

THE
68000

MICROPROCESSOR

THE
68000

MICROPROCESSOR

Andrew M. Veronis, Ph.D.
Professor

Department of Electrical Engineering
Howard University
Washington, D. C.

~ VAN NOSTRAND REINHOLD COMPANY
~ ____________ New York

Copyright ©1988 by Van Nostrand Reinhold Company Inc.

Library of Congress Catalog Card Number 87-13297

All rights reserved. No part of this work covered by the copyright hereon
may be reproduced or used in any form or by an means-graphic, electronic,
or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems-without written permission of the publisher.

Van Nostrand Reinhold Company Inc.
115 Fifth Avenue
New York, New York 10003

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 La Trobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada
Division of Canada Publishing Corporation
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

16 15 14 13 12 11 10 9 8 7 6 54 3 2 1

Library of Congress Cataloging-in·Publication Data

Veronis, Andrew.
The 68000 microprocessor.

Includes index.
1. Motorola 68000 (Microprocessor) I. Title.

QA76.8.M672V47 1988 004.165 87·13297

ISBN-13: 978-1-4684-6649-2
001: 10.1007/978-1-4684-6647-8

e-ISBN-13: 978-1-4684-6647-8

This book is dedicated to my dear
mother-in-law Eleanor Hough Buckler, for
all the love and kindness she has shown me.

Preface

The Motorola MC68000 family of microprocessors is undoubtedly a revolu­
tionary set of devices. The MC68000 is the first advanced 16-bit microprocessor
with a 32-bit internal architecture and the first with 16-megabyte, nonsegment­
ed, direct memory addressing. The processor's six basic addressing modes are
equivalent to 14, when one considers all of the variations among these modes.
Combined with the device's data and instruction types, the modes provide more
than 1000 useful instructions.

The book you are about to study has been developed as an aid to the hard­
ware designer and as a supplement to the Motorola seminars on the 68000
microprocessor. The text includes a detailed description of the MC68000 and
two complete systems that show how this processor can be interfaced to the
outside world.

The book follows a "top-down" approach. A brief history of microprocessors is
provided first. Chapter 2 details the MC68000 by describing its registers, control
lines, and capabilities.

Chapter 3 introduces a small MC68000-based system. Although this system is
characterized in the book as hypothetical, it is indeed the Educational Computer
Board, used in the various Motorola seminars.

The addressing modes and instructions are explained in Chapter 4, which
includes helpful hints on how instructions can be used. Chapter 5 provides an
in-depth description of additional instructions and numerous examples.

Chapter 6 discusses exception handling and interrupts.
Chapter 7 describes how the MC68000 processor can be connected to eight­

bit and 16-bit peripheral devices. This Chapter also covers the interfacing of the
Motorola Educational Computer Board to a terminal, a modem, a printer, and a
cassette interface. Various interfacing programs are listed in this Chapter.

Chapter 8 provides full description of a second MC68000-based system, the
VU68K. This system was built initially by students of the Computer Science
Department of Vanderbilt University, and subsequently has been constructed by
some of the author's students. The most interesting part of this Chapter is the
detailed description of an operating system monitor, the VUBUG. Study of the
VUBUG provides the reader with valuable experience in the use of the MC68000
instructions, as well as in the design of a basic, but fully functional, operating
system monitor.

The writing and production of a book really involves many people, such as
reviewers, copy editors, and artists. Perhaps the only chance that an author has
to thank these people is through the preface of the book.

vii

viii PREFACE

I wish to thank everyone who participated in the production of this book.
particularly wish to thank my friend Joe Gordon for helping me with the

illustrations.
Most authors use the preface of their book to thank their loved ones for their

patience. I wish to do the same, to thank my dear wife Elizabeth Veronis not only
for her tremendous patience but also for her active participation in the typing
and editing of the manuscript. Her help has been invaluable.

Appendices Band D are the copyrighted property of Motorola Semiconduc­
tors, Inc. and are included in this book by written permission.

Andrew M. Veronis
Annapolis, Maryland

Contents

Preface vii

Chapter 1. BASIC CONCEPTS 1

BRIEF HISTORY OF MICROPROCESSORS 1
DESIGN OF A MICROPROCESSOR 2

Design Considerations 2
Registers 3
Addressing Modes 3
Prefetch 4
Multiple Arithmetic-Logic Unit 5
Microprogramming 5
Peripheral Devices 5

DATA REPRESENTATION 6
Terminology 6
Data Types 6

Chapter 2. INTRODUCTION TO THE MC68000 9

GENERAL LAYOUT 9
DATA BUS 10
ADDRESS BUS 10
ASYNCHRONOUS BUS CONTROL 10
FUNCTION CONTROL 13
SYNCHRONOUS BUS CONTROL 14
SYSTEM CONTROL 15
DIRECT MEMORY ACCESS CONTROL 15
INTERRUPT CONTROL 16
REGISTERS 17

Data Registers 17
Address Registers 17
Program Counter 17
Status Register 17

Chapter 3. A SMALL MC68000 SYSTEM 19

INTRODUCTION 19
BLOCK DIAGRAM AND MEMORY MAP 19

Block Diagram 19
Memory Map 21

ix

x THE 68000 MICROPROCESSOR

BUSES 22
ADDRESS MULTIPLEXING 22
RESET/HALT AND SYSTEM CLOCK 23

Reset/Halt Circuit 23
System Clock 28

TIMING 28
BUS TIMEOUT LOGIC 34
DESIGN OF RAM AND ROM INTERFACE 34

ROM Circuit 34
RAM Circuit 35

Chapter 4. ADDRESSING MODES; INSTRUCTION SET 42

ADDRESSING MODES 42
Memory Accessing Rules 42
Effective Address and Extension Word 42
Register Direct Modes 45

General 45
Data Register Direct 45
Address Register Direct 47

Memory Address Modes 47
General 47
Address Register Indirect 47
Address Register Indirect with Postincrement 48
Address Register Indirect with Predecrement 49
Address Register Indirect with Displacement 49
Address Register Indirect with Index and Displacement 50

Special Address Modes 51
Absolute Short 51
Absolute Long 51
Immediate Mode 51

Program Control Modes 52
General 52
Program Counter with Displacement 52
Program Counter with Index 52

Inherent Mode 52
Summary 52

INSTRUCTIONS 53

Chapter 5. INSTRUCTION SET -A MORE INTENSIVE EVALUATION 54

DATA MANIPULATION INSTRUCTIONS 54
Arithmetic Operations 54
Logical and Shifting Instructions 60

Logical Instructions 60
Shifting Instructions 63

Bit Manipulation Instructions 65

DATA MOVEMENT INSTRUCTIONS 66
PROGRAM CONTROL INSTRUCTIONS 69

Unconditional Branch 69
Conditional Branch 69

POSITION INDEPENDENCE INSTRUCTIONS 70
HIGH-LEVEL LANGUAGE AIDS 70
PROGRAMMING HINTS 73

Chapter 6. EXCEPTION HANDLING 76

GENERAL 76
INTERRUPTS 83

Chapter 7. PERIPHERAL DEVICES 92

INTRODUCTION 92
MEMORY MAPPING OF I/O SPACE 92
MC6850 ACIA 92
MEMORY MAPPING OF ACIA 97
GENERATING INTERRUPT REQUEST SIGNALS 97
PARALLEL INTERFACEITIMER 104
DESIGNING THE PRINTER INTERFACE 106
PROGRAMMING THE INTERFACE 108
DESIGN OF THE CASSETTE INTERFACE 110

Chapter 8. ANOTHER 68000-BASED SYSTEM 114

HARDWARE DESCRIPTION 114
THE OPERATING SYSTEM MONITOR 118
MONITOR COMMANDS 119

The "b" Command: Set/Remove Breakpoints 120
The "c" Command: Copy Memory Blocks 120
The "d" Command: Display Data to Terminal 120
The "e" Command: Enter Terminal Emulator Mode 120
The "g" Command: Execute a User Program 121
The "I" Command: Load Program from Host (S-format) 121
The "m" Command: Examine/Modify Memory 121
The "p" Command: Load/Execute a Prototype Command 122
The "r" Command: Examine/Modify Registers 122
The "s" Command: Single-Step Mode 122
The "t" Command: Trace Program Execution 123

TRAPS 123
EXCEPTION PROCESSING 124
THE MONITOR 124

Appendix A. S-RECORD OUTPUT FORMAT 153

Appendix B. INSTRUCTION SET DETAILS 159

CONTENTS xi

xii THE 68000 MICROPROCESSOR

Appendix C. INSTRUCTION FORMAT SUMMARY 271

Appendix D. MC68000 INSTRUCTION EXECUTION TIMES 293

Appendix E. MC68000 INSTRUCTION EXECUTION TIMES 301

Index 313

THE
68000

MICROPROCESSOR

Chapter 1
Basic Concepts

BRIEF HISTORY OF MICROPROCESSORS

The first two microprocessors-the 4004 (a four-bit set of devices) and the 8008
(an eight-bit device on a single chip)-were produced in the early 1970s by a
newly formed company, Intel Corporation. The 4004, also known as the MCS-4,
was designed to replace six custom chips in a desktop calculator and was there­
fore programmed for serial, binary-coded, decimal arithmetic (a very common
practice in handheld and desktop calculators). Although the client, a Japanese
manufacturer named Busicomp, went out of business before it could put the 4004
to work, this set of devices was soon adapted for numerous other applications.

A U.S. company named Computer Terminal Corporation (also known as Data­
point) similarly requested Intel to design a push-down stack chip for a processor
to be used in a CRT terminal. Datapoint intended to build a bit-serial processor in
TIL logic with a shift-register memory-a design that would require a fair number
of devices. Intel suggested that the entire design could be implemented in one
chip. This new processor was the 8008. Although Datapoint eventually did not
use the chip because of the long lead time Intel required, the device was quickly
adopted by other logic design engineers, who saw the advantages to be derived
from microprocessors.

At about the same time, Motorola, Texas Instruments, Zilog, and other semi­
conductor manufacturers were gearing up to capture a share of what was to
become the largest semiconductor market. Improved devices such as the Intel
8080 (second-sourced by other manufacturers, including Texas Instruments and
National Semiconductors), the Zilog Z80 (the most popular eight-bit processor
ever marketed), and the Motorola 6800 (also an extremely popular eight-bit micro­
processor) have dominated the market for more than a decade.

As the benefits of microprocessors became more apparent, design engineers
and, more particularly, programmers increasingly demanded better performance.
Eight-bit microprocessors are designed to replace logic circuits and, conse­
quently, emphasize controller-type capabilities rather than ease-of-programming
elegance. Compare, for example, the instruction format of an eight-bit processor
to that of a 16-bit device, as shown in Fig. 1-1.

Clearly, an eight-bit processor lags behind in the available number of registers,
instructions, and addressing modes, as well as the memory addressing range. All

1

2 THE 68000 MICROPROCESSOR

MC6800 OP CODE

1 y 1\

REGISTER I
O-A
1-8

ADDRESS MODE

OO-IMMEDIATE
01-DIRECT
10-INDEXED
11- EXTENDED

OPERATION

$0 - SU8TRACT
I-COMPARE
2-SU8TRACT W/CARRY
'-AND
5-81T
6-L.OAD
7- STORE
e- EXCL.USIVE OR
11- ADD W/CARRY
A-OR
8-ADD

I I I
I T

Operation Register Operand
Size

Effective
Address

To/From
Memory

Fig. 1-1. Formats of a-bit and 16-bit instructions.

of these features are needed for efficient programming. Thus, eight-bit processors
gradually are giving way to 16-bit and 32-bit processors.

DESIGN OF A MICROPROCESSOR

Design Considerations

Numerous factors affect the overall performance of a microprocessor system, in­
cluding internal organization, speed, instruction set, addressing modes, memory­
handling capacity, interfacing ease, and availability of compatible peripheral
devices. The system designer must consider them all.

Some of these factors will be described in the following pages. To facilitate this
description, a powerful 16-bit processor-the Motorola MC68000-will be referred
to from time to time. This device will not be examined in detail, however, until
Chap. 2.

BASIC CONCEPTS 3

Registers

One significant advantage of a 16-bit microprocessor over an eight-bit device
is that the former has twice the word width; as a result, a 16-bit device can
handle twice as much information, thus increasing the processing speed of a
system. Another advantage is the increased number of internal registers this
device provides the programmer. The MC68000 excels in both of these areas.

As shown in Fig. 1-2, the Motorola MC68000 has eight 32-bit data registers,
nine 32-bit address registers (registers A7 and A7' are the user and supervisor
stack pointers), and a 32-bit program counter (although the maximum address
range is 24 bits). Since most of its data and address registers are undedicated,
the MC68000 thus provides greater flexibility.

Addressing Modes

Having a good number of addressing modes is likewise an advantage for a
microprocessor. The MC68000 has 1.5 addressing modes. With few exceptions,
each instruction operates on bytes, words (16 bits), and longwords (32 bits), and
most instructions can use all 15 modes.

One weakness of an eight-bit microprocessor is its limited memory-accessing
capacity. With a 16-bit address bus, this device can directly address only 65,536
addresses. Some schemes increase the address range of an eight-bit processor,
or so it seems. For example, Fig. 1-3 illustrates a method called paging. In
this scheme, the total memory area is divided into pages. Although the 16-bit
address range remains unaltered, bits in another register, such as the program
counter, are used to designate the number of the page. Theoretically, this practice

31 16 15 8 7 o
f------+---f-----i 00
~------+---+----I 01
~------+---+----I 02
f------+---f-----i 03
~------+---+----I 04
~------+---+----I 05
~------+---+----I 06
~ __ :_______::_-'--_=:'::-:-----' D7

EIGHT DATA REGISTERS

USER STAC POINTER
SUPERVISOR S ACK POINTER

NINE ADDRESS/STACK REGISTERS

31 0
I PROGRAM COUNTER =:J

15 87 0
IsYSID4 BYTE I USER BYTE I

STATUS REGISTER

AO
A1
A2
A3
A4
A5
A6
A7 USP
A7' SSP

Fig. 1-2. MC68000 registers.

4 THE 68000 MICROPROCESSOR

PAGE N
ADDRESS 8888 TO XXXX

PAGE 1
ADDRESS 8888 TO XXXX

PAGE 8
ADDRESS 8888 TO XXXX

D
B

Fig. 1-3. Memory paging.

increases memory capacity, but it is dependent on the bits allocated to designate
page numbers. Although the addition of several page registers will eliminate the
problem of page bits, paging is still limited by the fact that only a single page can
be accessed at a time. This method is tricky, moreover, and time-consuming.

To overcome the deficiencies of paging, some 16-bit microprocessors use a
method called memory segmentation. Since the memory spectrum is divided into
segments, this method is similar to paging, as Fig. 1-4 shows. A segment number
added to the 16-bit address identifies each segment. Segmentation allows some
possibility of address relocation, but the size of each segment is a limiting factor
(it cannot exceed 64 kilobytes), and the desired segment must be loaded as well.

The most straightforward method of memory accessing is called linear access­
ing. Simply speaking, a processor with linear addressing capabilities has ade­
quate address lines to access memory directly. For example, the 23 external
address lines of the MC68000 allow direct access of 8.4 million words of memory.
Since programmers are always hungry for more memory, however, provisions
have been made to carry out a type of paging with some control lines furnished
by the MC68000. This method will be explained later. Furthermore, memory man­
agement devices can be used with the MC68000 to provide additional memory
capacity.

Prefetch

A significant factor in the selection of a microprocessor is the manner in which a
particular device fetches instructions from memory. After an eight-bit micropro­
cessor fetches an instruction, the address- and data-fetching circuits and buses of

5FFF

4888
3FFF

2888
1FFF

8088

Fig. 1-4. Memory segmentation.

BASIC CONCEPTS 5

the device remain idle while the instruction is being executed. Needless to say,
this represents a loss of time. The MC68000, in contrast, has a prefetch queue.
During the execution of one instruction, the device fetches a number of other
instructions and aligns them in the prefetch queue. Consequently, the micropro­
cessor nearly always has an instruction available for processing. This instruction
is stored in close proximity to the arithmetic-logic unit (ALU).

Multiple Arithmetic-Logic Unit

A system designer also must consider features that will increase the processing
speed of a microprocessor. All eight-bit microprocessors feature only a single
arithmetic-logic unit, and this is used both for data processing and for calculation
of addresses. In a processor that uses indexed addressing, the offset value must
be added to an address via this single ALU at a time when data could otherwise
be processed.

In contrast, the MC68000 uses not only a 16-bit-wide ALU as the main data­
processing mechanism but also two other 16-bit ALU to function in parallel as a
32-bit ALU for the calculation of addresses. Thus, at the same time a 16-bit datum
is being processed, the address ALU can be calculating an effective address (this
term will be described later). The 16-bit data ALU also is used to process 32-bit
values by taking two passes at 16-bit data, one for the lower word and one for
the upper.

Microprogramming

All eight-bit and most 16- and 32-bit microprocessors are designed as hardwired
logic units- i.e., the control unit is built of logic gates permanently wired to each
other. This design eliminates excessive use of components and improves speed
on the one hand, but, on the other, not only reduces the flexibility of the control
unit but also overcomplicates the design of a complex unit.

Microprogramming of a complex control unit simplifies design by making the
unit modular; that is, each section of the unit may be modeled, built, and
tested independently. Additionally, a microprogrammed design permits a cus­
tomer to make design changes (although the MC68000 uses a microprogrammed
design, Motorola is rather reluctant to implement a customer's microcode into
this design).

Peripheral Devices

To compete successfully, a manufacturer embarking on the design of a micropro­
cessor must provide an entire family of peripheral devices. Design and production
of such devices are frequently very expensive and time-consuming. Concerned
with the possible loss of their share of the microprocessor market, several manu­
facturers have introduced microprocessors without peripheral devices. Motorola
chose to add several control lines to the MC68000 to make it directly compati­
ble with the readily available peripheral devices from the MC6800 family. This

6 THE 68000 MICROPROCESSOR

approach afforded Motorola ample time to develop 16-bit peripheral devices and
also gave customers the benefit of using low-priced eight-bit peripheral devices.

DATA REPRESENTATION

Terminology

The smallest unit of data stored in the memory of a computer is called a bit,
an abbreviation of the words "binary digit." A bit has the value of zero (0) or
one (1).

Bits are combined to make nibbles (four bits, useful for representing one binary­
coded decimal digit (the equivalent of decimal zero to nine)) and bytes (eight bits).
A byte may denote a single character (usually encoded in ASCII), a number from
o to 255, or two BCD numbers (0 to 99).

The term word varies among computers. In all cases, a word is made up of
bytes. In 16-bit computers, a word consists of two bytes; in 32-bit computers, a
word consists of four bytes; and so on. Simply defined, a word is the maximum
length of information that the data bus of a computer can transfer. The memory
area of a computer usually has the length of the computer's word; that is, a
computer is equipped with a memory 8 bits wide, 16 bits wide, etc.

A collection of words ordinarily is called a block.
All of these terms refer to units of storage inside a computer or memory.

Distinctions must be made, however, between what various strings of bits indi­
cate, since they may signify a character or a positive number or a falseltrue
condition. In other words, data must be identified by "type."

Data Types

A bit is used to denote a "logical" state of "true" or "false." In this sense, the
logical bit is called a flag and is used for comparison of two values, for branching,
or for other purposes. Thus, single bits are "logical data types."

Inside a computer, a number may be represented in various ways. The number
can be, for instance, an unsigned number, starting from zero, called an ordinal.
For example, in eight-bit microprocessors, an ordinal number can be any number
from 0 to 255 (00000000 to 11111111); as the data-bus width of a microprocessor
increases, so does the representation of ordinal numbers.

A whole number, whether positive or negative, is called an integer. In all
microprocessors, integers are represented in two's complement form; that is,
the leftmost bit of an integer constitutes both the maximum value of the integer
and its sign (0, for positive; 1, for negative). Various clever methods have been
devised to represent numbers in two's complement form easily.

One method is shown by Dr. Christopher Morgan and Mr. Mitchell Waite in
their book entitled 808618088 16-bit Microprocessor Primer. Ordinal numbers
from 0 to 2n- 1 can be shown around a wheel, as in Fig. 1-5, so that the last
number is before the first. If the wheel is separated halfway around and negative

BASIC CONCEPTS 7

integers are assigned to positions on the separated wheel-counting backwards
from zero-the two's complement representation is derived. The wheel must be
separated precisely at the point where the most significant bit (msb), or leftmost
digit, changes sign; that is, all nonnegative numbers have a 0 as their msb, and all
negative numbers have a 1 as their msb. This bit is called the sign bit. Thus, in 16-
bit computers, integers ranging from -32,768 to +32,767 are represented; in 32-
bit computers, numbers from -2,147,483,648 to +2,147,483,647 are represented.

Characters are depicted inside computers by various codes. The most fre­
quently used code is the eight-bit ASCII (it is now an eight-bit code). An eight-

.-IIT OIlDINALI

I • 10 II 12 U

•

-I

-5

•• lIT INTEGEIIS

-I -, -I -5 -& -J -2 -I

Fig. 1-5. Ordinal number representation.

I' II

OIlDINAL
NUMBEII
WHEEL

INTEGEII
NUMBER
WHEEL

8 THE 68000 MICROPROCESSOR

bit number represents the characters of the alphabet (A through Z), numerals (0
through 9), and special characters. Most microprocessors use a subset of this
eight-bit ASCII code. If, for example, a six-bit ASCII code is used, then lower-case
letters cannot be represented.

A series of characters is called a string. In programming languages, strings are
used to display a message.

Decimal numbers are denoted inside a computer in Binary-Coded Decimal nota­
tion (BCD). Each decimal digit, from 0 through 9, is represented by a four-bit
number.

The preceding survey provides an overview of data types but is by no means
complete. The reader is encouraged to study the topic of number systems in other
specialized texts.

Chapter 2
Introduction to the MC68000

GENERAL LAYOUT

The MC68000 is a bulky integrated circuit that is 1.2 inches longer and 0.4 inches
wider than a 40-pin package. The fact that it is equipped with numerous pins,
however, makes it easier to interface.

As Fig. 2-1 shows, the MC68000 has 64 external pins that function within one
of the following groups (the numbers in parentheses denote the number of pins
allocated to each function):

Power supply (4)
Clock (1)
Address Bus (23)
Data Bus (16)
Function Control (3)
Synchronous Bus Control (3)
System Control (3)
Asynchronous Bus Control (5)
Direct Memory Access Control (3)
Interrupt Control (3)

Vdd
Vas
CLOCK

FUNCllON ~CO
CONTROL FC1

FC2

SYNCHRONOUS~==~
BUS CONTROL

BERR
RESET
HALT

68000

~===> A1 - A23

I¢:===> DO - 015

~ J ASYNCHRONOUS
UOS BUS CONTROL
AS
O'TACR

~AcJ OMA CONTROL m] INTERRUPT
''- .. L LINES

Fig. 2-1. Pin configuration of MC68000.

9

10 THE 68000 MICROPROCESSOR

The orientation of the arrows shows whether a group is bidirectional or
unidirectional. Each signal associated with these categories is described in this
chapter. The verbs "assert" and "negate" are used throughout this text solely
to dispel any doubts about the electrical status of a signal. Regardless of actual
voltage level, "asserted" indicates an active signal and "negated," an inactive
signal.

DATA BUS

In the MC68000, the 16 lines of the data bus are, as in any other microprocessor,
bidirectional. Their function is straightforward, requiring no further description.

ADDRESS BUS

Although the MC68000 displays 23 address lines, the device is actually equipped
with 24. Address AO is encoded internally with the length of the operand to form
the Upper Data Strobe (UOS) and Lower Data Strobe (LOS) signals. With 24 effec­
tive address lines, the total address space can be computed as 16,777,216 phys­
ical locations. Since the MC68000 memory space is organized as 16-bit words,
however, the total number of physical locations is reduced to 8,388,608 words.

The address bus takes up the largest number of pins because Motorola does
not use bus multiplexing (a feature that saves pins but requires the use of external
latches for demultiplexing).

ASYNCHRONOUS BUS CONTROL

Although the address bus is not multiplexed, the MC68000 has an Address Strobe
(AS). Frequently, this signal can be negated by connection to a positive power
supply via a pull-up resistor. There are, however, peripheral devices that function
properly when AS is used to assert them.

The AS signal defines the time interval during which the address lines (A1
to A23) and the function code lines (FCO to FC2) are valid. When a MC68000-
based system uses dynamic memory, it is the AS signal that notifies the memory
controller of the beginning of a cycle. The same signal also provides the lock-out
mechanism for read-modify-write cycles during a Test-and-Set (TAS) instruction.

The MC68000 has the capability of dividing its memory range into eight-bit
sections.* The UOS and the LOS delineate the time during which data are trans­
ferred over the data bus. When either (or both) of these signals is asserted, the
ReadIWrite (RIW) line also is asserted, and the address on the address bus is
valid.

*This includes peripheral devices, since the MC68000 uses memory-mapped input/output (I/O)
devices.

INTRODUCTION TO THE MC68000 11

The UOS and LOS are used to permit byte operands as well as word and
longword data. Both signals are asserted for word transfers. For byte transfers,
UOS is asserted only on an even address (08 to 015) and LOS only on an odd
address (00 to 07). Thus, to move byte data, all devices on the upper half of the
data bus must be strobed with UOS and all devices on the lower half with LOS.

The RIW line dictates the direction of data transfer. This single line is timed so
that it can control the direction of data-bus buffers on multiprocessor systems.
Since this single line accomplishes the functions of both read and write (a feature
inherited from MC6800 devices), it is worth noting that data are read when the
line is active-high and written when the line is active-low. Once an address is
valid during a write cycle, placing the RIW line low and combining it with an
active strobe enable the transfer of data to static memories.

The MC68000 must be notified of the termination of a bus cycle. There are
three ways by which a bus cycle is terminated. One of them belongs to the
asynchronous bus control group, and the other two will be discussed later. The
normal termination signal to the MC68000 is the Oata Acknowledge line (OTACK),
which informs the processor that the data to be processed are valid on the data
bus. Since this line is one of the most significant inputs to the device, a designer
must be careful about how and when OTACK is supplied. If a OTACK signal is not
received, the MC68000 will remain idle indefinitely, waiting all the while for the
OTACK to indicate that data are available. The OTACK and several other signals
will be described at greater length in Chap. 3.

Now that all of the asynchronous bus control signals have been identified, it is
appropriate to examine the timing diagram of a read cycle, as shown in Fig. 2-2,
and of a write cycle, as shown in Fig. 2-3. An interesting point, shown in both
diagrams, is that the RIW line, whether on initiation of a read or a write cycle, is
always asserted in the read mode. This safety feature eliminates the possibility
of accidental destruction of data in memory.

Let us examine the read cycle first. At the leading edge of S2, the AS, LOS, and
UOS lines are all asserted until the trailing edge of S6, when data are latched onto
the data bus, and OTACK has been asserted. In other words, in the asynchronous
bus mode, the MC68000 initiates a read or write cycle by asserting the address
strobe and waiting for a OTACK before assuming that data on the bus are valid.
If the MC68000 does not receive a OTACK at the trailing edge of S4, the device

elK

A1-A23 --@\oU%::......-_____)-

AS'.rn.UDS ~ ... ~...,.~..".\.l..._ ____ f""'~ @~{

.... ~...,.~ ... ~...,. ... ~...,.~ ... ~...,.~",.~...,.~",.~...,.~",.~...,.\~ __ ~r
Fig. 2-2. Read cycle of MC68000.

12 THE 68000 MICROPROCESSOR

elK

A1-A23 ~""%'---_____ ~)-
R/'If

}IS"

~~~0~~~I ___ \~~~~u\~ ________ --Jr­
\&.'\ wI 

D1m'.Los m­
nTACl( &.~~,*,~\ r-
08-015 ~ ____ ~}-

Fig. 2-3. Write cycle of MC68000. 

enters S5 and S6 and performs an internal synchronization process. Then, the 
MC68000 introduces wait states and remains in this condition until the DTACK is 
received. 

Delay in the arrival of DTACK, mind you, may be either intentional or 
unintentional. It is the latter that should be of more concern to a system user. For 
example, an intentional DTACK delay may be generated for devices that require 
additional access time (because of slow memories or peripherals). In this case, a 
shift register or delay line is used, to allow cycles to be lengthened in one-clock­
cycle increments. Thus, the asynchronous action of DTACK allows the construc­
tion of systems with variable cycles, from 500 nsec @ 8MHz all the way up to the 
maximum delay required. 

The write cycle presents several variations in timing. The LDS and UDS asser­
tion takes place in S4 rather than simultaneously with AS. The RIW line changes 
to the write mode in S2, when AS is asserted. 

Figure 2-4 shows a minimum configuration of an MC68000-based system with 
all of the asynchronous bus signals, excluding AS, in place. The system is 
designed for byte addressing, as explained earlier. 

A1 - A23 I MEMORY I 08 - 015 0O-07J 000 

Riff I lOS 

68888 

lTi5S 
J MEMORY I I EVEN 
I 

Fig. 2-4. Minimum configuration of MC68000 system. 



INTRODUCTION TO THE MC68000 13 

Table 2-1. Status of Function Lines. 

STATE MODE 

Reserved - Motorola User 
Data space User 
Program space User 
Reserved - user User 
Reserved - Motorola Supervisor 
Data space Supervisor 
Program space Supervisor 
Interrupt Acknowledge Supervisor 

FUNCTION CONTROL 

FC2 

0 
0 
0 
0 

FC1 FCO 

o 0 
o 1 

o 
1 

o 0 
o 1 

o 

Three lines (FCO to FC2) indicate the state of the processor. The MC68000 can 
be in one of two modes-the user or the supervisor mode. Table 2-1 provides a 
summary of the processor state as indicated by the function code lines. In this 
table, FC2 indicates whether the MC68000 is in the user or supervisor mode. 
Assertion of all three lines indicates that the MC68000 has acknowledged an 
interrupt. Table 2-1 may be put into practice .. by the use of a 74LS138 decoder, as 
Fig. 2-5 shows. ' 

The function lines are decoded to separate memory into four sections. Data 
memory is defined as the area that contains variables, vectors, stacks, queues, 
strings, tables, lists, or any other type of data found separate from the instruc­
tions, and fixed operands, which are found with the instructions that use the 
operands. The watchdog timer circuit, discussed in Chap. 3, signals a bus error if 
a DTACK is not asserted on time (about 10 microseconds). Such an error may be 
caused by the failure of a memory access to remain within the allocated memory 
space. As described later, the function control lines can also be used for further 
expansion of the memory capacity of the MC68000. 

$000000 

SUPERJISOR 

SPACE 

I 
$7FFFFE 
$800000 

I 
USER 

SPACE 
I 

$FFFFFE 

RESET 
VECTOR 
VECTOR 
TABLE 

I/o 

I/o 

PROGRAM 

DATA 
FC = 101 

PROGRAM 
FC = 110 

PROGRAM 
FC = 010 

DATA 
FC = 001 

Fig. 2-5. Decoding of function lines. 



14 THE 68000 MICROPROCESSOR 

USER 
AS MEMORY 

S1 
.. 

A23 52 

6811J1IJ11J 

S2 

FC2 

S1 
SUPERVISOR 

MEMORY 

Fig. 2-6. Use of function line FC2 to distinguish between supervisor and user memory areas. 

5ince line FC2 indicates at all times whether the MC68000 is in user or supervi­
sor mode, this line can be effectively used, with simple gating, to prevent acciden­
tal access of supervisor memory by a user. Figure 2-6 shows just such a scheme. 
When both the A5 and FC2 lines are asserted, the inputs to the NAND gate are 
high; thus, the NAND gate asserts the 51 chip select of the supervisor memory. 
When an address in the user area is accessed, the NAND gate asserting the user 
52 prevents the access of the supervisor 52. 

SYNCHRONOUS BUS CONTROL 

The three synchronous bus control signals are used to interface the MC68000 
with MC6800 peripheral devices. The Enable signal (E) is the phase-two clock that 
the latter require and that defines the periods of data to and from the processor. 
The second signal, the Valid Memory Address (VMA), is used in the chip-select 
circuitry of a MC68000 system using MC6800 peripheral devices. During reference 
to a peripheral, VMA meets all timing requirements for a chip-select input. The 
VMA signals on both the MC6800 and the MC68000 are identical in function 
but opposite in voltage levels; the MC6800 VMA is active-high, whereas the 
MC68000 VMA is active-low. The reason for this difference is that the MC68000 
VMA prevents accidental addressing of peripherals when the bus is three-stated. 

The third synchronous bus signal, called the Valid Peripheral Address (VPAj, is 
one of the signals that can be used to terminate a bus cycle. For each system 
application of the MC68000, bus cycles are likely to have different durations. 
Thus, if a constant-frequency clock is used to drive the Enable signal (E) on the 
peripherals, there must be a guarantee that data are transferred with respect to 
the clock, a requirement not often met in asynchronous-bus systems. The VPA 



INTRODUCTION TO THE MC68000 15 

line on the MC68000, however, accomplishes this task easily. When a peripheral 
address is decoded, the VPA signal, rather than DTACK, is asserted. This approach 
notifies the processor to become compatible with the MC6800 family by waiting 
for the proper phase of E and then asserting VMA. At this point, the address lines 
and RIW signal are already valid. If the sequence begins too late during the E 
phase, all address and control signals remain stable until the next cycle, when 
compatible transfer can be ensured. 

SYSTEM CONTROL 

The third signal used to terminate a bus cycle is part of the three lines that 
comprise the system control group. The Bus Error line (BERR) terminates a bus 
cycle in the MC68000 system whenever an abnormal condition is sensed. This line 
operates in conjunction with the Halt (HLT) line, which also belongs to the system 
control group. When both BERR and HLT are asserted, a bus error is signaled, and 
the processor enters a rerun cycle. 

The flowchart in Fig. 2-7 shows the steps that the MC68000 takes during a rerun 
cycle. Whenever the BERR and HLT lines are asserted (both active-low) during the 
initiation of a bus cycle, the processor completes the cycle and asserts its three­
state outputs, thus preventing any information from reaching the buses. Shortly 
thereafter, the BERR line is negated, and, after a period of more than one clock 
cycle, the HLT line is also negated. At this point, the processor must determine 
whether a read-modify-write cycle is in progress for a Test-And-Set instruction. 
If so, the processor enters a bus exception-processing routine; that is, a rerun 
cycle routine is not executed. If a TAS instruction is not present, the MC68000 
reruns the cycle during which the bus error line was asserted. 

The HLT line also may be used in conjunction with the third line of the system 
control group-the RESET line. The MC68000 can be reset in two ways-i.e., dur­
ing power-on or by a manual switch. The MC68000 also has a RESET instruction, 
which asserts the reset line and causes the reset of all external devices connected 
to the processor's reset line. During the execution of this instruction, the state 
of the processor, other than the program counter, is unaffected, and execution 
continues with the next instruction. 

When the RESET and HLT lines are asserted simultaneously, either a power-on 
or a manual switch reset occurs. When the HLT line alone is asserted, however, 
a double bus fault occurs, and the processor must be reset to recover from this 
fatal error. 

DIRECT MEMORY ACCESS CONTROL 

The three lines in the direct memory access (DMA) control group are the Bus 
Request (BR), which the DMA controller provides to the processor, the Bus Grant 
(BG), which the processor sends to the controller, and the Bus Grant Acknowledge 
(BGACK), which the controller sends to the processor. 



16 THE 68000 MICROPROCESSOR 

BUS 
CYCLE 
STARTS 

HALT at BERR 
LOW 

PROCESSOR 
COMPLETES 

CURRENT BUS 
CYCLE 

OUTPUTS 
3-STATED 

BERR 
NEGATED 

INTERRUPT CONTROL 

HALT 
NEGATED 

AFTER .. > 1 
CLOCK 

CYCLE 
RERUN 

YES 

Fig. 2-7. Rerun cycle of MC68000. 

BUS ERROR 
EXCEPTION 

PROCESSING 

The interrupt control is the last of the control line groups. This control consists of 
lines IPLO to IPL2 (Interrupt Priority Lines). Although interrupts will be described 
in detail in a later section, it would be of benefit to say a few words about the 
MC68000 interrupt system. 

The MC68000 is capable of handling both vectored and autovectored interrupts. 
In a vectored interrupt system, the interrupting device transmits a vector number, 
which, multiplied by four, provides an interrupt routine address in a table of inter­
rupts residing in memory. Some devices, including most MC6800 devices, how­
ever, cannot provide a vector number and must be autovectored. In an autovec­
to red interrupt system, the processor examines the priority status of an interrupt 



INTRODUCTION TO THE MC68000 17 

to determine which vector number should be used. The interrupting device gen­
erates an interrupt request by asserting the IPL lines. 

When a peripheral device is recognized as an autovector device by asserting 
VPA instead of DTACK, the processor translates the interrupt priority into one 
of eight locations in the vector table, fetches the vector, and branches to the 
interrupt service routine. Other signals are also involved dur:ing the autovector 
process, but this involvement will be explained later. 

REGISTERS 

The number of registers in the MC68000 already has been discussed. The reader 
must become familiar, however, with the idiosyncracies that some registers dis­
play. 

Data Registers 

Any data register in the MC68000 may be used for handling byte~ word, or 
longward a.perand. The length of the operand to be handled is stated in an 
instruction. None of the MC68000 data registers is dedicated to a specific task; 
that is, any data register may be used as an index register, a temporary storage 
area for an operand, or an accul)1.U!ator. 

Address Registers 

The nine address registers are restricted slightly in the size of operand that the 
registers may contain; they can contain only a word or lon9word. Furthermore, 
although any of the address registers may be used as user "stack pointers," two 
registers-A7 and A7'--are deOicated as stack pointers. 

At the sURervisor level, the operating system program can use both the supervi­
sor stack pointer and the user stack pointer:.. COI}S~QU-~ntly, the user stack location 
can be changed in the course of sw!!ching from_ tasklO. task. 

Program Counter 

The program counter is 32 bits long, but only 24 bits are used for effective 
addressing. This counter functions as it would in any other digital computer hav­
ing the same organization; that is, the program counter always is automatically 
incremented to point to the next instruction to be executed. 

Status Register 

The 16-bit status register, shown in Fig. 2-8, is divided into two sections-the 
supervisor section and the user section. The latter is also called the Condition 
Code Register, simply to preserve some relation with the MC6800 register bearing 
the same name. 



18 THE 68000 MICROPROCESSOR 

IXINlzlvlcl 

PT L 
Fig. 2-8. Status register of MC68000. 

CARRY 
OVERFLOW 
ZERO 

The user portion of the status register is almost identical to that of the MC6800, 
with the added flag of Extend. This flag is asserte1i when a value is to be sign­
extended for ali!Jnment purposes. The N flag is set when the result of an operation 
produces a negative value. The Z flag is set when the result of an operation 
produces a zero value (it is important to know when a division must use this 
value). The overflow flag, V, is set when an overflow results. The carry flag, C, is 
set when a carry occurs. 

When the processor enters the Trace mode (as in a single-step operation, 
described later), the T flag is set. When the processor enters the supervisor mode 
because of a bus error or other condition, the S flag is set. 

The three interrupt bits act as interrupt mask bits for the IPL lines. The interrupt 
flags are always set to a value lower than the one present on the IPL lines. 



Chapter 3 
A Small MC68000 System 

INTRODUCTION 

This chapter explains the design of a small 68000-based system, beginning with 
the design of reset/halt circuits and the basic RAM and ROM system. Since the 
operation of most peripheral devices requires programming, peripheral devices 
will be examined after some exposure to the programming of the MC68000. This 
chapter will show how different signals are applied and provide various ways of 
interfacing them. 

Since expansion of this system is contemplated, various features present in 
larger systems, such as buffering of the buses, will also be considered. 

BLOCK DIAGRAM AND MEMORY MAP 

The two main steps in the design of any microprocessor system are its definition 
both in words and block diagram form and the design of its memory map. 

The MC68000 can be interfaced to other devices very easily. Any type of mem­
ory device can be used, from bytewide RAM to dynamic RAM. Since bytewide 
RAM is more expensive and physically larger than dynamic RAM, however, the 
latter will be used here. Some read-only memory is also needed to store the 
operating system program. Finally, serial circuits (for terminal and modem inter­
face), parallel circuits (for printing), and audio cassette input-output circuits are 
needed. 

Block Diagram 

Figure 3-1 depicts a small, yet fully functional, system that fits our description. 
One of the slower versions of the MC68000-the MC68000L4 (4 MHz)-is used. 

The RAM is the popular 4116, 16K x 1 bit dynamic device. The system is 
equipped with 16 ofthese RAMs arranged as 16 kilowords (16K x 16). The ROM, 
which consists of two MC68A364, 8K x 8 bit devices, is also arranged as 16 
kilowords. The ROM is read on a byte or word basis. Provision must be made for 
the system not to waste time trying to write into ROM space if a user attempts 
to do so. 

19 



N
 o 

R
E

S
E

T
' 

.. 

R
E

S
E

T
' 

51
 

IU
S

 T
IM

E
O

U
T

 
-L

. 
A

IO
R

T
 
I 

lO
G

IC
 

r 
lO

G
IC

 
(U

21
, 

(U
44

I 

~ 
, 

lE
V

E
l7

 

A
 

~
 

IN
T

E
R

R
U

PT
 

A
C

IA
 

II
IP

lO
' -

1
P

l2
' 

C
O

N
T

R
O

L
 

C
~
 

1\
 

F
C

O
-F

C
3 

lO
G

IC
 

" 
• 

1U
17

-U
l.

, U
25

, 
U

40
. 

U
41

, 
.. 

f 
>

-
- r 

A
 K
 

00
0-

D
1S

 

'I
 

1 
M

C
II

O
O

O
l4

 
(S

C
ll

O
ll

, 
1 

IU
20

I 
. ~
A
2
3
 

L-
~J

 
D~
gg
.~
E 
I
-
-

T
O

 T
E

R
M

IN
A

L
 

P
lI

J3
I • 

R
52

32
 

IU
F

F
E

R
S

 
(U

I,
 U

n
 

M
C

II
SO

 
A

C
IA

 1
 

(U
l3

1 

! 
~
 

.. 
..

 
;0.

 
iii 

c 0 
§ 

C
 

C
O

N
T

R
O

L
 

A
O

l
k

 

L
-.

..
y

' 

~
l
~
J
'
o
-

lA
U

D
 R

A
TE

 1 
G

E
N

E
R

A
T

O
R

 
r-

(U
l4

1 A
C

IA
C

S
l 

D
A

TA
 I

U
S

 

.. iii § 
A

D
D

R
E

SS
 B

U
S 

..
(>

 

R
O

M
 

~
 

(U
23

-U
24

, 
f-

-o
 E6

 
11

K
 B

Y
T

E
S 

A
03

-A
23

 
~:

:~
::

 ~
 

I 
(U

1U
, 

U
ll

, 

R
O

M
 
J 

" 
U

4S
, 

I-
-

R
O

M
E

N
 

C
O

N
T

R
O

L
 

lO
G

IC
 

IM
H

z 
1 

X
TA

L 
O

S
C

 
(U

ll
, 

i 
I 

M
H

z 

SY
ST

E
M

 
'
-
-

4 
M

H
z 

C
L

O
C

K
 

lO
G

IC
 

IU
1S

, 
'
-
-

1 
M

H
z 

(U
ll

,U
l'

,U
2

2
1

 

R
A

M
EN

 

B
R

', 
B

O
',

 B
O

A
C

K
' 

F
ig

, 
3-

1.
 

O
u

r 
M

C
68

00
0-

ba
se

d 
sy

st
em

. 

T
O

 H
O

ST
 I

M
O

O
lI

II
 

P
21

J4
, 

~ 
R

S2
32

 
IU

F
F

E
R

S
 

IU
S,

 U
II

 

M
C

II
S

O
 

A
C

IA
2 

(U
ll

1 

§ 
;0.

 
t 

;.
r"

';
o.

 
Ii 

R
E
S
~
 

P
I
T
~
 

T
O

 P
R

IN
T

E
R

 
T

O
 C

A
S

S
m

l 
'3

1.
11

, 
P

4 
1.1

11
 

~ 
, 

'R
IN

T
E

R
 

C
A

SS
E

T
T

E
 

IU
F

F
E

A
I 

T
A

PE
 

IU
l-

U
II

 
IN

T
E

R
FA

C
E

 
1\1

41
 1 

M
C

II
23

G
 

Pl
IT

 
lU

ll 

.. 
.. ~
~
 

Ii 
~ 
~ 

5 
if

--
-

i 
§ .. iii § 

~ 
~
 

A
0

1
-A

1
4

, 
M

EM
O

R
Y

 
A

D
D

R
E

SS
 

" 
M

U
LT

I-
R

A
M

 
P

lE
X

E
R

 
R

A
O

-R
A

I 
U

K
 I

Y
T

E
S

 
1U

27
, 

.. 
u

n
, 

(U
47

-U
I2

I 

R
E

F
R

E
S

H
\ 

U
3S

, 

A
D

D
F

 
U

35
, 

t 
R

A
M

 C
O

N
T

R
O

L
 

lO
G

IC
 

T
IM

IN
G

 C
O

N
T

R
O

L
 

lU
ll

, 
U

2
3

-u
n

, 
U

31
-U

34
, 

U
3.

, 
U

42
, 

U
4S

, 
U

41
1 

• 



A SMALL MC68000 SYSTEM 21 

Two MC6850 (eight-bit) Asynchronous Communications Interface Adapters 
(ACIA) provide serial communication. One of these devices is used to interface 
with an external terminal and the other with a modem. A baud rate generator is 
included to provide variable clock rates for these devices. 

A MC68230 Parallel InterfaceITimer (PIIT) furnishes the parallel interface and 
audio cassette functions. 

Memory Map 

Figure 3-2 sets out the memory map of the system. Two requirements, set by 
Motorola, are that the table with the interrupt and trap vectors (256 in all) must be 
positioned at the bottom of the memory map of any MC68000 system (0000000 
to 0003FF) and that the reset and stack pointer vectors must occupy the first 
eight locations. Since the system, whether on power-on or manual reset, must 
always load the same address into the program counter and system stack pointer 
without reloading the RAM each time, a small but clever trick is played-that 
is, overlapping the first eight locations of ROM and RAM. Thus, the contents 
that the program counter and system stack pointer require must be stored in the 

{ 
EXception ROM/EPROM $000000-$000007 (1) 
Vector RAM $00000S-$0003FF 

System Table 
MeIoory 

RAM $000400-$000SFF 
Scratchpad 

User Memory RAM $000900-$007FFF 

ROM/EPROM $OOSOOo-$OOBFFF (1) 

Not Used $OOCOOO-$OOFFFF 

PIlI' 
(Lower byte only) $010000-$01003F 

I/O Devices ACIA2 (Lower byte) $010040-$010043 
& ACIAl (Upper byte) I 

I 
Redundant Mapping , 

$OlFFFF 

Not Used $020000-$02FFFF 

";SOO Page (E6) $030000-$03FFFF 

Not Used $040000-$FFFFFF 

NOl'E: (1) Denotes read only 

Fig. 3-2. Memory map of our system. 



22 THE 68000 MICROPROCESSOR 

ROM permanently. Whether on power-on or manual reset, these eight locations 
can be loaded into RAM and thus become part of a vector table occupying 256 
contiguous locations. 

The remaining RAM area can be divided into two sections-one (from 000008 
to 0008FF) to be used as a scratchpad for the operating system firmware; the 
other (from 000900 to 007FFF), to serve as the user memory area. 

The ROM will reside in the area from 008000 to OOBFFF. The area from OOCOOO 
to OOFFFF will be left open for future expansion or as a work area. The area from 
010000 to 01FFFF will be occupied by the MC68230 and the two ACIA. Another 
unused area will be from 01 FFFF to 02FFFF. The area from 030000 to 03FFFF will 
be left for the addition of any other MC6800 peripheral devices. One more unused 
area will be between 04000 and FFFFFF. All addresses are shown in hexadecimal 
notation. 

BUSES 

Although this system would function without address and data buffer devices, 
good design practice dictates that buffers be used whenever future expansion is 
contemplated. The schematic in Fig. 3-3 shows the buffering of the 23 address 
lines. Here, the 74LS373 latch is used as a buffer, but its latching input is disabled 
by its connection to the positive power supply via a pull-up resistor. Provision is 
made, however, for asserting the latching input by its connection to the AS line 
via a jumper wire. An 8T97 buffer is used to buffer the AS and other control lines. 
Some of the buffered lines are shown in Fig. 3-3. 

Buffering of the data bus requires more thought. This bus is bidirectional, 
and the direction-enable signals of the buffers must be connected to the control 
signals of the MC68000. 

The 74LS245 is an octal (eight-input, eight-output), noninverting, bidirectional 
buffer. In the schematic shown in Fig. 3-4, this device is asserted continuously by 
connecting the Chip Enable (Pin 19) to ground. The direction of the buffers can 
be controlled by the combination of gates shown. 

When Pin 1 is asserted (active-low), direction is towards the MC68000. When 
Pin 1 is negated (high), direction is from the processor to the external devices. 
Thus, during a read operation, data are transferred to the MC68000 from either 
the low or high data byte. During a write operation, the RIW line negates the 
direction-enable pin of the buffer, allowing transfer of data to the data bus. 

ADDRESS MULTIPLEXING 

Since high-density dynamic RAMs are used, address lines A1 to A14 must be 
multiplexed in order to generate the row and column addresses required during 
read and write cycles. The multiplexers also provide refresh addresses to the 
RAM. The circuit in Fig. 3-5 shows the use of dual four-line to one-line 74LS153 
multiplexers. The enable signals-Pins 1 and 15, respectively-are connected to 
ground so that the device may remain asserted at all times. Additional circuits 
associated with the decoding of the memory will be discussed in later sections. 



A SMALL MC68000 SYSTEM 23 

U1 
M68888 

U2 
74LS373 

~ 08 A1 29 A1 8 0 4Q 9 
38 A2 13 U --! 01 A2 31 A3 7 0 5Q f6 -! 02 A3 32 A4 14 0 3Q f;5 

~ 03 A4 33 AS 4 0 6Q f-5 1 04 A5 0 2Q it 34 ,tc6 17 f;6 
63 05 A6 35 A7 3 ~O 7Q '2" 
62 06 A7 36 AS 18 10 1Q i-!:... 

8t 07 A8 37 
0 8Q ~ 

" 
08 A9 38 EN OE 

59 09 AU 39 11 Sa 018 A 11 48 
57 011 A 12 41 
5& 012 A13 42 
55 013 A14 43 U3 

5t 014- A15 44 
74LS373 

015 A16 A9 8 9 .:....:... 
45 0 4Q 

A 17 A18 13 U 
~ 46 0 5Q tm;CK' A18 A11 7 f6 47 0 3Q ~ IJR' AU A12 14 ~ 
~ 48 0 6Q RACK" A28 A13 4 T 58 0 2Q ~ SERIf A 21 A14 17 'i6 18 51 0 7Q R8ET A22 A15 3 T :u: 52 10 1Q RA[T A23 A16 18 ';i""" 

0 8Q ~ 

~ rPDJ '/is 6 
EN OE 

~ ~ rPt:T trim" jtl-~ I"J'a t:DS" ~ 
R~ 

9 

~ 11 VPA 
~ .lA. CLK E 

U4 VIlA ~ 74LS373 

FC8 ~ A17 8 0 4Q 9 
A18 13 12 FC1 ~ A19 7 0 5Q '6 FC 2 ~ A28 14 0 3Q ;5 
A21 4 0 6Q T 
A22 17 0 2Q ;6 
A23 3 0 7Q T 

~ ~~ 1Q ';i""" 
8Q ~ 

EN OE 

111 
Fig. 3-3. Buffering of 23 address lines. 

Two circuits that can be designed at this stage are the reset/halt circuit and the 
system clock circuit. 

RESET/HALT AND SYSTEM CLOCK 

ResetIHalt Circuit 

Several specifications must be taken into account before design of a reset/halt 
circuit is possible. The reset circuit must be able to serve the system both during 



24 THE 68000 MICROPROCESSOR 

U1 
MC6811J1IJ11J 

U4-
74-LS24-5 

~~------------------------~9;A8 B8 11 
~~-------------------------=8;A7 B7 12 
~~------------------------~7;A6 B6 13 
~L--------------------------=6;A5 B5 14-
~~------------------------~5;A4- B4- 15 
~~------------------------~4-;A3 B3 16 
~~-------------------------=3;A2 B2 17 
~~------------------------~2;A1 B1 18 

CDS t-----------, 

R/W 1-----'-1 

Fig. 3-4. Buffering using the 74LS245 octal noninverting bidirectional buffers. 

the initial power-on and whenever a manual switch is pressed. The latter would 
function, for example, to release the system from a fatal error. 

Motorola provides the following specifications for a reset/halt circuit: During 
power-on, the reset and halt signals should be asserted for slightly longer than 
100 msec to allow for the stabilization of various internal circuits. When a manual 
switch is used, the reset and halt signals should be asserted for about ten clock 
cycles. 

A reset-exception (a term to be discussed later) processing routine is executed 
after the reset signal is negated on the leading edge of a clock cycle. The flow 
chart in Fig. 3-6 shows the sequence of events that occurs during a reset. 

During initiation of a reset, the (S)upervisor flag in the status register is set, 
the (T)race flag is reset, and the interrupt mask flags in the status register are 
set to seven. The next two steps set the system stack pointer; that is, vector 

Ul 
7'+LS158 

REFRESH 13 2C3 
SIGNAL 12 2C2 2Y 9 REFRESH LINE 

A02 11 2Cl TO RAM 10 A09 3 
2C0 

'+ 
lC3 

7 lC2 lY REFRESH LINE 
A01 5 lCl TO RAM 6 A0a 2 

lC0 
B 

1'+ A 

Fig. 3-5. MC68000 address mUltiplexing. 



S FLAG - 1 
T FLAG· 8 
INT MASK -111 

FETCH SYS 
STACK PTR 

VECTOR (88) 

CONTENTS OF 
ECTOR (88) If-__ --=..:.;NO=----__ ....J 

--+ SSP 

FETCH PC 
VECTOR(81) 

CONTENTS OF 
VECTOR(81) 14--__ --!!N.:.O ___ ...J 

--+ PC 

A SMALL MC68000 SYSTEM 25 

YES 

YES 

DOUBLE BUS 
FAULT 

Fig. 3-6. Flowchart of the MC68000 reset activity. 

number 00 is fetched from the vector table. At this point, the processor determines 
whether a bus error has occurred. If it hasn't, the contents of vector number 00 
are transferred to the stack pointer. Vector number 01 is fetched next, and the 
bus-error possibility is re-examined. If two bus errors have occurred, the system 
enters a double bus fault condition, which normally is fatal and requires system 
reset. If not, the contents of vector number 01 are transferred to the program 
counter. 

A combined reset/halt circuit is shown in Fig. 3-7. The circuit uses the MC3456 
timer device, whose time-constant requirements are set by the resistor-capacitor 
combinations shown to satisfy the reset/halt, power-on timing specifications. 



26 THE 68000 MICROPROCESSOR 

MANUAL 
RESET 

+5 
1M 

+ 

,--..,.,..--;A556-1 B 

1M -.JVVIr-+t ....... --It-=8'-ffR D I St-:1~3,-----, 
12 9 THRt-:1~1'---i---'V\I'y- +5 

UT CV 

I· 1UF 
....... 

TO RESET OF ... ----t-~ 
OTHER DEVICES 

2.2K 

MC6811J1IJ11J 

FROM SINGLE-STEP 
SWITCH 

158 

.1UF I 
-+- .4-7UF 

....... 

Fig. 3-7. An MC68000 combined reset/halt circuit. 

4-.7K 

The manual reset switch is debounced by a NAND flip-flop and is combined, 
through an OR gate, with the power-on reset signal from the timer and connected 
to the reset pin of the MC68000. The open-collector inverter satisfies the active­
low input requirements of the MC68000 pin. The 2.2-k!l pull-up resistor negates 
the reset input when the latter is not used. 

The same OR-inverter arrangement is used on the halt input. A light-emitting 
diode is turned on when the halt signal is asserted. The halt signal may also be 
used as a single-instruction execution mechanism. In this case, a manual switch 
arrangement, similar to the reset, is connected to the signal through the OR and 
inverter gates. 

The circuit shown in Fig. 3-8-a slight modification of the previous one- is the 
circuit to be used in our small system. It produces a POR (Power On Reset) signal 
used in the ROM DTACK generation circuit (to be described later). 

Although the small system does not include a single-step circuit, the design 
in Fig. 3-9 may be used for this purpose. Each time the AS line is asserted, the 
flip-flop is reset. If the upper switch is in the single-step position, the processor 



A SMALL MC68000 SYSTEM 27 

III 4.7K III 

T 
11.1 T 11.1 

UI 
~4~.7VK~----~----~IH74LSIIII 

2 

4.7K 

4.7K 

4.7K 

OP I<>---+------<~--_=i 

T 
11.47 4.7K 

Fig. 3-8. Modified reset circuit used in our system. 

UI 
74LSII4 

AS _______ ~I~ )~--------~--_, 
FRail 88888 

RI 

STEP 

R2 

R3 

SINGLE STEP r+----~ 

R4 

Fig. 3-9. A single-step circuit. 

i)T.i£R" 
FRail IIEIIORY 

1511 

5 
RESEt 

5 
lW:T" 

5 
RESET 



28 THE 68000 MICROPROCESSOR 

halts and remains halted until the lower switch is toggled. In this way, the asyn­
chronous buses can be controlled manually. 

System Clock 

The small system uses a readily available, 8-MHz crystal oscillator, as shown in 
Fig. 3-10. A four-bit, ripple binary counter reduces this frequency to produce the 
4-MHz clock frequency that the MC68000 needs and the 1-MHz frequency required 
by some peripheral devices. The system uses all three of the clock frequencies. 

TIMING 

The speed with which a microprocessor executes instructions is of major concern 
to a design engineer. The small system includes components that permit appro­
priate future expansion, but the effect of these devices on the overall speed of 
the system have not been discussed. 

In Chap. 2, the MC68000 was shown as being an asynchronous device, and the 
behavior of the DTACK lines supports this description. Synchronous operation of 
the MC68000 should not be excluded, however, since even its asynchronous lines 
are timed on a synchronous system clock. 

Figure 3-11 shows that all data and control lines are sensed on the leading 
edge and latched on the trailing edge of the system clock (shown in states, each 
full clock cycle being two S states). For example, the DTACK line is sensed, and 
asserted, one set-up time period before the trailing edge of state S4. If assertion 
occurs earlier than the set-up time of the trailing edge, a wait state of one full 
clock cycle is added to the timing. When DTACK becomes asserted on the trailing 
edge of the clock state, data are latched during the trailing edge of the next full 
clock cycle. 

Thus, unless the DTACK signal is low for one set-up time, as required, the 
processor introduces wait states. Addition of these wait states, coupled with the 
presence of other devices, such as buffers or the gates used to generate the row 
address signal (RAS) in dynamic memories, may slow down a system. 

U1 

I 8 MHZ 

3 
1 2 

~ 

4 MHZ 
I 
J 

U2 
74LS93 

QD 
1112 QC 
1111 Q8 

QA 
A 

~ 1 

-!1-8 
9 
12 --:.=--

Fig. 3-10. The oscillator circuit used in our system. 

1 MHZ 

.. D - MHZ 



A SMALL MC68000 SYSTEM 29 

SO S1 S2 S3 54 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 S8 S9 SO S1 S2 S3 S4 Sw Sw S5 S6 S7 SO 
eLK 

H H 
H H >-

\ I \ I \ ,-
liDS \ I \ I \ r 
m \ I \ I \ r 
R/W \ I 

OlACK \ I \ I , r 
[)8..015 ( ) ( ) ( >-
00-07 ( ) ( ) ( ).. 

FCO-2 ::>-< H H >-
~---.Read·---""""---'Write.----~-----Slow.Rllad-----"'" 

Fig. 3·11. Timing activity of the MC68000. 

Table 3·1 indicates the operation, at nominal clock frequency, of an MC68000· 
based system using RAM of various access times and Low-power Schottky (LS) 
or Schottky (S) devices. For example, consider using RAM with an access time of 
150 nsec and LS buffers with a propagation delay of 56 nsec. The MC68000 at 8 
MHz provides a total internal delay of 70 nsec; the AS to RAS delay is 22 nsec. 
Thus, the total bus latency is 298 nsec (sum of the above delays), and the system 
can operate (with no wait states) at a nominal frequency of 8 MHz. 

The significant point, which Table 3-1 stresses, is cost of a system versus 
performance. For example, consider the last column of the table, showing the 
use of 450-nsec RAM and LS buffers. The critical path of AS to RAS is constant 
throughout the table. Thus, if slower and consequently cheaper RAM is used, it 
is seen that the lower clock speed (4-MHz) MC68000 must be used to avoid wait 
states. If a faster clock speed is chosen, then wait states must be introduced for 
the speeds of the processor and the RAM to be matched. 

The factor of speed must be re-evaluated from the standpoint of instruction 
cycle time. The MC68000 requires a nominal read time of four clock periods-of 
which 2.5 are allocated to bus latency-and a nominal write cycle of five clock 
periods-of which 3.5 are allocated to bus latency. Thus, referring once more to 
Table 3-1, to avoid wait states but still afford the 348 nseconds of bus latency, 
a designer who uses 200-nsec RAMs and LS buffers must use either a 7.18-MHz 
clock or faster (Schottky) buffers. 

Table 3-2 shows the operation of an MC68000 with 200-nsec RAMs and LS 
buffers. As shown, an ideal instruction of one read and one write consumes 17 
clock cycles; with a system clock of 8 MHz (125 nsec), this represents 2125 nsec. In 
this case, a system provides 100-percent performance. The table also shows that, 
in nonideal (actual) operation, the system loses 15 percent of its performance, a 
percentage 3 percent higher than if a designer had decided to operate the system 
at a reduced clock frequency. The reason is simple: the MC68000 uses full cycles 



C
o)

 
o 

T
ab

le
 3

-1
. 

O
p

er
at

in
g

 F
re

q
u

en
cy

 f
o

r 
V

ar
io

u
s 

O
p

er
at

in
g

 T
im

es
 (

C
o

u
rt

es
y,

 M
o

to
ro

la
, 

In
c.

'. 

R
A

M
 A

C
C

E
S

S
 S

P
E

C
 (

N
A

N
O

S
E

C
O

N
D

S
) 

5
0

 
1

0
0

 
1

5
0

 
5

0
 

1
0

0
 

1
5

0
 

1
5

0
 

2
0

0
 

2
0

0
 

2
5

0
 

2
0

0
 

2
5

0
 

3
0

0
 

3
5

0
 

B
u

ff
e

rs
 '

S
24

0 
(4

 x
 7

 n
s)

 
28

 
28

 
28

 
28

 
28

 
28

 
28

 
28

 
'L

S
24

0,
 8

T
26

 
56

 
56

 
56

 
56

 
56

 
56

 

A
S

 
-

R
A

S
 

7 
7 

7 
7 

7 
7 

7 
7 

22
 

22
 

22
 

22
 

22
 

22
 

M
C

6
8

0
0

0
 D

el
ay

 
(D

at
a 

S
et

up
 a

nd
 A

S
 D

el
ay

) 
12

.5
 M

H
z 

(1
0 

+
 5

0)
 

60
 

60
 

60
 

10
 M

H
z 

(1
0 

+
 5

0)
 

60
 

60
 

60
 

8 
M

H
z 

(1
5 

+
 5

5)
 

70
 

70
 

70
 

70
 

6 
M

H
z 

(2
5 

+
 6

5)
 

90
 

90
 

90
 

4 
M

H
z 

(3
0 

+
 7

5)
 

10
5 

B
us

 L
at

en
cy

 
14

5 
19

5 
24

5 
14

5 
19

5 
24

5 
29

8 
30

5 
34

8 
35

5 
36

8 
4

1
8

 
46

8 
53

3 

M
ax

. 
O

pe
ra

tin
g 

F
re

qu
en

cy
 (

no
 w

ai
ts

) 
17

.2
 

12
.8

 
10

.2
 

17
.2

 
12

.8
 

10
.2

 
8.

3 
8.

19
 

7.
18

 
7.

04
 

6.
7 

5.
98

 
5.

34
 

4.
69

 

N
om

in
al

 O
pe

ra
tin

g 
F

re
qu

en
cy

 (
no

 w
a

its
)*

 
12

.5
 

12
.5

 
10

.2
 

10
.0

 
10

.0
 

10
.0

 
8.

0 
8.

0 
7.

18
 

7.
04

 
6.

7 
5.

98
 

5.
34

 
4.

0 
-

-
-

-
-

~
-

-
-

~
-

*A
llo

w
ab

le
 w

it
h

in
 m

a
xi

m
u

m
 c

lo
ck

 f
re

q
u

e
n

cy
 s

pe
ci

fie
d 

fo
r 

M
P

U
 

4
0

0
 

4
5

0
 

56
 

56
 

22
 

22
 

10
5 

10
5 

58
3 

63
3 

4.
2 

3
.9

4
 

4
.0

 
3.

94
 



T
ab

le
 3

-2
. 

O
p

er
at

io
n

 w
it

h
 L

S
 B

uf
fe

rs
 a

n
d

 2
00

-n
se

c 
R

A
M

s 
(C

o
u

rt
es

y,
 M

o
to

ro
la

, 
In

c.
'. 

R
A

M
 A

C
C

E
S

S
 S

P
E

C
 (

N
A

N
O

S
E

C
O

N
D

S
) 

5
0

 
1

0
0

 
1

5
0

 
5

0
 

1
0

0
 

1
5

0
 

1
5

0
 

2
0

0
 

2
0

0
 

2
5

0
 

2
0

0
 

2
5

0
 

3
0

0
 

3
5

0
 

4
0

0
 

4
5

0
 

B
u

ff
e

rs
 '

S
24

0 
(4

 x
 7

 n
s)

 
28

 
28

 
28

 
28

 
28

 
28

 
28

 
28

 
'L

S
24

0,
 8

T
26

 
56

 
56

 
56

 
56

 
56

 
56

 
56

 
56

 

A
S

 
-

R
A

S
 

7 
7 

7 
7 

7 
7 

7 
7 

22
 

22
 

22
 

22
 

22
 

22
 

22
 

22
 

M
e

6
8

0
0

0
 D

el
ay

 
(D

at
a 

S
et

up
 a

nd
 A

S
 D

el
ay

) 
12

.5
 M

H
z 

(1
0 

+
 5

0)
 

60
 

60
 

60
 

1
0

M
H

z
(1

0
 +

 5
0)

 
60

 
60

 
60

 
8 

M
H

z 
(1

5 
+

 5
5)

 
70

 
70

 
70

 
70

 
6 

M
H

z 
(2

5 
+

 6
5)

 
90

 
90

 
90

 
4 

M
H

z 
(3

0 
+

 7
5)

 
10

5 
10

5 
10

5 

B
us

 L
at

en
cy

 
14

5 
19

5 
24

5 
14

5 
19

5 
24

5 
29

8 
30

5 
34

8 
35

5 
36

8 
4

1
8

 
46

8 
53

3 
58

3 
63

3 

M
ax

. 
O

pe
ra

tin
g 

F
re

qu
en

cy
 (

no
 w

ai
ts

) 
17

.2
 

12
.8

 
10

.2
 

17
.2

 
12

.8
 

10
.2

 
8.

3 
8.

19
 

7.
18

 
7.

04
 

6.
7 

5.
98

 
5.

34
 

4.
69

 
4.

2 
3.

94
 

N
om

in
al

 O
pe

ra
tin

g 
F

re
qu

en
cy

 (
no

 w
a

it
s)

* 
12

.5
 

12
.5

 
10

.2
 

10
.0

 
10

.0
 

10
.0

 
8

.0
 

8.
0 

7.
18

 
7.

04
 

6.
7 

5.
98

 
5.

34
 

4.
0 

4.
0 

3.
94

 

*A
llo

w
ab

le
 w

it
h

in
 m

a
xi

m
u

m
 c

lo
ck

 f
re

qu
en

cy
 s

pe
ci

fie
d 

fo
r 

M
P

U
 

w
 .... 



32 THE 68000 MICROPROCESSOR 

as wait states. Thus, a cost savings can be effected here by using 2S0-nsec RAMs 
with Schottky buffers. The overall performance remains the same. 

As the last line in Table 3-2 indicates, performance may be improved further 
if the full cycle of wait states can be reduced by, say, SO percent. Doing so is 
not impossible if flip-flops are used, as shown in Fig. 3-12. The clock-stretching 
circuit shown here will extend S4 (the DTACK latching cycle) by unit periods of 
the oscillator input to the flip-flop. This circuit, however, will not stretch S2 since 
data strobes are not output until S3 of a write cycle. 

A useful chart by which the performance of a system can be evaluated appears 
in Fig. 3-13. The left-hand side ofthe chart denotes, in microseconds, the average 
execution time of a single two-bus-cycle instruction. The nominal clock frequen­
cies are the lines sloping downward from right to left. Memory access times are 
the lines sloping upward from right to left. In the case of 200-nsec and 2S0-nsec 
RAM, two curves are given-one for RAM buffered with Schottky devices and the 
other for RAM buffered with Low-power Schottky devices. Values such as wait 
states and cycle time are given at the bottom of the chart; these are used in 
conjunction with the other sections. 

Let us use some values in Table 3-2 derived from this chart. The 8-MHz clock 
line crosses the O-wait-state line between the area of the 200 LS RAM and the 200 
S RAM. Using Schottky buffers and excluding wait states, the bottom of the chart 
shows that a two-instruction sequence can be executed in 17 cycles, or 2.12 ILsec 
(i.e., two times the 1.06-lLsec point on the chart). 

The use of LS buffers and 200-nsec RAM would require one wait state, and the 
execution time would increase to 2.SlLsec. With a circuit similar to that in Fig. 3-12, 
however, the execution time will drop to 2.32 ILsec. 

The chart also allows comparison of performance in speed at various clock fre­
quencies, RAM access time, and LS or S buffers. For example, the execution time 
does not vary significantly at 6-MHz/2S0-nsec RAM (1.42 ILsec), 6.41-MHz/300-

DTACK 
(FROM 68888) 

74-LS74-

Qt-'5=-------1~-... TO 68888 
CLOCK 

,..---.:!!....cCL Q' 6 

16 MHZ ..,--1-----------1 

AS (FROM 68888) ..,-+----------..li=-4) 

Fig. 3-12. Clock stretching circuit using flip-flops. 



A SMALL MC68000 SYSTEM 33 

2.~----7-y:.:.:.'::""---""T'"-";;;"'::':':"::""--'r------_S.O MHz 

2. 5.5 MHz 

2. 

1. 

:i 
u 
>-

(.) .. 
" III 

!::! 
7.0 MHz 

c 450LS 

~ 
2 
;; 
.5 
!i 400LS 
." c 
in 8.0 MHz 

!. 1.4 
'ii 
.!!-

~ 1.3 
i= 
c 
.2 
:; 

1.2 ~ 300 LS 
w 

! 1.1 
> < 

0.8+-~~:"""-J-=-~:'::""-+-----F:::"-""",,~-+ 

0.7~----J---""'::::~_~--+-----+ 

0.6i-+----~ ..... _=:__-__4----_+----_+ 

O.S,-!-____ -+ ____ ....l ___ =::It::=::::::::::=Ll00 S 
o ~ 1 1 ~ 2 Wait Cycles 

2.5 3.0 3.5 4.0 4.5 Clock Cycles lor Bus Latency Period 
17 18.6 20 21.6 23 Clock Cycles per 2 Instruction Sequence 

3.400 3.083 2.867 2.687 2.556 Factor 

Fig. 3-13. Performance of a MC68000 using various TIL devices and memories with different access times. 



34 THE 68000 MICROPROCESSOR 

nsec RAM (1.44 JLsec) or 7-MHz/300-nsec RAM (1.43 JLsec). 
The bottom line of the chart provides values ("factors") that can be used to plot 

a memory system -that is, when a factor is multiplied by the total required bus 
latency, the product is the average execution time per simple instruction for the 
indicated occurrence of wait states for the particular two-instruction sequence. 

BUS TIMEOUT LOGIC 

It was mentioned earlier that some provision must be made to avoid wasting time 
if, for instance, writing into ROM memory space should be attempted. Addressing 
of an unused location in a memory area or failure of a circuit to respond will also 
waste time. 

The circuit in Fig. 3-14-usually called a "watchdog timer" -consists of a 
74LS175, quad D-type flip-flop, which is connected as a four-bit serial shift 
register. After the circuit is cleared via the AS line, four clock cycles taken from the 
E clock of the MC68000* are "walked" through it. A total delay, or bus timeout, 
of 10 JLsec is produced. 

DESIGN OF RAM AND ROM INTERFACE 

Several circuit groups must be used for the interface of the RAM and ROM. The 
first circuit must be a general decoding circuit for the RAM, ROM, and some 
MC6800 peripheral devices (the latter are also part of a memory-mapped scheme). 
Since use of these peripheral devices is planned, a VPA bus termination signal 
must also be generated. The circuit in Fig. 3-15 demonstrates a general decoding 
scheme for the small system under study here. 

Gates U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, and U11 decode address lines 
A3 to A15. These gates are combined with the output of the 74LS138 decoder 
(U30) to generate a ROM enable signal (ROMEN) in the address area from 008000 
to OOBFFF and a RAM enable signal (RAMEN) in the area from 000008 to 007FFF. 
The address range selected is shown at the output of the corresponding gate in 
Fig. 3-15. 

Gate U4 performs an interesting task. As mentioned earlier, the first eight 
memory locations are overlapped by RAM and ROM. The output of this gate is 
used to assert the ROMEN and RAMEN signals in this memory area. 

The 74LS138 decoder also selects the memory areas for ACIA (010040 to 
010043) and the parallel interface/timer device (01000 to 0103F). Several outputs 
of this decoder are not connected and can be used for future expansion within 
the unused memory-map areas. 

ROM Circuit 

Two MC68A364 ROM are used, as shown in Fig. 3-16. Each has a storage capacity 
of 8 kilobytes times 8 bits (8 kilowords). When the ROMEN enable signal 

*E = MPU clockl10; in this case, E = 400 kHz. Each stage provides a delay of 2.5 JLsec (total of 10 
JLsec). 



A SMALL MC68000 SYSTEM 35 

5 08 A1 29 
4 01 A2 38 
3 02 A3 31 
2 03 A4 32 
1 04 A5 33 

64 05 A6 34 
63 06 A7 35 
62 07 A8 36 
61 08 A9 37 
88 09 A18 38 
59 018 A 11 39 
58 011 A 12 48 
57 012 A 13 41 
58 013 A14 42 
55 014- A15 43 
54 015 Ate 44 

A17 45 

DTACK' A 18 48 

Blf A 19 47 U2 

meR" A28 48 74LS175 
58 13 15 B'ERR' A 21 
51 

0 4Q 
14 RESET A22 52 12 

4tJ 18 rou:T A23 0 3Q 
11 3tJ 

J"P[I 1Jf 5 0 2Q 7 

I1'TI tJDS" 4 2tJ 2 f1S[2 [D'S" 10 1Q 
3 

R~ 1tJ 
t;]J5A c 
ClK 

FC8 28 

FC1 27 

FC2 28 

Fig. 3-14. Watchdog timer. 

selects both devices simultaneously, the total ROM space is 16 kilobytes (or 8 
kilowords) times 16 bits (16 kilowords). 

The MC68A364 has various access-time speeds. For economy, we will select 
the slow (350-nsec) version. 

The function of the DTACK generation circuit with respect to the ROM is illus­
trated by the timing diagram in Fig. 3-16. The A5 and RaMEN signals are asserted 
on the leading edge of 52, and DTACK is sensed on the leading edge of 54. 5ince 
a slow memory has been chosen, however, the timer must assert DTACK later 
than 54 (in about 500 to 625 nsec). When the system senses that DTACK is not 
present, it introduces wait states. When DTACK is finally asserted, data are sensed 
(55) and latched (56). 

RAM Circuit 

The choice of a slow dynamic RAM (450-nsec) for our system means that a timer 
circuit must be designed for the DTACK. A circuit must also refresh the DRAM, 



36 THE 68000 MICROPROCESSOR 

AH 

A3 4 Ul 
A4 111 74LS28111 
AS 8 8 
A8 9 

I 
A7 11 
AS 3 Ul U4 
AS 12 74LS28111 3 74LS111J U8 

474LSIIJ8 4 
Al111 2 '-5 4 '\.8 '----;"t U3 
All 13 ./ 5 J 5 8 74LS26111 

A12 1 

I 
1...-/ 8 

" 6 9 ./ 

8 ¥~LSIII2 11 
A13 ..t AH 9 1111 U5 U9 

74LS1II4 9 74LSll 
A15 5 6 1111 ,8 WTI"rf"n 

11, 

5 ¥~LSIII2 

mnm-
,r-u4 

U7 

~ 
6 1 Y7:j; 
~ 2A Y6 1111 Ul111 28 Y5"it 9 74LSll 

3 U3 Y40jt 1111 8 
12 74LS2611 3 

Y3 
11 

VPA 
2 5 Y2oM- U5 

13 
2 Plf- ~ +1 
1 Yl 15 11 1111 

1 YIII 
'---

U2 

VIiA 
~1112 

3 1 "AC::;l 

U5 ¥11 74LSIII4 LS32 

*- ' ~ rv' A6 2 12 
13 

U5 

3 4 4 LSIII4 ""TCS" 

3 ¥1fs27 

4 \ ""'" 6 
CDS" 5 ./ 

Fig. 3-15. RAM-ROM decoding circuit for our system. 

usually once every 1.5 msec, and preferably while the processor is not busy with 
the buses. The direct-memory access signals are prime candidates for this circuit. 
Furthermore, a technique called RAS refresh only can be used. This dynamic, 
memory-refresh technique is appropriate with asynchronous systems since it is 
not possible to accomplish a memory refresh in such systems without interfering 
with the processor cycles. When a high-priority RAS refresh request is generated, 
a refresh cycle is initiated at the completion of a processor cycle in progress. 

This technique is called cycle stealing. The memory-cycle requests from the 
processor are interrupted and a refresh cycle inserted in their place; thus, a 
normal cycle is stolen from the processor to carry out refreshing of the memory. 



A SMALL MC68000 SYSTEM 37 

DATA 

ADDRESS 

I 
U4 UII 

Ul 68364 
D8 

683d4 
~ '----! .... r----! .... DI 

DI ,. D8 D. ,. 01 13 D 4Q~ 
~ AI DI" Dl. ~ AI Dl 11 D1 

11 
4Q' 14 1.1 D1 13 Dl1 ~ : A:z D1 13 D3 D 3Q ,. ~ 1.3 D3 14 Dl1 1.3 ~! 14 D4 3Ur.1:i ~ 1.4 D4 

~ 
1.4 

5 D 1Q 7 AS D5 
15 D13 AS D5 

15 D5 

1Ur!--

~ 
1.6 D8 

18 D14 1.8 De 
18 ][e 

4.7K 
4 lD lQ 1 ~ 1'7 07 +5 1.7 D7 1.7 D7 

lU~ AS AS 

~~ 
AS AS 

8 AI. AI. 

811HZ CLOCK 
All B 1.11 ...=n 1.11 1.11 

~£ ~ £ 

ROil DTACK 

4.7K 

I ~~LS11 
POWER ON RESET '----41 6 

ROil EN 5 

U3 
74LS.4 

1 .2. 

8MHzCLK 

MPUCLK 

ROMEN ------' 

DATA------------<{ ..... ____ >-
Fig.3-16A. ROM devices used in our system and timing diagram of DTACK with respect to operation 
of the devices. 

In large systems, arbitration circuits are used to accommodate the cycle­
stealing technique. In our small system, however, a simple handshake approach 
of a request (BR), grant (BG), and acknowledge (BGACK) is sufficient. 

The timer circuit for our system is shown in Fig. 3-17. This circuit provides the 
following control signals: 



38 THE 68000 MICROPROCESSOR 

S2 S3 54 SW SW SW SW SW SW S5 56 S7 

RAMEN I 

iHiIm ) ~ 
MlJX \ r 

\ ( 
\ bTAcKRAM 

S2 S3 54 SW SW SW SW S5 56 S7 

CLK(MPU) 

IMHzCLK 

RAMEN 
(UDS. LDS) __ -' 

bTAcK RAM 

Fig. 3-168. ROM devices used in our system and timing diagram of DTACK with respect to operation 
of the devices. 



FROM T 1M I NG FL I P FLOP »-___ ....!.J 
1 MHZ CLOCK ,-___ ...:.J 

4-.7K 
+5 

4-7 

I~-+-++-+-""'" N. C. 
TACK RAM 

MHZ CLOCK 

4-7 

R/YI~--~~ 

Fig. 3-17. Timer circuit. 

+5 

4.7K 

REFRAS -

U3 1 ~ 
13 0 4Q 15 ,.., 14 
12 4tr~ 

0 3Q 

5 
3tr 11 

0 2Q 7 

4 10 
2tr 8 

U4 
~ 

lQ~ 
2 74LS.2 

ltr..L- 3 I 47 
...... 

IIUX cot/ROW 

RAS 

i-Ct 
811HZ CLOCK .... 

U5 

E .. 
1 74~'8 

,74LS32 

21 3 47 

. 2 3 

S~ 
1 4LSI. 

21 
U5 

,74LS32 
47 

2 3 

CL 

CU 

I ..... 
US 

1 :z.tLS32 
2: ,3 47 

-9 RAW . 
Fig. 3-18. Cycle stealing method. 

39 



40 THE 68000 MICROPROCESSOR 

REFA2 

A2 
A9 

REFAI 

Al 
A6 

f«JRli/REF 
COL/ROlf 

REFM 

M 
All 

REFAJ 

AJ 
AlII 

REFA6 

A6 
A13 

REFAS 

AS 
A12 

13 ~ 47 

r% ~C2 2Y 9 

111 
Cl 

3 
CII 47 lC3 

~ lC2 ty7 
5 lCl 
6 lC11 
2 

14 

Ii 
~ 

13 C3 47 

~2C2 2Y 9 
11 Cl 
111 CII 
3 lC3 47 

~IC2 lY 7 
6 lCl 
2 lCIII 

r--1ir. 

ff 
~ 

13 C3 47 

~~~2 2Y 9 
11 Cl
111 CIII
3 1C3 47

-t 1C2 1 7

8 lCl

2 1CII

-11.f'

ALL 4116'S CONNECTED SIMILAR TO LEFTMOST 4116

4116 5 4116 , 5

~Al Oll~ ~I:' Oll~
12~ -,tA2

foAJ
11M -!.1M
lAS ~AS
13 A6 .YA6

3 w. -4 W.
4 RAS• -4 RAS.

15 CAS. ~. r 01
:j

TO MC681111111 DATA BUS (0111-07)

5
4116 5 4116

~ Al Olll~ ~I:' Ollh
~A2 12~ lAJ

11 A4 ~M III AS ~AS
13 A6 .YA6

3 w. ~ w.

f~ Ts RAS.

J ~. 01

....I> 1:1 U4 TO MC6811111111 DATA BUS (08-015) •

~ 13 C3
1~ C2 2Y~
1111 ~ SIX ADDITIONAL 4116'S IN EACH ROW NOT SHOWN

REFA7--t lC3 47

lC2 lY 7
A7~ICl

A 14----t 1 CIII RAW-
14 ~-

11 CL-

~ CU-

Fig. 3-19. Timing and addressing circuit for our system.

1. Column/Row multiplex signal- used to select the 74LS153 multiplexers
2. DTACK RAM - used to signal DTACK to the MC68000
3. RAS - used to refresh the row addresses of the DRAM
4. CU, CL (Upper Column, Lower Column}-used to select either the upper or

lower columns of the DRAM
5. RAW-used as a read/write signal

A second circuit, depicted in Fig. 3-18, carries out the cycle-stealing technique.
This circuit is, essentially, a timing circuit, controlled by the handshake signals

mentioned earlier. It generates the signals to assert the 74LS153 multiplexers.

A SMALL MC68000 SYSTEM 41

Combined with the circuit in Fig. 3-17, it forms the timing and addressing circuit
for the DRAM. The complete memory circuit is shown in Fig. 3-19.

Completion of the memory circuit temporarily suspends discussion of the
MC68000 hardware features. This discussion will be resumed when the program­
ming features necessary for the design of input-output and interrupt circuits have
been described.

Chapter 4
Addressing Modes; Instruction Set

ADDRESSING MODES

The MC68000 has six addressing categories, each of which has variations that
provide a total of 15 addressing modes, as shown in Table 4-1. Closer examination
of these addressing modes reveals that they can be classified in four major
groups, as follows: (1) Register Direct modes, (2) Memory Address modes, (3)
Special Address modes, and (4) Program Control modes.

Memory Accessing Rules

To avoid address errors, which will result in the interruption of a program, three
rules must be observed:

1. Sixteen-bit (word) and 32-bit (Iongword) data must be accessed from an
even address.

Correct: MOVE.W. (A 1) + ,DO if A 1 initially contains 00001000.
Wrong: MOVE.W. (A1)+,DO if A1 initially contains 00011133.

The latter access generates an address trap error.

2. Bytes can be accessed from either an odd or even address.
3. Opwords must be on an even address.

Boundaries for the various sizes of data are represented on page 44, where N
is the address, an even number.

In the case of the longword, since the default value of the MC68000 is the 16-
bit word, a 32-bit word is formed by "joining" two 16-bit words.

Effective Address and Extension Word

An effective address is an address that contains an operand and is part of the
operation word. As shown in Fig. 4-1, this address consists of two three-bit
subfields-i.e., the mode and the register.
42

ADDRESSING MODES; INSTRUCTION SET 43

Table 4-1. Addressing Modes.

REGISTER DIRECT ADDRESSING:

A. Data register direct
B. Address register direct
C. Status register direct
ABSOLUTE DIRECT ADDRESSING:

A. Absolute short
B. Absolute long

EA=On
EA=A n
EA=SR

EA = (Next word)
EA = (Next two words)

PROGRAM COUNTER RELATIVE ADDRESSING:

A. Relative with offset
B. Relative with index and offset

REGISTER INDIRECT ADDRESSING:

A. Register indirect
B. Postincrement register indirect

C. Predecrement register indirect

D. Register indirect with offset

EA= (PCJ + d'6
EA=(PCJ+(X n)+ de

EA=~fl '\
EA =fA n)

E. Indexed register indirect with offset

A<;-An+ N
An<;-An- N
EA=(An)
EA=(A n)+d,6
EA=(An)+(Xn)+de

IMMEDIA TE ADDRESSING:

A. Immediate
B. Quick immediate

IMPLIED ADDRESSING:

A. Implied register

KEY:

Data = Next word or words
Inherent data

EA = SR, US?, S?, PC

An' On: Address register and data register, respectively, with subscript to

dn:
EA:
N:
PC:
SP:
SR:
USP:
Xn:
():

denote number of register
Displacement, with subscript to denote the number of bits

Effective address
Value (N = 1, 2, or 4)
Program counter
System stack pointer
Status register
User stack pointer
Address or data register used as index register

Contents of

OPWORD

15 6 5 3 2 "

I MODE I REG. I
"-_________ J

EFFECTIVE
ADDRESS

Fig. 4-1. Effective address.

44 THE 68000 MICROPROCESSOR

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 bit N Byte 0 Byte 1 N +1

15 8 7 0

1 byte N (7) Byte 0 (0)1 Byte 1 N +1

Byte 2 Byte 3 N +3

15 0

1 word N Word 0 N +1

N+2 Word 1 N +3

N+4 Word 2 N +5

15 0

11ongword N (31) Longword 0 (High-order word) N +1

N+2 Longword 0 (Low-order word) (0) N +3

N+4 Longword 1 (High-order word) N +5

N+6 Longword 1 (Low-order word) N +6

The mode bits define the addressing mode of the instruction, and the register
bits designate the register involved (0 to 7). For absolute and immediate address­
ing, the mode bits remain the same (111), while the register bits contain a code
that, in absolute addressing, distinguishes between long and short and, in imme­
diate addressing, denotes that particular mode.

As Fig. 4-2 shows, to specify an operand completely, an effective address may
need additional information, ranging in length from one to several words; that is,
depending on the addressing mode selected, additional 16-bit extension words
may follow the op code. These words provide additional addressing information
and may extend the total length of an instruction by as much as ten bytes.

Table 4-2 lists the various combinations for compilation of an effective address.
The $ symbol indicates a hexadecimal address; the # symbol indicates a number
that is interpreted as a value rather than as an address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Operation Word

(First word specifies operation and modes)

One- or two-word immediate operand, if any

Source effective address extension, if any
(One or two words)

Destination effective address extension, if any

Fig. 4-2. Instruction format of the Me6S000.

ADDRESSING MODES; INSTRUCTION SET 45

Table 4-2. Effective-Address Combinations.
---~-- ---------

EA MODE REG. ADDRESSING MODE NOTATION

000 Reg.# Data Register Direct Dn
001 Reg.# Address Register Direct An
010 Reg.# Address Register Indirect (An)
011 Reg.# Address Register Indirect with Postincrement (A n)+

100 Reg.# Address Register Indirect with Predecrement -(An)
101 Reg.# Address Register Indirect with Displacement d(An)
110 Reg.# Address Register Indirect with Index d(An,Rx)
111 000 Absolute Short $XXXX
111 001 Absolute Long $XXXXXXXX
111 100 Immediate #XXXX

The MC68000 manipulates single effective-address or double effective-address
instructions. In a single effective-address instruction, as shown in Fig. 4-3, the 16-
bit operation word contains the opcode, the data size, and the six-bit effective
address.

In the double effective-address instruction, the operation word contains the
opcode, a six-bit destination effective-address, and a six-bit source effective­
address.

OPWORD I DATA SIZE I MODE I REGISTER

Fig. 4-3. Single effective-address instruction.

Register Direct Modes

General. In two of the register direct modes, an operand is held in either a data
register or an address register.

Data Register Direct. This mode is used to access a data register; that is, the
effective address holds the mode code and the number of the register involved
in the operation.

EXAMPLE 4-1: CLR.W DO

This is a single effective-address instruction; its format is shown in Fig. 4-4. The
first two nibbles designate the opcode (0100 0010). The next two bits represent
the size of the data to be manipulated. In this case, the code for designation of
the 16-bit operand is 01. The last six bits of the instruction format indicate the
effective address.

The format in Fig. 4-4 should not be considered as representative of all single
effective-address instructions of the MC68000. Contents of registers in the 6800
before and after execution of a particular instruction are as follows:

46 THE 68000 MICROPROCESSOR

15 8 7 6 5 3 2 0

Opcode Data size Mode Reg. #
010000101 01 1000 1000

Fig. 4-4. Instruction format of CLR.W DO instruction.

Before:

PC=OOOOOOOO 5R=2700=.57 U5=FFFFFFFF 55=00000786
DO=00001000 D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=000080B6 A1=0000077C A2=00003006 A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000786

After:

PC=00003006 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=0000078A
DO=OOOOOOOO D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=000080B6 A1=0000077C A2=00003006 A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=0000078A

Let us try a double effective-address instruction.

EXAMPLE 4-2: MOVE.W DO, 01

In this case, we wish to move 16 bits of data from data register DO to data register
01. Since this instruction handles data, we can select one of the three data sizes­
(B)yte (eight bits), (W)ord (16 bits), or (L)ongword (32 bits).

Before:

PC=00003002 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=00000786
DO=00123456 D1=FFFFFFFF D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF 06=DFFF7FFF D7=FFFFFFFF
AO=FF7FFFFF A1=FFFFFFFF A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=00000786

After:

PC=00003002 5R=2700=.57 U5=FFFFFFFF 55=00000786
DO=00123456 D1=FFFF3456 D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF 06=DFFF7FFF D7=FFFFFFFF
AO=FF7FFFFF A1=FFFFFFFF A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=00000786

The operation word for this instruction is shown in Fig. 4-5. An observant reader
may notice that the instruction format in this figure differs from the arrangement

ADDRESSING MODES; INSTRUCTION SET 47

15 14 13 12 11 6 5 0

Destination Source
Size Reg. Mode Reg. Mode

0 0 / 11 / 0 0 0 / 0 0 0 / 0 0 0 / 0 0

Fig. 4-5. Instruction format of MOVE W . DO, 01.

of the mnemonics in the instruction. The mnemonics show the source register
(DO) first and the destination register (01) second, while the instruction format
reverses this order. Internally, the processor encodes the instruction as shown
in the instruction format in Fig. 4-5. A programmer should not be concerned,
however, with the encoding of the instruction and must follow the order of the
mnemonics (source first; destination second).

Address Register Direct. In this type of addressing mode, the operand is located
in an address register specified by the effective-address register.

EXAMPLE 4-3: MOVE.L AO,DO

Before:

PC=00003002 5R=2700=.57 U5=FFFFFFFF 55=00000786
DO=00123456 D1=FFFF3456 D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF D6=DFFF7FFF D7=FFFFFFFF
AO=00002000 A1=FFFFFFFF A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=00000786

After:

PC=00003006 5R=2700=.57 U5=FFFFFFFF 55=0000078A
DO=00002000 D1=FFFF3456 D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF D6=DFFF7FFF D7=FFFFFFFF
AO=00002000 A1=FFFFFFFF A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=0000078A

Memory Address Modes

General. Memory address modes are used to access an operand in a memory
location. All modes in this category are variations of indirect addressing and can
be used as reference pointers to memory, to process sequential data, to perform
stacking operations, to move blocks of data, and to manipulate elements within
an array.

Address Register Indirect. This mode can be used as a variable reference pointer
to memory. The address of the operand is held in an address register specified
in the effective address register subfield.

48 THE 68000 MICROPROCESSOR

EXAMPLE 4-4: MOVE.W (AO), 01

Before:

PC=00000032 SR=2708=.S7.N ... US=FFFFFFFF SS=0000078E
DO=000020FE D1=FFFF1223 D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF D6=DFFF7FFF D7=FFFFFFFF
AO=00002000 A1=FFFFFFFF A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=0000078E

002000 12
002001 23
002002 34

After:

PC=00000032 SR=2708=.S7.N ... US=FFFFFFFF SS=0000078E
DO=000020FE D1=FFFF1223 D2=FFFFF77D D3=FFFFFFFF
D4=F7F77FFF D5=FFFFFFFF D6=DFFF7FFF D7=FFFFFFFF
AO=00002000 A1=00002010 A2=FFFF7FFF A3=FFFFFFFF
A4=FFFFFFF7 A5=BFDFFFFF A6=FFFE7F7F A7=0000078E

Address Register Indirect with Postincrement. In this mode, the address of an
operand is held in an address register specified in the effective-address register
subfield. After use of the address, it is incremented by one, two, or four, depend­
ing on whether the accessed operand is a byte, word, or longword. If, however,
the address register is the stack pointer and the operand is a byte, the address is
incremented by two in order to keep the stack pointer on a word boundary (an
even address).

EXAMPLE 4-5: MOVE.W (A 1) +, DO

Before:

PC=OOOOOOOO SR=2700=.S7 US=FFFFFFFF SS=00000786
DO=123678AA D1=FFFFFFFF D2=FFFFFFFF D3=FFFFFFFF
D4=FFFFFFFF D5=FFFFFFFF D6=FFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00002000 A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=FFFFFFFF A6=FFFFFFFF A7=00000786

After:

PC=00003006 SR=2700=.S7 US=FFFFFFFF SS=0000078A
DO=12362030 D1=FFFFFFFF D2=FFFFFFFF D3=FFFFFFFF
D4=FFFFFFFF D5=FFFFFFFF D6=FFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00002002 A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=FFFFFFFF A6=FFFFFFFF A7=0000078A

002000
002001
002002
002003

20
30
44
AA

This mode is useful for handling sequential data, such as tables, for moving
blocks of data, and for stack unloading operations.

ADDRESSING MODES; INSTRUCTION SET 49

EXAMPLE 4-6: MOVE.W (AO) + ,(A2) +

This instruction will move one word, starting at the address contained in AO, to
the address contained in A2. After execution of the instruction, both addresses
are incremented by two. Thus, this instruction can be used repeatedly to move a
block of data from AO through AO + N, where N is an ascending multiple of two,
to A1 through A1 + N. Naturally, after this instruction, a second instruction must
be added, to keep count of the words to be moved.

Before:

PC=OOOOOOOO 5R=2700=.57 U5=FFFFFFFF 55=00000786
DO=0030FF46 D1=FFFF4D4D D2=FFFFFFFF D3=00000000
D4=FFFF4E75 D5=00000000 D6=00000001 D7=000001FF
AO=00001000 A1=FFFFFFFF A2=00002004 A3=00000554
A4=0000FFFF A5=00000540 A6=0000054A A7=00000786

After:

PC=00000404 5R=2708=.57.N ... U5=FFFFFFFF 55=0000078E
DO=0030FFFE D1=FFFF4D4D D2=FFFFFFFF D3=00000000
D4=FFFF4E75 D5=00000000 06=00000001 D7=000001FF
AO=00001002 A1=FFFFFFFF A2=00002006 A3=00000554
A4=0000FFFF A5=00000540 A6=0000054A A7=0000078E

Address Register Indirect with Predecrement. This mode works in a manner
opposite to the address register indirect mode with postincrement; that is, this
mode decrements an address before use. Therefore, this mode is suitable for
stack loading operations (first-in, last-out) and also for processing of sequential
data in a descending order.

EXAMPLE 4-7: MOVE.W-(AO),-(A1).

This instruction first decrements each address by two and then moves one data
word from (AO)-2 to (A 1)-2.

Address Register Indirect with Displacement. When this mode is used, the
address of the operand is the sum of the address held in an address register
and a sign-extended 16-bit displacement.

EXAMPLE 4-8: CLR.L $06(AO).

Before:

PC=00000404 5R=2708=.57.N ... U5=FFFFFFFF 55=00000796
DO=0030FFFE D1=FFFF4D4D D2=FFFFFFFF D3=00000000
D4=FFFF4E75 D5=00000000 06=00000001 D7=000001FF
AO=00001000 A1=FFFFFFFF A2=00002008 A3=00000554
A4=0000FFFF A5=00000540 A6=0000054A A7=00000796

50 THE 68000 MICROPROCESSOR

After:

001000 31
001001 31
001002 31
001003 31
001004 FF
001005 FF
001006 FF
001007 FF

PC=00003008 SR=2704=.S7 .. Z .. US=FFFFFFFF SS=000007A2
00=0030FFFE 01=FFFF4040 02=FFFFFFFF 03=00000000
04=FFFF4E75 05=00000000 06=00000001 D7=000001FF
AO=00001000 A1=FFFFFFFF A2=00002008 A3=00000554 001006 00
A4=0000FFFF A5=00000540 A6=0000054A A7=000007A2 001007 00

001008 00
001009 00
00100A 89
00100B CB

This addressing mode is suitable for accessing elements within an array or for
accessing input-output locations within a memory range assigned to I/O devices.
By using positive or negative displacement values, locations forward or behind
a base address can be accessed. The address register indirect with displacement
mode is also suitable for accessing individual variables in the stack. For example,
one area in the stack may be used to store local variables, while another area
stores data passed to subroutines. By use of the positive-negative displacement
technique, the two stack areas may be accessed at will.

Address Register Indirect with Index and Displacement. In this mode, the
address of the operand is the sum of the address held in an address register; the
sign-extended, low-order, eight-bit displacement; and the contents of an index
register. The latter can be either a data register or an address register.

EXAMPLE 4-9: CLR.W $2(A1, A3.W)

Before:

PC=00003008 SR=2704=.S7 .. Z .. US=FFFFFFFF SS=000007A6
00=0030FFFE 01=FFFF4040 02=FFFFFFFF 03=00000000
04=FFFF4E75 05=00000000 06=00000001 07=000001FF
AO=00001000 A1=00001050 A2=00002008 A3=00001300
A4=0000FFFF A5=00000540 A6=0000054A A7=000007A6

After:

PC=00003008 SR=2704=.S7 .. Z .. US=FFFFFFFF SS=000007AE
00=0030FFFE 01=FFFF4040 02=FFFFFFFF 03=00000000

ADDRESSING MODES; INSTRUCTION SET 51

04=FFFF4E75 05=00000000 06=00000001 07=000001FF
AO=00001000 A1=00001050 A2=00002008 A3=00001300
A4=0000FFFF A5=00000540 A6=0000054A A7=000007AE

002352
002353
002354
002355
002356
002357

00
00
FF
FF
FF
FF

The address register indirect mode with index and displacement can be used
to access data within a multiple record array.

Special Address Modes

A code, rather than a register number in the effective address, designates one of
the three special addressing modes.

Absolute Short. In this mode, an extension word holds the address of the
operand; that is, before use, the 16-bit address is sign-extended. Thus, the abso­
lute short mode can define a permanent address within a 64-kilobyte range.

Absolute Long. Unlike the absolute short mode, which operates within the low
or high 64 kilobytes of memory, the absolute long mode can be used within the
entire 16-megabyte memory area. This mode requires two words of extension.
These two 16-bit words are "joined" (first word: Address High; second word:
Address Low) to form the address of the operand.

Immediate Mode. In the immediate mode, any value following the opcode is
the operand.

EXAMPLE 4-10: MOVE.L #$1000,00

Before:

PC=000093C6 5R=2709=.57.N .. C U5=FFFFFFFF 55=00000782
00=00323332 01=FFFF4040 02=FFFF3352 03=00000000
04=FFFF4E71 05=00000000 06=00000001 07=000001FO
AO=000080B6 A1=00008354 A2=00000414 A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000782

After:

PC=OOOOOOOO 5R=2700=.57 U5=FFFFFFFF 55=00000786
00=00001000 01=FFFF4040 02=FFFF3352 03=00000000
04=FFFF4E71 05=00000000 06=00000001 07=000001FO
AO=000080B6 A1=0000077C A2=00003006 A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000786

52 THE 68000 MICROPROCESSOR

A variation of the immediate mode is the Quick Immediate mode. In this mode,
the data are contained in an eight-bit field within the operation word. This eight­
bit value is sign-extended, and the entire 32-bit value is transferred to the data
register involved.

The Quick Immediate mode, although described here, could be categorized as
an independent mode. It is found, for example, with arithmetic instructions. Its
advantage? When operand values are between 1 and 8, use of this mode saves
execution time.

Program Control Modes

General. The modes in this category load a new address to the program counter
and transfer execution of the program starting at the new address.

Program Counter with Displacement. One word extension is used in the pro­
gram counter mode with displacement. The address of an operand is the sum
of the contents of the program counter and a sign-extended, 16-bit displacement
in the extension word. The content of the program counter is the address in the
extension word.

Program Counter with Index. This mode requires one word of extension. The
address of an operand is the sum of the program counter contents, an eight­
bit displacement (low-order byte of the extension word), and the contents of the
index register.

One advantage ofthe program counter mode is that it can be used in the manip­
ulation of position-independent programs. Since the program counter always con­
tains the location of the next instruction, the current instruction may refer to data
or program locations for branches relative to the instruction itself.

A restriction has been placed on this mode, and for a good reason: It cannot
be used to specify a destination operand. This restriction prevents a program that
contains errors from destroying itself inadvertently. The restriction also prevents
programmers from using the dangerous practice of writing self-modifying code.

Inherent Mode

The inherent mode is not classed with the other modes because the former con­
tains very few instructions. Inherent instructions usually do not show an operand.
The operation word itself normally indicates the location of the operand.

Summary

To recapitulate:
1. In direct or absolute addressing, the operand is specified by a 16-bit or 32-

bit address that is part of the instruction.
2. The register-deferred addressing mode has several variations. In the address

register indirect mode, the contents of the register are the effective address. In the

ADDRESSING MODES; INSTRUCTION SET 53

address register indirect with predecrement, the effective address first is decre­
mented and then used. In the address register indirect with postincrement, the
effective address is used and then incremented. In the address register indirect
with displacement, the effective address is the sum of the contents of an address
register and a 16-bit displacement. In the address register indirect with displace­
ment and index, the effective address is the sum of the contents of an address
register, an eight-bit displacement, and the contents of an index register; the
latter may be another address register or a data register.

3. The program counter modes transfer control to another location in the
program. The modes basically are branching modes. In the program counter rel­
ative, the effective address is the sum of a 16-bit displacement and the contents
of the program counter. In the program counter with index, the effective address
is the sum of an eight-bit displacement, the contents of the program counter, and
the contents of an index register.

INSTRUCTIONS

The instructions of the MC68000 are divided into four main categories: (1) data
transfer instructions, (2) data processing instructions, (3) program control instruc­
tions, and (4) system control instructions.

The first group-data transfer instructions- includes the MOVE instructions, the
SWAP instruction, and the EXCHANGE instruction. These instructions can transfer
data between the two halves of a register, between two registers, between a
register and a memory location, and between two memory locations. A MOVE
instruction can also read and modify the contents of a status register.

The second group-data processing instructions-includes instructions for 8-
bit, 16-bit, and 32-bit addition and subtraction, 16-bit multiplication and division,
and Binary-Coded Decimal operations. The same group includes logic and shifting
instructions-such as AND, OR, Exclusive-OR-and shifting by one or more bits
(one single shift or rotate instruction can move register data by as many as 32
bits positions left or right).

The MC68000 is able to manipulate single bits too; the processor can select,
test, set, or clear individual bits. This feature is very important in input-output
operations.

The program control group includes both unconditional and conditional branch
instructions. There are 14 conditional branch instructions, and all of them test the
various flags of the condition code register. There are four unconditional branch
instructions (JMP, JSR, BRA, BSR). Naturally, the return from a branch instruction
could be counted as well, but is not included here.

Finally, the various instructions in the system control group include those that
can alter the contents of the status register, the RESET instruction, and the excep­
tion processing instructions.

A more detailed description of many instructions, with programming examples,
is provided in Chap. 5.

Chapter 5
Instruction Set-A More Intensive Evaluation

The instruction set that the MC68000 uses truly makes this device a program­
mer's dream. The MC68000 is a processor for the implementation of high-level
languages. The "orthogonality" of the processor provides significant assistance
to compiler designers.

Orthogonality is a measure of the number and power of features implemented
(the fewer and more powerful, the better) and the regularity with which groups of
these features combine (the fewer special restrictions, the better). For example,
the addressing modes of the MC68000 are orthogonal with respect to the address
registers; there is no restriction on which address register is to be used with a
given addressing mode. Consequently, all address registers are easily accessible
to a compiler.

Similarly, the orthogonality of instructions crossed with the addressing modes
also makes selection of an addressing mode by compilers more effective.

Finally, the orthogonality of data register usage crossed with instructions
reduces restrictions on the specification of a particular data register.

DATA MANIPULATION INSTRUCTIONS

Arithmetic Operations

The most common type of arithmetic involves integers, and the instruction sets
of every computer can accommodate such operations as add and subtract. Some
confusion exists in the interpretation of the terms integer and fixed point, and
the two are often used interchangeably. To do so, however, is not always valid.
An integer is a whole number with no fractional parts-e.g., 1,2,3. A fixed-point
number is one whose radix point is not variable. * Numbers such as 4.35 and
55.32 are fixed-point numbers, with the decimal point fixed at two. An integer
is a fixed-point number with the radix point fixed at zero. Thus, integers can be

*The radix point is the notation that separates the whole portion of a real number from its fractional
part. In general, reference to a radix point is made by the number base represented. Thus, we have
the decimal point for base 10, the binary point for base 2, and the hexadecimal point for base 16.

54

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 55

considered as a subset of fixed-point numbers; that is, all integers are fixed-point
numbers, but not all fixed-point numbers are integers.

Integer arithmetic instructions that the MC68000 uses include ADD.X, SUB.X,
CMP.X, TST.X, AND CLR.X. Other arithmetic instructions will be mentioned later.
In the instructions listed, the X designates the size of the operand (byte, word, or
longword). There are variations of some of these instructions that are used for
addressing purposes. For example, the ADD instruction may be used to change
the low eight bits of an operand, whereas the ADDA (Add Address) instruction
may be used to add values held in address registers.

The arithmetic and logic instructions of the MC68000 are very similar in the
ways in which they function and in which the condition codes are affected as a
result of the execution of an instruction and the selection of available addressing
modes, registers, and operands. This feature is advantageous since only one
uniform set of rules must be remembered during program design.

At this point, an important feature must be mentioned. An experienced pro­
grammer always attempts to determine (or already knows) whether an instruction
will affect any of the status register flags. Flags are important in arithmetic, com­
paring, and other operations. For example, if the instruction ADDA.B A1, A2 is
used, a 68000 assembler will signal an error, because the ADDA instruction does
not affect any flags and can, therefore, be used only with word- or longword-size
operands.

The ADDQ(Add Quick) instruction is a "quick immediate mode" instruction that
adds a value between 1 and 8 to any alterable address. What is the need for such
an instruction, however, since the MC68000 provides an ADDI (Add Immediate)
instruction? The answer is faster execution. The ADDQ instruction is briefer.

EXAMPLE 5-1: AOO.W (A2) + ,DO

Before:

PC=00003006 5R=2700=.57 U5=FFFFFFFF 55=00000792
DO=00000001 D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=00002000 A1=0000077C A2=00003008 A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000792

003008 4E
003009 71
00300A 4E
003008 71

After:

PC=00003006 5R=2700=.57 U5=FFFFFFFF 55=00000796
DO=00004E72 D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=00002000 A1=0000077C A2=0000300A A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000796

56 THE 68000 MICROPROCESSOR

EXAMPLE 5-2: AOOO.L #2, A5

Before:

PC=00003006 5R=2700=.5 U5=FFFFFFFF 55=00000796
DO=00004E72 D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=00002000 A1=0000077C A2=0000300A A3=00000554
A4=00023352 A5=00000540 A6=0000054A A7=00000796

After:

PC=00003006 5R=2700=.5 U5=FFFFFFFF 55=00000796
DO=00004E72 D1=FFFF4D4D D2=FFFF3352 D3=00000000
D4=FFFF4E71 D5=00000000 06=00000001 D7=000001FD
AO=00002000 A1=0000077C A2=0000300A A3=00000554
A4=00023352 A5=00000542 A6=0000054A A7=0000079A

The ADDX (Add Extended) instruction uses the X flag in the status register in
the addition operation; that is, the source operand, the destination operand, and
the X flag are added together, and the sum is placed in the destination location.
An interesting fact about the X flag is that it may be set or unset by an arithmetic
operation that immediately precedes the ADDX instruction, and multi precision
operations may thus be performed. Although the X flag is an exact copy of the C
flag, unlike the latter, the former is not affected by instructions such as some of
the MOVE.

In execution of an ADDX instruction, the operands may be addressed in two
ways:

1. Both operands may be located in data registers specified in the instruction.
2. Both operands may be located in memory and accessed by the predecre­

ment mode, using address registers specified in the instruction.

Examine the flags that this instruction affects (consult the MC68000 Instruction
Set in the Appendix), and it will be seen that all of them, except the Z flag, are
set as they would be during an ADD instruction. The (Z)ero flag is cleared if the
result is nonzero but remains unchanged rather than set, as would be the case if
the result were zero. This feature can be used in multiprecision operations. The
Z flag can be set before the several ADDX instructions that compose a multi­
precision, arithmetic operation are executed. The Z flag will be cleared for any
nonzero, intermediate values produced and at the completion of the multipreci­
sion operation. If, however, Z is still set at the end of the operation, then all of
the intermediate values produced were zero, and the final result is thus also zero.

EXAMPLE 5-3: AOOX.L 00,01

Before:

PC=00003006 5R=2700=.57 U5=FFFFFFFF 55=0000079A
DO=00000021 D1=00000010 D2=FFFF3352 D3=00000000

INSTRUCTION SET - A MORE INTENSIVE EVALUATION 57

04=FFFF4E71 05=00000000 06=00000001 07=000001FO
AO=00002000 A1=0000077C A2=0000300A A3=00000554
A4=00023352 A5=00000542 A6=0000054A A7=0000079A

After:

PC=00003006 SR=2700=.S7 US=FFFFFFFF SS=0000079E
00=00000021 01=00000031 02=FFFF3352 03=00000000
04=FFFF4E71 05=00000000 06=00000001 07=000001FO
AO=00002000 A1=0000077C A2=0000300A A3=00000554
A4=00023352 A5=00000542 A6=0000054A A7=0000079E

The subtraction category of arithmetic operations has the SUB, SUBI, SUBQ,
SUBX, and SUBA instructions; all are the exact counterparts of the ADD group.

The MC68000 provides multiplication and division instructions but only for
16-bit operands. There are two multiplication instructions (MULU, or multiply
unsigned; and MULS, or multiply signed) and two division instructions (DIVU;
DIVS). A 32-bit destination is used to store results. For division instructions, how­
ever, the destination stores both the remainder (high-order 16 bits) and the quo­
tient (low-order 16-bits).

EXAMPLE 5-4: MULU #$03, 02

Before:

PC=OOOOOOOO SR=2704=.S7 .. Z .. US=FFFFFFFF SS=00000786
OO=OOOOFFOO 01=00000000 02=00000002 03=00000000
04=FFFFFFFF 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=00000786

After:

PC=00003008 SR=2700=.S7 US=FFFFFFFF SS=0000078A
OO=OOOOFFOO 01=00000000 02=00000006 03=00000000
04=FFFFFFFF 05=FFFFFFFF O6=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000078A

EXAMPLE 5-5: MULS 03,04

Before:

PC=00003008 SR=2700=.S7 US=FFFFFFFF SS=0000078A
OO=OOOOFFOO 01=00000000 02=00000006 03=00000004
04=00000010 05=FFFFFFFF 06=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000078A

After:

PC=00000032 SR=2708=.S7.N ... US=FFFFFFFF SS=0000078E
OO=OOOOFFFF 01=00000000 02=00000006 03=00000004

58 THE 68000 MICROPROCESSOR

04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000078E

EXAMPLE 5-6: OIVU 01,02

Before:

PC=00000032 SR=2708=.S7.N ... US=FFFFFFFF SS=0000078E
OO=OOOOFFFF 01=00000006 02=00000060 03=00000004
04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000078E

After:

PC=00000030 SR=2708=.S7.N ... US=FFFFFFFF SS=00000796
OO=OOOOFFFF 01=00000006 02=00000010 03=00000004
04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00010040 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=00000796

The CMP (Compare) instruction is included in the arithmetic group because,
in effect, a subtraction occurs during execution of the instruction. The source
operand is subtracted from the destination and, although the result of this sub­
traction is discarded, the status register flags are affected. Thus, the CMP instruc­
tion is useful for purposes of testing and branching.

The compare group also has a CMPI (Compare Immediate) instruction and a
CMPA (Compare Address) instruction. The former subtracts the value after the
opcode from the contents of an address, and the condition code flags are altered
according to the result. The latter instruction subtracts the contents of an address
from a destination address register; the flags are altered according to the result.

A handy instruction is the CMPM (Compare Memory), which is always used
in the postincrement mode and thus allows comparison of multiple memory
locations.

The TST (Test an Operand) instruction is also included in the arithmetic group
because a subtraction occurs. A zero is subtracted from the contents of a desti­
nation, and, although the result is discarded, the condition code flags are altered.

The NEG (Negate) instruction changes an operand to a negative value; that is,
the destination is subtracted from zero. The operation affects the C, Z, N, V, and
X flags.

EXAMPLE 5-7: NEG.L (AO)

Before:

PC=00003006 SR=2719=.S7XN .. C US=FFFFFFFF SS=000007A2 002000 EF
OO=OOOOFFFF 01=00000FFF 02=00000010 03=00000004 002001 EF

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 59

D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007A2

After:

PC=00003006 SR=2711=.S7X ... C US=FFFFFFFF SS=000007A6
DO=OOOOFFFF D1=00000FFF D2=00000010 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=000000CO A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007A6

002002 00
002003 01
002004 FF
002005 FF
002006 FD

002000 10
002001 10
002002 FF
002003 FF
002004 FF
002005 FF

The NEGX negates a value and then subtracts the X bit from the negated value.
All of these arithmetic instructions are used with operands in two's complement

form. The MC68000 provides instructions, however, for manipulation of decimal
operands. These instructions are: ABCD (Add Binary Coded Decimal), NBCD
(Negate Binary Coded Decimal), and SBCD (Subtract Binary Coded Decimal). The
legal operand for any of these instructions is a byte, representing two BCD values.

The ABCD and SBCD instructions manipulate operands as follows:

1. Between two data registers specified in the instruction.
2. Between two memory locations using two address registers and the pre­

decrement mode.

EXAMPLE 5-8: ABeD -(A1), -(A2)

Before:

PC=00003006 SR=2700=.S7 US=FFFFFFFF SS=000007BA
DO=OOOOFFFF D1=00000FFF D2=00000010 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00002000 A2=00002100 A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007BA

After:

PC=00003006 SR=2700=.S7 US=FFFFFFFF SS=000007BE
DO=OOOOFFFF D1=00000FFF D2=000000tO D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007BE

001FFF 03
002000 00
002001 00
002002 00
0020FF 04
002100 10
002101 00
002102 00

0020FF
002100
002101
002102

07
10
00
00

60 THE 68000 MICROPROCESSOR

Logical and Shifting Instructions

Logical Instructions. These instructions include the NOT, OR, AND, and EOR. All
addressing modes previously discussed may be used with these instructions.

The simplest instruction is NOT, which is used to complement an operand.

EXAMPLE 5-9: NOT.W 01

Before:

PC=00003006 SR=2700=.S7 US=FFFFFFFF SS=0000078E
DO=OOOOFFFF D1=00000FFF D2=00000010 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000078E

After:

PC=00003006 SR=2708=.S7.N ... US=FFFFFFFF SS=000007C2
DO=OOOOFFFF D1=0000FOOO D2=00000010 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007C2

Since addresses should not be complemented (although, sometimes this fea­
ture is convenient), a NOT instruction works only with data registers.

The OR instruction requires two operands since it performs the ORing of two
bits - e.g., 11001 ORed with 11100 yields 11101.

EXAMPLE 5-10: OR.W 01,02

Before:

PC=00003006 SR=2708=.S7.N ... US=FFFFFFFF SS=000007C2
DO=OOOOFFFF D1=0000FOOO D2=00000111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007C2

After:

PC=00003006 SR=2708=.S7.N ... US=FFFFFFFF SS=000007C6
DO=OOOOFFFF D1=0000FOOO D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007C6

EXAMPLE 5-11: OR.L #$OOFF, 01

Before:

PC=00003006 SR=2708=.S7.N ... US=FFFFFFFF SS=000007C6
DO=OOOOFFFF D1=0000FOOO D2=0000F111 D3=00000004

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 61

D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007C6

After:

PC=00003008 5R=2700=.57 U5=FFFFFFFF 55=000007CA
DO=OOOOFFFF D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007CA

The AND instruction is used to mask a value-i.e., to drop any unwanted bits
in an operand without affecting the remaining bits.

EXAMPLE 5-12: AND.L #FFFF,DO

Before:

PC=00003008 5R=2700=.57 U5=FFFFFFFF 55=000007CA
DO=OOOOFFFF D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007CA

After:

PC=00003008 5R=2700=.57 U5=FFFFFFFF 55=000007CE
DO=OOOOFFFF D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007CE

The EOR (Exclusive-OR) instruction provides a result of one when two bits of
different value are EORed; when bits are of similar value, the EOR result is zero.
This instruction is sometimes used to clear a register.

EXAMPLE 5-13: EOR.L 00,00

Before:

PC=00003008 5R=2700=.57 U5=FFFFFFFF 55=000007CE
DO=OOOOFFFF D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007CE

After:

PC=00003004 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=000007D2
DO=OOOOOOOO D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF

62 THE 68000 MICROPROCESSOR

AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007D2

An important point to take account of in the EOR instruction is that the source
register must be a data register, whereas a data register in the AND and OR
instructions can be either the source or destination.

The immediate mode of the AND, OR, and EOR instructions provides a useful
function. In any of these three instructions in this mode, the destination may be
the status register. Thus, any or all of the bits in the status register may be altered
by using these logical instructions in the immediate mode.

EXAMPLE 5-14: AND.L #$O,SR

Before:

PC=00003004 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=000007D2
DO=OOOOOOOO D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007D2

After:

PC=00003004 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=000007D6
DO=OOOOOOOO D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007D6

The AND instruction cleared the status register.

EXAMPLE 5-15: OR.B #$01,SR

Before:

PC=00003004 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=000007D6
DO=OOOOOOOO D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007D6

After:

PC=00003006 5R=2705=.57 .. Z.C U5=FFFFFFFF 55=000007DA
DO=OOOOOOOO D1=0000FOFF D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007DA

In this case, the OR instruction sets the carry flag.

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 63

Shifting Instructions. The four shifting and rotating instructions move bit pat­
terns within a register or a memory location. These instructions are: Arithmetic
Shift (Left or Right), Logical Shift (Left or Right), Rotate (Left or Right), and Rotate
with Extend (Left or Right).

Figure 5-1 shows the format ofthe Logical Shift Left instruction. The instruction,
LSL.W 00,01, shifts the contents of 01 left by as many bits as are designated in
a value held in DO. Bits shifted out of the high-order bit are copied into both the
carry and extend flags; zeros are shifted into the low-order bit.

Fig. 5-1. Format of logical shift left instruction.

EXAMPLE 5-16: LSL.W DO, 01

(Observe the contents of both registers before and after execution of this instruc­
tion.)

Before:

PC=00003004 5R=2708=.57.N ... U5=FFFFFFFF 55=0000070E
00=00000002 01=0000FOFF 02=0000F111 03=00000004
04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=0000070E

After:

PC=00003004 5R=2719=.57XN .. C U5=FFFFFFFF 55=000007E2
00=00000002 01=0000C3FC 02=0000F111 03=00000004
04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007E2

Constants also may be used to define the number of shift positions.

EXAMPLE 5-17: LSR.W #$04,00

Before:

PC=00003004 5R=2704=.57 .. Z .. U5=FFFFFFFF 55=000007E6
00=00000010 01=0000C3FC 02=0000F111 03=00000004
04=00000040 05=FFFFFFFF D6=OFFFFFFF 07=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007E6

64 THE 68000 MICROPROCESSOR

After:

PC=ODOA0004 SR=2708=.S7.N ... US=FFFFFFFF SS=000007EA
DO=OOOOOOFF D1=0000C3FC D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00001FFF A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007EA

When an operand in memory must be shifted, the instruction indicates the
effective address. In such a case, the operand is shifted only one bit.

EXAMPLE 5-18: LSL.W (A1)

(Observe the contents of the memory location $3000 before and after execution
of the instruction.)

Before:

PC=ODOA0004 SR=2708=.57.N ... U5=FFFFFFFF 55=000007EA
DO=OOOOOOFF D1=0000C3FC D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00003000 A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007EA

After:

PC=00000032 SR=2708=.S7.N ... U5=FFFFFFFF 55=000007EE
DO=OOOOOOFF D1=0000C3FC D2=0000F111 D3=00000004
D4=00000040 D5=FFFFFFFF D6=DFFFFFFF D7=FFFFFFFF
AO=00002000 A1=00003000 A2=000020FF A3=FFFFFFFF
A4=FFFFFFFF A5=00000541 A6=0000054F A7=000007EE

003000 E8 ?
003001 48 ?
003002 4E ?
003002 4E ?
003003 75 ?
003004 4E ?

003000 02
003001 00
003002 00
003003 00
003004 4E

01
00
00
00
00

The LSL instruction can be used in multiplication by powers of 2. In contrast,
the LSR instruction does not provide correct results with negative numbers in
division, since zeros are shifted from the left and reset the sign bit. The arithmetic
shift instructions remedy this problem. Although similar in format to the logical
shift instructions, the arithmetic shift instructions differ in their treatment of the
condition code flags.

Consider the format of the ASR instruction shown in Fig. 5-2. The bits shifted
from the left are copies of the sign bit, and thus, during a division, both positive
and negative numbers are treated correctly; that is, in the case of a negative
number, the ASR instruction shifts 1s from the left.

The rotate instructions eliminate a problem that shift instructions present; i.e.,
the loss of bits coming off the end of an operand.

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 65

ASR

Fig. 5-2. Arithmetic shift instruction.

The ROl and ROR instructions may rotate an operand by the number of bits
specified in a register or by a constant; the instructions may also rotate an
operand in memory by one bit. In all three of these cases, the rotate instruction
copies the high-order or low-order bit of the operand into the carry flag, as shown
in Fig. 5-3.

The two rotate-with-extend-instructions copy any bits shifted out of the high­
order or low-order bit into both the carry and extend flags, as shown in Fig.
5-4. The previous value of the extend bit is shifted into the high-order or low­
order bit, depending on the direction of the rotation. These rotate-with-extend
instructions are useful for shifting operands larger than 32 bits.

EXAMPLE 5-19:

Assume that a 64-bit value, located in DO, D1, is to be shifted left. Two instruc­
tions- lSL.l#$01 ,D1 and ROXL.l #$01, DO-are to accomplish this task. The first
instruction shifts the low-order 32 bits of the operand and places the dropped bit
in the X flag. The second instruction uses the saved bit in the X flag and rotates
the high-order 32 bits.

Bit Manipulation Instructions

There are five instructions in the bit manipulation instruction group: Bit Set
(BSET), Bit Test (BTST), Bit Clear (BClR), Bit Change (BCHG), and Test and Set
(TAS).

There are two means by which to specify the bit to be manipulated - i.e., either
with a data register or a series of bits in the bit instruction opcode. If a register
is affected, the bit number can be from 0 to 31; if a memory location is affected,
the bit number can be from 0 to 7.

ROL

ROR

Fig. 5-3. Rotate instruction.

66 THE 68000 MICROPROCESSOR

OPERAND

J
ROXL

r OPERAND

ROXR

Fig. 5-4. Rotate with extend instruction.

Bits in memory are identified by the bit number of the byte at which the bits
are located. An entire memory byte is read by the MC68000, a bit in that byte is
manipulated, and then the entire byte is written back in its original address.

The TAS instruction deserves special attention. This is the only instruction that
uses the read-modify-write (R-M-W) cycle of the MC68000. The TAS instruction
is used in multiprocessor configurations of the MC68000 family and is indivisible.
It locks out all accesses to the designated address until processing work at that
location is completed. Its operation proceeds along the following lines.

The MC68000 selects a given byte to represent the status of a particular shared
resource. This byte is commonly known as a semaphore. If a TAS instruction
indicates that the semaphore is negative (by the presence of a 1 in its most
significant bit), the querying processor knows that the resource is in use and can
either continue to retest until the semaphore byte indicates a 0 in the msb, or
process another task.

Since a TAS instruction immediately sets the msb of a semaphore to 1 and the
instruction cannot be interrupted before completion, all processors in the shared
system have accurate information about the shared resource. The msb is cleared
by the microprocessor that has access to the shared resource.

Execution of a TAS instruction is associated with the read-modify-write cycle.
During the TAS execution and the R-M-W cycle, the system prevents access
of the semaphore byte by any other device between the time when the TAS
reads the byte and when it sets the msb. Thus, two processors cannot read the
semaphore byte simultaneously and be advised that a shared resource is free.

DATA MOVEMENT INSTRUCTIONS

As described in Chap. 4, the general instruction for transfers is the MOVE. Two
special types in this category are the MOVEQ (Move Quick) and MOVEM (Move
Multiple Registers) instructions.

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 67

When a program segment requires a register to hold a constant of small value,
the MOVEO instruction provides a fast solution for initializing that register to
the particular value. This instruction extends the sign bit of any signed eight­
bit immediate value between -128 and +127, so that this value is interpreted
correctly as a 32-bit operand and transfers the bit into a data register. Since the
value to be manipulated is part of the instruction, the latter is executed faster.
This "quick mode" -another variation of the MC68000 addressing modes- is also
used by some arithmetic instructions.

More often than not, programs require stacking operations, during which the
contents of a set of registers are saved, the registers are loaded with new values,
and, after manipulation of these new values, the original contents of the registers
are restored. The MOVEM instruction performs this task in an efficient, orderly,
and expeditious manner.

EXAMPLE 5-20: MOVEM A1/A5/D3, $2000

This instruction will copy the contents of 03, A 1, and A5 into memory locations
$2000, $2002, and $2004, as shown in Fig. 5-5.

EXAMPLE 5-21: MOVEM DO/D5/AO - A2, -(A4)

This instruction will copy the contents of DO, 05, AO, A1, and A2 in the order
shown in Fig. 5-6 into five consecutive memory locations. The starting memory
location will be predecremented value held in AO.

EXAMPLE 5-22: MOVEM (A7) + ,AO - A6/DO - 07

The contents of DO through 07 and AO through A6 are copied into 15 consecutive
memory locations in the order shown in Fig. 5-7. After execution of the instruction,
the contents of A7 are the starting address incremented 15 times.

The MOVEA (Move Address) instruction moves the contents of an effective
address to a destination address that an address register holds.

12888
12882
$2884

CONTENTS OF 03
CONTENTS OF A1
CONTENTS OF A5

Fig. 5-5. Example 5-20.

68 THE 68000 MICROPROCESSOR

MEMORY

A4 ~ • CUNIt.N S OF 0111
(AFTER EXECUTION) ~UNIt.NI::i OF 05

CONTENTS OF A8
CONTENTS OF A1
CONTENTS OF A2

A4~ •
(B£tORE EXECUTION)

Fig. 5-6. Example 5-21.

The MC68000 uses the MOVEP (Move Peripheral Data) instruction to transfer
data to 6800 peripheral devices such as the 6850 Asynchronous Communications
Interface Adapter. This peripheral has two memory-mapped ports that appear as
the low-order bytes of two consecutive memory words. One point to remember
about the 6850 is that this device was intended for eight-bit data-bus processors.
Thus, in an eight-bit data bus, the consecutive bytes are next to each other,
whereas, in the 16-bit 68000 bus, they alternate.

The MOVEP instruction remedies the inconvenience in the interconnection of
eight-bit peripheral devices and processors with a larger data bus. The instruction
uses an address and a displacement, thus transferring data between a data

A7 ~ •
(BEFORE EXECUTION)

A7~ •
(AFTER EXECUTION)

0111
01
02
0;3
04
05
06
07
AI
A1
A2
A,;j

A4
AS
AO

Fig. 5-7. Example 5-22.

I
INCREASING
ADDRESSES

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 69

register and the memory-mapped device, starting at the specified location and
incrementing by 2.

PROGRAM CONTROL INSTRUCTIONS

The two types of program control instructions are the unconditional branch and
the conditional branch.

Unconditional Branch

BRA <Label>is a relative branch instruction. The contents ofthe program counter
(PC) are replaced by a new address that is defined by the current contents of the
program counter and a displacement. The displacement is a two's complement
value that counts the relative distance in bytes of the new address of program
transfer. The value in the PC is the address of the current instruction plus 2. If the
eight-bit displacement in the instruction is zero, then the word immediately after
the instruction (16-bit displacement) is used.

Before the execution of a branch with BSR <Label>, the 32-bit address of the
instruction after the branch instruction is transferred into the stack (the stack is
predecremented). Program execution continues at a new address defined by the
current contents of the PC plus 2. If the eight-bit displacement is zero, the word
immediately after the branch instruction is used.

RTS restores the previous contents of registers. On execution, the value of the
program counter before the branch is retrieved from the stack.

The MC68000 also uses the unconditional JUMP-type instruction, which
transfers program execution to another address, without, however, using a
displacement. The new absolute address is part of the instruction. The JMP
instruction has the JSR as its counterpart.

Conditional Branch

Bcc (Branch on Condition Code) is the conditional branch form of program control
instructions; it is stated as follows:

If cc is true
Then New PC = displacement + opword length + 2
Else no operation

The displacement is a 16-bit value that provides an addressing range between
-32,768 and + 32,767 bytes.

There are 14 different versions of the Bcc instruction, including BGT (Branch if
greater than), BLT (Branch if less than), BEQ (Branch if equal), and BHI (Branch if
higher).

Frequently, a programmer needs to branch to an earlier address to generate a
programming loop. To do so, the MC68000 uses the DBcc (Decrement Counter

70 THE 68000 MICROPROCESSOR

and Branch on Condition Code) instruction. This instruction employs any data
register as a counter and performs a branch on the basis of the evaluated condi­
tion of the code and the contents of the specified data register.

During execution of a DBcc instruction, the MC68000 first evaluates the condi­
tion for which the instruction calls. If the code condition is met, execution contin­
ues with the next instruction and the loop is terminated. If the condition is not
met, the specified register is decremented by 1. If the resulting value is -1, the
loop again terminates, and execution continues with the next instruction; other­
wise, a branch to the top of the loop occurs.

An interesting point is that DBcc tests for -1. Most looping program segments
require additional instructions to ensure that a loop can execute zero times if
required and that it can test for the specified condition before the execution of
an iteration. By entering a loop just before the DBcc instruction (at the end of a
loop) and by having the DBcc instruction end a loop on a value of -1 instead
of 0, both conditions can be met without the addition of an explicit second test.
Furthermore, a simple conditional branch instruction that uses the same DBcc
instruction lets a programmer determine whether a program has exited from a
loop as a result of the iteration counter or the condition.

The DBcc instruction is useful in the manipulation of strings. For example, in
conjunction with a MOVE instruction and predecrement/postincrement modes, a
DBRA (Decrement and Branch always) instruction will fill a block of memory, copy
strings, or reverse strings. A DBNE (Decrement and Branch if Not Equal) instruc­
tion used with the CMPM and predecrement mode will compare two strings.

POSITION INDEPENDENCE INSTRUCTIONS

As described previously, the MOVEA instruction can be used to move the contents
of a block of memory. This address, however, may be defined in the instruction
as a label, a point that imposes two requirements- i.e., the address of the label
must be defined in the instruction, and the program must be loaded precisely
at the location defined by the ORIGIN (ORG) directive of the assembler. These
two requirements place a limitation on the MOVEA instruction in view of position
independence.

The MC68000 provides the LEA (Load Effective Address) and PEA (Push Effec­
tive Address) instructions for position independence. Although the position­
dependent MOVEA instruction uses a value assembled in absolute mode, the LEA
instruction evaluates the value of a label using, if necessary, program counter
relative addressing; that is, the LEA evaluates and places the address in the
specified address register (this instruction works only with address registers as
destination). The LEA does not access the value stored at the resulting address.
The PEA instruction evaluates an address in the same manner as the LEA but,
instead of loading it into an address register, stores it in the stack.

HIGH-LEVEL LANGUAGE AIDS

Modern programming techniques require structured and modular programming
for easier design, debugging, and maintenance of programs. Modular pro-

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 71

gramming implies the use of reentrant and recursive subroutines that have local
variable areas and are brought together for a final product. One of the more
important aspects of high-level language implementation, therefore, is efficient
procedure calls and parameter passing. The MC68000 uses two instructions to
meet these requirements.

The LINK and UNLNK (unlink) instructions deal with automatic manipulation of
a procedure's temporary stack area, which is indicated by a "frame pointer." A
frame pointer is an address register that a programmer designates for this use.
Just before a procedure entry, the LINK instruction saves the calling procedure's
frame pointer in the stack, updates the frame pointer for the called procedure,
and then, by adding a displacement to the stack pointer, allocates local variable
storage in the stack. On exiting from the procedure, the UNLNK instruction resets
the stack pointer, thereby releasing the exited routine's local variable storage and
then resetting the calling routine's frame pointer.

Study the example program in Fig. 5-8, the activity of which is flowcharted in
Fig. 5-9.

The LEA instruction assigns A3 as the frame pointer and loads address $2000
into this register. A second LEA initializes the stack point to address $1 FFO. Before
Procedure A calls Procedure B, the former places parameters on top of the stack
(PEA -6(A3)). After the subroutine call to Procedure B, the return address to A is
pushed onto the stack (LEA 4(SP),SP).

The LINK instruction contains the name of the frame pointer (in this case, A3)
and a displacement that indicates the amount of memory to be saved for local
variables (#-$10). When this instruction is executed, the following activity occurs:
The contents of the frame pointer (pointing to a stack location that contains
the previous frame pointer) are pushed onto the stack. The frame pointer itself

LEA $2000,A3
LEA $lFFO,SP

PRDCA NDP
NDP
NDP
PEA -b(A3)
JSR PRDCB(PC)
LEA 4(SP),SP
NDP
NDP
UNLK A3
RTS

; end of PRDCA
;
PRDCB LINK A3,#-$10

NDP
NDP
NDP
UNU: A3
RTS

;end of PRDCB
END

Fig. 5·8. Example program.

72 THE 68000 MICROPROCESSOR

COMPLETE
PROC.A

I
RTS

LEA +(SP).sP

T
PROCEDURE B IS
UNL INKED FROII

STACK

f'RAIIE PO I NTER ---tSP

(SP)+ TO FR. PTR

T
PROC. B

IS
EXECUTED

T
PROC. B IS LINKED

ONTO THE STACK

FP -+-(SP)
SP --+ FP

SP + D I SPLAC. -t6P

T
PROC.B WITH

ARGUIIENT CIS
CALLED

C ~-(SP)
JSR B

I
PROC. A IS

BEING
EXECUTED

FRAME
POINTER

A:I ' •• 218

A3 •••• 21 ..

A3 ••••• 1FE+

A3 ••••• 1FE+

A3 •••• 218

A:I 'Hl2IH

LOCAL VARIABLES
AND SCRATCH

FOR PROC.B

LOCAL VAR I ABLES
AND SCRATCH
FOR PROC.A

Fig. 5-9. Flowchart for example program.

STACK
POINTER

=1FFD 1FEC A7

.1FE8 1FE+ A7

' ••• 1FD+ A7

' ••• 1FD+ A7
IIHl1FE+

'.1H1FE8 A7
' •• 1ptc

'----G' 1FF. A7

is loaded with the same address as the stack pointer, and the stack pointer is
changed by the displacement given in the instruction. The displacement (#-$10)
has a signed value and must be negative to save local variable space; if it were
positive, information would be lost from the stack.

As shown in Fig. 5-9, the stack pointer points to the top of the stack and the
frame pointer to one word below the local variable area in Procedure B. When
the UNLNK instruction is executed, the process is reversed, leaving Procedure B
to execute an RTS instruction, returning control to Procedure A.

INSTRUCTION SET -A MORE INTENSIVE EVALUATION 73

Yet another class of instructions-Exception Handling-will be treated in
Chap. 6.

PROGRAMMING HINTS

This section provides guidelines in the application of MC68000 instructions and
addressing modes. A programmer should keep in mind some differences between
the MC68000 and other processors. Although some of the guidelines have already
been discussed, they will be recapitulated here.

Advice that a novice programmer should always follow is to consult the man­
ufacturer's data book. It should be remembered that instructions work with some
registers but not others; that instructions affect condition codes differently; that
execution times of instructions differ. In short, use of the proper instructions in
the proper place promotes faster execution of programs.

The paragraphs that follow will set forth some tricks that the MC68000 can play
on a programmer unfamiliar with the device.

The MC68000 treats addresses and data differently. Instructions that affect
addresses, such as MOVEA and ADDA, are only word or longword in size. Since
the MC68000 address range is wider than 16 bits, word values are sign-extended
to 32 bits before being used as addresses.

Unlike most data operations, address operations do not affect condition code
flags.

A DBcc instruction is very efficient, but its use in loops is frequently confused.
With a DBcc at its end, looping will continue until the condition code is true.
Confusion results because the instruction can be thought of as decrementing
and branching back if the condition is false. For example, if the MC68000 DBEQ
(Decrement and Branch if Equal) were to be replaced by another instruction, most
likely a BNE (Branch if Not Equal), not a BEQ, would be brought into play.

Remember also that, with DBcc instructions, a loop count stops at -1. If a loop is
to be executed only once, it should be entered at the top with the counter already
decremented by 1. The program listing in Fig. 5-10 searches, in a table of X bytes
to which A2 points, for the first byte that contains zeros.

If a DBcc instruction is to be used, the condition codes must be initialized so
that the instruction does not fall through when the loop jumps back to it.

Finally, data registers used as counters in loop operations must be decremented
as word quantities. Thus, if more than 216 iterations are to be carried out, nested
DBcc loops should be used.

LOOP:

MOVE.W

TST.B
DBED

"X-1,DO

<A2) +
DO, LOOP

Initialize loop by one
less
Is "byte a zero':'
If not, AND DO is
still)= 0, loop back

Fig. 5-10. Program listing.

74 THE 68000 MICROPROCESSOR

The program listing in Fig. 5-11 uses two nested loops to checksum a list of
bytes with a length specified in the longword 00.

Since a MOVE instruction cannot be used with a displacement relative to the
program counter, a LEA<LABEL>(PC) instruction is substituted and the address
altered through an address register.

Postincrement addressing is faster than predecrement.
The MOVEM instruction can be used efficiently for stack operations that involve

a fair number of registers. If a couple of registers are to be pushed onto the stack,
however, it is just as fast to move one at a time.

In light of the need to sign-extend a word value in address operations, the word­
address operations can be slower than longword address operations.

When multiplication or division by a power of 2 is required, use shifting instruc­
tions rather than MUL or OIV. Remember the restriction on the use of a logic
shift right (division) with negative numbers. Multiplication of an operand by a
power of 2 is accomplished more quickly by repeated addition of registers to
themselves rather than by shifting. Similarly, when extended-precision arithmetic
is performed with the MC68000, the instruction ROXL #1, On can be replaced by
AOOX On, On, to save two to four cycles, depending on the size of the operand.

Speed of execution is very important. In creation of address registers, the
instruction MOVE.L #0, An consumes 12 cycles, whereas SUB.L An, An consumes
only eight. Since the CLR (Clear) instruction does not work with address registers,
it cannot be used in this case. Also, remember that CLR always reads from an
operand before clearing it. Thus, never use the CLR to write a zero into a memory­
mapped device address if the read will affect the device. Scc (Set condition code)
and MOVE instructions also perform a read before a write but are less likely to
cause problems.

It is important to know which instructions and addressing modes sign-extend
an address or data. The following lists provide this information.

The addressing modes that sign-extend an address or data are as follows:

1. Absolute short: Word address extended to longword.
2. Address register direct (as destination): Word data extended to longword.

MOVE #0. D3 Initialize checksum
MOVE.W DO. Dl Long word of loop

length in Dl
MOVE.L DO,D2 Get high word of loop
SWAP D2 1 ength in D2 to use

for outer loop
BRA.S START Enter at end of loop

LOOP: ADD.B (A1)+,D3 Add ne>:t byte into sum
51ART: DBRA D1, LOOP Inner loop: loop on low

word of DO
DBRA D2,LOOP Outer loop: loop on

high· word

Fig. 5-11. Program listing.

INSTRUCTION SET - A MORE INTENSIVE EVALUATION 75

3. Address register indirect with displacement: Word displacement extended
to longword.

4. Address register indirect with index: (a) Word index extended to longword,
and (b) byte displacement extended to longword.

5. Program counter with displacement: Word displacement extended to long­
word.

6. Program counter with index: (a) Word index extended to longword, and (b)
byte displacement extended to longword.

The instructions that sign-extend data are as follows:

1. ADDAW (ADDQ.L to An = ADDQ.L): Source data sign-extended to long-
word.

2. CMPAW.: Source data sign-extended to longword.
3. EXT.W or EXT.L: Byte sign-extended to word and word to longword.
4. SUBAW (SUBQ.W to An = SUBQ.L): Source data sign-extended to long-

word.
5. MOVEAW: Destination is an address register.
6. MOVEM.: Memory to registers; destination is any register.
7. MOVEQ.L: Immediate byte sign-extended to longword; destination is a data

register.

GENERAL

Chapter 6
Exception Handling

Design of an input-output circuit for our hypothetical computer was postponed
until discussion of programming, but it also requires knowledge of the manner
in which this processor behaves with 1/0 devices. This chapter provides the infor­
mation about 1/0 handling.

Whenever a processor deviates from the orderly sequence of program execu­
tion because of an illegal instruction, a malfunction of hardware, or even a request
for service from an input-output device, a condition called "exception" occurs.

The MC68000 operates, at all times, in either the supervisor mode or the user
mode. The S/U flag in the status register indicates the mode in which the MC68000
is operating at any given time.

Programs other than those designed for system control execute mostly at the
user level. Operation in the supervisor mode, however, affords certain privileges
normally prohibited during the user mode. Table 6-1 lists the privileges granted
in both modes.

Within the two modes, the MC68000 operates in one of three processing
states- Normal, Halted, or Exception. The Normal state is associated with instruc­
tion execution. During this state, memory references occur for the purposes of
fetching instructions and operands and storing results.

The Halted state usually indicates a serious hardware failure that will not allow
further orderly execution of a program: For example, if a second bus error occurs
during the processing of a bus error exception, the processor assumes that the
system is unusable and halts.

The Exception state is associated with interrupts, trap instructions, tracing, and
other exceptional conditions. The flowchart in Fig. 6-1 shows how the MC68000
handles an exception. When confronted with an exception, the processor first
copies the current contents of the status register into a temporary register, then

'In MC68000 texts, the word "catastrophic" is frequently used to identify this type of failure. Since
this term is often associated with irreversible destruction, however, and a novice programmer may
think that it means that a system has been permanently damaged, it is avoided in this text. Normally,
a MC68000 system can be revived from this state by pressing a manual reset switch.

76

Entered by

FC2 =

Other
stack pointers

Status bits
available

(Read)
(Write)

Instructions
available

EXCEPTION HANDLING 77

Table 6-1. Privilege States.

USER MODE

S set to 0

o

AO-A6

C, V, Z, N, X, 10-12, S, T
C, V, Z, N, X

All, except
those on
right

SUPERVISOR MODE

Recognition of a trap,
reset, or interrupt

User stack pointer
as well as AO-A6

C, V, Z, N, X, 10-12, S, T
Same as above

All, including:
STOP, RESET
MOVE TO SR
ANDI to SR
ORI to SR
EORI to SR
MOVE USP to <ea>
MOVE to USP
RTE

sets the S flag, and finally clears the T flag. If an interrupt causes the exception,
the MC68000 also sets interrupt flags 10 through 12 to the corresponding masking
interrupt level (more on this when interrupts are discussed).

After the flags are set, the processor vectors (branches) to a trap, i.e., to a known
memory location that contains a user-supplied exception-handling subroutine.
The next step saves the current program counter and the copied contents of the
status register in the stack. The last step fetches and executes the contents of the
exception-handling subroutine.

The order in which the status of the processor is saved before the exception
routine is executed is shown in Fig. 6-2. In decreasing address value, the program
counter (return address after execution ofthe routine) is saved first and the copied
contents of the status register second. In the case of a reset, bus error, or illegal
address error, additional words are stored in the stack.

Note that the system stack pointer is always used during an exception, regard­
less of the state of the processor when the exception is noticed.

The new contents of the status register during exception handling are as fol­
lows:

1. S = 1, so that the exception routine is always executed in the supervisor
mode.

2. T=O, so that exceptions can be handled normally even when the main
program is being traced.

78 THE 68000 MICROPROCESSOR

{ START J

.~ 1
COPY STATUS LOAD PC AND

REGISTER TO A COPIED
TEMP. REG. STATUS REG.
IN 68888 INTO STACK

S-1. T .. 8 CONTENTS OF
IF INTER. EXCEPTION VECTOR

SET MASK BITS . ADDRESS -*C
TO INTER. LEVEL

(END)

I GET I
VECTOR NO. I

Fig. 6-1. MC68000 exception handling.

3. 10 through 12 are affected only by the reset exception and by interrupts.
These bits are set to the corresponding masking interrupt value.

The MC68000 handles two types of exceptions:

1. Internal exceptions, caused by instructions (TRAP, TRAPV, CHK, DIV),
address errors, and entry of the processor into a trace mode (T = 1)

2. External exceptions, caused by interrupts of various kinds, bus errors, or
reset

The MC68000 provides 256 exception vectors, as shown in Table 6-2. Each
vector number occupies four bytes, for a total memory space of 1024 bytes. On
power-up of a system, these vectors must be loaded at the bottom (0-1 K) of
the memory map. Table 6-2 shows both vector numbers and vector addresses.
A vector address is calculated by multiplying the vector by four. As already
mentioned, a deviation from normal operation will create an exception.

EXAMPLE 6-1: MOVE.W DO, 6(AO)

In this case, the effective address is the sum of the offset (6) and the contents of
the address register AO. If the contents are odd, the effective address becomes
odd, and the instruction produces an exception as an illegal instruction.

EXAMPLE 6-2: MOVE.W DO, #$2001.

This instruction is illegal and will cause a branch to Vector No.4. The address
#$2001 is not at a word boundary.

EXCEPTION HANDLING 79

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

SP ~ Status Register

Program Counter (Hlghl

Program Counter (Lowl

1 000 I Vector Offset

SpecIal Status Word

Fault Address (Hlghl

Fault Address (Lowl

UNUSED. RESERVED

Data Output Buffer

UNUSED. RESERVED

Data Input Buffer

UNUSED. RESERVED

InstructIon Input Buffer

Internal InformatIon. 16 Words

NOTE: The stack planter is decremented by 29 words. although only
26 words of InformatIon are actually wntlen to memory The three
addItional words are reserved for future use by Motorola.

Fig. 6-2. Saving the status of the MC68000.

EXAMPLE 6-3: MOVE DO, SR

If a program supplies this instruction when the system is in the user mode,
a privilege violation exception occurs because this instruction is used with the
system in supervisor mode. As a result, the system branches to Vector No.8.

Address 0 in Table 6-2 shows the vectors for an external reset. Although other
vectors occupy four bytes, the vector for reset-actually, two adjacent vector
locations-occupies eight bytes because these two locations contain the initial
value of the system stack pointer and the new value of the program counter.

When an external reset is asserted, the MC68000 does not save any previous
values on the stack since the stack pointer may not refer to a valid address.

An exception handling routine normally appears as follows:

EXCPTN MOVEM.L Da-Dx/Ab-Az, -CSP); Stack any
;registers involved in the
;routine

;body of routine

MOVEM.L CSP)+, Da-Dx/Ab-Az
RTE

Restore registers.
Return to main
program

It is important to know which of the MC68000's several return instructions to
use. The RTE must be used in this program module since this instruction always

Table 6-2. MC68000 Exception Vectors.

ADDRESS
VECTOR

NUMBER(S) DEC HEX SPACE ASSIGNMENT

0 0 000 SP Reset: Initial SSP

- 4 004 SP Reset: Initial PC

2 8 008 SO Bus Error

3 12 OOC SO Address Error

4 16 010 SO Illegal Instruction

5 20 014 SO Zero Oivlde

6 24 018 SO CHK Instruction

7 28 01C SO TRAPV Instruction

8 32 020 SO Privilege Violation

9 36 024 SO Trace

10 40 028 SO Line 1010 Emulator

11 44 02C SO Line 1111 Emulator

12* 48 030 SO (Unassigned, reserved)

13* 52 034 SO (Unassigned, reserved)

14* 56 038 SO (Unassigned, reserved)

15 60 03C SO Uninitlalized Interrupt Vector

16-23* 64 04C SO (Unassigned, reserved)

95 05F -

24 96 060 SO SpUriOUS Interrupt

25 100 064 SO Level 1 Interrupt Autovector

26 104 068 SO Level 2 Interrupt Autovector

27 108 06C SO Level 3 Interrupt Autovector

28 112 070 SO Level 4 Interrupt Autovector

29 116 074 SO Level 5 Interrupt Autovector

30 120 078 SO Level 6 Interrupt Autovector

31 124 07C SO Level 7 Interrupt Autovector

32-47 128 080 SO TRAP Instruction Vectors

191 OBF -

48-63* 192 OCO SO (Unassigned, reserved)

255 OFF -

64-255 256 100 SO User Interrupt Vectors

1023 3FF -

*Vector numbers 12, 13, 14, 16 through 23, and 48 through 63 are reserved for future enhancements
by Motorola. No user peripheral devices should be assigned these numbers.

80

EXCEPTION HANDLING 81

restores the status register and program counter from the system stack. The RTS
instruction restores these registers from either the system or the user stack. Thus,
if a previous instruction changed the mode, RTS could be accessing the wrong
stack.

The RTR (Return and Restore Condition Codes) should not be considered as an
alternative. This instruction restores the program counter and stack pointer from
values on the stack but sets only the eight bits of the condition code and leaves
the status side of SR unaffected. Thus, in this case, RTR could not replace the
RTE instruction.

Some instructions intentionally create exceptions, such as the TRAP instruction.
There are 16 user-defined, trap-instruction vectors, and these always direct pro­
gram control to a designated trap routine at the supervisor level. These vectors
can be used as software interrupts to call the operating system, to simulate inter­
rupts during debugging operations, to signal the completion of a task, or to indi­
cate that an error condition has appeared in a routine.

Two other instructions-TRAPV (Trap-on-overflow) and CHK (Check-register­
against-bounds)-examine operating conditions and cause a trap if certain con­
ditions are not met.

The instruction TRAPV will cause a trap whenever the overflow bit in the status
register is set. A single routine at the operating system level may then handle
every overflow occurrence.

Figure 6-3 illustrates the function of the CHK instruction. This instruction deter­
mines whether the contents of a selected register are within the bounds of zero
and a specified upper limit. Whenever the instruction determines that the register
contents fall outside the specified bounds, CHK initiates a trap.

YES EXIT

NO

Ox <8 THEN
~ -1 1--------....1

°X>EA"'I,T _

STATUS REGISTER

Fig. 6-3. CHK instruction.

82 THE 68000 MICROPROCESSOR

The CHK instruction may also be used to verify that a stack does not overrun,
that a string of characters fits into an allocated space, that an entry into an array
is within its dimensions, or that a task does not access data outside a designated
space.

An attempt to execute certain instructions not implemented in current versions
of the MC68000 family can cause the processor to access one of two traps.
These instructions have opcodes that begin with 1010 or 1111 and are listed, in
Table 6-2, as Line 1010 Emulator and Line 1111 Emulator. Such instructions are
reserved for future expansion, but, since the vector already exists, it can be used
to the advantage of a programmer. That is, a programmer can design custom
instructions that can be executed as exception-handling routines. These routines
may serve the same function as macros.

In addition to "intentional" exception instructions, irregular use of some instruc­
tions may also cause an exception. For example, an attempt to divide by zero
is detected before the operands are modified, and the system then branches
to the corresponding vector. An overflow condition during a division will divert
the normal execution of this operation. During a division overflow, the overflow
flag is set, but the result is not copied into the destination; the operation leaves
the operands unchanged. Program execution continues with the next instruction,
though a succeeding TRAPV instruction could call the supervisor for special pro­
cessing.

The trace vector at location 24 is of particular interest; it has been provided to
assist in program development and debugging. A trace routine usually accompa­
nies a single-step hardware circuit and is executed as shown in Fig. 6-4.

Instruction tracing is initiated by turning on the T flag in the status register.
That done, the execution of each instruction is followed by a tracing operation,
which might be a routine to print out register or memory contents or any other
necessary debugging operation.

Branching to a trace service routine is carried out in a slightly different manner
from branching to other traps. The program counter and status register of the
main program are stored on the supervisor stack, the trace flag is reset to 0, and
the system is set to supervisor mode (S = 1). Next, the trace vector is fetched and
loaded into the program counter .

AFTER

... 1 MAIN L
r-----~II PROGRAM rlt------,

EACH
INSTRUCTION

~...,.,..,=-_-"",~J TRACE
ADDRESS OBTAINED rl ROUTINE
FROM VECTOR TABLE

Fig. 6-4. Trace routine.

RETURN TO
EXECUTE
NEXT INSTRUCTION

EXCEPTION HANDLING 83

A trace routine is also terminated with an RTE instruction. To turn one off, the
stack location that contains the saved status register must be modified to reset
the T bit (T=O). Then, when the RTE instruction restores the program counter
and status register from the supervisor stack, the trace is disabled and the system
returned to normal program execution.

INTERRUPTS

Interrupts are exceptions too, but normally they are caused by an external device
or an abnormal condition resulting from an external signal. The MC68000 services
two types of interrupts-intentional interrupts and undesirable interrupts. The
first type, called user interrupts, is further classified as autovectored interrupts
(provided to service 68000 devices) and user-defined vectored interrupts. The
second type, the undesirable interrupts, will be discussed later.

The MC68000 provides seven levels of interrupts, one of which is nonmaskable
(Level 7). The interrupting device places the level of an interrupt on the three
interrupt lines (lPLO through IPL2), and the level is copied on address lines A1 to
A3. If all of the IPL lines are at zero, no interrupt is pending.

When an interrupt is requested via the IPL lines, the MC68000 compares the
interrupt request level to the interrupt mask in the status register to determine
whether to process the interrupt. An interrupt will not be recognized until the
following two requirements are met. First, the incoming interrupt level must be
higher than the mask level set in the interrupt mask bits of the status register.
Nonmaskable interrupts are assigned the highest level. Second, the three inter­
rupt control lines must be held at the interrupt request level until the processor
acknowledges the interrupt by initiating an interrupt acknowledge bus cycle (all
FC lines are set to 1 and AS is asserted).

The two specified requirements guarantee recognition and execution of an
interrupt, but one may still be processed even if the request level is taken away
before the interrupt acknowledge bus cycle. Since the MC68000 samples the
interrupt request lines once during the execution of every instruction, an interrupt
that has been held for as few as two clock periods of the system clock may be
recognized.

The flowchart in Fig. 6-5 shows the activity of the MC68000 during an interrupt.

EXAMPLE 6-4: 10-12 = 0 1 0 (interrupt mask set to level No.2)

IPLO-IPL2 = 0 1 1 for two clock cycles.

A level-six interrupt is requested and remains on the interrupt request lines. In
this example, a level-three interrupt request may, but will not necessarily, be
recognized since the IPL lines do not hold this level until an lACK cycle is initiated
(remember that the level-six interrupt wiped out the level-three interrupt on the
IPL lines). A level-six interrupt will be recognized if it stays on the IPL lines long
enough for FCO through FC2 to be set to high, AS to be asserted (signaling

84 THE 68000 MICROPROCESSOR

VPA
ACTIVATED BY
INTERRUPTING

DEVICE

YES

INTERRUPTING
DEVICE SETS
IPL LINES

CURRENT
INSTRUCTION
COMPLETED.

68888 SENDS
lACK AND

INTER. LEVEL

Fig. 6-5. Interrupt.

NO

INTERRUPTING
DEVICE

SENDS VECTOR NO.
AND TACK

initiation of the lACK cycle), and A1, A2, and A3 lines to be set to the level of the
interrupt request.

Let us discuss the activity of a user-defined vectored interrupt. If the require­
ments for an interrupt are met during a request and the interrupting device has an
internal vector register with a vector number, this eight-bit number is transferred
to data lines DO through 07 of the MC68000. At the same time, the interrupting
device asserts the OTACK line to terminate the interrupt acknowledge bus cycle.
The MC68000 then uses the vector number to calculate the user-vector address to
which the processor must branch in order to execute the interrupt service routine.

The MC68000 allocates 192 user interrupt vectors. These vectors are accessed
sequentially (Nos. 64 to 255). Therefore, if fewer than 193 interrupts are needed,
as is most commonly the case, each interrupt can be assigned a unique vector
number, which also can be interpreted as a priority. Vector number 64 is assumed
to be the lowest and 255 the highest priority. The vector number (an eight-

EXCEPTION HANDLING 85

bit value between 00000000 and 10111111) can be generated by encoding the
interrupt level on the IPL lines and adding 64.

Figure 6-6 depicts a method for generating user vectors.
Two latches are used to ensure not only that interrupts are not lost but that the

vector number transferred to DO through D7 is the result of only one interrupt.
The latter step is very important since a new interrupt request, one generated
during an interrupt acknowledge bus cycle, could cause a vector number to enter
a state of transition when the processor tries to latch the vector number from the
data bus. Thus, latch no. 1 prohibits acceptance of new interrupts until latch no.
2 has the proper vector number. With three-state outputs, latch no. 2 isolates the
vector number being held from the data bus until lACK is asserted.

After a sufficient delay to allow the vector number to propagate to latch no. 2,
latch no. 1 is released to allow new interrupt requests to be latched.

Figure 6-7 shows a partial circuit for user-defined, vectored, priority interrupt
handling.

The circuit can be expanded in a daisy-chain fashion to handle 24 groups of
eight interrupt lines each, for a total of 192 lines. Each group of lines is fed into
a latch-encoder combination, as shown in Fig. 6-7. Each stage of an encoder
disables the previous stage and thus sets a priority among the groups. Within
each group, interrupts are prioritized into eight levels; the levels are represented
by a three-bit code on lines AO, A 1, and A2 of the encoder.

IRQ191

FCIII
FC1
FC2

(RQIII

- 07

IPLIII
IPL1
IPL2

Fig. 6-6. Generating user interrupt circuit with latches.

86 THE 68000 MICROPROCESSOR

74LS373
8 ~D 4Q 9
li 12
4-~D 5Q

II
14 ~g 3Q 15
4' 6Q 5 -IT 2D 2Q

~D 7Q 16
3' 2
1i lD lQ

1L--, -= ~D 8Q

EN OE
1 Tl 1

74LS373
8

f4-D 4Q 9 li 12 L 4-~D 5Q
6

14 ~D 3Q 15
4' ~D 6Q

5 1t 20 2Q 16 Il 3' ~o 7Q 2
1i lD lQ

19:.::. ~D 8Q
l

EN OE
1 Tl 1

INTERRUPT
1 TO 64

INPUTS -------------- --- ----

74LS373
8 4D 4Q 13

"7 ~g 5Q

li: 3Q

""i 6D 6Q

17 20 2Q
'"3 70 7Q
1i lD lQ
....:..::; 80 8Q

EN OE
1 'f1 1

9
12
6

15
5

16
2

19

I

.. ,r
IRQ
LE

74LS148
5 I GS 01±
4
3
2

~ 1 A2
Al 13 AfJ 12

11 1
lfJ J.§. EO

74LS148
5 I GS p1±
4
3
2

~ 1 A2
13 4 Al

12 AfJ

11 1
lfJ

E0rj

74LS148

rl~1 GS 01±
3
2

~ 1 A2

13 AI

12 AfJ

11 1
J.§. lfJ EO

TO P
STAG

r TO P
OF N

1
2
3
4
5
6
7

lfJ
11
12
13
14
15

AfJ'S

1
2
3
4
5 74S133 6
7

lfJ
11
12
13
14
15

RECEDING
E OR GROUND
IN 15
EXT 74LSI48

9

Fig. 6-7. Vectored, priority interrupt handling.

fJ

The AO line from each of the 24 stages forms the AO of the vector number
through a NAND gate. Lines A1 and A2 are formed in a similar manner, as shown
in Fig. 6-7. Bits 3 and 7 of the encoded interrupt are formed by NAN Ding selected
GS outputs of the encoders. Bits 6 and 7 of the vector number differ from the
corresponding bits of the encoded interrupt because of the offset of 64.

After the vector number has had sufficient time to propagate, latch no. 2, shown
in Fig. 6-8, captures this number and allows the release of latch no. 1.

A final encoder encodes the priority level and transfers it to the MC68000 IPL
lines. Figure 6-8 also shows how the DTACK and lACK signals are asserted.

EXCEPTION HANDLING 87

8 MHZ CLOCK

IF UNUSED. [
THESE LINES
SHOULD BE
CONNECTED

TO +5

IPL2
IPLI
IPu/

Fig. 6-8. Block diagram of user interrupt circuit with latches.

A user interrupting device is not limited to accessing only user interrupt vectors.
For an interrupting device that does not have a vector register, the autovector
concept can be used. External hardware, as shown in Fig. 6-9, can be used
to recognize the lACK line and to assert the VPA (Valid Peripheral Address) to
terminate the lACK cycle.

When the VPA is asserted, the MC68000 autovectors; that is, the processor
branches to one of seven vector numbers used for this purpose (Nos. 25 through
31 in Table 6-2). Since each autovector number corresponds to one of the seven
interrupt levels that the MC68000 accepts, a priority interrupt-system is set, as
shown in Fig. 6-10.

The circuit in Fig. 6-11 allows peripheral devices of the MC68000 family to be
connected.

The MC68000 peripheral devices have an interrupt request output (IRQ) and
an lACK input. The circuit in Fig. 6-11 generates both of these signals. First,
the 74LS138 decoder is asserted by the FC lines (all high, lACK) and the AS
(asserted at the beginning of an lACK bus cycle). The 74LS148 encoder generates
the priority interrupt level. The lACK level is generated by the binary value of

88 THE 68000 MICROPROCESSOR

DECODING
LOGIC

74LSS4
1

MC68SSS
FCSr-----------------------~
FC1r-----------------------~
FC2r-----------------------~

IPLS
IPL1 WA
f"i5U

I'm
IRQ8

MC6821

Fig. 6-9. Autovectoring.

CS r--------'

A1, A2, and A3 on the control inputs of the decoder. Enable input E1 of the
74LS138 is asserted by lines A4 through A24 being high. This feature separates
the lACK space of the MC68000 from the CPU space of the MC68020 and thus
provides compatibility among the MC68000 family peripheral devices and future
processors.

Several interrupting devices can share the same priority level in an MC68000
system, as the circuit in Fig. 6-12 demonstrates. This circuit functions in conjunc­
tion with the one in Fig_ 6-11. The lower priority device (No.2) receives an lACK
from the MC68000 only if device No.1 has not sent an interrupt request. That is,
in this configuration, devices closer to the beginning of the chain have the higher
priority.

Whenever a level-four interrupt is signaled, the FC lines are asserted and negate
the preset inputs of both flip-flops. AS is also asserted at this stage. Thus, the
circuit in Fig. 6-11 asserts IACK4. This causes the NOR gate (in Fig. 6-12) to
clock in the current state of the IRQ output of each device to drive its respective

IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
IRQ2
IRQ1

Fig. 6-10. Priorityautovectoring.

'----7-iG1
)O'-''''----:c:«;2A

"""-"'4-./ 28

Fig. 6-11. lACK generation circuit.

EXCEPTION HANDLING 89

lACK input. Clocking is inhibited for an interrupting device if the IRQ line of a
higher-priority device in the chain is active.

Finally, an MC68000 system may have a combination of vectored and autovec­
tored devices, as the circuit in Fig. 6-13 shows. Since this circuit is quite similar
to the circuit in Fig. 6-11, no further discussion is needed.

A level-seven interrupt is nonmaskable; that is, a value of seven in the interrupt
flags of the status register does not disable the interrupt. As with a maskable
interrupt, a level-seven interrupt should remain on the IPL lines until an lACK bus
cycle is initiated to guarantee the system's recognition of the interrupt.

A nonmaskable interrupt is edge-triggered by a transition from a lower-priority
request to the level-seven request in contrast to the maskable interrupt levels
one through six, which are level sensitive. Thus, if a level-seven interrupt is
requested, it will be recognized only once, since only one low-priority-to-Ievel­
seven transition has occurred.

If more than one level-seven interrupt is to be recognized, one of two actions
must take place. In both instances, IPL lines must hold a level between zero and
six, and this level will be changed by a level-seven interrupt. Then, either one of
two things happens, as follows:

1. The level remains on the pins until the initiation of the lACK bus cycle,
in which event the interrupt request level later returns to a lower interrupt

90 THE 68000 MICROPROCESSOR

7417
~ __________________ -. __ ~1 2

IRQ
DEVICE

NO.1

~

FCIII
FC1
FC2

" Dill - 07

~ I
..... -

74LS148
__ -.-;5'!cIE1 GS J.f.

iiii7 4
rNTI 3
fNT5 2:

rm 1~
mn 12: rm -+-i~a12

11 1
rm 1 I: EO J.§.

L-._...I

2

3

N.C.

Fig. 6·12. "Daisy·Chain" interrupts.

A1 - Al3 .
II I -t
~

74LSI4
AS 1 74LS138

L..-_-,,-6 -IG1 Y7 rL
-4cG2A Y8~
~G28 Y5~ IIC681111111

FCIIII----------.

- nscr ~g~ l===::;--, I -fm DTACj(!-- L-.... __ -'~~
W1: 1

I

Y4J.±.
Y3~
Y2~
Y1J.4,
YIII 15

.,-- 74LS138

~G1 Y7rL

l~ __ +--+ lACK
T

r+ 1/01

CONTROLLER 1---
-tG2A Y6~
....i!c G28 Y5 t1f lACK:

Y4
Y3~

vEgLRED
INTERRUPT

J 1/02

u 3 Y2PM+IACK5
A') 2 Y1Pl-!
At 1 YIII~

I 174LS32 1 74LS_1II4
L..----Cl 2~ 3 ~~ .2_.IVV'~ +5

~------~------4--~~ l
AUTo-vlcTORED

INTERRUPT

Fig. 6-13. Combination vector-autovector circuit.

EXCEPTION HANDLING 91

request and finally back to level seven, thus causing a second transition on
the IPL lines; or
2. The level-seven interrupt remains on the lines and, if the interrupt service

routine for the level-seven interrupt lowers the interrupt mask level, a sec­
ond level-seven interrupt will be recognized even though no transition has
occurred on the IPL lines, and the interrupt mask in the status register will
be set back to seven.

A BERR (Bus Error) signal also will terminate a bus cycle. This signal can be
asserted because

1. The MC68000 tries to address nonresident memory, and the watchdog timer
produces a timeout signal to set the BERR line.

2. A parity error causes a bus error and a rerun cycle.
3. An error caused by the memory management units asserts the bus error

line.

Finally, a spurious interrupt causes a bus error. Although the IPL lines are syn­
chronized to enhance noise immunity, noise that penetrates the external interrupt
circuitry can initiate an erroneous lACK bus cycle. Since no device is requesting
the service of an interrupt, neither DTACK nor VPA is asserted. Therefore, the
system watchdog timer generates a bus error signal, and the MC68000 branches
to the spurious interrupt vector.

Chapter 7
Peripheral Devices

INTRODUCTION

This chapter describes the connection of both serial and parallel input-output (I/O)
devices to our hypothetical MC68000 system. The requirements for an adequate
I/O configuration are as follows:

1. A serial connection to a telephone for communication with other systems
2. A serial connection to a terminal
3. A parallel connection to a printer based on the assumption that most avail­

able printers have the Centronix type parallel configuration
4. An audio cassette interface for secondary storage.

Motorola produces several devices that will accommodate such an I/O interface.
The most likely candidates for our system are the MC6850 Asynchronous Com­
munications Interface Adapter (ACIA) and the MC68230 Parallel InterfacelTimer
(PIIT) device. The latter can be used for the printer and the cassette interface.

MEMORY MAPPING OF 1/0 SPACE

Since the MC68000 uses memory-mapped I/O, an area must be reserved in our
memory map to access the I/O registers of the peripheral devices. The area from
$010000 to $01 FFFF serves this purpose. The device's addresses are not fully
decoded within this page, and thus each device can be accessed at different
locations within the memory map.

Figure 7-1 shows the general block diagram of our I/O configuration.

MC6850 ACIA

The MC6850 ACIA-in use for quite some time-was one of the first de­
vices adopted by the MC6800 eight-bit microprocessor systems for serial
communication. The device has also been used as a cassette interface, although
the PIIT is a better choice for our hypothetical computer.

Figure 7-2 sets forth the block diagram of the MC6850.
92

~
ADDRESS
DECODE

I

w ...
III
C
Z
w

MC68000L4

III ...
III 0 c w a: a: ~ !C Q z Q Q 0 c u

' 8

8

, 8

I RS232C

1
MC6850
ACIA 1

PERIPHERAL DEVICES 93

p ORT 1
MINAL TER

(111).9600 BAUD)

~
BAUD RATE

1 GENERATOR

MC6850
ACIA2

(111).9600 BAUD)

t
I RS232C

MC68230
PIIT

1 t
PRINTER CASSETTE
BUFFERS INTERFACE

f t
PORT 3 PORT 4

P ORT 2
OST H

Fig. 7-1. lID configuration of our system.

94 THE 68000 MICROPROCESSOR

Transmit Cleck 4 ---------------~__;:;=__,
Enable 14------,

ReadlWrite 13
Chip Select 0 8
Chip Select 1 10
Chip Select 2 9

Register Select 11

DO 22

D121

D222

D319

D418

D517

D617

D715

Vcc = Pin 12
Vss= Pin 1

Transmit
Data

Register

Status
Register

Centro I
Register

Receive
Data

Register

Register

Receive
Shift

Register

Receive Cleck 3 --------------~1_~:::._.J

1----_ 6 Transmit Data

1>----<1>----- 24 Clear-te-Send

7 Interrupt Request

23 Data Carrier Detect

5 Request-te-Send

14---+---2 Receive Data

Fig. 7-2. Internal organization of the MC6850 ACIA.

The MC6850 is a "double device"; that is, there are two ACIA on the same
chip. The following description applies to both sections of the device, since they
function in the same manner. Only the addresses of the internal registers differ.

The MC6850 functions as an asynchronous receiver-transmitter (although, in
our circuit, it is used in the synchronous mode). The device receives data from the
system bus in parallel order and transmits the data to a serial device. The MC6850
also receives serial data from the external device and transfers the data to the
system bus in parallel order. Four registers inside the ACIA store the outgoing
data in parallel fashion and transmit the data serially and store the incoming data
serially and transfer the data in parallel. The outgoing bit stream includes start,
stop, and parity bits. Before an incoming bit stream is transferred to the parallel
bus, the stream is stripped ofthese bits. Thus, two ofthe registers are "read only"
and two are "write only." Only one register-select input is required to address
all four registers since the RIW line provides the other select line.

The control registers in the ACIA determine the direction of the data flow.
These registers can be programmed to assert the ACIA as an input or output

PERIPHERAL DEVICES 95

device. Furthermore, a status register can be programmed to indicate whether
the receiver-data register is full or the transmit register empty (RDA signal and
TDRA signal). The status register also provides handshake between system and
peripheral device by handling such signals as Request-to-Send (RTS), Clear-to­
Send (CTS), and Data Carrier Detect (DCD).

The status register maintains the current condition of internal ACIA activities.
An eight-bit register, it is called a read-only register since the processor cannot
store data in it.

The contents of the ACIA can be read by selecting the device through the
CSC, CS1, and CS2 lines, with the Register Select (RS) line held low (0) and the
ReadIWrite line high (1).

A description of the eight status bit follows.

Bit 0: Receiver-Data Register Full (RDRF)

"1" = (a) Receiver-data register full.
(b) The Interrupt Request bit (lRO), if enabled, is also set to 1 and

remains set until the processor reads the data.
"0" = (a) The processor has read the contents of the receiver-data register.

The data are retained there.
(b) If there is loss of carrier, the Data Carrier Detect line is set high,

and the RDRF bit is clamped at 0, indicating that the contents of the
receiver-data register are not current.

(c) A master reset condition also forces the RDRF bit to O.

Bit 1: Transmit-Data Register Empty (TDRE)

"1" = (a) The contents of the transmit-data register have been transferred,
and the register is ready to accept more data.

(b) If enabled, the IRO bit is also set to 1 and remains set until a write
operation to the transmit-data register is completed.

"0" (a) Transmit-data register is full.
(b) When a 1 is present in the .. C'le-a-r--:-to------..S:---e-n'd line (CTS), causing Bit 3 of

the status register to be set to 1, and thus indicating that it is not
clear to send, Bit 0 of the TDRE is clamped to O.

Bit 2: Data Carrier Detect (DCD)

"1" = (a) No carrier from the modem.
(b) If enabled, the IRO bit is also set and remains set until the MC68000

reads the status and receiver-data registers or until a master reset
occurs.

(c) The RDRF bit is clamped at 0, inhibiting further interrupts from a
receiver-data register full condition.

"0" The carrier from the modem is present.

96 THE 68000 MICROPROCESSOR

Bit 3: Clear-To-Send (CTS)

"1" The modem is not ready for data.
"0" = The modem is ready to accept data.

Bit 4: Framing Error (FE)
"1" = The absence of the first stop bit indicates that a received character is

improperly framed by the start and stop bits. A state of 1 may also indi­
cate a synchronization error, a faulty transmission, or a break condition.
The error flag is set or reset during the receiver-data transfer time and
is therefore present throughout the time the associated character is
available.

"0" = The received character is properly framed.

Bit 5: Receiver Overrun (OVRN)

"1" = One or more characters in the data stream has been lost; that is, one
or more characters has been received from the receiver-data register
(RDR), but not read, before receipt of additional characters. An overrun
condition begins midpoint in the last bit of the second character to be
received in succession without the RDR having been read. An overrun
does not occur in the status register until the valid character prior to
an overrun is read. Character synchronization is maintained during the
overrun condition. The overrun error flag is reset after the reading of
data from the RDA. Overrun also is reset by a master reset.

"0" = Absence of receiver overruns.

Bit 6: Parity Error (PE)

"1" = The number of 1s in the character does not agree with the preselected
odd or even parity. The parity-error indication is present as long as
the data character is in the RDA. If no parity is selected, then both the
transmitter parity generator output and the receiver parity check results
are inhibited.

"0" = No parity error.

Bit 7: Interrupt Request (IRQ)

111" = An interrupt that has caused the IRQ output line to go low is present.
The interrupt is cleared by a read operation of the RDR, a write opera­
tion of the TDR, or a read of the SR, followed by a read of the RDR if
this read is caused by DCD. A master reset always clears this bit.

"0" = Absence of interrupts.

Two bytes are needed for the registers. One register can be loaded and another
read at each byte address. Since the ACIA has an eight-bit wide bus, the device
can be connected to either the low-order or high-order eight bits of the MC68000
data bus.

PERIPHERAL DEVICES 97

Although the name of the MC6850 includes the term asynchronous, the device
is actually a synchronous bus interface that requires that a read or write to any
of its registers be synchronized with the E clock (400 kHz).

MEMORY MAPPING OF ACIA

Table 7-1 provides the addresses of both ACIA. Their decoding is redundant with
page $010000; i.e., both devices can be accessed every time address line A6 is
"1" within this page.

GENERATING INTERRUPT REQUEST SIGNALS

We need to design a circuit that accepts the interrupt requests from both the ACIA
and the PI/T and that generates the corresponding interrupt priority level on the
IPL lines of the MC68000.

The circuit in Fig. 7-3 may well be called an interrupt synchronizer. First of
all, an "abort" function would be useful in our system. This function generates a
level-seven interrupt and returns control to the system's firmware; it differs from
a reset, however, in that it does not reinitialize the system. Therefore, an abort
function may be useful, e.g., in stopping a printer if the paper jams and thus in
regaining control of processing without destroying previous system conditions or
contents.

An abort function can be created with some software and the debounced switch
arrangement in Fig. 7-3. Notice how the output of the abort switch is connected
to input No.7 (level-seven) of the 74LS148 priority encoder.

The circuit in Fig. 7-3 is easily deciphered. The octal D-type flip-flop device
(74LS273) stores the five interrupt requests and also acts as the output of the
interrupt priority levels.

Table 7-1. Address Space of ACIA.

ADDRESS (IN HEX)

010040

010041

010042

010043

REGISTER

ACIA 1
Control Register (write only)
Status Register (read only)

ACIA2
Control Register (write only)
Status Register (read only)

ACIA 1
Transmit-Data Register (write only)
Receiver-Data Register (read only)

ACIA2
Transmit-Data Register (write only)
Receiver-Data Register (read only)

- - - --- - - - ---- - -- -- ---- -------

98 THE 68000 MICROPROCESSOR

fl'LI"
ll'Ll
I"P1:2

U2 U3
74oLS273 74LS1408

~ ~O 8Q 19 ~ EI GS p1.i g.. ~O 7Q 18 4

-1-!- 15 3
13 ~O 8Q

rJ.L 2 ~ 8
1"0 5Q 1 A2

0 40Q 9 A1
~ 3D 3Q 8 13 AS ::s 5 12 -4- 20 2Q

2 11 1!. 10 1Q
pl§. 1S EO Cl< CL

Il 1
CLOCK CPU

4o.7K +5 4.l1~

!
U1

+5
4o.l7K

~ S1 I p-
t>U 4074oLSSS

4o.7K 51 +5

Fig. 7-3. Interrupt synchronizer.

The highest maskable priority is given to the modem ACIA (ACI1IRO) so that,
if our system is connected to a modem, incoming data will be protected from
interruption by other maskable devices.

The next priority level is assigned to the terminal (ACI2IRO). The other interrupt
requests are clearly marked in Fig. 7-3. The lowest priority is given to the timer
circuit of the PlfT (the audio-cassette interface is not used as frequently as a
terminal).

Interrupt levels zero and one are not used and are negated via a pull-up resistor
to the positive power supply (the 74LS148 requires active-low inputs). Inputs
02, 03, and 04 of the 74LS273 are connected to the outputs of the encoder.
The outputs of the flip-flops are connected to the IPL lines of the MC68000. This
scheme allows some timing delay so that the interrupt requests can be latched
at the proper clock cycle.

With the interrupt-request circuitry designed, the interrupt-acknowledge signals
must be generated. The system requires four major signals: one to the parallel
port, one to the timer (cassette interface), one to the VPA input on the MC68000
(to complete the synchronous bus operation), and one to the bus-timeout-error
watchdog timer.

A1
A2

A3

AS

74LSB4
1

74LSB4
1

74LSB4
1

PERIPHERAL DEVICES 99

'----+ AS TO HERR CIRCUIT
1 74LS• B

~--""'2~ FCB

L-------+ PlACK
~=,-=~-.J (PARALLEL PORT lACK)

VPA iRa "-----~ T1ACK
MS8BB AUTOVECTOR (TIMER lACK)

lACK

MCS823B

Fig. 7-4. Interrupt control signals.

Simple gating, as shown in Fig. 7-4, can provide all of the needed signals.
During an interrupt-acknowledge bus cycle, the FC lines and the AS are

asserted. We can use the presence, or rather the absence, of AS to assert the
Bus Error line (BERR) of the timeout circuit.

An asserted AS is ANDed with the FC lines to provide the other interrupt­
acknowledge signals. For example, the high outputs of the AND gate and address
line A3 (one of the lines carrying a copy of the interrupt priority levell are inputs
to the NAND gate; the VPA signal is output from this gate.

The circuit for the serial ports is shown in Fig. 7-5.
The 1488 and 1489 are line receivers and transmitters that provide the RS-

232 protocol for the terminal and the modem. The MC14411 device provides
selectable baud rates (maximum 9600 Baud) forthe receipt and transmittal speeds
of both ACIA.

It is important to set the control register of a 6850 correctly by loading the
proper bit pattern into it. Table 7-2 indicates the setting of the bit pattern.

The terminal and modem sides of a serial interface use the same types of
signals, but the modem side uses fewer. The Request-to-Send (RTS) allows the
processor to control a peripheral by entering the appropriate bit pattern into the
control register of the ACIA. The other signals are Transmit Data (TX DATA),
Receive Data (RX DATA), Data Terminal Ready (DTR)' Clear-to-Send (CTS), and
Data Set Ready (DSR). These signals are needed to satisfy the RS-232 protocol
between a 68000-based system and a terminal or modem.

The function of bits 0 and 1 requires further explanation. These two bits are
associated with the baud rate at which ACIA receive and transmit data. As shown

100 THE 68000 MICROPROCESSOR

ACIA1
MCII50

001-015 TXD DATA RXD
BUS 1m

1m
~

TXC
CONTROL

• RXC
ADDRESS

MC14411

BAUD
RATE

GENERATOR

9800 _

4100~
2400 ,.

1200

800;:
300_

150
110 _

JI

J10

J9

TX DATA
3

RX DATA
5

DTR
14

PORT 1
TO

eTS
9 TERMINAL

Fig. 7-5. Serial ports.

PERIPHERAL DEVICES 101

Table 7-2. ACIA Control Register Bit Setting Patterns.
---- - - -

BIT 7
RECEIVE BITS 6. 5 BITS 4. 3. 2 BITS 1.0

INTERRUPT TRANSMIT WORD COUNTER
ENABLE CONTROL SELECT DIV.SEL

--

O-Dlsabled OO-RTS low 000- 7 bits. even 00- .1.1
l-Enabled (transmit Interrupt parity. 01- .1.16

disabled) 2 stop bits 10- .1.64
01-RTS low 001-7. odd. 2 ll-Master

(transmit Interrupt 010-7. even. 1 Reset
enabled) 011-7. odd. 1

10-RTS high 100-8. none. 2
(transmit interrupt 101-8. none. 1

disabled 110-8. even. 1
ll-RTS low 111-8. odd. 1

(transmit interrupt
disabled)

Transmits a
break level
on transmit
data output

in the circuit schematic in Fig. 7-5, this baud rate may be selected by various
jumper connections. However, the clock divide ratio, as selected by bits 0 and 1 of
the control register, affects the serial baud rate. The integrated circuit (MC14411)
used for baud rate generation produces clocks that are 16 times higher in fre­
quency than the desired serial baud rate. Thus, bits 0 and 1 set the internal counter
of the ACIA to produce the proper division ratio. Use of a clock that is 16 times
faster than the serial bit rate allows the ACIA to synchronize the clock with the
incoming serial data. If the clock of the ACIA were equal to the serial bit rate, the
ACIA could not synchronize the clock and the data. The maximum rate at which
the 68000 can enter data is a function of the serial baud rate and the number of
bits transmitted for each byte (including start, stop, and parity bits). This rate can
be derived with the following expression:

Baud rate(bits/second)
Update rate(bytes/second) = ---,--,-----,:..,....,------=­

No. of bits/byte

For example, if the requirement calls for 9600 baud and eight data bits with
one stop bit and one start bit, the maximum update rate is 960 bytes/second
(approximately one byte per msec).

The transmit-data register of the ACIA is double-buffered; that is, the register
can allow a second byte to be transmitted during transmission of a first byte. The
processor polls bit 1 of the ACIA status register (TORE) to determine when data
are being transferred from the transmit-data register so that new data may be
entered while the previous data are being transmitted serially. An interrupt also
can be generated if the transmitting interrupt bit is enabled.

102 THE 68000 MICROPROCESSOR

It is important to know, too, the function of the various bits in the ACIA status
register, as previously explained.

Programming of a 6850 ACIA is fairly simple. A sample program is shown in
Fig. 7-6. The program interfaces a 68000-based system with a host terminal via a
6850 ACIA. A similar program can be used for our hypothetical system.

According to the program, a character is received via the terminal and displayed
on its screen. The processor determines whether transmission and reception of
a character can occur by polling the status register until a character is received.
The character is read by the processor and written into the ACIA's data register;
from here it is transmitted to the display as soon as the transmit-data register is
empty. The flowchart in Fig. 7-7 displays the activity of the program.

The EQUATE directives at the beginning of the program initialize the control,
status, receiver, and transmit registers of one ACIA. If activation of both ACIA is
required, the directives must be repeated (with different addresses, of course) for
the second ACIA. The reset address is also assigned at this point in the program.

Several "directives" appear in the program. These are commands that a 68000
assembler uses but are not part of the processor's standard instruction set.
Discussion of assemblers has been omitted from this text purposely, since dis­
cussion of anyone assembler would not necessarily describe another because of
their many special features.

ERROR:

READS1

READS2

ACIASR EQU
ACIACR EQU
ACIAD.R EQU
ACIATR EQU
SYSTACK EQU
RESET EQU

DC.L
DC.L
MOVE.B
MOVE.B
MOVE.B
AND.B
BNE

BTST
BNE
MOVE.B

BTST
BNE
MOVE.B
BRA
END

S0010040
S0010040
S0010042
S0010042
S0000786
S0000008

SYSTACK
RESET
#S03,ACIACR
#S51,ACIACR
ACIASR, DO
#S7C,DO
ERROR

#Ol,ACIASR
READS1
ACIADR,DO

#02,ACIASR
READS2
DO,ACIATR
ERROR

Fig. 7-6. Program to activate ACIA.

Reset ACIA
Initialize ACIA
Get status

Mask IRQ,TDRA,RDA
Any erro s?

Read character

Is TDRA set?
Loop if not
Transmit character
Start ove

NO

NO

NO

YES

WRITE
TRANS .. I T h---------I

DATA
REGISTER

Fig. 7-7. Flowchart for program in Fig. 7-6.

PERIPHERAL DEVICES 103

The directive-DEFINE CONSTANT (DCl-aliocates a 32-bit memory space that
will hold the contents of the system stack pointer when the ACIA is activated.
Another 32-bit space will hold the reset address.

The first instruction-MOVE.B #$03,ACIACR-produces a master reset of the
ACIA by moving the following pattern into address 010040:

104 THE 68000 MICROPROCESSOR

Bit: 7 6 5 4 3 2 1 0
00000011

The second instruction-MOVE.B #$51, ACIACR-moves the following bit pat­
tern into the same address:

Bit : 7 6 5 4 3 2 1 0
o 1 a 1 000 1

That is, the interrupt bit is disabled, RTS is set high (transmit interrupt disabled),
the data stream is set as eight bits-no parity-two stop bits, and the counter is set
to divide by 16. The ACIA is thus initialized.

The next three instructions, or

ERROR: MOVE.B ACIASR, DO
AND.B #$7C,DO
BNE ERROR-

mask the IRQ, TDRA, and RDA functions. If masking is unsuccessful, the program
loops back to ERROR until masking is complete.

The next three instructions, or

READS1: BTST #01, ACIASR
BNE READS1
MOVE.B ACIADR,DO-

attempt to read a character. The first of these instruction tests the RDRF flag of
the status register. Until this flag is set, the program reads characters and moves
them into DO.

The next four instructions, or

READS2 : BTST #02, ACIASR
BNE READS2
MOVE.B DO, ACIATR
BRA ERROR-

transmit a character. The TDRA flag is tested, and the character is transferred
from DO, where it was originally placed during the reading operation, to the ACIA
transmit register.

PARALLEL INTERFACEITIMER

We have now come to the point of designing the printer and cassette interface.
We have chosen to use the MC68230 PIIT for these circuits.

The block diagram of the MC68230 PIIT is shown in Fig. 7-8. This device pro­
vides two double-buffered, parallel-interface ports, eight general-purpose 1/0 pins,
and one 24-bit programmable timer. The ports and the timer compose two inde­
pendent sections within the PIIT. The port section consists of two eight-bit ports
(Port A and Port B), four handshake lines (H1, H2, H3, and H4), and a third eight-bit

38
VSS

~

39 40
RESIT ClK

Port
Interrupti

OMA
Control
logic

PC71 PC61

41 42 43 44 45
ES OTACK R/W DO 01

Data Bus Interface and
Interrupt Vector Registers

PERIPHERAL DEVICES 105

1 2
05 06

3
07

r------,~~~PAO 4
~----------------~ ~----------~~ ~--~PA1 5

Internal
Data Bus

Port
A

~--PA2 6
.... ---PA3 7
t----PA4 B
t----PA5 9
.... ---PA6 10

L...., __ t---- PA7 11

_VCC 12

Handshake
Controllers

and
Mode logic

r:H'7:a--n:ds--h~ak--e'---- Hl 13
.----ll---.-f Interface .--- H2 14

logic .--- H3 15

Port C and Pin Function Multiplexer

PC51 PC41 PC3ITOUT PC21T1N PCl

L-=:= __ r--- H4 16

• RSl

r-'---,.....---PBO 17

Port
B

!---PBl lB
'---~PB2 19
t---~PB3 20
t--~PB4 21
t---~PB5 22
..... --~PB6 23

L... ____ J--~ .. PB7 24

+ + + t
RS2 RS3 RS4

~ PlACK I5rnG OMAREQ 33 32 31
PCO
30 29 28 27 26

RS5
25

37 36 35 34

Fig. 7-8. Internal organization of the MC68230 Plrr.

port (Port C). Port C performs dual functions; six of its eight pins participate in a
function associated with the timer, interrupts, or direct-memory-access requests.
Ports A and B can function individually or be combined as one 16-bit parallel port.
The parallel ports operate in both unidirectional and bidirectional modes. In the
unidirectional mode, data-direction registers within the device determine whether
the port pins are inputs or outputs. In the bidirectional mode, the registers are
ignored, and the direction is determined dynamically by the state of the

106 THE 68000 MICROPROCESSOR

four handshake pins. These programmable pins provide an interface sufficiently
flexible for connection to a wide variety of low-, medium-, or high-speed periph­
erals.

The second independent section within the PlfT, the timer, consists of a 24-
bit, synchronous, presettable down-counter and a five-bit prescaler. Use of the
prescaler is optional. The down-counter is clocked either by the output of the
prescaler or by an external timer-input pin (one of the Port C dual-function pins).
The prescaler, in turn, is clocked either by the system clock (ClK pin) or by the
external timer-input pin. The MC68230 can generate periodic interrupts, a square
wave, or a single interrupt after a programmed period of time. The timer can also
measure elapsed time.

The PlfT has 23 registers that can be addressed from the system bus. The data
bus interface is eight bits wide and connected to the low-order eight bits of the
system data bus. Due to this arrangement, byte operations are valid only on odd
addresses and on accesses to upper bytes; even addresses are invalid and result
in a bus trap error. The PlfT occupies a 64-byte address space (32 words), although
only 23 odd addresses are used for its programming. DTACK will be returned if,
at any time, the other nine odd locations are accessed. These locations read as
zeros, and writes to them are ignored.

DESIGNING THE PRINTER INTERFACE

The Centronix parallel printer interface is standard in the industry, and our circuit
is designed to correspond to this interface.

Two real-time handshake signals are required: the DATA STROBE and ACKNlG.
Short data setup (50 nsec) and hold times are required with respect to the DATA
STROBE signal.

Three additional printer-status signals- BUSY, PE (Printer Error), and SlCT
(select)-are provided to maintain printer status. The diagram in Fig. 7-9 shows
the timing requirements of the Centronix interface.

Whenever the PE signal is asserted, the printer is halted for a malfunction or
other temporary interruption, such as an out-of-paper condition. Whenever SlCT
is asserted, the printer is operational.

When the printer is first ready to receive data, its PE output signal furnishes a
logic low, and its SlCT lines furnish a logic high. The first two signals may be
connected to PCO and PC1 of the PlfT, respectively, after inversion of the signals.

Once the printer accepts a data character, the printer returns an asserted
ACKNlG pulse. After this pulse is inverted, it may be applied to the H1 line of the
PlfT. The signal indicates that the printer is ready to accept a new character. If
the printer is busy-either printing or performing another function, such as form
feed - it outputs a BUSY signal to the PlfT. After inversion, this signal may be
applied to the PA7 line of the PlfT; in this case, however, the ACKNlG Signal is
not asserted until the printer is again available. The interface is shown in Fig.
7-10.

PERIPHERAL DEVICES 107

PE ~~ _________________________ _

SLCT ____ ...J/

DATA 1 - 8 ______ ----'X

PI/T LEAVES DATA STABLE
UNTIL END OF ~

DATA STABLE X'--________ _
-tJ ~ 50 NSEC. MIN.

DATA STROBE

BUSY

\~ ___ -J/ - 188 NSEC.MIN

r--------"\

~-------------------------~

4 MICROSEC.

Fig. 7-9. Timing requirements of the Centronix printer interface.

Since the so-called expanded character set is not used, seven lines are adequate
to transfer seven-bit ASCII-encoded characters from $20 to $7F, $OD (carriage
return) and $OA (line feed). Characters that require an eight-bit ASCII code will
be ignored and will be indicated by a $2E (period). Since data will be transferred
from the system to the printer, the PIIT will be programmed in the unidirectional
output mode, with double-buffered output transfers chosen for Port A. The term
"double buffering" means that the PIIT is equipped internally with latches to hold
not only the character to be transmitted but also a second character. Thus, on
assertion of the corresponding transfer signals, a character becomes immediately
available for transmission.

In our application, Port A is used for the transfer. Since Port B and handshake
signals H3 and H4 are used, these lines may be attached to a second printer, if
desired.

The seventh bit from Port A can be used as the BUSY input from the printer.
When double-buffered output transfers are chosen, input pins, such as PA7, are
unbuffered, and the processor can read the instantaneous level of the pin.

The H2 handshake pin is also buffered. It is used as an output DATA "S=T=R=O=B=E
line to the printer and produces a four-clock cycle pulse (its duration depends on
the clock speed of the processor) whenever new data are available at the pins
of Port A. An ACKNLG signal from the printer is received at the H1 handshake
line through a 74LS14 hex Schmitt-trigger inverted circuit. The H1 line is edge­
sensitive; that is, a leading-edge pulse on H1 indicates that the printer is ready
to accept new data.

108 THE 68000 MICROPROCESSOR

1 74LS32
ortJ - 07 ~3 =-

J
74lS32 39

~37 68231
44 01 PAl I 174LS32 45
48 01 PAl ~3 02 PA2

~ 47 03 PA3 2 3 48
1 04 PA4

l L FiD32 2 05 PA5
- A5 3 06 PA6 2 3

~
07 PA7

29
2 3

28
RSl Hl 174LS32

27
RS2 H2 ~3 RS3 H3 pDL 28 RS4 H4 2 3 25 RS5

174LS32
41 PBI

CLOCK 43 ClK PBl ~3
pDL R/W 38. R/W PB2

RESET IfES"ET PB3 T 2 3
PB4

1-2. PIT DTACK OTACK
41.: PB5

,.

+5

PITCS C"S"" PB6
PB7

PCI
PCl
PC2
PC3 r--
PC4 f-
PC5 f-
PC8 r- 471
PC7 f- 4711 5

II
0"

UII
l11K 5

<>--

11K IIC3312 IIC3312 561 5

rv 2
5 2211 .AA511 ~2 5

114914

11K
561

11K

.1

147K

Fig. 7-10. Printer interface.

PROGRAMMING THE INTERFACE

The PlfT is located within the lID address so that the device can be accessed
whenever address line A6 equals zero. The general addressing area of the PItT is
$010000. As shown in Table 7-3, the various registers used in the printer interface
are located within addresses $010001 to $010018, inclusive. Table 7-4 shows the
complete addressing range of the PItT.

A typical program for a printer interface is shown in Fig. 7-11. The first part
of the program assigns the general address of the PItT. The other registers

35

33

31

29

27

25

43

1

47
5
23
21
19
17
15
13
11
L

~
5
7

1
'--

PERIPHERAL DEVICES 109

Table 7-3. PIIT Registers.
---- ---"---

REGISTER REGISTER BIT REGISTER PROGRAMMED
ADDRESS 7 6 5 4 3 2 0 NAME VALUE

Port Mode H34 H12 H4 H3 H2 Hl Port General
$10001 Control Enable Enable Sense Sense Sense Sense Control Register OO(/)(/) 0000

SVCRO Interrupt Port Interrupt Port Service
$10003 Select PFS Priority Control Request Register 00000000

Bit Bit Bit Bit Bit Bit Bit Bit Port A Data
$10005 7 6 5 4 3 2 1 0 Direction Register 11111111

Bit Bit Bit Bit Bit Bit Bit Bit Port B Data
$10007 7 6 5 4 3 2 1 0 Direction Register 00000000

H2 Hl Hl
Port A H2 Control Int SVCRO Stat Port A Control

$1000D Submode Enable Enable Ctrl Register 0110 (/)000
------ ----

H4 H3 H3
Port B H4 Control Int SVCRO Stat Port B Control

$1000F Submode Enable Enable Ctrl Register 1010 (/)000
-- --- --------

Bit Bit Bit Bit Bit Bit Bit Bit Port A Data
$10011 7 6 5 4 3 2 1 0 Register

-------------- ----------

Bit Bit Bit Bit Bit Bit Bit Bit Port B Data
$10013 7 6 5 4 3 2 1 0 Register

-- ---------- - ---------- -- ----------------~

H4 H3 H2 Hl Port Status
$1001B Level Level Level Level H4S H3S H2S H1S Register

----- ---- ---- ---_.------

NOTE: A 0 (zero with a slash) in the programmed value indicates that the bit is programmed with
different values depending on operation.

are accessed by use of the appropriate offset value from the general address. The
second part of the program (LPOPEN) is the initialization routine for the interface.
This routine sets up the PlfT for the unidirectional eight-bit mode; it also sets Port
A as an output port and handshake Pin H2 as a pulsed output.

The first instruction in this routine is of particular interest. This instruction
belongs to the Set Condition Code group. In this case, the instruction tests for
the presence of the value FF in an address FINFLAG. If the value is present, the
printer has finished printing and is idle. The FINFLAG label is part of the closing
routine but not shown in the program. '

The next five instructions move the proper bit patterns into the correspond­
ing control registers of the PlfT (consult Table 7-3). For example, the instruc­
tion-MOVE.B #$7F, PADDR-moves the pattern 01111111 into the Port A data­
direction register, making the seven bits of the register outputs and leaving bit 7
for use as a BUSY signal.

The third part of the program (LPWRITE) enables interrupts after checking the
printer status. The PlfT generates an interrupt as soon as interrupts are enabled.

110 THE 68000 MICROPROCESSOR

Table 7-4. PIIT addressing range.

ADDRESS($)

010001
010003
010005
010007
010009
01000B
01000D
01000F
010011
010013
010015
010017
010019
01001B
010021
010023
010027
010029
01002B
01002F
010031
010033
010035

PlfT REGISTER

Port General Control Register (PGCR)
Port Service Request Register (PSRR)
Port A Data Direction Register (PADDR)
Port B Data Direction Register (PBDDR)
Port C Data Direction Register (PCDDR)
Port Interrupt Vector Register (PIVR)
Port A Control Register (PACR)
Port B Control Register (PBCR)
Port A Data Register (PADR)
Port B Data Register (PBDR)
Port A Alternate Register (PAAR)
Port B Alternate Register (PBAR)
Port C Data Register (PCDR)
Port Status Register (PSR)
Timer Control Register (TCR)
Timer Interrupt Vector Register (TIVR)
Counter Preload Register High (CPRH)
Counter Preload Register Middle (CPRM)
Counter Preload Register Low (CPRL)
Count Register High (CNTRH)
Count Register Middle (CNTRM)
Count Register Low (CNTRL)
Timer Status Register (TSR)

NOTE: The PlfT address decode is redundant within page $010000. The PlfT
can be accessed any time address line A6 = 0 within the page.

The fourth routine in the program (LPINTR) performs the printing task. It trans­
fers characters from the buffer to the PlfT. After each character is received by the
printer, an ACKNLG signal is sent back to the PlfT. This action moves another
character to the output lines and also initiates movement of a new character to
the double-buffered input.

DESIGN OF CASSETTE INTERFACE

The timer portion ofthe PlfT is used forthe cassette interface circuitry. Information
is sent to the tape as a serial stream of bits. Motorola uses the S-record, a
description of which may be found in the Appendix. A logic one is represented
by one period of a 2000-Hz, 50-percent duty-cycle square wave, and a logic zero
is represented by one period of a 1000-Hz, 50-percent duty-cycle square wave.
The serial data rate, then, is between 1000 and 2000 baud, depending on the bit
stream being transmitted.

PIT
PGCR
PSRR
PADDR
PIVF(
PACR
PADR
PCDR
PSR

LOPEN

LPWRITE

NOGO

LPWGO
LPWI

EC'U
EDU
EOU
EDU
EQU
EOU
EOU
EOLJ
EC'U

ST
MOVE.B

MOVE.B

MOVE.B

I"IOVE.B
MClVE.B

CLR.B
MOVE.L
MOVE.L
BTST
BEQ.S
BTST
BEQ.S

ST
RTS

BSET
TST.B
BEQ.S
CLR.B
RTS

PERIPHERAL DEVICES 111

CENTRONIX INTERFAC~

$XXXX
PIT +
PIT +
PIT +
PIT +
PIT +
PIT +
PIT +
PIT +

3
5
$B
$D
$11
$19
$lB

Base address for PI/T
Prot general control register
Port service request register
Port A data dlrectlon register
Port interrupt vector register
Porl A control register
Port A data reglster
Port C data regIster
Porl status regIster

LOPEN: Called m,ce by a printer
server routine. It sets
up the PI/T for unidi­
rectional 8-bit mode,
Port A output, H2 pulsed
output handshake protocol

FINFLAG
#$7F,PADDR

#$78,PACI::;;

#$10,PGCR

#$40,PIVR
#$18,PSRR

LPWRITE

FINFLAG
DO,BYTECNT
AO,BUFFADDR
#O,PCDR
NOGO
#1, PCDR
LPWGO

DO

1. PACR
FINFLAG
LPW1
DO

FF= Finished, idle
Pattern for data direction
register, 7 bits ~ut, high bit in
Pattern for Port ~ control reg.
submode 01, pulsed
Pattern for gen. control.reg.
Enable Port A, Mode °
Interrupt vector
Enable interrupt Dins

User executes TRAP instruction.
Trap handler sets up parameters:
DO = byte count, AO= buf4er address
If printer is online, routine
enables just interrupts. DO-Return
Status

Starting
Save user parameters

In check?

On line?

Set to all 1's

Enable HIS interrupt
Wait for FINFLAG EQU $F~
as buffering here
Normal status
Return

Fig. 7-11. Program for printer interface.

112 THE 68000 MICROPROCESSOR

LPINTR

EMPTY

MOVE.B
SUBQ.L
BEQ.L
BTST
BNE.S
BRA.S

BCLR
ST

LPINTR: Interrupt service routinje; it gets
characters from buffer and sends them
to PItT for output to printer.
Upon completion, interrupts are disabled.

(AO)+,PADR
#l,BYTECNT
EMPTY
#O,PSR
PRINTSOME
NDTREADY

#1, PACR
FINFLAG

Move to PItT
Decrement character counter
Stop if out of characters
Is there room for another char?
Yes, do it again
Not Ready

Disable HiS interrupts
Set finished status

NOTREADY MOVE.L AO,BUFFADDR
MDVE.L ISP)+,AO
RTE

Save buffer address
Restore AO

BUFF AD DR
BYTECNT
FINFLAG

DC.L
DC.L
DC.L

END

(I

(I

(I

Fig. 7-11. Program for printer interface.

As with any data transfer using ASCII encoding, the effective baud rate, mea­
sured by the time required to transfer a block of data, is lower than the data rate
on the transmission line. The same situation was discussed in connection with the
ACIA. ASCII encoding generates a two-digit byte for every hexadecimal digit of
data (for example, four becomes $34). This lower rate reduces the transfer rate by
one-half. In addition, S-records require overhead bytes, such as type of S-record,
address of data, number of bytes in the record, and checksums to be sent along
with the data. These requirements result in an additional baud rate reduction of
approximately one-third. The effective baud rate of the tape interface is between
300 and 500 baud, as opposed to the serial transmission rate of 1000 to 2000
baud.
. The circuit for the cassette interface is shown in Fig. 7-12. Data are transmitted
via the PC1 line of the PIIT. This line drives a voltage divider formed by R1 and
R2 and is then AC-coupled to Pin 3 to the DATA OUT terminal. The voltage level
from the PIIT is reduced by approximately 10-to-1 to avoid overdriving the tape­
recorded input.

The DATA OUT line is normally connected to the auxiliary input of a tape
recorder. The microphone input of a recorder, however, will work equally well.
The various controls (tone and volume) are usually adjusted to compensate for
the record-level variations between different recorders.

Data are transferred back to the processor via a DATA IN line. The Comparator
U4B is used to square up the slowly changing transitions coming from the tape
and to produce rapid transitions. Diodes CR1 and CR2 limit the input voltage

PERIPHERAL DEVICES 113

DO - D15

88S1

AI 1 RS 01 22
9 21 A8 1. CSI 01

2. CSI 8 CST 02 19 LOS CS2 03 18
14 04 17 P-E 13 E 05 18 2 3

R{ff 4 R/f 06 15_
3 TXC 07 ~

2 RXC
TXO 6 9 1488 J3

1m: RXO

~ 5

I I~
CTS" TRa".l CIAllNT
Irnli RTS"1:!i

1489
8...dl. 3

88S1

I
9f

'-----.l- 22 RS 01 21
1489

9 CSI 01 lA13 '-----1T ~ 14 CST 02 8 CS2 03 19 12~
18

14 E
04 17 05 16 ~88 13 R/f 06

t1L----- '-- 2 .;J L 4 TXC 07
3 RXC

9 1488 rP 2 TX06
nt~ ~ TRa" I:!i CIA21NT 1 ~ DCD RTS" 489

8~ S
5r

14411 ~II 174LS.I 23 RSA Fl ~ I-- 2 ...1

~ +s----ll RSB F2 r--
F3 ~ r-- 47.1 41488

21 XI F4 I--
+5 5 .§. 14

FS [L: r-- 471.
S

~ 1.8432 FI r-- 1489 11HZ F7 ~ I-- 3Al
2. XI

F8 r--
~ .. 2r L

F9 ~ r-- ~II Fl1 r-- 2 ...l
2 ..a

+5~ RESET Fll ~ r--
F12 I--
F13 f1L--o r--
F14 ~ r--
F15 f--
F16 ~ >---

ACIA

UOS

Fig. 7-12. Cassette interface.

swing of the comparator. Approximately 450 mV of hysteresis are used on the
comparator.

A second comparator, U4A, is used to invert the output of U4B. This feature may
or may not be required, depending on the type of recorder used. Some recorders
play back a signal that is inverted from the original input signal; others return
a noninverted signal. Comparator U4B simply inverts the playback signal. If the
recorder does not produce a second inversion, one must be produced using the
comparator U4A in order to provide the proper signal to the tape driver/receiver
firmware. Such a program undoubtedly expects a noninverted signal.

Chapter 8
Another 68000-8ased System

The hypothetical system described in the previous chapters is somewhat too
complex to build on a prototyping board. It is, however, desirable for the reader
to build a small system and to use it to gain programming experience.

The system described in this chapter was designed and built by Edward M.
Carter of the United States Air Force Academy and A. B. Bonds of Vanderbilt Uni­
versity (members of their respective Computer Science Departments). Its builders
named the system VU68K.

HARDWARE DESCRIPTION

The VU68K system is small and has a limited amount of memory and a limited
number of input-output ports. The memory map, however, allows for expansion
of both the memory capacity and the 1/0 capabilities.

Figure 8-1 shows the complete schematic of the VU68K. It is a good pedagogical
tool, and the fact that only 15 integrated circuits are used attests to the system's
simplicity. In fact, the system has many similarities to the hypothetical design
described earlier. Several points on the VU68K, however, require further clarifi­
cation.

Only the memories in the VU68K operate in the asynchronous mode. Since
these devices do not have an acknowledge signal, the signal is synthesized with
the 74161 counter instead. When AS goes low, an initial count of 1100 is loaded
into the 74161. After four clock cycles, the high-order output bit of the counter,
connected to the DTACK line, goes low, asserting DTACK and thereby signaling
the availability of data. With a clock speed of 5 MHz, a transfer takes place in 800
nsec.

The baud-rate generator is the same circuit used in the hypothetical design. This
circuit provides the receiving and transmitting speed for the two ACIA devices
used in the design. ACIA No.1 connects the VU68K to a terminal via IC15 and
IC14 line transceivers. This ACIA resides at address $AOOOOO to $A00002. ACIA
No.2 may be used for connection with a modem. This ACIA resides at $COOOOO
to $C00002. When either ACIA is selected, address line A23, which is connected
to the VPA line, must be high to assert VPA via inverter IC3. After a transfer,
the processor resumes its synchronous operation. This scheme, however, limits
addresses using A23 to synchronous devices only.
114

"T
1

cO
· ~ en

_
0

-o

::
:r

D>

CD

:4

3

.....
 ~

.
o

0
-
0

(.

oJ

-
~
:
;
t

CD
 <

c &l 1"

S1

~

0
0

0
-

.,.

+5

Y
1 5

M
H

Z .. !

U1

~

U1

74
L

S8
4

~

U
2

M
68

88
8

A
t

A
2

A

3
A

4

A
5

A
6

A

7
....

... <
-

.I
I

A
 8

....

....
 <

--
-

.I
I

A
9

A
U

A

11

A
t2

A

 t
3

r-
'-

'=
--

--
A

A

U
...

...
...

...
.

.I
I

A
1

5

....
... <

-
A

A
16

 .
....

.. ~

.I
I

A
17

A

18

A
t

9
A

2
8

A
t2

A

13

i
l
l

A
15

A
2

3

D
0

-
D

15

A1

-
A

2
3

U

3
7
4
L
S
1
~
4

G
1 G
2

A
2

1

~g

I
!

t
~t
LS
32

2
~

M

'""
""t

"_-
+-_

'9!

U~t
LS3

2
1 8

>-

=-
8 -

R
A

il!
!'

,. Z
 ~ ::
t m

:a
 I ! m

C
 ~ 3:
 U

I

116 THE 68000 MICROPROCESSOR

DftJ - D15
A1 - A11

2716

+5~ VPP
19 18
22
23

9

1
8

2
7

3
8

4
5

5
4

8
3

7 2
1

8 , ..
~-f0E
~CE

fiE:
2716

+5¥J- ~pp
19 18
22
23

9

1 8

2
7

3
8

4
5

5
4

6 3

7
2

8
1

RmIE'~~E r FE .,.

6116

07 17 21 E
08 16 19 18

15 22 05
14 23

9
04

13 1 8
03

11 2
7

02
18 3

6
01

9 4
5

08
5

4

6
3

7 2
1

8 ,,.
28 E

~ RAMO~ ~E

8118

07 17 21 E
06 16 19 18

15- 22 05
14 23

9
04

13 1
8

03
11 2

7
02

18 3
6

01
9 4

5
08

5
4

6
3

7
2

8
1

28
8
E 1 iWiE"~FE

.,.

Fig.8-1 Schematic of the VU68K.
(part 2 of 3)

1\07 17

1\08 16
15 1\05
14 1\04 13 1\03
11 1\02
18 1\01
9 1\08

1\07 17

1\06 18
15 1\05
14 1\04
13 1\03
11 1\02
18 1\01
9 1\08

The VU68K uses the autovectored mode for interrupts and acknowledges only
two levels of interrupt: Level 1 for keyboard serial-port interrupts and Level 2 for
communication serial-port interrupts. The interrupts are signaled on the IPL lines.
IPL2 is always maintained high. This interrupt scheme allows the simultaneous
use of the keyboard and the serial communication ports.

Address decoding is straightforward. The memory of the VU68K is divided into
2K-word by 16-bit blocks, with total expansion capability of 32K words. The reason
for this arrangement is that the VU68K uses only 11 of the 68000's address bits
for word selection and another four address bits for memory-block selection. The
11 bits select one of the 2K words, whereas the other four bits select one of the 16
2K-word blocks. Since each block contains 2K words, the total memory capacity
is 2K by 16 or 32K words.

DO - D15

A1
+5

A22
A21

E
Riff.

14411
23 RSA

"* +5 22 RSB

21 X1

S ~ 1·9m. XI
11 RESET

+5--

,

ANOTHER 68000·BASED SYSTEM 117

8851
1 RS 01 22
9 21

11 CSI 01
21

8 C"ST 02 19 CS2 03 l' 04 14 E 05 17
13 R/'1 08 18
4 15
3 TXC 07

RXC 2 RXO TXO 6
~ J
~ CTS' rRQ"

lreIf

6851

--J- RS 01 '22
9 CSI 01 21

11 ,21
8 C"ST 02 19 CS2 03 a 04 14 E 05 17

13 R/'1 06 a
4 15
3 TXC 07
2 RXC lB_

2t RXO TXO
~ nc CTS' rRQ"

~ Dei)'"

F1 1 1 --
F2 17 2

-~
F3 2 3 --F4 16 4 --F5 3 5 -.
F6 f15 6 -.
F7 f4 7 --F8 f5 8 --7" F9 6 F11 8 F11 14 F12 13 F13 9 F14 1a F15 19 F16 -'""-

Fig.8-1 Schematic of the VU68K.
(part 3 of 3)

1488
2 ..3

I
CIA11NT

~89 I 1 ..3

Vf2

1488
2 ..3

I
CIA21NT

~ 16
15 1
14 t-
13 T
12
11 1
11 t--
19 r

118 THE 68000 MICROPROCESSOR

The word-selection bits, A1 through A11, go directly to each of the ROM and
RAM devices. The block-selection bits, A12 through A15, are connected to a 4-
to-16 decoder. The decoder and some OR gates (lC6) assert a selected 2K-word
block. The UDS and LDS lines are used, as previously described, to select byte
or word accessing. Thus, four signals-ROME, ROMO, RAME, and RAMO-are
used in conjunction with UDS and LDS to select the two ROM and the two RAM
devices.

The memory map of the system is set forth in Table 8-1. Extension of the
memory size and the number of peripheral devices is not complicated. Extended
memory can reside in the lower 64K bytes of the memory map. The high-order
bits of a new address in that area cause one of the pins of the address decoder
to go low. The output from this pin can then be used by additional logic to select
a new device. For example, assume that another 2K-word block of memory is
to be added to the system. Two additional 6116 devices can reside at $002000 to
$002FFF. The new RAM-select line will be Pin 3 of the IC5 decoder; two additional
OR gates must be added to combine this select line with the LDS and UDS signals.

A new peripheral device, such as a 6850, can be added in an address that
sets A23 high, i.e., between $800000 and $FFFFFF. For example, a new ACIA
can be added in the addresses $900000 to $900002. This address area does not
conflict with the other two ACIA devices. The high select-line will be A20, and the
low select-line will be A21. To enhance the interrupt structure so that not all of
the interrupts are handled in the autovectored mode, we must ensure that the
synchronous mode-select line is still driven high when the terminal and serial
ports are addressed. Discrete gates easily provide this facility.

THE OPERATING SYSTEM MONITOR

We now proceed to develop an operating system program, more commonly
known as the monitor. This program oversees the entire operation of the VU68K
by providing several services, such as commands to fill and examine memory,
character input and output routines, trap handlers, and error-handling routines.
We call this monitor VUBUG.

The VUBUG provides two support services. The first is buffered 1/0 for both the
terminal and the serial communication port. All incoming and outgoing informa­
tion is temporarily stored in an area in memory called "buffer." The interrupt­
handling routines for these two 1/0 devices are at Levels 1 and 2, respectively.
As an interrupt is generated during the transfer of a character, the port is read,

Table 8-1. Memory Map of the VU68K.

ADDRESS

$000000 to $OOOFFF
$001000 to $001 FFF
$AOOOOO to $A00002
$COOOOO to $C00002

DEVICE

ROM
RAM
ACIA No.1
ACIA No.2

ANOTHER 68000-BASED SYSTEM 119

Table 8-2. User-Interrupt Vectors.

VECTOR ADDRESS

$1000
$1004
$1008
$100C
$1010
$1014
$1018
$101C
$1020
$1024
$1028
$102C
$1030
$1034
$1038

INTERRUPT

User-Trap Vector B
User-Trap Vector C
User-Trap Vector D
User-Trap Vector E
User-Trap Vector F
User-Interrupt Vector 1
User-Interrupt Vector 2
User-Interrupt Vector 3
User-Interrupt Vector 4
User-Interrupt Vector 5
AutoVector Level 3
AutoVector Level 4
AutoVector Level 5
AutoVector Level 6
AutoVector Level 7

and the character is placed in a circular buffer that can store 16 bytes. Data are
retrieved from the memory buffer area by a trap routine, which will be discussed
later. Interrupts from the terminal's keyboard also cause the character typed to
be echoed immediately. Writing to both the terminal and serial communication
port is accomplished by a technique called bus-wait so that further interrupts are
disabled until the 1/0 transfer is complete. Due to the location of these ports at
different interrupt levels, separate interrupt routines and buffers are used, and
both ports are accessible simultaneously.

The second support service of the VUBUG is interrupt handling by loading
into memory five autovector, five user-interrupt vector, and five user-trap vector
locations. See Table 8-2.

Each vector address in Table 8-2 may be used to hold a branch instruction to
the corresponding user exception-handling routine. Each vector occupies a four­
byte address, thus allowing a branch with a 16-bit displacement. Each exception­
handling routine must terminate with an RTE instruction to ensure return to the
correct location in the main program.

When the system is reset, the reset vector initializes the system stack, terminal
and serial communication ports, and circular buffers. On completion of these
tasks, the system enters the "command" mode; the user can then enter a desired
command to have the monitor perform a task.

MONITOR COMMANDS

While a program is being executed, control of the system can be regained at any
time by typing a ctrl-c (CONTROL-C), or output to the terminal's screen can be
terminated by typing ctrl-s. Transmission to the screen can be resumed by typing
ctrl-q. After ctrl-s and before ctrl-q, the processor is in a wait-state but will accept
and place in buffer memory characters from either the terminal or modem port

120 THE 68000 MICROPROCESSOR

until the assigned buffer memory area is full. Thereafter, any new characters will
be lost. Zero padding of all values is required.

We will now briefly describe the function of each command of the VUBUG.
The number of "x's" denotes the number of characters to be entered; e.g., "xx"
denotes two characters and "xxxx" denotes four characters. The notation "<cn"
denotes the "carriage return" or "enter" key on the terminal keyboard.

The lib" Command: Set/Remove Breakpoints

The "b" command implements the breakpoint function. A breakpoint is set by
assigning an address to a command, as follows:

b+xxxx
b-xxxx
b<cn
b#

Insert a breakpoint at address xxxx
Remove a breakpoint at address xxxx
Show all breakpoints
Remove all breakpoints

A breakpoint allows execution of a program segment up to the address of the
breakpoint. The program is halted at that address, and VUBUG enters the com­
mand mode. At the next "g" (go) command, the original instruction is reinserted
and executed. After execution, the breakpoint instruction is reinserted. Breakpoint
and single-step modes cannot be active concurrently, but tracing is permitted with
breakpoints.

The lie" Command: Copy Memory Blocks

The "c" command allows data blocks to be copied from one memory area to
another. Its format is "c xxxx=yyyy,zzzz-i.e., copy from address yyyy through
address ZZZZ to consecutively increasing addresses starting at xxxx.

The lid" Command: Display Data to Terminal

The "d" command displays data at some address block in memory on the screen.
This command uses a memory examination pointer to "remember" the last block
of data displayed. The starting address of data to be displayed is truncated to the
nearest 16-byte boundary, and the terminating address is rounded to the next
highest 16-byte boundary. The formats of this command are as follows:

d<cn
d xxxx,<cn
d xxxx,yyyy

Display the next 80 bytes from the last displayed address
Display 80 bytes starting at address xxxx
Display all data between locations xxx x and yyyy, inclusive

The lie" Command: Enter Terminal Emulator Mode

The "e" command allows the VU68K to communicate as a terminal with a host
system attached to the serial communication port. The host system must operate

ANOTHER 68000-BASED SYSTEM 121

in full duplex mode, and the terminal configuration must be set correctly, using
either the "m" command or a user program. The VU68K remains in terminal
emulator mode until the user types either ctrl-x or ctrl-I. The former terminates
the emulator mode and places the VUBUG in command mode, whereas the latter
also invokes the "I" command to allow transfer of data from the host via the
serial communication port.

The "g" Command: Execute a User Program

The "g" command initiates execution of a user program from the address fol­
lowing the command or the last known address following a load, breakpoint, or
single-step command. When a program is halted, a copy is made of all registers,
including PC, SR, and address and data registers. The "g" command reinstates
the values saved from the last program halt. These values may be modified by
the "r" command. The formats of the "g" command are as follows:

g<cn

<cn
g xxxx

Execute user program starting at the address in the PC following
a load, breakpoint, single-step, or "r" command

Same as g<cn
Execute a program starting at address xxxx

The "I" Command: Load Program from Host (S-format)

The "I" command allows the loading of a program from a host external system via
the serial communication port. The program object code must be in the Motorola
S-Format. Following the "I" command, the value saved in the user PC is the
value of the start of the loaded program. The formats of the "I" command are as
follows:

I<cn Start program load
I xxxx Start program load and offset each block by xxxx bytes

The "m" Command: Examine/Modify Memory

The "m" command examines and modifies the contents of a memory location.
To facilitate its use, a pointer holds the memory location accessed last. The
pointer is manipulated by several subcommands and maintains its value between
invocations of the "m" command, the formats of which are as follows:

m<cn
m xxxx
.xxxx
=xx
,xx
+

Start memory mode
Start memory mode and set pointer at address xxxx
Set pointer to xxxx
Store value xx at address in pointer
Increment pointer and store xx
Increment pointer and display value at address in pointer
Decrement pointer and display value at address in pointer

122 THE 68000 MICROPROCESSOR

The "p" Command: Load/Execute a Prototype Command

The "p" command allows execution of a prototype command in system mode.
The only restriction placed on a prototype command is that is must be completed
with an RTS instruction to relinquish control to the command processor. The
formats of this command are as follows:

px yyyy
px yyyy
px<cn

Associate with px the program starting at address yyyy, where x
is 1, 2, or 3
Execute command px, where x is 1, 2, or 3

The "r" Command: Examine/Modify Registers

The "r" command is used to examine and modify the contents of any of the
registers, including the user status register and user program counter. As with
the "m" command, the "r" command maintains a pointer to the register accessed
last, and all modifications are relative to this pointer. To exit the "r" command, an
invalid subcommand is entered. The formats of the "r" command are as follows:

r<cn
r xx

.xx
=xxxxxxxx
<cn

Start register mode
Start register mode at register xx, where xx is:

SR/sr Status Register
PC/pc Program Counter
DO/dO-D7/d7 Data registers
AO/aO-A7/a7 Address registers

Set register pointer to register xx
Store value in register at pointer value for SR xxx x
Display values of all registers

The "s" Command: Single-Step Mode

The "s" command allows execution of a program, instruction-by-instruction.
Invocation of the "s" command removes all breakpoints and turns the trace com­
mand off. The single-step command uses the T bit of the status register and,
as with the trace command, is limited to single-step trap and interrupt-handling
routines.

The single-step function can be reinstated by setting the trace bit in the service
routine. The displayed value of the program counter is the location of the next
instruction to be executed. The single-step function does not start until the next
"g" command for the user program is invoked. Consecutive single-stepping is
accomplished by typing a carriage return.

The formats of the "s" command are as follows:

s+
s-

Start single-step function
Stop single-step function

ANOTHER 68000-BASED SYSTEM 123

The "t" Command: Trace Program Execution

The "t" command traces a program instruction-by-instruction. The program
counter value is printed before the execution of each instruction. Tracing and
breakpoints are allowed to be active at the same time. The tracing of trap instruc­
tions renders the trace function inactive during the execution of the trap-handling
routine; the function is reinstated, however, after the RTE instruction of the rou­
tine.

Traps may be traced by setting the trace bit in the status register upon entering
the trap-handling routine. Tracing actually starts on issuance ofthe "g" command
for a user program.

The formats of the "t" command are as follows:

t+
t-

TRAPS

Start trace
Stop trace

The VUBUG program provides eleven traps with which to service user-program
requests. These traps are invoked by execution of the corresponding trap instruc­
tion shown in Table 8-3.

The value that the "get" trap returns in DO is zero-padded so that the data read
are of the correct size and do not contain erroneous bits. Data passed to the write
functions need not be padded. The parameter to Trap No.8 is the address of
the string to be written. The string must be terminated by a zero. VUBUG uses
address register AO and data register DO as working registers. Consequently, a
user should not depend on values in these registers remaining the same before
and after the execution of a trap.

In Table 8-3, a byte refers to two input characters that are converted to hexadec­
imal and packed into a single byte of memory, whereas a character is a single-

Table 8-3. VUBUG Traps.

TRAP FUNCTION PARAMETER RETURN

0 Exit None None
1 Get byte None DO
2 Get word None DO
3 Get longword None DO
4 Write byte DO None
5 Write word DO None
6 Write longword DO None
7 Get character None DO
8 Write string AO None
9 Write character DO None
A Write cr-If None None

124 THE 68000 MICROPROCESSOR

input character. In addition to the traps listed in Table 8-3, a user is provided with
Traps B through F, with vectors at the locations shown in Table 8-2.

EXCEPTION PROCESSING

The VUBUG also makes provision for handling errors. The error-handling routine
intercepts an interrupt caused by an error and displays a message on the terminal
screen. In addition, register values are copied into the register save area, where
they are accessible via the "r" command. Trapped errors include address/bus
errors, illegal instruction errors, privilege violations, and a class of generic errors
that share a single error-handling routine. The errors in this last category include
zero-divide, CHK, TRAPV, and spurious interrupts.

THE MONITOR

We will now proceed with a detailed description of the monitor. This program,
written by Edward M. Carter, is the property of the Computer Science Depart­
ments of the United States Air Force Academy and Vanderbilt University. VUBUG
may be used in single systems for educational purposes but is not to be sold for
commercial purposes.

The first part of the monitor assigns values to be used to structure a queue, as
follows:

;Queue structure
ORG $0

HEAD: DC.W *1,*0000
TAIL: DC.W *1,*0000
COUNT: DC.W *1,*0000
QUEUE: DB *10,*00

The next part of the program defines constants that structure the breakpoint
area:

;Breakpoint structure
ORG $0

INSTR: DC.W *1,*000
ILOC: DC.W *1,*0000

The vector table must be located in the lower memory area. (A restriction at this
point is that there should be no "ORG" directives to the addresses contained in
the constants shown, because such directives will destroy the vector for interrupts
and breakpoints.)

ORG $0
DC.L *1,STACK
DC.L *1,START
DC.L *1,ABHLR
DC.L *1,ABHLR
DC.L *1,BHLR
DC.L *1,GHLR
DC.L *1,GHLR

;Reset Vector
;System Stack
; Ini hal PC
;Bus Error
;Address Error
;Illegal Instruction
;Zero Divide
;CHK

DC.L #1,GHLR
DC.L #1,PHLR
DC.L #1,THLR
DC.L #1,BHLR
DC.L #1,BHLR
ORG $3C
DC.L #1,GHLR
ORG $60

ANOTHER 68000·BASED SYSTEM 125

;TRAPV
;Privileged Instruction
;Trace Routine
;Emulator Trap 1010
;Emulator Trap 1111

;Uninitialized Interrupt

DC.L #1,GHLR ;Spurious Interrupt
As mentioned earlier, several errors share the same handling routine. For exam·

pie, zero divide, CHK, and TRAPV all share the "GHLR" routine.
Examination of the vector table in Chap. 6 reveals that the ORG addresses the

VUBUG uses in the assignment of vectors are the same as the vector addresses
shown in the table. For example, ORG $3C is shown in the table as the vector
address for the uninitialized interrupt·handling routine.

The autovector area is assigned next, as follows:
DC.L #1, ININT ;Terminal Vector
DC.L #1,LPINT ;Download-line Vector

These locations are vector addresses $64 and $68, respectively, and correspond
to autovector No.1 and autovector No.2. The locations are used for the terminal·
handling routine and the serial communication·port routine.

The remaining autovectors, at $6C through $7C, are left for the user, as follows:
DC.L #1,$1028 ;User Autovector No.3
DC.L #1,$102C ;User Autovector No.4
DC.L #1,$1030 ;User Autovector No.5
DC.L #1,$1034 ;User Autovector No.6
DC.L #1,$1038 ;User Autovector No.7

The traps in Table 8·3 are assigned next, as follows:
DC.L #1,TEXIT ;Trap 0, Exit
DC.L #1,TGETB ;Trap 1, Get Byte
DC.L #1,TGETW ;Trap 2, Get Word
DC.L #1,TGETL ;Trap 3, Get Longword
DC.L #1,TWRTB ;Trap 4, Write Byte
DC.L #1,TWRTW ;Trap 5, Write Word
DC.L #1,TWRTL ;Trap 6, Write Longword
DC.L #1,TGETC ;Trap 7, Get Character
DC.L #1,TWRTS ;Trap 8, Write String
DC.L #1,TWRTC ;Trap 9, Write Character
DC.L #1,TCRLF ;Trap 10, Write Carriage

;Return, Line Feed
We can also define the user·trap vectors B through F in Table 8·2, as follows:

UTRPB: DC.L #1,$1000 ;User Trap Vector B
UTRPC: DC.L #1,$1004 ;User Trap Vector C
UTRPD: DC.L #1,$1008 ;User Trap Vector D
UTRPE: DC.L #1,$100C ;User Trap Vector E
UTRPF: DC.L #1,$1010 ;User Trap Vector F

These vectors are located within the trap vector area in Table 8·2 ($80 to $BC).

126 THE 68000 MICROPROCESSOR

We must now assign a memory area for the system stack (80 words), an area
for the storage table of breakpoint numbers, an area for the contents of all of the
registers, and other areas clearly marked in the listing. The data area for these
constants begins at $103C, a location past the vector area.

The asterisk used is an assembler directive and serves as the symbolic name
of the assembler location counter. We may think of it as expressing the idea
"*-the address of myself." For example, consider the instruction "10 JUMP
##*" situated at location 10. This instruction directs the processor, in effect, to
"jump to myself" since the assembler location counter contains the value 1 0 in
this example, and the instruction will be translated as a jump to location 1 0 from
location 10. This scheme is used when the processor is to wait for an interrupt.

The assembler location counter should not be confused with the processor's
program counter. The program counter always contains a value two bytes greater
than that of the assembler location counter, and this is often the address of the
next instruction to be executed. In the following case, the stack will be equated
to hexadecimal address 113C [80 decimal is 50 hex; this is multiplied by 2 (word
size), yielding hexadecimal 100].

ORG $103C
SAREA: DC.W #80,*0000

STACK: EQU *

;Clear an area of 80 words
;to be used as system
;stack

An area must be reserved for the breakpoint table (ten locations), as follows:
BKTAB: DC.W *OA,*OOOO

Save areas must also be reserved for all of the registers. Each of these areas
is 32 bits long, with the exception of that for the status register, which is 16 bits
long. The save areas are as follows:

SR: DC.W *1,*0000 ;Status Register Save Area
PC: DC.L *1,*00000000 ;PC Save Area
DO: DC. L *1, *00000000 ;DO Save Area
D1: DC.L *1,*00000000 ;D1 SaveArea
D2: DC.L *1,*00000000 ;D2 Save Area
D3: DC.L *1,*00000000 ;D3 Save Area
D4: DC.L *1,*00000000 ;D4 Save Area
DS: DC.L *1,*00000000 ;DS Save Area
D6: DC.L *1,*00000000 ;06 Save Area
D7: DC.L *1,*00000000 ;D7 Save Area
AO: DC.L *1,*00000000 ;AO Save Area
A1: DC.L *1,*00000000 ;A1 SaveArea
A2: DC. L *1 , *00000000 ; A2 Save Area
A3: DC.L *1,*00000000 ;A3 Save Area
A4: DC.L *1,*00000000 ;A4 Save Area
AS: DC.L *1,*00000000 ;AS Save Area
A6: DC.L *1,*00000000 ;A6 Save Area
A7: DC.L *1,*00000000 ;A7 Save Area

Three word-length areas are reserved for the prototype table:
PTAB: DC.W ~,~OOO ;Prototype Table

ANOTHER 68000·BASED SYSTEM 127

The register examination pointer and the memory examination pointer each
require one word·length area:

REXAM: DC.W #1,#0000 ;Register Examination Pointer
EXAM: DC.W #1,#0000 ;Memory Examination Pointer

We now reserve five temporary work areas-each with the length of one word-
that will be used by various subroutines:

T1: DC.W #1,#0000 ; Temporary Wor k Area
T2: DC.W #1,#0000
T3: DC.W #1,#0000
T4: DC.W #1,#0000
T5: DC.W #1,#0000

The following areas are reserved for the terminal buffer, user stack, breakpoint
flag, ctrl·s, and ctrl·q:

CTRLS: DC.W #1,#0000
EKPTF: EQU *-1

;Ctrl-s, Ctrl-g Flag
;Ereakpoint Flag
;Load Euffer
;Terminal Euffer
;User's Stack Area

LEUFF: DC.W #OE,#OOOO
IEUFF: DC.W #OE,#OOOO
USERS: DC.W #80,#0000
USTCK: EQU *

Finally, we assign addresses for the terminal ACIA and the serial communica·
tion ACIA:

;Terminal

TTYST: EQU $AOOOOO
TTYD: EQU $A00002
;Load Port

LPST: EQU $COOOOO
LPD: EQU $C00002

The main program starts at address $OOCO. Three storage locations are defined
first: for the sign·on message, for the carriage return and linefeed, and for the
"bad command" message, which will be invoked whenever an incorrect com·
mand character is entered. All three character strings are terminated by a zero.

Start of Monitor

ORG $CO
HOWDY: DS "\c MC68000 Moni tor VUEUG\O"
RNNO: DS "\r\n\n\O"
ECOMM: DS ": Bad Command\r\n\O"

Next we reserve space for seven user-interrupt vectors, which must remain at
address $0100. The vectors include the bit pattern that must be inserted in the
supervisor status register, with or without interrupts enabled. That is, the pattern
2000 (binary 0010000000000000) will set the S flag and keep the remaining flags
at zero. The pattern 2700 will set the S flag and the interrupt mask pattern at the
highest level (111), which will disable interrupts. Finally, storage is defined for
the initial prompt (!).

VECT1: DCmL #1,$1014

128 THE 68000 MICROPROCESSOR

VECT2: OC.L #1,$1018
VECT3: OC.L #1,$101C
VECT4: OC.L #1,$1020
VECTS: OC.L #1,$1024
SSRI: OC.W #1,#2000 ;Supervisor SR, interrupts
SSRN: OC.W #1,#2700 ;Supervisor SR, no interrupts
PRMP: OS l\r\n!\O" ;Prompt C!)

The next sequence of events takes care of several "housekeeping chores"; for
example, some typical tasks would be the following:

1. Initialize the input-output ports (ACIA)
2. Set up the various buffers and queues
3. Initialize various control variables
4. Clear the breakpoint table area
5. Clear the register save area
6. Set the user stack pointer
7. Clear the system stack
8. Enable interrupt mask
9. Display sign-on message

10. Enable interrupts for ports
11. Enter command mode

START: MOVE.B #03,TTYST
MOVE.B #09,TTYST
MOVE.B #03,LPST

MOVE.B #09,LPST
LEA IBUFF ,A1
MOVE #0,HEAOCA1)
MOVE #FFFF,TAILCA1)
MOVE #0,COUNTCA1)
LEA LBUFF,A1
MOVE #0,HEAOCA1)
MOVE #FFFF,TAILCA1)
MOVE #0,COUNTCA1)
MOVE #O,EXAM
MOVE.B #O,CTRLS
MOVE.B #O,BKPTF
MOVEQ #4,00
LEA BKTAB,A1

SLP: MOVE.L #0,CA1)+
OBF OO,SLP
MOVE #O,SR
MOVE #10,00
LEA PC,AO

SLP1: MOVE.L #O,CAO)+
OBF 00,SLP1

;Set up terminal ACIA

;Set up serial communication
;for ACIA

;Set buffers

;Set up gueue for lp

;Initialize control
;Variables

;Clear breakpoint table

;Clear register save area

SLP2:

DONE:

LEA USTCK,AO
MOVE.L AO,A7
LEA SAREA,AO
MOVEG #3F,DO
MOVE.L #O,(AO)+
DEF DO,SLP2
MOVE SSRI,SR
LEA HOWDY,AO
ESR WRITS
MOVE.E *B9,TTYST

MOVE.E *B9,LPST

ANOTHER 68000-BASED SYSTEM 129

;Set user stack pointer

;Clear system stack

;Enable interrupt mask
;Display sign-on

;Enable terminal ACIA
;interrupts
;Enable serial communication
;ACIA

ERA COMM ;Enter command mode
The next several routines are concerned with output. The first routine outputs

one byte held in DO to the terminal ACIA; it begins by checking whether a ctrl-s
has been typed (as we have mentioned, a ctrl-s terminates output to the terminal):

WRIT: ETST #O,CTRLS ;Check for ctrl-s
EEG CWRIT ;No, write byte
STOP #2000 ;Yes, wait for next character
ERA WRIT ;When ready, try to echo

CWRIT: MOVE.E DO,TTYD ;Write character to port
WRITA: MOVE.E TTYST,DO ;Sample control register

ETST #1 ,DO
EEG WRITA
RTS

The next routine is associated with the serial communication port; the routine
outputs a byte held in DO to that port:

WRITU: MOVE.E DO,LPD
WRITP: MOVE.E LPST,DO

ETST #1 ,DO
EEG WRITP
RTS

;Wri te it
;Wait for completion

The following routine outputs a string, which must be terminated with a zero:
WRITS: MOVE.E (AO)+,DO ;AO is address of string

EEG DWRTS
ESR WRIT
ERA WRITS

a..JRTS: RTS
The next routine outputs a word, byte, or longword:

WRITE: MOVE #1,T1 ;T1 is the number of bytes

WRITW:

WRITL:
WR:

ERA WR
MOVE #3, T1
ERA WR
MOVE #7, T1
MOVEM.L #6002,-(A7)
MOVE T1 ,D2

;Save registers
;Set count

130 THE 68000 MICROPROCESSOR

MoVE.B *00,t5+1
LEA t5+1 ,A6

;Write a zero at end
;Use temporary register as
;a stack

The next set of instructions converts each hexadecimal digit to an ASCII byte.
A character has already been read and is held in DO. The character is transferred
to D1, and the routine determines whether the character is within the valid (0-9,
A-F) hexadecimal limits.

ALP: MOVE DO,D1
ANDI.B *OF ,D1
CMPI.B *OA,D1
BLT oR3

oR3:
M1 :

oRI.B *40,D1
SUB.B *09,D1
BRA M1
oRI.B *30,D1
MoVE.B D1,-(A6)
LSR.L *4,DO
DBF D2,ALP
MoVEA A6,AO
BSR WRITS

;Make each hex digit a
;valid ASCII byte
;Check if ABCDEF

;Set high-order bits
;Put on stack
;Get next hex digit

;Write the stack

MoVEM.L (A7)+,*4006 ;Restore registers
RTS

The next program segment constitutes the "command processor." The various
characters entered via the keyboard will be checked for validity, and then control
will be branched to a location defined by the command processor.

CTAB: DC.W *1,*4DOO ;m--memory update
DC.W *1,mem
DC.W *1,*4COO
DC.W *1 , load
DC.W *1,OCOO

DC.W *1,1noof
DC.W *1,*4400

DC.W *1,dump
DC.W *1,~300
DC.W *1,singl
DC.W *1 ,~400
DC.W *1,trace
DC.W *1,*4700
DC.W *1,go
DC.W *1,*ODOO
DC.W *1,ggo
DC.W *1,*4500
DC.W *1,emul
DC.W *1,*4200
DC.W *1,bkpt
DC.W *1,*4300
DC.W *1,copy

;1--load from host

;ctrl-1, another load from
;host

;d--dump contents of
;memory

;s--single step

;t--trace

;g--execute program

;<Cr>--short "g"
; command
;e--enter terminal
;emulator mode
;b--set/remove
;breakpoints
;c--copy memory blocks

DC.W *1,4IoS200
DC.W*1,regs
DC.W *1,4IoS000
DC.W *1,proto

ANOTHER 68000-BASED SYSTEM 131

;r--display/modify registers

;p--prototype command

The next set of instructions constructs a routine in which the structure of each
entry is command (com) and address of servicing routine (code):

COM: EQU $0
CODE: EQU $2
COMM: LEA PRMP,AO

BSR WRITS
BSR GETCH

CLP:

BAD:

ANDI.B *DF ,DO
LEA CTAB-4,A2

MOVEQ *OC,D2
ADDQ M,A2
CMP.B COMCA2),DO
DBEQ D2,CLP
BNE BAD
MOVEA CODECA2),A2
JSRCA2)
BRA COMM
LEA BCOMM,AO
BSR WRITS
BRA COMM

;Display prompt

;Get command from buffer
;Make upper-case
;Set up search of command
;processor
;Count is one less

;Search fails
;Get address for success
;Go to it
;Loop back for next command
;Display "bad" message

The next sequence of instruction is concerned with the input of a character from
the keyboard. The routine stores an input character in a buffer whose address is
contained in A1.

ININT:

INLD:

INWRU:

INCMP:

MOVE SSRN,SR
MOVEM.L ~060,-CA7)
MOVE.B TIVD,D1
BTST*3,BKPTF
BEQ INCMP
CMPI.B *DC,D1
BEQ INLD
CMP.B *18,D1
BNE INWRU
BCLR *3,BKPTF
LEA EMUDN,A1
MOVE.L A1,*12CA7)
CMPI.B *OC,D1
BNE OUT
BRA INCMP

MOVE D1 ,DO
BSR WRITU
BRA OUT
CMPI.B *03,D1

;Disable interrupts
;Save registers
;Get character
;In emulator mode?
;No, so continue
;Ctrl-1?
;Ves, so load
;No, ctrl-x?
;No, so write it
;Exit emulator mode
;Set up return
;Put return deep in
;Ctrl-1 ?
;No
;Check for ctrl-s or
;ctrl-q
;Wr ite to host

;Check for ctrl-c

stack

132 THE 68000 MICROPROCESSOR

CTRLQ:

C1 :

CoNT:

OUT:

BEQ RSTRT
CMPI.B #13,D1
BNE CTRLQ
MoVE.B #1,CTRLS
BRA OUT
CMP I . B #11 , D1
BNE C1
MoVE.B #O,CTRLS
BRA OUT
LEA IBUFF,A1
CMPI #10,CoUNT(A1)
BLT CoNT
BRA OUT
ADDQ #1, TAIL(A1)
ADDQ'#1,CoUNT(A1)
ANDI #OF,TAIL(A1)
MoVEA TAIL(A1),A2
LEA QUEUE(A1),A1
MoVE.B D1 ,#O(A1 ,A2)
MoVE.B D1,DO
BSR WRIT
MoVEM.L (A7)+,#0603
RTE

;Check for ctrl-s

;Check for ctrl-q

;Get buffer address
;overflow?
;No
;Yes, so ignore
;Add character to buffer
;Add one to count
;Modulo-16
;Get offset of new entry
;Get address of queue
;Move byte into buffer
;Set up for echo

;Restore registers

A similar outine must be designed for the serial communications port:
LPINT: MOVE SSRN,SR ;Disable interrupts

MoVEM.L #C060,-(A7) ;Save registers
MoVE.B LPD,D1 ;Get character
BTST #3,BKPTF ;In emulator mode?
BEQ LPLEA ;No, so continue
MOVE D1,DO ;Echo for emulator mode
BSR WRIT
BRA LOUT

LPLEA: LEA LBUFF,A1
CMPI #10,CoUNT(A1)
BLT LCoNT
BRA LOUT

LCoNT: ADDQ #1,TAIL(A1)
ADDQ #1,CoUNT(A1)
ANDI #OF,TAIL(A1)
MoVEA TAIL(A1),A2
LEA QUEUE(A1),A1
MoVE.B D1 ,#O(A1 ,A2)

LOUT: MoVEM.L (A7)+,#0603
RTE

;Queue a character

The following routine gets a character from the queue of the serial communca­
tion port (if a character is not available, the routine waits until a character is
present):

LGCH:
LAGN:

MoVEM.L #GO,-(A7)
oRI #0700,SR
LEA LBUFF,A1

;Save registers
;Disable interrupts
;Point at buffer

MOVE CoUNT(A1),T1
BEQ LWAIT
MoVEA HEAD(A1),A2
ADDQ #1,HEAD(A1)
SUBQ #1,CoUNT(A1)
ANDI #OF,HEAD(A1)
LEA QUEUE(A1),A1
MoVE.B #0(A1 ,A2),DO
ANDI #F8FF,SR
MoVEM.L (A7)+,#0600
RTS

LWAIT: STOP #2000
BRA LAGN

ANOTHER 68000-BASED SYSTEM 133

;See if there is a character
;No, so wait
;Yes, find it and update

;Return character

;Enable interrupts
;Restore registers

The next routine produces a restart if ctrl-c has been typed; the important
registers (user stack, status register, and PC) are restored, and the routine returns
control to the command processor:

RSTRT: MoVEM.L (A7)+,#0603 ;Restore registers from
;interrupt

MoVEM.L #FFFF,DO
MOVE USP,AO
MoVE.L AO,A7
MOVE (A7)+ ,SR
MoVE.L (A7)+,PC
PEA CoMM

;Save registers
;Save user stack pointer

;Restore status
;Restore program counter
;Fake a return to command
; loop

MOVE SSRI,-(A7)
RTE

;Fake a new status register

The next routine gets a character from the input queue; if a character is not
available, the routine waits until one becomes available:

GETCH: MoVEM.L #60,-(A7) ;Save registers
TRYAG: oRI #0700,SR

WAIT:

LEA IBUFF,A1
MOVE CoUNT(A1),T1
BEQ WAIT
MoVEQ #O,DO
MoVEA HEAD(A1),A2
ADDQ #1,HEAD(A1)
SUBQ #1,CoUNT(A1)
ANDI #OF,HEAD(A1)
LEA QUEUE(A1),A1
MoVE.B #0(A1,A2),DO
ANDI #F8FF,SR
MoVEM.L (A7)+,#0600
RTS
STOP #2000
BRA TRYAG

The next short routine outputs a carriage return and a linefeed; the routine is
called in several places by the main program:

CF: DS "\r\n\O"

134 THE 68000 MICROPROCESSOR

CRLF: LEA CF,AO
BSR WRITS
RTS

The following routine fetches numbers of various sizes (byte, word, longword);
one of the temporary storage areas (T1) is used as a counter of the number size:

GETB: MOVE #1,T1 ;T1 is byte count

GETW:

GETL:
GB:

BLP:

N1 :

BRA GB
MOVE #3, T1
BRA GB
MOVE #7, T1
MoVEM.L #6000,-(A7)
MOVE T1 ,D2
MoVEQ #0,D1
JSR (AO)

CMP I . B #3A, DO
BLT N1
ADD.B #09,DO
ANDI.B #OF,DO
ASL. L #4 ,D1
oR.B DO,D1
DBF D2,BLP
MoVE.L D1,DO
MoVEM.L (A7)+,#6
RTS

;Save registers

;AO holds address of port
;with number
;Check for abcdef

;Place in next hex digit

;Set up return in DO
;Restore registers

The remainder of the monitor includes the routines that execute the various
commands:

;Copy memory blocks

CDMES:
CToM:
CFoRM:
CBYT:
COPY:

CoLP:

DS "\n\rCopied\O"
DS "\to\o"
DS "for\O"
DS "bytes\O"
BSR GETCH
LEA GETCH,AO
BSR GETW
MOVE DO,D2
MoVEA DO,A2
BSR GETCH
BSR GETW
MOVE DO,D3
MoVEA DO,A3
BSR GETCH
BSR GETW
SUB D3,DO
MOVE DO,D4
ADDQ #1 ,D4
MoVE.B (A3)+,(A2)+
DBF DO,CoLP

;Get past blank
;Set up for terminal input
;Get target address
;Save it

;Get past
;Get start address
;Save it
;Again
;Get past ","
;Get ending address
;Calculate byte count
;Save it

;Start moving

LEA COMES,AO
BSR WRITS
MOVE 03,00
BSR WRITW
LEA CTOM,AO
BSR WRITS
MOVE 02,00
BSR WRITW
LEA CFORM,AO
BSR WRITS
MOVE 04,00
BSR WRITW
LEA CBYT,AO
BSR WRITS
RTS

ANOTHER 68000-BASED SYSTEM 135

;Say we're done

The next routine examines and updates requested memory locations:
;Memory
MTAB:

I'I'1ES:
MPRMP:
MEQM:
MEM:

MNOAO:
MPLP:

MLP:

MMLP:

examine and update
OC.W #1,#2EOO
OC.W #1,MOOT
OC.W #1,#3000
OC.W #1,MEQU
OC.W #1,#2COO
OC.W #1 ,MCOM
OC.W #1,#2BOO
OC.W #1,#MPLU
OC.W #1,#2000
OC.W #1,MMIN
OC.W #1,#0000
OC.W #1,MLOC

; .

;=

; ,

.+ ,

;-

;<CR>

OS "\n\n\rMemory Mode\O"
OS "\n\r:\O"
OS "= = \0"
BSR GETCH
CMPI.B #00,00
BEQ MNOAO
LEA GETCH,AO
BSR GETW
BRA MPLP
MOVEQ #0,00
MOVE OO,EXAM
LEA I'I'1ES,AO
BSR WRITS
LEA MPRMP,AO
BSR WRITS
BSR GETCH
MOVEQ #5,02
LEA MTAB-4,AO
AOOQ #4,AO
CMP.B (AO),OO
OBEQ 02,MMLP

;Get delimiter
;If <CR>, then enter M

;Else get the address

;Set the address
;Start with no address
;Set the address
;Load message

;Write memory prompt

;Enter memory command loop
;Set for search

;Search loop like command

136 THE 68000 MICROPROCESSOR

MEXIT:
MDOT:

MEQU:

MCOM:

MPLU:

MMIN:

MLOC:

BNE MEX IT
MOVEA *2(AO),AO
JSR (AO)
BRA MLP
RTS
LEA GETCH,AO
BSR GETW
MOVE DO,EXAM
BSR MLOC
RTS
LEA GETCH,AO

BSR GETB
MOVEA EXAM,AO
MOVE.B DO,(AO)
BSR MLOC
RTS
ADDQ *1 ,EXAM

BSR MEQU

RTS
ADDQ *1 ,EXAM
BSR MLOC
RTS
SUBQ *1 ,EXAM
BSR MLOC
RTS
BSR CRLF
MOVE EXAM,DO
BSR WRITW
LEA MEQM,AO
BSR WRITS
MOVEA EXAM,AO
MOVE.B (AO),DO
BSR WRITB
RTS

;Exit if not found
;Get routlne address
;Branch to it
;Stay ln memory loop

;Handle setting of address
;Get address
;Set in pointer
;Print address and value

;Handle new value at
;pointer
;Get new value
;Set address
;Move new value
;Write new value

;Handle pointer increment
;by one
;Write new address and
;value

;Increment pointer
;Write value

;Decrement pointer

;Write address and value
;Wrl te address

;Write value

The next routine examines and modifies the registers:
;Regs -- Modify/examine

RTAB: DC.W *1 ,*2EOO , .
DC.W *1 ,RDOT
DC.W *1 ,*3DOO ; =
DC.W *1 ,REQU
DC.W *1 ,*ODOO ;<CR>
DC.W *1,RALL

RTAB1 : DC.W *1 ,~BOO ; Internal name/offset
DS "SR" ;Print name
DC.W *1,*9C02

RMES:
RPRMP:
REQM:
REGS:

RNOAO:

RPLP:

OS "PC"
OC.W #1,#0006
OS "00"
OC.W #1,#010A
OS "01"
OC.W #1,#020E
OS "02"
OC.W #1,0312
OC "03"
OC.W #1,#0416
OS "04"
OC.W #1,#OS1A
OS "OS"
OC.W #1,#D61E
OS "06"
OC.W #1,#0722
OS "07"
OC.W #1,#A026
OS "AO"
OC.W #1,#A12A
OS "A1"
OC.W #1,#A22E
OS "A2"
OC.W #1,#A332
OS "A3"
OC.W #1,#A436
OS "A4"
OC.W #1,#AS3A
OS "AS"
OC.W #1,#A63E
OS "A6"
OC.W #1,#A742
OS "A7"

ANOTHER 68000-BASED SYSTEM 137

OS "\n\n\rRegister Mode\O"
OS "\n\r:\O"
OS "= = \0"
BSR GETCH
CMPI.B #00,00
BEQ RNOAO
LEA GETCH,AO
BSR GETB
BSR RAOOR
BRA RPLP
LEA RTAB1 ,A3
MOVE A3,REXAM
LEA RMES,AO
BSR WRITS
BSR RLOC

;Get delimiter
;If <CR>, then start at SR

;Else set for terminal input
;Get register name
;Set address
;Set register pointer
;Set default pOinter value

;Sayhello

;Write starting location
;value

138 THE 68000 MICROPROCESSOR

RLP:

RMLP:

REXIT:
RDOT:

REQU:

REQUS:

REQUR:

RALL:

RALP:

RADDR:

RADLP:

RLOC:

LEA RPRMP,AO
BSR WRITS
BSR GETCH
MOVEQ *2,D2
LEA RTAB-4,AO
ADDQ *4,AO
CMP.B (AO),DO
DBEQ D2,RMLP
BNE REXIT
MOVEA *2(AO),AO
JSR (AO)
BRA RLP
RTS
LEA GETCH,AO
BSR GETB
BSR RADDR
BSR RLOC
RTS
LEA GETCH,AO
MOVEA REXAM,A3
MOVEQ *0,D1
MOVE.B *1(A3),D1
BEQ REQUS
BSR GETL
LEA SR,A4
ADDA D1 ,A4
MOVE. L DO, (A4)
BRA REQUR
BSR GETW
MOVE DO,SR
BSR RLOC
RTS
LEA RTAB1-4,A3
MOVEQ *11 ,D2
ADDQ *4,A3
MOVE A3,REXAM
BSR RLOC
DBF D2,RALP
RTS
MOVE *11 ,D4
LEA RTAB1-4,A3
ADDQ *4,A3
CMP.B (A3),DO
DBEQ D4,RADLP
BNE REXIT
MOVE A3,REXAM
RTS
BSR CRLF

;Write register prompt

;Get command
;Set for search

;Search

;Exit if not found
;Found it, if so, go to it

;Go again

;Set register pointer

;Set input address
;Write register and value

;Set new value

;Clear D1
;Get offset
;Branch if SR is register
;Get new value
;Find save area offset
;Add offset
;Move in new value
;Print it
;Same as above but for SR

;Write new value

;Write all registers
;Set count
;Loop

;Find offset in save area

;Set register pointer

;Print register name and
;value

MOVEA REXAM,A4
MOVE.B #2CA4),DO
BSR WRIT
MOVE.B #3CA4),DO
BSR WRIT
LEA REQM.AO
BSR WRITS
MOVEQ #O,DO
MOVE.B #1CA4),DO
BEQ RPSR
LEA SR,AO
ADDA DO,AO
MOVE.L CAO),DO
BSR WRITL
BRA RRTS

ANOTHER 68000-BASED SYSTEM 139

;Write name

;Write value
;Branch if SR
;Find offset
;Add offset
;Move in new value

RPSR: MOVE SR,DO ;Write SR value
BSR WRITW

RRTS: RTS
The next set of instructions loads a program via the serial communication port

(loading is carried out in S-Format, which is described fully in the Appendix A):
;Load data via the serial communication port

LMES:
SLMES:
ELMES:
LOAD:

LNOOF:
LD1 :

LLP:

DS "\n\rLoad ... \O"
DS "\n\rUser PC = = \0"
DS "\n\rLoad Done ... \O"
BSR GETCH ;Get delimiter
CMPI.B #OD,DO ;If <CR>, then no offset
BEQ LNOOF
LEA GETCH,AO ;Get offset
BSR GETW
MOVE.L DO,PC ;Save load point for go

BRA LD1
MOVE. L #O,PC
LEA LBUFF,A1
MOVE #0,HEADCA1)
MOVE *fFFF,TAILCA1)
MOVE #0,COUNTCA1)
LEA LMES,AO
BSR WRITS
BSR LGCH
CMPI.B #53,DO
BNE LLP
BSR LGCH
CMPI.B #39,DO
BEQ LDONE
CMPI.B #31,00
BNE LLP
LEA LGCH,AO

; command

;Point at LBUFF
;Set gueue for lp

;Print starting message

;Get S

;No -- start over
;Get one or nine
;Nine, then done

;One, then another record

;Setup for GETB and GETW

140 THE 68000 MICROPROCESSOR

BSR GETB
MOVE DO ,D1
SUBG #4 ,D1
BSR GETW
ADD.L PC,DO
MOVE A DO,A1

LBLP: BSR GETB
MOVE.B DO,CA1)+
DBF D1 ,LBLP
BSR GETW
BRA LLP

LDONE: BSR LGCH
BSR LGCH
BSR GETW

LREG:

LL2:

ADD.L PC,DO
MOVE DO ,D1
MOVE.L DO,PC

MOVE #O,SR
MOVE #10,DO
LEA DO ,A1
MOVE.L #0,CA1)+
DBF DO,LREG
LEA USTCK,AO
MOVE.L AO,A7
LEA SLMES,AO
BSR WRITS
MOVE D1 ,DO
BSR WRITW
MOVE #03,D1
BSR LGCH
DBF D1,LL2
LEA ELMES,AO
BSR WRITS
RTS

;Get byte count

;Remove count for check

;Add offset
;Save starting address
;Get actual data byte
;Move to memory
;Loop for count
;Gobble up check and crlf
;Try another record
;Gobble up byte count

;Get address from end
;macro
;Add offset
;Save it
;Set starting address for
;go
;Set status register

;Set user stack
;Write message

;Write starting address
;Gobble up last four bytes

;Send last message

The lie" command allows the system to enter a terminal emulator mode. Thus,
any character other than ctrl-x may be sent to a host system. The character ctrl-x
is the escape sequence for getting out of the terminal emulator mode. The Ctrl-I
character serves the same purpose, but a load (1) command is placed in the
command buffer.

The emulation routine is short. Storage is assigned for two messages. The
emulator mode message is displayed first, and the system waits for an interrupt.
If the interrupt is received, the interrupt-handling routine will save in the buffer
any input character and display it on the screen. At the end of the interrupt­
handling routine, the emulation routine will display the termination message and
return to the main program.

ANOTHER 68000-BASED SYSTEM 141

;e -- Emulation routine

EMMES:
ENMES:
EMUL:

EMU1 :

OS "\n\rExit terminal mode\O"
OS "\n\rTerminal mode:\n\r\O"
LEA ENMES,AO ;Write starting message
BSR WRITS
BSET #3,BKPTF
STOP #2000

;Set emulator mode
;Wai t for interrupt. If
;interrupted, the interrupt
;routine will buffer and
;echo input

BRA EMUL
EMUON: LEA EMMES,AO ;Entered from interrupt

;handler
BSR WRITS
RTS

The next set of instructions allows the use of prototype commands, designed
by a programmer; the command is executed while the VU68K is in system mode:

;Proto -- Prototype command in RAM

PMESS:
PM1 :
PM2:
PROTO:

PRUN:

PRTS:

OS "\n\rPrototype\O"
OS "running:\n\r\O"
OS "installed\r\O"
BSR GETCH
MOVE.L 00,01
ANOI #OF ,01
SUBQ #1,01
LSL #1,01
LEA PTAB,A1
AOOA 01,A1
BSR GETCH
CMPI.B #00,00
BEQ PRUN
LEA GETCH,AO
BSR GETW
MOVE 00,(A1)
LEA PMESS,AO
BSR WRITS
LEA PM2,AO
BSR WRITS
BRA PRTS
MOVEA (A1),A1
LEA PMESS,AO
BSR WRITS
LEA PM1,AO
BSR WRITS
JSR (A1)
RTS

;Get prototype number
;Save number
;Strip leading hex digit
;Normalize to zero
;Multiply by two
;Set starting address
;Add offset
;Get del imi ter
;If <CR>, then do command

;Else install in table
;Get address
;Move in address

;Run prototype command

;Go do it

142 THE 68000 MICROPROCESSOR

The following routine sets and removes breakpoints. This routine and the mem­
ory dump routine are perhaps the longest. The breakpoint routine expects a char­
acter in DO. If this character is a carriage return, then all of the existing break­
points are listed. The routine next makes two comparisons in order to add (+)
or remove (-) a breakpoint. A #sign following the "b" command will remove
the breakpoints and display the message, "breakpoints removed." The routine
discards any characters not associated with it and displays an error message.

;Bkpt -- Set/Remove breakpoints

BRMES:
BOMES:
BPMES:
El"MES:
BBMES:
BKIN:
BKPT:

BREM:

BLP1 :

BND:

BRND:

BOIS:

OS "\n\rBkpts removed\O"
OS "\n\rBkpts at:\n\r\O"
OS "\n\rBkpt added at \0"
OS "\n\rBkpt deleted at \0"
OS "\n\rBkpt error \0"
BKPT ;Instruction constant
BSR GETCH ;Get delimiter
CMPI.B *00,00 ;If <CR>, then print all

BEQ BOIS
CMPI.B *2B,00
BEQ BPLS
CMPI.B *20,00
BEQ BMIN
CMPI.B *23,00

BNE BBAO
MDVEQ *4,01
LEA BKTAB-4,A1
AOOA *4,A1
MDVEA ILDCCA1),AO
CMPA *OO,AO
BEQ BND
MOVE INSTRCA1),CAO)

MDVE.L *0,INSTRCA1)
BOF 01 ,BLP1
BCLR *O,BKPTF

BTST *2,BKPTF
BNE BRND
ANOI *7FFF,SR
LEA BRMES,AO
BSR WRITS
BRA BRTS
LEA BDMES,AO
BSR WRITS
LEA BKTAB-4,A1
MDVEQ *4,01

;breakpoints

; 1 f +, add a breakpoi nt

;If - delete a breakpoint

If *, delete all break­
;points
;Else it's a bad message
;Remove all breakpoints
;Set for loop

;Get address from table
;If zero, then not an entry

;Else move instruction
;back
;Clear table entry
;Loop
;Clear breakpoint if in
;one
;In trace?
;Yes
;Else clear trace bit
;Say done

;Oisplay all breakpoints

;Set loop

BDLP:

BELP:

BPLS:

B12:

B'10:

BFND:

B'1IN:

B13:

ADDA #4,A1
MOVE ILOC(A1),DO
BEQ BELP
BSR WRITW
BSR CRLF
DBF D1 ,BDLP
BRA BRTS
LEA BKTAB-4,A1
MOVE #4,D1
LEA GETCH,AO
BSR GETW
ADDA #4,A1
CMP ILOC(A1> ,DO

BNE B'10
MOVEA DO,A2
MOVE BKIN,(A2)
BRA BFND
MOVE ILOC(A1),D2

DBEQ D1,B12
BNE BBAD

MOVE DO,ILOC(A1)
MOVEA DO,A2
MOVE (A2),INSTR(A1)
MOVE BKIN,(A2)
LEA BPMES,AO
BSR WRITS
MOVE A2,DO
BSR WRITW
BCLR #1 ,BKPTF
BTST #2, BKPTF
BNE BRTS
ANDI #7FFF,SR
BRA BRTS
LEA BKTAB-4,A1
MOVE #4,D1
LEA GETCH,AO
BSR GETW
ADDA #4,A1
CMP ILOC(A1),DO
DBEQ D1,B13

BNE BBAD
MOVEA DO,A2
MOVE INSTR(A1),(A2)
MOVE.L #0,INSTR(A1)
BTST #O,BKPTF

ANOTHER 68000-BASED SYSTEM 143

;Loop
;Get breakpoint
;If zero, then not an entry

;Loop

;Add a breakpoint
;Set for loop
;Set up to get address

;Loop
;Found entry already in
;table?
;Yes
;Reset it to make sure
;Set instruction
;Exit for found
;Move to set condition
;codes
;Exit if zero entry found
;If exit is on count and
;not zero
;Move in address
;Point at location
;Get instruction into table
;Set breakpoint instruction
;Load message

;Clear in-single flag
; In trace?
;Yes
;Clear trace bit

;Delete a breakpoint entry
;Set up for search
;Set up for terminal input

;Loop
;Is this the one?
;If yes, then exit,
;else loop
;Exit on count?
; No, so get address
;Return instruction
;Clear table entry
;In breakpoint?

144 THE 68000 MICROPROCESSOR

BDK:

BBAD:

BEQ BDK
CMP.L PC,DO
BNE BDK
BCLR *O,BKPTF
BTST *2,BKPTF
BNE BDK
ANDI *7FFF,SR
LEA BMMES,AO
BSR WRITS
MOVE A2,DO
BSR WRITW
BRA BRTS
LEA BBMES,AO
BSR WRITS

BRTS: RTS

;No
;Yes, this breakpoint?
;No
;Yes, so clear handling it
; In trace?
;Yes
;Else clear trace flag
;Load message

;Print address

;Error handler

A memory dump can be displayed in the following three ways:
1. By invoking the lid" command and a carriage return, the 64 bytes following

the location last examined will be displayed.
2. By invoking the lid" command, an address, and a carriage return, the 64

bytes next following the address requested will be displayed.
3. By invoking the lid" command, a starting address, and an ending address,

the bytes between the two addresses will be displayed.
The screen displays rows of 16 bytes, numbered at the top row from 0 to F.

The starting address of each row is displayed in a left-hand column. If a byte
is equivalent to an ASCII character, this character is displayed on the right-hand
side of the screen. Any non-ASCII bytes are displayed as dots.

The first lines of the routine define the storage for the memory dump message,
the 0 to F numbers of the top row, and a carriage return and linefeed.

; Dump -- Dump memory

DMES: DS "\n \n \rMemory Dump \n \r \0"
DHED: DS "\n\r ° 1 2 3"

DS II 4 5 6 7 8 9 A"
DS II BCD E F"

DCR: DS l\n\r\O"
The DUMP portion of the routine expects the command character; if the char­

acter is a carriage return, then the routine performs a dump from the starting
pointer. If the character is not a carriage return, the routine jumps to DEXAM. If
the character is a (cn, the routine saves the ending address and adds 64 to the
starting address for the length of the dump. The actual dump is carried out by
the DGO) portion of the routine.

DUMP: LEA GETCH,AO
BSR GETCH
CMPI.B *OD,DO

BNE DEXAM
MDVEA EXAM,A1
MDVEA A1 ,A2

;Set for terminal input
;Get delimiter
;If <er>, then dump from
;pointer
;Else get address
;Get exam
;Save it for ending address

ANOTHER 68000-BASED SYSTEM 145

ADDA #40,A2 ;Add 64 for length of dump
BRA DGo ;Go do it

The DEXAM portion of the routine takes care of the remaining two ways by
which to display a memory dump-"d" <address> and "d" <starting address>,<end­
ing address>. DEXAM does this by examining the delimiter at the end of the first
address.

DEXAM: BSR GETW
MOVE A DO,A1
BSR GETCH
CMP! . B #2C, DO

;Get starting address

;Get delimiter
;If ",", then get ending
;address

BNE DCoM
BSR GETW ;Get address
MOVE A DO,A2 ;Save it
BRA DGo ;Do a dump

The DeOM part of the routine provides 64 bytes of dump in those cases in
which only one address has been entered:

DCoM: MoVEA A1,A2 ;Default to 64 byte dump
ADDA #40,A2

DGO begins by displaying the memory dump message and the 0 to F in the top
row. It continues by setting the boundary of the dump to 16 bytes and rounding
the ending address to that boundary. Finally, DGO moves the byte count (0 to 15)
to 01.

DGo: LEA DMES,AO
BSR WRITS
LEA DHED,AO
BSR WRITS
MOVE A1,DO

AND!.B #FO ,DO
MoVEA DO,A1
MOVE A2,DO

oR!.B #OF ,DO
MoVEA DO,A2

;Display message

;Print top row hex nos.

;Set starting address at
;16 bytes

;Round ending address to
;boundary

MOVE #OF ,D1 ;Move byte count to D1
The next segment in the routine is 011, which writes out the starting address

and saves it in A3.
D11: MOVE A1,DO ;Write starting address

BSR WRITW
MoVEA A1,A3 ;Save starting address

Segment DFLP does the actual writing of the bytes on the screen. This part first
outputs a space between the starting address of each row and the byte following
the address value and then continues by getting the next byte and leaving a space
between bytes. When the 16-byte count is reached, DFLP resets the counter, gets
another row starting address, and outputs a space.

DFLP: MOVE #20,DO ;Write a space

146 THE 68000 MICROPROCESSOR

BSR WRIT
MOVE.B (A1)+,DO
BSR WRITB
DBF D1 ,DFLP
MOVE *OF ,D1
MOVEA A3,A1
MOVE *20,DO
BSR WRIT

;Get next byte
;Write it
;Loop
;Reset byte count
;Refetch starting address
;Write a space

The next three segments-OSlP, OOK, and OWRT -write the ASCII character
or the dot on the right-hand side of the screen. The last segment, OWRT, checks
for the end of a line in order to generate a carriage return/linefeed to the next line.
The segment also resets the byte count; if the 16 bytes have not been displayed,
it loops back for more bytes.

DSLP: MOVE.B (A1)+,DO

DOK:

DWRT:

CMPI.B *20,DO

BGE DOK
MOVE.B *2E,DO
BRA DWRT
CMPI.B *7F,DO
BLT DWRT
MOVE.B *2E,DO
BSR WRITS
DBF D1 ,DSLP
LEA DCR,AO
BSR WRITS
MOVE *10 ,D1
CMPA A1,A2
DBL T D1,D11
MOVE A1 ,EXAM
RTS

;Write the byte ASCII
;eguivalent
;If not printable, then
;dot

;Move in the dot

;Printable again?
;Yes
;No, move in a dot
;Write it
;line done?
;Yes, so crlf

;Reset byte count
;Done?
;No, so loop
;Yes, so update exam

The trace mode segment starts by displaying the Trace On or Trace Off message
as soon as the appropriate character is entered (T + or T -). The TRACE segment
determines whether the system is in breakpoint mode. If so, then the trace mode
is not cancelled since both modes are allowed to be present simultaneously. If the
system is not at a breakpoint, the trace is cleared, and the next segment (TClR)
carries out the clearing of the trace mode.

TMES: DS "\n\rTrace \0"
TONM: DS "on\O"
TOFFM: DS "off\O"
TRACE: BSR GETCH

MOVE DO ,D1
LEA TMES,AO
BSR WRITS
CMPI.B *2B,D1
BEQ TON
BTST *O,BKPTF
BNE TCLR

;Get command
;Save it
;Write message

;Isita+?
;Yes
;In breakpoint?
;Yes, so don't clear trace

ANOI *7FFF,SR
TCLR: BCLR *2,BKPTF

LEA ToFFM,AO
BRA TOONE

TON: oRI *BOOO,SR
BCLR *1 ,BKPTF
BSET *2,BKPTF
LEA ToNM,Ao

TOONE: BSR WRITS
RTS

ANOTHER 68000-BASED SYSTEM 147

;Clear trace
;Turn off in-trace flag
;Load off message
;Exit
;Set trace bit
;Clear single step
;Set in-trace flag
;Write message

The single-step segment accomplishes basically the same task as the trace
mode. The single-step mode, however, removes all breakpoints and turns the
trace off. The segment begins by reserving storage for the header.

SMES: OS "\n\rSingle step\O"
SoNM: OS "on\O"
SoFFM: OS "off\O"

The SINGL segment, which is similar to the TRACE segment, accepts and
saves the command character, displays the header, and checks whether the next
character is a "+ ". If it is, the single-step mode begins. The segment ends by
checking whether the program also has breakpoints. If a breakpoint is present,
the trace mode (also associated with single-stepping) is not turned off. If there
are no breakpoints, the segment clears the trace bit.

SINGL: BSR GETCH ;Get command
MOVE 00,01 ;Save it
LEA SMES,AO ;Write message
BSR WRITS
CMPI.B *2B,01 ;Is it a "+"?
BEQ SON ;Yes
BTST *0, BKPTF ;In breakpoint?
BNE SCLR ;Yes, so don't clear trace
ANOI *7FFF,SR ;Clear trace bit

The segment SCLR clears the single-trace flag, displays a "single-trace off"
message, and ends the single-step mode:

SCLR: BCLR *1,BKPTF
LEA SoFFM,AO
BSR WRITS

;Turn off in-single flag
;Write off message

BRA SOoNE ;Exit
The SON segment sets the stage for the single-step mode. The segment clears

the breakpoint flag and sets the single-step flag. SON clears the trace-mode flag
and displays the "single step on" message. Finally, the segment removes all
breakpoints and sets the trace bit in the status register.

SON: BCLR *O,BKPTF ;Clear in-breakpoint flag
BSET *1,BKPTF ;Set in-single flag
BCLR *2,BKPTF ;Clear in-trace flag
LEA SoNM,AO ;Write message
BSR WRITS
BSR BREM

oRI *BOOO,SR

;Remove all breakpoints
;for single stepping
;Set trace bit

148 THE 68000 MICROPROCESSOR

The SDONE segment exits to the main program:
SDONE: RTS

The "go" mode of the monitor executes a program either from the starting
address of the last load or from an address that a value following the "g" com­
mand specifies.

The routine starts with the GMES segment, reserving space for the message
"Program:". The segment then accepts a character and checks whether it is a
carriage return. If it is, execution starts at the address given in the command of
the last known address from load, breakpoint, or single step. If the character is
not a carriage return, then execution begins from the address specified in the
command.

GMES: DS "\cProgram:\n\n\r\O"
GO: BSR GETCH ;Get separator

CMPI.B *OD,DO ;If <CR>, then start from
;default

BEQ GGO
GGET: LEA GETCH,AO

BSR GETW

;Else get starting address
;as given in command

MOVE.L DO,PC ;Set for return
The GGO segment displays the message "Program:"; however, it does so only

if the program is not in single-step mode.
GGO: BTST *1,BKPTF

BNE GNOM
LEA GMES,AO
BSR WRITS

;Single step?
;Yes, so no message
;Write message

The last segments-GNOM and GBMOV-perform some stacking operations.
They also set the return address for the program counter and the return pattern
for the status register and enable the interrupts.

GNOM: ADDQ #4,A7 ;Pop the stack
MOVEM.L DO,*7FFF ;Get saved values
MOVE.L A7,T1 ;Save system-stack pointer
MOVEA.L A7,A7 ;Get saved user-stack

MOVE A7,USP
MOVEA.L T1,A7

GBMOV: MOVE.L PC,-(A7)
AND! *FBFF,SR
MOVE SR,-(A7)
RTE

;pointer
;Reset user stack
;Reset system stack
;Set up return PC
;Enable interrupts
;Set up return SR

The last part of the VUBUG lists the various interrupt, trap, and other handling
routines.

;Generic trap handler

GHMES:
GHLR:

DS "\n\rTrap at \0"
MOVEM.L *FFFF,DO
MOVE USP,A6

;Save all registers
;Get and save user-stack
;pointer

GHPR:
GHPR1 :

MoVE.L AS,A7
MOVE (A7)+,SR
MoVE.L (A7)+,PC
PEA CoMM
MOVE SSRI, -(A7)
LEA GHMES,AO
BSR WRITS
MoVE.L PC,DO
BSR WRITL
RTE

;Breakpoint handler

ANOTHER 68000-BASED SYSTEM 149

;Save current SR
;Save current return value
;Set for return to command
;Enable interrupts on return
;Write message

BHMES: DS "\n\rBreakpoint at \0"
BININ: DS "\n\rBad Instruction at \0"
BHLR: MOVE SSRN,SR ;Disable interrupts

MoVEM.L #FFFF,DO ;Save registers
MOVE USP,AS ;Get and save user-stack

;pointer
MoVE.L AS,A7
MOVE (A7)+ ,SR
MoVE.L (A7)+,PC
PEA CoMM
MOVE SSRI,-(A7)
MoVEA.L PC,AO
CMPI #FFFF,(AO)

BEQ BSND
LEA BININ,AO
BRA GHPR1

BSND: LEA BHMES,AO
BSR WRITS
MoVE.L PC,DO
BSR WRITW
BSR CRLF
LEA BKTAB-4,A1
MOVE #4 ,D1
MoVE.L PC,DO

BHL: ADDA #4,A1
CMP ILoC(A1),DO
DBEQ D1 ,BHL
BNE BHRTE
MoVEA DO,A2
MOVE INSTR(A1),(A2)
oRI #8000,SR
BSET #O,BKPTF

BHRTE: RTE

;Trace handler

;Save Status Register
;Save Program Counter
;Set for return to command
;Enable interrupts on return
;Get PC on interrupt
;Was interrupt caused by
;breakpoint input?
;Yes
;No, invalid instruction
;Go write message
;Write breakpoint message

;Find the breakpoint entry
;Maximum of five
;This is where it happened

;Is this the entry?
;Loop if not
;Not found, so quit
;Point at it
;Move instruction back in
;Set trace mode on
;Set in-breakpoint flag

150 THE 68000 MICROPROCESSOR

TLOCM:
THLR:

THMAO:

TREAL:

TRPR:

TRTE:

TR:

os "\n\rPC == \0"
MOVE SSRN,SR
MOVE.L AO,AO
MOVE.L 00,00
BTST #O,BKPTF
BEQ TREAL
MOVEA.L PC,AO
MOVE BKIN,(AO)
BCLR #O,BKPTF

BTST #2,BKPTF
BNE TREAL
ANDI #7FFF ,(A7)

BRA TRTE
MOVE.L #2(A7),PC

BTST #1 ,BKPTF
BEQ TRPR
MOVEM.L #FFFF,DO
MOVE USP,A6

MOVE.L A6,A7
MOVE (A7)+,SR
MOVE.L (A7)+,PC
PEA COMM
MOVE SSRI,-(A7)
LEA TLOCM,AO
BSR WRITS
MOVE.L PC,DO
BSR WRITL
MOVEA.L AO,AO
MOVE. L DO, DO
RTE

;Privilege violation handler

;Disable interrupts
;Save used registers

;Handling a breakpoint?
;No, so it's a real trace
;Yes, find where it occurred
;Reset breakpoint instruction
;Clear in-progress break­
;point
;In trace mode
;Yes, go trace it
;No, so clear the trace
;bit

;Not (just) a breakpoint
;but trace or single step
;Trace?
;Yes
;No, single step
;Save registers and stack
;pointer

;Save Status Register
;Save PC
;Fake return to command
;Enable interrupts on return
;Write message

;Restore used registers

PRMES:
PHLR:

OS "\n\rPrivi!ege Error at \0"
MOVEM.L #FFFF,DO

PRPR:

MOVE USP,A6
MOVE.L A6,A7
MOVE (A7)+ ,SR
MOVE.L (A7)+,PC
PEA COMM
MOVE SSRI,-(A7)
LEA PRMES,AO
BRA GHPR1

;Address error/bus error trap

ABMES:
ABHLR:

ABPR:

;Macro

;Exit

TEXIT:

;Getb

TGETB:

;Getw

TGETW:

;Getl

TGETL:

;Wrtb

TWRTB:

;Wrtw

ANOTHER 68000·BASED SYSTEM 151

OS "\n\rAddress Error at \0"
MOVEM.L #FFFF,OO
MOVE.L A6,A7
MOVE o#8(A7) , SR

MOVE.L #A(A7),PC
PEA COMM
MOVE SSRI,-(A7)
LEA ABMES,AO
BRA GHPR1

instruction handlers

MOVEM.L #FFFF,OO
MOVE USP,A6
MOVE.L A6,A7
MOVE (A7)+,SR
MOVE.L (A7)+,PC
LEA STACK, A7
PEA COMM
MOVE SSRI,-(A7)
RTE

LEA GETCH,AO
BSR GETB
RTE

LEA GETCH,AO
BSR GETW
RTE

LEA GETCH,AO
BSR GETL
RTE

BSR WRITB
RTE

;Same as above but ...
;Status Register is deeper
;in stack
;50 is PC

;Save register values
;Save user-stack pointer

;Save Status Register
;Save PC
;Reset system mode stack
;Fake return to command
;00 same for status

152 THE 68000 MICROPROCESSOR

TWRTW: 8SR WRITW
RTE

;Wrtl

TWRTL: 8SR WRITL
RTE

;Getc

TGETC: 8SR GETCH
RTE

;Wrts

TWRTS: 8SR WRITS
RTE

;Wrtc

TWRTC: 8SR WRIT
RTE

;Crlf

TCRLF: 8SR CRLF
RTE

END START
The monitor set forth in this chapter has been assembled and tested. A listing

of the object code is provided in the Appendix for those readers who wish to
program EPROM devices without having to assemble the code.

Appendix A
S-RECORD OUTPUT FORMAT

The S-record format for output modules was devised for the purpose of encoding
programs or data files in a printable format for transportation between computer
systems. The transportation process can thus be visually monitored and the S­
records more easily edited.

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of sev­
eral fields that identify the record type, record length, memory address, code/data,
and checksum. Each byte of binary data is encoded as a 2-character hexadecimal
number: the first character representing the high-order 4 bits of the byte, and the
second, the low-order 4 bits.

The 5 fields that comprise an S-record are shown below:

record length code/data

where the fields are composed as follows:

FIELD

Type

Record length

Address

Code/data

Checksum

PRINTABLE
CHARACTERS CONTENTS

2 5-record type: 50, 51, etc.

2 The count of character pairs in the record, excluding type and
record length.

4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be
loaded into memory.

0-2n From 0 to n bytes of executable code, memory-Ioadable data, or
descriptive information. For compatibility with teletypewriters,
some programs may limit the number of bytes to as few as 28
(56 printable characters in the 5-record).

2 The least Significant byte of the one's complement of the sum
of the values represented by the pairs of characters making up
the record length, address, and code/data fields.

153

154 THE 68000 MICROPROCESSOR

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record
may have an initial field to accommodate other data, such as line numbers gen­
erated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs
of the encoding, transportation, and decoding functions. The various Motorola
upload, download, and other record transportation control programs, as well as
cross assemblers, linkers, and other file-creating or debugging programs, utilize
only those S-records that serve the purpose of the program. For specific infor­
mation on which S-records are supported by a particular program, the user's
manual for that program must be consulted. TUTOR-the firmware supplied with
the educational computer-supports SO, S1, S2, S8, and S9 records. The S2 and
S8 records are not often used, however, because all of the on-board RAM and
ROM can be addressed with a 2-byte address.

An S-record-format module may contain S-records of the following types:

SO The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of S­
records. Under VERSAdos, the resident linker's IDENT command can be
used to designate module name, version number, revision number, and
description information that will make up the header record. The address
field is normally made up of zeros.

S1 A record containing code/data and the 2-byte address at which the code/data
is to reside.

S2 A record containing code/data and the 3-byte address at which the code/data
is to reside.

S3 A record containing code/data and the 4-byte address at which the code/data
is to reside.

S5 A record containing the number S1, S2, and S3 records transmitted in
a particular block. This count appears in the address field; there is no
code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which control is
to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which control is
to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which control
is to be passed. Under VERSAdos, the resident linker's ENTRY command
can be used to specify this address. If not specified, the first entry point

APPENDIX A 155

specification encountered in the object module input will be used. There is
no code/data field.

Only one termination record is used for each block of S-records. As a rule,
S7 and S8 records are used only when control is to be passed to a 3- or 4-byte
address. Normally, only one header record is used, although it is possible for
multiple header records to occur.

CREATION OF S-RECORDS

S-record-format programs may be produced by several dump utilities, debuggers,
VERSAdos' resident linkage editor, or several cross assemblers or cross linkers.
On EXORmacs, the Build Load Module (MBLM) utility allows an executable load
module to be built from S-records and has a counterpart utility in BUILDS, which
allows an S-record file to be created from a load module.

Several programs are available for downloading a file in S-record format from
a host system to an 8-bit or 16-bit microprocessor-based system. Programs are
also available for uploading an S-record file to or from an EXORmacs system.

EXAMPLE

Shown below is a typical S-record-format module, as printed or displayed:
S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The module consists of one SO record, four S1 records, and an S9 record.
The SO record is comprised of the following character pairs:

SO S-record type SO, indicating that it is a header record
06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or ASCII

bytes) follow
00
00 Four-character 2-byte address field, zeros in this example

48
44 ASCII H, D, and R - "HDR"
52
1 B The checksum

The first S1 records is explained as follows:

S1 S-record type S1, indicating that it is a code/data record to be loaded/verified
at a 2-byte address

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs, repre­
senting 19 bytes of binary data, follow

156 THE 68000 MICROPROCESSOR

00 Four-character 2-byte address field; hexadecimal address 0000,
00 where the data that follows is to be loaded

The next 16 character pairs of the first 51 record are the A5CII bytes of the
actual program code/data. In this assembly language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the 51
records:

OPCODE INSTRUCTION

285F
245F
2212
226A0004
24290008
237C

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

(The balance of this code is continued in the
code/data fields of the remaining Sl records
and stored in memory location 0010. etc.)

2A The checksum of the first Sl record.

(A7)+.A4
(A7)+.A2
(A2),Dl
4(A2),Al
FUNCTION (Al), D2
#FORCEFUNC.FUNCTION(A 1)

The second and third 51 records each also contain $13 (19) character pairs and
are ended with checksums 13 and 52, respectively. The fourth 51 record contains
07 character pairs and has a checksum of 92.

The 59 record is explained as follows:

59 5-record type 59, indicating a termination record
03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow

88 The address field, zeros

FC The checksum of the 59 record

Each printable character in an 5-record is encoded in hexadecimal (A5CII in
this example) representation of the binary bits which are actually transmitted. For
example, the first 51 record above is sent as shown by the table on the following
page.

... U
'I

I
s
~~

,

s
s

"
3
4

: ,
 I :

•
4

.

,

le
n

g
th

a

d
d

re
s

s

c
o

d
e

/d
a

ta

-
-

-
-
-
-
-
-
-

c
h

e
c

k
s

u
m

-
-

1
--

--
-

--
-
-
-
-

--

2
A

F

B.1INTRODUCTION

Appendix B
INSTRUCTION SET DETAILS

This appendix contains detailed information about each instruction in the MC68000 in·
struction set. They are arranged in alphabetical order with the mnemonic heading set in
large bold type for easy reference.

B.2 ADDRESSING CATEGORIES

Effective address modes may be categorized by the ways in which they may be used. The
following classifications will be used in the instruction definitions.

Data If an effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.

Memory If an effective address mode may be used to refer to memory operands, it is
considered a memory addressing effective address mode.

Alterable If an effective address mode may be used to refer to alterable (writable)
operands, it is considered an alterable addressing effective address mode.

Control If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.

Table B·1 shows the various categories to which each of the effective address modes
belong.

Table B·1. Effective Addressing Mode Categories

Addressing Mode Mode Register
Addressing Categories Assembler

Dote Memory Control Alterable Syntax

Data Register Direct ()()() reg. no. X - - X On
Address Register Direct 001 reg. no. - - - X An
Address Register Indirect 010 reg. no. X X X X (An)

Address Register Indirect With 011 reg. no. X X - X (An)+
Postincrement

Address Register Indirect with 100 reg. no. X X - X -(An)
Predecrement

Address Register Indirect with 101 reg. no X X X X dIAn)
Displacement

Address Register Indirect with 110 reg. no. X X X X dIAn, IX)

Index
Absolute Short 111 ()()() X X X X xxx.w
Absolute Long 111 001 X X X X xxx.L

Program Counter with 111 010 X X X - d(PC'
Displacement

Program Counter with Index 111 011 X X X - d(PC, ix)
Immediate 111 100 X X - - 'xxx

159

These categories may be combined so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

B.3 INSTRUCTION DESCRIPTION

The formats of each instruction are given in the following pages. Figure B-1 illustrates
what information is given.

Instruction Name ------" ABeD AcId Decimal

Operation Description in RTL __________ _
" Operation: (Source)1O + (Destination)1O +)

(see paragraph B.4)
_Aa .. mbler ABCD Dy, Ox

_--------Syntax: ABCD - (Ay), - (Ax)
Assembler Syntax for this Instruction

Text Description of Instruction Operation

Attrlbut •• : Size = (Byte)

Description: Add the source operand to the
bit, and store the result in the d
ed using binary coded decimal
in two different ways:

1. Data register to data re!
registers specified In th

2. Memory to memory: Th
ment addressing mode I
struction.

This operation is a byte operal

Condition Codes Effects (see Appendix A)------· Condition Coda.: X N Z V C
1-lul-lul-1

N Undefined.
Z Cleared if the result is nOI
V Undefined.
C Set if a carry (deCimal) wa
X Set the same as the carry

~
Normally the Z conditiol

Ing before the start of a
cessful tests for zero

.............. multlple·preclsion operatic
............ Instruction Formet:

Instruction Format - Specifies the bit pattern
and fields of the operation word and any other
words which are part of the instruction. The ef­
fective address extensions are not explicitly il­
lustrated. The extensions (if there are any) would
follow the illustrated portions of the instruc-
tions. For the MOVE instruction, the source et- 15 1. 13 12 11 10 9 8

11 11 1 0 1 0 1 RegRixster 1 ; fective address extension is the first, followed
by the destination effective address extension. Instruction Fields:

/

Register Rx field - Specifies
If RIM = 0, specifies a dat,
If RIM = 1, specifies an ad,
ing mode.

• • RIM field - Specifies the opel
Meanings and allowed values of the vanous 0 - The operation is dats

fields required by the instruction format. 1 - The operation is men
Register Ry field - Specifies

If RIM = 0, specifies a dat,
If RIM = 1, specifies an ad,
ing mode.

Figure B·1. Instruction Description Format

160

8.4 REGISTER TRANSFER LANGUAGE DEFINITIONS

The following register transfer language definitions are used for the operation descrip·
tlon in the details of the instruction set.

OPERANDS:
An - address register SSP - supervisor stack pOinter
On - data register USP - user stack pOinter
Rn - any data or address register SP - active stack pOinter (equivalent to A7)
PC - program counter X - extend operand (from condition
SR - status register codes)
CCR - condition codes (low order byte of Z - zero condition code

status register) V - overflow condition code
Immediate Data - immediate data from the instruction
d - address displacement Destination - destination effective address
Source - source effective address Vector - location of exception vector

SUBFIELDS AND QUALIFIERS:
< bit> OF< operand> selects a single bit of the operand
<operand>[<blt number>:<blt number» selects a subfield of an operand
« operand>) the contents of the referenced location
< operand> 10 the operand is binary coded decimal; operations are to be performed

« address register»
- « address register»

« address register>)+

in decimal.
the register indirect operator which indicates that the operand reo
gister points to the memory location of the instruction operand. The
optional mode qualifiers are -, +, (d) and (d, ix); these are explained
in Section 2.

OPERATIONS: Operations are grouped into binary, unary, and other.

Binary - These operations are written < operand> < op > < operand> where < op > is one of the
following:

the left operand is moved to the location specified by the right operand
the contents of the two operands are exchanged

+ the operands are added
the right operand Is subtracted from the left operand
the operands are multiplied

I the first operand is divided by the second operand
A the operands are logically ANOed
v the operands are logically ORed
49 the operands are logically exclusively ORed
< relational test, true If left operand Is less than right operand
> relational test, true If left operand Is not equal to right operand
shifted by the left operand is shifted or rotated by the number of positions specified by the
rotated by right operand

Unary:
- <operand>
< operand> slgn .. xtended

< operand> tested

Other:

the operand is logically complemented
the operand is sign extended, all bits of the upper half are made
equal to high order bit of the lower half
the operand is compared to 0, the results are used to set the condi·
tion codes

TRAP
STOP

equivalent to PC-(SSP)-; SR-(SSP)-; (vector)-PC
enter the stopped state, waiting for interrupts

If <condition> then <operations> else <operations> The condition Is tested. If true, the
operations after the "then" are performed. If the condition is false and the optional "else"
clause is present, the operations after the "else" are performed. If the condition is false and
the optional "else" clause is absent, the instruction performs no operation.

161

ABCD Add Decimal with Extend ABCD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)10 + (Destination)10 + X - Destination

ABCD Dy, Ox
ABCD - (Ay), - (Ax)

Size = (Byte)

Add the source operand to the destination operand along with the extend
bit, and store the result in the destination location. The addition is perform­
ed using binary coded decimal arithmetic. The operands may be addressed
in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre­
ment addressing mode using the address registers specified in the in­
struction.

This operation is a byte operation only.

Condition Codes: X N Z V C

1*lul*lul*1
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a carry (decimal) was generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm­

Ing before the start of an operation. This allows suc­
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:

Instruction Fields:
Register Rx field - Specifies the destination register:

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­
ing mode.

RIM field - Specifies the operand addressing mode:
o - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­
ing mode.

162

ADD Add Binary ADD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source) + (Oestination)- Destination

ADD <ea>, On
ADD On, <ea>

Size = (Byte, Word, Long)

Add the source operand to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 «On»+«ea»-<On>
100 101 110 «ea»+«On»-<ea>

Effective Address field - Determines addressing mode:
a. If the location specified is a source operand, then all addressing

modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Rejllster

On 000 register number d(An, XI) 110 register number
An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*Word and Long only.

163
- C-ontinued -

ADD Add Binary ADD
Effective Address field (Continued)

b. If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An
(An)

(An) +
-(An)
d(An)

Notes:

- - d(An, Xi) 110 register number

- - Abs.W 111 000
010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. If the destination is a data register, then it cannot be specified by using
the destination < ea> mode, but must use the destination On mode in­
stead.

2. ADDA is used when the destination is an address register. ADDI and AD­
DQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

164

ADDA Add Address ADDA
Operation: (Source) + (Destination)- Destination

Assembler
Syntax: ADD < ea>, An

Attributes: Size = (Word, Long)

Description: Add the source operand to the destination address register, and store the
result in the address register. The size of the operation may be specified to
be word or long. The entire destination address register is used regardless
of the operation size.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies any of the eight address registers. This is always

the destination.
Op-Mode field - Specifies the size of the operation:

011 - word operation. The source operand is sign-extended to a long
operand and the operation Is performed on the address register using
all 32 bits.
111 - long operation.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 reJllster number
An 001 register number Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

165

ADDI Add Immediate ADDI
Operation: Immediate Data + (Destination)- Destination

Assembler
Syntax: ADDI * < data> ,< ea >

Attributes: Size = (Byte, Word, Long)

Description: Add the immediate data to the destination operand, and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation
size.

Condition Codes: X N Z V C
1*1*1 *1 *1 *1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o Effective Address
Mode Register

Byte Data (8 bits)

Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

166

ADDQ Add Quick ADDQ
Operation: Immediate Data + (Destination)- Destination

Assembler
Syntax: ADDQ II < data>, < ea >

Attributes: Size = (Byte, Word, Long)

Description: Add the immediate data to the operand at the destination location. The
data range is from 1 to 8. The size of the operation may be specified to be
byte, word, or long. Word and long operations are also allowed on the ad·
dress registers and the condition codes are not affected. The entire
destination address register is used regardless of the operation size.

Condition Codes: X N Z V C

N
Z
V
C
X

1*1*1*1*1*1
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a carry is generated. Cleared otherwise.
Set the same as the carry bit.

The condition codes are not affected if an addition to an address register is
made.

Instruction Format:

Instruction Fields:
Data field - Three bits of immediate data, 0,1-7 representing a range of 8,
1 to 7 respectively.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only alterable
addressing modes are allowed as shown'

Addressing Mode Mode Register Addressln(l Mode Mode R~ster
Dn 000 register number d(An, Xi) 110 r~ster number

An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register numDer d(PC) - -
-(An) 100 register number d(PC, XI) - -
d(A~ 101 register number Imm - -

*Word and Long only.

167

ADDX Add Extended ADDX
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source) + (Destination) + X - Destination

ADDX Dy, Dx
ADDX - (Ay), - (Ax)

Size = (Byte, Word, Long)

Add the source operand to the destination operand along with the extend
bit and store the result in the destination location. The operands may be ad­
dressed in two different ways:

1. Data register to data register: the operands are contained in data
registers specified in the instruction.

2. Memory to memory: the operands are addressed with the predecre­
ment addressing mode using the address registers specified in the
instruction.

The !:Iize of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programm­

ing before the start of an operation. This allows suc­
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4

Instruction Fields:
Register Rx field - Specifies the destination register:

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­

ing mode.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

168

- Continued -

ADDX Add Extended ADDX
Instruction Fields: (Continued)

RIM field - Specifies the operand addressing mode:
o - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement ad­
dressing mode.

169

AND AND Logical AND
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)A(Destination)- Destination

AND <ea>, On
AND On, <ea>

Size = (Byte, Word, Long)

AND the source operand to the destination operand and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The contents of an address register may not be used as
an operand.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 «Dn»A«ea»-<Dn>
100 101 110 «ea»A «Dn»-<ea>

Effective Address field - Determines addressing mode:
If the location specified is a source operand then only data addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

- Continued -

170

AND AND Logical AND
Effective Address field (Continued)

If the location specified is a destination operand then only alterable memo­
ry addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
d(An)

Notes:

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. If the destination is a data register, then it cannot be specified by us­
ing the destination < ea> mode, but must use the destination On
mode instead.

2. ANDI is used when the source is immediate data. Most assemblers
automatically make this distinction.

171

ANDI AND Immediate ANDI
Operation: Immediate Data A (Destination)- Destination

Assembler
Syntax: ANDI *<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: AND the immediate data to the destination operand and store the result in
the destination location. The size of the operation may be specified to be
byte, word, or long. The size of the immediate data matches the operation
size.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

°1°1°1°1°1°1 1 1°
Size 1 Effective Address

Mode I Register
Word Data (16 bits) Byte Data (8 bits)

Long Data (32 bits, including previous word)
Instruction Fields:

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On

_#\n
(An)

(An) +
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size=01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

172

ANDI
to CCR

AN D Immediate to Condition Codes

Operation: (Source)ACCR - CCR

Assembler
Syntax: ANDI lxxx, CCR

Attributes: Size = (Byte)

ANDI
to CCR

Description: AND the immediate operand with the condition codes and store the result
in the low-order byte of the status register.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.
X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

173

ANDI
to SR

AN D Immediate to the Status Register
(Privileged Instruction)

Operation: If supervisor state

AaMmbler

then (Source)ASR-SR
else TRAP

Syntax: ANDI lxxx, SR

Attributes: Size = (Word)

ANDI
to SR

Description: AND the immediate operand with the contents of the status register and
store the result in the status register. All bits of the status register are af­
fected.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Cleared If bit 3 of Immediate operand Is zero. Unchanged otherwise.
Z Cleared If bit 2 of Immediate operand is zero. Unchanged otherwise.
V Cleared If bit 1 of Immediate operand Is zero. Unchanged otherwise.
C Cleared If bit ° of immediate operand Is zero. Unchanged otherwise.
X Cleared If bit 4 of immediate operand Is zero. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1°10101010101110101111111111101°1
. Word Data (16 bits) .

174

ASL, ASR Arithmetic Shift ASL, ASR
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination) Shifted by < count> - Destination

ASd Dx, Dy
ASd *<data>, Dy
ASd <ea>

Size = (Byte, Word, Long)

Arithmetically shift the bits of the operand in the direction specified. The
carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two diff.rent ways:

1. Immediate: the shift count is specified in the instruction (shift range,
1-8).

2. Register: the shift count is contained in a data register specified in the
instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit. The overflow bit In­
dicates if any sign changes occur during the shift.

Operand

ASL:

For ASR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; the sign bit is replicated into the high order bit.

Operand

ASR:

- Continued -

175

ASL, ASR Arithmetic Shift ASL,ASR
Condition Codes: X N Z V c

1*1*1*1*1*
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the most significant bit is changed at any time during the shift

operation. Cleared otherwise.
C Set according to the last bit shifted out of the operand. Cleared for a

shift count of zero.
X Set according to the last bit shifted out of the operand. Unaffected for

a shift count of zero.

Instruction Format (Register Shifts):

Instruction Fields (Register Shifts):
Count/Register field - Specifies shift count or register where count is
located:

If ifr = 0, the shift count is specified in this field. The values 0, 1-7 re­
present a range of 8, 1 to 7 respectively.
If ifr = 1, the shift count (modulo 64) is contained in the data register
specified in this field.

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

Ifr field -
If ifr = 0, specifies immediate shift count.
if ifr = 1, specifies register shift count.

Register field - Specifies a data register whose content is to be shifted.

Instruction Format (Memory Shifts):

- Continued -

176

ASL,ASR Arithmetic Shift ASL,ASR
Instruction Fields (Memory Shifts):

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Effective Address field - Specifies the operand to be shifted. Only memory
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On - - d(An, Xi) 110 r~ister number
An - - Abs.w 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

177

Bee Branch Conditionally Bee
Operation: If (condition true) then PC + d - PC

Assembler
Syntax: Bcc <label>

Attributes: Size = (Byte, Word)

Description: If the specified condition is met, program execution continues at location
(PC) + displacement. Displacement is a twos complement integer which
counts the relative distance in bytes. The value in PC is the current instruc­
tion location plus two. If the 8-bit displacement in the instruction word is
zero, then the 16-bit displacement (word immediately following the instruc­
tion) is used. "cc" may specify the following conditions:

CC carry clear 0100 C LS low or same 0011 C+Z
CS carry set 0101 C LT less than 1101 N.V + N.V
EQ equal 0111 Z MI minus 1011 N
GE greater or equal 1100 N.V+N.V NE not equal 0110 Z
GT greater than 1110 N.V.Z+ "N.V.Z PL plus 1010 N
HI high 0010 C.Z VC overflow clear 1000 V
LE less or equal 1111 Z+N.V+N.V VS overflow set 1001 V

Condition Codes: Not affected.

Instruction Format:
o

Instruction Fields:
Condition field - One of fourteen conditions discussed in description.
8-blt Displacement field - Twos complement integer specifying the

relative distance (in bytes) between the branch instruction and the
next instruction to be executed if the condition is met.

16-blt Displacement field - Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done
because it would result in a zero offset which forces a word branch instruc­
tion definition.

178

BCHG Test a Bit and Change BCHG
Operation:

Assembler
Syntax:

Attributes:

Description:

- « bit number» OF Destination - Z;
- « bit number» OF Destination - < bit number> OF Destination

BCHG On, <ea>
BCHG #<data>, <ea>

Size = (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the state of the specified
bit is changed in the destination. If a data register is the destination, then
the bit numbering is modulo 32 allowing bit manipulation on all bits in a
data register. If a memory location is the destination, a byte is read from
that location, the bit operation performed using the bit number modulo 8,
and the byte written back to the location with zero referring to the least­
significant bit. The bit number for this operation may be specified in two
different ways:

1. Immediate - the bit number is specified in a second word of the in­
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C
1-1-1 * 1-1-1

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
14

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit

number.
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 register number ~An,-XIL 110 re.gister number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only. - Continued -

179

BCHG Test a Bit and Change BCHG
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a a a a 1 a a a a 11 1 Effective Address
Mode I Register

a a a a a a a a bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.w 111 000

(An) 010 reJlister number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

--

·Long only; all others are byte only.

bit number field - Specifies the bit numbers.

180

BCLR Test a Bit and Clear BCLR
Operation:

Assembler
Syntax:

Attributes:

Description:

- « bit number» OF Destination)- Z;
0- < bit number> OF Destination

BlCR Dn, <ea>
BClR *<data>, <ea>

Size = (Byte, long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the specified bit is
cleared in the destination. If a data register is the destination, then the bit
numbering is modulo 32 allowing bit manipulation on all bits in a data
register. If a memory location is the destination, a byte is read from that
location, the bit operation performed using the bit number modulo 8, and
the byte written back to the location with zero referring to the least­
significant bit. The bit number for this operation may be specified in two
different ways:

1. Immediate - the bit number is specified in a second word of the in­
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C
1-1-1 * 1-1-1

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit

number.
Effective Address field - Specifies the destination location. Only data
alterable addressing modes are allowed as shown·

Addressing Mode Mode Register Addressing Mode Mode Register
Dn" 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.l 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register numoer Imm -

"long only; all others are byte only.
- Continued -

181

BCLR Test a Bit and Clear BCLR
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 I 0 I Effective Address
Mode I Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On* 000 register only d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit number.

182

BRA Branch Always BRA
Operation: PC + d - PC

Assembler
Syntax: BRA < label>

Attributes: Size = (Byte, Word)

Description: Program execution continues at location (PC) + displacement. Displace·
ment is a twos complement integer which counts the relative distance in
bytes. The value in PC is the current instruction location plus two. If the
B·bit displacement In the instruction word Is zero, then the 16·blt displace·
ment (word immediately following the Instruction) is used.

Condition Codes: Not affected.

Instruction Format:
o

Instruction Fields:
B·bit Displacement field - Twos complement integer specifying the rela·

tive distance (in bytes) between the branch instruction and the next
instruction to be executed if the condition is met.

16·bit Displacement field - Allows a larger displacement than B bits. Used
only If the B·bit displacement is equal to zero.

Note: A short branch to the immediately following instruction cannot be done
because it would result in a zero offset which forces a word branch instruc·
tion definition.

183

BSET Test a Bit and Set BSET
Operation:

Assembler
Syntax:

Attributes:

Description:

-«bit number» OF Destination--Z
1-- < bit number> OF Destination

BSET On, <ea>
BSET '<data>, <ea>

Size = (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. After the test, the specified bit is set in
the destination. If a data register is the destination, then the bit numbering
is modulo 32, allowing bit manipulation on all bits in a data register. If a
memory location is the destination, a byte is read from that location, the bit
operation performed using the bit number modulo 8, and the byte written
back to the location with zero referring to the least-significant bit. The bit
number for this operation may be specified in two different ways:

1. Immediate - the bit number is specified in a second word of the in­
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C
1-1-1 * 1-1-1

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):
15 14 13 12 11 10 9 8 7 6

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit

number.
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode R~ster
On* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

* Long only; all others are byte only

- Continued -

184

BSET Test a Bit and Set BSET
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 1 11 1 Effective Address
Mode I Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit number.

185

BSR Branch to Subroutine BSR
Operation: pc - (SP); PC + d PC

Assembler
Syntax: BSR < label>

Attributes: Size = (Byte, Word)

Description: The long word address of the instruction immediately following the BSR in­
struction is pushed onto the system stack. Program execution then con­
tinues at location (PC) + displacement. Displacement is a twos comple­
ment integer which counts the relative distances in bytes. The value in PC
is the current instruction location plus two. If the B-bit displacement in the
instruction word is zero, then the 16-bit displacement (word immediately
following the instruction) is used.

Condition Codes: Not affected.

Instruction Format:
o

Instruction Fields:
8-bit Displacement field - Twos complement integer specifying the rela­

tive distance (in bytes) between the branch instruction and the next in­
struction to be executed if the condition is met.

16-bit Displacement field - Allows a larger displacement than 8 bits. Used
only if the 8-bit displacement is equal to zero.

Note: A short subroutine branch to the immediately following instruction cannot
be done because it would result in a zero offset which forces a word branch
instruction definition.

186

8TST Test a Bit 8TST
Operation:

Assembler
Syntax:

Attributes:

Description:

-«bit number» OF Oestination-Z

BTST On, < ea >
BTST *<data>, <ea>

Size = (Byte, Long)

A bit in the destination operand is tested and the state of the specified bit
is reflected in the Z condition code. If a data register is the destination,
then the bit numbering is modulo 32, allowing bit manipulation on all bits in
a data register. If a memory location is the destination, a byte is read from
that location, and the bit operation performed using the bit number modulo
8 with zero referring to the least-signifcant bit. The bit number for this
operation may be specified in two different ways:

1. Immediate - the bit number is specified in a second word of the in­
struction.

2. Register - the bit number is contained in a data register specified in
the instruction.

Condition Codes: X N Z V C
1-1-1 *1-1-1

N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.
X Not affected.

Instruction Format (Bit Number Dynamic):

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register whose content is the bit num­

ber.
Effective Address field - Specifies the destination location. Only data

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*Long only; all others are byte only.

187
- Continued -

8TST Test a Bit 8TST
Instruction Format (Bit Number Static):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 o I 0 I Effective Address
Mode 1 Register

0 0 0 0 0 0 0 0 bit number

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On* 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011 - d(An) 101 register number Imm - -

*Long only; all others are byte only.

bit number field - Specifies the bit number.

188

CHK Check Register Against Bounds CHK
Operation: If On<O or On> «ea» then TRAP

Assembler
Syntax: CH K < ea >, On

Attributes: Size = (Word)

Description: The content of the low order word in the data register specified in the in­
struction is examined and compared to the upper bound. The upper bound
is a twos complement integer. If the register value is less than zero or
greater than the upper bound contained in the operand word, then the pro­
cessor initiates exception processing. The vector number is generated to
reference the CHK instruction exception vector.

Condition Codes: X N Z V C
!-I*lululul

N Set if On<O; cleared if On> «ea». Undefined otherwise.
Z Undefined.
V Undefined.
C Undefined.
X Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies the data register whose content is checked.
Effective Address field - Specifies the upper bound operand word. Only

data addressing modes are allowed as shown·

Addressing Mode Mode Register Addressing Mode Mode R~lster
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
- (An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

189

CLR Clear an Operand CLR
Operation: 0- Destination

Assembler
Syntax: CLR < ea >

Attributes: Size = (Byte, Word, Long)

Description: The destination Is cleared to all zero bits. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C
1-101110101

N Always cleared.
Z Always set.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, XI) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC ~i) - -
d(An) 101 register number Imm - -

Note: A memory destination Is read before It is written to.

190

CMP Compare CMP
Operation: (Destination) - (Source)

Assembler
Syntax: CM P < ea >, On

Attributes: Size = (Byte, Word, Long)

Description: Subtract the source operand from the destination operand and set the con­
dition codes according to the result; the destination location Is not chang­
ed. The size of the operation may be specified to be byte, word, or long.

Condition Codes:

N
Z
V
C
X

X N Z V C
1-1*1*1*1*1

Set If the result Is negative. Cleared otherwise.
Set If the result is zero. Cleared otherwise.
Set If an overflow is generated. Cleared otherwise.
Set If a borrow is generated. Cleared otherwise.
Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies the destination data register.
Op-Mode field -

Byte Word Long
000 001 010

Operation
« On» - «ea»

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number c!{An, Xi} 110 rl!9.ister number

An* 001 recister number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, XI) 111 011
d(An) 101 register number Imm 111 100

*Word and Long only.

Note: CMPA is used when the destination is an address register. CMPI Is used
when the source is Immediate data. CMPM Is used for memory to memory
compares. Most assemblers automatically make this distinction.

191

CMPA Compare Address CMPA
Operation: (Destination) - (Source)

Assembler
Syntax: CMPA <ea>, An

Attributes: Size = (Word, Long)

Description: Subtract the source operand from the destination address register and set
the condition codes according to the result; the address register is not
changed. The size of the operation may be specified to be word or long.
Word length source operands are sign extended to 32 bit quantities before
the operation is done.

X N Z V C
I-I * I * I * I * I

Condition Code:

N
Z
V
C
X

Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies the destination address register.
Op-Mode field - Specifies the size of the operation:

011 - word operation. The source operand is sign-extended to a long
operand and the operation is performed on the address register using
all 32 bits.
111 - long operation.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An 001 register num~er Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

192

CMPI Compare Immediate CMPI
Operation: (Destination) - Immediate Data

Assembler
Syntax: CMPI If<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Subtract the immediate data from the destination operand and set the con­
dition codes according to the result; the destination location is not chang­
ed. The size of the operation may be specified to be byte, word, or long. The
size of the immediate data matches the operation size.

Condition Codes: X N Z V C
I-I * I * I * I * I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

010101011111010
Size 1 Effective Address

Mode I Register
Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, XI) - -
101 register number Imm - -

Immediate field - (Data Immediately following the Instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data Is the entire Immediate word.
If size = 10, then the data is the next two immediate words.

193

CMPM Compare Memory CMPM
Operation: (Destination) - (Source)

Assembler
Syntax: CMPM (Ay) +, (Ax) +

Attributes: Size = (Byte, Word, Long)

Description: Subtract the source operand from the destination operand, and set the con­
dition codes according to the results; the destination location is not chang­
ed. The operands are always addressed with the postincrement addressing
mode using the address registers specified in the instruction. The size of
the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C
1- 1 * 1 * 1 * 1 * 1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 0 11 11 1 Re~:ter 11 1 Size 1 0 1 0 11 1 Re~:ter 1

Instruction Fields:
Register Rx field - (always the destination) Specifies an address register

for the post increment addressing mode.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Register Ry field - (always the source) Specifies an address register for
the postincrement addressing mode.

194

DBee Test Condition, Decrement, and Branch DBee
Operation:

Assembler
Syntax:

Attributes:

Description:

If (condition false)
then On-1-0n;
If On*-1

then PC+d-PC
else PC + 2- PC (Fall through to next instruction)

OBcc On, < label>

Size = (Word)

This instruction is a looping primitive of three parameters: a condition, a
data register, and a displacement. The instruction first tests the condition
to determine if the termination condition for the loop has been met, and if
so, no operation is performed. If the termination condition is not true, the
low order 16 bits of the counter data register are decremented by one. If the
result is -1, the counter is exhausted and execution continues with the
next instruction. If the result is not equal to - 1, execution continues at the
location indicated by the current value of PC plus the sign-extended 16-bit
displacement. The value in PC is the current instruction location plus two
"cc" may specify the following conditions:

CC carry clear 0100 C LS low or same 0011 C+Z
N.V + iii.v CS carry set 0101 C LT less than 1101

EQ equal 0111 Z MI minus 1011 N
F false 0001 0 NE not equal 0110 Z"
GE greater or equal 1100 N.V + iii.v PL plus 1010 iii
GT greater than 1110 N.V.Z+ N.V.Z T true 0000 1
HI high 0010 C.Z VC overflow clear 1000 V
LE less or equal 1111 z+N.v+iii.v VS overflow set 1001 V

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:

Notes:

Condition field - One of the sixteen conditions discussed in description.
Register field - Specifies the data register which is the counter.
Displacement field - Specifies the distance of the branch (in bytes).

1. The terminating condition is like that defined by the UNTIL loop con­
structs of high-level languages. For example: OBMI can be stated as
"decrement and branch until minus."

195
- Continued -

DBee Test Condition, Decrement and Branch DBee
Notes: (Continued)

2. Most assemblers accept OBRA for OBF for use when no condition is
required for termination of a loop.

3. There are two basic ways of entering a loop; at the beginning or by
branching to the trailing OBcc instruction. If a loop structure ter·
minated with OBcc is entered at the beginning, the control index count
must be one less than the number of loop executions desired. This
count is useful for indexed addressing modes and dynamically
specified bit operations. However, when entering a loop by branching
directly to the trailing OBcc instruction, the control index should equal
the loop execution count. In this case, if a zero count occurs, the OBcc
instruction will not branch causing complete bypass of the main loop.

196

DIVS Signed Divide DIVS
Operation: (Destination)/(Source)- Destination

Assembler
Syntax: DIVS < ea >, On

Attributes: Size = (Word)

Description: Divide the destination operand by the source operand and store the result
in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word operand (16 bits). The operation is performed
using signed arithmetic. The result is a 32·bit result such that:

1. The quotient is in the lower word (least significant 16·bits).
2. The remainder is in the upper word (most significant 16·bits).

The sign of the remainder is always the same as the dividend unless the reo
mainder is equal to zero. Two special conditions may arise:

1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc·

tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

Condition Codes: X N Z V C
1-1*1*1*101

N Set if the quotient is negative. Cleared otherwise. Undefined if over·
flow.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
V Set if division overflow is detected. Cleared otherwise.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies any of the eight data registers. This field always

specifies the destination operand.
Effective Address field - Specifies the source operand. Only data ad·

dressing modes are allowed as shown:
Addressing Mode Mode Register AddreSSing Mode Mode Register

On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

Note: Overflow occurs if the quotient is larger than a 16·bit signed integer.

197

DIVU Unsigned Divide DIVU
Operation: (Destination)/(Source)- Destination

Assembler
Syntax: DIVU < ea >, On

Attributes: Size = (Word)

Description: Divide the destination operand by the source operand and store the result
in the destination. The destination operand is a long operand (32 bits) and
the source operand is a word (16 bit) operand. The operation is performed
using unsigned arithmetic. The result is a 32-bit result such that:

1. The quotient is in the lower word (least significnat 16 bits).
2. The remainder is in the upper word (most significant 16 bits).

Two special conditions may arise:
1. Division by zero causes a trap.
2. Overflow may be detected and set before completion of the instruc­

tion. If overflow is detected, the condition is flagged but the operands
are unaffected.

Condition Codes: X N Z V C
I-I * I * I * I 0 I

N Set if the most significant bit of the quotient is set. Cleared other-
wise. Undefined if overflow.

Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow.
V Set if division overflow is detected. Cleared otherwise.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Register field - specifies any of the eight data registers. This field always

specifies the destination operand.
Effective Address field - Specifies the source operand. Only data addres­

sing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register numDer atAn, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number a(pc;, Xi) 111 011
d(An) 101 register number Imm 111 100

Note: Overflow occurs if the quotient is larger than a 16-bit unsigned integer.

198

EOR Exclusive OR Logical

Operation: (Source) 61 (Destination)- Destination

Assembler
Syntax: EOR On, <ea>

Attributes: Size = (Byte, Word, Long)

EOR

Description: Exclusive OR the source operand to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. This operation is restricted to data
registers as the source operand. The destination operand is specified in the
effective address field.

Condition Codes: X N Z V C
I-I * I * 10 I 0 I

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long
100 101 110

Operation
«ea»6I«Dx»- <ea>

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, XI) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -

. (An) 100 register number d(PC, Xi) - -
O(An) 1U1 register number Imm - -

Note: Memory to data register operations are not allowed. EORI Is used when the
source is Immediate data. Most assemblers automatically make this
distinction.

199

EORI Exclusive OR Immediate EORI
Operation: Immediate Data e (Destination)- Destination

Assembler
Syntax: EORI #<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Exclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The immediate data matches the opera­
tion size.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0\0\0\01 1 \0\1\0
Size \ Effective Address

Mode I Register
Word Data (16 bits) Byte Data (8 bits)

Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

200

EORI
to CCR

Exclusive OR Immediate to Condition Codes EORI
to CCR

Operation: (Source) e CCR CCR

Assembler
Syntax: EORI #Xxx, CCR

Attributes: Size = (Byte)

Description: Exclusive OR the immediate operand with the condition codes and store
the result in the low-order byte of the status register.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X Changed if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

201

EORI
to SR

exclusive OR Immediate to the Status Register
(Privileged Instruction)

EORI
to SR

Operation: If supervisor state

Assembler

then (Source)e SR-SR
else TRAP

Syntax: EORI lxxx, SR

Attributes: Size = (Word)

Description: Exclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.
X Changed if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10101010111011101011 11 11 1111 10 101
. Word Data (16 bits) .

202

EXG Exchange Registers EXG
Operation: Rx - Ry

Assembler
Syntax: EXG Rx, Ry

Attributes: Size = (Long)

Description: Exchange the contents of two registers. This exchange is always a long (32
bit) operation. Exchange works in three modes:

1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 321 0

11 11 1 0 1 0 1 Re~:ter 11 lOP-MOde

Instruction Fields:
Register Rx field - Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address

registers, this field always specifies the data register.
Op-Mode field - Specifies whether exchanging:

01000 - data registers.
01001 - address registers.
10001 - data register and address register.

Register Ry field - Specifies either a data register or an address register
depending on the mode. If the exchange is between data and address
registers, this field always specifies the address register.

203

EXT Sign Extend EXT
Operation: (Destination) Sign-extended- Destination

Assembler
Syntax: EXT On

Attributes: Size = (Word, Long)

Description: Extend the sign bit of a data register from a byte to a word or from a word to
a long operand depending on the size selected. If the operation is word
sized, bit [1] of the designated data register is copied to bits [15:8] of that
dafa register. If the operation is long sized, bit [15] of the designated data
register is copied to bits [31:16] of that data register.

Condition Codes: X N Z V C

1-1*1*1 0 10 1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 11 I 0 I 0 11 I 0 1 0 lOp-Mode 10 I 0 I 0 I Register 1
Instruction Fields:

Op-Mode Field - Specifies the size of the sign-extension operation:
010 - Sign-extend low order byte of data register to word.
011 - Sign-extend low order word of data register to long.

Register field - Specifies the data register whose content is to be sign­
extended.

204

ILLEGAL Illegal Instruction

Operation: PC- - (SSP); SR- - (SSP)
(Illegal Instruction Vector)- PC

Attributes: None

ILLEGAL

Description: This bit pattern causes an illegal instruction exception. All other illegal in­
struction bit patterns are reserved for future extension of the instruction
set.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101110111011111111111110101

205

JMP Jump JMP
Operation: Destination - PC

Assembler
Syntax: JMP <ea>

Attributes: Unslzed

Description: Program execution continues at the effective address specified by the in­
struction. The address is specified by the control addressing modes.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the address of the next instruction.

Only control addressing modes are allowed as shown:

Addressing Mode Mode Register AddresslnSl Mode Mode Register
On - - d(An, XI) 110 register number
An - - ADS.W 111 000

(An) 010 register number Abs.L 111 001
~Ant+ - - a~(;l 1!1 010_
-(An) - - d(PC, XI) 111 011
d(An) 101 register number Imm - -

206

JSR Jump to Subroutine JSR
Operation: pc- - (SP); Oestination- PC

Assembler
Syntax: JSR <ea>

Attributes: Unsized

Description: The long word address of the instruction immediately following the JSR in­
struction is pushed onto the system stack. Program execution then con­
tinues at the address specifed in the instruction.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the address of the next Instruction.

Only control addressing modes are allowed as shown:
Addressing Mode Mode Register AddresslnjJ Mode Mode ~Ister

On - - d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

207

LEA
Operation: Destination - An

Assembler
Syntax: LEA < ea >, An

Attributes: Size = (Long)

Load Effective Address LEA

Description: The effective address is loaded into the specified address register. All 32
bits of the address register are affected by this instruction.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies the address register which is to be loaded with

the effective address.
Effective Address field - Specifies the address to be loaded into the ad­

dress register. Only control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Realster
On - - d(An, XI) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

208

LINK Link and Allocate LINK
Operation: An- -(SP); SP-An; SP+d-SP

Assembler
Syntax: LINK An, #<displacement>

Attributes: Unsized

Description: The current content of the specified address register is pushed onto the
stack. After the push, the address register is loaded from the updated stack
pointer. Finally, the 16-bit sign-extended displacement is added to the
stack pOinter. The content of the address register occupies two words on
the stack. A negative displacement is specified to allocate stack area.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies the address register through which the link is to

be constructed.
Displacement field - Specifies the twos complement integer which is to

be added to the stack pointer.

Note: LINK and UNLK can be used to maintain a linked list of local data and
parameter areas on the stack for nested subroutine calls.

209

LSL,LSR Logical Shift LSL, LSR
Operation:

Assembler
Syntax:

Attributes:

Description:

LSL:

LSR:

(Destination) Shifted by < count> - Destination

LSd Ox, Dy
LSd #<data>, Dy
LSd <ea>

Size = (Byte, Word, Long)

Shift the bits of the operand in the direction specified. The carry bit
receives the last bit shifted out of the operand. The shift count for the shif­
ting of a register may be specified in two different ways:

1. Immediate - the shift count is specified in the instruction (shift range
1-8).

2. Register - the shift count is contained in a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be shifted one bit only and the operand size is
restricted to a word.

For LSL, the operand is shifted left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and the
extend bits; zeroes are shifted into the low order bit.

Operand

For LSR, the operand is shifted right; the number of positions shifted is the
shift count. Bits shifted out of the low order bit go to both the carry and the
extend bits; zeroes are shifted into the high order bit.

.. LI ___ o_p_e_r_a_n_d ___ ----'-~~

- Continued -
210

LSL,LSR Logical Shift LSL, LSR

Condition Codes: X N Z V C
1*1*1*101*1

N Set if the result is negative. Cleared otherwise.
Z Set if the result Is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shifted out of the operand. Cleared for

a shift count of zero.
X Set according to the last b:t shifted out of the operand. Unaffected

for a shift count of zero.

Instruction Format (Register Shifts):

Instruction Fields (Register Shifts):
Count/Register field -

If i/r = 0, the shift count Is specified in this field. The values 0,1·7 repre·
sent a range of 8, 1 to 7 respectively.
If I/r = 1, the shift count (modulo 64) Is contained in the data register
specified In this field.

dr field - Specifies the direction of the shift:
o - shift right.
1 - shift left.

Size field - Specifies the size of the operation:
00 - byte operation. •
01 - word operation.
10 - long operation.

I/r field -
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field - Specifies a data register whose content is to be shifted.

- Continued -

211

LSL,LSR logical Shift

Instruction Format (Memory Shifts):

Instruction Fields (Memory Shifts):
dr field - Specifies the direction of the shift:

o - shift right.
1 - shift left.

LSL,LSR

Effective Address field - Specifies the operand to be shifted. Only memory
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - - d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

212

MOVE Move Data from Source to Destination MOVE
Operation: (Source)- Destination

Assembler
Syntax: MOVE <ea>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Move the content of the source to the destination location. The data is ex­
amined as it is moved, and the condition codes set accordingly. The size of
the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C
I-I * I * I 0 I 0 I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Size field - Specifies the size of the operand to be moved:

01 - byte operation.
11 - word operation.
10 - long operation.

Destination Effective Address field - Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

- Continued -
213

MOVE Move Data from Source to Destination MOVE
Instruction Fields: (Continued)

Source Effective Address field - Specifies the source operand. All ad·
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number dl~, Xi) 110 register number

An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*For byte size operation, address register direct is not allowed.

Notes: 1. MOVEA is used when the destination is an address register. Most
assemblers automatically make this distinction.

2. MOVEa can also be used for certain operations on data registers.

214

MOVE
from CCR

Move from the
Condition Code Register MOVE

from CCR
Operation: CCR-Destination

Assembler
Syntax: MOVE CCR, <ea>

Attributes: Size = (Word)

Description: The content of the status register is moved to the destination location. The
source operand is a word, but only the low order byte contains the condi­
tion codes. The upper byte is all zeros.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6

Instruction Fields:
Effective Address field - Specifies the destination location.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

o

Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

Note: MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte operations.

215

MOVE
to CCR

Move to Condition Codes MOVE
to CCR

Operation: (Source)-- CCR

Assembler
Syntax: MOVE <ea>, CCR

Attributes: Size = (Word)

Description: The content of the source operand is moved to the condition codes. The
source operand is a word, but only the low order byte is used to update the
condition codes. The upper byte is ignored.

Condition Codes: X N Z V C

Instruction Format:

Instruction Fields:

1*1*1*1*1*1
N Set the same as bit 3 of the source operand.
Z Set the same as bit 2 of the source operand.
V Set the same as bit 1 of the source operand.
C Set the same as bit 0 of the source operand.
X Set the same as bit 4 of the source operand.

Effective Address field - Specifies the location of the source operand.
Only data addressing modes are allowed as shown:

Addressing Mode Mode Register AddreSSing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

Note: MOVE to CCR is a word operation. AND, OR, and EOR to CCR are byte
operations.

216

MOVE
to SR

Move to the Status Register
(Privileged Instruction)

Operation: If supervisor state

Assembler

then (Source)-- SR
else TRAP

Syntax: MOVE < ea>, SR

Attributes: Size = (Word)

MOVE
to SR

Description: The content of the source operand is moved to the status register. The
source operand is a word and all bits of the status register are affected.

Condition Codes: Set according to the source operand.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the location of the source operand.

Only data addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An XI) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PG, Xi) 111 011
d(An) 101 register number Imm 111 100

217

MOVE
from SR

Move from the Status Register

Operation: SR- Destination

Assembler
Syntax: MOVE SR, <ea>

Attributes: Size = (Word)

MOVE
from SR

Description: The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register numoer d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number .d(P~}{i) - -
d(An) 101 register number Imm - -

Note: A memory destination is read before it is written to.

218

MOVE
from SR

Move from the Status Register
(Privileged Instruction)

Operation: If supervisor state

Assembler

then SR- Destination
else TRAP

Syntax: MOVE SR, < ea >

Attributes: Size = (Word)

MOVE
from SR

Description: The content of the status register is moved to the destination location. The
operand size is a word.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 o

Instruction Fields:
Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

NOTE: Use the MOVE from CCR instruction to access the conditon codes.

219

MOVE
USP

Move U .. r Stack Pointer
(Privileged Instruction)

Operation:

Allembler
Syntax:

Attributes:

If supervisor state
then USP-An;

An-USP
else TRAP

MOVE USP, An
MOVE An, USP

Size = (Long)

MOVE
USP

Description: The contents of the user stack pointer are transferred to or from the
specified address register.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

1 0 11 1 0 1 0 11 11 11 1 0 1 0 11 11 1 0 1 dr 1 Register 1

Instruction Fields:
dr field - Specifies the direction of transfer:

0- transfer the address register to the USP.
1 - transfer the USP to the address register.

Register field - Specifies the address register to or from which the user
stack pointer Is to be transferred.

220

MOVEA
Operation: (Source)- Destination

Assembler
Syntax: MOVEA <ea>, An

Attributes: Size = (Word, Long)

Move Address MOVEA

Description: Move the content of the source to the destination address register. The size
of the operation may be specified to be word or long. Word size source
operands are sign extended to 32 bit quantities before the operation is
done.

Condition Codes: Not affected.

Instruction Format:
15 14 o

Instruction Fields:
Size field - Specifies the size of the operand to be moved:

11 - Word operation. The source operand is Sign-extended to a long
operand and all 32 bits are loaded into the address register.
10 - Long operation.

Destination Register field - Specifies the destination address register.
Source Effective Address field - Specifies the location of the source

operand. All addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, XI) 110 register number
An 001 register number Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, XI) 111 011
d(An) 101 register number Imm 111 100

221

MOVEC Move to/from Control Register
(Privileged Instruction) MOVEC

Operation:

Assembler
Syntax:

Attributes:

Description:

If supervisor state
then Rc -- Rn, Rn -- Rc
else TRAP

MOVEC Rc, Rn
MOVEC Rn, Rc

Size = (Long)

Copy the contents of the specified control register to the specified general
register or copy the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the
control register may be implemented with fewer bits. Unimplemented bits
are read as zeros.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o
AID Register Control Register

Instruction Fields:
dr field - Specifies the direction of the transfer:

O-control register to general register.
1-general register to control register.

A/D field - Specifies the type of general register:
O-data register.
1-address register.

Register field - Specifies the register number.
Control Register field - Specifies the control register.
Currently defined control registers are:

Binary Hex Name/Function
0000 0000 0000 000 Source Function Code (SFC) register.

dr

0000 0000 0001 001 Destination Function Code (DFC) register.
1000 0000 0000 800 User Stack Pointer.
1000 0000 0001 801 Vector Base Register for exception vector

table.

All other codes cause an illegal instruction exception.

222

MOVEM Move Multiple Registers MOVEM
Operation:

Assembler
Syntax:

Attributes:

Description:

Registers- Destination
(Source)- Registers

MOVEM <register list>, <ea>
MOVEM <ea>, <register list>

Size = (Word, Long)

Selected registers are transferred to or from consecutive memory location
starting at the location specified by the effective address. A register Is
transferred if the bit corresponding to that register is set In the mask field.
The instruction selects how much of each register is transferred; either the
entire long word can be moved or just the low order word. In the case of a
word transfer to the registers, each word is sign-extended to 32 bits (also
data registers) and the resulting long word loaded into the associated
register.

MOVEM allows three forms of address modes: the control modes, the
predecrement mode, or the postincrement mode. If the effective address Is
in one of the control modes, the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer Is
from data register 0 to data register 7, then from address register 0 to ad­
dress register 7.

If the effective address Is In the predecrement mode, only a register to
memory operation Is allowed. The registers are stored starting at the
specified address minus two and down through lower addresses. The order
of storing Is from address register 7 to address register 0, then from data
register 7 to data register O. The decremented address register Is updated
to contain the address of the last word stored.

If the effective address is in the postlncrement mode, only a memory to
register operation is allowed. The registers are loaded starting at the
specified address and up through higher addresses. The order of loading is
the same as for the control mode addressing. The Incremented address
register Is updated to contain the address of the last word loaded plus two.

Condition Codes: Not affected.

Instruction Format:
15

o

223
- Continued -

MOVEM Move Multiple Registers MOVEM
Instruction Fields:

dr field:
Specifies the direction of the transfer:
o - register to memory
1 - memory to register.

Sz field - Specifies the size of the registers being transferred:
0- word transfer.
1 - long transfer.

Effective Address field - Specifies the memory address to or from which
the registers are to be moved.
For register to memory transfer, only control alterable addressing
modes or the predecrement addressing mode are allowed as shown:

I Addressing Model Model Register I ~esslng Mode! Model Register
D.-. d(An Xi) 110 register number
An
(An)

(An) +
-(An)
d(An)

- -
- - Abs.W 111 000

010 register number Abs.L 111 001
- - d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

For memory to register transfer, only control addressing modes or the
post increment addressing mode are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
a(An)

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) 111 010
- - d(PC, Xi) 111 011

101 register number Imm - -

Register List Mask field - Specifies which registers are to be transferred.
The low order bit corresponds to the first register to be transferred;
the high bit corresponds to the last register to be transferred. Thus,
both for control modes and for the postincrement mode addresses, the
mask correspondence is

15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

I A71AsIA51A41A31A2lA11Aolo71oslo51041o31o2lo11ooi

while for the predecrement mode addresses, the mask correspondence is
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

loolo11021o31o41o51oslo71AOIA11A21A31A41A51ASIA71

Note: An extra read bus cycle occurs for memory operands. This amounts to a
memory word at one address higher than expected being addressed during
operation.

224

MOVEP Move Peripheral Data MOVEP
Operation:

Assembler
Syntax:

Attributes:

Description:

(Source)- Destination

MOVEP Ox, d(Ay)
MOVEP d(Ay), Ox

Size = (Word, Long)

Data is transferred between a data register and alternate bytes of memory,
starting at the location specified and incrementing by two. The high order
byte of the data register is transferred first and the low order byte is
transferred last. The memory address is specified using the address
register indirect plus displacement addressing mode. If the address is
even, all the transfers are made on the high order half of the data bus; if the
address is odd, all the transfers are made on the low order half of the data
bus.

Example: Long transfer to/from an even address.

Byte organization in register
31 24 23 16 15 8 7 0

I hi-order I mid-upper I mid-lower I low-order

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

hi-order
mid-upper
mid-lower
low-order

Example: Word transfer to/from an odd address.

Byte organization in register
31 24 23 16 15 8 7 0

I hi-order I low-order

Byte organization in memory (low address at top)
15 14 13 12 11 10 9 8 7 6 5 4 3 2

I hi-order
o

Condition Codes: Not affected.

- Continued -
225

MOVEP
Instruction Format:

15 14 13 12

o

Instruction Fields:

Move Peripheral Data MOVEP

321 0

Address
Register

Data Register field - Specifies the data register to or from which the data
is to be transferred.

Op-Mode field - Specifies the direction and size of the operation:
100 - transfer word from memory to register.
101 - tran~f~r tong trom memory to regIster.
110 - transfer word from register to memory.
111 - transfer long from register to memory.

Address Register field - Specifies the address register which is used in
the address register Indirect plus displacement addressing mode.

Displacement field - Specifies the displacement which is used in calculat­
ing the operand address.

226

MOVEQ Move Quick MOVEQ
Operation: Immediate Data- Destination

Assembler
Syntax: MOVEQ #<data>, On

Attributes: Size = (Long)

Description: Move immediate data to a data register. The data is contained in an B·blt
field within the operation word. The data is sign·extended to a long operand
and all 32 bits are transferred to the data register.

Condition Codes: X N Z V C
I-I * I * 101 0 I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 11 11 11 I Register I 0 I Data

Instruction Fields:
Register field - Specifies the data register to be loaded.
Data field - B bits of data which are sign extended to a long operand.

227

MOVES Move to/from Address Space
(Privileged Instruction) MOVES

Operation:

Assembler
Syntax:

Attributes:

Description:

If supervisor state
then Rn - Destination < DFC>
Source <SFC> - Rn
else TRAP

MOVES Rn, <ea>
MOVES <ea>, Rn

Size = (Byte, Word, Long)

Move the byte, word, or long operand from the specified general register to
a location within the address space specified by the destination function
code (DFC) register. Or, move the byte, word, or long operand from a loca­
tion within the address space specified by the source function coae (SFG)
register to the specified general register.

If the destination is a data register, the source operand replaces the cor­
responding low-order bits of the that data register. If the destination is an
address register, the source operand is sign-extended to 32 bits and then
loaded into that address register.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 01 0 1 0 1 1 1 0 Size Effective Address

AID Register dr 0 0 0 01 0 01010101010

Instruction Fields:

Size field - Specifies the size of the operation:
OO-byte operation.
01-word operation.
10-long operation.

AID field - Specifies the type of general register:
O-data register.
1-address register.

Register field - Specifies the register number.
dr field - Specifies the direction of the transfer:

O-from <ea>to general register.
1-from general register to <ea>.

228

-Contlnued-

MOVES Move tolfrom Address Space
(Privileged Instruction)

Instruction Fields: (continued)

MOVES
Effective Address field - Specifies the source or destination loca­

tion within the alternate address space. Only alterable memory
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On - - d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

229

MULS Signed Multiply MULS
Operation: (Source)*(Destination)- Destination

Assembler
Syntax: MULS < ea>, On

Attributes: Size = (Word)

Description: Multiply two signed 16-bit operands yielding a 32-blt signed result. The
operation is performed using signed arithmetic. A register operand is taken
from the low order word; the upper word is unused. All 32 bits of the product
are saved in the destination data register.

Condition Codes: X N Z V C
I-I * I * 10 I 0 I

, , I , I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7

Instruction Fields:
Register field - Specifies one of the data registers. This field always

specifies the destination.
Effective Address field - Specifies the source operand. Only data ad­

dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
_d(An) 101 register number Imm 111 100

230

MULU Unsigned Mulltply

Operation: (Source)*(Destination)- Destination

Assembler
Syntax: MULU <ea>, Dn

Attributes: Size = (Word)

MULU

Description: Multiply two unsigned 16-bit operands yielding a 32-bit unsigned result. The
operation is performed using unsigned arithmetic. A register operand is
taken from the low order word; the upper word is unused. All 32 bits of the
product are saved in the destination data register.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies one of the data registers. This field always spe­

cifies the destination.
Effective Address field - Specifies the source operand. Only data address­

ing modes are allowed as shown:
Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 register number d(An, XI) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, XI) 111 011
d(An) 101 register number Imm 111 100

231

NBCO Negate Decimal with Extend NBCO
Operation: 0 - (Destinationho - X- Destination

Assembler
Syntax: N BCD < ea >

Attributes: Size = (Byte)

Description: The operand addressed as the destination and the extend bit are sub­
tracted from zero. The operation is performed using decimal arithmetic.
The result is saved in the destination location. This instruction produces
the tens complement of the destination if the extend bit is clear, the nines
complement if the extend bit is set. This is a byte operation only.

Condition Codes: X N Z V C

j*TU I • I tJEl
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) was generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple­
precision operations.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the destination operand. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

232

NEG Negate

Operation: 0 - (Destination)- Destination

Assembler
Syntax: NEG < ea >

Attributes: Size = (Byte, Word, Long)

NEG

Description: The operand addressed as the destination is subtracted from zero. The
result is stored in the destination location. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C
1*1 *1 *1 *1 * I

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared othetwise.
V Set if an overflow is generated. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register numDer a(PG) - -
-(An) 100 register number d(PG, Xi) - -
a(An) 1U1 register numDer Imm - -

233

NEGX Negate with Extend NEGX
Operation: 0 - (Destination) - X - Destination

Assembler
Syntax: NEGX <ea>

Attributes: Size = (Byte, Word, Long)

Description: The operand addressed as the destination and the extend bit are sub­
tracted from zero. The result is stored in the destination location. The size
of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C

1* 1 * 1 * 1 * 1 * 1
N Set if the result is negative. Cleared otherwise.
Z Cieared if tne result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple­
precision operations.

Instruction Format:
15 14 13 12 11 10 9 8 7 6

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

234

NOP No Operation NOP
Operation: None

Assembler
Syntax: NOP

Attributes: Unsized

Description: No operation occurs. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP
instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101010111

235

NOT Logical Complement NOT
Operation: - (Destination)- Destination

Assembler
Syntax: NOT < ea>

Attributes: Size = (Byte, Word, Long)

Description: The ones complement of the destination operand is taken and the result
stored In the destination location. The size of the operation may be
specified to be byte, word, or long.

Condition Codes: X N Z V C
I-I * I * I 0 I 0 I

N Set!t the ~C3;.;:t is iiegaiiv". Cieared otnerwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register numDer a(An, Xl) 110 register numDer
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
deAn) 101 register number Imm - -

236

OR
Operation:

Assembler
Syntax:

Attributes:

Description:

Inclusive OR Logical

(Source) v (Destination)- Destination

OR <ea>, On
OR On, <ea>

Size = (Byte, Word, Long)

OR

Inclusive OR the source operand to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The contents of an address register may
not be used as an operand.

Condition Codes: X N Z V C
I-I * I * I 0 I 0 I

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 «Dn»v«ea»-<Dn>
100 101 110 «ea»v«Dn»-<ea>

Effective Address field -
If the location specified is a source operand then only data addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, XI) 111 011
d(An) 101 register number Imm 111 100

- Continued -
237

OR Inclusive OR logical OR
Effective Address field (Continued)

If the location specified is a destination operand then only memory alter­
able addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An

(An)
(An) +
-(An)
d(An)

Notes:

- - d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 !"eg!ster nUmbQi i I - -1111111

1. If the destination is a data register, then it cannot be specified by using
the destination < ea> mode, but must use the destination On mode in­
stead.

2. ORI is used when the source is immediate data. Most assemblers
automatically make this distinction.

238

ORI Inclusive OR Immediate ORI
Operation: Immediate Data v (Destination)- Destination

Assembler
Syntax: ORI #< data>, < ea>

Attributes: Size = (Byte, Word, Long)

Description: Inclusive OR the immediate data to the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010101010101010
Size 1 Effective Address

Mode I Register
Word Data (16 bites) Byte Data (8 bits)

Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An
(An)

(An) +
-(An)
d(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PG, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction):
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

239

ORI Inclusive OR Immediate to Condition Codes ORI
to CCR to CCR

Operation: (Source) v CCR-CCR

Assembler
Syntax: ORI lxxx, CCR

Attributes: Size = (Byte)

Description: Inclusive OR the immediate operand with the condition codes and store the
result in the low-order byte of the status register.

Condition Code.: X N Z V C

i*i*i*i*i*1
N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.
X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:

240

ORI
to SR

Inclusive OR Immediate to the Status Register
(Privileged Instruction)

Operation: If supervisor state

Assembler

then (Source) v SR-SR
else TRAP

Syntax: ORI lxxx, SR

Attributes: Size = (Word)

ORI
to SR

Description: Inclusive OR the immediate operand with the contents of the status
register and store the result in the status register. All bits of the status
register are affected.

Condition Codes: X N Z V c
1*1*1*1*1*1

N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.
X Set if bit 4 of immediate operand is one. Unchanged otherwise.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101 0 I 0 101 0 I 0 I 0 101 0 I 1 I 1 111 1 I 1 101 0 I
. Word Data (16 bits) .

241

PEA Push Effective Address PEA
Operation: Destination -- - (SP)

Assembler
Syntax: PEA < ea >

Attributes: Size = (Long)

Description: The effective address is computed and pushed onto the stack. A long word
address is pushed onto the stack.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the address to be pushed onto the

stack. Only control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On - - d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + - - d(PC) 111 010
-(An) - - d(PC, Xi) 111 011
d(An) 101 register number Imm - -

242

RESET
Operation: If supervisor state

Reset External Devices
(Privileged Instruction)

then Assert RESET Line
else TRAP

Assembler
Syntax: RESET

Attributes: Unsized

RESET

Description: The reset line is asserted causing all external devices to be reset. The pro­
cessor state, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0

101110101111111010111111101010101

243

ROL
ROR

Rotate (without Extend) ROL
ROR

Operation:

Assembler
Syntax:

Attributes:

(Destination) Rotated by < count> - Destination

ROd Ox, Dy
ROd #<data>, Dy
ROd <ea>

Size = (Byte, Word, Long)

Description: Rotate the bits of the operand In the direction specified. The extend bit is
not Included In the rotation. The shift count for the rotation of a register
may bti ~pticHitiu ill iwu uiiitlltmi way::;;

ROL:

ROR:

1. Immediate - the shift count is specified in the instruction (shift range,
1-8).

2. Register - the shift count is contained In a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size Is
restricted to a word.

For ROL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry bit and
back into the low order bit. The extend bit Is not modified or used.

For ROR, the operand is rotated right; the number of position shifted Is the
shift count. Bits shifted out of the low order bit go to both the carry bit and
back Into the high order bit. The extend bit is not modified or used.

Condition Codes: X N Z V C

1-1*1*1°1*1
N Set If the most significant bit of the result is set. Cleared otherwise.
Z Set If the result Is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shfited out of the operand. Cleared for

a shift count of zero.
X Not affected.

244
- Continued -

ROL
ROR

Rotate (WIthout Extend)

Instruction Format (Register Rotate):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction Fields (Register Rotate):
Count/Register field -

ROL
ROR

if i/r = 0, the rotate count is specified in this field. The values 0, 1-7
represent a range of 8, 1 to 7 respectively.
If i/r = 1, the rotate count (modulo 64) is contained In the data register
specified in this field.

dr field - Specifies the direction of the rotate:
o - rotate right.
1 - rotate left.

Size field - Specifies the size of the operation:
00 - byte operation. 01 - word operation.
10 - long operation.

I/r field -
If i/r = 0, specifies immediate rotate count.
If i/r = 1, specifies register rotate count.

Register field - Specifies a data register whose content is to be rotated.

Instruction Format (Memory Rotate):
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 11 11 1 0 1 0 11 11 1 dr 11 11 1 E~~~~vi ~~~~:~:r 1
Instruction Fields (Memory Rotate):

dr field - Specifies the direction of the rotate:
o - rotate right
1 - rotate left.

Effective Address field - Specifies the operand to be rotated. Only
memory alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
~n - - d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

245

ROXL
ROXR

Rotate with Extend ROXL
ROXR

Operation:

Assembler
Syntax:

Attributes:

Description:

ROXL:

ROXR:

(Destination) Rotated by < count> -- Destination

ROXd Dx, Dy
ROXd #<data>, Dy
ROXd <ea>

Size = (Byte, Word, Long)

Rotate the bits of the destination operand in the direction specified. The ex­
tend bit is included in the rotation. The shift count for the rotation of a
register may be specified in two different ways:

1. Immediate - the shift count is specified in the instruction (shift
range, 1-8).

2. Register - the shift count is contained in a data register specified in
the instruction.

The size of the operation may be specified to be byte, word, or long. The
content of memory may be rotated one bit only and the operand size is
restricted to a word.

For ROXL, the operand is rotated left; the number of positions shifted is the
shift count. Bits shifted out of the high order bit go to both the carry and ex­
tend bits; the previous value of the extend bit is shifted into the low order
bit.

Operand

For ROXR, the operand is rotated right; the number of positions shifted is
the shift count. Bits shifted out of the low order bit go to both the carry and
extend bits; the previous value of the extend bit is shifted into the high
order bit.

Operand

- Continued -
246

ROXL
ROXR

Rotate with Extend

Condition Codes: X N Z V C
1*1 *1*101*1

ROXL
ROXR

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shifted out of the operand. Set to the

value of the extend bit for a shift count of zero.
X Set according to the last bit shifted out of the operand. Unaffected

for a shift count of zero.

Instruction Format (Register Rotate):

Instruction Fields (Register Rotate):
Count/Register field:

If i/r = 0, the rotate count is specified in this field. The values 0, 1·7
represent range of 8, 1 to 7 respectively.
If ilr = 1, the rotate count (modulo 64) is contained in the data register
specified in this field.

dr field - Specifies the direction of the rotate:
o - rotate right.
1 - rotate left.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

i/r field -
If ilr = 0, specifies immediate rotate count.
If ilr = 1, specifies register rotate count.

Register field - Specifies a data register whose content is to be rotated.

- Continued -
247

ROXL
ROXR

Rotate with Extend

Instruction Format (Memory Rotate):

Instruction Fields (Memory Rotate):
dr field - Specifies the direction of the rotate:

o - rotate right.
1 - rotate left.

ROXL
ROXR

Effective Address field - Sp6cHies tne operand to be rotated. Only
memory alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On - - d(An, Xi) 110 register number
An - - Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

248

RTD RTD
Return and Deallocate Parameters

Operation: (SP) + -PC; SP+d-SP

Assembler
Syntax: RTD #<displacement>

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter value is lost. After the program counter is read from the stack, the
displacement value is Sign-extended to 32 bits and added to the stack
pOinter.

Condition Codes: Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o o

Displacement

Instruction Field:
Displacement field - Specifies the twos complement integer which is to
be sign-extended and added to the stack pointer.

249

RTE
Operation: If supervisor state

Return from exception
(Privileged Instruction)

then (SP) + - SA; (SP) + - PC
else TAAP

Assembler
Syntax: ATE

Attributes: Unslzed

RTE

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. All bits In the
status register are affected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:
10 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101011111

250

RTE Return from Exception
(Privileged Instruction)

Operation: If supervisor state

Assembler

then (SP) + -- SR; (SP) + -- PC
If (SP) + = long format

then full restore
else TRAP

Syntax: RTE

Attributes: Unsized

RTE

Description: The status register and program counter are pulled from the system stack.
The previous status register and program counter are lost. The vector off­
set word is also pulled from the stack and the format field is examined to
determine the amount of information to be restored.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

101 10101 I I 10 10 1 I I 10 10 1 111

Vector Offset Word Format:

15 12 11 10 9 o

Format Vector Offset

Vector Offset Word Format Fields:
Format Field: - Specifies the amount of information to be restored.

0000 - Short. Four words are to be removed from the top of the stack.
1000 - Long. Twenty-nine words are to be removed from the top of the

stack.
Any Other

Pattern - Error. The processor takes the format error exception.

251

RTR Return and Restore Condition Codes RTR
Operation: (SP) + -cC; (SP) + - PC

Assembler
Syntax: RTR

Attributes: Unsized

Description: The condition codes and program counter are pulled from the stack. The
previous condition codes and program counter are lost. The supervisor por­
tion of the status register is unaffected.

Condition Codes: Set according to the content of the word on the stack.

Instruction Format:
-tIC:. -tA ofo~ .. ", -I.. -In n a "7 ~ IC:. A ., '1 1 n

1 0 11~ 1 0 1 0 11' 11v 11 1 0 1 0 1111 11 1 0 1 11 11 1 I

252

RTS Return from Subroutine RTS
Operation: (SP) + - PC

Assembler
Syntax: RTS

Attributes: Unsized

Description: The program counter is pulled from the stack. The previous program
counter Is lost.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101110111

253

SBCD Subtract Decimal with Extend SBCD
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination)10 - (Source)1 0 - X - Destination

SBCD Dy, Dx
SBCD - (Ay), - (Ax)

Size = (Byte)

Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The subtraction
is performed using binary coded decimal arithmetic. The operands may be
addressed in two different ways:

1. Data register to data register: The operands are contained in the data
registers specified in the instruction.

2. Memory to memory: The operands are addressed with the predecre­
ment addressing mode using the address registers specified in the
instruction.

This operation is a byte operation only.

Condition Codes: X N Z V C

1*lul*IUI*1
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set If a borrow (deCimal) is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normaiiy the Z condition code bit is set via programm­

ing before the start of an operation. This aiiows suc­
cessful tests for zero results upon completion of
multiple-precision operations.

Instruction Format:

Instruction Fields:
Register Rx field - Specifies the destination register:

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the prececrement ad­
dressing mode.

RIM field - Specifies the operand addreSSing mode:
o - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­
ing mode.

254

See Set According to Condition

Operation: If (Condition True)

Assembler

then 1s-Destination
else Os- Destination

Syntax: Scc < ea >

Attributes: Size = (Byte)

See

Description: The specified condition code is tested; if the condition is true, the byte
specified by the effective address is set to TRUE (all ones), otherwise that
byte is set to FALSE (all zeroes). "cc" may specify the following conditions:

CC carry clear 0100 C LS low or same 0011 C+Z
CS carry set 0101 C LT less than 1101 NoV + NoV
EQ equal 0111 Z MI minus 1011 N
F false 0001 0 NE not equal 0110 Z

GE greater or equal 1100 NoV+NoV PI plus 1010 N
GT greater than 1110 NoVoZ+ NoVoZ T true 0000 1
HI high 0010 CoZ VC overflow clear 1000 V
LE less or equal 1111 Z+NoV+NoV VS overflow set 1001 V

Condition Codes: Not affected.

Instruction Format:

Condition

Instruction Fields:
Condition field - One of sixteen conditions discussed in description.
Effective Address field - Specifies the location in which the true/false

byte is to be stored. Only data alterable addressing modes are allowed
as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn
An
(An)

(An) +
-(An)
d(An)

Notes:

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PC, Xi) - -
101 register number Imm - -

1. A memory destination is read before being written to.
2. An arithmetic one and zero result may be generated by following the Scc

instruction with a NEG instruction.

255

STOP Load Status Register and Stop
(Privileged Instruction)

Operation: If supervisor state

Assembler

then Immediate Data -- SR; STOP
else TRAP

Syntax: STOP #xxx

Attributes: Unsized

STOP

Description: The immediate operand is moved into the entire status register; the pro­
gram counter is advanced to point to the next instruction and the processor
stops fetching and executing instructions. Execution of instructions
resumes when a trace, interrupt, or reset exception occurs. A trace excep­
tion will occur if the trace state is on when the STOP instruction is ex­
ecuted. If an interrupt request arrives whose pr:oiity it; higher than the cur­
re:-:t Piocils::;or priority, an interrupt exception occurs, otherwise the inter­
rupt request has no effect. If the bit of the immediate data corresponding to
the S-bit is off, execution of the instruction will cause a privilege violation.
External reset will always initiate reset exception processing.

Condition Codes: Set according to the immediate operand.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1°11101011111110101111111010111°1
. Immediate Data .

Instruction Fields:
Immediate field - Specifies the data to be loaded into the status register.

256

SUB Subtract Binary SUB
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination) - (Source)- Destination

SUB <ea>, On
SUB On, <ea>

Size = (Byte, Word, Long)

Subtract the source operand from the destination operand and store the
result in the destination. The size of the operation may be specified to be
byte, word, or long. The mode of the instruction indicates which operand is
the source and which is the destination as well as the operand size.

Condition Codes: X N Z V C

N
Z
V
C
X

I * I * I * I * I * I
Set if the result is negative. Cleared otherwise.
Set if the result is zero. Cleared otherwise.
Set if an overflow is generated. Cleared otherwise.
Set if a borrow is generated. Cleared otherwise.
Set the same as the carry bit.

Instruction Format:

Instruction Fields:
Register field - Specifies any of the eight data registers.
Op-Mode field -

Byte Word Long Operation
000 001 010 «Dn»-«ea»-<Dn>
100 101 110 «ea»-«Dn»-<ea>

Effective Address field - Determines addressing mode:
If the location specified is a source operand, then all addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 register number d(An, Xi) 110 register number
An- 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) 111 010
-(An) 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

*For byte size operation, address register direct is not allowed.

- Continued -
257

SUB Subtract Binary SUB
Effective Address field (Continued)

If the location specified is a destination operand, then only alterable
memory addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Notes:

Dn - - d(An, Xi) 110 register number
An - - Abs.w 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

1. If the destination is a data register. then it c::mi'lot be spec!f!ed by uSiiiQ
the destination <ea> mode, but must use the destination On mode in­
stead.

2. SUBA is used when the destination is an address register. SUBI and
SUBQ are used when the source is immediate data. Most assemblers
automatically make this distinction.

258

SUBA Subtract Address

Operation: (Destination) - (Source)- Destination

Assembler
Syntax: SUBA < ea>, An

Attributes: Size = (Word, Long)

SUBA

Description: Subtract the source operand from the destination address register and
store the result in the address register. The size of the operation may be
specified to be word or long. Word size source operands are sign extended
to 32 bit quantities before the operation is done.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:
Register field - Specifies any of the eight address registers. This is al·

ways the destination.
Op-Mode field - Specifies the size of the operation:

011 - Word operation. The source operand is sign-extended to a
long operand and the operation is performed on the address register
using all 32 bits.
111 - Long operations.

Effective Address field - Specifies the source operand. All addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An 001 register number Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(P~) 111 010
-(Ant 100 register number d(PC, Xi) 111 011
d(An) 101 register number Imm 111 100

259

SUBI Subtract Immediate SUBI
Operation: (Destination) -Immediate Data- Destination

Assembler
Syntax: SUBI #<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Subtract the immediate data from the destination operand and store the
result in the destination location. The size of the operation may be
specified to be byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

010101010111010
Size 1 Effective Address

Mode I Register
Word Data (16 bits) Byte Data (8 bits)
Long Data (32 bits, including previous word)

Instruction Fields:
Size field - Specifies the size of the operation.

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On
An
(An)

(An) +
-(An)
O(An)

000 register number d(An, Xi) 110 register number
- - Abs.W 111 000

010 register number Abs.L 111 001
011 register number d(PC) - -
100 register number d(PG, Xi) - -
101 register number Imm - -

Immediate field - (Data immediately following the instruction)
If size = 00, then the data is the low order byte of the immediate word.
If size = 01, then the data is the entire immediate word.
If size = 10, then the data is the next two immediate words.

260

SUBQ Subtract Quick SUBQ
Operation: (Destination) -Immediate Data - Destination

Assembler
Syntax: SUBQ #<data>, <ea>

Attributes: Size = (Byte, Word, Long)

Description: Subtract the immediate data from the destination operand. The data range
is from 1-8. The size of the operation may be specified to be byte, word, or
long. Word and long operations are also allowed on the address registers
and the condition codes are not affected. Word size source operands are
sign extended to 32 bit quantities before the operation is done.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
X Set the same as the carry bit.

The condition codes are not affected if a subtraction from an address
register is made.

Instruction Format:

Instruction Fields:
Data field - Three bits of immediate data, 0, 1-7 representing a range of

8, 1 to 7 respectively.
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination location. Only alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number

An* 001 register number Abs.W 111 000
(An) 010 register number Abs.L 111 001

(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

*Word and Long only.

261

SUBX Subtract with Extend SUBX
Operation:

Assembler
Syntax:

Attributes:

Description:

(Destination) - (Source) - X -- Destination

SUBX Dy, Ox
SUBX - (Ay), - (Ax)

Size = (Byte, Word, Long)

Subtract the source operand from the destination operand along with the
extend bit and store the result in the destination location. The operands
may be addressed in two different ways:

1. Data register to data register: The operands are contained in data
registers specified in the instruction.

2. Memory to memory. The operands are contained in memory and ad­
dressed with the predecrement addressing mode using the address
registers specifiea In the instruction.

The size of the operation may be specified to be byte, word, or long.

Condition Codes: X N Z V C
1*1*1*1*1*1

N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
X Set the same as the carry bit.

NOTE
Normally the Z condition code bit is set via programming
before the start of an operation. This allows successful
tests for zero results upon completion of multiple­
precision operations.

Instruction Format:

- Continued -

262

SUBX Subtract with Extend SUBX
Instruction Fields:

Register Rx field - Specifies the destination register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­
ing mode.

Size field - Specifies the size of the operation:
00 - byte operation.
01 - word operation.
10 - long operation.

RIM field - Specifies the operand addressing mode:
o - The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement address­
ing mode.

263

SWAP Swap Register Halves SWAP
Operation: Register [31:16)- Register [15:0)

Assembler
Syntax: SWAP On

Attributes: Size = (Word)

Description: Exchange the 16-bit halves of a data register.

Condition Codes: X N Z V C

1-1*1*1°1°1
N Set if the most significant bit of the 32-bit result is set. Cleared

otherwise.
Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C A:waY5 (;itlareci.
X Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 ° 11 1 ° 1 ° 11 1 ° 1 ° 1 ° 1 ° 11 1 ° 1 ° 1 ° 1 Register I
Instruction Fields:

Register field - Specifies the data register to swap.

264

lAS Test and Set an Operand

Operation: (Destination) Tested - CC; 1-bit 7 OF Destination

Assembler
Syntax: T AS < ea >

Attributes: Size = (Byte)

lAS

Description: Test and set the byte operand addressed by the effective address field. The
current value of the operand is tested and Nand Z are set accordingly. The
high order bit of the operand is set. The operation is indivisible (using a
read-modify-write memory cycle) to allow synchronization of several pro­
cessors.

Condition Codes: X N Z V C
1-1*1*10101

N Set if the most significant bit of the operand was set. Cleared other-
wise.

Z Set if the operand was zero. Cleared otherwise.
V Always cleared.
C Always cleared.
X Not affected.

Instruction Format:

Instruction Fields:
Effective Address field - Specifies the location of the tested operand.

Only data alterable addressing modes are allowed as shown:
Addressing Mode Mode Register Addressl~ Mode Mode Register

On 000 register number d(An, Xi) 110 register number
An - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(An) + 011 register number d(PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

Note: Bus error retry is inhibited on the read portion of the TAS read-modify-write
bus cycle to ensure system integrity. The bus error exception is always
taken.

265

TRAP Trap TRAP
Operation: PC- - (SSP); SR- - (SSP); (Vector)- PC

Assembler
Syntax: TRAP If < vector>

Attributes: Unsized

Description: The processor initiates exception processing. The vector number is
generated to reference the TRAP instruction exception vector specified by
the low order four bits of the instruction. Sixteen TRAP instruction vectors
are available.

Cuii~~~!C~ C~d!!!O: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\ 0 \1 1 0 1 0 11 11 11 1 0 1 0 11 1 0 1 0 1 Vector

Instruction Fields:
Vector field Specifies which trap vector contains the new program

counter to be loaded.

266

TRAPV Trap on Overflow TRAPV
Operation: If V then TRAP

Assembler
Syntax: TRAPV

Attributes: Unsized

Description: If the overflow condition is on, the processor initiates exception process­
ing. The vector number is generated to reference the TRAPV exception vec­
tor. If the overflow condition is off, no operation is performed and execu­
tion continues with the next instruction in sequence.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1011 101011 11 11 101011 1111 101111 101

267

TST Test an Operand TST
Operation: (Destination) Tested-CC

Assembler
Syntax: TST < ea >

Attributes: Size = (Byte, Word, Long)

Description: Compare the operand with zero. No results are saved; however, the condi­
tion codes are set according to results of the test. The size of the operation
may be specified to be byte, word, or long.

Condition Codes:

N
z
V
C
X

X N Z V C
1-1*1*10101

Set if the operand is negative. Cleared otherwise.
e + If +h ,,"' "'",.. ;, _ 1""'1 __ ._ _ 1 __
__ .. I "" "'t"""IYII "'" ~""I\J •,I~QI'WU '-"II..,',..,.

Always cleared.
Always cleared.
Not affected.

Instruction Format:

Instruction Fields:
Size field - Specifies the size of the operation:

00 - byte operation.
01 - word operation.
10 - long operation.

Effective Address field - Specifies the destination operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
On 000 register number d(An, Xi) 110 register number
An - - Abs.W 111 000

(An) 010 register number Abs.L 111 001
(Anl+ _. 011 register number d1PC) - -
-(An) 100 register number d(PC, Xi) - -
d(An) 101 register number Imm - -

268

UNLK Unlink UNLK
Operation: An - SP; (SP) + - An

Assembler
Syntax: UNLK An

Attributes: Unsized

Description: The stack pointer is loaded from the specified address register. The ad­
dress register is then loaded with the long word pulled from the top of the
stack.

Condition Codes: Not affected.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 11 1 0 1 0 11 11 11 1 0 1 0 11 1 0 11 11 1 Register I
Instruction Fields:

Register field - specifies the address register through which the unlinking
is to be done.

269

Appendix C
INSTRUCTION FORMAT SUMMARY

C.1 INTRODUCTION

This appendix provides a summary of the first word in each instruction of the instruction
set. Table C·1 is an operation code (op·code) map which illustrates how bits 15 through 12
are used to specify the operations. The remaining paragraph groups the instructions ac­
cording to the op-code map.

Table C·1. Operation Code Map

Bits Operation Bits Operation 15 through 12 15 through 12
0000 Bit Manlpulallon/MOVEP/lmmedlate 1000 OR/DIV/SBCD

0001 Move Byte 1001 SUB/SUBX

0010 Move Long 10lD IUnassignedl

0011 Move Word 1011 CMP/EOR

0100 Miscellaneous 1100 AND/MUL/ ABCD/EXG

0101 ADDO/SUBO/Scc/DBcc 1101 ADD/ADDX

0110 Bcc/BSR 1110 Sh,ft/ Rotate

0111 MOVEO 1111 IUnasslgned)

Table C·2. Effective Address Encoding Summary
Addressing Mode Mode Register

Data Register Direct 000 register number

Address Register Direct 001 register number

Address Register Indirect 010 register number

Address Register Indirect with Postlncrement 011 register number

Address Register Indirect With Predecrement 100 register number

Address Register Indirect With Displacement 101 register number

Address Register Indirect With Index llD regIster number

Absolute Short 111 000

Absolute Long 111 001

Program Counter With Displacement 111 010

Program Counter With Index 111 011

Immediate or Status Register 111 100

271

Table C·3. Conditional Tests

Mnemonic Condition

T true

F false

HI high

LS low or same

CCIHSI carry clear

CSILOI carry set

NE not equal

EO equal

VC overflow clear

VS overflow set

PL plus

MI minus

GE greater or equal

LT less than

GT greater than

LE less or equal

OR Immediate

15 14 13 12 11 10 9

0 0 0 0 0

Size field: 00 = byte
01 = word
10 = long

OR Immediate to CCR

0

15 14 13 12 11 10

o o o o o o

OR Immediate to SR

15 14 13 12 11 10

o o o o o o

0

9

o

9

o

8

0

8

o

8

o

272

Encoding Test

0000 1

0001 0

0010 c·2
0011 C+Z

0100 C
0101 C

0110 Z

0111 Z

1000 V

1001 V

1010 N

1011 N

1100 N·V + N.V

1101 N·V+N·V

1110 N·V·Z+ N·V·Z

1111 Z+N·V+N.V

7 6 5 4 3 2 o

Effective Address
Size

Mode I Register

7 6 5 4 3 2 o

o o 1 1 1 o o

7 6 5 4 3 2 o

o 1 1 o o

Dynamic Bit

MOVEP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
0 0 0 0 Register

Type field: 00 = TST
01 =CHG
10=CLR
11 =SET

1 Type I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

Op-Mode

Op-Mode field: 100 = transfer word from memory to register
101 = transfer long from memory to register
110 = transfer word from register to memory
111 = transfer long from register to memory

Address
Register

AND Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

Size field: 00 = byte
01 = word
10= long

AND Immediate to CCR

0 1 0 Size
Effective Address

Mode I Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 0 000 0 1 000 1 1 1 100

AND Immediate to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 0 0 0 0 0 1 0 0 I 1 /1 1 1 1 1 0 0

273

SUB Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

Size field: 00 = byte
01 = word
10= long

1 Size
Effective Address

0 0 I Mode Register

ADD Immediate

Static Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0

Size field: 00 = byte
Oi = wora
10 = long

1
Effective Address

1 0 Size I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1

Type field: 00 = TST
01 =CHG
10=CLR
11 = SET

0
Effective Address

0 0 Type I Register Mode

EOR Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

0 0 0 0 1

Size field: 00 = byte
01 = word
10 = long

EOR Immediate to CCR

0 0 Size
Effective Address

1 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

o 0 0 0 o 000 1 1 0 0

274

EOR Immediate to SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 0 0 0 o 1 001 1 1 o 0

CMP Immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 1

Size field: 00 = byte
01 = word
10 = word

MOVES MC68010

1
Effective Address

0 0 Size I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 1 1

Size field: 00 = byte
01 = word
10= long

MOVE Byte

1
Effective Address

1 0 Size I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0
Destination Source

1
Register I Mode I Register Mode

Note register and mode locations

275

MOVEA Long

14 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 I 0
Destination Source

0 0 0 0 1 I Register Mode Register

MOVE Long

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source

!
0 0 1 0

Register I Mode I Mode Register

Note register and modA !~~~t!:m;

MOVEA Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
0 0 1 1 0 0 1 I Register Mode Register

MOVE Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination Source
0 0 1 1

Register I I Mode Mode Register

Note register and mode locations

276

NEGX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 = word
10= long

0
Effective Address

0 0 Size I Mode Register

MOVE from SR

CHK

LEA

CLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 0 0 0 1 1

I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
0 1 0 0 Register 1 1 0 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address Effective Address
0 1 0 0 Register 1 1 1 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 = word
10 = long

0
Effective Address

1 0 Size I Mode Register

277

MOVE from CCR MC68010

NEG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 0 1 0 1 1 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 = word
10= long

1 0 0 Size
Effective Address

Mode I Register

MOVE to CCR

NOT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 0 1 0 0 1 0 0 1 1 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 0

Size field: 00 = byte
01 = word
10= long

1
Effective Address

1 0 Size
Mode I Register

MOVE to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 0 1 1 0 1 1

Mode I Register

278

NBCD

SWAP

PEA

EXT Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 0 0
Effective Address

1 1 I Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1 0 0 0
Effective Address

0 1 I Register Mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

MOVEM Registers to EA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1 0

Sz field: 0 = word transfer
1 = long transfer

0

279

Sz
Effective Address

0 1 I Mode Register

EXT Long

TST

TAS

ILLEGAL

15 14 13 12 11 10 9 8 7 8 5 4 3 2 0

Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1

Size field: 00 = byte
01 = word
10 = long

0
Effective Address

1 0 Size I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 1 0 1 0 1 1 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0100101011111100

MOVEM EA to Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 0 1 1

Sz field: 0 = word transfer
1 = long transfer

0

280

Effective Address
0 1 Sz I Mode Register

TRAP

LINK

UNLK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 1 001 1 100 o I 0 I

15 14 13 12 11 10 9 8 7 6 5 4 3

15 14 13 12 11 10 9 8 7 6 5 4 3

Vector

2 0

Address
Register

2 0

Address
Register

MOVE to USP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address
Register

MOVE from USP

RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 1 0 0 1 1 001 1 100 0 0

281

NOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101010111

STOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101011101

RTE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101011111

RTD MC68010

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101110101

RTS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

101110101111111010111111101110111

TRAPV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 11 1010111111 1010111111 10111110 1

282

RTR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o o 0 1 o 0 1 0 1 1 1

MOVEC MC68010

JSR

JMP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 0 0 1 0 0 1 0 I dr I
dr field: 0 = control register to general register

1 = general register to control register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 0 1 1 1 0 1 0 I Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0
Effective Mode

1 1 1 1 1 1 I Register Mode

283

ADDQ

See

DBee

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 1 Data 0 Size I Mode Register

Data field: Three bits of immediate data, 0, 1·7 representing a range of
8, 1 to 7 respectively.

Size field: 00 = byte
01 = word
10= long

I
I

15 14 13 12 11 10 9 8

n I I n I 1 1 "'-... ~:...:--- I I - I
,",,,,11\.1 IlIUl1

Condition field: 0000 = true
0001 = false
0010= high
0011 = low or same
0100 = carry clear
0101 = carry set
0110= not equal
0111 = equal

7 6 5 4 3 2 0

Effective Address
~
I

I Mode

1000 = overflow clear
1001 = overflow set
1010= plus
1011 = minus
1100 = greater or equal
1101 = less than
1110 = greater than
1111 = less or equal

Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Condition

Condition field: 0000 = true
0001 = false
0010= high
0011 = low or same
0100 = carry clear
0101 = carry set
0110= not equal
0111 = equal

284

1000 = overflow clear
1001 = overflow set
1010= plus
1011 = minus
1100 = greater or eq ual
1101 = less than
1110 = greater than
1111 = less or equal

Data
Register

SUBQ

Bee

BRA

BSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address
0 1 0 1 Data 1 Size I Mode Register

Data field: Three bits of immediate data, 0, 1·7 representing a range of
8, 1 to 7 respectively.

Size field: 00 = byte
01 = word
10 = long

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 I 1 I 1 I 0 I Condition 8·Bit Displacement

Condition field: 0010 = high 1001 = overflow set
0011 = low or same 1010 = plus
0100 = carry clear 1011 = minus
0101 = carry set 1100 = greater or equal
0110 = not equal 1101 = less than
0111 = equal 1110 = greater than
1000 = overflow clear 1111 = less or equal

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o 1 1 0 000 0 8·Bit Displacement

15 14 13 12 11 10 9 8 7 65432 o

1011 1 0000 1 8·Bit Displacement

285

MOVEQ

OR

DIVU

SBeD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

Data

Data field: Data is sign extended to a long operand and all 32 bits are
transferred to the data register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

n",t!>
Op-Mode

EffGct;.Q Address
Register Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 « On>)v«ea>)-Dn
100 101 110 «ea>)v(< On>)-ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 0 0 0 1 1 I Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Register·

RIM field: 0 = data register to data register
1 = memory to memory

·If RIM = 0, specifies a data register.

Source
Register·

If RIM = 1, specifies an address register for the predecrement addressing
mode.

286

DIVS

SUB

SUBA

SUBX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Data Effective Address
1 0 1 1 1 I Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 Data Op-Mode
Effective Address

1 1 I Register Register Mode

Op-Mode field: Byte Word Long Operation
000 001 010 «Dn»-«ea» -Dn
100 101 110 «ea»-«Dn» -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 0 1 Op-Mode I Register Mode Register

Op-Mode field: Word Long
011 111

Operation
«ea»-«An» -An

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Register·

Size field: 00 = byte
01 = word
10= long

RIM field: 0 = data register to data register
1 = memory to memory

• If RIM = 0, specifies a data register.

Source
Register·

If RIM = 1, specifies an address register for the predecrement addressing
mode.

287

CMP

CMPA

EOR

CMPM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 1 1

Op-Mode field:

Effective Address Data Op-Mode
I Register Mode Register

Byte Word Long
000 001 010

Operation
«Dn»-«ea»

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 1 1 Op-Mode

I Register Mode Register

Op-Mode field: Word Long Operation
011 111 « ea» - «An»

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 0 1 1 Op-Mode I Register Mode Register

Op-Mode field: Byte Word Long Operation
100 101 110 «ea»e«Dn»-ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Register

Size field: 00 = byte
01 = word
10= long

288

Source
Register

AND

MULU

ABeD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Effective Address Data 1 1 0 0 Op·Mode I Register Mode Register

Op·Mode field: Byte Word Long
000 001 010
100 101 110

Operation
«Dn»A«ea» -Dn
«ea»A«Dn» -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data Effective Address
1 1 0 0 0 1 1 I Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Destination
Register*

RIM field: 0 = data register to data register
1 = memory to memory

* If RIM = 0, specifies a data register.

Source
Register*

If RIM = 1, specifies an address register for the predecrement addressing
mode.

EXG Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

EXG Address Registers

Data
Register

Data
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Address
Register

289

Address
Register

EXG Data Register and Address Register

MULS

ADD

ADDA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Data
Register

Address
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 Data Effective Address
1 1 0 1 1 1 I Register Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 Data Op-Mode
Effective Address

1 1 1 I Register Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 «On»+«ea»-On
100 101 110 «ea»+«On» -ea

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 0 Data Op-Mode
Effective Address

1 I Register Mode Register

Op-Mode field: Word Long Operation
011 111 «ea»+«An» -An

290

ADDX
11 10 9

Destination
Register*

Size field: 00 = byte
01 = word
10= long

RIM field: 0 = data register to data register
1 = memory to memory

* If RIM = 0, specifies a data register.

2 o
Source

Register*

If RIM = 1, specifies an address register for the predecrement addressing
mode.

SHIFT/ROTATE - Register

11 10 9

Countl
Register

2 o

Data
Register

Count/Register field: If i/r field = 0, specifies shift count
If i/r field = 1, specifies a data register that contains the

shift count
dr field: 0 = right

1 = left
Size field: 00 = byte

01 = word
10= long

i/r field: 0 = immediate shift count
1 = register shift count

Type field: 00 = arithmetic shift
01 = logical shift
10 = rotate with extend
11 = rotate

SHIFT/ROTATE - Memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 Type

Type field: 00 = arithmetic shift
01 = logical shift

dr

10 = rotate with extend
11 = rotate

dr field: 0 = right
1 = left

291

1 1 Effective Address
Mode ., Register

Appendix D
MC6S000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (elK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle reo
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE

The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table 0·1 lists the number of clock periods required to compute an instruction's effective
address. It includes fetching of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/w). Note there are no write cycles involved in processing the effective
address.

Table D·1. Effective Address Calculation Times

Addreuing Mode Byte, Word Long

Register
Dn Data Register Direct 0(0/01 010/01
An Address Register Direct 010/01 010/01

Memory
IAnl Address Register Indirect 411/01 812/01
IAnl+ Address Register Indirect with Postincrement 411/01 812/01

-IAnl Address Register Indirect with Predecrement 611/01 1012/01
dlAnl Address Register Indirect with Displacement 812/01 1213/01

diAn, ixl· Address Register Indirect with Index 1012/01 1413/0)
xxx.W Absolute Short 812/01 1213/0)

xxx.L Absolute Long 1213/0) 1614/01
dIPC) Program Counter with Displacement 812/01 1213/01

dIPC, IX)· Program Counter with Index 1012/0) 1413/01
Ixxx Immediate 411/01 812/01

• The size of the Index register I,x) does not affect execution time

293

0.3 MOVE INSTRUCTION EXECUTION TIMES

Tables 0·2 and 0·3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w).

Table 0·2. Move Byte and Word Instruction Execution Times

Source Destination
On An IAn) IAn) + -IAn) dIAn) dIAn, ix)* xxx.W xxx.L

Dn 411/01 4(1101 8(1/1) 8(1111 811/ 11 12(2/1) 14(211) 12(211) 16(311)
An 4(1/01 411/01 8(111) 8(1/1) 8(1/11 12(211) 14(211) 12(211) 1613/11
IAn) 812101 812101 12(211) 1212/11 12(2/1) 16(3/1) 18(3/1) 16(311) 20(4/1)

IAn)+ 812/01 812/01 1212/11 12(2/1) 12(2/1) 16(311) 18(311) 16(311) 20(4/1)
-IAn) 1012/01 1012/01 1412/11 14(2/1) 14(211) 18(3/1) 20(311) 18(311) 2214/11
dIAn) 1213/01 1213/01 16(311) 1613/11 1613/11 20(411) 22(4/1) 20(4/1) 2.t!!5/~:

dIAn, ix)* 1413/01 1413/01 18(3/1) 18(3/1) ~!!3/~, lll4/11 24(4/1) 2214111 2615/11
xxx.w "'~/a! ~£,3iC" 1613/11 16(311) 16(3/1) 2014111 22(411) 20(4/1) 2415/11
!::~A.:" 1614/01 1614/01 20(411) 20(411) 2014/11 24(5/1) 2615111 24(5/1) 28(611)

dIPC) 1213/01 1213/01 16(3/1) 16(3/1) 16(3/1) 20(411) 22(4/1) 20(4/1) 24(511)
dlPC, ix)* 1413/01 1413/01 18(3/1) 1813/11 18(311) 22(4/1) 24(411) 2214/11 26(511)
Ixxx 8(2/0) 812/01 12(2/1) 12(2/1) 12(211) 16(3/1) 18(3/1) 16(3/1) 20(411)

*The size of the Index register I,x) does not affect execution time

Table 0·3. Move Long Instruction execution Times

Source
Deetinetion

On An IAn) IAn)+ -IAn) dIAn) dIAn, ix)" xxx.W xxx.L

Dn 4(1/01 4(1/01 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(312)
An 4(110) 4(1/01 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(212) 20(312)
IAn) 12(3/0) 1213/01 20(312) 20(3/2) 20(3/2) 24(4/2) 26(412) 24(4/2) 28(512)

IAn)+ 1213/01 1213/01 20(312) 20(3/2) 20(3/2) 24(412) 26(4/2) 24(4/2) 28(512)
-IAn) 1413/01 1413/01 22(312) 22(312) 22(3/2) 26(412) 28(4/2) 26(4/2) 30(5/2)
dIAn) 1614/01 1614101 24(4/2) 24(4/2) 24(412) 28(5/2) 30(5/2) 28(5/2) 32(6/2)

dIAn, ix)* 1814/01 1814/01 26(412) 26(4/2) 26(4/2) 30(5/2) 32(512) 30(5/2) 34(6/2)
xxxW 1614/01 1614/01 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(612)
xxx.L 20(5/0) 2015/01 28(512) 28(5/2) 28(5/2) 32(6/2) 34(6/2) 32(6/2) 36(712)
dIPC) 18(4/0) 1814/01 24(4/2) 24(412) 24(412) 28(512) 30(512) 28(512) 32(5/2)
dlPC, IX)* 1614/01 1814/01 26(412) 26(4/2) 26(412) 30(5/2) 32(5/2) 30(5/2) 34(6/2)
Ixxx 1213/01 12(3/0) 20(312) 20(3/2) 20(3/2) 24(4/2) 26(412) 24(4/2) 28(512)

*The size of the Index register !Ix) does not affect execution time

294

0.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table 0-4 Indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad­
dress calculation where indicated.

In Table 0·4 the headings have the following meanings: An = address register operand,
On = data register operand, ea = an operand specified by an effective address, and
M = memory effective address operand.

Table 0·4. Standard Instruction Execution Times

Instruction Size op<ea>, Ant op<ea>, On op On, <M>

ADD
Byte, Word 8(1/01+ 4(1/01+ 8(1111+

Long 6(1/01 + * * 6(1/01 + * * 12(1121+

AND
Byte, Word - 4(1101 + 8(1111+

Long - 6(1/01+ ** 12(1/21+

CMP
Byte, Word 6(1101 + 4(1/01 + -

Long 6(1/01+ 6(1/01+ -

DIVS - - 158(1/01 + * -
DIVU - - 140(1/01 + * -

EOR
Byte, Word - 4(1101* * * 8(1/11+

Long - 8(1/01* * * 12(1121 +

MULS - - 70(1101 + * -

MULU - - 70(1/01+ * -

OR
Byte, Word - 4(1/01+ 8(1/1) +

Long - 6(1/0) + * * 12(1/21+

SUB
Byte, Word 8(1101+ 4(1/01+ 8(1/11+

Long 6(1/01 + * * 6(1/01 + * * 12(1/21+

NOTES:
+ add effective address calculation time
t word or long only
* indicates maximum value

* * The base time of six clock periods IS increased to eight If the effective address mode is
register direct or immediate (effective address time should also be added!.

* * * Only available effective address mode is data register direct.
DIVS, DIVU - The divide algorithm used by the MC68000 provides less than 10% difference

between the best and worst case timings.
MULS, MULU - The multiply algorithm requires 38+2n clocks where n is defined as·

MULU: n = the number of ones in the < ea >
MULS: n= concatanate the <ea> with a zero as the LSB; n IS the resultant number of

10 or 01 patterns in the 17-bit source; I.e., worst case happens when the
source is $5656.

295

0.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table 0-5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table 0-5, the headings have the following meanings: # = immediate operand,
On = data register operand, An = address register operand, and M = memory operand.
SR = status register.

Table 0·5. Immediate Instruction execution Times

Instruction Size op N, On

ADD I
Byte, Word BI2/01

Long 1613/01

ADDO
Byte, Word 411/01

Long Bll/01
'----

ANDI
Byte, Word B(2/01

Long 1613/01

CMPI
Byte, Word B(2/01

Long 14(3/01

EORI
Byte, Word BI2/01

Long 1613/01

MOVEO Long 411/01

ORI
Byte, Word B(2/01

Long 1613/01

SUBI
Byte, Word BI2/01

Long 16(3/01

SUBO
Byte, Word 4(1/01

Long B(l/01

+ add effective address calculation time
*word only

296

op #, An opt, M

- 1212111 +
- 2013121 +

Bll/01* Blll1l+
Rll/()) ~.2(1/2: :

- 12(2111 +

- 20(3111+

- B12/01+
- 1213/01+

- 1212111 +
- 2013121 +

- -
- 12(2/11 +
- 20(3121 +

- 1212111 +

- 2013121 +

B(l/01* Blll1l+

B(1/01 1211/21+

0.8 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table 0-6 Indicates the number of clock periods for the single operand Instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table 0-6. Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR
Byte, Word 411/01 811111+

Long 611/01 1211/21+

NBCD Byte 611101 811111+

NEG
Byte, Word 411/01 811/11+

Long 611/01 1211/21+

NEGX
Byte, Word 411101 811111+

Long 611/01 1211/21+

NOT
Byte, Word 411101 811/11+

Long 611/01 1211/21+

SCC
Byte, False 411101 811/11+

Byte, True 611/01 811/11+

TAS Byte 411/01 1011111+

TST
Byte, Word 411/01 411101 +

Long 411/01 411/01+

+ add effective address calculation time

0.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table 0·7 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table 0·7. Shift/Rotate Instruction Execution Times

Instruction Size

ASR,ASL
Byte, Word

Long

LSR, LSL
Byte, Word

Long

ROR, ROL
Byte, Word

Long

ROXR, ROXL
Byte, Word

Long

+ add effective address calculation time
n is the shift count

Register Memory

6 + 2nll/01 811111+

8 + 2nll/01 -
6 + 2nll/01 811111+

8 + 2nll/01 -

6 + 2nll/01 811111+

8 + 2nll/01 -

6 + 2nll/01 811111+

8 + 2nll/01 -

297

0.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table 0-8 indicates the number of clock periods required for the bit manipulation instruc·
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The
number of clock periods and the number of read and write cycles must be added respec·
tively to those of the effective address calculation where indicated.

Table 0·8. Bit Manipulation Instruction execution Tlm.s

Instruction Size
Dynamic

Register

Byte -
BCHG

8(1101* Long

Byte -
BCLR

Long 10(1/01*

BSET
Byte -
Long 8(1/01*

Byte -
BTST

611/01 Long

+ add effective address calculation time
* Indicates maximum value

Memory

8(1111+

-
8(1111+

-
8(1111+

-
4(1101+

-

0.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Static

Register Memory

- 12(2/11 +

12(2/01* -
- 12(2/11+

14(2/01* -
- 12(2111 +

12(2/01* -
- 812/01 +

10(2/01 -

Table O·g indicates the number of clock periods required for the conditional instructions.
The number of bus read and write cycles is indicated in parenthesis as (r/w). The number
of clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where Indicated.

Table 0·9. Conditional Instruction Execution Times

Instruction Displacement

BCC
Byte

Word

BRA
Byte

Word

BSR
Byte

Word

DBCC
CC true

CC false

+ add effective address calculation time
* indicates maximum value

298

Branch Branch
Taken Not Taken

10(2/01 8(1101
10(2/01 12(2/01

10(2/01 -
10(2/01 -

lB(2/21 -
18(2/21 -

- 12(2/01

10(2/01 14(3/01

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table 0·10 indicates the number of clock periods required for the jump, jump-to­
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table D·10. JMP, JSR, LEA, PEA, and MOVEM Instruction Executton Times

Instr Size IAn) IAn)+ IAn) diAn) d{An, ix) + xxx.W xxx.L dIPC) dIPC, ix)*

JMP - 812/01 - - 1012/01 1413/01 1012/01 1213/01 1012/01 1413/01

JSR - 1612/21 - - 1812/21 2212121 1812/21 2013121 1812/21 2212121

LEA - 411/01 - - 812/01 1212/01 812101 1213/01 812101 1212/01

PEA - 1211/21. - - 1612/21 2012121 1612/21 2013121 1612/21 2012121

Word 12+4n 12+4n - 16+4n 18+4n 16+4n 2O+4n 16+4n 18+4n
MOVEM 13 + n/Oi 13 + n/Oi 1.4 + niDI 14+n/0i 14+ n/Oi 15+ niDI 14+ niDI 14+ niDI

M-R Long 12+8n 12+8n - 16+8n 18+8n 16+8n 2O+8n 16+8n 18+8n
13+ 2n/0i 13+ 2n/0i 14+ 2n/0i 14+ 2n/0i 14+ 2n/0i 15+ 2n/01 14+ 2n/0i 14+ 2n/01

Word 8+4n - 8+4n 12+4n 14+4n 12+4n 16+4n - -

MOVEM 12/nl 12/nl 13/nl 13/nl 13/nl 14/nl - -

R-M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - -
12/2nl - 12/2nl 13/2nl 13/2nl 13/2nl 14/2nl - -

n IS the number of registers to move
*IS the size of the Index register (IX) does not affect the instruction's execution time

D 11 MULTI·PRECISION INSTRUCTION EXECUTION TIMES

Table 0-11 indicates the number of clock periods for the multi·precision instructions. The
number of clock periods includes the time to fetch both operands, peform the operations,
store the results, and read the next instructions. The number of read and write cycles is
shown in parenthesis as (r/w).

In Table 0-11, the headings have the following meanings: On = data register operand and
M = memory operand.

Table D-11. Multi-Precision Instruction Execution Times

Instruction Size op On, On opM, M

ADDX
Byte, Word 411/01 1813/11

Long 811101 3015/21

CMPM
Byte, Word - 1213/01

Long - 2015101

SUBX
Byte, Word 411/01 1813/11

Long 811101 3015121

ABCD Byte 611/01 1813/11

SBCD Byte 611101 1813/11

299

0.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables 0·12 and 0·13 Indicate the number of clock periods for the following
miscellaneous Instructions. The number of bus read and write cycles Is shown In paren·
thesis as (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where Indicated.

Table 0·12. Miscellaneous Instruction execution Times

Instruction Size Register Memory

ANDI to CCR Byte 21)(3/01 -

ANDI to SR Word 21)(3/0) -
CHK - 10(1/01+ -
EORI to CCR Byte 21)(3101 -
EORI to SR Word 21)(3/0) -

ORI to CCR Byte 21)(3/01 -

ORI to SR Word 21)(3/0) -
MOVE from SR - 6(1/0) 8(1/1)+

MOVE to CCR - 12(2/01 12(2/01 +

MOVE to SR - 12(2/0) 12(2/0) +
~)(G - 6(1101 -

EXT
Word 4(1/0) -
Long 4(1/0) -

LINK - 16(2/2) -
MOVE from USP - 4(110) -
MOVE to USP - 4(1/0) -

NOP - 4(1/0) -
RESET - 132(1/01 -

RTE - 21)(5/0) -
RTR - 21)(5/01 -
RTS - 16(4/01 -

STOP - 4(0/01 -

SWAP - 4(110) -
TRAPV - 4(1/0) -

UNLK - 12(3/01 -
+ add effective address calculation time

Table 0·13. Move Peripheral Instruction execution Times

Instruction Size Register - Memory Memory - Register

MOVEP
Word 16(2/2) 16(4/01

Long 24(2/4) 24(6/01

300

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table 0·14 Indicates the number of clock periods for exception processing. The number
of clock periods Includes the time for all stacking, the vector fetch, and the fetch of the
first two instruction words of the handler routine. The number of bus read and write
cycles is shown in parenthesis as (r/w).

Table D·14. Exception Processing execution Times

Exception Periods
Address Error 50(417)

Bus Error 50(417)

CHK Instruction 4415/41 +
D,v,de by Zero 4215/41

Illegal Instruction 3414/31

Interrupt 4415/31*

Privilege ViolatIOn 3414/31

RESET* * 4016/0)

Trace 3414/31

TRAP Instruction 3814/41

TRAPV InstructIOn 3414/31
+ add effective address calculatIOn time
* The Interrupt acknowledge cycle IS assumed

to take lour clock periods
* * Indicates the time Irom when RESET and

HALT are Ilrst sampled as negated to when
Instruction execution starts

301

Appendix E
MC6Saaa INSTRUCTION EXECUTION TIMES

E.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (elK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle reo
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE
The number of periods includes instruction fetch and all applicable operand
fetches and stores.

E.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMES

Table E·1 lists the number of clock periods required to compute an instruction's effective
address. It includes fetching of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/w). Note there are no write cycles involved in processing the effective
address.

Table E·1. Effective Address Calculation Times

Addressing Mode Byte Word Long

Register

On Data Register Direct 010/01 010/01 010/01

An Address Register Direct 010/01 010/01 010/01
Memory

IAnl Address Register Indirect 411/01 812/01 1614/01

IAnl+ Address Register Indirect with Postincrement 411/01 812/01 1614/01

-IAnl Address Register Indirect with Predecrement 611/01 1012/01 1814/01

dlAnl Address Register Indirect with Displacement 1213/01 1614/01 2416/01

diAn, Ixl* Address Register I ndirect with Index 1413/01 1814/01 2616101

xxx.w Absolute Short 1213/01 1614/01 2416/01

xxx.L Absolute Long 2015/01 2416101 3218101

dlPCI Program Counter with Displacement 1213/01 1614/01 2416/01

dIPC, ixl Program Counter with Index 1413/01 1814/01 2616101

Ixxx Immediate 812/01 812/01 1614/01

* The sIZe of the Index register Ilxl does not affect execution time

303

E.3 MOVE INSTRUCTION EXECUTION TIMES

Tables E·2, E·3, and E·4 indicate the number of clock periods for the move instruction.
This data includes instruction fetch, operand reads, and operand writes. The number of
bus read and write cycles is shown in parenthesis as: (r/w).

Table E·2. Move Byte Instruction Execution Times

Destination

Source On An (An) (An)+ -(An) dIAn) dIAn, x)* xxx.W xxx.L
Dn 8(2/0) 8(2/0) 12(211) 12(211) 12(2/11 20(411) 22(411) 20(4/11 28(6/11

An 8(2/0) 8(2/0) 12(211) 12(2/1) 12(2/11 20(411) 22(4/11 20(411) 28(611)

(An) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(311) 24(511) 26(511) 24(511) 32(711)

(An)+ 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(311) 24(5/11 26(511) 24(5/1) 32(711)

-(An) 14(3/0) 14(3/0) 18(311) 18(311) 18(311) 26(511) 28(511) 26(511) 34(711)

dIAn) 20(5/0) 20(5/0) 24(511) 24(511) 24(511) 32(711) 34(711) 32(7/1) 40(9/11

dIAn, ix)* 22(5/0) 22(5/0) 26(511) 26(511) 26(511) 34(711) 36(7/11 34(711) 42(9/1)

xxx W 20/5/01 20/5/01 24/5/11 24/5/11 24/5/1) 32/7111 34/711) 32(7/1) 40(911)

xxx.L 28(7/0) 28(710) 32(711) 32(711) 32(711) 40(911) 42(911) 40(911) 48(11/11

d(PC) 20(5/0) 20(5/0) 24(511) 24(511) 24(511) 32(711) 34(711) 32(711) 40(911)

d(PC, ix)* 22(5/0) 22(5/0) 26(5/1) 26(511) 26(511) 34(7111 36(7/11 34(7/11 42(911)

Ixxx 16(4/0) 16(4/0) 20(4111 20(4/11 20(4/11 28(611) 30(611) 28(611) 36(811)

*The size of the mdex register ('x) does not affect execution time.

Table E·3. Move Word Instruction Execution Times

Destination

Source On An IAn) (An)+ -IAn) diAn) diAn, ix)* xn.W xxx.L
Dn 8(2/0) 8(2/0) 16(212) 16(212) 16(2/2) 24(412) 26(4/2) 20(4/2) 32(6/2)

An 8(2/0) 8(2/0) 16(2/2) 16(2/2) 16(2/2) 24(4/2) 26(412) 20(4/2) 32(6/2)
(An) 16(4/0) 16(4/0) 24(412) 24(4/2) 24(4/2) 32(612) 34(6/2) 32(6/2) 40(8/2)
(An)+ 16(4/0) 16(4/0) 24(412) 24(4/2) 24(4/2) 32(612) 34(6/2) 32(6/2) 40(8/2)
-(An) 18(4/0) 18(4/0) 26(412) 26(4/2) 26(4/2) 34(6/2) 32(612) 34(6/2) 42(8/2)
dIAn) 24(6/0) 24(6/0) 32(612) 32(6/2) 32(6/2) 40(8/2) 42(8/2) 40(8/2) 48(10/2)
dIAn, ix)* 26(6/0) 26(6/0) 34(6/2) 34(6/2) 34(6/2) 42(8/2) 44(812) 42(8/2) 50(1012)

xxx.W 24(6/0) 24(6/0) 32(612) 32(612) 32(6/2) 40(8/2) 42(8/2) 40(8/2) 48(10/2)

xxx.L 32(8/0) 32(8/0) 40(8/2) 40(8/2) 40(812) 48(1012) 50(1012) 48(10/2) 56(12/2)
d(PC) 24(6/0) 24(6/0) 32(612) 32(6/2) 32(6/2) 40(812) 42(8/2) 40(8/2) 48(1012)
dIPC, ix)* 26(6/0) 26(6/0) 34(612) 34(6/2) 34(6/2) 42(8/2) 44(812) 42(8/2) 50(10/2)

Ixxx 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 32(612) 34(612) 32(612) 40(8/2)

* The size of the index reg,ster Iix) does not affect execution time.

304

Table E·4. Move Long Instruction Execution Times

Destination

Source On An IAn I IAnl+ -IAnl dlAnl dIAn, ixl' xxx.W xxx.L

On 812/01 812/01 2412/41 2412/41 2412/41 3214141 3414/41 3214/41 4016/41

An 812/01 812/01 2412/41 2412/41 2412/41 3214141 3414/41 3214/41 4016/41

IAnl 2416/01 2416/01 4016141 4016/41 4016/41 4818/41 5018/41 4818/41 56110/41

IAnl+ 2416/01 2416/01 4016141 4016/41 4016/41 4818/41 5018/41 4818/41 56110/41

-IAnl 2616/01 2616/01 4216/41 4216/41 4216141 5018/41 5218/41 5018/41 58110/41

dlAnl 3218/01 3218/01 4818/41 4818/41 4818/41 56110/41 58110/41 56110/41 64112/41

diAn, ixl' 3418101 3418/01 5018/41 5018/41 5018/41 58110/41 60110/41 58110/41 66112/41

xxx W 3218101 3218/01 4818/41 4818/41 4818/41 56110/41 58110/41 56110/41 64112/41

xxx L 40110/01 40110/01 56110/41 56110/41 56110/41 64112/41 66112/41 64112/41 72114/41

dlPCI 3218/01 3218/01 4818/41 4818/41 4818/41 56110/41 58110/41 56110/41 64112/41

dIPC,lxl' 3418/01 3418/01 5018/41 5018/41 5018/41 58110/41 60110/41 58110/41 66112/41

Ixxx 2416/01 2416/01 4016141 4016/41 4016/41 4818/41 5018/41 4818/41 56110/41

• The sIZe of the Index register Ilxl does not affect execution time

E.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E·5 Indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as: (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad·
dress calculation where indicated. In Table E·5 the headings have the following mean·
ings: An = address register operand, On = data register operand, ea = an operand
specified by an effective address, and M = memory effective address operand.

Instruction Size

8yte
ADD Word

Long

Byte
AND Word

Long

Byte
CMP Word

Long

DIVS

DIVU

Byte
EOR Word

Long

MULS

MULU

Byte
OR Word

Long

Byte
SUB Word

Long

Table E·5. Standard Instruction Execution Times

op <ea>, An op <ea>, On

- 812/01+
1212/01+ 812101+
1012/01 + ., 1012/01+' •

- 812101+
- 812/01+
- 1012/01 +"
- 812101 +

1012/01 + 812101 +
1012/01+ 1012/01 +

- 16212/01 +'

- 14412/01 +'

- 812101 + ,.,
- 812101 +'"
- 1212/01 +'"
- 7412/01+ '
- 7412/01 +'

- 812101 +
- 812101 +
- 1012/01 + .,

- 812101+
1212/01+ 812101 +
1012/01 + •• 1012/01 + ••

op On, <M>

1212111 +
1612121+
2412/41+

1212111 +
1612/21+
2412/41 +

-
-
-

-
-

1212/11+
1612/21+
2412/41 +

-
-

1212/11 +
1612/21+
2412/41 +

1212/11+
1612121 +
2412/41 +

305

NOTES:
+ Add effective address calculation time

Indicates maximum value
The base time of 10 clock periods is In­
creased to 12 if the effective address
mode is register direct or immediate
leffective address time should also be
addedl.
Only available effective address mode IS
data register direct

DIVS, DIVU - The diVide algorithm used by the
MC66008 prOVides less than 10%
difference between the best and
worst case timings.

MULS, MULU - The multiply algOrithm requires
42 + 2n clocks where n IS
defined as:
MULS: n=tag the <ea> with
a zero as the MSB; n is the
resultant number of 10 or 01
patterns In the 17-bit source,
I.e., worst case happens when
the source is $5556.
MULU: n = the number of ones
in the <ea>

E.S IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table E·6 Includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated. In Table E-6, the headings
have the following meanings: # = immediate operand, On = data register operand,
An = address register operand, and M = memory operand.

Table E·6. Immediate Instruction Clock Periods

Instruction Size opl. On opl.An opl,M

Byte 16(4/01 - 20(4111 +
ADD I Word 16(4/01 - 24(4/21 +

Long 28(6101 - 40(6/41 +

Byte 8(2/01 - 12(2/11 +
ADDO Word 8(2101 12(2/01 16(2/21 +

Long 12(2/01 12(2/01 24(2/41 +

oYle 16(4/01 - 20(4111 +
ANDI Word 16(4/01 - 24(4/21 +

Long 28(6101 - 40(6/41 +

Byte 16(4/01 - 16(4/01+
CMPI Word 16(4/01 - 16(4/01 +

Long 26(6101 - 24(6/01 +

Byte 16(4/01 - 20(4111 +
EORI Word 16(4/01 - 24(4121 +

Long 28(6101 - 40(6/41+

MOVEO Long 8(2/01 - -
Byte 16(4/01 - 20(4111 +

ORI Word 16(4/01 - 24(4/21 +
Long 28(6101 - 40(6/41+

Byte 16(4/01 - 12(2111 +
SUBI Word 16(4/01 - 16(2121 +

Long 28(6101 - 24(2/41 +

Byte 8(2101 - 20(4/11+
SUBO Word 8(2/01 12(2/01 24(4/21 +

Long 12(2/01 12(2/01 40(6141 +

+ add effective address calculation time

306

E.8 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table E-7 indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table E·7. Single Operand Instruction Execution Times

Instruction Size Register Memory

Byte 8(2/0) 12(2111 +
CLR Word 8(2/0) 16(2121 +

Long 10(2/0) 24(2/41 +
NBCD Byte 10(2/01 12(2111+

Byte 8(2/0) 12(2111+
NEG Word 8(2/0) 16(2121 +

Long 10(2/0) 24(2/41 +

Byte 8(2101 12(2111 +
NEGX Word 8(2/01 16(2/21 +

Long 10(2/01 24(2/41 +

Byte 8(2101 12(2111 +
NOT Word 8(2/01 16(2121 +

Long 10(2/01 2412/41 +

SCC
Byte, False 8(2101 1212/11 +
Byte, True 10(2/0) 12(2/11+

TAS Byte 8(210) 14(2/11+

Byte 8(2101 8(2/0)+
TST Word 8(2/0) 8(2/0)+

Long 812/01 8(2/0) +

+ add effective address calculation time.

E.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table E-8 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown In parenthesis as: (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table E-8. Shift/Rotate Instruction Clock Periods

Instruction Size

Byte
ASR,ASL Word

Long

Byte
LSR, LSL Word

Long

Byte
ROR, ROL Word

Long

Byte
ROXR, ROXL Word

Long

+ add effective address calculation time
n is the shift count

Register Memory

10 + 2n(2/0) -
10 + 2n(2/0) 1612/21 +
12 + 2n(2/01 -
10 + 2n(2/01 -
10 + 2n(2/0) 1612/21+
12 + 2n(2/0) -
10 + 2n(2/0) -
10 + 2n(2/0) 16(2/21 +
12 + 2n(2/0) -
10 + 2n(2/0) -
10 + 2n(2/0) 1612121 +
12 + 2n(2/0) -

307

E.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table E·g Indicates the number of clock periods required for the bit manipulation Instruc·
tions. The number of bus read and write cycles is shown in parenthesis as: (r/w). The
number of clock periods and the number of read and write cycles must be added respec·
tlvely to those of the effective address calculation where indicated.

Table E·g. Bit Manipulation Instruction Execution Times

Instruction Size

BCHG
Byte
long

BClR
Byte
long

BSH
Byte
long

BTST
Byte
long

+ add effective address calculatIOn time
* indi,:~!::::; iiiOI'.;IIIUIfl value

Dynamic

Register Memory

- 12(211)+
12(2/01- -

- 12(211) +
14(2/01- -

- 12(2/1)+
12(2/01- -

- 8(2/01 +
10(2/01 -

E.g CONDITIONAL INSTRUCTION EXECUTION TIMES

Static

Register Memory

- 20(411) +
20(4101- -

- 20(4/1)+
22(4101- -

- 20(411) +
20(4101- -

- 16(4/01 +
18(4/01 -

-

Table E·10 indicates the number of clock periods required for the conditional instruc·
tions. The number of bus read and write cycles is indicated in parenthesis as: (r/w). The
number of clock periods and the number of read and write cycles must be added respec·
tively to those of the effective address calculation where indicated.

Table E·10. Conditional Instruction Execution Times

Instruction Displacement

BCC
Byte
Word

BRA
Byte

Word

BSR
Byte

Word

DBCC
CC True
CC False

CHK -

TRAP -
TRAPV -

+ add effective address calculation time
- indicates maximum value

308

Trap or Branch Trap or Branch
Taken Not Taken

18(4/0) 12(2/01
18(4/01 20(4101

18(4/01 -
18(4/01 -
34(414) -
34(4/4) -

- 20(4/01
18(4/01 26(6101

68(8/6) +- 14(2/01 +
62(816) -
66(10/6) 8(2101

E.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table E·11 Indicates the number of clock periods required for the jump, jump·to·
subroutine, load effective address, push effective address, and move multiple registers
Instructions. The number of bus read and write cycles is shown in parenthesis as: (r/w).

Table E·11. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instruction Size (An) (An) + -IAn) diAn) diAn, ix)* xxx.w xxx.L
JMP - 1614/01 - - 1814/01 2214101 1814/01 2416/01

JSR - 32(414) - - 34(4/4) 38(4/4) 34(4/4) 40(6/4)

LEA - 812/01 - - 1614/01 2014101 1614/01 2416/01

PEA - 24(2/4) - - 32(414) 38(4/4) 32(4/4) 40(6/4)

Word 24+8n 24+8n - 32+8n 34+8n 32+8n 4O+8n
MOVEM 16+2n/0l 16+2n/0l - 18+2n/0l 18+2n/0l 110+ n/Ol 110+2n/0l

M-R Long 24+16n 24+ 16n - 32+ 16n 32+ 16n 32+16n 40+ 16n
16+4n/0l 16+4n/0) - 18+4n/0) 18+4n/0l 18+ 4n/0l 18+4n/0l

Word 16+8n - 16+8n 24+8n 26+8n 24+8n 32+8n
MOVEM 14/2n) - 14/2n) 1612n) 1612n) 16/2n) 1812n)

R-M Long 16+16n - 16+16n 24+ 16n 26+ 16n 24+ 16n 32+ 16n
14/4n) - 14/4n) 16/4n) 18/4n) 16/4n)

n is the number of registers to move
* IS the size of the index register !ix) does not affect the instruction's execution time

E.11 MULTI·PRECISION INSTRUCTION EXECUTION TIMES

Table E·12 Indicates the number of clock periods for the multi·precision Instructions. The
number of clock periods includes the time to fetch both operands, perform the opera·
tions, store the results, and read the next Instructions. The number of read and write
cycles is shown In parenthesis as: (r/w).

In Table E·12, the headings have the following meanings: On = data register operand and
M = memory operand.

Table E·12. Multl·Preclslon Instruction Execution Times

Instruction Size op On, On opM, M

Byte 812/01 22(4/1)
ADDX Word 812/01 50(6/2)

Long 1212/01 58(10/4)

Byte - 1614/01
CMPM Word - 2416/01

Long - 40(1010)

Byte 8(2/0) 22(4/1)
SUBX Word 812/01 50(612)

Long 1212/01 58(1014)

ABCD Byte 1012/01 20(411)

SBCD Byte 1012/01 20(411)

309

E.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables E·13 and E-14 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in paren·
thesis as: (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where indicated.

Table E·13. Miscellaneous Instruction Execution Times

Instruction Register Memory

ANDI to CCR 3216/01 -
ANDI to SR 32(6/01 -

EORI to CCR 32(6/0) -

EORI to SR 32(6/0) -

EXG 10(2/0) -
EXT 8(2101 -

LINK 32(4/4) -

MOVE to CCR ~~'4.'m io(oi./Gi-r

MOVE to SR 18(4/01 18(4/0) +

MOVE from SR 10(2/01 16(2/2)+

MOVE to USP 8(2101 -

MOVE from USP 8(2/01 -

NOP 8(2/0) -

ORI to CCR 32(6/0) -

ORI to SR 32(6/0) -

RESET 136(2/01 -
RTE 40(10/01 -

RTR 40(1010) -
RTS 32(8/01 -

STOP 4(0/01 -

SWAP 8(2/0) -

UNLK 24(6/01 -
+ add effectIve address calculatIon tIme

Table E·14. Move Peripheral Instruction execution Times

Instruction Size Register - Memory Memory - Register

MOVEP
Word 24(4/2) 24(6/01
Long 32(414) 32(8/01

+ add effective address calculation time

310

E.13 EXCEPTION PROCESSING EXECUTION TIMES

Table E·15 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
first instruction of the handler routine. The number of bus read and write cycles is shown
in parenthesis as: (r/w).

Table E·15. exception Processing execution Times

Exception Periods

Address Error 94(8/14)

Bus Error 94(8/14)

Interrupt 72(9/6)*

Illegal Instruction 6218/6)

Privileged Instruction 62(8/6)

Trace 62(8/6)

* The interrupt acknowledge bus cycle is assumed to take four exter­
nal clock periods.

311

Index

Index

Abort function, 97
Accumulator, 17
Addition

accommodated by all computers, 54
effect on zero flag, 56
See also Instructions: Data Processing, Arith­

metic
instead of shifting, 74
instructions in MC68000

ABCD,59
ADD, 55, 56
ADDA, 55, 73, 75
ADDI,55
ADDQ,55
ADDX, 56,74
examples, 55-57
part of data processing instructions, 53

operation in 68000, 2
use of extend flag, 56

Address block, 120
Address bus

in eight-bit devices, 3, 4-5
in MC68000

buffering, 22
effect of data strobe, 10
not multiplexed, 10
pins for, 9, 10

Address error, 42
as causing exception state, 77, 78, 124
exception vector number for, 80

Addresses
address-fetching circuits, 4-5
addition of offset to, 5
alteration through address register, 74
as part of data strobe signal, 10
assignment in breakpoint command, 120
calculation with arithmetic-logic unit, 5
column address, 22
decoding in VU68K, 116, 118
during bit manipulation, 66
during compare instructions, 58
during data transfer, 11
during MOVEP instruction, 68

during TAS instruction, 66
exception vector address, 78, 80
exclusion from NOT instruction, 60
fault address, 79
in loops, 69
in memory segmentation, 4
inputloutput address, 108
limitation on instructions affecting, 73
refresh address, 22
reset address, 103
return address, 77, 148
row address, 22
starting address, 120, 144, 145, 148
terminating address, 120, 144, 145
user-vector address, 84
See also Effective address

Addressing modes
as design consideration, 2, 3
effect on condition codes, 55
in eight- versus 16-bit devices, 1-2,3
inherent (implied) mode, 43, 52
memory address modes in MC68000, 42, 47,

52

313

address register indirect, 43, 45, 47-48, 52
with displacement (offset), 43, 45, 49-50,

53, 75
with index and displacement (offset), 43,

45, 50-51, 53, 75
with postincrement, 43, 45, 48-49, 53, 58,

70, 74
with predecrement, 43, 45, 49, 53, 56, 59,

70, 74
examples, 48-51
mode bits as defining, 44
use with logical instructions, 60

orthogonality in MC68000, 54
program control modes in MC68000, 42, 53,

70
program counter with displacement (off­

set), 52, 53, 74, 75
program counter with index, 43, 52, 53, 75
use with logical instructions, 60

register direct modes in MC68000, 42, 45, 52

314 INDEX

register direct modes (continued)
address register direct, 43, 45, 47, 74
data register direct, 43, 45-47
examples, 45-47
status register direct, 43
use with logical instructions, 60

special address modes in MC68000, 42, 51
absolute long, 43, 44, 45, 51, 52,70
absolute short, 43, 44, 45, 51, 52, 70, 74
immediate mode, 43, 44, 45, 51-52, 62
quick immediate mode, 52, 55, 67
use with logical instructions, 60

Address lines
address strobe defining validity of, 10
buffering of, 22, 23
during interrupt, 83-84, 85, 99
for linear addressing, 4
gates for decoding, 34
in MC68000, 4, 9, 10, 15,22
in VU68K, 114

Address range
in eight-bit devices, 3
in MC68000, 3, 10,69,73
in MC68230, 108, 110

Address register
as destination, 58
as frame pointer, 71
as index register, 50, 53
cycles to create, 74
during halted state in VU68K, 121
examination and modification of, 122
in arithmetic instructions, 55, 56, 58, 74
in data transfer instructions, 67, 70, 74
in MC68000, 3, 17
in register direct addressing mode, 45, 47
in register indirect addressing mode, 47-51,

53
orthogonality with addressing modes in

MC68000,54
Address strobe (AS)

assertion of peripheral devices, 10
buffering of, 22
defining validity of address and function

code lines, 10
during Test-and-Set instruction, 10
effect on NAND gates, 14
effect on readlwrite line, 12
for assertion of latching input, 22
in interrupt acknowledge bus cycle, 83-84,

87,88,99
for clearing watchdog timer, 34
for read cycle, 11
in MC68000, 10, 12, 14,22
in reset, 26, 29

in VU68K, 114, 123
in write cycle, 11, 12

AND
gate, 99
instruction, 60, 61, 62, 77, 99,104

See also Instructions: Data processing,
logical operation code of 6800, 2

Arbitration circuits, 37
Arithmetic-logic unit (ALU), 5
Array, 47, 50, 51, 82
ASCII codes, 6,7-8, 107, 112, 130, 144, 146
Assembler in MC68000

directives of, 70, 102-103, 126
location counter of, 126
signaling error, 55

Assert, definition of, 10
Asynchronous Communications Interface

Adapter (ACIA). See 6850
Asynchronous VAr!:,',!, sy:-:::h,vl'uu:; operation,

114
Audio cassette, 19,21,92,98

Baud rate with ASCII, 112
Baud rate generator, 21, 93, 114. See also

MC14411
Binary-coded decimal (BCD)

bytes as, 6
during arithmetic instructions in MC68000, 59
in 4004,1
notation, 9
use of data processing instructions in, 53
use of nibbles to represent, 6

Bit (binary digit). See also bytes; nibbles
address bits in VU68K, 116, 118
as flag, 6
as logical data types, 6
as string, 6
bit pattern of 6850, 99, 101
block-selection bits, 116, 118
data bit, 101
data entry rate as ratio of bits and bytes, 101
definition of, 6
high-order bit, 63, 65, 118
in longword, 3
in word, 3
instructions

during various instructions in MC68000, 60,
61, 63, 64-65

for manipulation of
BClR,65
BGHG,65
BSET,65
BTST, 65, 104
TAS, 10, 15,65,66

low-order bit, 63, 65
manipulation singly and otherwise, 53
mask bit, 78, 91
mode bit as defining addressing mode, 44
most significant bit (msb). 60
number, 66
operation code of 6800, 2
page bits, 4
parity bit, 94, 101
register bit, 44
sign bit, 64
sta rt bit, 94, 101
stop bit, 94, 101
stream bit, 94
values of, 6
word-selection bits in VU68K,116,118

Block, 6, 47, 48, 70
Block diagram to define system, 19
Bonds, A. B., 114
Boundary, 42, 44, 82, 120, 145
Branches

instructions, 53
Bcc, 69
BEQ, 69, 73
BGT,69
BHI,69
BLT,69
BNE, 73, 104
BRA, 53, 69, 104
BRS, 53
DBcc, 69-70, 73
DBEQ,73
DBNE,70
DBRA. 70
JMP, 53, 69
JSR, 53, 69, 71, 72
RTS, 69, 71, 72
Scc, 74
in VU68K, 119, 130

in program counter mode with index, 52
to exception vector, 78
use of flag in, 6

Breakpoint in VU68K
constants for, 124
effect of ORG directive on, 124
effect with G command, 121
location of breakpoint table in memory area,

126
purpose of, 120
removal of, 122, 142, 147
setting, 120, 142
table, 126, 128
with single-step mode, 120
with tracing, 120,123

Buffer. See memory
Buffering

double buffering defined, 107
effect on speed, 28
in exception handling, 79

INDEX 315

in small 680OD-based system, 19,22,23
See also 8T97, 74LS245, 74LS373

Bus control
asynchronous control in MC68000, 9, 10-12,

28
See also Address strobe, Data acknowl­

edge, Data strobe, Read/write
synchronous control in MC68000, 14-15

See Enable, valid memory address, valid
peripheral address

for termination of bus cycle, 11, 14, 15, 34,91
pins in MC68000 for, 9

Bus cycle in MC68000, 11, 14, 15
Bus exception (error)

as causing entry into supervisor mode, 18
as causing exception state, 77, 78, 124
as causing halted state, 76
check for during reset, 25
exception vector number for, 80
in interrupt control signals, 99
in memory accessing, 13
line (BERR) in MC68000, 9, 15, 91
parity error, 91
spurious interrupt, 91

Bus fault, 15, 25
Bus grant (BG), 15,37
Bus grant acknowledge (BGACK), 15, 37
Busicomp,1
Bus latency, 29, 33, 34
Bus multiplexing, 10
Bus request (BR) line, 15, 37
Bus timeout, 34
Bus-wait technique, 119
Byte

accessing to avoid address error, 42
as binary-coded decimal value, 6, 59
as character, 6
in bit manipulation instructions, 66
as measure of memory buffer, 119
as number, 6
as semaphore, 66
as word, 6
checksumming of, 74
data byte, 22
data entry rate as ratio of bits and bytes, 101
data register in MC68000, 17
data strobe for transfer, 11, 12
definition of, 6, 46
for exception vectors, 78

316 INDEX

Byte (continued)
fetching in VU68K, 134
for reading ROM, 19
in monitor of VU68K, 123
operands, 11, 48, 55, 59
operation of instructions on, 3
output from VU68K, 129
reset of byte count, 146

Carter, Edward M.,114,124
Characters

as causing interrupt, 118
byte as, 6
echoing of, 119
effect of monitor in VU68K, 118, 119
from queue, 132
input characters to VU68K, 123, 131
representation by codes, 7-8
:;iring, B, i 27

Checksum, 74, 112
Chip enable, 22
Chip select, 14,94
Clear (CLR) instruction, 45, 49, 50-51, 55, 74
Clear to Send (CTS) signal, 94, 95
Clock

baud rate generator, 21
circuit, 23, 29
cycle during reset, 24
E clock in MC68000, 34
frequencies for peripheral devices, 28
in MC14411, 101
in 6850, 94
in VU68K, 114
interrupts, 83, 98
oscillator, 28
pins in MC68000 for, 9

Clock-stretching cycle, 32
Codes, 7, 51, 52. See also ASCII
Column, 40
Compare (CMP)

instructions
CMP, 55
CMPA, 58, 75
CMPI,58
CMPM, 58, 70

operation code in 6800, 2
Compiler, 54
Computer Terminal Corp. (Datapoint), 1
Condition code

effect of instructions in MC68000 on, 55, 64,
73,81

in conditional branch instructions, 69
initialization of, 73

register in MC68000, 17, 53
unaffected by address operations, 73
See also Flags

Control lines, 28, 39-40
Control registers in 6850, 94--95
Control signals in MC68000, 22
Control unit, 5
Cost, 32
Counter, See 74161
Cycle stealing, 36-41

Data. See also Bits; Exception, Vector; Lists;
Stacks; Strings;

boundaries, 42, 44, 82, 120
data-fetching circuits, 4--5
entry rate, 101
input/output buffer, 79
processing by arithmetic-logic unit. 5
protection of, 11
retrieval from memory buffer, 119
stream, 104
Tables; Variables
treatment by 6850, 94
types, 6-8

Data acknowledge (DTACK) line
as design consideration, 11
asynchronous characteristics, 12, 28
bus cycle termination in MC68000, 11
bus error, 13
DTACK RAM signal, 40
generation circuit for, 26, 35, 37
in clock stretching, 32
intentional versus unintentional delays, 12
in read cycle, 11-12
mentioned, 15, 17
spurious interrupts, 91
synthesis in VU68K, 114
termination of interrupt acknowledge bus

cycle, 84, 86-87
Data block, 120
Data bus

bidirectional, 22
buffers, 11, 22, 94, 100
control by data strobe in MC68000, 10, 11
during interrupt acknowledge bus cycle,

85
effect of data acknowledge line, 11
in eight-bit devices, 4--5
in read cycle in MC68000, 11
pins in MC68000 for, 9, 10
6850 in eight- versus 16-bit bus, 68
size affecting representation of ordinals, 6
word as measure of, 6

Data carrier detect (DCD) signal in 6850, 94, 95
Data lines

during user-defined vectored interrupt, 84--85
in system clock, 28

Datapoint (Computer Terminal Corp.), 1
Data memory, definition of, 13
Data register

accessing by data register direct addressing,
45

as index register, 50, 53
as working register in VU68K, 123
during halted state in VU68K, 121
examination and modification of, 122
for loops, 69-70, 73
in MC68000, 3, 17,54
in quick immediate mode, 52
receiver/transmit registers in 6850, 94, 95
use in data processing instructions, 56, 59,

62, 65
use in data transfer instructions, 67, 6fH59

Data strobe signals
for byte, longword, and word transfers, 11
for MC68230, 106
for read cycle, 11
for write cycle, 11, 12
lower and upper data strobe (LDS/UDS). 10,

11, 118
Data transfer

in MC68000, 10-11
instructions for

EXCHANGE, 53
LEA 70, 71, 72, 74
MOVE, 42, 46, 47, 48, 49, 51, 56, 66, 70, 74,

77, 103, 104, 107
MOVEA, 67, 70, 73, 75
MOVEM, 66, 67, 74, 75, 79
MOVEP,68
MOVEO, 66, 67, 75
PEA 70, 71
SWAP, 53

in VU68K, 121
Debounced switch, 97
Debugging, 70, 81, 82
Decoder, See a/so 74LS138

in VU68K, 118
Decoding

addresses, 116
circuit, 34

Default value of MC68000, 42
Delay line, 12
Delimiter, 145
Design considerations, 1-6

data acknowledge line, 11
modular programming, 70

speed in executing instructions, 28
Direction-enable pin, 22
Discrete gates, 118
Displacement (offset)

in branch instructions, 69, 119
in indexed addressing, 5
in LINK instructions, 71-72
in MOVEP instruction, 68
positive-negative technique for, 50

Division, 53
exception vectors for, 80, 82
instructions

DIV, 74, 78
DIVS,57
DIVU,57

limitation on operands, 57

INDEX 317

limitation on use of LSR instruction, 64, 67
zero divide, 80, 82, 124, 125

Effective address
as causing exception state, 78
calculation by address arithmetic-logic unit, 5
definition of, 42
destination effective address, 45, 67
extension of, 44
formation of, 41, 45
in address register indirect addressing mode,

53
in direct addressing mode, 45, 47
in instruction format of 16-bit device, 2
in shifting instructions, 64
lines in MC68000, 10
mode, 42
movement by MOVEA instruction, 67
register as part of, 42
single versus double addresses, 45
source effective address, 45

Eight-bit devices
address bus, 3
addressing modes, 1
arithmetic logic unit, 5
comparison with 16- and 32-bit devices, 1-2,

3
8008, 1
8080, 1
hardwired logic unit, 5
history, 1
instructions

as defining operand, 17
fetching, 4-5
format, 1, 2

memory accessing, 3-4
numbers, 6

318 INDEX

Eight-bit devices (continued)
peripheral devices, 5--6
registers, 1
word width, 3
Z80, 1
See also 6800

8T97, 22
8008, 1
8080, 1
808618088 16-bit Microprocessor Primer, 6
Emulator, 80
Enable signal (E) in MC68000, 14--15, 22
Encode, 85
EOR instruction, 2, 60, 61-62, 77
Error, 124
Even addresses in MC68000, 11
Exception

definition of, 76
exception (error) handling

6ff6':;, VI Illunitor in VUtitlK. on, 118
flowchart of, 76-77, 78
format of subroutine for, 79

exception state, 76-77
external versus internal exceptions, 78
intentional exception, 81
vector

data memory, 13
effect of ORG directive on, 124
in autovectored interrupt system, 16-17
in vectored interrupt system, 16
i nterru pt, 21
offset, 79
number, 16-17,78,80
placement in memory map of MC68000, 21,

78, 124
reset, 21, 24--25
size of, 78
stack pointer, 21
table, 13, 22, 25, 124
trap, 21

supervisor mode, 77
See Interrupt; Trap

EXCHANGE instruction, 53
EXT instruction, 75

Factor, 34
Fault address, 79
Fixed-point numbers, definition of, 54
Flags

breakpoint flag in monitor of VU68K, 127,
147

condition code flags
carry (C), 18, 56, 58, 62, 63, 65, 66
extend (X). 18, 56, 58, 65, 66

generally, 58, 64
negative (N), 18, 58
overflow (V), 18, 58, 81, 82
zero (Z), 18,56,58

definition of, 6
importance of, 55
in arithmetic instructions, 56, 58
interruJjt mask, 24
logical bit as, 6
single-trace flag in monitor of VU68K, 147
status flags of MC68000

interrupt (10 - 12), 18,77,89
supervisor (S). 18,24,76,77, 127
trace (T), 18, 24, 77, 78, 81, 82, 83
user (U), 76, 77

status flags of 6850
RDRF, 95, 104
TDRA,104

testing by conditional branr.h in"trolctic!1, 53
unaffected by address operations in

MC68000, 73
use of, 6

Flip-flops in reducing wait states, 32. See also
74LS175

Four-bit devices, 1
4004 (MCS-4), 1
4116,19
Frame pointer, 71-72
Function control (FC) in MC68000

code lines, 10, 13-14,83,87,88,89
interrupt acknowledge bus cycle, 99
pins for, 9

Gates
AND gate, 99
controlling direction of buffers, 22
decoding address lines, 34
effect on speed, 28
for function control line, 14
logic gates in hardwired logic units, 5
NAND gate, 14,86, 99
NOR gate, 88
OR gate, 26, 118

Ground,22

Halt (HLT)
circuit, 19,23-28
line in MC68000, 9, 15
signal,26

Halted state, 76, 120, 121
Hardwired logic units, 5
Hexadecimal

address, 44, 126
conversion of characters to, 123

conversion of characters from, 130
notation, 22

High-level languages, 54, 70-72

Indexed addressing, 5. See also Addressing
modes

Index register in MC68000
in address register indirect with index and

displacement, 50, 53
in program counter with index, 52, 53
mentioned, 17

Information, 3, 6, 15
Input/output (I/O)

address register indirect with displacement
for accessing, 50

audio cassette circuit, 19
buffering, 118
circuit, 76
exception from request for service of, 76,118
in MC68230, 104, 105
memory-mapped in MC68000, 10n, 92
mentioned, 41, 53
parallel versus serial, 92
ports of VU68K, 114, 118
6850 as both, 94

Instructions
addressing mode of, 44
as causing internal exceptions, 78
example formats of double and single effec-

tive address, 45-47
exceptions from illegal instructions, 76
execution during Normal State, 76
execution times, 73
fetching, 4-5
in eight- and 16-bit devices, 1,4-5

in MC68000
data processing (manipulation) instruc­

tions, 53, 54
arithmetic instructions, 52

in MC68000, 55-59, 67
bit manipulation instructions, 65-66
logic (logical) instructions, 55, 60-62
shifting instructions, 63-63, 74

data transfer (movement) instructions, 53,
66

emulator lines, 80, 82
exception vector number, 80
for quick immediate mode, 55
illegal instructions, 82, 124
in program counter with index mode, 52
input buffer, 79
interrupt request lines, 83
operation of, 3
orthogonality of, 54

INDEX 319

position independence instructions, 70
program control instructions, 53

conditional branch instructions, 53,
69-70

unconditional branch instructions, 69
system control instructions, 53

mentioned, 13
trap, 123
variations among registers, 55

Instruction cycle time, 29
Instruction format of MC68000, 44
I nstruction set

as design consideration, 2
for arithmetic operations, 54
of MC68000, 54, 102

Integer
as subset of fixed-point numbers, 54-55
definition of, 6, 54
radix point of, 54
representation in two's complement form,

6-7
Intel Corp., 1
Interfacing

as design consideration, 2
audio cassette, 92
centronix parallel printer interface, 92, 106
in MC68000, 9, 19
input/output, 92
RAM and ROM, 34
See a/so 6850

Internal organization as design consideration,
2

Interrupt
abort function, 99
and exception state, 76, 78, 83
bus-wait technique to disable, 119
circuit, 41, 85
control,9, 16-18
error, 42, 124
in cycle stealing, 36
in MC68000

and supervisor mode, 77, 81
comparison of mask and request levels, 83
daisy chain, 88, 90
during single-step mode in VU68K, 122
exception vectors, 21, 80, 84-85, 124
for communication serial-port interrupts,

116, 118, 128
for keyboard serial-port interrupts, 116
function control lines, 13
interrupt acknowledge bus cycle (lACK),

83-86, 88, 89-91, 99
interrupt-handling routines in VU68K, 118,

148

320 INDEX

Interrupt (continued)
interrupt request (IRQ), 88-89
levels of, 83, 87, 88, 89-91, 116, 118
lines for (lPLO-IPL2), 9, 16-17,83,85,86,

89,91,98, 116
logic in 6850, 94
mask bits, 78, 91, 128
masking interrupt level, 77, 78
nonmaskable interrupts, 83, 89-90
pins for, 9
priority interrupt system, 87
offset, 86
software interrupt, 81
74LS273,97,98
spurious interrupt, 91,124
synchronizer, 97
termination of, 119
user (intentional) interrupts

autovectored, 16,80,83,87,116,119
exception vectors for, 80, 119
vectored, 12,83,84-85

with MC68230, 105
logic in 6850, 94

Jumper wire, 22

Label, definition of, 70
Latch

after data acknowledge signal, 35
for demultiplexing, 10
for interrupts, 85, 98
in MC68230, 107
See also 74LS373

Link instruction, 71
Lists, 13
Load command, 2, 121, 139
Logical shift instructions (LSULSR), 63, 64
Longword

accessing to avoid address errors, 42
address operations, 74
address register, 17
data register, 17
data strobe for transfer, 11
extension of word, 74
fetching in VU68K, 134
for instructions affecting addresses, 73
formation in MC68000, 42
number of bits in, 3, 46
operands, 47, 55
operation of instruction on, 3
output from VU68K, 129

Loops, 69, 73, 146
Low-power Schottky (LS). 29

Macro, 82

MC14411, 99,100,101
MCS-4 (4004), 1
MC68A364, 19,34,35
MC68000L4, 19
MC68020,88
MC68230 (Parallel InterfacefTimer (PIIT))

acknowledge signal, 107
addresses, 106
audio cassette interface, 21, 92, 111-112
bit pattern, 109
bit stream, 110
block diagram of, 105
bus trap error, 106
byte operation, 106
comparator, 112-113
control register, 109
data acknowledge (DTACK) line, 106
data bus, 106
data inlout lines, 112
data-direction register. 105
DATA STROBE, 107
direct memory access, 105
double buffering of, 107
handshake lines (H1-H4). 104, 105-106, 107
input/output pins for, 104, 105
instructions, 109
interrupts, 98, 105, 106, 107
parallel interface function of, 21
parallel interface ports

Port A, 104-105, 107, 109
Port B, 104-105, 107
Port C, 104, 106

printer interface, 92
programming, 108-110, 111-112
read, 106
registers, 106
selection of memory area for, 34, 92, 93
serial data rate, 110
signals, 106
S record, 111, 112, Appendix
system bus, 106
timer, 104, 105, 106, 110
write, 106

MC3456,25
Mask bits. See Interrupts
Memory

as location of operands in arithmetic instruc-
tion,56

block, 70, 116, 120
buffer, 118-119, 128, 131
circuits to interface RAM and ROM, 34-41
data memory, 13
decoding, 22
effect of monitor of VU68K, 118
enable signals, 34-35, 118

even and odd memory, 12
fetching instructions from, 4-5
in VU68K system, 114, 118
intentional delay of data acknowledge signal

for, 12
location of exception vectors of VU68K, 124
nonresident memory, 91
overlapping of RAM and ROM, 34
pointer, 120, 121
RAM

access times, 29
bytewide, 19
connection with word-selection bits in

VU68K, 118
dynamic RAM (DRAM), 10, 19,22,28,41
refresh, 22, 35-36
select line for, 118
timer circuit for, 35
use with Low-power Schottky and

Schottky, 32
See also 4116

Read-only (ROM), 19,21,22. See also
MC68A364

connection with word-selection bits in
VU68K,118

effect of DTACK generation circuit, 35, 37
watchdog timer if write tried, 34

scratch pad, 22
shift register memory, 1
shifting operands in, 64, 65
static memory, 11
supervisor memory, 14
user memory, 14, 22
word as measure of memory area, 6

See Stack
Memory accessing

accessing times, 32, 33
bus error, 13
direct memory access (DMA)

control, 9, 15
with MC68230, 105

in eight-bit device, 3
in MC68000, 4, 9
linear accessing, 4
memory segmentation, 4
paging, ~

Memory controller in MC68000, 10
Memory handling

as design consideration, 2
intentional delay in data acknowledge line,

12
Memory location

affected by data transfer instructions, 53
affected by shifting instructions, 63
as trap, 77

INDEX 321

comparison in compare memory instruction,
58

during bit manipulation instructions, 65, 67
examination and modification of, 121, 135
use during arithmetic instructions, 59

Memory management unit, 91
Memory map

exception vectors in, 78
for MC68000, 10n, 21-22, 34
for VU68K, 114, 118
in 6850,74

Memory range
in eight versus 16-bit devices, 1
in MC68000, 10
input-output locations in, 50

Microprogramming, 5
Mnemonics, 47
Modem, 19, 21, 98, 99, 114
Monitor for VU68K (VUBUG)

branch, 130
breakpoint

flag, 127
mode, 146
remove, 142, 147
set, 142
table in memory area, 126, 128

buffered inputloutput for ports, 118
carriage return, 133, 142, 144, 146, 148
Carter, Edward M., 124
command

character, 144, 147
mode, 119, 120, 121, 128
processor, 130

commands, 134
b command, 120
c command, 120
CONTROL-C (ctrl-c), 119, 133
CONTROL-L (ctrl-I), 121, 140
CONTROL-Q (ctrl-q), 119, 127
CONTROL-S (ctrl-s), 119, 127, 129
CONTROL-X (ctrl-x), 121, 140
D command, 120, 144, 145
E command, 120-121, 140
Go (g) command, 120, 121, 122, 123, 148
L command, 121
M command, 121, 122
Prototype (P) command, 122, 141
R command, 121, 122, 124
S command, 122
T command, 122, 123

control variables, 128
conversion from hexadecimal to ASCII, 130
emulator mode, 120-121, 140
error, 142
exception vector table, 124, 125

322 INDEX

Monitor for VU68K (continued)
header, 147
input character, 131
interrupt handling, 124, 125, 148
interrupt mask, 128
interrupts for ports,
linefeed, 133, 146
loading, 139, 148
memory buffer, 128, 131
memory dump, 142, 144-145
memory examination, 127, 135
memory mode, 121
object code, 152
ORG directive, 124,125
output from, 129
program counter, 133, 148
prototype table in memory area, 126
queue, 124, 128, 132, 133
register mode, 122
register examination, 127. 1::lf3
register save area, 124, 126, 128
reset of byte count, 146
resta rt, 133
return address, 148
serial communication port, 129, 132, 139
S-format, 139
single-step mode, 120, 121, 122, 147, 148
6850, 127, 128, 129
stack, 126, 128, 133
stack pointer, 128
status register, 133, 147, 148
system mode, 122, 141
system stack in memory, 126
temporary storage areas, 127, 134
terminal buffer, 127
trace mode, 146, 147
tra ps, 123--124, 148
United States Air Force, Computer Science

Department, 124
user stack, 127
Vanderbilt University, Computer Science

Department, 124
write, 145

Morgan, Christopher, 6
Most significant bit (msb), 7, 60
Motorola, 1, 2, 3, !Hi, 10, 92, 121
Multiplexing

74LS153,22,40-41
in MC68000, 10,22,24
signal (Column/Row), 40

Multiplication, instructions for
as part of data processing instructions, 53
limited in MC6800 to 16-bit operands, 57
MUL,74

MULS,57
MULU,57
use of LSL instruction for, 64, 74

NAND flip flop, 26
National Semiconductors, 1
Negate

definition of, 10
instructions for

NBCD,59
NEG,58
NEGX,59

Nibbles
as defining operation word, 45
definition of, 6

Normal state, 76
NOT instruction, 60
Numbers. See Integer; Ordinal

Object code, 121, 152
Odd addresses in MC68000, 11
Opcode. See Operation word
Open-collector inverter, 26
Operand

absence in inherent mode, 52
as part of data strobe signal, 10
data register, 17
decimal operands, 59
destination operand, 52, 56, 57, 58
effect on condition codes, 55
fixed operand, 13
in data processing instructions, 55, 56, 57, 58,

59,60,61,64-65,74
in data transfer instructions, 67
in effective address, 42, 44
in instruction format of 16-bit devices, 2,44
in memory addressing mode, 47, 49, 50
in register direct addressing, 45, 47
in special addressing modes, 51-52
multiplication of, 74
size affecting choice of instructions, 74
size limitation, 55, 57
source operand, 56, 58
unaffected in various divisions, 82

Operating system program, 19
Operation word (opcode or op word)

accessing to avoid address error, 42
bit instruction, 65
conditional branch instructions, 69
effective address, as part of, 42, 43, 44, 45,

46-47
for emulator line, 82
in arithmetic instructions, 58
in immediate mode, 51

in inherent mode, 52
in instruction formats, 2, 44
nibbles as defining, 45

OR instruction, 2, 60, 62, 77
Ordinal, 6-7
Orthogonality, 54
Overflow, 82

Page, 3-4, 92
Paging, 3-4
Parallel circuits, 19,21
Parallel InterfacefTimer (PlfT). See MC68230
Parameters, 71
Parity, 91, 94
Peripheral devices

as design consideration, 2, 5
clock frequencies for, 14, 28
effect of Request to Send signal, 99
for MC68000 family

assertion by address strobe, 10
autovector device, 17
compatability among MC68000 family, 88
compatability with 6800 family, 5, 22
interfacing with enable signal, 14
interrupt acknowledge bus cycle, 87, 89
interrupt request output (IRQ), 87, 89
limitation on exception vectors used for,

80n
memory map for, lOn, 22, 92

forVU68K,118
intentional delay in data acknowledge

line, 12
interfacing, 34, 68. See also MC68230
interrupts, 17
of 6800, 5, 22,34, 68
programming for, 19
6850 as, 118

Pins in MC68000, 9-10
Power On Reset (POR) signal, 26
Power supply

for 74LSl48, 98
in disabling latching input, 22
in negating address strobe in MC68000, 10
pins in MC68000 for, 9

Prefetch queue, 5
Printing, 19,92,97,106-107
Privilege violation, 80, 124
Procedural calls, 71
Program counter (PC)

addressing modes, 42, 43, 52, 53
distinguished from assembler location

cou nter, 126
during exception state, 77-78, 79, 121
during trace service routine, 82-83

INDEX 323

during unconditional branch instructions, 69
effect of various return instructions on, 79-81
in MC68000, 3, 15, 17, 21
in paging, 3-4
in reset vector, 79, 80
in VU68K, 121, 122, 123, 126, 133
return address for, 148
user program counter, 121, 122

Program execution
ha Ited state, 76, 120
instruction-by-instruction, 122

Programming
design considerations for, 1-2, 3, 55
designation of frame pointer, 71
effect of instructions on status register flags,

55
in MC68000, 3,4,19,54,55,73-75
modular programming, 70
object code, 121
of 6850, 102-103
of MC68230, 108-110, 111
of traps, 77
position-independent programs, 52, 70
prototype command in monitor of VU68K,

141
registers for, 3
trace routines, 82
use of emulator instructions, 82
use of proper instructions, 73
use of supervisor versus user mode, 76

Pull-up resistor, 10,22,26,98

Queue, 13, 128, 132, 133

Radix point, 54
RAM. See Memory
RDA signal, 95
Read

data transfer, 22
during clear instruction, 74
during MOVE instruction, 74
during supervisor versus user mode, 77
during Scc instruction, 74
effect of data strobe on cycle, 10
in bit manipulation, 66
in MC68000, 11, 22
initiation of, 11
multiplexing for, 22
of semaphore byte, 66
registers of 6850, 94
timing of, 11,29
zero-padding of values for, 123

Read-modify-write cycle (R-M-W) in MC68000,
10,15,66

324 INDEX

Read-write
control of data-bus buffers, 11
line (RIW)

in MC68000, 10, 11, 12, 15,22
in 6800, 11
in 6850, 94

signal (RAW), 40
Receiver-transmitter, 94
Refresh,36
Registers. See also Address, condition code,

data, index, shift, source, or status
register; Program counter; Trap
instructions: CHK

affected by data processing instructions, 61,
63

affected by data transfer instructions, 53, 67
as design consideration, 3
and instructions, 73
Gumpanson in eight- versus 16-bit devices,

1-2,3
effect on condition codes, 55
examination and modification of, 122, 136
for paging, 3-4
in bit manipulation, 65
in effective address, 42, 43, 44
in MC68000, 3, 17-18
in rotate instructions, 65
in stacking operation, 67, 74
in VU68K, 121, 126
multiplication of, 74
pointer, 122
register bit in defining addressing mode, 44
register save area, 124, 126, 128

Request to Send (RTS) signal from 6850, 94,
95

Rerun cycle in MC68000, 15,91
Reset

address, 103
and supervisor mode, 77
as distinguished from abort function, 97
byte cou nt, 146
circuit, 19, 22, 23-28
effect on buffers in VU68K, 119
effect on posts in VU68K, 119
effect on stack in VU68K, 119
exception state, 24, 53

exception vectors, 13, 21, 22, 79, 80, 119
interrupt lines, 78
reset as causing, 77, 78, 79

flags during initiation of, 24
flowchart of, 25
input, 26
instruction, 53, 77
line in MC68000, 9, 15

manual reset, 76n
master reset, 103-104
pin in MC68000 for, 26
signal,24
trace service routine, 83

Return instructions
RTE, 77, 79-81,83,119,123
RTS, 81, 122
RTR,81

Rotate instructions
RDL, 63, 64-65
RDR, 63, 64-65
RDXL, 63, 74
RDXR,63

Row, 144, 145
Row address signal (RAS). 28, 29, 36, 40
RS-232 protocol, 99

Scratch pad, 22
Segmentation. See Memory segmentation
Semaphore, 66
74LS14, 107
74LS138

during interrupt, 87-88
for function control lines of MC68000, 13
selection of memory area for 6850, 34

74LS148,87,97,98
74LS153. See multiplexing
74LS175 in watchdog timer, 34
74LS245,22,24
74LS273,97,98
74LS373,22
74161,114
Serial circuits, 19
Serial communication, 21
Serial ports. See also VU68K

circuits for, 99, 100
protocol for, 99

S-format, 121, 139, 153-157
Shift

instructions, 63-65
register

for intentional delay of data acknowledge
signal, 12

in 6850, 94
in watchdog timer, 34

Sign bit, 7, 64, 67
Signals, 10, 19
Single-step circuit, 26, 27
Single-step mode in VU68K, 120, 121, 122
16-bit devices

comparison with eight-bit devices, 1-2
hardwired logic unit, 5
instruction format of, 1, 2

integers, 7
memory accessing, 3-4
memory addressing modes, 1
memory addressing range, 1
numbers, 7
peripherals, 5-6
registers, 1
word in, 6
word width of, 3

6800 (prefix MC for Motorola devices)
interrupts, 16
mentioned, 1
operation code (op code). 2
peripheral devices of, 5, 14-15,22,34,

68
read/write line, 11
status register, 17-18
valid memory address (VMA). 14
with 6850, 92

6850 (Asynchronous Communications
Interface Adapter (ACIA))

address line, 97
addresses, 97, 102, 127
as audio-cassette interface, 92
as peripheral device, 118
baud rate, 99-101, 112
bit pattern, 99, 101
block diagram of, 94
break condition, 96
buffering, 101
bus, 96
bytes, 96
chip select lines (CSO-2), 95
clear to send (CTS) line, 95, 99
data carrier detect (DCD) line, 95, 96
data set ready (DSR) signal, 99
data stream, 96
double device, 94
E clock, 97
error flag, 96
framing error (FE), 96
in VU68K, 114, 118
initializing, 128
internal counter, 101
interrupt, 101
interrupt request bit (IRQ). 95, 96, 104
loop, 104
master reset, 96
MC68000 data bus, 96
memory location in MC68000, 22
memory-mapped ports in eight- versus 16-bit

devices, 68
modem, 95, 96, 98, 99
output to, 129

parity error, 96
priority interrupt levels, 98
programming, 102-103
read, 96, 97
read/write line, 95
receive data (RX DATA) signal, 99
receiver-data register flag, 104
receiver overrun (OVRN). 96
register select (RS) lines, 95
registers of

control, 94-95, 99, 101
data register, 102

INDEX 325

receiver-data register (RDR), 95, 96, 102
status (Read only) register, 94, 95, 96, 101,

102, 104
transmit-data register, 95, 96,101,102
write only, 94

request to send (RTS) signal, 99, 104
reset, 95, 96
serial communication, 21
start bit, 96, 101
status bits, 95-96
stop bit, 96, 101, 104
synchronization error, 96
synchronous, 97
transmit data (TX DATA) signal. 99
treatment of data by, 94
write, 96, 97

6116,118
Size of MC68000, 9
Source register, 62
Speed

as design consideration, 2, 5, 28
clock of VU68K, 114
effect of buffers on, 28
effect of gates on, 28
effect of hardwired logic unit on, 5
effect of word width on, 3
for 6850, 99
of execution, 74
of MC68000L4, 19
mentioned,29
use of multiple arithmetic-logic units for, 5

Stack (System stack)
access by return instruction, 81
check on bounds, 82
clear, 128
data memory, 13
during exception state, 77
du ring external reset, 79, 119
in address register indirect, 48, 49, 50
in branch instruction, 69
in LINK instruction, 71
in MOVEM instructions, 74

326 INDEX

Stack (continued)
in position-independence instructions, 70
loading operations, 49
location in memory area of VU68K, 126
storing of frame pointer, 71
supervisor stack, 82-83
unloading operation, 48
user stack, 133

Stacking operation, 47, 67
Stack pointer (SP)

during activation of 6850, 103
during reset, 24, 79
effect of return instructions on, 79-81, 82
in address register indirect with

postincrement, 48
in MC68000, 3, 17,21
supervisor stack pointer (SSP), 3
use in exception state, 77, 79
use in LINKIUNI NK !~st~t!::t:Cri:;, 71
user stack pointer (USP), 3,77, 128
vector, 21,80

Static memory, 11
Status bits, supervisor versus user mock!, 77
Status register (SR)

affected by data processing instructions, 58,
62

affected by data transfer instructions, 53
affected by system control instructions, 53
bit pattern for user-interrupt vectors, 127
during exception state, 76-78, 79,121
during supervisor versus user mode, 77
during trace service routine, 82-83
effect of various return instructions on, 79-81
interrupt masks of. 83
in MC6800, 17-18,24
in MC68000, 17
in monitor of VU68K, 133
in 6850, 94, 95
return pattern, 148
save area for, 126
trace bit of, 122, 123, 147
user status register, 121

String
check on bounds of, 82
comparison of, 70
data memory, 13
definition of, 8
in monitor of VU68K, 123, 129
manipulation of. 70
significance of, 6
use of, 8

STOP instruction, 77
Subtraction

accommodated by all computers, 54
in compare instructions, 58

instructions for
SBCD,59
SUB, 55, 57, 74
SUBA, 57, 75
SUBI,57
SUBQ,57
SUBX,57
Part of data processing instructions, 53

operation code of 6800, 2
Supervisor mode in MC68000

exception vector number for privilege
violation, 80

function control lines as indicating, 13, 14
use in exception-handling routines, 77

Supervisor mode in MC68000
privileges of, 76, 77

instructions available during, 77, 79
status bits during, 77

status of S/U flags, 18, 76
trace, 82
trap exception, 81
use of stack pointer, 17

Supervisory memory, 14
System control See also Bus error line; Halt

line; Reset line
instructions, 53
lines in MC68000, 15
pins in MC68000 for, 9
use of supervisor mode by programs for, 76

Tables, 13,48
TDRA signal, 95
Temporary register, during exception state, 76
Terminal

connection to VU68K, 114, 118
8008, 1
emulator mode, 121
interface with 6850, 102
interrupts from, 98, 119
notation for keys on, 120
operation of VU68K as, 120-121, 140
protocol for, 99
serial connection to, 19, 21, 92

Test-and-Set instruction, 10, 15, 65, 66
Texas Instruments (TI), 1
32-bit devices

comparison with eight-bit devices, 1-2
hardwired logic unit, 5
numbers, 7
word in, 6

Timer, 35
control signals of circuit for, 37-38
for reset, 25
in MC68230, 104, 105
See MC3456

Tracing
and exception state, 76, 77, 78, 80, 82--83
instruction-by-instruction, 123
with breakpoints in VU68K, 120

Trap
address trap error, 42
and supervisor mode, 77
definition of, 77
exception state, 76, 77, 78, 80, 82--83
exception vector, 21
for tracing, 82
handling routine, 148
in VU68K, 118, 119, 123-124
instructions

CHK, 78, 80,81--82, 124
traci ng of, 123
TRAP, 78, 80, 81
TRAPV, 78,80,81,82, 124

single-step trap, 122
TST instruction, 55, 58
TTL logic, 1,33
Two's complement form, 6-7, 69

United States Air Force Academy, Computer
Science Department, 114, 124

User mode in MC68000
function control lines as indicating, 13, 14
privilege of, 76-77
status of S/U flag, 76

instructions available during, 77
status bits during, 77

privilege violation exception, 79, 80
Unconditional branch instructions, 53
UNLNK instruction, 71, 72

Valid memory address (VMA), 14-15
Valid peripheral address (VPA), 14-15, 17,34

in VU68K, 114
interrupt acknowledge signal for, 98, 99
spurious interrupts, 91
terminating interrupt acknowledge bus cycle,

87
Values, comparison during logical state, 6
Vanderbilt University, Computer Science

Department, 114, 124
Variables

areas, 71
in data memory, 13
in stack, 50, 71

Vector. See Exception: Vector
VUBUG. See Monitor for VU68K
VU68K

acknowledge signal, synthesis of, 114
address bits

memory-block selection bits, 116, 118

word-selection bits, 1 16, 118
address decoding, 116, 118
address lines, 114
address strobe, 114

INDEX 327

asynchronous versus synchronous operation,
114

baud-rate generator, 114
Bonds, A. B., 114
branch instruction, 119
bus-wait technique in, 119
Carter, Edward M., 114, 124
clock speed, 114
connection to modem, 114
connection to terminal, 114, 118
data acknowledge line and signal, 114
decoder, 118
effect of reset, 1 19
input/output ports, 114, 118, 119--120
interrupts, 115, 116, 118, 119
limitation on return instructions, 119
loading, 121
memory, 114, 116, 118
memory map, 114, 118
mode-select line, 118
registers, 121
schematic of, 114, 115--117
6850, 114
United States Air Force Academy, Computer

Science Department, 114
Vanderbilt University, Computer Science

Department, 114
valid peripheral address (VPA) line, 114
See also Monitor of VU68K

Wait states, 12, 28, 32, 35, 119
Waite, Mitchell, 6
Watchdog timer circuit

diagram of, 34-35
interrupt acknowledge signal for, 98
signaling bus error, 13,91

Word
address register, 17
addressing to avoid error, 42
as block, 6
bits in, 3, 46
as default value in MC68000, 42
boundary, 48, 78
data register, 17
data strobe for transfer, 11
definition of, 6
extension word, 51, 52
extension of word-address, 74
extension of word-data, 74
fetching, 134
for instructions affecting addresses, 73
for reading ROM, 19

328 INDEX

Word (continued)
in bit manipulation, 66
in MC68000, 10
operands, 47, 55
operation of instructions on, 3
output from VU68K, 129
selection in VU68K, 116
special status word, 79
storage during exception-handling

subroutines, 77
width, 3, 46
word-address operations, 74

Write, 32
data transfer, 11, 22
during supervisor versus user mode, 77

initiation of, 11
,limitation on clear instruction, 74
limitation on MOVE instruction, 74
limitation on Scc instruction, 74
multiplexing for, 22
protection of ROM against, 19
registers of 6850, 94
speed,29
to ports in VU68K, 119, 145
timing of, 11, 12
zero-padding of values, 123

Z80, 1
Zilog,1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

