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Preface

The Motorola MC68000 family of microprocessors is undoubtedly a revolu-
tionary set of devices. The MC68000 is the first advanced 16-bit microprocessor
with a 32-bit internal architecture and the first with 16-megabyte, nonsegment-
ed, direct memory addressing. The processor’s six basic addressing modes are
equivalent to 14, when one considers all of the variations among these modes.
Combined with the device’s data and instruction types, the modes provide more
than 1000 useful instructions.

The book you are about to study has been developed as an aid to the hard-
ware designer and as a supplement to the Motorola seminars on the 68000
microprocessor. The text includes a detailed description of the MC68000 and
two complete systems that show how this processor can be interfaced to the
outside world.

The book follows a “top-down” approach. A brief history of microprocessors is
provided first. Chapter 2 details the MC68000 by describing its registers, control
lines, and capabilities.

Chapter 3 introduces a small MC68000-based system. Although this system is
characterized in the book as hypothetical, it is indeed the Educational Computer
Board, used in the various Motorola seminars.

The addressing modes and instructions are explained in Chapter 4, which
includes helpful hints on how instructions can be used. Chapter 5 provides an
in-depth description of additional instructions and numerous examples.

Chapter 6 discusses exception handling and interrupts.

Chapter 7 describes how the MC68000 processor can be connected to eight-
bit and 16-bit peripheral devices. This Chapter also covers the interfacing of the
Motorola Educational Computer Board to a terminal, a modem, a printer, and a
cassette interface. Various interfacing programs are listed in this Chapter.

Chapter 8 provides full description of a second MC68000-based system, the
VUGB8K. This system was built initially by students of the Computer Science
Department of Vanderbilt University, and subsequently has been constructed by
some of the author’s students. The most interesting part of this Chapter is the
detailed description of an operating system monitor, the VUBUG. Study of the
VUBUG provides the reader with valuable experience in the use of the MC68000
instructions, as well as in the design of a basic, but fully functional, operating
system monitor.

The writing and production of a book really involves many people, such as
reviewers, copy editors, and artists. Perhaps the only chance that an author has

to thank these people is through the preface of the book.
vii
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I wish to thank everyone who participated in the production of this book.
| particularly wish to thank my friend Joe Gordon for helping me with the
illustrations.

Most authors use the preface of their book to thank their loved ones for their
patience. | wish to do the same, to thank my dear wife Elizabeth Veronis not only
for her tremendous patience but also for her active participation in the typing
and editing of the manuscript. Her help has been invaluable.

Appendices B and D are the copyrighted property of Motorola Semiconduc-
tors, Inc. and are included in this book by written permission.
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Chapter 1
Basic Concepts

BRIEF HISTORY OF MICROPROCESSORS

The first two microprocessors—the 4004 (a four-bit set of devices) and the 8008
{an eight-bit device on a single chip)—were produced in the early 1970s by a
newly formed company, Intel Corporation. The 4004, also known as the MCS-4,
was designed to replace six custom chips in a desktop calculator and was there-
fore programmed for serial, binary-coded, decimal arithmetic {a very common
practice in handheld and desktop calculators). Although the client, a Japanese
manufacturer named Busicomp, went out of business before it could put the 4004
to work, this set of devices was soon adapted for numerous other applications.

A U.S. company named Computer Terminal Corporation (also known as Data-
point) similarly requested Intel to design a push-down stack chip for a processor
to be used in a CRT terminal. Datapoint intended to build a bit-serial processor in
TTL logic with a shift-register memory —a design that would require a fair number
of devices. Intel suggested that the entire design could be implemented in one
chip. This new processor was the 8008. Although Datapoint eventually did not
use the chip because of the long lead time Intel required, the device was quickly
adopted by other logic design engineers, who saw the advantages to be derived
from microprocessors.

At about the same time, Motorola, Texas Instruments, Zilog, and other semi-
conductor manufacturers were gearing up to capture a share of what was to
become the largest semiconductor market. Improved devices such as the Intel
8080 (second-sourced by other manufacturers, including Texas Instruments and
National Semiconductors), the Zilog Z80 (the most popular eight-bit processor
ever marketed), and the Motorola 6800 (also an extremely popular eight-bit micro-
processor) have dominated the market for more than a decade.

As the benefits of microprocessors became more apparent, design engineers
and, more particularly, programmers increasingly demanded better performance.
Eight-bit microprocessors are designed to replace logic circuits and, conse-
quently, emphasize controller-type capabilities rather than ease-of-programming
elegance. Compare, for example, the instruction format of an eight-bit processor
to that of a 16-bit device, as shown in Fig. 1-1.

Clearly, an eight-bit processor lags behind in the available number of registers,
instructions, and addressing modes, as well as the memory addressing range. All

1



2 THE 68000 MICROPROCESSOR

MC6800 OP CODE

REGISTER

0-A
1-8

ADDRESS MODE

00- IMMEDIATE
01-DIRECT
10- INDEXED
11-EXTENDED

OPERATION

$0-SUBTRACT
1- COMPARE
2- SUBTRACT W/CARRY
4- AND
5-BIT
6-LOAD
7- STORE
8- EXCLUSIVE OR
9-ADD W/CARRY
A-OR
B- ADD

HNEEEEEEEEEEEEER
| ! T

Operation Register Operand Effective
Size Address

To/From
Memory

Fig. 1-1. Formats of 8-bit and 16-bit instructions.

of these features are needed for efficient programming. Thus, eight-bit processors
gradually are giving way to 16-bit and 32-bit processors.

DESIGN OF A MICROPROCESSOR
Design Considerations

Numerous factors affect the overall performance of a microprocessor system, in-
cluding internal organization, speed, instruction set, addressing modes, memory-
handling capacity, interfacing ease, and availability of compatible peripheral
devices. The system designer must consider them all.

Some of these factors will be described in the following pages. To facilitate this
description, a powerful 16-bit processor—the Motorola MC68000 — will be referred
to from time to time. This device will not be examined in detail, however, until
Chap. 2.
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Registers

One significant advantage of a 16-bit microprocessor over an eight-bit device
is that the former has twice the word width; as a result, a 16-bit device can
handle twice as much information, thus increasing the processing speed of a
system. Another advantage is the increased number of internal registers this
device provides the programmer. The MC68000 excels in both of these areas.

As shown in Fig. 1-2, the Motorola MC68000 has eight 32-bit data registers,
nine 32-bit address registers (registers A7 and A7’ are the user and supervisor
stack pointers), and a 32-bit program counter {although the maximum address
range is 24 bits). Since most of its data and address registers are undedicated,
the MC68000 thus provides greater flexibility.

Addressing Modes

Having a good number of addressing modes is likewise an advantage for a
microprocessor. The MC68000 has 15 addressing modes. With few exceptions,
each instruction operates on bytes, words (16 bits), and longwords (32 bits), and
most instructions can use all 15 modes.

One weakness of an eight-bit microprocessor is its limited memory-accessing
capacity. With a 16-bit address bus, this device can directly address only 65,536
addresses. Some schemes increase the address range of an eight-bit processor,
or so it seems. For example, Fig. 1-3 illustrates a method called paging. In
this scheme, the total memory area is divided into pages. Although the 16-bit
address range remains unaltered, bits in another register, such as the program
counter, are used to designate the number of the page. Theoretically, this practice

31 16 15 8 7 0

o]e}
D1

D2
D3
D4
DS
D6
D7

EIGHT DATA REGISTERS

AO

Al

A2

A3

A4

A5

AB
USER STACK POINTER A7 USP

SUPERVISOR STACK POINTER A7' SSP

NINE ADDRESS/STACK REGISTERS

31 0
r PROGRAM_COUNTER ]
15 87 0

STATUS REGISTER

Fig. 1-2. MC68000 registers.
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PAGE N
ADDRESS #2660 TO XXXX

PAGE 1 I'_—_
ADDRESS 28068 TO XXXX

PAGE 9
ADDRESS 0008 TO XXXX

Fig. 1-3. Memory paging.

increases memory capacity, but it is dependent on the bits allocated to designate
page numbers. Although the addition of several page registers will eliminate the
problem of page bits, paging is still limited by the fact that only a single page can
be accessed at a time. This method is tricky, moreover, and time-consuming.

To overcome the deficiencies of paging, some 16-bit microprocessors use a
method called memory segmentation. Since the memory spectrum is divided into
segments, this method is similar to paging, as Fig. 1-4 shows. A segment number
added to the 16-bit address identifies each segment. Segmentation allows some
possibility of address relocation, but the size of each segment is a limiting factor
(it cannot exceed 64 kilobytes), and the desired segment must be loaded as wel!.

The most straightforward method of memory accessing is called /inear access-
ing. Simply speaking, a processor with linear addressing capabilities has ade-
quate address lines to access memory directly. For example, the 23 external
address lines of the MC68000 allow direct access of 8.4 million words of memory.
Since programmers are always hungry for more memory, however, provisions
have been made to carry out a type of paging with some control lines furnished
by the MC68000. This method will be explained later. Furthermore, memory man-
agement devices can be used with the MC68000 to provide additional memory
capacity.

Prefetch

A significant factor in the selection of a microprocessor is the manner in which a
particular device fetches instructions from memory. After an eight-bit micropro-
cessor fetches an instruction, the address- and data-fetching circuits and buses of

5FFF

4800
3FFF

2000
1FFF

Fig. 1-4. Memory segmentation.
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the device remain idle while the instruction is being executed. Needless to say,
this represents a loss of time. The MC68000, in contrast, has a prefetch queue.
During the execution of one instruction, the device fetches a number of other
instructions and aligns them in the prefetch queue. Consequently, the micropro-
cessor nearly always has an instruction available for processing. This instruction
is stored in close proximity to the arithmetic-logic unit (ALU).

Multiple Arithmetic-Logic Unit

A system designer also must consider features that will increase the processing
speed of a microprocessor. All eight-bit microprocessors feature only a single
arithmetic-logic unit, and this is used both for data processing and for calculation
of addresses. In a processor that uses indexed addressing, the offset value must
be added to an address via this single ALU at a time when data could otherwise
be processed.

In contrast, the MC68000 uses not only a 16-bit-wide ALU as the main data-
processing mechanism but also two other 16-bit ALU to function in parallel as a
32-bit ALU for the calculation of addresses. Thus, at the same time a 16-bit datum
is being processed, the address ALU can be calculating an effective address (this
term will be described later). The 16-bit data ALU also is used to process 32-bit
values by taking two passes at 16-bit data, one for the lower word and one for
the upper.

Microprogramming

All eight-bit and most 16- and 32-bit microprocessors are designed as hardwired
logic units—i.e., the control unit is built of logic gates permanently wired to each
other. This design eliminates excessive use of components and improves speed
on the one hand, but, on the other, not only reduces the flexibility of the control
unit but also overcomplicates the design of a complex unit.

Microprogramming of a complex control unit simplifies design by making the
unit modular; that is, each section of the unit may be modeled, built, and
tested independently. Additionally, a microprogrammed design permits a cus-
tomer to make design changes (although the MC68000 uses a microprogrammed
design, Motorola is rather reluctant to implement a customer’'s microcode into
this design).

Peripheral Devices

To compete successfully, a manufacturer embarking on the design of a micropro-
cessor must provide an entire family of peripheral devices. Design and production
of such devices are frequently very expensive and time-consuming. Concerned
with the possible loss of their share of the microprocessor market, several manu-
facturers have introduced microprocessors without peripheral devices. Motorola
chose to add several control lines to the MC68000 to make it directly compati-
ble with the readily available peripheral devices from the MC6800 family. This
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approach afforded Motorola ample time to develop 16-bit peripheral devices and
also gave customers the benefit of using low-priced eight-bit peripheral devices.

DATA REPRESENTATION
Terminology

The smallest unit of data stored in the memory of a computer is called a bit,
an abbreviation of the words “binary digit.” A bit has the value of zero (0) or
one (1).

Bits are combined to make nibbles (four bits, useful for representing one binary-
coded decimal digit (the equivalent of decimal zero to nine)) and bytes (eight bits).
A byte may denote a single character (usually encoded in ASCII), a number from
0 to 255, or two BCD numbers (0 to 99).

The term word varies among computers. In all cases, a word is made up of
bytes. In 16-bit computers, a word consists of two bytes; in 32-bit computers, a
word consists of four bytes; and so on. Simply defined, a word is the maximum
length of information that the data bus of a computer can transfer. The memory
area of a computer usually has the length of the computer’s word; that is, a
computer is equipped with a memory 8 bits wide, 16 bits wide, etc.

A collection of words ordinarily is called a b/ock.

All of these terms refer to units of storage inside a computer or memory.
Distinctions must be made, however, between what various strings of bits indi-
cate, since they may signify a character or a positive number or a false/true
condition. In other words, data must be identified by “type.”

Data Types

A bit is used to denote a “logical” state of “true” or “false.” In this sense, the
logical bit is called a flag and is used for comparison of two values, for branching,
or for other purposes. Thus, single bits are “logical data types.”

Inside a computer, a number may be represented in various ways. The number
can be, for instance, an unsigned number, starting from zero, called an ordinal.
For example, in eight-bit microprocessors, an ordinal number can be any number
from 0 to 255 (00000000 to 11111111); as the data-bus width of a microprocessor
increases, so does the representation of ordinal numbers.

A whole number, whether positive or negative, is called an integer. In all
microprocessors, integers are represented in two’s complement form; that is,
the leftmost bit of an integer constitutes both the maximum value of the integer
and its sign (0, for positive; 1, for negative). Various clever methods have been
devised to represent numbers in two’'s complement form easily.

One method is shown by Dr. Christopher Morgan and Mr. Mitchell Waite in
their book entitled 8086/8088 16-bit Microprocessor Primer. Ordinal numbers
from 0 to 2n~? can be shown around a wheel, as in Fig. 1-5, so that the last
number is before the first. If the wheel is separated halfway around and negative



BASIC CONCEPTS 7

integers are assigned to positions on the separated wheel —counting backwards
from zero—the two’s complement representation is derived. The wheel must be
separated precisely at the point where the most significant bit (msb), or leftmost
digit, changes sign; that is, all nonnegative numbers have a 0 as their msb, and all
negative numbers have a 1 as their msb. This bit is called the sign bit. Thus, in 16-
bit computers, integers ranging from —32,768 to + 32,767 are represented; in 32-
bit computers, numbers from —2,147,483,648 to +2,147,483,647 are represented.

Characters are depicted inside computers by various codes. The most fre-
quently used code is the eight-bit ASCII (it is now an eight-bit code). An eight-

4-917 ORDINALS
[ b 2 k) 4 ] [ 7 ] 1] 10 1 12 13 14 1%

0000 | 000 | 0030 | 0031 | 0100 [ 0301 | 0110 | 0111 [1000 | 2001 {1010 | 1031 | 1100 | 1103 |1110 | 2111

ORDINAL
NUMBER
WHEEL

INTEGER
NUMBER
WHEEL

4-BIT INTEGERS
-8 -7 -6 bt } -4 -3 -2 -1 0 1 H 3 . 5 [ 1 ?

1000 { 3001 | 1010 | 1011 | 1100 | 1101 | 1130 | 1213 | 0000 [ 000: 0010 | 0011 | 0100 0101 | o110 | 0111

Fig. 1-5. Ordinal number representation.
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bit number represents the characters of the alphabet (A through Z), numerals (0
through 9), and special characters. Most microprocessors use a subset of this
eight-bit ASCII code. If, for example, a six-bit ASCII code is used, then lower-case
letters cannot be represented.

A series of characters is called a string. In programming languages, strings are
used to display a message.

Decimal numbers are denoted inside a computer in Binary-Coded Decimal nota-
tion (BCD). Each decimal digit, from 0 through 9, is represented by a four-bit
number.

The preceding survey provides an overview of data types but is by no means
complete. The reader is encouraged to study the topic of number systems in other
specialized texts.



Chapter 2
Introduction to the MC68000

GENERAL LAYOUT

The MC68000 is a bulky integrated circuit that is 1.2 inches longer and 0.4 inches
wider than a 40-pin package. The fact that it is equipped with numerous pins,
however, makes it easier to interface.

As Fig. 2-1 shows, the MC68000 has 64 external pins that function within one
of the following groups {the numbers in parentheses denote the number of pins
allocated to each function):

Power supply (4)

Clock (1)

Address Bus (23)

Data Bus (16)

Function Control (3)
Synchronous Bus Control (3)
System Control (3)
Asynchronous Bus Control (5)
Direct Memory Access Control (3)
Interrupt Control (3)

vdd — ————> A1 — A23
Xf'BCK 3 K———> DO — D15
—— R/W ]
FUNCTION [FCO e—— >[5 | ASYNCHRONOUS
CONTROL [FC1 é—— +———> UDS BUS CONTROL
FC2 ¢—— —— AS
68000 F— ?m;
SYNCHRONOUS ——D F——BR
L 6G
BUS CONTROL BOACR | DMA CONTROL
mm”_’é ] £ m INTERRUPT
HALT «— Pz LINES

Fig. 2-1. Pin configuration of MC68000.
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The orientation of the arrows shows whether a group is bidirectional or
unidirectional. Each signal associated with these categories is described in this
chapter. The verbs “assert” and “negate” are used throughout this text solely
to dispel any doubts about the electrical status of a signal. Regardless of actual
voltage level, “asserted” indicates an active signal and “negated,” an inactive
signal.

DATA BUS

In the MC68000, the 16 lines of the data bus are, as in any other microprocessor,
bidirectional. Their function is straightforward, requiring no further description.

ADDRESS BUS

Although the MC68000 displays 23 address lines, the device is actually equipped
with 24. Address AO is encoded internally with the length of the operand to form
the Upper Data Strobe (UDS) and Lower Data Strobe (LDS) signals. With 24 effec-
tive address lines, the total address space can be computed as 16,777,216 phys-
ical locations. Since the MC68000 memory space is organized as 16-bit words,
however, the total number of physical locations is reduced to 8,388,608 words.

The address bus takes up the largest number of pins because Motorola does
not use bus multiplexing (a feature that saves pins but requires the use of external
latches for demultiplexing).

ASYNCHRONOUS BUS CONTROL

Although the address bus is not multiplexed, the MC68000 has an Address Strobe
(AS). Frequently, this signal can be negated by connection to a positive power
supply via a pull-up resistor. There are, however, peripheral devices that function
properly when AS is used to assert them.

The AS signal defines the time interval during which the address lines (A1
to A23) and the function code lines (FCO to FC2) are valid. When a MC68000-
based system uses dynamic memory, it is the AS signal that notifies the memory
controller of the beginning of a cycle. The same signal aiso provides the lock-out
mechanism for read—-modify—write cycles during a Test-and-Set (TAS) instruction.

The MC68000 has the capability of dividing its memory range into eight-bit
sections.* The UDS and the LDS delineate the time during which data are trans-
ferred over the data bus. When either (or both) of these signals is asserted, the
Read/Write (R/W) line also is asserted, and the address on the address bus is
valid.

*This includes peripheral devices, since the MC68000 uses memory-mapped input/output (I/0)
devices.
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The UDS and LDS are used to permit byte operands as well as word and
longword data. Both signals are asserted for word transfers. For byte transfers,
UDS is asserted only on an even address (D8 to D15) and LDS only on an odd
address (D0 to D7). Thus, to move byte data, all devices on the upper half of the
data bus must be strobed with UDS and all devices on the lower half with LDS.

The RW line dictates the direction of data transfer. This single line is timed so
that it can control the direction of data-bus buffers on multiprocessor systems.
Since this single line accomplishes the functions of both read and write (a feature
inherited from MC6800 devices), it is worth noting that data are read when the
line is active—high and written when the line is active—low. Once an address is
valid during a write cycle, placing the R/W line low and combining it with an
active strobe enable the transfer of data to static memories.

The MC68000 must be notified of the termination of a bus cycle. There are
three ways by which a bus cycle is terminated. One of them belongs to the
asynchronous bus control group, and the other two will be discussed later. The
normal termination signal to the MC68000 is the Data Acknowledge line (DTACK),
which informs the processor that the data to be processed are valid on the data
bus. Since this line is one of the most significant inputs to the device, a designer
must be careful about how and when DTACK is supplied. If a DTACK signal is not
received, the MC68000 will remain idle indefinitely, waiting all the while for the
DTACK to indicate that data are available. The DTACK and several other signals
will be described at greater length in Chap. 3.

Now that all of the asynchronous bus control signals have been identified, it is
appropriate to examine the timing diagram of a read cycle, as shown in Fig. 2-2,
and of a write cycle, as shown in Fig. 2-3. An interesting point, shown in both
diagrams, is that the R/W line, whether on initiation of a read or a write cycle, is
always asserted in the read mode. This safety feature eliminates the possibility
of accidental destruction of data in memory.

Let us examine the read cycle first. At the leading edge of S2, the AS, LDS, and
UDS lines are all asserted until the trailing edge of S6, when data are latched onto
the data bus, and DTACK has been asserted. In other words, in the asynchronous
bus mode, the MC68000 initiates a read or write cycle by asserting the address
strobe and waiting for a DTACK before assuming that data on the bus are valid.
If the MC68000 does not receive a DTACK at the trailing edge of S4, the device

CLK lSﬂlS1|SZ|S3lS4|S5|SS[S7

A1-A23 —@ )___
R/W T

AS,[0S5.00% o\ 177
PTACK e,/

Fig. 2-2. Read cycle of MC68000.
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CLK [se]|s1s2]s3[s4]ss[s6]s7

A1-A23 —-(Z

R/W ZZZ NN

Fig. 2-3. Write cycle of MC68000.

enters S5 and S6 and performs an internal synchronization process. Then, the
MC68000 introduces wait states and remains in this condition until the DTACK is
received.

Delay in the arrival of DTACK, mind you, may be either intentional or
unintentional. It is the latter that should be of more concern to a system user. For
example, an intentional DTACK delay may be generated for devices that require
additional access time (because of siow memories or peripherals). In this case, a
shift register or delay line is used, to allow cycles to be lengthened in one-clock-
cycle increments. Thus, the asynchronous action of DTACK allows the construc-
tion of systems with variable cycles, from 500 nsec @ 8MHz all the way up to the
maximum delay required.

The write cycle presents several variations in timing. The LDS and UDS asser-
tion takes place in S4 rather than simultaneously with AS. The R/W line changes
to the write mode in S2, when AS is asserted.

Figure 2-4 shows a minimum configuration of an MC68000-based system with
all of the asynchronous bus signals, excluding AS, in place. The system is
designed for byte addressing, as explained earlier.

A1l - A23
D@ ~ D15 DO-D7 Y
R/W
LDS
68000
== MEMORY
UDsS EVEN

Fig. 2-4. Minimum configuration of MC68000 system.
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Table 2-1. Status of Function Lines.

STATE MODE FC2 FC1 FCO
Reserved — Motorola User 0 0 0
Data space User 0 0 1
Program space User 0 1 0
Reserved — user User 0 1 1
Reserved — Motorola Supervisor 1 0 0
Data space Supervisor 1 0 1
Program space Supervisor 1 1 0

1 1 1

Interrupt Acknowledge Supervisor

FUNCTION CONTROL

Three lines (FCO to FC2) indicate the state of the processor. The MC68000 can
be in one of two modes—the user or the supervisor mode. Table 2-1 provides a
summary of the processor state as indicated by the function code lines. In this
table, FC2 indicates whether the MC68000 is in the user or supervisor mode.
Assertion of all three lines indicates that the MC68000 has acknowledged an
interrupt. Table 2-1 may be put into practice by the use of a 74LS138 decoder, as
Fig. 2-56 shows. '

The function lines are decoded to separate memory into four sections. Data
memory is defined as the area that contains variables, vectors, stacks, queues,
strings, tables, lists, or any other type of data found separate from the instruc-
tions, and fixed operands, which are found with the instructions that use the
operands. The watchdog timer circuit, discussed in Chap. 3, signals a bus error if
a DTACK is not asserted on time (about 10 microseconds). Such an error may be
caused by the failure of a memory access to remain within the allocated memory
space. As described later, the function control lines can also be used for further
expansion of the memory capacity of the MC68000.

00
$ TOOO Jggﬂg; PROGRAM
VECTOR
SUPERVISOR | TABLE | pata
1FC = 101
SPACE /0
’ PROGRAM
$7FFFFE FC = 10
$800000
| PROGRAM
USER FC = 010
SPACE
| DATA
$FFFFFE /0 e oo

Fig. 2-5. Decoding of function lines.
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| 14LS00 USER
F ___[ZD:;_ g_im-:MORY
1 74LS08 —__.r—
A23 2 Du’ S2
68000 |
| 14Ls00
2 152
Fc2
1 L4LSo8
2 S1
SUPERVISOR
MEMORY

Fig. 2-6. Use of function line FC2 to distinguish between supervisor and user memory areas.

Since line FC2 indicates at all times whether the MC68000 is in user or supervi-
sor mode, this line can be effectively used, with simple gating, to prevent acciden-
tal access of supervisor memory by a user. Figure 2-6 shows just such a scheme.
When both the AS and FC2 lines are asserted, the inputs to the NAND gate are
high; thus, the NAND gate asserts the S1 chip select of the supervisor memory.
When an address in the user area is accessed, the NAND gate asserting the user
S2 prevents the access of the supervisor S2.

SYNCHRONOUS BUS CONTROL

The three synchronous bus control signals are used to interface the MC68000
with MC6800 peripheral devices. The Enable signal (E) is the phase-two clock that
the latter require and that defines the periods of data to and from the processor.
The second signal, the Valid Memory Address (VMA), is used in the chip-select
circuitry of a MC68000 system using MC6800 peripheral devices. During reference
to a peripheral, VMA meets all timing requirements for a chip-select input. The
VMA signals on both the MC6800 and the MC68000 are identical in function
but opposite in voltage levels; the MC6800 VMA is active-high, whereas the
MC68000 VMA is active—low. The reason for this difference is that the MC68000
VMA prevents accidental addressing of peripherals when the bus is three-stated.

The third synchronous bus signal, called the Valid Peripheral Address (VPA), is
one of the signals that can be used to terminate a bus cycle. For each system
application of the MC68000, bus cycles are likely to have different durations.
Thus, if a constant-frequency clock is used to drive the Enable signal (E) on the
peripherals, there must be a guarantee that data are transferred with respect to
the clock, a requirement not often met in asynchronous-bus systems. The VPA
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line on the MC68000, however, accomplishes this task easily. When a peripheral
address is decoded, the VPA signal, rather than DTACK, is asserted. This approach
notifies the processor to become compatible with the MC6800 family by waiting
for the proper phase of E and then asserting VMA. At this point, the address lines
and R/W signal are already valid. If the sequence begins too late during the E
phase, all address and control signals remain stable until the next cycle, when
compatible transfer can be ensured.

SYSTEM CONTROL

The third signal used to terminate a bus cycle is part of the three lines that
comprise the system control group. The Bus Error /ine (BERR) terminates a bus
cycle in the MC68000 system whenever an abnormal condition is sensed. This line
operates in conjunction with the Ha/t (HLT) line, which also belongs to the system
control group. When both BERR and HLT are asserted, a bus error is signaled, and
the processor enters a rerun cycle.

The flowchart in Fig. 2-7 shows the steps that the MC68000 takes during a rerun
cycle. Whenever the BERR and HLT lines are asserted (both active—low) during the
initiation of a bus cycle, the processor completes the cycle and asserts its three-
state outputs, thus preventing any information from reaching the buses. Shortly
thereafter, the BERR line is negated, and, after a period of more than one clock
cycle, the HLT line is also negated. At this point, the processor must determine
whether a read—modify—write cycle is in progress for a Test-And-Set instruction.
If so, the processor enters a bus exception-processing routine; that is, a rerun
cycle routine is not executed. If a TAS instruction is not present, the MC68000
reruns the cycle during which the bus error line was asserted.

The HLT line also may be used in conjunction with the third line of the system
control group —the RESET line. The MC68000 can be reset in two ways—i.e., dur-
ing power-on or by a manual switch. The MC68000 also has a RESET instruction,
which asserts the reset line and causes the reset of all external devices connected
to the processor’s reset line. During the execution of this instruction, the state
of the processor, other than the program counter, is unaffected, and execution
continues with the next instruction.

When the RESET and HLT lines are asserted simultaneously, either a power-on
or a manual switch reset occurs. When the HLT line alone is asserted, however,
a double bus fault occurs, and the processor must be reset to recover from this
fatal error.

DIRECT MEMORY ACCESS CONTROL

The three lines in the direct memory access (DMA) control group are the Bus
Request (BR), which the DMA controller provides to the processor, the Bus Grant
(BG), which the processor sends to the controller, and the Bus Grant Acknowledge
(BGACK), which the controller sends to the processor.
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C_START_ )

| HALT
BUS NEGATED
CYCLE

AFTER => 1
STARTS CLOCK

I

HALT & BERR
LOW

I

PROCESSOR
COMPLETES
CURRENT BUS
CYCLE

CYCLE
l RERUN

OUTPUTS
3-STATED

1

BERR
NEGATED

BUS ERROR
EXCEPTION
PROCESSING

Fig. 2-7. Rerun cycle of MC68000.

INTERRUPT CONTROL

The interrupt control is the last of the control line groups. This control consists of
lines IPLO to IPL2 (Interrupt Priority Lines). Although interrupts will be described
in detail in a later section, it would be of benefit to say a few words about the
MC68000 interrupt system.

The MC68000 is capable of handling both vectored and autovectored interrupts.
In a vectored interrupt system, the interrupting device transmits a vector number,
which, multiplied by four, provides an interrupt routine address in a table of inter-
rupts residing in memory. Some devices, including most MC6800 devices, how-
ever, cannot provide a vector number and must be autovectored. In an autovec-
tored interrupt system, the processor examines the priority status of an interrupt
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to determine which vector number should be used. The interrupting device gen-
erates an interrupt request by asserting the IPL lines.

When a peripheral device is recognized as an autovector device by asserting
VPA instead of DTACK, the processor translates the interrupt priority into one
of eight locations in the vector table, fetches the vector, and branches to the
interrupt service routine. Other signals are also involved during the autovector
process, but this involvement will be explained later.

REGISTERS

The number of registers in the MC68000 already has been discussed. The reader
must become familiar, however, with the idiosyncracies that some registers dis-

play.

Data Registers

Any data register in the MC68000 may be used for handling byte, word, or
longword operand. The length of the operand to be handled is stated in an
instruction. None of the MC68000 data registers is dedicated to a specific task;
that is, any data register may be used as an index register, a temporary storage
area for an operand, or an accumulataor.

Address Registers

The nine address registers are restricted slightly in the size of operand that the
registers may contain; they can contain only a word or longword. Furthermore,
although any of the address registers may be used as user “stack pointers,” two
registers—A7 and A7 —are deaicated as stack pointers.

At the supervisor level, the operating system program can use both the supervi-
sor stack pointer and the user stack pointer. Consequently, the user stack location
can be changed in the course of switching from task to task.

Program Counter

The program counter is 32 bits long, but only 24 bits are used for effective
addressing. This counter functions as it would in any other digital computer hav-
ing the same organization; that is, the program counter always is automatically
incremented to point to the next instruction to be executed.

Status Register

The 16-bit status register, shown in Fig. 2-8, is divided into two sections—the
supervisor section and the user section. The latter is also called the Condition
Code Register, simply to preserve some relation with the MC6800 register bearing
the same name.
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12011110

T [
TRACE
SUPERVISOR
INTERRUPT
MASK CARRY
EXTEND OVERFLOW
NEGATIVE ZERO

Fig. 2-8. Status register of MC68000.

The user portion of the status register is almost identical to that of the MC6800,
with the added flag of Extend. This flag is asserted when a value is to be sign-
extended for alignment purposes. The N flag is set when the result of an operation
produces a negative value. The Z flag is set when the result of an operation
produces a zero value (it is important to know when a division must use this
value). The overflow flag, V, is set when an overflow results. The carry flag, C, is
set when a carry occurs.

When the processor enters the Trace mode (as in a single-step operation,
described later), the T flag is set. When the processor enters the supervisor mode
because of a bus error or other condition, the S flag is set.

The three interrupt bits act as interrupt mask bits for the IPL lines. The interrupt
flags are always set to a value lower than the one present on the IPL lines.



Chapter 3
A Small MC68000 System

INTRODUCTION

This chapter explains the design of a small 68000-based system, beginning with
the design of reset/halt circuits and the basic RAM and ROM system. Since the
operation of most peripheral devices requires programming, peripheral devices
will be examined after some exposure to the programming of the MC68000. This
chapter will show how different signals are applied and provide various ways of
interfacing them.

Since expansion of this system is contemplated, various features present in
larger systems, such as buffering of the buses, will also be considered.

BLOCK DIAGRAM AND MEMORY MAP

The two main steps in the design of any microprocessor system are its definition
both in words and block diagram form and the design of its memory map.

The MC68000 can be interfaced to other devices very easily. Any type of mem-
ory device can be used, from bytewide RAM to dynamic RAM. Since bytewide
RAM is more expensive and physically larger than dynamic RAM, however, the
latter will be used here. Some read-only memory is also needed to store the
operating system program. Finally, serial circuits (for terminal and modem inter-
face), parallel circuits (for printing), and audio cassette input-output circuits are
needed.

Block Diagram

Figure 3-1 depicts a small, yet fully functional, system that fits our description.
One of the slower versions of the MC68000 —the MC68000L4 (4 MHz)—is used.
The RAM is the popular 4116, 16K X 1 bit dynamic device. The system is
equipped with 16 of these RAMs arranged as 16 kilowords (16K x 16). The ROM,
which consists of two MC68A364, 8K x 8 bit devices, is also arranged as 16
kilowords. The ROM is read on a byte or word basis. Provision must be made for
the system not to waste time trying to write into ROM space if a user attempts
to do so.
19
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Two MC6850 (eight-bit) Asynchronous Communications Interface Adapters
(ACIA) provide serial communication. One of these devices is used to interface
with an external terminal and the other with a modem. A baud rate generator is
included to provide variable clock rates for these devices.

A MC68230 Parallel Interface/Timer (PI/T) furnishes the parallel interface and
audio cassette functions.

Memory Map

Figure 3-2 sets out the memory map of the system. Two requirements, set by
Motorola, are that the tabie with the interrupt and trap vectors (256 in all) must be
positioned at the bottom of the memory map of any MC68000 system (0000000
to 0003FF) and that the reset and stack pointer vectors must occupy the first
eight locations. Since the system, whether on power-on or manual reset, must
always load the same address into the program counter and system stack pointer
without reloading the RAM each time, a small but clever trick is played—that
is, overlapping the first eight locations of ROM and RAM. Thus, the contents
that the program counter and system stack pointer require must be stored in the

Exception ROM/EPROM $000000-$000007 (1)
Vector RAM $000008-$0003FF
System Table
Memory
RAM $000400-$0008FF
Scratchpad
User Memory RAM $000900-$007FFF
ROM/EPROM $008000-$00BFFF (1)
Not Used $00C000-$00FFFF
PI/T
(Lower byte only) $010000-$01003F
1/0 Devices ACIA2 (Lower byte) $010040-$010043
& ACIAl (Upper byte) |
!
Redundant Mapping *
SO1FFFF
Not Used $020000-$02FFFF

M6800 Page (E6)

Not Used

$030000-S03FFFF

$040000-SFFFFFF

NOTE: (1) Denotes read only

Fig. 3-2. Memory map of our system.
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ROM permanently. Whether on power-on or manual reset, these eight locations
can be loaded into RAM and thus become part of a vector table occupying 256
contiguous locations.

The remaining RAM area can be divided into two sections—one (from 000008
to 0008FF) to be used as a scratchpad for the operating system firmware; the
other {from 000900 to 007FFF), to serve as the user memory area.

The ROM will reside in the area from 008000 to 00BFFF. The area from 00C000
to OOFFFF will be left open for future expansion or as a work area. The area from
010000 to 01FFFF will be occupied by the MC68230 and the two ACIA. Another
unused area will be from 01FFFF to 02FFFF. The area from 030000 to O3FFFF will
be left for the addition of any other MC6800 peripheral devices. One more unused
area will be between 04000 and FFFFFF. All addresses are shown in hexadecimal
notation.

BUSES

Although this system would function without address and data buffer devices,
good design practice dictates that buffers be used whenever future expansion is
contemplated. The schematic in Fig. 3-3 shows the buffering of the 23 address
lines. Here, the 74LS373 latch is used as a buffer, but its latching input is disabled
by its connection to the positive power supply via a pull-up resistor. Provision is
made, however, for asserting the latching input by its connection to the AS line
via a jJumper wire. An 8T97 buffer is used to buffer the AS and other control lines.
Some of the buffered lines are shown in Fig. 3-3.

Buffering of the data bus requires more thought. This bus is bidirectional,
and the direction-enable signals of the buffers must be connected to the control
signals of the MC68000.

The 74LS245 is an octal (eight-input, eight-output), noninverting, bidirectional
buffer. In the schematic shown in Fig. 3-4, this device is asserted continuously by
connecting the Chip Enable (Pin 19) to ground. The direction of the buffers can
be controlied by the combination of gates shown.

When Pin 1 is asserted (active—low), direction is towards the MC68000. When
Pin 1 is negated (high), direction is from the processor to the external devices.
Thus, during a read operation, data are transferred to the MC68000 from either
the low or high data byte. During a write operation, the R/W line negates the
direction-enable pin of the buffer, allowing transfer of data to the data bus.

ADDRESS MULTIPLEXING

Since high-density dynamic RAMs are used, address lines A1 to A14 must be
multiplexed in order to generate the row and column addresses required during
read and write cycles. The multiplexers also provide refresh addresses to the
RAM. The circuit in Fig. 3-5 shows the use of dual four-line to one-line 74L.S153
muitiplexers. The enable signals—Pins 1 and 15, respectively —are connected to
ground so that the device may remain asserted at all times. Additional circuits
associated with the decoding of the memory will be discussed in later sections.
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Fca2 |28 NA1S 0 saf3-
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\A23 3 795
181D 10-1T
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EN OE
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Fig. 3-3. Buffering of 23 address lines.
Two circuits that can be designed at this stage are the reset/halt circuit and the
system clock circuit.
RESET/HALT AND SYSTEM CLOCK
Reset/Halt Circuit

Several specifications must be taken into account before design of a reset/halt
circuit is possible. The reset circuit must be able to serve the system both during
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us
7415245
Do ol ssll
D1 8], 12
7 B7=
D2 Zle B6H3
3 6, 14
ut 4 sy Bhs
MC68000 5 S AEEEMET
A3 B3>
pé6 3 A2 Bzﬂ.
D7 21 B8
oS 3 A+B_EN
U2 1
741504 1 4LS€§
R/W 1[>>£ 2 N

Fig. 3-4. Buffering using the 74LS245 octal noninverting bidirectional buffers.

the initial power-on and whenever a manual switch is pressed. The latter would
function, for example, to release the system from a fatal error.

Motorola provides the following specifications for a reset/halt circuit: During
power-on, the reset and halt signals should be asserted for slightly longer than
100 msec to allow for the stabilization of various internal circuits. When a manual
switch is used, the reset and halt signals should be asserted for about ten clock
cycles.

A reset-exception (a term to be discussed later) processing routine is executed
after the reset signal is negated on the leading edge of a clock cyclie. The flow
chart in Fig. 3-6 shows the sequence of events that occurs during a reset.

During initiation of a reset, the (S)upervisor flag in the status register is set,
the (T)race flag is reset, and the interrupt mask flags in the status register are
set to seven. The next two steps set the system stack pointer; that is, vector

U1
74LS153
REFRESH ig 2cs s
SIGNAL 1%jace av————REFRESH LINE
A2 10 2C1 TO RAM
AeS 2ce
3
3ica -
—ica v REFRESH LINE
Ao 1 =1C1 To RAM
Aes Slice
152
B P
1C__2C
1 Tt
S

Fig. 3-5. MC68000 address multiplexing.
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START

S FLAG = 1
T FLAG = @

INT {IﬁSK =

]!

FETCH SYS BUS
STACK PTR | ERROR YES

VECTOR (088) 2

CONTENTS OF
VECTOR (28) NO
— 5 sSSP

‘_l‘-' BUS

FETCH PC YES
VECTOR(81) | ERROR T

A

CONTENTS OF NO DOUBLE BUS
VECTOR(81) 4 FAULT

Fig. 3-6. Flowchart of the MC68000 reset activity.

number 00 is fetched from the vector table. At this point, the processor determines
whether a bus error has occurred. If it hasn't, the contents of vector number 00
are transferred to the stack pointer. Vector number 01 is fetched next, and the
bus-error possibility is re-examined. If two bus errors have occurred, the system
enters a double bus fault condition, which normally is fatal and requires system
reset. If not, the contents of vector number 01 are transferred to the program
counter.

A combined reset/halt circuit is shown in Fig. 3-7. The circuit uses the MC3456
timer device, whose time-constant requirements are set by the resistor—capacitor
combinations shown to satisfy the reset/halt, power-on timing specifications.
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74L500

1
2 1 74LS32  74LS04
MANUAL 2 3.1 ,
RESET
= | 74LS00 +
2 ‘ 4.7K

B A556-18B
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o THRI-S AM— +5
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OTHER DEVICES
+5 ,
0\ 2K MC88000
174LS32 741504
3 1 ) —
2) > HALT
FROM SINGLE-STEP
SWITCH 74LS04
1 150
+5

Fig. 3-7. An MC68000 combined reset/halt circuit.

The manual reset switch is debounced by a NAND flip-flop and is combined,
through an OR gate, with the power-on reset signal from the timer and connected
to the reset pin of the MC68000. The open-collector inverter satisfies the active—
low input requirements of the MC68000 pin. The 2.2-k(} pull-up resistor negates
the reset input when the latter is not used.

The same OR-inverter arrangement is used on the halt input. A light-emitting
diode is turned on when the halt signal is asserted. The halt signal may also be
used as a single-instruction execution mechanism. In this case, a manual switch
arrangement, similar to the reset, is connected to the signal through the OR and
inverter gates.

The circuit shown in Fig. 3-8—a slight modification of the previous one—is the
circuit to be used in our small system. It produces a POR (Power On Reset) signal
used in the ROM DTACK generation circuit (to be described later).

Although the small system does not include a single-step circuit, the design
in Fig. 3-9 may be used for this purpose. Each time the AS line is asserted, the
flip-flop is reset. If the upper switch is in the single-step position, the processor
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Fig. 3-8. Modified reset circuit used in our system.
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Fig. 3-9. A single-step circuit.
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halts and remains halted until the lower switch is toggled. In this way, the asyn-
chronous buses can be controlled manually.

System Clock

The small system uses a readily available, 8-MHz crystal oscillator, as shown in
Fig. 3-10. A four-bit, ripple binary counter reduces this frequency to produce the
4-MHz clock frequency that the MC68000 needs and the 1-MHz frequency required
by some peripheral devices. The system uses all three of the clock frequencies.

TIMING

The speed with which a microprocessor executes instructions is of major concern
to a design engineer. The small system includes components that permit appro-
priate future expansion, but the effect of these devices on the overall speed of
the system have not been discussed.

In Chap. 2, the MC68000 was shown as being an asynchronous device, and the
behavior of the DTACK lines supports this description. Synchronous operation of
the MC68000 should not be excluded, however, since even its asynchronous lines
are timed on a synchronous system clock.

Figure 3-11 shows that all data and control lines are sensed on the leading
edge and latched on the trailing edge of the system clock (shown in states, each
full clock cycle being two S states). For example, the DTACK line is sensed, and
asserted, one set-up time period before the trailing edge of state S4. If assertion
occurs earlier than the set-up time of the trailing edge, a wait state of one full
clock cycle is added to the timing. When DTACK becomes asserted on the trailing
edge of the clock state, data are latched during the trailing edge of the next full
clock cycle.

Thus, unless the DTACK signal is low for one set-up time, as required, the
processor introduces wait states. Addition of these wait states, coupled with the
presence of other devices, such as buffers or the gates used to generate the row
address signal (RAS) in dynamic memories, may slow down a system.

U2
74LS93

1 MHZ

U1 4 MHZ
8 MHZ 8 MHZ

Fig. 3-10. The oscillator circuit used in our system.
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Fig. 3-11. Timing activity of the MC68000.

Table 3-1 indicates the operation, at nominal clock frequency, of an MC68000-
based system using RAM of various access times and Low-power Schottky (LS)
or Schottky (S) devices. For example, consider using RAM with an access time of
150 nsec and LS buffers with a propagation delay of 56 nsec. The MC68000 at 8
MHz provides a total internal delay of 70 nsec; the AS to RAS delay is 22 nsec.
Thus, the total bus latency is 298 nsec (sum of the above delays), and the system
can operate (with no wait states) at a nominal frequency of 8 MHz.

The significant point, which Table 3-1 stresses, is cost of a system versus
performance. For example, consider the last column of the table, showing the
use of 450-nsec RAM and LS buffers. The critical path of AS to RAS is constant
throughout the table. Thus, if slower and consequently cheaper RAM is used, it
is seen that the lower clock speed (4-MHz) MC68000 must be used to avoid wait
states. If a faster clock speed is chosen, then wait states must be introduced for
the speeds of the processor and the RAM to be matched.

The factor of speed must be re-evaluated from the standpoint of instruction
cycle time. The MC68000 requires a nominal read time of four clock periods — of
which 2.5 are allocated to bus latency —and a nominal write cycle of five clock
periods —of which 3.5 are allocated to bus latency. Thus, referring once more to
Table 3-1, to avoid wait states but still afford the 348 nseconds of bus latency,
a designer who uses 200-nsec RAMs and LS buffers must use either a 7.18-MHz
clock or faster (Schottky) buffers.

Table 3-2 shows the operation of an MC68000 with 200-nsec RAMs and LS
buffers. As shown, an ideal instruction of one read and one write consumes 17
clock cycles; with a system clock of 8 MHz (125 nsec), this represents 2125 nsec. In
this case, a system provides 100-percent performance. The table also shows that,
in nonideal (actual) operation, the system loses 15 percent of its performance, a
percentage 3 percent higher than if a designer had decided to operate the system
at a reduced clock frequency. The reason is simple: the MC68000 uses full cycles
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32 THE 68000 MICROPROCESSOR

as wait states. Thus, a cost savings can be effected here by using 250-nsec RAMs
with Schottky buffers. The overall performance remains the same.

As the last line in Table 3-2 indicates, performance may be improved further
if the full cycle of wait states can be reduced by, say, 50 percent. Doing so is
not impossible if flip-flops are used, as shown in Fig. 3-12. The clock-stretching
circuit shown here will extend S4 (the DTACK latching cycle) by unit periods of
the oscillator input to the flip-flop. This circuit, however, will not stretch S2 since
data strobes are not output until S3 of a write cycle.

A useful chart by which the performance of a system can be evaluated appears
in Fig. 3-13. The left-hand side of the chart denotes, in microseconds, the average
execution time of a single two-bus-cycle instruction. The nominal clock frequen-
cies are the lines sloping downward from right to left. Memory access times are
the lines sloping upward from right to left. In the case of 200-nsec and 250-nsec
RAM, two curves are given—one for RAM buffered with Schottky devices and the
other for RAM buffered with Low-power Schottky devices. Values such as wait
states and cycle time are given at the bottom of the chart; these are used in
conjunction with the other sections.

Let us use some values in Table 3-2 derived from this chart. The 8-MHz clock
line crosses the 0-wait-state line between the area of the 200 LS RAM and the 200
S RAM. Using Schottky buffers and excluding wait states, the bottom of the chart
shows that a two-instruction sequence can be executed in 17 cycles, or 2.12 usec
{i.e., two times the 1.06-usec point on the chart).

The use of LS buffers and 200-nsec RAM would require one wait state, and the
execution time would increase to 2.5 usec. With a circuit similar to that in Fig. 3-12,
however, the execution time will drop to 2.32 usec.

The chart also allows comparison of performance in speed at various clock fre-
quencies, RAM access time, and LS or S buffers. For example, the execution time
does not vary significantly at 6-MHz/250-nsec RAM (1.42 usec), 6.41-MHz/300-

4
, 741508 | 141500 k 741574
DTACK > Dca_Z_D al8 » TO 68000
(FROM 68000) 2 | s . cLOCK

CoL I
16 MHZ D~ I
44 74LS74
AS (FROM 680800) >— 25" oS-
3l. 6
I

Fig. 3-12. Clock stretching circuit using flip-flops.
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Fig. 3-13. Performance of a MC68000 using various TTL devices and memories with different access times.
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nsec RAM (1.44 usec) or 7-MHz/300-nsec RAM (1.43 usec).

The bottom line of the chart provides values (“factors”) that can be used to plot
a memory system—that is, when a factor is multiplied by the total required bus
latency, the product is the average execution time per simple instruction for the
indicated occurrence of wait states for the particular two-instruction sequence.

BUS TIMEOUT LOGIC

It was mentioned earlier that some provision must be made to avoid wasting time
if, for instance, writing into ROM memory space should be attempted. Addressing
of an unused location in a memory area or failure of a circuit to respond will also
waste time.

The circuit in Fig. 3-14—usually called a “watchdog timer” —consists of a
74LS175, quad D-type flip-flop, which is connected as a four-bit serial shift
register. After the circuit is cleared via the AS line, four clock cycles taken from the
E clock of the MC68000* are “walked” through it. A total delay, or bus timeout,
of 10 usec is produced.

DESIGN OF RAM AND ROM INTERFACE

Several circuit groups must be used for the interface of the RAM and ROM. The
first circuit must be a general decoding circuit for the RAM, ROM, and some
MC6800 peripheral devices (the latter are also part of a memory-mapped scheme).
Since use of these peripheral devices is planned, a VPA bus termination signal
must also be generated. The circuit in Fig. 3-15 demonstrates a general decoding
scheme for the small system under study here.

Gates U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, and U11 decode address lines
A3 to A15. These gates are combined with the output of the 74LS138 decoder
{U30) to generate a ROM enable signal (ROMEN) in the address area from 008000
to 00BFFF and a RAM enable signal (RAMEN) in the area from 000008 to 007FFF.
The address range selected is shown at the output of the corresponding gate in
Fig. 3-15.

Gate U4 performs an interesting task. As mentioned earlier, the first eight
memory locations are overlapped by RAM and ROM. The output of this gate is
used to assert the ROMEN and RAMEN signals in this memory area.

The 74LS138 decoder also selects the memory areas for ACIA (010040 to
010043} and the parallel interface/timer device (01000 to 0103F). Several outputs
of this decoder are not connected and can be used for future expansion within
the unused memory-map areas.

ROM Circuit

Two MC68A364 ROM are used, as shown in Fig. 3-16. Each has a storage capacity
of 8 kilobytes times 8 bits (8 kilowords). When the ROMEN enable signal

*E = MPU clock/10; in this case, E = 400 kHz. Each stage provides a delay of 2.5 usec (total of 10
usec).
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Fig. 3-14. Watchdog timer.

selects both devices simultaneously, the total ROM space is 16 kilobytes (or 8
kilowords) times 16 bits (16 kilowords).

The MC68A364 has various access-time speeds. For economy, we will select
the slow (350-nsec) version.

The function of the DTACK generation circuit with respect to the ROM s illus-
trated by the timing diagram in Fig. 3-16. The AS and ROMEN signals are asserted
on the leading edge of S2, and DTACK is sensed on the leading edge of S4. Since
a slow memory has been chosen, however, the timer must assert DTACK later
than S4 (in about 500 to 625 nsec). When the system senses that DTACK is not
present, it introduces wait states. When DTACK is finally asserted, data are sensed
(S5) and latched (S6).

RAM Circuit

The choice of a slow dynamic RAM (450-nsec) for our system means that a timer
circuit must be designed for the DTACK. A circuit must also refresh the DRAM,
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Fig. 3-15. RAM-ROM decoding circuit for our system.

usually once every 1.5 msec, and preferably while the processor is not busy with
the buses. The direct-memory access signals are prime candidates for this circuit.
Furthermore, a technique called RAS refresh only can be used. This dynamic,
memory-refresh technique is appropriate with asynchronous systems since it is
not possible to accomplish a memory refresh in such systems without interfering
with the processor cycles. When a high-priority RAS refresh request is generated,
a refresh cycle is initiated at the completion of a processor cycle in progress.
This technique is called cycle stealing. The memory-cycle requests from the
processor are interrupted and a refresh cycle inserted in their place; thus, a
normal cycle is stolen from the processor to carry out refreshing of the memory.
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Fig. 3-16A. ROM devices used in our system and timing diagram of DTACK with respect to operation
of the devices.

In large systems, arbitration circuits are used to accommodate the cycle-
stealing technique. In our small system, however, a simple handshake approach
of a request (BR), grant (BG), and acknowledge (BGACK) is sufficient.

The timer circuit for our system is shown in Fig. 3-17. This circuit provides the
following control signals:
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Fig. 3-16B. ROM devices used in our system and timing diagram of DTACK with respect to operation
of the devices.



1 74L508
FROM TIMING FLIP FLOP ——m— 3

1 MHZ CLOCK >————=2
4. 7K 74LS175
+5 —W\W—13U4p 4 :i
4Q—=N.C. 741502
125 38 2 -
aghLt 3)
Sp 207
4 2u 2
1D 1Q 3 ——N.C. .
17 PDTACK RAM
C
” CT,; 174»LS.'52
8 MHZ cLoCK 7 3 L
741832
1 47
SR 1 JALS00 (2] >3y
2 !
741832
1 47
DS 1 74LS00 7> 2 3 ™
L 2 | R/W >
»
Fig. 3-17. Timer circuit.
+5
47K
REFRAS 3—
u3
7418175
134p  4gH2
12 45p ;g 18
s 3uf= » MUxX COL/ROW
2D 2% U4
2 741582
4o :gt: %i > 147 > RAS
¢
" c‘,‘ us
8 MHZ CLOCK )—-—-———]9 1741-5332 7
. 74Y808 2) cL
RAMEN > : Z 3
— 4 ¥4LSB¢ us
S >—17 (s
005 »- zjl > M U
us
741532

Fig. 3-18. Cycle stealing method.
39



40 THE 68000 MICROPROCESSOR

ut
7415153
REFA2 3pes 1o ¥
c2 2v| AW
A2 e
REFA1 183 47 ALL 4116°S CONNECTED SIMILAR TO LEFTMOST 4116
—4hc2 1Y
Al 1c1
AB 1c8
KURICOL;%'F’ T+ F RAR 5Az4-116 _S_Mnm
a1 pafit a1 peltt
1626 " Z6laz
1203 205
1as :—;A4
1
Y3183 13[aa BT
REFA4 eca | V7 3 3
12562 2y 8 a—o We v
A4 2¢ 4RASe 4{RAS
Al 8 hee o Bicase Blcas«
REFA3 Hies |, D1 D1
—lic2 1y, AN
- 61ico TO MC68008 DATA BUS (D@D7) ©
L3R
16_26
. 5 4116 _sgt1e
7315153 Ziar  paft —Za - oaft
47 A2 —Sa2
REFA6 3 e 12
12 b2 27— A3 TPt
mpa i i g
3 : 13
REFAS 3hes |, ¥ A8 e
—=11C2 1Y] AW 3lwe ] W
AS 2 lic1 il 4
A12 Slice Bl s Bloase
TIA D1 2/py |
1626 N
. TO MC68888 DATA BUS (D8-D15) *
7415153
Jpcs o
2bea 2vf2-
5 12og SIX ADDITIONAL 4116°S IN EACH ROW NOT SHOWN
rerar—2ics | Y
4he2 1y AMA—
A7—2H1C1
At4—Bhice raw—l
14 E AR —
1626 cL—
] cu—-
Fig. 3-19. Timing and addressing circuit for our system.
1. Column/Row multiplex signal —used to select the 74LS153 mulitiplexers
2. DTACK RAM —used to signal DTACK to the MC68000
3. RAS —used to refresh the row addresses of the DRAM
4. CU, CL (Upper Column, Lower Column)—used to select either the upper or

lower columns of the DRAM
5. RAW—used as a read/write signal

A second circuit, depicted in Fig. 3-18, carries out the cycle-stealing technique.
This circuit is, essentially, a timing circuit, controlled by the handshake signals
mentioned earlier. It generates the signals to assert the 74LS153 multiplexers.



A SMALL MC68000 SYSTEM 41

Combined with the circuit in Fig. 3-17, it forms the timing and addressing circuit
for the DRAM. The complete memory circuit is shown in Fig. 3-19.

Completion of the memory circuit temporarily suspends discussion of the
MC68000 hardware features. This discussion will be resumed when the program-

ming features necessary for the design of input—output and interrupt circuits have
been described.



Chapter 4
Addressing Modes; Instruction Set

ADDRESSING MODES

The MC68000 has six addressing categories, each of which has variations that
provide a total of 15 addressing modes, as shown in Table 4-1. Closer examination
of these addressing modes reveals that they can be classified in four major
groups, as follows: (1) Register Direct modes, (2) Memory Address modes, (3)
Special Address modes, and (4) Program Control modes.

Memory Accessing Rules

To avoid address errors, which will result in the interruption of a program, three
rules must be observed:
1. Sixteen-bit (word) and 32-bit (longword) data must be accessed from an
even address.

Correct: MOVE.W. (A1)+,DO if A1 initially contains 00001000.
Wrong: MOVE.W. (A1) +,DO if A1 initially contains 00011133.

The latter access generates an address trap error.

2. Bytes can be accessed from either an odd or even address.
3. Opwords must be on an even address.

Boundaries for the various sizes of data are represented on page 44, where N
is the address, an even number.

In the case of the longword, since the default value of the MC68000 is the 16-
bit word, a 32-bit word is formed by “joining” two 16-bit words.

Effective Address and Extension Word

An effective address is an address that contains an operand and is part of the
operation word. As shown in Fig. 4-1, this address consists of two three-bit
subfields—i.e., the mode and the register.

42
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Table 4-1. Addressing Modes.

REGISTER DIRECT ADDRESSING:

A. Data register direct EA=D,
B. Address register direct EA=A,
C. Status register direct EA=SR
ABSOLUTE DIRECT ADDRESSING :
A. Absolute short EA = (Next word)
B. Absolute long EA = (Next two words)
PROGRAM COUNTER RELATIVE ADDRESSING:
A. Relative with offset EA = (PO + die
B. Relative with index and offset =(PO)+ (X )+ dg
REGISTER INDIRECT ADDRESSING :
A. Register indirect EA=
B. Postincrement register indirect EA —64/—%

A A ntN
C. Predecrement register indirect A AN

(An )

D. Register indirect with offset =(A,t
E. Indexed register indirect with offset =(A,+ ( )+ dg
IMMEDIATE ADDRESSING :
A.  Immediate Data = Next word or words
B. Quick immediate Inherent data
IMPLIED ADDRESSING:
A. Implied register EA= SR, USP, SP, PC
KEY:

Ap. Dy Address register and data register, respectively, with subscript to
denote number of register

ad,. Displacement, with subscript to denote the number of bits

s
EA: Effective address

N: Value (N =1, 2, or 4)

PC: Program counter

SP: System stack pointer

SR: Status register

USP: User stack pointer

Xp: Address or data register used as index register
() Contents of

15 6 5 3 2 ("]

OPWORD MODE REG.

e -/

EFFECTIVE
ADDRESS

Fig. 4-1. Effective address.
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76 5432107 6543210

17 bit N Byte 0 / Byte 1 N +1
15 8 7 0
1 byte N (7) Byte 0 (0V Byte 1 N +1
Byte 2 Byte 3 N +3
15 0
1 word N Word 0 N +1
N+2 Word 1 N +3
N+4 Word 2 N +5
15 0
1 longword N (31) Longword 0 (High-order word) N +1
N+2 Longword 0 (Low-order word) (0) N +3
N+ 4 Longword 1 (High-order word) N +5
N+6 LLongword 1 (Low-order word) N +6

The mode bits define the addressing mode of the instruction, and the register
bits designate the register involved (0 to 7). For absolute and immediate address-
ing, the mode bits remain the same (111), while the register bits contain a code
that, in absolute addressing, distinguishes between long and short and, in imme-
diate addressing, denotes that particular mode.

As Fig. 4-2 shows, to specify an operand completely, an effective address may
need additional information, ranging in length from one to several words; that is,
depending on the addressing mode selected, additional 16-bit extension words
may follow the op code. These words provide additional addressing information
and may extend the total length of an instruction by as much as ten bytes.

Table 4-2 lists the various combinations for compilation of an effective address.
The $ symbol indicates a hexadecimal address; the # symbol indicates a number
that is interpreted as a value rather than as an address.

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Operation Word
(First word specifies operation and modes)

One- or two-word immediate operand, if any

Source effective address extension, if any
(One or two words)

Destination effective address extension, if any

Fig. 4-2. Instruction format of the MC68000.
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Table 4-2. Effective-Address Combinations.

ADDRESSING MODE

7 NOTATION

EA MODE REG.
000 Reg.# Data Register Direct D,
001 Reg.# Address Register Direct A,
010 Reg.# Address Register Indirect (A,
on Reg.# Address Register Indirect with Postincrement (An) +
100 Reg.# Address Register Indirect with Predecrement — (An)
101 Reg.# Address Register Indirect with Displacement dA,)
110 Reg.# Address Register Indirect with Index dA Ay
1 000  Absolute Short FXXXX
111 001 Absolute Long EXXXXXXXX

111 100 Immediate

The MC68000 manipulates single effective-address or double effective-address
instructions. In a single effective-address instruction, as shown in Fig. 4-3, the 16-
bit operation word contains the opcode, the data size, and the six-bit effective
address.

In the double effective-address instruction, the operation word contains the
opcode, a six-bit destination effective-address, and a six-bit source effective-
address.

OPWORD | DATA SIZE MODE REGISTER

Fig. 4-3. Single effective-address instruction.

Register Direct Modes

General. In two of the register direct modes, an operand is held in either a data
register or an address register.

Data Register Direct. This mode is used to access a data register; that is, the
effective address holds the mode code and the number of the register involved
in the operation.

EXAMPLE 4-1: CLR.W DO

This is a single effective-address instruction; its format is shown in Fig. 4-4. The
first two nibbles designate the opcode (0100 0010). The next two bits represent
the size of the data to be manipulated. In this case, the code for designation of
the 16-bit operand is 01. The last six bits of the instruction format indicate the
effective address.

The format in Fig. 4-4 should not be considered as representative of all single
effective-address instructions of the MC68000. Contents of registers in the 6800
before and after execution of a particular instruction are as follows:



Before:

PC=00000000
D0=00001000
D4=FFFF4E71
A0=000080B6
A4=00023352

After:

PC=00003006
D0=00000000
D4=FFFF4E71
A0=000080BG
A4=00023352
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8 76 5 3

Opcode
0100 0010/

Fig. 4-4. Instruction format of CLR.W DO instruction.

SR=2700=.S7
D1=FFFF4D4D
D5=00000000
A1=0000077C
AS5=00000540

SR=2704=.57.

D1=FFFF4D4D
DS=00000000
A1=0000077C
AS=00000540

Mode
/000

Data size
01

D2=FFFF3352 D3=00000000
D6=00000001 D7=000001FD
A2=00003006 A3=00000554
AG=0000054A A7=00000786

2.
D2=FFFF3352 D3=00000000
D6=00000001 D7=000001FD
A2=00003006 A3=00000554
AG=0000054A A7=0000078A

US=FFFFFFFF $5=00000786

US=FFFFFFFF SS=0000078A

Let us try a double effective-address instruction.

EXAMPLE 4-2: MOVE.W DO, D1

In this case, we wish to move 16 bits of data from data register DO to data register
D1. Since this instruction handies data, we can select one of the three data sizes —
(B)yte (eight bits), {(W)ord (16 bits), or {(L)ongword (32 bits).

Before:

PC=00003002
D0=00123456
D4=F7F 77FFF
AO=FF7FFFFF
A4=FFFFFFF7

After:

PC=00003002
D0=00123456
D4=F7F77FFF
AO=FF7FFFFF
A4=FFFFFFF7

The operation word for this instruction is shown in Fig. 4-5. An observant reader
may notice that the instruction format in this figure differs from the arrangement

SR=2704=.57.

D1=FFFFFFFF
DS=FFFFFFFF
A1=FFFFFFFF
AS=BFDFFFFF

SR=2700=.57
D1=FFFF3456
DS=FFFFFFFF
A1=FFFFFFFF
AS=BFDFFFFF

2.
D2=FFFFF77D D3=FFFFFFFF
D6=DFFF7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AG=FFFE7F7F A7=00000786

D2=FFFFF77D D3=FFFFFFFF
D6=DFFF 7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AG=FFFE7F7F A7=00000786

US=FFFFFFFF S5=00000786

US=FFFFFFFF S5=00000786
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15 14 13 12 I 6 5 0
Destination Source

Size Reg. Mode Reg. Mode
o o/ 1M/ 0 0O O/ 00O/ 0 0O/ 0 0 1

Fig. 4-5. Instruction format of MOVE W . DO, D1.

of the mnemonics in the instruction. The mnemonics show the source register
(D0O) first and the destination register (D1) second, while the instruction format
reverses this order. Internally, the processor encodes the instruction as shown
in the instruction format in Fig. 4-5. A programmer should not be concerned,
however, with the encoding of the instruction and must follow the order of the
mnemonics {source first; destination second).

Address Register Direct. |n this type of addressing mode, the operand is located
in an address register specified by the effective-address register.

EXAMPLE 4-3: MOVE.L A0,DO

Before:

PC=00003002
D0=00123456
D4=F7F77FFF
A0=00002000
A4=FFFFFFF7

After:

PC=00003006
D0=00002000
D4=F7F 77FFF
A0=00002000
A4=FFFFFFF7

SR=2700=.57
D1=FFFF3456
DS=FFFFFFFF
A1=FFFFFFFF
AS=BFDFFFFF

SR=2700=.57
D1=FFFF3456
DS=FFFFFFFF
A1=FFFFFFFF
AS=BFDFFFFF

US=FFFFFFFF S$=00000786
D2=FFFFF77D D3=FFFFFFFF
D6=DFFF7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AG=FFFE7F7F A7=00000786

US=FFFFFFFF $S=0000078A
D2=FFFFF77D D3=FFFFFFFF
D6=DFFF7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AB=FFFE7F7F A7=0000078A

Memory Address Modes

General. Memory address modes are used to access an operand in a memory
location. All modes in this category are variations of indirect addressing and can
be used as reference pointers to memory, to process sequential data, to perform
stacking operations, to move blocks of data, and to manipulate elements within
an array.

Address Register Indirect. This mode can be used as a variable reference pointer
to memory. The address of the operand is held in an address register specified
in the effective address register subfield.
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EXAMPLE 4-4: MOVE.W (A0), D1

Before:

PC=00000032
D0=000020FE
D4=F7F 77FFF
A0=00002000
A4=FFFFFFF7

After:

PC=00000032
D0=000020FE
D4=F7F 77FFF
A0=00002000
A4=FFFFFFF7

SR=2708=.57.

D1=FFFF1223
DS=FFFFFFFF
A1=FFFFFFFF
AS=BFDFFFFF
002000
002001
002002

SR=2708=.57.

D1=FFFF1223
DS=FFFFFFFF
A1=00002010
AS=BFDFFFFF

D2=FFFFF77D D3=FFFFFFFF
D6=DFFF7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AG=FFFE7F7F A7=0000078E

12

23

34

D2=FFFFF77D D3=FFFFFFFF
D6=DFFF7FFF D7=FFFFFFFF
A2=FFFF7FFF A3=FFFFFFFF
AG=FFFE7F7F A7=0000078E

N... US=FFFFFFFF S5=0000078E

N... US=FFFFFFFF S5=0000078E

Address Register Indirect with Postincrement. in this mode, the address of an
operand is held in an address register specified in the effective-address register
subfield. After use of the address, it is incremented by one, two, or four, depend-
ing on whether the accessed operand is a byte, word, or longword. If, however,
the address register is the stack pointer and the operand is a byte, the address is
incremented by two in order to keep the stack pointer on a word boundary (an

even address).

EXAMPLE 4-5: MOVE.W (A1)+, DO

Before:

PC=00000000 SR=2700=.57..... US=FFFFFFFF SS=00000786

D0=123678AA D1=FFFFFFFF D2=FFFFFFFF D3=FFFFFFFF 002000 20
D4=FFFFFFFF DS=FFFFFFFF D6=FFFFFFFF D7=FFFFFFFF 002001 30
A0=00002000 A1=00002000 A2=FFFFFFFF A3=FFFFFFFF 002002 44
A4=FFFFFFFF AS=FFFFFFFF AB=FFFFFFFF A7=00000786 002003  AA

After:

PC=00003006
D0=12362030
D4=FFFFFFFF
A0=00002000
A4=FFFFFFFF

This mode is useful for handling sequential data, such as tables, for moving

SR=2700=.57
D1=FFFFFFFF
DS=FFFFFFFF
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