
THE

iVllCROPROGESSOR
ARCHITECTURE,
SOFTWARE,

AND INTERFACING
TECHNIQUES

WALTER ATRIEBEL
AVTAR SINGH

UHM BOOKS TGRe

m

;e c

□ THONK VOU ! ! !

Digitized by tine Internet Archive
in 2010

Iittp://www.arcliive.org/details/68000microproces00trie

THE 68000 MICROPROCESSOR

ARCHITECTURE, SOFTWARE,

AND INTERFACING TECHNIQUES

THE 68000 MICROPROCESSOR

Architecture, Software,
AND Interfacing Techniques

Walter A. Triebel

Avtar Singh, Ph.D.

PRENTICE-HALL, Englewood Cliffs, New Jersey 07632

Librar) of Congress Cataloging-in-Publication Data

Triebel, Waller A.
The 68000 microprocessor.

Bibliography: p.
Includes index.
1. Motorola 68000 (Microprocessor) I. Singh,

Aviar. . II. Title.

QA76.8.M67T75 1986 004.165 85-25607
ISBN 0-13-811357-2

Editorial/production supervision and
interior design: Kathryn Pavelec
Cover design: Joe Curcio
Manufacturing buyer: Gordon Osbourne

© 1986 by Prentice-Hall
A Division of Simon & Schuster, Inc.
Engiewood Cliffs, New Jersey 07632

Portions of this text were previously published as

16-BIT MICROPROCESSORS: Architecture, Software, and Interface Techniques
by Triebel and Singh (Prentice-Hall, 1985).

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6

ISBN D-13-flll3S7-E DSS

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Whitehall Books Limited, Wellington, New Zealand

Walter A. Triebel

To my wife, Frieda

Avtar Singh
To my parents, A mar Kaur
and Lai Singh

Contents

PREFACE

1 INTRODUCTION TO MICROPROCESSORS
AND MICROCOMPUTERS 1
1.1 Introduction 1

1.2 The Digital Computer 2

1.3 Mainframe Computers, Minicomputers, and
Microcomputers 2

1 .4 Hardware Elements of the Digital Computer

System 7
1.5 General Architecture of a Microcomputer System 9

1.6 Types of Microprocessors and Single-Chip
Microcomputers 1 1

2 THE 68000 MICROPROCESSOR 15
2.1 Introduction 1 5

2.2 The 68000 Microprocessor 15

2.3 Interfaces of the 68000 Microprocessor 17

2.4 Clock Input and Waveform 23

2.5 Internal Registers of the 68000 Microprocessor 23
2.6 Instruction Execution Control 27

3 68000 MICROPROCESSOR PROGRAMMING 1 31
3.1 Introduction 31

3.2 Software Model of the 68000 Microprocessor 31

3.3 Assembly Language and Machine Language 35

Contents

3.4 The Operand Addressing Modes of the 68000

Microprocessor 37
3.5 Instruction Set 57

3.6 Data Transfer Instructions 57

3.7 Integer Arithmetic Instructions 67
3.8 Decimal Arithmetic Instructions 74

3.9 Logic Instructions 79
3.10 Shift and Rotate Instructions 82

4 68000 MICROPROCESSOR PROGRAMMING 2 90
4.1 Introduction 90

4.2 Compare and Test Instructions 90

4.3 Jump and Branch Instructions 95
4.4 The Test Condition, Decrement, and Branch

Instruction and Programs Involving Loops 100

4.5 Subroutines and Subroutine-Handling Instructions 109

4.6 Bit-Manipulation Instructions 117

5 USING THE MC68000 EDUCATIONAL
MICROCOMPUTER FOR PROGRAM DEVELOPMENT 122
5.1 Introduction 122

5.2 The 68000 Microcomputer Development System 123
5.3 The Monitor Program 126
5.4 The Monitor Commands 127

5.5 Register Display/Modify Commands 132

5.6 Memory Display/Modify/Search Commands 135
5.7 Commands for Control of I/O Resources 143

5.8 Assembling Instructions and Programs 146
5.9 Program Execution Control Commands 1 54

5.10 Executing a Program 160

5.11 Debugging a Program 162

6 MEMORY AND INPUT/OUTPUT INTERFACES
OF THE 68000 MICROPROCESSOR 170
6.1 Introduction 170

6.2 Asynchronous Memory and I/O Interface 171

6.3 Address Space and Data Organization 171
6.4 Dedicated and General Use Memory 176

6.5 Program and Data Storage Memory and the Function
Codes 176

6.6 Memory and I/O Read Cycle Timing 178

6.7 Memory and I/O Write Cycle Timing 180

6.8 The User and Supervisor Stacks 183

6.9 64K-Byte Software-Refreshed Dynamic RAM
Subsystem 1 84

6.10 An I/O Instruction-MOVEP 187

6.11 The 6821 Peripheral Interface Adapter 188

6.12 Dual 16-Bit Ports for the 68000 Microcomputer
Using 6821s 192

6.13 Synchronous Memory and I/O Interface 196
6.14 Serial Communication Interface 200

6.15 The 6850 Asynchronous Communications Interface

Adapter 208

6.16 Special-Purpose Interface Controllers 214

«
EXCEPTION PROCESSING
OF THE 68000 MICROPROCESSOR 235
7.1 Introduction 235

7.2 Types of Exceptions 236
7.3 Exception Vector Table 236

7.4 Exception Priorities 238

7.5 External Hardware Interrupts 239

7.6 General Interrupt Processing Sequence 242

7.7 General Interrupt Interface of the 68000 245

7.8 Autovector Interrupt Mechanism 247

7.9 Autovector Interface Support Circuit 248

7.10 Exception Instructions 248
7.11 Bus Error 252

7.12 Reset Exception 254

7.13 Internal Exception Functions 255

THE HARDWARE OF THE MC68000

EDUCATIONAL MICROCOMPUTER 260
8.1 Introduction 260

8.2 The Microcomputer of the MC68000 Educational

Microcomputer Board 260

8.3 Clock Generator Circuitry 272

8.4 Interrupt Interface 273

8.5 Program and Data Storage Memory 279
8.6 Parallel and Serial 1/0 Interfaces 293

BIBLIOGRAPHY 311

68230 DATA SHEET 325

ANSWERS TO SELECTED PROBLEMS 313

INDEX 357

Preface

Today, the 68000 family is one of the more widely used families of 16-bit
microprocessors in modern microcomputer-based products. The 68000 is the micro-

processor employed in the popular Macintosh personal computer, as well as in a wide

variety of other electronic equipment. Individuals involved in the design of micro-
processor-based equipment need a systems-level understanding of the 68000 micro-

computer system. That is, a thorough knowledge of its software, hardware, and
interfacing is required.

This book represents an extensive study of the architecture, software, and inter-
facing techniques used in the design of 68000-based microcomputers. This material

is developed in the following five chapters: Chapter 2, The 68000 Microprocessor;
Chapter 3, 68000 Microprocessor Programming 1; Chapter 4, 68000 Microprocessor

Programming 2; Chapter 6, Memory and Input/Output Interfaces of the 68000 Micro-
processor; Chapter 7, Exception Processing of the 68000 Microprocessor.

With the first of these chapters we develop a thorough understanding of the

internal architecture of the 68000 microprocessor. This includes material on its in-
struction execution control.

Chapters 3 and 4 present in detail software issues such as addressing modes,

the instruction set, and the analysis and writing of assembly-language programs. A
large number of practical applications are illustrated through example programs.

The latter two. Chapters 6 and 7, are concerned with hardware and introduce
architectural features and circuit design techniques for the memory, input/output,
and interrupt interfaces of the 68000 microcomputer. Extensive coverage of bus cycles,
address maps, program storage memory subsystems, data storage memory subsystems,
input/output interface circuits, and interrupt interface circuits is included. A number

of large-scale integrated (LSI) peripheral controllers, such as the 6821 peripheral in-
terface adapter, the 6850 asynchronous communication adapter, and the 68230 parallel

interface/timer, are also studied in depth.

Two additional chapters are included that introduce Motorola's MC68000 Edu-
cational Microcomputer Board. This board is an educational microcomputer system

that can be used to execute and debug assembly-language programs written for the
68000 microprocessor. Chapter 5 introduces the educational microcomputer and the
commands that can be issued to the microcomputer. Moreover, examples are used
to demonstrate how programs are assembled, verified, executed, and debugged.

Chapter 8 is a study of the circuitry in the MC68000 educational microcomputer.
This chapter illustrates a practical application of the material on interfacing tech-

niques presented in Chapters 6 and 7. The architecture and circuit design of the
68000-based microcomputer is described in detail.

This book is written for use as a textbook in the electronic engineering tech-
nology curricula offered at universities and community colleges. Use of the book does

require prior knowledge of basic digital electronics. This background is at a level
consistent with, but not necessarily as extensive as, the material presented in two earlier

Prentice-Hall books: Integrated Digital Electronics, 2nd ed., Walter A. Triebel, 1985;
and Handbook of Semiconductor and Bubble Memories, Walter A. Triebel and Alfred
E. Chu, 1982. Since this book includes a large amount of practical information on
68000 microcomputer architecture, assembly-language programming, and interface
circuit design, it is also a valuable reference for practicing engineers and technicians.

WALTER A. TRIEBEL
AVTAR SINGH

THE 68000 MICROPROCESSOR

ARCHITECTURE, SOFTWARE,

AND INTERFACING TECHNIQUES

Introduction
TO Microprocessors
AND Microcomputers

1.1 INTRODUCTION

The most recent advances in computer system technology have been closely related

to the development of high-performance 16-bit microprocessors and their
microcomputer systems. During the last three years, the 16-bit microprocessor market
has matured significantly. Today, several complete 16-bit microprocessor families
are available. They include support products such as large-scale integrated (LSI)
peripheral devices, development systems, emulators, and high-level software
languages. Over the same period of time, these higher-performance microprocessors
have become more widely used in the design of new electronic equipment and
computers.

This book presents a detailed study of one of the more popular 16-bit micro-
processors, the 68000 by Motorola Incorporated. Included is material on the inter-

nal architecture of the 68000 microprocessor, its assembly language programming,

and the interface techniques used in the design of 68000-based microcomputer systems.
In this chapter we begin our study of 16-bit microprocessors and microcomputers.
The following topics are discussed:

1. The digital computer

2. Mainframe computers, minicomputers, and microcomputers

3. Hardware elements of the digital computer system

4. General architecture of a microcomputer system

5. Types of microprocessors and single-chip microcomputers

2 Introduction to Microprocessors and Microcomputers Chap. 1

1.2 THE DIGITAL COMPUTER

As a starting point, let us consider what a computer is, what it can do, and how it
does it. A computer is a digital electronic data processing system. Data are input
to the computer in one form, processed within the computer, and the information
that results is either output or stored for later use. Figure 1 . 1 shows a modern computer
system.

Computers cannot think about how to process the data that were input. Instead,
the user must tell the computer exactly what to do. The procedure by which a computer
is told how to work is called programming and the person who writes programs for

a computer is known as a programmer. The result of the programmer's work is a
set of instructions for the computer to follow. This is the computer's /urogram. When
the computer is operating, the instructions of the program guide it step by step through
the task that is to be performed.

For example, a large department store can use a computer to take care of
bookkeeping for its customer charge accounts. In this application, data about items
purchased by the customers, such as price and department, are entered into the

computer by an operator. These data are stored in the computer under the customer's
account number. On the next billing date, the data are processed and a tabular record

of each customer's account is output by the computer. These statements are mailed
to the customers as a bill.

In a computer, the program controls the operation of a large amount of
electronic circuitry. It is this circuitry that actually does the processing of data.
Electronic computers first became available in the 1940s. These early computers were

built with vacuum-tube electronic circuits. In the 1950s, a second generation of
computers was built. During this period, transistor electronic circuitry, instead of
tubes, was used to produce more compact and more reliable computer systems. When
the integrated circuit (IC) came into the electronic market during the 1960s, a third
generation of computers appeared. With ICs, industry could manufacture more

complex, higher-speed, and very reliable computers.
Today, the computer industry is continuing to be revolutionized by the advances

made in integrated-circuit technology. It is now possible to manufacture large-scale
integrated circuits (LSI) that can form a computer with just a small group of ICs.
In fact, in some cases, a single IC can be used. These new technologies are rapidly

advancing the low-performance, low-cost part of the computer marketplace by
permitting simpler and more cost-effective designs.

1.3 MAINFRAME COMPUTERS, MINICOMPUTERS,
AND MICROCOMPUTERS

For many years the computer manufacturers' aim was to develop larger and more
powerful computer systems. These are what we call large-scale or mainframe
computers. Mainframes are always general-purpose computers. That is, they are

4 Introduction to Microprocessors and Microcomputers Chap. 1

designed with the ability to run a large number of different types of programs. For
this reason, they can solve a wide variety of problems.

For instance, one user can apply the computer in an assortment of scientific
applications where the primary function of the computer is to solve complex
mathematical problems. A second user can apply the same basic computer system
to perform business tasks such as accounting and inventory control. The only
difference between the computer systems used in these two applications could be their

programs. In fact, today many companies use a single general-purpose computer to
resolve both their scientific and business needs.

Figure 1.1 is an example of a mainframe computer manufactured by
International Business Machine Corporation (IBM). Because of their high cost,
mainframes find use only in central computing facilities of large businesses and
institutions.

The many advances that have taken place in the field of electronics over the
past two decades have led to rapid advances in computer system technology. For

instance, the introduction of small-scale integrated (SSI) circuits, followed by
medium-scale integrated (MSI) circuits, and large-scale integrated (LSI) circuits, has
led the way in expanding the capacity and performance of the large mainframe
computers. But at the same time, these advances have also permitted the introduction

of smaller, lower-performance, and lower-cost computer systems.

Figure 1-2 Minicomputer system (Digital Equipment Corp.).

Sec. 1.3 Mainframe Computers, Minicomputers, and Microcomputers 5

As computer use grew, it was recognized that the powerful computing capability
of a mainframe was not needed by many customers. Instead, they desired easier access
to a machine with smaller capacity. It was to satisfy this requirement that the
minicomputer was developed. Minicomputers, such as that shown in Fig. 1.2, are
also digital computers and are capable of performing the same basic operations as

the earlier, larger systems. However, they are designed to provide a smaller func-
tional capability. The processor section of this type of computer is typically manufac-
tured using SSI and MSI electronic circuitry.

Minicomputers have found wide use as general-purpose computers, but their
lower cost also allows their use in dedicated applications. A computer used in a

dedicated application represents what is known as a special-purpose computer. By

"special-purpose computer" we mean a system that has been tailored to meet the
needs of a specific application. Examples are process control computers for industrial
facilities, data processing systems for retail stores, and medical analysis systems for

patient care. Figure 1.3 shows a minicomputer-based retail store data processing
system.

Figure 1-3 Retail store data processing

system (Sweda International
Incorporated).

The newest development in the computer industry is the microcomputer. Today,
the microcomputer represents the next step in the evolution of the computer world.
It is a computer that has been designed to provide reduced size and capability from
that of a minicomputer, with a much lower cost.

The heart of the microcomputer system is the microprocessor. A microprocessor
is a general-purpose processor built into a single IC. It is an example of an LSI device.
Together with the use of LSI circuitry in the microcomputer have come the benefits
of smaller size, lighter weight, lower cost, reduced power requirements, and higher
reliability.

The low cost of microprocessors, which can be as low as $1, has opened the
use of computer electronics to a much broader range of products. Figures 1.4 and

1.5 show some typical systems in which a microcomputer is used as a special-purpose
computer.

Introduction to Microprocessors and Microcomputers Chap. 1

Figure 1-4 Calculator (Texas In-
struments, Incorporated).

Figure 1-5 Point-of-sale terminal
(Sweda International
Incorporated).

Microcomputers are also finding wide use as general-purpose computers. Figures
1.6 and 1.7 are examples of personal computer systems. In fact, microcomputer
systems designed for the high-performance end of the microcomputer market are
rivaling the performance of the lower-performance minicomputers and at a much
lower cost to the user.

Figure 1-6 Personal computer
(AT&T Information Systems).

Figure 1-7 Personal computer

(Apple Computer Inc.).

1.4 HARDWARE ELEMENTS OF THE DIGITAL COMPUTER SYSTEM

The hardware of a digital computer system is divided into four functional sections.
The block diagram of Fig. 1.8 shows the four basic units of a simplified computer:
the input unit, central processing unit, memory unit, and output unit. Each section
has a special function in terms of overall computer operation.

Introduction to Microprocessors and Microcomputers Chap. 1

Memory
unit

t
Central

processing
unit

Input
unit

Output

unit

Figure 1-8 Block diagram of a digital
computer (Walter A. Triebel, Integrated
Digital Electronics, © 1979. Adapted by

permission of Prentice-Hall, Inc.,
Englewood Cliffs, N.J.).

The central processing unit (CPU) is the heart of the computer system. It is
responsible for performing all arithmetic operations and logic decisions initiated by
the program. In addition to arithmetic and logic functions, the CPU controls overall
system operation.

On the other hand, the input and output units are the means by which the CPU
communicates with the outside world. The input unit is used to input information
and commands to the CPU for processing. For instance, a Teletype terminal can be
used by the programmer to input a new program.

After processing, the information that results must be output. This output of
data from the system is performed under control of the output unit. Examples of ways

of outputting information are as printed pages produced by a high-speed printer or
displayed on the screen of a video display terminal.

The memory unit of the computer is used to store information such as numbers,

names, and addresses. By "store," we mean that memory has the ability to hold this
information for processing or for outputting at a later time. The programs that define
how the computer is to process data also reside in memory.

In computer systems, memory is divided into two different sections, known as
primary storage and secondary storage. They are also sometimes called internal

memory and external memory, respectively. External memory is used for long-term
storage of information that is not in use. For instance, it holds programs, files of
data, and files of information. In most computers, this part of memory employs
storage on magnetic media such as magnetic tapes, magnetic disks, and magnetic
drums. This is because they have the ability to store large amounts of data.

Internal memory is a smaller segment of memory used for temporary storage
of programs, data, and information. For instance, when a program is to be executed,
its instructions are first brought from external memory into internal memory together
with the files of data and information that it will affect. After this, the program is
executed and its files updated while they are held in internal memory. When the
processing defined by the program is complete, the updated files are returned to
external memory. Here the program and files are retained for use at a later time.

The internal memory of a computer system uses electronic memory devices
instead of storage on a magnetic media memory. In most modern computer systems,

semiconductor read-only memory (ROM) and random access read/write memory
(RAM) are in use. These devices make internal memory much faster-operating than
external memory.

Neither semiconductor memory nor magnetic media memory alone can satisfy
the requirements of most general-purpose computer systems. Because of this fact,

Sec. 1.5 General Architecture of a Microcomputer System 9

both types are normally present in the system. For instance, in a personal computer

system, working storage is typically provided with RAM, while long-term storage
is provided with floppy disk memory. On the other hand, in special-purpose com-

puter systems, such as a video game, semiconductor memory is used. That is, the
program that determines how the game is played is stored in ROM, and data storage,
such as for graphic patterns, is in RAM.

1.5 GENERAL ARCHITECTURE OF A MICROCOMPUTER SYSTEM

Now that we have introduced the general architecture of a digital computer, let us
look at how a microcomputer fits this model. Looking at Fig. 1.9, we find that the
architecture of the microcomputer is essentially the same as that of the digital computer
in Fig. 1.8. It has the same function elements: input unit, output unit, memory unit,
and in place of the CPU, a microprocessor unit (MPU). Moreover, each element serves
the same basic function relative to overall system operation.

Internal Tiemory

Program
storage
memory

Data
storage

memory
External memory

,

i

input Output
unit " "■' Figure 1-9 General microcomputer

system architecture.

The difference between minicomputers, mainframe computers, and micro-
computers does not lie in the fundamental blocks used to build the computer;

instead, it relates to the capacity and performance of the electronics used to implement
their blocks and the resulting overall system capacity and performance. As indicated
earlier, microcomputers are designed with smaller capacity and lower performance
than either minicomputers or mainframes.

Unlike mainframes and minicomputers, a microcomputer can be implemented
with a small group of components. Again the heart of the computer system is the
MPU (CPU) and it performs all arithmetic, logic, and control operations. However,
in a microcomputer the MPU is implemented with a single microprocessor chip instead
of a large assortment of SSI and MSI logic functions such as in minicomputers and

mainframes. Notice that correct use of the term "microprocessor" restricts its use
to the central processing unit in a microcomputer system.

Notice that we have partitioned the memory unit into an internal memory section
for storage of active data and instructions and an external memory section for

long-term storage. As in minicomputers, the long-term storage medium in a

10 Introduction to Microprocessors and Microcomputers Chap. 1

Drive 1

Program
storage
memory

Data storage

memory
Floppy disk interface

Drive 2

4 4
1

1
Keyboard
switch
a'rav

Keyboard Microprocessor
— Communications

interface rnterface

CRT display

Do

T, R3

D4

D,

Microcomputer

\^

'- :

'"'

R-,

D5

D3

Keyboard f ̂ ' 5 f

R,

Ds

Dj

f 6 ' '
;'i

Ro

D7

De

D,

/ •
'^CUR /^ ON

Co

S,

D,|

1-. i~i 1—.

131

0
i^t :E: s

I
Display

c,

s„

Cj

S,

Cj

S„ S,

s,

Sg

DP

Figure 1-10 (a) Block diagram of a personal computer; (b) block diagram of a calculator.

Sec. 1.6 Types of Microprocessors and Single-Chip Microcomputers 11

microcomputer is frequently a floppy disk. However, Winchester rigid disk drives
are becoming popular when storage requirements are higher than those provided by
floppy disks. In industrial applications, where the environment for the equipment

is rugged, bubble memories are also employed as long-term storage devices.
Internal memory of the microcomputer is further subdivided into program

storage memory and data storage memory. Typically, internal memory is implemented
with both ROM and RAM ICs. Data, whether they are to be interpreted as numbers,
characters, or instructions, can be stored in either ROM or RAM. But in most
microcomputer systems, instructions of the program and data such as lookup tables
are stored in ROM. This is because this type of information does not normally change.
By using ROM, its storage is made nonvolatile. That is, if power is lost, the
information is retained.

On the other hand, the numerical and character data that are to be processed
by the microprocessor change frequently. These data must be stored in a type of
memory from which they can be read by the microprocessor, modified through
processing, and written back for storage. For this reason, they are stored in RAM
instead of ROM.

Depending on the application, the input and output sections can be implemented

with something as simple as a few switches for inputs and a few light-emitting diodes
(LEDs) for outputs. In other applications, for example in a personal computer, the
input/output (I/O) devices can be more sophisticated, such as video display terminals
and printers, just like those employed in minicomputer systems.

Up to this point, we have been discussing what is known as a multichip
microcomputer system, that is, a system implemented with a microprocessor and an
assortment of support circuits, such as ROMs, RAMs, and I/O peripherals. This
architecture makes for a very flexible system design. Its ROM, RAM, and I/O capacity
can be easily expanded by just adding more devices. This is the circuit configuration
used in most larger microcomputer systems. An example is the personal computer
system shown in Fig. 1.10(a).

Devices are now being made that include all the functional blocks of a

microcomputer in a single IC. This is called a single-chip microcomputer. Unlike
the multichip microcomputer, single-chip microcomputers are limited in capacity and
not as easy to expand. For example, a microcomputer device can have 4K bytes of
ROM, 128 bytes of RAM, and 32 lines for use as inputs or outputs. Because of this

limited capability, single-chip microcomputers find wide use in special-purpose
computer applications. A block diagram of a calculator implemented with a single-
chip microcomputer is shown in Fig. 1.10(b).

1.6 TYPES OF MICROPROCESSORS AND SINGLE-CHIP
MICROCOMPUTERS

The principal way in which microprocessors and microcomputers are categorized is
in terms of the number of binary bits in the data they process, that is, their word
length. Figure 1.11 shows that the three standard organizations used in the design

12 Introduction to Microprocessors and Microcomputers Chap. 1

High
performance

MedH

perforrr

Low

performar

99000,9900
68000

8086 8088

Z8000
16000

8008

8080 8085
8048 8049

8051 Z80
6800

6502 7000

4004
4040

PPS-4

1000

COPS400

4 bit 8 bit 16 bit

Figure 1-11 Microprocessor and single-chip microcomputer categories and relative
performance.

of microprocessors and microcomputers are 4-bit, 8-bit, and 16-bit data words.
The first microprocessors and microcomputers, which were introduced in the

early 1970s, were all designed to process data that were arranged 4 bits wide. This

organization is frequently referred to as a nibble of data. Many of the early 4-bit
devices, such as the PPS-4 microprocessor made by Rockwell International
Incorporated and the TMSIOOO single-chip microcomputer made by Texas Instruments
Incorporated, are still in wide use today.

The low performance and limited system capabilities of 4-bit microcomputers
limits their use to simpler, special-purpose applications. Some common uses are in
calculators and electronic toys. In this type of equipment, low cost, not high
performance, is the overriding requirement in the selection of a processor.

In the 1973-1974 period, second-generation microprocessors were introduced.

These devices, such as Intel Corporation's 8008 and 8080, were 8-bit microprocessors.
That is, they were designed to process 8-bit (one-byte-wide) data instead of 4-bit data.

The newer 8-bit microprocessors exhibited higher-performance operation, larger
system capabilities, and greater ease of programming. They were able to provide the

system requirements for many applications that could not be satisfied by 4-bit
microcomputers. These extended capabilities led to widespread acceptance of multichip
8-bit microcomputers for special-purpose system designs. Examples of some of these
dedicated applications are electronic instruments, cash registers, and printers.

Somewhat later, 8-bit microprocessors began to migrate into general-purpose
microcomputer systems. In fact, the Z-80A is still the host MPU in a number of
personal computers.

Late in the 1970s, 8-bit single-chip microcomputers, such as Intel's 8048, became
available. The full microcomputer capability of this single chip further reduces the

cost of implementing designs for smaller, dedicated digital sytems. In fact, 8-bit
microcomputers are still being designed for introduction into the marketplace. An

example is Intel's new 8051 family of 8-bit microcomputers. Newer devices, such as

Chap. 1 Assignment 13

the 8051, offer a one-order-of-magnitude-higher performance, more powerful

instruction sets, and special on-chip functions such as interval/event timers and
universal asynchronous receiver/transmitters (UARTs).

The plans for development of third-generation 16-bit microprocessors were

announced by many of the leading semiconductor manufacturers in the mid-1970s.
The 9900 was introduced in 1977, followed by a number of other key devices, such

as the 9981, 8086, 8088, Z8000, 68000, 99000, and 16000. These devices all provide

high performance and have the ability to satisfy a broad scope of special-purpose

and general-purpose microcomputer applications. All of the devices have the ability
to handle 8-bit as well as 16-bit data words. Some can even process data organized

as 32-bit words. Moreover, their powerful instruction sets are more in line with those

provided by minicomputers instead of those of 8-bit microprocessors.

In terms of special-purpose applications, 16-bit microprocessors are replacing

8-bit processors in applications that require very high performance: for example,

certain types of electronic instruments. A single-chip 16-bit microcomputer, the 8096,
is also available for use in this type of application.

16-bit microprocessors are also being used in applications that can benefit from
some of their extended system capabilities. For instance, they are beginning to be

used in word-processing systems. This type of system requires a large amount of
character data to be temporarily active; therefore, it can benefit from the ability of

a 16-bit microprocessor to access a much larger amount of data storage memory.

Most new personal computers are being designed with 16-bit microprocessors.
For instance, Apple, in its personal computer, the Mcintosh, uses the 68000

microprocessor to implement the microcomputer.

ASSIGNMENT

Section 1.2

1. What guides the computer as to how it is to process data?

2. What type of electronic devices are revolutionizing the low-performance, low-cost computer
market today?

Section 1 .3

3. What is the key difference between mainframe, mini-, and microcomputers?

4. What is meant by "general-purpose computer"?

5. What is meant by "special-purpose computer"?

Section 1 .4

6. What are the building blocks of a general computer system?

7. What is the difference between primary and secondary storage?

14 Introduction to Microprocessors and Microcomputers Chap. 1

Section 1 .5

8. What are the basic building blocks of a microcomputer system?

9. What is the difference between program storage and data storage memory in a
microcomputer?

10. What is the difference between internal and external storage memory in a microcomputer?

Section 1 .6

11. What are the standard data word lengths of microprocessors and microcomputers available
today?

12. What is the difference between a multichip microcomputer and a single-chip
microcomputer?

13. Name five 16-bit microprocessor families.

The 68000
Microprocessor

2.1 INTRODUCTION

In Chapter 1, some general aspects of microprocessors and microcomputers were

introduced. With the present chapter, we begin our study of Motorola's 68000
microprocessor. In this chapter we describe the general architecture of the 68000.
The six chapters that follow are devoted to other aspects such as instruction set,
programming, and hardware interfacing. The following topics are discussed in this
chapter:

1 . The 68000 microprocessor

2. Interface signals of the 68000
3. Internal architecture of the 68000

4. Instruction execution control

2.2 THE 68000 MICROPROCESSOR

The 68000 is a very powerful 16-bit microprocessor whose development was announced
by Motorola, Inc., in 1979. Since then Motorola has concentrated on bringing the
device up to production, providing tools to support hardware and software
development, and initiating development of a new family of LSI support peripherals.
With apparent success in these areas, they have continued the growth of the product
family by introducing other microprocessors, such as the 68008, 68010, and 68020.

16 The 68000 Microprocessor Chap. 2

The 68000 is manufactured using HMOS (high-density N-channel MOS)
technology. The present-day advances in circuit design, process technology, and chip
fabrication techniques have enabled Motorola, Inc. to implement very high
performance operation and complex functions for the 68000. The circuitry within
the 68000 is equivalent to approximately 68000 MOS transistors.

The 68000 microprocessor is packaged into a 64-pin package. This package is
shown together with its pin assignments in Fig. 2.1. Notice that use of this large
package eliminates the need for multifunction pins. For instance, the address bus
and data bus are not multiplexed. The fact that each lead serves just one electrical
function simplifies design of the external hardware interfaces in a 68000
microcomputer system.

D4C

D3C2
D2C3

C4

01
DO

AS

UDSC

LDS

R/WC
C8

DTACK
BGC

BGACKC
BRC

vccc
CLKC
GNDC

HALTC

RESETC
VMAC

EC

vpaC

BERR
TPL2C
TpuC

Tploc
FC2 FCIC

FCO
A1
A2C

A3C A4I:::

1*
64 305

C22

23

24
25

C26

C28

^29

30

31

32

UD6

D07 DOS 09
10

Don
Z1012

IDD13
=)014

3015
DGNO
DA23
DA22

D A21 =1 Vcc

3 A20
D A19

DA18

ZJA17
DA16

DA15

DA14
:3ai3 A12

DAll

3A10

IA9

DA8
3A7

DA6 DA5

63

62

61 60 1)

59(do
58

57 56

55

54

53

52

51

50

49
48

47 46

45

44 43

42

41

40p

39

38

37

36

35

34

33

Figure 2-1 Pin layout of the 68000
microprocessor (Motorola, Inc.).

Sec. 2.3 Interfaces of the 68000 Microprocessor 17

The 68000 employs a very powerful 32-bit general-purpose internal architecture.
It has 16 internal general-purpose registers that are all 32 bits in length. Eight of these
registers are data registers and the other eight are address registers.

The architecture of the 68000 was planned to permit all types of data and address
operations to be performed from its data registers and address registers, respectively.
That is, none of its data registers have dedicated functions such as for use as an
accumulator or for input/output. Therefore, instructions can be written such that
their operands reside in any of the data registers or storage locations in memory.
Moreover, data processed by the 68000 can be expressed in five different types. They

are bit, BCD (4-bit), byte, word, and long word (32-bit).
The address registers are also designed for general use and do not have dedicated

functions. For instance, if the MOVE instruction was to have its source operand
located in memory instead of in one of the internal registers, any one of the address
registers can be specified to contain this address.

The architecture of the 68000 includes a number of powerful hardware and
software functions. From a hardware point of view, we see that the 68000 has a large

23-bit external address bus. This gives it a very large 16M-byte logical address space.
A software function that has been included in the architecture is the ability to create
a user /supervisor environment for the 68000 microcomputer system. This feature helps
the programmer to protect the software operating system and provides support for
multiprocessing and multitasking applications.

2.3 INTERFACES OF THE 68000 MICROPROCESSOR

Now that we have briefly introduced the 68000 microprocessor, let us look at its
electrical interfaces. From the block diagram in Fig. 2.2, we see that the signal lines
can be grouped into seven interfaces: the address/data bus, asynchronous bus control,
processor status lines, system control bus, interrupt control bus, bus arbitration control
bus, and synchronous control bus. It is through these buses and lines that the 68000
is connected to external circuitry such as memory and input/output peripherals.

Address and Data Bus

Earlier we pointed out that the 68000 microprocessor has independent address and
data buses. This simplifies the design of the memory and I/O interfaces because the
address and data signals, need not be demultiplexed with external circuitry. Moreover,
the address bus, data bus, and memory address space are used to interface to input/
output devices in addition to interface to the memory subsystem. That is, all I/O

devices in the 68000 microcomputer system are memory-mapped.
Earlier we indicated that the 68000 has a 23-bit unidirectional address bus. The

function of the signals at these lines, A23 through A,, is to supply addresses to the
memory and input/output subsystems. A23 represents the most significant bit of the
address and Aj the least significant bit. Bit Aq, which is maintained internal to the

The 68000 Microprocessor Chap. 2

Processor

status

M6800

Peripheral

control

(synchronous
control)

System
control

vca2i

MC68000

Microprocessoi

AddressN

GNDI2

Bus >

CLK

^Data Bus>

AS
R W ̂

, FCO

UDS ̂

"fci

LDS ,

1 . FC2

DTACK

r ,E
BR VMA

BG ̂

VPA

, BGACK r BERR

,iPLO

J ̂RESET

IPLl

1 HALT

IPL2

L ■"

Asychronous
bus control

Bus arbitration
control

Interrupt

control

Figure 2-2 Block diagram of the 68000 microprocessor (Motorola, Inc.).

68000, indicates whether the upper or lower byte of a word is to be used when
processing byte data.

The 16 bidirectional data lines are labeled D,5 through Dq. They either carry
read/write data between microprocessor and memory or input/output data between
the microprocessor and I/O peripherals.

Asynchronous Control Bus

The control of the 68000's bus is asynchronous. By this we mean that once a bus
cycle is initiated, it is not completed until a signal is returned from external circuitry.
The signals that are provided to control address and data transfers are address strobe
(AS), read/write (R/W), upper data strobe (UDS), lower data strobe (LDS), and data
transfer acknowledge (DTACK).

The 68000 must signal external circuitry when an address is available, and
whether a read or write operation is to take place over the bus. It does this with the
signals AS and R/W, respectively. At the moment a valid address is present on the
address bus, the 68000 produces the address strobe (AS) control signal. The pulse
to logic 0 that is output as AS is used to signal memory or I/O devices that an address
is available.

Read/write (R/W) signals which type of data transfer is to take place over the
data bus. During a read or input bus cycle, when the microprocessor reads data from

bus lines Dq through Dj^, the R/W output is switched to logic 1. Similarly, when
data are written or output to memory or I/O devices, the 68000 indicates this condition
by a logic 0 on this line.

Since the bus cycle is asynchronous, external circuitry must signal the 68000
when the bus cycle can be completed. Data transfer acknowledge (DTACK) is an
input to the microprocessor which indicates the status of the current bus cycle. During

Interfaces of the 68000 Microprocessor

19

a read or input cycle, logic 0 at DTACK signals the microprocessor that valid

data are on the data bus. In response, it reads and latches the data internally and

completes the bus cycle. On the other hand, during a write or output operation,

DTACK informs the microprocessor that the data have been written to memory or

a peripheral device. Thus we see that in both cases DTACK is used to terminate the
bus cycle.

Two other control outputs provided on the 68000 are upper data strobe (UDS)

and lower data strobe (LDS). These two signals act as an extension of the address

bus and signal whether a b>ie or word of data is being transferred over the data bus.

In the case of a bvie transfer, they also indicate if the data will be carried over the

upper eight or lower eight data lines. Logic 0 at UDS signals that a bvte of data is

to be transferred across upper data lines D,, through Dg and logic 0 at LDS signals

that a bvte of data is to be transferred over lower data lines D^ through Dq.
Figure 2.3 shows the logic levels of UDS, LDS, and R/W for each type of data

transfer operation. For instance, if UDS = 0, LDS = 0, and R/W = I, a read
operation is taking place over the complete data bus.

Example 2.1

Specify the address and control signals that occur to read the lower byte from the word
stored at address 001836,^.

Solution. The address lines A-,-^ through A, directly specify an even (upper) byte
address. The odd (lower) b>ie address is obtained by LDS being active. Thus we get

A23A22 ■ • ■ A,Ao = 001B37,g

= 000000000001 101 KWllOlllj

and

LDS = 0

UDS = 1

Since a bvie of data is to be read,

R W = 1

and the data are supplied to the 68000 on the lower data lines Dq through D-,.

Ods LDS

R'W
Operation

0 0 0 Word -• memor> lO

0 1 0 High byte -► memory/lO

I 0 0 Low byle -► memory/IO

I 1 0 Invalid data

0 0 1 Word -► microprocessor

0 1 1 High byte -• microprocessor

I

I

0 1

1

Lo* byte -* microprocessor

Ir.NahJ Ja-.i
Figure 2-3 Memory access relationships
for UDS, LDS, and R/W (Motorola, Inc.).

20 The 68000 Microprocessor Chap. 2

Processor Status Bus and the Function Codes

During every bus cycle executed by the 68000, it outputs a 3-bit processor status code.
These status codes are also known as function codes and are output on lines FCg
through FC2. They tell external circuitry which type of bus cycle is in progress. That
is, whether data or program is being accessed and if the microprocessor is in the user
or supervisor state.

The table in Fig. 2.4(a) shows the implemented function codes and also the ones

that are reserved for future expansion. For instance, the code 1 IO2 on FCjFCiFCq
indicates that an instruction or immediate operand aquisition bus cycle is in progress
from supervisor program memory. Notice that 1 II2 has a special function. It is the
interrupt acknowledge code.

These codes are output by the 68000 at the beginning of each read or write cycle
and remain valid until the beginning of the next read or write cycle. The timing
relationship between the function code lines, the clock, and AS is shown in Fig.
2.4(b). Notice that the function code outputs are valid during the address strobe AS

FC2
FC1

FCO
Cycle Type

Low Low Low (Undefined, Reserved)

Low Low
High

User Data

Low
High

Low User Program

Low High High
(Undefined, Reserved)

High Low Low (Undefined, Reserved)

High
Low

High
Supervisor Dale

High High

Low
Supervisor Program

High High High
Interrupt Acknowledge

(a)

\ /

FCj-FCc D(X
(b)

Figure 2-4 (a) Function code table (Motorola, Inc.); (b) relationship between FCj
FC,FC„, CLK, and AS.

Sec. 2.3 Interfaces of ttie 68000 Microprocessor 21

pulse. Therefore, they can be combined with AS to generate device or memory select
signals. As an example, the function code 001 2 can be used to gate AS to the user
data section of memory.

System Control Bus

The group of control signals that are labeled as the system control bus in Fig. 2.2
are used either to control the function of the 68000 microprocessor or to indicate

its operating state. There are three system control signals: bus error (BERR), halt
(HALT), and reset (RESET).

The control line bus error (BERR) is an input that is used to inform the 68000
of a problem with the bus cycle currently in progress. For instance, it could be used
to signal that the bus cycle has not been completed even after a set period of time
has elapsed.

On the other hand, HALT can be used to implement a hardware mechanism
for stopping the processing of the 68000. An external signal applied to the HALT
input stops the microprocessor at completion of the current bus cycle. In this state
all of its buses and control signals are inactive. HALT is actually a bidirectional line;
that is, it has both an input and output function. When the processor stops instruction
execution due to a halt condition, it informs external devices by producing an output
signal at the same HALT pin.

The RESET input can be used to initiate initialization of the 68000 based on
the occurrence of a signal generated in external hardware. Typically, this is done at
the time of power-up. When an external reset signal is applied, the processor initiates
a system initialization sequence.

The RESET line is also bidirectional, but unlike HALT, its output function
is initiated through software. This RESET output is used to initialize external devices
such as LSI peripherals. To reset external devices connected to the RESET line, the
68000 must execute the RESET instruction. Execution of this instruction does not

affect the internal state of the processor; instead, it just causes a pulse to be output at
RESET.

Interrupt Control Bus

In a 68000 microcomputer system, external devices request interrupt service by apply-
ing a 3-bit interrupt request code to the IPLj through IPLq inputs. This code is sup-

plied to the microprocessor from the interrupting device to indicate its priority level.

The value of IpLjIPLiIpLo is compared to the interrupt mask value in the 68000's
status register. If the encoded priority is higher than the mask, the interrupting device
is serviced; otherwise, it is ignored.

Bus Arbitration Control Bus

The bus arbitration control signals provide a handshake mechanism by which control

of the 68000's system bus can be transferred between devices. The device that has

22 The 68000 Microprocessor Chap. 2

control of the system bus is known as the bus master. It controls the system address,
data, and control buses. Other devices are attached to the bus but are not active.
Examples of devices that can be used as masters are host processors or external devices
such as DMA controllers or attached processors.

As shown in Fig. 2.2, the 68000 microprocessor has three control lines for this
purpose. They are bus request (BR), bus grant (BG), and bus grant acknowledge
(BGACK). A device requests control of the bus by asserting the bus request (BR)
input. After synchronization, the 68000 responds by switching the bus grant (BG)
control output to its active low level. This means that it will give up control of the
bus at completion of the current bus cycle.

At this point, the requesting device waits for the 68000 to complete its bus cycle.
The fact that the bus cycle is complete is indicated by address strobe (AS) and data
transfer acknowledge (DTACK) returning to their inactive levels. After this happens,
the requesting device asserts bus grant acknowledge (BGACK) and also removes bus
grant request (BR). The 68000 responds by removing the bus grant (BG) signal. This
completes the bus arbitration handshake. The requesting device has now taken over
control of the bus and assumes the role of bus master. When the device has completed
its function, it releases control of the bus by negating BGACK for rearbitration or
return of bus mastership to the 68000.

Synchronous Control Bus

The 68000 microprocessor also has control signals that can make data transfers over
its system bus occur in a synchronous fashion. There are three control signals provided
for this purpose. In Fig. 2.2, we see that they are enable (E), valid peripheral address
(VPA), and valid memory address (VMA). These signals provide for simple interface

between, say, a 10-MHz 68000 microprocessor and 1-MHz synchronous LSI peripheral
devices such as those available for use in 6800 microcomputer systems.

Let us now look at the function of each of these signals. The enable (E) output
of the 68000 is used by 6800 peripherals to synchronize its data read/write operations.

It is a free-running clock with a frequency equal to one-tenth of that of the 68000
clock frequency. This signal allows 1-MHz LSI peripheral ICs to be used with the
lO-MHz 68000. It is applied to the E or PHIj input of a 6800 family peripheral.

The valid peripheral address (VPA) line is an input to the 68000 which is used
to tell it to perform a synchronous transfer over its asynchronous system bus. When
the address output on the address bus is decoded and found to correspond to an
external 6800 peripheral, VPA must be switched to logic 0. This tells the
microprocessor to synchronize the next data transfer with the enable (E) signal.

The valid memory address (VMA) output is supplied by the 68000 in response to
an active VPA input. It indicates to external circuitry that a valid address is on the
address bus and that the next data transfer over the data bus will by synchronized
with enable (E).

Sec. 2.5 Internal Registers of the 68000 Microprocessor 23

2.4 CLOCK INPUT AND WAVEFORM

Looking at Fig. 2.2, we find that the 68000 has a single clock input which is labeled
CLK. The clock generator circuitry is not provided on the chip. Instead, the CLK
signal must be generated in external circuitry and fed to the 68000. Internally, this
signal is used to produce additional clock signals that synchronize the operation of

the 680OO's circuitry.
The 68000 is available with clock frequencies over the range from as low as

4MHz to as high as 12.5 MHz. Figure 2.5 shows the CLK waveform. For 10-MHz
operation, the cycle time Ucyc) 's 100 ns. The corresponding maximum pulse width
low (t^L) and pulse width high (t^^) are both equal to 45 ns. The maximum rise and
fall times of its edges, t^r and t(~f, are both 10 ns. CLK is at TTL-compatible volt-

age levels.

 'cYc

-tcL-

Figure 2-5 Clock waveform.

2.5 INTERNAL REGISTERS OF THE 68000 MICROPROCESSOR

Internal to the 68000 microprocessor are eighteen 32-bit registers and one 16-bit
register. Figure 2.6 shows these registers. Notice that they include eight data registers,
seven address registers, two stack pointers, a program counter, and the status register.
The status register is the 16-bit register.

Data Registers

There are eight user-accessible data registers within the 68000. As shown in Fig.
2.6, they are called Dq through D7. Each register is 32 bits long and its bits are labeled
0 (least significant bit) through 31 (most significant bit). We will refer to these bits
as Bq through B,,, respectively.

The data registers are used to store data temporarily for use in processing. For
example, they could hold the source and destination operands of an arithmetic or
logic instruction. Each register can be accessed for byte operands, for word operands,

or for long-word operands. Byte data are always held in the 8 least significant bits
of a data register: that is, Bq through B7. On the other hand, words of data always

24 The 68000 Microprocessor Chap. 2

reside in the lower 16 bits, Bq through 3,5, and long words take up all 32 bits of
the register.

The size of data to be used during the execution of an instruction is generally
specified in the instruction. For example, a byte move instruction could be written
with register Dq as the location of the source operand and D7 as the location of the
destination operand. Executing the instruction causes the contents of bits Bq through
B7 of Dq to be copied into bits Bq through B7 of register D7. Alternatively, the
instruction could be set up to process words of data. This time, executing the
instruction would cause bits Bq through B,; of Dq to be copied into Bq through B,;
of D-j.

The 68000 can also use the data registers as index registers. In this case the value
in the register represents an offset address which when combined with the contents
of another register points to the location of data in the memory subsystem.

These registers are said to be truly general purpose. That is, they do not have
dedicated functions. For this reason, most instructions can perform their operations
on source and destination operands that reside in any of these registers.

Address Registers

The next seven registers, which are labeled Aq through Ag in Fig. 2.6, are the address
registers. They are also 32 bits in length. These registers are not provided for storage
of data for processing. Instead, they are meant to store address information such
as base addresses and pointer addresses. Moreover, they can also act as index registers.

Just like the data registers, the address registers are general purpose. That is,
an instruction can reference any of them as a base or pointer address for its source
or destination operands.

The values of the addresses are loaded into the address registers under software
control. When used as a source register, an address register can be accessed as a

long-word operand using the complete register or for word operands using the lower
16 bits. On the other hand, when used as a destination register, all 32 bits are always
affected.

Stack Pointers

Two other internal registers are used to hold address information. They are called
the user stack pointer (USP) and the supervisor stack pointer (SSP). Only one of
these two stack pointers is active at a time. For this reason, they are shown as a single
register, A7 in Fig. 2.6.

Unlike the address registers discussed earlier, these two registers have dedicated
functions. The user stack pointer is active whenever the 68000 is operating in a mode
known as the user state. When in this mode, the supervisor stack pointer is inactive.
The address held in the user stack pointer identifies the top of the user stack in the
user part of system memory. This user stack is the place where return addresses,
register data, and other parameters are saved during operations such as the call to
a subroutine.

Sec. 2.5 Internal Registers of the 68000 Microprocessor

31

1615 0

-

- -
- -
- -

t User Stack Pointer

Supervisor Stack Pointer

DO

Dl D2

03 Eight

— ̂ . Data

D4
Registers

D5

D6

D7

AO

A1 *2 Seven

A3 Address

^^ Registers

A5

A6

Two Stack ^^ Pointers

Program

Counter

Status

Register
[System Byte, User Byte

Figure 2-6 Internal registers of the 68000 microprocessor (Motorola, Inc.).

The 68000 can be switched to a second mode, known as the supervisor state.
This causes the supervisor stack pointer to become active and the user stack pointer
to become inactive. The address in the supervisor stack pointer register points to the
top of a second stack. It is called the supervisor stack and resides in the supervisor
part of memory. The supervisor stack is used for the same purposes as the user stack,
but it is also used by supervisory calls such as software exceptions, interrupts, and
internal exceptions.

The address values in USP and SSP can be modified through software. However,
they can be modified only when the 68000 is set to operate in the supervisor mode.

Program Counter

The program counter (PC) register holds an address that typically points to the next
instruction that is to be executed. It is automatically incremented by 2 with the fetch
of the instruction. In this way, it points to the next word of a multiword instruction,
an immediate source operand, or the next sequential instruction in the program.
Instructions for the 68000 can take up from one to five words of program storage
memory.

The 68000 Microprocessor Chap. 2

In Fig. 2.6 PC is shown as a 32-bit register; however, only the lower 24 bits
are actually used in currently available 68000 devices. These 24 bits can generate 16M
unique memory addresses for accessing bytes of data. But instructions are always
stored at word boundaries. Therefore, the address space can also be considered to

represent an 8M-word address space. The range of word addresses is even addresses
from 000000,5 through FFFFFE|g. In this way we see that program storage memory
can reside anywhere in the 8M-word address space.

Status Register

Figure 2.6 also shows the 16-bit status register (SR) of the 68000 microprocessor.
Here we see that this register is subdivided into two parts, called the user byte and
the system byte.

The status register is shown in more detail in Fig. 2.7. Here we see that the

bits hv lamented in the user byte are flags that indicate the processor state resulting
from the execution of an instruction. The five conditions represented by the
implemented bits are: carry (C), overflow (V), zero (Z), negative (N), and extended
carry (X). Let us now look at each of these condition flags in more detail.

1. Carry (C): The carry flag, bit 0, is set if an add operation generates a carryout
or a subtract (or compare) operation needs a borrow. Otherwise, it is reset.
During shift or rotate operations, it holds the bit that is rotated or shifted out
of a register or memory location.

2. Overflow (V): If an arithmetic operation on signed numbers produces an
incorrect result, the overflow flag (bit 1) is set; otherwise, it is reset. During
an arithmetic shift operation, this flag gets set as the result of a change in the
most significant bit; otherwise, it gets reset.

3. Zero (Z): If an operation produces a zero as its result, the zero flag (bit 2) of
SR is set. A nonzero result clears Z.

System Byle
User Bvie

Condition

Codes

Ss^SHIK^^IE

Figure 2-7 Status register (Motorola, Inc.).

Sec. 2.6 Instruction Execution Control 27

4. Negative (N): The content of bit 3 is a copy of the most significant bit (sign
bit) of the result during arithmetic, logic, shift, or rotate operations. In other
words, a negative result sets the N bit and a positive result clears it.

5. Extend (X): During arithmetic, shift, or rotate operations, the extend flag, bit
4, receives the carry status. It is used as the carry bit in multiprecision operations.

These user bits of the status register can be tested through software to determine
whether or not certain events have occurred. Typically, the occurrence of an event
indicates that a change in program environment should be initiated. For instance,
the overflow bit could be tested and if it is set program control is passed to an overflow
service routine.

The system byte of SR contains bits that control operational options available
on the 68000 microprocessor and also contains the interrupt mask. The implemented
bits in this byte and their functions are identified in Fig. 2.7. Let us now look at
these functions.

1 . Interrupt mask (I2I1I0): Bits 8 through 10 of SR are the interrupt mask of the
68000. This 3-bit code determines which interrupts can be serviced and which
are to be ignored. Interrupting devices with priority higher than the binary value

of I2I1I0 will be accepted and those with lower or the same priority will be
ignored. For example, if Iili^o ̂ Quals 01 Ij, then levels 4 through 7 are able
to be active, while levels 1 through 3 are masked out.

2. Supervisor (S): Bit 13 of SR is used to select between the user and supervisor
states of operation. A logic 1 in this bit indicates that the 68000 is operating
in the supervisory state. If it is logic 0, the 68000 operates in the user state.

3. Trace mode (T): The T status bit is used to enable or disable trace (single-step)
mode of operation. To activate the single-step mode, bit 15 must be set. When
set in this way, the microprocessor executes an instruction, then enters the
supervisor state, and vectors to a trace service routine. The service routine may
pass control to a mechanism that permits initiation of execution of the next
instruction or debug mode of operations for displaying the contents of the
various internal registers.

The contents of the complete status register can be read at any time through
software. Unimplemented bits are always read as logic 0. However, the system byte
can be modified only when the 68000 is in the supervisor state.

2.6 INSTRUCTION EXECUTION CONTROL

Now that we have introduced the 68000 microprocessor, its external interfaces, and
internal registers, we continue by examining how it performs the internal operations
required during the execution of an instruction. Figure 2.8 shows the internal execution

The 68000 Microprocessor Chap. 2

Instruction

register

Macroinst ruction

Iz
Instruction
decoder

Branch
selection

Register and function selection

=^

Micro-sequence

^ 'y address

Micro-control store

(pointers)

Control word
address

Iz
Nano-control store
(control words)

Control word

>

Execution unit

(ALU, address
registers, and data registers)

Figure 2-8 Microcoded instruction execution control.

control architecture. It includes the instruction register, instruction decoder, control
unit, and execution unit.

Let us begin by overviewing the operation of the execution control section. The
instruction register accepts an instruction as it is fetched into the microprocessor for
execution. Looking at this block, we see that its outputs supply the inputs of the
instruction decoder. Here the instruction is decoded to determine which type of
operation is to be performed. Based on the result of this decoding, it produces outputs
for input to both the control unit and execution unit. The information passed to the
execution unit is called macroinstruction static because it does not depend on timing
of the execution of the instruction. For example, the registers that are to be used
and the operation that is to be performed are macroinstruction static information.
Moreover, the decoder supplies a microsequence starting address to the control unit.
The control unit is responsible for sequencing the operations performed by the
execution unit in a way that causes it to perform the operation specified by the
instruction.

Sec. 2.6 Instruction Execution Control 29

The 68000 microprocessor employs a microprogrammed control unit similar
to that used in minicomputers and mainframe computers. That is, the instructions
in the instruction set of the 68000 are actually macroinstructions and they are emulated

by the execution control unit by performing a series of lower-level micro-operations
called microinstructions. Actually, the control unit contains a series of control words
for each instruction. These series of control words are used to tell the execution unit

how to perform the macro-operations. They are coded into the control store part
of the control unit.

In this way we see that the control unit itself does not perform the operation
specified by the instruction. Instead, it must interact with the instruction decoder
to determine which macro-operation is to be performed, with the execution unit, which
contains the data registers, address registers, and arithmetic logic unit, to perform
the processing, and possibly the bus interface to control accessing of operands.

Let us now look more closely at the control unit. From Fig. 2.8 we see that

the 68000 employs a two-level control store structure. The first level, which is identified
as the micro-control store, stores a sequence of addresses for each instruction. These
addresses are pointers to the micro-operations that need to be performed to emulate
the macro-operation. Each address is 9 bits wide and about 625 addresses are needed
to implement the complete instruction set. The second level, nano-control store,
contains a set of about 300 control words. It is these control words that define the

unique micro-operations that can be performed by the 68000's execution unit. Each
control word is 70 bits in length.

During instruction execution, the macroinstruction decoder outputs to the

micro-control store the starting address of the emulation routine for the instruction
that is to be performed. In response, the micro-control store starts by outputting the
9-bit address of the first micro-operation that is to be performed. This address is
input by the nano-control store and causes the nano-control store to output the 70-bit
control word for this operation to the execution unit. This control word is further
decoded within the execution unit to produce as many as 180 control signals. At

completion of this first micro-operation, the micro-control store outputs the address
of the next micro-operation and the nano-control store causes it to be performed.
This sequence continues until the complete microcode emulation routine is performed
and at its completion another instruction is input to the instruction decoder.

To improve performance, the 68000 overlaps the fetch, decode, and execution
phases. For instance, when one instruction is being executed, the next one may be
getting decoded, and the one following it may be getting fetched. However, many
macroinstructions take more than one machine cycle to execute. For this reason, if
the current instruction is not yet complete, the decode or fetch of additional
instructions may not take place.

The key benefits derived from use of microcoding are decreased development
time and increased flexibility. This is because the development of the instruction set
is easier to manage. For instance, modification of the operation of an instruction
or implementation of a new instruction does not require any circuit changes; instead,
it simply requires changes of the microcode in the control store.

30 The 68000 Microprocessor Chap. 2

ASSIGNMENT

Section 2.2

1. Name the technology used to fabricate the 68000 microprocessor.

2. In what size package is the 68000 housed?

3. How many general-purpose registers does the 68000 have?
What are they called? Specify the size of each register.

4. What basic data types is the 68000 able to process directly?

Section 2.3

5. How many address lines are on the 68000 IC? How many unique memory or I/O addresses
can be generated using these lines?

6. How many data lines does the 68000 have?

7. What is meant by "asynchronous bus"?
8. What function is served by DTACK during read/write operations?

9. How is byte addressing accomplished by the 68000?

10. Specify the address and asynchronous bus control signals that occur to write a word of
data to memory address AOOOj^.

11. What function code is output by the 68000 when it fetches an instruction while in the
supervisor state?

12. Describe briefly the function of system control lines BERR, RESET, and HALT.

13. How does the 68000 prioritize interrupts?

14. Why are the bus arbitration control signals provided on the 68000?

15. Why is synchronous bus operation also provided for the 68000?

Section 2.4

16. What is the duration of the clock cycle of a 68000 that is operating at 8 MHz?

Section 2.5

17. What is the difference between the functions of the 6800O's address and data registers?
18. Define what is meant by a stack. Why are there two stack pointer registers?

19. What function is served by the program counter?

20. Distinguish between the user byte and the system byte of the status register.

Section 2.6

21. What is the difference between a macroinstruction and a microinstruction?

22. What is the difference in the information stored in the micro-control store and the
nano-control store?

23. Give a brief description of how instruction execution is implemented in a two-level
micro-programmed control unit.

68000 Microprocessor
Programming 1

3.1 INTRODUCTION

Chapter 2 was devoted to the general architectural aspects of the 68000 microprocessor.
In this chapter we introduce a large part of its instruction set. These instructions

provide the ability to write simple straight-line programs. Chapter 4 covers the rest
of the instruction set and some more sophisticated programming concepts. The
following topics are presented in this chapter:

1. Software model of the 68000 microprocessor

2. Assembly language and machine language

3. Operand addressing modes
4. The 68000 instruction set

5. Data transfer instructions

6. Binary and decimal arithmetic instructions

7. Logic instructions
8. Shift and rotate instructions

3.2 SOFTWARE MODEL OF THE 68000 MICROPROCESSOR

The purpose of developing a software model is to aid the programme? in understanding
the operation of the microcomputer system from a software point of view. To be
able to program a microprocessor, one does not need to know all of its hardware

31

32 68000 Microprocessor Programming 1 Chap. 3

features. For instance, we do not necessarily need to know the function of the signals
at its various pins, their electrical connections, or their switching characteristics.
Moreover, the function, interconnection, and operation of the internal circuits of
the microprocessor also need not normally be considered.

What is important to the programmer is to know the various registers within
the device and to understand their purpose, functions, and operating capabihties and
limitations. Furthermore, it is essential to know how external memory is organized
and how it is addressed to obtain instructions and data.

The software model of the 68000 microprocessor is shown in Fig. 3. 1 . This model
specifies the resources available to programmers for implementing their program
requirements. Here we see that the 68000 is represented by eight data registers, seven
address registers, two stack pointers, a program counter, and a status register. We

discussed each of these registers as part of our study of the 68000's architecture in
Chapter 2. However, our concern here is with what can be done with this architecture
and how to do it through software. For this purpose, let us review briefly the elements
of the model. Moreover, this time we concentrate on their relationship to software.

During normal operation, the 68000 fetches one instruction after the other from
memory and executes them. The address held in program counter PC points to the
next instruction that is to be fetched. After the instruction is fetched, it is decoded
by the 68000 and, if necessary, data operands are read from either the internal registers
or memory. Then the operation specified in the instruction is performed on the
operands and the results are written to either an internal register or storage location
in memory. The 68000 is now ready to execute the next instruction.

Every time an instruction is fetched from memory, the value held in PC is
incremented such that it points to the next sequential instruction of the program.
In this way, the 68000 is ready to fetch the next instruction of the program for
execution.

The programmer has the ability to change the value in PC under software
control. For instance, execution of a jump instruction changes the value in PC. When
this is done, instructions are no longer executed sequentially.

Data registers Dq through D7 are provided for temporary storage of working
data. For instance, the instruction

ADD.W D0,D1

employs data registers Dg and D] for storage of its source and destination operands,
respectively. The sum that resuhs from executing this instruction is saved in destination
register D,. One nice feature of the architecture of the 68000 is that its internal
registers do not have dedicated functions. Instead, they can be employed in a very
general way. For instance, the add instruction we just introduced could be written
with any combination of these seven data registers as the locations of its source and
destination operands.

These data registers also support processing of data in a variety of different
data types. For example, most instructions can access the data registers for processing

of byte, word, or long-word operands. A few instructions also permit processing of

Sec. 3.2 Software Model of the 68000 Microprocessor

MEMORY

8 7

Next instruction

Figure 3-1 Software model of tfie 68000 microprocessor.

34 68000 Microprocessor Programming 1 Chap. 3

individual bits or data expressed as BCD numbers. The data registers can also be
used as index registers for generating memory addresses.

Address registers Aq through A^ are not used to hold data for processing.
Instead, they contain address pointers and are used to access source or destination
operands that are stored in memory. For example, the instruction

ADD.W (A0),D1

uses the contents of Aq to access a source operand that resides in memory. Just as
for the data registers, the 68000 permits general use of the address registers. That
is, any of the seven address registers could be specified as the pointer to the location
of the source operand in the addition instruction.

In Fig. 3.1 we find that there are two stack pointer registers in the software
model, called the user stack pointer register (USP) and the supervisor stack pointer
register (SSP). The stack is a special part of the memory subsystem that is used for
temporary storage of data. Since the 68000 has two stack pointer registers, there can
be two stacks in its microcomputer system, a user stack and a supervisor stack.
However, only one of these stacks can be active at a time. The address in USP points
to the next storage location that is to be accessed in the user stack. This location
is called the top of the stack. Moreover, the value in SSP points to the top of the
supervisor stack.

During a subroutine call operation, the contents of specific internal registers
of the 68000 typically are pushed onto the stack. Here they are maintained temporarily.
At completion of the subroutine, these values are popped off the stack and put back
into the same internal register from which they originally resided. For example, if
a jump to subroutine (JSR) instruction is executed, the current value in PC is
automatically pushed onto the active stack. Moreover, as part of the subroutine,
instructions can be executed that cause the contents of other registers to be saved
on the stack.

The status register (SR) also is important when programming the 68000. The
logic state of the carry (C), overflow (V), zero (Z), negative (N), and extend (X) bits
in its user byte are status flags that indicate conditions that are produced as the result
of executing an instruction. That is, specific flags are set (logic 1) or reset (logic 0)
at the completion of execution of the instruction.

The instruction set of the 68000 includes instructions that can be used either

to save the contents of the status register or to load it with new data. Moreover, it
contains instructions that are able to use these flags to alter the sequence in which
the program executes. For instance, an instruction can be used to test the state of
the carry flag and, if it is set, to initiate a jump to another part of the program.

The bits in the system byte of SR control options available on the 68000. For
instance, it contains the supervisor (S) bit. This bit can be set or reset under software
control to put the 68000 into either the supervisor or user state, respectively.

Also represented in the model is the 680OO's memory address space. The 68000
supports a very large 16M-byte address space that has few hmitations on its use. That
is, program memory, data memory, and stack can be located almost at any address

Sec. 3.3 Assembly Language and Machine Language 35

and are not limited in size. It also may be important for the programmer to know
how memory is organized, how the various data types are stored in memory, what
restrictions exist on its use, and the ways in which it can be accessed through addressing
modes.

3.3 ASSEMBLY LANGUAGE AND MACHINE LANGUAGE

Now that we have introduced the software model of the 68000, let us continue with
the concepts of assembly language and machine language instructions and programs.
It is essential to become familiar with these ideas before attempting to learn the
functions of the instructions in the instruction set and their use in writing programs.

Assembly Language Instructions

Assembly language instructions are provided to describe each of the basic operations
that can be performed by a microprocessor. They are written using alphanumeric

symbols instead of the Os and Is of the microprocessor's machine code. An example
of a short assembly language program is shown in Fig. 3.2(a). The assembly language
statements are located on the left. Frequently, comments describing the statements
are included on the right. This type of documentation makes it easier for programmers
to write, read, and debug code. By the term code we mean programs written in the

SOURCE BLOCK STARTS AT $1000

DESTINATION BLOCK STARTS AT $2000

BLOCK LENGTH EQUALS 16 WORDS

MOVE WORD AND POINT TO NEXT WORD

UPDATE COUNT

REPEAT FOR NEXT WORD

(a)

003000 43F8100O LEA.L $00001000,A1 SOURCE BLOCK STARTS AT $1000

003004 45F820OO LEA.L $00002000,A2 DESTINATION BLOCK STARTS AT $2000

003008 203C0OOO0O10 MOVE.L ll\b.DO BLOCK LENGTH EQUALS 16 WORDS

00300E 34D9 MOVE.W (Al)+ ,(A2)+ MOVE WORD AND POINT TO NE.XT WORD

003010 5380 SUBQ.L #1,D0 UPDATE COUNT

003012 66FA BNE.S $00300E REPEAT FOR NEXT WORD

003014 60FE BRA.S $003014

(b)

LEAL SlOOO.Al

LEA.L $2000,A2

MOVE.L #16, DO

NXTPT MOVE.W (A1)+.(A2) +

SUBQ.L #1,D0

BNE.S NXTPT

HERE BRA.S HERE

Figure 3-2 (a) Typical 68000 assembly language program; (b) assembled machine code.

36 68000 Microprocessor Programming 1 Chap. 3

language of the microprocessor. Programs written in assembly language are called
source code.

Each instruction in the source program corresponds to one assembly language
statement. The statement must specify which operation is to be performed and what
data operands are to be processed. For this reason, an instruction can be divided
into two separate parts: its opcode and its operands. The opcode is the part of the
instruction that identifies the operation that is to be performed. For example, typical
operations are add, subtract, and move.

In assembly language, we assign a unique letter combination to each operation.
This letter combination is referred to as a mnemonic for the instruction. For instance,
the 68000 assembly language mnemonics for add, subtract, and move are ADD, SUB,
and MOVE, respectively.

Operands identify the data that are to be processed by the microprocessor as
it carries out the operation specified by the opcode. For instance, an instruction can
add the contents of address register Aq to the contents of Aj . An assembly language
description of this instruction is

ADD A0,A1

In this example, the contents of AG and Al are added together and their sum is put
in Al . Therefore, AO is considered to be the source operand and Al the destination

operand.
Here is another example of an assembly language statement:

LOOP MOVE DO,AO ;COPY DO INTO AO

This instruction statement starts with the word LOOP. It is an address identifier for
the instruction MOVE DO,AO. This type of identifier is called a label or tag. The

instruction is followed by "COPY DO INTO AO." This part of the statement is call-
ed a comment. Thus a general format for writing an assembly language statement is

LABEL INSTRUCTION ;COMMENT

Machine Language Instructions

Before a source program can be executed by the microprocessor, it must first be run
through a process known as assembling. This is normally done on a minicomputer
or microcomputer with a program called an assembler. The result produced by this
step is an equivalent program expressed in the machine code that is executed by the
microprocessor. That is, it is the equivalent of the source program but now written
in Os and Is. This program is also referred to as object code.

Figure 3.2(b) is a listing that includes the machine language program for the
assembly language program in Fig. 3.2(a). It was produced by a 68000 assembler.

Reading from left to right, this listing contains addresses of memory locations, fol-
lowed by the machine code instructions, the original assembly language statements,

and comments. Notice that for simplicity the machine code instructions are expressed
in hexadecimal notation and not as binary numbers.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 37

3.4 THE OPERAND ADDRESSING MODES OF THE 68000

MICROPROCESSOR

The operands processed by the 68000 as it executes an instruction may be specified
as part of the instruction in program memory, may reside in internal registers, or
may be stored in data memory. The 68000 has 14 different addressing modes. They
are shown in Fig. 3.3. The objective of these addressing modes is to supply different
ways for the programmer to generate an effective address (EA) that identifies the
location of an operand. In general, operands referenced by an effective address reside

either in one of the 68000's internal registers or in external data memory.

Mode Generation

Register Direct Addressing

Dala Register Direct EA=Dn

Address Register Direct EA=An

Absolute Dsta Addressing
Absolute Short EA=INext Word!

Absolute Long EA= (Next Two Words)

Program Counter Relative Addressing
Relative witii Offset

EA=IPCI + di6

Relative with Index and Offset EA=IPC) + IXnl + d8

Register Indirect Addressing

Register Indirect EA=IAn)

Postincrement Register Indirect EA=IAnl, An— An + N
Predecrement Register Indirect An — An-N, EA=IAnl

Register Indirect with Offset
EA=(Anl + di6

Indexed Register Indirect v»ith Offset EA=IAn) + (Xnl + d8

Immediate Data Addressing
Immediate DATA = Next Wordlsl

Quick Immediate Inherent Data

Implied Addressing

Implied Register EA = SR, USP. SP, PC

NOTES

EA= Effective Address

An = Address Register

Dn = Data Register

Xn = Address or Data Register

used as index Register

SR = Status Register

PC= Program Counter

I 1 = Contents of

d8 = 8-bit Offset

(displacement)
di6= 16-bit Offset

(displacement)
N= t (or Bvte. 2 for

Words, and 4 for Long
Words

•— = Replaces

Figure 3-3 Operand addressing modes
of the 68000 microprocessor (Motorola, Inc.).

Looking at Fig. 3.3, we see that the 14 addressing modes have been subdivided
into six groups based on how they generate an effective address. These groups are:
register direct addressing, absolute data addressing, program counter relative
addressing, register indirect addressing, immediate data addressing, and implied
addressing. Notice that the addressing modes in all groups other than immediate data
addressing produce an effective address. Let us now look into each of these modes
in detail.

Register Direct Addressing Modes

Register direct addressing modes are used when one of the data or address registers
within the 68000 contains the operand that is to be processed by the instruction. In

68000 Microprocessor Programming 1 Chap. 3

68000

MA

PC^
 xxxxxxxx

Do

D7

76543210

Ao

USP

SSP

1 SR

Memory

Address Contents Instruction

MA
2008

MOVE.L AO.DO

MA + :
xxxx

Next instruction

Figure 3-4 Instruction using register direct addressing (a) before execution.

Fig. 3.3, we see that if the specified register is a data register, the addressing mode
is called data register direct addressing. On the other hand, if an address register is
used, it is known as address register direct addressing.

Here is an example that employs both data register direct addressing and address
register direct addressing.

MOVE.L AO.DO

MOVE.L is how we write the move instruction to process long-word (32-bit) data.
Notice that address register Aq is specified to contain the source operand. This is
an example of address register direct addressing. On the other hand, the destination
operand uses data register direct addressing and is specified as the contents of data
register Dq. In this example, neither operand is located in memory.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 39

68000

MA + 2

PC —

-6543210

D,

76543210

A6

USP
SSP

1
SR

Memory

Address Contents
Instruction

MA 2008 MOVE.L AO.DO

MA + 2 X.XXX Next instruction

Figure 3-4 (com.) (b) After execution.

Execution of this instruction causes the long word in address register Aq to be
copied into data register Dq. This operation can also be expressed as

AO^ — ►DO

In Fig. 3.4(a) we see that before executing the instruction Aq contains $76543210

and the contents of Dq are a don't-care state. The symbol $ stands for hexadecimal
number. At the conclusion of execution of the instruction, both Aq and Dq contain
$76543210. This result is shown in Fig. 3.4(b).

Absolute Data Addressing Modes

When the effective address of an operand is included in the instruction, we ?re using
what is called absolute data addressing mode. There are two such modes for the 68000.

40 68000 Microprocessor Programming 1 Chap. 3

They are known as absolute short addressing and absolute long addressing. These
addressing modes are used to access operands that reside in memory.

If an instruction uses absolute short data addressing to specify the location of

an operand, a 16-bit absolute address must be included as the second word of the
instruction. This word is the effective address of the storage location for the operand
in memory.

As an example, let us consider the instruction

MOVE.L $1234, DO

It stands for move the long word starting at address $1234 in memory into data register
Dq. Notice that the instruction is written with $1234 in the location for the source
operand. This is the absolute address of the source operand and it is encoded by the

68000

MA

PC —
'

xxxxxxxx

Do

D7

Ao

A6

USP

SSP

1 SR

MA

MA + 2

MA + 4

001234
001236

Memory

Contents
2038

■ 1234

xxxx

L,- 6789

ABCD

Instruction

MOVE.L $1234,00

Next instruction

(a)
Figure 3-5 Instruction using absolute data addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor

assembler into the instruction as shown in Fig. 3.5(a). Notice that the address of the
source operand is the next word after the instruction opcode in program memory.

The 68000 automatically does a sign extension based on the MSB of the absolute

short address to give a 32-bit address (actually only 24 bits are used). For our example,
the sign bit is 0; therefore extending it gives the address 001 234(5. Since only 16 bits
can be used in absolute short data addressing it always generates a memory address
either in the range OOOOOOi^ through OOTFFF,^ or FF8000,6 through FFFFFFj^. These

ranges correspond to the first 32K bytes and the last 32K bytes of the 68000's address
space, respectively. Other parts of the 68000's address space cannot be accessed with
this addressing mode.

The result of executing this instruction is shown in Fig. 3.5(b). Notice that the

long word starting at address 001234|5, which equals 6789ABCDig, is copied into
Memory

Contents 68000

MA + 4

PC

6789ABCD

Do

D,

Ao

Ae

USP
SSP

1 SR

MA

MA + 2

MA + 4

001234
001236

2038

1234 xxxx

6789 ABCD

MOVE.L$1234,D0

Next instruction

(b)

Figure 3-5 (com. J (b) After e.xecution.

42 68000 Microprocessor Programming 1 Chap. 3

Dq. Here we see that the word at the lower address, 001234|g, is copied into the upper
16 bits of Dq and the word at the higher address 001236,5 '^ copied into the lower
16 bits.

Absolute long data addressing permits use of a full 32-bit quantity as the absolute
address data. This type of operand is specified in the same way except that its absolute
address is written with more than four hexadecimal digits.

For instance, the instruction

MOVE.L $01234,D0

has the same effect as the previous instruction, but the address of the source operand
is encoded by the assembler as an absolute long data address. That is, the quantity
$01234 is encoded as a 32-bit number instead of a 16-bit number. This means that
the instruction now takes up three words of memory instead of two.

Since all 24 bits are used, the operand specified with absolute long addressing
can reside anywhere in the address space of the 68000.

Program Counter Relative Addressing IVIodes

It is possible to specify the location of an operand relative to the address of the
instruction that is currently being processed. Program counter relative addressing is
provided for this purpose. With it, the effective address of the operand to be accessed
is calculated relative to the updated value held in program counter (PC). There are
two types of program counter relative addressing: program counter relative with offset
and program counter relative with index and offset.

Let us begin with program counter relative with offset addressing. In this case,

a 16-bit quantity identifies the number of bytes the data to be accessed are offset
from the updated value in PC. The offset, which is also known as the displacement,
immediately follows the instruction word in memory. When the instruction is fetched

and executed, the 68000 sign-extends the offset to 32 bits and then adds it to the
updated contents of the program counter.

EA = PC + dl6

The sum that results is the effective address of the operand in memory.
An example of an instruction that employs this addressing mode is as follows:

MOVE.L TAG, DO

This means "move the long word starting at the memory location with TAG as its

label into Dq." The question arises: Where is the label TAG in memory? The answer
lies with the assembler. It computes the number of bytes the displacement word in
the move instruction is offset from the memory location corresponding to label TAG.

This offset is expressed as a signed 16-bit binary number and is encoded as the
displacement word of the instruction.

Since the 16-bit quantity specifies the offset in bytes, the operand must reside
within + or - 32K (+ 32767 to - 32768) bytes with respect to the updated value in PC.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 43

The second type of program counter relative addressing employs both an index
and an offset. In this addressing mode, both the contents of an index register and

an 8-bit displacement are combined with the updated PC to obtain the operand's
memory address. That is, the effective address is given by

EA = PC + Xn + d8

The index register, which is identified by X^, can be any of the 68000's data or address
registers. The signed 8-bit displacement is specified by dg.

Consider this instruction:

MOVE.L TABLE(AO.L),DO

Here the source operand is written such that TABLE represents the displacement and

Aq is the index register. This instruction says to copy the long word starting at the
memory location in TABLE indexed by Aq into Dq.

In this case, the assembler computes the offset between the updated value in
PC and the address of label TABLE. The value of the displacement is encoded as
the least significant byte in the second word of the instruction.

The use of program counter relative addressing with offset and index to access
a table in memory is illustrated in Fig. 3.6. The starting point of the table in memory
is identified by the label TABLE. Since just 8 bits are provided for the offset, the

table must begin within -i- 127 or - 128 bytes of the extension word of the instruction.
The size of the table is determined by the index. The ability to specify up to a 32-bit
index permits addressing of very long tables. Actually, the size of the data table is
limited by the number of address lines on the 68000, which is 23.

Addressed element

Extension word

Offset (dg)

(limited to +127 or -128 bytes)

Index (X„)

> (limited to +8388607 or
-8388608 bytes)

Figure 3-6 Accessing elements of a
table with program counter relative with
index and offset addressing.

44 68000 Microprocessor Programming 1 Cliap. 3

Address Register Indirect Addressing Modes

Address register indirect addressing is similar to tlie register direct addressing we
discussed earlier in that an internal register is specified when writing the instruction.

However, in this case, only address registers Aq through A^ can be used. Moreover,
the register does not represent the location of the operand; instead, it contains the
effective address of the operand in memory. Notice that register indirect addressing
enables the 68000 to access information that resides in external memory.

There are five different kinds of register indirect addressing supported by the
68000. As shown in Fig. 3.3, they are called: register indirect addressing, postincrement
register indirect addressing, predecrement register indirect addressing, register indirect
with offset addressing, and indexed register indirect with offset addressing. We shall

Address

Memory

Contents Instruction

MA
MA + 2 2010 xxxx

MOVE.L (AO),D0

Next instruction

001234 001236
ABCD

EF89

(a)

Figure 3-7 Instruction using address register indirect addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 45

now look at each of these types in more detail.
Register indirect is the simplest form of address register indirect addressing.

When it is specified, one of the address registers contains the address of the source
or destination operand. For instance, in the instruction

MOVE.L (AO),DO

the source operand employs register indirect addressing. Notice that this type of
addressing is specified by enclosing the name of the address register, which in our
example is Aq, with parentheses. The destination operand is specified as Dq using
register direct addressing.

Figure 3.7 illustrates the result of using this addressing mode. In Fig. 3.7(a)

we see that the contents of Aq are $1234. Moreover, we see that the long word stored

68000

MA + 2
PC-_

ABCDEF89

Do

D,

00001234

Ao —

Ae

USP

SSP

SR

Memory

Address Contents Instruction

MA
2010

MOVE.L (AO),DO

MA + 2 xxxx

001234 ABCD
001236

EF89

(b)

Figure 3-7 (com.) (b) After execution.

46 68000 Microprocessor Programming 1 Chap. 3

at address $1234 through $1237 is $ABCDEF89. As shown in Fig. 3.7(b), execution
of the instruction causes this value to be copied into destination register Dq.

Postincrement register indirect addressing works essentially the same as the
register indirect addressing we just demonstrated. However, there is one difference.
This is that after the operation specified by the instruction is completed the contents
of the address register are automatically incremented by 1, 2, or 4, depending on

whether byte, word, or long-word data are processed. In this way, the address points
to the next sequential element of data.

Our earlier example can be rewritten to use postincrement register indirect
addressing. This gives

MOVE.L (AO) + ,DO

68000

MA

PC —

xxxxxxxx

Do

D7

00001234

Ao —

A6

USP
SSP

SR

Address

Memory

Contents Instruction
MA

MA + 2

2018
xxxx

MOVE.L (A0)+,D0
Next instruction

001234
001236

ABCD

EF89

(a)
Figure 3-8 Instruction using postincrement register indirect addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 47

Here we see that including a + symbol after the operand specifies the postincrement
operation.

If we assume that the state of the 68000 just prior to execution of this instruction
is as shown in Fig. 3.8(a), the results are similar to those shown in Fig. 3.7(b) for
register indirect addressing. Again $ABCDEF89 is copied into Dq. But this time the
contents of Aq are also incremented by 4 to give $1238, as shown in Fig. 3.8(b).
Therefore, it points to the start of the next long word in data memory.

Predecrement register indirect addressing is the same as postdecrement register
indirect addressing except that the contents of the selected address register are
decremented instead of incremented. Moreover, the decrement operation takes place
prior to performing the operation specified in the instruction.

68000

MA + 2

PC— .

ABCDEF89

Do

D7

00001238

Ao —

As

USP

SSP

SK

MA

MA+ 2

001234
001236

001238
00123A

Memory

Contents

2018

xxxx

ABCD
EF89
XXXX
xxxx

MOVE.L (AO)+,DO
Next instruction

(b)

Figure 3-8 (com. J (b) After execution.

48 68000 Microprocessor Programming 1 Chap. 3

For instance, in the instruction

MOVE.L -(AO),DO

the - symbol identifies predecrement indirect addressing. If this instruction is executed
with the 68000 in the state shown in Fig. 3.9(a), the address in Aq is first decremented
by 4 and equals $1230. Therefore, the contents of memory locations $1230 through
$1233 are copied into Dq. This result is illustrated by Fig. 3.9(b).

Postincrement and predecrement indirect addressing allow a programmer to
implement memory scanning operations without the need to update the address pointer
with additional instructions. This type of addressing is useful for performing data
processing operations such as block transfer and string searches.

USP

SSP

■*- MA

MA + 2

001230
001232 -001234

001236

Memory

Contents

2020
xxxx

0000
FFFF
ABCD

EF89

MOVE.L - (AO),DO
Next instruction

Figure 3-9 Instruction using predecrement register indirect addressing (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 49

In the address register indirect with offset addressing mode, a sign-extended
16-bit offset value and an address register are specified in the instruction. The effective
address of the operand is generated by adding the offset to the contents of the selected
address register; that is,

EA = An + dl6

The value of offset dj^ specifies the number of bytes the storage location to be
accessed is offset from the address in A^. It is encoded as the second word of the
instruction.

Let us now consider the instruction

MOVE.W 16(A0),D0

Here we find that an offset of 16 (sixteen bytes) is specified for the source operand.

68000

[^

MA + 2

OOOOFFFF

Do

D,

Ao

00001230

As

USP

SSP

SR 1

Memory

Address Contents
Instruction

MA 2020 MOVE.L - (AO),DO

MA + 2
xxxx Next instruction

- 001230

0000
001232 FFFF

001234 ABCD
001236

EF89

(b)

Figure 3-9 (com.) (b) After execution.

50 68000 Microprocessor Programming 1 Chap. 3

Execution of this instruction for the conditions in Fig. 3. 10(a) produces the effective
address

EA = 1234,6 + 16,0 = 1244,6
As shown in Fig. 3.10(b), the word contents of address $1244, which equals SABCD,
are copied into the least significant 16 bits of Dq.

Since the offset is a signed 16-bit integer number, the operand to be accessed
must be within + 32767 or - 32768 bytes of the storage location pointed to by the
contents of the address register.

The last register indirect addressing mode, indexed register indirect with offset
addressing, allows specification of an address register, an offset, and an index register

for formation of the effective address. The offset value is limited to a signed 8-bit
quantity. On the other hand, the index register can be the contents of any of the

68000

PC

Address

Memory

Contents

MA 3028

Do

D,

Ao

MA + 2

MA + 4

001234

001244

1

0010 — 1

xxxx

xxxx

ABCD ̂ +

xxxxxxxx

00001234

A6

USP

SSP

SR 1

MOVE.W 1 6(A0),D0

Next instruction

Figure 3-10 Instruction using register indirect addressing with offset (a) before execution.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 51

68(X)0's data or address registers. The effective address is computed by adding the
contents of the address register, the contents of the inde.x register, and the offset.
That is,

EA = An + Xn + d8

Here is an instruction that uses this addressing mode for its source operand.
MOVE.W 16(A0,A1.L),D0

The offset equals 16|q, Aq is the address register, and Aj is the index register. Figure
3.1 1(a) shows that A^ contains $1234 and A, contains $2344. In this case, the address
of the source operand is obtained as

EA = AO + Al + 16,0 = '234ig + 2344i6 + 10,6
= 3588,^

68000

PC

Address

Memory

Contents

MA + 4
3028

Do

Dt

N. MA + 2

MA + 4

001234

001244

0010 —

xxxx

xxxx

*

ABCD- +

X.X.X.\ABCD

UOU012j4

\

USP

SSP

SR 1

MOVE.W 16(A0),D0

Next instruction

(b)

Figure 3-10 (com.) (b) After execution.

68000 Microprocessor Programming 1 Chap. 3

68000 PC

Do

D,

Ao-
A, .

A,

USP

SSP

SR

Address

Memory

Contents

MA
 »-MA

MA + 2

MA + 4

003588

2030

9810-1
XXXX

ABCD -^ +

xxxxxxxx

00001234
1

00002344

MOVE.W 16(A0,A1.L),D0

Next instruction

(a)

Figure 3-11 Instruction using indexed register indirect with offset addressing (a) before execution.

Figure 3.1 1(b) shows that the word contents at this memory location are ABCD,g.
This value is copied into the least significant word of Dg.

Since the offset value is an 8-bit signed integer, the address offset is limited
to + 127 or - 128 bytes relative to the location specified by the sum of the contents
of the address register and the index register.

Address register indirect with index and offset addressing is very useful when

accessing elements of an array in memory. For example, the two-dimensional array
of Fig. 3.12(a), which has a size of m + 1 rows by / -I- 1 columns can be stored in
memory as shown in Fig. 3.12(b). Notice that the first / + 1 addresses, with starting
address at (WFOOOjg, contain the elements of row 0 of the array, that is, the elements
located at columns 0 through / of row 0. In both figures, these are identified as E(0,0)
through E(0,/). The elements of row 0 are followed in memory by those for rows
1 through m.

Let us look at how to access the element located at column j of row i (E(i,j)).

In order to access this element, the first address register Aq can be loaded with the
beginning address, SOOFOOO, of the array in memory. In this way, it points to the

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor

68000 PC

Do

D7

A,
■

A6

USP

SSP

SR

Address

Memory

Contents

MA + 4
 MA ~-~~,.....^ MA + 2

^^*^MA + 4

003588

2030

9810-

xxxx

ABCD *- +

XXXXABCD

00001234

00002344

MOVE.W 16(A0,A1.L),D0

Next instruction

(b)

Figure 3-11 (com.) (b) After execution.

first element in the first row of the array. A, can be used as the index register and
loaded with an index number such that it points to row i in the array. Assuming that

each element uses a word for storage, the value required in index register Aj in order
to access row i is computed as 2i (/ + 1). Finally, the offset can be used to select

the appropriate column. For element j, it should be made equal to 2j. In this way,

the effective address computed as

EA = AO + 2i (/ + 1) + 2j

points to element E(i,j). Notice that the 8-bit offset limits the number of columns
in the array to a maximum of 128.

For instance, let us determine the effective address needed to copy the word

in element E(5,6) of the array in Fig. 3.12 with m = % into Dq. Assume that the array
of words is stored starting at address SOOFOOO. First we must load registers Aq and
A, as follows:

AO = (X)F000,6

Al = 2i(/ + 1) = 2(5)(8 + 1) = 90,0 = 5A,

"^^lumn 1 Row^\^

0 E(0. 0) E(0, 1) E(0, /)

1 E(1,0) E(1 , 1 1 Ed, /)

,,l ' ■

Memory

Column 0 E(0,0)

Column 1 ECO, 1)

Column 2 E(0, 2)

Column / F.(0, /)

Column 0 E(1,0)

Column 1 Ed, 1)

Column / Ed, /)

Column j E(i,j)

Column 0 E(m,0)

Column / E(m, /)

>RowO

Element to be addressed
in row i and column j

(b)

Figure 3-12 (a) An (m + 1) x(/+ 1) two-dimensional array; (b) storage of the array
in memory.

Sec. 3.4 The Operand Addressing Modes of the 68000 Microprocessor 55

Then the offset is obtained by multiplying the column dimension of the array element
by 2. This gives

d8 = 2j = 2(6) = 12,0 = C,6

Therefore, the effective address of the element is

EA = AO + Al + d8 = 00F000,6 + SAj^ + Cjg
= 00F066,6

This element can be copied into Dq by executing the instruction

MOVE.W 12(A0,A1.L),D0

Immediate Data Addressing Modes

With immediate data addressing mode, the operand to be processed during the
execution of the instruction is supplied in the instruction itself. In general, the data
are encoded and stored in the word locations that follow the instruction in program
memory. If the instruction processes bytes of data, a special form of immediate
addressing can be used. This is known as quick immediate addressing. In this case,

the data are encoded directly into the instruction's operation word. For this reason,
using quick immediate addressing takes up less memory and executes faster.

Here are two examples of instructions that employ immediate data addressing
for their source operands.

MOVEQ #$C5,D0

MOVE.W #$1234,D0

Notice that the # symbol written before the operand indicates that immediate data
addressing is employed. The first instruction, move quick (MOVEQ), illustrates quick
immediate addressing. In this instruction, the immediate source operand is C5|g. As
shown in Fig. 3.13(a), it gets encoded as $70C5, where the least significant byte of
the instruction word is the immediate operand. Executing this instruction loads Dq
with the sign-extended long-word value of $C5; that is.

$FFFFFFC5 - DO

MOVEQ «$C5, DO -

-Quick immediate operand

MOVE.W *$ 1234, DO -

Figure 3-13 (a) Coding of a move in-
- Immediate operand struction with quick immediate operand;

(b) coding of a move instruction with

general immediate operand.

S6 68000 Microprocessor Programming 1 Chap. 3

Looking at the second instruction, we see that its immediate source operand
is the word 1234, g. Figure 3.13(b) illustrates how its immediate operand gets encoded
into the second word of the instruction. When the instruction is executed, sign
extension is not performed; instead, the value $1234 is loaded into the least significant
16 bits of Dq. That is,

$1234 -^ Least significant 16 bits of Dg
The most significant 16 bits of Dq are not affected.

Implied Addressing Mode

Some of the 68000's instructions do not make direct reference to operands. Instead,
inherent to their execution is an automatic reference to one or more of its internal

registers. Typically, these registers are the stack pointers, the program counter, or
the status register.

An example is the instruction

BSR SUBRTN

It stands for branch to the subroutine at label SUBRTN. Both the contents of the

program counter and active stack pointer are always referenced during the execution
of this instruction.

Functional Addressing Categories

The addressing modes that we have discussed in this section can be divided into four
categories based on the manner in which they are used. These functional categories
are: data addressing, memory addressing, control addressing, and alterable addressing.
The relationship between the addressing modes and these four categories is summarized
by the table in Fig. 3.14.

Addressing Mode
Mode

Register

Addressing
Categories Assembler

Syntax

Data
Mem

Com
Alter

Data Reg D<f

Addr Reg Dn

Addr Reg ind

000

001 010

reg no

regno

reg no

X

X X X

X

X

X

On

An lAnI

Addr Reg Ind «//Postinc

Addf Reg Ind w/Ptedec

Add' Reg Ind w/Disp
on

100

101

regno
regno

reg no

X

X

X

X

X

X X

X

X

X
IAnl»

- lAnI

OlAnl
Add! Reg Ind w/lndex
Absolute Stiort

Absolute Long

no

111

111

reg no 000

001

X

X

X

X

X

X

X

X

X

X

X

X

d(An, Ril
XXX

XXXXXX

Prog Ctf w/Disp

Prog Ctr w/lndex
Immediate

in

111

til

010

on

100 X

X

X

X

X

X

X

X - aiPCi

OiPC, Ril

«xxx

Figure 3-14 Effective addressing mode categories (Motorola, Inc.).

If an addressing mode can be used to reference data operands, it is categorized
as data addressing. Looking at Fig. 3.14, we see that all addressing modes other than
address register direct are classified as data addressing. Address register direct is not
included because it only allows access to address information.

Sec. 3.6 Data Transfer Instructions 57

Similarly, if an addressing mode provides the ability to reference operands in
memory, it is classified as memory addressing. Notice in Fig. 3.14 that just the data
register direct and address register direct addressing modes are not classified in this
way. This is because their use is restricted to accessing information that resides in
the internal registers of the 68000.

An addressing mode is considered control addressing if it can be used to reference
an operand in memory without specification of the size of the operand. Notice in
Fig. 3.14 that all direct addressing modes, indirect addressing modes with either
predecrement or postincrement, and the immediate addressing modes are not included
in this category.

Moreover, if an addressing mode permits reference to operands that are being
written into, it is called an alterable addressing mode. That is, alterable addressing
modes can be used in conjunction with destination operands. Looking at Fig. 3.14,
we see that immediate data addressing is an example of an addressing mode that cannot
be used to specify a destination operand. It only can be used to reference source
operands.

3.5 INSTRUCTION SET

Now that we have introduced the software model of the 68000 and its addressing
modes, we are ready to begin our study of its instructions. Motorola, Inc. has applied
orthogonality in the design of the instruction set of the 68000. That is, instead of

having a large number of instructions that include many special-purpose instructions,
they have included a smaller number of general-purpose instructions. But the 68000
is equipped with more powerful addressing modes and most of the instructions can
use all of the addressing modes. This makes its general instructions very versatile.
Moreover, it results in fewer instruction mnemonics for the programmer to remember
and less restrictions on how operands can be accessed during instruction execution.

The 68000 microprocessor provides a very powerful minicomputer-like
instruction set. It has 56 basic instruction types. A summary of the instructions is
shown in Fig. 3.15. These basic instruction types coupled with their variations, shown
in Fig. 3.16, the 14 addressing modes, and five data types produce a large number
of executable instructions at the machine code level.

For ease of learning, we will divide the instructions of the 68000's instruction
set into functionally related groups. In this chapter the groups covered are: the data
movement instructions, the integer arithmetic instructions, the decimal arithmetic
instructions, the logic instructions, and the shift and rotate instructions. The rest of
the instruction set will be presented in Chapter 4.

3.6 DATA TRANSFER INSTRUCTIONS

The instruction set of the 68000 provides instructions to transfer data between its
internal registers, between an internal register and a storage location in memory, or
between two locations in memory. The basic instructions in the data transfer group

58 68000 Microprocessor Programming 1 Chap. 3

Mnemonic Description

ABCD Add Decimal with Extend
ADD

Add

AND
Logical And ASL
Anthmetic Shift Left

ASR Arithmetic Shift Right

Bcc Branch Conditionally

BCHG Bit Test and Change

BCLR Bit Test and Clear

BRA
Branch Always

BSET Bit Test and Set

BSR Branch to Subroutine

BTST Bit Test

CHK Check Register Against Bounds

CLR Clear Operand

CMP
Compare

DBcc Test Condition. Decrement and Branch

DIVS Signed Divide DIVU
Unsigned Divide

EOR
Exclusive Or

EXG Exchange Registers

EXT Sign Extend

JMP

Jump

JSR Jump to Subroutine

LEA
Load Effective Address

LINK Link Stack

LSL
Logical Shift Left

LSR Logical Shift Right
MOVE Move
MOVEM Move Multiple Registers

MOVEP Move Peripheral Data
MULS

Signed Multiply
MULU

Unsigned Multiply

NBCD Negate Decimal with Extend NEG
Negate

NOP No Operation NO
Ones Complement

OR Logical Or
PEA Push Effective Address

RESET Reset External Devices
ROL

Rotate Left without Extend

ROR Rotate Right without Extend
ROXL Rotate Left with Extend

ROXR Rotate Right with Extend
RTE

Return from Exception

RTR Return and Restore
RTS

Return from Subroutine

SBCD Subtract Decimal with Extend

Sec Set Conditional
STOP

Stop

SUB Subtract

SWAP Swap Data Register Halves
TAS

Test and Set Operand
TRAP

Trap

TRAPV Trap on Overflow
TST

Test

UNLK Unlink

Figure 3-15 Instruction set summary
(Motorola, Inc.).

Sec. 3.6 Data Transfer Instructions

Instruction

Type
Variation Description

ADD ADD

Add

ADDA Add Address
ADDQ

Add Quick

ADDI
Add Immediate

ADDX Add with Extend
AND AND

Logical AND ANDI AND Immediate

ANDI to CCR AND Immediate to Condition Code

ANDI to SR AND Immediate to Status Register

CMP CMP Compare

CMPA Compare Address
CMPM Compare Memory

CMPI Compare Immediate

EOR EOR
Exclusive OR

EORI
Exclusive OR Immediate

EORI to CCR Exclusive Immediate to Condition Codes

EORI to SR Exclusive OR Immediate to Status Register
MOVE MOVE Move

MOVEA Move Address
MOVEQ Move Quick
MOVE to CCR Move to Condition Codes

MOVE to SR Move to Status Register

MOVE from SR Move from Status Register

MOVE to USP Move to User Stack Pointer

NEG
NEG

Negate

NEGX Negate with Extend

OR OR Logical OR

ORI
OR Immediate

ORI to CCR OR Immediate to Condition Codes

ORI to SR OR Immediate to Status Register

SUB SUB Subtract

SUBA Subtract Address

SUBI
Subtract Immediate

SUBO
Subtract Quick

SUBX Subtract with Extend

Figure 3-16 Variations of instruction types (Motorola, Inc.).

are shown in Fig. 3.17. Notice that it includes the following instructions: move
(MOVE), move multiple (MOVEM), load effective address (LEA), exchange (EXG),
swap (SWAP), and clear (CLR).

Move Instruction— MOVE

The first of the basic data transfer instructions in Fig. 3.17 is the MOVE instruction.
This instruction has the ability to perform all three of the earlier mentioned data
transfer operations. That is, data transfers from register to register, between register
and memory, or memory to memory. Looking at Fig. 3.17, we see that there are
eight different forms of this instruction. Notice that they differ in both the size of
operands they process and the types of operands that they can access.

The first form of the MOVE instruction is

MOVE EAs.EAd

It permits movement of a source operand location identified by effective address EAs
into a destination location identified by effective address EAd. The source and

68000 Microprocessor Programming 1 Chap. 3

Mnemonic
Meaning

Type

 1

Operand Size Operations

MOVE Move MOVE EAs.EAd 8, 16,32 (EAsj-EAd
MOVE EA.CCR

16

(EA)-CCR MOVE EA,SR 16

(EA)^SR MOVE SR.EA 16
SR-*EA

MOVE USP.An

32

USP ̂ An
MOVE An.USP 32 An ̂ USP
MOVEA EA,An 16,32

(EA)^An MOVEQ #XXX,Dn 8
#XXX -» Dn

MOVEM Move multiple MOVEM Reg_list,EA 16,32
Reg_list - EA MOVEM EA,Reg_list 16,32 (EA)-Reg_list

LEA Load effective address LEA EA.An 32 EA->An

EXG Exchange EXG Rx.Ry
32

Rx"Ry

SWAP

Swap

SWAP Dn 16 Dn31:16^Dn 15:0

CLR Clear CLR EA 8, 16,32
0-EA

Figure 3-17 Data transfer instructions.

destination operands can be located in data registers, address registers, or storage
locations in memory. Moreover, this instruction can be used to process byte, word,

or long-word operands.
Whenever this instruction is processing word or long-word data, the source

operand can be specified using any addressing mode. However, for operation on byte
data, address register direct addressing mode cannot be used. This is because the

address registers can be accessed only as word or long-word operands.
For the destination operand, only the alterable addressing modes are allowed.

The addressing modes in this group were identified in Fig. 3.14. In other words,
program counter relative and the immediate data addressing modes cannot be used
to specify the location of the destination operand. Moreover, when processing byte
operands, address register direct addressing cannot be used.

Another thing that may be important to note is how the condition code bits

in the user byte of the 68000's status register are affected by execution of the MOVE
instruction. The condition codes affected are the negative (N) bit, the zero (Z) bit,
the overflow (V) bit, and the carry (C) bit. N and Z are set or cleared based on the
resuh of the instruction: that is, the value copied into the destination location. If
the resuh is negative, N is set; otherwise, it is cleared. Similarly, if the result is zero,
Z is set, and if it is nonzero, it is cleared. The V and C bits are always cleared.

Here is an example of the move instruction that performs a word-copy operation.
MOVE.W D0,D1

The source operand in Dq is specified using data register direct addressing mode. Let
us assume that the contents of register Dq are 12345678|g. The destination operand
in Dj is also specified using data register direct addressing mode. Execution of the
instruction causes the least significant word in Dq, which equals 5678ig, to be copied

Sec. 3.6 Data Transfer Instructions 61

into the lower 16 bits of D,. Since the result in D, is positive and nonzero, the

condition codes are affected as follows: N = 0, Z = 0, V = 0, C = 0, and X is
not affected.

The next two forms shown in Fig. 3.17 for the MOVE instruction are provided
for initialization of the status register. The instruction

MOVE EA.CCR

allows only the condition code part of the status register to be specified as the
destination operand. This operand is identified by CCR. On the other hand, any of

the data addressing modes can be used for the source operand. This instruction can

be used to load the user byte of SR from memory or an internal register. Even though

the source operand size is specified as a word, just its eight least significant bits are
used to modify the condition code bits in SR.

The second instruction

MOVE EA,SR

is used to load all 16 bits of the status register. Therefore, its execution loads both

the system byte and user byte. Since this instruction updates the most significant byte

in SR, it can be executed only when the 68000 is in the supervisor state (privileged
instruction).

Example 3.1

What will be the result of executing the following sequence of instructions?

MOVE.W f/ll.DO

MOVE DO, SR

Assume that the 68000 is in the supervisor state.

Solution. Execution of the first instruction loads the lower word of Dq with immediate
source operand 12|q.

12,0 = 0O0C,g = 0000000000001100,

After execution of this instruction, the condition code bits of SR are as follows:

X = unchanged

N = 0

Z = 0

V = 0

C = 0

Check Fig. 2.7 for the meaning of each of these bits. The result of executing the second
instruction depends on the state of the 68000. We have assumed that it is operating in

the supervisor state; therefore, SR is loaded with the lower word of Dq, which is
0000000000001100,.

DO = XXXXXXXXXXXXXXXXOOOOOOOOOOOOllOO,

SR = 0000000000001100,

62 68000 Microprocessor Programming 1 Chap. 3

This gives the condition codes that follow:

X = 0

N = 1

Z = 1

V = 0

C = 0

The next form of the MOVE instruction shown in Fig. 3.17 is

MOVE SR,EA

Notice that its source operand is always the contents of SR and that the destination
operand is represented by the effective address EA. Therefore, this instruction permits
the programmer to save the contents of the status register in an address register, data
register, or a storage location in data memory. In specifying the destination operand,
only those addressing modes identified in Fig. 3.14 as alterable can be used.

For example, executing the instruction

MOVE SR,D7

causes the contents of SR to be copied into data register D^. No condition codes are
affected due to the execution of this instruction. Since this instruction reads but does

not modify the contents of SR, it can be executed when the 68000 is in either the
user state or the supervisor state.

The move user stack pointer instructions are shown in Fig. 3.17 to be

MOVE USP,An

and

MOVE An,USP

Notice that the data transfer that takes place is always between the user stack pointer
(USP) register and one of the address registers. For this reason, these instructions
are used to read and to modify the user stack pointer, respectively. Since USP is a

32-bit register, both the source and destination operands are always long word in
size. Both of the instructions are privileged and must only be executed when the 68000
is in the supervisor state.

An efficient way of loading an address register from another address register,
data register, or storage location in memory is with the move address instruction.
In Fig. 3.17, this form of the MOVE instruction is given as

MOVEA EA,An

This instruction allows the operand to be either 16 bits or 32 bits in length. If the

source operand is specified as a word, the address word is sign-extended to give a
long word before it is moved into the address register.

Sec. 3.6 Data Transfer Instructions 63

The source operand can be specified using any of the 68000's addressing modes.
For instance, the instruction

MOVEA.L (A0),A6

employs address register indirect addressing. Execution of this instruction causes the

long-word contents of the memory location pointed to by the address in Aq to be
loaded into address register A^. Condition codes are not affected by execution of
this instruction.

The last form of the MOVE instruction we find in Fig. 3.17 is

MOVEQ #XXX,Dn

This instruction, move quick, is used to load a data register efficiently with a

byte-wide immediate operand. An example is the instruction

MOVEQ #4,D1

The immediate operand, which is decimal number 4, is encoded directly into the
instruction operation word. When this instruction is executed, the immediate data
are loaded into data register Dj. However, before the value is loaded, it is sign
extended to 32 bits. Therefore, the value loaded into D, is 00000004,^.

Move Multiple Registers instruction— MOVEM

The move multiple registers (MOVEM) instruction provides an efficient mechanism
for saving the contents of the internal registers into memory or to restore their contents
from memory. One use of this instruction is to initialize a group of registers from
a table in memory. This operation can be done with a series of MOVE instructions
or with just one MOVEM instruction.

Another operation for which it can be useful is when working with subroutines.
For instance, if a subroutine is to be initiated, typically the contents of the registers
that are used during its execution must be saved in memory. Moreover, after its
execution is complete, their contents must be restored. In this way, when program
control is returned to the main program, the registers reflect the same information
that they contained prior to entry into the subroutine. Either the save or restore
operation can be performed with a single MOVEM instruction.

The two forms of MOVEM are shown in Fig. 3.17. The first form,

MOVEM Reg-list, EA

is employed to save the contents of the registers specified in register list (Reg-list)
in memory. They are saved at consecutive addresses in memory starting at the address
specified by the destination operand. Any of the control addressing modes and address
register indirect with predecrement can be used in conjunction with the destination
operand.

The register list can include any combination of data and address registers. A
list of the registers to be saved is coded into a second word of the instruction. This

64 68000 Microprocessor Programming 1 Chap. 3

word is called the register list mask. As shown in Fig. 3.18(a), each bit of this mask

corresponds to one of the 68000's internal registers. Setting a bit to 1 indicates that
the corresponding register is included in the list and 0 indicates that it is not included.

Notice that data registers Dq through D^ correspond to bits 0 through 7 of the mask,

respectively, and address registers Aq through Ay correspond to bits 8 through 15,
respectively. When address register indirect with predecrement addressing is used,
the meaning of the bits of the mask word are changed as shown in Fig. 3. 18(b). The

register corresponding to the first set bit is saved first, followed by the register

corresponding to the next set bit and so on. The last saved register corresponds to
the last set bit.

15 8 7 0

A,

A6

As
A4

A3

A:

A,
Ao

D,

D6
D5

D4

D3

D,

D,

Do

15

(

8

)

7 0

Do

D,
D2

D3 D4

Ds

D6 D7

Ao

A, A:
A3

A4

A5

A«
A7

(b)

Figure 3-18 (a) Register list mask word format for control mode and postincrement
addressing; (b) format for address register indirect with predecrement addressing.

This instruction can be written to perform word or long-word data transfers.
In a word operation, only the least significant word parts of the specified registers

are saved in memory. In this case, it requires one word of memory storage for each

register. However, if long-word transfers are specified, each register needs two words
of memory.

The second form of the MOVEM instruction shown in Fig. 3.17 permits the

internal registers of the 68000 to be initialized or restored from memory. It is written as

MOVEM EA,Reg-Iist

Execution of this instruction causes the word or long-word contents of the registers

in Reg-list to be loaded one after the other from memory. When specifying the source
operand, the starting address of the table of values to be loaded can only use the
control or postincrement addressing modes.

Example 3.2

Write an instruction that will do the reverse of the instruction

MOVEM. W DO/D1/A5,$AFOO

Solution. This instruction will save the lower words of registers Dq, D,, and A5 in
memory at word addresses AFOO,^, AF02,g, and AF04,^, respectively. To restore the
registers, the instruction is written as

MOVEM. W $AF00,D0/D1/A5

Figure 3.19 illustrates what happens due to the execution of these two instructions.

Data Transfer Instructions 65

Address

Memor>-
AF00,6

AF02,,

AF04„

Save,,^
Registers

I Kestore

31

16 15
0

~1

1 1

X 3
'

16 15
0

1
1 1

Figure 3-19 Save and restore of processor register contents as i mplemented with the
MOVEM instructions.

Load Effective Address Instruction— LEA

A way of directly loading an address register with an address is with the load effective

address (LEA) instruction. The form of this instruction is given in Fig. 3.17 as

LEA EA.An

Execution of this instruction does not load the destination operand with the contents

of the specified source operand. Instead, it computes an effective address based on

the addressing mode used for the source operand and loads this value into the address

register specified as the destination. Only the control addressing modes listed in Fig.
3.14 can be used to describe the source operand.

Example 3.3

Describe what happens when the instruction

LEA 6(A1,D0),A2

is executed. Assume that A, = 00004000,^ and Dq = 000012AB,g.
Solution. This instruction uses address register indirect with index addressing for the

source operand. Its destination is simply address register Aj. Execution of the instruction

causes Aj to be loaded with the effective address

A2 = Al + DO + 6,0

Using the values given for the contents of A, and Dq, we find that the effective address
loaded into A2 equals

A2 = 00004000,^ + 000012AB,^ + 6,^
= 00005281,^

Exchange Instruction— EXG

Earlier we showed how the MOVE instruction could be used to move the contents

of one of the internal registers of the 68000 to another internal register. Another type

of requirement for some applications is to exchange efficiently the contents of two

66 68000 Microprocessor Programming 1 Chap. 3

registers. It is for this reason that the exchange (EXG) instruction is included in the
instruction set of the 68000.

This instruction is shown in Fig. 3.17 to have the form
EXG Rx,Ry

Here Rx and Ry stand for arbitrarily selected data or address registers. An example
is the instruction

EXG D0,A3

It will load data register Dq with the contents of address register A3 and A3 with
the contents of Dq. For example, if Dq contains FFFFFFFFi^ and A3 contains
00000000, g, the result after executing the instruction is that Dq now contains
OOOOOOOOjg and A3 contains FFFFFFFFjg. The data transfers that take place are
always 32 bits long and no condition code bits are affected.

Swap Instruction— SWAP

The swap (SWAP) instruction is similar to the exchange instruction in that it has
the ability to exchange two values. However, it is used to exchange the upper and
lower words in a data register. The general form of SWAP is given in Fig. 3.17 as

SWAP Dn

An example is

SWAP DO

When this instruction is executed, the contents of the lower 16 bits of Dq are swapped
with its upper 16 bits. If the original contents of Dq are FFFF0000,5, execution of

the instruction results in the value OOOOFFFFjg in Dq. The 32-bit value that results
in Dq after the swap operation is used to set or reset the condition code flags.

Clear Instruction— CLR

The CLR instruction can be used to initialize the contents of an internal register or
storage location in data memory to zero. Figure 3.17 shows that the instruction is
written in general as

CLR EA

and that it can perform its operation on byte, word, or long-word operands. All
alterable addressing modes except address register direct can be used to access the
operand.

For instance, to clear the least significant 8 bits of Dq, the following instruction
is executed:

CLR.B DO

Whenever this instruction is executed, the Z bit of SR is set and the N, V, and C
bits are cleared. Moreover, the X bit is not affected.

Sec. 3.7 Integer Arithmetic Instructions 67

3.7 INTEGER ARITHMETIC INSTRUCTIONS

The instruction set of the 68000 provides instructions to perform binary arithmetic
operations, such as add, subtract, multiply, and divide. These instructions can process
both signed and unsigned numbers. Moreover, the data being processed can be
organized as bytes, words, or long words. The instructions in this group are shown
in Fig. 3.20.

Mnemonic Meaning Type
Operand Size Operation

ADD
Addl

ADD EA, Dn
8, 16,32

(EA) + Dn -* Dn ADD Dn, EA
8,16,32 Dn + (EA) - EA

ADDl #XXX, EA
8, 16,32 #XXX + (EA)-EA

ADDQ #XXX, EA
8, 16,32 #XXX + (EA) -> EA ADDX Dy, Dx
8,16,32 Dy + Dx + X - Dx

ADDX ^(Ay), -(Ax) 8, 16,32 - (Ay) + - (Ax) + X -> (Ax)
ADDA EA, An

16,32
(EA) + An - An

SUB SubtractI SUB EA, Dn
8, 16,32

Dn - (EA) - Dn
SUB Dn, EA

8, 16,32
(EA) - Dn - EA SUBI #XXX, EA 8, 16,32
(EA)-#XXX-*EA SUBQ #XXX, EA 8, 16,32
(EA) - #XXX -> EA SUBX Dy, Dx

8,16,32 Dx - Dy -* Dx
SUBX - (Ay), - (Ax) 8, 16,32

-(Ax)- -(Ay) -(Ax)

SUBA EA, An
16,32 An - (EA) - An

NEG Negate NEG EA, Dn
8,16,32

0 - (EA) - EA

NEGX EA, Dn
8, 16,32 0-(EA)-X-EA

MUL
Multiply

MULS EA, Dn 16
(EA) • Dn - Dn MULU EA, Dn

16

(EA) • Dn - Dn

DIV Divide DIVS EA, Dn 32- 16
Dn-(EA)->Dn

DIVU EA, Dn 32- 16
Dn-(EA)-'Dn

EXT Extend sign EXT.W Dn

8-* 16

Dn byte -► Dn word
EXT.L Dn 16^32 Dn word -' Dn long word

Figure 3-20 Integer arithmetic instructions.

The condition code bits in the SR register are set or reset as per the result of
arithmetic instructions. For ADD, SUB, and NEG instructions the five condition
code bits are affected as follows:

N is set if the result is negative, cleared otherwise

Z is set if the result is zero, cleared otherwise

V is set if an overflow occurs, cleared otherwise

X and C are set if carry is generated or borrow is taken, cleared otherwise

For MUL, DIV, and EXT instructions, V and C are always cleared, X is not affected,
and N and Z are set or cleared like that in other arithmetic instructions: ADD, SUB,
and NEG.

68 68000 Microprocessor Programming 1 Chap. 3

Addition Instructions— ADD, ADDI, ADDQ, ADDX,
and ADDA

For implementing the binary addition operation, the 68000 provides five types of
add instructions. All five forms together with their permitted operand sizes are shown
in Fig. 3.20. The different types of instructions are provided for dealing with different
kinds of addition requirements. For instance, when addresses are manipulated, we
want to operate on data in the address registers and do not want to affect the condition
codes in SR. Thus for this situation a special address addition (ADDA) instruction
is provided.

The first four forms of the add instruction in Fig. 3.20 are generally used to
process data and the last form is for modifying addresses. Two forms of the basic
add (ADD) instruction are shown. The first form

ADD EA,Dn

adds the contents of the location specified by the effective address EA to the contents
of data register D„; that is,

(EA) + Dn -» Dn
The source operand can be located in an internal register or a storage location in
memory. Moreover, its effective address can be specified with any of the addressing
modes of the 68000. The only exception is that the size of the operand cannot be
specified as a byte when address register direct addressing mode is used.

For instance, the instruction

ADD.L D0,D1

causes the contents of Dq to be added to the contents of Dj. If the original contents
of Dq are $00013344 and that of D, are SOOOOOFFF, the sum that is produced equals
$00014343 and it is saved in D,.

The second form is similar except that it represents the addition of the contents
of a source data register to the contents of a destination operand that is identified
by the effective address EA.

ADD Dn,EA

Dn + (EA) -* EA
In this case only the alterable memory addressing modes are applicable to the
destination operand.

Example 3.4

Write an instruction sequence that can be used to add two long words whose locations
in memory are specified by the contents of address registers A, and A,, respectively.
The sum is to replace the contents of the storage location pointed to by the address in
A-,.

Solution. We will use Dq as an intermediate storage location for implementing the
memory-to-memory add. The instruction sequence is

Sec. 3.7 Integer Arithmetic Instructions 69

CLR.L DO

ADD.L (A1),D0

ADD.L D0,(A2)

The instruction add immediate (ADDI) operates similarly to the ADD instruction
we just introduced. The important difference is that now the value of the source
operand is always located in program memory as an immediate operand. That is,
it is encoded as the second word of the instruction for byte and word operands or

as a second and third word for long-word operands. The general instruction format
as shown in Fig. 3.20 is

ADDI #XXX,EA

Here #XXX stands for the immediate source operand and EA is the effective address
of the destination operand. For example, the instruction

ADD.L #$OFFFF,DO

causes the value FFFFjg to be added to the long-word contents of Dq.
The add quick (ADDQ) instruction of Fig. 3.20 is a special variation of the

add-immediate instruction. It limits the size of the source operand to the range 1
through 8.

An example is the instruction

ADDQ #3,D1

It stands for add the number 3 to the contents of Dj. These immediate data are
encoded directly into the instruction word. For this reason, ADDQ encodes in fewer
bytes and executes faster than ADDI. Therefore, it is preferred when memory
requirement and execution times are to be minimized. Of course, the addition that
is performed cannot involve a number larger than 8 as the source operand.

The next type of addition instruction in Fig. 3.20 is the add extend (ADDX)
instruction. It differs from the earlier instructions in that the addition it performs
involves the two operands along with the extend (X) bit of SR. One form of the
instruction is

ADDX Dy,Dx

and the arithmetic operation it performs is

Dy -I- Dx -I- X — Dx

That is, the contents of data register Dy are added to the contents of data register
Dx and extend bit X. The sum that results is placed in Dx. Notice that both operands
must always be in data registers.

The other form of the ADDX instruction, as shown in Fig. 3.20, specifies its
operands with predecrement address register indirect addressing. It permits access
to data stored in memory.

70 68000 Microprocessor Programming 1 Chap. 3

The last form of the addition instruction in Fig. 3.20 is the add address (ADDA)
instruction. Its form is

ADDA EA.An

and its execution results in

(EA) + An ̂ An
The source operand can employ any of the addressing modes of the 68000. For this
reason the source operand can reside in an internal register or storage location in

memory. On the other hand, the destination is always an address register. Since the

destination operand is always an address register, only word or long-word operations
are permitted.

Example 3.5

If the values in Dj and Aj are 76543210, ^ and 0OO0ABCD,g, respectively, what is the
result produced by executing the instruction

ADDA.W D3,A3

Solution. Execution of this instruction causes the word value in Dj to be added to the
contents of A3. This gives

A3 = XXXX3210,g + O0OOABCD,g = OOOODDDD,^

Subtraction Instructions— SUB, SUBI, SUBQ, SUBX,
and SUBA

Having covered the addition instructions of the 68000, let us look at the instructions

provided to perform binary subtraction. As shown in Fig. 3.20, the subtraction
instruction also has five basic forms. Notice that these forms are identical to those

already described for the addition operation. For this reason we will present the
subtraction instructions in less detail.

The general subtraction (SUB) instruction of the 68(XX) can be written in general

using either the form

SUB EA,Dn

or

SUB Dn,EA

The first form permits the contents of an internal register or storage location in

memory to be subtracted from the contents of a data register. The difference that
is obtained is stored in the selected destination data register. This operation can be

expressed as

Dn - (EA) -* Dn
For instance, the instruction

SUB D0,D1

Sec. 3.7 Integer Arithmetic Instructions 71

performs a register-to-register subtraction. The difference D, - Dg is saved in D,.
The second SUB instruction in Fig. 3.20 performs the opposite subtraction

operation. Its source operand is a data register within the 68000 and the location

of the destination is specified by an effective address. Therefore, it can be a data

register, address register, or storage location in data memory.

The next two subtraction instructions in Fig. 3.20, subtract immediate (SUBI)

and subtract quick (SUBQ), permit an immediate operand in program memory to

be subtracted from the destination operand identified by EA. The destination operand

can be a data register or a storage location in data memory. These instructions operate
the same as their addition counterparts except that they calculate the difference

between their source and destination operands instead of their sum.
For instance,

SUBI.W #$1234,D0

causes the value 1234,^ to be subtracted from the contents of Dq. Assuming that Dp
initially contains OOOOFFFF15, the difference produced in Dq is

FFFF,6 - 1234,, = EDCB,,

Extend subtract (SUBX), just like ADDX, includes the extend (X) bit of SR

in the subtraction. Moreover, the same source and destination operand variations

are permitted as for the ADDX instruction. For example, the first form in Fig. 3.20 is

SUBX Dy,Dx

and it performs the subtraction

Dx - Dy - X — Dx

For example, if D, and Dj contain the values 76543210,6 ̂ "^^ 0000ABCD,g,
respectively, and the extend bit is l,, the result produced by executing the instruction

SUBX.W D1,D2

D2 = 0000ABCD,6 - XXXX3210,6 - I,, = 79BC,6

Finally, subtract address (SUBA) of Fig. 3.20 is used to modify addresses in

Aq through Ag by subtraction. For example, it can be used to subtract the contents

of data register D7 from the address in Aj with the instruction

SUBA D7,A5

Negate Instructions— NEG and NEGX

Another type of arithmetic instruction is the negate instruction. Two forms of this

instruction are shown in Fig. 3.20. The negate instructions are similar to the subtract

instructions in that the specified operand is subtracted from another operand.

72 68000 Microprocessor Programming 1 Chap. 3

However, in this case, the other operand is always assumed to be zero. Subtracting
any number from zero gives its negative.

The basic negate (NEG) instruction is used to form the negative of the specified
operand. It is given in general by

NEG EA

and an example is the instruction

NEG.W DO

If the original contents of Dq are OOFFj^, execution of the instruction produces the
result FFOl,^.

Negate with extend (NEGX) differs from NEG in that it subtracts both the
contents of the specified operand and the extend (X) flag from 0. That is, it performs
the operation

0 - (EA) - X -* EA
Both instructions can be written to process bytes, words, or long words of data.

Moreover, the addressing modes permitted for the operand are the alterable addressing
modes that were shown in Fig. 3.14.

Multiplication Instructions— MULS and MULU

The 68000 provides instructions that perform the multiplication arithmetic operation
on unsigned or signed numbers. Separate instructions are provided to process these
two types of numbers. As shown in Fig. 3.20, they are signed multiply,

MULS EA.Dn

and unsigned multiply,

MULU EA.Dn

Both MULS and MULU have two 16-bit operands that are labeled EA and Dn. The
source operand EA can be specified with any of the data addressing modes and the
destination operand always uses data register direct addressing. Both the source and
destination operands are treated as signed numbers when executing MULS and as

unsigned numbers when executing MULU. The result, which is a 32-bit number, is
placed in the destination data register.

Here is an example of the instruction needed to multiply the unsigned word
number in data register Dj by the unsigned word number in Dq.

MULU DO.Dl

At completion of execution of the instruction, the long-word product that results
is in D[.

As in most arithmetic instructions, the condition code bits of SR are updated
based on the product that resuUs. Two of the condition code bits, zero (Z) and negative
(N), are affected based on the results. On the other hand, carry (C) and overflow
(V) are always cleared.

Sec. 3.7 Integer Arithmetic Instructions 73

Division Instructions— DIVS and DIVU

Similar to the multiplication instructions of the 68000, there is & signed divide (DIVS)
instruction and an unsigned divide (DIVU) instruction. They are expressed in general
as

DIVS EA,Dn

and

DIVU EA.Dn

The destination operand, which is the dividend, must be the contents of one of the
data registers. The source operand, which is the divisor, can be accessed using any
of the data addressing modes of the 68000.

Execution of either of these instructions causes the 32-bit dividend identified

by the destination operand to be divided by the 16-bit divisor specified by the effective
address. The 16-bit quotient that results is produced in the lower word of the
destination data register and the remainder is placed in the upper word of the same
register. The sign of the remainder produced by a signed division is always the same
as that of the dividend.

The condition codes that are affected by the division instruction are zero (Z)
and negative (N). They are set or reset based on the quotient value and its sign.
Furthermore, the carry flag is always cleared. If the result turns out to be over 16
bits, the overflow condition code bit is set and the destination operand is not changed.
Thus one should check the V flag for an overflow after executing a division instruction.
An attempt to divide by zero is also automatically detected by the 68000.

Sign Extend instruction— EXT

The 68000 provides the sign extend (EXT) instruction for sign extension of byte or
word operands. As shown in Fig. 3.20, the general form of this instruction is given by

EXT Dn

Notice that its operand must be located in a data register. When EXT is executed,
the sign bit of the operand is copied into the most significant bits of the register.

For instance, when the word value in D, must be extended to a long word, the
instruction

EXT.L Dl

can be executed. It causes the value in bit 15 (the sign bit) to be copied into bits 16
through 31 of D,.

Sign extension is required before data of unequal lengths can be involved in
signed arithmetic operations. For instance, if one of the operands for an addition
instruction that is written to process word data is expressed as a signed byte, it must
first be extended to a signed word.

74 68000 Microprocessor Programming 1 Chap. 3

Example 3.6

Assume that data registers Dq, D,, and Dj contain a signed byte, a signed word, and

a signed long word in 2's-complement form, respectively. Write a sequence of instructions
that will produce the signed result of the operation that follows:

Do + D, - D, - Do

Solution. Before any addition or subtraction can be performed, we must extend each

value of data to a signed long word. To convert the byte in Dq to its equivalent long
word, we must first convert it to a word and then to a long word. This is done with
the following instructions:

EXT.W DO

EXT.L DO

Similarly, to convert the word in D, to a long word, we execute the instruction

EXT.L Dl

Since the contents of D, are already a signed long word, no sign extension is necessary.
To do the required arithmetic operations, we just use the appropriate arithmetic

instructions. For instance, to add the contents of Dq and Dp we use ADD, and to
subtract the contents of D, from this sum, we use SUB. This leads us to the following
sequence of instructions.

ADD.L Dl.DO

SUB.L D2,D0

The complete program is listed in Fig. 3.21.

EXT.W DO
EXT.L DO
EXT.L Dl
ADD.L Dl.DO Figure 3-21 Addition and subtraction
SUB.L D2, DO of signed numbers.

3.8 DECIMAL ARITHMETIC INSTRUCTIONS

The arithmetic instructions we considered in the preceding section process data that
is expressed as binary numbers. However, data are frequently provided that are coded

as BCD numbers instead of as binary numbers. Traditionally, BCD-to-binary and

binary-to-BCD conversion routines are used to process BCD data. However, the 68000
microprocessor has the ability to perform the add, subtract, and negate arithmetic
operations directly on packed BCD numbers. Three BCD arithmetic instructions,

ABCD, SBCD, and NBCD, are provided for this purpose. They provide an efficient

and easy-to-use method for implementing BCD arithmetic. As per the result of these
instructions, the condition code bits, Z, C, and X, are affected, whereas N and V
are undefined.

Sec. 3.8 Decimal Arithmetic Instructions 75

Add Decimal with Extend instruction— ABCD

Let us begin with the add binary-coded decimal (ABCD) instruction. In Fig. 3.22
we see its permitted operand variations, operand size, and the operation it performs.
Notice that only two addressing modes can be used to specify its operands. The first
form,

ABCD Dy,Dx

uses data register direct addressing for both source and destination operands.
Therefore, both operands must reside in internal data registers of the 68000.

The other form,

ABCD -(Ay), -(Ax)

employs predecrement address register indirect addressing to specify both operands.
Use of this addressing mode permits access of data stored in memory.

Execution of either of the ABCD instructions adds the contents of the source
and destination operands together with the extend (X) bit of SR. The sum that results
is saved in the destination operand location.

Mnemonic Meaning
Type

Operand Size Operation

ABCD Add BCD numbers ABCD Dy, Dx 8
Dy + Dx + X -» Dx ABCD ~ (Ay),

-(Ax)

8 -(Ay) + -(Ax) + X^(Ax)

SBCD Subtract BCD SBCD Dy, Dx 8 Dx - Dy - X ̂ Dx
numben SBCD -(Ay),

-(Ax)

8 -(Ax)- -(Ay)- X- (Ax)

NBCD Negate BCD numbers NBCD EA 8 0-(EA)-X-EA

Figure 3-22 Binary-coded decimal arithmetic instructions.

These instructions perform decimal addition operations; therefore, we must start
with decimal operands instead of binary operands. These decimal operands are
expressed in packed BCD. The sum that is produced is also a decimal number coded
in packed BCD. However, the operand size is always byte wide; therefore, two BCD
digits can be processed at a time.

An example is the instruction

ABCD D0,D1

If Do initially contains the value 12,0 = OOOlOOlOj, D, contains 37, „ = OOllOlllj,
and X is clear, execution of the instruction produces the sum

DO + Dl + X = 12, n + 37, n + 0,n 10

'10

= 49,

At completion of the instruction, Dq still contains 12, q but the contents of D, are
changed to 49, q. X remains cleared because no carry results.

76 68000 Microprocessor Programming 1 Chap. 3

Condition code bits Z, X, and C are affected based on the result produced by
the addition. Bits C and X are always set to the same logic level. The other two
condition code bits, V and N, are undefined after execution of the instruction and
do not provide any usable information.

Subtract Decimal with Extend Instruction— SBCD

The subtract binary-coded decimal (SBCD) instruction works similar to the ABCD
instruction just discussed. Of course, in this case, the subtraction arithmetic operation
is performed and not the addition operation.

As shown in Fig. 3.22, the two forms of the instruction are

SBCD Dy,Dx

and

SBCD -(Ay), -(Ax)

Notice that the permitted addressing modes are identical to those employed by the
ABCD instruction.

An example is the instruction

SBCD -(A0),-(A1)

When this instruction is executed, the byte-wide (two BCD digits) contents of the
source operand and X bit of SR are subtracted from the destination operand. The
difference that is produced is saved at the destination location.

In our example, we are using address register indirect with predecrement
addressing. Therefore, the contents of address registers Aq and A, are first
decremented by 1. For instance, if their original contents were 00001 10F,g and

0000120F,5, respectively, decrementing by 1 gives Aq = 00001 lOE,^ and
A, = 0000120E,g. These are the addresses that are used to access the operands in
memory. Then the BCD data at memory location 00110E,g and X are subtracted
from the BCD value at 00120E,5. We will assume that the value stored at 00120E,g
is 37, Q, the value at 001 lOE,^ is 12, q, and X is 1. Then the difference calculated by
the instruction is

(00120E,6) - (00110E,6) - X = 37,0 - 12,o - 1,0

"^■■16

MO

This value is saved at destination address 00120E,g and the condition code bits Z,
X, and C are cleared.

Negate Decimal Instruction— NBCD

The last of the decimal arithmetic instructions in Fig. 3.22 is negate binary-coded
decimal (NBCD). It is expressed in general as

NBCD EA

Sec. 3.8 Decimal Arithmetic Instructions 77

NBCD is effectively an SBCD instruction in which the subtrahend always equals zero.

For this reason, it implements the operation

0 - (EA) - EA

The operand identified as EA can be specified using the alterable addressing modes.

One exception is address register direct addressing, which cannot be used.
Here is an example with the operand accessed through address register indirect

addressing mode with postincrement:

NBCD (A5) +

The condition code bits affected by the NBCD instruction are the same as those

affected by the SBCD instruction.

Example 3.7

Write a program segment that will add two four-digit packed BCD numbers that are
held in registers Dq and D, and place their sum in Dq. The organization of the original
BCD data in the data registers is shown in Fig. 3.23(a).

Solution. Remember that only the contents of the 8 least significant bits of a data register
can be processed with the BCD instructions. Moreover, up to this point in the chapter
we have not shown any direct way of exchanging the most significant byte of a word
in a data register with its least significant byte. One solution to this problem is to move

the contents of Dg and D, to memory. This reorganizes the BCD digits at separate byte
addresses, as shown in Fig. 3.23(b). To move Dq and D, to memory, say Dp to address

MEMq and D, to address MEM,, the following instructions can be used:

MOVE.W DO.MEMO

MOVE.W D1,MEM1

Now we can use the predecrement address register indirect form of the BCD
addition instruction to perform the decimal arithmetic operations. Therefore, address
registers must be loaded with pointers to the data in memory. Let us use A^ and A,
for this purpose. Since the predecrement mode of addressing must be used, Aq should

be loaded with MEMo + 2 and A, with MEM, +2. This is done with the instructions

LEA MEMO + 2, AO

LEA MEMl + 2, AI

Moreover, in order to use the BCD instructions, we must start with X = 0. To do this,
we execute the instruction

MOVE «),CCR

Now that the address pointers and the extend bit of SR are initialized, we are ready
to perform the addition operation. Executing the instructions

ABCD -(A1),-(A0)

and

ABCD -(A1),-(A0)

gives the sum in MEMq.

78 68000 Microprocessor Programming 1 Chap. 3

Digit 3 Digit 2 Digit 1 Digit 0

Digit 3 Digit 2 Digit 1 Digit 0

Memory

Digit 3
(MSD)

Digit 2

Digit 1 Digit 0 (LSD)

Digit 3 (MSD) Digit 2

Digit 1 Digit 0
(LSD)

MOVE.W
DO, MEMO

MOVE.W Dl.MEMl
LEA MEM0 + 2,A0
LEA MEMl +2,A1

MOVE
#0, CCR ABCD -(Al), -(AO)

ABCD -(Al), -(AG)

MOVE.W MEMO, DO

Figure 3-23 (a) Four-digit BCD numbers in data registers Dg and D,; (b) storage
of the BCD numbers in memory; (c) program for adding two four-digit BCD numbers.

Sec. 3,9 Logic Instructions

79

To put the sum into Dq, the instruction is

MOVE.W MEMO.DO

The complete program is repeated in Fig. 3.23(c).

3.9 LOGIC INSTRUCTIONS

To implement logic functions, such as AND, OR, exclusive-OR, and NOT, the
instruction set of the 68000 provides a group of logic instructions. The instructions

in this group are shown in Fig. 3.24 together with their different forms, operand sizes,

and operations. The execution of a logic instruction sets the condition code bits N

and Z as per the result, clears V and C, and does not affect the X bit.

AND Instructions— AND and ANDI

As shown in Fig. 3.24, there are four forms of the AND instruction. The general

form, which uses the mnemonic AND, permits the contents of a data register and

an operand specified by the effective address EA to be ANDed together. Let us look
at the first form of the instruction

AND EA,Dn

The source operand can use the data addressing modes to generate EA. Therefore,

the source operand can use any addressing mode except address register direct

addressing. On the other hand, the destination operand can be specified only with

data register direct addressing and will always be one of the eight data registers inside
the 68000.

Mnemonic Meaning Type Operand Size
Operation

AND Logical AND AND EA,Dn

AND Dn,EA

ANDI #XXX,EA

ANDI #XXX,CCR

ANDI #XXX,SR

8, 16,32

8, 16,32

8, 16,32
8

16

(EA) • Dn ̂ Dn
Dn • (EA)-EA

#XXX • (EA) -* EA
#XXX ■ CCR ̂ CCR

#XXX • SR - SR

OR
Logical OR OR EA.Dn

OR Dn.EA

ORI #XXX,EA

ORI #XXX,CCR

ORI #XXX,SR

8, 16,32

8, 16,32

8, 16,32
8
16

(EA) + Dn -* Dn Dn + (EA)^EA

#XXX + (EA) -» EA
#XXX + CCR -» CCR
#XXX + SR ̂ SR

EOR Logical

exclusive-OR

EOR Dn,EA

EORI #XXX,EA

EORI #XXX,CCR
EORI #XXX,SR

8, 16,32

8, 16,32
8

16

Dn®(EA)-'EA
#XXX * (EA) ̂ EA

#XXX ® CCR -* CCR

#XXX*SR-SR

NOT Logical NOT NOT EA
8, 16,32

(EA)^EA

Figure 3-24 Logic instructions.

80 68000 Microprocessor Programming 1 Chap. 3

An example of the instruction, which uses register direct addressing for both
the source and destination operands, is

AND.B D0,D1

Execution of this instruction causes a bit for bit AND operation to be performed

on the byte contents of Dq and Dj. The result is saved in destination register Dj.

For instance, if D, contains OOOOABCD,^ and Dq contains 0{X)OOFOF,g, the
AND operation between the least significant bytes gives

CD,6-0F,6 = 110011012- 00001 III2
= OOOOIIOI2 = 0Dl6

Therefore,
the new contents of D, are OOOOABOD|g.

Notice that the four most
significant

bits of the least significant
byte of D, have been masked off. The affected

condition
code bits in SR are Z, N, C, and V. The C and V bits are always cleared,

but Z and N are set or reset based on the result produced
in the destination

register.
The second form,

AND Dn,EA

permits the contents of a source operand held in a data register to be ANDed with

a destination operand identified by EA. This time the location of the destination

operand can be specified using any of the alterable memory addressing modes. These

addressing modes are identified in Fig. 3.14.

The next three types of the AND group are AND immediate (ANDI) instructions.

These instructions AND an immediate source operand identified as #XXX with the

contents of a specified destination operand. The immediate operand is stored as part

of the instruction in program memory.
The first form,

ANDI #XXX,EA

permits ANDing of an immediate source operand with the contents of a destination

operand whose location is specified by effective address EA. This destination operand
can be in a data register, address register, or storage location in data memory.

An example is the instruction

ANDI.B #7,D1

Execution of this instruction causes the binary form of decimal number 7 to be ANDed

with the contents of D^. Let us assume that D, originally contained FFFFFFFF]^;
then, executing the instruction gives

D, = FFFFFFFF16 • 7,6
= FFFFFFF7,6

The next two forms,

ANDI #XXX,SR

Sec. 3.9 Logic Instructions 81

and

ANDI #XXX,CCR

are used to AND the contents of the complete status register and the condition code

byte part of SR with immediate data, respectively. The first of these two operations

is privileged and can only be executed when the 68000 is in the supervisor state.

OR Instructions-OR and ORI

The OR instruction has the same five forms that we just introduced for the AND

instruction. Figure 3.24 shows that they include two forms of the general OR
instruction and three forms of the OR immediate (ORI) instruction.

The general OR instruction permits the OR logic operation to be performed

between the contents of a data register specified using one operand and the contents

of another data register, an address register, or a location in memory specified by
the data addressing mode of the other operand. For example, the instruction

OR.B (AO),DO

ORs the contents of the byte location whose effective address is the contents of Ag

with the byte contents of Dp. The result is saved in Dq. That is, it performs the logic
operation

(EA) + DO - DO
Assuming that the contents of the storage location pointed to by the address in Aq

is AAAAAAAA|g and the data held in Dq is 55555555,6, ̂ ^e resuhs obtained by
executing the instruction are

DO = AAAAAAAA,6 + 55555555,6
= FFFFFFFF,6

The OR immediate forms of the instruction allow an immediate operand to be

ORed with the contents of a storage location in data memory, a data register, or

the status register. An example is the instruction

ORI #FFOO,SR

Execution of this instruction causes all of the bits in the upper byte of SR to be set

to 1 without changing the bits in the lower byte. Since the status register's upper byte
is changed, the operation can only be performed when in the supervisor state.

Exclusive-OR Instructions— EOR and EORI

Looking at Fig. 3.24, we see that the same basic instruction forms are also provided

for the exclusive-OR (EOR) instruction. The difference here is that they perform the

exclusive-OR logic function on the contents of the source and destination operands.
Let us now look at some examples. A first example of the instruction is

EOR.L AO,DO

82 68000 Microprocessor Programming 1 Chap. 3

When it is executed, the operation performed is

AO 0 DO -* DO
Another example is

EOR #$OF,CCR

Execution of this instruction performs the operation

$0F 0 CCR -* CCR
NOT Instruction— NOT

The NOT instruction differs from the AND, OR, and EOR instructions we just

described in that only one operand is specified. Its general form, as shown in Fig.
3.24, is

NOT EA

When this instruction is executed, the contents of the specified operand are replaced

by its I's complement. To address the operand, only the alterable addressing modes
can be used. However, one exception exists: it is that address register direct addressing

is not permitted.

Example 3.8

Write a sequence of logic instructions that will clear the bits in register D, that
correspond to the bits that are set in Dq.

Solution. To clear a bit that is set, it should be ANDed with logic 0. Moreover, to

obtain a logic 0 from logic 1, it should be inverted. Thus if the contents of Dq are
inverted and then ANDed with D,, the required result will be generated in D,. The
instructions that do this are

NOT.L DO

AND.L D0,D1

3.10 SHIFT AND ROTATE INSTRUCTIONS

The shift and rotate instructions of the 68000 are used to change bit positions of the

data bits in an operand. These types of operations are useful to multiply or divide

a given number by a power of 2, check the status of individual bits in an operand,

or simply shift the position of data bits in a register or memory location.

Shift Instructions— LSL, LSR, ASL, and ASR

There are two kinds of shift operations: the logical shift and the arithmetic shift.

Moreover, each of these two shifts can be performed in the left direction or right

direction. As shown in Fig. 3.25, these variations lead to four basic shift instructions.

The two logical shift instructions are logical shift left (LSL) and logical shift

right (LSR). The operation of these instructions is illustrated with diagrams in Fig.

Shift and Rotate Instructions 83

Meaning Type Operand Size Operation

Logical shift left

Logical shift right

Arithmetic shift left

Arithmetic shift right

LSL #XXX,Dy
LSL Dx,Dy

LSL EA

LSR #XXX,Dy
LSR Dx.Dy

LSR EA

ASL #XXX,Dy
ASL Dx.Dy

ASL EA

ASR #XXX,Dy
ASR Dx,Dy

ASR EA

16,32

16,32
16,32

16,32
16,32
16,32

16,32

16,32

16,32

16,32

16,32

16,32

X/C * '

0— * ►

X/C
*

H, ^

I — -Im<;h

Figure 3-25 Shift instructions.

3.25. Looking at the illustration for LSL, we see that its execution causes the bits
of the operand to be shifted to the left by a specific number of bit positions. At the
same time, the vacated bit positions on the least significant bit end of the operand
are filled with zeros and bits are shifted out from the most significant bit end. The
last bit shifted out on the left is copied into both the extend (X) and carry (C) bits
of SR.

Notice in Fig. 3.25 that there are three forms of the LSL instruction. The first
two forms differ in the way the shift count is specified. In the first form,

LSL #XXX,Dy

the count is specified by the immediate operand #XXX. The value of this operand

can be from 0 through 7. A value of zero stands for "shift left eight bit positions."
In this way, we see that this form of the instruction limits the shift left to the range
of from 1 to 8 bits. For instance,

LSL.W #5,D4

initiates a shift left by five bit positions for the word contents of data register D4.
The second form

LSL Dx.Dy

specifies the count as residing in data register Dx. Only the six least significant bits
of this register are used for the shift count. Therefore, the shift count is extended
to a range of from 1 to 63 bit positions.

An example is the instruction

LSL DO.Dl

Assuming that Dq contains 4,^ and D, contains OOOOFFFF,g, execution of the
instruction results in

D, = 000FFFF0,6

84 68000 Microprocessor Programming 1 Chap. 3

and

C = 0

Both of the forms of the LSL instruction that we have considered up to this
point only have the abihty to shift the bits of an operand that is held in one of the
internal data registers of the 68000. The third form,

LSL EA

permits a shift left operation to be performed on the contents of a storage location
in memory. Actually, any of the data-alterable addressing modes that relate to external
memory can be used to specify EA. One restriction is that the size specified for the
operand must always be a word. Moreover, since no shift count is specified, execution
of the instruction causes a shift left of just one bit position.

Looking at Fig. 3.25, we see that the logical shift right (LSR) instruction can
be written using the same basic forms as the LSL instruction. Moreover, the operations
that they perform are the exact opposite of that just described for their corresponding
LSL instruction. Now data are shifted to the right instead of to the left; zeros are
loaded into vacated bits from the MSB end instead of the LSB end; and the last bit
shifted out from the LSB is copied into both X and C.

There are also two basic arithmetic shift instructions: arithmetic shift left (ASL)

and arithmetic shift right (ASR). Their forms and operations are also shown in Fig.
3.25. Here we see that the operation performed by ASL is essentially the same as
that performed by the LSL instruction. However, there is a difference in the way
in which the overflow flag is handled by the two instructions. It is always 0 for the
LSL instruction, but for ASL it is set to 1 if the MSB changes logic level.

On the other hand, ASR is not the same as LSR. Notice that it does not only
shift the bits of its operand but also preserves its sign. The illustration of operation
of ASR in Fig. 3.25 shows that vacated more significant bit positions are filled with
the original value for the MSB— that is, the sign bit.

Rotate Instructions— ROL, ROR, ROXL, and ROXR

The rotate instructions of the 68000 are similar to its shift instructions in that they
can be used to shift the bits of data in an operand to the left or right. However, the
shift operation they perform differs in that the bits of data that are shifted out at
one end are shifted back in at the other end. Hence, the bits of data appear to have
been rotated.

Based on the path in which bits are rotated, two kinds of rotate operations are
defined. As shown in Fig. 3.26, the basic rotate operation performed by the rotate
left (ROL) instruction or rotate right (ROR) instruction use a path in which bits are
shifted out from one end of the operand into the carry (C) bit of SR, and at the same
time they are reloaded at the other end. Notice that the path for the other two
instructions, ROXL and ROXR, differs in that both C and X are loaded with the
bits as they are shifted out. Moreover, bits that are reloaded at the other end pass
through X.

Shift and Rotate Instructions

85

Vlnemonic Meaning Type Operand Size Operation

Rotate left

Rotate right

Rotate left

through extend

Rotate right
through extend

ROL #XXX,Dy
ROL Dx.Dy

ROL EA

ROR #XXX,Dy
ROR Dx,Dy

ROR EA

ROXL #XXX,Dy
ROXL Dx,Dy

ROXL EA

ROXR #XXX,Dy
ROXR Dx.Dy

ROXR EA

8 lf> ̂ 7

,1

8

8

8

8

8

8

8

8

8

8

16,32

16,32

16,32

16,32
16,32

16,32
16,32
16,32

16,32
16,32

C

,1

*

c

ROR

l\

\L\
 ►-

c

1 1

M X J *

i\

X

\L\

— >~
c *

Figure 3-26 Rotate instructions.

Let US begin with the ROL instruction. Loolcing at the diagram of its operation
in Fig. 3.26, we see that it causes the bits of the specified operand to be rotated to
the left. Bits shifted out from the most significant bit position are both loaded into
C and the least significant bit position. The number of bit positions through which
the data are to be rotated are specified as part of the instruction.

Notice that the allowed operand variations for ROL are identical to those shown
in Fig. 3.25 for the shift instructions. The first form,

ROL #XXX,Dy

permits an immediate operand in the range 0 to 7, to specify the count. This limits
the amount of rotation to 1 to 8 bit positions. A value of 0 for XXX is actually a

special case. It causes an 8-bit rotate to the left. The next form,

ROL Dx,Dy

uses the contents of the six least significant bits of data register Dx to specify the
count. This extends the rotate range to from 1 to 63 bit positions. When either of
these instructions are used, the operand that is to be processed by the rotate operation
must reside in one of the data registers.

An example is the instruction

ROL.L DO.Dl

If Dq contains 00000004, g, execution of the instruction causes the long-word contents
of D| to be rotated four bit positions to the left. For instance, if the original contents
of D, were 0000FFFF,5, after the rotate operation is complete, the new contents of
D, are OOOFFFFO,^ and C equals 0.

The last form of the rotate left instruction

ROL EA

86 68000 Microprocessor Programming 1 Chap. 3

permits the operand to reside in a storage location in memory. This instruction may

only be used to perform a 1-bit rotate left on a word operand.
In Fig. 3.26 we see that the rotate right (ROR) instruction is capable of

performing the same operations as ROL. However, in this case, the data are rotated
in the opposite direction.

As we indicated earlier, the rotate left with extend (ROXL) and rotate right
with extend (ROXR) instructions essentially perform the same rotate operations as
ROL and ROR, respectively. However, this time the last bit rotated out is loaded
into both X and C, not just C, and bits that are reloaded at the other end pass through
X. Therefore, execution of the instruction

ROXL.L D0,D1

when Dq = 4,g, D, = OOOFFFFOi^, C = 1, and X = 1, results in
D, = 00FFFF08,6 with C = 0 and X = 0.

Example 3.9

Implement the operation described in Example 3.7 using the rotate and decimal arithmetic

instructions to add two four-digit packed BCD numbers that are held in Dq and D,,
respectively. Place the result in Dq.

Solution. We first start with X = 0 and add the two least significant digits. The
instructions required to do this are

MOVE ;W),CCR

ABCD Dl.DO

Let us save this result in D, by executing the instruction

MOVE.B D0,D2

To add the most significant digits, we can rotate the words in D, and Dq 8 bits to the
right. The instructions for this are

ROR.W #0,00

ROR.W m,D\

This does not change the X bit, which must be used in the addition. Now the least

significant bytes in Dq and Dj can be added as BCD numbers by the instruction

ABCD D1,D0

The result of Dq can now be rotated to the left and the least significant result saved
in Dj can be placed back in Dq. The instructions to do this are

ROL.W m,DO

MOVE.B D2,D0

This completes the BCD addition. The entire program is shown in Fig. 3.27.

Chap. 3 Assignment

MOVT
W.CCR

ABCD Dl.DO
MOVE.B do.d:
ROR.W

*0.D0

ROR.W
#0.D1

ABCD Dl.DO

ROL.W

«0.D0

MOVE.B D2.D0 Figure 3-27 BCD addition program.

ASSIGNMENT

Section 3.2

1. Can the 68000 directly store a word of data starting at an odd address?

2. Compare a data register and an address register from a software point of view.

3. List the basic data types on which the 68000 can operate directly.

Section 3.3

4. Identify the three parts of an assembly language instruction in each of the following
statements:

AGAIN ADD DO.Dl ADD THE REGISTERS

MOVE D1,D5 SAVE THE RESULT

5. Identify the source and destination operands for each of the statements in problem 4.

Section 3.4

6. Make a list of the addressing modes available on the 68000.

7. Identify the addressing modes for both the source and destination operands in the
instructions that follow.

(a) MOVE.W D3,D2
(b) MOVE.B D3,A2

D3.SABCD
.XYZ,D2
.XYZ(D0.L),D2
D3,(A2)

A1,(A2) +
-(A2),D3

10(A2),D3

10(A2,A3.L),SA123
<ISABCD.$1122

8. Compute the memory address for the source operand and/or destination operand in each
of the instructions in problem 5.

(c) MOVE.L
(d) MOVE.L
(e) MOVE.W
(f) MOVE.B

(g) MOVE.L
(h) MOVE.L
(i) .MOVE.W

d)
MOVE.B

(k) MOVE.W

88 68000 Microprocessor Programming 1 Chap. 3

9. Specify the conditions that make the following instructions equivalent.

MOVE.L DO.SABCD
MOVE.L D0,$10(A1)

MOVE.L D0,$100(A2,D1.L)
MOVE.L D0,(A3)

Section 3.6

10. Given that Dq = $12345678, D, = SABCDEFOl, and Ag = $87654321, specify the
memory contents of address $A000 to address $A002 after executing the instruction

MOVEM.B D0/D1/A0,$A000

11. Write an instruction that places the long-word contents of memory locations $8000, $B004,
and $B008 into registers Dy D^, and D^, respectively.

12. What will be the contents of Dq and D, after executing the following sequence of
instructions?

MOVE.L $13579BDF,D0
MOVE.L $02468ACE,D1
SWAP DO

EXG.W D0,D1

Section 3.7

13. Two word-wide unsigned integers are stored at the memory addresses $A000 and SBOOO,
respectively. Write an instruction sequence that computes and stores their sum, difference,
product, and quotient. Store these results at consecutive memory locations starting at
address $C0OO in memory. To obtain the difference, subtract the integer at $B0OO from
the integer at $A000. For the division, divide the integer at $A000 by the integer at $B000.

Use register indirect relative addressing mode through register A, to store the various
results.

Section 3.8

14. Two long-word BCD integers are stored at the symbolic addresses NUMl and NUM2,
respectively. Write an instruction sequence to generate their difference and store it at
NUM3. The difference is to be formed by subtracting the value at NUMl from that at
NUM2. Use the predecrement indirect mode of addressing.

Section 3.9

15. Write an instruction sequence that generates a byte-size integer in the memory location
identified by label RESULT. The value of the byte integer is to be calculated using logic
operations as follows:

(RESULT) = DO • NUMl + NUM2 • DO + Dl

Assume that all parameters are byte size.

Chap. 3 Assignment 89

Section 3.10

16. Implement the following operation using shift and arithmetic instructions.

7 • Dl - 5 • D2 - -^^2-* DO
Assume that the parameters are all long word in size.

17. Write a program that stores the long-word contents of Dq into memory starting at address
location SBOOl.

68000 Microprocessor
Programming 2

4.1 INTRODUCTION

In Chapter 3, we introduced the addressing modes and many of the instructions in
the instruction set of the 68000 microprocessor. Using these instructions, we also
covered some preliminary programming techniques. Here we will cover the rest of
the instructions and introduce some more complex programming methods.
Specifically, the following topics are presented in this chapter:

1. Compare and test instructions

2. Jump and branch instructions

3. Programs employing loops

4. Subroutines and subroutine handling instructions

5. Bit manipulation instructions

4.2 COMPARE AND TEST INSTRUCTIONS

The instruction set of the 68000 includes instructions to compare two operands or
an operand with zero. The comparison is done by subtracting the source operand
from the destination operand. The result of the subtraction does not modify either
of the operands; instead, it is used to set or reset condition code bits (flags) in the
status register. The flags affected are: negative (N), zero (Z), overflow (V), and carry
(C). These flags can then be examined by other instructions to make the decision
as to whether to execute one part of the program or another.

Sec. 4.2 Compare and Test Instructions 91

The instructions that have the ability to compare operands are shown in Fig.

4. 1 . Basically, two types of instructions are available: the compare (CMP) instruction

and test (TST) instruction. Notice that the CMP instruction always compares two

operands. On the other hand, the TST instruction compares the specified operand
with zero.

Mnemonic Meaning Type
Operand Size Status Bits Affected

CMP Compare CMP EA.Dn 8, 16,32 N,Z, V,C

CMPA EA.An 16,32 N, Z, V,C

CMPI #XXX,EA 8, 16,32 N, Z, V, C

CMPM (Ay)*, (Ay)*
8, 16,32 N, Z, V,C

TST Test TST EA 8, 16,32 N,Z,V,C

Figure 4-1 Compare and test instructions.

Let us begin by looking in detail at the compare instruction of the 68000. Looking

at Fig. 4.1, we see that there are four forms of this instruction. These forms are:

compare (CMP), compare address (CMPA), compare immediate (CMPI), and

compare memory (CMPM). They differ in the manner their operands are obtained
for comparison.

The CMP instruction is used to compare a source operand with the contents

of a data register. To specify the location of the source operand, any of the 68000's
addressing modes can be used. On the other hand, the destination operand must always

be one of the internal data registers. As indicated in Fig. 4.1, the specified operand

size may be a byte, a word, or a long word. However, when an address register contains

the source operand, byte-size comparisons cannot be made.

The result of the comparison is reflected by changes in four of the 68000's status
flags. Notice in Fig. 4.1 that it affects the sign, zero, overflow, and carry flags. The

logic state of these flags can be referenced by instructions in order to make a decision
whether or not to alter the sequence in which the program executes.

The process of comparison performed by the CMP instruction is basically a
subtraction operation. The source operand is subtracted from the destination

operand. However, the result of this subtraction is not saved in the destination. In-
stead, based on the result the appropriate flags are set or reset.

The subtraction is done using 2's complement arithmetic. For example, let us
assume that the destination operand equals lOOllOOlj = - 103io and that the source
operand equals 0001 101 Ij = +27(0. Subtracting the source from the destination,
we get

IOOIIOOI2 = -103,0

-OOOIIOII2 = -(+ 27, 0)

Replacing the destination operand with its 2's complement and adding yields

68000 Microprocessor Programming 2 Chap. 4

IOOIIOOI2 = -103,0

IIIOOIOI2 = -27,0

OIIIIIIO2 = +126,0

In the process of obtaining this result, we set the status flags as follows:

1. Bit 7 of the difference is zero and therefore sign flag N is at logic 0.

2. The difference that is produced is nonzero, which makes zero flag Z logic 0.

3. Even though a carry out is generated from bit 7, there is no carry from bit 6
to bit 7. This represents an overflow condition and therefore the V flag is logic 1.

4. There is a carry out from bit 7. Thus, carry flag C is logic 1.

Notice that the result produced by subtracting the two 8-bit numbers is not correct.
This condition is indicated by the fact that the overflow flag is set.

An example of the instruction is

CMP.W D1,D0

When this instruction is executed, the word contents of D, are subtracted from that
of Dq and the flags are affected according to the result produced by the subtraction.
For instance, if the value in D, is the same as that in Do, the Z bit in SR is set and
N, V, and C are all reset. Even though a subtraction is performed to determine this

status, the values in D, and Dq are not changed.
For instance, if the word contents of D, and Do are 1000,^ and 4000, g,

respectively, execution of the instruction CMP.W D1,D0 subtracts 1000,^ from 4000,6
and sets or resets the status flags based on the difference that results. Since this result
is positive and nonzero, both N and Z are reset. Moreover, no carry is generated
by the subtraction; therefore, C is also reset. Finally, in the process of performing
the subtraction, an overflow condition does not occur and V is also reset. In this
way, we find that at completion of execution of the instruction the statuses are
N = 0, Z = 0, V = 0, and C = 0.

Compare address (CMPA) is the same as CMP except that the destination
operand must reside in an address register instead of a data register. For this reason
only word and long-word operands can be specified. A word source operand is sign
extended to a long word before making the comparison. Here is an instruction that
does a long-word comparison of the value of a long word in memory to the contents
of Ao.

CMPA.L (A1),A0

Notice that the address in A, is used to point to the long word in memory.
The next instruction, compare immediate (CMPI), is used to compare a byte,

word, or long-word immediate operand to a destination operand that resides in a
data register, address register, or storage location in memory. The location of the

Sec. 4.2 Compare and Test Instructions 93

destination operand can be specified using any of the data-alterable addressing modes
of the 68000. An example is the instruction

CMPI.B #$FF,DO

The last type of compare instruction in Fig. 4. 1 is compare memory (CMPM).

Here both operands are located in memory and must be specified using the automatic

postincrement indirect address register addressing modes. Since this instruction updates

the address pointers each time it is executed, we are always ready to compare the

next two pieces of data in memory. For this reason, it is very useful for performing
string comparisons.

Example 4.1

Determine how the condition codes will change as the following instructions are executed.

CLR.L DO

MOVE.B *^5A,D0

CMP.B DO.DO

CMPI.B #$60,D0

Solution. What happens to the condition codes as these instructions are executed is

summarized in Fig. 4.2. Here we see that the first instruction clears data register Dq.

This is written as a long-word instruction; therefore, all 32 bits of Dq are cleared. That
is, it is loaded with 00000000|g. Due to the execution of the first instruction, the Z
condition code bit is set while N, V, and C are cleared.

Instruction Function
Condition Codes

X N z V C

CLR.L DO

MOVE.B e$5A,D0

CMP.B DO.DO

CMPI.B a$60.D0

Clear Dq

Load 5Aij into Dq

Compare Dq with Dq

Compare 60,^ with Do

X

X

X

X

0

0

0

I

1

0

1

0

0

0

0

0

0

0

0

1 Figure 4-2 Example program employing
compare instructions.

The next instruction loads the lower byte of Dq with the number 5A,g. Since this
number is positive and greater than zero, the N and Z bits of SR are cleared. Moreover,
it always clears the V and C bits.

The third instruction compares the contents of Dq with itself. Thus the Z bit is
set and N, V, and C are cleared.

The last instruction compares 60, g with the contents of Dq. Therefore, it subtracts
60, g from 5A,g. This subtraction yields a negative result; therefore, the N bit is set.
Furthermore, to subtract a larger number from a smaller one, a borrow is required. Thus
the C bit is also set. The result of subtracting the two numbers can be correctly represented
as a byte. That is, no overflow has occurred. Therefore, V is reset. Moreover, the result
is not zero; therefore, Z is also reset.

94 68000 Microprocessor Programming 2 Chap. 4

Test Instruction— TST

The last instruction in Fig. 4.1 is the test (TST) instruction. This instruction performs
an operation that is similar to the compare instruction except that its destination
operand is always assumed to be zero. The specified source operand is subtracted
from zero and based on the result, the condition code bits in SR are set or reset.

Any of the data-alterable addressing modes can be used to specify the source operand
and it can be a byte, word, or long word.

The same four condition code bits are affected by the TST instruction. But in
this case only N and Z are set or reset based on the result of the comparison. The
other two bits, V and C, are always cleared.

An example is the instruction

TST.B DO

Let us assume that Dq contains 10, g. Executing the instruction causes 10, ̂ to be
subtracted from 0 and then the flags are set or reset based on the difference that
results. For this value of data, the difference that is produced is negative and nonzero;
therefore, N is set to 1 and Z is cleared to 0.

Set According to Condition instruction— Sec

Earlier we pointed out that the condition code bits set or reset by the compare and
test instructions are examined through software to decide whether or not branching
should take place in the program. One way of using these bits is to test them directly
with the branch instructions. Another approach is to test them for a specific condition
and then save a flag value representing whether the tested condition is true or false.
This flag value can then be used for program branching decisions. An instruction
that performs this operation is set according to condition (Sec).

The form of the Sec instruction is shown in Fig. 4.3(a). The "cc" part of the
mnemonic stands for a general condition code relationship and must be replaced with
a specific relationship when writing the instruction. Figure 4.3(b) is a list of the
mnemonics and condition code relationships that can be used to replace cc. For
instance, replacing cc by LE gives the instruction mnemonic SLE. This stands for
set if less than or equal to and tests status to determine if the logical value of

Z + N • V + N • V

is equal to 0 or 1.

Looking at Fig. 4.3(a), we see that a byte-wide destination operand is also
specified in the instruction. Its location can be identified using any of the data-alterable
addressing modes. For example, an instruction could be written as

SGT DO

When this instruction is executed, it causes the condition code bits to be checked
to determine if the relationship

N-V-Z-i-N-V-Z=l

Jump and Branch Instructions

Mnemonic
Meaning

Format
Operand Size Operation

Sec Set according to
condition code

Sec EA 8 1 1 1 11 1 1 1 ->■ EA if cc is true

00000000 ->• EA if cc is false

Mnemonic
Meaning

Condition Code Relatioi

ship

sec Set if carry clear
C = 0 scs

Set if carr>- set

C= 1 SEQ

Set if equal
Z= 1

SNE Set if not equal
Z = 0

SMI Set if minus
N= 1

SPL
Set if plus N = 0

SVC Set if overflow clear (signed)
V = 0

SVS Set if overflow set (signed)
V= 1

SHI
Set if higher (unsigned)

C-Z= 1

SLS Set if lower or same (unsigned)
C + Z= 1

SGT Set if greater than (signed) NVZ + NVZ= 1
SGE Set if greater or equal (signed)

NV + NV= 1 SLT Set if less than
NV + NV = 1

SLE Set if less or equal (signed) Z + NV + NV = 1

Figure 4-3 (a) Set according to condition code instruction; (b) conditional tests of
the Sec instruction.

is satisfied. If this relationship is true, the bits of the byte part of destination register

Dq are all set. On the other hand, if the relationship is false, they are all reset. For
example, if N = V = 0, and Z = 1, the condition code relationship evaluates as

N-V-Z+N-V-Z=O-0-0+ l-l-0=0

Therefore, the relationship is false and the byte part of Dq becomes 00, g.

4.3 JUMP AND BRANCH INSTRUCTIONS

For all the programs we have studied up to this point, the sequence in which the
instructions were written was also the sequence in which they were executed. In other
words, after execution of an instruction the program counter always points to the
next sequential instruction.

For most applications, one must be able to aUer the sequence in which
instructions of the program execute. The changes in sequence may have to be
unconditionally done or may be subject to satisfying a conditional relationship. To
support these types of operations, the 68000 is equipped with jump and branch
instructions.

96 68000 Microprocessor Programming 2 Chap. 4

The Unconditional and Conditional Branch

The 68000 microprocessor allows two different types of branch operations. They are
the unconditional branch, and the conditional branch. In an unconditional branch,
no status requirements are imposed for the branch to occur. That is, as the instruction
is executed, the branch always takes place to change the execution sequence.

This concept is illustrated in Fig. 4.4(a). Notice that when the instruction BRA
AA in part I is executed, program control is passed to a point in part III identified
by the label AA. Execution resumes with the instruction corresponding to AA. In
this way, the instructions in part II of the program have been bypassed. That is, they
have been jumped over.

On the other hand, for a conditional branch instruction, status conditions that
exist at the moment the branch instruction is executed decide whether or not the branch
will occur. If this condition or conditions are met, the branch takes place; otherwise,

Part I

BRA AA

Part 11

AA XXXXXX

Part 111

Unconditional branch
instruction

Locations skipped due to
branch

-< Next nistruction executed

Conditional branch

instruction

Next instruction executed
il condition not met

Locations skipped
it' branch taken

Next instruction

executed if
condition met

Figure 4-4 (a) Unconditional branch program sequence; (b) conditional branch pro-
gram sequence.

Sec. 4.3 Jump and Branch Instructions

97

execution continues with the next sequential instruction of the program. The conditions
that can be referenced by a conditional branch instruction are status flags such as
carry (C), zero (Z), negative (N), and overflow (V).

Looking at Fig. 4.4(b), we see that execution of the conditional branch
instruction in part I causes a test to be initiated. If the conditions of the test are not
met, the NO path is taken and execution continues with the next sequential instruction.
This corresponds to the first instruction in part II. However, if the result of the
conditional test is YES, a branch is initiated to the segment of the program identified
as part III and the instructions in part II are bypassed.

Unconditional Jump and Branch Instructions— JMP
and BRA

Unconditional changes in the execution sequence of a program are supported by both
the jump and branch instructions. The first instruction in Fig. 4.5 is ihejump (JMP)
instruction. The effect of executing this instruction is to load the program counter
with the contents of the effective address specified by the operand in the instruction.
Therefore, program execution resumes at the location specified by the effective
address.

An example of the instruction is
JMP (AO)

In this case, program execution is directed to the instruction at the address specified
by the contents of address register Ag. Only the control addressing modes can be
used to specify the operand.

A second way of initiating unconditional changes in the program execution
sequence is by means of the branch always (BRA) instruction. The format of this
instruction is also shown in Fig. 4.5. Notice that BRA differs from JMP in the manner
by which the address of the next instruction to be executed is encoded. In JMP, this
address is specified directly by an EA operand. This permits it to reside in a data
register or a storage location in memory. On the other hand, in BRA the difference
between the address of the new instruction and that of the BRA instruction

(displacement) is encoded following the opcode. Thus, for the BRA instruction the
microprocessor computes the next address by adding the displacement to the current
value in PC.

The branch instruction allows the displacement d to be encoded either as an

8-bit (short-form) integer or 16-bit (long-form) integer. With an 8-bit displacement,
the instruction is encoded as one word, but the branch to location must reside within

Mnemonic
Meaning

Format Operand Size
Operation JMP

BRA

Jump

Branch always

JMP EA

BRA Label

8, 16

EA-PC

PC + d ̂ PC

Figure 4-5 Jump and branch always instructions.

98 68000 Microprocessor Programming 2 Chap. 4

+ 129 or - 126 bytes of the current value in PC. On the other hand, the 16-bit
displacement is encoded as a second instruction word, thereby making it a two-word
instruction. This long displacement extends the range of the branch operation to
-1-32769 to -32766 bytes relative to the current PC.

The programmer does not normally specify the displacement in the branch
instruction. Instead, a label is written in the program to identify the branch to location.
For example, the instruction

BRA START

causes a transfer of program control to the instruction in the program with the label
START. It is the duty of the assembler program to compute the actual displacement
and encode it into the instruction. In this example, the displacement will be encoded
as a 16-bit word. If displacement must be encoded as a byte, the instruction should
be written as

BRA.S START

JMP and BRA are called unconditional branch instructions. This is because

the change in instruction sequence that they initiate takes place independent of any
conditions in the processor status.

Conditional Branch Instruction— Bcc

The 68000 provides a conditional branch instruction called branch conditionally (Bcc).
As shown in Fig. 4.6(a), its general form is

Bcc LABEL

Here "cc" is used to specify one of many conditional relationships. Figure 4.6(b)
is a list of all the valid relationships and their mnemonics. For instance, selecting
EQ we get the branch on equal (BEQ) instruction.

The conditional branch instruction passes control to the specified label only
if the conditional relationship is true. In the example BEQ, the Z bit of SR is tested.
If it is set, the branch takes place to the location specified by LABEL. If it is not
set, the next sequential instruction is executed. The amount of displacement allowed
with the conditional branch instruction is the same as for the branch always
instruction.

Let us now consider an example. The instruction

BVS START

means branch to the instruction identified by START if the overflow (V) bit is set.
If V is not set, the instruction that follows the BVS instruction is executed. The
displacement between the address of BVS plus two and the instruction with label

START is computed by the assembler and encoded into the instruction as a 16-bit
integer. For encoding the displacement as a byte, the instruction should be written as

BVS.S START

Sec. 4.3 Jump and Branch Instructions

Mnemonic Meaning
Format Operand Size

Operation
Bcc Branch conditionally Bcc Label

8, 16
(PC) + d-»PCif ccistrue;

otherwise, next sequential
instruction executes

Mnemonic
Meaning

Conditional Code Relationship

BCC Branch if carry clear
C = 0 BCS Branch if carry set
C= 1 BEQ

Branch if equal Z= 1

BNE Branch if not equal Z = 0
BMI Branch if minus N= 1

BPL
Branch if plus

N = 0 BVC Branch if overflow clear (signed) V = 0
BVS Branch if overflow set (signed)

V= 1

BHI Branch if high (unsigned) C • Z= 1

ELS Branch if less or same (unsigned)
C + Z= 1 BGT Branch if greater than (signed) NVZ + NVZ = 1

BGE Branch if greater or equal (signed)
NV + NV= 1

BLT Branch if less than
NV + NV= 1

BLE Branch if less or equal (signed) Z + NV + NV= 1

Figure 4-6 (a) Branch conditionally instruction; (b) conditional tests of the Bcc in-
struction.

Example 4.2

It is required to move a set of N, 16-bit data points that are stored in a block of memory
that starts at location BLKl to a new block that starts at location BLK2. Write a program
to implement this operation.

Solution. The flowchart in Fig. 4.7(a) shows a plan for implementing the block move
function. Initially, we set up two pointers, one for the beginning of BLKl and the other

for the beginning of BLK2. Address registers A, and A,, respectively, can be used as
these pointers. The count for the number of points to be moved is placed in Dq. This
can be accomplished by the instruction sequence

LEA

LEA

MOVE.L

BLKl.AI

BLK2,A2

N,DO
To move a word from BLKl to BLK2, we can use a move word instruction with address
register indirect addressing with postincrement mode for both its source and destination

operands. Moreover, each time a data point is moved, the count in Dq must be decreased
by 1. The move instruction must be repeated if the count has not reached zero. The
instructions that follow will perform these operations.

100 68000 Microprocessor Programming 2 Chap. 4

NXTPT MOVE.W (A1) + ,(A2) +

SUBQ.L #1,00

BNZ NXTPT

The entire program is shown in Fig. 4.7(b).

f Start ̂

\
Set up "moved from"

and "moved to"
pointers and
the counter

, MYTPT

Move the
next point

N

^^^All points^^ "^v.^ moved? ̂ ^

(Stop)

LEA BLKl.Al
LEA BLK2,A2

MOVE.L
N,DO MOVE.W
(A1)*,(A:)+ SUBQ.L
#1,D0

BNZ
NXTPT

Figure 4-7 (a) Block transfer flowchart (b)

(b) program.

4.4 THE TEST CONDITION, DECREMENT, AND BRANCH
INSTRUCTION AND PROGRAMS INVOLVING LOOPS

The program we considered in the preceding section was an example of a software
loop. In the earlier example we found that when a software loop is executed, a group
of instructions are executed repeatedly. The repetition may be unconditional or
conditional. To design a loop, one can use the previously introduced compare, jump,
and branch instructions. This was the approach employed in Example 4.2. However,
the 68000 provides another instruction that is especially useful for handling loops.
This instruction is called test condition, decrement, and branch (DBcc) and has the
general form

Sec. 4.4 The Test Condition, Decrement, and Branch Instruction 101

DBcc Dn, Label

Here "cc" represents the same conditions that were available for the Bcc instruction.
They are listed in the table of Fig. 4.6(b). In fact, two more conditions, always true

(T) and always false (F), are also available for the DBcc instruction. Dn is the data

register that contains the count of how many times the loop is to be repeated, and
Label identifies the location to which control is to be returned by the branch operation.

When the DBcc instruction is executed, first the condition identified by cc is

tested. If it is true, no branch takes place; instead, the loop is terminated and the

next sequential instruction is executed. On the other hand, if the condition is not

true, the contents of the specified data register are decremented by 1. Then another

test is performed. This one is on the count in Dn. If it is equal to - 1, the branch
does not take place because the loop operation has run to completion. In this case,
execution continues with the next sequential instruction. However, if the count is

not - 1, program control branches to the location corresponding to Label.
An example of the instruction is as follows:

DBLE DO,NXTPT

During the execution of this instruction, first the condition code bits of SR are tested
to determine if the relationship

Z + N-V + N-V=l

is satisfied. If true, the instruction following the DBLE instruction is executed. If

false, Dq is decremented. Next, Dq is tested to determine if it has become - 1. If
it has, the next sequential instruction is executed. But if Dq is any number other than

- 1, execution continues at the label NXTPT.

For example, if Z = 0, N = 1, V = 1, and the contents of Dq are 03 1^, the
condition code relationship evaluates as

Z-;-N-V + N-V = 0+l-0 + 0-l

= 0

Since the result is 0, the relationship is false. Thus, the value in Dg is decremented

by 1, which gives 02,^, and tested for - 1. Since Dq does not contain - 1, control
is passed to the instruction corresponding to label NXTPT.

Example 4.3

Given N data points that are signed 16-bit numbers stored in consecutive memory locations
starting at address DATA, write a program that finds their average value. The average
value that results is to be stored at location AVERAGE in memory. Assume that N is
in the range 0 < N < 32K.

Solution. A flowchart that solves this problem is shown in Fig. 4.8(a). It implements
an algorithm that finds the average of N data points by adding their values and then
dividing the sum by N.

Initially we set the sum, which will reside in D^, to 0, the address pointer in A,

to DATA so that it points to the first data point, and the counter in Dq equal to N - 1.
Notice that the value of the count is 1 less than the number of data points to be processed.

68000 Microprocessor Programming 2 Chap. 4

The reason for this is that we intend to use the DBcc instruction which branches out

of the loop when the count in a data register becomes equal to - 1 and not 0. This
initialization is performed by executing the following instructions

CLR.L D7

LEA DATA,A1

MOVE.L #(N-1),D0

To add a new data point to sum, we first move it into D,. Since the data point
is of word length, it must be sign extended to a long word before it can be added to

the previous sum. Then the sign-extended data point in Dj is added to the sum in D^.
Next the count in Dq is decremented by 1 and checked to determine if it has become

equal to - 1. A value of - 1 means that all points have been added. If it is not - 1,
there are still data points to be added and we must repeat the set of instructions that
add a new data point. On the other hand, if the count shows that all points have been

added, we are ready to divide the sum in D^ by N to obtain the average. This value
can then be moved from D^ to the storage location AVERAGE in memory. All this
can be done by the following sequence of instructions.

NXTPT MOVE.W
(A1) + ,D1

EXT.L Dl

ADD.L
D1,D7

DBF DO,NXTPT
DIVS

#N,D7

MOVE.W D7,AVERAGE

The complete program is listed in Fig. 4.8(b).

Example 4.4

Given a four-digit BCD number located in memory location BCDNUM, write a program
to convert it to its equivalent binary number and place the result in memory location
BINNUM.

Solution. Let us begin by defining an algorithm that can be used to convert a BCD
number to its equivalent binary number. For the general BCD number

Nbcd = DjDp.Do

its equivalent decimal number is given by the expression

N,o = lOOOCDj) + 100(D,) + 10(D,) + Dq

This expression can be reorganized to give

N,o = Do + IO(D| + lOlD, + lOCDj)))

Dg, D|, Dj, and Dj in this expression stand for BCD digits and not for data registers
within the 68000. This expression suggests an algorithm that can be implemented using

a software loop. Notice that if we start with the MSD Dj, multiply it by 10, and then

add the next MSD D^, we will get our first temporary result. This same sequence can

The Test Condition, Decrement, and Branch Instruction

r Start J

Sum = 0
Data pointer = DATA

Count = (N - 1)

Divide sum by
N

to obtain average

7~r~

(^ Stop J

Dq = counter

D7 = sum
A| = pointer to data points
D, = temporary register for

holding data point

(a)

CLR.L
D7 LEA DATA,A1

MOVE.L #(N-1),D0
MOVE.W

(A1)*,D1 EXT.L Dl

ADD.L D1,D7
DBF DO.NXTPT
DIVS

#N,D7
MOV.W DV.AVERAGE

Figure 4-8 (a) Flowchart of a program
for finding the average of N signed
numbers; (b) program.

68000 Microprocessor Programming 2 Chap. 4

be performed twice more on the temporary result, first adding D, to the product and
then adding Dg to the product, to produce the final result.

The flowchart in Fig. 4.9(a) shows how this algorithm can be implemented on

the 68000. Initialization involves setting the result, which is in D^, to zero, setting the
digit counter in Dg to 3, and the shift counter in D[to 12. The BCD number at memory
location BCDNUM is copied into Dj. Notice that the value of the digit counter is
actually one less than the number of digits to be processed. This is due to the fact that
we intend to use the DBcc instruction, which branches on the contents of a data register

being equal to - 1 . The shift counter will be used to extract the appropriate digit from
the number. This initialization can be performed with the instruction sequence that
follows.

CLR.L

MOVE.L D7
#3, DO

MOVE.L #12,D1

MOVE.W BCDNUM,D2

To program the conversion equation, we begin with the most significant digit of

BCDNUM. To extract the MSD, the BCD number in register Dj is first copied into
register Dj and then the contents of Dj are shifted right logically by 12 bit positions.
This places the MSD in the 4 least significant bits of register Dj. Now this digit value
is added to the result in D^. To prepare for the extraction of the next MSD, we shift
the contents of register Dj left by four bit positions. This places the next MSD in the
most significant digit position so that this digit can now be treated exactly like the

preceding one. The counter in register Dg is decremented and tested; if it is not equal
to - 1, we repeat the process with the next digit. If we repeat, we must multiply the
result by 10 before adding the value of the next digit. All this can be done by the following
sequence of instructions:

NXTDGT MULU #10,D7

MOVE.W D2,D3

LSR.W D1,D3

ADD.W D3,D7

LSL.W #4,D2

DBF DO.NXTDGT

MOVE.W D7,BINNUM

The entire program is shown in Fig. 4.9(b).

Example 4.5

It is required to sort an array of 16-bit signed binary numbers such that they are arranged
in ascending order. For instance, if the original array is

5, 1, 29, 15, 38, 3, -8, -32

after sorting, the array that results would be

-32, -8, 1. 3, 5, 15, 29, 38

The Test Condition, Decrement, and Branch Instruction

r Start J

Initialize

Result = 0
Count = 3

Shift count = 12
BCDNUM - D:

Result X 10- result

Extract MSD

Result + extracted

MSD - result

Dq = counter
D] = shift counter
D^ = given BCD number

(BCDNUM)

D, = equivalent binary
number (BINNUM)

Shift the next digit into
the MSD location

Store result at BINNUM

(Stop J
(a)

CLR.L

D7
MOVE.L #3, DO
MOVE.L #i:,Di
MOVE.W bcdnum.d:

NXTDGT MULU #10.D7
MOVE.W D2,D3
LSR.W DI,D3
ADD.W

D3,D7
LSL.W #4,D2
DBF do.nxtdgt
MOVE.W D7,BINNUM

(b)
Figure 4-9 (a) Flowchart for BCD-to-
binary conversion routine; (b) program.

68000 Microprocessor Programming 2 Chap. 4

Assume that the array of numbers is stored at consecutive memory locations from

addresses F400|g through F4FE,g in memory. Write a sort program.

Solution. First we will develop an algorithm that can be used to sort an array of elements
A(0), A(l), A(2), through A(N) into ascending order. One way of doing this is to take
the first number in the array, which is A(0), and compare it to the second number A(l).
If A(0) is greater than A(l), the two numbers are swapped; otherwise, they are left alone.
Next A(0) is compared to A(2) and based on the result of this comparison they are either

swapped or left alone. This sequence is repeated until A(0) has been compared with all
numbers up through A(N). When this is complete, the smallest number will be in the

A(0) position.
Now A(l) must be compared to A(2) through A(N) in the same way. After this

is done, the second smallest number is in the A(l) position. Up to this point, just two
of the N numbers have been put in ascending order. Therefore, the procedure must be

continued for A(2) through A(N - 1) to complete the sort.
Figure 4.10(a) illustrates the use of this algorithm for an array with just four

numbers. The numbers are A(0) = 5, A(l) = 1, A(2) = 29, and A(3) = -8. During
the sort sequence, A{0) = 5 is first compared to A(l) = 1. Since 5 is greater than 1,
A(0) and A(l) are swapped. Now A(0) = 1 is compared to A(2) = 29. This time 1 is
less than 29; therefore, the numbers are not swapped and A(0) remains equal to 1 . Next,

A(0) = 1 is compared with A(3) = -8. A(0) is greater than A(3). Thus A(0) and A(3)
are swapped and A(0) becomes equal to -8. Notice in Fig. 4.10(a) that the lowest of
the four numbers now resides in A(0).

The sort sequence in Fig. 4.10(a) continues with A(l) = 5 being compared first
to A(2) = 29 and then to A(3) = 1. In the first comparison, A(l) is less than A(2).
For this reason, their values are not swapped. But in the second comparison, A(l) is
greater than A(3); therefore, the two values are swapped. In this way, the second lowest
number, which is 1, is sorted into A(l).

It just remains to sort A(2) and A(3). Comparing these two values, we see that

29 is greater than 5. This causes the two values to be swapped such that A(2) = 5 and
A(3) = 29. As shown in Fig. 4.10(a), the sorting of the array is now complete.

0 1 - 3 Status

Ad)

Adi

All)

Ad)

.Ad)

Ad)

Ad)

5 1

29

:9

1

-x -8

-8

1

Onginal array

Array after comparing A(0) and A{ 1)

Array alter comparing A(0) and .A(2)

Array after comparing A(0) and A(3)

Array after comparing A(1) and A(2)

Array after comparing A(1) and A(3)

Array alter comparing Al2) and A(3)

5

5 29

-8

-8

-8

-8

5
1

29

1
1

1
1

5
1

29
1

1
29
1

5

5
1

29

Figure 4-10 (a) Sort example.

The Test Condition, Decrement, and Branch Instruction

Aj = PNTRj = pointer to first element
A2 = PNTR2 = pointer to next element
A3 = PNTRj = pointer to last element

MOVE.L $F400,AI

MOVE.L $F4FE,A3
MOVH.L

A1,A2
ADDQ.L #2,A2

MOVE.W {A2),D0

CMP.W (AI),DO
BLE.S CC

MOVE.W (A1),(A2)

MOVE.W
D0,(A1)

ADDQ.L #2,A2
CMP.L a:,a3
BLE.S

BB
ADDQ.L #2,A1

CMP.L A1,A3

BLT

AA

(Stop J

Figure 4-10 fcontj (b) Flowchart for sort algorithm; (c) program.

We will implement this algorithm for the 68000 microprocessor. The flowchart
for the sort algorithm is shown in Fig. 4.10(b).

The first block represents initialization of pointers PNTRl and PNTR3. They
contain addresses that point to the storage locations of the first and last elements of

the array, respectively. Since registers A, and A3 are used as these pointers and the

68000 Microprocessor Programming 2 Chap. 4

addresses of the first and last elements are $F400 and $F4FE, respectively, the instructions
used to perform the initialization are

MOVE.L $F400,A1

MOVE.L $F4FE,A3

Address register Aj contains another pointer. It is called PNTR2 and points to the next
element to be processed in the array. To initialize PNTR2, we can load register Aj with
the contents of A,, which is PNTRl, and then increment this value by 2. In this way,
the next word address is established for PNTR2. This is done with the instructions

AA MOVE.L AI,A2

ADDQ.L #2,A2

As shown in the flowchart, the label AA is used to implement a branch point.
Next, starting with label BB, we first compare the two numbers. To implement

the comparison, the number pointed to by PNTR2 can be copied into register Dq; next,
the value pointed to by PNTRl can be compared to it; and then a conditional branch
can be made if status shows that

PNTRl < PNTR2

The branch passes control to the point in the program identified by label CC. If the
value pointed to by PNTRl is greater than the value pointed to by PNTR2, the two
values must be swapped. These operations are performed with the instructions

BB MOVE.W
(A2),D0

CMP.W (A1),D0
BLE.S CC

To implement swapping of the two numbers, the number pointed to by PNTRl is copied
into the memory location pointed to by PNTR2. Next, the contents of Dg are copied
to the storage location pointed to by PNTRl . This completes the swap. The corresponding
instructions are

MOVE.W (A1),(A2)

MOVE.W D0,(A1)

Now pointer PNTR2 is updated by incrementing it by 2 and then it is compared to PNTR3
to find out if the last element has been compared. If the result of this comparision shows
that

PNTR2 < PNTR3

control is returned to the point in the program identified by BB. Otherwise, program
execution continues on to the next block in the flowchart. These operations are done
with the instructions

CC ADDQ.L #2,A2

CMP.L A2,A3

BLE.S BB

Sec. 4.5 Subroutines and Subroutine-Handling Instructions
109

When the answer to the comparison is that

PNTR2 > PNTR3

we must update PNTRl by adding 2 and then compare it to PNTR3. If it turns out that

PNTRl < PNTR3

we must start all over again from AA. Otherwise, the program is complete. The
instructions for this part of the program are

ADDQ.L n,M

CMP.L A1,A3

BLT AA

The entire program is shown in Fig. 4.10(c).

4.5 SUBROUTINES AND SUBROUTINE-HANDLING INSTRUCTIONS

A subroutine is a special segment of program that can be called for execution from

any point in a program. Figure 4.11 illustrates the concept of a subroutine. Here

we see a program structure where one part of the program is called the main pro-
gram. In addition to this, we find a smaller segment attached to the main program,

known as a subroutine. The subroutine is written to provide a function that must

be performed at various points in the main program. Instead of including this piece

of code in the main program each time the function is needed, it is put into the pro-
gram just once as a subroutine.

Wherever the function must be performed, a single instruction is inserted into

the main body of the program to "call" the subroutine. Remember that the contents
of PC always identifies the next instruction to be executed. Thus, to branch to a

subroutine that starts elsewhere in memory, the value in PC must be modified. After

executing the subroutine, we want to return control to the instruction that follows

Figure 4-11 Subroutine concept.

110 68000 Microprocessor Programming 2 Chap. 4

the one that called the subroutine. In this way, program execution resumes in the
main program at the point where it left off due to the subroutine call. A return
instruction must be included at the end of the subroutine to initiate the return sequence
to the main program environment.

The instructions provided to transfer control from the main program to a
subroutine and return control back to the main program are called subroutine handling
instructions. Let us now examine the instructions provided for this purpose.

Subroutine Control Instructions— JSR, BSR, RTS, and RTR

The four subroutine handling instructions of the 68000 microprocessor are shown
in Fig. 4. 12. These instructions include ywwp to subroutine (JSR), branch to subroutine
(BSR), return from subroutine (RTS), and return and restore condition codes (RTR).
These instructions provide for efficient subroutine handling and nesting.

The instructions jump to subroutine (JSR) and branch to subroutine (BSR) serve
essentially the same purpose. This is to pass control to the starting point of a
subroutine. As shown in Fig. 4.12, they both save the current contents of PC by
pushing it to the active stack. This preserves a return address for use at completion
of the subroutine. Then they pass control to the starting point of the subroutine.

These two instructions differ in how they specify the starting address of the
subroutine. For the JSR instruction this address is specified as an effective address
and only the control addressing modes are allowed. Therefore, the starting address
can reside in a data register, address register, or in either program or data storage
memory. For instance, using address register indirect addressing through register A,,
we get

JSR (Al)

On the other hand, in the BSR instruction, the displacement between the current
instruction and the first instruction of the subroutine is determined and encoded into

the instruction. That is, it is stored in program storage memory. An example is

BSR STARTSUB

Mnemonic
Meaning

Format
Operand Size

Operation
JSR Jump to subroutine JSREA 32 PC^-(SP)

EA-PC

BSR Branch to subroutine BSR Label

8, 16

PC-»-(SP)

PC + d ̂ PC

RTS Return from subroutine RTS

(SP)* ̂ PC
RTR Return and restore

RTR

(SP)* -»CCR
(SP)* -* PC

Figure 4-12 Subroutine control instructions.

Sec. 4.5 Subroutines and Subroutine-Handling Instructions 111

Thus JSR provides the abihty to jump to a subroutine that resides anywhere

in the 16M-byte address space of the 68000. But BSR only permits branching to a
subroutine that is located within the maximum allowable displacement value. The

displacement can be either 8 bits for the short form of the BSR instruction or 16
bits for the long form.

The other two instructions return from subroutine (RTS) and return and restore

(RTR) provide the means for returning from a subroutine back to the calling program.

In Fig. 4.12, we see that executing RTS simply restores the program counter by

popping the value that was saved on the active stack when the subroutine was called.
The second instruction RTR restores both the condition code part of SR and PC

from the stack. One of these instructions is always the last instruction of a subroutine.

Example 4.6

In a Fibonacci series, the first number is 0, the second is 1, and each subsequent number

is obtained by adding the previous two numbers. For example, the first 10 numbers of
the series are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

Write a program to generate the first 20 elements of a Fibonacci series. The numbers
of the series are to be stored at consecutive locations in memory starting at address

FIBSER. Use a subroutine to implement the part of the procedure by which the next
number of the series is obtained from the previous two numbers.

Solution. A flowchart for this program together with the assignments of various registers
is shown in Fig. 4.13(a). The first part of the program initializes the registers and stores
the first two numbers. The instructions used for this purpose are

SET THE COUNTER TO 17

SET THE POINTER TO FIBSER

Dl = 0

D2 = 1

STORE THE FIRST NUMBER

MOVE.W D2,(AI)+ STORE THE SECOND NUMBER

The next-to-Iast instruction causes 0 to be loaded into address FIBSER and increments

the pointer in Aj by 2 such that it points to the storage location of the next number
in the series. Then a similar instruction is executed to load FIBSER + 2 with 1 and Aj
is again incremented.

We are now ready to call the subroutine that does the addition to form the next
number in the series. Since the subroutine will be called repeatedly, the BRS instruction

is identified by a label to which the program can loop back. This instruction is

NXTNM BRS.S SBRTF

The subroutine starts at the instruction with label SBRTF. The purpose of the subroutine
is to add the contents of D, and D, so that the next number in the series is generated.

MOVE.L #$11, DO

LEA FIBSER,A1

CLR.W Dl

MOVEQ.W #1,D2

MOVE.W D1,(A1) +

68000 Microprocessor Programming 2 Chap. 4

r Start J

\
Initialize

1 1 ,6 - Do
FIBSER^Ai O^Di

1 -D;

Store the first tv
numbers of
the series

Call subroutine
at SBRTF

(Stop J

Dq = counter for the numbers
to be generated

Aj = pointer to the address at
which the number is to
be stored

D, = first number used in the

generation
D2 = second number used in

the generation

D3 = generated number

fsBRFTJ

Generate the
next number in

the series

Temporarily save the
new number in D3

MOVE.L #$11, DO
LEA FIBSER.Al

CLR.W
Dl MOVEQ.W #1,D2

MOVE.W

D1,(A1)*
MOVE.W D2,(Air

NXTNM BSR.S SBRTF

MOVE.W D2,D1
MOVE.W D3,D2
MOVE.W

D3,(A1)*
DBF

DO.NXTNM
DONE BRA DONE

SBRTF ADD.W D2,D1
MOVE.W D1,D3
RTS

Figure 4-13 (a) Flowchart for the
Fibonacci series program; (b) program.

Sec. 4.5 Subroutines and Subroutine-Handling Instructions 113

temporarily save this number in Dj, and then return back to the main program. This
can be done by the instruction sequence

SBRTF ADD.W

MOVE.W

D2,D1

D1,D3
RTS

At this point in the main program, we get ready for generating the next number.

This is done by saving the contents of Dj in Dj and that of D^ in Dj. Next we save
the new number that was generated in D3 by moving it to memory. To do this, the
instructions are

MOVE.W D2,D1

MOVE.W D3,D2

MOVE.W

D3,(A1)-I-
Now the count in Dq is decremented and tested for - 1 . If it is not equal to - 1 , we
loop back to the label NXTNM. However, if it is - 1, we are done. The instruction
for this is

DBF DO.NXTNM

DONE BRA DONE

The entire program is repeated in Fig. 4.13(b).

Link and Unlink Instructions— LINK and UNLK

Before the main program calls a subroutine, quite often it is necessary for the calling

program to pass the values of some variables (parameters) to the subroutine. It is

a common practice to push these variables onto the stack before calling the routine.

Then during the execution of the subroutine, they are accessed by reading them from

the stack and used in computations. Two instructions are provided to allocate and

deallocate a data area called a frame in the stack part of memory. This data area

is used for local storage of parameters or other data. The two instructions, as shown

in Fig. 4.14, are link and allocate (LINK) and unlink (VNLK). They make the process

of passing and retrieving parameters much easier.

The LINK instruction is used at the beginning of a subroutine to create a data

frame. Looking at the format of the instruction in Fig. 4.14, we see that it has two

Mnemonic
Meaning

Format
Operation

LINK Link and allocate LINK An, d An -* - (SP)

SP^An

SP - d ̂ SP

UNLK Unlink UNLK An An-'SP

(SP)+ - An

Figure 4-14 Link and unlink instructions.

114 68000 Microprocessor Programming 2 Chap. 4

operands. The one denoted A^ is always an address register. The address held in A^
is known as Ihe frame pointer and it points to the lowest storage location in the data
frame. The other operand is an immediate operand that specifies the value of a
displacement. This displacement specifies the size of the data space. Since it can be
as long as 16 bits, a frame data space can be as large as 32K words.

An example of this instruction is

LINK A1,-#$A

Execution of this instruction causes the current contents of Aj to be pushed onto
the active stack; then the updated contents of the active SP register are loaded into
Aj; finally, A^^ is subtracted from the new value in SP.

Figure 4.15 shows what happens by executing this instruction. First we see that
pushing the contents of Aj to the stack saves the frame pointer for the prior data

frame. This is identified as "Prior frame pointer" and is stored at Ajj^^^. Loading
A) with the contents of SP establishes a frame pointer to the new data frame.
Subtracting the displacement from (SP) modifies the stack pointer so that the active
stack is located in memory just below the data frame. Since the displacement is A|g,
the data frame is 10 bytes in length.

The frame pointer A, provides a fixed reference into the data frame and old
stack. Parameters that were loaded into the stack prior to calling the subroutine can
be accessed using address register indirect with displacement addressing for the
operand. For example, the instruction

MOVE.W 4(A1),D0

Stack memory

New stack continuation

New data frame
(!0 bytes)

— "

Prior frame pomter (A, ̂j)

Return address

Prior used stack

Prior data frame

Figure 4-15 Creation of a data frame
with the link instruction.

Subroutines and Subroutine-Handling Instructions

before

UNLK

register

pointer

causes the word parameter stored four bytes from frame pointer A, to be copied
into Dq. This parameter is in the old stack.

After performing the operation defined by the subroutine and just
returning to the caUing program, the prior data frame must be restored. The
instruction is used for this purpose. Notice in Fig. 4.14 that it causes address
Aj,, which is used for the frame pointer, to be loaded into the active stack
register. Then the address held at the top of the stack is popped into A^.

For our example, the unlink instruction would be

UNLK Al

Earlier we pointed out that execution of the LINK instruction saved the old frame
pointer on the stack and then created a new data frame. Executing UNLK Al causes
SP to be loaded from A,. Looking at Fig. 4.15, we find that the stack pointer now
points to the location of the prior frame pointer. Then Aj is loaded from the stack.
Therefore, the prior frame pointer is put back in A, and the prior stack and data
frame environment is restored.

To understand this concept better, let us consider the example illustrated in Fig.
4.16. As we begin to execute the first instruction of the program segment shown in
Fig. 4.16(a), we will assume that the active SP points to the top of the data frame
identified in Fig. 4.16(b) as local storage area for the calling routine. Execution of
the first two instructions

MOVE.W DO,-(SP)

MOVE.W D1,-(SP)

passes the contents of Dq and Dj as parameters onto the stack. Looking at Fig.
4.16(b), we see that at the completion of these two instructions SP points to the
location where parameter 2 is stored.

MOVE.W DO, "(SP)
MOVE.W D1,-(SP)
JSR SBRT

SBRT LINK

UNLK
RTS

; parameter 1 passed to stack
; parameter 2 passed to stack
; call subroutine SBRT

; FP and local storage established for called routine

; parameter 1 accessed

; FP for the calling routine established
; return to main program

Figure 4-16 (a) Program example with LINK and UNLK instructions.

68000 Microprocessor Programming 2 Chap. 4

Stack memory

SP alter LINK AO. -#$8

FP alter LINK AO, -*$8-

SP after JSR SBRT

SP after MOVE.W D1,^(SP)—

SP after MOVE.W DO, ~(SP)—

SP before MOVE.W DO, "(SP)-

FP before MOVE.W DO, "(SP)-

Local storage for
called subroutine

(SBRT)

Calling routine FP

(An contents)

Return back address

(AA + 4)

Local storage for
calling subroutine
or main program

8 bytes

Long word
-SP after UNLK AO

Long word
SP after RTS
Word

-^FP after UNLK AO

(b)

Figure 4-16 (cont.) (b) Stack for the example program.

The next instruction,

JSR SBRT

which has the label AA, calls the subroutine starting at label SBRT. It causes the
address of the instruction that follows it to be pushed onto the stack. This return
address is AA + 4 since the JSR instruction takes up four bytes of program memory.
Secondly PC is loaded with the address of SBRT such that program control picks
up execution from the first instruction of the subroutine.

The subroutine starts with the instruction

LINK AO, - #$8

It causes the contents of Aq to be saved on the stack and then loads Ag from the
active stack pointer register. This sets up a new frame pointer FP (Aq register). Then
8 is subtracted from the value in SP. Therefore, it points to the top of the data area
identified in Fig. 4.16(b) as local storage for the called subroutine.

As subroutine SBRT is being executed, we may need to access parameter 1.
The frame pointer serves as a reference into the called routines data frame. Parameter
1 is at a displacement of 10 bytes from the frame pointer; therefore, the instruction

MOVE.W 10(A0),D5

Sec. 4.6 Bit-Manipulation Instructions 117

can be used to access it. Execution of this instruction copies parameter 1 into Dj.
The next instruction we see is

UNLK AO

It loads SP with the contents of Aq and then pops the contents at the top of the stack
into Aq. Now Aq once again contains the frame pointer for the calling routine and
SP points to the location where the return address AA + 4 is stored.

The last instruction
RTS

loads the return address into the program counter so that execution resumes in the
calling routine.

4.6 BIT-MANIPULATION INSTRUCTIONS

The bit manipulation instructions of the 68000 enable a programmer to test the logic
level of a bit in either a data register or storage location in memory. The tested bit
can also be set, reset, or changed during the execution of the instruction. The four

bit manipulation instructions in the 68000's instruction set are shown in Fig. 4.17.
They are: test a bit (BTST), test a bit and set (BSET), test a bit and clear (BCLR),
and test a bit and change (BCHG).

Test a Bit instruction— BTST

The test a bit (BTST) instruction has the ability to test any one bit in a 32-bit data
register or any one bit of a byte storage location in memory. The logic state of the
tested bit is inverted and copied into the Z bit of SR. That is, when the bit is tested
as 1, Z is set to 0 or when the bit is tested as 0, Z is set to 1. The two valid forms
of the BTST instruction are shown in Fig. 4.17. In both forms, the destination
operand, which contains the bit to be tested, is specified by an effective address.

These two forms differ in the way the number of the bit to be tested is specified.
In the first form, the number of the bit is supplied as an immediate source operand

Mnemonic Meaning Format
Operand Size Operation

BTST Test a bit BTST #XXX,EA

BTST Dn.EA 8,32

8,32

EA bit -* Z

BSET Test a bit and set BSET #XXX,EA
8,32

EA bit -> Z BSET Dn.EA
8,32

1 - EA bit

BCLR Test a bit and clear BCLR #XXX,EA

8,32 EAbit-Z BCLR Dn.EA

8,32

O-EAbit

BCHG Test a bit and change BCHG #XXX,EA
8,32 EA bit - Z BCHG Dn.EA

8,32

EA bit - EA bit

Figure 4-17 Bit-manipulation instructions.

118 68000 Microprocessor Programming 2 Chap. 4

that gets coded as part of the instruction in program memory. An example is the
instruction

BTST #5,D7

Execution of this instruction tests bit 5 in data register D7. The complement of the
value found in this bit position is copied into Z. For example, if D7 contains 25, g,
that is

D7 = 000000000000000000000000001001 01 2

bit 5 is logic 1. Thus, the complement of 1, which is 0, is copied into the Z flag.
The second form uses the contents of one of the data registers to specify the

bit position. For instance, if Dq contains number 5, then executing the instruction

BTST D0,D7

produces the same result as the instruction that employed an immediate operand.

Other Test Bit Instructions— BSET, BCLR, and BCHG

The other instructions in Fig. 4.17, BSET, BCLR, and BCHG, operate similarly to
BTST. However, they not only copy the complement of the tested bit into Z, but
also set, clear, or invert the bit in the destination operand, respectively.

An example is the instruction
BSET #7,(A1)

When this instruction is executed, bit 7 of the memory location pointed to by (Al)
is tested. The complement of its logic level is copied into Z and then bit 7 is set to
1. For instance, if the byte memory location pointed to by the address in A, contains
7Fjg, which is 01111 11 Ij in binary form, bit 7 is logic 0. Therefore, execution of
the instruction causes Z to be set to 1 and the contents of the memory location to
be changed to FF,g.

When a memory bit is addressed, BTST allows use of the data addressing modes
to specify the effective address of the destination operand. The instructions BSET,
BCLR, and BCHG allow the use of data-alterable addressing modes for EA.

Test and Set Operand Instruction— TAS

Another instruction that is similar to the test bit instruction is test and set operand
(TAS). As shown in Fig. 4.18, TAS differs from BTST in that it tests a byte operand
in a data register or storage location in memory. The test is performed by comparing
the operand with zero and setting or resetting condition code bits N and Z based
on the resuh. N is set to the logic level of the most significant bit of the operand
and Z is set if the operand is zero. Second, independent of the result of the test, the
most significant bit of the accessed byte is set to 1. An example is the instruction

TAS DO

Bit-Manipulation Instructions

Mnemonic Meaning
Format

Operand Size
Operation

TAS Test and set an

operand

TASEA 8 If destination is zero, 1 -* Z;

otherwise, 0 -• Z If destination is negative,

1 -• N; otherwise, 0-» N 0-*V
0-C

1 -♦ most significant bit of byte
addressed by EA

Figure 4-18 TAS instruction.

The TAS instruction is specifically designed to support multiprocessing and
multitasking system environments. For instance, in a multiprocessing system, a bit
called a semaphore in a byte in memory is set for resolving which processor can access
a memory section reserved for a specific resource. If a processor needs to access this
resource, it will first test and set the memory byte. If the resource is already in use,
the test will indicate that condition and the processor can wait until it is available.
Once it is done using the resource, it resets the semaphore bit, thus allowing access
by other processors. This is illustrated in Fig. 4.19.

Resource is used

by the
processor

LOOP TAS
BMI

BCLR

RTS

SFORE

LOOP

Reset semaphore bit

Figure 4-19 Use of TAS for
multiprocessing.

120 68000 Microprocessor Programming 2 Chap. 4

ASSIGNMENT

Section 4.2

1. Assuming that condition codes N, Z, V, and C are initially zero, specify their status as
each of the instructions that follow is executed.

SUB.L AO,AO

CMPI.W nAOOO.AO

TST AO

2. Use move, shift, and logic instructions to compute the results of the logic equation

F = Z + N-V + N-V

where N, V, and Z are the condition code bits of the 68000. Store the result F at a location

in memory identified as RESULT as a byte of all Is or all Os, depending on whether F
is 1 or 0.

Section 4.3

3. Describe the difference between a JMP instruction and a BRA instruction.

4. Consider the delay loop program that follows:

MOVE.B #$10,D7

DLY SUBQ.B #1,D7

BGT DLY

NXT

(a) How many times does the instruction BGT DLY get executed?
(b) Change the program so that BGT DLY is executed just 17 times.

(c) Change the program so that BGT DLY is executed 2^^ times.

Section 4.4

5. Given a number N in the range 0 < N < 5, write a program that computes its factorial
and saves the result in the memory location corresponding to FACT.

6. Write a program that compares the elements of two arrays, A(I) and B(I). Each array

contains one hundred 16-bit integer numbers. The comparison is to be done by comparing
the corresponding elements of the two arrays until either two elements are found to be
unequal or all elements of the arrays have been compared and found to be equal. Assume
that the arrays start at addresses SAOOO and SBOOO, respectively. If the two arrays are
found to be unequal, save the address of the first unequal element of A(I) at memory
location FOUND. On the other hand, if all elements are equal, write a byte of Os into
FOUND.

7. Given an array A(I) with one hundred 16-bit signed numbers, write a program to generate
two new arrays, P(J) and N(K). P(J) is to contain all the positive numbers from A(l) and
N(K) is to contain all of its negative numbers. A(I) starts at address SAOOO in memory
and the two new arrays, P(J) and N(K), are to start at addresses SBOOO and SCOOO,
respectively.

Chap. 4 Assignment 121

8. Given an array A(I) of one hundred 16-bit signed integers, write a program to generate
a new array, B(l), according to the following directions.

B(I) = A(I) for 1 = 1,2, 99, and 100

and

B(I) = median of A(I - 2), A(I - 1), A(I), A(l + 1), and A(I + 2) for all

other Is

Section 4.5

9. Write a subroutine that converts a given 32-bit binary number to its equivalent BCD
number. The binary number is to be passed to the subroutine as a parameter in D^ and
the subroutine also returns the result in D^.

10. Given an array A(I) of 100 signed 16-bit integer numbers, generate another array B(l)
given by

B(I) = A(l) for 1 = 1 and 100

and

B(l) = -J (A(l - 1) + 2A(I) + A(l -I- 1)) for all other Is

Use a subroutine to generate the terms of B(I). Parameters A(I - 1), A(I), and A(I + 1)
are to be passed to the subroutine on the stack and the subroutine returns the result B(l)
on the stack.

Section 4.6

11. Write the segment of main program and show its subroutine structure to perform the
following operations. The program is to check repeatedly the 3 least significant bits of

Dq and depending on their settings, executes one of three subroutines: SUBA, SUBB,
or SUBC. The subroutines are selected according to the priority that follows:

3 LSB of Do Execute

XXI SUBA
XIO SUBB

100 SUBC

If a subroutine is executed, before returning to the main program, the corresponding bit

or bits in register D,, are to be cleared. After returning from the subroutine, the main
program continues.

5 Using the MC68000
Educational Microcomputer
FOR Program Development

5.1 INTRODUCTION

In the previous two chapters, we studied the instruction set of the 68000 microprocessor
and how to write simple assembly language programs. In this chapter, we shall describe
how to use the MC68000 educational microcomputer to verify whether or not a
program correctly performs the application for which it was written. This
microcomputer is manufactured by Motorola, Inc., as an educational tool that can
be used to teach 68000 microcomputer system architecture and assembly language

programming. Here we will learn the commands of the microcomputer's monitor
program and use them to assemble, execute, and debug programs. The following topics
are covered:

1. The 68000 microcomputer development system

2. The monitor program
3. Monitor commands

4. Register display/modify commands

5. Memory display/modify/search commands
6. Commands for control of I/O resources

7. Assembly and disassembly of instructions and programs

8. Program execution control commands

9. Executing a program

10. Debugging a program

Sec. 5.2 The 68000 Microcomputer Development System 123

5.2 THE 68000 MICROCOMPUTER DEVELOPMENT SYSTEM

A development system is an instrument that is used to develop programs and hardware
for a microprocessor-based system. Typically, the development system is designed
to permit development work to be done for only specific microprocessors — for
instance, devices produced by a specific manufacturer. It can be a sophisticated system
that gives the microcomputer designer important capabilities, such as the ability to

develop programs in either assembly language or a variety of high-level languages,
powerful tools for efficient debugging of programs, facilities for connection to external

hardware for debugging of circuit operation, and the ability to integrate the user's
software and hardware together for testing and debugging. Use of this type of
development system is essential for major microcomputer development projects. Its
use results in much saved time and higher-quality hardware and software.

The MC68(X)0 educational microcomputer is a simplified development system
that is intended to be used by students and designers to learn how to develop
hardware and assembly language programs for 68000-based microcomputers. Figure
5.1 shows the microcomputer board of the MC68(XK) educational microcomputer.
Since this system is intended to serve educational needs and not a complete
microcomputer-based system design project, it provides only limited development
support. However, the microcomputer board includes all the hardware of a complete
microcomputer: 32K bytes of RAM for data and user program storage, 16K bytes
of PROM for storage of the monitor program, and interfaces for a variety of
input/output (I/O) devices, such as a CRT terminal, a printer, and a cassette
player/recorder. The board also has a prototyping area that allows the user to build
custom interfaces easily into the microcomputer.

The MC68000 educational microcomputer system can be configured in a number
of different ways. The complete system configuration, as shown in Fig. 5.2, includes

the microcomputer module (MEX68KECB), a power supply, an RS-232C compatible
terminal, an audio cassette recorder, a printer, and even a communications link to
a host computer. This complete system configuration provides greater ease and
flexibility for program development. However, a more limited system configuration
can be used if necessary. For example, the host computer interface is frequently not
employed. The minimum hardware configuration is enclosed by dashed lines in Fig.
5.2. Here we see that the only items required in a minimum system are the
microcomputer module, the power supply, and the terminal.

In a minimum system configuration, the terminal acts as both the input and

output device. Programs and data entered at the keyboard of the terminal are stored

in the microcomputer's RAM. They also are echoed back to the screen of the terminal
so that their entry can be verified by the user. Commands, such as those used to execute

or debug a program, also are issued to the microcomputer from the keyboard. These

commands are interpreted and executed by the monitor program that is stored in
PROM.

The terminal communicates with the microcomputer through an RS-232C port.

An RS-232C compatible port is an industry standard interface that defines the voltage

124 Using the MC68000 Educational Microconnputer tor Program Development Chap. 5

Figure 5-1 The MC68000
educational microcomputer board

(Motorola, Inc.).

levels, data format, and control lines for an asynchronous communications interface.

Data are passed through the interface in serial form — that is, one bit after the other
over a single communication line. The rate at which data is transferred over this line
is identified as the baud rate. In this case, baud rate means the number of bits of
data per second. The data transmission rate is jumper selectable on the microcomputer
board and can be set at a variety of speeds from 110 to 9,600 baud.

The use of an audio cassette recorder in the MC68000 educational

microcomputer allows the user to save information, such as programs, on audio
cassette tape. In this way, the programmer can reload the program from tape at a
later time instead of having to retype it at the keyboard. The audio cassette recorder

Sec. 5.2 The 68000 Microcomputer Development System

Minimum configurat

I I

Figure 5-2 MC68000 educational microcomputer system configuration (Motorola, Inc.).

interface is implemented as part of the parallel I/O interface on the microcomputer
board. Data transmissions between the microcomputer and cassette recorder are also
in serial form. However, in this case the data rate is between 1,000 and 2,000 baud,
depending on the bits being transferred through the interface.

The printer can be used to produce hard copies of programs, results produced
by executing programs, and debug sequences. The printer interface used in the
MC68000 educational microcomputer is what is called a parallel printer interface
(Centronics interface), and it is also implemented using parallel I/O ports on the
microcomputer board.

126 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

5.3 THE MONITOR PROGRAM

In Chapter 4, we wrote a number of programs in the 68000's assembly language.
For instance, we wrote a block transfer program that could be used to move a block
of data from one location in memory called the source location to another location
called the destination. Once a program such as this has been written, we are ready
to verify its operation by running it on a microcomputer such as the MC68000
educational microcomputer. To do this we must assemble the program into the

microcomputer's memory and then execute it. After execution is complete, the correct
operation of the program can be verified by examining the results that it produces,
and if necessary any errors that are found can be analyzed by performing what are
known as debug operations. The Tutor monitor program that is provided with the
MC68000 educational microcomputer is what permits us to assemble, execute, and
debug programs. We pointed out earlier that the monitor is stored in PROM on the
microcomputer board.

Tutor is the software interface through which the user can talk to the MC68000
educational microcomputer. It is a simple monitor program that provides a set of
commands for use in the entry, execution, and debugging of assembly language
programs. The monitor program itself consists of a number of subroutines that are
written to perform the various operations that are needed to support assembly language
program development. When the microcomputer is being used by a programmer,
the monitor program receives a command that is keyed in by the programmer at the
keyboard, analyzes it to determine what operation is to be performed, initiates a
subroutine to perform the operation specified by the command, and displays the
information produced during the execution of the command on the screen of the
terminal.

The general operation of the monitor program is overviewed by the flowchart

in Fig. 5.3. Here we find that after power is turned on and the microcomputer's reset
button is depressed, the monitor program begins to run. It first initializes the memory
and I/O resources of the microcomputer system. For instance, all of the storage
locations in data memory are initially cleared. After initialization is complete, the
command prompt

TUTOR 1.3 >

is displayed on the screen. Here, 1.3 stands for the revision level of the monitor
program software. The monitor is now waiting for a command to be entered from
the keyboard.

When a command is entered, the Tutor program first verifies that it is a valid

command. If the command is invalid, the error message "SYNTAX ERROR" is
displayed and software control is returned so that the command prompt is redisplayed.
The monitor is again waiting for entry of a command.

On the other hand, if the command is valid. Tutor next determines whether

it specifies a monitor operation or execution of the user's program. Let us assume
for the moment that the command that was entered asked for the data in a certain

Sec. 5.4 The Monitor Comman

Power up, reset

1

ds

Initialize

Display
TUTOR 1.3 >_

^.^ Command \.
<\^ entered ^

Tves

^/'^Valid ̂ \ < command

>

>

No

No

Display error message

Execute
nand

Monitor
command

Command

type

Program
, execution command

Begin program
execution Figure 5-3 Monitor program command

entry/execution sequence.

part of the microcomputer's memory to be displayed. This represents the "execute
command" path in the flowchart. In this case, control is passed to the subroutine
for this monitor function; the command is performed by the microcomputer; and
then control is returned to the point in the monitor that calls for entry of another
command. If the command asked for execution of the user program instead of a
monitor operation, the other path in the flowchart is taken. This time, software control

is passed to the starting point of the user's program and its execution is begun.
Depending on how the program was specified to execute, control may or may not
be returned to the monitor. However, control can always be returned to the monitor
if necessary by depressing the ABORT switch.

5.4 THE MONITOR COMMANDS

In Section 5.3, we introduced the Tutor monitor, how it prompts for command entry,
and how it processes commands after they are entered. Here we will discuss the

128 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

commands that are provided in the monitor program. Figure 5.4 is a list of the
command set of the Tutor monitor. This list includes the mnemonic and a functional

description for each of the monitor's thirty-three commands. These commands give
the programmer the ability to initiate operations such as to examine or modify the
contents of memory or the registers within the 68000, control the execution of a

Command mnemonic Description

MD

MM, M

MS

Memory Display

Memory Modify

Memory Set

AO to .A7

.DO to .D7

.PC

.SR

.SS

.US

DF

Display/Set Address Register

Display/Set Data Register

Display/Set Program Counter

Display/Set Status Register

Display/Set Supervisor Stack Pointer

Display/Set User Stack Pointer

Display Formatted Registers

OF
.RO to .R6

Display Offsets
Display/Set Relative Offset Register

BF

BM

BT BS

Block of Memory Fill

Block of Memory Move

Block of Memory Test

Block of Memory Search

DC
Data Conversion

BR

NOBR

GO, G

GT
GD

TR, T
TT

Breakpoint Set

Breakpoint Remove

Go

Go Until Breakpoint

Go Direct
Trace

Temporary Breakpoint Trace

PA

NOPA

Printer Attach

Reset Printer Attach

PF

TM

Port Format

Transparent Mode

Send Message to Port 2

■HE
Help

DU

LO

VE

Dump Memory

Load Verify

Figure 5-4 Tutor's command set (Motorola, Inc.).

Sec. 5.4 The Monitor Commands 129

program, trace the state of the microprocessor as a program is executed, and control
the operation of I/O resources.

Also included as part of Tutor is a line-by-line assembler/disassembler.
The assembler capability lets the programmer enter programs in assembly language
form and have them automatically translated into machine code and stored into
memory. The disassembler function allows the programmer to verify that a
program has been loaded into memory correctly by translating its machine code into

assembly-language-like instructions and displaying them on the screen of the terminal.

Syntax of a Monitor Command

When commands are keyed in from the keyboard of the terminal, they must always
be entered using a special form that is understood by the monitor program. This is

known as the command's syntax, and if it is not correctly followed, the command
entry will result in the display of a syntax error message. The general format for a
command entry is

[NO] < command > [< parameters >] [;< options >]

Notice that there are four fields within the format: the negative form (NO) field,
the command field, ihc parameters field, and the options field. When entered, each
of these fields must be separated by a space.

In the general format, any field that is enclosed within square brackets is
optional. Therefore, the minimum command entry response to the Tutor prompt is just

< command >

A field enclosed with an angle bracket is to be replaced by a syntactical variable.
For instance, the command field can be replaced with a mnemonic from the list in
Fig. 5.4. An example of a command that only requires entry of a command field
is the display formatted registers command. It is issued by entering

TUTOR 1.3 > DF (cr)

Execution of this command causes the contents of the 68000's internal registers to
be displayed on the screen.

Most monitor commands also require one or more entries in the parameter field.
Examples of information that is entered as parameters are: starting and ending
addresses, data, counts, and port numbers. For instance, entry of the GO command

TUTOR 1.3 > GO 100 (cr)

means begin execution of the program that starts at address 000100|g. Notice that
numeric information that is entered as parameters is assumed to have been expressed
in hexadecimal form. However, the interpretation of a number by the monitor can
be converted to decimal form by preceding the number with the & symbol. For
instance, the GO command that we just introduced can be written using a decimal
starting address as

TUTOR 1.3 > GO &256 (cr)

130 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

The parameter also may be written as an expression. In the expression, numeric

information can be combined with the + and - operators. For example, data that
are to be loaded into a memory location could be specified with the expression

100 + &25

This expression is interpreted by the monitor as a parameter having the hexadecimal
value

Parameters that represent address information can be expressed using a variety of
special address formats. The allowed address formats are shown in Fig. 5.5. Here,
we find that the monitor program references all address parameters that are specified
as a numeric value or expression to the contents of what is called an offset register.

The monitor defines eight offset registers that are identified as Rg through R-^. They

are software registers that exist in the microcomputer's memory, not hardware registers
such as those within the 68000.

When executing a command, the monitor program combines the contents of
the specified offset register with the value specified as the address parameter to generate
a physical address. For instance, in Fig. 5.5, we see that if an address parameter is
specified simply as

140

Format Example Description

expression
140

Absolute address [Note: offset zero is
added)

expression 130 + R5 Absolute address plus offset five (not an
+ offset assembler-accepted syntax)

expression 150 + R7 Absolute address {Note: offset seven is

+ offset
always zero) (not an assembler-accepted

syntax)
IA@)) (A5) Address register indirect

(A@,D(S)) (A6,D4) Address register indirect with index

(A@,A@I

expression
120(A3) Address register indirect with displacement

(A@)

expression 110|A2,D1) Address register indirect with index plus

(A@,D(S)) displacement

expression

(A@,A@)

(expression) 11001
Memory indirect (not an assembler-
accepted syntax)

Figure 5-5 Parameter field address formals (Motorola, Inc.).

Sec. 5.4 The Monitor Commands 131

the address parameter is automatically referenced to register Rq. Therefore, the value
used as the physical address is actually

140i6 + RO
An example of a command like this is

TUTOR 1.3 > GO 140

and when executed it initiates program execution at the physical address obtained
by adding MOjg and the offset value held in register Rg. If an offset register other
than Rq is to be referenced in the generation of a physical address, its register name
is simply added to the expression that specifies the value of the address in the
command. For example, the command

TUTOR 1.3 > GO 140+ R5

references R, instead of Rq in the generation of the address.
At power up and whenever the reset switch is depressed, all of the offset registers

are initialized to zero. The values held in registers Rq through R^ can be modified
with the display/set relative offset register command. However, the value in R^ is
fixed at zero.

The last five address formats in Fig. 5.5 show how the 680O0's internal address
and data registers can be used to specify the physical address in a monitor command.

In general, address registers A^ through A^ can be used to hold either the indirect
address or an index that is to be added to the indirect address. However, data registers

Dq through D-j can be used only to hold an index. For instance, the command
TUTOR 1.3 > GO (A5)

specifies that the address at which program execution is to begin is that held in address
register Aj. This is an example of what is called address register indirect addressing.
Notice that indirect addressing is specified by enclosing the register name with
parentheses.

Another example is the command

TUTOR 1.3 > GO (A6,D4)

In this command, the indirect address is held in Ag and the value in D4 is used as
an index. The index is added to the value in A^ to obtain the starting address for
the GO command.

The last address format in Fig. 5.5 shows how a storage location in memory
can be referenced for an indirect address. Notice that the expression that specifies
the memory address is simply enclosed with a set of square brackets. For example,
the command

TUTOR 1.3 > GO [100]

indicates that execution is to resume at the address held in memory location 000100|g.

For the purpose of our discussion, we will divide the commands of Tutor's
command set into four groups. These groups are the register display/modify

132 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

commands, the memory display/modify/search commands, the program execution
control commands, and the I/O control commands. In the sections that follow, we
will study the commands in each of these categories.

5.5 REGISTER DISPLAY/MODIFY COMMANDS

The first group of Tutor commands that we will examine in detail are those in the
register display/ modify group. The commands that are in this group are shown in
Fig. 5.6. These commands give the programmer the ability to display and modify
the contents of the internal registers of the 68000 as well as the software offset registers
of the Tutor monitor.

The ability to examine the contents of the 68000's internal registers is essential
for debugging the execution of programs. For instance, the contents of a register
can be examined prior to and just after the execution of an instruction. In this way,
we can verify that the instruction performed its intended function. Moreover, we need
to use the modify capability of these commands to initialize the contents of internal
registers before executing an instruction or the complete program.

One way of displaying the contents of the internal registers of the 68000 is by
using the display formatted registers (DF) command. In Fig. 5.6, we find that this
command is issued to the monitor by responding to the command prompt by first
entering DF and then depressing the carriage return (cr) key. That is.

Comm and
Meaning Format

Explanation

DF Display formatted

registers

DF Displays the contents of

the 68000's internal

registers
.AG to .A7 Display/set .<Register> Display the contents of
.DO to .D7 registers the specified registers
PC

.SR .<Register><Data> Loads the specified
SS

register with the
.US

specified data
OF Display offset

registers OF
Display the contents of
the offset registers

.RO to .R6 Display/set

offset register

.RX

.RX<Data>

.RX<Data> + RX

Display the specified
offset register contents
Loads the specified

offset register with

the specified data

Loads the specified

offset register with

the specified data via
RX

Figure 5-6 Register display/modify commands.

Sec. 5.5 Register Display/Modify Commands 133

TUTOR 1.3 > DF (cr)

Execution of the DF command causes the contents of all of the registers within
the 68000 to be displayed in the format shown in Fig. 5.7. Looking at this information,

we find that the current value in the program counter (PC) is 00009072,^; the current

value in Dq is 0000FF0D,g; and the current value in Aq is 00010040,6. Notice that
the last line displayed is the address, machine code, and assembly language version
of the instruction pointed to by the current value in PC.

TUTOR 1.3 > DF

PC=0000'?C72 SR=2700=.S7 US=FFFFFFFF SS=00000756
DO=0OOOFF0D 01=00000000 02=12100010 03=00000000
04=00000231 D5=00000FFF 06=00000004 07=00000000
A0=00010040 A1=FFFFFFFF A2=00000414 A3=00000554
A4=00009FAC A5=00000540 A6=00000540 A7=0000075(b
 009C72 41F900010040 LEA.L «00010040,AO

TUTOR 1.3 ̂

Figure 5-7 Register data display format for the DF command.

Example 5.1

In Fig. 5.7 what is the value displayed for the current value held in the user's stack pointer
register?

Solution. Looking at the first line of register information in Fig. 5.7, we find that the

value of the user's stack pointer is that preceded with the mnemonic US and that it's
current value is

US = FFFFFFFF,g

The DF command does not let us examine the contents of just a specific register

or modify the value held in a register. To do these types of operations, we must use
another command, the display/set registers command. This is the second command

in the chart of Fig. 5.6. As shown in the format column of this chart, the display/set

register command can be initiated by entering a "." followed by the name of the
register whose contents are to be displayed and then depressing carriage return (cr).
This form of the command is used to examine the contents of a register. For instance,

to examine the contents of data register D5, the keyboard entry is

TUTOR 1.3 > .D5 (cr)

The monitor responds to this command by displaying the value held in D, in the form

.D5=00000FFF

Example 5.2

What is the effect of issuing the command

TUTOR 1.3 > .SS (cr)

Solution. This command causes the monitor to display the value held in the user's stack
pointer register in the form

.SS = 00000756

134 Using the MC68000 Educational IVIicrocomputer for Program Development Chap. 5

To modify the value in a register, such as D5, the second command format in
Fig. 5.6 is used. Here we see that the command is initiated in the same way as we

just did to examine the register contents, but this time the new value of data is entered

prior to depressing (cr). For example, to load the value AAA(g into D5, the command
is

TUTOR 1.3 > .D5 AAA (cr)

When this command is executed by the monitor, D5 is loaded with the value

OOOOOAAA[g. This can be verified by displaying the new value in D5 as follows

TUTOR 1.3 > .D5 (cr)

.05=00000 AAA

Example 5.3

Show the command sequence needed to initialize PC with the value 2000,^ and A3 with
the value 2500)^. Verify this initialization with a DP command.

Solution. The new values are loaded into PC and A3 with the commands

TUTOR 1.3 > .PC 2000 (cr)

TUTOR 1.3 > .A3 2500 (cr)

and initialization is verified with the command

TUTOR 1.3 > DF (cr)

The information displayed as a result of executing these commands is shown in Fig. 5.8.

TUTOR 1.3 > .PC 2000

TUTOR 1.3 > .A3 2500

TUTOR 1.3 > DF
PC=00002000 SR=2700=.S7 US=FFFFFFFF SS=00000756
D0=OOOOFFOD D1=00000000 D2=12100010 03=00000000
04=00000231 D5=OOO0OFFF 06=00000004 07=00000000
A0=00010040 A1=FFFFFFFF A2=00000414 A3=00002500
fi4=0000'?FAC A5=00000540 A6=00000540 A7=00000756
 002000 FF5B DC.W *FF5B

TUTOR 1.3 >

Figure 5-8 Display sequence for example 5.3.

The last two commands in Fig. 5.6, display offset registers and display /set offset

registers, operate similar to the commands we just introduced; however, these

commands are used to examine or modify the contents of the monitor's software

offset registers instead of the 68000's internal registers. For instance, the values in
all of the offset registers are displayed by entering the command

TUTOR 1.3 > OF (cr)

To examine the value held in a specific offset register, we use the display/set

offset register command. For example, the command

TUTOR 1.3 > .RO (cr)

Sec. 5.6 Memory Display/Modify/Search Commands 135

displays the contents of offset register Rq. This same command can be used to modify

the value in offset registers Rq through R^. As an example, let us change the value

held in Rq to FOOO,g. This is done by issuing the command

TUTOR 1.3 > .RO FOOO (cr)

It is important to note that when modifying the contents of an offset register

other than Rq the value held in Rq is always added to the data entered as part of the
command before it is loaded into the specified register. That is, the command

TUTOR 1.3 > .Rl FF (cr)

is really equivalent to the command

TUTOR 1.3 > .Rl FF+RO (cr)

Assuming that Rq already contains F0O0,g, the value loaded into R, when this
command is executed is

R, = FF,6 + Rq

= FF,6 + F000,6 =F0FF,6

Remember that the value in R7 is always 00000000|g. Therefore, it can be used
as the reference register if we want to load an offset register with a value and not

have the current value in Rq added. For instance, issuing the command

TUTOR 1.3 > .Rl FF+R7 (cr)

causes just the value FFj^ to be loaded into Rj.

5.6 MEMORY DISPLAY/MODIFY/SEARCH COMMANDS

In the last section, we learned how to use Tutor commands to examine or modify

the contents of the internal registers of the 68000 microprocessor. The second group

of commands we will examine, the memory display /modify /search commands, are

the ones that allow the programmer to display or change the contents of storage

locations in memory or search through a block of memory locations looking for

specific data. These capabilities are essential for both debugging of programs and
for initializing memory before executing an instruction or program. The commands
in this group are summarized in Fig. 5.9. Let us next look at each of these commands
in detail.

Examining Memory— MD

To examine the contents of memory. Tutor provides the memory display (MD)

command. In Fig. 5.9, we see that the general format for this command is

MD [<port number >] < address > [< count >] [;< options >]

The port number field determines the output device to which the memory data that
is to be examined is output. Remember that the MC68000 educational microcomputer

136 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

Command Meaning Format
Explanation

MD Memory display MDKport number>) Displays the contents
<address> i<count>l of the specified

|;<options>| number (count) of
bytes of memory

starting from the
given address, by

outputting them to
the specified port as
hexadecimal data

MM Memory modify MM <address> The byte contents of

|;<options» the specified address
are displayed or
modified

M M <address>

(;<options>l
MS Memory set MS <address> <data> Loads the list of

data starting at the

specified address

BF Block fill BF <starting address> Fills the block of

<ending address> memory locations
<data> beginning at starting

address and
continuing through

ending address with
the word specified as

data
BM Block move BM <starting address> Moves the contents of

<ending address> the block of memory

<destination address> locations beginning

at starting address
and continuing

through ending

address to another
block of memory

locations starting at
destination address

BS Block search BS <starting address> Scans the block of

<ending address> memory locations

'literal string' from starting address
through ending

address for the literal

string or data

BS <starting address>

<ending address>
<data> i<mask>|

l;<options>|

Figure 5-9 Memory display/modify/search commands.

Sec. 5.6 Memory Display/Modify/Search Commands 137

has three ports that can be used as outputs: port 1 , which is the port where the terminal
is connected; port 2, which is the host computer interface; and port 3, which is for
the printer. Any of these three port numbers can be specified in the port number
field. If no port number is entered, the default port, which is port 1 , is used by Tutor
and the information is displayed on the screen of the terminal.

The next field is for the address of the storage location at which we will begin
to examine memory. In the MC68000 educational microcomputer, data storage
memory is located in the address range from 000900, ^ through 007FFF,g. However,
the address entry made as part of an MD command does not need to be restricted
to this range. Information from the program storage memory part of the address
space also can be displayed. The count field tells the monitor how many of the bytes
of data that follow the specified starting address are to be displayed. This field is
also optional, and if no entry is made a default value of 16 is used. Finally, the option
field is related to use of the disassembler, which we will discuss in a later section.

Notice that the only field other than the command field that is not optional
is the address field. Let us assume that the default port is to be used and that no
count or options are to be specified. Then the command format simplifies to

MD < address >

and if we want to display the contents of the first 16 bytes of data memory the
command is

TUTOR 1.3 > MD 900 (cr)

Execution of this command causes Tutor to display the data shown in Fig. 5.10. Here

we see that the starting address 000900,5 '^ displayed at the left margin and the 16
bytes of data in the range 000900, ^ through 00090F,g are listed one after the other
to the right.

TUTOR 1 . 3 MD 900
000901.) EE 7b FF FF FF FF FF FF FF FF FF FF FF FF FF FF nl

TUTOR 1.3 ̂ -
000910 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000920 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000930 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000940 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000950 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000960 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
000970 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00098O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000990 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000960 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOAOO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR

Figure 5-10 E.vamining the contents of memory with the MD command.

138 Using the l\/IC68000 Educational Microcomputer for Program Development Chap. 5

Once a memory display command operation has been initiated, the next 256
consecutive bytes in memory can be displayed by simply responding to the Tutor
prompt by depressing the return key. For instance, if the next command is

TUTOR 1.3 > (cr)

the data for storage locations 000910ig through OO0AOF,g are displayed, as shown
in Fig. 5.10.

Another example is the command

TUTOR 1.3 > MD 1000 15 (cr)

Since the count is expressed in hexadecimal form, we would expect the command
to cause values in the 21 storage locations from address 1000,6 through 1015i6 to
be displayed. However, this is not exactly what happens. The way the MD command
works is that it always displays groups of 16 storage locations. Therefore, for this
command, the contents of the 32 storage locations from 1000, ̂ through 101 F,^ are
actually displayed.

Example 5.4

How many bytes of data are displayed when the command

TUTOR 1.3 > MD 1200 40 (cr)

is executed? What is the range of the addresses that are examined with the command?
Rewrite the command with the count specified in decimal form.

Solution. The count in the command is 40|g. In decimal form, this is the number 64.
Therefore, 64 bytes of data are displayed with the command. The starting address of

the range of memory that is examined is 1200, g and the ending address is 123F,g.
To use the decimal value of the count in the command, we must precede it with

the & symbol. This gives

TUTOR 1.3 > MD 1200 &64 (cr)

Modifying Memory— MM, MS, BF, and BM

The MD command lets us examine data that are stored in memory, but it does not
let us change the value of these data. For use in modifying the contents of memory,
Tutor is provided with four commands: memory modify (MM), memory set (MS),
block fill (BF), and block move (BM). In general, these commands give the
programmer the ability to change individually the contents of storage locations in
memory, initialize a block of storage locations with specific data, and copy the contents
from one block of memory locations to another block of locations in memory.

The format of the memory modify (MM) command is shown in Fig. 5.9. Here
we see that it is initiated by entering MM followed by the address of the memory
location whose value is to be changed. If no option is included as part of the command,
its execution causes the byte of data stored at < address > to be displayed on the
screen. For instance, the command

TUTOR 1.3 > MM 900 (cr)

Sec. 5.6 Memory Display/Modify/Search Commands 139

causes the following information to be displayed

000900 00 ?

We have assumed that the original data held at address 900,5 '^ ̂ ^16- Notice that
the cursor is displayed following the question mark. This is because the command
is not yet complete and the monitor is waiting for another entry. If the data that
is displayed is already the value that is needed at address 900, g, the response is simply
to depress the return key. This entry causes the contents of the next consecutive byte
of data to be displayed in the form

000901 00 ?

Let us assume that the value at address 901, g is to be FF,^. To make this change,
we simply enter the new value and then depress return. Therefore, the displayed
information on the screen now looks like

000901 00 ?FF

000902 00 ?

Assume that these two memory locations are the only ones that need to have their
contents initialized. Since this has already been done, the MM command can now
be terminated. To do this, type in the period (.) symbol and then depress the return
key. This entry results in display of the lines of information that follow

000902 00 ? . (cr)

TUTOR 1.3 >

The monitor is now waiting for a new command to be entered. The series of
information displayed for this command is shown in Fig. 5.11.

TUTOR 1.3 ,■■ MM 900
000900 00 ?
000901

00

?FF
000902 00 ?. Figure 5.11 Examining and modifying

the contents of memory with the MM
TUTOR 1.3 command.

By including an option as part of the command, we can control the way in which
data are displayed and modified. In the example we just used to illustrate the operation
of the MM command, memory was displayed and modified one byte at a time. This
is the default mode of operation. However, by adding the option ; W after the address,
we can display and modify memory data as words. For instance, our earlier example
also could have been performed as

TUTOR 1.3 > MM 900; W (cr)

000900 0000 ?00FF (cr)

000902 0000 ? . (cr)

TUTOR 1.3 >

140 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

Notice that inclusion of the ;W option caused the word contents of address 900, ̂
to be displayed as 0000, g and then we changed the complete word by entering OOFF,^.

Another option allows us to display memory contents as long words. This is
the ;L option, and an example using it is the command

TUTOR 1.3 > MM 1004;L (cr)

Execution of this command displays the data held at memory addresses 1004, g
through 1007,5 as a long word.

001004 00000000 ?

With what we have learned up to this point, there are just three responses we
can issue after the ? symbol. They are: depress (cr) to display the contents of the
next long word address; key in a new value of data for the current long word address
and depress (cr); or terminate the command by entering the . symbol followed by
(cr). However, the MM command does allow other entries. Let us now look at them

briefly. One choice is to enter the symbol" and then depress (cr). For instance, the command entry can be

001004 00000000 ? " (cr)
This causes the address to be decremented instead of incremented to display the

contents of the new address. Therefore, the data at long word address 0010(X),g is
displayed

001000 OOFFOOOO ?

The last way of completing an MM entry is to enter a new value followed by
the = symbol and a (cr). This entry updates the value at the current address and
then redisplays it to verify that the change has taken place. For instance, if we load

long word address 001000,^ with the value FFFFFFFF|g the displayed response is

001000 00000000 ? FFFFFFFF = (cr)

001000 FFFFFFFF ?

There are two other options that can be used in the MM command. They are
;0, which stands for display odd bytes only, and ;V, which stands for display even
bytes only. These commands are useful in conjunction with examining and modifying
the contents of internal registers of LSI I/O devices. This is because their registers
typically reside at consecutive odd or even addresses.

Example 5.5

Explain what is being done with the command sequence that follows

TUTOR L3 > MM 1200;L (cr)

001200 00000000 7FFFFFFFF (cr)

001204 00000000 ? FFFFFFFF (cr)

TUTOR 1.3 >

Sec. 5.6 Memory Display/Modify/Search Commands 141

Solution. This series of long word memory modify commands initialize the eight bytes

of memory from address 1200|g through 1207jg with the value FFjg.

Another command that can be used to initialize memory is memory set (MS).
Looking at the general format of the memory set command in Fig. 5.9, we see that
it differs from the memory modify command in that the data to be entered is included
in the command right after the address. This data can be a string of up to eight
hexadecimal numbers or ASCII characters. In fact, multiple strings of data with up
to eight numbers or characters can be entered in the data field. When doing this,
the strings must be separated by a space.

An example of an MS command that is used to load hexadecimal numbers is

TUTOR 1.3 > MS 2000 ABCD (cr)

Execution of this command causes AB,g and CD^^ to be loaded into memory at
addresses ZOOOjg and 2001, g, respectively. Another example is

TUTOR 1.3 > MS 2000 'ABCD' (cr)

Here the single quote marks around the data field indicate that the data are ASCII
data and not numeric data. Therefore, execution of this command loads the four

bytes of memory starting at address 2000[g with the codes for characters A, B, C,
and D. That is, the values 41, 42, 43, and 44 are stored starting at address 2000[6.

Example 5.6

Write an MS command that performs the same function as the MM commands given
in Example 5.5.

Solution. The MM commands in Example 5.5 load the eight bytes of memory starting

at address 1200, ̂ each with the value FF,g. This operation can be done with the single
MS command

TUTOR 1.3 > MS 1200 FFFFFFFF FFFFFFFF (cr)

In Examples 5.5 and 5.6, we showed how a block of consecutive memory
locations can be filled with the same value. This type of operation is better performed
with the WocA:y7//(BF) command. As shown in Fig. 5.9, the first field of the command
is the starting address of the block of memory locations. It is followed by the ending
address of the block and the word of data that is to be stored into these locations.
Notice that the data is always entered as a word; therefore, both the starting and
ending addresses must be word addresses. That is, they both must be even. To perform
the same operation as done in our earlier examples, the BF command is written as

TUTOR 1.3 > BF 2000 2006 FFFF (cr)

and its execution loads word addresses 2000,6 through 2006, ̂ with the value FFFF,g.
The block fill command is the most efficient command to use when initializing

large blocks of memory. For instance, the command

TUTOR 1.3 > BF 900 9FE 0000 (cr)

could be used to clear the first 256 words of data memory.

142 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

The last command that can be used to modify the contents of memory is the
block move (BM) command. It can be used to copy a block of data that already exists
in one location in memory, called the source block, to another location, called the
destination block. Looking at Fig. 5.9, we see that the command requires three
addresses. The first two addresses identify the starting and ending points of the source
block, while the third address identifies the starting location of the destination block.
For instance, the command

TUTOR 1.3 > BM 1000 lOFE 1200 (cr)

copies the contents of the 128 word addresses in the range 1000,5 through lOFEjg

to the block of storage locations from 1200ig through 12FEig. During the execution
of the command, the data in the source block is not affected in any way.

Block Search Command— BS

The last of the commands given in Fig. 5.9 is the block search (BS) command. This
command can be used to scan through a specified block of memory locations looking
for the occurrence of a special data pattern or string of characters. The general format
of the command is given in Fig. 5.9. Here we see that the first two fields are the
starting and ending addresses of the block of storage locations. The third field is
for entry of the data pattern or character string. For example, to search for the ASCII
character string ABCD in the memory range from lOOOjg to 1500ig, the command is

TUTOR 1.3 > BS 1000 1500 'ABCD' (cr)
Every time a match to the character string is found, the starting address of the string
and the character string are displayed. For instance, if the pattern ABCD was found
starting at address 1034ig, the information displayed is

001034 'ABCD'
Looking at Fig. 5.9, we find that the block search command for a numeric data

pattern also can include an optional mask and option. For now, let us assume that
there is no mask and look at what options are available. The three allowed options
are ;B, ;W, and ;L, and they stand for byte, word, and long word, respectively. If
no option is entered, the default option, which is byte, is used. An example that uses
the default option is the command

TUTOR 1.3 > BS 1000 1500 AB (cr)

When this command is executed, a search is made of all byte- wide storage locations
in the block of memory looking for the data pattern ABjg, and the address and data
pattern are displayed for each match condition that is found. If this command is
modified with the ;W option, we get

TUTOR 1.3 > BS 1000 1500 ABAB ;W (cr)

The search performed by this command differs from that performed for the previous
command in that a match condition requires a word-wide occurrence of the pattern.
That is, the search is for the pattern ABAB,g.

Sec. 5.7 Commands for Control of I/O Resources 143

The mask field makes the block search command more versatile. The

specification of a mask allows us to ignore some of the bits of the data pattern. In
this case, the mask and data pattern are ANDed together and the bits that are masked
off are not used in the comparison with the data being searched. Therefore, all bits
that are logic 0 in the mask are set to 0 in the data pattern and are ignored. For
instance, in the command

TUTOR 1.3 > BS 1000 1500 AB FO (cr)

ANDing the data pattern AB|g with the mask FO,g masks off the four LSBs and they

are don't-care bits. For this reason, during the search the match condition is based

on the data pattern of AX, 5. Here the X stands for a don't-care byte; therefore, all
bytes that have A,g in their most significant byte location represent a match condition.
The original contents of the storage location are displayed along with the address.

5.7 COMMANDS FOR CONTROL OF I/O RESOURCES

The MC68000 educational microcomputer has four I/O ports that are provided for
reception of data from or transmission of data to peripheral devices such as a terminal
and printer. These ports are shown in Fig. 5.2. Here we find that the terminal, which
provides the keyboard input and display output of the microcomputer, connects to
port 1; port 2 is for a modem through which the microcomputer can be connected
to a host computer; port 3 is the port that is used to attach a printer to the
microcomputer; and port 4 is provided for connection of a cassette player/recorder.

Tutor's command set includes four commands that are for control of these I/O
resources. These commands are listed in Fig. 5.12.

Let us start by looking at the function of the commands that control the printer's
interface (port 3). The first two commands in Fig. 5.12, printer attach (PA) and «o
printer attach (NOP A), allow the programmer to select or deselect the printer. The
PA command is issued as

TUTOR 1.3 > PA (cr)

and when executed it directs information that is normally output on the display at
port 1 to the printer at port 3 as well. That is, now the information is both displayed
and printed. If we no longer want the information to be printed, the NOPA command
must be issued as

TUTOR 1.3 > NOPA (cr)

After executing this command, data are no longer directed to the printer. They are
again only displayed at the terminal.

The two serial communication ports of the microcomputer can be configured
with a variety of operating characteristics. The operation of each port is defined by
four port parameters. They are its format, character nulls, carriage return nulls, and
options. The port format (PF) command can be used either to display the current
port parameters of both port 1 and port 2 or to change the parameters to give a port
new operating characteristics.

144 Using the MC68000 Educational Microcomputer for Progrann Development Chap. 5

Command Meaning Format
Explanation

PA Printer attach PA Attaches the printer so that
information sent to the

terminal is also printed

NOPA No printer attach NOPA Disconnects the printer
from the microcomputer
so that information

output to the terminal is
not printed

PF
Port format PF Kport number>] Displays or modifies the

characteristics of the

serial ports: format,
character nulls, CR

nulls, and options

TM Transparent mode TM [<exit character>l Enters the transparent

Ktrailing character>] mode and specifies the
exit and trailing
characters

DU4 Dump onto DU4 <starting address> Dumps the contents of
cassette tape <ending address> the specified address

range to port 4 where it
is saved on cassette tape

VE4 Verify cassette
VE4

Verifies that the data
tape

saved on tape matches
the contents of memory

L04 Load from L04 Loads memory with the
cassette tape data held on a cassette tape

Figure 5-12 Commands for control of the I/O resources.

The format parameter specifies the number of stop bits used during the
transmission and reception of character data. Either one or two stop bits can be
assigned. One stop bit is selected by making the format parameter equal to 15 and
two stop bits are selected by making it 11.

Nulls are needed when communicating with slow-reacting devices such as a
printer. For instance, when a carriage return is sent to the printer, a short interval
of time is required to move the printhead back to the beginning of the next line. In
such a case, nulls may be sent out to the printer before any more character information
is output. These are what are called carriage return nulls. Moreover, if the baud rate
is very high, nulls may need to be sent out after each character as well. These nulls
are called character nulls. The number of carriage return and character nulls that
are output can both be set with the PF command.

The last characteristic of the two serial ports that can be changed with the PF
command is their options. The options specify a RAM address where 6 bytes of

Sec. 5.7 Commands for Control of I/O Resources 145

information are stored. This information is used during what is called transparent
mode of operation. When in this mode, the terminal port gets directly connected to
the host computer port.

The syntax of the port format command is shown in Fig. 5.12. An example
where PF is used to display the characteristics of both ports is

TUTOR 1.3 > PF (cr)

FORMAT =15 15

CHAR NULL = 00 00

C/R NULL = 00 00

OPTIONS = @XXXXX

Here we see that both ports are set for one stop bit, no character nulls, and no carriage
return nulls.

To change the characteristics of a port— for instance, port 2— we begin by issuing
the command

TUTOR 1.3 > PF2 (cr)

Tutor responds by displaying the current format setting and prompts with a ? for
entry of a new value. That is,

FORMAT = 15?

At this point, (cr) can be depressed if the value of format is not to be changed.
However, let us assume that it is to be changed for two stop bits. Then the entry is

FORMAT = 15? 11 (cr)

After this entry is made, the character null parameter is displayed as

CHAR NULL = 00?

Assuming that this parameter is not to be changed, the entry is simply

CHAR NULL = 00? (cr)

and then the carriage return null parameter is displayed

C/R NULL = 00?

We will change this parameter to 4; therefore, the entry is

C/R NULL = 00? 4 (cr)

The next command in Fig. 5.12 is the transparent mode (TM) command
Transparent mode operation can be initiated by issuing the command

TUTOR 1.3 > TM (cr)

Execution of this command connects the terminal port and the modem port together.
In this way, the terminal port is connected directly to a host computer; therefore,
commands can now be issued to Tutor from the host computer. When transparent
mode is initiated in this way, default values, which are CTRL A and CRTL X, are
used for what are called the exit character and trailing character parameters.

146 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

When operating in the transparent mode, the microcomputer accepts inputs from
the host computer just as though it was the terminal. However, it also watches the
input from the host computer for the occurrence of an exit character (CTRL A).
If the exit character is received, transparent mode is exited and Tutor once again
accepts inputs from the terminal at port 1.

5.8 ASSEMBLING INSTRUCTIONS AND PROGRAMS

The assembly language instructions of a source program are not in a form that can
be executed by a 68000-based microcomputer. They first must be converted to their
equivalent machine language instructions. We pointed out earlier that the program
used to convert assembly language instructions to machine language is called an
assembler. Let us now look at how the Tutor monitor can be used to assemble and
disassemble instructions of a program.

The Line-by-Line Assembler

The assembler provided in the Tutor monitor of the MC68000 educational

microcomputer is what is called a line-by-line assembler. It is an assembler that
translates each line of source code into its equivalent machine code as it is entered
from the keyboard of the terminal and then stores the machine code in memory.

Use of a line-by-line assembler imposes a few restrictions on the writing of source
programs. For instance, it does not allow the programmer to use labels or symbols;
instead, the specific memory address or numeric data must be entered into the
instruction.

Assembly Language Statement Syntax

When entering assembly language statements into the microcomputer with the
line-by-line assembler, certain syntax must be used. Syntax is the rules that govern
how assembly language source statements are to be written. Source programs written
for the MC68000 educational microcomputer can consist of two types of statements.
The first type, called an instruction statement, specifies an instruction of the program.
The other type, which is called a directive, defines a constant that is to be used by

the program. We will begin by looking at the syntax of instruction statements.
The notations and syntax that we used for writing instructions in Chapters 3

and 4 are those required by the line-by-line assembler of the MC68000 educational
microcomputer. Therefore, we will briefly review this format here. All instruction
statements in a source program must have the following format

 < operation field > [< operand field >]

Here, the first _ means that a space must be entered at the beginning of every
source statement and the second means that a space must be used to separate
the operation field from the operand field. Moreover, notice that the operand field

Sec. 5.8 Assembling Instructions and Programs 147

is enclosed in square brackets ([]). This means that the field is optional in some
instructions.

The operation field part of the instruction statement format specifies the
operation that is to be performed. That is, the mnemonic for the instruction. For

instance, when writing an addition instruction for long-word data, this field is filled
with ADD.L. The operand field specifies the operand or operands that are to be
processed during the execution of the instruction. For example, the source operand
could reside in data register Dj and the destination operand could reside in data
register D,. Therefore, the add instruction statement would be written as

ADD.L D1,D2

Now that we have reviewed instruction statement format, let us continue with

the directive. Only one directive is accepted by the line-by-line assembler. It is called
define constant (DC.W) and is used to define a constant in a word storage location
in memory. The define constant directive uses the same format as we just showed
for the instruction statement. An example is

DC.W SAOOO

Entry of this directive assigns the value AOOOj^ to the current memory location.
Tutor allows the programmer to specify the operands in instructions or directives

with decimal numbers (no prefix), hexadecimal numbers ($ sign prefix), or ASCII
strings (enclosed in apostrophes). For instance, if the earlier directive was written as

DC.W 7000

the binary equivalent of decimal number 7000 is loaded into the storage location.
Moreover, if the directive is written as

DC.W AA'
the ASCII form of character A is loaded into both the most significant byte and least
significant byte of the current memory location.

Assembly and Disassembly of Instructions

The line-by-line assembler function is one of the optional modes of operation for
the memory modify (MM) command. Actually the operation provided by this
command is a combined disassembler/assembler function. It is invoked by specifying
disassemble instruction (DI) as the option. Therefore, the general syntax for the
command is

TUTOR 1.3 > MM < address >;DI

The value of address specified in the command is the starting address of the machine
code instruction when it is assembled into memory.

For instance, to assemble the instruction

MOVE.B D5,D0

148 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

into memory starting at address 002000,5, we bring up the assembler with the
command

TUTOR 1.3 > MM 2000;DI (or)

Tutor responds to this command by displaying

002000 2248 MOVE.L AO.Al ?

This demonstrates the disassembler mode of operation. Notice that the current

contents held at address 002000]g are displayed as 2248,5 ̂ "'^ ̂ ^^^ ̂ ^'^ '^ ̂ ^^ machine
code for the instruction

MOVE.L AO.Al

To replace this instruction with the new instruction, we must assemble the instruction
into memory. This is done by simply typing it following the ? prompt and then
depressing the carriage return key. That is,

002000 2248 MOVE.L AO.Al ? MOVE.B D5,D0 (cr)

Remember that for correct syntax a space must be entered before MOVE.B and
another before Dj. Tutor responds to this entry by displaying the information that
follows:

002000 1005 MOVE.B D5,D0

002002 4EF81012 JMP.S $00001012 ?

Here we find that the first line of displayed information consists of the starting address

of the instruction, which is 002000,^, followed by the machine code form of the
instruction, 1005,6, ̂ "'^ '^^ assembly language instruction statement

MOVE.B D5,D0

This completes the assembly operation. However, notice that the next sequential
instruction has been disassembled and displayed as a second line of information. It
is again followed by the ? prompt. We can now either enter another instruction or
terminate instruction disassembly/assembly by entering period (.) followed by carriage
return (cr). Let us assume that instruction assembly is to be terminated, then the entry
is

002002 4EF81012 JMP.S $00001012 ? . (cr)

and Tutor responds by prompting for a new command

TUTOR 1.3 >

The assembly of this instruction is shown in Fig. 5.13.

TUTOR 1.3 MM 2000; DI
002000 1005 MOVE.B D5 , DO
002002 4EF81012 JMP.S *00001012 ?.

Figure 5-13 Assembly of an instruction.

Sec. 5.8 Assembling Instructions and Programs 149

When a source statement is entered, the line-by-line assembler first checks it
for correct syntax. If invalid syntax is encountered, the assembler responds by
displaying an error message and then prompts for reentry of the statement. The error
conditions may be due to an attempt to access a location at which no memory exists,
use of improper characters or symbols, use of too large a number, use of an invalid
opcode, or even a missing space where one is required. In most cases, the error
condition can be rectified simply by reentering the instruction. The error messages
and the conditions which generate them are discussed in the MC68000 educational

microcomputer's user's manual.
Let us assume that we want to assemble the instruction

OR.B D5,(A6)

at address 006000|^. Using the memory modify command, we enter

TUTOR 1.3 > MM 6000;DI (cr)

06000 FFFF DC.W SFFFF ?OR.B D5, (A6) (cr)

Notice that we forgot to leave a space after the prompt before beginning to type in

the instruction's mnemonic. This is a syntax error. Therefore, Tutor responds with
X?

which means that a syntax error has been identified. To correct the syntax error,
we just reenter the complete instruction after the ? this time preceding OR with a
space. That is,

X? OR.B D5, (A6) (cr)

After this entry is made. Tutor responds with

006000 8B16 OR.B D5, (A6)

006002 00000000 OR.B m, DO ?

Here 006000, ^ is the address at which the instruction is entered into memory and
8B16,g is the machine code for the OR instruction. This operation of the assembler
is shown in Fig. 5.14.

TUTOR 1.3 > MM 6000;DI
006000 1005 MOVE.B D5,D0 ?OR.B D5,(A6)

(a)

006000 X? OR.B D5,(A6)

(b)
006000 8B16 OR.B D5,(A6)
006002 00000000 OR.B #0,D0?

(0

Figure 5-14 (a) Syntax error in the entry of an instruction; (b) Tutor's response
to a syntax error; (c) corrected instruction entry.

150 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

The disassembly capability of the MM command also can be used to view
instructions stored in memory without modifying them. To do this, we initiate the
disassemble/assembly mode of operation and then respond to the prompt for a new
instruction by simply depressing (cr). In this way, the machine code and assembly
language statement is displayed for one instruction after the other. Figure 5.15 shows
the disassembly of three instructions.

TUTOR 1.3 ; MM 6000; DI
006000 8B16 OH.b D5,(A6) ?
006002 00000000 OR.B #0 , DO ?

006006 00000000 OR.B #0,D0 ''.

Figure 5-15 Disassembly of an
TUTOR 1.3 > instruction.

Assembly/Disassembly of a Complete Program

Now that we have shown how to assemble an instruction into the memory of the
MC68000 educational microcomputer and also disassemble it to verify its loading,

let us look at how a complete program is loaded with the line-by-line assembler. The
assemble option of the MM command allows for easy entry of a series of instructions.
The starting address of the program is first set up as part of calling up the
line-by-line assembler. Then one instruction after the other is typed in and after each
instruction the carriage return key is depressed. When the last instruction of the
program has been entered, the assembly process is terminated by entering . and then

(cr).
Here we will show how to enter the program in Fig. 5.16 into the memory of

the microcomputer. Let us begin by briefly describing the operation of this program.

The program in Fig. 5.16 implements what is known as a block-move data transfer
operation. Its function is to move a block of data called the source block from one
location in memory to another location called the destination block. The source block
of data starts at memory address 001000, ^ and is 16 words in length. It is to be moved
to a destination block, which starts at address 002000|g. That is, execution of the
program causes the contents of each address in the source block to be copied into
the corresponding address in the destination block. For instance, if before the program
was executed all storage locations in the source block contained FFFFjg and all
storage locations in the destination block contained 0000,^, at completion of executing
the program all storage locations in both blocks would contain FFFF,g.

Let us assume that the program in Fig. 5. 16 is to be entered into memory starting
at address 003000,^. To do this, a memory modify (MM) command with the DI
option specified is first used to bring up the assembler. This is done by issuing the
command

TUTOR 1.3 > MM 3000;DI

Tutor responds with

003000 1005 MOVE.B D5,D0 ?

Sec. 5.8 Assembling Instructions and Programs

NXTPT

HERE

LEA
LEA
MOVE.L
MOVE.W
SUBQ.L
BNE

BRA

$1000,A1
$2000,A2
#16,D0

(A1)+,(A2) +

NXTPT

HERE

SOURCE BLOCK STARTS AT $1000
DESTINATION BLOCK STARTS AT $2000
BLOCK LENGTH EQUALS 16 WORDS
MOVE WORD AND POINT TO NEXT WORD
UPDATE COUNT
REPEAT FOR NEXT WORD

Figure 5-16 Block transfer program.

Here we have assumed that the memory location 003000, g originally contains 1005[5,
which when disassembled is the instruction

MOVE.B D5,D0

The ? displayed at the end of the disassembled instruction is a prompt for us to enter
the new instruction. Now we enter the first instruction of the program preceded by

a space. The display appears

003000 1005 MOVE.B D5,D0 ? LEA SlOOO.Al (cr)

Execution of this command replaces the current contents of address 003000,5 and

prompts for entry of the next instruction. The response displayed on the screen of
the terminal is

003000 43F81000 LEA $1000,A1

003004 DC.W $FFFF ?

The next instruction is now entered followed by (cr):

003004 DC.W SFFFF ? LEA $2000,A2 (cr)

In the same way, the rest of the instructions of the program are entered as follows:

003008 DC.W SFFFF ? MOVE.L #16,DO (cr)

003014 DC.W SFFFF ? BRA * (cr)

Notice that the last instruction is followed by a period and a carriage return. This

entry is required to exit the line-by-line assembler. The resuhs produced by assembling
this program are shown in Fig. 5.17.

Since the program is entered using a line-by-line assembler, symbols and labels
cannot be used. For instance, the label NXTPT in the BNE instruction is replaced

by the starting address of the instruction MOVE.W (Al)-l- ,(A2)-f , which is 300,6.
When a forward label reference is encountered, the corresponding addresses may not

be available as yet. In this case, the label can be entered as a '*' as a first step. When
the rest of the program has been entered, the addresses will be known and the

instructions that contain asterisks can be reentered with the correct values of addresses.

152 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

TUTOR 1.3 ;> MM 3000; DI
003000 43FS1000 LEA

tiooo,
Al

003004 45F82000
LEA

*2000 A2

003008 203C00000010 MOVE L
#16,Di

00300E
34D9

MOVE M

(Al 1 +

<A2)

003010 5380 SUBQ L #1,D0

003012 66FA BNE *300E

003014 60FE BRA «
003016 FFFF DC.W *FFFF ?.

TUTOR 1.3 >

Figure 5-17 Assembling the block transfer program into memory.

We can disassemble a series of instructions that are stored at sequential memory
addresses by initiating the disassemble process by using the memory display (MD)
command. Assuming that the information is to be displayed on the terminal, the
general format of the disassemble command is

MD <address> [<count>];DI

In this command statement, <address> is the starting address of the first instruction
in the group of instructions that are to be disassembled; the optional count specifies
the number of consecutive bytes that are to be disassembled; and DI selects disassemble
mode of operation. For instance, to disassemble the instructions of the program we
just loaded into the memory range from address 003000,6 ̂ ° OOSOHj^, the command
is issued as

TUTOR 1.3 > MD 3000 16;DI

The information that is displayed for this command is shown in Fig. 5.18.

TUTOR 1 .3 :> MD 3000 lfa;DI
003000 43F81000 LEA.L «00001000,A1

003004 45F82000 LEA.L *00002000 , A2

003008 203C00000010 MOVE.L #16, DO

00300E 34D9 MOVE.W
(Al)+, (A2) +

003010 5380 SUBQ.L # 1 , DO

003012 iSfeFA BNE.S *00300E

003014 60FE BRA.S *003014

TUTOR 1 . 3 >

Figure 5-18 Disassembly of the block-move data transfer program.

Saving and Loading Programs with the Cassette
Recorder/Player

The block-move program that we just entered into memory would be lost if we turned

off the microcomputer's power. The cassette recorder/player interface is provided
as part of the MC68000 educational microcomputer so that a permanent record can
be made of a program by recording it on a magnetic tape. In this way, the programmer
can simply reload the program from tape the next time it is to be run, instead of
having to reenter it from the keyboard.

Sec. 5.8 Assembling Instructions and Programs 153

Three commands are provided for saving, verifying, and loading machine code
programs with the cassette recorder/player. These commands are dump memory (DU),
verify (VE), and load (LO). Let us now look at how these commands can be used

to save the blocic-move program on cassette and then reload it into the

microcomputer's memory.
Earlier, we found that the block-move program was assembled into word

addresses in the range 003000|g through 003014,^. To save this program, we type
in the command

TUTOR 1.3 > DU 3000 3014

but do not yet depress the carriage return key. Notice that the command mnemonic
is followed by the starting address and ending address of the program. Next the cassette
recorder/player must be set up for recording and then started. After the motor of
the tape player is up to speed, the carriage return key is depressed. Tutor now reads
the program out of memory, formats it for recording, and outputs it to the tape.
When the dump memory command is complete, Tutor signals that fact by prompting
for another command.

It is a good practice to verify that the program has been correctly recorded on
tape. This is one of the intended uses of the verify command. Before issuing a verify
command, the tape should be rewound to a point somewhat before the place where
the program was recorded. Then the verify command is typed in as

TUTOR 1.3 > VE4

Again, the carriage return key is not yet depressed; instead, the tape is rewound and
then the cassette recorder/player is set up to play instead of record and started. When
the motor is up to speed, the carriage return key is depressed. Now the microcomputer
reads the machine code of the program from tape and compares it to what is held
in memory. If no differences are found, the Tutor prompt is simply displayed when
the verify operation is complete. However, if any differences are identified, the errors
are displayed below the verify command statement. Assuming that the verify operation
is performed without detecting any error, a permanent record of the block-move
program now exists on tape.

Now that we know how to save machine code programs on cassette tape, let
us look into how they can be reloaded from tape into the microcomputer. First, the
tape with the program is inserted into the cassette recorder/player and the tape is
rewound to a point just prior to the spot where the program was recorded. Next,
the load command is typed in as

TUTOR 1.3 > L04

Now the tape player is set to play mode, and as the motor comes up to full speed
the carriage return key is depressed. The microcomputer proceeds to read the program
from tape and load it into the appropriate location in memory. The loading of the
program can be verified by rewinding the tape and issuing the command

TUTOR 1.3 > VE4 (cr)

154 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

Assuming that it verifies correctly, we now can disassemble the program with the
command

TUTOR 1.3 >MD 3000 16;DI (cr)

This command causes the assembly language source statements to be displayed on
the screen of the terminal.

5.9 PROGRAM EXECUTION CONTROL COMMANDS

Once a program has been loaded into the memory of the MC68000 educational
microcomputer, it is ready to be executed. By executing the program and then
examining the results that it produces, we can verify that it operates correctly. Tutor
contains three groups of commands that are specifically provided for controlling the
execution of programs: the trace commands, the go commands, and the breakpoint
commands. These commands are shown in Fig. 5.19. Let us now look at the operation
of the commands in each of these groups and how they can be used to control
execution of programs.

Command Meaning Format
Explanation

TR Trace TR l<count>l Execute and trace the

operation of the specified
number of instructions

starting with the instruction
T T |<count>l pointed to by the current

value in PC.

TT
Trace to TT <breakpoint address> Executes and traces the
temporary operation of instructions
breakpoint starting from the current

value in PC and continues

until either the specified

breakpoint address or a

prior set breakpoint address
is encountered.

GO Go execute GO |<address» Initiates execution of the

program from the specified
address or if no address is

G G |<address>l included from the current

value in PC. Trace
information related to

instruction execution is

displayed and execution is
terminated if a set

breakpoint address is
encountered.

Figure 5-19 Commands for program execution control.

Sec. 5.9 Program Execution Control Commands

GD Go execute GD |<address>l Initiates execution of the
direct program directly from the

specified address or if no
address is included from
the current value in PC. No

trace information related to

instruction execution is

displayed and execution is
not terminated if a set

breakpoint address is
encountered.

GT Go until GT <breakpoint address> Initiates execution of the

breakpoint program from the current
value in PC. Trace
information related to

instruction execution is

displayed and execution is
terminated when either the

specified breakpoint
address or a prior set

breakpoint address is
encountered.

BR Breakpoint BR |<address> Sets one or more breakpoints
set |;<count>||. . . by putting the specified

addresses into the

breakpoint address table.

NOBR Breakpoint NOBR «address> Removes the breakpoints for
remove <address>. . .) the specified addresses.

Figure 5-19 (Com.)

Trace Commands— TR (T) and TT

During the early stages of program development, an operation known as

single-stepping the program is very useful. By single stepping, we mean that one

instruction of the program is executed at a time. The state of the microprocessor's
internal registers and data in memory that are affected by the instruction can be
examined just before and just after it is executed. In this way, the operation of the
program can be verified instruction by instruction. The trace commands are the

commands provided in Tutor for single-stepping through a program.
Tutor has two trace commands called trace (TR or T) and trace to temporary

breakpoint (TT). We will begin with the TR command. This command can be used
to execute either one or several instructions. To execute one instruction, the command
is issued as either

or just

TUTOR 1.3 > TR

TUTOR 1.3 > T

(cr)

(cr)

156 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

In response to this command, the microcomputer executes the instruction pointed

to by the current value in PC and then it displays the contents of the 68000's internal
registers.

In Fig. 5.20, we have initialized PC to the address 003000, g and then executed
the instruction

LEA.L $1000,A1

with a TR command. The format in which the trace information is displayed for
the TR command is shown in Fig. 5.20. Notice that the original value in PC is

OOOOSOOOjg. After executing the TR command, we find that the new value in PC is
00003004, g and that A, has been loaded with 00001000, g. Moreover, the disassembled
form of the instruction that starts at this address, which is

LEA.L $2000,A2

is displayed in the last line of information. This type of information allows the
programmer to verify easily that the instruction performed the correct operation.

Once a TR command has been issued. Tutor enters what is called the trace mode.
When in this mode, the prompt is issued as

TUTOR 1.3 :>

Here we see that it now includes a : before the > symbol. This colon tells the
programmer that the monitor is in the trace mode. While in trace mode, the next

instruction is executed by simply depressing the return key. That is, by making the
entry

TUTOR 1.3 : > (cr)

the instruction at address 00003004, ^ is executed and the new contents of the registers
and next instruction are again displayed. To get out of trace mode, just enter any

TUTOR 1.3 .: . PC 3000

TUTOR 1.3 :■ DF
PC=00003000 SR=2700=.S7 US=FFFFFFFF SS=00000756
DO=OOOOFFOD 01=00000000 02=12100010 03=00000000
04=00000231 D5=00000FFF 06=00000004 07=00000000
A0=000 10040 A 1=0000 1000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00000756
 003000 43F81000 LEA.L *00001000,A1

TUTOR 1.3 > TR
PHYSICAL ADDRESS=00003000
PC=00003004 SR=2700=.S7 US=FFFFFFFF SS=00000756
DO=OOOOFFOO 01=00000000 02=12100010 03=00000000
04=00000231 D5=00000FFF 06=00000004 07=00000000
AO-000 10040 A 1=0000 1000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00000756
 003004 45Fe2000 LEA.L *00002000,A2

TUTOR 1.3 : > .PC
. PC=00003004

TUTOR 1.3 >

Figure 5-20 Executing an instruction with the trace command.

Sec. 5.9 Program Execution Control Commands 157

command after :> and then depress the return key. This entry causes the specified
command to be performed and the prompt to be redisplayed as

TUTOR 1.3 >

Notice in the TR command format in Fig. 5.19 that an optional count field
can be specified as part of the command. This count is what lets the TR command
execute more than one instruction. For instance, the command

TUTOR 1.3 > TR 5 (cr)

executes five instructions. After execution of each instruction, the internal state of
the 68000 is displayed.

The second trace command, trace to temporary breakpoint (TT), is used to
execute and trace the operation of instructions until what is called a breakpoint is
reached. A breakpoint is an address that identifies a point in the program where
execution is to be stopped. Looking at the format of the TT command in Fig. 5.19,

we see that the breakpoint address is specified in the field that follows the command's
mnemonic. An example is the command

TUTOR 1.3 > TT 1000 (cr)

This causes all instructions starting from the current value in PC and up to breakpoint
address 1000, ̂ to be executed. The name of the command implies that the breakpoint
is temporary. By this we mean that the breakpoint that is set up by the address specified
in the command is automatically cleared after the address is reached and execution
stopped.

Go Commands— GD, GO, and GT

The go commands allow us to execute either a whole program or a program as several
segments of instructions. For this reason, they are typically used to execute programs
that are completely functional or to aid in the later stages of the debugging process.
For example, if the early part of a program is already operating correctly, a go
command can be used to execute through this group of instructions and stop execution
at the point in the program where additional debugging is to begin. The point at which
execution is to stop and debugging is to continue is identified by a breakpoint address.

Let us begin with the go direct (GD) command. The general format of the GD
command is shown in Fig. 5.19. Here we see that the command can be used to begin
program execution directly from the current value of PC or from an optional address
that is specified in the command. To initiate program execution from the current
value in PC, the command is issued as

TUTOR 1.3 > GD (cr)

After entering this command, the program begins execution and runs to completion
or until either the ABORT or RESET switch is depressed. No trace information is
displayed as the program runs.

158 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

Alternately, the command can be issued with an address in the starting address
field. For instance, to start program execution at address 002000|g, the command
is issued as

TUTOR 1.3 > GD 2000 (cr)

Looking at Fig. 5.19, we see that the format of the go (GO or G) command
is identical to that of the GD command. However, its operation differs in two ways
from that of the GD command. First, trace information is displayed after execution
of the first instruction, and second execution automatically stops if a breakpoint is
encountered. Two examples of the GO command are

TUTOR 1.3 > GO (cr)

and

TUTOR 1.3 > G 2000 (cr)

The address, 2000, g, which is specified in the second go command, is not a breakpoint
address. It specifies the point at which program execution is to start. We pointed
out earlier that execution initiated with the go command will stop when a breakpoint
is reached. This breakpoint must have been set up already by a special breakpoint
command.

The last go command, go until (GT), has the ability to set a temporary
breakpoint and then initiate program execution with the instruction pointed to by
the current value in PC. Program execution continues until the temporary breakpoint
address is reached, another breakpoint is encountered, or the ABORT or RESET
switch is depressed. When execution stops, the temporary breakpoint is cleared.

For example, if we have already set up breakpoints at addresses 00100A,g,

001010,6, and 001020, g, execution of the command

TUTOR 1.3 > GT 1006 (cr)

when PC equals 001000,5 initiates program execution and it continues until address
001006,5 is reached. At this point in the program, instruction execution stops. By
next issuing the command

TUTOR 1.3 > GT lOOC (cr)

program execution resumes down through breakpoint address OOIOOA,^. In this case,
a breakpoint was encountered before reaching the temporary breakpoint. Even though
the temporary breakpoint did not cause the break in program execution, it is cleared.

Breakpoint Commands— BR and NOBR

In our description of the trace and go commands, we found that the operation of
certain commands in both groups were affected by breakpoints. Remember that a
breakpoint is the address of the end of a program segment; that is, the addresss of
the first byte of the instruction at which execution is to stop. We found that a

Sec. 5.9 Program Execution Control Commands 159

temporary breakpoint must be specified directly in both the TT and GT commands.
Moreover, if any additional breakpoints already existed, they also would affect the
operation of these two commands. On the other hand, we found that the GO
command did not specify a temporary breakpoint; instead, it was only affected by
breakpoints that were already defined when the command was issued. Commands
are provided in Tutor for setting and clearing of breakpoints. Let us next look at
the operation of these commands.

The command that is used to set up breakpoints is called breakpoint set (BR).
The format for this command is shown in Fig. 5.19. Here we find that the address

of the breakpoint is simply included after the command's mnemonic. In fact, up to
eight breakpoint addresses can be specified and, if desired, they all could be defined
with one BR command. An example is the command

TUTOR 1.3 > BR lOOA 1010 1020 (cr)

Execution of this command causes addresses OOlOOAjg, 001010, g, and 001020,5 '°
be placed into a table called the breakpoint address table.

Another way of using the breakpoint command is to enter it as

TUTOR 1.3 > BR (cr)

In this form, the command causes the locations of all of the currently defined
breakpoints to be displayed.

In programs that involve loops, we may want to stop execution at a breakpoint
address only after that address has been encountered a specific number of times. For
instance, the last time that the loop is repeated. In Fig. 5.19, we find that an optional
count can be specified with each breakpoint address in a BR command. This count

gives the programmer the ability to execute a program in this way. For instance, the
command

TUTOR 1.3 > BR 1200;5 (cr)

sets up a breakpoint at address 001 200, ̂ and configures the breakpoint such that
it will stop program execution the fifth time the address is encountered.

UnUke the temporary breakpoints defined in a TT or GT command, breakpoint
addresses set up with the BR command are not cleared when encountered during the
execution of a program with the TT, GO, or GT command. The only way that they
may be cleared is if the programmer uses a remove breakpoint (NOBR) command.
For instance, to remove all breakpoint addresses from the breakpoint table, the
command is issued as

TUTOR 1.3 > NOBR (cr)

However, the NOBR command also can be used to remove specific breakpoints that
are no longer needed. For example, to remove just the breakpoints at addresses
001010,6 3"d 001020,5, the command

TUTOR 1.3 > NOBR 1010 1020 (cr)

is used.

160 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

5.10 EXECUTING A PROGRAM

By executing a program and examining the results that it produces, we can tell whether
or not it performs the operation for which it was written. As discussed earlier, Tutor
provides GO and TRACE commands for use in executing programs. Let us now
demonstrate how programs can be run on the microcomputer by using the

block-move program we assembled into memory in Section 5.8.
Before going any further, let us disassemble the program to verify that it still

resides in memory. In Fig. 5.18, we find that the program resides in the address range

3000(^ through 3014,5. Therefore, the program is disassembled with the command
TUTOR 1.3 > MD 3000 16;DI

We will assume that the sequence of assembly language instructions displayed by
execution of this command is the same as that shown in Fig. 5.18. Therefore, the

complete block-move program is still held in memory.
We still are not ready to run the program on the microcomputer. The internal

registers and storage locations in memory that are used by the program must first
be initialized. For instance, the status register, the selected stack pointer register, the
program counter, and the blocks of data in memory must all be assigned initial values.
Let us first display the current contents of all registers with the command

TUTOR 1.3 > DF (cr)

The information displayed with this command is shown in Fig. 5.21.
Next, we choose to execute the program in the user state. To accomplish this,

bit 13 of the status register must be reset. This is done with the command j

TUTOR 1.3 > .SR 0704 (cr) |

Next, the user stack must be located in memory just below address 004000|g. The
command needed to do this is

TUTOR 1.3 > .US 4000 (cr) ■

Remember that the program starts at address 003000jg. Therefore, PC is initialized as

TUTOR 1.3 > .PC 3000 (cr)

To verify that the register initialization has been done correctly, we again use the

DF command to display the current contents of all of the 68000's registers. j
TUTOR 1.3 > DF (cr) ^

From the displayed information in Fig. 5.21, we see that the values in SR, US, and
PC have been loaded correctly.

We are not yet finished initializing the microcomputer— the blocks of storage
locations in memory must still be loaded. The sixteen words in the source block are
to be filled with the value FFFF|g. This is done with the command

TUTOR 1.3 > BF 1000 lOIE FFFF (cr)

Sec. 5.10 Executing a Program

TUTOR 1.3 > DF
PC=00003004 SR=2700=.S7 US=FFFFFFFF SS=00000756
D0=00OOFF0D 01=00000000 D2=121 00010 03=00000000
04-00000231 D5=00O0OFFF 06=00000004 07=00000000
AO-000 10040 A 1=0000 1000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00000756
 003004 45Fa2000 LEA.L «00002000,A2

TUTOR 1 . 3 :.> . SR 0704

TUTOR 1 . 3 ; . PC 3000

TUTOR 1.3 ^- OF
PC=00003000 SR=0704=. . 7. . Z. . US=00004000 33=00000756
00=OOOOFFOO 01=00000000 02=12100010 03=00000000
04=00000231 D5=00000FFF 06=00000004 07=00000000
A0=000 10040 A 1=0000 1000 A2=00000414 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00004000
 003000 43Fei000 LEA.L *00001000,A1

TUTOR 1.3 > BF 1000 lOlE FFFF
PHYSICAL AOORESS=00001000 OOOOIOIE

TUTOR 1.3 > BF 2000 201E 0000
PHYSICAL ADDRESS=00002000 000020 IE

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

00 00 00 00 00 Oo 00 00
00 00 00 00 00 00 00 00

TUTOR 1.3 > BR 3014

BREAKPOINTS
003014 003014

TUTOR 1 . 3 . GO
PHYSICAL AOORESS=00003000

AT BREAKPOINT
PC=00003014 SR=0704=. . 7. . Z. . US=00004000 SS=00000756
00=00000000 01=00000000 02=12100010 03=00000000
D4=00000231 D5=00000FFF 06=00000004 07=00000000
A0=00010040 Al=00001020 A2=00002020 A3=00002500
A4=00009FAC A5=00000540 A6=00000540 A7=00004000
 003014 60FE BRA.S *0

TUTOR 1.3 : MD 1000 IE
001000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .
001010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .

TUTOR 1.3 > MO 2000 IE
0020O0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
002010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .

TUTOR 1.3 ,

Figure 5-21 Executing the block-move data transfer program.

TUTOR 1 1.3 > MO 1000 IE
00 1 000 FF FF FF FF FF FF FF

FF

00 1 ij 1 0 FF FF FF FF FF FF FF FF

TUTOR 1 1.3 > MD 2000 IE
002000 00 00 00 00 00

00
00 00

0020 1 0 00 00 00 00 00 00 00 00

162 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

On the other hand, the storage locations in the destination blocic are all to be cleared
to zero. To do this, we issue the command

TUTOR 1.3 > BF 2000 201E 0000 (cr)

Finally, the initiahzation of the blocks of data can be verified by executing the
commands

TUTOR 1.3 > MD 1000 IE (cr)

TUTOR 1.3 > MD 2000 IE (cr)

By again looking at the displayed information in Fig. 5.21, we find that memory
initialization also was correctly done.

Now we are ready to execute the program. Since PC has already been loaded

with 003000|g, the go command that we use to initiate program execution will not
need to specify the starting address of the program. However, to return to the monitor
at the end of the program, we must specify the address of the last instruction of the
program as a breakpoint address. From the disassembled version of the program in
Fig. 5.18, we find that the last instruction is at address 003014, f,. A breakpoint is
set up at this address with the command

TUTOR 1.3 > BR 3014 (cr)

Now the program is executed by issuing the command

TUTOR 1.3 > GO (cr)

and it runs to completion.
The operation of the program can be verified by looking at the blocks of data

in memory. This is done by entering the commands.

TUTOR 1.3 > MD 1000 IE (cr)

TUTOR 1.3 > MD 2000 IE (cr)

Looking at the displayed information in Fig. 5.21, we find that all storage locations
in both blocks now contain FFFFj^. Therefore, the contents of the source block have
been copied into the destination block.

5.11 DEBUGGING A PROGRAM

In Sections 5.8 and 5. 10, we showed how to load a program into the memory of the
MC68000 educational microcomputer and how to execute it. Moreover, we verified

that when executed the program did perform the block-move data transfer operation
for which it was written. However, in practice it is common to have errors in programs,
and even a single error can render the program useless. For instance, if the address
to which a branch instruction passes control is wrong, the program may get hung
up. Errors in a program are also referred to as bugs. The process of removing them
is called debugging.

Sec. 5.11 Debugging a Program 163

The two types of errors that can be made by a programmer are syntax errors
and execution errors. A syntax error is an error caused by not following the rules
for coding or entering an instruction. These types of errors are typically identified

by the microcomputer's assembler or monitor and signaled to the user with error
messages. For this reason, they are usually easy to find and correct.

For example, if an instruction is entered as

BEQU.S $3012

an error condition exists. This is because the mnemonic BEQU.S is invalid. The correct
instruction is written as

BEQ.S $3012

This incorrect entry is signaled by the Tutor monitor with an error message during
assembly.

An execution error is an error in the logic behind the development of the
program. That is, the program is correctly coded and entered, but it does not perform
the operation for which it was planned. This type of error can be identified by entering
the program into the microcomputer and executing it. Even when an execution error
problem has been identified, it can be difficult to find the exact cause of the problem.

Our ability to debug execution errors in a program is aided by the commands
of the Tutor monitor. For instance, the TR command allows us to step through the
program by executing just one instruction at a time. In this way, we can use the register
and memory display commands to determine the state of the microcomputer prior
to execution of an instruction and again just after its execution. This information
will tell us whether the instruction has performed the operation planned for it. If
an error is found, the cause can be determined and corrected.

To illustrate the process of debugging a program, let us once again consider
the program in Fig. 5.16. Its assembled version is given in Fig. 5.18 and we showed
how to enter the program into the microcomputer in Sec. 5.8. Remember that this

program implements a block-move data transfer operation. The block of data that
is to be moved starts at memory address OOlOOOjg and is sixteen words in length.
It is to be moved to another block location starting at address 002000, g. We will
assume that the program already resides in memory starting at address 003000]^.

Before executing the program, let us issue commands to initialize the block of

memory locations from address 001000, ^ through OOIOIE,^ with the value FFFF,^
and those from 002000, ^ through 00201E,5 with zero. As shown in Fig. 5.22, this
is done with the command sequence

TUTOR 1.3 > BF 1000 lOlE FFFF (cr)

TUTOR 1.3 > BF 2000 201 E 0 (cr)

Furthermore, we must initialize the status register, user stack pointer, and the program

counter to the values 0704,^, 4000, g, and 3000, g, respectively. To do this, the
commands

164 Using the IVIC68000 Educational Microcomputer for Program Development Chap. 5

TUTOR 1.3 ■> BF 1000 lOlE FFFF
PHYSICAL ADDRESS=00001000 000010 IE

TUTOR 1.3 > BF 2000 20 IE 0
PHYSICAL ADDRESS=00002000 000020 IE

TUTOR 1.3 > .US 4000

TUTOR 1.3 > .PC 3000

TUTOR 1.3 > MD 1000 IE
001000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
001010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

TUTOR 1.3 . MD 2000 IE
002000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
002010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1.3 ,> DF
PC=00003000 SR=0704=. . 7. . Z. . US=OOnoaOOO SS=00000786
DO=0OOOFFOO D 1=00000002 D2=10BC5380 03=00000000
04=00005330 D5=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=00000000 A2=00000414 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
 003000 43F81000 LEA.L *00001000,A1

TUTOR 1.3 ,> BR 300E

BREAKPOINTS
00300E 00300E

TUTOR 1 . 3 ,■ GO
PHYSICAL A0DRESS=00003000

AT BREAKPOINT
PC=0000300E SR=0700=..7 US=00004000 SS=00000786
00=00000010 01=00000002 D2=10BC5380 03=00000000
04=00005330 05=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=0000 1000 A2=00002000 A3=00000554
A4=0000'?F86 A5=00000540 A6=00000540 A7=00004000
 00300E 3409 MOVE.W (A1)+,(A2)+

TUTOR 1.3 > T
PHYSICAL ADDRESS=0000300E
PC=00003010 SR=0708=. .7.N. . . US=00004000 SS=000007B6
00=00000010 01=00000002 02=10BC5380 03=00000000
04=00005330 05=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=0000 1002 A2=00002002 A3=00000554
A4=0000<?F86 A5=00000540 A6=00000540 A7=00004000
 003010 5380 SUBG.L #1,00

TUTOR 1.3 t > T
PHYSICAL A0DRESS=000O3010
PC=00003012 SR=0700=. .7 US=00004000 33=00000786
D0=0000000F 01=00000002 02=10BC5380 03=00000000
04=00005330 05=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=0000 1002 A2=00002002 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
 003012 66FA BNE.S »00300E

Figure 5-22 Demonstration of program debugging.

Debugging a Program 165

TUTOR 1.3 : > T
PHYSICAL ADDRESS=00003012

AT BREAKPOINT
PC=0000300E SR=0700=..7 US=00004000 SS=O0i;>007B6
DO=OOOOOOOF 01=00000002 D2=10BC5380 03=00000000
04=00005330 D5=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=0000 1002 A2=00002002 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
 00300E 3409 MOVE.W (A1)+,<A2)-

TUTOR 1.3 :> MD 2000 IE
002000 FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020 1 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TUTOR 1 . 3 > GO
PHYSICAL ADDRESS=0000300E

AT BREAKPOINT
PC=0000300E SR=070o=..7 US=00004000 SS=000007a6
DO=OOOOOOOE 01=00000002 02=10BC53aO 03=00000000
04=00005330 05=FFFFFF2C 06=00000002 07=00000000
A0=000 10040 A 1=0000 1004 A2=00002004 A3=00000554
A4=00009F86 A5=00000540 A6=00000540 A7=00004000
 00300E 3409 MOVE.W (A1)+,<A2)+

TUTOR 1.3 > MD 2000
002000 FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

BREAKPOINTS

TUTOR 1.3 > BR 3014

BREAKPOINTS
003014 003014

TUTOR 1.3 > GO
PHYSICAL A0DRESS=0000300E

AT BREAKPOINT
PC=00003014 SR=0704=. . 7. . Z. . US=00004000 SS=00000786
00=00000000 01=00000002 D2=10BC5380 03=00000000
04-00005330 05=FFFFFF2C 06=00000002 07=00000000
AO-000 10040 A 1=0000 1020 A2=00002020 A3=00000554
A4«=00009F86 A5=00000540 A6=00000540 A7=00004000
 003014 60FE BRA. 3

TUTOR 1.3 > MO 2000 IE
002000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
002010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Figure 5-22 (Com. J

TUTOR 1.3 > .SR

TUTOR 1.3 > -US

TUTOR 1.3 > .PC

are issued. The initialization of the microcomputer can be verified using the following
memory display and register display commands.

0704 (cr)
4000

(cr)
3000 (cr)

TUTOR 1.3 > MD 1000 IE

TUTOR 1.3 > MD
2000 IE

TUTOR 1.3 > DF

166 Using the MC68000 Educational Microcomputer for Program Development Chap. 5

(cr)

(cr)

(cr)

The displayed information in Fig. 5.22 shows that the initialization is correct.
Let us now execute the first three instructions of the program. To do this, we

first set a breakpoint at the address of the fourth instruction. In Fig. 5.18, we find
that this instruction starts at address 300E,g. The breakpoint is set by issuing the
command

TUTOR 1.3 > BR 300E (cr)

The Tutor response shown in Fig. 5.22 verifies that the breakpoint address has been
set. Now the three instructions are executed by issuing the GO command

TUTOR 1.3 > GO (cr)

At this point, we can verify that registers A,, A2, and Dq have been loaded with
00001000,6, 00002000,6, ̂ "d 00000010,6, respectively.

The following trace commands are used to execute the next three instructions.

TUTOR 1.3 > T (cr)

TUTOR 1.3 > T (cr)

TUTOR 1.3 > T (cr)

From Fig. 5.22, we find that the first T command executes the instruction

MOVE.W (Al)+, (A2) +

and then displays the contents of the 68000's internal registers. Notice that A, now
contains 00001002,6 and A2 contains (X)002002,6. Therefore, they point to the second
word in the source block and destination block, respectively. The displayed
information for the second trace command shows that the contents of Dq have been
decremented by one and that for the third command shows that PC has been reloaded
with the address of the instruction

MOVE.W (A1) + ,(A2) +

This completes one iteration of the block transfer loop.

To verify that the source word at 0010(X),6 has moved to the destination location
at 002000,6, ̂ ^ "^^ '^^ memory display command

TUTOR 1.3 >MD 2000 IE (cr)

The displayed information in Fig. 5.22 shows that word address 2000,6 '^°* contains
FFFF|6. This confirms that the data transfer has taken place.

At this point the rest of the iterations of the loop can be executed by issuing
GO commands. Figure 5.22 shows that first a GO command was issued followed by
an MD command. This command sequence did not run the program to completion;
instead, the displayed information shows that just the second word of data has been
moved into the destination block.

Chap^ 5 Assignment 167

To run the program to completion, we must first remove the brealcpoint that
exists at address 300E|g and then set a new one at the address of the last instruction
in the program, which is 3014, g. This is done with the commands

TUTOR 1.3 > NOBR (cr)

TUTOR 1.3 > BR 3014 (cr)

Now the rest of the program is executed by issuing the command

TUTOR 1.3 > GO (cr)

To verify that all of the contents of the source block have been moved to the
destination block, we use the command

TUTOR 1.3 MD 2000 IE (cr)

As shown in Fig. 5.22, all word locations in the destination block contain FFFF|g
thereby verifying that the program functions correctly.

ASSIGNMENT

Section 5.2

1. What purpose is served by a development system?

2. How much RAM is provided on the MC68000 educational microcomputer for storage
of user programs?

3. How many ports are provided on the MC68000 educational microcomputer board for
connection of I/O devices?

4. Which I/O port implements the Centronics parallel printer interface? Which port
implements a serial communications interface for connection of the terminal?

Section 5.3

5. What is a monitor program? Where is it stored?
6. List the main functions of the Tutor monitor.

7. What size is the MC68000 educational microcomputer's monitor program?

Section 5.4

8. What is meant by a line-by-line assembler/disassembler?

9. Which field of the monitor's command syntax is always required in a command?
10. Describe the difference between an offset register of the monitor and an internal register

of the 68000.

11. If Aq = 100, g, Dq = 200,5, '^0 = lOOOig, and R, = 2000,^, specify the memory addresses
at which execution starts when the commands that follow are issued.

(a) TUTOR 1.3 > GO 1000
(b) TUTOR 1.3 > GO 100 + R3

Using the MC68000 Educational Microcomputer for Program Development Chap. 5

(c) TUTOR 1.3 > GO
(AO)

(d) TUTOR 1.3 > GO (AO.DO)

Section 5.5

12. Write a series of commands that will load PC, Aq, D,, and D,, with decimal numbers
100, 200, 500, and 800, respectively.

13. If Rq contains 1000,^, what is loaded into Rj as a result of executing the following
commands.
(a) TUTOR 1.3 > .RO 1000
(b) TUTOR 1.3 > .R5 1000 + R7

Section 5.6

14. What happens when we issue the following series of commands?
TUTOR 1.3 > MD 1000 (cr)
TUTOR 1.3 > (cr)

15. Write a command sequence that will fill the block of memory locations from 1000,^
through 10FE|g with the ASCII string ABCD and the block of locations from 2000, g
through 20FE,g with data 5555|g. Verify the initialization of these two blocks and then
move the contents of the block of locations from 1000|g through 100F,g to the block of
locations starting at 3000, g.

Section 5.7

16. Write a command sequence to set port 2 for one stop bit, two character nulls, and ten
carriage return nulls.

17. Wite a command that when issued will set up the MC68000 educational microcomputer
so that a host computer can be used to send commands to it.

Section 5.8

18. List two limitations experienced when working with a line-by-line assembler.
19. Show how directives can be used to initialize consecutive memory locations starting at

address 1000, ̂ with word data ABCD,^ and 1234, g.
20. Which command is used to assemble/disassemble instructions into the memory of the

MC68000 educational microcomputer?

Section 5.9

21. Which command is best used to:

(a) Execute one instruction of a program?
(b) Execute an entire program?
(c) Execute a group of instructions in a program?

22. What is the use of a breakpoint during program execution? How can a breakpoint be set?
23. Write a command that will set up a breakpoint at address 1150,^ so that execution will

stop on the tenth occurrence of this address.

Chap. 5 Assignment 169

Section 5.10

24. Why must some registers be initialized before executing a program?

25. Write a command sequence that when executed initializes PC to point to the beginning

of a program which starts at address 2000|g and executes the program until the address
2014|j is encountered three times. Before beginning execution, the appropriate breakpoint
should be set up.

Section 5.1 1

26. What is the difference between a syntax error and an execution error?

27. How does Tutor provide debugging support?

28. Repeat the debug demonstration presented in Section 5. 11, but this time use the TT and
GD commands to execute the program.

Memory
AND Input/Output Interfaces
OF THE 68000 Microprocessor

6.1 INTRODUCTION

The preceding four chapters were devoted to the architecture of the 68000, its
instruction set, and assembly language programming. In this chapter we study the
memory and input/output interfaces of this microprocessor together with the
instructions that are provided to implement stack and I/O operations. In particular,
the following topics are the subject of this chapter:

1. The asynchronous memory and I/O interface
2. Address space

3. Data organization

4. Dedicated and general use of memory

5. Program and data storage memory

6. Memory function codes

7. Memory and I/O read and write cycles

8. User and supervisor stacks

9. 64K-byte software refreshed dynamic RAM subsystem
10. I/O instruction— MOVEP

11. 6821 peripheral interface adapter

12. Asynchronous bus interface I/O circuitry

13. Synchronous memory and I/O interface

14. Synchronous bus I/O interface circuitry

Sec. 6.3 Address Space and Data Organization 171

15. Serial communication interface

16. The 6850 asynchronous communications interface adapter

17. Special purpose interface controllers

6.2 ASYNCHRONOUS MEMORY AND I/O INTERFACE

The asynchronous memory and input/output interface of the 68000 is shown in Fig.
6.1. It consists of the address bus, data bus, function code bus, and control bus.
The address and data buses of the 68000 are demultiplexed. That is, they do not share
pins on the package of the IC. The advantage of this is that the interface circuitry
between microprocessor and memory is simplified.

Moreover, in the 68000 microcomputer I/O devices are always memory-mapped.
By this, we mean that memory and I/O do not have separate address spaces. Instead,
the designer allocates a part of the memory address space to the I/O devices.
Therefore, both memory and I/O are accessed in the same way through the
asynchronous bus interface.

We have indicated several times that the bus between the 68000 and memory

or I/O is asynchronous. By "asynchronous" we mean that once a bus cycle is initiated
to read (input) or write (output) instructions or data, it is not completed until a
response is provided by the memory or I/O subsystem. This response is an
acknowledge signal that tells the 68000 that it should complete its current bus cycle.
For this reason, the timing of the bus cycle in a 68000 microcomputer system can
be easily matched to slow memories or I/O devices. This results in efficient use of
the system bus.

6.3 ADDRESS SPACE AND DATA ORGANIZATION

Notice in Fig. 6. 1 that the address bus of the 68000 consists of 23 independent address

lines, which are labeled A, through A23. The address information output on these
lines selects the storage location in memory or the I/O device that is to be accessed.

With this large 23-bit address, the 68000 is capable of generating 8M unique addresses.
As shown in Fig. 6.2, they represent a word address space in the address range

000000, g through FFFFFE,g. Here we see that word information such as instructions,
word operands, or long-word operands must always be aligned at even address
boundaries.

Coupling the upper data strobe (UDS) and lower data strobe (LDS) control
signals with this address bus gives the 68000 the ability to access bytes of data. Figure

6.3 illustrates how these two signals can be used to enable byte-wide upper d^nd lower
data banks in memory. Address lines A, through A23 are applied in parallel to both
memory banks.

From an address point of view, memory can now be considered to be organized
as bytes, and as shown in Fig. 6.4, bytes of data can be stored at odd or even addresses.

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

68000

A N

Memory and I/O

A1-A23

Do-D,5

>
V

FC0-FC2 \

AS

R/W
UDS

LDS

DTACK

Figure 6-1 Asynchronous memory and
I/O interface.

Word Addresses Memory Contenis
000000,6

000002,6

000004,,

FFFFFC,,

FFFFFE,,

WordO

Word 1

Word :

Word 8,388,606

Word 8,388,607
Figure 6-2 Word address space.

When expressed in this way, the size of the physical address space is said to be 16M

bytes.
The address strobe (AS) control signal is output by the 68000 along with the

address on A, through A23. It is used to signal memory and I/O devices that valid
address information is available on the bus.

In Fig. 6.1 we find a second bus between the 68000 and the memory or I/O
device. It is the data bus and consists of the 16 bidirectional data lines Dg through
D|5. Data are input to the microprocessor over these lines during read (input)
operations and are output by the processor over these lines during write (output)
operations.

Sec. 6.3 Address Space and Data Organization

173

Even Byte
Addresses

000000, s

000002 ,t

000004,,

UDS

R/W

AS

DTACK

68000

LDS

1
\

 /

Upper data bank

^ 7 / [

vU r>
A,-A,3

u
Lower data bank

A N

\, —

D0-D7

>

Figure 6-3 Memory organized as upper and lower data banks.

Memory Contents
Odd Byte

Addresses

Byte 0 Byte 1

Byte :
Byte 3

Byte 4
Byte 5

Byte 16,777,: 14 Byte 16,777,:i5 |

000001,6

000003,6

000005, ^

Figure 6-4 Byte address space.

The control signals that coordinate the data transfers that take place between

the 68000 andjnemory or I/O devices are also shown in Fig. 6.1. They are the
read/write (R/W) output and the data transfer acknowledge (DTACK) input. The
68000 sets R/W to the appropriate logic level to tell external circuitry whether
data are being input or output by the microprocessor during the current bus cycle.

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

On the other hand, DTACK acknowledges that the transfer between
microprocessor and memory or I/O subsystem has taken place. When the 68000
executes a read operation, it always waits until the DTACK input goes active before
completing the bus cycle. DTACK is asserted by the memory or I/O device when
the data it has put on the bus are valid. In response to DTACK equal to 0, the 68000
latches in the data from the bus and completes the read cycle. During a write operation,
DTACK indicates to the 68000 that data have been written; therefore, it terminates
the bus cycle.

7 6 5 4 3 2 1 0

15
14

13
12 11

10

9 8 7 6 5 4 3 2 0

MSB ByteO LSB
Byte 1

Byte 2 Byte 3

15 14
13 12

11 10

9 8 7 6 5 4 3 2 1 0

MSB
Word 0

LSB

Word 1

Word 2

15 14 13 12 11

10

9 3 7 6 5 4 3 2 1 0

MSB

— — Long Word 0 — -
- Higri Order

Low Order

- -

LSB

— — Long Word 1 — — — — — — — — — — — — — — — — — — — — —

— — Long Word 2 — ____ . — _ — _

(d)

Figure 6-5 Data organization in memory (Motorola, Inc.).

Sec. 6.3 Address Space and Data Organization

175

Remember that most of the instructions in the instruction set of the 68000 have

the abiUty to process operands expressed in byte, word, or long-word formats. Let
us now looic at how data expressed in these forms are stored in memory. From Fig.
6.5(a), we see that within a byte of data bit 0 represents the least significant bit and
bit 7 represents the most significant bit. Next, Fig. 6.5(b) shows that two bytes of

data can be stored at each word address. Notice that even-addressed bytes such as
byte 0 and byte 2 are stored in most significant byte locations and odd-addressed
bytes such as byte 1 and byte 3 are stored in least significant byte locations. Figure
6.5(c) and (d) show that a word is simply stored at each word address and that a
long word is stored at two consecutive word addresses.

Looking at the memory subsystem hardware configuration in Fig. 6.3, we see
that for an addressed word storage location the upper 8 bits of the word are in the
upper data bank. This is the even byte and it is transferred between memory and

microprocessor over data bus lines Dg through 0,5. The lower 8 bits of the word,
the odd byte, are in the lower data bank. They are transferred between microprocessor
and memory over Dq through D7.

For a word transfer to take place over the bus, both UDS and LDS must be
active at the same time. Therefore, they are both switched to the 0 logic level.
Moreover, the direction in which data are transferred is identified by the logic level of
R/W. For instance, if the word of data is to be written into memory, R/W is set
to logic 0. UDS and LDS can also be set to access just the upper byte or lower byte
of data. In this case, either UDS or LDS remains at its inactive 1 logic level.

Figure 6.6 summarizes the types of data transfers that can take place over the
data bus and the corresponding control signal logic levels. For example, when an
even byte is read from the high memory bank UDS = 0, LDS = 1, R/W = 1 and
data are transferred from memory to the 68000 over data lines Dg through D,5.

UDS LDS R/W D8-D15 D0-D7

High High - No valid data No valid data

Low Low High
Valid data bits

8-15
Valid data bits

0-7

High Low High No valid data
Valid data bits

0-7

Low High High
Valid data bits

8-15 No valid data

Low Low Low
Valid data bits

8-15
Valid data bits

0-7

High Low Low
Valid data bits

0-7

Valid data bits

0-7

Low High Low
Valid data bits 8-15 Valid data bits 8-15 Figure 6-6 Relationship between bus

control signals and data bus transfers
(Motorola, Inc.).

176 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

6.4 DEDICATED AND GENERAL USE MEMORY

Now that we have introduced the memory interface of the 68000, its address space,
and data organization, let us continue by looking at which parts of the address space
have dedicated uses and which parts are for general use. In Fig. 6.7 we see that the
lower end of the address space has a dedicated function. That is, the word storage
locations over the address range from 000000, g to 0003FE|g are allocated for storage

of an address vector table. As shown, it contains the 68000's exception vector table.
Each vector address is 24 bits long and takes up two words of memory. An example
of 68000 exceptions are its hardware interrupts. The exception processing capability
of the 68000 is the subject of Chapter 7.

From the memory map in Fig. 6.7 we see that the rest of the address space is
for general use. Therefore, it can be used to store instructions of the program, data
operands, or address information.

0003FE,6
000400,6

Exception vector table

General use memory

Figure 6-7 Memory map.

6.5 PROGRAM AND DATA STORAGE MEMORY

AND THE FUNCTION CODES

In the preceding section, we showed how the memory address space of the 68000
is partitioned into a dedicated use area and a general use area. Another way of
partitioning the memory subsystem in a 68000 microcomputer system is in terms of
program and data storage memory. In general, the program segment of memory
contains the opcodes of the instructions in the program, direct addresses of operands,
and data of immediate source operands. It can be implemented with ROM or RAM.

On the other hand, the data segment is generally implemented with RAM. This
is because it contains data operands that are to be processed by the instructions.
Therefore, it must be able to be read from or written into.

During all bus cycles to memory, the 68000 outputs bus status codes to indicate
whether it is accessing program or data memory. The bus status code is known as
the function code and is output on function code bus lines FCq through FC2. The

Sec. 6.5 Program and Data Storage Memory and the Function Codes

Function code output
Reference class

FCj
PC,

FCo

0 0 0
(Unassigned)

0

0

0

1

1

0

User data

User program

0

1

1

0

1

0

(Unassigned)

(Unassigned)

1

1

0

1

1

0

Supervisor data

Supervisor program

1 1 1 Interrupt acknowledge
Figure 6-8 Memory function codes
(Motorola, Inc.).

table in Fig. 6.8 lists all function codes output by the 68000 and the corresponding
type of bus cycle. Notice that program and data memory accesses are further
categorized based on whether they occur when the 68000 is in the user state or
supervisor state. For instance, an instruction acquisition bus cycle performed when

the 68000 is in the user state is accompanied by the function code FC2FC|FCq = 010,
but the same type of access when in the supervisor state is accompanied by

FC2FC1FC0 = 110.
One use of the function codes is to partition the memory subsystem hardware.

This can be done by decoding the function codes in external logic to produce enable
signals for the user program segment, user data segment, supervisor program segment,
and supervisor data segment.

One approach is illustrated in Fig. 6.9. Here the memory subsystem has been
partitioned into a user memory segment and a supervisor memory segment. Looking

Memory map

Supervisor
memory

7FFFFE,(,
800000,6

User
memory

Figure 6-9 Partitioning memory into user and supervisor segments (Motorola, Inc.).

178 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

at Fig. 6.8, we see that the logic level of function code line FCj indicates whether
the 68000 is in the user or supervisor state. Notice that in this circuit FC2 is gated
with address strobe AS to produce select input Sj for the supervisor memory bank.
In this way, the 68000 can access either the user or supervisor memory banks when
it is in the supervisor state, but when it is in the user state the supervisor memory
bank is locked out.

Another approach would be to partition the memory subsystem such that it

has an independent 16M-byte program memory segment and a 16M-byte data memory
segment. This expands the address space of the 68000 to 32M bytes in a segmented
fashion.

6.6 MEMORY AND I/O READ CYCLE TIMING

To read a word or byte from an input device or memory, the signal lines that are
used are address lines A, through A23, data lines Dq through Djj, and asynchronous
control lines: address strobe (AS), upper and lower data strobes (UDS and LDS),
read/write (R/W), and data transfer acknowledge (DTACK). Figure 6.10(a) is a
flowchart that shows the sequence of events that take place in order to read a byte
of data from the memory subsystem in Fig. 6.3. A timing diagram for an upper bank
read bus cycle is shown in Fig. 6.10(b).

From the timing diagram, we see that a read cycle can be completed in as few
as four clock cycles. Each clock cycle consists of a high and low state for a total

of eight states. They are labeled Sq through S7 in the timing diagram. With the 100-ns
clock cycle of the 10-MHz 68000, this gives a minimum read bus cycle time of 400 ns.

In Fig. 6.10(a) we see that the read bus cycle begins with R/W being switched
to logic 1. As shown in Fig. 6.10(b), this happens at the leading edge of state Sq.
During Sq, a function code FC2FC,FCq is output and address lines A, through A23

are put in the high-Z state. Next the address is output during the Sj state followed
by address strobe AS and the appropriate data strobes during S,. In our example,
we are to read only the upper byte; therefore, UDS is switched to its active 0 logic
level. The address phase of the bus cycle is now complete.

Next the memory or I/O subsystem must decode the address and put the selected

data on bus lines Dg through D,5. This must happen during S,. Then in S4 it must
assert DTACK by switching it to logic 0. This signals the 68000 that valid data are
on the bus and that the bus cycle should be continued through to completion.

DTACK is tested by the 68000 during S5. If it is active (logic 0), data are read
off the bus at the end of S^. During S7, the 68000 returns AS and UDS to their
inactive logic levels and the address bus and data lines to the high-Z state. Moreover,
the memory or I/O subsystem must return DTACK to the 1 level before another bus
cycle can be initiated.

Sec. 6.6 Memory and I/O Read Cycle Timing

BUS MASTER SLAVE

Address Device

II Set R/W to Read

2) Place Function Code on FC0-FC2

3) Place Address on Al-A23_
41 Assert Address Strobe IAS)

5) Assert Upper Data Strobe (UDS) or Lower

Data Strobe (LDS) (based on AOI

Input Data

1) Decode Address

2) Place Data on D0-D7 or D8-D15 (based on
UDS or LDS)

3) Assert Data Transfer Aclcnowledge
(DTACK)

Acquire Data

1) Latch Data

2) Negate UDS or LDS

3) Negate AS

Terminate Cycle

1) Remove Data from D0-D7 or D8-D15

21 Negate DTACK

Start Next Cycle

(a)

Figure 6-10 (a) Byte read cycle flowchart (Motorola, Inc.).

If the 68000 finds DTACK not asserted during Sj, it inserts wait clock cycles
until DTACK goes low to indicate that valid data are on the data bus.

Accesses of byte or word data require execution of one bus cycle by the 68000.
On the other hand, long-word accesses require two words of data to be transferred
over the bus. Therefore, they take two bus cycles.

FCj-FCo DC x:

D,5-D8

J

r

>-

(b)

Figure 6-10 (com.) (b) Upper byte read timing diagram.

6.7 MEMORY AND I/O WRITE CYCLE TIMING

To write a word or a byte of data to memory or an I/O device, the same basic interface
signals we identified for the read operation are used. The flowchart and timing diagram
for a bus cycle that writes a word of data are shown in Fig. 6. 1 1(a) and (b), respectively.
Here we see that a minimum of five clock cycles, which equals 10 states Sq through
S9, are required to perform a write bus cycle. At 10 MHz this takes 500 ns.

Looking at Fig. 6.1 1(a), we see that the bus cycle begins with a function code
being output on the FC bus during Sq. The address lines that_are floating during Sq
are asserted with a valid address during S, and AS and R/W go active during S2.

Sec. 6.7 Memory and I/O Write Cycle Timing

BUS MASTER SLAVE

Address Device

1) Place function Code on FC0-FC2

2) Place Address on Al-A23_
3) Assert Address Strobe (AS)

4) Set R/W to Write

5) Place Data on DO D15
6) Assert Upper Data Strobe (UDS) and

Lower Data Strobe (LDS)

Input Data

II Decode Address

2) Store Data on D0-D15

3) Assert Data Transfer Acknowledge
(DTACK)

Terminate Output Transfer

1) Negate UDS and LDS

21 Negate AS

3) Remove_Data from D0-D15
41 Set R/W to Read

Terminate Cycle

1) Negate DTACK

Start Next Cycle

(a)

Figure 6-11 (a) Word write cycle flowchart (Motorola, Inc.).

This time, R/W is set to 0 to indicate that a write operation is to take place and data
are output on the complete bus Dq through 0,5 during S3.

Selection of byte or word data is made by the 68000 asserting the data strobe
signals. For a word access, both UDS and LDS are switched to their active 0 logic
level. This is done during the S4 state.

Up to this point, the 68000 has output the address of the storage location and
put the data on the bus. External circuitry must now decode the address to select
the memory location or I/O device. Then the data, which were put on the bus during

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

DC

IK

\

J V

X

y

I

} — c

r
r

y-

Figure 6-11 (com.) (b) Timing diagram.

S3, are written into the enabled device during S4. After the write of data has been
completed, the memory or I/O device must inform the 68000 of this condition by
pulling DTACK to its active 0 logic level. DTACK is tested by the 68000 at the

beginning of S-, and if it is not asserted, wait clock cycles are inserted between the
Sg and S7 states. This e.xtends the duration of the write cycle. However, if DTACK
is found to be at its active 0 level, UDS, LDS, and AS are returned to their inactive

1 logic levels at the beginning of the S9 state. Furthermore, at_t^he end of S9, the
address and data lines are returned to the high-Z state and R/W is switched to 1 .

Sec. 6.8 The User and Supervisor Stacks

Before the Sg state of the next bus cycle, DTACK must be returned to logic
However, this is done by the memory or I/O subsystem, not the 68000.

6.8 THE USER AND SUPERVISOR STACKS

The 68000 employs a stack-oriented architecture. In Chapter 2 we indicated that the
68000 has two internal stack pointer registers and that these stack pointers are called
the user stack pointer (USP) and supervisor stack pointer (SSP). As shown in Fig.
6.12, the addresses held in these registers point to the top storage locations in their
respective stacks: that is, their tops of stacks. The storage locations identified as
bottom of stack represent the locations pointed to by the initial values loaded into
the stack pointers. When the stacks are empty, the stack pointers point to these
locations. The user stack is active whenever the 68000 is in the user state and the

supervisor slack is active whenever it is in the supervisor state. Both stacks can be
located in memory anywhere in the address space of the 68000, and they are not limited
in size.

000000 ,<

Memory

Top of stack

68000 Bottom of stack

USP

SSP

Top of stack

Bottom of stack

FFFFFE,,

■ Supervisor stack

Figure 6-12 User and supervisor stacks.

184 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

During exception processing or subroutine calls, the contents of certain internal
registers of the 68000 are saved on the stack. For instance, when exception processing
is initiated for a hardware interrupt, the current contents of the program counter
(PC) and status register (SR) are automatically pushed to the stack. In this way, they
are temporarily saved.

Additional stack operations are usually performed as part of the exception
processing service routine or subroutine. These are push operations that save the
contents of registers that are to be used within the service routine on the stack. For
instance, instructions in a hardware interrupt service routine can cause the contents

of data registers Dq, Dj, and D2 to be pushed to the user stack. One way of doing
this is with the instruction sequence

MOVE.W D2,-(USP)

MOVE.W D1,-(USP)

MOVE.W DO,-(USP)

These examples all push word data to the user stack. Byte data also can be pushed
to the stack. However, each byte also consumes one word of stack. The byte of data
is stored in the most significant byte location of the word storage location and the
least significant byte is not affected.

At the completion of processing of the exception routine, the saved contents
of internal registers can be restored by popping them from the stack. When pushing
or popping a number of registers, the move multiple (MOVEM) instruction can be
used to perform the operation efficiently. For example, the instruction

MOVEM (USP)+,D0/D1/D2

would restore the contents of Dq, D,, and D, from the user stack.
Moreover, the return instructions for exception processing and subroutines cause

automatic reloading of some internal registers. An example is the return from
exception (RTE) instruction. It causes the contents of both PC and SR to be restored
from the top of the stack.

6.9 64K-BYTE SOFTWARE-REFRESHED DYNAMIC RAM
SUBSYSTEM

The circuit diagram in Fig. 6.13 shows one way of implementing a dynamic RAM
subsystem for a 68000 microcomputer system. This circuit is designed to provide 64K
bytes of memory which are mapped into the address range OO8OOO15 through

017FFF,6 of the 68000's address space.
Due to the large memory support capability of the 68000, it is essential to buffer

all of the memory interface signals. This is done by the leftmost group of circuits
in Fig. 6.13. For example, two 74245 devices are used to buffer bidirectional data
bus lines Dq through 0,5 and two 74LS244 devices are used to buffer address lines
A| through A,g. These buffers increase the drive capability of the address and data
buses over that supplied directly by the lines of the 68000.

Sec. 6.9 64K-BYte Software-Refreshed Dynamic RAM Subsystem

Figure 6-13 Software-refreshed dynamic RAM subsystem (Motorola, Inc.).

186 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

^T?^".^ ^ ̂ "T^n^

i ^ a ^^±:ll a 3

Figure 6-13 (com.)

Let us next look at the storage array of the memory subsystem. It is located

at the right of the circuh diagram and employs thirty-two 16K by 1 dynamic RAMs.

The type of memory device used is the MCM41 16. The circuit is set up to implement

a structure similar to that shown in Fig. 6.3. The upper 16 devices form a 32K-byte

upper data bank. This bank is used to store even-addressed bytes of data and they

are transferred between microprocessor and memory over data bus lines Dg through

D,5. The lower 16 devices form a 32K-byte lower data bank. It stores odd bytes of
data which are carried between the 68000 and memory over data lines Dq through D7.

Sec. 6 10 An I/O Instruction-MOVEP 187

Since dynamic RAMs are in use instead of static RAMs, the address output
by the 68000 on A, through A|4 must be multiplexed into separate row and column
addresses before it can be applied to the memory devices. In Fig. 6.13 we see that
these address lines are input to two 74LS157 multiplexers which produce 7-bit row
and column addresses at their outputs, A, through A^. The timing of the address
output on these lines is determined by the PTND output of a 74LS74 flip-flop in
IC Ug.

Both bank and byte/word selection is performed through the generation of RAS
signals. Notice that the control logic implemented with ICs U2, U4, U5, and U9
produces four RAS signals. They are denoted as RAS,y, RASjy, RASjl, and
RAS2L- Also, two CAS signals, CASy and CAS^, are produced by this section of
circuitry. The inputs from which the row select and column select signals are derived
are address bits A, 4 through Ajg, upper and lower data select UDS and LDS, and
the system clock SYSTEM 0.

For example, to perform a word access from the group 1 RAMs, both LDS
and UDS are logic 0. This makes both the RASl and RASy signals active. At the
same time, the address code AigA|5A,4 is decoded by ICs Uj and U5 to enable both
RAS,y and RAS,l to the memory array. These signals are synchronized to the output
of the row address from the mukiplexer. A short time later, the CASy and CASl
signals are produced. They are synchronized to the output of the column address
from the multiplexer.

Notice that the data acknowledge (DTACK) signal is also produced by this
section of control logic. It is buffered and then sent to the 68000.

This memory subsystem employs software refresh and not hardware refresh.
The 6840 device is provided for this purpose. It contains a timer that is set up to
initiate an interrupt to the 68000 every 1.9 ms. This interrupt has a priority level of
7 and execution of its service routine performs the software-refresh function. The
advantage of software refresh is that the interface hardware is simplified. However,
it also has a disadvantage — the software and time overhead required to perform the
refresh operation.

6.10 AN I/O INSTRUCTION-MOVEP

The 68000 microprocessor has one instruction that is specifically designed for
communicating with LSI peripherals that interface over an 8-bit data bus. It is the
move peripheral data (MOVEP) instruction. An example of an LSI peripheral that
can be used in the 68000 microcomputer system is the 6821 peripheral interface adapter
(PIA). Internal to this device is a group of byte-wide control registers. When the device
is built into the microcomputer system, these registers will all reside at either odd
addresses or even addresses. This poses a problem if we attempt to make multibyte
transfers by specifying word or long-word data operands. For instance, a MOVE
instruction for word data would cause the two bytes to be transferred to consecutive
byte addresses, one of which is even and the other is odd. This problem is overcome
by using the MOVEP instruction.

188 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

The general formats of the instruction are

MOVEP Dn,d(An)

and

MOVEP d(An),Dn

The first form of the instruction is for output of data. It copies the contents of a

source operand that is in data register D„ to the location at the effective address
specified by the destination operand. Notice that the destination operand must always
be specified using address register indirect with displacement addressing.

As an example, let us write an instruction that will transfer a word of data that
is in Dq to two consecutive output ports. Assume that the contents of Aq are 1 6000(6
and it is a pointer to the first of a group of eight byte-wide registers in an LSI
peripheral. These registers are at consecutive even addresses. That is, register 0 is
at address I6OOO16, register 1 at IGOOl^^, and so on. We want to transfer data to
the last two of these registers, registers 6 and 7. The displacement of register 6 from
the address in Ag is Cj^; therefore, the instruction is

MOVEP. W D0,12(A0)

Execution of this instruction causes the bytes of the word contents of Dq to
be output to two consecutive even-byte addresses. The most significant byte is output
to the effective destination address, which is 1600C[6. This is register 6. Then the
address is incremented by 2 to give 1600E]6 and the least significant byte is output
to register 7. The pointer address in Aq remains unchanged.

A MOVEP instruction that employs long-word operands operates in a similar
way except that it would output four bytes to consecutive odd or even addresses.

As an example, let us assume that four byte-wide input ports are located at odd-byte
addresses 16001,5, 16003,6, 16005, g, and 16007,6. The data at these 32 input lines
can be read into a data register by executing a single MOVEP instruction. If A,
contains a pointer to the first input port, the long word of data can be input to D,
with the instruction

MOVEP. L 0(A1),D1

6.11 THE 6821 PERIPHERAL INTERFACE ADAPTER

In the 68000 microcomputer system, parallel input/output ports can be implemented
by using the 6821 peripheral interface adapter (PIA). The 6821 is one of the simpler
LSI peripherals that is designed for implementing parallel input/output. It has two
byte-wide I/O ports called A and B. Each line at both of these ports can be
independently configured as an input or output.

Figure 6.14 is a block diagram that shows the internal architecture of the 6821
device. Here we find six programmable registers. They include an output register (OR),
data direction register (DDR), and control register (CR) for each of the I/O ports.
Let us overview the function of each of these registers before going on.

Sec. 6.1 1 The 6821 Peripheral Interface Adapter

IRQA 38 ̂ ^-

00 33

DI 32

02 31
D3 30

04 29

D5 28

06 2

01 26

- •* — •■ 'OBB' ̂

^^Et^'

^"^^^

J£
J{ Rag.iier A

~l^ ToRAI

(DDRA

cso 22

CSl

2"!
CS2

23

BSO
36

RSI 35

RW

21 Eo.bl. 25

RESET
34

^

5Z

8 PA6

9 PA 7

zx:

18 CBl
19 CB2

Figure 6-14 Block diagram of the 6821 (Motorola, Inc.).

All input/output data transfers between the microprocessor and PIA take place
through the output data registers. These registers are 8 bits wide and their bits
correspond to the I/O port lines. For example, to set the logic level of an output
line at port A to logic 1, we simply write logic 1 into the corresponding bit in port

A's output register.
Each I/O line of the 6821 also has a bit corresponding to it in the A or B data

direction register. The logic level of this bit decides whether the corresponding line
works as an input or an output. Logic 0 in a bit position selects input mode of
operation for the corresponding I/O line and logic 1 selects output operation. For

instance, port A can be configured as a byte-wide output port by initializing its data
direction register with the value FF,g.

The control register (CR) serves three main functions. First, it is used to configure
the operation of control inputs CAp CA2, CB,, and CB2. A second function is that
it can be read by the 68000 to identify control status. However, its third function
is what we are interested in right now. This is how it is used to select between the

Oaumtlfw Acttn CA1 (CB1I TwnMon tai Swing

ImwTupt R»8 IRQA(BI1 - {Wt 71

bl "0 IHQAIBIl set by high-w-low transition on CAl

ICBll

bl = V IHQAIBIl set by low-to-high transition on CAl

IC81)

IRQA(BI 1 InMmipt Reg (bH 71

Goes high on active transition of CAl ICBll. Automa-
tically cleared by MPU Read of Output Register A(BI

May also t>e cleared by hardware Reset

CAl (CBll Interrupt Requakt Enable/ Diaable

bO=0 Disables IRQAISI MPU Interrupt by CAl

ICBll active transition ̂
bO= 1 Enable IRQAIBI MPU Interrupt by CAl ICBll

active transition

1 IRQAIBI will ocbur on next 1MPU generatedl positive

transition of bO if CAl ICBll active transition oc-
curred while interrupt was disabled

b7

b6 b5 1 b4 1 b3 b2 bl 1 bO

IRQAIBll
Flag

IRQAIB12

Flag

CA2 ICB21

Control DDR

Access CAl (CBll

Control

IRQA(B)2 Intemjpt Rag (bit 6)

When CA2 (CB2) is an input, IRQA(B) goes high on ac-
tive transition CA2 (CB2I, Automatically cleared bv

MPU Read of Output Register AiB) May also be
cleared by hardware Reset

CA2 (CB2) Established as Output (b5=ll IRQAIBI
2 = 0. not affected by CA2 (CB2t transitions

DctarminM Wh«th«r Data Okaction Ragiatar Or Output

Ragiatar ia Addraaaad
b2 = 0 Data Direction Register selected

b2= 1 Output Register selected

CA2 (CB2) EataWtahad aa Output by b&= 1

(Note that operation of CA2 and CB2 output

b5 b4 b3 functions are not identical! —^ CA2

b3 = 0 Raad StrobawHh CAl Raatore

CA2 goes low on first high-io-low
E transition following an MPU read

of Output Register A, returned high

by next active CAl transition, as

specified by bit 1

b3= 1 Raad Stroba with E Raatora

CA2 goes low on first high-to-low
E transition following an MPU read

of Output Register A, returned high

by next high-to-low E transition dur-
ing a deselect -»- CB2

b3 = 0 Wrtta Stroba wtth CB1 Raatore

CB2 goes low on first low-to-high
E transition following an MPU write

into Output Register B, returned

high by the next active CBl transi-
tion as specified by bit 1 CRB-b7

must first be cleared by a read of
data

b3= 1 Wrna Stroba wtth E Raatora

CB2 goes low on first lowio-high
E transition following an MPU write

into Output Register B. returned

high by the next low-to-high E tran-
sition following an E pulse which

occurred while the part was de-
selected

Sat/Raaai CA2 (CB2)

CA2 (CB2I goes low as MPU writes

b3«0 into Control Register

CA2 (CB2I goes high as MPU wntes

b3> 1 into Control Register

b3

L

CA2 ICB2I Enabllehed at Input by b5=0

65 64 b3

' — >■

CA2 ICB2I Interrupt Requaat Enable/ Oitsble

b3 = 0 Disables IRQAIAI MPU Interrupt by

CA2 ICB2I active transition •
b3=l Enables IRQAIBI MPU Interrupt by

CA2 ICB2I active transition

•IRQAIBI will occur on next IMPU generat-
tedl positive transition of b3 if CA2 ICB21

active transition occurred while interrupt
was disabled

Oetemtinae Active CA2 ICB2I Trantition lor

Setting Interrupt Rag IRQAIBI2 - I Bit b6l

b4 = 0 lflQAlB12 set by high-to-low transi-
tion on CA2 ICB2I

b4= 1 IRQA1B12 set by low-to-high transi-
tion on CA2 ICB2I

Figure 6-15 Control register bit functions (Motorola, Inc.).

Sec. 6.1 1 The 6821 Peripheral Interface Adapter 191

DDR and OR registers when they are loaded or read by the 68000. In Fig. 6.15 we
see that the logic level of bit b2 in CR selects DDR when it is zero and OR when it is 1 .

Looking at Fig. 6.14, we find that the microprocessor interface of the 6821 is
shown on the left. The key signals here are the eight data bus lines Dq through D7.
It is over these lines that the 68000 can initialize the registers of the 6821, write
commands to the control registers, read status from the control registers, and read
from or write into the peripheral data registers. The direction in which data are to
be transferred is signaled to the 6821 by the logic level of R/W. For example, logic
0 on R/W indicates that data are to be written into one of its registers.

Even though the 6821 has six addressable registers, only two register select lines

have been provided. They are labeled RSg and RS,. The table in Fig. 6.16 shows
how they are used together with bit b2 of the control registers to select the internal
registers. Notice that if both RSj and RSq are logic 0, the data direction register and
output register for port A are selected. As we pointed out earlier, the setting of b2
in the A control register selects between the two registers. For instance, if this bit
is logic 0, the data transfer takes place between the microprocessor and the DDR
for port A. In this way we see that bit 2 in control register A must be set to select
the appropriate register before initiating the data transfer.

RSI

HSO Rcg.ster Bii
Loci.on Selected CHfl 2 CBB 2

0 0 1 X Penphe'al Req'ste* A

0 0 0 X Data D.ieci.on Regisie' A

0 ' X X Loni.ol Reg.iie. A

1 0 X 1 Pe-.pherdl Register B

1 0 X 0 Data Di ecl.or. Reg.iler B

' ' " ^ ton„ciReg,sie. B Figure 6-16 User-accessible register
selection (Motorola, inc.).

As part of the microprocessor interface, there are also three chip select inputs.
They are labeled CSq, CS,, and CS2 and must be 1, 1, and 0, respectively, to enable
the microprocessor interface.

At the right side of the 6821 block diagram in Fig. 6.14, we find the A and

B byte-wide I/O ports. The individual I/O lines at these ports are labeled PAq through
PA7 and PBq through PB7, respectively.

Two more lines are associated with each I/O port. They are control lines. For
instance, looking at the A port, we find control lines CA, and CA2. Notice that CA,
is a dedicated output, but CA2 is bidirectional and can be configured to operate as
either an input or an output. The mode of operation of these control lines are

determined by the settings of the bits in port A's control register.
These control lines permit the user of the 6821 to implement a variety of different

I/O handshake mechanisms. For example, port A could be configured for a strobed
mode of operation. If this is the case, a pulse is output at CA2 whenever new data
are available at PAq through PA7. Moreover, the 6821 can be configured such that
the pulse at CA2 is automatically produced by the 6821 or is generated under software

192 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

control from the 68000. In the automatic mode, the pulse that is output is of a fixed
duration. But if the pulse is initiated by the 68000, it can be set to any duration.

6.12 DUAL 16-BIT PORTS FOR THE 68000 MICROCOMPUTER USING
6821s

The circuit in Fig. 6.17 shows how 6821 PIAs can be used to implement a parallel
I/O interface for a 68000 microcomputer system. At the left of the circuit diagram,
we find the asynchronous interface bus signals. Included are address lines A, through

A|g, data lines Dq through 0,5, and control signals AS, R/W, and DTACK.
In order to construct two 16-bit ports, we use two 6821 ICs, U,4 and Ujj. The

A ports on the two 6821 ICs are cascaded to make a word-wide output port. On the
other hand, the B ports on the two devices are cascaded to make a word-wide input

port.
This circuit has been designed such that the registers of the PIAs reside in the

address range 18000,6 through 18007|g. The chart in Fig. 6.18(a) shows the address
for each register. Notice that the data direction registers corresponding to the bytes

of the 16-bit output port are at addresses 18000,6 ̂ ""^ 18001,6. Those of the 16-bit
input port are at 18004,6 ̂ "*^ 18005,6-

The address decoding for selecting between the two chips and their internal

registers is shown in Fig. 6.18(b). Notice that bits A, and A2 of the address are applied
to register select inputs RSq and RS,, respectively. Moreover, A3 and A4 are applied
to the CS, and CSq chip select inputs of both 6821 devices. The rest of the address
lines, A5 to A, 6, and AS are decoded by gates Ug^, U93, U,oe, U,,^, and U,,g.
Their output is synchronized with a 2-MHz externally generated clock signal by

flip-flops U,3^ and U,33. The output of this circuit is the third chip select signal, CS2,
for the PIAs.

The data bus lines are simply buffered and then applied to both PIAs in parallel.
Notice that the upper PIA device is coupled to the 68000 over the lower eight data
bus lines and the lower PIA by the upper eight data lines. Therefore, as shown in
Fig. 6.18(a), the registers of the upper device reside at odd byte addresses and those
of the lower device are at even byte addresses.

To use the B ports on the two 6821 devices as inputs, their B port DDRs must
be initialized with all zeros. These two registers are located at addresses 18004,6 and
18005,6, respectively. However, to select these DDRs, bit 2 in the corresponding
control registers must be loaded with logic 0. These control registers are located at

addresses 18006,6 ̂ ^^ 18007,6. Thus, to configure the B ports as inputs, we can
execute the following instruction sequence;

MOVE.W #$0,$18006 SELECT DATA-DIRECTION REGISTERS B

MOVE.W #$0,$ 18004 PORT B IS INPUT-PORT

Execution of these instructions loads the word-wide memory locations at addresses
18006,6 ̂ ^^ 18004,6 with 0000,6-

Sec. 6.12 Dual 16-Bit Ports for the 68000 Microcomputer Using 6821s
193

59 ai SI SI SI

M**nM* t^JS-

1 :llfflm m

iitiOil

Wf n.l

Sec. 6.12 Dual 16-Bit Ports for the 68000 Microcomputer Using 6821s

18000
Peripheral Data/DDRA

Peripheral Data/DDRA

CRA

CRA
Peripheral Data/DDRB

Peripheral Data/DDRB

CRB
CRB

(U15)

18001
(U14I

18002 IU15I

18003
(U14)

18004 IU15I
18005

(U14I
18006 (U15)

18007 (U14I

A23A22A21A20 A„A,8A,7Ai6 A,5Ai4A,3A,2 A3A2A, Ao

0000 0001 1000 0000 0000 0000

 ' S-'
I Internal to I

Chip select for 6821 chips (CSg and CS|)

Chip select for flip-flops

(b)

Figure 6-18 (a) 6821 register address map (Motorola, Inc.); (b) address decoding for
port selection.

To configure the A ports on the two chips, we first select the DDRs for port
A by clearing bit 2 in their control registers. These CRs are located at addresses
18002|6 and 18003,6. ̂ he DDRs are located at 18000, ^ and 18001, g. To configure
the A ports as outputs, we must load their DDRs with all Is. This gives the following
instruction sequence:

MOVE.W #$0,$18002

MOVE.W #$FFFF,$ 18000

SELECT DATA-DIRECTION REGISTERS A

PORT A IS OUTPUT-PORT

Now to use the ports for inputting or outputting of data, we must select the
peripheral data (output) registers. To select the two output registers for port A, we

196 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

must load their control registers so that bit 2 is logic 1. A similar configuration is
needed for port B. To do this, the following instructions can be executed:

MOVE.W #$0404,$18002 SELECT DATA REGISTERS A

MOVE.W #$0404,$18006 SELECT DATA REGISTERS B

Now the two ports are ready to perform I/O operations.
As an example of how data are input and output, let us show how to read a

16-bit word from the input port, increment it by 1, and output the new value to the
output port. This can be accomplished by the following instructions:

MOVE.W $18004,D1

ADDQ.W //LDl

MOVE.W Dl, $18000

The first instruction moves the contents of the input port to D,. Then we increment
the value in Dj by 1. Finally, the third instruction outputs the value in D, to the
output port.

6.13 SYNCHRONOUS MEMORY AND I/O INTERFACE

Up to this point in the chapter, we have been considering the asynchronous bus
interface of the 68000 microprocessor. However, the 68000 also provides a
synchronous bus interface. This capability is provided primarily for interface with
slower 8-bit LSI peripherals such as those in the 6800 family. The synchronous
interface is shown in Fig. 6. 19. This interface looks quite similar to the asynchronous

AS

A, -A,,

WA

ui5s

68000 ̂
VMA

R/W
E

Do-Di5

Memory and I/O

'>

U
Address
decoder

1

<^ ̂ >

Figure 6-19 Synchronous memory and I/O interface.

Sec. 6.13 Synchronous Memory and I/O Interface 197

interface of Fig. 6.1. It includes the complete address bus Aj_through A23' the 16-bit
data bus Dp through D15, and control signals UDS, LDS, AS, and R/W. Notice that
DTACK is not part of this interface. Instead, it is replaced by three synchronous
bus control signals. They are valid peripheral address (VPA), valid memory address

(VMA), and enable (E).
Let us look briefly at the function of each of these control signals. VPA is an

input to the 68000. It must be switched to the 0 logic level to tell the 68000 to perform
a synchronous bus cycle. As shown in Fig. 6.19, external decoder circuitry is supplied
in the interface to detect that the address on the bus is in the address space of the
synchronous peripherals. On the other hand, VMA is an output produced by the 68000
only during synchronous bus cycles. It signals that a valid address is on the bus.

E is an enable clock that is produced within the 68000. It is at a rate equal to

1/10 that of the system clock. For instance, in a 10-Mz 68000 microcomputer system,
E is at 1 MHz. The duty cycle of this signal is such that the pulse is at the 1 logic
level for four clock states and at the 0 logic level for six clock states. This signal is
applied to the E clock input of 6800 LSI peripherals.

Synchronous Bus Cycle

A flowchart of the 68000's synchronous bus cycle is shown in Fig. 6.20(a). Moreover,
a general timing diagram for the key interface signals involved in a synchronous
read/write operation is shown in Fig. 6.20(b). Notice that the waveforms of the FC,
R/W, UDS, and LDS signals are not shown. They have the same function and timing
as in the asynchronous bus cycle.

The synchronous bus cycle starts out just like an asynchronous bus cycle with

a function code being output on the FC bus during state Sq. It is followed by the
address on Aj through A23 during S[. When the address is stable in S2, AS is switched
to the 0 logic level. At this time R/W is set to 0 if a write cycle is in progress; otherwise,
it stays at the 1 logic level. Moreover, if a write operation is in progress, the data
are output on Dq through Djj and it is maintained valid during the rest of the bus
cycle.

By the end of S4, external circuitry must have decoded the address on the bus.
At this time, it asserts VPA by switching it to the 0 logic level. In response to this,
the 68000 begins to assert wait states to extend the bus cycle. At the end of the next
clock state, the VMA output is switched to the 0 level. This signals external circuitry
that an address is on the bus. The peripheral transfers the data after E is active. For
a read cycle, the MPU reads the data when E goes low. The data transfer cycle is
terminated by the processor by negating control signals VMA, AS, UDS, and LDS.

Interfacing the 6821 PIA to the Synchronous Interface Bus

The circuit diagram of Fig. 6.17 illustrates how 6821 PIAs are interfaced to the 68000's
asynchronous bus. This circuit can be easily modified so that the LSI peripherals

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

PROCESSOR SLAVE

Initiate Cycle

II The processor starts a normal Read or
Write cvcle I

Define M6800 Cycle

1) External hardware asserts Valid Peripheral

Address IVPAl

Synchronize With Enable

II The processor monitors Enable (El until it is
low (Phase II

2) The processor asserts Valid Memory Ad

dress (VMA) I

Transfer Data

1) The peripheral waits until E is active and
then transfers the data

Terminate Cycle

II The processor waits until E goes low (On a

Read cycle the data is latched as E goes
low internallyl

21 The processor negates VMA

31 The processor negates AS. UDS, and LDS

Start Next Cycle

(a)

Figure 6-20 (a) Synchronous bus cycle flowchart (Motorola, Inc.).

work off a synchronous bus cycle instead of an asynchronous bus cycle. Figure 6.21
shows a simple circuit that makes this modification. First, the ICs U,|^, Upg, U,3^,
and Ui3B are removed from the circuit of Fig. 6.17. This is because DTACK is not
required to support the synchronous bus. Moreover, the E output of the 68000 now
gets directly connected to the E input of both 6821 devices in parallel.

«s ><l

\

I y^

I

Y

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Pin 23, U14and U15

Figure 6-21 Conversion circuit for implementing synchronous bus cycle (Motorola,
Inc.).

Looking at Fig. 6.21, we see that the chip select (CS) output at pin 6 of Ujig
gets connected to one input of the 74LS00 NAND gate. The other input of this gate
is supplied by the VMA output of the 68000 after it is inverted. The output of the
NAND gate goes to the CS2 input of both 6821 devices in parallel. In this way, we
see that the 6821s get chip-selected only when one of their addresses is on the bus
and the 68000 has signaled that a valid address is on the bus during a synchronous
bus cycle.

The upper NAND gate in this circuit also has CS as one of its inputs and AS
as the other. Therefore, it detects when an address corresponding to one of the LSI
peripherals is on the bus. When this condition occurs, it switches VPA to logic 0,
thereby signaling to the processor that a synchronous bus cycle should be performed.

6.14 SERIAL COMMUNICATIONS INTERFACE

Another type of I/O interface that is widely used in microcomputer systems is known
as a serial communications port. This is the type of interface that is used to connect
peripheral units, such as CRT terminals and printers, to a microcomputer. It permits
data to be transferred between the various units of the system. For instance, data
input at the keyboard of a terminal are passed to the MRU part of the microcomputer
through this type of interface. Let us now look into the different types of serial
interfaces that are implemented in microcomputer systems.

Synchronous and Asynchronous Data Communications

Two types of serial data communications are widely used in microcomputer systems.
They are called asynchronous communications and synchronous communications.
By synchronous, we mean that the receiver and transmitter sections of the two pieces
of equipment that are communicating with each other must run synchronously. For
this reason, as shown in Fig. 6.22(a), the interface includes a Clock line as well as
Transmit Data, Receive Data, and Signal Common lines. It is the clock signal that
synchronizes both the transmission and reception of data.

Sec. 6.14 Serial Communications Interface

Traiisniit dala

System I

Receive Jata

Clock

Signal common

T

SYN

CHAR =:

SVN

CH.'\R «1

Figure 6-22 (a) Synchronous communications interface; (b) synchronous data
transmission format.

The format used for synchronous communication of data is shown in Fig.
6.22(b). To initiate synchronous transmission, the transmitter first sends out
synchronization characters to the receiver. The receiver reads the synchronization
bit pattern and compares it to a known sync pattern. Once they are identified as being
the same, the receiver begins to read character data off the communications Une.
Transfer of data continues until the complete block of data is received or
synchronization is lost between the receiver and transmitter. If large blocks of data
are being sent, the synchronization characters may be periodically resent to assure
that synchronization is maintained. The synchronous type of communications is

typically used in applications where high-speed data transfer is required.
The asynchronous method of communications eliminates the need for the Clock

signal. As shown in Fig. 6.23(a), the simplest form of an asynchronous communication
interface could consist of a Receive Data, Transmit Data, and Signal Common
communication lines. In this case, the data to be transmitted are sent out one character
at a time and at the receiver end of the communication line synchronization is
performed by examining synchronization bits that are included at the beginning and
end of each character.

The format of a typical asynchronous character is shown in Fig. 6.23(b). Here
we see that the synchronization bit at the beginning of the character is called the start
bit and that at the end of the character the stop bit. Depending on the communications

scheme and device used, 1, 1 y , or 2 STOP bits can be used. The bits of the character
are embedded between the start and stop bits. Notice that the start bit is always input
or output first. It is followed in the serial bit stream by the LSB of the character,

the other 6 bits of the character, a parity bit, and the stop bits. For instance, 7-bit
ASCII can be used and parity added as an eighth bit for higher reliability in
transmission. The duration of each bit in the format is called a bit time.

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

System 1 System :

Receive data

Signal common

Parity

Stop

Figure 6-23 (a) Asychronous communicalions interface; (b) asynchronous data
transmission format.

The fact that an 0 or 1 logic level is being transferred over the communication
line is identified by whether the voltage level on the line corresponds to that of a
mark or a space. The start bit is always to the mark level. It synchronizes the receiver
to the transmitter and signals that the unit receiving data should start assembling
the character. Stop bits are to the space level. This assures that the receiving unit
sees a transition of logic level at the start bit of the next character.

The USART and UART

Since serial communication interfaces are so widely used in modern electronic
equipment, special LSI peripheral devices have been developed to permit easy
implementation of these types of interfaces. Some of the names that these devices
go by are UART (universal asynchronous receiver/transmitter) and USART (universal
synchronous/asynchronous receiver/ transmitter).

Both UARTs and USARTs have the ability to perform the parellel-to-serial
conversions needed in the transmission of data and the serial-to-parallel conversions
needed in the reception of data. For data that are transmitted asynchronously, they
also have the ability to frame the character automatically with a start bit, parity bit,
and the appropriate stop bits.

Moreover, for reception of data, UARTs and USARTs typically have the ability
to check characters automatically as they are received for correct parity, and for two
other errors, known as framing error and overrun error. A framing error means that
after the detection of the beginning of a character with a start bit the appropriate
number of stop bits were not detected. This means that the character that was
transmitted was not received correctly and should be resent. An overrun error means

Sec. 6.14 Serial Communications Interface 203

that the prior character that was received was not read out of the UARTs receive

data register by the microprocessor before another character was received. Therefore,
the first character was lost and should be retransmitted.

A block diagram of a typical UART is shown in Fig. 6.24. Here we see that

it has four key signal interfaces: the microprocessor interface, the transmitter interface,
the receiver interface, and the handshake control interface. Let us now look at each
of these interfaces in more detail.

Microprocessor
interlace

CTS control
niterlace

Figure 6-24 Block diagram of a UART.

LSI USARTs and UARTs cannot stand alone in a communication system. Their

operation must be controlled by a general-purpose processor such as a microprocessor.
The microprocessor interface is the interface that is used to connect the UART to

an MPU. Looking at Figure 6.24, we see that this interface consists of an 8-bit

bidirectional data bus (Dq - D-^) and a minimum of three control lines, CS, RD, and
WR^.

All data transfers between the UART and MPU take place over the 8-bit data
bus. Two uses of this bus are for the input of character data from the receiver of

the UART and for the output of character data to its transmitter. Other types of

information are also passed between the MPU and UART. Examples are mode control

information, operation commands, and status.

LSI UARTs, just like the 6821 LSI peripheral we discussed earlier in the chapter,

can be configured for various modes of operation through software. Mode control
instructions are what must be issued to a UART to initialize its control registers for

the desired mode of operation. For example, the format of the data frame used for

transmitted or received data can be configured through software. Typical options

are character length equal to from 5 to 8 bits; even, odd, or no parity; and 1, ly,
or 2 stop bits.

We pointed out earlier that a UART cannot perform the communication

function on its own. Instead, the sequence of events that is needed to initiate

transmission and reception is controlled by commands issued to the UART by the

MPU. For instance, the MPU can initiate a request for transmission of data to another

204 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

unit by writing a command to the UART that forces its RTS control output to its active
0 logic level. The logic 0 at RTS signals the system at the other end of the
communication line to prepare to receive data. At the receiver end of the
communication line, the MPU can acknowledge that it is ready to receive data by
sending a command to its UART that forces the DTR control output to logic 0.

Most UARTs have a status register that contains information related to its
current state. For example, it may contain flag bits that represent the current logic
state of signal lines such as CTS. This permits the MPU to examine the logic state
of the line through software.

Besides information about the logic level of control lines, the status register
typically contains flag bits for error conditions such as parity error, overrun error,
and framing error. After reception of a character, the MPU can first read these bits
to assure that a valid character has been received, and if the bits are at their inactive
levels, the character should be read from the receive data register within the UART.

At the other side of the block in Fig. 6.24, we find the transmitter and receiver
interfaces. The transmitter interface has two signal lines: transmit data (Tx^) and

transmitter ready (Txj^oy)- ̂ ^^d '^ '^^ ''"^ ̂ ^^^ which the transmitter section of the
UART outputs serial character data. As shown in Fig. 6.25, this output line is
connected to the receive data (Rxq) input of the receiver section in the system at the
other end of the communication line.

RTS DTR

CTS iJSR

DSR RTS *

jyfR rfs *

Tit iimal

Tnu

Rx„

Rn„

\lKro

Tx„

oiiipiilcr

Ct
nimon

Figure 6-25 Simple asynchronous com-
munications interface between a

microcomputer and terminal.

Usually, the transmitter section of an LSI UART can hold only one character
at a time. This character datum is held in the transmit data register within the UART.
Since only one character can be held within the UART, it must signal the MPU when
it has completed transmission of this character. The Txj^py ''"^ 's provided for this
purpose. As soon as transmission of the character is complete, the transmitter switches
TX[jj5Y to its active logic level. This signal should be returned to an interrupt input
of the MPU. In this way, its occurrence can cause program control to be passed quickly
to a service routine that will output another character to the transmitter data register
and then reinitiate transmission. In some UARTs, the transmitter empty condition
is identified by a status bit instead of an external signal. In this case the status bit
can be polled through software.

The receiver section is similar to the transmitter we just described. However,

here the receive data (Rx^) line is the input that accepts bit-serial character data that

Sec. 6.14 Serial Communications Interface 205

are transmitted from the other system's transmitter. Moreover, the receiver ready

(Rxjjpy) output is again used as an interrupt to the MPU. But this time it signals
the MPU that a character has been received. The service routine that is initiated must
first determine whether or not the character is valid, and if it is, it must read the

character out of the UART's receive data register. Here again a status bit instead
of a signal bit can be used to signal the receiver full condition.

Using the handshake control signals RTS, DSR, DTR, and CTS, different types

of asynchronous communication protocols can be implemented through the serial

I/O interface. By protocol we mean a handshake sequence by which two systems

signal each other that they are ready to communicate.
A simple asynchronous communication interface that uses these control lines

is shown in Fig. 6.25. In this example, a protocol can be set up such that when the
terminal wants to send data to the microcomputer it will issue a request at its request
to sent (RTS) output. To do this, the MPU of the terminal must issue a command
to the UART that causes it to set the RTS Hne to its active 0 logic level. RTS of the
terminal is applied to the data terminal ready (DTR) input of the microcomputer.
In this way, it tells the microcomputer that the terminal wants to transmit data to it.

When the microcomputer is ready to receive data, it acknowledges this fact to
the terminal by activating the data set ready (DSR) output of its UART. The MPU
in the microcomputer does this by issuing a command to the UART that switches
DSR to its active 0 logic level. This signal is returned to the clear to send (CTS) input

of the terminal's UART and tells the UART in the terminal to start outputting data
on Txq. At the same time, the receiver section in the UART within the microcomputer
begins to read data from its Rxq input.

If a UART does not have true DSR, DTR, or CTS signal lines, external logic
circuitry can be used to generate these signal functions from the provided signals.

Baud Rate and the Baud Rate Generator

The rate at which data transfers take place over the receive and transmit lines is known
as the baud rate. By baud rate we mean the number of bits of data that are transferred
per second of time. For instance, some of the common data transfer rates are 300
baud, 1200 baud, and 9600 baud. They correspond to 300 bits/second (bps), 1200
bps, and 9600 bps, respectively.

The baud rate at which data are transferred determines the bit time. That is,
the amount of time each bit of data is on the communication line. At 300 baud, the
bit time is found to be

tgj = 1/300 bps = 3.33 ms

Baud rate is set by a part of the serial communication interface called the baud
rate generator. This part of the interface generates the clock signal that is used to

drive the receiver and transmitter parts of the UART. Some LSI UARTs have a built-in
baud rate generator; others need an external circuit to provide this function.

206 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

The RS-232C Interface

The RS-232C interface is a standard hardware interface for implementing
asynchronous serial data communication ports on devices such as printers, CRT
terminals, keyboards, and modems. The pin definitions and electrical characteristics
of this interface are defined by the Electronic Industries Association (EIA). The aim

behind publishing standards such as the RS-232C is to assure compatibility between
equipment made by different manufacturers.

Peripherals that connect to a microcomputer can be located anywhere from
several feet to many feet from the system. For instance, in large systems it is common
to have the microcomputer part of the system in a separate room from the terminals
and printers. This leads us to the main advantage of using a serial interface to connect
peripherals to a microcomputer, which is that as few as three signal lines can be used
to connect the peripheral to the MPU: a Receive Data line, a Transmit Data line,
and a Common Ground. This results in a large savings in wiring costs and the small
number of lines that need to be put in place also leads to higher reliability.

The RS-232C standard defines a 25-pin interface. Figure 6.26 lists each pin and
its function. Note that the three signals that we mentioned earlier. Transmit Data,
Receive Data, and Signal Common, are located at pins 2, 3, and 7, respectively. Fins
are also provided for additional control functions. For instance, pins 4 and 5 are
the Request To Send and Clear To Send control signals. These two signals are also
frequently used when implementing an asynchronous communication interface.

The RS-232C interface is specified to operate correctly over a maximum distance
of 100 feet. To satisfy this distance specification, a bus driver is used to buffer the
transmit line to provide the appropriate drive current and a bus receiver is used at
the receive line. RS-232C drivers and receivers are available as standard ICs. These

buffers do both the voltage-level translation needed to convert the TTL-compatible
outputs of the UART to the mark and space voltage levels defined for the RS-232C
interface. The voltage levels that are normally transmitted for a mark and a space
are -I- 12 V dc and - 12 V dc, respectively. For the RS-232C interface, all voltages
below - 3 V dc are equal to a mark and all voltages above -i- 3 V dc are considered
a space.

The RS-232C interface is specified to support baud rates of up to 20,000 bps.
In general, the receive and transmit baud rates do not have to be the same; however,
in most simpler systems they are set to the same value. For instance, a baud rate
that is widely used in communication between an MPU and a printer is 1200 bps.
This corresponds to a bit time equal to .833 ms.

Simplex, Half-Duplex, and Full-Duplex Communication Links

Applications require different types of asynchronous links to be implemented. For
instance, the communication link needed to connect a printer to a microcomputer
just needs to support communications in one direction. That is, the printer is an

Sec. 6.14 Serial Communications Interface

Pin Signal

1 Protective Ground

2 Transmitted Data

3 Received Data

4 Request to Send
5 Clear to Send

6 Data Set Ready

7 Signal Ground (Common Return)
8 Received Line Signal Detector
9 Reserved for Data Set Testing

10 Reserved for Data Set Testing 1 1
Unassigned 12

Secondary Received Line Signal Detector 13

Secondary Clear to Send
14 Secondary Transmitted Data
15

Transmission Signal Element Timing
16

Secondary Received Data
17 Receiver Signal Element Timing
18 Unassigned
19

Secondary Request to Send
20 Data Terminal Ready

21
Signal Quality Detector

22 Ring Indicator 23
Data Signal Rate Selector

24 Transmit Signal Element Timing
25

Unassigned

Figure 6-26 RS-232C interface pins and functions.

output-only device; therefore, the MPU only needs to transmit data to the printer.
Data are not transmitted back. In this case, as shown in Fig. 6.27(a), a single
unidirectional communication line can be used to connect the printer and
microcomputer together. This type of connection is known as a simplex
communication link.

Other devices, such as the CRT terminal with keyboard shown in Fig. 6.27(b),
need to both transmit data to and receive data from the MPU. That is, they must
both input and output data. This requirement can also be satisfied with a single

communication line by setting up a half-duplex communication link. In a half-duplex
link, data are transmitted and received over the same line; therefore, a system cannot
transmit and receive data at the same time.

If higher-performance communication is required, separate transmit and receive
lines can be used to connect the peripheral and microcomputer. When this is done,
data can be transferred in both directions at the same time. This type of link is

illustrated in Fig. 6.27(c). It is called a full-duplex communication link.

208 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Micr uconipulcr

ar:

Trai sunt hne
o

a:

Printer

r—

(RT

Micros omputer

7\
Transiiii hue

r;

tLTiiimul
with *

o; OL kevhoarJ

Mkt jcomriiter
Di

Transmi

IllK'

02

CRT

termiiiai
Witll

kci board

RcLVivc

liiK-

Figure 6-27 (a) Simplex

communications link; (b) half-duplex

communications link; (c) full-duplex
communications link.

6.15 THE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER

The 6850 asynchronous communications interface adapter is another important LSI
peripheral that is frequently used in 68000 microcomputer systems. It permits simple
implementation of a serial data communications interface. As its name implies, the
6850 is capable of implementing an asynchronous communication interface. For
instance, the 6850 can be used to implement an RS-232C port. This is the type of
interface that is used to connect a CRT terminal or printer to a microcomputer. To
support connection of these two peripheral devices, the microcomputer would need
two independent RS-232C I/O ports.

The programmability of the 6850 provides for implementation of a very flexible

asynchronous communication interface. It contains a full-duplex receiver and
transmitter that can be configured through software for communication of data using
formats with character lengths of 7 or 8 bits, with either even or odd parity and 1
or 2 stop bits. Moreover, the 6850 has the ability to detect automatically the occurrence
of parity, framing, and overrun errors during data reception.

A block diagram showing the internal architecture of the 6850 is shown in Fig.
6.28. From this diagram, we find that it includes four key sections: the bus interface
section, which consists of the data bus buffers block and the chip select and read/write
control block; the transmit section, which consists of the transmit data register.

Sec. 6.15 The 6850 Asynchronous Communications Interface Adapter

23 Data Carrier Oe

Figure 6-28 Block diagram of the 6850 ACIA device (Motorola, Inc.).

transmit shift register, and transmit control blocks; the receive section, which consists
of the receive data register, receive shift register, and receive control blocks; and the
control section, which consists of the control register, status register, and interrupt
logic blocks. Let us now look at each of these sections in more detail.

The bus interface section is used to connect the 6850 to a microprocessor such

as the 68000. Notice that the interface includes an 8-bit bidirectional data bus Dq
through D-j that is driven by the data bus buffers. It is over these lines that the

microprocessor transfers configuration information to the 6850's control register,
reads its status register, and inputs or outputs character data.

 Data transfers take place over the bus under control of the signals read/write
(R/W), register select (RS), enable (E), and chip selects CSq, CS,, and CSj. All of
these signals are inputs to the chip select and read/write control block. Typically,

the 6850 is located at a specific address in the microcomputer's memory address space.
When the microprocessor is to access registers within the 6850, it puts this address
on the address bus. The address is decoded by external circuitry and must produce

logic 1 at the CSq and CS, inputs and logic 0 at the CS2 input. These three inputs
must be at these logic levels for a read or write bus cycle to take place to the 6850.

The other two control signals, R/W and RS, tell the 6850 what type of data
transfer is to take place over the bus. Figure 6.29 shows the various types of read/write

210 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Data

Bus

Line

Number

Buffer Address |

RS • R/W

Transmil

Data

Register

rs«r/w

Receive

Data

Register

RS • RTW

Control

Register

RS • R/W

Status

Register
(Write Only) (Read Only!

(Write Only! (Read Only)

0

Data Bit 0'
Data Bit 0 Counter Div.de

Select 1 ICRO)
Receive Data Register

Full IRDRF)

1 Data Bit 1 Data Bit 1
Counter Divide
Select 2 iCRtl

Transmit Data Register

Empty ITDREI

2 Data Bit 2 Data Bit 2 Woro Select 1

ICR2)

Data Carrier Detect

IDCDI
3 Data Bit 3 Data Bit 3 Word Select 2

(CR3>

Clear to Send

(CTSI

4 Data Bit i Data Bit 4 Word Select 3

ICH4I

Framing Error

IFEI
5 Data Bit 5 Data Bit 5

ICR5)

Receiver Overrun

(OVRNI

6 Data Bit 6 Data Bit 6 Transmit Control 2

ICR6I

Parity Error IPEl

'
Data Bit ?•• ■

Data Bit ?••

Receive Interrupt

Enable ICR71

Interrupt Request

iFrqi

LSB - Bit 0

Figure 6-29 Control signals and corresponding bus data transfers (Motorola, Inc.).

operations that can occur. For example, the first state in the table, RS • R/W,
corresponds to a write of character data from the microprocessor to the transmit

data register within the 6850. Notice that in general R/W = 0 signals that the

microprocessor is writing data to the 6850, R/W = 1 indicates that data are being
read from the 6850, and the logic level of RS indicates whether character data, control
information, or status information is on the data bus.

Example 6.1

What type of data transfer is taking place over the bus if the control signals are RS =
0 and R/W = 1?

Solution. Looking at the table in Fig. 6.29, we see that RS = 0 and R/W = 1 correspond

to the condition RS ■ R/W; therefore, status information is being read from within the
6850.

The receiver section of the 6850 is responsible for reading the serial bit-stream

of data at the receive data (Rxqata) '"Put and converting it to parallel form. When
a mark voltage level is detected on this line, the receiver enables a counter. As the

counter increments to a value equal to 1/2 a bit time, the logic level at the Rx^^j^^
line is sampled again. If it is still at the mark level, a valid start pulse has been detected.

Then Rxq^j^ is examined every time the counter increments through another bit
time. This continues until a complete character is assembled in the receive shift register

and the stop bit is read. After this, the complete character is transferred in parallel
into the receive data register.

Sec. 6.15 The 6850 Asynchronous Communications Interface Adapter 211

During reception of a character, the receiver automatically checks the character
data for parity, framing, or overrun errors. If one of these error conditions occurs,
it is flagged by setting a corresponding bit in the status register. Then the receive
data register full (RDRF) status bit is set to 1 and, assuming that the receive interrupt
enable bit in the control register is set to 1, the interrupt request (IRQ) output switches
to logic 0. This signal can be sent to the microprocessor to tell it that a character
is available and should be read from the receive data register. RDRF is automatically
reset to logic 0 when the MPU reads the contents of the receive data register.

The 6850 does not have a built in baud rate generator. For this reason, the clock
signal that is used to set the baud rate must be externally generated and applied to
the receive clock (Rx^lj^) input of the receiver. Through software the 6850 can be
set up to internally divide the clock signal input at Rx^lk ̂ ^ '- '^' °^ ̂ ^•

The 6850's transmitter section does the opposite of the receiver section. The
MPU loads its transmit data register with parallel character data by writing data to
it over the data bus. The character is automatically framed with the start bit, the
appropriate parity bit, and the correct number of stop bits, and then is put into the
transmit data register. It is then shifted through the transmit shift register to produce

a bit-serial output on the transmit (Txq^j^) line. When the transmit data register
becomes empty, the transmit data register empty (TDRE) bit of the status register
is set to logic 1 and, assuming that the interrupt on transmitter data register empty
function is enabled with its control bit, the IRQ output is switched to logic 0. This
signal can be returned to the MPU to tell it that another character should be output
to the transmitter section. When the MPU writes another character out to the transmit

data register, the TDRE status bit is reset automatically.
Data are output on the transmit data (Txq^j^) line at a baud rate set by the

external transmit clock signal that is input at TX(~lk- I" most applications, the
transmitter and receiver operate at the same baud rate. Therefore, both Rx^li,; and

TX(~L|^ are supplied by the same baud rate generator. The diagram in Fig. 6.30 shows
this type of system configuration.

The operation of the 6850 is controlled through the setting of bits in two internal
registers: the control register and the status register. For instance, the way in which

the 6850's receiver and transmitter operate is determined by the contents of the control
register. The control register has eight bits, which are labeled CRg through CR7.

Figure 6.31(a) through (d) shows the function of each of the control register's bits.
The two least significant bits, CRq and CR,, are the counter divide select bits.

Notice in Fig. 6.31(a) that these two bits determine how the signals applied to the

external baud rate inputs, Rx^li,; and Tx^lk- ̂ ""^ divided within the 6850. For
example, if these two bits are CR|CRo= 10, it is set for divide-by-64 operation. The
three bits that follow, CR^ through CR4, are called the word select bits. In Fig.
6.31(b), we find that they select the length of the character, the type of parity, and
the number of stop bits. For instance, when information is to be transmitted and
received as 7-bit ASCII characters, with odd parity, and one stop bit, these bits must
be loaded with CR4CR3CR2 = 011.

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

W V
ElA to TTL

convert
(OPT)

Baud rate

generator Figure 6-30 Receiver and transmitter
driven at the same baud rate.

The next two bits, CRj and_CRg, are the transmitter control bits and are used
to set the active logic level of RTS, enable or disable the IRQ output for transmitter

operation, and select the transmission of a break logic level (SPACE) at the Txq^j^
output. Looking at Fig. 6.31(c), we see that selecting CR^ CR5 =01 sets the active
level of RTS to logic 0, enables the automatic assertion of the IRQ output when the
transmit data register is empty, and does not cause transmission of a break level at

the Txq^j^ output.

The last bit, CR7, is the receiver control bit. By making it logic 1, we enable
the automatic assertion of the IRQ output whenever the receive data register becomes

full, an overrun error occurs, or on the low-to-high transition of the data carrier detect
(DCD) signal.

Example 6.2

What value must be written into the control register in order to configure the 6850 such
that it works with the baud clock internally divided by 16, character size equal to eight
bits for EBCDIC, even parity, one stop bit, RTS active high, and the transmitter and
receiver interrupts are to be disabled?

Solution. From Fig. 6.31(a), we find that CR|CRq must be set to 01 in order to select
divide by 16 for the external baud rate inputs.

CR|CRo = 01
To select a character length of eight bits, even parity, and one stop bit, the ne.xt three
bits in the control register must be made 110. This gives

CR4CR3CR, = 110
To set up the 6850 for RTS active high with the transmitter interrupt disabled, we make
the next two CR bits

CRXR,

Sec. 6.15 The 6850 Asynchronous Communications Interface Adapter IR, CR,,

Function

0

0

1

1

0

1

0

1

+ 1

+ 16

+ 64

Master reset

CRj

CR,
CR,

Function

0 0 0 7 bits + even parity + 2 stop bits
0 0 1 7 bits + odd parity + 2 stop bits
0 1 0 7 bits + even parity + 1 stop bit
0 1 1 7 bits + odd parity + 1 stop bit
1 0 0 8 bits + 2 stop bits
1 0 1 8 bits + 1 stop bit

1

1

1

1

0

1
8 bits + even parity + 1 stop bit

8 bits + odd parity + 1 stop bit

CR6

CR,

Function

0

0

1

1

0

1

0

1

RTS = low, transmitting interrupt disabled

RTS = low, transmitting interrupt enabled

RTS = high, transmitting interrupt disabled

RTS = low, transmits a break level on the transmit

data output. Transmitting interrupt disabled.

CR,
Function

0

I
Receiving interrupt disabled

Receiving interrupt disabled

Figure 6-31 Control register bit functions (Motorola, Inc.).

Finally, the receiver interrupt is disabled by making

CR, = 0
Therefore, the complete control word is

CR^CRg CRq = 01011001,

= 59,6

Before the 6850 can be used to receive or transmit characters, its control register
must be initialized. As the microcomputer powers up, it should issue a software reset
to the 6850. This is done by writing a byte to the control register with bits CRq and

CRj both one. Looking at Fig. 6.31(a), we see that this represents a master reset

214 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

command. This command causes the status register to be cleared and initializes both
the receiver and transmitter sections. After this, another write operation is performed
to load the configuration byte into the control register. Assuming that the 6850 is

at address OOFOOO,g of the 68000's address space, the command byte formed in
Example 6.2 can be written to the command register with the instruction sequence

MOVE.B #$C9,D0

MOVE.L #$OFOOO,AO

MOVE.B DO,(AO)

Now that the configuration for asynchronous communications has been set up
in the control register, the 6850 is ready for operation.

The status register of the 6850 is shown in Fig. 6.32. We already looked briefly
at the function of bits 0 and 1 of the status register. The first bit RDRF (receive data
register full) is set to 1 to indicate that a character has been received in the receiver
section. That is, the receive data register is full. If the interrupt request (IRQ) line
is disabled, the microprocessor must poll (read) this bit through software to determine
if character data has been received through the communication interface. When it
is 1 , the character held in the receive data register must be read by the microprocessor.
On the other hand, the second bit, TDRE (transmit data register empty), is set to
1 when the transmit data register is empty. This means that another character can
be written to the transmit data register. B,

B^

B,

Bj

Bj

^2

B,
B„

IRQ I'l OVRN ir CIS
bCD TDRl;

RORI Figure 6-32 Status register bit
functions.

Notice in Fig. 6.32 that bits FE, OVRN, and PE are the error flags for the
receiver. If the incoming character is found to have a parity error, the PE (parity
error) bit gets set. On the other hand, if an overrun or framing error condition occurs,
the OVRN (overrun error) or FE (framing error) flag is set, respectively. The MPU
should always examine these error bits before reading a character from the receive
data register. If an error is found to have occurred, a software routine can be initiated
to cause the character to be retransmitted.

The other three bits in the status register, bit 2, bit 3, and bit 7, represent the
logic level of input signals DCD, CTS, and IRQ, respectively. The fact that these
three signals are represented by bits in the status register permits the MPU to examine
their current logic levels through software.

6.16 SPECIAL-PURPOSE INTERFACE CONTROLLERS

Up to this point in the chapter, we have introduced LSI controllers for two of the
most widely used I/O interfaces. They are the 6821 , which is used to implement parallel
input/output ports, and the 6850, which is used to implement asynchronous

Sec. 6.16 Special-Purpose Interface Controllers 215

communication ports. A large number of other LSI devices are available to simplify
the implementation of complex I/O interfaces. Some examples are CRT controllers,

floppy disk controllers, Winchester disk controllers, and IEEE-488 bus controllers.
Here we will introduce just one of these types of devices, the 68230 parallel
interface/timer controller.

The 68230 Parallel interface/Timer

Earlier in this chapter, we examined the 6821 parallel interface adapter IC. Here we
will examine a more general-purpose LSI device, the 68230, which has I/O ports that
provide for implementation of parallel I/O interfaces and a timer that can be used
as an interval timer or event counter. We will concentrate on its use in implementing
parallel I/O ports.

The block diagram in Fig. 6.33 shows the internal architecture of the 68230
device. From this diagram, we find that there are four key sections of circuitry. They
are the microprocessor interface, which consists of the data bus interface and interrupt
vector registers; I/O interfaces for port A, port B, port C, and the handshake interface
logic; the timer; and control logic sections for the port interrupt, DMA, handshake
lines, and mode of operation.

Microprocessor Interface of the 68230

Let us now look at how the 68230 is interfaced to an MPU. Figure 6.34 shows a
68230 connected to a 68000 microprocessor. The 68000 communicates with the 68230
by reading or writing to its internal control registers bytes of data, control information,
and status information. Data transfers between the 68000 and the internal registers

of the 68230 take place over bidirectional data bus lines Dq through D7. The 68000
tells the 68230 whether data are to be written into or read from its registers with the
R/W signal. Logic 0 at R/W means that the 68000 is writing information to the
68230, and logic 1 means that information is being read from the 68230.

The 68230 does not receive data during all bus cycles performed by tjie MPU.
Instead, its microprocessor interface is active only when the chip select (CS) input
is at the 0 logic level. Notice in Fig. 6.34 that the address decoder circuit decodes
part of the address output by the MPU along with LDS and function code FCq
through FC2 to produce CS whenever an address corresponding to a register within
the 68230 is on the address bus. The register select inputs, RS, through RSj, of the
68230 are supplied by another part of the address. The 5-bit code applied to these

inputs determines which one of the 68230's registers is to be accessed during the current
bus cycle. Figure 6.35 shows that the 68230 has 23 internal registers. Each of these
registers is assigned to a unique register select code. For instance, if the code applied
to the RS inputs is

RS5RS4RS3RS2RS, = OOOIO2
register Rj, which is also known as the port A data direction register, is accessed.
Notice that each of the registers also can be identified with its mnemonic name. For

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

38 39 40 41^ 42 43_ 44 45 46 47 48 1 2 3
Vqc reset CLK CS DTACK R/W do Ol D2 D3 D4 D5 D6 D7

T I I It t (I M M M
Data Bus Interface and

Interrupt Vecior Registers

Port

Interrupt/

DMA

Control

Logic

c

Handshake

Controllers
and

Mode Logic

Port C and Pin Functton Multiplex

^

• PAO 4 ■PAl 5
■PA2 6

■PA3 7

■ PA4 8 ■PAS 9

- PA6 10 ■PA7 11

-VcC 12

Handshake

Interface

Logic

■« HI

-• »-H4

^

PBO

17
PBl

18

PB2
19

PB3

20
PB4

21

PB5

22
PB6

23
PB7

24
M t t MM . , , , ,
PC7, PC6/ PC5' PC4/ PC3/T0UT PC2/TIN PCI PCO

TIACK PIACK pIRQ OMAREQ 33 32 31 30

RSI RS2 RS3 RS4 RS5

Figure 6-33 Block diagram of the 68230 PI T device (Motorola. Inc.).

example, the port A data direction register that we just introduced is denoted by the
mnemonic PADDR.

The type of access that the 68000 has to the 68230's internal registers is shown
in Fig. 6.35. Looking at the column labeled "accessible," we see that all registers
can be read from but not all can be written into. For instance, the P.^DDR register

that we have been using as an example can be accessed either through a read or write

operation. On the other hand, R,o (PAAR) and R,, (PBAR) are read-only registers.
Example 6.3

What code must be applied to the RS inputs of the 68230 during a bus cycle in which
the contents of the port status register are read by the MPU? What is the mnemonic

Sec. 6.16 Special-Purpose Interface Controllers

■\/M [
Dn-D,, .\,-.A;3 R \\

Ids

68000
MPU

\z
.Address
decoder

> ■\/\/
R W RS,-RS, D,,-D,

68230 Pl/T

DTACK

RESET CLK V^^ V^s

PAo-7
PBo.7

H,

H,

Figure 6-34 Connecting the 68230 PI/T to the 68000 MPU (Motorola. Inc.).

used to identify tiie port status register? Could this register also be accessed with a write
bus cycle?

Solution. Looking at Fig. 6.35, we find that to select the port status register the register
select code

RS5RS4RS3RS2RS, = OllOlj

must be applied to the 68230. Moreover, in the table of Fig. 6.35 we see that the port
status register is identified by the mnemonic PSR and that it also can be written into.

Remember that the 68000 performs asynchronous bus cycles. That is, once

started a bus cycle is not completed until the data acknowledge (DTACK) input is

switched to logic 0. Since the 68230 is a 68000 family LSI peripheral, it is designed

to produce the DTACK signal automatically. For this reason, as shown in Fig. 6.34,
the DTACK output of the 68230 is simply returned directly to the DTACK input
of the 68000.

I/O Port Configurations

From Fig. 6.34, we see that ports A, B, and C of the 68230 are bidirectional and

are all byte wide. Together, they give 24 input/output lines, which are labeled PAq

through PA7, PBq through PB7, and PCq through PC7. There are also four

handshake lines, H, through H4, that can be used to implement input and output

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Register name

Rec iste 1
select code

Accessible
5 4 3

2 ' 1
= -

Pot Gerera. Cont'O! Register iPGCP 0 : : 0 ! c

R I'l

=
Po- Se^. ce Request Reg;ste- 'PSRR

c

RW

::.-
Por-. A Da-^ Directior. Register IPADOR'

c
R W R3

Port B Data Direction Register (PBDDR)
Ri

Poet C Data Direction Register (PCOOR)

: ,',
R5

Port Interrupt Vector Register (PIV'R
: 0

'

c •

= ,',
Rs

Port A Control Register (PACR) 0 0

- A

R7

Port B Control Register (PBCRI

- W

Re

Pon A Data Register (PAOR)

o W

Rg

Port B Data Register (PBDR)
= .'. R«»

Port A Alternate Register iPAARt : : = Rii

Pan B Alternate Register (PBAR ' : =

R.- Pon C Data Register (PCDR) ; c

= _

= on Status Register (PSR 1

~ -™r Control Register (TCR)

"-' -teiTupt Vector Register fnvR)
1 c °

c •

= w

: - ̂ -eload Register Hi^ (CPRH) \ 0 0 1

P w

:;_"f' =-r :■?; -~z s:r- '.' _; f CPRWi

R i'.'

: ,
::_--• ^-:=c ^e:=--_:.> " = .

R W
= -.

;:.-: =-; ;- - ;- ;',-=-
- :.,

;;--• =-; rf '/ ;; i :\'-\'
= :-

::^ ■ =r-z r-i _:.. ;■."=_ 0 0
1 =

' -r' ;-;--; =;: ;-r "5 = 0 ' 0
- .', 1

R = Read

W = Write

Figure 6-35 Registers and their sdect codes (Motorola, Inc.).

handshake protocols. An example of a simple handshake protocol for input of data
is to have the external I/O de\ice that is supplying data to the input port signal the
68230 that new data is available at the pon by setting Hj to its active logic level.
Then after the 68000 reads data from the pon, the H, output of the 68230 can be
set to its active logic level to signal the I O device that the data has been read and
thai it may now apply another b>ie of data to the pon.

Notice in Fig. 6.33 that six of the lines at pon C can be configured under software
control to ser^e special functions. For instance, the PC; line also can be set up to

work as a timer input (T|>^). When the 68230's timer is being used as an event counter,
pulses applied to this input by externeil circuitn.' are used to decrement the value in
the counter. That is, T]^ is the clock input of the timer. T,v, also can be configured
to operate as a run halt input for the timer. When operated in this way, logic 1 at
T^^; enables the internal timer clock of the 68230 to the input of the timer circuit.

Sec. 6.16 Special-Purpose Interface Contiollers 219

That is, the timer is running when T[]y, equals 1. On the other hand, logic 0 at T[,sj
turns off the clock and halts the timer. Another example is PCg. This line has a second
label PIRQ, which stands for parallel interrupt request. This signal is an output that

is used when the 68230 implements an interrupt-driven parallel I/O configuration.
In this way, we see that lines PC2 through PC7 at port C may or may not be available

for use as general-purpose inputs or outputs.

Example 6.4

What is the special function performed by the PC^, line at port C of the 68230?

Solution. In Fig. 6.33, we see that PC^ is also labeled PIACK. This mnemonic stands
for parallel interrupt acknowledge and is an input with which the 68000 can tell the 68230
that it has been granted service in response to a parallel I/O interrupt request initiated
with the PIRQ output.

Internal Registers of the 68230

We pointed out earlier that the 68230 PI/T has 23 internal registers, Rq through R22.
The register model in Fig. 6.36 identifies each of these registers along with the function

of each of their bits. In general, these registers are used to configure the mode of

operation of the I/O ports and timer, input and output data, and input status
information about the I/O ports and timer.

The I/O ports of the 68230 are very versatile and can be programmed for a

wide variety of different modes of operation. Let us begin our study of these registers

and how they control the operation of the 68230 by just briefly looking at some of
the ways in which ports A and B can be configured.

Ports A and B of the 68230 can be configured to work in one of four general

ways called modes. The first two of these modes correspond to the use of ports A

and B separately as byte-wide unidirectional or bidirectional ports. In the other two

modes, ports A and B are used together to form a single word-wide unidirectional
or bidirectional port. Ports that are set up for unidirectional operation must be further

configured with what is called a submode of operation. The submode defines whether

the lines of the port all work as inputs, all work as outputs, or act as bit addressable

inputs or outputs. In addition to the modes and submodes of operation, the ports
can also be set up for latched input operation, interrupt driven operation, direct

memory accessed operation, and with a number of input/output handshake protocols.

The operation of the ports is defined and controlled by the contents of registers Rq

through R,3 of the 68230's register set. For this reason, we will now look at the
function of the bits in each of these control registers in more detail.

Register Rq is called the port general control register and is identified by the
mnemonic PGCR for short. Figure 6.37(a) shows the control functions of its bits.

Notice that the two most significant bits are used together as a 2-bit port mode control
code. The binary combination in these bits select one of four modes of operation

for both port A and port B. These modes of operation are called mode 0, mode 1,

mode 2, and mode 3. For instance, in Fig. 6.37(b), we find that if B^B^ equals 00

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Register

R„

Po't Mode

Control

H34

Enable

H12

Enable

H4

Sense

H3

Sense

H2

Sense

HI

Sense

• SVCRQ

Seiecl

Inler.upl

FFS

Po'l Inle.rupl

Pr.oi.ly Conlfol

Bii

7
Bii
6

B.I

5

B.I

4
B.I
3

B.I

2
Bil
1

B.I

0

Bii

7
Bii
6

B.I

5

B.I B.I

3

B.I

2

8.1

1

B.I

0

Bil
7

Bil
6

Bil

6
B.I B.I

3

B.I

2

B.I

1

8.1

0

Inierfupi Veclo' Mumber
• •

Porl A

Submode
H2 Com. 01

H2

Enable

HI

SVCRQ
Enable

Slai

Cl.l

Pon B

Submode

H4 Com, 01

Enable

H3

SVCRQ

Enable

H3

Slai

Cl.l

B.I
7

Bil
6

B.I

5

8.1
B.I

3

8.1

2

8.1

1

B.I

0

B.I
7

Bil
6

B.I
5

B.I

4

B.I

3

B.I

2

B.I

1

B.I

0

B.i

7
Bii
6

B.I
5

B.I

4

B.I

3

B.I

2

B.I B.I

0

B.I 7
Bil
6

B.I

5

6.1

8.1

3

B.I

2

B.I

B.I

0

Bil 7
Bil
6

B.I
5

B.I

4

B.I

3

B.I

2

B.I

B.I

0

M4

Level

H3

Level

H2

tevel Level

H4S
H3S H2S

HIS

* • • • • • • •
• • • • . • • •
TOUT/TIACK

Ccnliol

2 D

Cl.l

' Clock

Cp .1.01

T.me.

Enable
Bil
7 B.I 6

Bil

B.I B.I
3

B.I

B.I
1

B.I

0

• « • • • • «

Bil 23
B.I
22

8.1

B.I

20

8.1

19

B.I

18

B.I

17

B.I

16

B.I

15

Bii 14

B.I

13

Bii
8.1
\1

8.1

10

B.I

9

B.I

8

Bil
7

Bil
6

B.I

13

Bi
B.I

3

8.1

2 8.1

B.I

0

• , , « • , • •

Bil 23

Bil

22
B.I

21

B.I

20
B.I

19

B.I

18

B.I

17

8.1

16

B.I

15

Bil

14

B.I

13

B.I

12

B.I

B.I

10

B.I

9

B.I

8

B.i
7

B.i

6

B.I

6

B.I
B.I

3

B.I

B.I

8.1

0

. ZDS

. . . . » * •
• • • • • •
• • * • • •
• * . • •
• • • • • *

Pon Geneiai
Coni.ol Reg.siei

Pon Service

Requesi Register
Pon A Daia

Direci.on Reg.sier

Pon B Data

D.reclion Regisier

Pon C Daia

D.reclion Regisier

Porl Inlerrupl

Vecior Regisier

Porl A Conl'Ol

Bon B Conuol

Pon A Daia

Regisier
Pon B Daia

Reg.sier
Pon A Alierna

Regisier

Pon B Alierna'

Reg.siei Pon C Daia

Reg.sier Porl Slalus

Regisier

Counie. Preload

Regisier (High)

Couni Regis
IHigW

Timer Slalus

Reg.sier

Inulll
Inulll

Inulll

Inulll

Figure 6-36 Register Model of the 68230 (Motorola, Inc.)-

Sec. 6.16 Special-Purpose Interface Controllers 221

7 6 5 4 3 2 1 0

Port Mode

Control

H34 H12

Enable Enable

H4

Sense

H3

Sense

H2

Sense

HI

Sense

Port Mode Control

PGCR

7 6

0 0 Mode 0 lUnidirectional 8-Bit Model

0 1 Mode 1 (Unidirectional 16-Bi(Model
1 0

1 1
Mode 2 (Bidirectional 8-Bit Model

Mode 3 (Bidirectional 16-Bit Model

PGCR
5

Disabled

Enabled

PGCR
4

0 Disabled

1 Enabled

PGCR

0

Handshake Pin Sense

The associated pin is at the high-voltage level when
negated and at the [gw-voltage level when .asserted

The associated pin is at the low-voltage level when
negated and at the iuahivoltage level when asserted,

(b)

Figure 6-37 (a) Port general control
register (PGCR) format; (b) control bit
functions (Motorola, Inc.).

the A and B ports are configured for mode 0 (unidirectional 8-bit mode) operation.

That is, they are set up to woric as either byte-wide input or byte-wide output ports.
The fact that the port Hnes are inputs or outputs is determined by what is called
a submode. The submodes of operation are selected by bits in another control register.

The rest of the bits in PGCR are used to enable and set the active logic levels

of handshake lines H, through H4. For example, bit B4 is the H|2 enable bit. As
shown in Fig. 6.37(b), it must be set to logic 1 to enable the H, and Hj lines for
operation. The sense (active logic level) of the handshake lines is also programmable.

This is done with bits Bq through B3 of PGCR. Notice that the value in bits Bq and
B, sets the active logic level of H, and Hj, respectively. For instance, making Bq logic

1 sets the high-vohage level as the active state for handshake line H,. On the other

hand, if B, is set to logic 0, the low-vohage level is set as the active state for Hj.
Example 6.5

What value will need to be written into PGCR if mode 1 operation is to be selected for

ports A and B; H,, is to be disabled and Hj^ is to be enabled; and all of the handshake
lines are to be set up with the low-voltage level as their active logic level?

Solution. In Fig. 6.37(b), we find that mode 1 operation is selected by making the mode
select code equal to 01.

B,B, = 01

222 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Next, H34 is enabled by setting bit 5 to logic 1 and Hp is disabled by making bit 4 logic
0.

B5 = 1

B4 = 0
Finally, to set the active logic levels of the H lines for the low-voltage level, sense bits
0 through 3 are all set to logic 0.

338,8,60 = 0000

Therefore, the control byte that is to be loaded into PGCR as

B-, Bg 85 84 83 82 B, Bq = OllOOOOOj

= 60,,

It must be noted that this control byte cannot be directly loaded into PGCR. This

is because the mode control bits should only be altered when bits H,, and H34 are
both logic 0. For this reason, PGCR should be loaded in two steps. For instance, first
the byte

B, 85 85 84 83 Bj 8, 80 = 01000000,

= 40,6

can be loaded to initialize the mode and disable the handshake lines. Then the register's
state is finalized by writing the byte

87 85 B, 84 83 Bj 8, Bg = OllOOOOOj

= 60,,

Now that we have described the control functions performed by the bits of Rq,
let us continue with another register that controls general operations of the A and

B ports: register R,, the port service request register (PSRR). Earlier in this section
we indicated that the parallel I/O ports of the 68230 can be operated in a way that

involves the interrupt interface of the 68000. When using interrupt-driven mode of
operation for I/O, control bits in PSRR are used to configure signal lines of port

C as interrupt request and interrupt acknowledge lines instead of as I/O lines and

to assign a priority scheme to the handshake lines. Ports A and B of the 68230 also

can be operated in a direct memory access (DMA) mode. This mode of operation

is configured with control bits in R,.

Figure 6.38(a) shows the format of the control bits in PSRR. The * in bit position
7 means that it is not in use. It is followed in bit positions 5 and 6 with a two-bit
service request (SVCRQ) select code. This code determines whether the

PC4/DMAREQ pin at port C is configured as an I/O pin (PC4) or as the DMA
request output (DMAREQ). Notice in Fig. 6.38(b) that making bit 6 logic 0 selects

I/O mode of operation and making it 1 selects the DMA mode. Moreover, we find

that bit 5 determines whether DMA operations are associated with the port

Sec. 6.16 Special-Purpose Interface Controllers

7 6 5 4 3 2 1 0

* SVCRQ
Selecl

Interrupt
PFS

Port Interrupt

Priority Control

PSRR
6 5 SVCRQ Select

0 X The PC4/DMAREQ pm carries the PC4 lunciion, DMA
IS not used

1 0 The PC4/DMAREQ pin carries the DMAREQ function

and IS associated with double-buffered transfers con-

trolled by HI . HI IS removed from the Pl/T's interrupt
structure, and thus, does not cause interrupt requests

to be generated To obtain DMAREQ pulses. Port A
Control Register bit 1 (HI SVCRQ Enablel musibea 1

1 1 The PC4/DMAREQ pin carries the DMAREQ function

and IS associated with double-buffered transfers con-

trolled by H3 H3 is removed from the Pl/T's interrupt
structure, and thus, does not cause interrupt requests

to be generated To obtain DMAREQ pulses, Port B
Control Register bit 1 (H3 SVCRQ Enablel must be 1

PSRR

4 3 Interrupt Pin Function Select

0 0 The PC5/PIRQ pin carries the PC5 function
The PC6/PIACK pin carries the PC6 function,

0 1 The PC5/PIRQ pin carries the PIRQ function
The PC6/PIACK pin carries the PC6 function

1 0 The PC5/PIRQ pin carries the PC5 function
The PC6/PIACK pin carries the PIACK function.

1 1 The PC5/PIRQ pin carnes the PIRQ function
The PC6/ PIACK pin carries the PIACK function

PSRR Port Interrupt Priority Control

2 1 0 Highest Lowest
0 0 0 HIS

H2S H3S H4S

0 0 1
H2S HIS H3S H4S

0 1 0
HIS H2S

H4S
H3S

0 1 1
H2S HIS H4S H3S

1 0 0
H3S H4S HIS H2S

1 0 1
H3S H4S H2S HIS

1 1 0
H4S

H3S
H1S

H2S

1 1 1
H4S

H3S H2S
HIS Figure 6-38 (a) Port service request

register (PSRR) format; (b) control bit

Ibl functions (Motorola, Inc.).

corresponding to the H, or H3 handshake line. For instance, the code

BgB, = 10
selects DMA operation associated with H, and port A.

The next two bits in PSRR, bits 3 and 4, define the operation of the PC5/PIRQ
and PCg/PIACK pins of the 68230. In Fig. 6.38(b), we see that making them both
logic 0

B-B, = 00

224 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

sets up both PCj and PCg to operate as I/O lines. On the other hand, setting these
control bits to

B^B, = 01

selects the interrupt request output (PIRQ) mode of operation for the PCj/PIRQ

pin and leaves PCg as an I/O line.

The three least significant bits in PSRR, Bq, Bj, and B2, assign interrupt

priorities to handshake lines Hj through H4. The table in Fig. 6.38(b) shows all of
the allowed priority schemes. Notice that making

BjBjBo = 000
assigns priorities in what is called ascending order. That is, H^ has the lowest priority,

it is followed by H2 with the next higher priority, H3 follows H2 with still higher
priority, and finally H4 has the highest priority. In Fig. 6.38(b), we find that changing
the port interrupt priority control code to

B.BjBq =111
assigns priorities in the reverse order; that is, descending order.

Example 6.6

With what value should PSRR be initialized in order to configure the 68230 such that

PC4/DMAREQ acts as an I/O line, PC,/PIRQ acts as an interrupt request output,
PCg/PIACK acts as an interrupt acknowledge input, and handshake lines Hj through
H4 are configured in descending priority order (H, has the highest priority and H^ has
the lowest priority).

Solution. From the information in Fig. 6.38(b), we see that making bits 5 and 6 both

logic 0 configures PC^/DMAREQ to act as an I/O line

B^B, = 00 Then by making bits 3 and 4 both logic 1, PC5/PIRQ acts as an interrupt request output
and PCg/PIACK acts as an interrupt acknowledge input.

B4B3 = 11 Finally, the handshake lines are assigned priorities in descending order by making bits
2 through 0 all logic 0.

B,B|Bg = 000
Assuming that bit 7 is set to logic 0, the complete control byte is

B,BgB5B4B,B-,B,Bo = 00011000-,

= 18i6

The next three registers in Fig. 6.36, R2 through R4, are the port A data
direction register (PADDR), port B data direction register (PBDDR), and port C data

direction register (PCDDR). The logic level of the bits in these registers control the

direction of the I/O lines at the respective I/O port when the ports are configured

for unidirectional mode of operation. The format of the bits in PADDR is shown in

Fig. 6.39. Each of the eight bits in PADDR corresponds to one of the I/O lines at

Sec. 6.16 Special-Purpose Interface Controllers

- '• ^ 4 3 : 1 0

Bit Bit Bit
Bil Bit

Bit Bit Bit
(1

■■

4 - : 0 Figure 6-39 Port A data direction
register (P.\DDR).

port A. That is, the logic level of bit 0 in PADDR sets the direction of I/O line PAq;
the logic level of bit 1 sets the direction of PA,; and so on. If an I/O line in port
A is to be used as an input, its corresponding bit in PADDR is initialized to logic

0. On the other hand, if it is to operate as an output, the bit is set to 1 instead of

0. Therefore, to configure all of the I/O lines at port B as outputs, PBDDR must

be loaded with FF|g.

Example 6.7

What value must be loaded into PCDDR to configure all lines of port C as inputs?

Solution. The lines of an I/O port are configured as inputs by setting the bits in the
corresponding port data direction register to logic 0. Therefore, all lines of port C
are configured as inputs by making all bits of the PCDDR register logic 0.

Register Rj in Fig. 6.36 is used in conjunction with interrupt-driven mode of
operation for the parallel I/O ports. It is the port interrupt vector register (PIVR).

Looking at the format diagram in Fig. 6.40, we see that just six of its bits are

implemented and that they are loaded under software control with the upper six bits

of an interrupt vector number. The two least significant bits of the vector are supplied

by the prioritization logic within the 68230 and represent the priority of the active
handshake line.

7 6 5 4 3 2 1 0

Interrupt Vector Number * * Figure 6-40 Port interrupt vector
register (PIVR) format (Motorola, Inc.).

Before introducing the port A and B control registers, let us look at the two

groups of registers that follow them in Fig. 6.36. The first group, Rg and R9, are
the port A and B data registers, PADR and PBDR. Each bit in these registers
corresponds to one of the lines at the corresponding I/O port. The format of the

port A data register (PADR) is shown in Fig. 6.41. Here bit 0 corresponds to signal

line PAq at port A and bit 7 corresponds to signal line PA7.
These are the registers through which the 68000 inputs or outputs data to the

I/O ports of the PI/T. If port A is configured as an input port, the logic levels applied

to the PA inputs can be latched into the PADR register and then read out of the

register by the 68000 MPU. In the case of port A configured as an output port, data

are output by the MPU to PADR instead of directly to the output ports.

As shown in Fig. 6.36, the next group, R,q and R,,, are the alternate data
registers: the port A alternate data register (PAADR) and port B alternate data register

Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

7 0 ^ 4

,?

1 0

Bit
Bit
b

Bit
Bit

4

Bu Bit Bit

1

Bit

0 Figure 6-41 Port A data register
(PADR) format.

(PABDR). These registers are similar to the data register we just described in that

they contain a bit for each bit of the corresponding I/O port. However, these registers

can only be read and when read the data received by the MPU represents the

instantaneous logic levels at the I/O pins of the port.

Now we will continue with the port A and B control registers (PACR and PBCR)

that we skipped earlier. In Fig. 6.36, they are identified as registers R^ and R7. Figure
6.42(a) shows the formats of PACR and PBCR. Notice that corresponding bits in

the two registers serve the same basic function; however, for their respective ports.

Earlier in this section we found that two of the bits in the port general control

register (Rq) are used to select between mode 0, mode 1, mode 2, or mode 3 operation
for the A and B ports and that submodes of operation exist within each of the general
modes. It is the function of control bits within PACR and PBCR to select the

submodes of operation. In the format of PACR and PBCR in Fig. 6.42(a), we see

that the two most significant bits of each register define the submode of operation

for the corresponding port. For example, if the mode select bits in PGCR configure

port A for mode 0 operation and the submode bits in PACR are set to 00 for submode

00, the I/O configuration is as shown in Fig. 6.42(b). Notice that port lines PAq

through PA7 act as a byte-wide latched double-buffered input port. By latched, we
mean that data applied to the PA input pins are latched into flip-flops within the
68230 synchronously with the transition of the logic level of the H, input. Remember
that the active level of the H, handshake input can be set to logic 1 or logic 0 by
the sense bit in PGCR. For this reason, data can be latched into the port A data

register on a positive-going transition or negative-going transition at the H, input.
Let us now look just briefly at what is meant by double buffered. This means

that the I/O ports of the 68230 have dual latches. Use of this double buffering permits

an overlapping mode of operation in which the current data in the port A data register

can be read by the MPU and at the same time external circuitry can strobe new data

into the register. This capabihty of the 68230 results in a higher maximum input/output
data rate.

Example 6.8

How would port B operate if the mode control bits in PGCR are 00 and the submode
bits in PBCR are 01?

Solution. 00 in the mode control bits of PGCR selects mode 0 operation for both port
A and port B, and 01 in the submode bits of PBCR selects submode 01 operation for
port B. Looking at Fig. 6.42(b), we see that this selects the I/O configuration labeled

mode 0 submode 01 . Notice that in this case the B port is configured as a double-buffered

byte-wide output port with H3 and H^ as its handshake lines. H, is an input by which
the external device that is reading data from the PB output lines can signal the 68230

Special-Purpose Interface Controllers

Port A Control Register (PACR)

7 6 5 4 3 2 1 0
H2

H1 H1

Submode
H2 Conlrol

Inl

SVCRQ Stal
Enable Enable

Ctrl

Port B Control Register IPBCRI -

7 6 5 4 3 2 1 0

Port B

Submode

H4 Contiol
H4

Inl

Enable

H3

SVCRQ

Enable

H3

Stat

Ctrl

^',

Mode 0 Submode Oi Mode 0 Submoae l x

^'

o%

Mode 0 (Unidirecliona! 8-Bit Mode)

Port A

Submode 00 - Double-Buffered Input
HI - Latches mpui data

H2 - Status/interrupt generaiing input, general-purpose

output, or operation witfi HI in the interlocked or

pulsed input handshake protocols

Submode 01 - Double-Buffered Output

HI - Indicates data received by peripheral

H2 — Status/ interrupt generating input, general- purpose

output, or operation with HI m the interlocked or

pulsed output handshake protocols

Submode IX - Bit I/O
HI — Status/ interrupt generating input

H2 - Status/ interrupt generating input or general-purpose

output

Port B. H3 and H4 - Identical to Port A, HI and H2

r-

(̂ Aana B

\| ' 1161 Latched. DouDle

3.Mered Input
<• H3

■a »-H2

-■ \ A and B

 / (161
J J. Die Buttered

.a H3

Mode 1 (Unidirectional 16-Bii Model

Port A - Double-Buffered Data (Most significami
Submode XX (not used!

HI - Status/interrupt generating input

H2 - Status/interrupt generating input or general-purpose output

Port B - Double-Buffered Data (Least significant)

Submode XO - Unidirectional 16-Bit Input
H3 - Latches input data

H4 - Status/interrupt generating input, general-purpose

output, or operation with H3 in the interlocked or

pulsed input handshake protocols

Submode XI - Unidirectional 16-Bit Output

H3 - Indicates data received by peripheral

H4 - Status/interrupt generating input, general-purpose

output, or operation with H3 in the interlocked or

pulsed output handshake protocols

Figure 6-42 (a) PACR and PBCR formats; (b) Mode 0 I/O configurations; (c) Mode 1 I/O
configurations.

that it is ready to receive new data. Moreover, the H^ line can be configured to operate
in a number of different ways using other bits in PBCR.

I/O configurations and pin function descriptions for mode 1 , mode 2, and mode
3 and their corresponding submodes are given in Fig. 6.42(c), (d), and (e), respectively.

Let us now look at the functions served by other control bits in PACR and
PBCR. From the format of PACR in Fig. 6.42(a), we find that the next three bits,
bits 5, 4, and 3, form a 3-bit code that selects a mode of operation for the H^ control
line. However, the type of operation depends on the mode and submode of operation
selected for the port. The allowed configuration for all submodes of mode 0 operation

228
Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Bii 10

Ouipul
Transters

Transfers

O

PACR

2 H2 Interrupt Enable

0 The H2 interrupt is disabled.

1 The H2 interrupt is enabled

PACR

Mode 2 (Bidirectional 8-Bit Model

Port A - Bit I/O (with no handshaking pins)
Submode XX (not used)

Port B ~ Bidirectional 8-Bpt Data (Double-Buttered)

Subniode XX (not used)

HI - Indicates output data received by peripheral

H2 - Operation with HI in the interlocked or pulsed output
handshake protocols

H3 - Latches input data

H4 - Operation with H3 in the interlocked or pulsed input
handshake protocols

(d)
Mode 3 (Bidirectional IS-Bit Model

Port A - Double-Buffered Data (Most significant!
Submode XX (not used)

Port B - Double-Buffered Data (Least significant!
Submode XX (not usedl

HI - Indicates output data received by peripheral

H2 - Operation with HI in tfie interlocked or pulsed output

handshake protocols

H3 - Latches input data

H4 - Operation with H3 in the interlocked or pulsed input
handshake protocols

(e)

H1 SVCRO Enable

Tfie HI interrupt and DMA request are disabled.

The HI interrupt and DMA request are enabled

PACR Mode 0 Port A Submode 00

PACR

5 4 3 H2 Control

PACR

0

X Input pin - status only

0 Output pin - always negated

1 Output pin — always asserted.

0 Output pin - interlocked input fiandshake pro-

tocol.

1 Output pin - pulsed input handshake protocol.

HI Status Control

PACR Mode 0 Port a Submode 01

ACR

4 3 H2 Control

X X Input pin — status only

0 0 Output pin - always negated

0 1 Output pin - always asserted

1 0 Output pin - interlocked output handshake pro-

tocol
1 1 Output pin — pulsed output handshake protocol

,CR

D HI Status Control

D The HIS status bit is 1 when either the Port A initial or

final output latch can accept new data It is 0 when

both latches are full and cannot accept new data.

1 The HIS status bit is 1 when both of the Port A output

latches are empty It is 0 when at least one latch is full.

PACR Mode 0 Port A Submode IX

PCR

5 4 3

X Input pin -
0 Output pin

1 Output pin

PACR

0

H2 Control

status only

- always negated.

- always asserted

HI Status Control

Figure 6-42 (com.) (d) Mode 2 I/O configuration; (e) Mode 3 I/O configuration; (f) Mode 0 control bit functions.

Sec. 6.16 Special-Purpose Interface Controllers

PACR Mode 1 Port A Submode XX Port B Submode XO

PACR
5 4 3 H2 Control

0 X X Inpul pin - status cnlv

1 X 0 Output pin - always negated

1 X 1 Output pin - always asserted

PACR
0 HI Status Control

PBCR Mode 1 Port 8 Submode XO

5 4 3 H4 Control

0 X X Input pin - status only

1 0 0 Output pin - always negated.
1 0 1 Output pin - always asserted.

1 1 0 Output pin - interlocked input handshake pro-

tocol
1 1 1 Output pin - pulsed input handshake protocol.

PBCR
0 H3 Status Control

PACR Mode 1 Port A Submode XX Port B Submode XI

PACR

5 4 3 H2 Control

0 X X Input pin - status only

1 X 0 Output pin — always negated
1 X 1 Output pin - always asserted.

PACR
0 HI Status Control

PBCR Mode 1 Port B Submode XI

H4 Control

X X Input pin — status only

0 0 Output pin — always negated
0 1 Output pin — always asserted

1 0 Output pin — interlocked output handshake pro-

tocol. 1 1 Output pin — pulsed output handshake protocol.

(g)

PACR Mode 2

H2 Control

PACR

5 4 3

X X 0 Output pin - interlocked output handshake pro-
tocol.

X X 1 Output pin — pulsed output handshake protocol

PACR
0

0

HI Status Control

The HIS status bit is 1 when either the Port B initial or

final output latch can accept new data It is 0 when
both latches are full and cannot accept new data
The HIS status bit is 1 when both of the Port B output

latches are empty. It is 0 when at least one latch is full.

H3 Status Control

The H3S status bit is 1 when either the initial or final

output latch of Port A and B can accept new data. It is
0 when both latches are full and cannot accept new
data

The H3S status bit is 1 when both the initial and final

output latches of Ports A and B are empty. It is 0 when
neither the initial or final latch of Ports A and B is full.

PBCR
5 4 3

X X 0 Output pin

tocol

PBCR Mode 2

H4 Control

nterlocked input handshake pro-

X X 1 Output pin - pulsed input handshake protocol.

'BCR

0 H3 Status Control

(h)

Figure 6-42 (com.) (g) Mode 1 control bit functions; (h) Mode 2 control bit functions.

are given in Fig. 6.42(0- Although this information is represented relative to port

A's handshake signals, it also is valid for programming port B's handshake signals,
H3 and H4, through the port B control register. Notice that for our earlier mode
0 submode 00 example H^ can be configured in five different ways. For instance,
if these three bits are set to

B5B4B3 110

230 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

PACR
5 4 3

X X 0 Output pin

tocol

PACR Mode 3

H2 Control

nterlocked output handshake pro-

X X 1 Output pin - pulsed output handshake protocol

>ACR

0 HI Status Control

0 The HIS status bit is 1 when eithet the initial or final

output latch of Port A and B can accept new data It is
0 when both latches are full and cannot accept new
data

1 The HIS status bit is 1 when both the initial and final

output latches of Ports A and B are empty. It is 0 when
either the initial or final latch of Ports A and B is full

PBCR
5 4 3

X X 0 Output pin

tocol

PBCR fVlode 3

H4 Control

interlocked input handshake pro-

X X 1 Output pin - pulsed input handshake protocol

PBCR
0 H3 Status Control

Figure 6-42 (com.) (i) Mode 3 control bit functions (Motorola, Inc.).

Hj is set up as an output and implements what is called the interlock input handshake
protocol.

In this case, its operation is interlocked with that of the H, pin. In fact, the
Hj output will be at its active logic level whenever the port A data register is ready
to accept new data. In this way, it can signal the input device that supplies PAg
through PAy that the 68230 is ready to accept data from this port. The active logic
level (sense) of Hj is defined by a bit in PGCR. Therefore, the input device can apply
a byte of data to the PA lines and then switches H, to its active logic level. In response

to an active H,, the 68230 latches the data at PA0-PA7 into PADR and then switches
H2 to its inactive logic level. This signals the input device that the 68230 is no longer
ready to accept data. The port remains in this state until the MPU reads the byte
of data from PADR.

In practical applications, H4 can be used in conjunction with H, to implement
an interlocked output handshake protocol for port B. Let us look just briefly at how
this can be done when port B is configured for mode 0 submode 01 operation. In
Fig. 6.42(f), we find that the kinds of operations that can be performed by H, for
mode 0 submode 01 output ports are similar to those available for mode 0 submode
00 input ports. We will now describe the output operation for H4 control code

B5B4B3 =110
In this case, H3 and H4 again operate in an interlocked mode of operation, but this
time the MPU sends data to the output port by writing it into PBDR. When PBDR
is loaded, the H4 output switches to its active logic level. This signal line can be used
to tell the output device attached to port B that a new byte of data is available at

PBg-PBy. In response, the output device can read the byte of data from the port
and then signal the 68230 that it is ready to accept new data by switching the H3
input to its active logic level. The occurrence of the active logic level at H, causes
H4 to return to its inactive logic level. H4 remains at its inactive level until the MPU
writes another byte of data into PBDR.

Sec. 6.16 Special-Purpose Interface Controllers 231

A question that may arise from our description of the interlocked output

handshake protocol is, How does the MPU know that new data needs to be sent to

the output port's data register. It turns out that there are status bits for H, through
H4 in a register within the 68230. Therefore, the MPU can poll these bits through
software to determine when data are to be output. Ahernately, the 68230 can be

configured to operate in an interrupt-driven mode of operation. When operated in
this way, the 68230 automatically produces the PIREQ signal whenever the MPU

needs to output new data to the port. This mode of operation eliminates the need
for the software polling routine.

Bit 0 of PACR and PBCR are control bits for the H, and H3 status bits,

H,5 and H35, respectively. As shown in Fig. 6.42(0 for mode 0 submode 01 operation
at port A, this bit can configure the operation of Hjs two different ways. For

instance, if bit 0 is set to logic 1, H|s will be logic 0 unless both of the port B data
latches are empty.

The functions of the control bits of PACR and PBCR for mode 1, mode 2,

and mode 3 operation at port A and port B are given in Figs. 6.42(g), (h), and (i),

respectively. For these modes, separate bit functions are given for port A and port B.

We just mentioned that a register exists inside the 68230 that contains the status

of the handshake lines. This is register R,,, the port status register (PSR). As shown
in Fig. 6.43, the logic levels of the bits of this register represent the handshake pin

signal's current logic levels and handshake status information. The four most
significant bits in PSR are labeled H4, H3, Hj, and Hj, and if read by the MPU
they represent the current logic levels at the respective handshake line. The 68000
can examine the state of the handshake lines through software by reading the values

in these bits. The other four bits, H|s, Hjs- H3S, H4S, are also handshake status
bits. However, their logic levels are set or reset differently based on the port A and

port B mode and submode and handshake signal activity.

7 6 5 4 3 2 1 0

H4

Level

H3

Level

H2

Level
HI

Level
HAS H3S

H2S HIS

Figure 6-43 Port status register (PSR)
format (Motorola, Inc.).

Example 6.9

How is port A configured if the value in PACR is 78,5? Assume that mode 0 operation
was selected for ports A and B in PGCR.

Solution. In binary form, the control byte is

PACR = 01111000,

From Fig. 6.42(b), we find that the port is configured for mode 0 submode 01 operation.

B7B5 = 01 = Submode 0

The ne.xt three bits in the register set the mode of operation for H,. In Fig. 6.42(0 we
find that the code 111 sets up H, for pulsed output handshake protocol.

232 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

BjB^Bj = 111= Pulsed output handshake protocol

The next two bits are both 0 and disable the Hj interrupt request and H, interrupt and
DMA service request functions, respectively.

Bj = 0 = Hj interrupt request disabled

B, = 0 = H| interrupt and DMA request disabled

Finally, bit 0 sets the operation of the H,5 status bit such that it is logic 0 if both the
port A initial and final output latches are full and logic I if either latch is empty.

Bg = Hjg is 0 if both port A output latches are full
and 1 if either is empty

ASSIGNMENT

Section 6.2

1. Does the 68000 employ separate memory and I/O address spaces?

Section 6.3

2. Can an instruction access word data that starts at an odd memory address?

3. Write a sequence of instructions to store the long-word contents of Dq in memory starting
at address SAOOl.

Section 6.4

4. In which address range can interrupt service routine vectors be stored?

Section 6.5

5. What function code would be anticipated on the FC lines when the result of an ADD
instruction is being written to the destination location in memory? Assume that the 68000
is in the user state.

6. Why would a user/supervisor system environment be employed?

7. Draw a circuit similar to the one in Fig. 6.9 in which a 16M-byte memory address space
is implemented as four 4M-byte blocks: the user program memory, user data memory,
supervisor program memory, and supervisor data memory. The supervisor is to have access
to all memory areas.

Section 6.6

8. Give an overview of the sequence of events that occur when an instruction word is read
from address SAOOO.

Section 6.7

9. Give an overview of the sequence of events that occur when a byte of data is written to
address SAOOl.

Chap. 6 Assignment 233

Section 6.8

10. Write a single instruction to push the long-word contents of registers Aq, A,, and A, onto
the supervisor stack.

11. Restore the contents of the registers saved in problem 10 by individually popping them
from the stack.

Section 6.9

12. Give an overview of the operation of the circuit in Fig. 6.13 for an upper byte access from
the group 2 RAMs.

Section 6.10

13. Write an instruction sequence that will output the long-word contents of Dq to four-byte-
wide output ports starting at address $16000. The output ports are located at consecutive
even addresses.

14. Write an instruction that will input a word of data from two byte-wide input ports and
store it in D|. Assume that the input ports are located at consecutive odd addresses which
are displaced by 10 bytes in the positive direction from an input address pointer held in
register A,.

Section 6.1 1

15. Referring to the table in Fig. 6.15, give an overview of each of the different modes of

I/O operation for which a byte-wide port on the 6821 can be configured.

Section 6.12

16. For the circuit in Fig. 6.17 and the address map in Fig. 6.18(a), write instructions that
do the following:

(a) Configure the B port of both U,4 and U,; as output ports.
(b) Configure the A port of both U,^ and U,; as input ports.
(c) Configure the B output ports such that they produce a fixed duration strobe pulse

at their CB, output and select its data output register.
(d) Configure the A input ports such that they initiate an interrupt request through their

CA, inputs; the interrupt is to be initiated by a high-to-low transition at CA,; and
the output register is to be selected.

17. Write a program that moves five bytes of data from a table in memory starting at address

SAOOO to the B port of U,4 in the circuit of Fig. 6. 17. Assume that the B port is configured
as defined in problem 16(c).

Section 6.13

18. What is meant by synchronous bus operation for the 68000?

19. How does the synchronous bus cycle of Fig. 6.20(a) differ from the asynchronous bus
cycle in Fig. 6.10(a)?

234 Memory and Input/Output Interfaces of the 68000 Microprocessor Chap. 6

Section 6.14

20. Name a signal line that distinguishes an asynchronous communication interface from that
of a synchronous communication interface.

21. Describe the sequence of signals that become active in Fig. 6.5 when the microcomputer
transfers a character to the terminal.

22. Define a simplex, a half-duple.x, and a full-duplex communication link. j

Section 6.1 5

23. If the control inputs of a 6850 are RS = 1 and R/W = 1, what type of operation is taking
place over the microprocessor bus?

24. Describe the internal operation of the receiver section of the 6850 as a serial data character
is read from the Rxdaj^^ input. How does the 6850 signal the microprocessor that a valid
character has been received?

25. Overview the operation of the 6850 as it accepts a byte of character data from the
microprocessor and then transmits it over the Tx^ata lin^-

26. If the control register of the 6850 contains BE15, how is the device configured for
operation?

27. Write an instruction sequence that will reset the 6850. Assume that the device resides at
address QOABCD,^.

28. If the contents of the 6850's status register are read as OOOOOOlOj^, in which state of data communications is the device?

Section 6.16

29. If RS5 RS4 RS3 RS, RS, = 8,g is applied to the 68230, which of its internal registers is
selected?

30. The PGCR register of a 68230 is found to contain OOOIOOIO2. What mode of operation
is selected for the I/O ports, which handshake lines are enabled, and what active logic
levels are selected for the enabled handshake lines?

31. Write a sequence of instructions to load PGCR with 6O16. Assume that the 68230 is
located at address A001|g.

32. The contents of the 68230's PSRR are 03,6. What functions are selected for the PC4, PC5,
and PCft lines? How is interrupt priority assigned to the handshake lines?

33. Write a sequence of instructions to configure ports A, B, and C as input, output, and
input ports, respectively. Assume that register PADDR is located at address AOOSi^;
PBDDR is at address A007,g; and PCDDR is at address A009|e,.

34. Specify the mode bits in PGCR and the submode bits in PBCR that are needed to configure

the B port as a 16-bit input port and so that H3 is used to latch the input data.

i

Exception Processing
OF THE 68000 Microprocessor

7.1 INTRODUCTION

In the last chapter, we covered the memory and input/output interfaces for the
68000-based microcomputer. Here we will consider the exception processing capability
of the 68000 and a special input interface, the external hardware interrupt interface.
The topics covered are as follows:

1. Types of exceptions

2. Exception vector table

3. Exception group priorities

4. External hardware interrupt interface

5. External interrupt priorities and the interrupt mask

6. General interrupt processing sequence

7. General interrupt interface circuit

8. Autovector interrupt mechanism

9. Autovector interrupt interface circuit

10. Exception instructions
11. Bus error

12. Reset

13. Internal exception functions

235

236 Exception Processing of the 68000 Microprocessor Chap. 7

7.2 TYPES OF EXCEPTIONS

For the 68000 microcomputer system, Motorola, Inc., has defined the concept of
exception processing. Exception processing is similar to what is more generally known
as interrupt processing. Just like the interrupt capabilities of other microprocessors,
the exception mechanism allows the 68000 to respond quickly to special internal or
external events. Based on the occurrence of this type of event, the main program
is terminated and a context switch is initiated to a new program environment. This
new program environment, the exception service routine, is a segment of program
designed to service the requesting condition. At completion of exception processing,
program control can be returned to the point at which the exception occurred in the
main program.

The 68000 has a broad variety of methods by which exception processing can
be initiated. They include the external exception functions, hardware reset, bus error,
and user defined interrupts. Furthermore, the 68000 has a number of instructions
that can initiate exception processing. Some examples of these instructions are TRAP,
TRAPV, and CHK. The 68000 also has extensive internal exception capability. It
includes exceptions for internal error conditions {address error, illegal/unimplemented
opcodes, and privilege violation) and internal functions {trace and spurious interrupt).

7.3 EXCEPTION VECTOR TABLE

Each of the exception functions that is performed by the 68000 has a number called
the vector number assigned to it. For external interrupts, the interrupting device
supplies the vector number to the 68000. On the other hand, for other types of
interrupts, the vector number is generated within the microprocessor. The 68000
converts the vector number to the address of a corresponding long-word storage
location in memory. Held at this memory location is a 24-bit address known as the
vector address of the exception. It defines the starting point of the service routine
in program storage memory. Figure 7.1 shows the format in which the address vector
is stored in memory. As shown, it takes up two word locations. The lower addressed
word is the high word of the new program counter and the higher addressed word
is the low word of PC. Only the 8 LSBs of the high word are used.

The vector addresses are stored in a part of the 68000's memory system known
as the exception vector table. As shown in Fig. 7.2, the vector table contains up to
256 vectors, which are labeled with vector numbers 0 through 255. Notice that the

table must reside in the address range OOOOOOig through 0003FF,g, which is the first

Word 0

Word 1

New Program Counter (High)

New Program Counter (Low)

A0 = 0, A1=0

A0 = 0. Al = 1

Figure 7-1 Exception vector organization (Motorola, Inc.).

Exception Vector Table

Vector

Nurnber(s)

Address

Assignment Dec Hex
Space

0 0 000

SP

Reset Initial SSP

- 4
004

SP

Reset: Initial PC

2 8 008 SD Bus Error

3

12

OOC SD Address Error

4

16

010 SD Illegal Instruction

5 20
014

SD Zero Divide

6

24

018

SD

CHK Instruction

7 28 01C SD TRAPV Instruction

8 32 020 SD Privilege Violation

9 36
024

SD
Trace

10

40

028 SD Line 1010 Emulator

11

44

02C

SD

Line 1111 Emulator

12*

48

030 SD (Unassigned, reserved!

13-

52
034

SD (Unassigned, reserved)

14"

56 038 SD (Unassigned, reserved)
15

60 03C SD Uninitialized Interrupt Vector

16-23'
64

04C SD (Unassigned, reserved) 95

05F
-

24

96 060 SD Spunous Interrupt

25
100

064
SD Level 1 Interrupt Autovector

26
104 068 SD Level 2 Interrupt Autovector

27

108
06C SD Level 3 Interrupt Autovector

28 112 070
SD Level 4 Interrupt Autovector

29

116

074
SD Level 5 Interrupt Autovector

30
120 078

SD Level 6 Interrupt Autovector

31 124
07C

SD

Level 7 Interrupt Autovector

32-47

128

080 SD TRAP Instruction Vectors

191
OBF

-

48-63-

192

OCO SD (Unassigned, reserved)

255

OFF

-
64-255 256

100

SD User Interrupt Vectors

1023
3FF

-

Figure 7-2 Vector table (Motorola, Inc.).

1024 bytes of the 68000's 16M-byte address space. All vectors other than vector 0
must reside in supervisor data memory. Vector 0, which is assigned to the hardware
reset function, must be stored in supervisor program memory.

The hexadecimal address at which each vector is located in memory is also
provided in the table of Fig. 7.2. The address of the most significant word of any
vector can be determined by multiplying its vector number by 4. For instance, vector

8 is stored starting at address 4,q x 8,q = 32, q = 000020, g.

238 Exception Processing of the 68000 Microprocessor Chap. 7

All of the low-numbered vectors serve special functions of the 68000
microcomputer system. Examples are the bus error exception vector at address

000008 15, address error exception vector at OOOOOC,g, CHK instruction vector at

00001 8, g, and spurious interrupt vector at OOOOeOjg. Within this group we also find
a small number of reserved vector locations. For instance, vectors 12 through 14 are

unassigned and reserved for future use.

The next group, vectors 25 through 31 at addresses 000064, ^ through OOOOTCj^,
is dedicated to what are known as the autovector interrupts. They are followed by

the trap instruction vectors in the address range 000080,6 through OOOOBF,^ and some
more reserved vector locations. The last 192 vectors, which are said to be user

definable, are used for the external hardware interrupts.

Since the addresses that are held in this table are defined by the programmer,

the corresponding exception service routines can reside anywhere in the 68000's 16M-
byte address space.

Example 7.1

At what address is the vector for TRAP #5 stored in the memory? If the service routine

for this exception is to start at address 010200,^, what will be the stored vector?

Solution. The TRAP ttS instruction corresponds to vector number 37. Therefore, its
address is calculated as

4,0 X 37,0 = 148,0 = 000094,,

The vector address 010200, , is broken into two words for storage in memory. These
words are

Most significant word = 0001, ,

Least significant word = 0200, ,

They get stored as

000 l,g at address 000094, g

0200,, at address 000096,^

7.4 EXCEPTION PRIORITIES

The exception processing of the 68000 is handled on a priority basis. The priority
level of an exception or interrupt function determines whether or not its operation

can be interrupted by another exception. In general, the 68000 will acknowledge a

request for service by an exception only if there is no other exception already in

progress or if the requesting function is at a higher-priority level then the currently
active exception.

Figure 7.3 shows that the exception functions are divided into three basic priority

groups and then assigned additional priority levels within these groups. Here group

0 represents the highest-priority group. It includes the exception functions of external
events such as reset and bus error, as well as the internal address error detection

External Hardware Interrupts

Group Exception
Processing

0

Reset

Bus Error

Address Error

Exception processing begins

within two clock cycles

1

Trace

Interrupt

Illegal

Privilege

Exception processing begins before
the next instruction

2

TRAP. TRAPV,
CHK.

Zero Divide

Exception processing is started by

normal instruction execution Figure 7-3 Exception priority groups
(Motorola, Inc.).

condition. Within group 0, reset has the highest priority. It is followed by bus error
and address error in that order.

Exception functions from group 0 always override an active exception from
group 1 or group 2. Moreover, a group 0 function does not wait for completion of
execution of the current instruction; instead, it is initiated at the completion of the
bus cycle that is in progress.

The next-to-highest priority group, group 1, includes the external hardware
interrupts and internal functions: trace, illegal/unimplemented opcode, and privilege
violation. In this group, trace has the highest priority and it is followed in order of
descending priority by external interrupts, illegal/unimplemented instruction, and
privilege violation.

In all four cases in group 1, exception processing is initiated with the completion
of the current instruction. If a group 1 exception is in progress, its service routine
can be interrupted only by a group 0 exception or another exception from group 1
with higher priority. For instance, if an interrupt service routine is in progress when
an illegal instruction is detected, the interrupt service routine will run to completion
before service is initiated for the illegal opcode.

Group 2 is the lowest-priority group and its exceptions will be interrupted by
any group 0 or group 1 exception request. This group includes the software exception
functions, TRAP, TRAPV, CHK, and divide by zero. These exceptions differ from
those in the other groups in that they are initiated through execution of an instruction.
Therefore, there are no individual priority levels within group 2.

Let us assume that a TRAP exception is in progress when an external device
requests service using an interrupt input. In this case the hardware interrupt is of
higher priority. Therefore, the trap routine is suspended and execution resumes with
the first instruction of the interrupt service routine.

7.5 EXTERNAL HARDWARE INTERRUPTS

The first type of 68000 exception that we shall consider in detail is the external
hardware interrupts. The external hardware interrupt interface can be considered to
be a special-purpose input interface. It allows the 68000 to respond quickly and

240 Exception Processing of the 68000 Microprocessor Chap. 7

efficiently to events that occur in its external hardware. Through it, external devices
can signal the 68000 whenever they need to be serviced. For this reason, the processor
does not have to dedicate any of its processing time for checking to determine which
of the external devices needs service. For example, the occurrence of a power failure
is typically detected by an external power failure detection circuit and signaled to
the microprocessor as an interrupt.

The General Interrupt Interface

Figure 7.4 shows the general interrupt interface of the 68000. Here we have shown
the signals that are involved in the interface and see that some circuitry is required
to interface external devices to the interrupt request inputs of the 68000. Notice that
as many as 192 unique devices could apply interrupt requests to the 68000. However,
few applications require this many.

CO

>

:>

c

Intemipt
interface circuitry

Figure 7-4 General interrupt interface.

Let us now look just briefly at the function of each of the signals involved in
the interrupt interface. First we find that three address lines, A, through Aj, are in
use. They carry an interrupt priority number that is output during the interrupt
acknowledge bus cycle. The logic level of AS signals external circuitry when this code

is available at A3A2A1. Accompanying this priority-level number is the interrupt
acknowledge (lACK) function code at outputs FC2 through FCq.

During the interrupt acknowledge bus cycle, external circuitry must return an

8-bit vector number to the 68000. Data bus lines Dq through D7 are used to input
this vector number. The external device signals that the vector number is available
on the bus with the data transfer acknowledge (DTACK) signal. R/W and LDS
control the direction and timing of data transfer over the bus.

External Hardware Interrupts

External devices must issue a request for service to the 68000. The external
interrupt request inputs of the 68000 are labeled IPLj, IPL,, and IPLq. The code OOOj
at these inputs represents no interrupt request. On the other hand, a nonzero input
represents an active interrupt request.

External Hardware Interrupt Priorities

The external hardware interrupts of the 68000 have another priority scheme within
their group 1 priority assignment. The number of priority levels that can be assigned
is determined by the number of interrupt inputs. As shown in Fig. 7.5, for three
interrupt inputs we get seven independent priority levels. They are identified as 1
through 7 and correspond to interrupt codes IPLjIPLjIPLq equal 001 j through lllj,
respectively. Here 7 represents the highest priority level and 1 the lowest priority level.

Priority Level

Interrupt Code 1
IPL2

IPL,
IPLo

None

1

2

3

4

5

6

7

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Figure 7-5 External interrpul priorities.

The external interrupt circuitry can be designed to allow a large number of
devices to respond at each of these interrupt levels. It is for this reason that we have
identified 192 external devices in Fig. 7.4. Any number of these 192 devices can be
assigned to any one of the interrupt levels. Moreover, additional external priority
logic circuitry can be added to prioritize the interrupts into 192 unique priority levels.

Interrupt Mask

Bits 8 through 10 in the system byte of the status register are used as a mask for
the external hardware interrupts. Figure 7.6 shows that these bits are labeled Ig
through I2, respectively. Only active interrupts with a priority level higher than the
current value of the mask are enabled for operation. Those of equal or lower priority
level are masked out.

When the 68000 is reset at power-up, the mask is automatically set to lllj.
This disables interrupts from occurring. For the interrupt interface to be enabled,
the mask must be modified to a lower priority level through software. For instance,
it could be set to OOOj. This would enable all interrupts for operation.

Whenever a higher-priority interrupt occurs, the mask is automatically changed
so that equal- or lower-priority interrupts are masked out. For instance, with initiation
of a level 5 interrupt it is changed to IOI2. This masks out from level 5 down through
level 1.

Exception Processing of the 68000 Microprocessor Chap. 7

System Byte User Byte

'fs 13 10 8^ 4

. ,?: IT^^SJV^^V^I^^^^

M^l
Interrupt

Mask

Figure 7-6 Interrput mask bits in the
status register (Motorola, Inc.)-

The level 7 interrupt request code is not actually masked out with the interrupt
mask. Even if the mask is set to 11 Ij, it remains enabled. For this reason, it can
be used to implement a nonmaskable interrupt for the 68000 microcomputer system.

7.6 GENERAL INTERRUPT PROCESSING SEQUENCE

Whenever the code at interrupt inputs IPL2IPL,IPLq is nonzero, an external device
is requesting service. It is said that an interrupt is pending. At the completion of the
current instruction, the 68000 compares this code to the contents of the interrupt

mask, I2I1I0 '" ̂ ^^^ 1^ through 8 of the status register. If the priority level of the
active request is higher than that already in the mask, the request for service is
accepted. Otherwise, execution continues with the next instruction in the currently
active exception processing service routine.

Upon accepting the exception service request, the 68000 initiates a sequence by
which it passes control to the service routine located at the address specified by the

interrupt's vector. First, the contents of the status register are temporarily saved. Next,
the S-bit, bit 13, of the status register is set to 1 and the T-bit, bit 15, is cleared to
0. They enable the supervisor mode of operation and disable the trace function,
respectively. Then interrupt mask I2I1I0 'S set to the priority level of the interrupt
request just granted.

Now the 68000 initiates an interrupt acknowledge (lACK) bus cycle. The
sequence of events that occur during this bus cycle are summarized in Fig. 7.7(a)
and are shown by waveforms in Fig. 7.7(b). Here we see that it first signals external
devices that service has been granted. It does this by outputting the interrupt code
of the device to which service was granted on address bus lines A; through A3 and
then makes control signals R/W = 1,AS = 0, and LDS = 0. When R/W = land
LDS = 0, a byte of data will be transferred over data bus lines Dq through D7. At
the same time, it outputs the interrupt acknowledge function code. This code is

FC2FC1FC0 equal to 111. In this way, it tells the external circuitry which priority-
level interrupt is being processed.

In response to the interrupt acknowledge function code, the external device that

corresponds to the interrupt code on A, through A3 must put an 8-bit vector number
on data bus lines Dq through D7. Then it must switch DTACK to logic 0 to signal
the 68000 that the vector number is available on the bu^The 68000 reads the vector
number off the bus and then returns both LDS and AS to logic 1 .

I

Sec. 7.6 General Interrupt Processing Sequence

Request Interrupt

Grant Interrupt

1) Compare interrupt level in status register

and wait for current instruction to complete

21 Place interrupt level on Al, A2, A3

3) Set R/W to read

4) Set function code to interrupt acknowledge

5) Assert address strobe (ASJ
6) Assert lower data strobe ILDSI

Provide Vector Number

1) Place vector number of D0-D7
21 Assert data transfer acknowledge IDTACK)

Acquire Vector Number

1) Latch vector number

21 Negate LPS

3) Negate AS

11 Negate DTACK

, I

Start Interrupt Processing

Figure 7-7(a) lACK bus cycle flowchart
(a) (Motorola, Inc.).

It is this 8-bit code that tells the 68000 which of the devices associated with
the active interrupt level is requesting service. Notice in Fig. 7.2 that not all of the
256 vectors in the table are to be used with the user-defined external hardware
interrupts. Only the 192 vectors from vector 64 through 255 should be used for this
purpose.

Finally, the interrupt knowledge bus cycle is completed when the external device
returns DTACK to the 1 logic level.

Next, the 68000 pushes the current contents of its program counter onto the
top of the supervisor stack. Since PC is 24 bits long, it requires two words of stack
and takes two write bus cycles. Then the contents of the old status register, which

/ / y
y K^^

XX

y

y

^ <'< k' k ̂ ̂ k kk^k'

\

AX

T

u £

< 5

_l O-
Q- CO

y

/-

/

^

r^?^ h
o§

Sec. 7.7 General Interrupt Interface of the 68000 245

were saved earlier, are also pushed to the supervisor stack. It takes just one word
of memory and is accomplished with one write cycle.

Now the address of the interrupt's vector, which the 68000 calculates from the
interrupt vector number, is put on the address bus. The value at this address in the
vector table is read over the data bus and loaded into PC. It takes two read bus cycles

to fetch the complete vector. During the first bus cycle, the most significant word
is carried over the bus and during the second bus cycle, the least significant word.
The 68000 now has the new address at which it begins executing the routine that
services the interrupt.

A return from exception (RTE) instruction must be included at the end of the
service routine. Its execution initiates return of software control to the original

program environment.
Figure 7.8 shows how the 68000 internally generates a vector address from an

8-bit vector number. As shown in Fig. 7.8(a), the vector number was read off of the
lower eight data bus lines, Dg through D7. First, the 68000 multiples the vector
number by 4. This is done by performing a shift left by two bit positions. Then it
fills the upper 14 bits with Os to form a 24-bit address. This gives the address shown
in Fig. 7.8(b), which points to the vector in the table.

Ignored
v7

v6 v5

v4

v3 v2

v1

vO

Where

v7 IS the MSB of the Vector Number

vO IS the LSB of the Vector Number

AlO A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

All Zeroes
v7 v6

v5

v4

.,

u2

vl

vQ

0 0

Figure 7-8 (a) Vector for address generation (Motorola, Inc.); (b) generated address
(Motorola, Inc.).

7.7 GENERAL INTERRUPT INTERFACE OF THE 68000

The block diagram of Fig. 7.9 illustrates the type of circuitry needed to support a
general interrupt interface for the 68000 microcomputer system. This circuit has 192

interrupt request inputs, which are labeled IRQq through IRQ19,. These inputs are
synchronized by latching them into an interrupt latch circuit.

The 192 outputs of the interrupt latch circuit are applied to inputs of the interrupt
absolute priority encoder circuit. Here they are prioritized and encoded to produce
an 8-bit output code which identifies the highest-priority active interrupt request. These
codes are in the range IRQq equal to 00000000-, = 0,q to IRQ191 equal to
10111111,6 = 191,0-

Exception Processing of the 68000 Microprocessor Chap. 7

IRQ191 IRQO

500 ns
Delay

1- • • -1
Interrupt

>LE Latches

• • • •

interrupt

Absolute Prioritv

Encoder

Vector

Number

\7
Three-State

Vector Number

 Latch »2 OE

<3='

sz IPLO

IPLl
IPL2

^

MC68000
Interrupt

Encoder

A
D Flip-Flops

To Sync Inputs

to 8 MHz Clock

IXC68000 Only)

A

Figure 7-9 Typical general interrput interface circuit (Motorola, Inc.)-

Remember that in the vector table of Fig. 7.2, the vectors assigned to the user-
defined external interrupts are in the range 64 through 255, not 0 to 191. For this
reason, the priority codes that are produced by the encoder circuit must be displaced
by 64 before they are applied to the data bus of the 68000 during the lACK bus cycle.

The circuit labeled add 64 is provided for this purpose. It simply adds 64 to the 8-bit
code at its input.

Sec. 7.8 Autovector Interrupt Mechanism 247

The output of the add 64 circuit, which is the correct vector number, is latched

into the three-state output vector number latch circuit. Notice that the outputs of
this latch are enabled by lACK. In this way, the vector number is put on data bus
lines Dq through D7 only during the interrupt acknowledge bus cycle. At all other
times, the outputs of the latch are in the high-Z state.

Up to this point, we have just described the part of the interrupt interface circuit
that is used to generate the vector number. But at the same time, another circuit path,
which includes the interrupt encoder and synchronization flip-flops, must produce
an interrupt request to the 68000.

Notice that the interrupt absolute priority encoder circuit outputs a 7-bit code
in addition to the 8-bit priority code. The 7-bit code is input to the interrupt encoder
circuit. In this code, just one bit is set to 0 and it identifies the priority level of the
interrupt request. In response, the encoder produces a 3-bit request code for this
priority level at its output. This code is latched onto the IPLj through IPLq inputs of
the 68000, where it represents an interrupt request.

7.8 AUTOVECTOR INTERRUPT MECHANISM

In 68000 microcomputer systems that do not require more than seven interrupt inputs,
a modified interrupt interface configuration can be used. This interface decreases
the amount of external support circuits and at the same time shortens the response
time from interrupt request to initiation of the service routine. This simplified interrupt
mechanism uses what is known as the autovector mode of operation.

The autovector interrupt interface is shown in Fig. 7. 10. It simphfies the interface
requirements between external devices and the 68000. In this case, external hardware

FCo-FC,

VPA

ffLo-iPl^

:>

c

Interrupt

interface circuitry

INT,

Figure 7-10 Autovector interrput interface.

248 Exception Processing of the 68000 Microprocessor Chap. 7

need just recognize the lACK function code at FC2FC1FC0 and respond by switching
VPA to logic 0. This signals the 68000 to follow its autovector interrupt sequence.

When using autovector exception processing, the source of the interrupt vector

is determined in a different way. Instead of external circuitry supplying an 8-bit vector
number on D7 through Dq, the 68000 generates the vector address internally from
the interrupt request code IPL2IPL1IPLQ and the address of the service routine is
fetched from the autovector section of the vector table in Fig. 7.2. In this way, we
see that the interrupt acknowledge sequence is shortened. This is the reason that the
response time between interrupt request and entry of the service routine is decreased.

As an example, assume that autovector interrupt request code IOI2 is applied
to IPL, through IPLq. Looking at the table in Fig. 7.2, we see that vector 29 is fetched

from a'ddresses 000074,6 and 000076,6 and loaded into the PC of the 68000.

7.9 AUTOVECTOR INTERFACE SUPPORT CIRCUIT

Now that we have introduced the autovector interrupt mechanism of the 68000, let
us look at a simple circuit that can be used to implement the external hardware
interface.

The circuit of Fig. 7.11 can be used to implement the autovector interface in
a 68000 microcomputer system. Here we find the seven interrupt request inputs
identified as level 1 through level 7. The logic levels at these inputs are latched into
the 74LS273 octal latch synchronously with the CLK signal from the 68000. This
latch is provided to synchronize the application of interrupt inputs to the priority
encoder.

Interrupt requests must be prioritized and encoded into a 3-bit interrupt request
code for input to the 68000. This is done by the 74LS348 8-line to 3-line priority
encoder. Notice that the inputs of this device are active low, with input 7 corresponding

to the highest-priority input and 0 to the lowest-priority input. The binary code
corresponding to the highest-priority active input is output at AjAiAq. This interrupt
code is latched in a 74LS175 latch and its outputs applied to the iPLj through IPLq
inputs of the 68000.

In addition to this interrupt request code interface circuit, another circuit is
required to support the autovector interrupt interface. This circuit is required to detect
the lACK code when it is output by the 68000 and in response assert the VPA signal.
Typically, this is done by the function decoder circuit of the 68000 microcomputer
system. Alternatively, a single three-input NAND gate can be used.

7.10 EXCEPTION INSTRUCTIONS

The instruction set of the 68000 includes a number of instructions that use the

exception processing mechanism. They differ from the hardware-initiated exceptions
that we have covered up to this point in that they are initiated as the result of the

a. fi. 0-

o o o

^ o o o a

_1 5 i.

^

Q Q Q Q

i;

<S (S 6 I L

< < < o S

^

Q Q O p Q O O

ao'C/ooo' oc

In,

r- 00

-} ̂ -I

sjndui)dnu3)ui

250 Exception Processing of the 68000 Microprocessor Chap. 7

68000 executing an instruction. Some of these instructions maice a conditional test
to determine whether or not to initiate exception processing.

There are five such instructions. They are trap (TRAP), trap on overflow
(TRAPV), check register against bounds (CHK), signed divide (DIVS), and unsigned
divide (DIVU). The operation of these instructions is summarized in Fig. 7.12. Let
us now look at the exception processing for each of these instructions in more detail.

Instruction Condition
Operation

TRAP#n None Trap sequence using trap vector n

TRAPV
V= 1

Trap sequence using TRAPV vector

CHK EA,Dn Dn < 0 or Dn > (EA) Trap sequence using CHK vector

DIVS EA,Dn

(EA) = 0

Trap sequence using zero divide vector
DIVU EA,Dn

RTE Return from exception routine to the
program in which exception occurred

Figure 7-12 Exception instructions.

Trap Instruction— TRAP

The TRAP instruction can be considered to be the software interrupt instruction of
the 68000. It permits the programmer to perform a vectored call of an exception service
routine. We can call this routine the trap service routine and it is typically used to
perform vectored subroutine calls such as supervisory calls.

The trap instruction is simply written as

TRAP #n

Here n represents the trap vector number that is to be used to locate the starting point
of the exception processing routine in program memory. Looking at the vector table

in Fig. 7.2, we see that the 24-bit starting addresses for the trap instructions are located
at addresses in the range OOOO8O15 through OOOOBF,^. This gives a total of 32 words
of memory allocated to storage of trap vectors. Since each vector requires two words
of memory, there is room for 16 vectors, which correspond to instructions TRAP
m through TRAP #15.

For instance, the most significant word of the vector for TRAP #0 is held at
000080, g and its least significant word at 000082, g. Execution of the TRAP #0
instruction causes the 24-bit value stored at these locations to be loaded into the PC
of the 68000. Therefore, program execution resumes with the first instruction of the
TRAP #0 service routine.

Let us look more closely at the series of events that takes place to pass control
to the exception service routine of a trap instruction. After the 68000 executes the
trap instruction, it first saves the current contents of its status register in a temporary

holding register. Then the S-bit of SR is set. This enables the supervisor system

Sec. 7.10 Exception Instructions 251

environment. Next, bit T of SR is cleared to disable the trace mode of operation.
Now the 68000 preserves the current program environment such that it can be

reentered at completion of exception processing. It does this by pushing the current
contents of PC onto the supervisor stack. This value of PC points to the instruction
following the TRAP instruction that just initiated exception processing. Then the
status word is pushed onto the supervisor stack.

We are now ready to enter the exception service routine. The address of the
trap vector is automatically calculated by the 68000 from the trap number. The trap
vector is read from this location and loaded into PC. Execution picks up with the
first instruction of the service routine.

Notice that just the old PC and SR are automatically saved on the supervisor
stack by the exception-processing mechanism. Frequently, the exception service routine

will require use of the 68000's data or address registers. For this reason, their contents
may also be saved on the stack. The 68000 does not have PUSH or POP instructions
for this purpose. Instead, its MOVE instruction is used to perform these types of
operations. For example, the instruction

MOVE.L DO,-(SP)

will effectively push the 32-bit contents of Dg onto the top of the supervisor stack.
Typically, this is done with the first few instructions of the service routine.

Just as for interrupts, the return mechanism of the TRAP instruction is the
return from exception (RTE) instruction. Execution of this instruction at the end of
the service routine causes the saved values of PC and SR to be popped from the
supervisor stack. Prior to executing the RTE instruction, the contents of any additional
registers saved on the stack must also be popped back into the 68000. Again, this
can be done with the MOVE instruction. For example,

MOVE.L (SP)-(-,D0

causes the 32-bit value at the top of the stack to effectively be popped into register Dg.

TRAPV, CHK, and DIVU/DIVS Instructions

The rest of the exception instructions initiate a trap to an exception service routine
only upon detection of an abnormal processing condition. For instance, the trap on
overflow (TRAPV) instruction checks overflow bit V, bit 1 of the status register,
to determine whether or not an overflow has resulted from execution of the previous
instruction. If V is found to be set, an overflow has occurred and exception processing
is initiated with an overflow service routine. In this case control is passed to the
overflow service routine pointed to by the TRAPV vector at addresses 00001C|g and
00001 E,g of the vector table. On the other hand, if V is not set, execution continues
with the next sequential instruction in the program.

The check register against boundaries (CHK) instruction, as its name implies,
can determine if the contents of a register lie within a set of minimum/maximum
values. The minimum value (boundary) is always 0000, g. On the other hand, the

252 Exception Processing of the 68000 Microprocessor Chap. 7

maximum value (boundary), MMMMjg, is specified as a source operand and can
reside in an internal register or a location in external memory.

An example is the instruction

CHK #$5A,D0

Here register Dq contains the parameter under test and $5A is the maximum
boundary. If during execution of the instruction, the contents of Dg are found to
be within the range 0000)^ to the value 5A,g, the parameter is within bounds and
exception processing is not initiated. On the other hand, if it is negative or greater
than 5A,g, it is out of bounds and exception processing is initiated. The change in
program environment is to the address defined by vector 6 at addresses OOOOlSi^ and
OOOOIA,^ in the vector table.

The last two exception instructions, DIVU and DIVS, cause a trap to a
service routine if the division they perform involves a divisor equal to zero. This
divide-by-zero exception is initiated through the vector at addresses 000014,^ and
000016...

7.11 BUS ERROR

It is possible with the asynchronous bus of the 68000 to get into a situation where
a bus cycle is not completed. This would be due to the fact that the data acknowledge
(DTACK) signal is not received by the 68000. If this happens, execution of the current
instruction would not be completed; instead, the MPU would be hung up at the
instruction. This represents what is known as a bus error condition.

To resolve this problem, bus error exception capability is provided on the 68000.
This exception provides a way of assuring that bus cycles initiated by the 68000 are
carried through to completion. The bus error condition is not detected automatically
by the 68000 itself; instead, it must be detected with external circuitry and signaled
to the 68000. External logic would do this by switching the BERR (bus error) input
of the 68000 to logic 0. In fact, BERR and HALT can be used together to
automatically rerun bus cycles that resuh in a bus error.

Remember that earlier we indicated that the only exception with higher-priority
than the bus error function is reset. Therefore, the bus error exception takes precedence
and occurs as long as the reset exception is not already in progress. Moreover, we
found that it does not wait for the completion of the current instruction before it
is initiated. This is also important because when a bus error occurs, execution of the
instruction that is in progress will not be completed.

When BERR is switched to the 0 level, the MPU aborts the current bus cycle
and initiates exception processing. A change in program environment is initiated to
a service routine for the bus error condition. The location of this service routine is

defined by vector 2 in the table of Fig. 7.2. Execution of this service routine can
attempt to correct the bus error by rerunning the bus cycle or signal its occurrence
by displaying or printing information such as the address at which the error occurred
and the type of bus cycle that was in progress.

An example of a type of circuit that can be used to determine whether or not
bus cycles are completed is a watchdog timer. This timer can be started as each bus

cycle is initiated and then the 68000's bus control signals observed to assure that the
cycle is completed before a maximum period of time has elapsed. If the timer times
out before the bus cycle is finished, the circuit sets BERR to logic 0 signaling the
68000 of the bus error condition.

The sequence of events by which the 68000 passes control to the bus error
exception service routine is almost the same as that described earlier for the TRAP
instruction. For this reason, we will just look at how they differ.

The only difference between the two exception-processing control transfer
sequences is that several additional parameters are pushed to the supervisor stack
in the case of a bus error. Figure 7.13 shows this information and the order in which
they are put onto the stack. Notice that, again, SR and PC are pushed to the stack.
But this time they are followed by the first word of the instruction that was in progress
when the bus error occurred, the address used in the bus cycle that resulted in the
bus error, and a special access-type error word.

IS 14 13 12

1 1

10 9 8 7 6 5 4 3 2
1 0

Lower address Access error word

High

Low

Instruction register

Status register

High

Low

Figure 7-13 Informalion pushed to the stack during a bus error exception (Motorola,
Inc.).

In Fig. 7.14 we have shown the implemented bits of the error word and their
meanings. Just 5 bits are in use. Bit 4 identifies whether the bus cycle that was aborted
due to the bus error condition was a read or a write cycle. It is reset if the bus cycle
was for a write operation and is set if it was for a read operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tr/wI I/N I Function code I

Figure 7-14 Access error word (Motorola, Inc.).

The next bit, bit 3, indicates whether the bus cycle was related to normal
instruction execution or exception processing. Logic 0 represents instruction execution
and logic I means exception processing. The 68000 considers the occurrence of a bus

254 Exception Processing of the 68000 Microprocessor Chap. 7

error for any group 2 exception, that is, during the execution of an exception
instruction, to be a normal instruction execution bus error. For this reason, bit 3

is set to logic 0 for this type of occurrence.

The last 3 bits are used to store the code, FC2FC,FCo, that was output on the
function code bus during the bus error cycle. This code tells what type of memory

reference was in process when the bus error took place, that is, whether user or

supervisor memory was being accessed or if it was an interrupt acknowledge reference.
The bus error service routine can access this bus error information in the stack.

In this way, it can identify the type of error made and initiate an appropriate response

in an attempt to recover from the condition or simply signal that the error condition
has occurred.

Example 7.2

If the access-type error word pushed to the stack as the result of a bus error condition
is 0005]g, what type of bus cycle was in progress when the error occurred?

Solution. To identify how the bus error bits are set, let us first express the error word
in binary form. This gives

0005, g = OOOOOOOOOOOOOlOlj

Looking at bit 4, we see that it is set to 0. This stands for a write cycle. Bit 3 is also
0 and means that a normal instruction was being executed when the error took place.

Finally, the function code that was output for the bus cycle was lOlj or 5jg. This
represents an access of supervisor data memory. Thus the bus error occurred when the
68000 was writing to supervisor data memory.

7.12 RESET EXCEPTION

Typically, a microcomputer system must be reset either at power-up or to recover
from a system failure condition. An example of a system failure thai may require

a reset to be performed is the bus error condition we discussed in the preceding section.
A reset will cause the microcomputer to be initialized.

The RESET line is provided on the 68000 for initiating initialization. Actually,
RESET is a bidirectional line that provides for 68000 initialization when a reset signal

is applied to it by the external hardware, and system initialization when the 68000

applies a reset signal to external hardware. Let us look first at its operation for 68000

initialization.

A reset exception at power-up is initiated by switching the RESET input of the
68000 to the 0 logic level. It must be maintained at this level for a minimum of 100

ms. Earlier we indicated that reset is the highest-priority exception function. Therefore,
its exception processing sequence is always initiated and cannot be interrupted by
any of the other exception functions.

The reset exception processing sequence begins just like other exception

processing sequences, with the S-bit of the status register being set and the T-bit being
cleared. This puts the 68000 in the supervisor mode and disables its trace function.

But this is where the similarity ends. Next, the interrupt mask bits of the status register,

Sec. 7.13 Internal Exception Functions 255

bits 8 through 10, are all set to 1. This makes the interrupt mask equal to 7, which
is the highest-priority level, and masks out all external interrupts other than level
7 (nonmaskable interrupt), preventing them from being serviced.

It is at this point in the control transfer sequence of an exception that the contents
of the status register and program counter should be pushed to the stack. However,
when the MPU is being reinitialized, control would never be returned to the program
environment that existed prior to the reset. Therefore, the reset sequence does not
save these values on the stack. Instead, it initiates automatic loading of the internal

supervisor stack pointer (SSP) register and program counter from supervisor program
memory and supervisor data memory, respectively.

First, the SSP register is loaded with vector 0 at addresses 000000|g and
000002, g. This defines a supervisor stack in supervisor data memory. Next, PC is
loaded with vector 1 at addresses 000004, f, and 000006, ^ and then execution begins
with the first instruction of the reset exception service routine.

The reset exception service routine is normally a power-up routine for the

microcomputer system. It is used to initialize all of the system's resources. For instance,
it could clear the MPU's internal data and address registers, load its user stack pointer
(USP) register, and modify the contents of the system byte of the status register to
enable interrupts.

The output function of RESET is initiated through software by the RESET
instruction. When a RESET instruction is executed by the 68000, its internal registers
are not affected; instead, the RESET line is set to act as an output and a pulse is
generated. The pulse produced at RESET is to the 0 logic level and has a duration
of 124 clock periods. This pulse can be applied to the reset, clear, or preset inputs

of external devices, such as LSI peripherals or flip-flops, to initialize their operation.
The reset instruction can be included as part of the power-up service routine.

In this way, external devices can be initialized and then their internal registers loaded
to configure their mode of operation.

7.13 INTERNAL EXCEPTION FUNCTIONS

The 68000 also has a number of internally initiated exception functions. In fact, it
has four such functions: address error, privilege violation, trace, and
illegal/unimplemented opcode detection. We will look next at each of these internal
exception functions in detail.

Address Error Exception

In Chapter 6 we discussed how data are organized in the memory of a 68000
microcomputer system. At that time, we pointed out that instructions, words of data,
and long words of data all must always reside at even-address boundaries. However,
software can be written that incorrectly attempts to access one of these types of
information from an odd-address boundary. It is to detect and correct for this error
condition that the address error feature is provided on the 68000.

256 Exception Processing of the 68000 Microprocessor Chap. 7

Address error detection does not have to be done with external circuitry as we
saw earUer for bus error detection. Instead, this capability is built within the 68000
as an internal exception function. Whenever an attempt is made to read or write
word-wide data from an odd-address boundary, the 68000 automatically recognizes
the memory access as an address error condition. Upon detection, the exception
processing sequence is initiated and control is passed to the address error exception
service routine. This routine can attempt to correct the error condition, or if correction
is not possible, its occurrence can be signaled in some way. For instance, the address
and type of access could be displayed on a panel of LEDs.

The control transfer sequence that takes place for address error exceptions is
identical to that performed for the bus error condition. As mentioned in Section 7.11,
the information pushed to the stack includes the contents of SR and PC, the first

word of the current instruction, the address that was in error, and an access-type
error word. The format of the access-type error word saved on the stack during an
address error exception is identical to that shown for the bus error in Fig. 7.14.
One difference is that vector 3 instead of vector 2 is used to locate the service routine.

As shown in Fig. 7.2, this vector resides at addresses OOOOOC,g and OOOOOE,^ of the
vector table.

Privilege Violation Exception

In earlier chapters, we found that the 68000 has the ability to easily implement a
user /supervisor microcomputer system environment and that the state of operation
can be selected under software control. The importance of this capability lies in that
it permits certain system resources to be accessible only by the supervisor. In this
way, it provides a level of security in the system design.

Another internal exception feature of the 68000 that we have not yet considered
gives it the ability to identify when a user attempts to use a supervisor resource. These
illegal accesses are referred to as privilege state violations.

Remember that the S-bit in the system byte of the status register determines
whether the 68000 is in the user state or the supervisor state. For instance, when S
is set to logic 0, the user state of operation is selected. The user state is the lower
security level. Switching S to logic 1 under software control puts the microprocessor
at the higher security level or supervisor state.

When in the supervisor state, the 68000 can execute all of the instructions of
its instruction set. However, when in the user mode, certain instructions are considered
privileged and cannot be executed. For example, instructions that AND, OR, or
exclusive-OR an immediate word operand with the contents of the status register are
not permitted. Any attempt to execute one of these privileged instructions, while in
the user state, results in a privileged state violation exception. The privilege violation
exception service routine can signal the occurrence of the violation and provide a
means of recovery.

\

Sec. 7.13 Internal Exception Functions 257

Figure 7.2 shows that the privilege mode violation uses vector 8 at addresses
000020,6 and 000022,6 of the vector table.

Trace Exception

The 68000 has a trace option that allows for implementation of the single-step mode
of operation. Just like the privileged state, this option can be enabled or disabled
under software control by toggling a bit in the status register. Trace is controlled
by the T-bit in the system byte of SR. Trace is turned on by setting T to logic 1 and
turned off by clearing it to 0.

When trace mode is enabled, the 68000 initiates a trace exception through vector
9 at completion of execution of each instruction. This exception routine can pass

control to a monitor that allows examination of the MPU's internal registers or
external memory. This type of information is necessary for debugging software. The
monitor can also be used to initiate execution of the next instruction. In this way,
the instructions of the program can be stepped through one after the other and their
operations verified.

Illegal/Unimplemented Instructions

The last internal exception function of the 68000 is its illegal /unimplemented
instruction detection capability. This feature of the 68000 permits it to detect
automatically whether or not the opcode fetched as an instruction corresponds to
one of the instructions in the instruction set. If it does not, execution is not attempted;

instead, the opcode is identified as being illegal and exception processing is initiated.
This illegal opcode detection mechanism permits the 68000 to detect errors in its
instruction stream.

Occurrence of an illegal opcode initiates a change of program context through
the illegal instruction vector, vector 4 in the table of Fig. 7.2. The exception service
routine that gets initiated can signal the occurrence of the error condition.

The unimplemented instruction concept is an extension of the illegal instruction
detection mechanism by which the instruction set of the 68000 can be expanded. It
lets us use two ranges of unused opcodes to define new instructions. They correspond

to all opcodes of the form FXXX,6 and AXXXjg. Here the X's stand for don't-care
digits and can be any hexadecimal numbers.

Whenever an opcode of the form FXXXjg is detected by the 68000, control
is passed to an exception-processing routine through vector 1 1 at addresses 00002C|6
and 00002E,6 of the exception vector table. The service routine pointed to by this
vector should be a macroinstruction emulation routine for the new instruction. For

example, floating-point arithmetic or double-precision arithmetic emulation routines
could be implemented. The emulation routine is written and debugged in assembly
language and then stored in main memory as machine code. To use the new instruction

258 Exception Processing of the 68000 Microprocessor Chap. 7

in a program, we just insert this opcode, FXXXjg, as an instruction statement.

As shown in Fig. 7.2, the other unimplemented instruction opcode, AXXXj^,

vectors out of addresses 000028i6 and OOOOZAj^.

ASSIGNMENT

Section 7.2

1. What are the different types of exceptions available on the 68000?

Section 7.3

2. Where in memory must the exception vector table be stored?

3. The illegal instruction exception service routine starts at address SBOOO. Show where and
how its vector will be stored in the exception vector table.

Section 7.4

4. If the service routine for TRAPV is in progress when an external interrupt occurs, what

happens?

Section 7.5

5. What is the highest priority level for external hardware interrupts?

6. If the interrupt mask value is 5 when the 68000 receives an external hardware interrupt

request with code lOOj, will the request be acknowledged or ignored?
7. Write an instruction to load the interrupt mask with the value 01 1, without changing any

of the other bits in the status register. Assume that the 68000 is in the supervisor state.

Section 7.6

8. Give an overview of the events that take place during the lACK bus cycle.

Section 7.7

9. Overview the response of the circuit in Fig. 7.9 to an active IRQ50 input.

Sections 7.8 and 7.9

10. Overview the operation of the autovector interrupt interface circuit in Fig. 7. 1 1 when a
level 2 request for service is received.

Section 7.10

11. Show the general structure of a TRAP service routine. Assume that the service routine
uses registers Dq, D,, and A^.

12. Write an instruction sequence that will check the index of an array. The index is stored
in memory location INDEX and the upper bound of the array is stored at UBD.

Chap. 7 Assignment 259

Section 7.1 1

13. What is a bus error in the 68000 microcomputer system?

14. Explain how a bus error condition is handled by the 68000.

Section 7.12

15. Write a reset service routine that will clear the data registers, address registers, and set

the supervisor stack pointer to SFFFFFE. Then branch to SAOOO, where the application
program begins.

Section 7.13

16. What internal exceptions are implemented in the 68000?

17. Explain what is meant by an address error exception.

18. What happens when the unused opcode FlOO,^ is encountered during instruction
execution?

8 The Hardware
OF THE MC68000
Educational Microcomputer

8.1 INTRODUCTION

In the previous two chapters, we presented in detail the memory, I/O, and interrupt
interfaces of the 68000 microprocessor and its microcomputer system. In this chapter,
we will examine how these interfaces are implemented in a simple microcomputer

system. The microcomputer used for this purpose is that employed in Motorola's
MC68000 educational microcomputer board. The topics presented in the chapter are:

1. The microcomputer of the MC68000 educational microcomputer board

2. Clock generator circuitry

3. Interrupt interface

4. Program storage memory

5. Data storage memory

6. Parallel I/O— the 68230

7. Serial I/O— the 6850

8.2 THE MICROCOMPUTER OF THE MC68000 EDUCATIONAL

MICROCOMPUTER BOARD

The circuitry of the MC68000 educational microcomputer board represents the
implementation of a complete 68000-based microcomputer system. A block diagram
of this microcomputer is shown in Fig. 8.1. The heart of the microcomputer, the

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board

68000 L4
MPU

Clock

generator System bus

Interrupt

interface

Parallel

I/O ports
and timer

To audio
cassette

To CRT

terminal

Figure 8-1 Block diagram of the MC68000 educational microcomputer.

MPU, is an 68000L4 microprocessor. It is this device that performs the arithmetic,
logic, and control operations.

The operation of the microprocessor and other devices in the microcomputer
system are synchronized by the clock signals produced by the clock generator section.
The 68000 microprocessor in this microcomputer is set up to operate at a frequency
of 4 MHz.

The program memory section stores the instructions of the monitor program.
Program memory in the MC68000 educational microcomputer is implemented with
PROMs and has a total storage capacity of 16K bytes. Use of PROMs makes the
program storage nonvolatile. That is, the monitor program is maintained within the
PROMs even when power is removed from the system. The program that is run on
the MC68000 educational microcomputer is called the Tutor monitor. The 68000
fetches the instructions of the monitor program over the system bus and executes them.

Data that is being processed by the microcomputer are stored in the data memory
section. For instance, during the execution of an instruction, the 68000 accesses source

or destination operands that reside in data memory over the system's bus. This section
of memory is implemented with 4116 dynamic RAMs and is 64K bytes in size. This
part of the memory subsystem is actually volatile; therefore, any information stored
in it is lost when power is turned off.

The Hardware of the MC68000 Educational Microcomputer Chap. 8

NOTES:

I FOR REFERENCE DRAWINGS REFER TO
BILL OF MATtfllAL 0l-W3IIIBi?'

2. UNLESS OTHERWISE 8PECIF1CD:

ALL RESISTORS ARE IN OMMS,*"PCT,
1/4 WATT.

ALL CAPACITORS ARE IN UF.
ALL VOLTAGES ARE DC.

i INTERRUPTED LINES CODED WITH THE
SAME LETTER OR LETTER COMBINATIONS
ARE ELECTRICALLY CONNECTED.

A>k DEVICE TYPE NUMBER IS FOB REFERENCE
ONLY. THE NUMBER VARIES WITH THE
MANUFACTURER.

5 JI6 CUSTOMER USE OPriOH l5aPIHS>.

DEVICE TYPE NUMBERS AND CONNECTIONS
NOT SHOWN ON SYMBOL ARE LISTED
BELOW UNDERLINED PORTION OF TYPE
NUMBER IS USED AS A CODE TO IDENTIFY
DEVICES ON DIAGRAM

REF
DES

'-^'A
GNO

• sv

-5V

• cv

-CV

U 1 74 HI 7

1 4

ul 74LiJS 7 1 4
ui 74Li5z 7

14

U4
uchiez

1 2

3
U5 MC148S 7

1 4

I

U6 twi^k 7 1 4

U7

MCI4aB 7 14 1

UO 74isee 7 1 4
U9 MCM£3a 38

12

uie JCtMilf

12

24

Ul 1 «:u«764

12

24

Ul? MC6»5e ^

|^

UI3 Mcuse 1

'I

UI4 MCI44M

IJ

24

UI5 741.593

12

3

uie
7

1 4

UI7
7 14

Ul» '4LS«>4 7

14

UI9 7 1 4

u;<2 Mi.-4n«L*
fc.53 4.4 » oei 7415175 6

16

U22 74l.il75 8

16

UZ3l74L5<»» 7

14
7 14

UZ5
U2b

74LSBe 7 14

74LS393 7

14

^J^^ 74 LSI 5 3 B

l£

U2S

uas
U3B

U3I Ui2

74Lil53 8

16

'74LS26a 7

14

74LSI38 6

16

74I.S27 7 1 4
74LSe4 7

14

U33

U34
U35

■)4LSaJ
7

14

74L532 7 14

74L5I5J 8

16

U36 741.SI5J 8

16

U37 7«1.5^6a 7 14

U38 74LSia 7 1 4
U39 74Li|75 6

16

U40 ^LSI4a 6

16

04|l74L5273 Z 2a

U4 2 IMC 3456 7

1 4

U43 MC74e5 7

1 4

U44 741 Sea 7

1 4

U45174LSII 7 1 4

U4fc|74LS74 7 14

POWEd
/GROUND T»BL

CONT'D

REF

DES

^^^A

GNO

•5V

-5V

• ev

-EV

U^7MCM41I6

ifc

9 B

U48 VCMIIli

i£

9 R

U49IMCV4II&

le

9 0

U50
MCMJIIS

16

9 8

U5I

WCM41I6

IC

9 R

UbZ

MCM^Mfe

16

9 8

US 3 MCi/J'iG

(£

9 e

US4
MC^nS,

It, 9 8

U55

MCL.0H4,

IG

9 s U5i m:m4iis

It

S 8

U57

l^C'J.lNS to,
9 B

USB

yCN'4llfc

IG

3 9

U59

r.CM4ll6

l£

3 8

Ube UCW4lie,

It

3 8

Ufcl

m:m4ii6

IG

9 8

uez WCM4II4

i£

3 8

Y.

VRl

ost sz
R3e

ji)

f 7

CfiJ

c&z
HIGHEST

NUMBER USED NOT USED

REFERENCE DESIGNATIONS |

V 4^

t
4
G
8

1?

14

IG

18

2«

\ 7

NC —

?

NC —

1 1

NC —

H

NC —

15

sc —

17
NC 1

19

Figure 8-2 68000 Educational Microcomputer Board Schematic Diagram (Motorola, Inc.). SH 1 of 3

Sec. 8.2 Th'? Microcomputer of the MC68000 Educational Microcomputer Board

NC— 2
MC— 1
Nt — fc
NC — 9
NC — It
NC — 12
NC — 7
MC — 14
NC — 18
MC — 2i?

^ Ice J.t23j.C3llc33lc36l C3sJ.C3

..ClZ±C*5±C't7±C*3l.CiZ±Ciil. C58

;•■ J- v I" V I"

V V

Xc£bXc3«Xc32Xc34 X c;

V 1-' I' V 1-'
eXc<3 Xc^sXcSU J, C53X CS

J" J" r J- J-
NC n\
NC

■ r

NC
r9 j

¥
'- -*

NC — 2 'I
NC —

d

NC — £

NC —
S

NC — «)
NC — 1 1
NC —

12

NC —

15

NC —

iC

NC —

ifl

NC — 2«)

^

Ux Ici lc2 lc5 Xc7 lc9 XcifS X cil X Cii

rj- J" ;•■ V V v V
Xci3 XcK Xcis Xci6 Xci7 XosXcia Xcza

V V V V V V V V
. .C23 XcZ'XcjsXcfi Xc^XcasXcSI XcS'lXcST

V V V V V V V V

U38* usee UiBA

I ̂ LSig 9 LSIZ L5g<

:C>''^ 'iK>'^ -^H>^'

>^NC J.iC^'^' -.2v-^.v_

Figure 8-2 fron/.; SH 1 of 3

The Hardware of the MC68000 Educational Microcomputer Chap. 8

\lf

\

15

sii

\I6 ̂

JI7

^ OS"" i 1
003 /

\

5v Ri4r

Ri4E <■

4700

V

^

 T-^ T^

' .0f

1 '"T

BKIC

^ DBS 1 J 007 ̂

Rl4D 4700

^

«a9

; Ai2i

* AI2

AI3

1 ■^s CMH

^ D0S. 1 * -f
MHZ CLK

RI5H
4 700

1 "■ 9
RKJ

<7(jia

^ D07 T B

014

V A 14

1 "'"IB BI5B
^7i5e

, DOS 9 IB

DI5

S ■"■ 1 RI5J 4700

^t'^'

ai4c

47(80

\

 — ^1

1 ■ 3 47J>(S
s 009 II IZ BESET »

D(Ji

^
; MM

oas DJlfe 009
&0

BI50
47(Sa

^ Dl(5 13 '4

1 ■••6 Bi^e
173(2

^ on 15 l£
E

AS*

RUB

4700

1 •'■ 4 B15F -<7©a)

V DI2- I'J, 1*

DM

" 012

BI5&
470(1

^ DI3 19 2»
LIDS»

RI5»

4700

^

^ DI5
BMB

17(10

. OZB 21 22

LDS«

2 ̂ "' 1 47(Z)0

1 """ 3 B3a«

^ *15' 2? 1" R/W* 2 '" 1

RIJD 4 730

B29»

4700

1 "■ i 470(8

, AI4 \5 za

AI3

<17(?(S

,»1Z 2-' 28

FC2

FCP

R30f

470(8

1 "■^"" 3
RJ9C

4 708

,»M Z^ 3(8

R29C> 470(8

, »l<8 31 3__2

FC0

A 01

1 •"'•s R29E
i7a«>

, 409 33 34

1 •••&
Bi9F 47(S0

. \3 8 3? 36

A 02

4 700

1 ■'' 7 R23H 470(8

, (X8C 3J 3_6

A03

s. "'■ 1
B30C

4700

1 '''9
R29& 47(80

s A07 39 40
A04

R300

4 700

1 ■■■ 6 R29J «7e«

- *«5 ■"; « D7ACK4

5 •"■

VMA»

15

.MfflSlRa*

f

- 1 >*<z ecu

4UHZCLI(

I l«

(00IRa«

VMA«

/ eMJ2<iK

. BESET.

1 MHZ UK "5 46

/
AS»

UDS»
LOS«
f:j

FC 1

,

FC2

D1AC««

'

FR SH 2 (F-18)

SM 2 ̂&-l6)

Figure 8-2 rco«(.; Sh 1 of 3(contJ

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board

Figure 8-2 rco«/.> SH 2 of 3

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure S-2 (com.) SH 2 of 3(cont.)

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board

pes -TO S«3(FO

Figure 8-2 (com.) SH 2 of 3 Icont.)

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure S-2 (com.) SH 3 of 3

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board

.W2 7 i

, AB7 ̂
.»;6 .
.« 2, "

:a,2 ̂»

.WZ 1
,«5

i

;a2; 4 1

1=
*£3

, Aiz 18 t:..5 21

1^>»

lie MCU4M6

Figure 8-2 rcom.; Sh 3 of 3 Cconf..^

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure S-2 a on I.) SH 3 of SIcont.l

Sec. 8.2 The Microcomputer of the MC68000 Educational Microcomputer Board

^ coo £2

, Ml 21

za
, rc3 19

.18
o« n

. C06
'5

&«<
M16 e

9

' e
' n/w»

'3

Figure 8-2 rcon/.; SH 3 of 3/conf,y

272 The Hardware of the MC68000 Educational Microcomputer Chap. 8

When using the educational microcomputer to enter, execute, and debug 68000
assembly language programs, the instructions of the program are stored and executed
from data storage memory, not from program memory. This permits the program
to be loaded and modified by the user from the keyboard. Only the Tutor monitor
program resides in program storage memory.

The microcomputer in the educational microcomputer also has a number of
I/O resources. Looking at the block diagram in Fig. 8. 1 , we see that there is a parallel
I/O section and RS-232C serial communication ports.

The parallel I/O section of the microcomputer provides 24 individual I/O lines.
This part of the I/O interface is implemented with the 68230 parallel interface/timer
device and can be configured under software control to work as inputs or outputs
and with a variety of different modes of operation. These parallel I/O ports are
designed to interface to a parallel printer (Centronics interface) and a tape recorder.

The serial communication ports permit a CRT terminal to be connected to the
microcomputer and also provide for connection to a host computer. The serial ports
are implemented with 6850 asynchronous communications interface adapters.

The keyboard of the terminal allows the user to input information to the
microcomputer. For example, in Chapter 5, we showed that monitor commands such
as DU or DF are issued from the keyboard. Commands like these allow the
programmer to modify the contents of data memory, single step executive programs,
and implement program debug operations by giving the ability to examine the contents
of registers or memory.

The terminal, which connects to one of the RS-232C ports, is also an output
device. On the screen, it provides the user with a visual representation of data related
to the monitor commands that are entered through the keyboard. For instance, as
the MM command is used to enter a byte of data, the current contents of the memory
location are first displayed and then the new value is displayed digit by digit as it
is entered from the keyboard. Similarly, when a DF command is issued to examine

the contents of the 68000's internal registers, their descriptors and contents are
displayed.

Figure 8.2 shows schematic diagrams that detail the circuits used to implement
each of the functional blocks of the microcomputer in the MC68000 educational
microcomputer board.

8.3 CLOCK GENERATOR CIRCUITRY

Now that we have introduced the architecture and functions of the fundamental blocks
in the MC68000 educational microcomputer, let us continue by examining the
operation of the circuitry used to implement these blocks. We will begin in this section
with the clock generator circuit. Figure 8.3 shows this segment of circuitry.

Looking at Fig. 8.3, we find that clock signals are generated by an 8-MHz crystal
controlled oscillator and a 74LS93 binary counter IC. This circuit produces three
different frequency clock signals — 8 MHz, 4 MHz, and 1 MHz.

Interrupt Interface

U16

BMHz

8 MHz for distribution

to logic circuitry

4 MH2 for distribution
to 68000 family

peripherals
1 MHz for distribution
to 6800 family

peripfierals

Figure 8-3 Clock generator circuitry.

The 8-MHz clock is directly produced by the crystal controlled oscillator U]^.
One use of the 8-MHz output at pin 8 of this oscillator is that it is distributed to
control logic circuitry within the microcomputer. Notice that the 8-MHz clock is also
applied to the CKA input of 74LS93 counter. Here it is divided by 2 to produce

a 4-MHz clock at the QA output. This is the clock signal that is applied to the CLK
input at pin 15 of the 68000 microprocessor. In Fig. 8.3, we see that the 4-MHz clock
is also distributed to other parts of the microcomputer system. For instance, it is
required to synchronize the operation of all 68000 family LSI peripherals. For this
reason, one place that it is supplied is to the 68230 PI/T device.

The 4-MHz clock signal is also supplied to the CKB input of the 74LS93. CKB
is the input to the other three stages of the counter. It is divided by 2 to produce
the QB output, by 4 to give the QC output, and by 8 to give the QD output. Notice

that just the divide-by-4 output (1 MHz) at pin 8 of U,; is in use. This 1-MHz clock
is required by 6800 family LSI peripherals within the microcomputer system, such
as the 6850 ACIA.

8.4 INTERRUPT INTERFACE

The interrupts of the MC68000 educational microcomputer can be categorized into
three groups: the reset interrupt, the nonmaskable interrupt, and the maskable

hardware interrupts. The circuitry needed to support these three parts of the 68000's
interrupt interface is shown in Fig. 8.4. In this section, we will examine the operation
of the interrupt interface circuits for each of these interrupts.

Reset Interrupt

The reset interrupt is used to initialize the operation of the 68000 microcomputer

at power-up. This section of circuitry is located in the upper left corner of the circuit

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure 8-4 Interrupt interface circuitry.

Sec. 8.4 Interrupt Interface

Figure 8-4 (cont.)

276 The Hardware of the MC68000 Educational Microcomputer Chap. 8

diagram of Fig. 8.4 and consists of a reset flip-flop constructed from two of the AND
gates on the 74LS00 IC U44 and a monostable and multivibrator formed with the
MC3456 timer IC U42.

The monostable multivibrator circuit is used to initialize the complete

microcomputer system at power on. When the power switch is turned on, capacitor
C26, which is connected from pin 8 of U42 to ground, acts like a short circuit to
ground and forces the trigger. (TRG) input of the MC3456 timer to logic 0. This
causes the OP output at pin 9 to switch to the 1 logic level. As time elapses, €25
charges toward the 1 logic level threshold of the TRG input. As it exceeds this value,
the OP output returns to the 0 logic level. In this way, we see that a single pulse to

the 1 logic level is produced at the timer's OP output.
The pulse output at OP is buffered with 7405 inverts to give signals: power on

reset (POR), halt (HALT), and reset (RESET). RESET is applied to both the 68000
microprocessor and the 68230 parallel interface/timer IC. As it switches to logic 0,

the operation of these devices is initialized. Initialization causes the S bit in the 68000's
status register to be set and the T bit to be cleared. In this way, it is put into the
supervisor mode and the trace mode of operation is disabled. Then the interrupt mask,
which is also in the status register of the 68000, is set to 7. This masks out all external
hardware interrupts. Moreover, the supervisor stack pointer register is loaded with
vector 0 from addresses OOOOOOig and 000002,5. ̂ ^^^ creates a supervisor stack in
data memory. Next the program counter is loaded with vector 1 (actually the second

half of vector 0) from addresses 000004[g and 000006ig. The new value of PC points
to the beginning of the Tutor firmware package in program memory.

At the same time, the pulse at OP produces a pulse to logic 0 at POR. This

stands for power on reset and is used to initialize some of the on-board logic circuits.
For instance, it is used to clear or preset a number of flip-flop circuits.

Notice that the HALT signal is also generated from OP at power-on. It is apphed
to the HALT input at pin 17 of the 68000. This halts the operation of the MPU and

lights the LED labeled CR3 to indicate this fact. As the reset pulse is completed, the
HALT Hne of the MPU is also released. Therefore, the 68000 begins execution of
the Tutor program. The early part of this program is an initialization routine for

the microcomputer's resources. For instance, it causes initial values to be loaded into
the internal registers of the 68000 MPU as well as the 68230 and 6850 LSI peripherals.

Besides this, it causes all storage locations in the microcomputer's data storage memory
to be initialized.

The microcomputer can also be reset without turning off the main power. This
is done by depressing the reset switch on the microcomputer board. Looking at Fig.
8.4, we find that the reset switch is the input of the reset flip-flop. Notice that this
flip-flop is formed from two NAND gates of IC U44. When the switch is depressed,
the output of the flip-flop at pin 6 of U44 is set to 1 and as it is released the output
is reset to 0. The reset pulse output at pin 6 is inverted by U43P and applied to the
reset inputs of the 68000 and 68230. This reset mechanism represents what is called
a warm start and does not cause the POR or HALT outputs to be produced.

i

Sec. 8.4 Interrupt Interface 277

Maskable Hardware Interrupts

The next part of the interrupt interface that we will look at is the part that provides
what are called maskable hardware interrupts. By hardware interrupt, we mean that
it represents a device external to the 68000 microprocessor that requests service by
the MPU by asserting a hardware signal called an interrupt request. By maskable
interrupt, we mean that the interrupt input is accepted on a priority basis. That is,
when a device issues a request for service to the MPU by issuing an interrupt request,
the 68000 first compares its priority to the setting of the interrupt mask in the status
register. If the value already in the mask is that of an equal or higher priority interrupt,
the request for service is ignored. Otherwise, the request for service is granted.

In Fig. 8.4, the 74LS148 priority encoder U40 and 74LS273 interrupt latch U4,,
which are located just to the left of the MPU, as well as all of the circuitry located
to the right of the MPU are used to implement the maskable interrupt interface. The
circuitry on the left is for input of interrupt requests. Notice that there are five
maskable hardware interrupt inputs: TOUT, PIRQ, 6800IRQ, ACIIRQ, and AC2IRQ.
Figure 8.5 Hsts the priority level, function, and autovector number for each of these
interrupts. For instance, AC2IRQ stands for asynchronous communications controller
2 interrupt request. It has a priority level of 6 and uses autovector 30 at address

000078 [g to define the starting point of its service routine.

Signal
Priority

AutoVector
Mnemonic Level Function Number

ABORT 7 Abort logic request

31

AC2IRQ 6 Asynchronous communication

30
5

controller 2 request

Asynchronous communication

29

ACIIRQ

4
controller 1 request

6800 device request 28 6800IRQ
PIRQ 3 Pl/T parallel ports request Not used

TOUT 2 Pl/T timer request Not used
1 Not used Not used

Figure 8-S Maskable interrupts.

Also notice in Fig. 8.5 that the TOUT and PIRQ interrupt requests are for the
timer and parallel ports of the 68230 PI/T device, respectively, and that they do not
use autovector interrupt levels. Instead, their interrupt vectors are stored in registers
within the PI/T device and are output to the 68000 over the data bus during an
interrupt acknowledge bus cycle.

Let us now look at what happens when an interrupt request becomes active.
Assume that the ACIIRQ input at pin 3 of U4, has been switched to logic 0. This
means that the 6850 device U,3 in Fig. 8.2(b) is requesting service. On the next pulse

278 The Hardware of the MC68000 Educational Microcomputer Chap. 8

of 4MHZCLK (pin 11 of 1)4,), the logic levels of the interrupt request inputs are
latched at the outputs of the 74LS273 interrupt latch. The latched interrupt requests
are applied to inputs 2 through 6 of the 74LS148 priority encoder. Since just AC 1 IRQ
is active, only the 5 input at pin 2 of the priority encoder (U40) is at logic 0. This

input makes the encoder output equal to A2A1AQ = 101. This output is returned
to inputs D2 through D4 of the interrupt latch. On the next pulse at 4MHZCLK,
the code is latched at outputs Q2 through Q4 and is applied to the interrupt request
inputs (1PL2IPL,IPLq) of the microprocessor.

Earlier we pointed out that interrupt requests, ABORT, AC2IRQ, ACIIRQ,
and 6800IRQ, are serviced as autovector interrupts. For this reason, when one of them
is acknowledged for service by the 68000, the external logic circuitry must switch the
VPA input of the 68000 to logic 0. This signals the MPU that an autovector operation
is in progress. In this case, it internally generates the vector addresses and fetches
the vector from external memory. The circuitry that produces the VPA signal is located
to the right of the 68000 in Fig. 8.4.

Let us now look in more detail at how VPA is generated. For our earlier example,

ACIIRQ, the interrupt code is IPLjIPLiIpLq = 101. During the interrupt
acknowledge bus cycle, the interrupt acknowledge function code 1 1 1 is output on
function code lines FC2FC1FC0. At the same time, the interrupt code 101 is output
on address lines A2A,Aq. Looking at the circuits in Fig. 8.4, we see that the function
code is gated together with AS by the 74LS21 AND gate U,9b. Since all of its inputs
are logic 1, the output at pin 8 of the AND gate switches to logic 1. This output is
an enable input to the 74LS00 NAND gate U25D. Here it is gated with the logic level
on the A3 address line. This signal is also 1; therefore, output VPAIRQ switches to
logic 0 to indicate that the current interrupt bus cycle is to use autovectoring. The
logic 0 at VPAIRQ is input to the 74LS1 1 AND gate U45C at pin 1 1 and causes the
VPA input of the 68000 to switch to logic 0. This completes the signaling sequence
required to initiate an autovector interrupt response.

Earlier we pointed out that the parallel I/O ports and timer within the 68230

device are not serviced using autovector interrupts. This is because it has internal

vector registers that can be programmed by the user with a vector number. During

the interrupt acknowledge bus cycle, the 68230 supplies the vector number to the 68000

by outputting it on data bus hnes Dq through D7. For instance, let us assume that

the TOUT interrupt request input is active. This causes the code 010 to be apphed
to the IPL inputs of the 68000. As the interrupt acknowledge bus cycle is initiated,

the function code FC2FC1FC0 = 1 1 1 is again output and the output at pin 8 of
AND gate U19B switches to logic 0. However, this time the code output on address
lines A3 through A, is 010. This makes all inputs on NAND gate LI, 73 1 and its

output, TIACK at pin 8, switches to logic 0. TIACK signals the 68230 that the timer's
request for service has been granted and that it should put the timer's interrupt vector
on the bus. Later in the bus cycle, the 68000 reads the vector number off the data
bus and then passes control to the address held in this vector location.

Sec. 8.5 Program and Data Storage Memory 279

Nonmaskable Interrupt— ABORT

The ABORT switch, which is located by the RESET switch on the
microcomputer board, when depressed causes software to be returned to the monitor
program. For instance, if the microcomputer became hung up during execution of

a user-written program, control can be returned to the monitor by simply depressing
the ABORT switch. The ABORT service routine does not reinitialize the MPU, it just
returns control to the monitor without changing the contents of internal registers or
data memory.

The abort request signal (ABTIRQ) is generated by a flip-flop similar to the one
described earlier in this section for the reset switch. In fact, as shown in Fig. 8.4,

this flip-flop is made with the other two AND gates of IC U44.
When the ABORT switch is depressed, the ABTIRQ, which is output at pin 8

of U44, switches to logic 0 and as it is released, this output returns to logic 1. The
pulse to logic 0 at ABTIRQ is applied to the 7 input at pin 4 of the 74LS148 priority
encoder. This is the highest-priority input and causes the code 111 to be output on
A2A1AQ. This code is latched into the 74LS273 latch U41 synchronously with
4MHZCLK. From the output of the latch, it is supplied to interrupt request inputs
IPL2IPL,IPLq of the 68000. Here code 111 represents a nonmaskable interrupt
request and is serviced by the routine pointed to by autovector interrupt vector 31
at address 000070, g. When executed, this routine returns software control to the
monitor program.

8.5 PROGRAM AND DATA STORAGE MEMORY

In Section 8.4, we covered the interrupt interface of the MC68000 educational
microcomputer. Here we will continue with the circuitry used to implement the
memory interfaces. This represents three separate sections of circuitry, the program
storage memory, data storage memory, and the watchdog timer.

Program Storage Memory

Figure 8.6 shows the 68000 MPU and the program storage part the MC68000

educational microcomputer's memory subsystem. Notice that it involves three key
elements of circuitry: the ROM address decoder, the read-only memories, and the
ROM DTACK circuit. The storage array is formed from two MC68A364 ROMs.

These devices are organized as 8K x 8-bits and are connected together to give an
8K X 16 bank of memory for a total of 16K bytes of program storage memory. Notice
that the MPU supplies address information to both ROMs in parallel over address
lines A, through A, 3. Device Ujq supplies the lower bits of the instruction word to
the MPU over data bus lines Dg through Dy, while U,, supplies it with the upper
byte over Dg through D15.

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure 8-6 Program storage memory.

Sec. 8.5 Program and Data Storage Memory

Figure 8-6 (com.)

282 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The address map in Fig. 8.7 shows that ROM resides in two pages of the 68000's
address space. One part is the page in the address range from 008000,^ to OOBFFFjg.
It is in this section of memory that the instructions of the Tutor monitor program
are stored. The other part of the ROM address space is the eight bytes from address

000000,6 through 000007 jg. This part of memory stores the reset interrupt vector.

Function Type Address

Exception vector table
ROM

000000,3 *° 000007, g
RAM 000008, g to 0003FF,g

Tutor scratchpad RAM 000400, g to 0008FF,g

User memory
RAM

000900, g to 007FFF,g
Tutor firmware

ROM
008000, g to00BFFF,g

Not used 00C000,g to 00FFFF,g
Pl/T I/O 010000, g to 01003F,g

ACIA2 (lower byte)
I/O

010040, g to 010043, g

ACIAl (upper byte)
Redundant mapping

I/O
010044, g to 01FFFF,g

Not used 020000, g to 02FFFF,g

6800 page (E6) 030000, g to 03FFFF,g
Not used 040000, g to FFFFFF,g

Figure 8-7 Memory address map (Motorola, Inc.).

Whenever an address in these ranges is output on address bus Hnes A, through

A23, the address decoder circuit detects its occurrence and produces the ROM enable
(ROMEN) signal. ROMEN is supplied by the output of the 74LS260 NOR gate Ujgs-
For this output to be logic 1, all of its inputs must be logic 0. Notice in Fig. 8.6 that
switching ROMEN to logic 1 enables both the ROM DTACK circuit and the two
ROM ICs.

The ROM DTACK circuit is used to produce the DTACK ROM signal that tells
the MPU to complete asynchronous bus cycles that are performed to the program

memory. This circuit is actually a counter constructed from the D-type flip-flops of
the 74LS175 IC U22- The flip-flops on this IC are connected to form a 4-bit binary
counter. The CK input at pin 5 of this counter is supplied by the 8-MHz clock signal.
Whenever a ROM bus cycle is not in progress, the output of the 74LS21 AND gate

U|9ys^ is logic 0 and the output of the counter is cleared. As a memory bus cycle is
initiated to program memory, ROMEN is switched to 1 and the counter increments
toward a count of 1000. When this count is reached, the Q output at pin 14 switches
to the 0 logic level. This makes the signal DTACK ROM logic 0 and the output of
the 74LS11 AND gate U24A signals the 68000 that the bus cycle can be completed
by switching DTACK to logic 0.

Let us now look more closely at the address decoding that takes place at the
address decoder to produce the ROMEN signal. Assume that the address output on

Sec. 8.5 Program and Data Storage Memory 283

the address bus during an instruction acquisition bus cycle is 008000|g. Expressing
this address in binary form, we get

A23A22. . . .A, = 00000000 IOOOOOOOOOOOOOO2

To make ROMEN equal to 1 , this address must cause all inputs to the 74LS260 NOR

gate U29B logic 0. Looking at this gate, we see that its first input is A|4 and that
this bit is at logic 0 in the address. The next input of the gate is supplied by the random

logic section of the address decoder. The address inputs to this section of circuitry are:

A7A6A5A4 = OOOO2
which makes the output at pin 6 of the 74LS260 NOR gate U37B equal to 1,

A,2A,,A,oA9 = OOOO2
which makes the output at pin 5 of NOR gate 1)37^ equal to 1, and

A,4A,3 = OO2
which makes the output at pin 10 of NOR gate U33C equal to 1 . These three outputs

are inputs from the 74LS10 NAND gate Ujgg- Since all^f its inputs are logic 1, the
output at pin 6 is logic 0. This signal is combined with Ajj, which is logic 0, by the
74LS08 AND gate U233. This output, which is at pin 6, gives a second input of NOR

gate U293, which is also 0. Next, R/W, which is at logic 1 during read bus cycles of

program memory, is inverted by U33B to give logic 0 at output pin 4 and applied

to the third input of NOR gate U29B. Finally

Ai8A,7A,6 = OOO2

selects the Yq output at pin 15 of the 74LS138 three-line to 8-line decoder.

A23A22A2lA2oA,9 = OOOOO2
causes the output at pin 5 of U29A to switch to logic 1 and supplies one of the enable

inputs at pin 6 of U3Q. AS = 0 at pin 4 supplies the last signal needed to enable the
decoder for operation. Therefore, Yq switches to logic 0 to produce the last input

of NOR gate U29B. Since all inputs of U29B are now at logic 0, this address causes
the ROMEN output to switch to the 1 logic level.

Data Storage Memory

The data storage memory interface of the MC68000 educational microcomputer is

quite different than that just described for program storage memory. Looking at Fig.
8.8, we see that it includes the address decoder, the RAM timing/DTACK circuit,

the address multiplexer, the RAM storage array, and the RAM refresh control circuit.

The RAM storage array is 32K bytes in size and is organized as 16K words.

In Fig. 8.8, we find that it is formed with sixteen 41 16 dynamic RAM ICs. Each of

these devices is organized 16K x 1-bit. It is this part of the memory subsystem that
is used as a scratchpad memory for the Tutor program and to store data and programs
that are keyed in for execution and debugging.

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure 8-8 Data storage memory.

Sec. 8.5 Program and Data Storage Memory

< ■Ci

A

M>= o
.r P

;0

iO

O

X>
Figure 8-8 (com.)

The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure 8-8 (cont.)

Sec. 8.5 Program and Data Storage Memory

V \ \ V V \ \ \ \ \ \ \ \ \ \ \ \' /

V \ \ \ \ \ \ \ \ \ \ \ \ \ \

Figure 8-8 (cont.)

288 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The data input (DI) leads and data output (DO) leads of the individual RAMs
are wired together and then tied to the corresponding data bus lines of the 68000.
For instance, DI and DO from IC U47 are connected together and supplied to the
Dq line of the data bus.

Unlike the ROMs used in the program storage part of the memory subsystem,

these DRAMs require a muUiplexed address. That is, a 14-bit address is input to the
address multiplexer circuit over address lines Aj through A14 and under control of
the RAM timing/DTACK circuit, it is multiplexed into a 7-bit row select address
(RAS) and 7-bit column select address (CAS). These two parts of the address are
output one after the other in time on the RAq through RA^ lines and applied to
address inputs Ag through Ag of all memory devices in parallel.

The application of these two addresses are synchronized with the ROW address
select (RAS) signal and column address select signal, column upper (CU) and column
lower (CL). Looking at Fig. 8.8, we find that these signals are applied to the RAS
and CAS inputs of the RAMs, respectively.

The last control signal that is applied to the memory devices in the RAM storage
array is RAW. Note that it is applied to the W input of all RAM ICs in parallel.
This line is used to signal to the data storage memory subsystem whether a read or
write bus cycle is in progress.

The same address decoder that we discussed relative to program storage memory

is shown in Fig. 8.8 to decode the 68000's address to give the RAM enable (RAMEN)
signal. Again address bits A3 through A14 must all be logic 0 to make the output
at pin 6 of U3gg switch to logic 0; A^ must be logic 0, instead of 1, to make the
output at pin 6 of U32C logic 1; and finally A,g through A23 must equal 0 to make
the Yq output at pin 15 of U30 equal to 0. This output is inverted by U32E to give
logic 1 at the output at pin 11. Therefore, all three inputs of AND gate U24C are
logic 1 and RAMEN switches to the active 1 logic level.

RAMEN does not directly enable the memory array. Instead, it is applied along

with the output of NAND gate U25C to inputs of AND gate U23c- The output of
U25C is generated from lower data select (LDS) and upper data select (UDS). If either
or both of these signals are logic 0, the output at pin 8 of U25C is logic 1. This
condition makes both inputs of U23C 'og'c 1 and its output at pin 8 switches to the
1 level, thereby releasing the clear input of the 74LS175 device (U39). U39 contains
four D-type flip-flops that are interconnected to form a 4-bit binary counter.
Therefore, as CLR is released, the output of the counter begins to increment through

its count sequence synchronously with the 8-MHz clock signal that is applied to its
CK input.

After the first clock pulse, output Q at pin 15 is logic 1. This makes the RAS

output at pin 13 of U33D switch to logic 0. RAS signals the devices in the memory
array that a row address is available at address inputs Aq through A^. On the next
clock pulse, the Q output at pin 1 1 of U39 switches to logic 0 and enables the R/W
signal to the RAW output at pin 8 of V-^^q and signals the memory array whether

Sec. 8.5 Program and Data Storage Memory 289

data will be read from or written into data memory during the current bus cycle.

The fourth clock pulse causes Q at pin 6 of U39 to switch to the 0 logic level and
enables LDS and UDS to the CL and CU outputs, respectively. This tells the RAMs

in the memory array that a column address is applied at inputs Aq through A^. In
this way, we find that the counter controls the timing of memory bus control signals

RAS, CU, CL, and RAW. _
As the fifth clock pulse occurs, Q at pin 3 of U39 switches to logic 0. This

produces the signal DTACK RAM, which is returned by way of AND gate U-,4^ to

the DTACK input of the 68000. When the DTACK RA"M input at pin 1 of this gate switches to logic 0, the output at pin 12 and DTACK input of the 68000 are also

switched to logic 0. This signals the 68000 that the current data memory bus cycle
can be completed.

From the memory map of Fig. 8.7 we see that RAM is located from address

000008, g through 007FFF,6. Notice that the addresses in the range from 000008,6
through 0003FF,g are used to store exception vectors. This area of memory is

followed by a 2K-byte segment of RAM at addresses 000400, ^ through 0008FF,6,
which is used as a scratchpad by the Tutor program. The rest of the RAM, which

resides from address 000900, g through OOTFFF,^, provides user memory for storage
of programs and data. In this way, we see that RAM is located at the lower part

of the 68000's address space.
Now that we know how the W, RAS, and CAS signals are generated for the

RAMs, let us look more closely at how the address on A, through A,j is multiplexed

to the Aq through A^ inputs of the RAMs in the RAM storage array. The address

multiplexer is formed with four dual 4-line to 1-line mutliplexer ICs. These are devices

U27, U2g, U35, and U36 in Fig. 8.8. Notice that address bits A,, A3, A,, and A7 are
applied to the ICq inputs of the multiplexer devices and A9, A,, and A, 3 are applied

to their 2C, inputs. These seven address bits form the row address (RAS) part of
the memory address. Moreover, we find that address bits Ag, A,o, A, 2, and A, 4 are

applied to the ICg inputs of the multiplexer devices and A9, A,,, and A, 3 are applied

to their 2Cq input. This is the 7-bit column address (CAS) part of the memory address.
The two bit code applied to the BA select inputs of the multiplexer determines whether
the RAS or CAS part of the address is passed to the RA lines at the outputs of the

multiplexers. These outputs are supplied to address inputs Aq through A^; of all RAMs

in parallel. For instance, when BA = 01, address bits A, through Ay are output on
lines RAq through RA7, respectively. This address is accompanied by a logic 0 at
the RAS input.

Now that we have described the operation of the circuits involved in the memory

interface, let us trace through their operation as the 68000 writes a word of data to

memory. The write bus cycle that is performed to write data to the data storage

memory begins with the 68000 outputting the address of the storage location that

is to be accessed on address bus lines A, through A23. Then it switches the AS output
to its active 0 logic level. This signal tells external circuitry that a valid address is

290 The Hardware of the MC68000 Educational Microcomputer Chap. 8

available on the bus. We will assume that this address is for a storage location in
the data storage memory part of the memory subsystem.

At the same time, the 68000 sets R/W to logic 0 to signal that a write bus cycle

is in progress. Morever, it sets both UDS and LDS to their active 0 logic level

to signal that a word data transfer is to take place over the data bus. Finally, the

word of data that is to be written into memory is output on data bus lines Dq through

Address bits A3 through A,5 and A|g through A23 are decoded by the address
decoder circuit. Since we have assumed that the address on the bus corresponds to

a storage location in data memory, the RAMEN output of AND gate U24C becomes

active (logic 1). This makes the pin 9 input of AND gate U23C logic 1. At the same

moment, both inputs (LDS and UDS) of NAND gate U25C are logic 0; therefore, its

output switches to logic 1. This makes the other input (pin 10) of \J2jQ logic 1 and
its output switches to the 1 level. As the output switches to 1, the CLR input of the
RAM timing/DTACK counter circuit is released.

Now the counter begins to increment at a rate set by the 8 MHz clock and as

it increments through its counting sequence, signals RAS, RAW, CL, CU, and

DTACK RAM are generated in that order. When RAS is switched to logic 0, the

control input of the address multiplexer is logic 1 and B is logic 0. This causes the

RAS part of the address, A, through Ay, to be multiplexed to RAq through RA-^
and then applied to the Ag through Ag inputs of the RAMs.

As the counter continues to increment, the A multiplexer control signal is

switched to logic 0, while B remains at logic 0. This causes the CAS part of the address,

Ag through A14, to be output on RAq through RAg. Then memory control signals
CL and CU are switched to logic 0 to signal the memory devices that the CAS address

is available at their Aq through A5 inputs.
Each RAM IC inputs the bit of the data word that is applied to its data input

(DI) line and stores the corresponding logic level into the storage location selected

by the RAS and CAS address.

At this point, the data has already been written into memory. However, the
68000 does not yet know that the bus cycle can be completed. But as the RAM

timing/DTACK circuit continues to count it next switches DTACK RAM to logic 0.

This signal is returned to one input of AND gate U24A and makes the output at pin
12 switch to logic 0. This output is applied directly to the DTACK input of the 68000.

Switching DTACK to logic 0 signals the 68000 that it can terminate the current bus

cycle. In response to DTACK, it returns outputs UDS, LDS, and AS to their inactive

1 logic level; R/W is returned to the 1 logic level; and the data word is removed from

bus lines Dq through D15. As the counter continues to increment, DTACK RAM is
returned to logic 1. This represents the end of the write bus cycle.

Example 8.1

Write an instruction sequence that can be used to clear Tutor's scratchpad memory.

Sec. 8.5 Program and Data Storage Memory
291

Solution. As shown in Fig. 8.7, the Tutor's scratchpad RAM resides in the address
range from 000400,^ to 0008FF,5. This range is

0008FF|g-000400,g+ 1 = 500,^ bytes

= 280|g words

= 140|g long words

in length.

Let us use A, as an address pointer to the scratchpad RAM and Dq as a counter
of the number of word addresses to be initialized. Furthermore, D, will be loaded with
the value 0,^. This is the value that will be written to each word storage location in the
scratchpad RAM. To initialize these three registers, the following sequence of instructions
can be executed

MOVE.L #$400,A1

MOVE.L #$280,D0

MOVE.L #0,01

Next we need to execute instructions that write the word contents of D, (0000, g) to the
memory location pointed to by A,; increment the address in A,; decrement the count
in Dg, and test the count in D^, to determine if it is 0. If the value in Dq is not 0, the
data write, address increment, count decrement, and zero test operations must be repeated.

However, when the count in Dq becomes equal to 0, all storage locations in the
scratchpad RAM have been cleared and initialization is done. These operations are
performed with the instruction sequence that follows

NXT MOVE.W D1,(A1) +

SUBQ.L #I,DO

BNZ NXT

DONE B DONE

The complete program is repeated in Fig. 8.9.

NXT

DONE

MOVE.L
MOVE.L

MOVE.L

MOVE.W

SUBQ.L
BNZ

B

#$400,A1

#$280, DO

m,D\
D1,(A1) +
#1,D0
NXT

DONE
Figure 8-9 Scratchpad memory
inilialization routine.

Watchdog Timer Circuit

The 68000 system bus is asynchronous. That is, once a bus cycle is started, the data

transfer is not complete until the external circuitry indicates that the bus cycle is to

be finished. We have found in our description of the program and data storage

The Hardware of the MC68000 Educational Microcomputer

Watchdog

timer

U21
LSI 75

>CK CLR

—(J7

U18F

LS04

DTACK RAM

DTACK ROM

Figure 8-10 WATCHDOG timer circuit.

U20
MC68000 L4

HALT

RESET
BERR

DTACK
UDC

Ids
R/W
AS

Parallel and Serial I/O Interfaces

memory subsystems that external circuitry is provided to switch the DTACK input of
the 68000 to logic 0. Notice in Fig. 8.10 that three different signals drive the DTACK
input through the 74LS 11 AND gate 024^- These signals, DTACK PIT, DTACK RAM,
and DTACK ROM, correspond to bus cycles initiated to the 68230 PI/T device, data
memory (RAM), and program memory (ROM), respectively. If none of these signals
is received to indicate that the bus cycle is to be completed, a bus error condition exists.

A watchdog timer circuit is provided in the MC68(X)0 educational microcomputer
to detect a bus error condition. This circuit, as shown in Fig. 8.10, is constructed

with U21, a 74LS175 D-type flip-flop IC. Looking at the circuit diagram, we see that
the flip-flops in this device are cascaded to form a 4-bit binary counter. When a bus
cycle is not in progress, the data input D at pin 4 and CLR input at pin 1 are at logic
0. Therefore, the flip-flops are all reset and the Q output at pin 14 is at logic 1. This
output is applied to the bus error (BERR) input of the 68000 and signals that a bus
error has not occurred.

When a bus cycle is initiated, the AS output of the MPU is switched to logic 0
and maintained at that level throughout the bus cycle. AS is inverted by U,gp and
supplies logic 1 to the CLR and D inputs. The counter is now released and begins
to count through its binary sequence at a rate set by the clock pulse at the E output
of the 68000. As long as DTACK becomes active before this count reaches IOOO2 no
bus error occurs; however, if DTACK is not received, the BERR input is switched to
logic 0 and a bus error exception has occurred. In this way, we see that the watchdog
timer observes all bus activities and assures that all bus cycles that are initiated are
also completed.

8.6 PARALLEL AND SERIAL I/O INTERFACES

There are four I/O interfaces provided in the MC68000 educational microcomputer.

Looking at the block diagram in Fig. 8.1, we find that there are two RS-232C serial
ports, one for connection to the terminal and the other for connection to a host
computer, and two parallel I/O interfaces, one for connection to a printer and the
other for connection of an audio cassette. Let us now look at how each of these
interfaces is implemented in the microcomputer system.

Parallel I/O Interfaces

The parallel I/O circuitry of the MC68000 educational microcomputer is shown in
Fig. 8.11. Here we see that a single 68230 parallel interface/timer (PI/T) IC has been
used to implement the printer and audio cassette interfaces. This device has three

byte-wide I/O ports, port A (PA0-PA7), port B (PBq-PB,), and port C (PCg-PC,)
and four programmable handshake lines, H, through H4. This gives a total of 28
I/O lines for implementation of the printer and audio cassette interfaces.

Input or output data transfers between the 68000 and the A, B, and C ports
are performed by reading from or writing to a corresponding data register within

The Hardware of the MC68000 Educational Microcomputer Chap. 8

>

\\\

\A„

*.

*, \».

3! L5?60

\'.. A Xs i
V*. .3) >

\»=

k'. '

Figure 8-11 Parallel I/O interface— printer and audio cassette.

Sec. 8.6 Parallel and Serial I/O Interfaces

\ /

Figure 8-11 (conl.)

296 The Hardware of the MC68000 Educational Microcomputer Chap. 8

L.

,'■'- 'Smu

71^

Figure 8-11 (com.)

Sec. 8.6 Parallel and Serial I/O Interfaces 297

the 68230. Figure 8.12 lists the location of all of the 68230's registers in the
microcomputer's address space. For example, the port A I/O lines are accessed
through the port A data register (PADR) at address 01001 l,g.

Remember that the I/O lines on a 68230 can be configured for many different
modes of operation. In general, they can be set up to work as bit addressable inputs

or outputs, byte-wide unidirectional inputs or outputs, or byte-wide bidirectional
inputs/outputs. Moreover, the A and B ports can be configured to work together
as a word-wide unidirectional or bidirectional port. In Chapter 6, we found that four
control registers must be loaded with appropriate control bytes to configure the I/O
lines of the A port as inputs or outputs, select between mode 0, mode 1, mode 2,
or mode 3 operation, select the submode of operation, define the operation of the
handshake signals, and assign handshake pin interrupt priorities. These registers are
called the port general control register (PGCR), the port service request register
(PSRR), and port A data direction register (PADDR), and the port A control register

(PACR). From Fig. 8.12, we find that they are located at addresses 010001 jg,

010003,6, 010005,6, 2nd OlOOOD,^, respectively, of the 68000's address space.
Let us continue by looking at how the 68000 is interfaced to the PI/T device.

The microprocessor interface is shown to the left of the PI/T device (Ug) in Fig. 8.11.
Looking at the circuit diagram, we find that the 68230 is located on the lower eight

Address
Register

010001, g
Port general control register (PGCR) 010003, g Port service request register (PSRR) 010005, g Port A data direction register (PADDR) 010007, g Port B data direction register (PBDDR) 010009, g
Port C data direction register (PCDDR) 01000B,g
Port interrupt vector register (PIVR) 01000D,g Port A control register (PACR) 01000F,6 Port B control register (PBCR) 010011, g Port A data register (PADR) 010013, g Port B data register (PBDR) 010015, g Port A alternate register (PAAR) 010017, g Port B alternate register (PBAR) 010019, g
Port C data register (PCDR) 01001B,g
Port status register (PSR) 010021, g Timer control register (TCR) 010023, g Timer interrupt vector register (TIVR) 010027, g
Counter preload register high (CPRH) 010029, g
Counter preload register middle (CPRM) 01002B,g
Counter preload register low (CPRL) 01002F,g
Count register high (CNTRH) 010031, g
Count register middle (CNTRM) 010033, g
Count register low (CNTRL) 010035, g Timer status register (TSR)

Figure 8-12 Addresses of ihe 68230's internal registers.

298 The Hardware of the MC68000 Educational Microcomputer Chap. 8

data bus lines Dg through Dy. It is over these Hnes that the 68000 accesses the internal
registers of the PI/T to input or output data, load or read configuration information,
or read status information.

The next group of inputs at the microprocessor interface is the register select
lines RS| through RSj. The binary code applied at these inputs determines which

of the 68230's 23 internal registers is accessed. They are supplied directly by address
bus lines A, through A,. Other bits of the address are decoded by the 74LS138
address decoder (U30) to produce the Pl/T chip select signal PITCS. This signal is

applied to the CS input of the PI/T and when it is switched to logic 0, the 68230's
microprocessor interface is enabled for operation.

The PI/T is a 68000 family peripheral. For this reason, it is designed so that
its internal registers are to be accessed with asynchronous bus cycles. A data transfer
acknowledge (DTACK) output is provided on the 68230 for this purpose. During write
cycles, the logic level of DTACK is switched to logic 0 just after the 68230 has accepted
the data off the bus. In this way, it tells the 68000 to complete the current bus cycle.
On the other hand, when data is being read from within the 68230, DTACK is switched
to 0 when valid data is available at Dq through Dy. This time it signals the 68000
to first read the data off the bus and then complete the bus cycle.

Now that we have introduced the parallel I/O interface let us trace through
the operation of the circuitry in Fig. 8.1 1 as the 68000 writes a byte of data to the
port A data register. Since the 68230 is located in the memory address space, this
represents a write bus cycle and could be initiated by executing a MOVE instruction.

As the write bus cycle begins, the address of the port A data register, which

is 01001 Ijg, is output on address bus lines A, through A23 and lower data strobe LDS
is switched to its active (logic 0) level. This gives the binary address

A23A22 A, = 000000 100000000000 10001 2
and

Ids = 0
At the same time, address strobe (AS) is asserted (logic 0) and R/W is set to logic 0
to signal that a write operation is to take place.

Address lines Ag and A,^ through A23 are inputs to the address decoder circuit.
From the binary form of the address, we find that bits A, 9 through A23 are all logic
0; therefore, the output of the 74LS260 NOR gate II29A '^ 'oS'*^ ̂ - '^' ̂ ^^ ̂^""^ ̂ ''"^'
AS is at the 0 logic level. These two signals enable the 74LS138 3-line to 8-line decoder
(U3Q) for operation. Now that the decoder is enabled address lines A|(, through Ajg
at the A through C inputs, which are 001, causes the Y, output to switch to logic
0. A logic 0 on this line signals that an I/O operation is in progress.

Next, the logic 0 at Y, is combined with the logic 0 at LDS and the logic 0 at
A5 by the 74LS27 NOR gate on IC Uj,^. Since all three inputs are logic 0, the output
of the NOR gate switches to the 1 logic level. This output is inverted by U32B to give
an 0 logic level at PITCS. This logic 0 is applied to the CS input of the 68230, thereby
enabling it for operation.

Sec. 8.6 Parallel and Serial I/O Interfaces 299

The 68230 is now enabled for operation and the logic 0 at R/W has signaled
that the 68000 is going to write data into one of its registers. Moreover, this data

also has already been output on data bus lines Dg through D-^ and the register select
code of 01000 on A, through A5 has selected the port A data register. The 68230
reads the data off the bus; enters it into PADR; and then switches the DTACK output
to logic 0. DTACK is carried over the DTACK PIT line to one input of AND gate
U24A and causes the output at pin 12 to switch to logic 0. This output is connected
to the DTACK input of the 68000 and signals it to complete the cujrent write cycle. In
response, the MPU returns LDS, AS, Dq through Dy, and R/W to their inactive
logic levels.

Having examined the microprocessor interface in detail, let us now look at the
circuitry on the I/O port side of the 68230. Here we find that all of port A and B
and the handshake lines are used to implement a parallel (Centronics) printer interface

at connector Jj. Notice that the port A lines, PAq through PA7 are buffered to
produce printer data lines PDq through PD7. It is on these lines that the
microcomputer outputs character data to the printer. The handshake lines H, through
H4 at PBq through PB2 are used to implement control signals for the Centronics
interface. For instance, Hj is buffered by IC U,g and then output to the printer as
the DATA STROBE signal. This line signals the printer that there is data available
to it on data lines PDp through PD7. Moreover, H, is supplied by an input signal
called ACKNOWLEDGE, with which the printer can tell the microcomputer that
it has read the character data from the PD lines.

Looking at port C of the 68230 in Fig. 8.11, we find that lines PCq through
PC2 are used to implement the interface to the audio cassette at connector J2. Data
or other information that is to be recorded are output in bit serial form to the audio

cassette recorder over line PC,. Notice that the voltage at PC, is first divided between
resistors R, and R2 and then A.C. coupled to the DATA Hne at pin 3 of J2 through

capacitor Cj. The 0 and 1 logic levels output at DATA OUT are encoded as a 1-kHz
50 percent-duty cycle square wave and a 2-kHz 50 percent-duty cycle square wave,
respectively.

When loading information such as programs from the tape player, data are input
to the microcomputer from the DATA IN line at pin 1 of Jj. Diodes CR, and CR2
and the MC3302 comparator IC (U4g) square and clip the analog signal input from
the tape. The microprocessor reads this signal at PCq and by evaluating its frequency
through software determines whether the input data is at logic 0 or logic 1.

Example 8.2

Write a sequence of instructions that will set up the 68230 in the MC68000 educational
microcomputer to work as follows:

(a) Unidirectional 8-bit ports operate with active handshake lines
(b) DMA and interrupts not used

(c) Port A is an 8-bit output port
(d) Port B is an 8-bit input port
(e) Initialize the printer

300 The Hardware of the MC68000 Educational Microcomputer Chap. 8

Solution. In Chapter 6, we studied the 68230 and how the bits in its internal registers
are used to configure various modes of operation. Here we will just list the registers
and the values with which they must be loaded to achieve the modes of operation described

in steps a through e.
To configure the 68230 as described in step a, the PGCR register must be loaded

with

followed by

PGCR = OOOOOOOOj = 00

PGCR = 00110000, = 30,

•'1

Next to configure the 68230 for no DMA or interrupts as described in step b, PSRR
must be loaded with

PSRR = 00000000, = 00, g

To configure port A as described in step c, PADDR is loaded with

PADDR = llllllllj = FF,g

and PACR must be initialized with

PACR = OIIOOOOO2 = 60,6

Now port B is configured as described in step d by loading PBDDR with the value

PBDDR = OOOOOOOO2 = 00,(;

and PBCR with

PBCR = IOIOOOOO2 = A0,g

Finally, to initialize the printer for step e, bit 3 of PBCR is first set and then reset. This
sends out an initialization pulse to the printer. To do this, we must first load PBCR with

PBCR = IOIOIOOO2 = A8,g

and then reload it with

PBCR = IOIOOOOO2 = AO,g

To initialize the 68230, we must write the values just given into the identified

registers. Figure 8.13(a) lists the initialization parameters as a block of data. Notice

that the parameter table begins in memory at address X and has one parameter stored
at each word address up through X+ 16. Notice that the value of each parameter,
the mnemonic for the register to which it is to be written, and the address of the

register are listed in the table.

Let us now write the sequence of instructions that are needed to load the 68230's
registers. We begin by loading address register A, with the address X. In this way,
it acts as a pointer to the beginning of the table in memory. This is done by executing
the instruction

MOVE.L #X,A1

Sec. 8.6 Parallel and Serial I/O Interfaces

Address Contents
Register Register address

X

00,6

PGCR

10001, g

X + 2

00,6

PSRR

10003, g

X + 4

F^6

PADDR

10005, g

X + 6

00,6

PBDDR

10007, g

X + 8

60,6

PACR

1000D,g

X+10

A0,6

PBCR

1000F,6

X+12

30i6

PGCR

10001, g

X+14

A8,6

PBCR

1000F,g

X+16

A0,6

PBCR

1000F,g

MOVE.L

MOVEP

MOVE.L

MOVEP
MOVE.B

MOVE.B
MOVE.B

MOVE.B

MOVE.B

MOVE.B
MOVE.B

MOVE.B

MOVE.B

MOVE.B
MOVE.B

MOVE.B

#X,A1

(A1),D0
#$10001,A2
D0,(A2)

#$00, DO
D0,$7(A2)

#$60, DO
D0,$D(A2)

#$A0,D0
D0,$F(A2)

#$30,D0
D0,$1(A2)

#$A8,D0
D0,$F(A2)

#$A0,D0
D0,$F(A2)

(b)

Figure 8-13 (a) Parameter table for initializing the 68230; (b) initialization instruc-
tion sequence.

Next we read the first four byte wide parameters in the table as a long word into

data register Dg. To do this we use the instruction

MOVEP (A1),D0

Now we load a pointer to the first of the four registers into A2 and then write them
into the registers of the 68230 with the instruction

MOVE.L #$10001, A2

MOVEP D0,{A2)

302 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The rest of the parameters in the table are written to their respective register within
the 68230 with the instructions that follow:

MOVE.B #$00,D0

MOVE.B D0,$7(A2)

MOVE.B #$60,D0

MOVE.B D0,$D(A2)

MOVE.B #$AO,DO

MOVE.B D0,$F(A2)

MOVE.B #$30,D0

MOVE.B D0,$1(A2)

MOVE.B #$A8,D0

MOVE.B D0,$F(A2)

MOVE.B #$AO,DO

MOVE.B D0,$F(A2)

The complete sequence of instructions is repeated in Fig. 8.13(b).

RS-232C Communications Interface

Another important I/O interface in the MC68000 educational microcomputer is its

RS-232C serial I/O ports. In Fig. 8.1, we find that the microcomputer has two serial
ports. One of these ports permits a CRT terminal to be connected to the
microcomputer. In this way, the user can input information to the microcomputer
from the keyboard of the terminal and the microcomputer outputs results on the
display for the user to read. The other serial port is provided for a modem
communication link to a host computer.

The circuitry involved in implementing the serial ports is shown in detail in Fig.
8.14. Here we will concentrate on the port 1 UART, which is the one that is used
to connect the terminal to the microcomputer. Looking at the circuit diagram, we
find that this port is implemented at connector J3. Notice that the 6850 ACIA device
is the communications controller that is used. In Chapter 6 we introduced this LSI
device.

At power up, the control register within the port 1 ACIA (U13) is loaded by
the Tutor software to configure the serial port to operate as follows: 8-bit character
length, even parity, and one stop bit. Moreover, it sets up the internal clock divider
circuitry such that the externally generated baud clock signal that is applied to the
receiver and transmitter clock inputs is divided by 16 within the device; RTS is set for
an active low logic level; and the transmitter interrupt is disabled.

Parallel and Serial I/O Interfaces

VxxVxVV

Figure 8-14 Serial I/O interface — the terminal and host computer ports.

304 The Hardware of the MC68000 Educational Microcomputer Chap. 8

Figure 8-14 (com.)

D. 22

0. 21

D™ 20
On 19

D„ 18

Du i;

0,. 16

D„ 15

A, 11

A. 8

ACIA CS1 10

UC^ 9

e 14

H,W 13

'd. 22
D, 21

0, 20

0, 19
0. ,8

O5 17

D, 16

t>, 15

A, 11

A. 8

ACIACSl 10

LOS 9

RW

■^

Figure 8-14 (com.)

306 The Hardware of the MC68000 Educational Microcomputer Chap. 8

The table in Fig. 8.15 shows that the registers within the 6850 that implements

RS-232C port 1 in the MC68000 educational microcomputer are located on even byte
address boundaries starting at address 010040ig. For instance, execution of a MOVE
instruction with a source operand at address 01 0040, g lets the 68000 read the contents

of the 6850's status register. Executing a similar instruction with the destination
operand at address 010040|g would let us write a byte of control information into
its control register. Moreover, executing a MOVE instruction to address 010042, g
permits either reading of a byte of data from the receive data register or loading of
a byte of data into the transmit data register.

Address R/W Register
010040, g Write ACIA1 control register

Read
ACIA1 status register 010041, g Write ACIA2 control register

Read ACIA2 status register 010042, g Write ACIA1 transmit data register
Read ACIA1 receive data register 010043, g Write ACIA2 transmit data register
Read ACIA2 receive data register

Figure 8-15 Addresses of the 6850's internal registers (Motorola, Inc.).

Now that we know where the registers of the 6850 are located in the 68000's
address space, let us trace through the operation of the circuitry as the 68000 reads
a byte of data from the receive data register of ACIAl (U[3).

Looking at Fig. 8.14, we find that chip select inputs, CSg, CS,, and CS2, of the
6850 are driven by the signals Ag, ACIA CSl, and UDS, respectively. These inputs
must be set to the 1 , 1 , and 0 logic levels, respectively, to enable the 6850 for operation.
Let us assume that the instruction

MOVE.B ACIAl. DATA.DO

which is correctly written to access the receiver data register of the ACIA for serial
port 1, is executed by the 68000. When the instruction is executed, it initiates a memory
read bus cycle. During the bus cycle, the 68000 sets UDS to logic 0 to signal external
circuitry that a byte of data is to be transferred over the upper part of the data bus,
Dg through Djj. In the circuit diagram, we see that UDS is applied directly to the
CS2 input of 0,3. At the same time, the logic level applied to the CSq input of the
ACIA is bit Ag of the address. Since we are accessing the receive data register within
ACIA,, the address is

ACIA_DATA = 0100042,

and in binary form it is

A23A22 A, = 000000 10000000000001 0000 IO2

Notice that in the binary form of the address Ag is at the 1 logic level. This is the
level needed at CSq to enable the 6850 for operation.

Sec. 8.6 Parallel and Serial I/O Interfaces 307

The third chip select input, CS,, of 6850 Ujj is supplied by signal ACIA CSl.

This signal is produced by decoding address bits A,^ through A23 in the 3-line to
8-line decoder Ujq. From the binary form of the address, we see that bits A, 9 through
A23 are all at logic 0. Therefore, all inputs of the 74LS260 NOR gate Ujg^ are logic
0. This makes its output, which is applied to pin 6 of Ujq, logic 1. This signal and
the logic 0 that is output at AS whenever an address is on the system bus are used
to enable decoder Ujg for operation. Again looking at the binary form of the address,
we see that bits Aj^ through A,g are 001. Applying this binary combination to the
inputs of the decoder causes output Y, to be switched to the 0 logic level.

The 6850 is one of the LSI peripherals produced by Motorola for use with its
older 6800 family of microprocessors. For this reason, read/write transfers that take
place to it must be performed using synchronous instead of asynchronous memory
bus cycles. Notice in Fig. 8.14 that the logic 1 at bit Ag of the address is inverted
to logic 0 and then gated with the logic 0 at the Y, output of the decoder by the
74LS32 NOR gate 1)343. Since both inputs are at the 0 logic level, the output of the
gate switches to logic 0 and forces the VPA output of the 74LS1 1 AND gate U45C
to the 0 level. This signal is returned to pin 2 of the 68000, which is the valid peripheral
address (VPA) input. Logic 0 at VPA signals the 68000 that the current bus cycle is
to be synchronous, instead of asynchronous.

In response to the logic 0 at VPA, the 68000 switches its valid memory address
(VMA) output to the 0 logic level. In Fig. 8.14 we see that VMA is input along with
Y, to the 74LS02 NOR gate U33A. Both of these signals are now logic 0; therefore,
output ACIA CSl switches to logic 1. Now the chip select inputs of U^ are:

CSo = Ag = 1

CS, = ACIA CSl = 1
and

CS2 = UDS = 0

Therefore, ACIA device U|3 is enabled for operation.
The 68000 sets memory control signal R/W to logic 1 to tell the 6850 that a read

bus cycle is in progress. At the same time, the register select (RS) input of the 6850

is supplied by bit A, of the address and in our example it is logic 1. This tells the
6850 that the receive data register, not the status register, is to be accessed. Next,
the 68000 switches its enable (E) output to logic 0. This signals the 6850 to put the
byte of data held in the receive data register onto the data bus Hues Dg through Djj.
Then the 68000 completes the bus cycle by reading the data off the bus and returning
the VMA, AS, and UDS signal lines to their inactive logic levels.

Now that we have examined the operation of the microprocessor's interface
to the 6850 let us continue by looking at how the clock signal that sets the baud rate
of the receiver and transmitter sections of the UART is generated. In Fig. 8.14, we
see that the baud rate generator is formed by a MC1441 1 oscillator/clock generator
device. The clock rate of this oscillator is set by the 1.8432-MHz crystal Yj that is
connected between pins XI and XO. Once power is applied to the MC14411, the

308 The Hardware of the MC68000 Educational Microcomputer Chap. 8

oscillator circuit begins to run and the counters within the device generate sixteen
different clock signals at parallel outputs F, through F,g. To select the baud for port
1, we simply install a jumper between one set of the terminal pairs at J|q. For

instance, putting the jumper in position 5-6 selects clock output Fj and sets the data
communication rate at 2,400 baud. Figure 8.16 summarizes all of the jumper settings
and their corresponding baud rates.

Jumper pins Baud rate

1-2 9600

3-4
4800

5-6 2400
7-8 1200

9-10 600

11-12 300

13-14 150

15-16
110 Figure 8-16 Baud rate selection table

(Motorola, Inc.).

In the circuit of Fig. 8.14, both the receiver and transmitter are run at the same

baud rate; therefore, the T\(- and Rxq inputs of Ujj are connected together by jumper
Jg. This common baud rate input is connected through the jumper at 5-6 to the F5
output of the baud rate generator.

Example 8.3

If a jumper is installed in position 15-16 of J^, what baud rate is selected for ACIA U|2?

Solution. Looking at Fig. 8.14, we see that installing a jumper at position 15-16 of
J,o selects a baud rate of 110 baud for U,,.

The last part of the port 1 serial communications interface in Fig. 8.14 is the
RS-232C port interface itself. Here we see that this part of the circuit involves the
receive data (Rxp) and transmit data (Txp) lines of the 6850 and interface control
signals request-to-send (RTS) and clear-to-send (CTS). The logic included at this
interface sets the transmission and reception voltage levels for signals Tx^^j^ and

Rxj)ATA' g^tes data from the Tx^ output of the 6850 onto the Rxqaj^ output; and
creates three additional communication interface signals, data terminal ready (DTR),
data set ready (DSR), and data carrier detect (DCD), from CTS.

The microcomputer receives character data from the terminal over the Txp^j^
line and sends character data to it over the Rxq^ta 1'"^- Moreover, the handshake
control for these data transfers is provided by control lines DTR, CTS, DSR, and
DCD. For instance, to write data to the terminal, the port 1 ACIA produces the CTS,
DSR, and DCD signals by outputting logic 0 at CTS. All of these signals are available
to the terminal through its RS-232C interface. Therefore, any of them can be tested
by the terminal to determine if it needs to read data from the Rxd^-ta 1'"^-

Chap. 8 Assignment 309

ASSIGNMENT

Section 8.2

1. What is the capacity of the program storage memory in the MC68000 educational
microcomputer system? What is its function?

2. How much RAM is supplied in the data storage part of the MC68000 educational

microcomputer's memory?
3. What happens to the contents of program storage memory when power is turned off?

What would happen to the contents of the data storage memory?

4. Where are user-written programs that are typed in at the keyboard of the terminal stored
by the microcomputer?

5. What I/O resources are supplied on the MC68000 educational microcomputer?

6. What LSI device is used to interface the terminal to the 68000 microprocessor?

7. What does the 68230 device implement in the MC68000 educational microcomputer?

Section 8.3

8. At what frequency is the microprocessor in the MC68000 educational microcomputer run?

9. Name a peripheral device in the educational microcomputer that is operated with the 1-MHz
clock.

10. What clock frequency is output at QB and QD of U,, in Fig. 8.3?

Section 8.4

11. Which devices in the educational microcomputer are initialized with the RESET signal?
12. What happens within the 68000 microprocessor when a reset pulse is applied to its RESET

input?

13. What purpose is served by the POR signal?

14. Why is a HALT pulse generated along with the RESET pulse when the microcomputer's
power is turned on?

15. What is meant by a warm start"]
16. What interrupt priority code (IPL^JPLiIPLp) is applied to the 68000 in Fig. 8.4 if

the maskable interrupt signal 6800IRQ becomes active?

17. Assuming that the request for service by the 6800IRQ interrupt signal is granted by the

68000 in Fig. 8.4, specify the logic states produced at FCjFCjFCg, A^A^A,, VPAIRQ,
PIACK, TIACK, and VPA during the interrupt acknowledge sequence. How is the
exception vector produced?

18. What is the difference between the response of the 68000 to the closure of the ABORT
switch in Fig. 8.4 and closure of the RESET switch?

Section 8.5

19. What time elapses between the occurrence of a valid ROM address on the bus and the
return of the DTACK signal to the MPU in Fig. 8.6?

The Hardware of the MC 68000 Educational Microcomputer Chap. 8

20. In Fig. 8.6 what will be the logic state of signals ROMEN, DTACK, and R/W in response

to an instruction fetch from address 9000, g?

21. What signals are generated by the timing/RAM DTACK circuit in Fig. 8.8? In what order

are they produced during a read cycle to a valid RAM address?

22. Trace the operation of the circuit in Fig. 8.8 for a bus cycle in which data are read from
an address in RAM.

23. What is the function of the watchdog timer in Fig. 8.10?

Section 8.6

24. Trace the sequence of events that take place as a bus cycle is performed to read the contents

of the 68230's port B data register in Fig. 8.11.
25. Describe the functions of the DATA STROBE and ACKNOWLEDGE control signals of

the printer interface in Fig 8.11.

26. What frequency signals are used to record logic 0 and logic 1 on cassette tape?

27. What is the maximum baud rate for the terminal port of the educational microcomputer?
The minimum baud rate?

28. What is the difference between the terminal and host computer ports?

Bibliography

Bryce, Heather, Microprogramming Makes the MC68000 a Processor for the Future,
Electronic Design 22, Oct. 25, 1979.

Davis, Rex, Prioritized Individually Vectored Interrupts for Multiple Peripheral Systems with
the 68000. Austin, Tex.: Motorola Inc., 1981.

Graden, Duane, Software Refreshed Memory Card for the MC68000 (AN-816). Austin, Tex.:
Motorola Inc., 1981.

Kane, Gerry, Doug Hawkins, and Lance Leventhal, 68000 Assembly Language

Programming. Berkeley, Calif.: Osborne/McGraw-Hill, 1981.

McKenzie, James, Dual 16-Bit Ports for the MC68000 Using Two MC6821s (AN-810). Austin,
Tex.: Motorola Inc, 1981.

Motorola Inc., MC68000 16-Bit Microprocessor User's Manual, 3rd ed. Englewood Cliffs,
N.J.: Prentice-Hall, Inc., 1982.

Motorola Inc., MC68000 Educational Computer Board User's Manual. Austin, Tex.:
Motorola Inc., 1982.

MoiorolaInc. Motorola Microprocessors Data Manual. Austin, Tex.: Motorola Inc., 1981.

Scanlon, Leo J., The 68000: Principles and Programming. Indianapolis, Ind.: Howard W.
Sams & Company, Inc., Publishers, 1981.

Starnes, Thomas W., Compact Instructions Give the MC68000 Power While Simplifying Its
Operation, Electronic Design 20, Sept. 27, 1979.

Starnes, Thomas W., Handling Exceptions Gracefully Enhances Software Reliability,
Electronics, Sept. 11, 1980.

Starnes, Thomas W., Powerful Instructions and Flexible Registers of the MC68000 Make
Programming Easy, Electronic Design 9, Apr. 26, 1980.

312 Bibliography

Strittner, Skip, and Tom Gunter, A Microprocessor Architecture for a Changing World:
The Motorola 68000, Computer, Feb. 1979.

Strittner, Skip, and Nick Tredennick, Microprogrammed Implementation of a Single Chip

Microprocessor, Proceerf/'/igi, 11th Annual Microprogramming Workshop, Dec. 1978.
Triebel, Walter A., Integrated Digital Electronics 2nd ed. Englewood Cliffs, N.J.: Prentice-

Hall, Inc., 1985.

Triebel, Walter A., and Alfred E. Chu, Handbook of Semiconductor and Bubble

Memories. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Answers
TO Selected Problems

Chapter 1

Section 1.2

1. Computer program.

Section 1.3 '

5. A computer that has been tailored to meet the needs of a specific application.

Section 1.4

7. Secondary storage is for long-term storage of data that are not in use. On the other hand,
the data that are currently being processed are held temporarily in primary storage memory.

Section 1.5

9. Program storage memory is the part of the memory subsystem that contains the program
that is executed by the microcomputer. On the other hand, the data that are processed
during execution of the program are held in the data storage part of memory.

Section 1.6

11. 4-bit, 8-bit, 16-bit, and 32-bit.

Chapter 2

Section 2.2

1. High-density N-channel MOS (HMOS).

314 Answers to Selected Problems

3. 16 general-purpose registers, 8 data registers Dq through D, and 8 address registers Aq
through A-j, and all are 32 bits in length.

Section 2.3

5. 23 address lines A, through Ajj, 2^^ unique addresses.
7. For an asynchronous bus, once the bus cycle is initiated, it is not completed until external

circuitry returns a signal to the processor.

9. The address lines A, through Ajj present a word address and the upper and lower bytes
of that word are accessed using the UDS and LDS signals.

11. FC2FC1FC, = 110.
13. The code value applied at the interrupt priority inputs is compared to the internal mask.

If its value is more than that in the mask, the interrupt is serviced; otherwise, it is ignored.

To provide interface signals so that low-speed 6800 synchronous peripheral devices can
be used with the high-speed 68000 CPU.

15

Section 2.5

17

19.

In general, the address registers are meant for use in storing memory addresses such as
pointers, while the data registers are to be used to store data that are to be processed by
the CPU. However, their functions can be interchanged according to the need.

The program counter provides the address of the next instruction to be executed.

Section 2.6

21. Macroinstructions are the basic assembly language instructions defined by the instruction
set of the 68000. Microinstructions are the internal machine instructions which are executed

by the CPU in order to perform the function defined by a macroinstruction.

Chapter 3

Section 3.2

1. No, all words of data must be at even-address boundaries.

3. Bit, byte, word, long word, and BCD.

Section 3.4

7. Instruction

(a) MOVE.W D3,D2

(b) MOVE.B D3,A2
(c) MOVE.B D3,$ABCD
(d) MOVE.L XYZ,D2
(e) MOVE.W XYZ(A0.L),D2

(f) MOVE.B D3,(A2)

(g) MOVE.L Al,(A2)-l-

(h) MOVE.L -(A2),D3

Source Addressing
Mode

Data register direct
Data register direct
Data register direct
Immediate/absolute

Register indirect
with offset

Data register direct
Address register

direct

Predecrement register
indirect

Destination Addressing
Mode

Data register direct
Address register direct
Absolute short

Data register direct
Data register direct

Register indirect
Postincrement register

indirect

Data register direct

Answers to Selected Problems

(i) MOVE.W 10(A2),D3 Register indirect with Data register direct
offset

(j) MOVE.B 10(A2,A3.L),$A123 Indexed register Absolute short
indirect with offset

(k) MOVE.W #$ABCD, $1122 Immediate Absolute short

9. SABCD = $10 + Al = $100 + A2 + Dl

Section 3.6

11. MOVEM $B000,D5/D6/D7

A3.

Section 3.7

13. MOVE.L

MOVE.L

ADD.L
MOVE.L
MOVE.L
SUB.L
MOVE.L
MOVE.L
MULU

MOVE.L
MOVE.L

DIVU
MOVE.W

Section 3.9

15. MOVE.B

AND.B
MOVE.B

NOT.B

AND.B
OR.B
ORB

MOVE.B

Section 3.10

17. MOVE.B

ROR.L
MOVE.W
ROR.L
ROR.L
MOVE.B
ROR.L

//SCOOCAl

$AOOO,DO
$BOOO,DO
D0,(A1)

$AOOO,DO

$BOOO,DO
D0,4(A1)

$A000,D0
$B0OO,D0
D0,8(A1)

$A000,D0
$B000,D0
D0,12(A1)

D0,D7
NUM1,D7
NUM2,D6
D6

D0,D6
D1,D6

D6,D7
D7, RESULT

D0,$B001
tt%,DO

D0,$B002
#8, DO
<'8,D0

D0,$B004
#8, DO

;QUOTlENT

31 24 23 16 15 8 7 0

Do

'

$B001

$B002

$B003

$B004

316 Answers to Selected Problems

Chapter 4

Section 4.2

1.
Instruction N Z V C

Initial value
SUB.L AO.AO
CMPI.W #$AOOO,AO
TST AO

0 0 0 0
0 10 0
0 0 0 1
0 10 0

Section 4.3

3 The JMP instruction encodes the address of the location to which the jump is to take
place into the instruction. On the other hand, the BRA instruction encodes the displacement,

the number of bytes, of the "branch to address" from the BRA instruction, into the
instruction word. Therefore, BRA both encodes in fewer bytes and executes faster than
JMP.

Section 4.4

5. MOVEQ
#1,D7

CLR.W D6

LOOP CMP.B N,D6 BEQ

DONE
ADDQ.W #1,D6
MULU D6,D7
BRA LOOP

DONE MOVE.L D7,FACT

Save result
in FACT

I Increment count

by 1
(Stop)

Result = Result ■ Count

Answers to Selected Problems

MOVE.B it\0O,Dl
MOVE.L $A000,A6
MOVE.L $B00O,A5

MOVE.L $C000,A4
LOOP CMPLW /W),(A6)

BMI NEGTV
POSTV MOVE.W (A6)+,(A5) +

BRA NXT

NEGTV MOVE.W (A6) + ,(A4) +
NXT SUBI

n,Di
BNE LOOP

DONE BRA DONE

(PNTR2)-^(PNTR,) (PNTR3)-(PNTR,)

Update PNTRj and PNTRj

NXT

Update
PNTR3 and PNTRi

(Stop J

318 Answers to Selected Problems

Section 4.6

11. AGAIN BTST.B #0,D0
BNE SUBA
BTST.B /i'l.DO

BNE SUBB
BTST.B #2,D0
BNE SUBC
BRA AGAIN

SUBA

SUBB

SUBC

EORI.B
RTS

EORI.B

#1,D0

#2,D0

EORI.B

RTS
#4,D0

Chapter 5

Section 5.2

1. Software and hardware development and debugging for a project involving one of the
microprocessors that the development system supports.

3. Four ports: one each for the cassette player/recorder, printer, CRT terminal, and a host
computer communications link.

Section 5.3

5. A monitor program provides the programmer with the ability to enter (assemble), store,
execute, and debug assembly language programs. It is stored in PROMs on the IVIC68000
educational microcomputer board.

7. 32K bytes

Section 5.4

9. Command field.

11. (a) 100,g + RO = 1100, (,
(b) 100,g + R3 = 2100,g
(c) AO + RO = 1100,g
(d) AO + DO + RO = 1300,^

Answers to Selected Problems 319

Section 5.5

13. (a) R5 = 1000,6 + RO = 2000,^
(b) R5 = 1000, g + 0 = 1000,6

Section 5.6

15. TUTOR 1.3 > BF 1000 lOFE 'ABCD' (cr)
TUTOR 1.3 > BF 2000 20FE 5555 (cr)
TUTOR 1.3 > MD 1000 FE (cr)
TUTOR 1.3 > MD 2000 FE (cr)
TUTOR 1.3 > BM 1000 1 OOF 3000 (cr)

Section 5.7

17. TUTOR 1.3 > TM (cr)

Section 5.8

19. TUTOR 1.3 > MM 1000;DI
001000 DC.W SABCD (cr)
001002 DC.W $1234 . (cr)

Section 5.9

21. To execute a single instruction in a program the command is TR (T); to execute the entire
program the command is GD; and to execute a block of instructions in a program the
commands are TT, GO, or GT.

23. TUTOR 1.3 > BR 1150 10 (cr)

Section 5.11

11. TUTOR supports debugging of programs by providing commands that give the programmer
the abihty to display/modify registers, display/modify memory locations, control program
execution (trace, breakpoint, etc.), and assemble/disassemble instructions.

Chapter 6

Section 6.2

1. No, both memory and I/O are located in the same address space.

Section 6.3

3. See Problem 17, Section 3.10.

Section 6.5

5. FC,FC,FCn = 001.

320

7.

68000

AS

K
FC,FC,FCo)

V

Answers to Selected Problems

User data memory

User program memory

Supervisor data memory

Supervisor program memory

Section 6. 7

(a) 68000 outputs FCjFCjFCq = 001 in user mode or 101 in supervisor mode.
(b) 68000 places address SAOOl on A^j through A,.
(c) 68000 asserts AS (logic 0).
(d) 68000 sets R/W to logic 0.

(e) 68000 places the byte of data on D, through Dq.
(f) 68000 asserts LDS (logic 0).
(g) Memory interface decodes the address and enables memory devices.

(h) Memory stores data available at D, through Dq in SAOOl using LDS.
(i) Memory interface asserts DTACK (logic 0).
(j) 68000 negates LDS and AS (logic I).

(k) 68000 removes data from D, through Dq.
(I) 68000 returns R/W to logic 1.
(m) Memory interface negates DTACK (logic 1).

Answers to Selected Problems

Section 6.8

11. MOVE.L (SSP)+,A2
MOVE.L (SSP) + ,A1
MOVE.L (SSP) + ,AO

Section 6 JO

13. MOVE.L <'$16000,A0

MOVEP.L DO,0{AO)

Section 6.12

17. MOVE.L nAOOO.Al

MOVE.L /l'$18007,A2
MOVE.L #5,00

NXT MOVE.B (A1),D1
MOVE.B D1,(A2)

SUBQ.L #1,D0
BNZ NXT

DONE B DONE

Section 6.13

19. In a synchronous bus cycle, the data transfers are synchronized with the enable (E) clock
signal. In an asynchronous bus cycle, the microprocessor waits for the DTACK to be
returned by the peripheral device to terminate the write bus cycle or to read data off the
bus and then terminate the read bus cycle.

Section 6.15

23. These inputs represent the control state identified as RS ■ R/W in Fig. 6.29. From the
table, we find that character data is being read from the 6850 over the bus.

25. (a) The MPU outputs the address of the 6850 on the address bus. This address is decoded
in external circuitry to select the 6850 for operation.

(b) At the same time, the MPU puts a byte of character data on the data bus and signals
the 6850 that a write bus cycle is in progress with R/W.

(c) The 6850 accepts the data off the bus.
(d) The 6850 frames the byte of character data with a start bit, parity bit, and stop bits

and then loads it into the transmit data register.
(e) The framed character is converted to serial form by shifting it through the transmit

shift register and output over the TXp^^^ line.
(f) When the transmit data register becomes empty, the 6850 sets the transmit data register

empty (TDRE) flag in the status register.
(g) If the interrupt on TDRE function is enabled, the IRQ output becomes active. This

signal can be applied to an interrupt input of the 68000 to tell it that the character
has been transmitted.

(h) The MPU must next output another character to the 6850.

Answers to Selected Problems

27. MOVE.B
MOVE.L
MOVE.B

#3, DO
#$OABCD,AO
DO,(AO)

Section 6.16

29. RS5RS4RS3RS2RS, = 8,g = OIOOO2
Looking at the table in Fig. 6.35, we see that register Rg (PADR) is selected.

31. MOVE.L
MOVE.B
MOVE.B

33. MOVE.L
MOVE.B
MOVE.B
MOVE.B

Chapter 7

#$0A00LA1
#$40,(A1)
#$60,(A1)

#$0A001,A1
/W),(A1)
nFF,2(Al)
«),4(A1)

Section 7.2

1. External exceptions:
Internal exceptions:

reset, interrupts, and bus error.
instructions (TRAP, TRAPV, CHK, DIVS, DIVU), privilege
violation, trace, illegal address, illegal instruction, and
unimplemented instruction.

Section 7.3

3.
Vector Address Contents

$10

$12
$0

$B000

Section 7.5

5. 7

7. ORl /S'$0300,SR

Section 7.10

11
Save registers

Dq, D|, and A2
Service
routine body

Restore registers

Dq, D|, and Aj

Return to calling

program

Answers to Selected Problems

Section 7.11

13. "Bus error" means that an error has occurred during the execution of a bus cycle. For
instance, external circuitry has detected a parity error or a watchdog timer has timed out
before DTACK was asserted.

Section 7.12

15. CLR.L DO

CLR.L Dl

CLR.L D7
CLR.L AO
CLR.L Al

CLR.L
A6

MOVE.L $FFFFFE,SSP
BRA SAOOO

Section 7.13

17. An attempt is made to access a word or long word that resides at an odd-numbered address.

Chapter 8

Section 8.2

1. 16K bytes; stores the Tutor monitor.

3. Program storage memory is nonvolatile; therefore, its contents remain intact even when
power is turned off. Data storage memory is volatile and if power is turned off its contents
are lost.

5. Parallel I/O— 24 I/O lines that are used to implement the parallel printer (Centronics)
and cassette player/recorder interfaces.
RS-232C serial communication ports— 2: one for connection of a CRT terminal and the
second for implementing a communication link to a host computer.

7. Parallel I/O interfaces for the printer and cassette player/recorder.

Section 8.3

9. 6850 ACIA.

Section 8.4

11. 68000 microprocessor and 68230 parallel interface/timer.

13. POR is used to reset on-board logic circuits such as flip-flops.

324 Answers to Selected Problems

15. When the microcomputer is reset by pressing the reset button, it is called a warm reset.
In this case, only the 68000 and 68230 devices receive pulses at their reset inputs.
Furthermore, the HALT and POR signals are not produced as they are when power is
turned on.

17. FC2FC1FC0 = 111, A3A2A, = 100, VPAIRQ = 0, PIACK = 1, TIACK = 1, and
VPA = 0. In this case, the 68000 uses its autovector capability to generate an interrupt

vector from the code IPLj IPL, IPLq. As shown in Fig. 8.5, the autovector number is 28.

"• Ll(lKkx8 = lus
21. RAS, RAW, CL, CU, and DTACK RAM.

23. If the data transfer acknowledge (DTACK) signal is not received by the 68000 during a
read or write bus cycle prior to the watchdog timer timing out, the watchdog timer circuit
outputs the BERR signal. BERR is returned to the 68000 to tell it that a bus error condition
has occurred.

Section 8.6

25. DATA STROBE is an output by which the Pl/T tells the printer that valid character data

is available on data lines PDq through PD.^; ACKNOWLEDGE is an input by which the
printer tells the PI/T that it has read the character data from the data lines.

27. Maximum baud rate = 9,600, minimum baud rate = 110.

appendix:

68230 Data Sheet*

I
•Data Sheets Courtesy of Motorola, Inc.

M) MOTOROLA

SEMICONDUCTORS
3501 ED BLUESTEIN BLVD . AUSTIN, TEXAS 78721

Advance Information

MC68230 PARALLEL INTERFACE/TIMER

The MC68230 Parallel Inierface/Timer provides versatile double but

fered parallel interfaces and an operating system oriented timer to

MC68000 systems The parallel interfaces operate m unidirectional or

bidirectional modes, either 8 or 16 bits wide In the unidirectional

modes, an associated data direction register determines whether the

port pins are inputs or outputs In the bidirectional modes the data

direction registers are ignored and the direction is determined

dynamically by the state of four handshake pins These programmable

handshake pins provide an interface flexible enough for connection to a

wide variety of low, medium, or high speed peripherals or other com-

puter systems The PI, T ports allow use of vectored or autovectored in-
terrupts, and also provide a DMA Request pin for connection to the

MC68450 Direct Memory Access Controller or a similar circuit The Pl/T

timer contains a 24-bit wide counter and a 5-bit prescaler The timer

may be clocked by the system clock IPI/T CLK pin) or by an external

clock ITIN pinl, and a 5-bit prescaler can be used It can generate

periodic interrupts, a square wave, or a single interrupt after a pro-

grammed time period. Also it can be used for elapsed lime measure

ment or as a device watchdog

• MC68000 Bus Compatible

• Port Modes Include;

Bit I/O

Unidirectonal 8-Bit and 16-Bit

Bidirectional 8-Bit and 16-Bit

• Selectable Handshaking Options

• 24-Bit Programmable Timer

• Software Programmable Timer Modes

• Contains Interrupt Vector Generation Logic

• Separate Port and Timer Interrupt Service Requests

• Registers are Read/Write and Directly Addressable

• Registers are Addressed for MOVEP (Move Peripheral! and DMAC

Compatibility

MC68230L8
MC68230L10

HMOS
(HIGH-DENSITY N-CHANNEL

SILICON-GATEl

PARALLEL INTERFACE/TIMER

^^^

^P^
P SUFFIX

L SUFFIX
CEBAMIC PACKAGE

CASE 740

PLASTIC PACKAGE
AVAILABLE 2Q82

PIN ASSIGNMENT

D5[

1

^-^ 48

]D4

D6t

2

47

3D3

D7t

3

46

1D2

PAO[

4

45

IDl

PAtt

5 44

JDO

PA2[

6

43

IR'W

PA3[

7

42

JDTACK

PA4t

8

41

ics

PA6[

9

40

ICLK

PA6 [

10

39

jBESET

PA?[

11 38
IVSS

VCC t

12

37

)PC7,TIACI<;

H,[

13

36

) PC6'PIACK

H2[
14

35

)PC6/PiRQ

H3(15

34

)PC4:DMAREQ

H4[16

33

JPC3-T0UT

PBO[

17 32

JPC2.TIN

PB1[
18

31

J PCI

PB2 C 19

30

JPCO

PB3t

20

29

]RS1

PB4C

21

28

]RS2

PBS I

22

27

)RS3

PB6 C

23

26

JRS4

pbM

24

26

]RS6
ilMOTOROLAINC . 1961

IV1C68230L8* MC68230L10

FIGURE 1 - PI T SYSTEM BLOCK DIAGRAM

PC6.P1ACK
PC7/TIACK

MC68230

PCS. pIrq

PC3/T0UT
PI. T

TTTT
POWER CONSIDERATIONS

The average chip-juncTion lemperature. Tj, m "^C can be obtained from
Tj = Ta + iPd*9jAI '11

Where

T/^sAmbieni Temperature, °C

8jA= Package Thermal Resistance, Junction-to-Ambient, °C/W
PD*P|NT + PpORT

PlNT^'CC ^CC- Watts - Chip Internal Power

PpORT^Port Power Dissipation, Watts - User Determined
For most applications PpQRT^PlNT ahd can be neglected PpoRT mav become significant if the device is configured to

dnve Darlington bases or sink LEO loadS-

An approximate relationship between Pq and Tj (if PpORT 'S neglected) is

PD=K-(Tj + 273°C1 121
Solving equations 1 and 2 for K gives

K = Po»iTA*27yci+9jA*PD^ '3'
Where K is a constant pertaining to the particular part K can be determined from equation 3 by measuring Pp lat equilibrium!

for a known T^. Using this value of K the values of Pd and T j can be obtained by solving equations 1 1 1 and 12) iteratively for any
value of Ta

AA) MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

MAXIMUM RATINGS

Characteristics
Symbol

Value

Unit

Supply VoUage

vcc

-0 3 to +7 0 V

Inpul Voltage

V|n

-0 3 to +70 V

Operating Tempefature Range

Ta

Oto70

"C

Storage Temperature

Tstg

-56 to +150

"C

THERMAL CHARACTERISTICS

Characteristics
Symbol

Value

Rating

Thermal Resistance

Ceramic

«JA

50

°C/W

This device contains cifcuitrv lo protect the

inputs against damage due to high static

voltages or electric fields, however, n is ad-
vised that normal precuations be taken to

avoid application of anv voltage higher than

maximum-taled voltages to this high-
impedance circuit Reliability ot operation is

enhanced if unused inputs are tied to an ap-
propriate logic voltage level le g , either Vss

or Vcci

DC ELECTRICAL CHARACTERISTICS i Vcc = 5 0 Vdc ± 5% , T a = 0 to 70°C unless otherwise noted
Characteristics

Symbol

Min Max
Unit

Input Higti Voltage All Inputs

V|H

Vss+20

Vcc

V

Input Low Voltage All Inputs

V|L

Vss-03 VsS + 08

V

Input Leakage Current (V|n=0to 5 25 VI HI, H3. R/W, Re4'eT, CLK, RS1-RS5. C5

lin

- 100

„A

Three-State 10(1 State) Input Current IV,n = 0 4to 2 41 DTACK. PC0-PC7, D0-D7

H2, H4, PA0-PA7, PB0-PB7

ITSI -0.1

20

-10

cA

mA

Output High Voltage

(l|_gg(j= -400 ^A, Vcc = mini DTACK, D0-D7
"Load= -ISO^A, Vcc = mini H2, H4. PB0-PB7, PA0-PA7

llL03d=-'a)MA.Vcc = m,nl PC0-PC7

Vqh

Vss + 24

- V

Output Low Voltage

nLoad = B8mA.Vcc = min) PC37TOUT. PC6/PIRQ

llLoad=5 3mA,Vcc=minl D0-D7, DTACK
llLoad = 2 4mA, Vcc = mini PA0-PA7, PB0-PB7, H2. H4. PC0-PC2, PC4, PC6, PC7

Vol

- 05 V

Internal Power Dissipation (Measured at T;\ = 0°C1

Pint

-
600

mW

Input Capacitance IVm^O, Ta = 25»C. 1= 1 MHzl

Cin

-

16

pl-

CLOCK TIMING (See Figure 21

Characteristic

Symbol

8 MHz
MC68230L8

10 MHz

MC68230L10 Unit

Min Max Mm Max

Frequency of Operation 1 20 80 2 0

10 0
MHz

Cycle Time

125

500

100

600

ns

Clock Pulse Width

'CL

tCH

56

55

260

250

45

46

250

250

ns

Cloclr Rise and Fall Times

'C. 'CI

-

10

10

:

10

10
ns

FIGURE 2 - INPUT CLOCK WAVEFORM

328

AA) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

AC ELECTRICAL CHARACTERISTICS IVcc = 5 0 Vdc 1 5% . Vs = 0 Vdc. Ta = 0°C lo 70°C)

Number Characteristic

8 MHz

MC68230L8

10 MHz

MC68230L10 Unit
Min Max Min Max

1 R/W, RS1-RS5 Valid to CS Low (Setup T.me) 0 - 0 -

ns

21101 CS Low to R/W and RS1-RS5 Invalid IHold Time)

100

- 65 -

ns

3111 CS Low to CLK Low (Setup Time) 30 - 20 -

ns

412) CS Low to data Out Valid (Delav)
-

75

-

60 ns

5 RS1-RS5 Valid to Data Out Valid (Delay)
-

140

-
100

ns

6 CLK Low to DTACK Low (Read/Write Cycle! (Delay) 0

70

0 60

ns

7(31 DTACK Low 10 (5S High (Hold Time) 0 - 0 -

ns

8 CS Of PIACK or TiACK High to Data Out Invalid IHold Timel 0 - 0 -

ns

9 CS o(PIACK or TIACK High to D0-D7 High-Impedance (Delay)
- 50 -

45

ns

10
CS Of PIACK Of TIACK High to DTACK High (Delay)

- 50 30

ns

11 CS Of PIACK Of TIACK High to DTACK High Impedance (Delay)
-

100

-

55

ns

12
Data Invalid to (5S Low (Setup Time) 0 - 0 -

ns

13
(!S Low to Data In INvalid (Hold Time)

100

- 65 - ns

14 Input Data Valid to H1IH3) Assetled (Setup Time)

100

- 60 -

ns

16
H1IH3) Asserted to Input Data Invalid IHold Time) 20 - 20 -

ns

16
Handsha)<e Input H1(H4I Pulse Width Asserted

40

-

40

-

ns

17 Handshake Input (H1-H4) Pulse Width Negated

40

-

40 ns

18 H1(H3) Asserted lo H2(H4) Negated (Delay)
-

150

-
120

ns

19
CLK Low 10 H2IH4) Asserted IDetay)

-
100

-
100

ns

20141 H2IH4I Asserted to H1IH3I Asserted 0 - 0 -

ns

2115) CLK Low to H2(H4I Pulse Negated (Delay)
-

125

-

125
ns

2219, 11) Synchronized H1IH3) to CLK Low on which DMAREQ is Asserted

(See Figures 13 and 14)
25

35 25 36
CLK Per

23 CLK Low DMAREQ is Asserted to CLK Low on which DMAREQ is Negated 3 3 3 3

CLK Per

24
CLK Low to Output Data Valid (Delay) (Modes 0, 11

-
150

120 ns

25(9, 111 Synchronized H1(H3) to Output Data Invalid (Modes 0, 1)

1 6

25

1 5

2 5
CLK Per

26 HI Negated to Output Data Vatid (Modes 2, 31
-

70

- 60

ns

27 HI Asserted to Output Data High Impedance (Modes 2, 3) 0

70

0

70

ns

28 Read Data Valid to DTACK Low (Setup Time) 0 - 0 -

ns

29 CLK Low to Data Output Valid (Intertupt Acknowledge Cycle)
-

120

-
100

ns

30171 H1(H3) Asserted to CLK High (Setup Time) 50

40
ns

31 PIACK or TIACK Low to CLK Low (Setup Time) 50

40

- ns

321111 Synchronized CS to CLK Low on which DMAREQ is Asserted

(See Figures 13 and 141

3 3 3 3
CLK Pet

3319, 11) Synchronized H1(H3I to CLK Low on which H2(H4) is Asserted 35

4 5

35

46

CLK Per
34 CLK Low to DTACK Low (Interrupt Acknowledge Cycle (Delay)

- 75 -

60 ns

36 CLK Low to DMAREQ Low (Delay) 0

120

0

100 ns

36 0

120

0

100

ns
CLK Low to DMAREQ High (Delay) _ CLK Low to PIRQ Low or High Impedance

- 200 - 160

ns

-18)
TIN Freguency lExternal Clock) - Prescaler Used

0 1 0 1 Fclk(Hz)(6)

_
TIN Freguency lExternal Clock) - Prescaler Not used

0

1/32

0

1/32

FclklHz)(6)

_
TIN Pulse Width High or Low (External Clockl

55 -

45

ns

TIN Pulse Width Low (Run/Hal; Control) 1 - 1 -
CLK

_
CLK Low to TOUT High, Low, or High Impedance 0 200 0

150

ns

-
CS, PIACK, or TIACK High to CS, PIACK, or TIACK Low

50 -

30

-

ns

NOTES _

1 This specificaiion onlv applies it the Pl/T had completed all operations initiated bv the previous bus cycle when CS was asserted Follow-
ing a normal read Of write bus cycle, all operations are complete withm three CLKs after the (ailing edge of the CLK pin on which DTACK
was asserted II CS is asserted prior to completion of these operations, the new bus cycle, and hence. DTACK is postponed

If all operations of the previous bus cycle were complete when CS was asserted, this specification is made only to insure that DTACK is as-
serted with respect to the falling edge of the CLK pm as shown in the timing diagram, not to guarantee operation of the part II the CS

setup time is violated, DTACK may be asserted as shown, or may be asserted one clock cycle later

2 Assuming the RS1RS5 to Data Valid time has also expired

AA) MOTOROLA Semiconductor Products Inc.

M C68230 L8» M C68230 L 1 0

3 This speciticanon imposes a lower bound on CS low iime. guaranteeing ihat CS will be low tor at least 1 CLK period

4 This specification assures recognition ot the asserted edge ot HHH3)

5 This specitication applies only when a pulsed handshake option is chosen and the pulse is not shortened due to an early asserted edge ot
H1(H3l

6- CLK refers to the actual frequency of the CLK pin, not the maximum allowable CLK frequency

7 If the setup time on the nsing edge of the clock is violated, HHH3) may not be recognized until the next rising of the clock,

8 This limit applies to the frequency of the signal at TIN compared to the frequency of the CLK signal during each clock cycle If any period of

the waveform at TIN is smaller than the period of the CLK signal at that instant, then it is likely that the timer circuit will completely ignore

one cycle of the TIN signal

If these two signals are derived from different sources they will have different instantaneous frequency variations. In this case the frequency

applied to the TIN pin must be distinctly less than the frequency at the CLK pin to avoid lost cycles of the TIN signal With signals derived

from different crystal oscillators applied to the TIN and CLK pins with fast rise and fall times, the TIN frequency can approach 80 to 90% of

the frequency of the CLK signal without a loss of a cycle of the TIN signal

If these two signals are derived from the same frequency source then the frequency of the signal applied to TIN can be 100% of the fre
quency at the CLK pm They may be generated by different buffers from the same signal or one may be an inverted version of the other

The TIN signal may be generated by an 'AND' function of the dock and a control signal

9 The maximum value is caused by a penpheral access IHKHSI asserted! and bus access (US asserted) occurnng ai the same time

10 See BUS INTERFACE CONNECTION section for exception

1 1 Synchronized means that the input signal has been seen by the Pl/T on the appropriate edge of the clock (rising edge (or H1(H31 and falling

edge forTTS). (Refer to the BUS INTERFACE CONNECTION section for the exception concerning CS 1

FIGURE 3 - BUS READ CYCLE TIfVIING

DMAREQ

NOTE Timing measui i referenced to and from a low voltage ot 0 8 volts and a high voltage of 2 0 volts, unless otherwise noted

A^ MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

FIGURE 4 - BUS WRITE CYCLE TIMING

FIGURE 5 - INTERRUPT ACKNOWLEDGE

FUNCTIONAL TIMING DIAGRAM

Noie T,m,ng measu.emenis are -eleterced to and Irom a low voltage ol 0 8 volts and a h.gh voltage
 ot 2 0 volts, unless othenv.se noted

^A) motorola Semiconductor Products Inc.

FIGURE 6 - PERIPHERAL INTERFACE INPUT TIMING

NOTE Timing diagram shows HI. H2. H3, am

FIGURE 7 - PERIPHERAL INTERFACE OUTPUT TIMING

®-

■^.

«^~

^

®
*<3»1

-@-

.r

u^
_@-

♦*-@

332
rK) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

GENERAL DESCRIPTION

The Pl/T consists of two logicallv independent sections

the ports and the tinner The port section consists of Port A

IPAO-7), Port B (PBO 71, four handshake pins IHl. H2, H3.

and H4I. two general I/O pins, and six dual-function pins

The dual-function pins can individually operate as a third
port (Port C) or an alternate function related to either Ports A

and B, or the timer The four programmable handshake pins,

depending on the mode, can control data transfer to and

from the ports, or can be used as interrupt generating inputs,

or I/O pins

The timer consists of a 24-bit counter, optionally clocked

by a 5-bit prescaler Three pins provide complete timer I/O:

PC2/TIN, PC3/T0UT. and PC7/TIACK Of course, only the

ones needed for the given configuration perform the timer

function, while the others remain Port C I/O

The system bus interface provides for asynchronous

transfer of data from the Pl/T to a bus master over the data

bus ID0-D7I Data transfer acknowledge IDTACKI, register

selects (RS1-RS5I, chip select, the read/wnie line IR/Wl,

and Port Interrup Acknowledge (PIACKI or Timer Interrupt

Acknowledge ITIACK) control data transfer between the
Pl/T and the MC68000

FIGURE 8 - MC6a230 BLOCK DIAGRAtUI

38 39 40 41^ 42 43_ 44 45 46 47 48 1 2 3
Vss RESET CLK CS DTACK R/W DO Dl D2 03 D4 D5 06 07

I I I M t It t M I I I
Daia Bus Iniertace and

Interrupt Vectof Registers

Port

interrupt/

DMA

Control

Logic

c I
■RAO

-PAl

•PA2
■PA3

• PA4

-PAS
-PA6

-PA7

Handshake
Interface

Logic

-« HI

— »-PBl 18

-• »-PB2 19 -■ ^PB3 20

-« »-PB4 21 — »PB6 22

-« ^PB6 23

— ^PB7 24

Port C and Pin Function Muitiplexi

Ml t MM
PC7; PC6/ PC6/ PC4/ PC3/T0UT PC2/TIN PCI PCO

TIACK PIACK PTTO OMAREQ 33 32 31 30

I t f I I
RSI RS2 RS3 RS4 RS5

AA I MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

Pl/T PIN DESCRIPTION

Throughout the data sheet, signals are presented using

the terms active and inactive or asserted and negated in-
dependent of whether the signal is active in the high-voltage

state or low-voltage state. (The active state of each logic pin
IS given below) Active low signals are denoted by a
superscript bar R/W indicates a write is active low and a
read active high.

FIGURE 9 - - LOGICAL PIN ASSIGNMENT

00-07—— — PAO-7

RSI RS5 -m.

«-— PBO-7

R/W — »■

— HI

CS -—

■•— H3

DTACK——
MC68230

RESET -» PI.'T ■»»-PC7/TIACK'
■••-PC6/PIACK*

■»»-PC6.'PIRQ'

CLK -»

— PC4 DMAREO

—PCS. TOUT- vcc —
— PC2/TIN'

GND -—

—PCI

—^PCO

*!ndividuall>

Prog

ammable Due Function Pin

D0-D7 - Bidirectional Data Bus. The data bus pins D0-D7
form an 8-bit bidirectional data bus to/ from the MC68000 or
other bus master These pins are active high

RS1-RS5 - Register Selects. RS1-RS5 are active high
high impedance inputs that determine which of the 25 possi-

ble registers is being addressed. They are provided by the
MC68000 or other bus master

R/W - Read/Write Input - R/W is the high-impedance

Read/Write signal from the MC68000 or bus master, in-
dicating whether the current bus cycle is a read (high) or

write (low) cycle.

CS - Chip Select Input CS is a high-impedance input

that selects the Pl/T registers for the current bus cycle Ad-
dress strobe and the data strobe (upper or lower) of the bus

master, along with the appropnate address bits, must be in-
cluded in the chip select equation. A low level corresponds

to an asserted chip select

DTACK - Data Transfer Acknowledge Output. DTACK is
an active low output that signals the completion of the bus
cycle During read or interrupt acknowledge cycles, DTACK
IS asserted by the MC68230 after data has been provided on

the data bus, during write cycles it is asserted after data has
been accepted at the data bus Data transfer acknowledge is
compatible with the MC680C0 and with other Motorola bus
masters such as the MC68450 DMA controller A holding
resistor is required to maintain DTACK high between bus

cycles

RESET - Reset Input RESET is a high-impedance input
used to initialize all Pl/T functions All control and data

direction registers are cleared and most internal operations
are disabled by the assertion of RESET (low)

CLK- Clock Input Theclock pin is a high-impedance TTL-
compatible signal with the same specifications as the
MC68000 The Pl/T contains dynamic logic throughout, and
hence this clock must not be gated off at any time It is not

necessary that this clock maintain any particular phase rela-
tionship with the MC680(X) clock It may be connected to an

independent frequency source (faster or slower) as long as
all bus specifications are met.

PA0-PA7 and PB0-PB7 - Port A and Port B Ports A and

B are 8-bit pons that may be concatenated to form a 16-bit

port in certain modes. The ports may be controlled in con-
junction with the handshake pins H1-H4 For stabilization

during system power-up. Ports A and B have internal pullup
resistors to ̂ qq All port pins are active high.

H1-H4 - Handshake pins (I/O depending on the Mode

and Submodel Handshake pins H1-H4 are multi-purpose
pins that (depending on the operational mode) may provide
an interlocked handshake, a pulsed handshake, an interrupt

input (independent of data transfers), or simple I/O pins. For

stabilization during system power-up, H2 and H4 have inter-
nal pullup resistors to V^q Their sense (active high or low)

may be programmed in the Port General Control Register
bits 3-0 Independent of the mode, the instantaneous level of
the handshake pins can be read from the Port Status

Register

Port C - (PC0-PC7/ Alternate function). This port can be

used as eight general purpose I/O pins (PC0-PC7) or any
combination of six special function pins and two general pur-

pose I/O pins (PCO-PCl) (Each dual function pin can be
standard I/O or a special function independent of the other

port C pins) The dual function pins are defined in the follow-
ing paragraphs When used as a port C pin, these pins are

active high They may be individually programmed as inputs
or outputs by the Port C Data Direction Register

The alternate functions (TIN, TO(JT, and TIACK) are timer

1/0 pins TIN may be used as a rising-edge triggered external
clock input or an external run/ halt control pin (the timer is in
the run state if run/halt is high and in the halt state if

run/ halt is low) TOUT may provide an active low timer inter-
rupt request output or a general-purpose square-wave out-
put, initially high TIACK is an active low high-impedance in-
put used tor timer interrupt acknowledge

Port A and B functions have an independent pair of active

low interrupt request (PIRQ) and interrupt acknowledge
(PIACK) pins.

The DMAREQ (Direct Memory Access Request) pin pro-
vides an active low Direct Memory Access Controller

I DM AC) request pulse of 3 clock cycles, completely com-
patible with the MC68450 DMAC

REGISTER MODEL

A register model that includes the corresponding Register
Selects IS shown in Table 1

334
AA) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

TABLE 1 - REGISTER MODEL

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Port Mode

Conlrol
H34 Enable

H12

Enable

H4

Sense

H3

Sense

H2

Sense

HI
Sense • SVCRQ

Select
PFS

Port Interrupt

Pr.orilv Conlrol

B.;

Bii
6

B.t
6

B.t
4

B.t
3

Bit
2

B.l

B.l

0

Bil 7
Bit 6

B.'

6
Bit B.t

3

B.t

2

B.l

1

B.t

0

B.I Bil 6

Bii

Bil
B.l B.t

B.,

B.t

0

;r.:er-upl vfijMi Number • «

Pom a

Submode
HJConlio,

H2

Inl

Enable HI

SVCRQ

Enable HI
Slal

Ctrl Pon B

Submoae

H4 Control

H4

Int

Enable

H3

SVCRQ
Enable

H3

Stat

Ctrl

Bil
7

Bit
6

B.I
5

B.t

4
B.t
3

Bit
2

B.t

1
B.t
0

B.t 7
B.t
6

B.I
5

B.t

S.l
3

B.t

2
Bit
1

Bit
0

Bit
7

B.I
6

B.I B.t
4

B.l

3
B.l
2

B.t

1

B.t

0

B.I 7
B.t 6

B.t
5

B.t
4

B.t

3

B.l

2

B.l

1
B.t
0

Bil B.I
6

B.l

5
B.t

B.t

3

B.t

2
B.l
1

B.t

0

H4

Level

H3

Lev/el .evHl

HI

Level

H4S H3S

H2S

HIS

» • • » . • . ♦
. • • » * • ♦ •

TOUT TiACK zu '

sz~

Timer

Enable

Bjl
Br

Si'

Bii

Bil

Bil
B'l

Bil
* « • • » • • *

B'l

:3

Bit Bil

21

Bil
20

Bil

B.I

18

Bii

1?

Bil

16

Bil

15

Bil 14

Bit

13

Bil

12

'
u

Bii

10

B.l

9

B.l

8

Bil Bit
6

B.t
5

B.t 8.1

3
B.t

2
B.t
1

8.1

0

, , , . . . » *

Bii

23

B:I
Bii

e.-

Bii

B.l
8.1

Bii

16

Bil

15

Bil

B.I
Bii

B'l 11
Bii

10

Bil

B.l

8

Bii B.I
6

Bi'

B.l

Bn Bii

Bii Bii

.
ZDS

.
» • • • • •
. • . • • •
. •
♦ • • • • •

Port General

Control Register

Port Service

Request Register
Port A Data

Direction Register

Port B Data

Direction Register

Port C Data

Direction Register

Port Interrupt

Vector Register

Port A Control

Register

Port A Data

Register Port B Data

Register
Port A Alternate

Register
Port B Alternate

Register Port C Data

Register
Port Status

Register (null)

(null)

Timer Control

Register Timer Interrupt

Vector Register
(null)

Counter Preload

Register (High)

Inull)

(nultl

(nulll

(nulll

"Unused, read as zero

A^ MOTOROLA Semiconductor Products Inc.

MC6823L8«MC68230L10

PORT CONTROL STRUCTURE

The primary focus of most applications will be on Ports A
and B, Itie fiandsfiake pins, the port interrupt pins, and the

DMA request pin They are controlled in the following way
the Port General Control Register contains a 2-bit field that
specifies a set of four operation modes These govern the
overall operation of the ports and determine their interrela-

tionships Some modes require additional information from
each ports control register to further define its operation In

each port control register, there is a 2-bit submode field that
serves this purpose Each port mode/ submode combination

specifies a set of programmable charactenslics that fully
define the behavior of that port and two of the handshake

pins. This structure is summanzed in Table 2 and Figure 10

FIGURE 10 - PORT MODE LAYOUT

Mode 0 Submode 00 f^ode 0 Submode 01 r^ode 0 Submode 1

1^ A iBi

^-

A iBl
8

Doubte-Buttefe(

o

MoOe 1 Po'T B Submode XO Mode I Pot! 8 Submode XI

B.l 1.0

10
H4' Translers

TABLE 2 - PORT MODE CONTROL SUMMARY

Mode 0 (Unrdireciionai 8-Bii Mode)
Pen A

Submode 00 - Oouble-Buffered input
HI - Latches input data

H2 - Status/interrupt generating input, general-purpose
output. Of operation with HI in the interlocked or

pulsed input handshake protocols

Submode 01 - Double-Buftered Output

HI - Indicates data received bv peripheral

H2 — Status/ inierrupt generating input, general-purpose
output, or operation with HI m the interlocked or

pulsed output handshake protocols

Submode IX - Bit I/O

HI - Status/interrupt generating input

H2 - Status/ interrupt generating input or general purpose
output

Port B. H3 and H4 - Identical to Port A. HI and H2

Mode 1 (Unidirectional 16-Bit Model

Port A - Double-Buffered Data (Most sigmftcantl
Submode XX (not used!

HI — Status/interrupt generating input

H2 - Status/interrupt generating input or general-purpose output

Port B - Double-Buffered Data (Least Significant!

Submode XO - Unidirectional 16-Bit Input
H3 - Latches input data

H4 - Status/ interrupi generating input, general- purpose
output, or operation with H3 in the interlocked or

pulsed input handshake protocols

Submode XI - Unidirectional 16-Bit Output

H3 - Indicates data received by peripheral

H4 - Siatus/inierrupt generating input, general-purpose
output, or operation with H3 m the interlocked or

pulsed output handshake protocols

Mode 2 (Bidirectional 8-Bit Model

Port A - Bit I/O (with no handshaking pms)
Submode XX (not used)

Port B - Bidirectional 8Bit Data iDouble-Bufferedl
Submode XX (not usedl

HI - Indicates output data received bv peripheral

H2 - Operation With HI in the interlocked or pulsed output
handshake protocols

H3 - Latches input data

H4 - Operation with H3 in the interlocked or pulsed input
handshake protocols

Mode 3 (Bidirectional 16-Bit Model

Port A - Double-Buffered Data (Most significantl
Submode XX (not usedl

Port B - Double-Buffered Data (Least sigmficanil
Submode XX (not usedl

HI - Indicates output data received bv peripheral

H2 - Operation with HI in the interlocked or pulsed output
handshake protocols

H3 - Latches input data

H4 - Operation with H3 in the interlocked or pulsed input
handshake protocols

AA) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

PORT GENERAL INFORMATION AND CONVENTIONS

The following paragraphs introduce concepts thai are
generally applicable to the Pl/T ports independent of the
chosen mode and submode For this reason, no particular
pon or handshake pins are mentioned, the notation HI IH3)

indicates that, depending on the chosen mode and sub-
mode, the statement given mav be true for either the HI or
H3 handshake pin

Unidirectional vs Bidirectional - Figure 10 shows the con-
figuration of Ports A and 8 and each of the handshake pins

in each port mode and submode In Modes 0 and 1, a data
direction register is associated with each of the ports These
registers contain one bit for each port pin to determine
whether that pin is an input or an output Modes 0 and 1 are,
thus, called unidirectional modes because each pin assumes
a constant direction, changeable only by a reset condition or

a programming change These modes allow double-buffered
data transfers in one direction This direction, determined by
the mode and submode definition, is known as the primary
direction Data transfers in the primary direction are con-

trolled by the handshake pins Data transfers not in the

Drimary direction are generally unrelated, and single or un-
buffered data paths exist

In Modes 2 and 3 there is no concept of primary direction
as in Modes 0 and 1 Except for Port A in Mode 2 (Bit l/OI.
the data direction registers have no effect These modes are
bidirectional, in that the direction of each transfer (always 8

or 16 bits, double-buffered) is determined dynamically by the
state of the handshake pins Thus, for example, data may be
transferred out of the ports, followed very shortly by a
transfer into the same port pins Transfers to and from the
ports are independent and may occur in any sequence Since

the instantaneous direction is always determined by the ex-

ternal system, a small amount of arbitration logic may be re-
quired

Control of Double- Buffered Data Paths - Generally
speaking, the Pl/T is a double-buffered device In the
primary direction, double-buffering allows orderly transfers
by using the handshake pins in any of several programmable

protocols (When Bit I/O is used, double-butfenng is not
available and the handshake pins are used as outputs or
status/ interrupt inputs I

Use of double-buffering is most beneficial in situations
where a peripheral device and the computer system are
capable of transferring data at roughly the same speed

Double-buffering allows the fetch operation of the data
transmitter to be overlapped with the store operation of the

data receiver Thus, throughput measured in bytes or words-
per-second may be greatly enhanced if there is a large
mismatch in transfer capability between the computer and
the peripheral, little or no benefit is obtained In these cases

there is no penalty in using double-buffering,

Double-Buffered Input Transfers - In all modes, the Pl/T
supports double-buffered input transfers. Data that meets
the port setup and hold times is latched on the asserted edge

of H1(H3I H1(H3I IS edge-sensitive, and may assume any

duty-cycle as long as both high and low minimum times are
observed The Pl/T contains a Port Status Register whose
H1SIH3SI status bit is set anytime any input data is present

in the double-buffered latches that has not been read by the
bus master The action of H2(H4) is programmable, it may
indicate whether there is room for more data in the Pl/T

latches or it may serve other purposes The following options
are available, depending on the mode

1 H2IH4) may be an edge-sensitive input that is in-
dependent of H1IH3) and the transfer of port data

On the asserted edge of H2(H41. the H2S(H4SI
status bit IS set It is cleared by the direct method

I refer to Direct Method of Resetting Status), the
RESET pin being asserted, or when the H12 Enable
(H34 Enablel bit of the Port General Control Register isO

2. H2IH4) may be a general purpose output pin that is
always negated. The H2S(H4SI status bit is
always 0,

3. H2IH4) may be a general purpose output pin that is
always asserted The H2SIH4S) status bit is always
0

4. H2(H4) may be an output pin in the interlocked input

handshake protocol It is asserted when the port in-
put latches are ready to accept new data It is

negated asynchronously following the asserted edge
of the H1(H3) input As soon as the input latches

become ready. H2(H4) is again asserted. When the

input double-buffered latches are full. H2(H4) re-
mains negated until data is removed Thus, anytime

the H2(H4I output is asserted, new input data may

be entered by asserting H1IH3) At other times tran-
sitions on H1(H3) are ignored The H2S(H4S) status

bit is always 0 When H12 Enable IH34 Enablel is 0.
H2(H4I IS held negated

5 H2(H4) may be an output pin in the pulsed input
handshake protocol It is asserted exactly as in the
interlocked input protocol, but never remains

asserted longer than 4 clock cycles Typically, a four
clock cycle pulse is generated But in the case that a

subsequent H1IH3I asserted edge occurs before ter-
mination of the pulse. H2IH4) is negated asyn-

chronously Thus, anytime after the leading edge of
the H2(H4I pulse, new data may be entered in the

Pl/T double-buffered input latches. The H2SIH4SI
status bit IS always 0 When HI 2 Enable (H34 Enable)
IS 0. H2(H4I is held negated

A sample timing diagram is shown in Figure 11 The
H2(H4) interlocked and pulsed input handshake protocols
are shown The DMAREQ pin is also shown assuming it is
enabled All handshake pm sense bits are assumed to be 0
(refer to Port General Control Register), thus, the pins are m

the low state when asserted Due to the great similarity be-
tween modes, this timing diagram is applicable to all double-

buffered input transfers

MOTOROLA Semiconductor Products Inc.

FIGURE 11 - DOUBLE-BUFFERED INPUT TRANSFERS

^o(XMxxxxxx)o<x^xxxxyMyxxyto

H2(H4) Interlocked

\ y
DMAREQ A r

Double-Buffered Output Transfers - The Pl/T supports

double-buffered output transfers in all modes Data, written

bv the bus master to the Pl/T, is stored in the port's output
latch The peripheral accepts the data by asserting H1(H3),

which causes the next data to be moved to the port's output
latch as soon as it is available The function of H2(H4) is pro-

grammable, It may indicate whether new data has been mov-
ed to the output latch or it may serve other purposes The

H1S(H3S1 status bit may be programmed for two interpreta-
tions Normally the status bit is a 1 when there is at least one

latch in the double-buffered data path that can accept new

data. After writing one byte/word of data to the ports, an in-
terrupt service routine could check this bit to determine if it

could store another byte/word, thus, filling both latches

When the bus master is finished, it is often useful to be able

to check whether all of the data has been transferred to the

peripheral The HISIH3SI Status Control bit of the Port A

and B Control Registers provide this flexibility The program-
mable options of the H2(H41 pin are given below, depending

on the mode

T H2(H4I may be an edge-sensitive input pin indepen-
dent of H1(H3) and the transfer of port data On the

asserted edge of H2IH4I. the H2S(H4S) status bit is

set It IS reset by the direct method (refer to Direct

Method of Resetting Status), the RESET pin being

asserted, or when the H12 Enable (H34 Enable! bit of

the Port General Control Register is 0

2 H2(H4I may be a general-purpose output pin that is

always negated The H2S(H4S) status bit is

always 0

3 H2(H4) may be a general-purpose output pin that is
always asserted. The H2S(H4S) status bit is always

\

"A

^ f
f

4. H2(H41 may be an output pm in the interlocked out-

put handshake protocol H2(H4) is asserted two

clock cycles after data is transferred to the double-
buffered output latches The data remains stable and

H2(H4I remains asserted until the next asserted edge

of the H1{H3) input At that time. H2(H4) is asyn-

chronously negated As soon as the next data is

available, it is transferred to the output latches

When H2(H4) is negated, asserted transitions on

HHH3) have no effect on the data paths As is ex-
plained later, however, in Modes 2 and 3 they do

control the three-state output buffers of the bidirec-
tional portlsl The H2S(H4S) status bit is always 0

When H12 Enable (H34 Enable) is 0. H2(H41 is held

negated
5 H2IH4) may be an output pin in the pulsed output

handshake protocol. It is asserted exactly as in the

interlocked output protocol above, but never re-
mains asserted longer than four clock cycles

Typically, a four clock pulse is generated But m the

case that a subsequent H 1 (H3I asserted edge occurs

before termination of the pulse, H2(H4) is negated

asynchronously shortening the pulse The H2SIH4S)

status bit IS always 0. When H12 Enable (H34 Enable)
isO H2{H4) IS held negated.

A sample timing diagram is shown in Figure 12 The

H2(H4) interlocked and pulsed output handshake protocols

are shown The DMAREQ pin is also shown assuming it is

enabled All handshake pin sense bits are assumed to be 0,

thus, the pins are in the low state when asserted Due to the

great similarity between modes, this timing diagram is ap-

plicable to all double-buffered output transfer

FIGURE 12 - DOUBLE-BUFFERED OUTPUT TRANSFERS

H2(H4) Interlocked

H2(H4I Pulse

A I \ f
rK) MOTOROLA Semiconductor Products Inc.

338

MC68230L8«MC68230L10

Requesting Bus Master Service - The Pl/T has several
means of indicating a need for service by a bus master First,

the processor may poll the Port Status Register It contains a

status bit for each handshake pin, plus a level bit that always

reflects the instantaneous state of thai handshake pin A

status bit IS 1 when the Pl/T needs servicing, i e , generally

when the bus master needs to read or write data to the ports,

or when a handshake pin used as a simple status input has

been asserted The interpretation of these bits is dependent

on the chosen mode and submode

Second, the Pl/T may be placed in the processor's inter
rupl structure As mentioned previously, the Pl/T contains

Port A and B Control Registers that configure the handshake

pins Other bits in these registers enable an interrupt

associated with each handshake pin This interrupt is made

available through the PC5/PIRQ pin. if the PIRQ function is

selected Three additional conditions are required for PIRQ

to be asserted 111 the handshake pm status bit set. 12) the

corresponding interrupt (service request) enable bit is set. 13)

and DIVIA requests are not associated with that data transfer

(HI and H3 only) The conditions from each of the four

handshake pins and corresponding status bits are ORed to

determine PIRQ

The third method of requesting service is via the

PC4/DfVlAREQ pin. This pin can be associated with double-

buffered transfers in each mode If it is used as a DIV1A con-

troller request, it can inmate requests to keep the Pl/T's
input/output double-buffering empty/full as much as possi-

ble It will not overrun the Df^/IA controller The pin is com-
patible with the f^C68450 Direct f\^emory Access Controller

(DIVIAC)

Vectored, Priorrtized Port Interrupts - Use of l\/IC68000
compatible vectored interrupts with the Pl/T requires the

PIRQ and PIACK pins When PIACK is asserted, the Pl/T

places an 8-bii vector on the data pins D0-D7 Under normal
conditions, this vector corresponds to highest priority,

enabled, active port interrupt source with which the

DMAREQ pin is not currently associated The most-

significant six bits are provided by the Port Interrupt Vector

Register (PIVRI. with the lower two bits supplied by

prioritization logic according to conditions present when

PIACK IS asserted It is important to note that the only affect

on the Pl/T caused by interrupt acknowledge cycles is that

the vector is placed on the data bus Specifically, no

registers, data, status, or other internal states of the Pl/T are
affected by the cycle

Several conditions may be present when the PIACK input

IS asserted to the Pl/T, These conditions affect the Pl/T's
response and the termination of the bus cycle If the Pl/T

has no interrupt function selected, or is not asserting PIRQ.

the Pl/T will make no response to PIACK (DTACK will not be

asserted) If the Pl/T is asserting PIRQ when PIACK is

received, the Pl/T will output the contents of the Port Inter

rupt Vector Register and the prioritization bits If the PIVR
has not been initialized, SOF will be read from this register

These conditions are summarized in Table 3

TABLE 3 - RESPONSE TO PORT INTERRUPT ACKNOWLEDGE

Conditions

PIRQ negated OR interrupt

request function not selected PIRQ asserted

PIVR has not been initialized

since RESET
No response from Pl/T

No DTACK

Pl/T provides 50F, the

Uninilialized Vecior '
PIVR has been initialized

since RESET
No response from Pl/T
No DTACK

Pl/T provides PIVR contents

With prioritization bits

'The uninitialized vector is the value returned fror

The vector table entries for the Pl/T appear as a con-

tiguous block of four vector numbers whose common upper

SIX bits are programmed in the PIVR. The following table

pairs each interrupt source with the 2-bit value provided by

the prioritization logic, when interrupt acknowledge is
asserted

H1 source - CX)

H2 source - 01

H3 source - 10

H4 source - 11

Autovectored Port Interrupts - Autovecored interrupts

use only the PIRQ pin. The operation of the Pl/T with vec-
tored and autovectored interrupts is identical except that no

vectors are supplied and the PC6/ PIACK pin can be used as

a Port C pin

Direct Method of Resetting Status - In certain modes

one or more handshake pins can be used as edge-sensitive

inputs for sole purpose of setting bits in the Port Status

Register These bits consist of simple flip-flops. They are set

(to 1) by the occurrence of the asserted edge of the hand-

lerrupt vector register before it has been initialized

shake pin input Resetting a handshake status bit can be

done by writing an 8-bit mask to the Port Status Register
This IS called the direct method of resetting To reset a status

bit that IS resettable by the direct method, the mask must

contain a 1 in the bit position of the Port Status Register cor-

responding to the desired bit Other positions must contain

O's For status bits that are not resettable by the direct
method in the chosen mode, the data written to the port

status register has no effect For status bits that are reset-
table by the direct method in the chosen mode, a 0 in the

mask has no effect

Handshake Pin Sense Control - The Pl/T contains

exclusive-OR gates to control the sense of each of the hand-
shake pins, whether used as inputs or outputs Four bus in

the Port General Control Register may bt programmed to

determine whether the pins are asserted in the low or high

voltage state As with other control registers, these bits are

reset to 0 when the RESET pin is asserted, defaulting the

asserted level to be low

Enabling Ports A and B - Certain functions involved with
double-buffered data transfers, the handshake pins, and the

status bits, may be disabled by the external system or by the

M) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

programmer during initialization The Port General Control
Register contains two bits. H12 Enable and H34 Enable,
which control these functions These bits are cleared to the o

state when the RESET pin is asserted, and the functions are
disabled The functions are the following:

1 Independent of other actions by the bus master or

peripheral Ivia the handshake pinsi, the Pl/T's
disabled handshake controller is held to the "empty"
state, I e , no data is present in the double-buffered
data path

2 When any handshake pin is used to set a simple status

flip-flop, unrelated to double-buffered transfers, these
flip-flops are held reset to 0 (See Table 2)

3. When H2(H4) is used in an interlocked or pulsed hand-
shake with H1IH3I, H2(H4) IS held negated, regardless

of the chosen mode, submode, and primary direction.

Thus, for double-buffered input transfers, the pro-
grammer may signal a penpheral when the Pl/T is

ready to begin transfers by setting the associated
handshake enable bit to 1.

The Ron A and B Alternate Registers - In addition to the
Port A and B Data Registers, the Pl/T contains Port A and B

Alternate Registers. These registers are read-only, and
simply provide the instantaneous level of each port pin They
have no effect on the operation of the handshake pins,

double-buffered transfers, status bits, or any other aspect of
the Pl/T, and they are mode/submode independent.

PORT MODES

This section contains information that distinguishes the
various port modes and submodes General characteristics,
common to all modes, have been defined previously

MODE 0 - UNIDIRECTIONAL 8-BIT (VIODE

In Mode 0, Ports A and B operate independently Each

may be configured in any of its three possible submodes

Submode 00 - Double-Buffered Input

Submode 01 - Double-Buffered Output

Submode IX - Bit I/O
Handshake pins HI and H2 are associated with Port A and

configured by programming the Port A Control Register
(The H12 Enable bit of the Port General Control Register
enables Port A transfers 1 Handshake pins H3 and H4 are
associated with Port B and configured by programming the

Port B Control Register (The H34 Enable bit of the Port
General Control Register enables Port B transfers 1 The Port

A and B Data Direction Registers operate in all three sub-
modes. Along with the submode, they affect the data read
and written at the associated data register according to Table
4 They also enable the output buffer associated with each
port pin. The DfVlAREQ pin may be associated with either
(not both) Port A or Port B. but does not function if the Bit
I/O submode is programmed for the chosen port

TABLE 4 - MODE 0 PORT DATA PATHS

Hflode
Read Port A/B

Data Register

Write Port A/B

Data Register

DDR = 0 DDR=1 DDH = X
0 Submode 00

0 Submode 01

0 Submode 1X

FlL, D B

Pin

Pin

FOL Note 3

FOL Note 3

FOL Note 3

FOL, S B Note 1

lOL/FOL, DB Note 2

FOL, S B Note 1

Abbreviations

lOL - Initial Output Latch SB- Single Buffered

FOL - Final Output Latch D B - Double Buffered

FlL - Final Input Latch DDR - Data Direction Register

Note 1 Data is latched in the output data registers (final output latch) and will be

single buffered at the pin if the DDR is 1 The output buffers will be turned
oft if the DDR IS 0

Note 2: Data is latched in the double-buffered output data registers. The data in the
final output latch will appear on the port pin if the DDR is a 1

Note 3 The output drivers that connect ihe final output latch to the pins are turned

® MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

Port A or 8 Submode 00 (8-Bit Oouble-Buffered Input)

Mode 0 Submode 00

Port A or B Submode IX (Brt l/OI

Mode 0 Submode 13

<^
Latched. Double
Buffered Inpui

■ HI fH3l

In Mode 0. double-buffered input transfers of up to 8-bits are

available by progrannnning Submode 00 in the desired port's
control register The operation of H2 and H4 may be selected
by programming the Port A and Port B Control Registers,

respectively All five double-buffered input handshake op-
tions, previously mentioned in the Port General Information

and Conventions section, are available

For pins used as outputs, the data path consists of a single

latch dnving the output buffer, Data written to the port's
data register does not affect the operation of any handshake
pin. status bit. or any other aspect of the Pl/T Output pins
may be used independently of the input transfer However,
read bus cycles to the data register do remove data from the

port Therefore, care should be taken to avoid processor in-
structions that perform unwanted read cycles

Refer to PARALLEL PORTS Double-Buffered Input
Transfers for a sample timing diagram (Figure 11)

Port A or B Submode 01 (8-Bit Double-Buffered

Output) -

Mode 0 Submode 01

r^". Double-Butlefed
Ouipui

m HI (H3I

1^ ̂ - H2 IH4I

In iVlode 0. double-buffered output transfers of up to 8 bits
are available by programming submode 01 in the desired

port's control register The operation of H2 and H4 may be
selected by programming the Port A and Port B Control

Registers, respectively All five double-buffered output
handshake options, previously mentioned m the Port
General Information and Conventions section, are available

For pins used as inputs, data written to the associated

data register is double-buffered and passed to the initial or
final output latch, as usual, but the output buffer is disabled

Refer to PARALLEL PORTS Double-Buffered Output
Transfers for a sample liming diagram (Figure 12)

O
■ H2 IH4I

In Mode 0, simple Bit I/O is available by programming Sub-

mode IX in the desired port's control register This submode
IS intended for applications in which several independent
devices must be controlled or monitored Data written to the

associated data register is single-buffered If the data direc-
tion register bit for that pin is a 1 loutput), the output buffer

IS enabled If it isO linput), data written is still latched, but is
not available at the pm Data read from the data register is
the instantaneous value of the pin or what was written to the

data register, depending on the contents of the data direc-
tion register H1(H3I is an edge-sensitive status input pin

only and it controls no data-related function The H1S(H3S)
status bit IS set following the asserted edge of the input
waveform It is reset by the direct method, the RESET pin

being asserted, or when the H12 Enable IH34 Enable) bit isO

H2(H4) can be programmed as a simple status input (iden-
tical to H)(H3)I, or as an asserted or negated output The in-

terlocked or pulsed handshake configurations are not
available

MODE 1 - UNIDIRECTIONAL 16-BIT IVIODE

In rvlode 1, Ports A and B are concatenated to form a

single 16-bit port The Port B Submode field controls the
configuration of both ports The possible submodes are

Port B Submode XO - Double-Buffered Input

Port B Submode XI - Double-Buffered Output

Handshake pins H3 and H4, configured by programming the

Port B Control Register, are associated with the 16-bit
double-buffered transfer These 16-bit transfers, are enabled
by the H34 Enable bit of the Port General Control Register

Handshake pins HI and H2 may be used as simple status in-
puts not related to the 16-bit data transfer or H2 may be an

output Enabling of the HI and H2 handshake pins is done by
the H12 Enable bit of the Port General Control Register, The

Port A and B Data Direction Registers operate in each sub-
mode Along with the submode, they affect the data read
and written at the data register according lo Table 6 They
also enable the output buffer associated with each port pin

The DMAREO pin may be associated only with H3

Mode 1 can provide convenient, high-speed 16-bit
transfers The Port A and B data registers are addressed for
compatibility with the MC680C0 Move Peripheral (MOVER)
instruction and with the MC68450 DMAC To take advan-

tage of this. Port A should contain the most-significant byte
of data and always be read or written by the bus master first
The interlocked and pulsed handshake protocols are keyed

to accesses to the Port B Data Register in Mode 1 If it is ac-
cessed last, the 16-bit double-buffered transfers proceed

smoothly.

MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

TABLE 5 - MODE 1 PORT DATA PATHS

Mode

Read Port A/B

Register

Write Port A/ B

Register

DDR = 0 DDR=1 DDR = 0

D0R=1 1. Port B

Submode XO

1 , Poet B

Submode XI

FIL, D B

Pin

FOL

Note 3
FOL

Note 3

FOL, S B

Note 2
lOL/FOL,

D B ,

Note 1

FOL, SB

Note 2
lOL/FOL, DB ,

Note 1

Note 1: Data written to Port A goes to a temporary latch Wtten the Port B data

register is later written, Port A data is transferred to lOL/FOL
Note 2: Data is latched in the output data registers (final output latchl and will be

single buffered at the pin if the DDR is 1 The output buffers will be turned
off if the DDR is 0

Note 3 The output drivers that connect the final output latch to the pins are turned

Abbreviations

lOL - Initial Output Latch SB- Single Buffered

FOL - Final Output Latch D B - Double Buffered

FIL - Final Input Latch DDR - Data Direction Register

Port B Submode XO (16-Bit Double-Buffered InputI

Mode 1 Pori B Submode XO

Port B Submode XI (16-Brt Double-Buffered Output) -

Mode I Pon B Submode xl

\ \ A and B \| ' 1161
Laiched. Double
Buttered Input

A and B
1161

Double Bullered

In Mode 1 Pott B Submode XO, double-buffered input
transfers of up to 16 bits nnay be obtained The level of all 16
pins IS asynchronously latched with the asserted edge of H3

The processor may cfieck_H3S_ status bit to determine if new
data IS present The DMAREQ pin may be used to signal a
DMA controller to empty the input buffers Regardless of the
bus master. Port A data should be read first (Actually, Port
A data need not be read at all) Port B data should be read

last The operation of the internal handshake controller, the
H3S bit, and DMAREQ are keyed to the reading of the Port B

data register (The MC68450 DMAC can be programmed to
perform the exact transfers needed for compatibility with the
Pl/T) H4 may be programmed for all five of the handshake

options mentioned in the Port General Information and Con-
ventions section

For pins used as outputs, the data path consists of a single

latcli driving the output buffer. Data written to the port's
data register does not affect the operation of any handshake
pin, status bit, or any other aspect of the Pl/T Thus, output
pins may be used independently of the input transfer
However, read bus cycles to the Port B Data Register do
remove data, so care should be taken to avoid unwanted

read cycles

Refer to PARALLEL PORTS Double-Buffered Input
Transfers for a sample timing diagram (Figure 111

In l^^ode 1 Port B Submode XI, double-buffered output
transfers of up to 16 bits may be obtained Data is written by
the bus master Iprocessor or DfVlA controller! m two bytes

The first byte (most-significant) is written to the Port A Data
Register It is stored in a temporary latch until the next byte
IS written to the Port B Data Register Then all 16 bits are
transferred to the final output latches of Ports A and B Both

options tor interpretation of the H3S status bit. mentioned in
Port General Information and Comments section, are

available and apply to the 16-bit port as a whole The
DMAREQ pin may be used to signal a DMA controller to
transfer another word to the port output latches (The

MC68450 DMAC can be programmed to perform the exact
transfers needed for compatibility with the Pl/T I H4 may be

programmed for all five of the handshake options mentioned
in the Port General Information and Comments section

For pins used as inputs, data written to either data register
IS double-buffered and passed to the initial or final output

latch, as usual, but the output buffer is disabled

Refer to PARALLEL PORTS Double-Buffered Input/Out-
put Transfer for a sample timing diagram (Figure 12)

AA) MOTOROLA Semiconductor Products Inc.

MODE 2 - BIDIRECTIONAL 8-BIT MODE

Mode 2

o
liiectiondl e

Tfans)ers
Input

Translers

In Mode 2, Port A is used for simple bit I/O with no
associated handshake pins Port B is used for bidirectional

8-bit double-buffered transfers HI and H2. enabled by the
H12 Enable bit in the Port General Control Register, control
output transfers, while H3 and H4, enabled by the Port
General Control Register bit H34 Enable, control input
transfers The instantaneous direction of the data is deter-

mined by the HI handshake pin The Port B Data Direction

Register is not used. The Port A and Port B submode fields
do not affect Pl/T operation in lylode 2

Double-Buffered I/O (Port B) - The only aspect of
bidirectional double-buffered transfers that differs from the
unidirectional modes lies in controlling the Port B output but
fers They are controlled by the level of HI When HI is
negated, the Port B output buffers (all 8) are enabled and the
pins drive the bidirectional bus Generally. HI is negated in
response to an asserted H2. which indicates that new output

data IS present in the double-buffered latches Following ac
ceptanceof the data, the peripheral asserts HI, disabling the
Port B output buffers Other than controlling the output buf

fer. H1 IS edge-sensiiive as in other modes Input transfers
proceed identically to the double-buffered input protocol
described in the Port General Information and Conventions

Section In fvlode 2. only the interlocked and pulsed hand-
shake pin options are available on H2 and H4 The DMAREQ

pin may be associated with either input transfers (H3) or out-
put transfers (Hll, but not both. Refer to Table6 for a sum-

mary of the Port B Data Register responses in Mode 2

Bit I/O (Port Al - Mode 2. Port A performs simple bit I/O
with no associated handshake pins This configuration is in-

tended for applications in which several independent devices
must be controlled or monitored Data wntten to the Port A

data register is single-buffered If the Port A Data Direction
Register bit for that pin is 1 loutputl. the output buffer is
enabled If it is 0, data written is still latched but not available

at the pin Data read from the data register is either the in-
stantaneous value of the pin or what was written to the data

register, depending on the contents of the Port A Data
Direction Register This is summarized in Table 7

MODE 3 - BIDIRECTIONAL 16^BIT DOUBLE-
BUFFERED I/O

o

In Mode 3, Ports A and B are used for bidirectional 16-bit
double-buffered transfers. HI and H2 control output
transfers, while H3 and H4 control input transfers (HI and

H2 are enabled by the H12 Enable bit while H3 and H-J are

enabled by the H34 Enable bit of the Port General Control

Register 1 The instantaneous direction of the data is deter-
mined by the HI handshake pm. and thus, the data direction

registers are not used The Port A and Port B submode fields
do not affect PI ' T operation m Mode 3

The only aspect of bidirectional double-buffered transfers
that differs from the unidirectional modes lies in controlling
the Port A and B output buffers They are controlled by the

level of HI When HI is negated, the output buffers lall 161

are enabled and the pins drive the bidirectional bus General-

TABLE 6 - MODE 2 PORT B DATA PATHS

Mode
Read Port B

Data Register

Write Port B

Data Register

2 FlL, D B lOL.FOL, D 8

Abbreviations

lOL - initial Output Latch

FOL - Final Output Latch

FIL - Final Input Latch
D B -

Double Bullered

TABLE 7 - MODE 2 PORT A DATA PATHS

Mode

Read Port A

Data Register

Write P

Data Re(
jrt A

jisler
DDR = 0

DDR=1
DDR = 0

DDR=1 2

Pin
FOL

FOL
FOL, S B

Abbre

S B FOL

DDR

viations

- Single Buffered
- Final Output Latch

- Data Direction Register

MOTOROLA Semiconductor Products Inc.

ly, HI IS negated in response to an asserted H2, which in-

dicates that new output data is present in the double-
buffered latches Following acceptance of the data, the

peripheral asserts HI, disabling the output buffers Other

than controlling the output buffers, HI is edge-sensitive as in
other modes input transfers proceed identically to the

double-buffered input protocol described in the Port General
Information and Conventions section Port A and B data is

latched with the asserted edge of H3 In Mode 3, only the in-
terlocked and pulsed handshake pin options are available to

H2 and H4 The DI*/IAREQ pin may be associated with either

input transfers (H3I or output transfers (Hll, but not both

H2 indicates when new data is available in the Port B (and

implicitly Port Al output latches, but unless the buffer is

enabled by HI, the data is not driving the pins

Mode 3 can provide convenient high-speed 16-bit

transfers The Port A and B Data Registers are addressed for

compatibility with the MC68000's Move Penpheral (MOVER)
instruction and with the MC68450 DMAC To take advan-

tage of this. Port A should contain the most-significant data
and always be read or written by the bus master first. The

interlocked and pulsed handshake protocols are keyed to

accesses to the Port B Data Register in Mode 3 If it is

accessed last, the 16-bit double-buffered transfer proceed

smoothly. Refer to Table 8 for a summary of the Port A and

B data paths in Mode 3.

DMA REQUEST OPERATION

The Direct Memory Access Request (DMAREOI pulse

(when enabled) is associated with output or input transfers

to keep the initial and final output latches full or initial and

final input latches empty, respectively Figures 13 and 14

show all the possible paths in generating DMA requests

DMAREQ is generated on the bus side of the MC68230 by

the synchronized' Chip Select If the conditions of Figures
13 and 14 are met, an access of the bus (assertion of CS) will

cause DMAREQ to be asserted 3 Pl/T clocks (plus the delay

time from the clock edge) after CS is synchronized.'
DMAREQ remains asserted 3 clock cycles (plus the delay

time from the clock edge) and is then negated

The DMAREQ pulse associated with a peripheral or port

side of the Pl/T is caused by the synchronized' H1(H3) in-
put. If the conditions of Figures 13 and 14 are met, a port ac-

cess (assertion of the H1(H3) input) will cause DMAREQ to

be asserted 2 5 Pl/T clock cycles (plus the delay time from

clock edge) after H1(H3] is sycnhronized ' DMAREQ re-
mains asserted 3 clock cycles (plus the delay time from the

clock edge) and is then negated

TABLE 8 - MODE 3 PORT A AND B DATA PATHS

Mods
Read Port A and B

Data Register

Write Port A and B

Data Register

3 FIL, D B lOL/FOL, D B , Note 1

Note 1 Data written to Port A goes 10 a temporarv latch When the Port B data

register is later written, Port A data is transferred to lOL/FOL

Abbreviations

lOL - Initial Output Latch SB- Single Buffered

FOL - Final Output Latch D B - Double Buffered
FIL - Final Input Latch

FIGURE 13 - DMAREQ ASSOCIATED
WITH OUTPUT TRANSFERS

Daia in Output Latches

Peripheral Accepts Data

FIGURE 14 - DMAREQ ASSOCIATED

WITH INPUT TRANSFERS
Data in Input Latches

Peripheral Provides Data

i
DMA Request

No DMA Request Peripheral Accepts Data

Peripheral Provides Data

No DMA Request

"Svnchronjzed means that the input signal has been seen by the Pl/T on the appropriate edge of the clock (using edge for H1(H3) andjalling
edge (or CSI (Refer to the BUS INTERFACE CONNECTION section for the exception concerning CS) II a bus access (assertion of CS) and

 1,^5 will be recognized without any delay HI (H3) will be recognized one clock cycle
a port access (assertion of H 1 (H3)) occur at the s

A^ MOTOROLA Semiconductor Products Inc.

TIMER

The MC68230 timer can provide several facililies needed

by MC68000 operating systems It can generate periodic in-
terrupts, a square wave, or a single interrupt after a pro-
grammed time period. Also, it can be used for elapsed time

measurement or as a device watchdog This section

describes the programmable options available, capabilities,
and restrictions that apply to the timer.

The Pl/T timer contains a 24-bil synchronous down
counter that is loaded trom three 8-bit Counter Preload
Registers The 24 bit counter may be clocked by the output

ot a 5-bit ldivide-by-321 prescaler or by an external timer in-
put TIN If the prescaler is used, it may be clocked by tfie

system clock (CLK pin) or by the TIN external input The
counter signals the occurrence of an event primarily through
zero detection (A zero is when the counter of the 24-bit
timer is equal to zero 1 This sets the zero detect status (ZDS)
bit in the Timer Status Register It may be checked by the
processor or may be used to generate a timer interrupt The
ZDS bit IS reset by writing a 1 to the Timer Status Register in
that bit position

The general operation of the timer is flexible and easily
programmable The timer is fully configured and controlled

by programming the 8- bit Timer Control Register It controls
111 the choice between the Port C operation and the timer

operation of three timer pins. 12) whether the counter is load-
ed from the Counter Preload Register or rolls over when zero

detect IS reach. 131 the clock input, (4) whether the prescaler
IS used, and 151 whether the timer is enabled

RUN/HALT DEFINITION

The overall operation of the timer is described in terms of
the run or halt states The control of the current state is

determined by programming the Timer Control Register
When in the halt state, all of the following occur

1 The prior contents of the counter is not altered and is

reliably readable via the Count Registers

2 The prescaler is forced to S 1 F whether or not it is used

3 The ZDS status bit is forced to 0, regardless i.l the

possible zero contents of the 24-bit counter.
The run state is characterized by:

1 . The counter is clocked by the source programmed in
the Timer Control Register

2 The counter is not reliably readable

3 The prescaler is allowed to decrement if programmed
for use

4 The ZDS status bit is set when the 24 bit counter tran-
sitions from $000001 to SOOOOOO

TIMER RULES

This section provides a set of rules that allow easy applica
lion of the timer.

1 Refer to'the Run/ Halt Definition above.
2 When the RESET pin is asserted, all bits of the Timer

Control Register go to 0. configunng the dual function
pins as Port C inputs

3 The contents of the Counter Preload Registers and
counter are not affected by the RESET pin

4 The Count Registers provide a direct read data path

from each portion of the 24-bit counter, but data wnt-
ten to their addresses is ignored IThis results in a nor-

mal bus cycle I These registers are readable at any

time, but their contents are never latched Unreliable

data may be read when the timer is in the run state.

5. The Counter Preload Registers are readable and
writable at any time and this occurs independently of

any timer operation No protection mechanisms are

provided against ill- timed writes
6. The input frequency to the 24-bit counter from the TIN

pin or prescaler output, must be between 0 and the in-

put frequency at CLK pin divided by 32 regardless of
the configuration chosen

7 For configurations in which the prescaler is used Iwith
the CLK pin or TIN pin as an inputl. the contents of

the Counter Preload Register ICPR) is transferred to
the counter the first time that the prescaler passes

trom$00to$1F Irollsover) after entering the run state
Thereafter, the counter decrements or is loaded from

the Counter Preload Register when the prescaler rolls

over.
8. For configurations in which the prescaler is not used,

the contents of the Counter Preload Registers are
transferred to the counter on the first asserted edge of

the TIN input after entering the run state On subse-
quent asserted edges the counter decrements or is

loaded from the Counter Preload Registers

9. The lowest value allowed in the Counter Preload

Register for use with the counter is S000001

TIMER INTERRUPT ACKNOWLEDGE CYCLES
Several conditions may be present when the timer inter-

rupt acknowledge pin (TlACKl is asserted These conditions

affect the Pl/T's response and the termination of the bus cy-
cle ISee Table 9 1

TABLE 9 - RESPONSE TO TIMER INTERRUPT ACKNOWLEDGE

PC3/T0UT Function Response to Asserted TIACK

PC3 - Port C P.n No response

No DTACK

TOUT - Square Wave No response

No DTACK
TOUT - Negated Timer
Interrupt Request

No response

No DTACK
TOUT - Asserted Timer
Interrupt Request

Timer Interrupt Vector Contents
DTACK Asserted

PROGRAMMER'S MODEL
The internal accessible register organization is represented

in Table 10 Address space within the address map is re-
served for future expansion Throughout the Pl/T data sheet

the following conventions are maintained:
1 A read from a reserved location in the map results in a

read from the "null register " The null register returns
all zeros for data and results in a normal bus cycle A
write to one of these locations results in a normal bus

cycle but no write occurs

2. Unused bits of a defined register are denoted by
and are read as zeroes

3 Bits that are unused in the chosen mode/submode but

are used in others, are denoted by "X". and are
readable and wnteable Their content, however, is ig-

nored in the chosen mode/submode.

4 All registers are addressable as 8-bit quantities. To
facilitate operation with the MOVER instruction and
the DMAC. addresses are ordered such that certain

sets ol registers may also be accessed as words (2
bytes) or long words 14 bytes).

]A)^ MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

TABLE 10 - Pl/T REGISTER ADDRESSING ASSIGNMENTS

Register

Register
Select Bits Accessible

Affected

by

Reset

Affected

by Read

Cycle

5 4 3 2

Pon Genefal Control Regisier IPGCRI 0 0 0 0

R W
Yes

No

Pon Serv.ee Reguesl Regisier IPSRRI 0 0 0 0

P W
Yes

No

Port A Daia Direction Register IPADDRI 0 0 0 1

R W
Yes

No

Port B Data Direction Register (PBDDRI 0 0 0 1 R W

Yes

No

Port C Data Direction Register IPCDDRl 0 0 1 0

R W
Yes

No

Port Interrupt Vector Register (PIVRI 0 0 1 0

R W
Yes

No

Port A Control Register IPACRI 0 0 1 1

R W
Yes

No

Port B Control Register IPBCR) 0 0 1 1

R W
Yes

No

Port A Data Register tPADRI 0 0 0 0 R W

No

* *
Port 8 Data Register IPBDRI 0 0 0 R W

No

* * Port A Alternate Register IPAARl 0 0 1 0 R

No No

Port B Alternate Register IPBARl 0 0 1 R

No No

Port C Data Register IPCDRI 0 1 0 0

R W

No
No

Port Status Register IPSRl 0 1 0

R W*

Yes

No

Timer Control Register ITCRI 0 0 0 0

R W
Yes

No

Timer Interrupt Vector Register ITIVRI 0 0 0

R W
Yes

No

Counter Preload Register High ICPRHI 1 0 0 1

R W

No No

Counter Preload Register Middle ICPRM) 0 1 0 0

R W

No
No

Counter Preload Register Low ICPRL) 0 1 0

R W
No

No

Count Register High ICNTRHI 0 1 1 R

No No

Count Register Middle ICNTRMl
1 0 0 0 R

No No

Count Register Low ICNTRL)
1 0 0 1 R

No No

Timer Status Register ITSR) 1 0 1 0

R W*

Yes

No

' A write lo this register may perform a special ;
» Mode dependent

) resetting operati R- Read

W-Wriie

Port General Control Register (PGCR)

7 1 6 5 4 3 2 1 0

Port Mode

Control

H34
Enable

H12

Enable

H4

Sense

H3

Sense

H2

Sense

HI

Sense

Port Mode Control

Mode 0 (Unidirectional 8-Bit Model

Mode 1 (Unidirectional 16-Bii Model

Mode 2 (Bidirectional 8-Bit Mode)

Mode 3 (Bidirectional 16-Bit Model

Tfie Port General Control Register controls many of the func-

tions that are common to the overall operation of the ports

The PGCR is composed of three maior fields: bits 7 and 6

define the operational mode of Ports A and B and affect

operation of the handshake pins and status bits, bits 5 and 4

allow a software controlled disabling of particular hardware

associated with the handshake pins of each port, and bus 3-0

define the sense of the handshake pins. The PGCR is always
readable and writeable

All bits are reset to 0 when the RESET pin is asserted

The Port Mode Control field should be altered only when

the H12 Enable and H34 Enable bits are 0 Except when

Mode 0 IS desired, the Port General Control register must be

written once lo establish the mode, and again to enable the

respective operationlsl.

0 Disabled

1 Enabled

PGCR
4 H12 Enable

0 Disabled
1 Enabled

PGCR

3:0 Handshake Pin Sense

The associated pm is at the high-voltage level when

negated and at the low-voltage level when asserted

The associated pin is at the low-voltage level when

negated and at the high-voltage level when asserted

AA) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

Port Service Request Register (PSRRI

7 6 5 4 3 2 0

♦ SVCRQ

Selecl

Inlerrupl
PFS

Porl Interrupl

PnorHV Control

The Port Service Request Register controls other functions
that are common to the overall operation to the ports. It is

composed of four major fields bit 7 is unused and is always

read as 0. bits 6 and 5 define whether interrupt or DMA re-

quests are generated from activity on the HI and H3 hand-
shake pins, bits 4 and 3 determine whether two dual function

pins operate as Port C or port interrupt request/-
acknowledge pins, and bits 2, 1, and 0 control the priority
among all port interrupt sources Since bits 2, 1 , and 0 affect
interrupt operation, it is recommended that they be changed
only when the affected interruptisi is (are) disabled or known
to remain inactive The PSRR is always readable and
writeable

All bus are reset to 0 when the RESET pin is asserted.

SVCRQ Select

0 X The PC4/ DMAREQ pin carries the PC4 function; DMA
IS not used

1 0 The PC4,' DMAREQ pin carries the DMAREQ function
and IS associated with double buffered transfers con-

trolled by HI HI IS removed from the Pl/T's interrupt
structure, and thus, does not cause interrupt requests

to be generated To obtain DMAREQ pulses. Port A
Control Register bit 1 iHI SVCRQ Enable! must be a 1

1 1 The PC4/DMAREQ pin carnes the DMAREQ function

and IS associated with double-buffered transfers con-

trolled by H3 H3 IS removed from the Pl/T's interrupt
structure, and thus, does not cause interrupt requests

to be generated To obtain DMAREQ pulses. Port B
Control Register bit 1 IH3 SVCRQ Enablel must be 1

PSRR

4 3 Interrupt Pin Function Select

0 0 The PC5/PIRQ pm carnes the PC5 function.
The PC6;PIACK pin carries the PC6 function.

0 1 The PC5/PIRQ pin carries the PIRQ function.
The PC6/PIACK pm carries the PC6 function.

1 0 The PCS/ PIRQ pin carries the PC5 function.
The PC6/PIACK pm carries the PIACK function.

1 1 The PCS; PIRQ pin carries the PIRQ function
The PC6/ PIACK pm carries the PIACK function

Bits 2, 1 , and 0 determine port interrupt r'lonty The prionty
IS shown in descending order left to right

PSRR Port Interrupt Priority Control

2 1 0 Highest Lowest

0 0 0 HIS H2S H3S H4S

0 0 1 H2S HIS H3S H4S

0 10 HIS H2S H4S H3S

Oil H2S HIS H4S H3S

10 0 H3S H4S HIS H2S

10 1 H3S H4S H2S HIS

110 H4S H3S HIS H2S

111 H4S H3S H2S HIS

Port A Data Direction Register IPADDR) - The Port A
Data Direction Register determines the direction and buffer-

ing characteristics of each of the Port A pms Qne bit in the
PADDR IS assigned to each pin. A 0 indicates that the pin is
used as an input, while a 1 indicates it is used as an output.
The PADDR is always readable and writeable This register is
ignored in Mode 3.

All bits are reset to the 0 (input) state when the RESET pm
is asserted.

Port 8 Data Direction Register (PBDDR) - The PBDDR is
identical to the PADDR for the Port B pins and the Port B

Data Register, except that this register is ignored in Modes 2
and 3

Port C Data Direction Register (PCDDR) - The Port C
Data Direction Register specifies whether each dual function
pin that IS chosen for Port C operation is an input (0) or an
output (1) pin. The PCDDR. along with bits that determine

the respective pin's function, also specify the exact hardware
to be accessed at the Port C Data Register address I See the
Port C Data Register description for more details) The
PCDDR IS an 8-bit register that is readable and writeable at all
times Its operation is independent of the chosen Pl/T mode
These bits are cleared to 0 when the RESET pm is

asserted.

Port Interrupt Vector Register (PIVR) -

7 6 5 4 3 2 1 0

Interrupt Vecior Number
' »

The Port Interrupt Vector Register contains the upper order

SIX bits of the four port interrupt vectors. The contents of

this register may be read two ways by an ordinary read cy-
cle, or by a port interrupt acknowledge bus cycle The exact

data read depends on how the cycle was initiated and other
factors Behavior during a port interrupt acknowledge cycle
IS summarized above in Table 3.

A^ MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

From a normal read cycle (CS), there is never a conse-
quence 10 reading this register. Following negation of the

RESET pin, but prior to writing to the PIVR. a $0F will be
read After writing to the register, the upper 6 bits may be
read and the lower 2 bits are forced to 0 No prioritization
computation is performed

Port A Control Register (PACR) -

7 6 5 4 3 2 1 0

Pon A

Submode
H2 Control

H2
Int

Enable

HI

SVCRQ
Enable

HI
Slat

Ctrl.

The Port A Control Register, in coniunction with the pro-
grammed mode and the Port B submode. control the opera-

tion of Port A and the handshake pins HI and H2 The Port A

Control Register contains five fields: bits 7 and 6 specify the
Port A submode, bits 5. 4, and 3 control the operation of the

H2 handshake pin and H2S status bit. bil 2 determines
whether an interrupt will be generated when the H2S status

bit goes to 1. bit 1 determines whether a service request (in-
terrupt request or DM A request) will occur; bit 0 controls the

operation of the HIS status bit The PACR is always

readable and wnteable
All bits are cleared to 0 when the RESET pin is asserted

When the Port A submode field is relevant in a mode/ sub-
mode definition, it must not be altered unless the H12 Enable

bit in the Port General Control Register is 0 (See Table 2 I
The operation of HI and H2 and their related status bits is

given below, for each of the modes specified by Port General
Control Register bus 7 and 6 This description is organized
such that for each mode/ submode all programmable options
of each pm and status bit are given

Bits 2 and 1 carry the same meaning in each mode/sub-
mode, and thus are specified only once.

PACR

2 H2 interrupt Enable

0 The H2 interrupt is disabled

1 The H2 interrupt is enabled.

PACR
HI SVCRQ Enable

The HI interrupt and DMA request are disabled
The HI interrupt and DMA request are enabled.

PACR Mode 0 Port A Submode 00

PACR
5 4 3 H2 Control

0 X X Input pin - status only.

1 0 0 Output pin - always negated.

1 0 1 Output pin — always asserted .

1 1 0 Output pin — interlocked input handshake pro-
tocol

1 1 1 Output pin - pulsed input handshake protocol

H1 Status Control

PACR Mode 0 Port a Submode 01

H2 Control

PACR
5 4 3

0 X X Input pin - status only

1 0 0 Output pin - always negated

1 0 1 Output pin - always asserted

1 1 0 Output pin - interlocked output handshake pro-

tocol .
1 1 1 Output pin - pulsed output handshake protocol

PACR

HI Status Control

The HIS status bit is 1 when either the Port A initial or

final output latch can accept new data It is 0 when
both latches are full and cannot accept new data.

The H1 S status bit is 1 when both of the Port A output

latches are empty. It is 0 when at least one latch is full

PACR Mode 0 Port A Submode IX

0 X X Input pin - status only

1 X 0 Output pin - always negated.

1 X 1 Output pin - always asserted.

HI Status Control

X Not used

PACR Mode 1 Port A Submode XX Port B Submode XO

PACR
5 4 3 H2 Control

0 X X Input pin - status only.

1 X 0 Output pin - always negated.

1 X 1 Output pin - always asserted
PACR

0 HI Status Control

Not used

PACR Mode 1 Port A Submode XX Port B Submode XI
PACR

5 4 3 H2 Control

0 X X Input pin - status only.
1 X 0 Output pin - always negated.
1 X 1 Output pin - always asserted

PACR
HI Status Control

A^ MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

PACR Mode 2

H2 Control

PACR

5 4 3

X X 0 Output pin - interlocked output handshake pro-

tocol

X X 1 Output pin - pulsed output handshake protocol.

m Status Control

The HIS status bit is 1 when either the Port B initial or

final output latch can accept new data U is 0 when

both latches are full and cannot accept new data-

The HIS status bit is 1 when both of the Port B output

latches are empty It ts 0 when at least one latch is full

PACR Mode 3

H2 Control

- interlocked output handshake pro-

pulsed output handshake protocol.

HI Status Control

The H1S status bit is 1 when either the initial or final

output latch of Port A and B can accept new data. It is

0 when both latches are full and cannot accept new
data

The HIS status bit is 1 when both the Initial and final

output latches of Ports A and B are empty. It is 0 when

either the initial or final latch of Ports A and B is full

PACR

6 4 3

X X 0 Output pin

tocol

X X 1 Output pin

PACR

Port B Control Register IPBCR)

7 6 6 4 ' 2 > 0

Port B

Submode H4 Conlroi

H4
Inl

Enable

H3

SVCFIQ
Enable

H3

Slat.

Ctrl

The Port B Control Register specifies the operation of Port 8

and the handshake pins H3 and H4. The Port B control

register contains five fields: bits 7 and 6 specify the Port B

submode, bits 5, 4, and 3 control the operation of the H4

handshake pin and H4S status bit, bit 2 determines whether

an interrupt will be generated when the H4S status bit goes

to 1, bit 1 determines whether a service request (interrupt re-

quest or DMA requesil will occur, bit 0 controls the opera-

tion of the H3S status bit The PACR is always readable and

writeable There is never a consequence to reading the

register
All bits are cleared to 0 when the RESET pin is asserted

When the Port B submode field is relevant m a mode/sub-

mode definition. ,t must not be altered unless the H34 Enable

bit in the Port General Control Register is 0 (See Table 2)

The operation of H3 and H4 and their related status bus is

given below, for each of the modes specified by Port General

Control Register bits 7 and 6 This description is organized

such that for each mode/submode all programmable options

of each pm and status bit are given

Bits 2 and 1 carry the same meaning in each mode/sub-
mode, and thus are specified only once

PBCR

2 H4 Interrupt Enable

0 The H4 interrupt is disabled

1 The H4 interrupt is enabled

PBCR

H3 SVCRQ Enable

0 The H3 interrupt and DMA request are disabled

1 The H3 interrupt and DMA request are enabled

PBCR Mode 0 Port B Submode 00

H4 Control

PBCR

5 4 3

0 X X Input pin - status only

1 0 0 Output pin - always negated.

1 0 1 Output pin - always asserted.

1 1 0 Output pin - interlocked input handshake pro-

tocol
1 1 1 Output pin — pulsed input handshake protocol

PBCR

H3 Status Control

PBCR Mode 0 Port B Submode 01

BCR 4 3 H4 Control

X X Input pin - status only

0 0 Output pin - always negated.

0 1 Output pm — always asserted.

1 0 Output pin — interlocked output handshake pro-

tocol 1 1 Output pm - pulsed output handshake protocol

H3 Status Control

The H3S status bit is 1 when either the Port B initial or

final output latch can accept new data It is 0 when

both latches are full and cannot accept new data

The H3S status bit is 1 when both of the Port B output

latches are empty. It is 0 when at least one latch is full.

PBCR Mode 0 Port B Submode IX

0 X X Input Pin - status only

1 X 0 Output pin - always negated

t X 1 Output pin — always asserted

H3 Status Control

PBCR Mode 1 Port B Submode XO

4 3 H4 Control

X X Input pin - status only

0 0 Output pin — always negated

0 1 Output pin - always asserted

1 0 Output pin - interlocked input handshake pro-

tocol.
1 1 Output pin - pulsed input handshake protocol.

AA) MOTOROLA Semiconductor Products Inc.
349

MC68230L8«MC68230L10

H3 Status Control

PBCR Mode 1 Port B Submode XI

0 X X Input pin -
1 0 0 Output pin

1 0 1 Output pin

1 1 0 Output pin

tocol

1 1 1 Output pin

- status only

- always negated

- always asserted

- interlocked output handshake pro

- pulsed output handshake protocol

PBCR

0 H3 Status Control

The H3S status bit is 1 when either the initial or final

output latch of Port A and B can accept new data It is

0 when both latches are full and cannot accept new

data

The H3S status bit is 1 when both the initial and final

output latches of Ports A and B are empty It is 0 when

neither the initial or final latch of Ports A and B is full

Port B Data Register IPBDR) - The Port B Data Register
IS an address for moving data to and from the Port B pins

The Port B Data Direction Register determines whether each

pin IS an input (Olor an output (1), and is used in configuring

the actual data paths This is mode dependent and is
described with the modes, above

This register is readable and writeable at all timeS- Depend

ing on the chosen mode/submode, reading or writing may

affect the double-buffered handshake mechanism. The Port

B Data Register is not affected bytheassertionof theRESET

pin.

Port A Alternate Register I PAAR) - The Port A Alternate
Register is an alternate address for reading the Port A pins It

IS a read-only address and no other Pl/T condition is af-
fected In all modes and the instantaneous pin level is read

and no input latching is performed except at the data bus in-

terface (see Bus Interface Connection). Wntes to this ad-

dress are answered with DTACK, but the data is ignored.

Port B Alternate Register (PBAR) - The Port B Alternate
Register is an alternate address for reading the Port B pins It

IS a read-only address and no other Pl/T condition is af-
fected In all modes the instantaneous pin level is read and

no input latching is performed except at the data bus inter-
face (see Bus Interface Connection) Writes to this address

are answered with DTACK, but the data is ignored

PBCR

5 4 3

X X 0 Output pir

tocol

X X 1 Output pin

PBCR

0

X Not used

PBCR

5 4 3

X X 0 Output pir

tocol

X X 1 Output pin

PBCR

PBCR Mode 2

H4 Control

- interlocked input handshake pro-

- pulsed input handshake protocol

H3 Status Control

PBCR Mode 3

H4 Control

- interlocked input handshake pro-

- pulsed input handshake protocol

H3 Status Control

Port A Data Register (PADR) - The Port A Data Register
IS an address for moving data to and from the Port A pins

The Port A Data Direction Register determines whether each

pin IS an input (01 or an output (1) . and is used in configuring

the actual data paths This is mode dependent and is
described with the modes above

This register is readable and writeable at all times. Depend-
ing on the chosen mode/submode. reading or writing may

affect the double-buffered handshake mechanism The Port

A Data Register is not affected by the assertion of the

RESET pin

Port C Data Register (PCDR) - The Port C Data Register
IS an address for moving data to and from each of the eight

Port C/alternate-function pins The exact hardware
accessed is determined by the type of bus cycle (read or

wnte) and individual conditions affecting each pin These

conditions are (11 whether the pin is used for the Port C or

alternate function, and (21 whether the Port C Data Direction

Register indicates the input or output direction The Port C

Data Register is single buffered for output pins and not buf

fered for input pins These conditions are summarized in

Table 11

The Port C Data Register is not affected by the assertion
of the RESET pin.

The operation of the PCDR is independent of the chosen
Pl/T mode

TABLE 11 - PCDR HARDWARE ACCESSES

Read Port C Data Register]

Port C function

PCDDR=0

Port C function

PCDDR = 1

Alternate

function

PCDDR=0

Alternate

function

PCDDR- 1

P,„

PorlC

outpul

teqisier

pin

Port C

oulpul

register Write Port C Data Register |

Port C Function

PCDDR=0

Port C Function

PCDDR=1

Alternate

function

PCDDR=0

Alternate

function

PCDDR- 1 Port C

output register.
buKer disabled

Pofi C

output register.
butter enabled

Port C

output register

Port C

output register

AA) MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

Note that two additional useful benefits result from tfiis

structure First, n is possible to directly read Ifie state of a

dual-function pin while used for thte non-Port C function Se-

cond, It IS possible to generate program controlled transi-

tions on alternate-function pins by switcfiing back to tfie
Port C function, and wnling to tfie PCDR

Tills register is readable and writeable at all times

Port Status Register IPSR -

7 6 5 4 3 2 1 0

H4

Level

H3

Level

H2

Level

HI

Level

H4S H3S H2S HIS

The Port Status Register coniams information about hand-
shake pin activity Bus 7-4 show the instantaneous level of

the respective handshake pm, and is independent of the
handshake pm sense bits in the Port General Control

Register Bit 3-0 are the respective, status bits referred to
throughout this data sheet Their interpretation depends on

the programmed mode/submode of the Pl/T, For Bits 3-0 a
1 IS the active or asserted state

Timer Control Register (TCR) -

7 6 5 4 3

2 1 1
0

TOUT/TIACK

Control

Z D

Ctrl

• Clock

Control

Timer

Enable

Tfie Timer Control Register (TCR) determines all operations

of tfie timer Bits 7-5 configure Ifie PC3/T0UT and
PC7/T1ACK pins for Port C. square wave, vectored inter-

rupt, or autovectored interrupt operation, bit 4 specifies
whether the counter receives data from the Counter Preload

Register or continues counting when zero detect is reached,
bit 3 IS unused and is read as 0; bits 2 and 1 configure the
path from the CLK and TIN pins to the counter controller; bit

0 enables the timer. This register is readable and writeable at

all times
All bits are cleared to 0 when the RESET pin is asserted

TCR

TOUT/TIACK Control

0 X The dual-function pins PCS/TOUT and PC7/TIACK
carry the Port C function

1 X The dual-function pin PCS/TOUT carries the TOUT
function In the run state it is used as a square wave

output and IS toggled on zero detect The TOUT

pin IS high while in the halt state. The dual-function
pin PC7/TIACK carries the PC7 function.

0 0 The dual-function pin PC3/T0UT carries the TOUT
function In the run or halt state it is used as a timer

interrupt request output The timer interrupt is

disabled, thus, the pm is always three-stated. The
dual-function pin PC7/TIACK carnes the TIACK
function, however, since interrupt request is
negated, the Pl/T produces no response, i e., no
data or DTACK. to an asserted TIACK Refer to

Timer Interrupt Cycle section for details This com-
bination and the 101 state below support vectored

timer interrupts.

1 0 1 The dual-function pin PC3/T0UT carries the TOUT
function and is used as a timer interrupt request
output. The timer interrupt is enabled, thus, the pin
is low when the timer ZDS status bit is 1 The dual

function pin PC7/TIACK carries the TIACK func-
tion and IS used as a timer interrupt acknowledge

input Refer to the Timer Interrupt Acknowledge
Cycle section lor details This combination and the

100 state above support vectored timer interrupts
1 1 0 The dual function pin PC3/T0UT carries the TOUT

function. In the run or halt state it is used as a timer

interrupt request output The timer interrupt is

disabled, thus, the pin is always three-stated. The
dual-function pin PC7/TIACK carries the PC7 func-
tion

1 1 1 The dual-function pin PC3/T0UT carnes the TOUT
function and is used as a timer interrupt request

output. The timer interrupt is enabled, thus, the pin
IS low when the timer ZDS status bit is 1 The dual-
function pin PC7/TIACK carries the PC7 function
and autovectored interrupts are supported

TCR
4 Zero Detect Control

0 The counter is loaded from the Counter Preload

Register on the first clock to the 24-bit counter after
zero detect, and resumes counting

1 The counter rolls over on zero detect, then continues
counting.

Bit 3 IS unused and is always read as 0

TCR

2 2 Clock Control
0 0 The PC2/TIN input pin carries the Port C function and

the CLK pin and prescaler are used The prescaler is
decremented on the falling transition of the CLK pm;
the 24-bit counter is decremented or loaded from the
Counter Preload Registers when the prescaler rolls
over from SOO to S 1 F The Timer Enable bit determines
whether the timer is in the run or halt state

0 1 The PC2/TIN pin serves as a timer input and the CLK
pm and prescaler are used The prescaler is
decremented on the falling transition of the CLK pin.
the 24-bit counter is decremented or loaded from the
Counter Preload Registers when the prescaler rolls
over from $00 to SIF The timer is in the run state

when the Timer Enable bit is 1 and the TIN pin is high;
otherwise the timer is in the halt state

1 0 The PC2/TIN pm serves as a timer input and the

prescaler is used The prescaler is decremented follow-
ing the rising transition of the TIN pm after syncing

with the internal clock The 24-bit counter is
decremented or loaded from the counter preload

registers when the prescaler rolls over from SOO to SI F.
The Timer Enable bit determines whether the timer is
in the run or halt state,

1 1 The PC2/TIN pin serves as a timer input and the

prescaler is unused. The 24-bit counter is decremented
or loaded from the Counter Preload Registers follow

ing the rising edge of the TIN pin after syncing with
the internal clock. The Timer Enable bit determines
whether the timer is in the tun or halt state,

A^ MOTOROLA Semiconductor Products Inc.

MC68230L8»MC68230L10

Disabled
Enabled.

Tinner Interrupt Vector Register (TIVR) — The timer inter-
rupt vector register contains the 8-bit vector supplied when

the timer interrupt acknowledge pin HACK is asserted The
register is readable and writeable at all times, and the same
value is always obtained from a normal read cycle and a timer

interrupt acknowledge bus cycle (TIACK) When the RESET
pin IS asserted the value of SOF is automatically loaded into

the register Refer to Timer Interrupt Acknowledge Cycle
section for more details

Counter Preload Register H, M, I (CPRH-L)

CPRL

The Counter Preload Registers are a group of three 8-bit
registers used for storing data to be transferred to the
counter Each of the registers is individually addressable, or
the group may be accessed with the fvlOVEP L or the
MOVER W instructions The address one less than the ad-

dress of CPRH IS the null register, and is reserved so that
zeros are read in the upper 8 bits of the destination data

register when a MOVER L is used Data written to this ad-
dress is ignored

The registers are readable and writeable at all times A
read cycle proceeds independently of any transfer to the
counter, which may be occuring simultaneously

To insure proper operation of the Pl/T Timer, a value of

SOOOOCXD may not be stored in the Counter Preload Registers
for use with the counter

The RESET pin does not affect the contents of these
registers

Count Register H, M, L (CNTRH-U -

7 6 5 4 3 2 1 0
Bit

23

Bit

22

Bn

21

Bit
20

Bil 19
Bit

18
Bit

17

Bit

16

Bit
15

Bit

14

Bit
13 Bit

12 Bit

11

Bit
10

Bit
9

Bit

8

Bit

7

Bit

6

Bit

5 Bir 4

Bit

3

Bit

2
Bit
1

Bit

0

7 6 5 4 3 2 1 0

Bil

23

Bit

22
Bit

21

Bit
20

Bit

19
Bit 18

Bit 17
Bit 16

Bit
15

Bit

14

Bit
13

Bit
12 Bit

11
Bit
10

Bit

9

Bit

8

Bit

7

Bit

6

Bit

6
Bit
4

Bit
3

Bit

2
Bit
1

Bit

0

The count registers are a group of three 8-bit addresses at
which the counter can be read The contents of the counter

are not latched dunng a read bus cycle, thus, the data read at
these addresses is not guaranteed if the timer is in the run

stale. (Bits 2, 1. and 0 of the Timer Control Register specify
the state I Write operations to these addresses result in a
normal bus cycle bul the data is ignored

Each of the registers is individually addressable, or the
group may be accessed with the MOVER L or the MOVEP W
instructions The address one less than the address of

CNTRH IS the null register, and is reserved so that zeros are

read in the upper 8 bits of the destination data register when
a MOVEP L IS used Data written to this address is ignored

Timer Status Register (TSR) -

7 6 6 4 3 2 1 0

• • * * * * * ZDS

The Timer Status Register contains one bit from which the
zero detect status can be determined The ZDS status bit Ibit

01 IS an edge-sensitive flip flop that is set to 1 when the 24 bit
counter decrements from $000001 to $000000 The ZDS

status bit IS cleared to 0 following the direct clear operation
Isimilat to that of the ports!, or when the timer is halted

Note also that when the RESET pin is asserted the timer is
disabled, and thus enters the halt state

This register is always readable without consequence A
write access performs a direct clear operation if bit 0 in the
written data is 1 Following that, the ZDS bit is 0

This register is constructed with a reset dominant S-R flip-
flop so that all clearing conditions prevail over the possible
zero detect condition

Bits 7-1 are unused and are read as 0

TIMER APPLICATIONS SUMMARY

This section outlines programming of the Timer Control

Register for several typical examples

Periodic Interrupt Generator

7 1 6 1 5 J 3

2 1 '

0

TOUT TIACK Z D

Clrl

*
Clock

Conliol

Timer

Enable

00 or IX

cf^af^qed

In this configuralion the timer generates a periodic inter

rupt The TOUT pm is connected to the system's interrupt
request circuitry and the TIACK pm may be used as an inter
rupt acknowledge input to the timer The TIN pm may be
used as a clock input

The processor loads the Counter Preload Registers and
Timer Control Register, and then enables the timer When

the 24-bit counter passes from $000001 to $000000 the ZDS
status bit IS set and the TOUT (mterrupl request) pm is

asserted At the next clock lo the 24-biI counter it is again

loaded with the contents of the CPR's, and thereafter
decrements In normal operation, the processor must direct
clear the status bit to negaie the interrupt request (see

Figure 15)

rK) MOTOROLA Semiconductor Products Inc.

MC68230L8«MC68230L10

FIGURE 15 - PERIODIC INTERRUPT GENERATOR

J

U U if

Squa
re Wave Generator

- 1 . h J

^ 1 ' TOL.T TiiCK

Conlroi

Z 0

Ctrl

.
Conlro

T.met

Enable

0 1 X 0 0 00 0* IX changed

In this configuraiion ihe timer produces a square wave at

the TOUT pin The TOUT pin is connected lo the user's cir
cuilry and the TIACK pin is not used The TIN pin may be us

ed as a clock input

The processor loads the Counter Preload Registers and

Timer Control Register, and then enables the timer When

the 24-bil counter passes from $000001 to 5000000 the ZDS

status btt IS set and the TOUT (square wave output) pm ts

toggled At the next clock to the 24 bit counter it is again

loaded wtth the contents of the CPRs. and thereafter

decrements In this applical'on there is no need for the pro

cessor to direct dear the ZDS status bit. however, ii is possi

ble for the processor to sync itself with the square wave by

cleanng the ZDS status bu. then polling n The processor

may also fead the TOUT level at Ihe Port C address

Note that the PC3/T0UT pm functions as PC3 following

the negation of RESET If used in the square wave con-
figuration a pullup resistor may be required to keep a known

level prior to programming Prior to enabling the timer.

TOUT is high (see Figure 161

FIGURE 16 - SQUARE WAVE GENERATOR

Z.J

Interrupt After Tin
neout

' 1 6 1 . J 3

-' 1 '
0

TOUT TIACK

Conlfol

Z D

Cin

♦ Clock

Conlfoi
Timer

En

00 Of IX

anged

In this configuration the timer generates an interrupt after

a programmed time period has expired The TOUT pm is

connected to the system's interrupt request circuitry and the
TIACK pin may be an interrupt acknowledge inpu! lo the

timer The TIN pm may be used as a clock input

This configuration is similar to the periodic mterrupt

generator except that the Zero Detect Control bit is set This
forces the counter roll over after Zero Detect is reached,

rather than reloadmg from the CPRs When the processor

takes the interrupt it can halt the timer and read the counter

This allows the processor to measure the delay time from

Zero Detect (interrupt request) to entering the service

routine Accurate knowledge of the interrupt latency may be

useful m some applications (see Figure 17)

FIGURE 17

N

SINGLE INTERRUPT AFTER TIMEOUT
 R,.. H

.J

soooooo

Elapsed Time Measurement

Elapsed time measurement takes several forms, iwo <

described below

System Clock

7 1 6 1 5 4 3

2 1 1

0

TGUT/TIACK

Control

2 D

Ctrl

« Clock

Control

Timer

Enable
0 ctianged

This configuration allows time interval measurement bv

software No timet pins are used

Trie processor loads the Counter Preload Registers

(generally with all Isl and Timer Control Register, and then

enables the timer The counter decrements until the ending

event takes place When it is desired lo read ihe time inter

val, the processor must hall the timer, then read the counter

For applications in which the interval could have exceeded

that programmable in this timer, interrupts can be counted

to provide the equivalent of additional timer bits At Ihe end,

the timer can be halted and read Isee Figure 181

AA) MOTOROLA Semiconductor Products Inc. 353

MC68230L8»IV1C68230L10

FIGURE 18 - ELAPSED TIME MEASUREMENT

K """ H
FIGURE 19 - DEVICE WATCHDOG

7 1 6 1 5 4 3 2 1 1 0

TOUT/TIACK
Contfol

Z D

cm « Clock

Conlfol

Timef

Enable

0 X changed

This configuration allows measurement (counting) of the
number of input pulses occurnng in an interval in which the
counter is enabled The TIN input pm provides the input
pulses Generally the TOUT and TIACK pins are not used

This configuration is identical To the Elapsed Time

Measurement/System Clock configuration except that the
TIN pin IS used to provide the input frequency It can be con
necied to a simple oscillator, and the same methods could be

used Alternately, il could be gated off and on externally and
the number of cycles occurring while m the run state can be
counted However, minimum pulse width high and low
specifications must be met

Device Watchdog

7 16 15 4 3 2 1 1 0

TOUT TIACK

Control

Z D

Clfl

* Clock
Control

Timer

Enable

1X1 10 0 1 changed

This configuration provides the watchdog function need-
ed in many systems The TIN pin is the timer input whose

period at the high (1) level is to be checked Once allowed by
the processor, the TIN input pm controls the run/halt mode
The TOUT pm is connected to external circuitry requiring
notification when the TIN pm has been asserted longer than
the programmed time The TIACK pm (interrupt
acknowledge! is only needed if the TOUT pm is connected to
interrupt circuitry

The processor loads the Counter Preload Register and
Timer Control Register, and then enables the timer When

the TIN input is asserted 1 1 . highl t^e timer transfers the con-
tents of the Counter Preload Register to the counter and

begins counting If the TIN input is negated before Zero
Detect IS reached, the TOUT output and the ZDS status bit

remain negated If Zero Detect is reached while the TIN input
IS still asserted the ZDS status bit is set and the TOUT output

IS asserted (The counter rolls over and keeps on counting 1
In either case, when the TIN input is negated the ZDS

status bit IS 0. the TOUT output is negated, the counting
Slops, and the prescater is forced to all Is (see Figure 19).

TOUT

'Analog tepreseniaiion ol

BUS INTERFACE CONNECTION

The Pl/T has an asynchronous bus interface, primarily

designed for use with the MC68000 microprocessor With
care, however, it can be connected to synchronous
microprocessor buses. This section completely describes the

Pl/T's bus interface, and is intended for the asynchronous
■bus designer unless otherwise mentioned.

In an asynchronous system the Pl/T CLK may operate at a
significantly different frequency, either higher or lower, than
the bus master and other system components, as long as all
bus specifications are met. The MC68230 CLK pin has the
same specifications as the MC68000 CLK, and must not be

gated off at any time.
The following signals generate normal_read and wnte

cycles to the Pl/T CS (Chip Select), R/W (Read/Wnte),

RS1-RS5 (five Register Select bits), D0-D7 (theS-bit bidirec-
tional data bus), and DTACK (Data Transfer Acknowledge)

To generate interrupt acknowledge cycles PC6/PIACK or
PC7/TIACK IS used instead of CS, and the Register Select
pins are ignored No combination of the following pins may
be asserted simultaneously CS, PIACK. or TIACK

READ CYCLES VIA CHIP SELECT

This catagory includes all register reads, except port or
timer interrupt acknowledge cycles When CS is asserted,
the Register Select and R/W inputs are latched internallly
They must meet small setup and hold time requirements with

respect to the asserted edge of CS, (See the AC ELEC-
TRICAL CHARACTERISTICS table.) The Pl/T is not pro-

tected against aborted (shortened) bus cycles generated by
an Address Error or Bus Error exception in which it is
addressed.

Certain operations triggered by normal read (or write) bus
cycles are not complete within the time allotted to the bus

cycle One example is transfers to/ from the double-buffered
latches that occur as a result of the bus cycle. If the bus

master's CLK is significantly faster than the PJ/T's the
possibility exists that, following the bus cycle, CS can be

(g) ilf OTOAOL/I Semiconductor Products Im.

MC68230L8«MC68230L10

negated then re-asserted before completion of ihese internal
operations In Ihiis situation the Pl/T does not recognize the
re assertion of CS until these operations are complete Only
at that time does it begin the internal sequencing necessary
to react to the asserted CS Since CS also controls the

DTACK response, this "bus cycle recovery time" can be
related to the CLK edge on which DTACK is asserted for that
cycle The Pl/T will recognize the subsequent assertion of
CS three (31 CLK periods after the CLK edge on which

DTACK was previously asserted_
The Register Select and R/W inputs pass through an

internal latch thal^ is transparent when the Pl/T can
recognize a new CS pulse (see above paragraph) Since the
internal data bus of the Pt/T is continuously enabled for read
transfers, the read access time (to the data bus buffers)

begins when the Register Selects are stabilized internally
Also, when the Pl/T is ready to begin a new bus cycle, the
assertion of CS enables the data bus buffers within a short

propagation delay This does not contribute to the overall

read access time unless_CS is asserted significantly after the
Register Select and R/W inputs are stabilized (as may occur
with synchronous bus microprocessors)

In addition to Chip Select's previously mentioned duties, il
controls the assertion of DTACK and latching of read data at
the data bus interface Except for controlling input latches

and enabling the_data bus buffers, all of these functions

occur only after CS has been recognized internally and syn-
chronized with the internal clock Chip Select is recognized

on the falling edge of the CLK if the setup time is met.
DTACK IS asserted (low) on the next falling edge of the CLK

Read data is latched at the Pl/T's data bus interface at the
same time DTACK is asserted. It is stable as long as Chip

Select remains asserted independent of other external condi-
tions

From the above discussion it is dear that if the CS setup

lime prior to the falling edge of the CLK is met. the PI/ T can
consistently respond to a new read or write bus cycle every
four (4) CLK cycles This fact is especially useful in designing

the Pl/T's clock in synchronous bus systems not using
DTACK lAn extra CLK period is required in interrupt

acknowledge cycles, see Read Cycles via Interrupt
Acknowledge I

In asynchronous bus systems m which the Pl/T's CLK dif-
fers from that of the bus master, generally there is no way to

guarantee that the CS setup time with respect to the Pl/T

CLK IS met Thus, the onlv_way to determine that the Pl/T
recognized the assertion of CS is to wait for the assertion of
DTACK In this situation, all latched bus inputs to the Pl/T
must be held stable until DTACK is asserted These include

Register Select, R/W. and wnte data inputs (see below)
System specifications impose a maximum delay from the

trailing (negated) edge of Chip Select to the negated edge of

DTACK As system speeds increase this becomes more dif-
ficult to meet with a simple pullup resistor tied to the DTACK
line Therefore, the Pl/T provides an internal active pullup

device to reduce the rtse time, and a level-sensitive circuit

that later turns this device off DTACK is negated asyn-
chronously as fast as possible following the rising edge of

Chip Select, then three-stated to avoid interference with the
next bus cycle.

The system designer must take care that DTACK is

negated and three-stated quickly enough after each bus
cycle to avoid interference with the next one With the
MC68(XX) this necessitates a relatively fast external path from
the data strobe to CS going negated

WRITE CYCLES

In many ways write cycles are similar to normal read cycles

(see above) On write cycles, data at the D0-D7 pins must
meet the^ same setup specifications as the Register Select
and R/W lines, Like the_se signals, write data is latched on
the asserted edge of CS, and must meet small setup and
hold time requirements with respect to that edge. The same
bus cycle recovery conditions exist as for normal read cycles.
No other differences exist

READ CYCLES VIA INTERRUPT ACKNOWLEDGE

Special internal operations take place on Pl/T interrupt
acknowledge cycles The Port Interrupt Vector Register or
the Timer Interrupt Vector Register are implicitly addressed
by the assertion of PC6/PIACK or PC7/TIACK, respectively
The signals are first synchronized with the falling edge of the
CLK One dock period after they are recognized the data bus
buffers are enabled and the vector is driven onto the bus

DTACK IS asserted after another clock period to allow the
vector some setup time prior to DTACK DTACK is negated,
then three-stated as with normal read or write cycle, when
PIACK or TIACK is negated

AA) MOTOROLA Semiconductor Products Inc.

NDEX

Access-type error word, 253, 256
Address, 24, 171, 197, 256

base, 24
bus, 16, 17, 19, 22, 171, 176, 178,

186, 192, 197, 240, 245

physical, 172
Addressing mode groups (of the

68000), 37

absolute data, 37, 39-42
address register indirect, 37, 44-45
immediate data, 37, 55-56
implied, 37, 56

program counter relative, 37, 42-43
register direct, 37-39

Addressing modes (of the 68000),
37-57

absolute long, 40, 42
absolute short, 40-42
address register direct, 38, 56, 60,

66, 68, 77, 81, 82
data register direct, 38, 57, 60, 75,

81

immediate, 55, 56, 57

implied register, 56
indexed register indirect with offset,

44, 50-55
postincrement register indirect,

46-48, 64

predecrement register indirect,
46-48, 63, 64, 69

program counter relative with index

and offset, 42-43
program counter relative with offset,

42

quick immediate, 55
register indirect, 44, 63
register indirect with offset, 44,

49-50

ALU (arithmetic logic unit), 29
Arithmetic shift, 82

Array, 52-55
Assembler, 36, 41, 42, 43, 98, 146

line by line, 146
Assembly language, 35, 36, 129, 146,

257
Asynchronous, 18, 171

358

Asynchronous communications
interface, 124

Asynchronous communications
interface adapter (6850), 171,
208-14, 306, 307

control register, 211, 213, 214
receiver, 210, 214
status register, 211
transmitter, 211, 214

Asynchronous control bus signals (of

the 68000),^, 18, 19, 171
address strobe (AS), 18, 22, 172,

178, 182, 192, 197, 242
data transfer acknowledge (DTACK),

18, 19, 22, 173, 178, 182, 192,
240, 243, 252

lower data strobe (LDS), 18, 19,
171, 175, 178, 182, 197, 240,
242 _

read/write (R/W), 18, 19, 171, 175,
178, 182, 192, 197, 240, 242

upper data strobe (UDS), 18, 19,
171, 175, 178, 182, 197

Asynchronous data communications,
200, 201

Asynchronous data communications

signals, 201-6, 308
clear to send (CTS), 204, 206, 308
data set ready (DSR), 205, 308
data terminal ready (DTR), 204,

205, 206, 308
ready to send (RTS), 204, 205, 206,

211, 308

receive data (RXd), 201, 206
transmit data (XXq), 201, 206

Asynchronous memory I/O interface
(of the 68000), 170, 171-96

Autoindexing:
postincrement, 44
predecrement, 44

Average calculation program, 101-2

B

Baud rate, 124, 205

Baud rate generator, 205, 211, 307
BCD to binary conversion program,

102-4 Bit manipulation instructions (of the

68000), 117-19
test a bit (BTST), 117-18
test a bit and change (BCHG), 118
test a bit and clear (BCLR), 118
test a bit and set (BSET), 118
test and set an operand (TAS),

118-19
Bit time, 201, 205

Block move program, 99-l(X)
Block transfer, 48
Borrow, 26

Bus arbitration control bus (of the

68000), 17, 21-22
bus grant (BG), 22
bus grant acknowledge (BGACK),

22

bus request (BR), 22
Bus arbitration handshake, 22
Bus cycle, 17, 19, 20, 21, 22, 171, 177,

178, 243, 252, 298
duration, 178, 180
I/O read (input), 18
instruction acquisition memory (code

fetch), 20, 177

interrupt acknowledge, 242-45
read, 18, 19, 20, 178-79, 197
synchronous, 197, 339

write, 20, 180-83, 243
Bus master, 22
Bus status (codes), 176
Byte, 17, 19, 23, 24, 46, 60, 66, 69,

72, 91, 94, 118, 171, 175, 179,

184
even-addressed, 171, 175, 186
odd-addressed, 171, 175

Call, 25, 184
Carry, 26

Clock (of the 68000):
clock input (CLK), 23
fall time, 23
frequency, 23

Clock generator, 260, 261, 272-73
pulse width, 23
rise time, 23

Code (program), 35-36
object, 36
source, 36

Compare and test instructions (of the
68000), 90-95, 100

compare (CMP), 91
compare address (CMPA), 92

compare immediate (CMPI), 92-93
compare memory (CMPM), 93
set according to condition code

(Sec), 94-95
test (TST), 94

Computer, 2-11
block diagram, 7-11
central processing unit (CPU), 7, 8-9
definition, 2
external memory, 7, 8, 9

general-purpose, 2, 6, 8, 12
input unit, 7, 8, 9
internal memory, 7, 8, 9
mainframe, 2, 4, 8, 9

memory unit, 7, 8-9
microcomputer, 1, 5, 6, 8-12
minicomputer, 5, 7, 8, 9
output unit, 7, 8, 9
primary storage, 7
secondary storage, 7

special-purpose, 4, 6, 8, 11
Condition-code relationship, 94-95,

98, 101
Count (counter), 83, 84, 85, 101

Data, 2, 9, 17, 19, 24, 46, 55, 92, 171,
175, 176, 184, 197

bus, 16, 17, 19, 22, 171, 178, 186,

192, 197, 240, 242, 245
storage memory, 9, 12, 62, 66, 70,

110, 176-77 Data formats (of the 68000), 17
bit, 17, 82
byte, 17, 19, 23, 24, 33, 46, 60, 66,

67, 69, 72, 91, 94, 118, 175, 179

long word, 17, 24, 33, 39, 40, 45,
55, 60, 63, 66, 67, 69, 70, 72,
73, 91, 94, 175, 187, 188

packed BCD, 17, 34, 74-79
signed number, 67, 72, 73
unsigned number, 67, 72, 73
word, 17, 19, 23, 24, 33, 46, 52, 60,

66, 67, 69, 70, 72, 91, 94, 175,
179, 186, 187

Data storage memory, 261, 272,

283-90
Data transfer instructions (of the

68000), 57-66
clear (CLR), 59, 66

exchange (EXG), 59, 65-66
load effective address (LEA), 59, 65
move (MOVE), 17, 24, 38, 40, 42,

43, 45, 49, 51, 59-63, 114, 115,
116, 184, 192, 195, 196, 251

move address (MOVEA), 62-63
move multiple register (MOVEM),

59, 63-64, 184
move quick (MOVEQ), 55, 63
swap (SWAP), 59, 66

Decimal arithmetic instructions (of the

68000), 57, 74-79
add binary-coded decimal (ABCD),

74-75

negate binary-coded decimal

(NBCD), 74, 76-77
subtract binary-coded decimal

(SBCD), 74, 76
Dedicated memory, 176
Destination operand, 24, 38, 45, 59,

60, 62, 63, 65, 68, 70, 72, 75,
79, 80, 82, 90, 91, 94, 117

360

Development system, 123
Direct memory access (DMA), 222,

223

Disassembly (of a program), 129,
147-52

Displacemem, 43, 97, 98, 110, 114,
116

Double-precision arithmetic, 257
Dual 16-bit ports using 6821s, 192

Educational microcomputer, 260-308
block diagram, 260
clock generator circuitry, 260, 272
data storage memory, 260, 279,

283-90
interrupt interface, 260, 273-79
parallel I/O, 260, 293-302
program storage memory, 260,

279-83
serial I/O, 260, 302-8

Effective address, 37, 40, 43, 49, 50,
53, 55, 60, 62, 65, 68, 69, 70,
79, 80, 110, 117

Emulation routine, 29, 257

Even-addressed boundary, 171, 255
Exception instructions (of the 68000),

248-52
check register against bounds

(CHK), 236, 238, 250, 251-52
divide-by-zero (DIVU/DIVS),

251-52
return from exception (RTE), 184,

250, 251

trap (TRAP), 236, 238, 250-51
trap on overflow (TRAPV), 236,

238, 250, 251

Exceptions, 25, 245-58
autovector interrupt, 238, 247
autovector interrupt interface,

247-55
autovector interrupt sequence, 248
autovector mode, 247

bus error, 236, 238, 252-61
instructions, 236, 248-52
internal, 25, 236, 238, 255-58
interrupt, 25, 27, 176, 184, 235, 236,

238, 239-42
interrupt interface, 240-41, 245-47, 248

interrupt sequence, 242-45

mask, 241-42
nonmaskable, 242, 255

priority, 21, 27, 238-39, 240, 241,
252, 254

priority level, 238, 241, 242, 255
processing, 184, 235, 236

reset, 236, 237, 238, 254-55
service routine, 27, 184, 236, 238,

242, 245, 248, 250, 251, 252,
255, 256

software, 25, 238, 250

vector, 176, 236-38, 245, 251, 252,
255

vector address, 236-38, 245, 248
vector number, 236, 238, 242, 245, 248

vector table, 176, 236-38, 245, 248,
250, 251, 252, 256, 257

Execution control architecture (of the

68000), 27-29 ALU, 28
control store, 28
control unit, 28
control word, 29
execution unit, 28
instruction decoder, 28, 29
instruction register, 28
micro-control store, 29
nano-control store, 29

Frame, 1 14
Frame data space, 114
Frame pointer, 114, 115, 116

Index

Framing error, 202, 208, 211, 214

Full duplex communications lini<, 207,
208

Functional addressing categories (of

the 68000), 56-57
alterable addressing, 56, 57, 60, 62,

66, 68, 72, 77, 80, 82, 93, 94

control addressing, 56, 63, 64, 65

data addressing, 56, 72, 79, 81

memory addressing, 56
Function codes, 20, 171, 177, 178,

197, 240, 242, 248, 253

General use memory, 176

H

Half duplex communications link, 207
Hardware refresh, 187

HMOS (high-performance metal-oxide-
semiconductor) technology, 212

Illegal instruction, 257

Illegal opcode detection, 257
Immediate operand, 25, 55, 56, 63, 69,

80, 83, 85, 92, 114, 117

Index (registers), 24, 32, 43, 50-53
Initialization, 21, 61

I/O (input/output), 7, 9, 17, 170

address space, 17, 171, 176, 184
asynchronous I/O interface (of the

68000), 170, 171

port, 188
synchronous I/O interface (of the

68000), 196-200
I/O control commands (of Tutor

monitor), 143-46

dump onto cassette (DU4), 153
load from cassette (L04), 153

no printer attach (NOPA), 143

port format (PF), 144-45
printer attach (PA), 143

transparent mode (TM), 145, 146
verify cassette (VE4), 153

I/O instruction (of the 68000), 187-88
move peripheral data (MOVEP),

187-88
Instruction, 2, 7, 9, 24, 28, 29, 32-86,

90-119, 171, 176, 238, 248-52,
255, 256

decode, 29

execution, 28-29
fetch, 29

Instruction set, 29, 34, 57, 67, 79, 90
Integer arithmetic instructions (of the

68000), 57, 67-74
add (ADD), 67, 68
add address (ADDA), 68, 70

add immediate (ADDl), 29

add quick (ADDQ), 69, 196
add with extend (ADDX), 69

negate (NEG), 67, 71-72
negate with extend (NEGX), 72

signed divide (DIVS), 73

signed multiply (MULS), 72

sign extend (EXT), 67, 73
subtract (SUB), 67, 70
subtract address (SUBA), 71

subtract immediate (SUBI), 71

subtract quick (SUBQ), 71
subtract with extend (SUBX), 71

unsigned divide (DIVU), 73

unsigned multiply (MULU), 72
Integrated circuit (IC), 2

Interfacing the 6821 PIA to the

synchronous interface bus,

197-200
Interlocked input handshake protocol,

230

Interlocked output handshake

protocol, 231

Index

Internal exceptions (of the 68000),

236, 255-58
address error, 236, 238, 255-56
illegal/unimplemented opcode, 238,

255, 257
privilege violation, 236, 238, 255,

256

spurious interrupt, 236, 238
trace interrupt, 236, 238, 242, 251,

254, 255, 257
Internal registers (of the 68000), 17,

23-37, 31-35
address registers (A), 17, 23, 24, 29,

32, 34, 39, 44, 45, 49-53, 60,
62, 63, 64, 65, 66, 68, 70, 80,
91, 92, 97, 113, 255

data registers (D), 17, 23-24, 29, 32,
34, 38, 40, 51, 60, 62, 63, 64,
66, 68, 69, 70, 71, 72, 73, 75,
79, 80, 83, 91, 92, 101, 110,
118, 188, 255

mask, 27

program counter (PC), 23, 25-26,
32-34, 42-43, 56, 95, 98, 110,
184, 236, 250, 251, 253, 255

stack pointers (SP), 23, 24, 32, 56,

62, 114-17, 183, 255
status register (SR), 21, 23, 26-27,

90-92, 56, 60, 61, 62, 67, 68,
69, 72, 76, 80, 83, 84, 90, 94,
98, 111, 117, 184, 241, 242,
245, 253, 254, 255, 256, 257

Internal registers (of the 68230),
219-231

port A alternate register (PAAR),
225

port B alternate register (PBAR),
226

port A control register (PACR),
226, 227, 231, 297

port B control register (PBCR), 226,
227, 231

port A data register (PADR), 225,
230, 297

port B data register (PBDR), 225,
230

port A data direction register
(PADDR), 224, 225, 297

port B data direction register
(PBDDR), 224, 225

port C data direction register
(PCDDR), 224

port general control register
(PGCR), 219, 220, 230, 297

port service request register (PSRR),
222, 223, 224, 297

port status register (PSR), 231
Interrupt acknowledge bus status code,

20

Interrupt interface signsds (of the

68000), 21, 240-41, 247-48
bus error (BERR), 21, 252, 253
halt (HALT), 21, 252
interrupt request lines (IPLj IPL]

IPLq), 21, 240-41, 242, 248
reset (RESET), 21, 254
valid peripheral address (VPA), 248

Interval/event timer, 12

Jump (branch), 96-97
conditional, 96-97
unconditional, 96

Jump and branch instructions (of the

68000), 95-101
branch always (BRA), 97-98
branch conditionally (Bcc), 98

jump (JMP), 97
test condition, decrement, and

branch (DBcc), 100-101

Label, 42, 43, 98, 100
LED (light emitting diode), 9, 256
Logical shift, 82

Index 363

Logic instructions (of the 68000),
79-82

AND (AND), 79-80
AND immediate (ANDI), 80-81
exclusive-OR (EOR), 81-82
exclusive-OR immediate (EORI),

81-82
NOT (NOT), 82
OR (OR), 81
OR immediate (ORI), 81

Long word, 17, 24, 32, 39, 40, 45, 55,
60, 63, 66, 67, 69, 70, 72, 73,
91, 94, 175, 179, 187, 188, 255

Loop, 100
LSI (large scale integration), 1, 2, 4,

273

LSI peripheral, 15, 21, 22, 187, 188,
196, 197, 255

M

Machine code instruction, 36
Macroinstruction, 29
Macroinstruction static, 28
Main program, 109
Mark, 202
Mask, 64
Memory address space, 17, 26, 34, 41,

42, 171, 176, 184, 197, 344
Memory display/modify/search

commands (of Tutor monitor),

135-43
block fill (BF), 141
block move (BM), 142

block search (BS), 142-43
memory display (MD), 135-38
memory modify (MM), 138-40
memory search (MS), 141

Memory interface, 170-87
Memory map, 176
Memory-mapped I/O, 171
Memory organization (of the 68000),

175

lower (odd) data bank, 171, 175, 186

upper (even) data bank, 171, 175,
178, 186

Microcode, 29

Microcomputer, 1, 5, 6, 8-12, 260
architecture, 8-11
8-bit, 11-12
4-bit, 11-12

multichip, 9, 11-12
single-chip, 9-11
16-bit, 11-12

Microinstructions, 29

Microprocessor, 1, 5, 6, 9-12, 256
Microsequence starting address, 28
Mnemonic, 36, 57, 79, 94, 128

Monitor commands, 126, 127-59
Monitor command syntax, 129-32, 146
Monitor program, 123, 126-27, 261
MPU (microprocessor unit), 8-9
MSI (medium scale integration), 4, 9
Multiplexed, 16
Multiprocessor, 17, 119
Multitasking, 17, 119

N

Nibble, 11
Nonmaskable interrupt (exception),

242, 255
Nonvolatile, 9

Odd-addressed boundary, 255, 256

Offset, 24, 43, 49-51
Opcode (operation code), 36, 41, 97,

176

Operand, 23, 24, 29, 36, 37, 39, 43,
57, 82, 90, 175, 176, 187

Orthogonality, 57
Overrun error, 202, 208, 211, 214

364

Parallel I/O, 272, 293
Parallel printer interface, 125, 299
Parameters, 24, 113, 115, 116, 252,

253

Parity error, 208, 211, 214
Peripheral interface adapter (6821

PIA), 187, 188-92
automatic mode, 192
chip select inputs, 191, 192
control lines, 189, 191

control register (CR), 188, 189-91,
196

data bus, 191
data direction register (DDR), 188,

189, 190, 192, 195
handshake mechanism, 191
I/O port lines, 189

output register (OR), 188-89
R/W line, 191
register select Hnes, 191, 192
strobed mode, 191

Pointer, 24, 32
Priority encoder, 245, 248
Privileged instructions, 61, 62, 81, 256
Processor status bus, 17, 216

function code lines (FC2FC1FC0),
20, 177, 178, 240, 242, 248, 253

Program, 9, 32, 94, 95, 98, 109, 113,
117, 176, 236, 245, 252

Program counter (PC), 23, 25-26,
32-34, 42-43, 56, 95, 98, 110,
184, 236, 250, 251, 253, 255

Program development, 122-67
assembly/disassembly, 122, 147-52
debugging, 122, 162-67
execution, 122, 160-62
loading, 152-54
saving, 152-54

Program execution control commands

(of Tutor monitor), 154-59
breakpoint (BR), 158-59
breakpoint remove (NOBR), 159

go (G, GO), 129, 158

go direct (GD), 157-58
go until break (GT), 158

trace (TR, T), 155-57
trace to temporary breakpoint (TT),

155, 157
Programmer, 2, 17, 32, 62, 98, 238,

256
Programming, 2
Program storage memory, 9, 26, 32,

41, 69, 71, 80, 110, 116, 118,
176-78, 236, 237, 250, 261, 272,

279-83

RAM (random access read/write

memory), 8, 9, 176, 184-87
dynamic, 184

Register display/modify commands (of

Tutor monitor), 132-35
display formatted registers (DF),

129, 132-33
display offset registers (OF), 134

display/set offset registers, 134-35
display/set registers, 133

Register list, 63
Register list mask, 64

Reset, 21, 236, 237, 238, 254-55
Reset (RESET) instructions (of the

68000), 21
ROM (read only memory), 8, 9, 176
Rotate instructions (of the 68000), 82,

84-86

rotate left (ROL), 84-85
rotate left with extend (ROXL), 84,

86

rotate right (ROR), 84, 86
rotate right with extend (ROXR),

84, 86

RS-232C port, 123-24, 206, 208, 272,
293, 302, 306, 308

Index

s

Segment (register), 177

Semaphore, 1 19

Serial communications interface, 171,
200-201

Serial communications port, 200, 272

Shift instructions (of the 68000), 82-84
arithmetic shift left (ASL), 84

arithmetic shift right (ASR), 84

logical shift left (LSL), 82-84
logical shift right (LSR), 82, 84

Sign bit, 27, 73, 84

Sign extension, 41, 49, 55, 62, 73, 92

Simplex communications link, 207

68000 microprocessor, 1, 15-17
address bus, 16, 17

address registers, 17, 23, 24, 29, 34,

39, 44, 45, 49, 60, 62, 63, 64,

65, 66, 68, 70, 80, 91, 92, 114,
255

asynchronous control bus, 15, 17, 18

block diagram, 17

bus arbitration, 21-22
data bus, 16, 17, 18

data registers, 17, 23-24, 29, 34, 39,
40, 51, 60, 62, 63, 64, 66, 68,

69, 70, 71, 72, 73, 75, 79, 80,

83, 91, 92, 101, 110, 118, 188,
255

instruction execution, 27-29
interrupt control bus, 17, 21

package, 16
processor status bus, 17, 20

software model, 21-35
synchronous control bus, 17, 22

system control bus, 17, 21

68230 parallel interface/timer, 215-31,
293, 297, 298, 299, 302

block diagram, 215

internal registers, 219-31

microprocessor interface, 215-19
64K-byte software refreshed dynamic

RAM subsystem, 184-87

365

Software refresh, 187

Sort program, 104-9
Source operand, 23, 24, 38, 41, 43,

45, 49, 51, 56, 59, 60, 62, 64,

65, 68, 69, 70, 71, 72, 75, 79,

80, 90, 91, 94, 188, 252
Source program, 146

Space, 202
SSI (small scale integration), 4, 9

Stack, 34, 111, 114-17, 170, 251, 253, 255

bottom of, 183

supervisor, 24, 34, 183, 243, 251, 253

top of, 24, 34, 115, 116, 183, 184,
251

user, 34, 183, 184

Stack pointers (of the 68000), 32, 56,

62, 114-17, 183, 255
supervisor stack pointer (SSP), 24,

32, 183, 255
user stack pointer (USP), 24, 32, 62,

183, 255
Start bit, 201

Status register (SR) (of the 68000), 32,
56, 60, 61, 62, 67, 68, 69, 72,

76, 80, 83, 84, 90, 94, 98, 111,
117, 184, 241, 242, 245, 253,

254, 255, 256, 257

carry (C), 26, 34, 60, 64, 66, 67, 72,
73, 76, 79, 83, 86, 90

extended carry (X), 26, 27, 34, 61,

66, 67, 69, 72, 73, 75, 76, 83, 84

interrupt mask (I2I1I0). 27, 256

negative (N), 26, 27, 34, 60, 61, 66,

67, 72, 73, 79, 90, 92, 94
overflow (V), 26, 34, 60, 61, 66, 67,

72, 73, 79, 84, 90, 92, 98, 251

supervisor state (S), 27, 34, 242,
250, 254, 256

system byte, 26, 27, 61, 241, 255,

256, 257
trace mode (T), 27, 242, 251, 254,

257

366

user byte, 26, 60, 254
zero (Z), 26, 34, 60, 61, 66, 67, 72,

73, 76, 79, 90, 92, 94, 98, 117,
118

Stop bit, 201, 211
String comparison, 93
String search, 48

Subroutine, 24, 56, 63, 109-16, 184
Subroutine handling instructions (of

the 68000), 109-17
branch to subroutine (BSR), 56,

110-11
jump to subroutine (JSR), 110-11,

116

link and allocate (LINK), 113-17
return and restore condition codes

(RTR), 111
return from subroutine (RTS), 111,

117
unlink (UNLK), 113-17

Supervisor call, 25, 250
Supervisor data memory, 237, 254,

255

Supervisor program memory, 20, 237,
254, 255

Supervisor state, 20, 25, 27, 61, 62,
81, 177, 178, 237, 242, 250,
254, 256

Synchronous control bus (of the
68000), 17, 22

enable (E), 22, 197
valid memory address (VMA), 22,

197

valid peripheral address (VPA), 22,
197, 200, 248

Synchronous data communications,
200-201

Synchronous data communications
signals, 200

receive data, 200

signal common, 200
transmit data, 200

Synchronous memory I/O interface (of

the 68000), 196-200
Syntax error, 126
System control bus (of the 68000), 17,

21

bus error (BERR), 21, 252, 253
halt (HALT), 21, 252
reset (RESET), 21, 254

Table, 43, 63

Tag, 42
Trace, 27, 257

U

UART (universal asynchronous re-
ceiver/transmitter), 12, 202

Unimplemented instruction, 257

USART (universal synchronous/asyn-
chronous receiver/transmitter),

202
User state, 20, 24, 27, 62, 256
User/supervisor system environment,

17, 256

Vectored subroutine call, 250

W

Watchdog timer, 253, 291-93
Word, 17, 19, 23, 24, 34, 46, 52, 60,

66, 67, 69, 70, 72, 91, 94, 175,
179, 184, 187, 255, 256

THE

MICROPROCESSOR
ARCHITECfUREr
SOFTWARE,

AND INTERFACING
TECHNIQUES

WALTER A JRIEBEL
AVTAR SINGH

Representing an in-depth study of the architecture, software, and interfacing techniques used in the design of 68000 base
microcomputers, this practical new book:

. develops an understanding of the internal architecture of the 68000 microprocessor

• includes 68000 instruction execution control
• details software issues such as addressing modes, the instruction
set, and the analysis and writing of assembly language programs

• illustrates practical applications through example programs
. covers hardware and architectural features and circuit design techniques for the memory, input-output, and interrupt interfaces of the 68000 microcomputer

. introduces Motorola's MC68000 Educational Microcomputer

. demonstrates how programs are assembled, verified, executed and
debugged with the MC68000 Educational Microcomputer's Tutor monitor program

. discusses bus cycles, address maps, program storage memory sub- systems, data storage memory subsystems, input-output interface
circuits, and interrupt interface circuits of the MC68000's
Educational Microcomputer

PRENTICE-HALL

Englewood Cliffs, N.J. 07632

