 1

Bjti BjM a^>

no
134 5

1050

2400

4800

7200

9600

IP5-16X

IP5-1X

Set 2

ACR Bit 7

300

600

1200

2000

2400

IP5-16X

IP5-1X

NOTE Receiver clock is always a 16X clock except

when CSRB bits seven through four equal

Transmitter clock is always a 16X clock except

when CSRB bits three through zero equal
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Table 6. Register Bit Formats (Sheet 3 of 5)

CHANNEL A COMMAND REGISTER (CRA) AND CHANNEL B COMMAND REGISTER (CRB)

Not

Used* Miscellaneous Commands Transmitter Commands Receiver Commands

bjl? Bn 6 Bit 5 Bit 4

r
11" T T

Bit 3 B

J 1

2 Bui BitO^ T
1

1III
No Command

1 Reset MR Pointer to MR1
1 Reset Receiver

1 1 Reset Transmitter

No Action, Stays in

Present Mode
1 Transmitter Enabled

1 Transmitter Disabled

No Action. Stays in

Present Mode
1 Receiver Enabled

1 Receiver Disabled

1 Reset Error Status 1 1 Don't Use. Indeter- 1 1 Don't Use. Indeter

1 1 Reset Channel's Break-

Change Interrupt

1 1 Start Break

1 1 1 Stop Break

minate mmate

' Bit seven is not used and may be set to either zero or one

CHANNEL A STATUS REGISTER ISRA) AND CHANNEL B STATUS REGISTER (SRBI

Received

Break

Framing

Error

Parity

Error

Overrun

Error TxEMT TxRDY FFULL RxRDY

Mil

0= No

1 = Yes

Bit 6*

0=No
1 = Yes

Bit 5*

0=No
1 = Yes

Bit 4

0=No
l = Yes

Bit 3

0=No
1 = Yes

Bji2

0=No
1 = Yes

B_U

0=No
1 = Yes

BitO

0= No

1 = Yes

'These status bits are appended to the corresponding data character in the receive FIFO and are valid only when the

RxRDY bit is set. A read of the status register provides these bits (seven through five) from the top of the FIFO together

with bits four through zero These bits are cleared by a reset error status command In character mode, they are dis-

carded when the corresponding data character is read from the FIFO

OUTPUT PORT CONFIGURATION REGISTER (OPCR)

BjL.7

0=OPR Bit 1

1 = TxRDYB

Bit 6

OPR Bite

TxRDYA

B^S

i=OPR Bit!

= RxRDYB
FFULLB

BjM

0=OPR Bit 4

1 = RxRDYA/
FFULLA

I
Bo2 &U

F
0=OPR Bit 3

1 = C/T Output*

1 0=TxCB (IX)

1 1 = RxCB (IX)

r
0=OPR Bit 2

1 = TxCA (16X)

1 0=TXCA (IX)

1 1 = RxCA (IX)

If OP3 is to be used for the timer output, the counter/timer should be programmed for timer mode (ACR|6I=1).
the counter/timer preload registers (CTUR and CTLR) initialized, and the start counter command issued before setting

OPCR13:2]=01.

NOTE OP1 and OP0 can be used as transmitter and receiver RTS control lines by appropriately programming

the mode registers (MR1[7J for the receiver RxRTS, and MR215J for the transmitter TxRTSI OP1 is used for channel

B's RTS control line and OP0 for channel A's RTS control line When OP1 and OP0 are not used for RTS control, they

may be used as general-purpose outputs (See Table 4-3 )

OUTPUT PORT REGISTER (OPR)

OPR7 OPR6 OPR5 OPR4 OPR3 OPR2 OPR1 OPRO

Bijj Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO
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Table 6. Register Bit Formats (Sheet 4 of 5)

AUXILIARY CONTROL REGISTER IACR)

BRG SET
Select*

Counter /Timer

Mode and Source**
Detta***

IP3 IRQ

Delta***

IP2 IRQ

Delta* * *

IP1 IRQ
Delta* * *

IPO IRQ

Bit_7 Bit 6 Bit 5 Bi^ T 1

4 Bit 3 Bn 2 Bit 1 BitO

0=Set 1

Mode Clock Source

0= Disabled 0= Disabled 0= Disabled 0= Disabled

1=Set2 Counter External (IP2I* ** *

1 Counter TxCA-lX Clock of

Channel A
Transmitter

1 Counter TxCB-1X Clock of

Channel B

Transmitter

1 1 Counter Crystal or External

Clock (X1/CLKI

Divided bv 16

1 Timer External (IP2I* ** *

1 1 Timer External (IP2I

Divided by 16****

1 1 Timer Crystal or External

Clock IX1/CLKI

1 1 1 Timer Crystal or External

Cicck [X1/CLKI

Divided by 16

1 = Enabled 1 = Enabled 1 = Enabled 1 = Enabled

* Should only be changed after both channels have been reset and are disabled

"Should only be altered while the counter/timer is not in use lie . stopped if in counter mode, output and/or

interrupt masked if in timer model
* * 'Delta is equivalent to change-of-state

•••in these modes, because IP2 is used for the counter/ timer clock input, it is not available for use as the channel B

receiver-clock input

INPUT PORT CHANGE REGISTER (IPCR)

Delta* Delta* Delta* Delta*

Detected Detected Detected Detected Level Level Level Level

IP3 IP2 IP1 IPO IP3 IP2 IP1 IPO

Bit7 Bit 6 Bit 5 Bit A Bit 3 Bit 2 Bit 1 Bit^

0=No 0=No 0=No 0=No 0=Low 0=Low 0=Low 0=Low
1 = Yes 1 = Yes 1 = Yes 1 = Yes 1 = High 1 = High 1 = High 1 = High

'Delta is equivalent to change of state

INTERRUPT STATUS REGISTER (ISR)

Input Counter/

Port Delta RxRDYB/ Timer Delta RxRDYA/
Change Break B FFULLB TxRDYB Ready Break A FFULLA TxRDYA

BjJ_7 Bit 6 Bit 5 Bn 4 Bit 3 Bit 2 Bit 1 Bit

0= No 0=No 0=No 0=No 0=No 0=No 0=No 0=No
1 = Yes 1 = Yes 1 = Yes 1 = Yes 1 = Yes 1- Yes 1 = Yes 1 = Yes

INTERRUPT MASK REGISTER IIMR)

Input

Port

Change

ifiQ"

Delta

Break B

FRO"

RxRDYB/
FFULLB
IRH

TxRDYB
iR"5

Counter/

Timer

Ready

IR5

Delta

Break A
IRQ"

RxRDYA/
FFULLA
iR3

TxRDYA
iR5

Bit 7

0= Masked

1 = Pass

Bit 6

0= Masked

1 = Pass

Bit 5

0= Masked

1 = Pass

BH4

0= Masked

1 = Pass

Bit 3

0= Masked

1 = Pass

Bit 2

0= Masked

1 = Pass

Bit 1

0= Masked

l = Pass

Bit

0= Masked

1 = Pass
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Table 6. Register Bit Formats (Sheet 5 of 5)

COUNTER/TIMER UPPER REGISTER (CTUR)

C/TM5] C/TI14] C/TI13) C/TI12] C/TC11] C/T[10) C/TI9] C/Ttffl

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO

COUNTER/TIMER LOWER REGISTER (CTLR)

C/TI7] C/T[6] C/TJ5] C/T[4] C/T131 C/TI2) C/T11] C/TIO]

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO

INTERRUPT VECTOR REGISTER (IVRI

IVRI7] IVRI6] IVRI5I IVRI4] IVRI3I IVR12] IVRI1] IVRI01

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 BitO

NPUT PORT

* ** IP5 IP4 IP3 IP2 IP1 IPO

Bit 7 Bit 6 Bit 5 Bit 4 Bjt3 BnJ Bn 1 BitO

* Bit seven has no external pin Upon reading the input port, bit seven will always be read as a one
* * Bit six has no external pin Upon reading the input port, bit six will reflect the current logic level of IACK

OUTPUT PORT

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OPO

Bit 7

OPRm

Bit 6

OPR16)

Bit 5

OPRT5]

Bit 4

OPR(4|

Bit 3

OPR131

Bit 2

OPR[2]

Bit 1

OPRI1)

Bit

OPRIO]

Reprinted with permission of Motorola Inc. 451



MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA

Technical Summary

HCMOS Floating-Point Coprocessor
The MC68881 floating-point coprocessor is a full implementation of the IEEE Standard for Binary

Floating-Point Arithmetic (754) for use with the Motorola M68000 Family of microprocessors. It is

implemented using VLSI technology to give systems designers the highest possible functionality in

a physically small device.

Intended primarily for use as a coprocessor to the MC68020 32-bit microprocessor unit (MPU), the

MC68881 provides a logical extension to the main MPU integer data processing capabilities. It does
this by providing a very high performance floating-point arithmetic unit and a set of floating-point

data registers that are utilized in a manner that is analogous to the use of the integer data registers.

The MC68881 instruction set is a natural extension of all earlier members of the M68000 Family,

and supports all of the addressing modes of the host MPU. Due to the flexible bus interface of the

M68000 Family, the MC68881 can be used with any of the MPU devices of the M68000 Family, and
it may also be used as a peripheral to non-M68000 processors

The maior features of the MC68881 are:

• Eight general purpose floating-point data registers, each supporting a full 80-bit extended preci-

sion real data format (a 64-bit mantissa plus a sign bit, and a 1 5-bit signed exponent).

• A 67-bit arithmetic unit to allow very fast calculations, with intermediate precision greater than

the extended precision format.

• A 67 bit barrel shifter for high-speed shifting operations (for normalizing etc.)

• Forty-six instructions, including 35 arithmetic operations

• Full conformation to the IEEE 754 standard, including all requirements and suggestions.

• Support of functions not defined by the IEEE standard, including a full set of trigonometric and

transcendental functions

• Seven data types: byte, word and long integers: single, double, and extended precision real

numbers; and packed binary coded decimal string real numbers.

• Twenty-two constants available in the on-chip ROM, including t:, e, and powers of 10.

• Virtual memory machine operations.

• Efficient mechanisms for procedure calls, context switches, and interrupt handling.

• Fully concurrent instruction execution with the mam processor

• Use with any host processor, on an 8-, 16-, or 32-bit data bus

MC68881

This document contains information on a new product Specifications and information herein are subiect to change without notice
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THE COPROCESSOR CONCEPT HARDWARE OVERVIEW

The MC68881 functions as a coprocessor in systems

where the MC68020 or MC68030 is the main processor

via the M68000 coprocessor interface.* It functions as a

peripheral processor in systems where the main proces-

sor is the MC68000, MC68008, or MC68010.
The MC68881 utilizes the M68000 Family coprocessor

interface to provide a logical extension of the MC68020
registers and instruction set in a manner which is trans-

parent to the programmer. The programmer perceives

the MC68020 MC68881 execution model as if both de-

vices are implemented on one chip.

A fundamental goal of the M68000 Family coprocessor

interface is to provide the programmer with an execution

model based upon sequential instruction execution by

the MC68020 and the MC6888!. For optimum perform-

ance, however, the coprocessor interface allows concur-

rent operations in the MC6888! with respect to the

MC68020 whenever possible. In order to simplify the pro-

grammer's model, the coprocessor interface is designed

to emulate, as closely as possible, non-concurrent op-

eration between the MC68020 and the MC6888!
The MC6888! is a non-DMA type coprocessor which

uses a subset of the general purpose coprocessor inter-

face supported by the MC68020. Features of the interface

implemented in the MC6888! are as follows

• The main processor(s) and MC6888! communicate via

standard M68000 bus cycles.

• The main processor(s) and MC6888! communications
are not dependent upon the instruction sets or internal

details of the individual devices (e.g., instruction pipes

or caches, addressing modes).

• The main processor(s) and MC6888! may operate at

different clock speeds.

• MC6888! instructions utilize all addressing modes
provided by the main processor; all effective ad-

dresses are calculated by the main processor at the

request of the coprocessor.

• All data transfers are performed by the main proces-

sor at the request of the MC6888! ; thus memory man-
agement, bus errors, address errors, and bus
arbitration function as if the MC6888! instructions are

executed by the main processor.

• Overlapped (concurrent) instruction execution en-

hances throughput while maintaining the program-

mer's model of sequential instruction execution.

• Coprocessor detection of exceptions which require a

trap to be taken are serviced by the main processor

at the request of the MC68881; thus exception proc-

essing functions as if the MC6888! instructions were

executed by the main processor.

• Support of virtual memory virtual machine systems

is provided via the FSAVE and FRESTORE instruc-

tions.

• Up to eight coprocessors may reside in a system si-

multaneously; multiple coprocessors of the same type

are also allowed.

• Systems may use software emulation of the MC68881
without reassembling or relinking user software.

The MC6888! is a high performance floating-point de-

vice designed to interface with the MC68020 as a copro-

cessor. This device fully supports the MC68020 virtual

machine architecture, and is implemented in HCMOS,
Motorola's low power, small geometry process. This

process allows CMOS and HMOS (high-density NMOS)
gates to be combined on the same device CMOS struc-

tures are used where speed and low power is required,

and HMOS structures are used where minimum silicon

area is desired. The HCMOS technology enables the

MC6888! to be very fast while consuming less power
than comparable HMOS, and still have a reasonably small

die size.

With some performance degradation, the MC6888! can

also be used as a peripheral processor in systems where
the MC68020 is not the mam processor (e.g., MC68000,

MC68008, MC68010). The configuration of the MC6888!
as a peripheral processor or coprocessor may be com-
pletely transparent to user software (i.e.. the same object

code may be executed in either configuration)

The architecture of the MC6888! appears to the user

as a logical extension of the M68000 Family architecture.

Coupling of the coprocessor interface, allows the MC68020
programmer to view the MC6888! registers as though

the registers are resident in the MC68020. Thus, a

MC68020 MC6888! device pair appears to be one pro-

cessor that supports seven floating-point and integer data

types, and has eight integer data registers, eight address

registers, and eight floating-point data registers

The MC6888! programming model is shown in Figures

1 through 6, and consists of the following:

• Eight 80-bit floating-point data registers (FP0-FP7I

These registers are analogous to the integer data reg-

isters (D0-D7) and are completely general purpose (i.e.,

any instruction may use any register).

• A 32-bit control register that contains enable bits for

each class of exception trap, and mode bits to set the

user-selectable rounding and precision modes.

• A 32-bit status register that contains floating-point

condition codes, quotient bits, and exception status

information.

• A 32-bit instruction address register that contains the

main processor memory address of the last floating-

point instruction that was executed. This address is

used in exception handling to locate the instruction

that caused the exception.

The connection between the MC68020 and the MC68881
is a simple extension of the M68000 bus interface. The

MC68881 is connected as a coprocoessor to the MC68020,

and the selection of the MC6888! is based upon a chip

select (CS), which is decoded from the MC68020 function

codes and address bus. Figure 7 illustrates the MC68881
MC68020 configuration.

As shown in Figure 8, the MC6888! is internally divided

into three processing elements; the bus interface unit

(BIU), the execution control unit (ECU), and the micro-

code control unit (MCU). The BIU communicates with the

MC68020, and the ECU and MCU execute all MC6888!
instructions.

•All references to the MC68020, throughout this technical si mmary. also apply to the MC68030
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Figure 1. MC68881 Programming Model
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Figure 2. Exception Status/Enable Byte
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10 DOUBLE
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Figure 3. Mode Control Byte
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Figure 4. Condition Code Byte
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Figure 6. Accrued Exception Byte
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Figure 7. Typical Coprocessor Configuration
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The BIU contains the coprocessor interface registers,

and the 32-bit control, status, and instruction address

registers. In addition to these registers, the register select

and DSACK timing control logic is contained in the BIU.

Finally, the status flags used to monitor the status of

communications with the main processor are contained

in the BIU.

The eight 80-bit floating-point data registers (FP0-FP7)

are located in the ECU. In addition to these registers, the

ECU contains a high-speed 67-bit arithmetic unit used for

both mantissa and exponent calculations, a barrel shifter

that can shift from 1 bit to 67 bits in one machine cycle,

and ROM constants (for use by the internal algorithms

or user programs).

The MCU contains the clock generator, a two-level mi-

crocoded sequencer that controls the ECU, the microcode

ROM, and self-test circuitry. The built-in self-test capa-

bilities of the MC68881 enhance reliability and ease man-
ufacturing requirements; however, these diagnostic

functions are not available to the user.

BUS INTERFACE UNIT

All communications between the MC68020 and the

MC68881 occur via standard M68000 Family bus trans-

fers. The MC68881 is designed to operate on 8-, 16-, or

32-bit data buses.

The MC68881 contains a number of coprocessor inter-

face registers (CIRs) which are addressed in the same
manner as memory by the main processor. The M68000
Family coprocessor interface is implemented via a pro-

tocol of reading and writing to these registers by the main

processor. The MC68020 implements this general pur-

pose coprocessor interface protocol in hardware and mi-

crocode.

When the MC68020 detects a typical MC68881 instruc-

tion, the MC68020 writes the instruction to the memory-
mapped command CIR, and reads the response CIR. In

this response, the BIU encodes requests for any addi-

tional action required of the MC68020 on behalf of the

MC68881. For example, the response may request that

the MC68020 fetch an operand from the evaluated effec-

tive address and transfer the operand to the operand CIR.

Once the MC68020 fulfills the coprocessor request(s), the

MC68020 is free to fetch and execute subsequent insruc-

tions.

A key concern in a coprocessor interface that allows

concurrent instrucion execution is synchronization dur-

ing main processor and coprocessor communication. If

a subsequent instruction is written to the MC68881 before

the ECU has completed execution of the previous instruc-

tion, the response instructs the MC68020 to wait. Thus,

the choice of concurrent or nonconcurrent instruction ex-

ecution is determined on an instruction-by-instruction

basis by the coprocessor.

The only difference between a coprocessor bus transfer

and any other bus transfer is that the MC68020 issues a

function code to indicate the CPU address space during

the cycle (the function codes are generated by the M68000
Family processors to identify eight separate address

spaces). Thus, the memory-mapped coprocessor inter-

face registers do not infringe upon instruction or data

address spaces. The MC68020 places a coprocessor ID

field from the coprocessor instruction onto three of the

Reprinted with permission of Motorola Inc.

upper address lines during coprocessor accesses. This

ID, along with the CPU address space function code, is

decoded to select one of eight coprocessors in the sys-

tem.

Since the coprocessor interface protocol is based solely

on bus transfers, the protocol is easily emulated by soft-

ware when the MC68881 is used as a peripheral with any

processor capable of memory-mapped I/O over an M68000
style bus. When used as a peripheral processor with the

8-bit MC68008 or the 16-bit MC68000, or MC68010, all

MC68881 instructions are trapped by the mam processor

to an exception handler at execution time. Thus, the soft-

ware emulation of the coprocessor interface protocol can

be totally transparent to the user. The system can be

quickly upgraded by replacing the main processor with

an MC68020 without changes to the user software.

Since the bus is asynchronous, the MC68881 need not

run at the same clock speed as the main processor. Total

system performance may therefore be customized. For

example, a system requiring very fast floating-point arith-

metic with relatively slow integer arithmetic can be de-

signed with an inexpensive main processor and a fast

MC68881.

COPROCESSOR INTERFACE

The M68000 Family coprocessor interface is an integral

part of the MC68881 and MC68020 design, with the in-

terface tasks shared between the two. The interface is

fully compatible with all present and future M68000 Fam-

ily products. Tasks are partitioned such that the MC68020
does not have to decode coprocessor instructions, and

the MC68881 does not have to duplicate main processor

functions such as effective address evaluation.

This partitioning provides an orthogonal extension of

the instruction set by permitting MC68881 instructions to

utilize all MC68020 addressing modes and to generate

execution time exception traps. Thus, from the program-

mer's view, the CPU and coprocessor appear to be in-

tegrated onto a single chip. While the execution of the

majority of MC68881 instructions may be overlapped with

the execution of MC68020 instructions, concurrency is

completely transparent tothe programmer. The MC68020
single-step and program flow (trace) modes are fully sup-

ported by the MC68881 and the M68000 Family copro-

cessor interface.

While the M68000 Family coprocessor interface per-

mits coprocessors to be bus masters, the MC68881 is

never a bus master. The MC68881 requests that the

MC68020 fetch all operands and store all results. In this

manner, the MC68020 32-bit data bus provides high speed

transfer of floating-point operands and results while sim-

plifying the design of the MC68881.
Since the coprocessor interface is based solely upon

bus cycles and the MC68881 is never a bus master, the

MC68881 can be placed on either the logical or physical

side of the system memory management unit. This pro-

vides a great deal of flexibility in the system design.

The virtual machine architecture of the MC68020 is sup-

ported by the coprocessor interface and the MC68881
through the FSAVE and FRESTORE instructions. If the

MC68020 detects a page fault and/or task time out, the

MC68020 can force the MC68881 to stop whatever op-

eration is in process at any time (even in the middle of
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the execution of an instruction) and save the MC68881
internal state in memory.
The size of the saved internal state of the MC6888! is

dependent upon what the ECU is doing at the time that

the FSAVE is executed. If the MC68881 is in the reset

state when the FSAVE instruction is received, only one

word of state is transferred to memory, which may be

examined by the operating system to determine that the

coprocessor programmer's model is empty. If the copro-

cessor is idle when the save instruction is received, only

a few words of internal state are transferred to memory.
If the MC68881 is in the middle of executing an instruc-

tion, it may be necessary to save the entire internal state

of the machine. Instructions that can complete execution

in less time than it would take to save the larger state in

mid-instruction are allowed to complete execution and

then save the idle state. Thus the size of the saved internal

state is kept to a minimum. The ability to utilize several

internal state sizes greatly reduces the average context

switching time.

The FRESTORE instruction permits reloading of an in-

ternal state that was saved earlier, and continues any

operation that was previously suspended. Restoring of

the reset internal state functions just like a hardware reset

to the MC6888! in that defaults are re-established.

OPERAND DATA FORMATS

The MC6888! supports the following data formats:

Byte Integer (B)

Word Integer (W)

Long Word Integer(L)

Single Precision Real (S)

Double Precision Real(D)

Extended Precision Real (X)

Packed Decimal String Real(P)

The capital letters contained in parenthesis denote suf-

fixes added to instructions in the assembly language

source to specify the data format to be used.

INTEGER DATA FORMATS

The three integer data formats (byte, word, and long

word) are the standard data formats supported in the

M68000 Family architecture. Whenever an integer is used

in a floating-point operation, the integer is automatically

converted by the MC6888! to an extended precision float-

ing-point operation, the integer is automatically con-

verted by the MC6888! to an extended precision floating-

point number before be>ng used. For example, to add an

integer constant of five to the number contained in float-

ing-point data register 3 (FP3), the following instruction

can be used:

FADD.W #5,FP3

(The Motorola assembler syntax "#" is used to

is used to denote immediate addressing.)

The ability to effectively use integers in floating-point

operaions saves user memory since an integer represen-

tation of a number, if respresentable, is usually smaller

than the equivalent floating-point representation.

FLOATING-POINT DATA FORAMTS

The floating-point data formats single precision (32-

bits) and double precision (64-bits) are as defined by the

IEEE standard. These are the main floating-point formats

and should be used for most calculations involving real

numbers. Table 1 lists the exponent and mantissa size

for single, double, and extended precision. The exponent

is biased, and the mantissa is in sign and magnitude

form. Since single and double precision require normal-

ized numbers, the most significant bit of the mantissa is

implied as one and is not included, thus giving one extra

bit of precision.

Table 1. Exponent and Mantissa Sizes

Data

Format

Exponent

Bits

Mantissa

Bits Bias

Single 8 23( + l) 127

Double 11 52(+1) 1023

Extended 15 64 16383
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The extended precision data format is also in conform-

ance with the IEEE standard, but the standard does not

specify this format to the bit level as it does for single

and double precision. The memory format on the MC6888!
consists of 96 bits (three long words). Only 80 bits are

actually used, the other 16 bits are for future expanda-

bility and for long-word alignment of floating-point data

structures. Extended format has a 15-bit exponent, a 64-

bit mantissa, and a 1-bit mantissa sign.

Extended precision numbers are intended for use as

temporary variables, intermediate values, or in places

where extra precision is needed. For example, a compiler

might select extended precision arithmetic for evaluation

of the right side of an equation with mixed sized data

and then convert the answer to the data type on the left

side of the equation. It is anticipated that extended pre-

cision data will not be stored in large arrays, due to the

amount of memory required by each number.

PACKED DECIMAL STRING REAL DATA FORMAT

The packed decimal data format allows packed BCD
strings to be input to and output from the MC68881. The

strings consist of a 3-digit base 10 exponent and a 17-

digit base 10 mantissa. Both the exponent and mantissa

have a separate sign bit. All digits are packed BCD, such

that an entire string fits in 96 bits (three long words). As

is the case with all data formats, when packed BCD strings

are input to the MC68881, the strings are automatically

converted to extended precision real values. This allows

packed BCD numbers to be used as inputs to any oper-

ation. For example:

FADD.P#-6.023E + 24,FP5

BCD numbers can be output from the MC68881 in a for-

mat readily used for printing by a program generated by

a high-level language compiler. For example:

FMOVE.P FP3,BUFFER{#-5(

instructs the MC68881 to convert the floating-point data

register 3 (FP3) contents into a packed BCD string with

five digits to the right of the decimal point (FORTRAN F

format).
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DATA FORMAT SUMMARY
All data formats described above are supported or-

thogonally by all arithmetic and transcendental opera-

tions, and by all appropriate MC68020 addressing modes.
For example, all of the following are legal instructions:

FADD.B #3,FP0

FADD.W D2.FP3

FADD.L BIGINT.FP7

FADD.S #3.141 59,FP5

FADD.D (SP) + ,FP6

FADD.X [(TEMP_PTR,A7)],FP3

FADD.P #1.23E25,FP0

On-chip calculations are performed to extended precision

format, and the eight floating point data registers always

contain exetended precision values. All data used in an

operation is converted to extended precision by the

MC68881 before the specific operation is performed, and

all results are in extended precision. This ensures max-

imum accuracy without sacrificing performance.

Refer to Figure 9 for a summary of the memory formats

for the seven data formats supported by the MC68881.

BYTE INTEGER

WORD INTEGER

8-BIT

EXP

23-BIT

FRACTION

SIGN OF FRACTION

11-BIT

EXP

52-BIT

FRACTION

SIGN OF FRACTION

15-BIT

EXPONENT
ZERO

64-BIT

MANTISSA

SIGN OF MANTISSA

91 80

IMPLICIT BINARY POINT

3-DIGIT

EXP

TT

17-DIGIT

MANTISSA

EXTENDED REAL

PACKED DECIMAL REAL

IMPLICIT DECIMAL POINT

2 BITS. USED ONLY FOR i INFINITY OR NANS. ZERO OTHERWISE

•— SIGN OF EXPONENT

SIGN OF MANTISSA

•UNLESS A BINARY-TO-DECIMAL CONVERSION OVERFLOW OCCURS

Figure 9. MC68881 Data Format Summary
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INSTRUCTION SET

The MC68881 instruction set is organized into six major

classes:

1

.

Moves between the MC68881 and memory or the

MC68020 (in and out),

2. Move multiple registers (in and out),

3. Monadic operations,

4. Dyadic operations,

5. Branch, set, or trap conditionally, and

6. Miscellaneous.

MOVES
All moves from memory (or from an MC68020 data

register) to the MC68881, cause data conversion from the

source data format to the internal extended precision

format.

All moves from the MC68881 to memory (or to an

MC68020 data register), cause data conversion from the

internal extended precison format to the destination data

format.

Note that data movement instructions perform arith-

meic operations, since the result is always rounded to

the precision selected in the FPCR mode contol byte. The
result is rounded using the selected rounding mode, and

is checked for overflow and underflow.

The syntax for the move is:

FMOVE.(fmt) <ea>.FPn Move to MC68881
FMOVE.<fmt> FPm.(ea) Move from MC68881
FMOVE.X FPm.FPn Move within MC68881

where:

<ea> is an MC68020 effective address operand and (fmn

is the data format size. FPm and FPn are floating-point

data registers.

MOVE MULTIPLES

The floating-point move multiple instructions on the

MC68881 are much like the integer counterparts on the

M68000 Family processors. Any set of the floating-point

registers FPO through FP7 can be moved to or from mem-
ory with one instruction. These registers are always moved
as 96-bit extended data with no conversion (hence no
possibility of conversion errors). Some move multiple

examples are as follows:

FMOVEM <ea>,FP0-FP3FP7

FMOVEM FP2 FP4 FP6,(ea)

Move multiples are useful during context switches and
interrupts to save or restore the state of a program. These
moves are also useful at the start and end of a procedure

to save and restore the calling routine's register set. In

order to reduce procedure call overhead, the list of reg-

isters to be saved or restored can be contained in a data

register. This allows run-time optimization by allowing a

called routine to save as few registers as possible. Note
that no rounding or overflow underflow checking is per-

formed by these operations.

an MC68020 data register. The result is always stored in

a floating-point data register. For example, the syntax for

square root is:

FSQRT.(fmt) (ea).FPn or,

FSQRT.X FPm.FPn or,

FSQRT.X FPn

The MC68881 monadic operations available are as fol-

lows:

FABS Absolute Value

FACOS Arc Cosine

FASIN Arc Sine

FATAN Arc Tangent
FATANH Hyperbolic Arc Tangent
FCOS Cosine

FCOSH Hyperbolic Cosine

FETOX e to the x Power
FETOXM1 e to the x Power - 1

FGETEXP Get Exponent
FGETMAN Get Mantissa

FINT Integer Part

FINTRZ Integer Part (Truncated)

FLOG 10 Log Base 10

FLOG2 Log Base 2

FLOGN Log Base e

FLOGNP1 Log Base e of(x+1)

FNEG Negate

FSIN Sine

FSINCOS Simultaneous Sine and Cosine

FSINH Hyperbolic Sine

FSQRT Square Root

FTAN Tangent
FTANH Hyperbolic Tangent

FTENTOX 10 to the x Power
FTST Test

FTWOTOX 2 to the x Power

DYADIC OPERATIONS

Dyadic operations have two input operands. The first

input operand comes from a floating-point data register,

memory, or an MC68020 data register. The second input

operand comes from a floating-point data register. The

destination is the same floating-point data register used

for the second input. For example, the syntax for add is:

FADD.(fmt) <ea),FPn or,

FADD.X FPm.FPn

The MC68881 dyadic operations available are as fol-

lows:

FADD Add
FCMP Compare
FDIV Divide

FMOD Modulo Remainder

FMUL Multiply

FREM IEEE Remainder
FSCALE Scale Exponent

FSGLDIV Single Precision Divide

FSGLMUL Single Precision Multiply

FSUB Subtract

MONADIC OPERATIONS

Monadic operations have one operand. This operand
may be in a floating-point data register, memory, or in

460

BRANCH, SET, AND TRAP-ON CONDITION

The floating-point branch, set, and trap-on condition

instructions implemented by the MC68881 are similar to
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the equivalent integer instructions of the M68000 Family

processors, except that more conditions exist due to the

special values in IEEE floating-point arithmetic. When a

conditional instruction is executed, the MC6888! per-

forms the necessary condition checking and tells the

MC68020 whether the condition is true or false; the

MC68020 then takes the appropriate action. Since the

MC68881 and MC68020 are closely coupled, the floating-

point branch operations executed by the pair are very

fast.

The MC68881 conditional operations are

FBcc Branch

FDBcc Decrement and Branch

FScc Set Byte According to Condition

FTRAPcc Trap-on Condition

(with an Optional Parameter!

where:

cc is one of the 32 floating-point conditional test spe-

cifiers as shown in Table 2.

Table 2. Floating-Point Conditional

Test Specifiers

Mnemonic Definition

NOTE

I

The following conditional tests do not set the BSUN bit

in the status register exception byte under any circum-

stances

F False

EQ Equal

OGT Ordered Greater Than

OGE Ordered Greater Than or Equal

OLT Ordered Less Than

OLE Ordered Less Than or Equal

OGL Ordered Greater or Less Than

OR Ordered

UN Unordered

UEQ Unordered or Equal

UGT Unordered or Greater Than

UGE Unordered or Greater or Equal

;

ULT Unordered or Less Than

ULE Unordered or Less or Equal

NE Not Equal

T True

NOTE

I The following c onditional tests set the BSUN bit in the

status register e xception byte if the NAN condition code

bit is set when 3 conditional instruction is executed

SF Signaling False

SEQ Signaling Equal

GT Greater Than

GE Greater Than or Equal

I

LT Less Than

LE Less Than or Equal

GL Greater or Less Than
GLE Greater Less or Equal

j

NGLE Not iGreater. Less or Equal)

NGL Not (Greater or Less)

NILE Not (Less or Equal)

NLT Not (Less Than)

NGE Not (Greater or Equal)

NGT Not (Greater Than)

,

SNE Signaling Not Equal

!

ST Signaling True

MISCELLANEOUS INSTRUCTIONS

Miscellaneous instructions include moves to and from

the status, control, and instruction address registers. Also

included are the virtual memory machine FSAVE and

FRESTORE instructions that save and restore the internal

state of the MC68881

FMOVE ea .FPcr Move to Control Register(s)

FMOVE FPcr. ea Move from Control

Reg s-

FSAVE ea Virtual Machine State Save

FRESTORE ea Virtual Machine State

Restore

ADDRESSING MODES

The MC68881 does not perform address calculations.

This satifies the criterion that an M68000 Family copro-

cessor must not depend on certain features or capabilities

that may or may not be implemented by a given mam
processor. Thus, when the MC68881 instructs the

MC68020 to transfer an operand via the coprocessor in-

terface, the MC68020 performs the addessing mode cal-

culations requested in the instruction. In this case, the

instruction is encoded specifically for the MC68020, and

the execution of the MC68881 is not dependent on that

encoding, but only on the value of the command word

written to the MC68881 by the main processor.

This interface is quite flexible and allows any address-

ing mode to be used with floating-point instructions. For

the M68000 Family, these addressing modes include im-

mediate, postincrement, predecrement, data or address

register direct, and the indexed indirect addressing modes
of the MC68020. Some addressing modes are restricted

for some instructions in keeping with the M68000 Family

architectural definitions leg. PC relative addressing is not

allowed for a destination operandi.

The orthogonal instruction set of the MC68881, along

with the flexible branches and addressing modes, allows

a programmer writing assembly language code, or a

compiler writer generating object or source code for the

MC68020 MC68881 device pair, to think of the MC6888!

as though the MC68881 is part of the MC68020 There

are no special restrictions imposed by the coprocessor

interface, and floating-point arithmetic is coded exactly

like integer arithmetic.

TIMING TABLES FOR TYPICAL EXECUTION

This set of tables allows a quick determination of the

typical execution time for any MC68881 instruction when
the MC68020 is used as the mam processor. The first table

presented is for effective address caculanons performed

by the MC68020. Entries from this table are added to

entries in the other tables, if necessary, to obtain the total

number of clock cycles for an operation. The assumptions

for the following tables are:

• The main processor is an MC68020 and operates on

the same clock as the MC68881 . Instruction prefetches

do not hit in the MC68020 cache (or it is disabled! and

the instruction is aligned such that a prefetch occurs

before the command CIR is written by the MC68020
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A 32-bit memory interface is used, and memory ac-

cesses occur with zero wait states. All memory op-

erands, as well as the stack pointers, are long-word

aligned.

Accesses to the MC68881 require 3 clock cycles, with

the exception of read accesses to the response and
save CIRs, which require 5 clock cycles.

No instruction overlap is utilized, so the coprocessor

interface overhead is 11 clocks. This can be reduced

to 2 clock cycles if optimized code sequences are used,

or may be 1 1 clock cycles if overlap is attempted and

a synchronization delay is required

Typical operand conversion and calculation times are

used (i.e. input operands are assumed to be normal-

ized numbers m the legal range for a given fuction).

No exceptions are enabled or occur, and the default

rounding mode and precision of round-to-nearest, ex-

tended precision, is used.

EFFECTIVE ADDRESS CALCULATIONS

For any instruction that requires an operand external

to the MC68881, an evaluate effective address and trans-

fer data response primitive is issued by the MC68881
during the dialog for that instruction. The amount of time

that is required for the MC68020 to calculate the effective

address while processing this primiive for each address-

ing mode, excluding the transfer of the data to the

MC68881, is shown in Table 3.

ARITHMETIC OPERATIONS

The Table 4 gives the typical instruction execution time

for each arithmetic instruction. This group of instructions

includes the majority of the MC68881 operations such as

FADD, FSUB, etc. In addition to the instructions that per-

form arithmetic calculations as part of their function, the

FCMP, FMOVE and FTST instructions are also included,

Table 3 Effective Address Calculations Execution Timing

Addressing Mode Best Case Cache Case Worst Case

Dn or An

(Anl 2 2

(Anl- 3 6 6

- (An) 3 6 6

ld 16,An| or ld 16.PC» 2 3

Ixxx W) 2 3

(xxx).L 1 4 5

» data

ldg.An.Xnl or (dg.PC.Xn) 1 4 5

(d 16.An.Xnl or {d 16.PC.Xn> 3 6 7

(Bl 3 6 7

(d 16 .B) 5 8 9

(d32 .B) 11 14 16

(IBM) 8 "

(|Bl.l.d 16 l 8 11 12

IIBl.Ld.32l 10 13 15

(ld 16 ,B|.l) 10 13 14

lld 16 .B].l.d 16 ) 10 13 15

(|d 16.B|.l.d32 l 12 15 17

(|d 32 .Bl,l) 16 19 21

(|d32 .B|.l,d 16 l 16 19 21

(|d32 .B|.i.d32 l 18 21 24

B Base address, 0. An. PC. Xn. An - Xn, PC - Xn Form does not affect timing

I Index; or Xn
Note that Xn cannot be in B and I at the same time Scaling and size of Sn does

not affect timing
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Table 4. Arithmetic Operations Execution Timing

Instruction
FPm

Source

Memory Source or Destination Operand Format*

Integer1 * Single** Double Extended Packed

FABS 35 62 54 60 58 872

FACOS 652 625 644 650 648 1462

FADD 51 80 72 78 76 888

FASIN 581 608 600 606 604 1418

FATAN 403 430 422 428 426 1240

FATANH 693 720 712 718 716 1530

FCMP 33 62 54 60 58 870

FCOS 391 418 410 416 414 1228

FCOSH 607 634 626 632 630 1444

FDIV 103 132 124 130 128 940

FETOX 497 524 516 522 520 1334

FETOXM1 545 572 564 570 568 1382

FGETEXP 45 72 64 70 68 882

FGETMAN 31 58 50 56 54 868

FINT 55 82 74 80 78 892

FINTRZ 55 82 78 80 74 892

FLOGN 525 552 544 550 548 1362

FLOGNP1 571 598 590 596 594 1408

FLOG10 581 608 600 606 604 1418

FLOG2 581 608 600 606 604 1418

FMOD 67 94 86 92 90 902

FMOVE to FPn 33 60 52 58 56 870

FMOVE to Memory"* - 100 80 86 72 1996

FMOVECR**** 29 — - — — —
FMUL 71 100 92 98 96 908

FNEG 35 62 54 60 58 872

FFSEM 67 94 86 92 90 902

FSCALE 41 70 62 68 66 878

FSGLDIV 69 98 90 96 94 906

FSGLMUL 59 88 80 86 84 896

FSIN 391 418 410 416 414 1228

FSINCOS 451 478 470 476 474 1288

FSINH 687 714 706 712 710 1524

FSQRT 107 134 126 132 130 944

FSUB 51 80 72 78 76 888

FTAN 473 500 492 498 496 1310

FTANH 661 688 680 686 684 1498

FTENTOX 567 594 586 592 590 1404

FTST 33 60 52 58 56 870

FTWOTOX 667 594 586 592 590 1404

•Ado th* appropriate effective addraae calculation time.

"If th# aourea or damnation la an MC68020 data regiater, aubtract 5 or 2 clock cycles, respectively.

'"Attumt • italic K-fietor la uiad If tha daatlnation data format ia packed decimal. Add 14 clock cycles if a

dynamic K-faeter it ueed,

****Tha aeurea aparend jg frem tha eenitent ROM rather than a floating-point data register.
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since an implicit conversion is performed by those op-

erations. For memory operands, the timing for the ap-

propriate effective addressing mode must be added to

the numbers in this table to determine the overall instruc-

tion execution times.

MOVE CONTROL REGISTER AND MOVE MULTIPLE OP-
ERATIONS

The Table 5 gives the execution times for the FMOVE
FPcr and FMOVEM instructions. The timing for the ap-

propriate effective addressing mode must be added to

the numbers in this table to determine the overall instruc-

tion execution times.

CONDITIONAL OPERATIONS

The Table 6 gives the execution times for the MC68881
conditional instructions. Each entry in this table, except

those for the FScc instruction, is complete and does not

require the addition of values from any other table. For

the FScc instruction, the only additional factor that must

be included is the calculate effective address time for the

operand to be modified.

FSAVE AND FRESTORE INSTRUCTIONS

The time requred for a context save or restore opera-

tion is given in Table 7. The appropriate calculate effective

address times must be added to the values in this table

to obtain the total execution time for these operations.

For the FSAVE instruction, the MC68881 may use the not

ready format code to force the MC68020 to wait while

internal operations are completed in order to reduce the

size of the saved state frame or reach a point where a

save operation can be performed. The idle (minimum)
time occurs if the MC68881 is in the idle phase when the

save CIR is written. A time between the idle (minimum)
and the idle (maximum) occurs if an instruction is in the

end phase when the save CIR is read. The busy (mini-

mum) time occurs if the MC68881 is in the initial phase,

or at a save boundary in the middle phase, when the save

CIR is read. Finally, the busy (maximum) time occurs if

the MC68881 has just passed a save boundary in the

middle phase when the save CIR is read.

Table 5. Move Control Register and
FMOVEM Operations Execution Timing

Operation* Best Case Cache Case Worst Case

FMOVE FPcr.Rn 29 31 34

FPcr,<ea> 31 33 36
Rn.FPcr 26 28 31

<ea>.FPcr 31 33 36

#<data.FPcr 30 30 31

FMOVEM FPcr list,(ea> 25~6n 27 + 6n 30 + 6n

ea>,FPcr list 25 + 6n 27 + 6n 30 + 6n

#<data/.FPcr_list 24*6n 25 + 6n 29 + 6n

FMOVEM FPdr_list.(ea) 35-25n 37 + 25n 40 + 25n
ea FPdr list 33 + 23n 35 + 23n 38 + 23n

Drvea* 49 + 25n 51 +25n 54 + 25n
<ea>,Dn 47 + 23n 49 + 23n 52-23n

•Add the appropriate effective address calculation time.

-i is the number of registers transferred
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Table 6. Conditional Instructions Execution Timing

Operation Comments Best Case Cache Case Worst Case

FBcc.W Branch Taken

Branch Not Taken

18

16

20

18

23

19

FBcc.l Branch Taken

Branch Not Taken

18

16

20

18

23

21

FDBcc True, Not Taken

False. Not Taken

False. Taken

18

22

18

20

24

20

24

32

26

FNOP No Operation 16 18 19

FScc Dn
(An)+ or -(An)*

Memory**

16

18

16

18

22

20

21

25

23

FTRAPcc Trap Taken

Trap Not Taken

36

16

39

18

47

22

FTRAPcc.W Trap Taken

Trap Not Taken

38

18

41

20

45

23

FTRAPcc.L Trap Taken

Trap Not Taken

40

20

43

22

52

27

'For condition true; subtract one clock for condition false

"Add the appropriate effective address calculation time

Table 7. FSAVE and FRESTORE Instructions Execution Timing

Operation* State Frame Best Case Cache Case Worst Case

FRESTORE Null 19 21 22

Idle 55 57 58

Busy 312 314 315

FSAVE Null 14 16 18

Idle (Minimum) 50 52 54

Idle (Maximum) 286 218 290

Busy (Minimum) 316 318 320

Busy (Maximum) 552 554 556

'Add the appropriate effective address calculation time

FUNCTIONAL SIGNAL DESCRIPTIONS

This section contains a brief description of the input

and output signals for the MC68881 floating-point copro-

cessor. The signals are functionally organized into groups

as shown in Figure 10.

NOTE
The terms assertion and negation are used

extensively. This is done to avoid confusion

when describing "active-low" and "active-

high" signals. The term assert or assertion is

used to indicate that a signal is active or true,

independent of whether that level is repre-

sented by a high or low voltage. The term

negate or negation is used to indicate that a

signal is inactive or false.

Reprinted with permission of Motorola Inc.
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Table 8. Coprocessor Interface Register Selection

A4-A0 Offset Width Type Register

OOOOx $00 16 Read Response

000 1x $02 16 Write Control

001 Ox $04 16 Read Save

001 1x $06 16 R/W Restore

0100x $08 16 - (Reserved)

OlOIx $0A 16 Write Command

0110x $0C 16 - (Reserved)

01 1 1x $0E 16 Write Condition

lOOxx $10 32 R/W Operand

1010x $14 16 Read Register Select

lOllx $16 16 - (Reserved)

UOxx $18 32 Read Instruction Address

111xx $1C 32 RW Operand Address

ADDRESS BUS (A0 through A4)

These active-high address line inputs are used by the

main processor to select the coprocessor interface reg-

ister locations located in the CPU address space. These

lines control the register selection as listed in Table 8.

When the MC68881 is configured to operate over an 8-

bit data bus, the A0 pin is used as an address signal for

byte acceses of the coprocessor interface registers.When
the MC68881 is configured to ope rate over a 16- or 32-

bit system data bus, both the A0 and SIZE pins are strapped

high and or low as listed in Table 9.

Table 9. System Data Bus Size Configuration

A0 SIZE Data Bus

- Low 8-Bit

Low High 16-Bit

High High 32-Bit

DATA BUS (DO through D31)

This 32-bit, bidirectional, three-state bus serves as the

general purpose data path between the MC68020 and the

MC68881. Regardless of whether the MC68881 is oper-

ated as a coprocessor or a peripheral processor, all inter-

processor transfers of instruction information, operand

data, status information, and requests for service occur

as standard M68000 bus cycles.

The MC68881 will operate over an 8-, 16-, or 32-bit

system data bus. Depending upon the system data bus

configuration, both the A0 and SIZE pins are configured

specifically for the applicable bus configura tion. (Refer to

ADDRESS BUS (A0 through A4) and SIZE (SIZE) for fur-

ther details.)

SIZE (SIZE)

This active-low input signal is used in conjunction with

the A0 pin to configure the MC68881 for operation over

an 8-, 16-, or 32-bit system data bus. When the MC68881
is configured to operate over a 16- or 32-bit system data

bus, both the SIZE and A0 pins are strapped high and/or

low as listed in Table 9.

ADDRESS STROBE (AS)

This active-low input signal indicates that there is a

valid address on the address bus, and both the chip select

(CS) and read/write (R/W) signal lines are valid.

CHIP SELECT (CS)

This active-low input signal enables the main processor

access to the MC68881 coprocessor interface registers.

When operating the MC68881 as a peripheral processor,

the chip select decode is system dependent (i.e., like the

chip select on any peripheral). The CS signal must be

valid (either asserted or negated) when AS is asserted.

Refer to CHIP SELECT TIMING for further discussion of

timing restrictions for this signal.

READ/WRITE (R/W)

This input signal indicates the direction of a bus trans-

action (read/write) by the main processor. A logic high

(1) indicates a read from the MC68881, and a logic low

(0) indicates a write to the MC68881 . The R/W signal must

be valid when AS is asserted.

DATA STROBE (DS)

This active-low input signal indicates that there is valid

data on the data bus during a write bus cycle.
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DATA TRANSFER AND SIZE ACKNOWLEDGE
(DSACKO, DSACK1)

These active-low, three-state output signals indicate

the completion of a bus cycle to the mai n processor. The

MC6888! asserts both the DSACKO and DSACK1 signals

upon assertion of CS.

If the bus cycle is a main processor read, the MC68881
asserts DSACKO and DSACK1 signals to indicate that the

information on the data bus is valid. (Both DSACK signals

may be asserted in advance of the valid data being placed

on the bus.) If the bus cycle is a ma in processor write to

the MC68881 , DSACKO and DSACK1 are used to acknowl-

edge acceptance of the data by the MC68881.

The MC68881 also uses DSACKO and DSACK1 signals

to dynamically indicate to the MC68020 the "port" size

(system data bus width) on a cycle-by-cycle basis. De-

pending upon which of the two DSACK pins are asserted

in a given bus cycle, the MC68020 assumes data has been

transferred to/from an 8-, 16-, or 32-bit wide data port.

Table 10 lists the DSACK assertions that are used by the

MC68881 for the various bus cycles over the various bus

cycles over the various system data bus configurations.

Table 13 indicates that all accesses over a 32-bit bus

where A4 equals zero are to 16-bit registers. The MC6888

1

implements all 16-bit coprocessor interface registers on

data lines D16-D31 (to eliminate the need for on-chip

multiplexers); however, the MC68020 expects 16-bit reg-

isters that are located in a 32-bit port at odd word ad-

dresses (A1 = 1) to be implemented on data lines D0-D15.

For accesses to these registers when configured for 32-

bit bus operation, the MC68881 generates DSACK signals

as listed in Table 10 to inform the MC68020 of valid data

on D16-D31 instead of D0-D15.

An externa l hol ding resi stor is required to maintain

both DSACKO and DSACK1 high between bus cycle s. In

order to reduce the signal rise time, the DSACKO and

DSACK1 lines are actively pulled up (negated) by the

MC68881 following the rising edge of AS or DS, and both

DSACK lines are then three-stated (placed in the high-

impedance state) to avoid interference with the next bus

cycle.

RESET (RESET)

This active-low input signal causes the MC68881 to

initialize the floating-point data registers to non-signaling

not-a-numbers (NANs) and clears the floating-point con-

trol, status, and instruction address registers.

When perform ing a power-up reset, external circuitry

should keep the RESET line asserted for a minimum of

four clock cycles after Vqq is within tolerance. This as-

sures correct initialization of the MC68881 when power

is applied. For compatibility with all M68000 Family de-

vices, 100 milliseconds should be used as the minimum.

When performing a reset of the MC68881 after Vcc has

been within tolerance for more than the initial power-up

time, the RESET line must have an asserted pulse width

which is greater than two clock cycles. For compatability

with all M68000 Family devices, 10 clock cycles should

be used as the minimum.

CLOCK (CLK)

The MC68881 clock input is a TTL-compatable signal

that is internally buffered for development of the internal

clock signals. The clock input should be a constant fre-

quency square wave with no stretching or shaping tech-

niques required. The clock should not be gated off at any

time and must conform to minimum and maximum pe-

riod and pulse width times.

SENSE DEVICE (SENSE)

This pin may be used optionally as an additional GND
pin, or as an indicator to external hardware that the

MC68881 is present in the system. This signal is internally

connected to the GND of the die, but it is not necessary

to connect it to the external ground for correct device

operation. If a pullup resistor (which should be larger than

10 kohm) is connected to this pin location, external hard-

ware may sense the presence of the MC68881 in a sys-

tem.

POWER (Vcc and GND)

These pins provide the supply voltage and system ref-

erence level for the internal circuitry of the MC68881.Care

should be taken to reduce the noise level on these pins

with appropriate capacitive decoupling.

NO CONNECT (NC)

One pin of the MC68881 package is designated as a no

connect (NC). This pin position is reserved for future use

by Motorola, and should not be used for signal routing

or connected to Vqq or GND.

SIGNAL SUMMARY
Table 11 provides a summary of all the MC68881 sig-

nals described in this section.

Table 10. DSACK Assertions

Data Bus A4 CommentsDSACK1 DSACKO

32-Bit 1 L L Valid Data on D31-D0

32-Bit L H Valid Data on D31-D16

16-Bit X L H Valid Data on D31-D16 or D15-D0

8-Bit X H L Valid Data on D31-D24. D23-D16, D15-D8, or D7-D0

All X H H Insert Wait States in Current Bus Cycle
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Table 11. Signal Summary

Signal Name Mnemonic Input/Output Active State Three State

Address Bus A0-A4 Input High -

Data Bus D0-D13 Input/Output High Yes

Size SIZE Input Low -

Address Strobe AS Input Low -

Chip Select CS Input Low -

Read/Write R/W Input High/Low -

Data Strobe DS Input Low -

Data Transfer and Size Acknowledge Output Low YesDSACKO. DSACK1

Reset RESET Input Low -

Clock CLK Input - -

Sense Device SENSE Input/Output Low No

Power Input VCC Input - -

Ground GND Input - -

INTERFACING METHODS

MC68881/MC68020 INTERFACING

The following paragraphs describe how to connect the

MC68881 to an MC68020 for coprocessor operation via

an 8-, 16-, or 32-bit data bus.

32-Bit Data Bus Coprocessor Connection

Figure 1 1 illustrates the coprocessor interface connec-

tion of an MC68881 to an MC68020 via a 32-bit data bus.

The MC68881 is configured to operate over a 32-bit data

bus when both the AO and SIZE pins are connected to

vCc

16-Bit Data Bus Coprocessor Connection

Figure 12 illustrates the coprocessor interface connec-

tion of an MC68881 to an MC68020 via a 16-bit data bus.

The MC68881 i s configured to operate over a 16-bit data

bus when the SIZE pin is connected to Vqq, and the AO
pin is connected to GND. The sixteen least significant

data pins (D0-D1 5) must be connected to the sixteen most
significant data pins (D16-D31 ) when the MC68881 is con-

figured to operate over a 16-bit data bus (i.e., connect DO
to D16, D1 to D17, ... and D15 to D31). The DSACK pins

of the two devices are directly connected , although it is

not necessary to connect the DSACKO pin since the

MC68881 never asserts it in this configuration.

8-Bit Data Bus Coprocessor Connection

Figure 13 illustrates the connection of an MC68881 to

an MC68020 as a coprocessor over an 8-bit data bus. The
MC68881 unconfigured to operate over an 8-bit data bus

when the SIZE pin is connected to GND. The twenty four

least significant data pins (D0-D23) must be connected to

the eight most significant data pins (D24-D31) when the

MC68881 is configured to operate over an 8-bit data bus

(i.e., connect DO to D8, D16 and D24; D1 to D9, D17, and

D25; ... and D7 to D15, D23 and D31). The DSACK pins

of the two devices are directy connected , although it is

not necessary to connect the DSACK1 pin since the

MC68881 never asserts it in this configuration.

FC0FC2

A20-A31

Al6 Al9

A13-A15

A5-A12

A1 A4

CHIP

SELECT

DECODE

SIZE

Al A4

R/W

D24031

D16-023

D8-D1S

O0D7

DSACKO

DSACK1
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MAIN PROCESSOR COPROCESSOR

CLOCK CLOCK

Figure 11. 32-Bit Data Bus Coprocessor Connection
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CHIP

SELECT

DECODE

R/W

024-031

D16-D23

D8-D15

D0-D7

DSACKO

DSACK1

MAIN PROCESSOR

CLOCK

COPROCESSOR

CLOCK

Figure 12. 16-Bit Data Bus Coprocessor Connection

MC6888 1 -MC68000/MC68008/MC6801 INTERFACING

The following paragraphs describe how to connect the

MC68881 to an MC68000, MC68008, or MC68010 proces-

sor for operation as a peripheral via an 8- or 16-bit data

bus.

16-Bit Data Bus Peripheral Processor Connection

Figure 14 illustrates the connection of an MC68881 to

an MC68000 or MC68010 as a peripheral processor over

a 16-bit data bus. The MC68881 is co nfigured to operate

over a 16-bit data bus when the SIZE pin is connected to

Vcc , and the AO pin is connected to GND. The sixteen

least significant data pins (D0-D15) must be connected to

the sixteen most significant data pins (D16-D31) when
the MC68881 is configured to operate over a 16-bit data

bus (i.e., connect DO to D16, D1 to D17, ... and D15 to

D31 ). The DSACK1 pin of the MC68881 is connected to

the DTACK pin of the main processor, and the DSACKO
pin is not used.

When connected as a peripheral processor, the MC68881
chip select (CS) decode is system dependent. If the

MC68000 is used as the main processor, the MC68881 CS
must be decoded in the supervisor or user data spaces.

However, if the MC68010 is used for the main processor,

the MOVES instruction may be used to emulate any CPU
space access that the MC68020 generates for coprocessor

communications. Thus, the CS decode logic for such sys-

tems may be the same as in an MC68020 system, such

that the MC68881 will not use any part of the data address

spaces.
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Figure 13. 8-Bit Data Bus Coprocessor Connection
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8-Bit Data Bus Peripheral Processor Connection

Figure 15 illustrates the connection of an MC68881 to

an MC68008 as a peripheral processor over an 8-bit data

bus. The MC68881 is configured to operate over an 8-bit

data bus when the SIZE pin is connected to GND. The

eight least significant data pins (D0-D7) must be con-

nected to the twenty four most significant data pins (D8-

D31 ) when the MC6888! is configured to operate over an

8-bit data bus (i.e. connect DO to D8, D16, and D24; D1

to D9, D17, and D25; ... and D7 to D15, D23, and D31).

The DSACKO pin of the MC68881 is connected to the

DTACK pin of the MC68008, and the DSACK1 pin is not

used.

When connected as a peripheral processor, the MC6888

1

chip select (CS) decode is system dependent, and the CS
must be decoded in the supervisor or user data spaces.
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A16-A19
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Figure 15. 8-Bit Data Bus Peripheral Processor Connection
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APPENDIX E

The 6800 Microprocessor:

A Historical Perspective

E.1 INTRODUCTION

Motorola introduced the 6800 microprocessor about the same time other 8-bit

CPUs, such as Intel's 8080 and 8085, became available. The ease of use and
large peripheral support of the 6800 made it an ideal teaching CPU, and many
colleges adopted it as their 8-bit standard for use in the classroom. This appen-

dix is not intended to be a detailed reference on the 6800, but merely a review

of its functions for those students already familiar with it and a source of

information for those unfamiliar with it. In any event, our main goal is ulti-

mately to compare the features of the 6800 with those of the 68000.

Section E.2 examines the software model of the 6800 and its register set.

Section E.3 gives a functional description of the 6800, paying special attention

to the control signals. In addition, a simple interfacing example is presented,

showing how the 6800 communicates with a peripheral. Section E.4 summa-
rizes the 6800's instruction set and addressing modes. Section E.5 contains

sample programs showing the 6800 performing simple control applications and
basic programming functions. Finally, Section E.6 compares the 6800 to the

68000.

E.2 THE SOFTWARE MODEL OF THE 6800

The 6800 is an 8-bit CPU containing two 8-bit accumulators (A and B), a 16-bit

index register (IX), and 16-bit program counter (PC) and stack pointer (SP)

registers. An 8-bit condition code register (CCR) is also available, allowing for

program testing of the standard conditions, such as zero, overflow, and sign.

Figure E.l shows a software model of the 6800. Two's complement arithmetic

471



472 Appendix E
|
The 6800 Microprocessor: A Historical Perspective

FIGURE E.1 Software model of

the 6800
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is performed using either accumulator. The 16-bit registers (IX, SP, and PC)
may be used to address any location in the 6800's 64K address space (from

0000 to FFFF). Do not let the lack of internal registers fool you. The 6800
contains special instructions that allow certain memory locations to do the

same work as an internal register, and we will see examples of these instruc-

tions in Section E.4.

E.3 A FUNCTIONAL DESCRIPTION OF THE 6800

Before we examine the instruction set of the 6800, it would be helpful to look at

the actual chip itself and study its hardware features, since this method will

give us more to think about when we later explore the 6800's instructions.

Figure E.2 shows a diagram of the 6800 with its input and output pins grouped

by function; the direction of the arrows indicates whether the pin is an input or

an output.

The first group of pins is used to supply power to the 6800. Vcc and Vss are

used to apply +5 V and ground to the chip (there are two ground pins).

The second group of pins is used to control the microprocessor's timing. The
phase 1 and phase 2 clocks are used to generate all internal CPU timing. They

are nonoverlapping, out-of-phase, TTL signals generated externally, with a
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FIGURE E.2 6800 input/output
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typical frequency of 1 MHz. Older CPUs, such as the 8080, required two-phase

clocks for proper operation. Newer ones, such as the Z80 and 68000, require

only one clock input.

RESET is used to initialize the processor, normally after a power-on has

occurred. When RESET has been low for at least eight clock cycles, the 6800

performs its internal resetting chores. One of the special tasks it will perform

is to fetch the start-up program counter from memory locations FFFE and
FFFF. The high byte of the PC will be loaded from location FFFE, and the low

byte of the PC from location FFFF.
Suppose, for example, that location FFFE contains FC and location FFFF

contains the value 00. Upon reset, the 6800 will read these two locations and
begin program execution at location FC00. For this reason, designers of 6800
systems place their ROMs at the high end of memory, to ensure that a correct

start-up program counter is fetched.

The last signal in this group, HALT, is used to stop the 6800 during normal
program execution. When it is halted, a number of things occur. First, the BA
(bus available) output will go high (it is normally low), indicating that the

microprocessor has_been halted. In addition, the address and data buses, to-

gether with the R/W line, will go to the high-impedance state, essentially dis-

connecting the CPU from the outside world. Finally, a low will be output on

VMA (valid memory address), to ensure that no improper addressing of mem-
ory or peripherals occurs during the halt state.

The 6800 can recognize some external events even while halted. Should an
interrupt occur, on either NMI or IRQ, the 6800 will latch onto the request and
act on it as soon as it begins executing instructions again. If RESET is acti-

vated, the processor will prepare to fetch the new program counter from FFFE
and FFFF as soon as the HALT line is released (put into the high state).
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The next group of signals is used to interrupt the processor and control it

during DMA operations. Both NMI (nonmaskable interrupt) and IRQ (inter-

rupt request) are external inputs, with NMI having priority. This means that

the 6800 will process the NMI request before processing the IRQ request,

should both occur at the same time. NMI cannot be disabled via software,

unlike IRQ, which depends on the interrupt mask bit in the condition code

register. If this bit is high, no interrupt processing will take place. Further-

more, NMI is an edge-sensitive input, unlike IRQ, which is level-sensitive.

Both interrupts, when processed, cause the program counter, index regis-

ter, accumulators, and condition code register to be pushed onto the stack.

After this has been done, the address for the interrupt routine is fetched from
memory and the interrupt mask bit is set. Table E.l shows how the routine

addresses are assigned to reserved locations. A NMI causes the 680 to load

the interrupt routine address from locations FFFC and FFFD. IRQ loads the

routine address from FFF8 and FFF9. The software interrupt is implemented

via a special instruction that we will look at in Section E.4. Without ROM at

the upper end of memory, we would not be able to store the interrupt routine

addresses, which would result in a limited-use 6800.

The next signal, DBE (data bus enable), controls the state of the CPU data

bus. When DBE is high, the data bus is active and internal bus drivers are

enabled (at appropriate times under microprocessor control). When an exter-

nal device wishes to use the CPU's data bus for its own purposes (as in a DMA
operation), DBE should be held low. This causes the data bus to enter a high-

impedance state until DBE is returned high.

The last signal in this group is TSC (three-state_ control). When high, it

will cause the 6800 to place its address lines and R/W output into a state of

high impedance. Since this could be disastrous if the 6800 is executing a pro-

gram (data or instruction may be lost), execution should be suspended while

TSC is high. This can be done by stopping the CPU clock. While the absence of

transitions on the phase 1 and 2 clocks serves to suspend program execution

during a DMA operation, it can also lead to loss of data within the CPU is TSC
is held high for an extended period of time (slightly longer than 4 /as for a

1-MHz CPU). This restriction requires that DMA operations be kept very

short, completing within 4 cycles of the main system clock.

To ensure proper operation of external circuitry while TSC is active, the

VMA and BA signals are forced low. This disables any logic circuitry that

depends on these signals for proper operation, preventing false writes to mem-
ory or peripherals during times when TSC is high.

TABLE E.1 Interrupt vector

memory map Hl
J_j^

FFFE FFFF
FFFC FFFD
FFFA FFFB
FFF8 FFF9

Interrupt

reset

NMI
software interrupt

IRQ
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The last group of signals has to do with the system address and data buses

and their control signals. The 6800 has a 16-bit address bus, available on

address lines A through A 15 , with A 15 being the MSB. These 16 address lines

provide for a 64KB address space. Usually the address space is divided into

portions dedicated to RAM, ROM, and I/O.

D through D 7 form the 8-bit bidirectional data bus. Both buses are capa-

ble of driving one TTL load. If any address or data line is required to drive

more than one TTL device, a standard bus buffer should be used.

BA (bus available) is normally low. When high it indicates that the 6800

has halted, and external circuitry may use the bus. The CPU may be stopped

by activating the HALT line, or by executing a WAIT instruction (which is

described in Section E.4). BA will also go low when TSC is brought high.

VMA (valid memory address) is an output that is used to tell external

circuitry that the address bus contains valid information. Memory and periph-

eral enabling circuitry should make use of this signal to ensure proper ad-

dressing.

The last CPU signal is R/W When high the 6800 is reading data from the

data bus. When low, the 6800 is writing. This output will be tristated when the

CPU is halted, or when TSC is high.

Now that we have examined all of the 6800's signals, let us look at an

example of how to place a memory device into the microprocessor's address

space. In Figure E.3 we see how a 2732 EPROM (erasable programmable read-

only memory) is connected to the 6800. Address lines A through An go right

to the 2732, which will use them to internally select one of 4K possible loca-

tions. The eight data outputs of the 2732 go to the 6800's data bus. The R/W
line is inverted, to provide the proper level on the 2732's OE (output enable)

input. To read data from the JSPROM, the CS input must also be low. The
address decoder connected to CS ensures that the 2732 will only be enabled

when three conditions are met: First, the upper nibble of the address line (A 12

through A 15 ) must contain all Is (this gives us our F in the starting address of

F000). Second, the VMA signal must be high. This guarantees that the data on

the address bus are valid. Third, the phase 2 clock signal must be high. This

prevents the data transfer from taking place before the 6800 is ready for it. If

any of these three conditions is not met, the output of the OR gate will be high,

disabling the 2732 (and tristating its data outputs).

E.4 THE 6800 INSTRUCTION SET

Now that we have a feeling for the hardware operation of the 6800, we can take

a look at the software capabilities of this 8-bit CPU. The 6800's instruction set

can perform arithmetic and logical operations, 8- and 16-bit data transfers,

and conditional branches. It can process four types of interrupts and handle

nested subroutines via a system stack. The CPU's 72 basic instructions com-

bine with 8 different addressing modes, giving 197 possible instruction for-

mats. The next five sections give examples of each instruction group.
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VMA

FIGURE E.3 A 4K EPROM mapped to address F000

Arithmetic Instructions

The 6800 provides a number of arithmetic instructions, most of which operate

on the A and B accumulators. Some instructions manipulate the 16-bit index

register X. We will look at one instruction in detail, using different addressing

modes when possible. Then we will see examples of other instructions in the

arithmetic group.

Table E.2 presents four different ways to write the ADDA instruction,

which is used to add data to accumulator A. The first form of addressing used is

immediate. The value to be added to accumulator A is supplied in the operand

field. Thus, ADDA #2FH means to add the value 2F to accumulator A.

The second instruction uses direct addressing. This form of addressing uses

locations in the first page of memory, locations 0000 to 00FF. Here a page is

defined as a 256-byte block of memory. The 6800 knows to look only in the first

256 locations whenever direct addressing is used. The programmer supplies

the address where the data is located in this page, as the operand of the in-

struction. With this in mind, you should see that ADDA 38H means to add

the data from address 38H (in the first page of memory) to the accumulator.

The third instruction employs indexed addressing. Here, an 8-bit value

supplied in the operand is added to the 16-bit index register. The resulting
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TABLE E.2

ADDA
Different forms of

Instruction

ADDA *2FH
ADDA 38H
ADDA 4.X

ADDA 3C95H

Addressing Mode

immediate

direct

indexed

extended

16-bit value becomes the address of the data that is to be added to the accumu-

lator. Suppose that register X contains 5A00. The ADDA 4.X instruction

would instruct the 6800 to add the data contained in location 5A04 to the

accumulator.

What is nice about these first three instructions is that they all require

only 2 bytes of code. Normally. 2 bytes are used just to supply the address of the

data. In this case, the use of direct and indexed addressing eliminates the extra

byte. For those times when you may wish to supply the actual 2-byte address of

the data, extended addressing is used. ADDA 3C95H instructs the 6800 to

add the data from location 3C95 to the accumulator. This translates into a

3-byte instruction. A good practice is to avoid extended addressing, which
wastes execution time when the third byte is fetched.

Many of the other arithmetic instructions make use of these addressing

modes as well. Examples are:

ABA Add accumulator B to A
ADDB Add to accumulator B

ADCA ADCB Add with carry to accumulator

SUBA SUBB Subtract from accumulator

SBCA SBCB Subtract with carry from

accumulator

SBA Subtract accumulators

CLRACLRB Clear accumulators

CLR Clear a memory location

NEGANEGB Negate accumulator. 2s

complement

COMA COMB Complement accumulator

COM Complement data at a memory
location

INCA/INCB Increment accumulator

ENC Increment data at a memory
location

DECA DECB Decrement accumulator

DEC Decrement data at a memory
location
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INX/INS Increment index/stack pointer

register

DEX/DES Decrement index/stack pointer

register

DAA Decimal adjust accumulator A

Some of these instructions utilize implied addressing. This form of addressing

uses information present in the opcode itself, so there is no need for an oper-

and. Examples of implied addressing are ABA, SBA, COMA and COMB, DAA,
and others. Note the lack of advanced arithmetic instructions, such as multiply

and divide.

Logical Instructions

These instructions are provided to implement Boolean operations on data. Log-

ical operations are most useful when testing or manipulating data. The 6800

provides the following logical operations:

ANDA/ANDB AND accumulator with data

EORA/EORB Exclusive OR accumulator with data

ORAA/ORAB OR accumulator with data

Other instructions include the rotate and shift instructions, which are

used to move individual bits around inside the accumulators and memory.

Shifting left or right is a very useful way to double or halve a binary valve. The
instructions provided for these operations are:

ROLA/ROLB Rotate accumulator left

ROL Rotate data in a memory location left

RORA/RORB Rotate accumulator right

ROR Rotate data in a memory location right

ASLA/ASLB Arithmetic shift left accumulator

ASL Arithmetic shift left data in a memory
location

ASRA/ASRB Arithmetic shift right accumulator

ASR Arithmetic shift right data in a memory
location

LSRA/LSRB Logical shift right

accumulator

LSR Logical shift right data in a

memory location
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FIGURE E.4 Effects on

accumulator of (a) ROLA and

(b) RORA ^—
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There are some differences between rotates and shifts. The rotate instruc-

tions circulate the eight accumulator bits and the carry flag. Figure E.4 shows

how ROLA and RORA affect the accumulator and carry flag. These instruc-

tions actually perform a 9-bit rotate. The arithmetic shift left (ASLA/ASLB)
and logical shift right (LSRA/LSRB) instructions work differently. In this case

a zero is shifted into the accumulator, and the data that gets shifted out is

placed in the carry flag. Figure E.5 shows how this is done. The arithmetic

shift right is very similar to the logical shift right. The difference is that a zero

is not shifted into bit 7. Instead, bit 7 is shifted into itself so that it stays the

same. This serves to keep the sign the same, in cases when the accumulator

contains the 2s complement representation of a number.

Data Transfer Instructions

This group of instructions allow the movement of 8- and 16-bit quantities be-

tween memory and the processor registers, and between the registers them-

selves. Instructions that manipulate 8-bit values are the following:

FIGURE E.5 Shift operations on

accumulator: (a) arithmetic shift left

and (b) logical shift right DM
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LDAA/LDAB Load accumulator

STAA/STAB Store accumulator

TAB Transfer from accumulator A to B

TBA Transfer from accumulator B to A
PULA/PULB Pull accumulator data from stack

PSHA/PSHB Push accumulator onto stack

Two additional instructions allow accumulator A to exchange data with
the condition code register:

TAP Transfer A to the condition code register

TPA Transfer the condition code register to A

Sixteen-bit transfers are used mainly for the index and stack pointer regis-

ters. Instructions for this purpose are:

LDS Load stack pointer

LDX Load index register

STS Store stack pointer

STX Store index register

TSX Transfer from stack pointer to index register

TXS Transfer from index register to stack pointer

Most of the instructions in the data transfer group allow the use of immedi-
ate, direct, extended, and indexed addressing. Some of them—TBA and PUL
and PSH, for example—use implied addressing and require no operands.

Conditional Instructions

This group contains the conditional and unconditional branches andjumps and
various instructions for testing data. CMPA/CMPB (compare accumulator) is

used to compare an accumulator with an 8-bit value. The condition codes are

set accordingly. CBA is used to compare accumulator B to A (by an internal A
minus B operation). CPX (compare index register) is used for 16-bit compari-

sons. In all comparisons, the register data remain unchanged; only the condi-

tion codes are affected. TSTA, TSTB, and TST are used to test either an accu-

mulator or memory location for zero. The BITA/BITB instructions are used to

perform a logical AND on the accumulator and a specified memory location.

Once the condition codes have been adjusted, a number of conditional

branch instructions may be used to control program flow. These conditional

branch instructions are:

BHI Branch if higher

BLS Branch if lower or same
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BCC Branch if carry clear

BCS Branch if carry set

BNE Branch if not equal

BEQ Branch if equal

BVC Branch if overflow clear

BVS Branch if overflow set

BPL Branch if plus

BMI Branch if minus

BGE Branch if greater than or equal to zero

BLT Branch if less than zero

BGT Branch if greater than zero

BLE Branch if less than or equal to zero

The 14 conditional branches provide the programmer with a good amount
of flexibility. If the need arises for an unconditional branch, the BRA (branch

always) instruction can be used. Branches are always relative to the current

program counter, with the displacement specified by a single, signed byte. This

means that all branches are limited to a range of 127 locations forward and 128

backward. When this poses a restriction and a location farther away must be

jumped to, the JMP (unconditional jump) instruction can be used. JMP re-

quires a 2-byte address in its operand field.

If subroutines are used in a program, either BSR (branch to subroutine) or

JSR (jump to subroutine) should be used. Both instructions cause the program
counter to be pushed onto the stack. When the subroutine finishes execution,

control is returned to the correct point in the program by using the RTS (return

from subroutine) instruction.

Machine Control Instructions

The last group of instructions deal with interrupt processing and condition

code manipulation. Instructions are provided to set and clear three of the

6800's condition codes, and consist of the following:

CLV Clear overflow bit (bit V)

SEV Set overflow bit

CLC Clear carry (bit C)

SEC Set carry

CLI Clear interrupt mask bit (bit I)

SEI Set interrupt mask bit

In Section E.3 we examined the operation of the IRQ and NMI signals.

When either of these interrupts begins processing, the processor will complete
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the current instruction and save processor status on the stack. The processor

status consists of the current program counter, the state of the condition code

register, the contents of both accumulators, and the index register. All are

saved on the stack when an external interrupt occurs, or if the processor exe-

cutes either the SWI (software interrupt) or WAI (wait for interrupt) instruc-

tions.

If the interrupt mask bit is set, the 6800 will not respond to an IRQ, other

than to latch the request. When and if the interrupt mask is cleared at a later

time, the IRQ will be processed. NMI is unaffected by the interrupt mask bit

because it is nonmaskable.

The WAI instruction is a handy time-saver. When a programmer knows an
interrupt will occur, the WAI instruction can be used to save the processor

status and place the processor in a wait state until the interrupt occurs. Since

the status has already been saved, interrupt processing can begin immedi-
ately.

Using SWI provides the programmer with a way to interrupt program flow

from inside the processor. Whenever any kind of interrupt has occurred, the

interrupt processing routine must use the RTI (return from interrupt) instruc-

tion to restore processor status and resume proper program execution.

Finally, what microprocessor instruction set would be complete without a

NOP (no operation) instruction? This instruction does nothing except waste

CPU time, and thus it finds application in delay loops.

E.5 6800 PROGRAMMING EXAMPLES

In this section we will look at three example programs, each designed to illus-

trate the use of the 6800 in a simple control/testing application. The examples

are kept short and simple, but still contain a good mix of instructions from all

of the instruction groups covered in Section E.4.

Performing EPROM Checksums

It is often important to check the entire contents of an EPROM, to ensure the

correctness of its data. Checking each and every byte would unfortunately slow

things down and make the test more complex. An easier method, which yields

good results, is to perform a checksum of the EPROM. This involves adding

up the data from each location (ignoring the overflow), to come up with a sum
representative of the entire EPROM contents. The idea is that if a single bit

changes in any location, the sum will be different and the bad EPROM recog-

nized.

In this example, the last location in the EPROM will be used to store the 2s

complement of the checksum. When the EPROM is then checked and all loca-

tions are added up, the result should be zero! Any nonzero answer means the

EPROM data has been changed. The routine CHKSUM will be employed to

perform the test, using the carry flag upon return to indicate success or failure.
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CHKSUM

NEXT

FAIL

CLRA
LDX FIRST
ADDA 0. X
CPX LAST
BEQ TEST
I NX
BRA NEXT
CLRB
CBA
BNE FAIL
CLC
RTS
SEC
RTS

initialize sum to zero
get starting EPROM address
add EPROM data to accumulator
has final EPROM location been reached 7

no, point to next location
and continue summing
clear accumulator B
compare accumulators (is A zero?)

EPROM passes, clear carry flag

EPROM failed, set carry flag

FIRST and LAST are reserved memory locations that must be loaded with

the starting and ending EPROM locations, prior to calling CHKSUM. Using

these data areas allows for testing of different size EPROMs without modifying

the program.

Monitoring Temperature Levels

In this example the 6800 will be used to monitor the temperature of an indus-

trial process. When the temperature exceeds a predetermined threshold value,

a warning light will be turned on. The temperature will be monitored by the

use of a thermistor, a resistor whose value changes with temperature. This

change in resistance will cause a similar change in voltage, which will be

converted into an 8-bit binary value via an analog-to-digital converter. This

value is obtained by reading memory location 8C00. The warning indicator is

an LED that can be turned on by writing a logic 1 to bit 5 of memory location

8D00. Figure E.6 shows a simple block diagram of the entire control process.

The threshold value used for comparisons is stored in location THRESH.
TEMPMON is designed as a continuous loop, constantly monitoring the tem-

perature as long as the microprocessor is running.

make sure LED is off
get A/D data (temperature reading)
compare with threshold value
temperature is within range
overtemp, turn on warning LED

now monitor temperature until it drops
below the threshold

TEMPMON CLR 8D00H
GETAD LDAA 8C00H

CMPA THRESH
BLT GETAD
LDAA #20H
STAA 8D00H

OVER LDAA 8C00H
CMPA THRESH
BLT TEMPMON
BRA OVER

Keeping Time with Interrupts

In this example, we will use the 60-Hz powerline frequency as a reference for

our program. The task before us is to write a routine that will issue a SWI once

every second. One obvious application of this would be in a software clock. But
dedicating the computer to the mundane chore of keeping time would be ineffi-
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FIGURE E.6 Monitoring temperature in an industrial process

cient, since most of the computer's time would be spent looking for transitions

on the slowly changing 60-cycle waveform. A better solution is to let the

powerline frequency interrupt the computer 60 times a second, freeing up the

processor for other things during times when it is not being interrupted. The
interrupt service routine will keep track of the number of interrupts received

and issue the SWI when 60 have occurred. Figure E.7 shows a Schmitt trigger

converting the sinusoidal powerline frequency into a 60-Hz square wave,

which is used to trigger NML The reference waveform is available on the

low-voltage secondary of the transformer in the computer's power supply. The
routine NMITIME uses the value contained in COUNT to keep track of the

» z ru

NMI
6800

Computers
power supply

Transformer

FIGURE E.7 Creating a 60-cycle reference
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number of interrupts received. The interrupt vector at locations FFFC/FFFD
(see Table E.l) must point to the address of NMITIME. In addition, start-up

software must take care of initializing COUNT to 60, for proper timekeeping.

NMITIME LDAA
DECA

COUNT ;get interrupt count

BEQ 0NESEC ;have 60 occurred?
STAA COUNT ;no, save current count
CLI ; enable interrupts
RTI ; resume current program

0NESEC LDAA #60 ; reset interrupt counter
STAA COUNT
CLI ; enable interrupts
SWI ; issue one-per-second SWI
RTI ; resume current program

E.6 THE 6800 VERSUS THE 68000

Even though the 68000 is more advanced than the 6800, some similarities

between the two processors exist. Actually, Motorola intended this to be the

case, so that the line of peripherals already designed for the 6800 would be

available for use with the 68000. To make this happen, Motorola included

VMA and a signal called the E clock on the 68000 to perform what it calls

synchronous bus transfers. These are data bus transfers that take place be-

tween the 68000 and the slower 6800 peripherals.

Motorola also retained the same format for storing double bytes (words) in

memory. Both processors save the most significant byte first.

As to differences, there are many. The two-phase clock has been replaced

by a single clock input. The data bus has been expanded to 16 bits and the

address bus to 23 bits, with some additional signals for accessing upper and
lower memory bytes. This change in the address bus increases the memory
space from 64KB to over 16 million bytes!

The instruction sets are also different, meaning that no 6800 opcodes will

execute on the 68000. Instead of two accumulators, the 68000 contains eight

data registers and eight address registers. The enhanced instruction set in-

cludes multiplication and division instructions and 14 different addressing

modes.

From a hardware standpoint, we also see improvements. The 68000 comes
with clock speeds as high as 12.5 MHz. Seven levels of prioritized external

interrupts are available, and 255 internal exceptions (a fancy name for inter-

rupt) are available. The 68000 also provides for high-speed data transfers

through a special signal called DTACK (data transfer acknowledge).

And this is only the tip of the iceberg. We will discover many other features

when we study the hardware and software of the 68000 in more detail.
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Program counter with index, 45-47

Quick immediate data, 47

Address strobe, 177

Assembler, 34, 79

Asynchronous data transfer, 177-178

Autovector, 103

Auxiliary routines,

BLANK, 326

CHAR_IN, 325

CHAR_OUT, 326

CRLF, 326

ERROR, 328

FREEZE, 329

Auxiliary routines, continued

GET_JU)DR, 329

GET_BYTE, 328

INIT^CIA, 325

INSTAT, 325

PANIC, 329

PRINT_BYTE, 327

PRINT_LONG, 327

PRINT_MSG, 326

PRINT_WORD, 327

SIGN_ON, 326

TO_HEX, 328

VALDIG, 327

Base address, 195

Base e, 137

BAUD rate, 233

BCD addition, 129

BCD division, 132

BCD multiplication, 130

BCD subtraction, 130

Bidirectional data bus, 178

Binary addition, 125

Binary division, 128

Binary multiplication, 127

Binary subtraction, 126

Bubble sort, 123

Burglar alarm, 141

Bus arbitration, 175-177, 181

Bus buffering, 189

Bus contention, 6

Bus master, 176
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Cache. 28-29

Calculator project.

Control program, 83-84

Initial questions, 30

Introduction, 14-15

Special functions, 162-164

Carry flag, 49

Central processing unit (CPU'. 2

Closed-loop system, 146

Command recognizer. 330

Condition codes. 20. 48-49

Conditional instructions, 70-72

Constant-speed motor controller. 146

Context. 90

Context switch, 159

Control bus, 177

Coprocessor, 3, 295-300

Cross assembler. 34

Cycle state, 180

Damping resistor, 213

Descriptor. 261

Digital-to-analog converter, 278-280

Direct memory access (DMA I, 5, 216, 246-

257

DTACK delay generator, 204-206

Dynamic address translation, 258

Dvnamic RAM. 208-216

E-clock, 172

Effective address, 49

Exception handler, 20, 108-110, 149-152

Exception priority, 99

Exception stack frame, 98

Exceptions,

Address error. 101

Bus error, 101

CHK. 107

Divide-by-zero. 108

Illegal instruction. 104

Interrupts. 102

Privilege violation, 106

Reset. 100

Trace, 101

TRAP, 106

TRAPV. 107

Unimplemented instructions, 106

Exception vector table. 96-97

Extend flag. 49

FIFO. 157

Floating-point constants. 297

Floating-point instructions, 296-297

Floating-point number, 298

Function code outputs, 171-172

Halt indicator. 310-311

Instructions.

ABCD. 69

ADD. 55

ADDA. 56

ADDI. 56

ADDQ. 56

ADDX. 56

AND. 63

ANDI. 63. 75

ASL. 66

ASR. 66

Bcc. 70

BCHG, 67

BCLR. 68

BRA. 72

BSET, 68

BSR. 73

BTST. 68

CHK. 77, 107

CLR. 57

CMP. 57

CMPA. 57

CMPI. 58

CMPM, 58

DBcc, 71

DrVS. 58

DIVU. 59

EOR, 64

EORI. 64. 75

EXG. 49

EXT, 59

ILLEGAL, 78

JMP. 73

JSR. 74

LEA. 49

LINK, 50

LSL. 66

LSR. 66

MOVE. 50, 75

MOVEA. 51

MOVEM. 51



Index 489

Instructions, continued

MOVEP, 53

MOVEQ, 54

MULS, 60

MULU, 60

NBCD, 69

NEG, 60

NEGX, 61

NOT, 64

OR, 63

ORI, 63

PEA, 54

RESET, 77

ROL, 66

ROR, 66

ROXL, 66

ROXR, 66

RTE, 77

RTR, 74

RTS, 74

SBCD, 70

Sec, 71

STOP, 77

SUB, 61

SUBA, 61

SUBI, 61

SUBQ, 62

SUBX, 62

SWAP, 55

TAS, 62

TRAP, 78, 106

TRAPV, 78, 107

TST, 62

UNLK, 55

Instruction continuation, 28

Instruction execution times, 147-149
Interrupt, 4, 175

Interrupt acknowledge cycle decoder, 172

Interrupt mask, 21

Keypad scanner, 282-285

Machine code, 34

Memory address decoder, 194-201

Memory management, 160, 257-265

Memory-mapped I/O, 224

Memory-mapped video, 239

Microcontroller, 6

Microprocessor evolution, 8-10

Microprocessor system block diagram, 9

Monitor command routines,

DUMP, 331

EXECUTE, 333

GETCMD, 330

MOOV, 333

PATCH, 334

Multiplexed display, 285-286

Multitasking, 158-160

Negative flag, 48

Nil pointer, 152

Non-volatile memory (NVM), 4

Nonmaskable interrupt, 25, 102

Normalization, 133

Linked list, 152-154
Linker, 37

List file, 34, 36

Logical address, 261

Logical memory, 28

Object file, 34

Open-loop system, 141

Overflow flag, 48

Overhead, 149

Page fault, 28

Parallel data transfer, 224, 272-286
Parity error, 14

Partial address decoding, 201-204
Physical address, 261

Physical memory, 28

Pointer, 152

Polling, 143

Power-on reset circuitry, 309-310
Privilege states, 90-94
Privileged instructions, 91-93
Processor status, 171-172

Programmable logic, 321-323
Programming examples,

ADDBCD, 130

AMINUSB, 130

BADINST, 151

BCDDIV, 134

BCDMUL1, 131

BCDMUL2, 131
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Programming examples, continued

BINCNT. 231

BLOCKMOVE, 81

CHARGE. 300

CHARIN. 272

CHKSTRING. 122

CIN, 235

CLEAR, 241

COUT, 236

DISPAT, 81

DIVO. 151

DMAMOVE. 257

EPOWER. 137

FACTOR. 128

FACTORIAL, 135

FINDAVE. 80

FINDBYTE. 121

GETKEY, 284

INIT. 143

INQUEUE. 158

INSERT. 154

KEYBUFF, 118

LEVEL2. 109

LOADES, 264

LOADVEC. 264

MAKEBIN. 138

MANAGE, 162

MAXVAL, 121

MULTIPLY, 128

XEWFLOOR. 145

OUTQUEUE, 158

PACKBCD. 119

POP, 156

POWER, 135

PRAISE, 81

PUSH, 156

RAMP, 280

READKB. 284

RECOGNIZE, 123

ROOT. 136

SCROLL. 241

SDEV. 299

SEARCH, 81

SEND. 144

SERVO. 147

Programming examples, continued

SORT, 124

SQRWAVE, 280

SUBWAVE. 126

TENTOX, 164

TIMER. 151

TIMERINT, 285

TOASCII, 139

TOBIN, 148

TOTAL. 35. 126

TRIANGLE, 280

TSLICE, 160

UPT09999. 139

Pseudo code. 35

Queue. 156

Random-access memory (RAM), 4

Read-only memory iROMt. 4

Relocatable code. 36

Serial data transfer. 232, 265-272

Software model of the 68000, 20-21

Source file. 34-35

Specification. 114

Stack. 155-156

Status register. 20. 91-92

Structured programming. 114

Synchronous data transfer, 172-173

System bus, 2

UART. 232

Virtual memorv. 27-28

Watchdog monitor. 7. 313

Zero flag. 48
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