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Preface 

Most introductions to microprocessors center on 
8-bit chips. Because I6-bit chips such as the 68000 
microprocessor are powerful, they are often con­
sidered too complicated for beginners. I want this 
book to fight that image and that custom. 

The 68000 is far more powerful than the 8-bit 
chips that were the basis of the first personal com­
puters, but it is also, in many ways, easier to use. 
This pair of characteristics-power and ease of 
use-haven't washed away all of the reasons to learn 
about 8-bit chips. The best chips of the 8-bit genera­
tion are still used and programmed in personal com­
puters, controllers, and instrumentation. But for 
those who want to keep up-to-date, or to catch up 
on technology, I6-bit chips are the natural choice. 
They are built into most new microprocessor-based 
systems including virtually all new personal com­
puters. 

The 68000 is no more difficult to program than 
any of the 8-bit chips. It just has more depth and 
more capability than those chips. Sure, to get the 
full use of the 68000 you must understand ad-

vanced concepts such as frame pointers, supervisor 
mode, and memory management, but you don't have 
to use them. 

The 68000 can be used for simple programs just 
as an 8-bit chip can. But if you have a complicated 
data structure or routine to program, the 68000 will 
make your life easier because it provides you with 
more tools for implementing such things. An 8-bit 
chip makes you do all the work with long sequences 
of simple instructions: the 68000 lets you use just 
a few, more powerful instructions. Many functions 
that took planning and programming on an 8-bit 
chip are reduced to a single, automatic operation 
on the 68000. This process appears in many 
technologies and is particularly strong in microelec­
tronics. While the chips become more powerful, us­
ing them doesn't get more difficult (which is nice 
because we aren't getting smarter). The elemental 
functions of the chips just keep advancing. Multiply­
ing I6-bit numbers or setting up a portion of the 
stack for a subroutine was a major programming 
task on a 4-bit microprocessor and required a 
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carefully written subroutine on an 8-bit chip. Do­
ing the same jobs on a I6-bit chip such as the 68000 
only requires a single instruction. 

Keep in mind that you don't have to use all or 
even most of the 68000's power. By learning a few 
instructions and addressing modes, you can begin 
to write fast, practical, and clean routines and 
programs. 

If you're an old hand in the microprocessor 
business, you'll know that the 68000 is one of the 
most widely used 16-bit chips. If you're new to 
microprocessors, there is a no reason why you 

x 

shouldn't start with the 68000: it is one of the two 
most popular 16-bit chips, and you can apply the 
68000 concepts you learn to 8-, 16-, or 32-chips. 

In fact, the 68000 is more than a 16-bit 
microprocessor. Many of its features handle 32-bits 
at a time. The 68000 family-which is also de­
scribed in this book-is a set of chips that includes 
the 68008 (found in inexpensive home computers) 
and the 68020 (a full 32-bit chip that is found in 
super-minicomputers). Learn about the 68000 and 
you will know most of the details of these chips, too. 
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Introduction 

This book has two purposes. First, it introduces you 
to microprocessors using the 68000 chip as a guide. 
If you are unfamiliar with microcomputing 
technology, the 68000 is an excellent choice as a first 
microprocessor. Despite its deserved reputation as 
a very powerful 16-bit microprocessor, the 68000 
can be both understood and used by beginners. The 
fundamental programming elements of the 
68000-from instructions to addressing modes-are 
no more complicated to learn than those of far less 
powerful 8-bit chips. But because those elements 
contain more punch and because the 68000 family 
includes chips with advanced instructions and 
memory addressing schemes, a 68000 program gets 
more done than a comparable program for an 8-bit 
chip. For that reason, if you are familiar with 
microcomputing, you'll probably have heard of the 
power and influence of the 68000 microprocessor. 

The second purpose of this book is to present 
the fundamental information you need to under­
stand and write 68000 assembly language pro­
grams. From the architecture to the individual in-

structions, this book covers each vital part of the 
chip. There are some advanced details of the 68000 
that this book doesn't attempt to cover, including 
such things as the exact timing of instructions, the 
interfacing of peripherals, and the algorithms for 
assembly language subroutines. Those subjects are 
better left to the original literature from the chip­
maker or a book dedicated to this subject. 

My intention is to present the software side of 
the 68000 in a simple and painless way. If you want 
to learn about the hardware side of the 68000, you 
still need to know what is in this book. After you 
have read it, then you'll be ready to study the 
manufacturers' hardware details and specifications. 

Chapter 1 explains the genesis and the impor­
tance of microprocessors and the 68000. This is not 
a detailed history-plenty of those have been writ­
ten elsewhere. Instead, Chapter 1 is just a refresher 
on the reasons why any of us bother with these tiny 
and complicated chips along with some suggestions 
on how to use this book. 

Chapter 2 describes the inside of the 68000. As 
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with the rest of the book, this chapter assumes no 
prior knowledge of microprocessors. Before describ­
ing a feature of the 68000, the meaning and use of 
that feature will be covered in general. Chapter 2 
begins by explaining the difference between 8-, 16-, 
and 32-bit microprocessors and then details the 
registers, memory addressing space, flags, instruc­
tions, addressing modes, and interrupts that the 
68000 has. This chapter compares other 16-bit chips 
to the 68000. Chapters 3 through 7 explore in more 
detail the chip elements first listed in Chapter 2. 

Chapter 3 details the registers and compares 
them to those on other microprocessors. The struc­
ture, function, and use of each register is explained. 

Chapter 4 begins by explaining the reasons for 
different modes of address and then takes each 
68000 addressing mode in turn and shows its use, 
flexibility, and restrictions. 

Chapter 5 explains what an instruction is and 
what it can do. The orthogonality of the 68000 in­
struction set is explained. The instructions are 
grouped by function and their uses and idiosyn­
crasies are discussed. 

Chapter 6 is the longest chapter in the book. It 
describes each instruction individually with defini­
tions, condition code effects, allowable addressing 
modes, and a quick bit-breakdown of the object 
code. 

Chapter 7 explains exception processing. This 
subject is called Interrupts on many other 
microprocessors, but the 68000 adds new categories 
of exceptional processing that help the programmer 
handle everything from meaningless mathematics 
to unauthorized memory access. 

Chapter 8 lists the members of the 68000 chip 
family, including CPUs and peripherals. All of the 
CPUs (68008, 68010, 68020, 68200) and some of 
the more important peripherals are discussed. 

Chapter 9 begins with a quick introduction to 
computer languages. Since this is a manual and not 
a programming exercise book, the coverage is brief. 
The chapter then launches into a discussion of the 
advantages of assembly language and the basics of 
assembly language technique. 

Chapter 10 pictures and describes sample 
products that use the 68000. These range from per-
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sonal computers that cost $500 to minicomputers 
that cost half-a-million dollars. The last category is 
chosen to show the range and power of the 68000 
family. 

The experienced reader of technical material 
will be familiar with the style of a microelectronics 
manual such as this one. Novices, however, may be 
awed and confused by the repetition of words and 
phrases. A common complaint from those who 
overhear the language of computerese is that the 
lingo is impenetrable and that it was probably 
designed to obscure meaning and cloak the subject 
in mystery. The language may be impenetrable for 
those who haven't opened the technical dictionary, 
and it can and is used as obfuscation. 

In a book such as this, however, use of technical 
terms is vital and is the only practical way to con­
vey the information in less than an encyclopedic 
length. Each term will be explained, but once ex­
plained the terms will be used. When you are 
familiar with the terms, you'll be glad to avoid the 
endless repetition of definitions. When you begin 
to learn a foreign language it is hard to even know 
the subject of a conversation. But once you are gain­
ing fluency, you wouldn't want to have every word 
followed by a snippet from a dictionary. The same 
is true of technical terminology. Technical disciplines 
are built on technical lingo just as surely as 
mathematics is built on numbers and letters. 
Without using these symbols, the science would be 
crippled. 

Microelectronics is built on an edifice of 
understood terms. Their combinations and relations 
make their meaning; adopting a more mellifluous 
set of names and terms would make for easier 
reading and less understanding. In studying a sub­
ject such as this one, just remember this: what looks 
complicated and needlessly obscure now will be too 
simple to bother with later, except when you explain 
it to the next novice. 

Most authors place the requert for debugging 
in the acknowledgments, but because I know that 
most people, myself included, don't read 
acknowledgments unless they have reason to believe 
their own names are included, I'll mention debug­
ging here. Please let me know about any errors in 



this book so that I can correct them. By errors, I 
mean factual mistakes, typos, and even omissions 
of material. Obviously, I and my editors have tried 

to catch these problems, but there is no more 
vigilant or observant proofreader than a user who 
is cursing the transposition of a 1 and a O. 
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Why Bother 
About Microprocessors? 

M OST ELECTRONIC CHIPS ARE NAMED WITH 
a number. The 68000 chip is a micro-

processor chip. By microprocessor, I mean that the 
68000 is a single, small, square piece of silicon that 
has been impregnated with all the electrical circuits 
of the heart of a computer. It can be put to use in 
everything from a household appliance to a million­
dollar computer. 

This chapter is written for those who aren't sure 
why microprocessors have captured so much news 
attention. Many other books are available that 
describe in detail the people and events that led to 
the invention and improvement of microprocessors. 
This chapter only sketches the role of 
microprocessors and a few of the concepts vital to 
understanding them. 

Microprocessors are the pivot of the informa­
tion revolution. They are the brains of the electronic­
chip world and so are vital to computers and 
thousands of other products, from sewing machines 
to railroad cars, advanced X-ray equipment to 
pacemakers. 

POWER AND POPULARITY 
The 68000 has both facets necessary to make it a 
leading microprocessor: it is powerful and popular. 
Without power, a microprocessor will soon be Jeft 
behind in the technological race. An unpopular chip, 
no matter how state-of-the-art, will not have enough 
software to be quickly useful in future situations. 

The question of a microprocessor's popularity 
is an interesting one. The first chip that fulfills the 
system designers' needs will often be the most 
popular chip. But if the previous generation of 
microprocessors can still handle most designer 
demands, the first chip marketed may be left behind 
by a later, more powerful chip. 

In addition, there is a snowballing effect to 
microprocessor popularity. Once a chip begins to be 
popular, programs for it start to appear. Those pro­
grams make the chip even more popular and result 
in more systems being designed with that chip. 
More systems means even more software will ap­
pear for it. And around and around it goes. In the 
final analysis, the size and reputation of the com-



Fig. 1·1. The 68000 chip (courtesy of Motorola). 
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panies that use the chip in their systems are also 
vital to its popularity. 

The 68000 is not the preeminent 
microprocessor today. Some older 8-bit chips, such 
as the Z-80 and 6502, are sold in larger numbers. 
The 8086, a chip from the same 16-bit generation 
as the 68000, can be found in more personal com­
puter designs than the 68000, but it is less power­
ful. In many ways, the selection of the 8088 (a close 
relative of the 8086) by IBM for its personal com­
puters was the largest single boost to that chip. 

68000s are found in more engineering and in­
strumentation systems than the 8086 and are begin­
ning to appear in personal computers such as the 
Apple Macintosh, Apple LISA, and the Sinclair QL. 
Together, the 8086 and the 68000 have captured 
most of the 16-bit microprocessor market. Figure 
1-1 shows a microphotograph of the 68000. 

The next generation of microprocessors will 
work with 32-bits at a time. These super 
microprocessors will have as much power as many 
full-size computers have now. The 68000 opens the 
door to this world in two ways. First, the 68000 uses 
32-bits in internal processing, so in some ways it is 
a hybrid 16- and 32-bit microprocessor. Second, the 
68000 family already includes a full 32-bit processor 
called the 68020 that can run all the programs writ­
ten for the 68000. The 8086 doesn't have this ad­
vantage. Its 32-bit relative, the 80386, was not yet 
available when the 68020 started to appear in 
systems. 

STANDARDIZATION VERSUS SPECIALIZATION 

The entire field of microelectronics is rooted in both 
World War II and the space race. Missiles and air­
craft need control systems that are lightweight and 
reliable, yet very complex in design. The technology 
that provides all these benefits is solid-state elec­
tronics. 

Several breakthroughs took place during the 
late 1950s and throughout the 1960s that allowed 
designers to put more and more electronic circuit 
elements on the surface of a single crystalline sheet. 
The silicon chips of these processes have since been 
celebrated in books, magazines, songs, and lent their 

name to the Santa Clara Valley in California, where 
much of the groundbreaking work was done. 

Simultaneously with the miniaturization of 
flight electronics, the science and technology of 
computers exploded. Computer designers quickly 
adopted solid-state electronics and integrated cir­
cuits because of their high reliability, low power 
demands, and fast operation. Microelectronics was 
used to build the central processors and memories 
of the huge computers of the 1960s. By 1970, 
however, a roadblock had appeared in the way of 
further development of integrated circuits. 

COST AND YIELD 

The complex and subtle processes used to implant 
microscopic transistors, resistors, capacitors, and 
other electronic components on a block of extremely 
pure crystal are difficult to master and require very 
expensive equipment and highly trained personnel. 
The more complex a circuit, the harder it is to 
fabricate correctly. In fact, with increasing complex­
ity the number of working circuits drops precipitous­
ly. This relationship is shown in Fig. 1-2. 

At the beginning of the process of creating cir­
cuits, each sheet of silicon crystal is laid with the 
foundations for several hundred chips. By the end 
of two dozen different steps, only a fraction of those 
chips will have been formed perfectly. Almost any 
flaw, no matter how small, destroys the chip. The 
percentage of good chips from a wafer or sheet of 
silicon is called the yield. Cost is directly related to 
yield. 

If the engineers cannot get a high enough yield 
out of a wafer, the resulting microcircuits will be 
too expensive. These costs were looming like a wall 
in the face of progress in the late 1960s. Since 
microcircuits are difficult to design and even harder 
to produce, they can only be economical if they are 
sold in large volume. A chip that has only a few uses 
will be very expensive and so will only appear in 
special costly systems. 

Except for memory chips, chip designers were 
having a hard time coming up with new chips that 
would sell in volumes large enough to pay for design 
and process development. 

3 
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Fig. 1-2. The learning curve (Idealized). 

INTEL'S BREAKTHROUGH 

The breakthrough came in the guise of something 
known as programmability. Computers are pro­
grammable. Usually, they are not dedicated to any 
particular use: instead, the computer does whatever 
it is programmed to do. A programmer, or computer 
engineer, writes a series of instructions that tells the 
computer exactly what steps to take to solve a 
problem. Solving a problem doesn't mean just work­
ing out math equations. From cataloging finger­
prints to keeping the books, from playing games to 
controlling traffic lights, computers perform a huge 
variety of tasks. In fact, the magic of computers is 
that they are malleable machines. If you think of 
a new job that needs doing, all you have to do is 
write a program. You don't have to design and build 
an entirely new machine. The microcircuit 
engineers were slow to realize that this fact could 
provide the answer to their design problems. 

A few IC (integrated circuit) manufacturers 
were employed by calculator companies to fashion 
the central parts of a calculator on a single chip. 
When chips are economical, they are very 
economical, even downright cheap. Typically the 
costs of an integrated circuit will halve every two 
or three years. That's because the yields rise with 
processing experience: a phenomenon known as the 
learning curve. An idealized version of the learn­
ing curve is shown in Fig. 1-3. Other advantages of 
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ICs over conventional circuits on fiberglass boards 
include lower power consumption and higher 
reliability. So the calculator companies were hop­
ing that the primitive computing functions of their 
machines could be incorporated into ICs and thus 
become cheaper to produce and more reliable to 
work with. 

Intel was the first manufacturer to get all the 
circuits on a single IC, but the chip wasn't fast 
enough (it took too long to make its calculations). 
So the calculator companies went back to their old 
methods of making circuits and Intel tried, without 
a lot of hope, to sell an already paid for, slow­
calculating chip. 

That chip, the Intel 4004, was the first 
microprocessor. It began to sell, and sell, and sell. 
It sold so well that Intel quickly put out an im­
proved version, the 4040 (like the 4004, a 4-bit chip) 
and then an even more powerful8-bit chip, the 800S. 
The 8008, in turn, gave way to the 8080. Other 
manufacturers developed competing chips, such as 
the Motorola 6800, and the microprocessor revolu­
tion was on its way. Who was buying all those chips? 
A lot of people. 

Though they were slow compared to the re­
fined circuits of the calculator manufacturers, these 
chips had the advantage of programmability. In 
other words, different people could use them for dif­
ferent purposes. The breakthrough in chip design 
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Fig. 1-3. Sales of microprocessor chips vs. cost per chip. 

was the development of a general-purpose chip that 
anyone could use. The same chip would work for 
many applications; only the program, or software, 
needed changing. Industrial engineers designed 
microprocessors into machine controllers; 
automobile manufacturers designed them into 
engines; hobbyists designed them into just about 
everything. 

The ability of a microprocessor to gather infor­
mation, to manipulate that information, to test it, 
and then to make a decision based upon the pro­
grammer's earlier decision, and finally to initiate the 
action of some other machinery makes it into a tiny 
thinking device. The unreliable and limited 
mechanical controllers in traffic lights, microwave 
ovens, airplanes, and vending machines can all be 
replaced with microprocessors. In addition, systems 
that didn't use controllers before, could now be 
made more efficient by the judicious use of 
microprocessors. Applications appeared where no 
one had even thought to look. IC manufacturers 
found that they could concentrate on making bet­
ter processors and support chips rather than wor­
rying about specialized chips that no one could 
afford. Better yet, they discovered that designers 
who bought microprocessors would then order lots 
of memory chips (which is where the IC companies 
made their profits). 

The breakthrough came in hardware design. 
But now, because of that breakthrough, designers 
needed to become software experts just as much as 
hardware experts. 

MICROPROCESSOR EVOLUTION 
The first microprocessors were 4-bit devices. Like 
most computers, they were based on digital elec­
tronics and the binary number system (which 
represents all information by strings of 1s and Os). 
Digital systems can be made more reliable and more 
precise than analog systems. 

Four-bit microprocessors deal with groups of 
four binary digits, or bits, at a time. Although these 
were adequate for simple applications, many users 
soon needed 8-bit devices. The manufacturers were 
quick to respond. Figure 1-4 depicts the family tree 
of the most popular microprocessors. There are 
many other microprocessors that are not shown or 
discussed here. Some are used solely for military 
applications, others never appeared in many 
systems, and still others have just recently appeared 
and are not yet well known. 

There are several important trends in the 
microprocessor field. The first is the development 
of chips that can handle more bits at a time. The 
first chips were founded on the use of 4 bits; with 
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double length registers (locations on the chip for 
storing bits), 8 bits could be used for some opera­
tions. In some circumstances, this capability of chips 
to work with twice their fundamental bit number 
helps to confuse the labeling of chips. You'll hear 
of 8-bit, 16-bit, and 32-bit chips, but you'll also pro­
bably run into mention of 8/16-bit chips and 32-bit 
chips with 8-bit buses. I'll explain some of those 
mysteries in Chapter 2, but for now, remember that 
16-bit chips are generally more powerful than 8-bit 
chips, and 32-bit chips are the most powerful now 
available. 

The second new branch in the tree of 
microprocessors is the single-chip microcomputer. 
Most microprocessors need support chips such as 
clock oscillators, bus multiplexors, and 110 (In­
put/Output) controllers. Single-chip microcomputers 
have all of these functions integrated on a single 
chip. The 68200 is an example of such a chip (see 
Chapter 8 for more information on the 68200). 

4-bits 6-bHs 

4004 
4040 -- 6006 

6060 
6065 

6068 

Z80 

6800 I 

6809 

6502 

Fig. 1-4. Genealogy of some popular microprocessors. 
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MICROPROCESSORS AND MICROCOMPUTERS 

Almost as soon as microprocessors made the vital 
central processing unit (CPU) available in a small, 
affordable package, hobbyists started building them 
into tiny computers. By attaching a power supply, 
110 devices, and some memory, a microcomputer 
was created (as mentioned above, the term 
microcomputer is sometimes also used for a 
microprocessor that has additional functions 
packaged onto a single chip). The early microcom­
puter models quickly gave way to sophisticated 
packages with keyboards, monitors, large memories, 
peripherals, and even systems software. 

The first hobby computers were built around 
the 8-bit chips such as the 8080 and the Z-80. But 
as professionals, business people, and engineers 
began to use hobby computers-soon renamed per­
sonal computers or PCs-the computer designers 
knew they needed more power than the 8-bit chips 

16-bHs 32-bHs 

6066 60366 
60186 

80286 

Z8000 Z80000 

68000 68020 
68008 

68010 

65816 

16032 32032 
9900 



could provide. At that point, 16-bit chips like the 
68000 and the 8086 began to appear in PCs. 
Microcomputers soon became a faster growing seg­
ment of the computer market than the traditional 
mainframes and minicomputers and can now be 
found in homes, schools, businesses, and 
laboratories. 

SOFTWARE VERSUS HARDWARE 

As the information revolution proceeds, fewer peo­
ple design hardware and more use commercial hard­
ware as a tool to design software. Way back in the 
early 1970s, if you wanted a microcomputer, you had 
to build it from a kit. You had to understand the elec­
trical aspects of microprocessors just to be able to 
use one. That isn't true any longer. In fact, only 
dedicated hobbyists or inventors need to worry 
about enable signals, line buffers, race conditions 
and all the other esoteric aspects of hardware. 
Before, you had to build a computer to own one; to­
day it is much cheaper to buy a standard system and 
program it to do what you want. This book is 
aimed at software because that is where the action 
is. 

Very few people today will interface a 68000 
chip to other chips. Many, many people will be pro­
gramming 68000-based systems in machine, 
assembly, and high-level languages. This book 
sketches some of the hardware aspects of the 68000 
so that you will know what hardware people are 
talking about when they discuss 68000 systems. But 
by far the majority of the book leans on the things 
you must know to program a 68000 microprocessor 
or to understand how a 68000 program works. 

To understand and create software for 68000 
CPUs, this book should be sufficient. You won't have 
to get the manufacturers data. However, it is always 
a good idea to have manufacturers literature in hand. 
In some cases, learning to read the original 
documentation is as important a skill as actually 
programming a chip. 

If you want to incorporate a 68000 chip into 
some hardware, this is not the only book you'll need. 
You'll need the software knowledge in this book and 
the hardware facts in the chip manufacturers' latest 
manuals. In fact, a single book couldn't hold all the 

necessary software and hardware facts and explana­
tions and still be easy to carry. 

COMPATIBILITY AND CHIP FAMILIES 

Besides a software emphasis, I also try to be diligent 
in explaining the concepts of compatibility and chip 
families. The 68000 isn't really a single chip. In­
stead, it is a family of CPU chips and peripheral 
chips. 

Other CPU chips include an 8-bit chip (the 
68008), a 16-bit virtual memory chip (the 68010), 
a single chip controller (the 68200), and a super­
powerful 32-bit CPU (the 68020). The peripheral 
chips are dedicated to relieving the CPU of par­
ticular tasks including memory management, I/O 
(input/output), floating point arithmetic, and 
peripheral device control. Many of these chips are 
discussed in detail in Chapter 8. Throughout the 
bulk of this book, almost all explanations refer to 
the 68000 and the 68008. 

This family of chips presents the programmer 
with two types of compatibility. First is the com­
patibility of learning. The CPU chips all have very 
similar structures and operation (with the 68200 
varying more than the rest). That means you only 
have to learn one chip to have command of 8-bit, 
16-bit, and 32-bit microprocessors. Also, you need 
only learn one set of peripheral chips because the 
CPUs in the 68000 family are specifically de­
signed to work with many of the same peripheral 
chips. 

The second type of compatibility has a stricter 
meaning. 68000 CPU chips are designed to run soft­
ware written for other 68000 family CPUs. Not on­
ly do you only have to learn one chip, but many 
programs you write will run without change on 
other 68000 CPUs. The software written for a small 
8-bit personal computer can be run on a 16-bit 
engineering workstation or a 32-bit superminicom­
puter. With programmers and programming 
representing the major slice of most computer 
budgets, that time and effort savings is substantial 
and important. 

The rules of this compatibility are fairly sim­
ple. First, the 68200 doesn't figure into the pattern. 
It is only a similar chip, like a distant cousin, instead 
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of a sibling. Other than that special case, programs 
written for a less powerful member of the family 
will run on a more powerful member but programs 
written on the more powerful chip will not necessari­
ly (but often will) run on the less powerful chip. 

For instance, the 68008 is, at 8-bits, the minor 
member of the 68000 family. Programs that run on 
the 68008 will run without modification on the 
68000. However, programs that work on the 68000 
may use some of the additional power-in the form 
of instructions and interrupt priorities-that the 
68008 doesn't provide. Those programs won't run 
properly on the 68008. Similarly, programs for the 
68010 will run on the 68020, but a program that 
runs on and uses the advanced addressing and in­
structions of the 68020 will not run on the 68010. 

Motorola, the designer of the 68000, claims that 
future members of the 68000 family, while more 
powerful, will be software compatible with the 

8 

present chips. While hardware designers will have 
to look up the particular facts for the particular 
68000 chip they use, be it 68000, 68008, 68010, 
68020, etc., software designers can learn one chip 
and use any of the others with only a little extra 
study. 

Remember that Motorola reserves the right, as 
do most semiconductor manufacturers, to change 
any of its chips to improve their design, function, 
or reliability. You can bet, though, they'll do what 
they can to keep the chips compatible. That's 
something that's easier for you as a software 
designer than for your hardware compatriots. Chips 
are often changed at the hardware level. Speeds, 
chip size, and other details can change with evolu­
tionary improvements in chip production and 
design. Those changes are made though with the 
thought uppermost that the software must run un­
disturbed. 
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Architecture 
T HE ARCHITECTURE OF A MICROPROCESSOR 

is its internal structure: it includes such 
elements as registers, interrupt signals, instructions, 
and addressing modes. This chapter will explain 
what those things are and why they are important. 
Chapters 3, 4, 5, 6, and 7 each treat one aspect of 
the 68000's architecture in much more detail. The 
organization of these chapters follows the outline 
in this chapter. 

HISTORY AND DESIGN PHILOSOPHY 

The 68000 design effort started at Motorola in the 
middle 1970s. The Motorola 6800 family of 8-bit 
microprocessors was very popular, but users were 
asking for more power. It was soon clear that only 
a 16-bit chip could have all that users were looking 
for. To design that chip, a project called MACSS 
(Motorola's Advanced Computer System on Silicon) 
began to investigate quite a number of possible ar­
chitectures and design strategies. Finally, the 
project team settled on one design that held the 
most promise. They used that design to start the 
68000 family. 

68000 History 

Motorola formally introduced the 68000 fami­
ly's first chip, the 68000 itself, in late 1979. The 
68000 has a 16-bit data bus and a 23-bit address bus. 
While Motorola designed the 68000 and still 
manufacturers it, other companies also manufacture 
it (and are designing some of their own peripheral 
chips to go with it). Those other companies are 
known as second sources and include International, 
Signetics/Phillips, Mostek, Hitachi, and EFCIS 
(Thomson-CSF). Motorola also makes peripheral 
chips, support systems, and development systems 
for the 68000. 

By the way, Motorola refers to the 68000 series 
as the MC68000 series. I have left off the prefixes 
in this book to avoid confusion. Other manufacturers 
who second source the 68000 or make peripherals 
for it also attach prefixes to their chips. Mostek, for 
instance, calls its main CPU the MK68000. It is the 
same chip as the MC68000 and operates in exactly 
the same way. 

Motorola intended to create an entire family of 
chips with a standardized architecture. The 68008 
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was the next chip in the family and has an 8-bit data 
bus and a 20-bit address bus. The 68008 was clear­
ly aimed at allowing even those who wanted 8-bit 
systems to use the 68000 family. The 68010, in­
troduced next, is the first chip in the series that has 
the virtual memory capabilities. The 68020, with 
32-bit data and address bu'ses, was announced in 
1984. 

When the 68000 (sometimes called the 68K) 
first came out, it was used mainly in expensive com­
puters, because of its very high performance and 
fairly high price. In 1984, however, because its price 
had fallen from the original $450 (for a single chip) 
to approximately $50, the 68000 started showing up 
in personal and even home computers. 

Power Versus Compatibility 

Chip designers soon discover that you can't have 
everything when you design a new chip. Maximiz­
ing some aspect of the chip's performance will often 
have a direct negative impact on some other aspect. 
Also, you can't just cram every innovation onto a 
single chip. If you try to design the perfect chip, 
chances are it will be very difficult to manufacture. 
And if a chip can't be made cheaply, it probably 
won't be widely used and will just end up as a 
curiousity in magazine comparisons. 

The rapidly changing state of semiconductor 
process technology means that you can't just decide 
what can be made at present. You have to make a 
guess at what the state-of-the-art will be when you 
have finished designing the chip; you have to try to 
judge what the manufacturing engineers and their 
equipment will be able to make when you finish 
designing your chip. Guess too conservatively and 
the competition's more advanced chips will leave you 
in the silicon dust. Jump too far out ahead, and you 
may have the devil of a time getting a working pro­
totype. 

There are many other design considerations in 
any computer design-not just in microprocessors 
or microcomputers. Software compatibility is a vital 
factor in any design. Software is a huge part of the 
expense of computers. Users may well say, "So 
what?" if you offer them a newer, faster superchip 
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for which they will have to write all new software. 
It pays to make a new processor that can run the 
software written for the previous chip. 

The 68000 designers decided not to shoot for 
direct software compatibility with the earlier 8-bit 
chips because those chips were designed without the 
future in mind. Eight-bit processors appeared within 
a very short time after the very first 
microprocessors. Their designs were often just 
quick copies of minicomputers or commonly 
available circuit boards. Many manufacturers 
thought of them mainly as ways to sell more 
memory chips. In particular, the 8-bit chips were 
very hardware oriented: there wasn't much con­
sideration given for easy adaptation of the chip to 
high-level language software. Future expansion of 
systems was, for the most part, ignored. 

To design an exciting new 16-bit chip so that 
it would run the programs written for a workhorse 
8-bit chip would handicap the newcomer. Motorola's 
designers decided against it. They wanted a power­
ful, flexible microprocessor that would be de­
signed from scratch to be easy to use and would 
simplify the job of writing high-level language 
systems software. High-level languages are the most 
efficient medium for writing large programs. They 
are explained in more detail in Chapter 9. 

There was another sort of compatibility that 
Motorola found important: peripheral chip com­
patibility. Chips are rarely the monolithic entities 
that beginners see. Instead they are families. Hav­
ing a marvelous CPU won't mean much (that is, it 
won't be designed into many systems) unless there 
are Input/Output controllers, memory managers, 
CRT controllers, floppy disk controllers, interrupt 
handlers, timers, and a horde of other chips that can 
be directly and easily hooked up (or interfaced) to 
the CPU. The MC6800 had such a family. In fact, 
because many I/O operations don't require more 
than 8 bits of transfer at a time, 16-bit I/O chips are 
rarely necessary: 8-bit chips can handle the jobs. 

The 68000 was designed to interface directly 
to the 8-bit 6800 peripheral chips. Therefore the day 
the 68000 was introduced there was a whole fami­
ly waiting to greet it. 



8, 16, OR 32 BITS 
Why is a 16-bit chip more powerful than an 8-bit 
chip? For a number of reasons. But before getting 
into those reasons, take a look at those two numbers. 
Is a 16-chip going to offer exactly twice the power 
of its 8-bit cousin? No. Although 16 is twice 8, the 
comparison of programming punch is much more 
complicated. For instance, the number of possible 
values that can be held by 16 bits is 256 times as 
many as can be held in 8 bits. Where the 8-bit chip 
could only have 256 separate and distinguishable 
values in a register, such as for instructions, the 
16-bit chip can have 65536 (64K as shown in Fig. 
2-1). Even that's not an endless number. Those bits 
get eaten up in a hurry. 

Registers are small memory spaces on the 
microprocessor chip itself. Because they are directly 
on the chip they can manipulate information far 
faster than if that information had to be taken from 
memory and then put back. But if you have 16 main 
registers (as the 68000 does), specifying which one 
of those registers will be used in any given opera­
tion requires at least four bits of information (this 
is shown in Fig. 2-2). That single use-specifying 

" of Bits Effective Multi plication 

1 2 
2 2*2 
3 2*2*2 
4 2*2*2*2 
5 2*2*2*2*2 
6 2*2*2*2*2*2 
7 2*2*2*2*2*2*2 
B 2*2*2*2*2*2*2*2 

a register-would swallow half of the bits of the in­
struction byte in an 8-bit CPU. 

Addressing modes are another important com­
ponent of microprocessing. By having a variety of 
modes, you can build data structures and program 
interrupt mechanisms that make for quick and ef­
ficient programs. But 8 modes will require 3 more 
bits of specification. Along with 16 registers, 8 ad­
dressing modes would almost exhaust the instruc­
tion byte of an 8-bit chip. There are ways around 
the problem. The specification bits can be sent in 
several sequential bytes. That approach, however, 
just makes for other problems. More bits are eaten 
up just to tell the CPU that another instruction byte 
is coming. Waiting for those bytes slows execution; 
and speed is supposed to be what computers are all 
about. 

A larger number of bits also allows for many 
more instructions. That in turn allows more com­
plex instructions to be written into the repertoire 
of the chip. Division and multiplication that take pro­
grammer time and slow down execution in 8-bit 
chips are often implemented directly as single in­
structions on 16-bit chips. 

Addressable Memory 

2 bytes 
4 bytes 
B bytes 

16 bytes 
32 bytes 
64 bytes 

12B bytes 
256 bytes 

16 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2 64 kilobytes 
24 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2* 16 megebytes 

2*2*2*2*2*2*2*2 
32 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2* 4 gigabytes 

2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2 

Fig. 2-1. Addressing bits and addressable memory. 
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Values of 
4 specifyi n9 Bits Re9isters 1 - 16 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1 011 
1100 
11 01 
11 1 0 
1 1 1 1 

1 
2 
3 
4 
5 
6 

7 

8 
9 

10 

11 
12 
13 
14 
15 
16 

Fig. 2-2. Bits required for register specification. 

Another good reason to have more bits in the 
CPU is to address larger memory spaces. eight bits 
can address 64K. That may sound like a lot, and 
it is quite impressive compared to the memory 
spaces of some of the early computers. But for 
modern applications, single programs can easily re­
quire lOOK of memory. Implement 110 devices, 
screen memory, and multiple character sets, and 
64K is soon gone. Sixteen bits, on the other hand, 
can address 256 times more memory. Add a single 
bit to a CPU address bus and you double the ad­
dressable memory space. That's some sort of binary 
magic. 

The width of the data bus is so important that 
it 'is often the sole criterion for deciding whether or 
not a chip is 16-bit. A bus that is twice as wide can 
move information twice as fast. In programs that 
require lots of writing to or reading from memory, 
a 16-bit chip with the same clock frequency as an 
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8-bit chip would be almost twice as fast for that 
single reason alone. 

Is the 68000 a 16-bit chip? Apple (which uses 
it in the Macintosh) likes to call it a 32-bit chip. 
Sixteen-bit chips in general are not easy to classify 
as 8-bit chips. In fact, a close examination of many 
of the newer microprocessors shows that few are 
completely in the 8-bit, 16-bit, or 32-bit camp. 
Manufacturers love to claim as much width as possi­
ble for their chips, but users often discover limita­
tions on data bus, address bus, internal buses, 
operation units, and other specifications. The data­
bus width is generally used as the main indicator 
of chip type, but unless a chip has an op code that 
can reach x-bits, it probably shouldn't be called an 
x-bit CPU. Figure 2-3 lists a number of popular 
chips. 

The MC68000 family has 32 bit registers but 
a 16-bit ALU and data path. The 68000 was the first 
16-bit microprocessor that was actually, internally, 
a 32-bit microprocessor. It was also the first with 
16-megabytes of unsegmented directly addressable 
memory. 

I conclude that the 68000 is basically a 16-bit 
chip with many internal 32-bit features. For in­
stance, its main registers (described in Chapter 3) 
are 32-bits wide. Also, its program counter (that 
specifies the location of the present instruction) is 
32-bits wide. But the 68000 is clearly a 16-bit chip. 
It fetches data 16-bits at a time (a word at a time). 
It can work with bits, nibbles, bytes, words, or long­
words (1, 4, 8, 16, or 32 bits). 

Because its instructions are coded into words 
(see Chapter 6 for more detail on individual word 

8-bHs 8/16-bits 16-bHs 

8080 8088 8086 
8085 80186 
ZBO 68000 
6502 Z8000 
6800 

Fig. 2-3. Some popular microprocessors. 
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Fig. 2-4. 68000 pinout (assignments). 

coding), it frequently requires only a single word 
to fully describe an instruction. Some instructions 
do require 16-bit extension words. These follow the 
op code in the assembly coding. The extensions add 
addressing information and can increase the length 
of an instruction to as much as 5 words. 

BUSES 

The standard 16-bit, NMOS 68000 comes in a 
64-pin package. That is, it has 64 separate wires or 
lines that connect the chip to the outside world. 
Figure 2-4 shows the pins of a 68000 and Fig. 2-5 
is a logical layout of the pin functions. A group of 
similar signal lines is called a bus. The 68000 buses 
are shown in Fig. 2-6. 

Data Bus 

The data bus (shown in Fig. 2-7) is 16-bits wide. 
It has 16 separate lines. The lines are bidirectional; 
information can move on them out from the 68000 

CPU or in to it, but not both directions at once. This 
is the bus that handles the actual bits of informa­
tion. The width of the data bus cannot be used as 
the sole criterion for the bits of a microprocessor. 

For instance, the 68008, described in more 
detail in Chapter 9, has all of the attributes of the 
68000 except that its data bus is limited to 8 bits. 
Does that make it an 8-bit microprocessor? No. With 
32-bit registers and the ability to multiply and divide 
16-bit operands, it certainly should not be classified 
with other 8-bit chips such as the Z80. 

Address Bus 

The 68000 address bus (shown in Fig. 2-8) is 
23-bits wide and is unidirectional. It is mainly 
used to send addresses from the 68000 to memory. 
It also carries interrupt information. The 23-bit 
width of the address bus may be surprising, in view 
of the 32-bit width of the program counter (which 
holds addresses to be sent out on this bus). But the 
68000 designers decided that 68000 users didn't 
need a full 32-bit address; that a 24-bit address 
would encompass enough memory. Using the full 
address would have pushed the required number of 

Vee .t.ddrfSS 

GNO 
Bus 

CU( Data 
Bus 

AS 
FCO 

R /iji PrOCl'ssor FC1 Asynchronous 
Status UOS Bus Control 
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OTACK 

6800 E 

Pl'riphtral VMA BR Bus 

Conkol VPl BO 
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Control 
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Control Control __ 
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Fig. 2-5. 68000 pinout (functional). 
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Procl>ssor Status 

080 00 

Control Bus 

Po'W'(>r I Ground, Timing 

-

Fig. 2-6. 68000 buses. 

pins beyond the already huge 64-pin package. On 
advanced chips such as the 68020 (described in 
Chapter 9), a full 32-bit address bit is used, but these 
chips are much more expensive than the 68000 and 
must be packaged in a pin-grid array type of 
package that has more pins that the DIP used for 
the 68000. 

The 68000 depends on direct linear addressing: 
some other systems get by with a narrower address 
bus by complicated schemes of paging and 
segmenting. 

68000 110 (Input/Output) is memory mapped. 
That means the same instructions are used to move 
data to peripherals as within memory itself. Some 
microprocessors have a different set of instructions 
that refer specifically to I/O devices. 

Memory management (MM) is a technique 
used in many computers. Memory is divided into 
blocks and the area any programmer can use or see 
can be limited by a system supervisor. That isn't 
done just to protect secrets. It's also to keep a wild 
program from dicing up everyone else's memory. 
Sometimes a special chip called an MMU (Memory 
Management Unit) does this job. Other times, it is 
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Fig. 2-8. Address bus. 

a combination of software, operating system, and 
chips. As an application programmer, you wouldn't 
know it was there. You just write programs and the 
system takes care of MM. Chapter 8 describes the 
68000 family Memory Management Chips. The 
68000 does distinguish between two types of 
memory references: data and program. All operand 
writes are to data space. 

Control Bus 

The control bus (shown in Fig. 2-9) contains a 

dress buses. These are the signals that provide com­
munications between other chips and the CPU. 
There are both asynchronous control lines (for 
68000 peripherals devices) and synchronous control 
lines (for 6800 peripherals and other slower 8-bit 
peripherals). 

REGISTERS 

Registers are memory storage places on the CPU 
chip itself. Because they are easily addressed and 
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are built into the microprocessor, they are very 
quickly read or written to. So instructions that refer 
to registers can execute faster than instructions that 
refer to external memory locations. Advanced 
microprocessors often have more registers than sim­
ple microprocessors. 

Registers can be dedicated to a special purpose 
or they can be so-called general purpose. Special-

(Bit Positions) 

31 15 

31 15 

Us.r Stack Point.r (USP) 

purpose registers often include stack pointers and 
flag registers and cannot be used for other tasks. 
General-purpose registers may still have commonly­
assigned tasks that their design slants them toward, 
but you can use general-purpose registers for a 
variety of tasks. For example, any general purpose 
register can be used as an index register. 

Figure 2-10 shows the 68000 registers. 

1 0 

00 

01 

02 
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04 Registers 
05 

06 

01 
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Sysif'm Stack Point..-r (SSP) Pointers) 
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Program Count.r (PC) Program 
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15 1 0 

Isy st..-m By t. I USt'r Byt. Status 
Regi ster 

Fig. 2-10. 68000 registers. 
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General Purpose 

The 68000 has 16 32-bit, general-purpose 
registers divided into 8 data registers and 8 address 
registers. The data registers can work with byte, 
word, or long-word operands while the address 
registers can only work with word or long-word 
operands. The data registers commonly perform the 
function that the accumulator performs on many 
8-bit microprocessors: acting as a central point for 
logical and arithmetical operations. 

The address registers replace the base address 
registers and index registers found on many 8-bit 
CPUs. They can also operate as stack pointers. 

Special Purpose 

Register A7 is in many ways a special-purpose 
register. The 68000 bas two stack pointers, the User 
stack pointer (USP) and the Supervisor stack 
pointer (SSP). These are 32-bit registers that con­
tain the address of the top of. the stack (as ex­
plained in more depth in Chapter 3). Only one of 
the two stack pointers is active at any given time. 
The other still exists physically on the chip but is 
not normally available to the programmer. When the 
68000 is in User state-when the S bit in the condi­
tion codes holds a O-register A7 is the User stack 
pointer. When the 68000 is in Supervisor state­
when the S bit holds a I-register A7 is the Super­
visor stack pointer. 

Other special-purpose registers include the pro­
gram counter (PC) and the status register (SR). The 
PC holds the address of the current instruction and 
is 32 bits wide. The 68000 only uses the lower 24 
bits to specify memory addresses (23 of them go out 
over the address bus). By coincidence, that is the 
same direct addressing space as the IBM 370 main­
frame computer. Most of those memory locations 
are free; not many have a dedicated purpose. The 
lowest 8 bytes hold the reset vector. Other addresses 
in the bottom 1024 bytes are used for interrupt vec­
tors, error vectors, and exception vectors in general 
(explained in Chapter 7). 

The status register is 16 bits wide. The low byte 
of the SR is called the User byte or condition codes 
register (CCR). On many other microprocessors this 

is the flags register. Five bits of this byte hold in­
formation about the last operation performed by the 
microprocessor. 

The high byte is called the System byte. Five 
bits of this byte contain information about the status 
of the microprocessor such as what priority of in­
terrupt to acknowledge, whether the CPU is in user 
state, and whether the trace mode is on. 

ARITHMETIC LOGIC UNIT 

The part of the microprocessor that does the actual 
computing as most people use the word (meaning 
calculating and figuring) is the ALU But when you 
look at it objectively, the ALU is no more the heart 
of the chip than is the data bus, the register, or the 
decorder. They all need each other. 

Data from memory or the registers is routed 
through the ALU, where the mathematical and 
logical operations are performed. Then the pro­
cessed data is sent on to the final destination. 

The 68000 has three ALUs: one for data and 
two for addresses. There is a 16-bit ALU that makes 
all the data calculations and single pass evaluation 
of the 16-bit data. Thirty-two-bit data operations are 
done in two passes, first at the lower word and then 
at the upper word. 

Two other internal ALUs are each 16 bits wide 
and are used together to calculate addresses (that 
is, to find operand effective addresses: see Chapter 
4 for more detailed explanations). The effective ad­
dress (EA) is the final result that is generated from 
the instruction data and the addressing mode. It is 
necessary to use two such ALUs because the ad­
dresses are 32 bits wide. With powerful addressing 
modes, this kind of calculation can take up a lot of 
time; having dedicated ALUs speeds it up. 

The address calculation and the 16-bit data 
calculation can take place at the same time. This 
approach is a sort of parallel execution. 

DECODER 

The decoder is the microprocessor part that inter­
prets instructions. It breaks up the patterns of Is 
and Os that make up machine language and tells the 
rest of the microprocessor what to do. Tn some ways, 
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Fig. 2-11. 68000 floor plan showing function of the chip regions. 
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it is an even smaller microprocessor within the 
68000 microprocessor. Studying the design of the 
decoder quickly brings to light the worlds within 
worlds of a microprocessor. 

One of the first decisions microprocessor 
designers have to make is between hard-wired ran­
dom logic and microprogramming. Early 
microprocessors were generally random logic. The 
designers simply decided what they wanted the chip 
to do and then found a way to string the microscopic 
wires together to do it. 

More advanced microprocessors like the 68000 
are often microcoded. They have, in effect, a smaller 
microprocessor that runs the rest of the larger 
microprocessor. There is a ROM memory that is 
programmed with tiny instructions to tell the 
microprocessor what to do (look at Fig. 2-11 to see 
what these ROMs look like). This simplifies the ac­
tual design of very complicated chips; software takes 
the place of very tangled hardware. Designing, 
testing, and fixing the chip all become easier. The 
entire microprocessor chip doesn't have to work the 
first time. 

The tiny microprocessor is called a microse­
quencer. Its instructions are simpler than machine 
language. They involve elemental actions (called 
microwords) such as sending a signal to a certain 
gate or unlatching a particular bit of the status 
register. ~icrowords are built into microroutines 
that become the instructions of assembly language. 
Microroutines can have branches and conditions just 
like assembly language. You do not have to ever con­
cern yourself with microprogramming. 

Another major advantage of microcoding is that 
upgrading the chip will be much easier because the 
designers only have to change the final processing 
step for the onchip ROM. A new CPU chip, with 
different or more powerful instructions and address­
ing modes, can be designed simply by changing the 
microcode. 

Microcoding on chips takes up as much as 20% 
more space than hardwiring because there will be 
circuits and gates that aren't used efficiently. That 
disadvantage is far outweighed by the ease of mak­
ing and changing the chip in the first place. 

There are two types of microprogramming: 

horizontal and vertical. Horizontal is more direct; 
a single bit of the microword may enable a register. 
Horizontal microwords are long and require wide 
microbuses and storage facilities. All of this extra 
real estate, as chip designers refer to it, adds to the 
cost of the chip. Nor is horizontal microprogram­
ming a particularly efficient scheme. For example, 
a full microword with just a bit in the 2 position 
might be required just to enable register 2. 

Vertical microwords encode the information for 
16 registers in 4 bits. This scheme is slower, because 
the microword itself has to be decoded, but it does 
take up less chip area. 

Believe it or not, both forms of microcoding are 
used in the 68000. That dual use means that the 
68000 has nanocode. The microcode information 
points to the microsubroutines in nanocode which 
actually do the routing, selecting, and directing. 
Because of the two levels, the microcode routines 
can share subroutines of nanocode instead of hav­
ing to keep them in several different places. 

PREFETCH QUEUE 

One special design feature of the 68000 is an in­
struction prefetch queue. While one instruction is 
being executed, another can be decoded and another 
fetched. While this won't always speed execution 
of a program (a branch or jump may eliminate the 
utility of the instructions grabbed) it can still yield 
significant improvement in most circumstances. The 
conditional aspect of a jump may not allow 
knowledge beforehand of what instructions must be 
used. 

The queue is fairly intelligent. It will try to stay 
just as full as is useful. When a conditional jump 
is detected, it will grab the instruction after the jump 
and the one that may be jumped to. The unneeded 
operation is ignored and the useful one performed. 
There are special attractions to the prefetch queue. 
The Move Multiple Registers instruction uses it to 
speed the data transfers, fetching one while 
decoding another, so each takes only the time 
necessary to fetch the next code. The prefetch queue 
keeps the bus busy about 90% of the time: far bet­
ter than that of chips without such a queue. 

19 



ADDRESSING MODES 

Every microprocessor has certain ways of address­
ing operands. Those ways are called addressing 
modes and range from simply including data in the 
instruction to complicated, calculated addresses that 
are built of original values, displacements, and in­
dexes. These modes allow the programmers to find 
what they need within the 16 linear megabytes of 
the 68000's addressing range. 

The 68000 has a set of 14 addressing modes. 
These are explained in detail in Chapter 4 and are 
listed in Fig. 2-12. 

DATA TYPES 

The 68000 can work with bits, nibbles, bytes, words, 
and long-words. These 5 data types work with many 
of the instructions and provide quite a bit of flex­
ibility for the programmer. Chapter 6 provides in­
formation on which data types can be used for each 
instruction. 

INSTRUCTIONS 

The 68000 has a large and orthogonal set of instruc­
tions. They are listed in Fig. 2-13 and are detailed 

1. Dete Register Direct 

in Chapters 5 and 6. These are the basic operations 
that the 68000 can perform and range from no 
operation at all (the NOP instruction just marks 
time), to moving data (the particularly flexible 
MOVE instruction), to multiplying two numbers 
together (which 8-bit chips cannot do with a single 
instruction). 

The flexibility of the MOVE instruction is 
typical of the entire instruction set. The instructions 
are simple, with the programming variety and 
power coming from the addressing modes, choice 
of operand size, and wealth of registers. The aim 
of making the operation of different functions 
similar is taken seriously. This is called orthogonali­
ty. For instance, different types of addition instruc­
tions have the same addressing modes. 

OPERATING MODES 

After you realize you're working with a 16/32-bit 
chip (meaning a chip from a family that works with 
either 16 or 32 bits of information at a time), the 
next thing to realize is that the 68000 chips have 
two basic modes: User and Supervisor. This is one 
of the ways in which the 68000 more closely 
resembles a minicomputer than it does classic 

2. Address Regi ster Di rect 
3. Address Register Indirect 
4. Address Register Indirect with Postincrement 
5. Address Register Indirect with Predecrement 
o. Address Register Indirect with Displacement 
7. Address Register Indirect with Index 
8. Absolute Short Address 
9. Absolute Long Address 

10. Progrem Counter with Displacement 
11. Program Counter with Index 
12. Immediate 
13. Quick Immediate 
14. Implicit 

Fig. 2-12. Addressing modes. 
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,. ABCD 18. DIVU 
2. ADD 19. EaR 
3. AND 20. EXG 

4. ASl 21 EXT 
5. ASR 22. IllEGAL 
6. Bee 23. JMP 
7. BCHG 24. JSR 
8. BClR 25. LEA 
9. BRA 26. LINK 

10. BSET 27. LSl 
11. BSR 28. LSR 
12. BTST 29. MOVE 
13. CHK 30. MULS 
14. ClR 31. MULU 
15. CMP 32. NBCD 
16. DBce 33. NEG 
17. DIVS 34. NOP 

Fig. 2-13. 68000 Instruction set. 

microprocessors. User mode is the most common­
ly used mode, particularly for application programs. 

The difference occasioned by Supervisor mode 
is simple; Supervisor mode allows more freedom, 
more access to memory, and more executable in­
structions. Operating systems and systems software, 
in general, use the supervisor mode (which is ex­
plained in more depth in Chapters 3 and 7). The 

35. NOT 52. TST 
36. OR 53. UNlK 
37 PEA 
38. RESET 
39. ROl 
40. ROR 
41. RH 
42. RTR 
43. RTS 
44. SBCD 
45. Sec 
46. STOP 
47. SUB 
48. SWAP 
49. TAS 
50. TRAP 
51. TRAPV 

User mode of all 68000 chips is kept very similar, 
to make software compatibility between CPUs as 
complete as possible. 

SPEED 

The 68000 can run at 4, 6, 8, and 10 MHz (de­
pending on the chip you buy). These choices are 
listed in Fig. 2-14. The speed is coded as a number 

Speed CPU 
Number Frequency Clock Period 

6E1000L4 
6E1000L6 
6E1000LB 
6E1000Ll0 

Fig. 2-14. 68000 speeds. 

4 MHz 250 microseconds 
6 MHz 167 microseconds 
EI MHz 125 mi croseconds 

10 MHz 100 microseconds 
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after the 68000 code. for instance, the code 
MC68000L4 runs at 4 MHz and the MC68000LlO 
runs at 10 MHz. 

The clock periods for those chips are 250, 167, 
125, and 100 ns. The shortest instruction, copying 
one register into another, takes four clock cycles. 
The longest, 32 by 16 signed division, takes up to 
170 clock cycles. 

INTERRUPTS AND EXCEPTIONS 
The 68000 has both hardware and software inter-
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rupts. There is also a trace mode for debugging (and 
a trace bit in the status register). On the 68000, 
however, all special cases are lumped into a large 
class called exceptions that includes everything from 
illegal instructions to external interrupts. Exceptions 
are explained in Chapter 7. When an exception is 
generated, the regular processing ends, and the ex­
ception service routine is processed. The address 
for that routine can be found in a number of ways, 
depending on what sort of exception occurred. 
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Registers 
A MICROPROCESSOR MOVES AND S1DRES BITS 

of information. There are three basic places 
a particular bit can be stored: mass storage, memory 
chips, and registers. Figure 3-1 lists the three and 
some characteristics of each. 

The first form of storage, mass storage, is ac­
tually a large category of devices including magnetic 
tape, magnetic disks, and optical disks. These 
devices can store huge amounts of data but are com­
paratively slow. After the microprocessor asks for 
a particular bit of information it must wait some 
time before receiving the information. 

The second storage form, memory chips, is 
much faster and more expensive than mass storage. 
Whenever someone tells you that a computer has 
so many K of memory, they are referring to the 
memory chips that are built into the computer itself. 
These chips can be either ROM (which have per­
manent information and therefore can only be read 
from, not written to) or RAM (that can be read from, 
written to, or erased). 

The third storage form is based on the same 
technology as memory chips. The difference is that 

registers are on the microprocessor chip itself: they 
are in essence a small memory chip built into the 
CPU. 

REGISTER ADVANTAGES 
Registers are the fastest form of storage for two 
reasons. First, they are closer to the microprocessor 
elements that manipulate data and so the signals 
don't have to run out to a distant chip and back. 
Second, because the number of registers is far 
smaller than the number of memory addresses, it 
will take fewer bits of instruction to specify a 
register. That, in turn, means the instructions us­
ed with registers can be shorter than those used 
with memory chip addresses. Smaller instructions 
execute faster than long instructions and so pro­
grams that work with registers execute faster than 
those that depend on outside memory. 

Programmers eagerly consume registers. The 
6800 had two registers, A and B, for data work and 
one index register for addressing. By designing 
enough-but not too many-registers onto a 
microprocessor, you can improve its performance: 
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Type Devices Speed E)(pense 

Mess Ston,ge 
Memory Chips 
Registers 

Oi 51< Dri ves, T epe Ori ves 
RAM, ROM, Bubble Memories 
RAM-on-chip 

Slow 
High 

Very High 

Low 
High 

Very High 

Fig. 3-1. The three types of memory. 

too few and the chip will be forced to use only slow 
memory instructions; too many and the advantages 
of registers will disappear. 

REGISTER TYPES 
Registers can be dedicated to a particular task, or 

l80 

8- bit General Pur pose Registers 

A F A' F' 

B C B' C' 

0 E 0' E' 

H L H' l' 

Special Pur pose Registers 

IX 

1'1' 

SP 

PC 

6800 

I Accumulator A 

I Accumulator B 

Ind. x R.gist.r X 

Progr am Count.r (PC) 

Shck Point.r (SP) 

I Status R.gist.r 

Fig. 3-2. Registers of some popular microprocessors. 
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they can be flexible, which gives them the ability 
to handle many different tasks. These two types of 
registers are called special-purpose and general­
purpose. Special-purpose registers (also known as 
dedicated registers) can only work in a certain way 
with certain instructions for a certain purpose. 

8086 

General Purpose Registers 

AH Al 
BH Bl 
CH Cl 
OH Dl 

I ndex Registers 

Stack Poinh·r (SP) 

Bas. Point.r (BP) 

Sourc. Ind.x (SO 

D.stination Ind. x (00 

Seoment ReQisters 

Data 5.gm.nt (DS) 

Stack 5.gm.nt (55) 

Extra 5'gm,nt (E5) 

Progr am Count.r 

5tatus R.gist.r 



Figure 3-2 shows the register sets of some 
popular microprocessors. Figure 3-3 shows the 
68000 register set. Most other 16-bit microprocessor 
register sets are either smaller or less flexible than 
the 68000's set. Eight-bit microprocessors typical­
ly have much smaller register sets. 

The 68000 leans heavily on general-purpose 
registers. They are harder to design into a chip, but 
they make that chip easier to program. 

(Blt Posltlons) 

31 15 

31 15 

Us.r Stack Point.r CUSP) 

68000 GENERAL-PURPOSE REGISTERS 

In many ways, a 68000 is a 32-bit microprocessor. 
The general-purpose registers (shown in Fig. 3-3) 
are a prime example of that: they are 32 bits wide. 
The general-purpose registers are divided into eight 
data registers, seven address registers, and two 
stack pointers. (The special-purpose program 
counter (PC) is also 32 bits wide, even though only 

1 0 

00 
Dl 

02 

03 Dete 
04 Registers 
05 

06 
D7 

0 

AO 

AI 

A2 

A3 Address 
A4 Registers 
A5 

A6 

A7 (Stock 
Syst.m St.ck Polnt.r (SSP) Pointers) 

31 0 

Pro9r.m Counter (PC) Progr6m 
Counter 

15 1 0 

ISyst.m Byte I Us.,. Byt. St6tus 
Register 

Fig. 3-3. 68000 register set. 
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the lower 24 bits are sent out to become the 68000 
address bus.) 

Data Registers 

There are eight 32-bit data registers as shown 
in Fig. 3-3. They are labeled DO through D7. These 
registers can be used with bytes, words, or long 
words. The data always sits as low as it can in the 
register: bytes run from bit position 0 to bit posi­
tion 7, words from bit position 0 to bit position 15, 
and long-words from it position 0 to bit position 3l. 
The data registers perform the work that more 
specialized registers such as index registers and ac­
cumulators handle on many other microprocessors. 
Because the 68000 lets programmers decide how 
to use the general-purpose registers, they can have 
as many as 7 accumulators (which handle 
arithmetic) or none at all, whichever is more useful 
at a particular point within a program. The task of 
a data register can be changed instantly and 
whenever desired during the execution of a 
program. 

Both data and address registers are general pur­
pose. They can be used for many computing pur­
poses, but the data registers are more flexible for 
data storage and the address registers are well­
adapted to storing addresses. Bytes or words in the 
data registers are only sign extended in a few ex­
ceptional cases. Words loaded into an address 
register are automatically sign extended. When a 
data register has an operand written into it or read 
from it, only the operand is affected. All other bit 
positions are left unaffected. 

All of the data registers can work as ac­
cumulators for arithmetic. They can also work as 
index registers or counters. This flexibility makes 
them more powerful than even a similar number of 
registers would be on an 8-bit microprocessor. 

Address Registers 

The eight 32-bit wide address registers (shown 
in Fig. 3-3) are labeled AO through A7. They are 
also general purpose registers. While they cannot 
handle byte-size data, they are otherwise quite 
similar to the data registers. Word operands sit in 
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the low-order word of address registers. Long-words 
occupy the entire address register. 

There are some differences between data and 
address registers. For instance, the address registers 
sign-extend words automatically while the data 
registers do not. Another difference appears be­
tween data register D7 and address register A7. 
Data register D7 is just like the other data registers, 
but address register A 7 is quite different from the 
rest of the address registers. A7 has the special func­
tion of stack pointer. That function is explained in 
detail in the special-Purpose Registers discussion 
that follows. 

Finally, when a word is written to an address 
register, the entire register is affected (the operand 
is size-extended to fill the register). Within a data 
register, only the operand is affected. 

68000 SPECIAL-PURPOSE REGISTERS 

The 68000 has several special-purpose registers 
(shown in Fig. 3-3) that are used for program con­
trol and support. Most of these registers are quite 
similar to standard registers found on other 
microprocessors. The existence of two stack points 
and of an extended status register adds significant­
ly to the advantage the 68000 has over 8-bit chips. 

The 68000 has two major modes of operating: 
Supervisor and User. A bit-position in the special­
purpose condition codes register (also known as a 
flag) controls which mode it is in. The Supervisor 
mode is also known as System mode and the User 
mode is known as Normal mode. If you want to be 
able to use any instruction, keep the microprocessor 
in Supervisor mode. The User mode is more 
restricted. 

The basic reason for dividing the 68000 opera­
tion into two modes is to let the system software, 
the operating system, have complete control of the 
computer (in Supervisor mode) while the applica­
tions software, the particular software that handles 
jobs, have only partial control (User mode). That 
keeps application software from controlling the 
system. 

Stack Pointers 

There are two stacks, both controlled by the 



Status of memory area used by the Stack 
(shown after each titled operation) 

109 13 
A 108 235 

Section 107 47 
of 106 9 

Memory 105 29 
numbered 104 84 

by 103 126 
Words 102 

101 
100 

Start 

Stack POinter 103 

Fig, 3-4, An example of stack manipulation, 
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255 
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stack pointers at A7 in the register bank: the Super­
visory stack and the User stack. The stack pointer 
that you will find when you look at A7 is the active 
stack pointer for the mode the CPU is in, 

A stack pointer is a special-purpose register 
that, like the program counter, is a pointer to 
memory, A stack is a data structure that is useful 
for many purposes such as interrupt processing, 
Figure 3-4 shows how items are moved into and out 
of a stack. 

LIFO (Last In First Out) is an acronym used to 
describe stacks. Each item entered into a stack is 
pushed onto the stack. The item entered before the 
most recent item is now covered up. A newer item 
is always pushed on top of the previous top item. 
An item removed from the stack is popped off of the 
stack. Only one word at a time can be popped from 
a 68000 stack, and that word is always the most re­
cent addition to the stack. The last item in is the 
first item out. Although the typical real-life exam­
ple of a stack given by computer science texts is the 
stack of plates in a restaurant, you should realize 
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that stacks can grow up or down in memory. 
As mentioned, stacks are particularly handy for 

servicing interrupts or subroutines. When the CPU 
operation is interrupted, the programmer will want 
to remember what the present CPU state is so that 
he can return to it after the interrupt is taken care 
of. By executing push instructions that deposit vital 
register contents on the stack, the programmer can 
be sure that the CPU will be able to remember the 
important aspects of its current state, When the in­
terrupt is over, the important data (including PC and 
certain register values) can be recovered from the 
stack. In fact, some of the 68000 instructions are 
designed to do this automatically (see the RTR in­
struction for an example). If such data were only 
saved in a particular special register, what would 
the CPU do if a second interrupt broke into the first 
interrupt routine? It couldn't just save the new status 
in the special registers because the data necessary 
to eventually recover from the first interrupt would 
be lost. 

Even a hardware stack could be overwhelmed 
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by a relatively small number of such nested inter­
rupts or routines. So most microprocessors, in­
cluding the 68000, now use a software stack. All 
they need is a special-purpose register that points 
to an address in memory along with the CPU logic 
that will automatically decrement the register value 
when data is pushed onto the stack (the stack grows 
downward in memory toward smaller addresses) 
and increments the register value when data is 
popped off of the stack. 

This special register, called a stack pointer con­
tains the address of the top of the stack. Unfor­
tunately, because the 68000 stack rows downward 
in memory, the top of the stack has the lowest ad­
dress of any stack location. When you push a value 
onto the stack, the values within the stack don't ac­
tually get pushed any deeper into memory, they just 
get pushed further away from the changing stack 
pointer value. That is a tough concept to grasp at 
first; but it will soon seem like second nature. 

The stack is just an area of memory: it isn't 
delimited by any boundary. If you popped enough 
data off of the stack you would go beyond all of the 
pushed on values, but you would still get data com­
ing out. Such data would just be the values at the 
addresses the stack pointer pointed to. And because 
the stack is implemented in memory, it can grow 
to a huge size (theoretically as large as the full 
memory space). Because of that flexibility, a soft­
ware stack can handle almost any number of nested 
routines. 

The 68000 actually has two stack pointers: User 
stack pointer (USP) and Supervisor stack pointer 
(SSP). They are shown in Fig. 3-3 as address 
register A7. Whenever you; try to write or read that 
register, you will actually get either the USP or the 
SSP. What decides which one you get? The active 
stack pointer will be in A 7 and the mode of the 
68000 controls which stack pointer is active. The 
following paragraph explains that controL 

To isolate system software from application soft­
ware, the 68000 has an advanced facility called 
modes. There is a bit in the status register (ex­
plained next) called the Supervisor or S flag. If that 
bit is set, the CPU is in Supervisor mode; if it is 
cleared, the CPU is the User mode. In Supervisor 
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mode, the A 7 register will contain the Supervisor 
stack pinter. In User mode, A7 will contain the User 
stack pointer. The active stack pointer is the one 
used (unless an instruction specifies USP or SSP) 
and the other stack pointer is not directly available 
to inspection or change (except through the privi­
ledged USP instruction). In most cases, the pro­
grammer doesn't have to address a particular stack 
pointer: the CPU decides that automatically. But the 
programmer must be aware of which is being used 
because they can and most often do point to dif­
ferent parts of memory and so will point to different 
values. 

The MOVE USP instruction is built into the in­
struction set so that programs in the Supervisor 
mode can see and change what is in the User stack 
pointer. The LINK and UNLK instructions are very 
powerful, complex routine controllers that depend 
on stack manipulations and frames. Look these in­
structions up in Chapter 6 for detailed explanations. 

Status Register 

All computers must have some way of know­
ing what has happened in the recent past. The nor­
mal way of doing this is to have a status register. 
This register is a collection of a number of small 
registers (many only a single bit wide). Single bit 
positions of the status register are commonly 
called flags. 

Flags are the essence of computers. The abili­
ty to make decisions without human intervention 
is the vital factor that makes computers the power­
ful machines they are and computers make those 
decisions by testing the flags. Even the simplest pro­
cessor has a few flags because of their critical role 
in branching and condition testing. The versatility 
of a computer program lies in the decision capabili­
ty designed into it; that versatility and capability 
rest, in turn, on proper use of flags. 

The 68000 status register (shown in Fig. 3-5) 
is 16-bits wide and is divided into two different 
parts: the system byte and the User byte. 

User Byte. The lower (less significant) byte 
of the status register is also known as the condition 
codes register. This byte contains 5 active flags (in 



System Byte 
----~-

,r--------

Fig. 3-5. Status register. 

the least significant 5-bit positions) and 3 bits that 
aren't used. The condition codes register cor­
responds directly to the flags register on most other 
microprocessors. 

Each flag is affected by some instructions but 
not by others. Also, not all instructions affect a given 
flag the same way. In fact, the effects are sometimes 
quite different. See the individual instructions 
descriptions in Chapter 6 for a detailed description 
of the flag effects of each instruction. 

Some terms that you will hear repeatedly in 
microprocessing and particularly in reference to 
flags are defined next. 

Set. A bit position that has a 1 value put into 
it has been set. Another word for a 1 is True. Un­
fortunately, the word set is also used as a more 
general verb such as set to the value shifted out of 
the register in which case it doesn't refer only to Is. 

Cleared. This is the opposite of set. A bit posi­
tion or flag has been cleared if a 0 has been put in­
to it. Unfortunately (again) the terms set and cleared 
can even be mixed as in "A cleared bit has been set 
to 0." Try not to worry about it. The words false and 
reset are also sometimes used to mean clear_ 

Undefined. A flag that is undefined can be either 
o or l. 

Not Affected. This means the same as none 
under the Chapter 6 descriptions of individual in­
structions. This means the flag retains whatever 
value it had before the instruction was fetched for 
execution. 

The 5 active flags have the following names, 
positions, and uses: 

User Byte 
--------

Bit Position 0 is the C flag (for Carry). There 
are three ways this flag is used. First, and simplest, 
is that any carry out of the most significant bit of 
an operation will be represented here. After the in­
struction, a 1 in this flag means an operation 
resulted in a carry; a 0 means no carry occurred_ 
Figure 3-6 shows such an operation. 

Borrows are also shown in this flag_ As ex­
plained in the Chapter 6 descriptions of subtraction 
and compare operations, an instruction that could 
cause a borrow (and doesn't deal with carries) will 
interpret the C flag as the borrow flag. After the 
instruction, a 1 in the flag means the operation caus­
ed a borrow; a 0 means no borrow occurred. Figure 
3-7 shows a subtraction with a borrow. 

Finally, the rotate and the shift instructions fre­
quently deposit the bit values that fall off the end 
of the operand in the C flag. Figure 3-8 shows both 
a shift and a rotate that each result in a new C value. 

Bit Position 1 is the V flag (for oVerflow). The 
V flag seems simple to understand but it is more 
complex than it looks. It tells when an operation 
overflowed the register. When an arithmetic opera­
tion result is larger than a register can hold, the V 
flag is set to one. This is done by setting the V flag 
equal to the exclusive-OR value of the carries into 
and out of the most significant bit of the register. 
That is, when the carry out is different from the 
carry in, the V flag is set. Otherwise, the V flag is 
cleared. This operation is shown in Fig. 3-9. 

Many other operations also affect the V flag. 
Moves, rotates, and multiplies, for instance, clear 
the V flag (put a zero into it). 
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Fig. 3-6. Example of a carry. 

C Flag Bytes to Add 

@Jll00ll00l 

+ 
1000111 

0]100 10 1000 

Bit Position 2 is the Z flag (for Zero). The Z flag 
is set to one if the result of an operation is zero, 
otherwise the flag is cleared (set equal to zero). 

wise, the N flag is cleared (to zero). N follows the 
most significant bit of the operand whether that 
operand is 8,16, or 32 bits long. Figure 3-10 shows 
how the most significant bit gets transferred to this 
flag. 

Bit Position 3 is the N flag (for Negative). This 
flag is set to one if a signed arithmetic operation 
or arithmetic shift produces a negative result. Other- Bit Position 4 is the X flag (for eXtend). This 

C Flag Bytes to Subtrect 

[TIl 0 1 0 1 0 1 0 1 

11010011 

@Jll 00000 10 

Fig. 3-7. Example of a borrow. 
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C F1~g Byte to ShHt 

~I 1 1 101000 
Logical Shift Left 

OJI 1 1010000 

X Flag C Flag Byte to Rotate 

@]QJ I 1 1 1 1 000 0 
Rotate with Extend R1ght (3 positions) 

[I][QJ 1 000 1 1 1 1 0 

Fig. 3-8. Examples of a shift carry and a rotate carry. 

V F18g Bytes to Add 

@] '--1 0-1-0-0-0-1 -1 ----'0 1 

+ 
101001001 

OJl1 0001111 

Fig. 3-9. Example of an overflow. 
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N F1e9 Byte to be Menipuleted 

~I L--0_1_1 _---J 

After some operation 

ITJll0000000 

Fig. 3-10. Example of an N flag change. 

flag is a special sort of carry flag and is typically 
used for multiple-precision arithmetic operations. 
It is affected by special "with-extend" add, subtract, 
negate, and shift instructions. These instructions set 
X in the same way as they set C. The relevant in­
struction descriptions in Chapter 6 explain the use 
of the X flag. 

System Byte. The more significant byte of the 
status register is called the system byte. It contains 
an interrupt mask (that is 3 bits wide), a Super­
visor/User state flag, and a Trace mode flag. 

The interrupt mask comprises bit positions 8, 
9, and 10 of the status register. These three bits can 
hold any value from 0 to 7. When outside devices 
want to interrupt what the 68000 microprocessor 
is doing, they send signals on three priority pins. 
Those signals can also represent any number from 
o to 7. The interrupt will only be recognized-that 
is, will only be effective-if the interrupt request 
signal number is equal to or less than the interrupt 
mask number. 

By manipulating the interrupt mask bits, the 
programmer can control which devices can interrupt 
the 68000. Chapter 7 explains interrupts and all ex­
ceptions in more detail. 

The T flag is in bit position 15. If it is set to 
1, the 68000 is in Trace mode. This special environ­
ment generates an exception after every instruction. 
That lets the programmer force the CPU through 
the program one instruction at a time. Such control 
is vital to program debugging. 

The S flag (which stands for Supervisor) deter-
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mines whether the CPU is in Supervisor or User 
mode. This dichotomy was explained in the descrip­
tion of Supervisor and User stack pointers earlier 
in this chapter. 

Basically, User and Supervisor mode differ in 
two ways: 

1. Active Stack Pointer. Address register 7 is 
always the stack counter. But in User mode that 
register will have the User stack pointer value while 
in Supervisor mode the Supervisor stack pointer 
will be in that position. Whichever mode you are 
in, any reference to address register 7 can only elicit 
the active stack pointer. Figure 3-3 (earlier in this 
chapter) shows this arrangement. 

2. Instruction Set. The Supervisor mode has 
several instructions that the User mode does not. 
These instructions-called privileged-cannot be 
executed in User mode and will only generate an 
exception. The individual descriptions in Chapter 
6 will tell you which instructions are privileged and 
which are not. 

Program Counter 

A good case can be built that the program 
counter (known as the PC and shown in Fig. 3-11) 
is the most important of the special-purpose 
registers. Virtually every microprocessor has a Pc. 
This 32-bit register monitors and controls the posi­
tion of the microprocessor within the program. The 
data it contains is the address of the next instruc­
tion to be executed. 



Fig. 3-11. Program counter. 

At the beginning of each instruction, the PC 
value is sent to memory to fetch the next byte from 
the stored program. In the course of executing the 
instruction, the CPU automatically increments the 
Pc. It is increased by as many bytes as the instruc­
tion is long. That variable increase ensures that the 
PC points at the next instruction in the sequence. 
This sequential execution is a foundation of almost 
all computer architectures. Even the NOP (No 
Operation) instruction increments the PC: that is 
so elemental that it is considered no operation. 

After any instruction, then, the PC holds the ad­
dress of the next instruction. The exception to this 
rule is caused by jump, branch, or reset operations. 
These cause a new value to be directly fed into the 
PC: the new value will move the processing to a dif­
ferent point in the program. Returning from 
subroutines, similarly, requires the reloading of the 
original PC value. 

Even though the 68000 PC is 32-bits wide, on­
ly 24 bits of it are wired through to the pins on the 

chip. The result is that only 24 bits can be used to 
address memory space. By keeping to only 24 lines, 
the 68000 designers were able to fit the chip into 
a 68-pin DIP. This is still a much larger package 
than most other microprocessors use. Still, the 
24-bit address means the 68000 can address 16 
megabytes of memory. That space in hexadecimal 
addresses ranges from 000000 to FFFFFF. It is 256 
times larger than the 64K (65536) that most 8-bit 
microprocessors can address. The 68008 has a 
smaller memory space and the 68010 and 68020 
have much larger memory spaces (see Chapter 8 for 
more information). 

As is explained in Chapter 4, the memory is 
organized in a particular way. Words and long-words 
are found at even numbered addresses; bytes are 
located on the odd numbers or even numbers. Bits 
1 through 23 of the PC become address lines Al 
through A23. Bit 0 of the PC is manipulated inter­
nally with the operand length specified with in the 
instruction to make two data strobe signals. 

For the hardware aficionados, those strobe 
signals (pulses on particular pins) are UDS bar (Up­
per Data Strobe), and LDS bar (Lower Data Strobe). 
Both strobes assert to move a word; to move a byte 
only one strobe is asserted (an even numbered byte 
strobes UDS and an odd-numbered byte strobes 
LDS). 
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4 

Data ~ (8) 

Address ~ (8) 

SP ~ SP 

PC 

~ 
68000 

Addressing 
A COMPUTER, OR MICROPROCESSOR, PROCESS­

es data. It must be told both how to process 
the data and where to find the data. The instruc­
tion set of a microprocessor is a list of what the com­
puter can do (the 68000 instruction set is detailed 
in Chapters 5 and 6). Some operations are self­
contained; once the instruction has been decoded, 
it can be immediately executed. But others require 
a specified location that contains or will contain 
necessary data. These locations give the instruction 
something to add, somewhere to put the result, or 
something to move. The methods provided for 
finding the data are called addressing modes. Each 
mode offers the programmer a different way of 
directing the CPU in its reach for necessary bits, 
bytes, or blocks of information. 

Early computers had only a few addressing 
possibilities. As the art of computer design has pro­
gressed, many designers have come to believe that 
having many flexible addressing modes is more im­
portant than having many instructions. A deft pro­
grammer can use different modes to create a huge 

number of different instructions from a basic in­
struction set. 

Programmers quickly discover that, while in­
structions are important, understanding addressing 
is very important. In fact, it is a little silly to talk 
about instructions and addressing modes as though 
they are completely different things_ Instructions 
are only as good as the addressing modes that they 
use to find and place operands. Addressing modes, 
if not accompanied by a clear and complete set of 
instructions, can add little more than complexity to 
the programming environment. 

The 68000 has a large family of addressing 
modes. This chapter describes these modes after a 
couple of quick detours into operand sizes and the 
shape of memory. 

OPERAND SIZES 

Another subject that is directly related to address­
ing is operand size. A microprocessor can only work 
with certain selected chunks of data. The 68000 is 
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N6me Number of Bits 

Bi1 1 
Ni bble 4 
Byte 8 
Word 16 
long- 'Word 32 

Fig. 4-1. 68000 operand sizes. 

quite flexible: it can work with bits, nibbles, bytes, 
words, long-words, or multiple long-words (1, 4, 8, 
16, 32, or more bits at a time). Not all instructions 
can work with all operand sizes, however. Explicit 
instructions work with bytes, words, or long-words: 
Implicit instructions don't all use all three data sizes. 
Figure 4-1 shows the various data sizes. 

Many single instructions can work with bytes, 
words, or long-words by simply changing the letter 
extension on the mnemonic. For instance, MOVE.B 
will move a byte, MOVE.W will move a word, and 
MOVE.L will move a long-word. Other 
microprocessors that have the ability to work with 
bytes, words, and long-words sometimes use dif­
ferent instructions for the various sizes. 

Some special instructions on the 68000 allow 
it to handle special data sizes such as mUltiple 
registers or nibbles. The BCD instructions (listed 
in the Decimal Group in Chapter 5) work with 
groups of 4 bits (4 bits is a nibble). MOVEM can 
work with words or long-words and can send or 
receive the full register set. 

THE SHAPE OF MEMORY 

Memory can be shaped, or organized, in many dif­
ferent ways. The 68000's memory organization is 
detailed in the following descriptions and figures. 

Registers 

As has already been described, a small amount 
of the memory in a 68000 system is organized into 

are used for either specific, dedicated tasks or for 
fast, general tasks. 

The eight data registers work with bits, bytes, 
words, or long-words.The eight address registers 
work with words or long-words. See Chapter 3 for 
the details of register organization. 

The PC (program counter) works with long­
words. The status register works with bits, bytes, 
or words. These registers are also described in detail 
in Chapter 3. 

Memory 

The simplest way to look at memory is as a 
series of bytes. This scheme is shown in Fig. 4-2. 
Each byte has an address that is a single bit larger 
than the previous byte. This is a common method 
of working with memory. 

The 68000, however, can work with 16 bits at 
a time (its data bus is a full word wide). Memory 
is therefore also organized in words as shown in Fig. 
4-3. The bytes are put side by side, with the lower 
addressed byte in the high-order position of the 
word. That may surprise you. What it accomplishes 
is that words are all addressed by even numbers 
(with the address also referring to the high-order 
byte of the word). Long-words appear with the high­
order word first (lower in memory) and then the low­
order word. This is shown in Fig. 4-4. 

Bit PosHions 

7 6 S 4 3 2 1 0 

~ 
Byte ffFFFF ~ I 

,-___ ... _1. __ .... _ .. __ 
Byte OOOOOZ 

Byte 000001 

Byte 000000 

registers. These registers are on the 68000 chip and Fig. 4-2. Memory addressing (bytes). 
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Bi1 Positions 

15 14 13 12 11 1098 7 6 5 4 3 2 1 0 

(Byt. FFFFfE) Word fffffE (By t. F'FF'FFr) 
• 

? I 

5 I 

(By t. 000004) 

(By1. 000002) 

(By1.000000) 

Fig. 4-3. Memory addressing (words). 

Word 000004 

Word 000002 

Word 000000 

x 

x 

7 

x 

x 

x 

x 

6 

x 

x 

Word 000004 (Byt. 000005) 

Word 000002 (Byt.000003) 

Word 000000 (By t. 000001) 

A Byte ln Memory 

x x x x x x x x x x x x 

x x x x x x x x x x x x 

5 4 3 2 1 0 x x x x x x 

A Word in Memory 
I 

x x x x x x x x x x x x 
I 

x x x x x x x x x x x x 

Word 000004 

Word 000002 

Word 000000 1 ~ 14 1312111098765432 

A I.ong-word in Memory 
J 

x x x x x x x x x x x x x x 

15 14131211 109 8 7 6 5 4 3 2 , 

x x 

x x 

x x 

x x 

x x 

1 0 

x x 

1 0 

Word 000004 

Word 000002 

Word 000000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Fig. 4-4. Memory organization (bytes, words, and long-words). 
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Bit PosWons 
15 14 13 12 11 10 9 8 7 6 5 4 321 0 

Word 000004 

Word 000002 
t 

Word 000000 BCD 0 BCD 1 BCD 2 BCD 3 

B1 nery Word 

BCD BCD 0 BCD 1 BCD 2 BCD 3 

Fig. 4-5. Memory organization (nibbles: BCD). 

BCD (Binary Coded Decimal) data is stored as 
shown in Fig. 4-5. The nibbles (4-bit chunks) are 
addressed in the opposite order of the bit positions. 

ADDRESSING MODES 

Addressing modes are the ways a computer uses to 
determine data locations. The 68000 has three ma­
jor types of modes: register specification, effective 
address, and implicit reference. Register specifica­
tion uses a part of the object code to tell which 
register to use. Effective address uses any of the ad­
dressing modes listed in Fig. 4-6 except Implicit. Im­
plicit reference is the name given to the instructions 
that imply a particular use of registers. 

As a momentary aside, you should be aware of 
the mess computer designers have made of naming 
addressing modes. Don't just look at the manufac­
turer's name for a mode; look at how it works. In 
a number of cases, the same name on two 
microprocessors refers to quite different machina­
tions. For example, in the 8-bit microprocessor 
world, the 6502 has an indexed addressing mode 
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that is not at all the same as the indexed address­
ing on the 6800. 

Figure 4-6 lists the 68000 addressing modes. 
Using these, the 68000 assembly language program­
mer can expand the fundamental instruction set of 
the 68000 many times. But don't let the number of 
modes scare you. As with instructions, you don't 
have to use them all. Knowledge of just a few will 
permit you to write programs. 

Register Specification 

Instructions that work with register specification 
use a field within the instruction to signify whether 
the register used is a data register or an address 
register. Another field contains the number of the 
register to use. 

Effective Address 

Motorola uses the term effective address to refer 
to the address determined by two fields within of 
the 68000's addressing modes: a register number 
field and a mode field. These are typically coded 



Data Register Direct 
Address Register Direct 
Address Register Indirect 
Address Regi ster I ndi rect with Posti ncrement 
Address Register Indirect with Predecrement 
Address Register Indirect with Displacement 
Address Regi ster I ndi rect wi th Index 
Absolute Short Address 
Absolute Long Address 
Program Counter with Displacement 
Program Counter with Index 
Immediate 
Quick Immediate 
Implic1t 

Fig. 4-6. 68000 addressing modes. 

as the least significant six bits of the object code 
as shown in Fig. 4-7. Three bits are used to repre­
sent the mode and three more to represent the 
register number that mode is to use. 

to represent the addressing mode. Each of the 
modes below will show both the proper syntax and 
an example of the mode's use. 

If two effective addresses are needed, two sets 
of six bits may appear in the object code. This may 
occur because a source is addressed in one way and 
a destination in another. Further information can be 
contained in extension instruction words. 

Syntax 

The syntax of an addressing mode is the way 
that the symbols are written in assembly language 

15 14 13 12 11 10 9 8 

x X X X X X X X 

There are several syntax rules that you should 
be aware of before you read through this section. 

1. Instructions are written with the op code 
first, then the operands. For example, 

ADD Dl,D2 

adds the contents of data register 1 to the contents 
of data register 2. Dl is the source and D2 is the 
destination. 

76543210 

X x Mode I Register I 
Effective Address 

l-wordJ Single Effective-Address Instruction 

Fig. 4-7. Effective address coding. 
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ADD D2,Dl 

would add the same two values but the result would 
end up in data register 1 instead of data register 2. 
When an instruction needs only a single operand, 
that operand follows the op code and there is no 
comma in the instruction. 

2. The operand size is specified by an exten­
sion letter to the op code. For example, 

ADD.B Dl,D2 

performs the same operation as in the example 
above except that only the low-order byte of each 
register is used. The three extensions are as follows: 

.B for bytes 

.W for words 

. L for long-words 

If no specification is made and the instruction may 
work with more than one operand size, the default 
size (word) is used. 

3. Most assemblers use the $ symbol to mean 
hexadecimal. A number without this symbol will nor­
mally be interpreted as a decimal value. I say nor­
mally because there are two other systems 
used-octal and binary-which also have symbols 
(B or % for binary; Q or C for octal). Those systems, 
however, are rarely seen and are explained in 
Chapter 9. Different assemblers may use differ­
ent symbols: read your assembler instruction 
manual before jumping into programming. 

4. Parentheses are used to indicate indirec­
tion. The symbol A4 means the instruction will 
work with the value in address register 4 as an ad­
dress. The value found at that address in memory 
is the value the instruction will work with. This in­
direction is a two stage process. If you think that's 
complicated, you should know that many 
microprocessors have what is termed true indirec­
tion where the instruction finds an address, takes 
the contents of that address in memory and inter­
prets it as a new address, takes the contents of that 
new address and uses it as the operand. 

5. As mentioned before, many instructions 
need two operands. Each operand may have its own 
addressing mode, but not every mode will work for 
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every instruction. See the individual instruction 
descriptions in Chapter 6 for a listing of the available 
modes. 

Register Direct Modes 

This mode keeps the data itself in a data 
register or address register. The register number 
is specified in the instruction. 

Data Register Direct. This mode simply 
puts the name of a data register into the instruc­
tion's operand field. For example; 

NEG X D6 

negates (with the extend flag) the value in data 
register 6. D6 is found by Data Register Direct ad­
dressing . 

Address Register Direct. This mode puts 
the name of an address register into the instruction's 
operand field. For example; 

EXG A3,A2 

exchanges the values inside address registers 2 and 
3. What was in A3 is now in A2 and what was in 
A2 is now in A3. Both A2 and A3 in this instruc­
tion are examples of Address Register Direct ad­
dressing mode. 

Memory Address Modes 

These modes specify a location in memory. 
They all use indirection. The first value found is the 
address of the value the program will work with. 
The examples below will show this process clear. 

The advantage of using indirect addressing is 
that you don't have to repeat a full address over and 
over. Instead of having that address appear in the 
code, you only need to deal with a register. The 
value in that register can be quickly and efficiently 
changed, and the object code needs only a few bits 
to specify a register. 

Address Register Indirect. This mode 
doesn't directly point to the desired data as Address 
Register Direct does. Instead, it specifies an address 
register that holds the address of the data. The data 



is in memory. Address Register Direct specifies a 
register that holds the data itself. For example; 

CPM (A5),D3 

compares the A source value to a destination value. 
The destination can only be found using Data 
Register Direct mode, as D3 does. The source can 
be found using any address mode. 

In this case, the parentheses around A5 signifies 
indirection. It is not the value in A5 that will be com­
pared. Rather, the value in A5 will be interpreted 
to be an address in memory. The value at that ad­
dress will be compared to the value of data register 
3. 

Address Register Indirect with Postin­
crement. This mode is a lot simpler than it sounds. 
Together with the next mode, Address Register In­
direct with Predecrement, this mode allows 68000 
programmers to implement data structures such as 
stacks and queues using the general-purpose ad­
dress registers. 

The first part of Address Register Indirect with 
Postincrement mode works just as Address Register 
Indirect mode does. An address register is specified 
and the value within that register is interpreted as 
the address in memory of the operand. Then, 
however, the address register is incremented (by 1 
if the instruction specifies byte, by 2 if the instruc­
tion specifies word, and by 4 if the instruction 
specifies long-word). For example; 

TSTW (Al)+ 

will use the contents of address register 1 as an ad­
dress in memory. The value of the word at that ad­
dress will be tested and the flags will be set 
according to the results. The + symbol indicates 
that address register 1 will be incremented (by 2 
because of the W suffix) at the end of this instruc­
tion. The stack pointer will always be decremented 
by 2 (to keep it on a word boundary) if it is the 
specified address register. 

Address Register Indirect with 
Predecrement. This mode, too, is simpler than 
it sounds. This instruction begins by decrementing 

(by 1 if the instruction specifies byte, by 2 if the in­
struction specifies word, and by 4 if the instruction 
specifies long-word) the value of the specified ad­
dress register. From that point on, Address Register 
Indirect with Predecrement mode works just as Ad­
dress Register Indirect mode does. The (now 
decremented) value of a specified address register 
is interpreted as the address in memory of the 
operand. For example; 

TSTW (Al)-

will decrement (by 2 because of the .W suffix) the 
contents of address register 1. The symbol - in­
dicates that this is predecrement mode. The new 
value in address register 1 is interpreted as an ad­
dress in memory. The value of the word at that ad­
dress will be tested and the flags will be set 
according to the result. The stack pointer will 
always be decremented by 2 (to keep it on a word 
boundary) if it is the specified address register. 

Postincrement mode and predecrement mode 
can be used to transform address registers into stack 
pointers. One mode is used to push data onto the 
stack and the other mode is used to pull data off 
of the stack. Similar word sizes must be used so that 
the stack doesn't get misaligned. Such a stack can 
be made to grow up or down in memory. 

Queues (waiting lines with FIFO-First in First 
Out-activity) can be implemented using postincre­
ment or predecrement modes. One address register 
is the Put pointer and another is the Get pointer 
(corresponding to opposite ends of the queue). 

Address Register Indirect with 
Displacement. This mode is also called Register 
Indirect with Displacement but only address 
registers may be used. While this mode resembles 
the Address Register Indirect mode described 
above, it adds one more step to the final address 
calculation. 

The address in the address register is added to 
a signed 16-bit displacement value (which is the 
second word-the first extension word-of the in­
struction). That sum is interpreted as the address 
in memory of the desired operand. For example; 

ROR 11(A2) 
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will take the value of address register 2 and add 11 
(decimal) to it. The 11 is the displacement value and 
is always shown outside the parentheses as in this 
example. That sum will be interpreted as a memory 
address. The contents of that address will be rotated 
to the right. The default operand size (word) will 
be used. 

This addressing mode lets you create many dif­
ferent data structures. The science and use of data 
structures is beyond the coverage of this book, but 
I will briefly explain one possibility here and one 
after the description of the Register Indirect with 
Index and Displacement mode. 

The displacement addressing mode can be 
used to find specific fields within a record. Data 
storage systems frequently divide large sets of in­
formation into files, records, and fields. A file con­
tains a number of records. A record contains 
information about a particular subject and is made 
up of several fields. A field contains a finite number 
of characters. 

For example, a company might have a file of all 
employees salaries. That file would have a separate 
record for each employee. Each record would have 
fields like the following: 

Name 
Social Security Number 
Date of Hire 
Current Salary 
Number of exemptions 

These fields would contain characters that gave in­
formation relating to the field. 

To find several facts about a particular 
employee, the computer would first have to load the 
employee's record into memory. The address of the 
beginning of the record would be loaded into an ad­
dress register. At this point, each fact about an 
employee could be found simply by varying a 
displacement value. The address register value 
points to the beginning of the record and the 
displacement values add to the address just enough 
to reach name, social security number, or whatever 
you want to know. 
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Address Register Indirect with 
Displacement and Index. This mode is also 
known simply as Register Indirect with Displace­
ment and Index or Address Register Indirect with 
Index. It is a special offshoot of Address Register 
Indirect and resembles Address Register Indirect 
with Displacement but is more complicated than 
either of those modes. 

The instruction that uses this mode needs at 
least one extension word. The low-order byte of that 
word will be an 8-bit displacement value. The high­
order byte will specify a register that holds an in­
dex value. Both the displacement and the index 
values are added to the address register value and 
the final sum is interpreted as an address in 
memory. The value contained at that address is the 
operand for the instruction. For example; 

EOR.B D2,11(A6,D1.B) 

Now this is getting complicated. But if you 
unravel it step by step it isn't so bad. First, EOR.B 
is the op code. This exclusive-OR operation will be 
performed on the low-order byte (.B) of the source 
and destination operands. The source, Dl, is found 
by Data Register Direct addressing mode. The 
destination, 11(A6,D1.B), is found by Address 
Register Indirect with Index and Displacement ad­
dressing mode. The 11 is the displacement (and will 
be found in the low-order byte of the second instruc­
tion word). Address register A6 is the indirection 
register. Data register Dl is the index register. The 
low-order byte (.B) of the value in that register is 
the indexing value. In this instruction, therefore, two 
different operand sizes are specified. 

The actual destination operand value is found 
in three steps. 

1. Adding the index value, the displacement 
value, and the address register value. 

2. Using that sum as an address. 
3. Using the contents of that address as the 

operand. 

This addressing mode also lets you create and 
work with a variety of data structures. An example 
is given next. 



The displacement and index mode can be used 
to find specific fields within a number of records. 
As explained earlier under the Address Register In­
direct with Displacement mode, storage systems 
work with files, records, and fields. The same ex­
ample of a company's salary files can be used again 
here. 

Addressing with Displacements and Indexing 
helps you find out the same facts about several dif­
ferent employees. The computer first loads the 
salary file into memory. The address of the begin­
ning of the file is loaded into an address register and 
each record has the same known length. Also, each 
field within a record has the same length. At this 
point, if you wanted to load into the microprocessor 
all of the employees' salaries (to find an average, for 
example) you would use the length of records as an 
index value and the length of the fields as a displace­
ment. By increasing the index values by regular 
steps, you can walk through the file, hitting each 
record. Each time you land on a record, the displace­
ment value would put you into the salary field. 

Special Addressing Modes 

These effective addressing modes use the EA 
field to specify a special mode instead of a particular 
register. 

Immediate. After Implicit addressing, Im­
mediate addressing is probably the simplest mode 
to understand. Immediate addressing uses data that 
is immediately available. Such data is contained 
within the instruction words themselves. The effec­
tive address is the value in the program counter after 
the operation code has been fetched. 

There are typically three operand sizes available 
for immediate addressing: byte, word, and long­
word. The first instruction word contains the code 
that specifies operand size and addressing mode. If 
the immediate data is supposed to be one byte long, 
the low byte of the second instruction word is the 
data. A word of immediate data is the entire second 
instruction word. A long-word is the second and 
third instruction words, with the second instruction 
word being the high word and the third instruction 
word the low word. If that is all too confusing, look 
at Fig. 4-8 to see how this works. 

The second and third instruction words are 
sometimes called extension words which can confuse 
things even more because the second instruction 
word is the first extension word, and so on. For 
example; 

DIVU 165,Dl 

divides the value within data register 1 by 165 
(decimal) and puts the result into data register l. 
The 165 value is an immediate value. (The use of 
Dl is an example of Data Register Direct mode ad­
dressing for the destination.) 

Quick Immediate. The quick instructions­
such as ADDQ and SUBQ-are actually immediate 
instructions that don't need even a single extension 
word. These instructions make room within the first 
word of op code for some immediate data. Because 
there isn't much space, the data is limited to the 
range from 1 to 8. These instructions can execute 
especially quickly because they are so short (and 
so the mode is termed Quick Immediate). MOVEQ 
is another such instruction, see Chapter 6 for a 
detailed description of its operation. 

Absolute Addressing 

These two modes are related to immediate ad­
dressing. The difference is that, instead of providing 
the operand within the instruction code, they pro­
vide the operand's address within the instruction 
code. 

Absolute Short Addressing. The second 
word of the instruction (the first extension word) is 
a 16-bit address. That 16-bit value is sign-extended 
(the value of bit position 15 is copied to bit positions 
16 through 31) to a full 32 bits. That long-word is 
the address in memory of the operand. Because of 
the extension of the sign-bit, this mode can work 
with addresses in the ranges $0000 through $7FFF 
(the lowest part of memory) and $FFFF8000 
through $FFFFFF (the highest part of memory). 

For example; 

PEA 1000 

43 



Instruction using on Immediote Byte 

1 st InstrUeti?n Ope ode 

2nd Ix x x x x x x x Ilmmediote Byte 

1st 

Instruction using on Immediote Word 

InstrUeti?n Opcode 

2nd I mmedi ~te Word 

1st 

Instruction using on Immediote Long-word 

InstrUCti?n Opcode 

2nd I High word of Imm~diote Long-word I 

3rd I Low word of Imm~di6te Long-word I 

Fig. 4-8. Format of immediate data. 

forms an effective address using the decimal value 
1000. After sign-extension, that value is pushed onto 
the stack. If the number 1000 has a # symbol in 
front of it, it would be interpreted as immediate 
data. Without that symbol, it is absolute data. 
Because this instruction is only two words long and 
doesn't require calculation other than sign­
extension, it can execute quickly. 

Absolute Long Addressing. The second 
and third words of the instruction (the first and 
second extension words) are a 32 bit address. The 
first extension word is the high-order word of the 
address and the second extension word is the low­
order word of the address. That long-word address 
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is the location in memory of the operand. 
For example: 

SUBLL 43,$AOOOO 

subtracts the immediate data 43 (decimal) from the 
contents of the long-word starting at address AOOOO 
(hexadecimal). If the $AOOOO had a # symbol in 
front of it, it would be interpreted as immediate 
data. Without that symbol, it is absolute data. 

Relative Addressing 

This type of special addressing finds the 
operand by working with the current PC (Program 



Counter) value. This is typically used for instruc­
tions that change the program's direction such as 
jumps and branches. By using relative values in­
stead of absolute addresses, programmers can make 
their code more relocatable. In other words, the same 
program will work at any point in memory instead 
of just in the exact spot it was written for. It is nor­
mally better, though, to let the assembler calculate 
the distance for jumps and branches by giving it 
symbolic names instead of numbers. 

Program Counter Relative with 
Displacement. This addressing mode works in 
much the same way that Address Register Indirect 
with Displacement mode works. In fact, this mode 
can be seen as a special case of Register Indirect 
mode. The I6-bit displacement value (found in the 
instruction extension word) is sign-extended and the 
PC value is incremented (as it is by any instruction). 
Then the two values are added together. 

For example; 

DIVS.w 250(PC),Dl 

adds the decimal value 250 to the incremented PC 
value. (Actually, most assemblers will add 248 to the 
PC value because they assume that the program­
mer wanted to use the point 250 bytes beyond the 
beginning of the DIVS instruction. Assemblers 
often let you use the symbol * to mean the present 
PC value.) That sum will be interpreted as an ad­
dress. The low word of data register 1 will be divid­
ed by the contents of that address. 

Program Counter Relative with Index 
and Displacement. For an introduction to this 
mode, you should read the description of Address 
Register Indirect with Index and Displacement 
because the two modes are quite similar. The PC 
instead of an address register is used as the foun­
dation register. 

The format for this instruction is tricky; check 
your assembler's instructions to see how to write 
it. For example; 

CHK $AF(PC,AI),D4 

checks the contents of the low-order word of D4 

Implied 
Instruction Registers 

Bee, BRA PC 
BSR PC, SP 
CHK SSP,SR 
DBee PC 
DIVS SSP, SR 
DIVU SSP,SR 
JMP PC 
JSR PC,SP 
LINK PC,SP 

MOVE to CCR, MOVE from CCR SR 
MOVE to SR, MOVE from SR SR 

MOVE USP USP 
PEA SP 
RTf PC,SP,SR 
RTR PC.SP.SR 
RTS PC, SP 

TRAP SSP, SR 
TRAPV SSP, SR 
UNlK SP 

ANDI to CCR, EORI to CCR, ) ORI to CCR, ANDI to SR, SR 
EORI to SR, ORI to SR 

Fig. 4-9. Instructions that depend entirely upon Implicit Ad­
dressing. 

against the source value. The source value is 
calculated by adding both the hexadecimal value AF 
(the displacement) and the contents of register Al 
(the index) to the program counter value. 

Implicit Reference Addressing 

Some instructions do not offer you any address­
ing choice. These instructions, listed in Fig. 4-9, by 
their very nature specify exactly what addresses 
they will work with. Implicit addressing, called im­
plied addressing on some other chips, is often 
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associated with fast instructions because they can 
be shorter and do not have to calculate an effective 
address. 

IMPORTANCE OF ADDRESSING MODES 

Let me add a postscript about addressing modes: 
Don't ignore them. Beginning programmers are 
often thrilled to learn instructions and only learn the 
bare minimum about addressing. Such behavior is 
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the same as high-level language programmers 
learning only instructions and avoiding data struc­
tures. Both addressing modes and data structures 
are vital to efficient, maintainable (meaning so­
meone can fix it) programs. If you play with address­
ing modes, learning when to use which, you will 
soon write more efficient and more structured pro­
grams than those who stick to immediate and im­
plict addressing. 



5 

Data ~ (8) 
24 

Address ~ (8) 

16 

SP ~ SP 

PC 

~ 
68000 

Instructions Groups 
A MICROPROCESSOR WITHOUT A PROGRAM IS 

just a lifeless lump of silicon, metal, and 
plastic. To write programs in machine or assembly 
language you have to understand the registers, ad­
dressing modes, and the instruction set of the 
microprocessor. 

The fundamental operations that a 
microprocessor can perform are represented by in­
structions. They are the words in the microprocessor 
language. The full instruction set of the 68000 is 
shown in Fig. 5-1. Learn a few and you can make 
a little sense. Combine the few with a knowledge 
of the punctuation of flags and the grammar of ad­
dressing modes and you can write simple programs. 
If you learn most of the instructions available on a 
microprocessor, you will have a full vocabulary. (Not 
even professional programmers use all of the in­
structions. Some are just not that practical.) True 
fluency requires the vocabulary plus understanding 
of data structures and control sequences along with 
lots of practice. 

This book will provide you with the first ingre­
dients: the vocabulary of instructions, the grammar 

of flags, and addressing modes. For an under­
standing of programming concepts, you should refer 
to a general book on computer science or program­
ming. For practice, find a way to use a 68000 bas­
ed system with an assembler program, and go to 
it. Eventually you'll want a library of subroutines 
to study, imitate, and use, but at first all you'll need 
is this book, the system, time, and some patience. 

By the way, because most microprocessors are 
designed to perform similar tasks, they have similar 
instruction sets. While the actual codes used in 
assembly language to represent the instructions dif­
fer from chip to chip, the functions of the instruc­
tions are in many cases identical. In other words, 
once you learn the language of one chip, learning 
the next chip language (especially the fundamen­
tal instructions) will be quick and easy. 

Advanced instructions do tend to diverge more 
from chip to chip. Different designers have a varie­
ty of ideas on what functions users would like to see. 

The number of instructions on a microprocessor 
isn't necessarily related to its power. A small 
number of instructions with a variety of flexible ad-
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ABCO ClR lSR ORI to SR TRAP 

ADO CMP MOVE PEA TRAPV 

AOOA CMPA MOVE to CCR RESET TST 

AOOE CMPI MOVE to SR ROl UNlK 
AOOQ CMPM MOVE from SR ROR 

AOOX OBee MOVE USP ROXl 
AND OIVS MOVEA ROXR 
ANOI OIVU MOVEM RTf 
ANOI to CCR EOR MOVEP RTR 
ANOI to SR EORI MOVEQ RTS 
ASl EORI to CCR MULS SBCD 
ASR EORI to SR MULU Sec 
Bee EXG NBCO STOP 
BCHG EXT NEG SUB 
BClR ILLEGAL NEGX SUBA 
BRA JMP NOP SUBI 
BSET JSR NOT SUBQ 
BSR LEA OR SUBX 
BTST LINK ORI SWAP 
CHK lSl ORI to CCR TAS 

Fig. 5-1. 68000 instruction set. 

dressing modes can often accomplish more than a 
large but rigid set of instructions with few address­
ing modes. The 68000 depends on flexibility and 
addressing and has an orthogonal instruction set. 
That means that each instruction is made to work 
much as the other instructions work with different 
data sizes (byte, word, or long-word) and with as 
many addressing modes as possible (see Chapter 4 
for a description of these). 

YOU DON'T HAVE TO LEARN THEM ALL 

Not all of the microprocessor's instructions are 
equally important. In fact, you can write virtually 
any program using just a small portion of the in­
struction set. Certainly beginners should learn the 
simple instructions and use them with the various 
addressing modes before worrying about learning 
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the more advanced and unusual instructions. 
The particular selection of 68000 instructions 

shown in Fig. 5-2 and Fig. 5-3 are not set in con­
crete: use them as suggestions. The three and four 
letter codes are called the mnemonics for the instruc­
tions. As with most computer languages, the pro­
grammers don't want to have to write out the entire 
instruction each time they use it. Using "BSR" in­
stead of "Branch to Subroutine" saves typing time, 
printing space, and memory space. It won't take you 
long to learn what the mnemonics stand for. Some, 
like SIDP, are even obvious. 

The 68010 and 68020 chips brought some new 
instructions to the 68000 family, and changed the 
performance of some old instructions. These in­
structions are listed in Fig. 5-4 and Fig 5-5 and are 
detailed in Chapter 9. 



ADD DIVU MUlU 
AND EOR NEG 
ASl EXG NOP 
ASR EXT NOT 
Elce JMP OR 
ElRA JSR ROL 
ElSR lSL ROR 
CLR lSR RTS 
CMP MOVE STOP 
DIVS MULS SUEI 

Fig. 5-2. Beginning instructions. 

INSTRUCTION GROUPS 

The fundamental instructions of any microprocessor 
can be divided into functional groups. Those groups 
are quite similar from chip to chip. The 68000 chip 
family groups defined in this book shown in Fig. 5-6. 

While all of the instructions are described in­
dividually in Chapter 6, this chapter will discuss the 
uses of the various groups of instructions. Instruc­
tions can't be easily separated from the addressing 
methods they use. This chapter will, however, try 
to concentrate on the essence of each instruction. 

ABCD NElCD TRAPV 
BCHG PEA TST 
BCLR RESET UNLK 
ElSET RTE 
BTST RTR 
CHK SElCD 
DBce Sce 
ILLEGAL SWAP 
LEA TAS 
LINK TRAP 

Fig. 5-3. Advanced instructions. 

New 
Instructions 

MOVE from CCR 
MOVEC 
MOVES 
RTD 

Modified 
Instructions 

MOVE from SR 
RTE 

Fig. 5-4. New or changed 68010 instructions. 

Data Movement 

This group, shown in Fig. 5-7, is often de­
scribed first because it includes some of the very 
first instructions any programmer uses. Many peo­
ple think of computers as mathematics machines, 
when in fact their major use is as symbol storage 
and manipulation machines. Any program has to 
move the various bits and bytes around from input 
to output (at the very least), to memory and back, 
and within the CPU. 

On the 68000, the bulk of this group is made 
up of a single instruction. 

MOVE 

When combined with the addressing modes and 
the byte, word, and long-word options, this single 

CMP2 BFTST cpDBcc 
DIVSL PACK cpGEN 
DIVUL UNPK cpRESTORE 
EXTB CAllM cpSAVE 
BFCHG RTM cpScc 
ElFClR ElKPT cpTRAPcc 
ElFEXTS CHK2 
ElFEXTU TRAPcc 
ElFFFO CAS 
ElF INS CAS2 
ElFSET cpElcc 

Fig. 5-5. New 68020 instructions. 
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Data Movement 
Integer Arithmetic 
Decimal 
Logical 
Shift and Rotate 
Bit Manipulation 
Program Control 
System Control 
Nothing 

Fig. 5-6. 68000 instruction groups. 

instruction is capable of moving almost any piece 
of information anywhere the microprocessor bus 
lines go. It can move information from register to 
register, register to memory, or memory to memory. 
In contrast to many other microprocessors, the 
68000's limited number of instructions and their or­
thogonality (explained above) makes it easy for you 
to memorize the instructions. 

MOVE and most of the other instructions in this 
group don't really move the information. They make 
a copy of the information and put that copy in the 
destination. The source retains its data. Some in­
structions, though, do alter the source contents. 
EXG, for example, moves the destination contents 
to the source and so completely erases the original 
source value. 

While other microprocessors often have I/O (In­
put/Output) instructions that differ from the inter­
nal data movement instructions, the 68000 uses 
memory-mapped 110. That means that all you have 
to do with the 68000 is wire up any 110 device to 
a memory address and use the same MOVE instruc­
tion you would use if the CPU was working with 
a memory chip instead of an 110 device. 

MOVE can move either addresses or data. Data 
moves can work with byte, word, or long-word in­
formation. Address moves work with word or long­
word operands. 

There are also instructions that are special 
cases of the MOVE instruction. These lead the list 
in Fig. 5-7. 
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MOVE to CCR (condition codes register), 
MOVE to SR (status register), and MOVE from SR 
are actually just different ways of addressing the 
MOVE instruction. They are separated here 
because they deal with the status register. Any such 
dealings can completely change the 68000's 
status,and possibly disrupt a program. In fact, 
MOVE to SR and MOVE from SR are specifically 
protected as privileged instructions. Because they 
directly affect the S flag, which determines whether 
the 68000 is in supervisor or user state, both of 
these instructions have to be shielded from user pro­
grams. Figure 5-8 shows the structure of the status 
register for both the System byte and User byte also 
known as the condition codes register). See 
Chapters 3 for a more extensive explanation of what 
Supervisor and User mode mean. 

MOVE USP (User stack pointer) is another 
privileged instruction. There is no reason to use this 
instruction when the CPU is in User mode; the User 
stack pointer is then simply addressed as address 
register A 7. When the S flag is set and the CPU 
is in the Supervisor mode, however, there is no other 
way to reach the User stack pointer. In Supervisor 
mode, address register A7 is the System stack 
pointer. Figure 5-9 shows the arrangement of two 
stack pointers. 

MOVEA, which stands for MOVE Address, is 

Data Movement Instruct ions 

EXG 
LEA 

LINK 
MOVE 

MOVEM 
MOVEP 
MOVEO 

PEA 
SWAP 
UNLK 

Fig. 5-7. Data movement instructions. 



System Byte 

------~----~---

Fig·. 5-8. Status register. 

simply the instruction used if the MOVE instruc­
tion specifies the destination directly as an address 
register. Besides that addressing change, the only 
other difference is that MOVEA doesn't affect any 
of the flags, while MOVE does. Thus, the program­
mer can use MOVEA to set up for an operation by 
moving the necessary address information into 
registers, without upsetting the state of the flags. 

MOVEM, which stands for MOVE Multiple 
registers, is a complex instruction that beginners 
will rarely use. It moves the data in a group of 
registers to or from memory. This saves program­
ming work, and is very helpful to high-level 
languages that have to save and restore the infor­
mation in the CPU. For example, if a program re­
quires that processing shift to another point for a 

15 8 7 

Use r Stec k Poi nte r 
System Steck Poi nter 

Fig. 5-9. Address registers and the stack pointers. 

User Byte 
----

._", 

while, and then come back, the program should save 
the information in the data registers, address 
registers, and flags. MOVEM does this with a single 
instruction, putting the information into a sequence 
of memory addresses. Figure 5-10 portrays the pat­
tern MOVEM uses to relate register data to memory 
data. 

MOVEp, or MOVE Peripheral data, is a special 
MOVE command designed to make it easy for the 
CPU to send information to or receive information 
from peripheral devices. Such chips frequently read 
or write data in 8-bit chunks (bytes): MOVEP does 
also. With the automatic incrementing of this in­
struction (similar to that of MOVEM), the data com­
ing from or going to the several byte-wide addresses 
of a peripheral can be handled with a single instruc-

0 

AO 
A1 
A2 
A3 
A4 Address 

A5 Registers 

A6 

A7 
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Effective Address in the Control Mode 
---( Oete ce n move eit he r di recti 0 n) ---

Memory Stert et the 3pecified eddre33 and climb 

through higher addre3ses 

Registers Stert with the leest significant bit of 

the mesk (DO) end climb through more 3iQnificant 

bits of the mesk (01 through 07 end AO through 

A7) Only move the register3 wh03e mesk bits are 

set. 

MASK 

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 0 I A7 A6 AS A4 A3 A2 AI AD 07 06 05 04 03 02 01 DO 

EffectIve Address in the Postincrement Mode 
-(Oete cen only move from memory to regi3ter3)--

Memory Start at the ~pecified add re~~ and climb 

through higher addre~3e~ 

Registers Stert with the leest significent bit of 

the me~k (DO) end climb through more significant 

bit~ of the me~k (01 through 07 a nd AD through 

A 7) On1 y move the reg1sters whose mesk bits ere 

set 

MASK 

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 0 
I A 7 A6 AS A4 A3 A2 A I AD 07 06 05 04 03 02 DIDO 

Effective Address in the Predecrement Mode 
-( Deta cen on1 y move from register~ to memory)--

Memory Stert et the specified eddress end load the 

register vel ue3 into progressivel y lower eddre3ses. 

Registrs Stert with the register represented by the leest 

sigmficent bit of the mesk (A7) end proceed through the 

more signiflcent bits of the mesk (A6 through AO and then 

07 through DO) Only transfers registers whose mask bit 

is set 

MASK 

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 1 0 

DO 01 02 D3 04 05 06 07 AD Al A2 A3 A4 AS A6 A71 

Fig. 5-10. MOVEM addressing. 
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tion. With MOVEP's organization of data, the bytes 
from a peripheral can be automatically sand­
wiched into the long-word size of 68000 registers. 
Figure 5-11 shows the way MOVEP organizes data. 

register. That byte is sign-extended to a full 32 bits. 
Because the addressing is implicit and the instruc­
tion is only a single word long, MOVEQ can save 
time over MOVE. If used within a heavily-worked 
part of the program, such as a counting loop, the 
incremental time saved can add up to quite a bit. 

MOVEQ is dedicated to fast execution (MOVE 
Quick). Several other instructions also have this sort 
of variant. While MOVEQ is fast, it is limited. It 
can only move a byte of immediate data (data that 
is contained within the instruction word) to a data 

EXG performs the work of three MOVE in­
structions: it exchanges the contents of two 
registers. If you had to program that with MOVE, 

31 

31 

I Top Byt(' 

Fig. 5-11. MOVEP addressing. 

How the Bytes Fit 

Word Tr&nsfer 
(to or from &n odd &ddress) 

Regis1er 

I High-byt(' 

Memory 
15 o 

Low-byt(' 

High-byt(' 

long-'Word Transfer 
(to or from en even address) 

o 
Low-byt(' I 

4 

2 

o 

Register 0 

I UppE'r By t. Ilowt"r By tt" I Bottom By t.1 

Memory 
15 0 

Top Byt. 6 

Upp.r BytE' 4 

LowE'r Byt. 2 

Bottom BytE' 0 
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EXG working on two Data Registers 

Before EXG 
03 05 

1011010110111101 I 10101011101101011 

03 
After EXG 

05 

0101011101101011 

Fig. 5-12. EXG in action. 

you'd need to move the contents of the first register 
into a third, then move the contents of the second 
register into the first, and finally move the contents 
of the third register into the second register. Figure 
5-12 shows the action of EXG. 

SWAP moves words, exchanging the low and 
high words of a data register. Figure 5-13 shows how 
SWAP switches the contents of the two halves of 
a single data registers. 

LEA means Load Effective Address. Load is the 
term used on many microprocessors for data move­
ment instructions. The Effective Address is the ad­
dress information calculated from addressing mode 
and specified data. LEA does the calculating and 
then puts the EA in an address register. This can 
be useful for setting up to access a table in memory. 

PEA pushes an Effective Address (explained in 
the previous paragraph) onto the stack. The stack 
was reached by address register 7, the active stack 
pointer: User stack pointer if the 68000 is in User 
mode; System stack pointer if the 68000 is in Super­
visor mode. Push and Pop are verbs that mean, 
respectively, to put onto or take off of a stack (stacks 
are explained in more detail in Chapter 3). A stack 
is a LIFO (Last-in, First-out) data structure that is 
implemented in memory by the CPU control of a 
16-bit stack pointer register. 

The 68000 stack grows down in memory, so the 
stack pointer contains the address of the lowest ad-
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dress of the stack, which, unfortunately, is known 
as the top of the stack. PEA decrements the stack 
pointer by two (there are two bytes in a word) and 
puts the low word of the EA on the stack. Then the 
stack pointer is again decremented by two and the 
high word of the EA is put, or pushed, onto the 
stack. 

LINK (Link and Allocate) and UNLK (Unlink) 
are advanced instructions that you won't find on 
simpler, 8-bit microprocessors. What LINK does, 
UNLK undoes. Together, they let you manipulate 
the stack to organize different stack memory areas 
for subroutines,functions, and program modules. 

If a program section needs to use the stack, but 
you don't want to disturb the main program infor­
mation on the stack, you can employ LINK to put 

06t6 Register before SWAP 

I 1111111111111111 100000000000000001 

Det6 Register 6fter SWAP 

I 0000000000000000 111111111111111111 

Fig. 5-13. SWAP in action. 



a new value into the stack pointer. A section of stack 
is called aframe, and an address register that holds 
the value to be put onto the stack is called a frame 
pointer. The present contents of the frame pointer 
address register is put onto the stack. Then the new 
stack pointer value (the stack pointer was 
automatically decremented when a new value was 
put onto the stack) is saved in the frame pointer ad­
dress register. A negative displacement value 
(negative because the stack grows downward) which 
is essentially the size of the frame, is then added 
to the stack pointer to open up as large a frame as 
the subroutine needs. 

Integer Arithmetic 

The Integer Arithmetic instructions are shown 
in Fig. 5-14. While the 68000 can perform the same 
add and subtract operations that all microprocessors 
must, it also has multiply and divide instructions. 
That will come as a relief to 8-bit programmers who 
had to use routines of simpler instructions to im­
plement those operations. 

ADD means to add using binary arithmetic. 
This differs from the other addition instruction, 
ABCD, which employs BCD (Binary Coded 
Decimal) arithmetic. (ABCD is explained later in 
this chapter in the Decimal Arithmetic Group 
section.) 

ADD sums the source and destination operands. 

Integer Arithmetic 

ADD 
ADDX 
CLR 
CMP 
DIVS 
DIVU 
EXT 

MULS 

MULU 
NEG 

NEGX 
SUB 

SUBX 
TAS 
TST 

Fig. 5-14. Integer arithmetic instructions. 

The operands may be reached by any of a large 
number of addressing modes. ADD demonstrates 
another common feature of 68000 instructions in its 
placement of the result. The result is stored in the 
destination, erasing the previous destination con­
tents. ADD is also representative of 68000 instruc­
tions in that addressing is split into two cases. The 
first cases uses a data register as the destination and 
can use any addressing mode for the source. The 
second case uses a data register as the source and 
employs any of nine different addressing modes to 
reach the destination (Program Counter Relative 
and Immediate modes cannot be used). 

Binary arithmetic is the foundation of all digital 
computing. If you don't know how to add Is and Os, 
you can still program computers, but not in 
assembly language. Any elementary programming 
or computer science book can explain the methods 
of adding, subtracting, and complementing the bits 
(binary digits) of bytes, words, and long-words. 

A quick summary of binary arithmetic is shown 
in Fig. 5-15. The terms unsigned and two's comple­
ment should also be referred to another text. Simp­
ly put, unsigned binary numbers interpret the entire 
string of Is and Os as a single positive number. Two's 
complement binary numbers use the most signifi­
cant bit as a sign bit. A 0 means the entire number 
is positive; a 1 means negative. To make things more 
complicated, a negative two's complement number 
is written in a special form with most of the bits in­
verted (Os become Is and Is become Os). It sounds 
crazy, I know, but it does make arithmetic a lot 
easier, and you'll appreciate it once you learn the 
system and work through some problems. 

ADD affects all of the condition code flags. C 
(carry) and X (extend) are set if the addition results 
in a carry. Z (zero) is set if the result is zero. N 
(negative) is set if the result is negative. Finally, V 
(overflow) is set if the addition causes an overflow. 
These results are all straightforward, and apply to 
most other arithmetic instructions, except that sub­
traction operations work with a borrow instead of 
a carry for the C flag. 

ADD A (Add Address) is a special form of ADD. 
It adds a source operand, specified by any of the 
addressing modes, to an address register destina-
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Addition 

0+0=0 
0+1=1 
1+0=0 
1+ 1 = 10 

or 
1 + 1 =0 plus e cerry of 
1 + 1 + 1 = 1 plus e cerry of 

So 

00011101 
+ 10111001 

11010110 

Subtrection 

0-0=0 
1-0=1 
1-1=0 

0- 1 = 1 with e borrow of 

30 

11001010 
-01100100 

01100110 

Fig. 5-15. Rules of binary arithmetic. 

tion. What's the big difference between ADD and 
ADDA? ADDA doesn't affect any of the condition 
code flags. That means you can manipulate ad­
dresses and set up the address registers with values 
you need for the addressing modes of succeeding 
instructions without altering the status of the chip. 
Remember that address registers cannot work with 
byte-size data, only words and long-words. This is 
explained in Chapter 3. 

ADD! means Add Immediate. This instruction 
adds the data contained within the instruction (a 
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Mult i pI i ceti on 

0*0=0 
1*0=0 
0*1=0 
1 * 1 = 1 

30 

00101101 
* 101 

00101101 
000000000 

0010110100 
11100001 

Division 

0/1=0 
1/1= 1 

110 end 0/0 ere not I egel opereti ons 

30 

10 1 1 1 1 001 1 0 = 0 1 0 1 1 1 1 0 

byte, a word, or a long-word) to a cestination 
operand. It differs from the ADD instruction 
because when ADD has an immediate source, it can 
only use Data Register Direct mode to find the 
destination. ADD! can use any of eight different ad­
dressing modes. 

ADDQ (Add Quick), like MOVEQ, is dedicated 
to quick execution. Its addressing range is narrower 
than ADD's; only Quick Immediate mode can be 
used for the source. Its immediate data size is more 
limited than that of ADD!; only a single byte can 



be added. These two restrictions allow the entire 
instruction to fit into a single instruction word and 
to execute very quickly. Again, as with MOVEQ, us­
ing ADDQ in sensitive positions where the addition 
may be repeated many times can save a lot of pro­
cessing time. ADDQ is a good demonstration of the 
orthogonality of the 68000 instruction set. Many in­
structions have the same special cases and forms: 
MOVEA and ADDA; MOVEQ and ADDQ. 

ADDX, which stands for Add Extended, main­
ly differs from ADD in its effect on the Z flag. ADD 
sets (1) the Z flag if the sum equals zero and clears 
it (0) otherwise. ADDX leaves the Z flag un­
changed if the result equals zero and clears it if the 
result is nonzero (anything but zero). This special 
effect adapts the ADDX instruction to multiple­
precision (also known as extended) addition. 
Multiple-precision arithmetic works with numbers 
that are too large to fit into bytes, words, or long­
words. Figure 5-16 shows a simple example of 
multiple-precision arithmetic. 

Multiple-precision addition often begins by us­
ing the MOVE to CCR instruction to set the Z flag 
(putting a 1 in it). Then the addition is performed. 
Any nonzero result will clear the flag. Thus the pro­
gram is alerted to the data that may affect other 
parts of the addition. 

There are two forms of ADDX: register to 
register and memory to memory. Memory to 
memory uses predecrement mode so that the multi­
ple operands for extended arithmetic may be easi­
ly addressed in order. 

SUB is the binary subtraction instruction. It 

operates very much as the ADD instruction except 
that the source operand is subtracted from the 
destination operand and the C and X flags are set 
if the operation results in a borrow instead of a carry. 
SUBA is Subtract Address, SUBI is Subtract Im­
mediate, SUBQ is Subtract Quick, and SUBX is 
Subtract Extended. See the analogous addition in­
struction descriptions above (ADDA, ADDI, ADDQ, 
ADDX) for the purposes of these instructions. 

MULU and MULS are the multiplication in­
structions. One of the advantages of 16-bit chips 
such as the 68000 is that they have multiplication 
and division instructions: 8-bit chips have to perform 
those operations with routines of move, shift, and 
compare instructions. 

MULU stands for Multiply Unsigned; MULS 
stands for Multiply Signed. As in our previous 
discussion of binary numbers, the most significant 
bit can be used to indicate the sign of the number 
or the number can be assumed to be positive. 
MULU multiplies two unsigned 16-bit operands to 
yield a 32-bit unsigned result. MULS multiplies two 
signed 16-bit operands to yield a 32-bit signed 
result. both operations take register operands from 
the low word of a register and ignore the high word. 

DIVU and DIVS are the Division Unsigned and 
Division Signed instructions respectively. DIVU 
divides a 32-bit destination operand by a 16-bit 
source operand using unsigned binary numbers. 
The 32-bit result is stored in the destination (which 
must be a data register). The low word of the result 
is the quotient and the high word is the remainder. 
DIVS does the same thing as DIVU but uses 

Multiple-precision Addition 

BytE' 8 BytE' 7 BytE' 6 BytE' 5 BytE' 4 BytE' 3 BytE' 2 Byt .. 1 

00000001 

10111100 

00 1 1 001 0 1 0 1 0 1 1 00 1 1 1 1 0000 1 0 1 1 1 1 00 1 0 1 1 00 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 

01 00001 0 111 01010 11 0101 1 1 010 11 010 1 1 1 1 1 1 11 00001 1 01 01011 010 

01 1 1 0 1 01 1 001 0111 1 1 00 1 000 0001 01 1 1 1 01 1 00 1 0 01 1 00011 000 1 1 001 1 011 1 1 1 01 

Fig. 5-16. Multiple-precision binary addition. 
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signed arithmetic. The sign of the remainder is 
always the same as that of the divided unless the 
remainder equals zero. 

Division carries with it two special cir­
cumstances. Any attempt to divide by zero will 
automatically be trapped and exception processing 
will take over from the main program. See Chapter 
7 for more details on exception processing and the 
divide by zero trap. 

The second special circumstance involves 
overflow. If the division operation causes an 
overflow which is detected before the instruction is 
completely executed, the overflow condition will be 
signaled by the flags and the original division 
operands will be left as they were. The more ad­
vanced 68020 doesn't have to worry about this cir­
cumstance and is fully capable of dividing 32 bits 
by 32 bits as well as multiplying 32 bits by 32 bits. 

Computers also need to compare, clear, and 
negate the values within registers or memory ad­
dresses. Because the 68000 can work with several 
different data sizes, it also needs a sign-extension 
instruction to allow byte and word data to operate 
correctly in 32-bit registers. The instructions shown 
in Fig. 5-14 handle these chores. 

CLR (which stands for Clear) is probably the 
simplest to understand of this lot: it puts zero into 
the destination. The destination can be a data 
register or a memory location and is filled with as 
many zeros as the size specification requires (either 
byte, word, or long-word). CLR also effects most of 
the condition code flags; it sets Z and clears N, V, 
and C. 

CMp, for Compare, offers a basic instruction 
and a number of special cases, just as ADD, SUB, 
and MOVE do. CMP compares a source and a 
destination operand (by subtracting and source con­
tents from the destination contents), sets the con­
dition code flags, and leaves the source and 
destination unchanged. Because the CMP operation 
is a subtraction, the C flag is treated as a borrow 
flag (see the SUB description earlier in this chapter 
for details of this treatment). 

CMPA (Compare Address) is a special case of 
CMP that uses an address register as the destina­
tion. Also, CMPA extends the source value to 
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32-bits before subtracting it from the destination 
value. 

eMP! (Compare Immediate) can only have im­
mediate data as the source. Otherwise, it operates 
as does CMP. 

CMPM (Compare Memory) is a complicated 
special case of CMP that compares the contents of 
two memory locations. Both source and destination 
are addressed by the specified address registers by 
the postincrement register indirect addressing 
mode. In other words, the instruction specifies two 
address registers. The contents of one of those 
registers specifies the source location. The contents 
of the other is the address of the destination. After 
the source contents are subtracted from the destina­
tion contents and the flags are set, the values of the 
two address registers are incremented (by 1 if a byte 
operation, by 2 if a word operation, by 4 if a long­
word operation). 

The use of an automatically incrementing ad­
dressing mode eases the design of loops. For in­
stance, CMPM is used in loops that search for a 
particular value in memory. If the automatic in­
crementing weren't available, the programmer 
would have to write incrementing instructions into 
the loop so that a region of memory could be se­
quentially searched (compared against a known 
value). 

TST and TAS are special comparison opera­
tions. TST subtracts zero from the destination con­
tents and manipulates the condition code flags 
according to the results. In other words, the flags 
are changed according to the value in memory. If 
that value is negative, the N flag is set. If that value 
is zero, the Z flag is set. Flags V and C are always 
cleared. The X flag is not affected. The effects of 
TST on the flags is considerably different than the 
effects of CMP on those flags. 

TAS is a more complex instruction that TST. 
TAS can only work with a single byte, though the 
operand containing that byte can be addressed by 
any of eight different modes. The byte is examined 
and the Nand Z flags are set according to its value. 
Then the high-order bit of the byte is set (equal to 
1). A vital aspect of this instruction is that it uses 
a read-modify-write memory cycle. This way of 



reading memory makes TAS indivisible. In other 
words, TAS cannot be interrupted: no other device, 
CPU or peripheral, can get at that particular 
memory location while TAS is working on it. Ex­
ternal interrupt or bus requests are ignored while 
TAS is executing. The point of this is to allow you 
to set flags in memory that multiple devices can use 
to communicate with each other. 

If TAS could be interrupted, the following se­
quence of events could occur and disrupt process­
ing. The first processor checks the flag and finds 
it cleared (meaning the other processor hadn't 
touched it yet). The second processor interrupts the 
first, checks the flag, and then sets it. After the in­
terruption, the first processor goes back to what it 
is doing convinced the second processor hasn't 
checked the flag location. TAS, therefore, allows 
synchronization of independent processes. 

NEG means Negate. The destination value 
(there is no source) is subtracted from zero using 
two's complement binary arithmetic. The result is 
stored in the destination, replacing the former con­
tents. Because this is a subtraction operation, the 
flags are affected in the same way as with the SUB 
instruction. Although negation is a necessary tool 
in binary arithmetic, you will probably not use it 
until you have a firm grasp on binary algorithms. 
Figure 5-17 shows an example of negation. 

NEGX means Negate Extended and is a special 
form of NEG that affects the X flag. The operand 
and the X flag value are subtracted from zero. 
NEGX is intended to simplify multiple-precision 
arithmetic work, as are ADDX and SUBX. Figure 

5-16 expands on multiple-precision binary 
arithmetic. 

EXT extends the sign bit of a binary number. 
Its action is shown in Fig. 5-18. A binary number 
can be interpreted as signed or unsigned. When in­
terpreted as signed, the most significant bit is read 
as the sign of the number: a 0 means positive and 
a 1 means negative. The most-significant bit of a 
byte is in the Bit 7 position. For a word, it is in the 
bit 15 position, and for a long-word it is in the bit 
31 position. Because the 68000 can work on bytes, 
words, or long-words, the sign of a value could be 
forgotten or mistakenly manipulated. For instance, 
a data register that holds a negative number will 
have a 1 in the bit 31 position. If you then moved 
a positive word into the data register, the 1 would 
still be in a bit position 31 and so the data register 
value would still be interpreted as negative even 
though the bit 15 position (the sign bit of the moved­
in word) held a 0 (meaning positive). The solution 
is to extend the meaningful sign bit. In this case, 
EXT would be used to write the 0 sign bit in bit 
position 15 into all the bit positions up to and in­
cluding 31. If a byte is used, EXT extends the bit 
in position 7 up to and including bit 15. Some other 
instructions automatically sign-extend values to 
keep from corrupting results. 

See (for Set According to Condition) is put into 
the Program Control group of instructions by some 
books. Like some other Program Control instruc­
tions (Bcc and DBcc), Scc is a conditional instruc­
tion. It tests the flags for a programmer specified 
condition and only performs its set (1) task if the 

011010011S neg6ted by subtr6cting 1t from zero 
(but zero wil1 provide 6 higher bit for borrowing) 

100000000 
- 0 1 101001 

100 10 1 1 1 

So 10010111 is the result of the neg6tion. 

Fig. 5-17. Negation-NEG. 
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Byte 

00000000 00000000 00000000 100101 1 1 

becomes 

00000000 00000000 1 1 11 1 1 1 1 100101 1 1 

Word 

00000000 00000000 101 1 1 1 1 1 01000000 

becomes 

1 1 1 1 1 1 1 1 1 1 1 1 1 I 11 101 1 1 1 1 1 01000000 

Fig. 5-18. Sign extension-EXT. 

condition is met. The conditions the programmer 
can choose from are listed in Fig. 5-19. If the condi­
tion is true, the addressed byte is set to all Is. If 
the condition is false, the addressed byte is cleared 
to all Os. 

Decimal 

Although digital computers are built around 
binary Is and Os, not all arithmetic is done using 
the rules shown in Fig_ 5-15. The binary digits can 
be interpreted by a variety of codes. One of the 
popular codes is called BCD (for Binary Coded 
Decimal). BCD, illustrated in Fig. 5-20, uses groups 
of four bits to represent the numbers from 0 through 
9. This is a more direct translation of the decimal 
numbers people use when not thinking of com­
puters. Because much of the data we put into and 
take out of computers is in decimal number form 
already, using BCD saves some translation time. 
However, BCD numbers cannot work with the same 

60 

CC Carry Cleer 

CS Cerry Set 

EO Equal 
F False 
GE Greater or EQuel 
GT Greeter Then 
HI High 
LE Less or EQuel 
LS Low or Same 
L T Less Then 
MI Minus 
NE Not E quel 
PL Plus 
T True 
VC Overflow Clear 
VS Overflow Set 

Fig. 5-19. Sec conditions available. 



0000 = 0 0001 0000 = 10 

0001 = 1 0001 0001 = 11 

0010 = 2 0001 0010 = 12 
0011 = 3 00010011 = 13 
0100 = 4 00010100 = 14 
0101 = 5 
0110 = 6 0010 011 1 = 27 
0111 = 7 
1000 = B 0100 1000 = 4B 
1001 = 9 
1010 = i llegBl code 1 00 1 1 00 1 0 1 1 1 = 
1011 = i 11 egBl code 
1100 = ill egBl code 
1 101 = illegBl code 
1110 = i 11 egBl code 
1 1 1 1 = ill egBl code 

Fig. 5-20. BCD numbers. 

Addition 

1. Add bits with1n nlbbles by binBry rules. 
2 If the sum within B nibble is more thBn 9, 

6dd 6 to the sum Bnd move the Bppropri6te 
cBrry vBlues to the next higher nibble. 
(Adding 6 cBrries the vBlue PBst the 
illegBl codes) 

SubtrBct ion 

1. SubtrBet bits within nibbles by binBry 
rules 

2 If the result within B nlbble requ1res B 
borrow, remember to subtrBct six to 
move beyond the 111 egBl codes. 

Fig. 5-21. BCD addition and subtraction rules. 

997 
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arithmetic rules as standard binary numbers. The 
rules of BCD arithmetic ar shown in Fig. 5-21. 

The 08000 has three instructions for calculating 
with BCD data. These are shown in Fig. 5-22. 

ABCD means Add using BCD with extend. 
ABCD is quite similar to ADDX, which also adds 
two operands together and affects the flags (in­
cluding X). It is called "with extend" because it does 
affect the X flag and is therefore useful for multiple­
precision arithmetic. BCD multiple-precision work 
is done much the same as the binary multiple­
precision examples shown in Fig. 5-10 (using BCD 
rules, however). The Z flag is normally set before 
the addition. ABCD will interpret the operands it 
works with as BCD data, even if they are not. 

ABCD can add two operands that are in data 
registers or two operands that are in memory. The 
memory case is accomplished with the predecre­
ment addressing mode. 

SBCD subtracts BCD data and operates in the 
same way ABCD does, though of course subtrac­
tion replaces addition and the C flag is affected by 
borrows instead of carries. Decimal borrows are dif­
ferent from binary borrows. If you are going to use 
BCD arithmetic much, you should understand it well 
first, and be able to work some problems by hand. 

NBeD is Negate BCD with extend. Again, use 
NEG and ABCD as comparisons for this. The 
operand is negated by subtracting it and the X flag 
value from zero. The outcome of this operation is 
the ten's complement if the X flag equals 0 and the 
nine's complement if the X flag equals 1. NBCD can 
only work with bytes. 

Logical 

All digital computers make heavy use of logical 
operations. The 68000 provides the logical opera-
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Decimol 

ABCD 
NBCD 
SBCD 

Fig. 5-22. Decimal instructions. 

Loglcel 

AND 
OR 
EOR 
NOT 

Fig. 5-23. Logical instructions. 

tions shown in Fig. 5-23. If you do not know the 
AND, OR, EOR, and Nar functions, you'll need to 
learn them before doing any serious programming. 
Any introductory computer science text will in­
troduce you to them. As a quick introduction or 
review, Fig. 5-24 through Fig. 5-27 show each of 
those functions applied to two bytes. Logical opera­
tions are used to clear, set, and test specified bit 
positions of a byte, word, or long-word. 

AND compares a source and a destination 
operand bit position by bit position. Whatever bit 
positions are set (equal to 1) in both operands are 
also set in the result. The other positions are cleared 
(equal to 0) in the result. This operation is shown 
in Fig. 5-24. The result is stored in the destination 

AND 

o AND 0 = 0 
o AND 1 = 0 
1 AND 0 = 0 
1 AND 1 = 

so 

10110110 
AND 

00001 11 1 
00000110 

Fig. 5-24. AND operation. 



and the condition code flags are set according to that 
result. 

AND is typically used to mask off bits. By set­
ting one of the operands with a desired sequence 
of 1s and Os, you can clear any pattern of bit posi­
tions. Wherever a 0 appears in your constructed 
operand, that bit position in the result will be a 0 
regardless of the value in that bit position of the 
other operand. Try this for yourself on paper and 
see. 

AND! merely uses an immediate source 
operand and performs the same operation as AND. 
AND! had two special forms. 

AND! to CCR 
AND! to SR 

They perform the same AND operation, but they 
use some part of the status register as the 
destination. 

AND! to CCR works with a single immediate 
byte and the low-byte of the status register: the con­
dition codes register (CCR). This instruction helps 
you control the flag values. 

AND! to SR works with an immediate word and 
the full status register (SR). Because the System 
byte (the high byte) of the SR contains the flag that 

OR 

o OR 0 
o OR 1 
1 OR 0 
1 OR 1 

so 

= 0 
= 
= 
= 

10110110 
OR 

00001 1 1 1 
10111111 

Fig. 5-25. OR operation. 

controls Supervisor and User mode, this instruction 
is privileged. The processor must be in Supervisor 
mode to execute it. If the CPU is only in User mode, 
AND! to SR will not execute, and a Trap will be 
generated instead. 

OR compares a source and a destination 
operand bit position by bit position. Whatever bit 
positions are set (equal to 1) in either operand are 
also set in the result. The other bit positions (those 
that have Os in both operands) are cleared in the 
result. This operation is shown in Fig. 5-25. The 
result is stored in the destination and the condition 
code flags are set according to that result. 

OR is typically used to mask in bits. By setting 
one of the operands with a desired sequence of 1s 
and Os, you can set any pattern of bit positions. 
Wherever a 1 appears in your constructed operand, 
that bit position in the result will be a 1, no matter 
what value that bit position of the other operand 
has. Again, try this for yourself on paper and see. 
Masking is something you should develop a facility 
for. It is about the only part of assembly language 
where you'll actually care about individual bit values 
(except for flags contents). Masking is particularly 
important in 110 operations. 

OR! uses an immediate source operand and per­
forms the same operation as OR. ORI has two 
special forms also. 

ORI to CCR 
ORI to SR 

They perform the same OR operation, but they use 
some part of the status register as the destination. 

OR! to CCR works with a single immediate byte 
and the low-byte of the status register: the condi­
tion codes register (CCR). This instruction helps you 
control the flag values. 

OR! to SR works with an immediate word and 
the full status register (SR). Because the System 
byte (the high byte) of the SR contains the flag that 
controls Supervisor and User mode, this instruction 
is privileged. The processor must be in Supervisor 
mode to execute it. If the CPU is only in User mode, 
ORI to SR will not execute, and a Trap will be 
generated instead. 
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EOR 

o EOR 0 = 0 
o EOR 1 = 
1 EOR 0 = 1 
1 EOR 1 = 0 

so 

10110110 
EOR 

00001 111 
10111001 

Fig. 5-26. EOR operation. 

EaR compares a source and a destination 
operand bit position by bit position. Whatever bit 
positions are set (equal to 1) in one or the other 
operand, but not in both, are also set in the result. 
The other bit positions (those that have Os in both 
operands) are cleared in the result. The operation 
is shown in Fig. 5-26. The result is stored in the 
destination and the condition code flags are set ac­
cording to that result. 

EOR is used to invert bits. By setting one of the 
operands with a desired sequence of Is and Os, you 
can invert chosen bit positions of the result. 
Wherever a 1 appears in your constructed operand, 
or mask, the value of that bit position in result will 
be the opposite of the value of that bit position in 
the second operand. Check this out by doing it, bit 
by bit, on paper. 

EaRl uses an immediate source operand and 
performs the same operation as EOR. EORI has two 
special forms. 

EORI to CCR 
EORI to SR 

They perform the same EOR operation, but EaRl 
to CCR works with a single immediate byte and the 
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low-byte of the status register (the condition codes 
register (CCR). This instruction helps you control 
the flag values. 

EaRl to SR works with an immediate word and 
the full status register (SR). Because the System 
byte (the high byte) of the SR contains the flag that 
controls Supervisor and User mode, this instruction 
is privileged. The processor must be in Supervisor 
mode to execute it. If the CPU is only in User mode, 
EORI to SR will not execute, and a Trap will be 
generated instead. 

NOT complements the value of the destination 
. and then stores that new value in the destination. 

As shown in Fig. 5-27, the one's complement (which 
is the type used in this instruction) of a value 
changes all the Is to Os and the Os to Is. 

Shift and Rotate 

This group of functions doesn't correspond to 
high-level language functions as do the groups 
previously described. Still, the ability to move or 
change the contents of an operand within that 
operand's location is useful. As you will see, shift 
and rotate instructions perform similar functions. 
Figure 5-28 lists the 68000's shift and rotate in­
structions. 

The bits of any location, register or memory, 
are numbered. Figure 5-29 shows the appropriate 

NOT 

NOT 0 = 
NOT 1 = 0 

so 

NOT 
10110110 
01001001 

Fig. 5-27. NOT operation. 



ASL 
ASR 
LSL 
LSR 
ROL 
ROR 
ROXL 
ROXR 

Fig. 5-28. Shift and rotate instructions. 

scheme for both registers and memory locations on 
the 68000. The least significant bit is typically 
shown on the right, just as it true of binary numbers 
themselves. The bit positions traditionally start at 
o because bit string that are interpreted directly as 
binary numbers give the symbol in that position the 
value of 2 to the 0 power. In tum, each bit position 
to the left adds one to the power, as shown in Fig. 
5-30. The result of this is that the most significant 
bit of an 8-bit byte is bit position 7; and of a 32-bit 
long-word is bit position 31. 

The bit positions are storage cells that can hold 
either a 1 or a o. Shift and rotate instructions move 
the values sideways from one bit position to the next 
through a register or memory location instead of 
transferring complete sets from one location to 
another. 

Shift Instructions. LSL is called Logical 
Shift Left and is shown in Fig. 5-31. The term logical 
is used to differentiate this from arithmetic shifting, 
which will be described later in this section. LSL 
moves the bit values to the left, or toward the more 
significant bit position. 

If you are using LSL on a register operand, you 
can choose the number of bit positions in the shift. 
A shift of one bit will move whatever was in the bit 
o position to the bit 1 position. the former bit 1 posi­
tion value will be in the bit 2 position. Either im­
mediate (for a shift of from 1 to 63 bits) data can 
specify the size of the shift. 

The differences in shift operations normally ap­
pear in their treatment of the end bits. In other 
words, what happens to the bit that is shifted off 
the end of the operand and what appears in the bit 
position that is at the other end of the operand? 

LSL feeds zeros into the least significant bit 
position. That is, the position that has a bit shifted 
out of it and no bit below it to shift in will be cleared. 
In fact for each bit position of shift, a zero will be 
put into the shifting string of values. A 3 bit posi­
tion shift will put zeros in bit positions 0, 1, and 2. 
the arithmetic left shift, ASL, also feeds zeros into 
the least significant bit position. 

LSL puts copies of the last value to be shifted 
out (of the most significant bit position) into both 
the C and X flags. the most significant bit position 

Regl sters 

31 30 29 28 27 26 2S 24 23 22 21 20 19 18 1 7 16 1 S 14 1 3 12 11 10 9 8 7 6 S 4 3 2 1 0 

Memory 

1514131211109876 S 4 3210 

Fig. 5-29. Bit positions of registers and memory. 
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Bit Position 

P . t· Power of 2 
OSl 10n /"'" 

Value "- Decimal 

Fig. 5-30. Numeric values of bit positions. 

doesn't have to be the bit 31 of a register. When 
shifting register contents, you can specify byte, 
word, or long-word shifts. The most significant bit 
positions of those various operand sizes differs. If 
you choose to shift a byte one bit position to the left, 
the former bit position 7 value will be copied into 
both the C and X flags. If you shifted that byte two 
bit positions instead of one, the former bit position 
6 value would appear in the C and X flags, and the 
original bit position 7 value would just disappear. 

LSR, Logical Shift Right, is similar to LSL. The 
main difference, naturally, is that LSR moves the 
bit values to the right, or toward the more signifi­
cant bit position as shown in Fig. 5-32. As with LSL, 
there is an arithmetic right shift relative to LSR, 
called ASR, that will be discussed further on in this 
section. 

If LSR is working on a register operand, you 
can choose the number of bit positions in the shift. 
A shift of one bit will move whatever was in the bit 
1 position to the bit 0 position. The former bit 2 posi­
tion value will be in bit 1 position. Figure 5-33 shows 
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the LSR shift. Either immediate (for a shift or from 
1 to 8 bit positions) or register (for a shift of from 
1 to 63 bits) data can specify the size of the shift. 
As mentioned above,the orthogonality of the in­
struction set makes the sizing rules for LSL and 
LSR virtually the same. 

LSR feeds zeros into the most significant bit 
position. That position has a bit shifted out of it and 
no bit above it to shift in. It is cleared for each bit 
position of shift. A 3 bit position shift of a long-word 
will put zeros in bit positions 29, 30, and 3l. 

The most significant bit position doesn't have 
to be the bit position 31 of a 32-bit register. When 
shifting register contents, you can specify byte, 
word, or long-word shifts. The most significant bit 
position of those various operands sizes differs. If 
you choose to shift a word one bit position to the 
right, the former bit 0 value will be copied into both 
the C and X flags. If you shifted that byte two posi­
tions instead of one, the former bit 1 value would 
appear in the C and X flags, and the original bit 0 
value would just disappear. 

LSL of Memory Word 
15 14 13 12 11 10 9 B 7 6 5 4 3 2 0 

o 

Fig. 5-31. LSL operation. 
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Most Significant Least Significant 

115 14 13 12 10 11 9 8 7 6 5 4 3 2 01 

Fig. 5-32. Most Significant and least significant bit positions. 

ASL is called Arithmetic Shift Left. The term 
arithmetic is used to differentiate this from the 
logical shifts described earlier. ASL moves the bit 
values to the left, or toward the more significant bit 
position just as LSL does. The difference between 
the two instructions is in what happens at the ends 
of the operand. 

If ASL is working on a register operand, you 
can choose the number of bit positions in the shift. 
A shift of one will move whatever was in the bit ° 
position to the bit 1 position. The former bit 1 posi­
tion value will be in bit 2 position. Figure 5-34 shows 
the ASL shift. Either immediate (for a shift of from 
1 to 8 bit positions) or register (for a shift of from 
1 to 63 bits) data can specify the size of the shift. 

The differences in shift operations on any 
microprocessor normally appear in their treatment 
of the end bits. In other words, what happens to the 
bit that is shifted off the end of the operand and 
what appears in the bit position that is at the other 
end of the operand? 

LSL feeds zeros into the least significant bit 
position. That is, the position that has a bit shifted 
out of it and no bit below it to shift in will be cleared 
for each bit position of shift. A 3-bit position shift 

will put zeros in bit positions 0, 1, and 2. The 
arithmetic left shift, ASL, also feeds zeros into the 
least significant bit position. 

ASL puts copies of the last value to be shifted 
out of the most significant bit position into both the 
C and X flags. The most significant bit position 
doesn't have to be the bit 31 of a register. When 
shifting register contents, you can specify byte, 
word, or long-word shifts. The most significant bit 
positions of those various operand sizes differs. If 
you choose to shift a byte one bit position to the left, 
the former bit 7 value will be copied into both the 
C and X flags. If you shifted that byte two bit posi­
tions instead of one, the former bit 6 value would 
appear in the C and X flags, and the original bit 7 
value would just disappear. 

ASL puts a zero in the least significant bit posi­
tion. That is why ASL is called an arithmetic shift. 
Shifting an operand one bit position to the left is 
the same thing as multiplying it by two. This fact 
is often used in complicated mathematical 
algorithms as long as no new digits are added to 
the operand. Shifting two bit positions to the left 
is the equivalent of multiplying by four, and so on. 
lf some value other than a ° were put in the least 

LSR of Memory Word 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

o 

Fig. 5-33. LSR operation. 
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ASl of Memory Word 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Fig. 5-34. ASL operation. 

significant bit position (bit O) this relationship 
wouldn't be true. 

ASR is called Arithmetic Shift Right. The term 
arithmetic differentiates this from the logical shifts 
described earlier. ASR moves the bit values to the 
right, or toward the less significant bit position just 
as LSR does. The difference between the two in­
structions is in what happens at the ends of the 
operand. 

If ASR is working on a register operand, you 
can choose the number of bit positions in the shift. 
A shift of one bit will move whatever was in the bit 
1 position to the bit 0 position. the former bit 2 posi­
tion value will be in bit 1 position. Figure 5-35 shows 
the ASR shift. Either immediate (for a shift of from 
1 to 8 bit positions) or register (for a shift of from 
1 to 63 bits) data can specify the size of the shift. 

Unlike LSR, which feeds zeros into the most 
significant bit position, ASR puts a copy of the 
original most significant bit value into that position. 

o 

In other words, the most significant bit value won't 
change, no matter how many bit positions are 
shifted. This means the sign value won't change. 
Furthermore, the two's complement binary 
arithmetic used requires that the top bit be repeated 
for the digits of the operand not to be altered. The 
outcome is that ASR works as a division operation. 
Each shift of a bit position to the right equals a divi­
sion by two. 

A point to keep in mind is that when shifting 
register contents, you can specify byte, word, or 
long-word shifts. The most significant bit positions 
of those various operand sizes differs. The bit that 
is repeated may be bit 7 (of a byte), bit 15 (of a 
word), or bit 31 (of a long-word). 

ASR puts copies of the last value to be shifted 
out of the least significant bit position into both the 
C and X flags. If you choose to shift a word one bit 
position to the right, the former bit 0 value will be 
copied into both the C and X flags. If you shifted 

ASR of Memory Word 

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0 

Fig. 5-35. ASR operation. 
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ROL of Memory Word 

c 15 14 13 12 11 10 9 B 7 6 5 4 3 2 o 

Fig. 5-36. ROL operation. 

that word two bit positions instead of one, the 
former bit 1 value would appear in the C and X 
flags, and the original bit 0 value would just 
disappear. 

Rotate Instruction. The shift instructions 
move the bit that falls off the end of the register or 
memory location into the C and X flags. Rotations 
move the bit around and put it back into the opposite 
end of the register or location. 

ROL stands for Rotate Left. The action of this 
instruction is shown in Fig. 5-36. The bit values are 
moved to the left, more-significant end of the 
register or memory location. The bit value that 
moves out of the most significant bit position is 
moved into the C flag and the least significant bit 
position (bit 0). 

Remember, as mentioned in the discussion of 
the Shift instructions, the most significant bit posi­
tion will not necessarily be the highest bit of the 
register. Although memory locations can only work 
with word operands, registers can work with byte, 
word, or long-word operands. That means the most 
significant bit position in your operation on a 
register operand can be bit 7 (for a byte), bit 15 (for 
a word), or bit 31 (for a long-word). 

You can choose the number of bit positions in 
the rotation. Immediate data can specify a rotation 
of from 1 to 8 bit positions. You may notice that a 
rotation of as many as 63 bits will be to loop the 
values through the register or location more than 
once. That is ok. Modulus arithmetic sometimes re­
quires that sort of manipulation. 

ROR of Memory Word 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o c 

Fig. 5-37. ROR operation. 
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ROXL of Memory Word 

x c 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

Fig. 5-38. ROXL operation. 

ROR is a rotation right. This instruction uses 
the same rules except that the rotation direction is 
reversed from ROL. Figure 5-37 shows ROR's per­
formance. 

Because ROR moves the bits to the right, the 
bit that falls off and is copied into the C flag comes 
from the least-significant bit position. 

ROXL is Rotate Left with Extend. That with 
Extend simply means that the X flag is put into the 
rotation loop (this is shown in Fig. 5-38). While ROL 
moves the last, most significant drop-off bit into the 
C flag, that flag is not actually in the loop. The drop­
off bit also is rotated directly into the least signifi­
cant bit position. ROXL puts the X flag in between 
the most significant and least significant bit posi­
tions, so that bits move from the most significant 
bit, to the X flag, and then to the least significant 

bit. The first bit value to be shifted into the least 
significant bit position comes from the X flag. The 
C flag still receives a copy of the same bit that will 
also go into the X flag. 

ROXL offers the same choices of operand size 
and number of rotation positions as ROL. Registers 
can be shifted from 1 to 63 bit positions and can 
operate on bytes, words, or long-words. Memory 
locations can only work with words. 

ROXR is Rotate Right with Extend. Figure 5-39 
shows its action. ROXR works just like ROXL ex­
cept that the rotation is to the right. The X flag is 
put between the least significant and the most 
significant bit positions. 

Bit Manipulation 

These instructions can work on individual bits, 

ROXR of Memory Word 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o x c 

Fig. 5-39. ROXR operation. 
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BTST 
B5ET 
BCLR 
BCHG 

Fig. 5-40. Bit manipulation instructions. 

instead of bytes, words, or long-words. Figure 5-40 
lists the four 68000 bit manipulation instructions. 

BTST is the Test a Bit instruction. BTST simp­
ly tests the value of a particular bit location and then 
uses the Z flag to communicate that value to you. 
If the Z flag is set (equal to 1), the tested bit was 
zero. If the Z flag is cleared (equal to 0), the tested 
bit was equal to 1. That may sound contradictory; 
it is. But what choice did the designers have? If they 
had reflected the bits value directly in the Z flag, 
the same logic of "setting if the condition is met" 
that is used for other flags couldn't have been used 
for the Z flag. That, in tum, would have seemed con­
tradictory. 

BSET is called Test a Bit and Set. After testing 
the particular bit, BTST only works on the Z flag. 
BSET tests the particular bit, works on the Z flag, 
and then sets (equal to 1) the tested bit. The Z flag 
is used in the same way as described above for 
BTST. 

BCLR is called Test a Bit and Clear. Like BSET 
and BTST, BCLR tests a single bit and then uses 
the Z flag to report the value. BCLR, however, then 
clears the tested bit. 

BCHG is Test a Bit and Change. As you might 
guess from the previous descriptions, BCRG tests 
a particular bit, reports the value in the Z flag, and 
then changes the value of the tested bit to the op­
posite of whatever it originally was (a 1 in that posi­
tion would become a 0 and a 0 would become a 1). 

Program Control Operations 

The Program Control instructions, listed in Fig. 
5-41, are used in loops, jumps, and subroutines. 
There are three subgroups within this main group. 

Unconditional Branches and Jumps. 
These are the easiest program control instructions 
to understand. Any of these instructions forces the 
program to continue processing at a new position 
within the program. Program instructions are nor­
mally written in a sequence in memory. The address 
of the instruction that is to be executed next is kept 
in the PC (Program Counter) register. Unconditional 
control instructions put a new value into the PC so 
that processing will continue at a new address. 

BRA means Branch Always. Branching is a 
computerese term that means changing to another 
part of the program. BRA uses Program Counter 
with displacement addressing mode to find the new 
PC value. This mode adds an 8- or 16-bit, two's com­
plement number to the old PC value. This means 
that a new PC value between 32766 bytes behind 

Cond! t 1 on6l 

Bee 
DBee 
See 

UneondH ionel Returns 

Fig. 5-41. Program control instructions. 

BRA 
BSR 
JMP 
JSR 

RTR 
RTS 

71 



or 32769 bytes ahead of the old value can be used. 
8-bit microprocessors are normally limited to 8-bit 
displacement values, which only allows jumps to 
-126 to + 129 bytes. The forward and backward 
values are not equal for two reasons. 

First, two's complement representation allows 
a larger negative number than positive number with 
a limited number of bits. More importantly, the 
displacement is from the PC value at the end of the 
BRA instruction. That value has been incremented 
by two (because that is the length of the BRA in­
struction) from the beginning of BRA. When you 
use machine code you have to keep this rule in mind. 
When you use assembly language, however, you on­
ly need calculate from the beginning of the BRA 
instruction; the assembler will automatically sub­
tract two from your suggested branch displacement. 

BSR means Branch to Subroutine. This instruc­
tion is almost identical to BRA. The difference is 
that BSR saves the address of the next instruction 
on the stack before adding the displacement value 
to the PC. The advantage of BSR and the reason 
that subroutine is in the name is that processing can 
return to the saved address after the subroutine is 
complete. If BRA were used, the CPU wouldn't 
know where to return to. RTS returns processing 
after a subroutine and is explained below. 

It is a good programming habit to use labels in­
stead of absolute displacement values for branching 
addresses. Labels keep the program code flexible: 
slight changes will not ruin labeled code but they 
can totally disrupt absolute code. Chapter 9 explains 
labels in more detail. 

IMP (which stands for Jump) forces processing 
to continue at a new address. The major difference 
between JMP and BRA is that while BRA can on­
ly use the Program Counter Relative with Displace­
ment addressing mode, JMP can use any of seven 
different addressing modes to find the new PC 
value. That flexibility means that JMP can force 
processing to any point in the 68000's address space. 
JMP is an unconditional program control statement. 

ISR (Jump to Subroutine), like BSR, saves a 
value on the stack so that processing can return to 
its present position after the subroutine is pro­
cessed. The value saved is the address of the instruc-
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tion right after JSR. JSR is an unconditional jump 
and can use any of the seven addressing modes JMP 
uses. RTS, explained below, is the instruction used 
to return processing after the subroutine. 

Conditional Branches and Jumps. Con­
ditional means the branch or jump isn't always 
made. If the state of the flags isn't right, the condi­
tional instruction will perform no function at all ex­
cept to increment the PC (so the next instruction 
will be addressed). 

Bee stands for Branch Conditionally. Like BRA, 
Bcc changes the PC value using Program Counter 
Relative with Displacement mode to execute a dif­
ferent part of the program. Bcc, however, first 
checks to see if a certain condition is met. The con­
ditions the programmer can choose from are listed 
in Fig. 5-42. Once one of these conditions is added 
to the root Bcc instruction, the mnemonic changes. 
For instance, the instruction to "branch if the 
overflow is set" is coded as follows: 

BVS 

The second and third letters signifying the con­
dition. Some of the conditions are straightforward. 
For example, Carry Set and Carry Clear simply 

CC Carry Cl ear 
CS Carry Set 
EQ Equal 
GE Greater or EQuel 
GT Greeter Then 
HI High 
LE Less of Equal 
LS Low or Same 
L T Less Than 
MI Minus 
NE Not Equal 
PL Plus 
VC Overflow Clear 
VS Overfl ow Set 

Fig. 5-42. Bcc conditions available. 



(N AND V AND (NOT Z)) OR ((NOT N) AND (NOT Y) AND (NOT Z)) 

N*Y*Z + N*Y*Z 

N, V, and Z are the Negative, Overflow, and Zero Flags 

Fig. 5-43. Boolean equation for the "greater than" condition. 

refer to the value of the C (carry) flag. Other condi­
tions are more complex. "Greater than" can be 
represented by a Boolean equation as shown in Fig. 
5-43. Boolean Algebra is a special mathematics that 
is often used in computer science. The logical in­
structions described earlier in this chapter (AND, 
OR, EOR, NOT) are the basic ingredients of 
Boolean Algebra. Those ingredients are then com­
bined into more complicated, compound statements. 
Don't worry if you don't understand them when you 
begin programming; you won't need to use them. 
The same warning about using labels instead of ab­
solute displacements and the discussion of the 
distance you can branch that accompanied the BRA 
instruction above, also apply to Bcc. 

If the condition is met, the branch is made. If 
the condition is not met, the branch isn't made, and 
processing continues with the instruction following 
Bce. 

DEee is called Test Condition, Decrement, and 
Branch (though the mnemonic looks more like 
Decrement and Branch on Condition). Many 
microprocessors have an instruction such as this one 
that helps the programmer set up loops. Loops, 
where processing repeats itself more than once, are 
very useful structures in programs. Programs 
typically use a counter to know how many times to 
process through a loop. This is a value stored in a 
particular place that specifies how many times to 
loop. 

DBcc first tests a condition, just as Bcc does. 
(DBcc does have two more condition choices than 
Bcc has: the full DBcc set is shown in Fig. 5-44.) 

As with Bcc, the DBcc instruction mnemonic takes 
on the two letters of the condition. Test for Equal, 
Decrement, and Branch is coded as follows: 

DBEQ 

You will never see DBcc in a program. Two con­
dition letters must take the place of the cc. 

lf the chosen condition is met, no operation is 
performed and processing continues with the in-

CC Corry Clear 
CS Corry Set 
EQ Equal 
F False 
GE Greater or Equal 
GT Greater Than 
HI High 
LE Less or Equal 
LS Low or Some 
LT Less Than 
MI Minus 
NE Not Equal 
PL Plus 
T True 
VC Overflow Clear 
VS Overflow Set 

Fig. 5-44. OBcc conditions available. 
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struction after DBcc. If the condition is not met, the 
next stage of DBcc takes place. The value of the 
low word of a specified data register, called the 
counter, is decremented by 1. If the counter then 
equals -1, the counter is exhausted. That is, the 
counter has counted all the way down. In that case, 
processing continues with the instruction after 
D Bcc. If the counter is not yet equal to -1, a branch 
is made. A displacement value is added to the PC 
just as BRA would make. Using labels is also a good 
idea with DBcc. 

The actions of DBcc can be summarized as 
follows: 

1. The condition is tested. A true condition 
sends processing to the next instruction. This is the 
opposite of what is normally implemented. Most in­
strucitons would perform the branch if the condi­
tion were true. In fact, Bcc is the opposite of this: 
Bcc makes the branch if the condition is met (is 
true). 

2. If the condition was false, the counter is 
decremented. Once the counter reaches -1, the pro­
cessing continues with the next instruction. If the 
counter hasn't reached -1 yet, the branch is made. 

The branch will typically send processing back 
to repeat instructions just executed. In the way, 
DBcc is the last instruction in a loop which will 
repeat until the condition changes or the counter 
reaches -1. By setting the counter properly, the pro­
grammer can control the number of times the pro­
gram runs through the loop. 

Return Instructions. These instructions 
bring the program back, or return It, after a 
subroutine has been processed. They differ in what 
values they retrieve from the stack. 

RTS is the basic return instruction. Return from 
Subroutine pulls a value from the stack and puts 
it into the program counter. Processing then con­
tinues at the new PC location. If the PC value was 
saved before a subroutine was processed, and the 
subroutine didn't alter the stack, processing will 
have returned to the instruction after the branch or 
jump to subroutine instruction. 
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RTR (Return and Restore Condition Codes) 
does just a bit more work than RTS. RTR first pulls 
the condition codes off of the stack, then it pulls the 
PC value off. Just as with RTS, processing will 
return to the point after the subroutine branch or 
jump, but RTR will have restored more of the CPU's 
status because the flags will have their previous 
value. 

RTE (Return from Exception) is a privileged in­
struction. If the CPU is in supervisor state, RTE 
will put the complete SR (shift register) value and 
then the PC value off of the stack. (The Supervisor 
stack is used because the 68000 is in Supervisor 
mode.) If the CPU isn't in Supervisor mode, RTE 
will generate a Trap. 

System Control 

The 68000 System Control instructions that are 
listed in Fig. 5-45 deal with the status register, the 
condition codes, or traps and are divided into three 
groups: privileged, Trap generating, and condition 
code register. 

Privileged. These instructions are privileged 
to restrict User programs from changing the system 
status. Most can alter the status register contents. 
Privileged instructions will only execute when the 
CPU is in Supervisor mode. If the CPU is in User 
mode, a Trap will be generated (Chapter 7 describes 
Exceptions and Traps). 

ANDI to SR, EORI to SR, ORI to SR, MOVE 
to SR, MOVE USp, and RTE have all been de­
scribed earlier in this chapter. AND! to SR, EORI 
to SR, and ORI to SR in the section on Logical In­
structions; MOVE to SR and MOVE USP in the 
section on Data Movement instructions; and RTE 
in the Program Control section. 

RESET asserts the Reset line (signal wire) 
which resets all external devices. Processing then 
continues with the next instruction. 

STOP loads the immediate word (the second 
word of the STOP instruction) into the status 
register (SR). The PC is incremented as it would 
be with any instruction and then the CPU stops. 
While stopped, no instructions are fetched or ex­
ecuted. The CPU will remain stopped until a trace, 
interrupt, privilege, or reset exception occurs. 



Prlvlleged 

ANDI to SR 
EORI to SR 
MOVE EA to SR 
MOVE SR to EA 
MOVE USP 
ORI to SR 
RESET 
RTE 
STOP 

Trep Generetlng 

CHI( 
TRAP 
TRAPV 

Fig. 5-45. System control instructions. 

1. If the T (trace) bit of the status register is 
set (meaning the CPU is the trace state) a trace ex­
ception will occur when STOP is executed. 

2. Any interrupt request which has priority 
higher than the current processor priority (which 
is stored as the interrupt priority mask in the status 
register) will cause an interrupt exception. A lower 
priority interrupt request will have no effect. 

3. If the value loaded into the status register 
clears the S bit (the Supervisor mode flag), a 
privilege violation exception will occur immediately. 

4. An external reset (a low pulse on the reset 
line) will always generate a reset exception. 

Condition Code Register. These instruc­
tions manipulate the low byte of the status register. 
That byte contains the X, N, Z, V and C flags. AN­
DI to CCR, EORI to CCR, ORI to CCR, and MOVE 
to CCR have all been described earlier in this 
chapter: ANDI to CCR, EORI to CCR, and ORI to 
CCR in the Logical section; MOVE to CCR in the 
Data Movement section. 

'!rap Generating. Traps are a particular sort 
of internal interrupt that the 68000 uses to control 
processing. They are described in detail in Chapter 
7. 

CHK can Check a value against set limits. If 
the value is outside those limits, an exception is 
generated and regular processing ceases while ex-

Condition Code Register 

ANDI toCCR 
EORI to CCR 
MOVE CCR to EA 
ORI to CCR 

ception processing takes over. 
CHK examines the low word of a data register 

and compares it to a specified upper bound (a two's 
complement integer that can be addressed with any 
of 11 addressing modes). If the examined data 
register word is less than zero or greater than the 
upper bound, a Trap is generated. Normal process­
ing ceases and exception processing begins with the 
CHK exception vector. CHK is very useful for a 
quick and easy check to see that a number, such as 
an array size, hasn't been exceeded. 

TRAP generates a Trap and initiates exception 
processing. Any of 16 different Trap vectors can be 
specified by immediate data. The vector specifies 
at what address the exception processing should 
begin. 

TRAPV, called Trap on Overflow, is a condi­
tional form of the TRAP instruction. TRAPV ex­
amines the V (overflow) flag and generates a trap 
if that flag is set (equal to 1). The exception pro­
cessing takes place at the TRAPV vector address. 
If the V flag is not set, processing continues with 
the instruction after TRAPV. 

Nothing Instructions 

This is not a joke category. Most 
microprocessors have such instructions. On the 
68000 they are called NOP and ILLEGAL (shown 
in Fig. 5-46). 
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NOP 
ILLEGAL Fig. 5-46. Nothing instructions. 

NOP stands for No Operation. All this instruc­
tion does is increment the PC (Program Counter) 
so the next instruction is ready to execute. Why have 
it at all? A finite length instruction can help in 
building timing loops. Having a harmless filler can 
also give you extra space in a program while you 
are still debugging that program. 

ILLEGAL is a very interesting instruction. Us­
ing it will cause an illegal instruction exception. In 
fact, that is what will happen when the CPU tries 
to execute any object code that doesn't represent 
one of the instructions listed in this chapter. The 
difference with the particular illegal instruction code 
of this instruction and all other illegal instruction 
codes is that Motorola promises that this code will 
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remain illegal. While future, improved chips (such 
as the 68020) will use some of the object codes that 
are illegal on the 68000 for their own legal instruc­
tions, the ILLEGAL object code will remain illegal 
through all future chips. 

Why have this instruction at all? So that the pr0-

grammer can work with the Illegal instruction ex­
ception and yet write upwardly compatible code. By 
using ILLEGAL instead of some random object 
code, the programmer is ensuring that the program 
will run the same way on future 6800 family chips. 

SUMMARY 

Those are all of the 68000 instructions. While this 
chapter attempted to describe them briefly and 
show their relation to other 68000 instructions. 
Chapter 6 shows the actual code, condition code ef­
fects, and addressing modes for each and every in­
struction. 
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Data ~ (8) 

Address ~ (8) 

SP ~ SP 

PC 0 

~ 
eaooo 

Instruction Set 
T HE PREVIOUS CHAPfER DESCRIBES WHAT AN 

instruction is and what general categories of 
instructions the 68000 provides to the programmer. 
This chapter describes all of the 68000 instructions 
individually. It does not cover the instructions that 
are specific to the other 68000 CPUs (such as the 
68020). 

The instructions are listed alphabetically by 
their mnemonics (remember that the mnemonics 
are the abbreviated instruction names used in 
assembly language). The information vital to pro­
grammers appears at the top of the listing: 
mnemonic, definition (the full name of the instruc­
tion), description (what the instruction does), ad­
dressing (which addressing modes you can use), 
operand size (byte, word, and long-word), flag ef­
fects (which condition codes are affected and how), 
and notes (special aspects of the instruction or pit­
falls to watch out for). Following these elements is 
a breakdown of the binary object code for the in-

struction (this bit by bit description of the instruc­
tion is important to a complete understanding of 
how microprocessors are designed and built, but is 
not necessary for programming). Assembly 
language syntax (the way the instruction is written) 
depends on the addressing mode used. Read 
Chapter 4 to learn how the different modes are 
written. 

If you don't know the mnemonic for a particular 
instruction, check in the instruction groups in 
Chapter 5. For instance, if you want to do some BCD 
arithmetic, check in the Decimal group. Then, when 
you find a particular instruction (such as ABCD for 
BCD addition) come back to the individual descrip­
tions in this chapter. 

Browsing through these instructions is a great 
way to glimpse the power of the 68000. Once you 
know some instructions, a few addressing modes, 
and the assembly language format, you'll be ready 
to experiment with assembly language. 
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ABeD 
Definition: add decimal (with extend). 
Description: ABCD adds the least significant byte (the bottom byte) of source 
operand, and the value of the extend flag, to the least significant byte of the destina­
tion. It then stores the result in the destination. The term decimal means that this 
addition is done with BCD (Binary Coded Decimal) arithmetic. ABCD has two 
major cases, register-to-register and memory-to-memory. 

1. Register-to-register uses data registers for both source and destination. 
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified 
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is 
decremented (predecrement addressing mode). 
Addressing: 

1. Register-to-register. Data Register Direct mode is used for both source 
and destination. (The values are stored in registers and are specified directly by 
the instruction). 

2. Memory-to-memory. Address Register Indirect mode is used for both 
source and destination (the instruction specifies the address registers that hold 
the memory addresses of both source and destination). Before the values in the 
address registers are used, they are decremented by 1. This helps in multibyte 
BCD addition. 
Operand size: byte. 
Instruction length: 1 word. 
Condition code effects: 
C Set if a decimal carry results from the operation; otherwise cleared. 
X Set if a decimal carry results from the operation; otherwise cleared. 
Z Cleared if the result is not equal to zero; unchanged if the result equals 

zero. 
N Undefined (could be set or cleared). 
V Undefined (could be set or cleared). 

Object code: 
1. Register-to-register: 1100aaa100000bbb 

Breakdown 
1100: ABCD instruction. 
aaa: Destination data register. 
100000: Specifies register-to-register case. 
bbb: Source data register. 

2. Memory-to-memory: 1100aaa1000001bbb 

Breakdown 
1100: ABCD instruction. 
aaa: Destination data register. 
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100001: Specifies memory-to-memory case. 
bbb: Source data register. 

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result. 

ADD 
Definition: add (binary). 
Description: ADD adds the contents of the source to the contents of the destina­
tion and stores the result in the destination. There are two forms of this instruc­
tion that differ only in addressing (as described in the next paragraph). 
Addressing: ADD can be used with any of a large number of addressing modes. 
The two forms of this instruction offer different addressing choices. 

1. Data Register Direct destination. The destination must be addressed by 
Data Register Direct mode. Any addressing mode can be used for the source. 

2. Data Register Direct source. The source must be addressed by Data 
Register Direct mode. Almost any addressing mode (except Program Counter 
Relative with Displacement, Program Counter Relative, or Immediate) can be 
used for the destination including: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. As noted below, bytes cannot be used with 
Address Register Direct mode. 
Instruction length: 1 word. 
Condition code effects: 
C Set if a carry occurs; otherwise cleared. 
X Set if a carry occurs; otherwise cleared. 
Z Set if the result is zero; otherwise cleared. 
N Set if the result is negative; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 

Object code: 1l01aaabccdddeee 

Breakdown 
1101: ADD instruction. 
aaa: Data register number (for either source or destination Data Register Direct 

addressing). 

79 



b: Operating mode. 
o means the data register is the destination. 
1 means the data register is the source. 

cc: Size specification. 
00 means byte. 
01 means word. 
10 means long-word. 

ddd: Addressing mode. 
eee: Addressing register number. 

Notes: If Address Register Direct addressing is used, the operand size cannot be 
specified as byte because address registers cannot work with bytes (only with words 
and long-words). 

ADDA 
Definition: add address. 
Description: ADDA is a special case of the ADD instruction. ADDA adds the source 
operand to the specified address register and stores the result in that address 
register. 
Addressing: The destination is only reached by Address Register Direct mode. 
Any mode can be used for the source operand. 

Data Register Direct 
Address Register Direct 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: words or long-words. The full destination address register is used 
no matter which operand size is chosen. A word source-operand will be size­
extended to a long-word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 1101aaab11cccddd 

Breakdown 
1101: ADDA instruction. 
aaa: Address register (destination). 
b: Size specification. 

o means word. 
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1 means long-word. 
11: ADDA instruction continued. 
ccc: Source addressing mode. 
ddd: Source addressing register. 

Definition: add immediate. 
ADDI 

Description: ADD! adds immediate data (which is contained in the next byte or 
bytes of the instruction) to the specified destination operand. The result is stored 
in the destination. 
Addressing The source is addressed by Immediate mode. The destination is 
reached any of: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 2 words (if the immediate data is a byte or a word, the first 
word is the instruction and the second contains the data); 3 words (if the immediate 
data is a long-word, the first word is the instruction and the next two are the long­
word data). 
Condition code effects: 
C Set if a carry occurs; otherwise cleared. 
X Set if a carry occurs; otherwise cleared. 
Z Set if the result is zero; otherwise cleared. 
N Set if the result is negative; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 

Object code: First word (00000110aabbbccc) 
Second word (immediate data) 
Third word (immediate data) 

00000110: ADD! instruction. 
aa: Size specification. 

00 means byte. 
01 means word. 

Breakdown 

10 means long-word. If a byte is specified, the low-order byte of the next in­
struction is used by the assembler. 

bbb: Destination addressing mode. 
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ccc: Destination addressing register. 
immediate data: Byte data is held in the low-order byte of the second word. Word 

data is the second word. Long-word data requires a three word instruction 
with the second and third words representing the data. 

ADDQ 
Definition: add quick. 
Description: ADDQ adds immediate data (contained within the instruction word 
itself) to the specified destination operand. The result is stored in the destination. 
As the definition implies, ADDQ is used for quick execution. 
Addressing: For the source operand, you can use only Immediate mode. For the 
destination operand, you can use any of these modes: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
C Set if a carry occurs; otherwise cleared. 
X Set if a carry occurs; otherwise cleared. 
Z Set if the result is zero; otherwise cleared. 
N Set if the result is negative; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 

Object code: 0101aaaObbcccddd 

Breakdown 
0101: ADDQ instruction. 
aaa: Data field (holding three bits of immediate data with 000 representing 8 and 

001 through 111 representing 1 through 7). 
0: ADDQ instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. If a byte is specified, the low-order byte of the next in­
struction is automatically used by the assembler. 

ccc: Destination addressing mode. 
ddd: Destination addressing register number. 
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Note: If Address Register Direct addressing is used, the operand size cannot be 
specified as byte because address registers cannot work with bytes (only with words 
and long-words). 

ADDX 
Definition: add extended. 
Description: ADDX adds the source contents and the extend flag to the destina­
tion contents. Stores the result in the destination. ADDX has two major cases, 
register-to-register and memory-to-memory. 

1. Register-to-register uses data registers for both source and destination. 
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified 
address register and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is 
decremented (predecrement mode). 
Addressing: Register-to-register uses Data Register Direct mode; Memory-to­
memory uses Address Register Indirect mode. 
Opemnd size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
C Set if a carry occurs; otherwise cleared. 
X Set if a carry occurs; otherwise cleared. 
Z Cleared if the result is nonzero; otherwise unchanged. 
N Set if the result is zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 

Object code: 
1. Register-to-register: 1101aaal bbOOOccc 

Breakdown 
1101: ADDX instruction. 
aaa: Destination data register number. 
1: ADDX instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

000: ADDX instruction (cont.) Register-to-register case. 
ccc: Source addressing data register number. 

2. Memory-to-memory: 1101aaalbbOOlccc 

Breakdown 
1101: ADDX instruction. 
aaa: Destination address register number. 
1: ADDX instruction (cont.). 
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bb: Operand size specification. 
00 means byte. 
01 means word. 
10 means long-word. 

001: ADDX instruction (cont.) Memory-to-memory case. 
ccc: Source address register number. 

AND 
Definition: AND logical. 
Description: AND performs a logical AND operation on the contents of a specified 
destination operand. Stores the result in the destination. There are two forms of 
this instruction, that differ only in addressing, as described in the next paragraph. 
Addressing: AND can be used with any of a large number of addressing modes. 
The two forms of this instruction offer different addressing choices. 

1. Data Register Direct destination. The destination must be addressed by 
Data Register Direct mode. Any addressing mode except Address Register Direct 
can be used for the source including: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

2. Data Register Direct source. The source must be addressed by Data 
Register Direct mode. Almost any addressing mode (except Program Counter 
Relative with Displacement, Program Counter Relative, and Immediate) can be 
used for the destination including: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. As noted just above, bytes cannot be used 
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with Address Register Direct mode. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the MSB (Most Significant Bit) of the result is one; otherwise 

cleared. 
Z Set if the result is zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 1100aaabccdddeee 

Breakdown 
1100: AND instruction. 
aaa: Data register number (for either source or destination, depending on case). 
b: Determines addressing case. 

o means data register is destination. 
1 means data register is source. 

cc: Operand size. 
00 means byte. 
01 means word. 
11 means long-word. 

ddd: Addressing mode. 
eee: Addressing register number. 

Notes: If Address Register Direct addressing is used, the operand size cannot be 
specified as byte because address registers cannot work with bytes (only with words 
and long-words). 

ANDI 
Definition: AND logical immediate. 
Description: AND! performs a logical AND operation on the contents of a specified 
destination operand and an immediate value (contained in the next program words). 
AND! then stores the result in the destination. 
Addressing: The source is addressed by Immediate mode. The destination is 
reached any of: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
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Operand size: byte, word, or long-word. 
Instruction length: 2 words (if the immediate data is a byte or a word, the first 
word is the instruction and the second contains the data); 3 words (if the immediate 
data is a long-word, the first word is the instruction and the next two words are 
the long-word data). 
Condition code effects: 
N Set if the MSB (Most Significant Bit) of the result is one; otherwise 

cleared. 
Z Set if the result is zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: First word (00000010aabbbccc) 
Second word (immediate data) 
Third word (immediate data) 

00000010: AND! instruction. 
aa: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

bbb: Addressing mode. 

Breakdown 

ccc: Addressing register number. 
immediate data: Byte data is held in the low-order byte of the second word. Word 

data is the second word. Long-word data requires a three word instruction 
with the second and third words representing the data. 

ANDI to CCR 

Definition: AND logical immediate to condition codes register. 
Description: This is a special form of the AND! instruction. AND! to CCR per­
forms a logical AND operation of the contents of the condition code register (CCR: 
the low-order byte of the status register) and the immediate value (contained in 
the low-order byte of the next program word). The result is then stored in the CCR. 
Addressing: The source is addressed by Immediate mode. The destination is the 
condition code register. 
Operand size: byte. 
Instruction length: 2 words (the first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds 
all zeros.) 
Condition code effects: (These are set directly from the operation's results, which 
are stored in the flag register.) 
N Cleared if bit 3 of the immediate operand is zero; otherwise unchanged. 
Z Cleared if bit 2 of the immediate operand is zero; otherwise unchanged. 
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V Cleared if bit 1 of the immediate operand is zero; otherwise unchanged. 
C Cleared if bit 0 of the immediate operand is zero; otherwise unchanged. 
X Cleared if bit 4 of the immediate operand is zero; otherwise unchanged. 

Object code: First word (0000001000111100) 
Second word (immediate data) 

Breakdown 
0000001000111100: AND! to CCR instruction. 
immediate data: The high-order byte is filled with zeros; the low-order byte holds 

the immediate data. 

ANDI to SR 
Definition: AND logical immediate to status register (privileged). 
Description: This is a special form of the AND! instruction and is a privileged 
instruction. The CPU must be in the supervisor state for this instruction to ex­
ecute. ANDI to SR performs a logical AND operation on the contents of the full 
status register and the immediate value contained in the next program word. The 
result is stored in the status register. Clearly, this instruction must be privileged 
because it can change the entire state of the CPU. 
Addressing: The source is addressed by Immediate mode. The destination is the 
status register. 
OPemnd size: word. 
Instruction length: 2 words (the first is the instruction word and the second con­
tains the immediate value). 
Condition code effects: (These are set directly from the operation's results, which 
are stored in the status register). 
N Cleared if bit 3 of the immediate operand is zero; otherwise unchanged. 
Z Cleared if bit 2 of the immediate operand is zero; otherwise unchanged. 
V Cleared if bit 1 of the immediate operand is zero; otherwise unchanged. 
C Cleared if bit 0 of the immediate operand is zero; otherwise unchanged. 
X Cleared if bit 4 of the immediate operand is zero; otherwise unchanged. 

Object code: First word (0000001001111100) 
Second word (immediate data) 

Breakdown 
0000001001111100: AND! to SR instruction. 
immediate data: The full 16 bits of this word hold the immediate data to be add­

ed to the status register. 

ASL 
Definition: arithmetic shift left. 
Description: Shifts the bits of the specified location to the left. The last bit shifted 
out of the most significant bit position will be copied into both the C and X flags. 
The least significant bit position will be filled with a O. A register or a memory 
location can be shifted. 
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1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted (the shift count) is specified in one of two ways. A. The shift count 
can be held in the least significant six bits of a data register. That can specify 
a shift of from 0 to 63 bits. B. Immediate data can specify a shift number that 
can range from 1 to 8 bits. (A value of 000 means a shift of 8 positions.) 

2. Memory shifts can only be a single bit position. 
Addressing: 

1. Register. Uses Register Direct mode for the register to be shifted (the 
destination). 

2. Memory. Uses any of the following modes for the memory location to be 
shifted: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

OPerand size: 
1. Registers: byte, word, or long-word. 
2. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if the most significant bit changes at any point during the shift; 

otherwise cleared. 
C Set by the last bit shifted out of the operand (which is copied into the C 

flag). C is cleared if a shift count of zero is performed. 
X St by the last bit shifted out of the operand. That bit is copied into the 

X flag. X, unlike C, is unaffected by a shift count of zero. 

Object code: 
1. Register: 1110aaa1bbcOOddd 

Breakdown 
1110: ASL instruction. 
aaa: Shift count or number of specified register(which it is depends on bit 5, "c", 

as described below). 
1: ASL instruction. 
bb: Operand size specification. 

00 means byte. 
01 means word. 
11 means long-word. 

88 



c: Specifies where the shift count is held. 0 means the shift count is held in bits 
9, 10, and 11 ("aaa"). 1 means the shift count is held in a data register specified 
by"aaa." 
1 means the shift count is held in a data register specified by "aaa". 

00: ASL instruction. 
ddd: Specifies the data register to be shifted. 

2. Memory: 1110000111aaabbb 

Breakdown 
1110000111: ASL instruction, memory. 
aaa: Addressing mode. 
bbb: Addressing register number. 

ASR 
Definition: arithmetic shift right. 
Description: Shifts the bits of the specified location to the right. The last bit shifted 
out of the least significant position will be copied into both the C and X flags. 
The most significant bit position will retain its value no matter how many bit posi­
tions are shifted. Either a register or a memory location can be shifted. 

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted (the shift count) is specified in one of two ways. A. The shift count 
can be held in the least significant six bits of a data register. That can specify 
a shift of from 0 to 63 bits. B. Immediate data can specify the shift number and 
that can range from 1 to 8 bits. (A value of 000 means a shift of 8 positions.) 

2. Memory shifts can only be a single bit position. 
Addressing: 

1. Register. Uses Register Direct mode for the register to be shifted (the 
destination). 

2. Memory. Uses any of the following modes for the memory location to be 
shifted: 

Operand size: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

1. Registers: byte, word, or long-word. 
2. Memory: 1 word. 

Instruction length: 1 word. 

Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Unaffected. 
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C Set by the last bit shifted out of the operand. That bit is copied into the 
C flag. C is cleared if a shift count of zero is performed. 

X Set by the last bit shifted out of the operand. That bit is copied into the 
X flag. X, unlike C, is unaffected by a shift count of zero. 

Object code: 
1. Register: 1110aaaObbcOOddd 

Breakdown 
1110: ASR instruction. 
aaa: Shift count or number of specified register (which it is depends on bit 5, "c, " 

as described below). 
0: ASR instruction. 
bb: Operand size specification. 

00 means byte. 
01 means word. 
11 means long-word. 

c: Specifies where the shift count is held. 
o means the shift count is held n bits 9, 10, and 11 ("aaa"). 
1 means the shift count is held in a data register specified by "aaa." 

00: ASR instruction. 
ddd: Specifies the data register to be shifted. 

2. Memory: 1110000111aaabbb 

Breakdown 
1110000111: ASR instruction, memory case. 
aaa: Addressing mode. 
bbb: Addressing register number. 

Bee 
Definition: branch (conditionally). 
Description: Bee tests the state of a particular flag (condition code) in the status 
register. If the condition (which is specified in the instruction by the program­
mer) is met, the PC (program counter) is set to a new value. Otherwise, if the 
condition is not met, execution continues with the next instruction. You can choose 
from any of the following conditions. 

Symbol Title Operation 

HI High -C AND -Z 
LS Low or same COR Z 
CC Carry clear -C 
CS Carry set C 
NE Not equal -Z 
EQ Equal Z 
YC Overflow clear -Y 
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Symbol 

VS 
PL 
MI 
GE 
LT 
GT 
LE 

Title 

Overflow set 
Plus 
Minus 
Greater or equal 
Less than 
Greater than 
Less or equal 

V 
-N 
N 

Operation 

(N and V) OR (-N AND -V) 
(N AND -V) OR ( -N AND V) 
(N AND V AND -Z) OR (-N AND V AND -Z) 
Z OR (N AND -V) OR (-N AND V) 

The Bcc instruction is written with the specified condition symbol replacing 
the "cc." For example, BNE means "branch if not equal:' 
Addressing: Program Counter Relative is the only mode used for this instruction. 
That means the displacement from the present instruction's location can only be 
from -126 to + 129 or from -32766 to +32769 bytes (depending on whether you 
choose the 8-bit or the 16-bit displacement). The displacement is added to the 
program counter value (after the program counter value has been incremented 
by two). The displacement value, either 8 bits or 16 bits, is interpreted as a two's 
complement integer specifying a distance in bytes. 
Operand size: byte or word. 
Instruction length: 1 or 2 words. 1 word if the displacement is 8 bits long (with 
the low-order byte being the displacement); 2 words if the displacement is 16 bits 
long (with the low-order byte of the first word equal to zero and the second word 
being the displacement). 
Condition code effects: none. 
Object code: First word (0110aaaabbbbbbbb) 

Second word (displacement) 

Breakdown 
0110: Bcc instruction 
aaaa: Specifies the condition to be tested. (See the table above). 
bbbbbbbb: Displacement value. After incrementing the PC by two (because of 

the current Bee instruction) add the sign-extended value of the 8-bit displace­
ment to the PC to get the new processing address. If the 8-bit displacement 
is equal to zero, the displacement value to use is the sign-extended value of 
the next instruction word. 

displacement: As mentioned just above, if the 8-bit displacement value is zero, 
this word represents the displacement value. 

Note: If you try to program a branch to the next word, you have to use the 2 word 
instruction (with the 16-bit displacement). A value of zero in the 8-bit displace­
ment (which would be necessary for such a branch) tells the CPU to consider the 
next word as the displacement value. 

BCHG 
Definition: bit test and change. 
Description: BCHG tests a specified bit of a specified operand (found in either data 
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register or memory location) and indicates the result in the Z flag (which is set 
if the tested bit is zero and is cleared otherwise). After it is tested, the bit is com­
plemented (made the opposite of its present value). 
Addressing: An operand must be addressed and then a particular bit within that 
operand must be specified. 

1. The operand can be specified by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

2. The bit to test can be specified in either of two ways. A. Data Register 
Direct. The contents of a data register specify the bit to test. Even at this level, 
there are two possibilities: a. Any of the 32 bits in a data register may be tested. 
The least significant 6 bits of the specifying data register determine which of the 
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least 
significant 3 bits of the specifying data register determine which of the 8 bits to 
test. B. Immediate. Immediate data in the word following the instruction word 
specifies which bit to test. As in section a. above, there are two possibilities here: 
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits 
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits 
of a memory location can be tested. The least significant 3 bits of the immediate 
data determine which of the 8 bits to test. 
Operand size: byte or long-word. 
Instruction length: 1 word (if the bit to test is specified by a data register) or 2 
words (if the bit to test is specified by immediate data). 
Condition code effects: 
N Not affected. 
Z Set if the bit tested equals zero; otherwise cleared. 
V Not affected. 
C Not affected. 
X Not affected. 

Object code: 
1. Data Register specification of bit to test (this is called bit number dynamic); 

0000aaa101bbbccc 

Breakdown 
0000: BCRG instruction. 
aaa: Specifies the data register that holds the bit to test. 
101: BCRG instruction. 
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bbb: Addressing mode for the operand holding the bit to test. 
ccc: Addressing register number for the operand holding the bit to test. 

2. Immediate specification of bit to test (called bit number static): 
First word (0000100001aaabbb) 
Second word (bit number) 

Breakdown 

0000100001: BCRG instruction. 
aaa: Addressing mode for the operand holding the bit to test. 
bbb: Addressing register number for the operand holding the bit to test. 
bitnumber: This word specifies the number of the bit to test. The upper 8 bits 

are all zeroes, the lower 8 bits are the bit number. If the bit to test is in a 
data register, the least significant 6 bits determine its bit position; if the bit 
to test is in a memory location, the least significant 3 bits determine its bit 
position. 

BCLR 
Definition: bit test and clear. 
Description: BCLR tests a specified bit in a specified location (either data register 
or memory location) and indicates the result in the Z flag (which is set if the tested 
bit is zero and is cleared otherwise). After it is tested, the bit is cleared (set equal 
to zero). BCLR is very similar to BCRG. The only difference is that this instruc­
tion clears the tested bit instead of complementing it. 
Addressing: An operand must be addressed and then a particular bit within that 
operand must be specified. 

1. The operand can be specified by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

2. The bit to test can be specified in either of two ways. A. Data Register 
Direct. The contents of a data register specify the bit to test. Even at this level, 
there are two possibilities: a. Any of the 32 bits in a data register may be tested. 
The least significant 6 bits of the specifying data register determine which of the 
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least 
significant 3 bits of the specifying data register determine which of the 8 bits to 
test. B. Immediate. Immediate data in the word following the instruction word 
specifies which bit to test. As in section a. above, there are two possibilities here: 
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a. Any of the 32 bits in a data register may be tested. The least significant 6 bits 
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits 
of a memory location can be tested. The least significant 3 bits of the immediate 
data determine which of the 8 bits to test. 
OPerand size: byte or long-word. 
Instruction length: 1 word (if the bit to test is specified by a data register) or 2 
words (if the bit to test is specified by immediate data). 
Condition code effects: 
N Not affected. 
Z Set if the bit tested equals zero; otherwise cleared. 
V Not affected. 
C Not affected. 
X Not affected. 

Object code: 
1. Data register specification of bit to test (this is called bit number dynamic): 

0000aaall0bbbccc 

Breakdown 
0000: BCLR instruction. 
aaa: Specifies the data register that holds the bit to test. 
110: BCLR instruction. 
bbb: Addressing mode for the operand holding the bit to test. 
ccc: Addressing register number for the operand holding the bit to test. 

2. Immediate specification of bit to test (called bit number static): First word 
(0000100010aaabbb) 

Second word (bitnumber) 

Breakdown 
0000100010: BCLR instruction. 
aaa: Addressing mode for the operand holding the bit to test. 
bbb: Addressing register number for the operand holding the bit to test. 
bitnumber: This word specifies the number of the bit to test. The upper 8 bits 

are all zeroes, the lower 8 bits are the bit number. If the bit to test is in a 
data register, the least significant 6 bits determine its bit position if the bit 
to test is in a memory location, the least significant 3 bits determine its bit 
position. 

BRA 
Definition: branch (unconditionally). 
Description: BRA forces the CPU to continue processing at a new point in the pro­
gram. It accomplishes this by putting a new value into the program counter register 
(PC). The specified address for new processing is found by adding the current 
PC value (after it has been incremented by two), and a displacement value. The 
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displacement (which is sign-extended) is a two's complement number found in the 
lease significant byte of the instruction word or (when that byte is equal to zero) 
in the next word in the instruction sequence. 
Addressing: Only the Immediate mode can be used to produce the new PC value. 
OPerand size: byte or word. 
Instruction length: 1 or 2 words (1 word if the displacement is 8 bits; 2 words if 
the displacement is 16 bits). 
Condition code effects: none. 
Object code: first word (01100000aaaaaaaa) 

second word (displacement) 

Breakdown 
01100000: BRA instruction. 
aaaaaaaa: Byte displacement value. If equal to zero, the next instruction word is 

the displacement value. 
displacement: The immediate displacement value is found here if it is 16 bits long. 

Note: As with Bcc, you cannot branch to the next instruction with a short (8-bit) 
displacement. Such a branch would require a zero value for the 8 bits, which would 
tell the CPU that the next word was the 16-bit displacement. 

BSET 
Definition: bit test and set. 
Description: BSET tests a specified bit in a specified operand (either data register 
or memory location) and indicates the result in the Z flag (which is set if the tested 
bit is zero and is cleared otherwise). After it is tested, the bit is set to 1. 
Addressing: An operand must be addressed and then a particular bit within that 
operand must be specified. 

1. The operand can be specified by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

2. The bit to test can be specified in either of two ways. A. Data Register 
Direct. The contents of a data register specify the bit to test. Even at this level, 
there are two possibilities: a. Any of the 32 bits in a data register may be tested. 
The least significant 6 bits of the specifying data register determine which of the 
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least 
significant 3 bits of the specifying data register determine which of the 8 bits to 
test. B. Immediate. Immediate data in the word following the instruction word 
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specifies which bit to test. As in section A above, there are two possibilities here: 
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits 
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits 
of a memory location can be tested. The least significant 3 bits of the immediate 
data determine which of the 8 bits to test. 
OPerand size: byte or long-word. 
Instruction length: 1 word (if the bit to test is specified by a data register) or 2 
words (if the bit to test is specified by immediate data). 
Condition code effects: 
N Not affected. 
Z Set if the bit tested equals zero; otherwise cleared. 
V Not affected. 
C Not affected. 
X Not affected. 

Object code: 
1. Data register specification of bit to test (this is called bit number dynamic): 

OOOOaaalllbbbccc 

Breakdown 
0000: BSET instruction. 
aaa: Specifies the data register that holds the bit to test. 
111: BSET instruction. 
bbb: Addressing mode for the operand holding the bit to test. 
ccc: Addressing register number for the operand holding the bit to test. 

2. Immediate specification of bit to test (called bit number static): First word 
(0000100011aaabbb) 

Second word (bitnumber) 

Breakdown 
0000100011: BSET instruction. 
aaa: Addressing mode for the operand holding the bit to test. 
bitnumber: This word specifies the number of the bit to test. Theupper 8 bits 

are all zeros, the lower 8 bits are the bit number. If the bit to test is in a data 
register, the least significant 6 bits determine its bit position; if the bit to test 
is in a memory location, the least significant 3 bits determine its bit position. 

BSR 
Definition: branch to subroutine. 
Description: BSR forces the CPU to continue processing at a new point in the pro­
gram. It accomplishes this by putting a new value into the program counter register 
(PC). This is called a branch to a subroutine, because unlike BRA (which is just 
a ranch) the old PC value is saved (on the system stack). That means you can return 
to the same point in the program later, for example, after executing a subroutine. 
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The specified address for new processing is found by adding the current PC value 
(after it has been incremented by two), and a displacement value. The displace­
ment (which is sign-extended) is a two's complement number found in the least 
significant byte of the instruction word or (when that byte is equal to zero) in the 
next word int he instruction sequence. 
Addressing: Immediate. 
Operand size: byte or word. 
Instruction length: 1 or 2 words (1 word if the displacement is 8 bits; 2 words if 

the displacement is 16 bits). 
Condition code effects: none. 
Object code: First word (01100001aaaaaaaa) 

Second word (displacement) 

Breakdown 
01100001: BSR instruction. 
aaaaaaaa: Byte displacement value. If equal to zero, the next instruction word is 

the displacement value. 
displacement: The immediate displacement value is found here if it is 16 bits long. 

Note: As with Bcc, you cannot branch to the next instruction with a short (8-bit) 
displacement. Such a branch would require a zero value for the 8 bits, which would 
tell the CPU that the next word was the 16-bit displacement. 

BTST 
Definition: bit test. 
Description: BTST test a specified bit in a specified location (either data register 
or memory location) and indicates the result in the Z flag (which is set if the tested 
bit is zero and is cleared otherwise). 
Addressing: An operand must be addressed and then a particular bit within that 
operand must be specified. 

1. The operand can be specified by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

2. The bit to test can be specified in either of two ways. A. Data Register 
Direct. The contents of a data register specify the bit to test. Even at this level, 
there are two possibilities: a. Any of the 32 bits in a data register may be tested. 
The least significant 6 bits of the specifying data register determine which of the 
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least 
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significant 3 bits of the specifying data register determine which of the 8 bits to 
test. B. Immediate. Immediate data in the word following the instruction word 
specifies which bit to test. As in section A. above, there are two possibilities here: 
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits 
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits 
of a memory location can be tested. The least significant 3 bits of the immediate 
data determine which of the 8 bits to test. 
Operand size: byte of long-word. 
Instruction length: 1 word (if the bit to test is specified by a data register) or 2 
words (if the bit to test is specified by immediate data). 
Condition code effects: 
N Not affected. 
Z Set if the bit tested equals zero; otherwise cleared. 
V Not affected. 
C Not affected. 
X Not affected. 

Object code: 
1. Data Register specification of bit to test (this is called bit number dynamic): 

0000aaa100bbbccc 

Breakdown 
0000: BTST instruction. 
aaa: Specifies the data register that holds the bit to test. 
100: BTST instruction. 
bbb: Addressing mode for the operand holding the bit to test. 
ccc: Addressing register number for the operand holding the bit to test. 

2. Immediate specification of bit to test (called bit number static): First word 
(0000100000aaabbb) 

Second word (bitnumber) 

Breakdown 
0000100000: BTST instruction. 
aaa: Addressing mode for the operand holding the bit to test. 
bbb: Addressing register number for the operand holding the bit to test. 
bitnumber: This word specifies the number of the bit to test. The upper 8 bits 

are all zeros, the lower 8 bits are the bit number. If the bit to test is in a data 
register, the least significant 6 bits determine its bit position; if the bit to test 
is in a memory location, the least significant 3 bits determine its bit position. 

CHK 
Definition: check register against boundaries. 
Description: CHK compares the contents of a data register to a specifies source 
value (either in a data register or in memory) and to zero. If the data register con-
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tents are less than zero, or greater than the source contents, CHK generates a 
TRAP and begins exception processing (see both the TRAP instruction and 
Chapter 7, Exceptions). Exception processing will use the CHK vector stored in 
the exception vector table (which begins at OI8H in memory). Only the low-order 
word of the specified source data register is compared. The comparison is made 
using two's complement integers. 
Addressing: The destination (the data register to be checked) is only addressed 
by Data Register Direct mode. The source (the operand to check against) can be 
addressed by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Pre decrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: word. 
Instruction length: 1 word. 
Condtion code effects: 
N Set if the destination contents are negative; cleared if they are greater 

than the upper bound (the source contents). 
Z Affected but undefined (value could be 1 or 0). 
V Affected but undefined. 
C Affected but undefined. 
X Not affected. 

Object code: OIOOaaall0bbbccc 

Breakdown 
0100: CHK instruction. 
aaa: Number of the source data register. 
110: CHK instruction (cont.). 
bbb: Destination addressing mode. 
ccc: Destination addressing register number. 

Note: CHK can be useful for ensuring that array references don't run beyond the 
array's dimensions. 

CLR 
Definition: clear an operand. 

99 



Description: Clears a specified location (fills the location with zeros). 
Addressing: These modes can specify the location (destination) to clear: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
Z Always set. 
N Always cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: OlOOOOlOaabbbccc 

Breakdown 
01000010: CLR instruction. 
aa: Specifies operand size. 

00 means byte. 
01 means word. 
10 means long-word. 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 

CMP 
Definition: compare. 
Description: CMP subtracts the contents of a specified location (the source) from 
the contents of a data register (the destination). The flags in the status register 
are set according to the result. Neither the source contents nor the data register 
contents are changed. 
Addressing: The destination is only addressed by Data Register Direct mode. The 
source can be addressed by any addressing mode: 
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Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Because this is a subtraction operation, C operates as a borrow flag. 

This is, if a borrow occurs, this flag is set. Otherwise, it is cleared. 
X Not affected. 

Object code: 10llaaaObbcccddd 

Breakdown 
1011: CMP instruction. 
aaa: Specifies the destination data register. 
0: CMP instruction (cont.). 
bb: Specifies the operalid size. 

00 means byte. 
01 means word. 
10 means long-word. 

ccc: Source addressing mode. 
ddd: Source addressing register number. 

Note: Remember that the carry flag (C) represents a borrow for this instruction 
and not a carry. 

CMPA 
Definition: compare address. 
Description: CMPA subtracts the contents of a specified location (the source) from 
the contents of an address register (the destination). The condition codes (flags) 
in the status register are set according to the result. Neither the source nor the 
destination contents are changed. CMPA is a special case of the CMP instruction. 
Addressing: The destination is only addressed by Address Register Direct mode. 
The source can be addressed by any addressing mode: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
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Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: word or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result if negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Because this is subtraction operation, C operates as a borrow flag. That 

is, if a borrow occurs, this flag is set. Otherwise, it is cleared. 
X Not affected. 

Object code: 1011aaab11cccddd 

Breakdown 
1011: CMPA instruction. 
aaa: Specifies the destination address register. 
b: Specifies the operand size. 

o means word. 
1 means long-word. 

11: CMPA instruction (cont.). 
ccc: Source addressing mode. 
ddd: Source addressing register number. 

Note: Remember that the carry flag (C) represents a borrow for this instruction 
and not a carry. This instruction is nearly identical to CMP except that, because 
it uses an address register, it cannot work with bytes (only with words or 
long-words) . 

CMPI 
Definition: compare immediate. 
Description: CMPI subtracts the immediate data (found in the next program in­
struction word) from the contents of the specified destination and then sets the 
flags according to the result. The destination contents are not changed. 
Addressing: The source (the data to subtract) is addressed by the Immediate mode. 
The destination can be addressed by any of these modes: 

Data Register Direct 
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Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Opemnd size: byte, word, or long-word. 
Instruction length: 2 or 3 words (2 words if the immediate data is 8 or 16 bits long, 
3 words if it is 32 bits long). 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Because this is a subtraction operation, C operates as a borrow flag. 

That is, if a borrow occurs, this flag is set. Otherwise, it is cleared. 
X Not affected. 

Object code: First word (00001100aabbbccc) 
Second word (immediate) 
Third word (immediate) 

00001100: CMPI instruction. 
aa: Specifies the operand size. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 
immediate: If the immediate data is 8 bits (as specified by aa above) it is held 

in the low-order byte of the second instruction word. If the immediate data 
is 16 bits, it is held in the full second instruction word. And if the immediate 
data is a full 32 bits long, it is held in both the second and third instruction 
words. 

Note: Remember that the carry flag (C) represents a borrow for this instruction 
and not a carry. 

CMPM 
Definition: compare memory. 
Description: CMPM subtracts the contents of the specified source memory loca­
tion from that of the specified destination memory location. The status flags are 
set according to the result. Neither the contents of the destination nor of the source 
are changed by this instruction. 
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Addressing: Both source and destination are always addressed by Postincrement 
Register Indirect mode. After the two specified address registers have been used 
to get the two operands, and the operands have been compared, each of the 
specified address registers is incremented (by 1 if a byte was specified, by 2 if 
a word was specified, and by 4 if a long-word was specified). 
Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Because this is a subtraction operation, C operates as a borrow flag. 

That is, if a borrow occurs, this flag is set. Otherwise, it is cleared. 
X Not affected. 

Object code: 10llaaalbbOOlccc 

Breakdown 
1011: CMPM instruction. 
aaa: Specifies the address register that holds the destination address. 
1: CMPM instruction (cont.). 
bb: Specifies the operand size. 

00 means byte. 
01 means word. 
10 means long-word. 

001: CMPM instruction (cont.). 
ccc: Specifies the address register that holds the source address. 

Note: Remember that the carry flag (C) represents a borrow for this instruction 
and not a carry. 

DBcc 
Definition: test condition, decrement and branch. 
Description: DBcc is a simple looping instruction. It first tests whether the specified 
condition (the choices are listed below) has been met. If it has, the processing goes 
on to the next instruction in the program. If the condition has not been met, the 
low-order word the specified data register (often called the counter) is decremented 
by 1. If the contents of that data register are then equal to -I, the processing 
goes on to the next program instruction. If the contents are not equal to -I, the 
program branches to a new location. That location is found by adding a 16-bit 
(sign-extended) displacement to the PC. You can choose any of the following con­
ditions: 

Symbol 

T 
F 
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True 
False 

Operation 
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Symbol Title Operation 

HI High -C AND -Z 
LS Less or same COR Z 
CC Carry clear -C 
CS Carry set C 
NE Not equal -Z 
EQ Equal Z 
VC Overflow clear -V 
VS Overflow set V 
PL Plus -N 
MI Minus N 
GE Greater or equal (N AND V) OR (-N AND -V) 
LT Less than (N AND -V) OR (-N AND V) 
GT Greater than (N AND V AND -Z) OR (-N AND V AND -Z) 
LE Less or equal Z or (N AND -V) OR (-N AND V) 

The instruction is written with the condition symbol replacing the "cc." For ex­
ample, DBNE means "Test, decrement, and branch until not equal." 
Addressing: The counter data register is only reached by Data Register Direct 
mode. The new program execution address is found by Program Counter Relative 
with Displacement mode. 
Operand size: word. 
Instruction length: 2 words 
Condition code effects: none. 
Object code: First word (0101aaaall001bbb) 

Second word (displacement) 

Breakdown 
0101: DBcc instruction. 
aaaa: Specifies the condition to be tested. 
11001: DBcc instruction (cont.). 
bbb: Specifies the data register to be decremented. 
displacement: This is the 16-bit value added to the PC to get the new execution 

address (the displacement value is counted as a two's complement number 
of bytes). 

DIVS 
Definition: signed divide. 
Description: DIVS divides (using two's complement arithmetic) the long-word in 
the destination data register by the word source operand. It then stores the result 
in the destination data register (with the 16-bit quotient in the lower word and 
the 16-bit remainder in the upper word). The sign of the remainder is the same 
as that of the dividend (unless the remainder equals zero). There are two special 
circumstances involved in using this division instruction: 

1. Division by zero is not possible and causes a TRAP. Exception process-
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ing begins automatically. The vector is 014H (also known as vector #5). See the 
TRAP instruction description for more details. 

2. An overflow may be detected before the instruction is complete. The flag 
will be set and the operands won't be affected. 
Addressing: The destination can only be addressed by Data Register Direct mode. 
The source can be addressed by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared (except that it is unde­

fined if there is an overflow). 
Z Set if the result is zero; cleared otherwise (except that it is undefined if 

there is an overflow). 
V Set if there is an overflow. This will happen if the source contents are 

larger than the destination contents. The V flag will be set before divi­
sion is performed, and the operands will not be changed. In other 
words, the division will not be carried out. 

C Always cleared. 
X Not affected. 

Object code: 1000aaa111bbbccc 

Breakdown 
1000: DIVS instruction. 
aaa: Specifies the destination data register. 
111: DIVS instruction (cont.). 
bbb: Source addressing mode. 
ccc: Source addressing register number. 

DIVU 
Definition: Unsigned divide. 
Description: DIVU divides (using unsigned binary arithmetic) the long-word in 
the destination data register by the word source operand. It then stores the result 
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in the destination data register (with the 16-bit quotient in the lower word and 
the 16-bit remainder in the upper word). There are two special circumstances in­
volved in using this division instruction: 

1. Division by zero is not possible and causes a TRAP. Exception process­
ing begins automatically. The vector is 014H (also known as vector #5). See the 
TRAP instruction description for more details. 

2. An overflow may be detected before the instruction is complete. The 
overflow flag will be set, the instruction won't be executed, and the operands won't 
be affected. 
Addressing: The destination can only be addressed by Data Register Direct mode. 
The source can be addressed by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

OPemnd size: word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the quotient is set; cleared otherwise 

(except that it is undefined if there is an overflow). 
Z Set if the result is zero; cleared otherwise (except that it is undefined if 

there is an overflow). 
V Set if there is an overflow. This will happen if the source contents are 

larger than the destination contents. The V flag will be set before divi­
sion is performed, and the operands will not be changed. In other 
words, the division will not be carried out. 

C Always cleared. 
X Not affected. 

Object code: 1000aaaOllbbbccc 

Breakdown 
1000: DIVU instruction. 
aaa: Specifies the destination data register. 
011: DIVU instruction (cont.). 
bbb: Source addressing mode. 
ccc: Source addressing register number. 
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Note: If the quotient is larger than 16 unsigned bits, an overflow will occur. 

EOR 
Definition: exclusive logical OR. 
Description: EOR performs a bit-by-bit exclusive-OR operation on the contents of 
a specified data register and a specified destination operand. The result is stored 
in the destination data register. Exclusive-OR sets each bit where either one or 
the other, but not both, of the bit positions of the source and destination are set. 
All other bit positions of the result are cleared. 
Addressing modes: The source can only be addressed by Data Register Direct mode. 
The destination can be addressed by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is set; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 10llaaa1bbcccddd 

Breakdown 
1011: EOR instruction. 
aaa: Specifies the source data register. 
1: EOR instruction (cont.). 
bb: Specifies the operand size. 

00 means byte. 
01 means word. 
10 means long-word. 

ccc: Destination addressing mode. 
ddd: Destination addressing register number. 

EORI 
Definition: exclusive-OR immediate. 
Description: EORI performs a bit-by-bit exclusive-OR operation on the immediate 
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data (found in the next program instruction words) and the contents of a specified 
destination operand. The result is stored in the destination. Exclusive-OR sets 
each bit where either one or the other, but not both, of the bit positions of the 
source and destination are set. All other bit positions of the result are cleared. 
Addressing modes: The source (data to be compared) is reached only by the Im­
mediate mode. The destination can be reached by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 2 or 3 words (2 if the immediate data is 8 bits or 16 bits long, 
3 words if the immediate data is 32 bits long). 
Condition code effects: 
N Set if the most significant bit of the result is set; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: First word (00001010aabbbccc) 
Second word (immediate) 
Third word (immediate) 

00001010: EORI instruction 
aa: Specifies the operand size. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 
immediate: If the immediate data is specified as 8 bits (by aa above), the lower 

byte of the second word contains that data. If the immediate data is 16 bits, 
the full second word is that data. If the immediate data is a full 32 bits, 
both the second and third instruction words contain the data. 

EORI to CCR 
Definition: exclusive-OR immediate to condition codes register. 
Description: This is a special form of the EORI instruction. EOR performs a bit-
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by-bit exclusive-OR operation on the contents of the condition codes register (CCR: 
the low-order byte of the status register) and the immediate value contained in 
the low-order byte of the next program word. The result is stored in the CCR. 
Exclusive-OR sets each bit where either one or the other, but not both, of the bit 
positions of the source and destination are set. All other bit positions of the result 
are cleared. 
Addressing: The source is addressed by Immediate mode. The destination is the 
condition code register. 
Operand size: byte. 
Instruction length: 2 words. (The first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds 
all zeros.) 
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register). 
N Changed if bit 3 of the immediate operand is one; otherwise unchanged. 
Z Changed if bit 2 of the immediate operand is one; otherwise unchanged. 
V Changed if bit 1 of the immediate operand is one; otherwise unchanged. 
C Changed if bit 0 of the immediate operand is one; otherwise unchanged. 
X Changed if bit 4 of the immediate operand is one; otherwise unchanged. 

Object code: First word (0000101000111100) 
Second word (immediate) 

Breakdown 
0000101000111100: EORI to CCR instruction. 
immediate data: The high-order byte is filled with zeros; the low-order byte holds 

the immediate data. 

EORI to SR 
Definition: exclusive-OR immediate to status register (privileged). 
Description: This is a special form of EORI and is a privileged instruction: it can 
only be performed if the CPU is in supervisor mode. EOR performs a bit-by-bit 
exclusive-OR operation on the contents of the status register and the immediate 
value contained in the next program word. The result is stored in the CCR. 
Exclusive-OR sets each bit where either one or the other, but not both, of the bit 
positions of the source and destination are set. All other bit positions of the result 
are cleared. 
Addressing: The source is addressed by Immediate. The destination is the status 
register. 
OPerand size: word. 
Instruction length: 2 words. (The first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds 
all zeros.) 
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register). 
N Changed if bit 3 of the immediate operand is one; otherwise unchanged. 
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Z Changed if bit 2 of the immediate operand is one; otherwise unchanged. 
V Changed if bit 1 of the immediate operand is one; otherwise unchanged. 
C Changed if bit 0 of the immediate operand is one; otherwise unchanged. 
X Changed if bit 4 of the immediate operand is one; otherwise unchanged. 

Object code: First word (0000101001111100) 
Second word (immediate) 

Breakdown 
0000101001111100: EORI to SR instruction. 
immediate data: The second instruction word is the immediate data. 

Note: Remember that when the entire status register is used as a destination for 
EOR (of the other logical instructions), EORI becomes a privileged instruction, 
so it can only be used from the Supervisor mode. 

EXG 
Definition: exchange registers. 
Description: Exchanges the contents of one 32-bit register with that of another 
32-bit register. This is the equivalent of several Move operations. The entire value 
in one register is replaced with that of the second register and the second register 
is filled with the previous contents of the first register. The exchange can be made 
between Data Register and Data Register, or Data Register and Address Register, 
or Address Register and Address Register. 
Addressing Modes: The source and destination are addressed by either Data 
Register Direct mode or Address Register Direct mode. 
Operand size: long-word. 
Instruction length: 1 word. 
Conditon code effects: none. 
Object code: llOOaaa1bbbbbccc 

Breakdown 
1100: EXG instruction. 
aaa: Specifies a register. If the exchange is between a data and an address register, 

ccc specifies the data register. 
1: EXG instruction (cont.). 
bbbbb: Specifies the mode of the operation. 

01000 means both source and destination are data registers. 
01001 means both are address registers. 
10001 means a data and an address register are to be exchanged. 

ccc: Specifies a register. If the exchange is between a data and an address register, 
ccc specifies the address register. 

EXT 
Definition: sign extend. 
Description: EXT is used only with a data register. It extends the sign-bit of a 
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datum to the most significant bit of the register space. In other words, for a byte, 
the sign-bit (bit 7) is extended through bit 8 to bit 15 of the register. For a word, 
the sign-bit (bit 15) is extended through bit 16 to bit 32 of the register. This in­
struction helps keep arithmetic correct when you are working with bytes or 
words-data that doesn't fill the data register. If the sign bit weren't extended, 
the sign of the number wouldn't be read. Since the register is 32 bits long, the 
bit 32 is assumed to be the sign bit. EXT instruction extends the true sign bit 
to the usable position. 
Addressing mode: The data register to be manipulated is found by Data Register 
Direct mode. 
Operand size: word or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result of the operation is negative; otherwise cleared. 
Z Set if the result of the operation is zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 01001000aaOOObbb 

01001000: EXT instruction. 
aa: Size specification. 

Breakdown 

10 means to extend a low-order byte to a word. 
11 means to extend a low-order word to a long-word. 

000: EXT instruction (cont.). 
bbb: Specifies the data register. 

ILLEGAL 
Definition: illegal instruction. 
Description: ILLEGAL forces the illegal instruction exception to start processing. 
(This instruction will be retained in the newer 68000 family CPUs.) Other illegal 
instruction object codes may be used in other CPUs for new instructions. The 
PC value and the SR value will be saved on the stack and then the Illegal Instruc­
tion Vector will be put into the PC. 
Addressing: none. As noted above, the PC (program counter) is loaded with the 
Illegal Instruction Vector. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100101011111100 

Breakdown 
0100101011111100: ILLEGAL instruction. 
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JMP 
Definition: jump. 
Description: ]MP forces an unconditional jump to a different place in the program. 
In other words, the program counter value is replace with a new value (specified 
by the instruction). Processing will continue with the instruction found at that new 
address. Because memory is organized in bytes, the new program counter value 
will be found in the specified address and the specified address + 2. 
Addressing: The new value to put into the PC can be found by any of these ad­
dressing modes: 

Address Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 

OPemnd size: no operand. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111011aaabbb 

0100111011: ]MP instruction. 
aaa: Addressing mode. 
bbb: Addressing register number. 

Definition: jump to subroutine. 

Breakdown 

JSR 

Description: JSR, like JMP, unconditionally forces processing to a different part 
of the program. The PC (program counter) value will be replaced by the value 
specified by the instruction. Unlike JMP, JSR saves the old PC value (the long­
word address of the instruction following JSR) on the system stack. That is done 
so that-once the subroutine has been completed-processing of the main program 
can resume where it left off. An RTS (Return from Subroutine) instruction will 
handle the return duties as long as the stack values (both stack pointer and stack) 
haven't been changed while processing the subroutine. 
Addressing: The new value to put into the PC can be found by any of these ad­
dressing modes: 

Address Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
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Program Counter Relative with Displacement 
Program Counter Relative with Index 

operand size: no operand. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111010aaabbb 

0100111010: JSR instruction. 
aaa: Addressing mode. 
bbb: Addressing register number. 

Definition: load effective address. 

Breakdown 

LEA 

Description: LEA forms an effective address using one of the addressing modes 
listed below, and loads the address into an address register. This instruction is 
unusual because it loads the address-not the contents found at that address­
into the destination register. 
Addressing: The destination-the register to load the address into-is only 
reached by Address Register Direct mode. The source can be reached by any of 
these addressing modes: 

Address Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 

Operand size: long-word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100aaa111bbbccc 

0100: LEA Instruction. 
Breakdown 

aaa: Destination address register number. 
111: LEA instruction (cont.). 
bbb: Source addressing mode. 
ccc: Source addressing reg:ster number. 

LINK 
Definition: link and allocate. 
Description: LINK pushes the contents of a specified address register onto the 
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system stack. That address register is called a frame pointer. The stack pointer 
is then loaded into that address register. Then a sign-extended two's complement 
displacement value-from the next word of the instruction-is added to the stack 
pointer. All of this manipulating lets you use a certain space of the stack-called 
frame-for the variables in a subroutine. The displacement moves the active stack 
pointer to the new frame. An UNLK instruction reverses this process. 
Addressing: immediate. 
Operand size: no operand. 
Instruction length: 2 words. 
Condition code effects: none. 
Object code: First word (0100111001010aaa) 

Second word (displacement) 

Breakdown 
0100111001010: LINK instruction. 
aaa: Address register number. 
displacement: This 16-bit value is interpreted as a two's complement number and 

is sign-extended to a full 32-bits. 

Note: This is a tricky instruction for beginners to understand and use. For instance, 
if you specify a positive displacement, the new frame contents may overlay-and 
thus obliterate-previous stack contents that you didn't want to lose. 

LSL 
Definition: logical shift left. 
Description: LSL shifts the contents of the specified location to the left. The last 
bit shifted out of the most significant bit position will be copied into both the C 
and X flags. The least-significant bit position will be filled with a O. LSL performs 
just as ASL does. The shift can be made on a register or on a memory location. 

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted is specified in one of two ways. A. The shift count can be held in 
the least significant six bits of a data register. That can specify a shift of from 
o to 63 bits. B. Immediate data can specify the shift number and that can range 
from 1 to 8 bits. (A value of 000 means a shift of 8 positions.) 

2. Memory shifts can only be a single bit position. 
Addressing: 

1. Register. Uses Register Direct mode for the register to be shifted (the 
destination). 

2. Memory. Uses any of the following modes for the memory location to be 
shifted: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
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Operand size: 

Absolute Short 
Absolute Long 

1. Registers: byte, word, or long-word. 
1. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if the most significant bit changes at any point during the shift; 

otherwise cleared. 
C Set by the last bit shifted out of the operand. That bit is copied into the 

C flag. C is cleared if a shift count of zero is performed. 
X Set by the last bit shifted out of the operand. That bit is copied into the 

X flag. X, unlike C, is unaffected by a shift count of zero. 

Object code: 
1. Register: 1110aaa1bbcOlddd 

Breakdown 
1110: LSL instruction. 
aaa: Shift count or number of specified register (which it is depends on bit 5, "c", 

as described below). 
1: LSL instruction. 
bb: Operand size specification. 

00 means byte. 
01 means word. 
11 means long-word. 

c: Specifies where the shift count is held. 
o means the shift count is held in bits 9, 10, and 11 ("aaa"). 
1 means the shift count is held in a data register specified by "aaa". 

01: LSL instruction. 
ddd: Specifies the data register to be shifted. 

2. Memory: 1110001111aaabbb 

Breakdown 
1110001111: LSL instruction, memory. 
aaa: Addressing mode. 
bbb: Addressing register number. 

LSR 
Definition: logical shift right. 
Description: LSR logically shifts the contents of the specified operand to the right. 
The last bit shifted out of the least significant bit position will be copied into both 
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the C and X flags. The most significant bit position will be filled with a zero, no 
matter how many bit positions are shifted. LSR is the same as the ASR instruc­
tion except the LSR puts a zero in the most significant position and ASR repeats 
the previous value in that position. The shift can be made on a register or on a 
memory location. 

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted is specified in one of two ways. A. The shift count can be held in 
the least significant six bits of a data register. That can specify a shift of from 
o to 63 bits. B. Immediate data can specify the shift number and that can range 
from 1 to 8 bits. (A value of 000 means a shift of 8 positions.) 

2. Memory shifts can only be a single bit position. 
Addressing: 

1. Register. Uses Register Direct mode for the register to be shifted (the 
destination). 

2. Memory. Uses any of the following modes for the memory location to be 
shifted: 

Operand size: 

Address Register Indirect 
Post increment Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

1. Registers: byte, word, or long-word. 
2. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Always cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Unaffected. 
C Set by the last bit shifted out of the operand. That bit is copied into the 

C flag. C is cleared if a shift count of zero is performed. 
X Set by the last bit shifted out of the operand. That bit is copied into the 

X flag. X, unlike C, is unaffected by a shift count of zero. 

Object code: 
1. Register: 111OaaaObbcOlddd 

Breakdown 
1110: LSR instruction. 
aaa: Shift count or number of specified register (which it is depends on bit 5, "cH

, 

as described below). 
0: LSR instruction (cont.). 

117 



bb: Operand size specification. 
00 means byte. 
01 means word. 
11 means long-word. 

c: Specifies where the shift count is held. 
o means the shift count is held in bits 9, 10, and 11 ("aaa"). 
1 means the shift count is held in a data register specified by "aaa". 

01: LSR instruction. 
ddd: Specifies the data register to be shifted. 

2. Memory: 1110001011aaabbb 

Breakdown 
1110001011: LSR instruction, memory. 
aaa: Addressing mode. 
bbb: Addressing register number. 

MOVE 
Definition: move data (from source to destination). 
Description: A very flexible instruction that can move data from register to register, 
register to memory, or memory to register. Other microprocessors often use a varie­
ty of instructions-such as Store, Load, Input-in the place of MOVE. 
Addressing: MOVE is flexible because the programmer only needs to learn a single 
instruction, and can use most of the addressing modes available to all other in­
structions. Any of the addressing modes can be used to reach the source: 
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Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

These addressing modes can be used to reach the destination: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 



Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set according to the moved data value. 
Z Set according to the moved data value. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object Code: OOaabbbcccdddeee 

00: MOVE instruction. 
aa: Size specification. 

01 means byte. 
11 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing register number. 
ccc: Destination addressing mode. 
ddd: Source addressing mode. 
eee: Source addressing register number. 

Note: MOVEQ is a quicker version of MOVE but cannot use all the addressing 
modes that MOVE can. If you want to move a value directly to a register, use 
MOVEA. 

MOVE to CCR 
Definition: move to condition code register. 
Description: MOVE to CCR is a special case of the MOVE instruction. It moves 
the contents from the specified source to the low byte (the condition code register) 
of the status register. 
Addressing: The destination is always the CCR. The source can be reached by 
any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
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Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

OPemnd size: word. 
Instruction length: 1 word. 
Condition code effects: All of the condition codes (flags) are changed directly by 
the result of the operation because that result is stored in this register. 
N Set to the same value as bit 3 of the source contents. 
Z Set to the same value as bit 2 of the source contents. 
V Set to the same value as bit 1 of the source contents. 
C Set to the same value as bit 0 of the source contents. 
X Set to the same value as bit 4 of the source contents. 

Object Code: 0100011011aaabbb 

Breakdown 
0100001011: MOVE to CCR instruction. 
aaa: Source addressing mode. 
bbb: Source addressing register number. 

MOVE from SR 
Definition: move from the status register. 
Description: MOVE from SR is a special case of the MOVE instruction. It moves 
the contents of the status register to the specified destination. 
Addressing: The source is always the status register. The destination can be 
reached by any of these modes: 

Operand size: word. 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Instruction length: 1 word. 
Condition code effects: none. 
Object Code: 0100000011aaabbb 

Breakdown 
0100000011: MOVE from SR instruction. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 
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MOVE to SR 
Definition: move to the status register (privileged). 
Description: MOVE to SR is a special case of the MOVE instruction and is a 
privileged instruction. It moves the contents of the specified destination to the 
status register. 
Address: The destination is always the status register. The source can be reached 
by almost any addressing mode (except by Address register direct): 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: word. 
Instmction length: 1 word. 
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register). 
N Set to the same value as bit 3 of the source contents. 
Z Set to the same value as bit 2 of the source contents. 
V Set to the same value as bit 1 of the source contents. 
C Set to the same value as bit 0 of the source contents. 
X Set to the same value as bit 4 of the source contents. 

Object Code: 0100011011aaabbb 

Breakdown 
0100011011: MOVE to SR instruction. 
aaa: Source addressing mode. 
bbb: Source addressing register number. 

MOVE USP 
Definition: move user stack pointer. 
Description: Moves the contents of the User stack pointer (also known as address 
register 7 while the CPU is in User mode) to or from a specified address register. 
This is a privileged instruction and can only be executed from Supervisor mode. 
Addressing: The address register is always specified by Address Register Direct 
mode, whether data is transferred from the address register to the USP or from 
the USP to the address register (in other words, whether the address register is 
source or destination). 
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Operand size: long-word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 010011100110abbb 

Breakdown 
010011100110: MOVE USP instruction 
a: Direction of the transfer. 

o means to move data from an address register to the stack pointer. 
1 means to move data from the stack pointer to the address register. 

bbb: Specifies the address register. 

Note: MOVE USP is a privileged instruction and so can only be executed while 
the CPU is in Supervisor mode. While in that mode, the User stack pointer con­
tents are not visible because any reference to address register 7 will bring up the 
value of the System stack pointer. MOVE USP, therefore, makes it possible for 
a Supervisor mode program to see what is in the User stack pointer. 

MOVEA 
Definition: move address. 
Description: MOVEA is a special case of the MOVE instruction. It moves the con­
tents of a specified source to a specified address register. 
Addressing: The destination is always reached by Address Register Direct mode. 
The source can be specified by any addressing mode: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand size: word or long-word. 
Instrnction length: 1 word. 
Condition code effects: none. 
Object code: 00aabbb001cccddd 

Breakdown 
00: MOVEA instruction. 
aa: Specifies the operand size. 
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11 means a word (If a word is used, it is sign-extended before it is moved). 
10 means a long-word. 

bbb: Destination address register. 
001: MOVEA instruction (cont.). 
ccc: Source addressing mode. 
ddd: Source addressing register number. 

MOVEM 
Definition: move multiple registers. 
Description: MOVEM moves the contents of multiple registers to or from con­
secutive memory locations. The registers to move are specified by setting the ap­
propriate bits in a mask that is the second word of the instruction (the mask is 
detailed below). Either words or long-words can be transferred. If words are 
selected, the low-order word of a register is transferred. Also, word values are sign­
extended to a full 32 bits. 
Addressing modes: There is one set of permissible addressing modes for register­
to-memory transfers and another for memory-to-registers transfers. 

1. Move Multiple Registers from Memory. The source-the beginning of the 
consecutive locations in memory whose contents will be copied to the registers­
can be addressed by: 

Address register indirect 
Postincrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 

The registers that accept that data are specified by the mask that is the sec­
ond word of the instruction (this is explained in the Object code breakdown below). 

2. Move Multiple Registers to Memory. The destination-the beginning of 
the consecutive locations in memory that the register contents will be copied to-can 
be addressed by: 

Address Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 

The registers are specified by the mask that is the second word of the instruc-
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tion (this is explained in the Object code breakdown below). 
Addressing is not simple with MOVEM. There are also three different inter­

pretations of the consecutive memory addressing, which depend on the address­
ing mode. 

1. Postincrement mode (which can only be used for memory-to-register move­
ment) loads the registers with the contents starting at the specified location and 
climbing up through higher addresses. The order of the registers is from DO 
through D7 and then AO through A7. The incremented address register will finally 
contain the address of the last word loaded plus two. 

2. Predecrement mode (which can only be used for register-to-memory move­
ment) loads memory from the registers starting at the specified address minus 
two and then moves down through lower addresses. The order of the registers 
is from A 7 through AO and then D7 through DO. The decremented address register 
will finally contain the address of the last word stored. 

3. All other permissible addressing modes listed about (which can be used 
to move data in either direction) copy data starting with the specified address and 
then climb up through higher addresses. The order of the registers is from DO 
through D7 and then AO through A7 (just as in Postincrement mode). 
Operand size: word or long-word. 
Instruction length: 2 words. 
Condition code effects: none. 
Object code: First word (01001a001bcccddd) 

Second word (mask) 

01001: MOVEM instruction. 
a: Specifies transfer direction. 

Breakdown 

o means register to memory. 
1 means memory to register. 

001: MOVEM instruction (cont.). 
b: Specifies operand size. 

o means word. 
1 means long-word. 

ccc: Source addressing mode. 
ddd: Source addressing register number. 
mask: The second word of this instruction is a mask that tells which registers 

to move. For all addressing modes except Predecrement, the mask is set up 
like this: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
A7 A6 A5 A4 A3 A2 Al AO D7 D6 D5 D4 D3 D2 D1 

For Predecrement mode, the mask is set up like this: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
DO D1 D2 D3 D4 D5 D6 D7 AO Al A2 A3 A4 A5 A6 
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If a register's bit position is set to 1 in the mask, it will be transferred; other­
wise it will not. 

Note: This is a great instruction for quick moves of processor status to memory. 
It is also, however, a difficult instruction to use. Be sure you understand it before 
incorporating it into your programs. There are extra factors to consider such as 
an extra read bus cycle that occurs for memory operands. Also, the assembler 
syntax for this instruction includes special notations. D2/D3 to means to load 
registers D2 and D3 and D2-D5 means to load registers D2 through D5. 

MOVEP 
Definition: move peripheral data. 
Description: MOVEP moves two or four bytes between a specified data register 
and alternate byte locations in memory. This is called a peripheral data move 
because it simplifies the transfer of data from the CPU to peripheral devices that 
require 8 bits of data at a time. 
Addressing modes: The data register that the data will be transferred to or from 
is reached only by Data Register Direct mode. Address Register Indirect with 
Displacement mode is used to find the memory location. If the memory address 
is even, the data is transferred on the most significant half of the data bus. If the 
memory address is odd, the data is transferred on the least significant half of the 
data bus. The organization of the bytes that are transferred is described below: 

1. Words. The two bytes in a data register correspond to the two bytes in 
memory as shown in Fig. 6-1. 

Word Tren3fer 
(to or from en odd addre,s) 

31 
Regi3ter 

I High-by tt" 

Memory 
15 o 

low-byt. 

High-byt. 

o 
low-byt. I 

4 

2 

o 
Fig. 6-1. MOVEP data organization-words in register and memory. 

2. Long-words. The four bytes in a data register correspond to the four bytes 
in memory as shown in Fig. 6-2. 
Operand size: word or long-word. 
Instmction length: 2 words. 
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Memory 
lS 0 

Top By tIP Eo 

Upper By te 4 

low.r 8ytIP 2 

BoUom BlJt. 0 

Fig. 6-2. MOVEP data organization-long-words in register and memory. 

Condition code effects: none. 
Object code: First word (OOOOaaalbcOOlddd) 

Second word (displacement) 

Breakdown 
0000: MOVEP instruction. 
aaa: Specifies the data register that the data will be transferred to or from. 
1: MOVEP instruction (cont.). 
b: Specifies the direction of information transfer. 

1 means from memory to register. 
o means from register to memory. 

c: Specifies the operand size. 
o means word. 
1 means long-word. 

001: MOVEP instruction (cont.). 
ddd: Specifies the address register that holds the memory address. 
displacement: A 16-bit value that is added to the address register specified by 

ddd to find the memory location for data transfer. 

MOVEQ 
Definition: move quick. 
Description: MOVEQ moves the immediate data (found in the least-significant byte 
of the instruction code) to a specified data register. The eight bits of immediate 
data are sign-extended to 32 bits and the ful132 bits is then put in the destination 
data register. 
Addressing modes: The source data is found only by Immediate mode. The destina-
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tion data register is found only by Data Register Direct mode. 
Operand size: long-word. 
Instruction length: 1 word. 
Conditon code effects: 
N Set if the immediate data is negative; otherwise cleared. 
Z Set if the immediate data is zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 0111aaaObbbbbbbb 

Breakdown 
0111: MOVEQ instruction. 
aaa: Destination data register number. 
0: MOVEQ instruction (cont.). 
bbbbbbbb: Immediate data. 

Note: Because this instruction has a limited addressing ability and the immediate 
data is included within the single word, it executes faster than the standard MOVE 
instruction. 

MULS 
Definition: multiply signed. 
Description: MULS multiplies (using two's complement arithmetic) two signed, 
16-bit operands. The signed 32-bit result is stored in the destination (which is 
always a data register). 
Addressing: The destination is always a data register and is addressed only by 
Data Register Direct mode. The source can be addressed by any of these modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

A source or destination operand taken from a register is always taken from 
the low word of that register. The upper word of the source is not disturbed: the 
upper word of the destination is overwritten by the result. 
Operand size: word. 
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Instruction length: 1 word. 
Condition code effects: 
N Set if the product is negative; otherwise cleared. 
Z Set if the product equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 1100aaa111bbbccc 

Breakdown 
1100: MULS instruction. 
aaa: Destination data register number. 
111: MULS instruction (cont.). 
bbb: Source addressing mode. 
ccc: Source addressing register number. 

MULU 
Definition: multiply unsigned. 
Description: MULU multiplies (using unsigned binary arithmetic) two unsigned, 
16-bit operands. The unsigned 32-bit result is stored in the destination data register. 
Addressing: The destination is always a data register and is only specified by Data 
register direct mode. The source can be specified by any of the following modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

A source of destination operand taken from a register is always taken from 
the low word of that register. The upper word of the source is not disturbed: the 
upper word of the destination is overwritten by the result. 
Operand size: word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is set; otherwise cleared. 
Z Set if the product is zero; otherwise cleared. 
V Always cleared. 
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C Always cleared. 
X Not affected. 

Object code: 1100aaa011bbbccc 

Breakdown 
11000: MULU instruction. 
aaa: Destination data register number. 
011: MULU instruction (cont.). 
bbb: Source addressing mode. 
ccc: Source addressing register number. 

NBCD 
Definition: negate decimal (BCD) with extend. 
Description: NBCD subtracts the destination contents and the Extend flag con­
tents from zero. The result is stored in the destination. NBCD can only work with 
one data byte. The term decimal means that this addition is done with BCD (Binary 
Coded Decimal) arithmetic. NBCD produces the ten's complement of the destina­
tion value if the extend flag equals 0, the nine's complement is the extend flag 
equals l. 
Addressing: Only the destination needs to be specified. It can be reached by any 
of these addressing modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Pre decrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte. 
Instruction length: 1 word. 
Conditon code effects: 
N Undefined. 
Z Cleared if the result is not zero; unchanged if the result is zero. 
V Undefined. 
C Set if a borrow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. 

Object code: 0100100000aaabbb 

Breakdown 
0100100000: NBCD instruction. 
aaa: Destination addressing mode. 
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bbb: Destination addressing register number. 

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result. 

NEG 
Definition: negate. 
Description: NEG subtracts the destination contents from zero and stores the result 
in the destination. The computation is done using two's complement binary 
arithmetic. 
Addressing: Only the destination needs to be specified. It can be reached by any 
of these addressing modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the operation result is negative; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Set if a borrow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. 

Object code: 01000100aaabbbccc 

01000100: NEG instruction. 
aa: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 

NEGX 
Definition: negate with extend. 
Description: NEGX subtracts the destination contents and the extend flag con­
tents from zero. It then stores the result in the destination. The operation is per-
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formed using two's complement binary arithmetic. Because the extend flag is 
included, this is the binary negation instruction to use for multiple precision 
arithmetic. 
Addressing: Only the destination needs to be specified. It can be reached by any 
of these addressing modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Cleared if the result is non-zero; otherwise unchanged. 
V Set if an overflow occurs; otherwise cleared. 
C Set if a borrow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. 

Object code: 01000000aabbbccc 

01000000: NEGX instruction. 
aa: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result. 

NOP 
Definition: no operation. 
Description: Just as the name implies, NOP doesn't do anything. The PC (pro­
gram counter register) is incremented to point to the next instruction, but other 
than that this is just a way of wasting time. It is, however, not a wasted instruc­
tion. Though NOP is rarely used in final programs, there are many cases where 
NOP is used while writing or debugging a program to leave a space for a label, 
to precisely time some operation or loop, or to replace unwanted instructions. 
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Addressing: none. 
Opemnd size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111001110001 

Breakdown 
0100111001110001: NOP instruction. 

NOT 
Definition: logical NOT (complement). 
Description: NOT performs the logical NOT operation on the contents of the 
destination operand and stores the result in the destination. In other words, each 
bit of the source is examined, 1s are changed to Os, Os are changed to 1s, and 
the final complemented result is put into the destination. 
Addressing: Only the destination needs to be specified. It can be reached by any 
of these addressing modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Opemnd size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 01000110aabbbccc 

01000110: NOT instruction. 
aa: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 
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OR 
Definition: OR logical. 
Description: OR performs the logical inclusive-OR operation on the contents of 
the specified source and the specified destination. The result is stored in the 
destination. There are two forms of this instruction, that differ only in address­
ing, as described in the next paragraph. 
Addressing: OR can be used with any of a large number of addressing modes. 
The two forms of this instruction offer different addressing choices. 

1. Data Register Direct destination. The destination must be addressed by 
Data Register Direct; any addressing mode except Address Register Direct can 
be used for the source including: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

2. Data Register Direct source. The source must be addressed by Data 
Register Direct. Almost all the addressing modes (except Program Counter Relative 
with Displacement, Program Counter Relative, and Immediate) can be used for 
the destination including: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

If you want to directly address a data register, use the first case described 
above, not Data Register Direct in this mode. 
Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the MSB of the result is one; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
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V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 1000aaabccdddeee 

Breakdown 
1000: OR instruction. 
aaa: Specifies data register number (four source or destination, depending on first 

or second case). 
b: Specifies operation mode (first or second case). 

o means first case (data register is destination). 
1 means second case (data register is source). 

cc: Operand size specification. 
00 means byte. 
01 means word. 
10 means long-word. 

ddd: Effective addressing mode. 
eee: Effective addressing register number. 

Notes: Address register contents cannot be used as an operand. 

ORI 
Definition: OR logical immediate. 
Description: ORI performs the logical inclusive-OR operation on the contents of 
a specified destination and an immediate value contained in the next program 
words. The result is stored in the destination. 
Addressing: The source is addressed by Immediate. The destination is reached 
by any of these addressing modes. 

Data Register Direct 
Address Register Indirect. 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 2 words (if the immediate data is a byte or a word, the first 
word is the instruction and the second contains the data); 3 words (if the immediate 
data is a long-word, the first word is the instruction and the next two are the long­
word data). 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
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Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: First word (OOOOOOOOaabbbccc) 
Second word (immediate data) 
Third word (immediate data) 

Breakdown 
00000000: ORI instruction. 
aa: Operand size specification (if byte is specified, the low-order byte of the im­

mediate instruction word will be used). 
00 means byte. 
01 mean word. 
10 means long-word. 

bbb: Destination addressing mode. 
ccc: Destination addressing register number. 
immediate data: Byte data is held in the low-order byte of the second word. Word 

data is the second word. Long-word data requires a three word instruction 
with the second and third words representing the data. 

ORI to CCR 
Definition: OR logical immediate to condition code register. 
Description: This is a special form of the ORI instruction. ORI to CCR performs 
a logical inclusive-OR operation on the contents of the condition codes register 
(CCR: the low-order byte of the status register) and the immediate value contain­
ed in the low-order byte of the next program word. The result is stored in the CCR. 
Addressing: The source is addressed by Immediate. The destination is the condi­
tion code register. 
Operand size: byte. 
Instruction length: 2 words (the first in the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds 
all zeros.) 
Condition code effects: (these are set directly from the operation's results, which 
are stored in the flag register) 

N Set if bit 3 of the immediate data equals 1; otherwise unchanged. 
Z Set if bit 2 of the immediate data equals 1; otherwise unchanged. 
V Set if bit 1 of the immediate data equals 1; otherwise unchanged. 
C Set if bit 0 of the immediate data equals 1; otherwise unchanged. 
X Set if bit 4 of the immediate data equals 1; otherwise unchanged. 

Object code: First word (0000000000111100) 
Second word (immediate data) 
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Breakdown 
0000000000111100: ORI to CCR instruction 
immediate data: The high-order byte is filled with zeros; the low-order byte holds 

the immediate data. 

ORI to SR 
Definition: OR logical immediate to statues register (privileged). 
Description: This is a special form of the ORI instruction and is a privileged in­
struction: the CPU must be in the Supervisor state for this instruction to execute. 
ORI to SR performs a logical AND operation on the contents of the full status 
register and the immediate value contained in the next program word. The result 
is stored in the status register. This instruction is privileged-meaning it can only 
be executed if the processor is in the Supervisor state-because it can change the 
entire state of the CPU. 
Addressing: The source is addressed by Immediate mode. The destination is the 
status register. 
Operand size: word. 
Instruction length: 2 words (the first is the instruction word and the second con­
tains the immediate value). 
Condition code effects: (these are set directly from the operation's results, which 
are stored in the status register) 
N Set if bit 3 of the immediate data equals 1; otherwise unchanged. 
Z Set if bit 2 of the immediate data equals 1; otherwise unchanged. 
V Set if bit 1 of the immediate data equals 1; otherwise unchanged. 
C Set if bit 0 of the immediate data equals 1; otherwise unchanged. 
X Set if bit 4 of the immediate data equals 1; otherwise unchanged. 

Object code: First word (0000000001111100) 
Second word (immediate data) 

Breakdown 
0000000001111100: ORI to SR instruction. 
immediate data: The full 16 bits of the word hold the immediate date to be add­

ed to the status register. 

PEA 
Definition: push effective address. 
Description: PEA puts together an effective address and stores that long-word ad­
dress on the stack. Chapter 4 explains what an effective address is. 
Addressing: The address to be put on the stack can be calculated using any of 
these addressing modes: 
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Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 

Operand size: long-word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100100001aaabbb 

0100100001: PEA instruction. 
aaa: Effective addressing mode. 

Breakdown 

bbb: Effective addressing register number. 

RESET 
Definition: reset external devices (privileged). 
Description: RESET sends a pulse out on the RESET pin. Such pulses reset ex­
ternal devices (peripherals that are hooked to the 68000). RESET is a privileged 
instruction and so cannot be executed unless the CPU is in Supervisor state. The 
internal state of the 68000 CPU doesn't change, except that the PC is incremented 
by two to move to the next instruction. 
Addressing: none. The RESET pin is always the target on the output pulse. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111001110000 

Breakdown 
0100111001110000: RESET instruction. 

ROL 
Definition: rotate left (without extend). 
Description: ROL rotates the bits of the specified location to the left. In other words, 
the contents of each bit position is moved to a more significant bit position. The 
bit content of the most significant bit is moved into both the least significant bit 
position and into the carry flag (replacing whatever was in the flag). The rotation 
can be made on a data register or on a memory location. 

1. Data register rotations can range from 1 to 63 bit positions. The number 
of positions rotated is specified in one of two ways. A. The rotation count can be 
held in the least significant six bits of a data register. That can specify a rotation 
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that 
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation 
of 8 positions.) 

2. Memory location rotations can only be a single bit position. 
Addressing: 
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1. Register. Uses Data Register Direct mode for the register to be rotated 
(the destination). 

2. Memory. Uses any of the following modes for the memory location to be 
rotated: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

OPerand size: 
1. Registers: byte, word, or long-word. 
1. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C The last bit shifted out of the operand is copied into the C flag. C is 

cleared if a shift count of zero is performed. 
X Not affected. 

Object code: 
1. Register: 1110aaalbbc11ddd 

Breakdown 
1110: ROL instruction. 
aaa: Rotation count or number of specified. 

Register (which it is depends on bit 5, "c," as described below). 
1: ROL instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
11 means long-word. 

c: Specifies where the rotation count is held. 
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the 
rotation count is held in a data register specified by "aaa." 

11: ROR instruction (cont.). 
ddd: Specifies the data register to be rotated. 

2. Memory: 1110011111aaabbb 

Breakdown 
1110011111: ROL instruction, memory. 
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aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

ROR 
Definition: rotate right (without extend). 
Description: ROR rotates the bits of the specified location to the right. In other 
words, the contents of each bit position are moved to a less significant bit posi­
tion. The bit content of the least significant bit is moved into both the most signifi­
cant bit position and into the carry flag (replacing whatever was in the flag). The 
rotation can be made on a data register or on a memory location. 

1. Data register rotations can range from 1 to 63 bit positions. The number 
of positions rotated is specified in one of two ways. A. The rotation count can be 
held in the least significant six bits of a data register. That can specify a rotation 
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that 
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation 
of 8 positions). 

2. Memory location rotations can only be a single bit position. 
Addressing: 

1. Register. Uses Data Register Direct mode for the register to be rotated 
(the destination). 

2. Memory. Uses any of the following modes for the memory location to be 
rotated: 

Operand size: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

1. Registers: byte, word, or long-word. 
2. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C The last bit rotated out of the operand is copied into the C flag. C is 

cleared in a rotation count of zero is performed. 
X Not affected. 

Object code: 
1. Register: 1110aaaObbcllddd 
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Breakdown 
1110: ROR instruction. 
aaa: Rotation count or number of specified register (which it is depends on bit 

5, "c," as described below). 
0: ROR instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word, 
11 means long-word. 

c: Specifies where the rotation count is held. 
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the 
rotation count is held in a data register specified by "aaa." 

11: ROR instruction (cont.). 
ddd: Specifies the data register to be rotated. 

2. Memory: 1110011011aaabbb 

Breakdown 
1110011011: ROR instruction, memory. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

ROXL 
Definition: rotate left (with extend). 
Description: ROXL rotates the bits of the specified location to the left. In other 
words, the contents of each bit position is moved to a more significant bit posi­
tion. The contents of the most significant bit is moved into the carry flag and the 
extend flag (replacing whatever was in the flags). The previous extend flag value 
is moved into the least significant bit position of the specified destination. By in­
cluding the extend flag in the rotation, this instruction is useful for multiple preci­
sion arithmetic. The rotation can be made on a data register or on a memory 
location. 

1. Data register rotations can change from 1 to 63 bit positions. The number 
of positions rotated is specified in one of two ways. A. The rotation count can be 
held in the least significant six bits of a data register. That can specify a rotation 
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that 
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation 
of 8 positions.) 

2. Memory location rotations can only be a single bit position. 
Addressing: 

1. Register. Uses Data Register Direct mode for the register to be rotated 
(the destination). 

2. Memory. Uses any of the following modes for the memory location to be 
rotated: 

Address Register Indirect 
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Postincrement Register Indirect 
Pre decrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: 
1. Registers: byte, word, or long-word. 
2. Memory: word. 

Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C The last bit rotated out of the operand is copied into the C flag. C is 

cleared if a rotation count of zero is performed. 
X The last bit rotated out of the operand is copied into the X flag. A rota­

tion count of zero leaves the X flag unaffected. 

Object code: 
1. Register: 1110aaa1bbc10ddd 

Breakdown 
1110: ROXL instruction. 
aaa: Rotation count or number of specified register (which it is depends on bits 

5, "c", as described below). 
1: ROXL instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
11 means long-word. 

c: Specifies where the rotation count is held. 
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the 
rotation count is held in a data register specified by "aaa". 

10: ROXL instruction (cont.). 
ddd: Specifies the data register to be rotated. 

2. Memory: 1110010111aaabbb 

Breakdown 
1110010111: ROXL instruction, memory. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

ROXR 
Definition: rotate right (with extend). 
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Description: ROXR rotates the bits of the specified location to the right. In other 
words, the contents of each bit position is moved to a less significant bit position. 
The contents of the least significant bit is moved into the carry flag and the ex­
tend flag (replacing whatever was in the flags). The previous extend flag value 
is moved into the most significant bit position of the specified destination. By in­
cluding the extend flag in the rotation, this instruction is useful for multiple preci­
sion arithmetic. 

The rotation can be made on a data register or on a memory location. 
1. Data register rotations can range from 1 to 63 bit positions. The number 

of positions rotated is specified in one of two ways. A. The rotation count can be 
held in the least significant six bits of a data register. That can specify a rotation 
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that 
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation 
of 8 positions.) 

2. Memory location rotations can only be a single bit position. 
Addressing: 

1. Register. Uses Data Register Direct mode for the register to be rotated 
(the destination). 

2. Memory. Uses any of the following modes for the memory location to be 
rotated: 

Address Register Indirect 
Postincrement Register Indirect 
Pre decrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

OPerand size: 
1. Registers: byte, word, or long-word. 
2. Memory: word. 

Instruction length: 1 word. 
Conditon code effects: 
N Set if the most significant bit of the result is 1; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C The last bit rotated out of the operand is copied into the C flag. C is 

cleared if a rotation count of zero is performed. 
X The last bit rotated out of the operand is copied into the X flag. A rota­

tion count of zero leaves the X flag unaffected. 

Object code: 
1. Register: 1110aaaObbc10ddd 

Breakdown 
1110: ROXR instruction. 

142 



aaa: Rotation count or number of specified register (which it is depends on bit 
5, HC," as described below). 

0: ROXR instruction (cont.). 
bb: Operand size specification. 

OOmeans byte. 
01 means word. 
11 means long-word. 

e: Specifies where the rotation count is held. 
o means the rotation count is held in bits 9, 10, and 11 (Haaa"). 1 means the 
rotation count is held in a data register specified by "aaa." 

10: ROXR instruction (cont.). 
ddd: Specifies the data register to be rotated. 

2. Memory: 1110010011aaabbb 

Breakdown 
1110010011: ROXR instruction, memory. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

RTE 
Definition: return from exception (privileged). 
Description: RTE loads the SR (status register) and then the PC (program counter) 
from the system stack. The first word pulled off the Supervisor stack is put into 
the SR; the second and third words pulled are put into the PC (the second becomes 
the high word and the third and low word of the PC). The previous SR and PC 
values are lost. This is typically the last instruction executed in an exception pro­
cessing service routine. RTE is a privileged instruction and so will only execute 
when the CPU is in supervisor state. The new state of the CPU will depend on 
the values put into the status register. The bits of the status register that have 
not yet been assigned values will always retain a o. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: Set directly from the value pulled off the stack and stored 
in the status register. 
Object code: 0100111001110011 

Breakdown 
0100111001110011: RTE instruction. 

RTR 
Definition: return and restore condition codes. 
Description: RTR pulls a word off the active stack and puts the five least signifi­
cant bits of that word into the condition codes in the status register. Then the PC 
is filled from the top two words of the stack. The stack pointer is incremented 
to keep up with these manipulations. This allows a return from subroutine-with 
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replacement of the user flags-without affecting the system byte of the status 
register. 
Addressing: none. 
Operand size: none. 
Instruction length: 1 word. 
Conditon code effects: Set directly from the value pulled off the stack and stored 
in the status register. 
Object code: 0100111001110111 

Breakdown 
0100111001110111: RTR instruction. 

Note: 
1. Some microprocessors automatically save the condition codes (or flags) 

when they jump to a subroutine: the 68000 does not. You have to add a MOVE 
from SR instruction to your program to save the flags if you want to recall them 
later with this RTR instruction. 

2. The only difference between RTR and RTE is that RTR doesn't affect 
the new value of the high word of the SR. 

3. Remember that RTR doesn't only restore the condition codes, it also 
restores the PC. 

RTS 
Definition: return from subroutine. 
Description: RTS pulls the top two words off of the active stack and puts them 
into the PC. The first word pulled becomes the high word of the PC and the 
second word pulled becomes the low word. The stack pointer is incremented by 
2 after each word is pulled off. RTS is used to return the program control to the 
point it was at before a subroutine. 
Addressing: none. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111001110101 

Breakdown 
0100111001110101: RTS instruction. 

SBCD 
Definition: subtract decimal (with extend). 
Description: SBCD subtracts the least significant byte of the source, and the ex­
tend flag, from the least significant byte of the destination. It then stores the result 
in the destination. The term decimal means that this addition is done with BCD 
(Binary Coded Decimal) arithmetic. SBCD has two major cases, register-to-register 
and memory-to-memory. 

1. Register-to-register uses data registers for both source and destination. 
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2. Memory-to-memory uses memory locations for both source and destina­
tion. The memory address of the source operand is stored in an instruction-specified 
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is 
decremented (predecrement addressing mode). 
Addressing: 

1. Register-to-register. Data Register Direct mode is used for both source 
and destination. (The values are stored in registers and the registers are specified 
directly by the instruction). 

2. Memory-to-memory. Address Register Indirect mode is used for both 
source and destination (the instruction specifies the address registers that hold 
the memory addresses of source and destination. Before the values in the address 
registers are used, they are decremented by 1. This helps in multibyte BCD sub­
traction). 
Operand size: byte. 
Instruction length: 1 word. 
Condition code effects: 
N Undefined. 
Z Cleared if the result is not equal to zero; unchanged if the result equals 

zero. 
V Undefined. 
C Set if a borrow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. (Set in the same way as the 

carry (C) flag.) 

Object Code: 
1. Register-to-register: 1000aaa100000bbb 

Breakdown 
1000: SBCD instruction 
aaa: Specifies destination data register. 
100000: Specifies register-to-register case. 
bbb: Specifies the source data register. 

2. Memory-to-memory: 1000aaa100001bbb 

Breakdown 
1000: SBCD instruction 
aaa: Specifies destination data register. 
100001: Specifies memory-to-memory case. 
bbb: Specifies the source data register. 

Note: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result. 
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See 
Definition: set (conditionally). 
Description: Scc tests the state of the flags in the status register. If the condition 
(which is specified within the instruction) is met, all of the bits of the specified 
byte are set (equal to 1; this is called TRUE). Otherwise, if the condition is not 
met, the bits are all cleared (equal to 0; called FALSE). You can choose from any 
of the following conditions: 

Symbol Title Operation 

T True 1 
F False 0 
HI High -C AND -2 
LS Low or same COR 2 
CC Carry clear -C 
CS Carry set C 
NE Not equal -2 
EQ Equal 2 
VC Overflow clear -V 
VS Overflow set V 
PL Plus -N 

MI Minus N 
GE Greater or equal (N AND V) OR (-N AND -V) 
LT Less than (N AND -V) OR (-N AND V) 
GT Greater than (N AND V AND -2) OR (-N AND V AND -2) 
LE Less or equal 2 or (N AND -V) OR (-N AND V) 

The instruction is written with the condition symbol replacing the "cc." For 
example, SNE means "set if not equal." 
Addressing: The byte to set or clear is addressed by any of these modes: 

OPerand size: byte. 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0101aaaallbbbccc 
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Breakdown 
0101: Scc instruction. 
aaaa: Specifies the condition to be tested. 
11: Scc instruction (cont.). 
bbb: Effective addressing mode. 
ccc: Effective addressing register number. 

STOP 
Definition: load status register and stop (privileged). 
Description: STOP loads an immediate word into the status register and then stops 
fetching and executing instructions. Execution will resume when a trace, inter­
rupt, or reset exception occurs. The PC is incremented by four to point to the next 
instruction: the word following STOP is the immediate data. 

A trace occurs immediately if the T flag is set when STOP is executed. 
Exception processing from interrupt will occur if an interrupt request of high 

enough priority is detected. If the external reset signal goes low, the reset excep­
tion will begin. 

STOP is privileged; it can only be executed from the Supervisor mode. At­
tempting to execute it in User mode will violate privilege and begin exception pro­
cessing. 
Addressing: The value to load into the status register is found by Immediate mode 
and is the second word of the instruction. 
Operand size: none. 
Instruction length: 2 words. 
Condition code effects: All of the flags are changed by the word that is loaded into 
the status register. The old values are lost. 
Object code: First word (0100111001110010) 

Second word (immediate) 

Breakdown 
0100111001110010: STOP instruction. 
immediate: This is the value that is put into the SR. 

SUB 
Definition: subtract (binary). 
Description: SUB subtracts the source operand from the destination operand and 
stores the result in the destination. There are two forms of this instruction that 
differ only in addressing, as described in Addressing. 
Addressing: SUB can be used with any of a large number of addressing modes. 
The two forms of this instruction offer different addressing choices. 

1. Data Register Direct destination. The destination must be addressed by 
Data Register Direct mode; any addressing mode can be used for the source in­
cluding: 

Data Register Direct 
Address Register Direct 
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Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

2. Data Register Direct source. The source must be addressed by Data 
Register Direct mode. Almost all the addressing modes (except Program Counter 
Relative with Displacement, Program Counter Relative, and Immediate) can be 
used for the destination including: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. As noted below, bytes cannot be used with 
Address Register Direct mode. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result in negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. 
C Set if a borrow occurs; otherwise cleared. 

Object code: 1001aaabccdddeee 

Breakdown 
11010: SUB instruction. 
aaa: Data register number (for either source or destination Data Register Direct 

addressing). 
b: Operating mode. 

o means the data register is the destination. 
1 means the data register is the source. 

cc: Size specification. 
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00 means byte. 
01 means word. 
10 means long-word. 

ddd: Addressing mode. 
eee: Addressing register number. 

Notes: 
1. If Address Register Direct addressing is used, the operand size cannot 

be specified as byte because address registers cannot work with bytes (only with 
words and long-words). 

2. To use a data register as a destination you must use the Data Register 
Direct mode. 

SUBA 
Definition: subtract address. 
Description SUBA is a special case of the SUB instruction. SUBA subtracts the 
source operand from the destination address register contents and stores the result 
in that address register. 
Addressing: The destination is only reached by Address Register Direct. Any mode 
can be used for the source operand including: 

Data Register Direct 
Address Register Direct 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 
Program Counter Relative with Displacement 
Program Counter Relative with Index 
Immediate 

Operand Size: words or long-words. The full destination address register is used 
no matter which operand size is chosen. A word source-operand will be size­
extended to a long-word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 1001aaabllcccddd 

1001: SUBA instruction. 
aaa: Destination address register. 
b: Size specification. 

o means word. 
1 means long-word. 

Breakdown 
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11: SUBA instruction (cont.). 
ccc: Source addressing mode. 
ddd: Source addressing register. 

SUBI 
Definition: Subtract immediate. 
Description: SUBI subtracts immediate data (which is contained in the next in­
struction byte or bytes) from the specified destination operand. The result is stored 
in the destination. 
Addressing: The source is addressed by Immediate mode. The destination is 
reached by any of the following modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 2 or 3 words. 2 words if the immediate data is a byte or a word 
(the first word is the instruction and the second contains the data). 3 words if the 
immediate data is a long-word (the first word is the instruction and the next two 
are the long-word data). 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Set if a borrow occurs; otherwise cleared. 
X Set if a borrow occurs; otherwise cleared. 

Object code: First word (00000100aabbbccc) 
Second word (immediate data) 
Third word (immediate data) 

00000100: SUBI instruction. 
aa: Size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

Breakdown 

If a byte is specified, the low-order byte of the next instruction is used by 
the assembler. 

bbb: Destination addressing mode. 
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cce: Destination address register. 
immediate data: Byte data is held in the low-order byte of the second word. Word 

data is the second word. Long-word data requires a three word instruction 
with the second and third words representing the data. 

SUBQ 
Definition: subtract quick. 
Description: SUBQ subtracts immediate data (contained within the instruction word 
itself) from the specified destination operand. The result is stored in the destina­
tion. As the definition implies, SUBQ is used for quick execution. 
Addressing: For the source operand you can use only Immediate mode. For the 
destination operand you can use any of the following modes: 

Data Register Direct 
Address Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative; otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Set if an overflow occurs; otherwise cleared. 
C Set if a borrow occurs; otherwise cleared. 
X Set if borrow occurs; otherwise cleared. 

Object code: 0101aaa1bbcccddd 

Breakdown 
0101: SUBQ instruction. 
aaa: Data field (holding three bits of immediate data with 000 representing 8 and 
001 through 111 representing 1 through 7). 
1: SUBQ instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 
IF a byte is specified, the low-order byte of the next instruction is automatically 
used by the assembler. 
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ccc: Destination addressing mode. 
ddd: Destination register number. 

Note: If Address Register Direct addressing is used, the operand size cannot be 
specified as byte because address registers cannot work with bytes (only with words 
and long-words). 

SUBX 
Definition: subtract with extend. 
Description: SUBX subtracts the source contents, and the extend flag, from the 
destination contents. The result is stored in the destination. SUBX has two major 
cases, register-to-register and memory-to-memory. 

1. Register-to-register uses data registers for both source and destination. 
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified 
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is 
decremented (predecrement mode). 
Addressing: Register-to-register uses Data Register Direct mode for both source 
and destination. Memory-to-memory uses Address Register Indirect mode. 

OPerand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 

N Set if the result is negative; otherwise cleared. 
Z Cleared if the result is not equal to zero; otherwise unchanged. 
V Set if an overflow occurs; otherwise cleared. 
C Set if a carry occurs; otherwise cleared. 
X Set if a carry occurs; otherwise cleared. 

Object code: 
1. Register-to-register: 1001aaa1bbOOOccc 

Breakdown 
1001: SUBX instruction. 
aaa: Destination data register number. 
1: SUBX instruction (cont .). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

000: SUBX instruction (cont.). 
ccc: Source address data register number. 
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2. Memory-to-memory: 1001aaa1bb001ccc 

Breakdown 
1001: SUBX instruction. 
aaa: Destination address register number. 
1: SBUX instruction (cont.). 
bb: Operand size specification. 

00 means byte. 
01 means word. 
10 means long-word. 

001: SUBX instruction (cont.). Memory to memory case. 
ccc: Source address register number. 

SWAP 
Definition: swap register halves. 
Description: SWAP exchanges the contents of the low word and high word of a 
specified data register. 
Addressing: The only mode used is Data Register Direct. 
OPerand size: word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the result is negative (if the most significant bit of the 32-bit result 

is set); otherwise cleared. 
Z Set if the result equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 0100100001000aaa 

Breakdown 
0100100001000: SWAP instruction. 
aaa: Number of the data register to be swapped. 

TAS 
Definition: test and set an operand. 
Description: TAS tests a specified byte, sets the Nand Z flags according to the 
contents of that byte, and sets the high-order bit of the byte (equal to 1). This is 
called an indivisible instruction because the CPU uses a read-modify-write memory 
cycle that cannot be interrupted (which means that no other device can get that 
operand while this instruction is being executed). This allows separate processors 
to synchronize their activities. 
Addressing: Any of these modes can be used to find the byte: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
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Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

OPerand size: byte. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the most significant bit of the operand is set; otherwise cleared. 

The bit is tested at the beginning of the instruction, because after the 
instruction the MSB will be set. 

Z Set if the operand contents equal zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 0100101011aaabbb 

Breakdown 
0100101011: TAS instruction. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

TRAP 
Definition: trap. 
Description: TRAP initiates exception processing (see Chapter 7 for an explana­
tion of exceptions). The PC value is incremented (as it would be to get the next 
instruction) and then is pushed onto the system stack (using the Supervisor stack 
pointer: SSP). The status register word is pushed onto the stack next. Two words 
from the exception vector table-specified by the 4-bit vector of the instruction 
word-are put into the PC. The sixteen possible vectors allow different process­
ing for different types of exceptions. The T (trace) flag is set to zero and the S 
(Supervisor) flag is set to one. All of this activity saves the old status of the CPU 
before moving to the new status. Processing continues at the new PC value. 
Addressing: none. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 010011100100aaaa 

Breakdown 
010011100100: TRAP instruction. 
aaaa: Vector number. This value specifies the address is the exception vector table 

from which the new PC value will be taken. This table is shown in Chapter 
7. aaaa can specify sixteen different addresses. These are addresses 32 
through 47 in the 255 vector table. 
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TRAPV 
Definition: trap on overflow. 
Description: TRAPV checks the V (overflow) flag and initiates exception process­
ing if that flag is set. See Chapter 7 for details on exception processing. Exception 
processing increments the PC value (as it would to get the next instruction) and 
then pushes it onto the system stack (using the Supervisor stack pointer: SSP). 
The status register word is pushed onto the stack next. Two words from the ex­
ception number 7 of the vector table (beginning at OlCR) are put into the PC. 
The T (trace) flag is set to zero and the S (Supervisor) flag is set to one. All of 
this activity saves the old status of the CPU before moving to the new status. Pro­
cessing continues at the new PC value. 
Addressing: none. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111001110110 

Breakdown 
0100111001110110: TRAPV instruction. 

TST 
Definition: test and operand. 
Description: TST tests the contents of a specified operand and sets the Nand Z 
flags according to the result. This instruction doesn't change anything in the CPU 
or memory except the flags. 
Addressing: The operand to test can be found by any of the following addressing 
modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: byte, word, or long-word. 
Instruction length: 1 word. 
Condition code effects: 
N Set if the tested operand is negative; otherwise cleared. 
Z Set i the tested operand equals zero; otherwise cleared. 
V Always cleared. 
C Always cleared. 
X Not affected. 

Object code: 01001010aabbbccc 
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01001010: TST instruction. 
aa: Operand size. 

00 means a byte. 
01 means a word. 
10 means a long-word. 

bbb: Operand addressing mode. 

Breakdown 

ccc: Operand addressing register number. 

Note: This can be a very handy instruction to change flag values without af­
fecting anything else in the CPU (except the PC, of course). 

UNLK 
Definition: unlink. 
Description: UNLK loads the contents of a specified address register into the 
system stack pointer. That address register, called a frame pointer, is then loaded 
with a long word from the stack. This, in effect, restores the frame pointer and 
the system stack pointer to what their state was before a LINK instruction was 
executed. See the description of the LINK instruction to understand the overall 
action of this command. 
Addressing: none. 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100111001011aaa 

Breakdown 
0100111001011: UNLK instruction. 
aaa: Specifies the frame pointer address register. 
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68000 

Exceptions 
E XCEPTIONS ARE SPECIAL OCCURRENCES 

that require processing outside of normal in­
struction execution. If an exception occurs, normal 
processing will cease and exception processing will 
commence. The high-order byte of the status 
register controls many aspects of exception pro­
cessing. 

There are two main reasons to define excep­
tions. The first is to allow the microprocessor to act 
quickly when some special situation occurs (such 
as someone pressing a key on the keyboard of a 
computer). The second is to allow the 
microprocessor to report and deal with errors. Divi­
sion by zero or the execution of a nonexistent in­
struction are just two situations that would require 
exception processing. 

POLLING, INTERRUPTS, AND EXCEPTIONS 
Microprocessors have to respond to many outside 
events. These may range from alarm signals to disk 
information input. There are two basic ways of 
watching for such inputs: polling and interrupts. 

When a microprocessor asks an 110 device if 
that device has any information, the microprocessor 
is polling that device. Polling schemes are 
sometimes used because they are simple to imple­
ment and ensure that every 110 device is monitored. 
The problem with polling is in the timing. If there 
is a large polling loop and a device needs to signal 
the microprocessor just after having been polled, 
that device will have to wait for its next turn in the 
polling loop. Even though the information from the 
device might be urgent (such as an alarm condition) 
the microprocessor wouldn't have any way of re­
acting immediately. 

Interrupts avoid the timing problems associated 
with polling. While interrupt hardware and software 
is more complex than polling schemes, it ensures 
timely response to events. Interrupt schemes also 
allow the programmer to dynamically assign 
priorities to the various I/O devices. 

How are interrupts implemented? When an I/O 
device has some information for the CPU, it sends 
an interrupt request signal and a priority signal. 
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When the microprocessor is free to answer­
typically after the current instruction is done 
executing-it will compare the signalled priority to 
its stored priority level. If the interrupt request has 
a high enough priority, the microprocessor will jump 
to an interrupt handling routine. When that routine 
is finished, the microprocessor will return process­
ing to the point it had reached before the interrupt. 

Most interrupt handling schemes allow multi­
ple, simultaneous interrupts. When a second inter­
rupt (which must be of greater priority than the 
first) breaks in on the first, the microprocessor sends 
processing to the second interrupt handling routine. 
Then, when the second interrupt has been com­
pletely taken care of, processing will take up in the 
first interrupt handling routine where it left off. The 
68000 has seven levels of interrupt priority; the cur­
rent level is stored in the mask in the Status register. 

The addressing of interrupt handling routines 
can be simple or complex. Some systems have a 
single routine, others have a long table full of 
routines that are called for different types of inter­
rupts. Other systems allow the programmer to 
modify addresses from within the program. 

8-bit microprocessors commonly have interrupt 
handling capability. As explained above, interrupts 
are requests by devices outside the microprocessor 
for special processing. The program routine that is 
used to handle the interrupt may come from any of 
a variety of addresses, depending on the 
microprocessor's vectoring scheme. The vector is the 
value that points to the interrupt service routine. 
Different microprocessors have different methods 
to calculate vectors. 

Exception is a broader term than interrupt. The 
68000 also has interrupt handling abilities, but they 
are classified as one type of exception. 

68000 PROCESSING STATES 

There are three processing states that a 68000 can 
be in: normal, halted, or exception. In the normal 
state, the microprocessor is fetching and executing 
instructions. There is also the special normal state 
case of the SIDP instruction which stops the 
referencing of memory. 

The halted state is different from the stopped 
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condition of the Normal state. Only a catastrophic 
hardware error can send the CPU into the halted 
state. The only way out of the halted state is an ex­
ternal reset (having the right pulse of electricity sent 
to the correct pin of the microprocessor). Program­
mers don't have to worry about halted state. 

The exception state may be generated internally 
(by instructions) or externally (by an interrupt, a bus 
error, or a reset). The exception state is used to work 
with interrupts, traps, and tracing. 

68000 PRIVILEGE MODES 

There are two privilege modes that the 68000 can 
be in: User mode and Supervisor mode. The status 
register Supervisor/User bit (flag) controls which 
mode the microprocessor is in and therefore con­
trols the following: 

1. Which instructions are legal. 
2. How external memory management 

reaches memory. 
3. Which stack pointer, Supervisor or User, 

is active. 

These two Privilege modes are intended as a 
basic security structure for 68000 systems. In other 
words, general computation is done in the User 
mode and system modification is done in Supervisor 
mode. 

User Mode 

The microprocessor is in User mode if the S 
flag contains a O. Certain privileged instructions will 
not execute while the CPU is in this mode. This 
restriction protects programs by not allowing ap­
plications to work with system software. Non­
privileged instructions execute the same way in both 
User and Supervisor modes. 

SIDP and RESET are both privileged. Also, 
instructions that can modify the entire status 
register are privileged because they could be used 
to get into Supervisor mode. Figure 7-1 lists the 
68000's privileged instructions. 

The active stack pointer in User mode is the 
User stack pointer, naturally. Any references to the 



ANDI to SR 
EORI to SR 

MOVE to SR 
MOVE USP 
ORI to SR 

RESET 
RTE 

STOP 

Fig. 7-1. Privileged instructions. 

stack pointer or to address register 7 will encounter 
the USP. 

When the CPU is in user mode, and working 
through instructions, only an exception can move 
it into supervisor mode_ Exception processing 
always begins by asserting the S bit, thereby put­
ting the CPU into Supervisor mode. 

The four instructions that allow the user to 
move from Supervisor to User mode are among 
those listed in Fig. 7-1. RTE gets the new SR and 
PC values from the Supervisor stack. MOVE, AN­
DI, EORI change the SR and therefore the S bit and 
are able to change mode. 

Supervisor Mode 

If the Supervisor/User bit in the status register 

Funct IOn Codes 
(put out on ~'llon811i nes) 

FC2 FC 1 FCO 

0 0 0 
0 0 1 
0 0 
0 1 1 
1 0 0 

0 
1 0 
1 1 

Fig. 7-2. Types of memory reference. 

has a 1 value, the CPU is in Supervisor mode. In 
the Supervisor mode, all instructions function and 
all of memory is available. Supervisor mode, 
therefore, is the more powerful mode. Address 
register 7 (the stack pointer) is the Supervisor stack 
pointer (SSP) in this mode. 

Exceptions are always processed in the Super­
visor mode. If the Supervisor/User bit isn't 1 when 
the exception starts, it will be changed to execute 
the exception. 

REFERENCE CLASSIFICATION 

Whenever the 68000 CPU refers to memory, the 
reference is classified as shown in Fig. 7-2. These 
references show up as various voltage levels on the 
FCO, FC!, FC2 pins so that external devices can 
understand what the 68000 is doing. This allows ex­
ternal address translation and memory protection. 

EXCEPTION PROCESSING 

When an exception is processed by the 68000, it 
automatically saves the PC and SR values, and then 
it puts an exception vector address in the PC for fur­
ther processing. The exception vectors are stored 
in low memory. Because the PC and SR values were 
saved, processing can resume at the same point 
later. The exception handling routines are, in 

Type of Reference 

Un6ssigned 
User Dat6 
User Progr6m 
Un6ssigned 
Un6ssigned 
Supervi sor D6ta 
Supervi sor Progr6m 
Interrupt Acknowledge 
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Even Byte Odd B~te 

New low-word for Program Counter (Exception Vector * 4) + 2 
Exception Vector * 4 New high-word for Pro9ram Countar 

Fig. 7-3. Exception vector format. 

essence, subroutines from which processing will 
return. 

Exception processing takes place in four steps. 

1. The SR is copied and saved and then filled 
with a new SR value for the exception. The S flag 
is set and the T flag is cleared. Reset and interrupt 
exceptions also bring the interrupt mask up to data 
with a new level. 

2. The vector number is found. Interrupts get 
the vector number from a processor fetch (which is 
known as an interrupt acknowledge). All other ex­
ceptions get the vector number internally from the 
type of exception. The vector number is used to get 
a vector address (this is explained shortly). 

3. The current CPU information is saved. The 
Reset exception is the only one that doesn't save 
CPU status information. The PC and the SR values 
are put on the Supervisor stack. 

4. A new context (CPU information including 
PC value) is put in place and processing starts at 
the new address. 

The vectors tell the CPU where to go to handle 
a particular exception. All vectors are two words 
long, except RESET which is four words long. All 

vectors are in Supervisor data space except RESET 
which is in Supervisor program space. The vectors 
are numbered by byte numbers. These bytes, 
multiplied by four, give the offset of the exception 
vector from O. The exception vector format is shown 
in Fig. 7-3. 

The numbers can be generated internally or ex­
ternally. For interrupts, some outside device pro­
vides a byte vector number on lines DO through D7. 
The format of this vector is shown in Fig. 7-4. 

The CPU left shifts the vector number two bit 
positions and puts zeros into the most significant 
bits. This generates a 32-bit long-word vector off­
set. For the 68000 and the 68008, this is the actual 
address (absolute) to find the vector. The address 
is then truncated to fit the address bus available on 
the particular Cpu. For the 68010, the offset is add­
ed to a 32-bit vector base register (VBR) to get the 
absolute address of the vector. The VBR is shown 
in the Chapter 8 description of the 68010. For more 
details, et the 68010 documentation. 

When an exception occurs, the CPU needs a 
routine to handle the exception. The 68000, unlike 
some CPUs that use one routine for all exceptions 
(the routine then has to determine what happened) 
uses different routines for the different exceptions. 

15141312111098765432 0 

Not U!led 

Fig. 7-4. Format of external device vector. 
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Illegal instr-uction 
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CHf::. instxuci:.iun 
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(Unas'''1 gned, reser··vE!cil 
For-mat Err-or (MC6bOl0 only, 
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Uninitjalized Inter-r-upt Vector-
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Spurious interrupt (when ther-e is a 
bus pr-r-or- during inter-r-upt 
p!-ucr·':~:;:;i r·,C) 
Level 1 inter-tupt autovector­
Level 2 interrupt autovector­
Level 3 inter-rupt autovector­
Level 4 inter-rupt autovector­
Level 5 inter-r-upt autovector 
Level 6 interr-upt autovector 
Level 7 intpr-r-upt autovector 

TnAF' i nstr-ucti on vector~; (#0 
thr-ough #15. TRAP *n uses vector 
nl.l.mbf'~I- ::',2 .+ n) 

(UnaSSigned, but reser-ved 
Motorola for futur-e expansion) 

by 

64 256 100 User interrupt vector-s 
to to to 
255 1023 3FF 
Addresses that are unassigend, but reserved, should not be used 
for peripherals assignemensts, etc. Motorola may use them in a 
futur-e ver-sion of the chip, and then the peripherals would have 
to be reassigned to work proper-Iy. 

Fig. 7-5. Complete table of 68000 exception vectors. 
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The bottom 1K of memory, 1024 bytes, are re­
served specifically for the addresses of all the 
routines. Each address has a 4-byte chunk of this 
1024 bytes, each chunk is called an exception vec­
tor. The vectors are numbered (each number being 
the address divided by four). 

Internal traps have implicit vectors, the user 
cannot choose where they will head. External in­
terrupts that use auto-vectoring are the same. The 
designed-in circuitry of the CPU and the system 
decides the vector number. 

The full table of exception vectors is shown in 
Fig. 7-5. This table takes up 1024 bytes of memory 
and starts at address O. There are 255 unique vec­
tors, though many are reserved for TRAPS and 
system functions. 192 vectors are reserved for User 
interrupt vectors. 

Types of Exceptions 

There are two main types of exceptions: inter­
nal and external. All of these are shown in Fig. 7-6. 

Internal exceptions, or traps, come from instruc­
tions, address errors, or tracing. Some instructions 
generate exceptions automatically (ILLEGAL, il­
legal instructions, TRAP) and some may generate 
an exception in special circumstances (DIVS or 
DIVU by zero, CHK, TRAPV). Word fetches from 
odd addresses and privilege violations on instruc­
tions also generate exceptions. Tracing is a high 
priority internal interrupt after each instruction. 

External exceptions, or interrupts, indicate that 
some outside device wants the CPU's time and at-

tention. Bus errors and reset inputs are also 
classified as external exceptions. 

Exception Priorities 

Figure 7-7 shows the priorities of exceptions. 
Group 0 is the highest priority and Group 2 is the 
lowest. Group 0 exceptions cause the current in­
struction to abort; Group 1 exceptions let the cur­
rent instruction finish before changing to exception 
processing. Group 2 exceptions take place as part 
of regular instruction processing. Within Group 0, 
Reset is highest, bus error next, and address error 
lowest in priority. Within Group 1 the order of priori­
ty from highest to lowest is trace, external inter­
rupts, and then illegal instructions and privilege 
violations. Group 2 doesn't have to worry about 
priorities because only one instruction at a time can 
execute. 

If multiple exceptions occur simultaneously, 
these priority levels determine which is processed 
first. Just as with interrupt priorities, when a higher 
priority exception breaks into the processing of a 
lower priority exception, the higher priority is pro­
cessed first, and then attention is returned to the 
lower priority exception. 

SUMMARY 

There's a lot more to know about exceptions, but 
you need some programing experience before you 
can use this 68000 feature. Just as a reminder, 
though, a few of the specific reasons for exceptions 
are explained here. 

External Internal 

Interrupts 
Bus Error 
External Reset 

Fig. 7-6. Exception types. 
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TRAP, TRAPV, CHK instructions 
Privileged Violations 
Addressing Error 
Tracing 
Division by Zero 



Priority Priority Exception Timing of the 
Level Group Number Types Exception Processing 

RfSft Begi ns withi n 2 clock cycles 
Highest 0 Addrfss Error 

Bus Error 

Tract> Begins before next instruction 
Middle Intt>rrupt 

l11t>gal Instruction 

Privilfgf Violation 

Lowest 2 
TRAP ,TRAPV ,CHI< 

Dividt> by Zt>ro 

Sterted by normal instruction 
execution 

Fig. 7-7. Exception priorities. 

1. RESET lets the processor be started from 
scratch. This is used on every microprocessor to 
escape from such problems as endless loops. 

2. Illegal instruction exceptions protect pro­
gram execution from trying to execute something 
that is not an instruction. All of the object codes that 
haven't been implemented (and the ILLEGAL in­
struction itself) are in this category. Because of the 
vector address scheme, new instructions can be add­
ed in software emulation. That is, if you want a new 
instruction, just specify an unused object code for 

it and put the routine that will be the instruction 
in the right part of memory (where the vector will 
find it). 

3. Tracing allows the programmer to slow ex­
ecution and see what happens after every instruc­
tion. This is vital to debugging. 

4. CHK lets the programmer keep instruction 
work within certain bounds. This helps implement 
the data type and size protection available in some 
high-level languages. 
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68000 

The 68000 Family 
T HE 68000 IS A FAMILY OF CHIPS, NaT A LONE 

microprocessor. This family includes several 
different microprocessors and a large number of 
peripheral chips. If you want to use the true power 
of the CPU, you have to unbundle many system 
tasks and assign them to other specialized chips. 

The 68000 family of chips breaks into three 
natural divisions. The first category is the CPUs 
themselves. Choosing the right chip from this set 
can save money and design time. The standard 
68000 is not ideal for every system. The next 
category is the 6800 support chips. These 8-bit chips 
can be used with the 6800 microprocessor or with 
the 68000 (any of them will interface directly with 
the 68000). The last group is the 68000 support 
chips. These are dedicated to supporting the CPU, 
although some of them are as complicated, or even 
more complicated, than the CPU itself. Figure 8-1 
lists the 68000 family. 

Although Motorola invented the 68000, there 
are other companies that make the chip. These com­
panies, licensed by Motorola, are called second 
sources. Designers don't like to work with chips that 

only come from a single supplier; they are afraid 
of what will happen if that supplier goes out of 
business or has some production problems. Second 
sources don't necessarily make all of Motorola's 
68000 peripheral chips of their own. 

The 68000 second sources are as follows: 

Hitachi Ltd. 
Mostek Corp. 
Philips 

Rockwell International 
Signetics 
Thompson EFCIS 

These are true partnerships with Motorola with 
exchange of masks and joint product development. 
(The masks are the actual patterns used to put the 
transistors on a chip.) 

Figure 8-2 shows a complete 68000-based 
system. Although you will never see a real system 
that includes all of these peripheral devices, this il­
lustration depicts where they would attach to the 
buses. 

This chapter will describe the following: 

1. All of the 68000 CPUs. There are only four 
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Chip Acronym Description 

68000 CPU 16- bit Microprocessor 

68008 CPU Reduced- bus (8- bit) Microprocessor 

68010 CPU 16- bit Vi rtual- memorv Microprocessor 

68020 CPU 32- bit Vi rtual- memorv Microprocessor ...,ith Cache 
68120 IPC I ntel1igent Peri pheral Cont roller 
68121 IPC-NR I ntelligent Peri pheral Controller ...,ith No ROM 

68122 CTC Cl uste~ Termi nal Controller 

68153 BIM Bus Interrupt Module 
68172 [- BUSCON VMf Bus Controller 
68173 S-BUSCON VMf Bus Controller 
68174 E-BAM VME Bus Arbitration Module 
68200 MCU Micro-computer Unit 

68230 PIIT Parallel Interface!Ti mer 
68340 DPR Dual Port RAM 
68341 lEE E FP IEEE Floating Point (Soft...,are Package - M68KFPS) 

68342 RH Reol Ti me Executive (Soft .... are Package) 
68343 FFP Fast Floating Point (Soft .... are Package - M68KFFP) 
68345 FIFO Fi rst - i n/Fi rst - out 
68430 DMAI Di rect Memory Access Interface 
68440 DDMA Dual Direct Memory Access 
68450 DMAC Di rect Memory Access Controller 
68451 MMU Memory Management Unit 
68452 BAM Bus Arbitration Module 
68454 IMDC Intelligent Multiple Disk Controller 
68459 DPLL Disk Phase-Locked-Loop 
68465 FDC Floppy Disk Controller 
68485 RMC Raster Memory Controller 
68486 RMI Raster Memorv Interface 
68561 MPCC- " Multi - protocol CommUnication Controller II 
68562 DUSCC Dual Universal Serial Communications Controller 
68564 SIO Serial Input/Output 
68590 LANCE Local Area Net...,ork Controller 
68605 SOMA Serial Di rect Memory Access 
68652 MPCC Multi - protocol Communications Controller 
68653 PGC Pol vnomial Generator Checker 
68661 EPCI Enhanced Programmable Communications Interface 
68681 DUART Duel Universal Asynchronous Receiver !Transmitter 
68802 LAN- 802.3 Local Area Net...,ork (I E [£ 802.3 Standard) 
68851 PMMU Paged Memory Management Unit 
68881 FPCP Floeti ng Poi nt Co- processor 
68901 MFP Multifunction Peri pheral 
68920 MAC Memory Access Controller 

Fig. 8-1. Chips in the 68000 family. 
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68881 
68000 

Coprocessor 
68008 6821 6844 6847 
68010 

68451 
6835 6845 6850 

68440 V- 68020 
68851 

6840 6846 6860 
68450 MMU 

DMA CPU 6800 Peri pherals 

[68661 J l68652 J l 68564 J I 684541 68120 l 68230 J I 68590 II 68802 j I 68465 J 
I I 68121 I 

\ Network I 
I 

I Parallel 1/0 floppy Dis k 168450 I Async. CRT l68653 J Data link 
I I Pri nters 

Sync CRT Hard Disk 

68452 
68153 

I 

Other Buses 

Fig. 8-2. Block diagram of a system built around the 68000 family. 

major members of this group: 68008, 68000, 68010, 
and 68020. The 68200 is a special case. It is related 
to the 68000, but it is not directly compatible. 

2. Some of the 68000 peripheral chips. There 
are many of these chips; describing them all would 
require another book. Also, because new chips are 
introduced all the time from every 68000 manufac­
turer, only a few chips are described here. Those 
should be enough to give you a feel for the uses and 
applications of peripheral chips. 

3. None of the 6800 peripheral chips. There 
are also quite a few of these chips, and they have 
all been described before in many books about the 
6800 microprocessor. 

CPU CHIPS 

The CPUs of the 68000 family are shown in Fig. 
8-3. They differ in a number of respects yet they 
are all built around the same architecture and have 
a great deal of compatibility. Which one is used in 
a system will depend on how much power the 
system needs, and how much it can afford. 

68000 
The standard of the family is the 68000. It was 

the first chip of the family, introduced in 1979. As 
demonstrated by Fig. 8-4, you have choices to make 
even if you opt for the 68000. Besides having to 
decide on a package material (which is true when 
you buy many chips) you have to choose a speed. 

The ''!;' of the chip number indicates a ceramic 
package; different letters are used for the other 
packages. G or Y stands for a plastic DIP package 
(with 64 pins), ZB stands for Type B Leadless Chip 
Carrier, and ZC or Z stands for a Hi-reI Type C 
Leadless Chip Carrier. Leadless Chip Carriers are 
square and take up much less circuit board space 
than traditional DIP packages. 

The digits at the end of the chip number in­
dicates the speed of the chip. Increased clock fre­
quency means a shorter clock period (time for the 
clock to run through one cycle). That also means 
less time spent on each instruction, and thus, faster 
program execution. 

Chips with a faster clock may work through pro­
grams faster, but they will also cost more than 
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68000 

68008 

68010 

68020 

68200 

Fig. 8-3. 68000 CPUs. 

16-bit Microprocessor 

Reduced-bus (8-bit) Mlcroprocessor 

16-bit Virtual Memory Microprocessor 

32-bit Vlrtual Memory Microprocessor 

Micro-computer Unit 

slower chips. In addition, for faster chips to be able 
to use their speed, other components may also have 
to be chosen for speed tand will therefore be more 
expensive). For instance, in many systems a change 

to a fast microprocessor may require a change to 
faster memory chips (chips that can be read or writ­
ten to in less time) for system speed to actually in­
crease. If you specify faster chips for all the 

M C 6 8 0 0 0 C I 8 X l_ 
I I -.-- I ---r-

Manufacturer: Temperature Range Clock frequency: 

MC = Motorola Blank = O°C to 70°C 4 = 4 MHz 
MK = Mostek C = - 40°C to 85°C 6 = 6 MHz 
(there lire others) A = - 55°C to 125°C 8 = 8 MHz 

10= 10 MHz 
Chi p Type 12 = 12 MHz 

68000 = 16- bit Microprocessor 
68008 = Reduced Datil Bus (8- bit) 16- bit Microprocessor Package Type: 
68010 = 16- bit Vi rtual Memory Microprocessor l = Cerllmic 
68020 = 32- bit Vi rtuel Memory Microprocessor with Cache G = Plastic with Heat Sprellder 

ZB= Type B leadlessChipCarrier 

ZC= Type C leadless Chi p Carrier 

R = Pin Grid Array 

Testi ng Endured: 

X II level I, 100% temperature cycli ng. Ten cycles r-
from - 25°C to + 150°C. 

1 00% High temperature functional test. 

D = Level II, 100% burn-in (168 hourset + 125°C) 

100% post burn-i n dc parametric test at 25°C 

DS = level III, combi nation of Level I and Level II. 

Fig. 8-4. CPU specification codes-package and speed. 
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positions, system design may become more difficult 
because problems of line isolation and spurious 
signals may worsen. 

So, in most cases you cannot just plug a faster 
68000 in and watch a computer fly. Nevertheless, 
you do have a choice of 68000 speeds ranging from 
the 68000L4 which runs at 4 MHz to the 68000L12 
which flies at 12.5 MHz. 

Theoretically, a system with a 68000L12 (and 
all the support chips necessary) will run a program 
more than three times faster than a system with a 
68000L4. However, since many programs are 110 
bound-that is, most of the program time is spent 
waiting for the human operator to enter or read 
data-the increased speed may not even appear. 

The 68000 will not be covered in any more 
detail here: the rest of this book takes care of that 
task. 

68008 
The 68008 is completely code compatible with 

the 68000. Programs written for either one will 
generally run on the other. The programmer only 
needs to understand a few minor software 
differences-such as the limited interrupt priorities 
and changed memory organization of the 68008-to 
quickly adapt programs written on the 68000 for 
use on the 68008. Programs written for the 68008 
will run without any modification at all on the 
68000. 

The 68008 has a different memory organiza­
tion, as shown in Fig. 8-5. The register and instruc­
tion set of the 68008 are the same as on the 68000. 
Because the two chips are so familiar, and the rest 
of this book is devoted to the 68000, only the func­
tional differences between the chips are described 
in this chapter. 

68008 vs. 8-Bit CPUs. The main 
difference between the 68008 and the 68000 is that 
the 68008 has a data-bus that is only 8 bits wide 
(which is why it has the "8" on the end of the 
number). The standard 68000 has a 16-bit data bus. 
To provide the 16-bit chip (with a 32-bit internal 
structure) advantages for 8-bit system designers, the 
68008 was invented. The narrow data-bus allows 

systems are typically simpler and therefore less ex­
pensive than 16-bit systems. The 68008 comes 
packaged in a 48-pin DIP instead of the 64-pin DIP 
of the 68000. 

Why is an 8-bit wide data bus cheaper to work 
with than a 16-bit wide data bus? Because systems 
costs are reduced. Byte-wide memories and 
peripheral components (chips that address a full 
byte of memory at a time instead of a single bit can 
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Bit P03ition3 

7 6 5 432 1 0 
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Byte 2 
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Bit P03ition3 

7654321 0 

'--Word 1 
Low Bytt' 

High Bytt' 
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Low Bytt' 

High Bytt' 
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simpler printed circuits than 16-bit bus allows. 8-bit Fig. 8-5. 68008 memory organization. 
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Selection U ne 
(Lo", lets the Dete11 nes feed throuqh to the outputs, 

High lets the Address 11 nes feed through the the outputs) 

~ 
Data 1 " " 

Dete 1 
/ 

/ or 
Data 2 " Address 1 

/ Multiplexer 

" Address 1 / 

Addres~ 2 " / 

Fig. 8-6. An example of multiplexing. 

be used. This decreases the chip cost associated 
with the memory portion of the system. 

Why use the 68008 instead of some 8-bit pro­
cessor? Because the 68008 retains all of the power 
of the 68000 instructions, addressing modes, and 
internal architecture. This, in effect, lets you use a 
32-bit architecture in what was formerly 8-bit ter­
ritory. Only the external data-bus is narrowed to 8 
bits. 

Some microprocessors use multiplexed buses to 
save pins on the chip. Multiplexing allows more 
signals to use a limited number of lines, as shown 
in Fig. 8-6. The disadvantage of multiplexing is that 
it requires extra chips on the circuit board to 
demultiplex the signal lines. The 68008 8-bit data­
bus is not multiplexed, nor is the address bus. 

68008-68000 Compatibility. Because the 
68008 object code is directly compatible with that 
of the 68000, any software written for the 68000 will 
execute on the 68008 (and vice-versa). Having the 
68008 (an 8-bit data-bus CPU), the 68000 and 
68010, (16-bit data buses), and the 68020 (32-bit 
data bus), allows the programmer to learn a single 
assembly language which can be used for systems 
ranging from simple controllers to super­
minicomputers. 

Memory Addressing and Data Organiza-
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Date 2 

" / or 
Address 2 

tion. The 68008 can address 1 megabyte of 
non segmented linear address space. That means 
it can directly reach for information in up to 1 
megabyte of memory. Segmenting is a technique of 
adding extra address bits to determine a chunk of 
memory within which the actual address will be 
used to find the data. Many microprocessors that 
claim to be able to access a large memory space 
(such as 1 megabyte) must use segmenting to do so. 
You can segment if you want to with the 68008, and 
the segmenting can be quite flexible. You can let 
each program use segments of different lengths, 
whatever is most efficient for that program. Other 
microprocessors force you (the programmer) to use 
a set segmenting scheme. 

Data organization is a bit different with the 
68008 than with the 68000 because the 68008 can 
only move a single byte at a time on its 8-bit data 
bus. The 68000 individually addresses bytes with 
the high-order bytes having an even address (the 
same as the addressed word). This gives the low­
order byte an odd address one count higher than the 
word address. Another facet of 68000 addressing 
is that multibyte data is only addressed on word 
boundaries (the 68020, on the other hand, is not 
limited to this). 

The 68008 fetches a pair of bytes, or a word, 



at a time to ensure compatibility with the 68000 
which fetches words. The 68000 addresses data as 
shown in Fig. 8-5. Instructions always start on a 
word boundary to keep compatibility with the 
68000. Function codes are used to indicate the ad­
dress space being accessed during a bus cycle. Bits 
are specified from bit 0 to bit 7 (the high bit) within 
a byte. Bytes are addressed in order in memory. 
Words are addressed with the most significant byte 
at the lower address and the least significant byte 
one position higher in memory. Long-words are ad­
dressed with the high-order word first (lower in 
memory) and the low-order word last(at a higher 
point in memory) and the division within the words 
within the long word remains that same as just 
described. This may sound complicated, but once 
you inspect the illustration and use the 68008 a few 
times, it will be second nature. 

The Chip and Its Pinout. Figure 8-7 shows 

Vee 

ONO 
CLK 

Processor reo 

Status FCl 

fC2 

68008 
6800 

Peripheral E 

Control VPA 

System 
BERR 

Control 
RESET 
HAL T 

Fig. 8-7. 68008 pinout (functional). 

the signals for the 68008 chip. These are, of course, 
somewhat different from the 68000 because of the 
change of bus sizes. The following list describes the 
similarities and differences between 68000 and 
68008 signals. This information is only presented 
for the interest of those who will have personal com­
puters built around the 68008; it is not vital to pro­
gramming. 

The physical pinout of the 68008 is shown in 
Fig. 8-8. The 68008 comes in a standard DIP 
package but has only 48 pins compared to the 64 
of the 68000. The 68008 comes in versions that run 
at 8, 10, or 12.5 megahertz. 

Address Bus. The address bus (AO-A19) is only 
20 lines wide instead of the 23 (A1 through A23) 
on the 68000. As with the 68000, this bus provides 
the address for bus operations during all cycles ex­
cept interrupt acknowledge cycles. Then, lines A1, 
A2, and A3 provide the level of the interrupt (just 

Address Bus 

Data Bus 

AS Asynchronous 
R/W Bus 
os Control 

DTACI( 

BR Bus Arbitration 

BG Control 

IPll Interrupt 
IPl2/0 Control 
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A3 A2 

A4 Al 

A5 AO 

A6 FCO 

A7 FCl 

A9 FC2 

A9 IPL2/0 

Al0 IPL1 

All BERR 

Al2 VPA 

A13 E 

A14 RESET 

Vee 68008 HALl 

A15 GND 

GND CLK 

A16 BR 
A17 BG 

A19 OTACK 

A19 R/W 

07 OS 

D6 AS 
05 DO 

D4 Dl 
D3 D2 

Fig. 8-8. 68008 pinout (assignments). 

as on the 68000) and lines AO, and A4 through A19 
are all set high (on the 68000 lines A4 through A23 
are all set high). 

Data Bus. The data bus (DO-D7) is only 8 bits 
wide instead of the 16-bits (DO-D15) of the 68000. 
As with the 68000, during interrupt 
acknowledgements, the interrupt vector is supplied 
~o the CPU by the interrupter on lines DO-D7. 

Asynchronous Bus Control. Asynchronous bus 
control changes slightly from the 68000 to the 
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68008. The 68000 has address strobe, read/write, 
upper data strobe, lower data strobe, and data 
transfer acknowledge. The 68008's difference is that 
it has only a single data strobe signal instead of the 
upper and lower data strobes. 

Bus Arbitration Control. Bus arbitration control 
uses only two signals instead of the three (Bus Re­
quest, Bus Grant, and Bus Grant Acknowledge) on 
the 68000. The 68008 uses Bus Request and Bus 
Grant. These handle all daisy-chained networks, 
priority encoded networks, or combinations. The 
BR is wire ORed with all other devices that could 
control the bus. Those devices may ask for the bus 
at any time. BG indicates to all other bus controllers 
that the CPU will release control of the bus at the 
end of the current bus cycle. The only time BG can­
not be issued is during the two clock interval be­
tween the transition of AS from inactive to active. 
When a 68008 is put into a 68000 system the BR 
and BGACK signals should be ANDed and then 
connected to BR. 

Interrupt Control. A device requesting an inter­
rupt uses these pins to indicate to the CPU the 
priority of the interrupt. The 6800 uses three pins 
to accept these signals, (IPLObar, IPLl bar, and 
IPL2bar); the 68008 uses only two, (IPLO/IPL2 and 
IPLl). The 68000 thus can handle seven levels of 
priority (a zero on the three pins indicates no inter­
rupt with level seven not being maskable.) For the 
interrupt request to be acknowledged, the priority 
must be greater than the contents of the processor 
status register interrupt level. The 68008 attaches 
the IPLO/IPL2 pin to both IPLO and IPL2 internal­
ly and therefore can only fit values of 0, 2, 5, and 
7. Level seven, as in the 68000, is a nonmaskable 
edge-triggered interrupt. IPLObar is the least 
significant bit and IPL2 is the most significant bit. 
The level must be less than or equal to the processor 
status register level for two successive clocks before 
triggering an internal interrupt request. Interrupt 
acknowledgement is made by all of the function 
code lines (FeO-Fe2) going high. 

System Control. System control is accom­
plished in the same way as on the 68000. BERR is 
used for Bus Errors, RESET is used to reset the 
processor from an external signal, and HALT is us-



ed to stop the processor after the current bus cycle. 
M6800 Peripheral Control. Peripheral control 

differs a little from the 68000 method. This is the 
interfacing of synchronous peripherals to the asyn­
chronous MC68000. The 68000 supplies a valid 
memory address (VMA) signal, but the 68008 does 
not. This signal (on the 68000) tells the peripherals 
that a valid address is on the bus and that the CPU 
is synchronized to the enable clock. When using the 
68008, this signal can be generated externally (out­
side the CPU chip). 

Processor Status. The processor status (FeO, 
RCl, Fe2) signals are the same on both the 68000 
and the 68008. 

There are other differences between the chips 
that involve things already mentioned. For instance, 
the 68000 must use an internal AO signal to deter­
mine which byte to grab from memory when the in­
struction specifies a byte operation, read or write. 
The 68008 has an external AO for that job. 

That is the extent of the signal differences be­
tween the 68008 and the 68000. Most of what you 
just read, except the Interrupt priority discussion, 
is hardware stuff that a programmer doesn't need 
to remember. 

Exception Processing. The 68000 and the 
68008 do differ slightly in exception processing 
because, among other things, the 68008 cannot 
recognize the full seven levels of interrupt priority. 
Because of the limited pins (as explained above in 
the "Interrupt Control" section) the 68008 can on­
ly work levels 0, 2, 5, and 7 of the 68000's interrupt 
priorities. So 68000 programs that depend on full 
ordering of interrupt priorities will have to make 
some accommodations to run on the 68008. 

Summary. Basically, having the 68008 to 
work with means you can use the powerful 68000 
architecture and assembly language even in smaller 
and cheaper systems. You can apply the same 
knowledge, and even the same programs, to a wider 
variety of problems. 

68010 

The 68010 is an improved and more powerful 
68000 CPU. It is completely program compatible 

with the 68000. The 68010 uses the same address­
ing modes, registers, buses, package, and instruc­
tions as the 68000. What it adds is new exception 
processing power and Virtual Memory (in fact, it 
is called the 16-bit Virtual Memory 
Microprocessor) . 

Figure 8-9 shows the 68010 register set. The 
new Vector Base Register and the Alternate Func­
tion Code Registers, along with the new instruc­
tions, protect Supervisor mode from User mode and 
allow the 68010 chip to understand when virtual 
memory operations are necessary. 

Virtual memory is a common technique in main­
frame and minicomputers because it allows the com­
puter to access a much larger address area than is 
built into the memory chips. The virtual memory 
information is kept in a larger storage medium, such 
as a disk. The microprocessor keeps track of what 
information is loaded into the memory chips. When 
an address that is outside the presently stored area 
is called for by an instruction, a page fault has oc­
curred. That page fault stops the execution, loads 
the necessary information from the disk into the 
memory chips, and then continues the instruction 
execution-all without letting the programmer 
know that such a special memory operation was 
necessary. The 68010 uses hardware-including 
new registers and stack controls-to run virtual 
memory. 

You can program a 68010 system just as if it 
had a 68000 (as long as you realize that a few in­
structions have been modified-see the descriptions 
below). If you want to understand virtual memory 
operations, look for a general computer science 
textbook. To understand the action of the new 68010 
registers, which are outside the territory of this 
book, read the manufacturer's original manuals such 
as, M68000: 16/32-bit Microprocessor Programmers 
REference Manual, from Motorola. 

New 68010 Instructions. The following 
pages describe the new 68010 instructions in the 
same manner that Chapter 6 of this book describes 
the 68000 instructions. The 68010 uses the entire 
set of 68000 instructions (though a few are modified) 
and adds these instructions. You'll need to know dif­
ferences if you work on a 68010 machine. 
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Fig. 8-9. 68010 registers. 
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MOVE from CCR 
Definition: move from condition code register 
(68010). 
Description: MOVE from CCR is a special case of 
the MOVE instruction and is a 68010 instruction. 
It moves the contents from the low byte (the condi­
tion code register) of the status register to the 
specified destination. 
Addressing: The source is always the CCR. The 
destination can be reached by any of these follow­
ing modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100001011aaabbb 

Breakdown 
0100001011: MOVE from CCR instruction. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

MOVE from SR 
Definition: move from the status register (68010). 
Description: MOVE from SR is a special case of the 
MOVE instruction. It moves the contents of the 
status register to the specified destination. The 
68010 version of MOVE from SR is the same as the 
68000 version except that it is a privileged instruc­
tion. If the CPU tries to execute it while in User 
state, a TRAP will be generated. 
Addressing: The source is always the status 
register. The destination can be reached by any of 
the following modes: 

Data Register Direct 
Address Register Indirect 
Postincrement Register Indirect 

Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

Operand size: word. 
Instruction length: 1 word. 
Condition code effects: none. 
Object code: 0100000011aaabbb 

Breakdown 
0100000011: MOVE from SR instruction. 
aaa: Destination addressing mode. 
bbb: Destination addressing register number. 

MOVEC 
Definition: move control register (68010). 
Description: MOVEC is a special case of the MOVE 
instruction that is only implemented on the 68010, 
not the 68000. It moves data either from a specified 
control register to a specified general register, or 
from a specified general register to the specified 
control register. 

The data is copied, so the source contents aren't 
changed by this instruction. Even if the control 
register doesn't use a full 32 bits, the transfer is 
always of a long-word. The unused bits are read as 
zeros. 

Addressing: The general register (which functions 
as source or destination) is specified by either Data 
Register Direct mode (if it is an address register) 
or Address Register Direct mode (if it is an address 
register). 
Operand size: long-word. 
Instruction length: 2 words. 
Condition code effects: none 
Object code: First word 

(010011100111101a) 
Second word (bcccdddddddddddd) 

Breakdown 
010011100111101: MOVEC instruction. 
a: SPECIFIES the transfer direction. 

o means control to general. 
1 means general to control. 

b: Specifies the type of the general register. 
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o means a data register. 
1 means an address register. 

ccc: Specifies the general register number. 
dddddddddddd: Specifies the control register. 

000000000000 means the source function code 
(SFC) register. 
000000000001 means the destination function 
code (DFC) register. 
100000000000 means the User stack pointer. 
100000000001 means the vector base register 
for the exception vector table. 

Note: Any code other than those shown for the con­
trol register specification will force an illegal instruc­
tion exception. 

MOVES 
Definition: move address space (68010). 
Description: MOVES is a privileged instruction that 
is found on the 68010 and not the 68000. It moves 
a byte, word, or long-word between a general 
register and a memory location. 
Addressing: The memory location is addressed by 
the SFC (source function code) register-if it is the 
source-or the DFC (destination function code) 
register-if it is the destination. The general register 
is specified by any of the following addressing 
modes: 

Address Register Indirect 
Postincrement Register Indirect 
Predecrement Register Indirect 
Register Indirect with Displacement 
Register Indirect with Index 
Absolute Short 
Absolute Long 

If the destination general register is a data 
register, the operand replaces the low-order bits (and 
doesn't affect the higher bits). If the destination 
general register is an address register, the operand 
is sign-extended to 32-bits and then is put into the 
register. 
Operand size: byte, word. or long-word. 
Instruction length: 2 word. 
Condition code effects: none. 
Object code: First word (00001110aabbbbbb) 
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Second word (cdddeOOOOOOOOOOO) 
Breakdown 

00001110: MOVES instruction. 
aa: Specifies the operand size. 

00 means byte 
01 means word 
10 means long-word 

bbbbbb: Specifies the effective address of the 
memory location. 

c: Specifies the type of general register used. 
o means a data register. 
1 means an address register. 

ddd: Register number. 
e: Specifies the transfer direction. 

o means from memory to the general register. 
1 means from the general register to memory. 

RTD 
Definition: return and deallocate parameters 
(68010). 
Description: A long-word is pulled off of the stack 
and put into the PC (program counter). The previous 
PC value is lost. A word displacement value-which 
is the second word of the instruction-is then sign­
extended to a full 32 bits and added to the stack 
pointer. This instruction doesn't work on the 68000; 
it is only a 68010 instruction. 
Addressing: none. 
Operand size: not applicable. 
Instruction length: 2 words. 
Condition code effects: none. 
Object code: First word (0100111001110100) 

Second word (displacement) 
Breakdown 

0100111001110100: RDE instruction 
displacement: This two's complement value is 
sign extended to 32 bits and then added to the 
stack pointer. 

RTE 
Definition: return from exception (privileged) 
(68010). 
Descrition: RTE loads the SR (status register) and 
then the PC (program counter) from the system 
stack. The first word pulled off the Supervisor stack 
is put into the SR; the second and third words 



pulled are put into the PC (the second becomes the 
high word and the third the low word). The previous 
SR and PC values are lost. This is typically the last 
instruction executed in an exception processing ser­
vice routine. RTE is a privileged instruction and so 
will only execute when the CPU is in Supervisor 
state. The new state of the CPU will depend on the 
values put into the Status Register. The bits of the 
status register that have not yet been assigned 
values will always retain a O. RTE is slightly dif­
ferent on the 682010 than on the 68000. The 68010 
RTE also pulls the vector offset from the stack and 
then examines the format field to see how much 
data is to be restored (see the note below for details). 
Operand size: none. 
Instruction length: 1 word. 
Condition code effects: Set directly from the value 
pulled off the stack and stored in the status register. 
Object Code: 0100111001110011 

Breakdown 
0100111001110011: RTE instruction. 

The vector offset word has 10 bits of vector off­
set (bits 0 through 9), 2 bits that don't change (both 
bit 10 and bit 11 are always 0), and 4 bits of format 
(this is the field: bits 12 through 15). The format 
field specifies the amount of data to restore (to pull 
from the top of the stack): 

0000 means to short restore. 4 words are restored. 
1000 means to long restore. 29 words are restored. 

Any other pattern means the CPU will take the 
format error exception. 

68020 

The 68020 was formally announced by 
Motorola on June 28,1984. It took 60 person-years 
to design it and it is supposed to offer four times 
the power of the 68010. The only full 32-bit 
microprocessor to precede it onto the commercial 
market was the 32032 from National Semiconduc­
tor. Motorola disputes this, claiming its chip is the 
first true 32-bit chip around. Other 32-bit firms, 
though, including Hewlett-Packard with its HP 
Focus CPU and Western Electric with the Bellmac 

32 had been producing 32-bit processors for their 
own machines (but not for sale to other manufac­
turers) 

The 68020, then, was the first commercial, 
32-bit, upwardly-compatible chip from a major 
microprocessor maker. Intel had yet to weigh in with 
its 80386 entry (although the iAPX 432 had been 
announced several years before, it had an unusual 
design and had affected future microprocessor 
designers more than it had gained commercial ac­
ceptance). 

Having a particular microprocessor included in 
the design of a new product is called a design win. 
A big win is a product that will lead the market 
either in technological complexity or in volume of 
sales. The 68020, by virtue of its compatibility and 
its position as an early entrant, will clearly have a 
large number of design wins. In fact, Motorola cir­
culated most of the specifications of the 68020 for 
at least a year before the chip was available. Be­
tween that, and working directly with important 
customers to let them know of the chip's develop­
ment progress, Motorola was able to use the feed­
back to make a better chip and to announce a chip 
that was already in several computers that were 
about to hit the market. 

Why use the 68020, and why is it important? All 
you really need to know, as a software designer, is 
that the 68020 is a superset of the 68010. Once you 
learn 68000 code, you can write programs for the 
68020, a chip that will be used well into the 1990s. 
That means your 68000 knowledge is guaranteed 
to have a future. Second, the 68020 is more power­
ful than the 68000 or 68010 with more instmctions, 
more addressing modes, and greater speed. 

The 68020 is Motorola's most advanced 
microprocessor. It is completely 32-bit, that is, the 
internal and external data and address paths (or 
buses) are 32-bits and are not multiplexed-a dif­
ferent wire is dedicated to each signal. That means 
no time is lost decoding whether a line is supposed 
to carry addresses or data. The registers are all 
32-bit wide, the ALUs are 32-bits wide, and the pro­
gram counters and stack pointers are also 32-bits 
wide. 

HCMOS Thchnology. Motorola makes the 
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68020 using a 2-micron HCMOS process. 2-micron 
is a way of referring to the design rules for the 
smallest features on the chip. A micron is a millionth 
of a meter (a micrometer). That isn't the smallest 
design rule, some chips are now made using 1 
micron design rules. Smaller design rules mean 
more transistors can be fitted into a smaller space. 
Theoretically, ignoring power buses and other real­
world factors, a 1-micron design rule chip could hold 
4 times as many transistors as a 2-micron design 
rule chip. Conversely, a 2-micron design rule chip 
will be easier to make than a 1-micron design rule 
chip. Larger features means higher yields from the 
wafers and lower prices for the final chip. 

With any chip as complex as the 68020, densi­
ty (getting the maximum number of transistors on­
to the chip), chip size (keeping the actual chip as 
small as possible so that the number of working 
devices per processed wafer are high), speed (keep 
it as high as possible by putting everything on a 
single wafer and yet use a technology to make the 
transistors that can work at a high frequency), power 
consumption (as low as possible so heat won't be 
a problem and the chip can be used in systems with 
smaller, cheaper power supplies), and manufac­
turability (make it easy to make by using transistors 
as large as possible, and techniques that are pro­
ven) are vital factors. 

There are many ways to make the tiny tran­
sistors on a silicon wafer. PMOS was one of the first 
used (it stands for P-channel Metal-Oxide­
Semiconductor). Then NMOS (N-channel MOS) 
became more prevalent because it allowed more 
transistors in the same area. Finally in the 1980s, 
CMOS, a technology of making transistors that had 
been invented years before at RCA, became the 
most popular. 

CMOS, which stands for Complementary MOS, 
uses very little power compared to PMOS and 
NMOS. It has the disadvantages that it takes up 
more space and the circuits it makes are traditional­
ly slower than NMOS. However, when very small 
design rules are used, it was discovered that CMOS 
can work pretty quickly. Because it uses little power, 
it doesn't heat up the chip as much as the other 
techniques. Heat becomes a major barrier to larger, 
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more complex chips, because all those transistors 
are giving off heat and when the temperature of a 
chip rises the chip becomes more likely to make 
mistakes and, eventually, stop working. 

HCMOS is an advanced type of CMOS process 
(High-performance and High-density CMOS). This 
mixture of NMOS and CMOS (90% CMOS with 
NMOS for critical circuits) combines the advantages 
of low-power operation with high speed. 

Chip Geography. The 68020 has 200,000 
transistors on a chip of silicon that is 375 by 350 
mils (thousandths of an inch), or about 3/8 of an inch 
square. The 68000 has 70,000 transistors. The 
68020 transistors are divided up into the functional 
regions you see in Fig. 8-10. It uses the 68010 as 
a core (subset) but has a 32-bit barrel shifter which 
by itself has more transistors than the entire 6800 
microprocessor. The barrel shifter speeds execution 
of shifts, multiplications, divisions, and other in­
structions. 

The Execution Unit is made up of three parts: 
the program counter section, the address section, 
and the data section. The program counter section 
calculates instruction addresses and maintains in­
struction stream pointers. The address section 
calculates operand addresses and stores the U ser­
visible address register set. The data section per­
forms all the data operations and also contains the 
User-visible data register set, a barrel shifter, and 
elements of the instruction pipe. 

The /lROM (microROM) and nROM 
(nanoROM) are a modified 2-level control store. 
That is, the /lROM is a permanent memory that 
holds the information needed for decoding the 
68000 instructions. The nROM is a permanent 
memory that holds the information needed to 
decode the /lROM instructions. 

At this point, no further ROMs are necessary; 
the instructions in the nROM are just directly im­
plemented in hardware. If the nROM and the /lROM 
were given different values to permanently store, 
the instruction set of the 68000 would be different. 
This approach to microprocessor design allows the 
designer to fix bugs, add features, and improve the 
chip without completely redesigning it. In other 
words, the /lROM controls the sequence of actions 
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Fig. !l-10. 68020 floor plan (courtesy of Motorola). 

the bus controller and the micromachine (of the 
microprocessor) make to carry out machine 
language instructions. The nROM controls the 
operation of the micromachine. 

The Instruction Decode Unit decodes the in­
structions. Within this unit, the Al PLA makes the 
initial decoding. This section determines if the in­
struction is legal and provides the initial microad­
dress. The A2/A3 PLA generates the rest of the 
microaddresses necessary for instruction decoding. 

The A5/A6 PLA decodes the coprocessor opera­
tions. PLA, by the way, stands for Programmable 
Logic Array. PLAs are arrays of gates that can be 
customized to particular uses by the layout of the 
final metal layer in processing. So, as with the 
ROMs, PLAs can be changed easily without com­
pletely changing chip design. 

T he Instruction Cache has a Tag Cache and a 
Data Cache. The Tag Cache contains instruction tag 
information (including the address and a validity 
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bit). The Data Cache doesn't actually contain data. 
It does hold the instruction stream. 

The Bus Controller manages memory access 
(including access of the cache). 

The Control Unit controls the parts of the 
micromachine. It interprets nROM information and 
combines it with secondary decoding of the instruc· 
tion pipe to finally control the micromachine. 

Other parts shown in Fig. 8-10 include the In­
struction Pipe, the Clock Generators, the FC Logic, 
the Size Logic, the Address Buffers, and the Data 
Buffers. 

Packaging_ The VLSI 68020 data and address 
buses aren't multiplexed, and because they are 
32-bits wide, the normal DIP package can't hold the 
chip. Instead, a 114-lead pin-grid array package is 
used (shown in Fig. 8-11). This is a square package 
with the chip in the center and with many pins stick­
ing out of the bottom like a bed of nails. The pin 
grid array package also offers a small size (small 

Fig. 8-11 . Pin-grid array package (courtesy of Motorola). 
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footprint compared to a DIP) and high reliability (for 
better heat dissipation as ceramic packages have). 
The pins are in a 13 x 13 square with 114 pins total. 
Not all of the pins are used: the 114-pin package 
is a standard size. 

Speed. The 68020 comes in different versions 
that run at different speeds. Not all of these will be 
available immediately. The first samples ran at 12.5 
MHz. 1985 will see the emergence of 16.65 MHz 
samples that have a clock with a 60 nanosecond 
period and dissipate less than 1.5 watts (which is 
less than the original 68000 or the 68008 dissipate). 
A common measure of large computer speed is the 
MIPS. One MIPS means that a computer can ex­
ecute one Million Instructions Per Second. That is 
an averaged figure, and depends on the type of in­
structions. The 68020 can cruise at 2 to 3 MIPS (say 
2.5) for interger processing and can run in short 
bursts (with the right sort of instructions) at up to 
8 MIPS. 



Improvements 

Doubled Clock frequency 
32- bit Dete Bus 
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New Instructions 

Fig. 8-12. 68020 improved performance factor estimates. 

Motorola feels that the 68020 is 2.5 times more 
powerful than any other chip on the market. (The 
newest member of the very popular DEC VAX 
minicomputer line, the 111785, is rated at 1.35 
MIPS.) The 68020 MIPS measurement depends on 
application. The 8 MHz 68000 runs at 0.5 to 0.75 
MIPS. Motorola estimates that the 68020 runs bet­
ter because of the factors shown in Fig. 8-12. These 
factors would add up to 5.8 times the performance 
of the 68000. This means that the 68020 will run 
at 2 to 3 MIPS with typical instructions, no waits, 
and no MMU (which would slow it down). 

Memory Space. Because it is a completely 
32-bit chip, it can address 4 gigabytes of memory 
directly. There are no instruction timing differences 
for byte, word, and long-word operations. The 68020 
is also built to use Virtual Memory. That is, though 
it can address 4 gigabytes, it doesn't have to have 
that much memory directly available as chips. If an 
area of memory is addressed that isn't on the chips 
in the system, but is within the 4 gigabytes, the com­
puter system can be set up to grab that part of 
memory from whatever source it is on and bring it 
into active chip memory. 

Data Bus Adjustment. An unusual feature 
of the 68020 is its ability to adjust the data bus 
width to whatever is needed; 8-bit, 16-bit, or 32-bit. 
That doesn't mean the pins disappear, just that the 
proper lines are all that is used. At every cycle, the 
bus can be adjusted by the 68020 itself. Besides eas­
ing the programmer's job, that means that 8- and 
16-bit peripheral chips will be easy to hook to the 
68020. That is important because most peripheral 

F6ctor 
(66020/66000 6 MHZ) 

2.0 
1.3 

1.25 
1.25 

chips probably will be 8- or 16-bit: more bits aren't 
really useful for most 110 functions. 

New Addressing and Instruction 
Features. The 68020 has some new addressing 
modes, such as full displacements, true memory in­
direction, and scaled indexing. It also has new in­
structions such as bit-field operators, double-ended 
bounds checking, BCD data compression and expan­
sion, module support, and enhanced system calling 
functions. Both of these additions help high-level 
languages work more easily with the 68020. Some 
instructions that did exist on the previous 68000 
family chips, but could not work with long-words, 
are extended to work with a full 32-bits on the 
68020. 

Another surprise waiting for 68020 program­
mers is the existence of 2 Supervisor system stack 
pointers. These are included to make task switching 
easier, and to separate task-related exceptions from 
system-related exceptions. The master stack pointer 
is active with user tasks so all task-related excep­
tions are within a user's control block. Other excep­
tions are handled by the interrupt stack. 

Price. As with all microprocessors, the 68020 
is expensive: The introductory price for 12.5 MHz 
samples in late 1984 was $487. But as production 
experience is gained, and the volume sold climbs, 
that price will drop. The 6800 started at $450. The 
68000 first sold, in 1979, for nearly $450 and now 
costs around $50 at local electronic hobbyshops. 
Motorola thinks that by 1989 the 68020 will cost 
approximately $50. 

At that price, and with its speed and memory 
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addressing ability, the 68020 is bound to show up 
in engineering workstations, high-perfonnance com­
puters, and communications and control systems. 
Eventually, there is little doubt it will find its way 
into the personal computer field as users demand 
more and more power. Motorola expects to see 
MC68000 based CAD, CAM, and CAE worksta­
tions (individual computers dedicated to Computer 
Aided Design, Manufacturing, and Engineering), 
fault-tolerant processors, graphics processing, small 
to intermediate business computer systems, 
robotics, and telecommunications switching 
networks. 

Compatibility. Because the 68020 has the 
same architecture as the other 68000 chips all ob­
ject code written for the others will run without 
change on the 68020. Because of its new features, 
however, some programs written for the 68020 will 
not run on the previous chips. In fact, because of 
improvements in clock speed and other new 
features, that code will probably run faster. The 
Cache helps speed regular operation and makes 
multiprocessing easier to accomplish. The new ad­
dressing modes help with full flexibility and make 
high-level languages run better on the chip. The new 
instructions make complex data manipulations, 
graphics, robotics, and high-speed controllers work 
better. Operating systems will be easier to imple­
ment because of the program counter, and complete 
control of the onchip instruction cache. Also, 
because the user, I/O, and supervisor infonnation 
are separated. 

At the time this book was written (late 1984) 
there was not yet a second source for the 68020. 
There will certainly soon be one. 

The 68020 has the elements that are found in 
the earlier 68000 family CPU chips: the 7 address 
registers, 7 data registers, and 2 stack pointers. It 
now has an architecture that includes (and all of 
these are 32-bit) a program counter, a user stack 
pointer, an interrupt stack pointer, a master stack 
pointer, a ALU, a cache control register, a cache ad­
dress register, 7 address registers, 7 data registers, 
address bus, and data bus. 

Cache. The 68020 has a 64-word, on-chip, 
direct-mapped, instruction cache. The cache-which 
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takes 120 nanoseconds (ns) for access-is faster than 
external memory that requires a minimum of 180 
ns for access (and the minimum can only be 
reached if very expensive 90 ns RAMs are used for 
no wait state accessing). 

The cache holds recently used instruction se­
quences. The 68000, executing typical instructions, 
uses the bus 950/0 or the time, leaving only 50/0 for 
DMA. The 68020 with cache and prefetch, uses the 
bus as little as 65-700/0 of the time. The pipelining 
is done in 3 stages: prefetch, decode (and address 
calculations), and execute. The 68020 has a pipeline 
that is 4 active words long where the 68000 has a 
3 word long pipeline. Caches and pipelines let the 
CPU get data and instructions faster: look for a com­
puter science text for more details of these 
structures. 

Peripherals and Coprocessors. This is 
short and sweet: the present peripheral chips that 
work with the 68000 will also work with the 68020. 
In addition, because of its coprocessor interface and 
huge memory address space, it is easy to interface 
other processors, chips, or systems to the 68020. 

The 68020 coprocessor interface allows the chip 
to be easily attached to other processors. Because 
the interface is generalized, the 68020 can work with 
different coprocessors. (Some other microprocessors 
are customized to work only with certain 
coprocessors.) A 68020 system will support up to 
8 coprocessors. The way the interface works is that 
when the 68020 doesn't know how an instruction 
works, it passes that instruction to coprocessor 
which decodes it and tells CPU what to do. 

The most important coprocessor is the 68881 
FPC (Floating Point mathematical processor) which 
is described in detail later in this chapter. The 
68881, 68851 PMMU (Paged Memory Manage­
ment Unit: also described in this chapter) and the 
68020 chip set will rival the performance of any 
superminicomputer. Motorola claims that it will 
have the power as a DEC VAX 111785 minicom­
puter. (The 688 prefix is Motorola's code for 
coprocessors. ) 

68200 
This is a 16-bit, single-chip microcomputer from 



Mostek. Microcomputers is a term sometimes 
used for chips that integrate a microprocessor and 
various peripheral functions onto a single silicon 
piece. Microcomputers are typically used as con­
trollers for equipment. 

In the expanded bus mode, the 68200 directly 
interfaces to the 68000. It has three timers and a 
full duplex USART with address wake-up. It has 
a 128 word RAM, timers and a serial port on the 
chip. 

There are two versions of the 68200. The first 
has an onchip ROM in a 48-pin plastic DIP. The 
second is an emulator version in a 84-pin ceramic 
LCC. 

Most instructions operate on both bytes and 
words. Several 68200 chips can be connected by a 
single serial channel or a shared parallel bus. In the 
expandable parallel mode, RAM, ROM, and 110 on 
the chip are accessed without using the shared bus. 
H has 4K of onchip ROM and 256 bytes of RAM 
and addresses a full 64K bytes of memory. Denser 
memory, faster, and CMOS versions will appear in 
the future. It has more than 50 instruction types and 
a number of addressing modes. Most instructions 
are kept to one word to minimize the use of memory 
for programs. There are rapid bit-manipulation in­
structions for both registers and memory. 

Instead of the memory organization of the 
68000 (which is made for larger systems), the 68200 
addresses 64K as 32K x 16-bits. All I/O is memory 
mapped. The top lK bytes hold the onchip 110. 
There are nine addressing modes including a short­
form address that takes only a single word to reach 
frequently used I/O data. Single-chip microcom­
puters spend a lot of time getting I/O, so this ad­
dressing mode improves performance. Mostek 
claims the 68200 will perform mathematics faster 
than the Intel 8096 microcontroller. 

The 68200 has an extensive and flexible I/O 
capability including a serial channel, 2 parallel ports, 
an interrupt controller, and three 16-bit binary 
timers for internal timing, pulse-width measurement 
and generation functions. Every 110 device is pro­
grammable. Up to 40 pins are available for 110. 

An interesting new trick is that the serial chan­
nel has a wake-up mode. By adding a wake-up bit 

to each data word, it can transmit and receive wake­
up signals. This is an efficient and expedient way 
to interrupt and process new data, particularly when 
68200s are interconnected serially. 

The onchip interrupt capability has a reset, a 
nonmaskable interrupt, and 14 independent vec­
tored interrupts (about twice as many as the com­
peting 8096). The 68200 and the 8096 can be placed 
in external bus mode for addressing additional 
memory or for operating standalone. The 68200 can 
be used as a universal peripheral controller; the 
8096 cannot. The onchip bus arbitration logic lets 
it do DMA transfer to and from system memory. 

The 68200 is not 68000 compatible; it is mod­
eled after the 68000. The registers, instructions, and 
addressing are similar to those of the 68000. The 
instructions use the same mnemonics to make it 
easier to use for 68000 programmers. 

PERIPHERAL CHIPS 

Some of the peripheral chips of the 68000 family 
were listed in Fig. 8-1. Several of the most impor­
tant devices are detailed in this section. These chips 
are designed to do specialized tasks for the 68000 
microprocessors and thus ease their processing 
burden. Some are microprocessors in their own 
right. 

68881 FPC 

The Floating-Point Coprocessor (FPC) chip is 
a special processor that is used for very fast floating­
point arithmetic calculations. It is made to support 
all required and most suggested features of the 
IEEE proposed floating-point standard. All features 
are built into the hardware and don't depend on 
special programs from the outside. Because it can 
interface directly to the 68020's special bus, it is also 
known as a coprocessor. 

Floating Point Numbers. There are two 
fundamental kinds of arithmetic processing in com­
puters. The first is called integer arithmetic. That 
is the simpler form and consists of work on numbers 
that don't have any exponents or fractional parts. 
For instance, the following numbers are integers: 
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1 
2 
64,378 
1,024,000,000,000 

Integers can be as large as you want, but mak­
ing them larger requires more and more bits in the 
number. That makes them awkward for computing 
where the large number of bits in the numbers 
makes integer calculations slow. Another disadvan­
tage of integers is that they cannot represent those 
numbers less than 1 and more than zero: fractions. 

Floating-point numbers can represent larger 
and smaller values within the same number of bits. 
The floating-point description refers to the fact that 
these numbers don't automatically have the radix 
point (called the decimal point for those humans 
amongst us who work with base 10) at the right 
hand end of the number. Instead, the position of the 
radix point is determined by the exponent value. 

For instance 1 x 104 is a floating point 
number. This would frequently be shown, in com­
puter books, as 1E4. You could also find the floating 
point number 1E-4 which stands for 1 x 10-4, or 
0.0001. 

(In computers, however, the actual representa­
tion of floating point numbers is more complex than 
this. They are often figured to base 16 exponents 
and have an automatic value subtracted from that.) 

Anyway, lots of computer arithmetic calls out 
for the size and flexibility of floating point numbers. 
However, that arithmetic can be slow and cumber­
some for the CPU because the mantissa (main 
value) and its sign, and the exponent and its sign 
(as well as the various bases involved) have to be 
remembered and manipulated by a whole list of 
rules. The MC68881 is faster at performing such 
arithmetic than a CPU is because it is dedicated to 
that purpose only. 

Architecture. The Motorola 68881 is made 
in the HCMOS technology (high-performance 
CMOS) and is specially designed to work with the 
68020. That doesn't stop it from working with other 
CPUs too. It provides a wide range of abilities that 
match those found in some large computers. It is 
about as complex as the 68020. Inside, it has a high-
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speed 65-bit ALU for mantissa arithmetic. There 
is a barrel shifter that can handle a shift of from 1 
to 67 bits in a single machine cycle. This shifter 
speeds standard arithmetic and is fundamental to 
the transcendental functions (such as sin, cos, tan). 

Because it was designed as an extension of the 
68000 family, it keeps many of the same architec­
tural hallmarks. It is, for instance, a register based 
processor, with 8 80-bit floating-point data registers 
(shown in Fig. 8-13). These must be so long because 
they contain a very precise mantissa, an exponent, 
and the two sign bits. They hold what is called full 
extended-precision numbers. 

The 68881 also contains three special 32-bit 
registers: the control, status, and instruction address 
registers. The control register contains bits for mode 
selection and exception enabling. The status 
register contains a condition code byte (for flags 
similar to those in the 68020), the FREM and 
FMOD quotient bits, the exception byte, and the 
accrued-exception byte. These help control 
arithmetic and exception handling for the processor. 
The instruction address register holds the address 
of the last instruction executed. Because it hangs 
on to that information, the instruction address 
register can be useful in tracing the faulty instruc­
tion that causes an exception. 

The 68881 is internally divided into the Bus In­
struction Unit (BIU) and Execution Unit (EU). The 
EU executes the instructions while the BIU com­
municates with the CPU. When the 68020 detects 
a 68881 instruction, it writes the instruction to the 
memory mapped coprocessor interface command 
register and reads the coprocessor interface 
response register. The BIU encodes any addition 
action the 68020 must do for the 68881. 

The 68881 also supports the virtual machine 
architecture. If the 68020 finds a page fault, and/or 
a task time out, the main processor can stop the 
68881 at any time-even in the middle of 
execution-and save its internal state. It can also 
reload the 68881 state. 

Data 1Ypes. The 68881 can handle four new 
data types: Single Precision Real (referred to as S), 
Double Precision Real (D), Extended Precision Real 
(X), and Packed Real Decimal String (P). The codes 



(S, D, X, and P) are used in assembly language pro­
gramming just as the B, W, and L codes were used 
before: they are appended to the end of opcodes. 

The first three data types use the organization 
shown in Fig. 8-14. All numbers are converted to 
full precision, though, when they enter the floating 
point registers. This means mixed type arithmetic 
is possible and that there will be no loss of preci­
sion (even of integers and BCD strings). 

Operation Types. There are five major 
operation types. Dyadic (2 operands) operations 
have a source argument that is a 68020 memory 
location, data register, or floating-point data register. 
If the source isn't already in extended precision 
form, it is converted. The destination argument is 
always one of the floating-point registers. The 
result, also in extended-precision form, is stored in 
the destination. 

Monadic (1 operand) operations have a single 
68020 memory, data register, or floating-point 
register argument. Again, it is converted to extend­
ed precision form and then the result is stored in 
the destination (a floating point register). Moves and 
Conversions can move and convert (from one data 
type form to another) anything in the floating-point 
registers. 

Conditional tests (FBcc, FScc, FDBcc, FTcc, 
and FTPcc) are identical to the same conditional 
tests in the 68020 except that the condition code 
register referred to is the 68881's. Control operations 
read and write the control status and the instruc­
tion address registers and the full 68881 context. 

Coprocessor Interface. The special 
coprocessor interface is built into both the 68020 and 
the 68881. It is a hardware construction that pro­
grammers don't need to worry about. This interface 
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Fig. 8-13. 68881 register set. 
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A number such as thIs: 

- 5763 * 108 

Breaks down thi sway: 

Data 
Type 

Single 

Number of Eli ts 
Sign Exponent Mantissa Total 

B 23 32 

- 1S the SIgn 

5763 IS the Mantissa 
8 1S the Exponent 

Double 11 52 64 

Extended 15 64 BO 

Which would be arranged thIS way 

I Sign I Exponent Mantissa 

Fig. 8-14. 68881 data types. 

allows the two chips to specialize in what they do 
best. When the 68881 requires certain services that 
are ably handled by the 68020, it requests and 
receives those services. The 68881 is a full processor 
in its own right. Once it gets its instructions it can 
process without direct help from the 68020. In fact, 
depending on the instructions, the 68881 can pro­
cess concurrently with the 68020, overlapping the 
processing and speeding overall performance. (The 
great majority of 68881 instructions do overlap.) 

Because the interface is simple, though, you can 
design and use your own coprocessors. Also, multi­
ple coprocessors are allowed. The 68881 can be 
treated as peripheral in other systems by software 
reproduction of the handshaking that takes place 
between the 68020 and the 68881. 

IEEE Floating Point Standard. The IEEE 
standard requires and the 68881 performs the 
following: 

1. Recognition of these data types: Positive 
True Zero, Negative True Zero, Plus Infinity, Minus 
Infinity, Denormalized Numbers, Not-a-Numbers 
(NaN's). 

2. Performance of these operations (in full 
precision): add, subtract, multiply, divide, re­
mainder, compare, square root, integer part. 

3. Performance of these rounding modes: to 
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nearest, towards plus infinity, toward minus infini­
ty, towards zero. 

4. Performance of these rounding precisions 
(even though the 68881 makes all calculations to 80 
bits of precision, it can emulate narrower precision 
by appropriate rounding): Round to extended (this 
is the default), Round to double, Round to single. 
The traps for exceptions are handled through the 
68020, which is signalled and given a vector by the 
68881, and handles the exceptions just like any 
other traps. 

But the 68881 goes beyond those requirements. 
It also has additional instructions and transcenden­
tal support. 

Additional instructions: Absolute value, negate, 
scale, exponent, set byte determined by floating­
point condition, branch on floating-point condition, 
move constant to floating-point register, get fraction 
of floating-point number, get exponent of floating­
point number, modulo, test, single precision fast 
multiply, and single precision fast divide. 

Transcendental support. Mathematical functions 
such as sine, cosine, and logarithms are called 
transcendental functions. The 68881 includes hard­
ware that will find the value, to double precision of 
sine, cosine, arctangent, log base 2, log base e, log 
base 10, 2X, ex, lOx, tangent, hyperbolic arctangent, 



hyperbolic sine, hyperbolic cosine, hyperbolic 
tangent, arccosine, arcsine, log base e(x+l), and 
simultaneous Sine and Cosine. 

68851 PMMU 

Like the other 68020 peripheral chips and the 
68020 itself, the 68851 is made by the HCMOS 
(High-performance Complementary Metallic Oxide 
Semiconductor) technology. The chip first became 
available in 1985. It is a vital keystone to a system 
built on the 68020. 

The 68851 is a paged memory management 
unit (PMMU). That is, it helps logically organize 
the huge memory space that the 68020 can address 
and translates logical addresses from the 68020 in­
to physical addresses for the RAM and ROM chips. 
It is specifically intended to help implement a vir­
tual memory scheme. The 68851 can also be used 
with other CPUs such as the 68010. 

Virtual Memory. Virtual memory is called 
virtual because it is a design scheme where the 
memory chips aren't all actually, physically in the 
system. In other words, although the 68020 can ad­
dress 4 gigabytes of memory, most systems won't 
want to put that many chips into the computer. (If 
they did it would be very expensive and probably 
wouldn't fit on a desktop). Instead, a reasonable 
amount of memory is built into the computer, say 
512K bytes or even a 1 Megabyte RAM. Whenever 
the CPU asks for something that is within that 
memory space, the request passes through the 
MMU which refers it directly to the memory chips. 
If the CPU asked for something within the second 
megabyte of RAM, however, the MMU would 
receive the request and realize that the second 
megabyte worth of memory wasn't within the ac­
tual chip space. Instead, the contents of those 
memory addresses would be on a longer term 
storage device, such as a disk. 

The MMU would execute the proper instruc­
tions to move the contents of the second megabyte 
of memory into the actual chips, swapping it for the 
first megabyte of memory. Once the new informa­
tion was within the chips, the MMU would relay the 
desired address and the memory chips would supply 
the needed values to the CPU. 

In particular, the 68851 is paged memory 
management unit. It can move single pages into the 
out of actual physical memory. It doesn't have to 
move the whole ball of wax. Up to 6 68851s can be 
used in a system to handle a huge memory space. 

Features. Figure 8-15 shows the major struc­
tures of the 68851 that are characterized by the 
following features: 

D High speed. It translates logical ad­
dresses into physical addresses very quickly. If the 
memory management scheme isn't quick, all the 
speed of the CPU, such as the 68020, can be wasted 
waiting for information from memory. 

D Logical Addresses that consist of a 4-bit 
function code and a 32-bit address. 

D A full 32-bit physical address. This means 
the 68851 won't hold back advanced processors such 
as the 68020 that can address a full 4 gigabytes of 
memory. 

D Eight different page sizes (from 256 bytes 
to 32K bytes). This means it can swap a variety of 
sizes of data into and out of physical memory. This 
allows flexibility in programming. Swapping larger 
pages takes longer than swapping smaller pages, but 
may be more efficient in some cases because of the 
way a particular program accesses memory. 

D A fully associative 64 entry onchip transla­
tion cache. As with the 68020, having an onchip 
cache speeds up the chip performance. 

D A translation cache can hold descriptors for 
multiple processes. The translation cache holds the 
information the chip needs to decode logical address 
requests from the CPU into physical address for the 
memory. 

D Internal hardware that maintains translation 
tables and the onboard cache. 

D A MC68020 instruction set extension and 
instruction oriented interface using M68000 fami­
ly coprocessor interface. This simplifies interfacing 
because all external control chips such as this and 
the 68881 floating point coprocessor attach to the 
68020 in basically the same way. 

D A linear address space of 4 gigabytes or a 
hierarchical protection mechanism with eight levels 
of privilege and protection. Another duty that an 
MMU can carry out for a microcomputer system is 

187 



63 

31 

Bit Positions 

CPU Root 
Pointer 

DMA Root 
Poi nter 

Supervisor Root 
Poi nter 

T rensletion Control 

Protection Control Registers 
15 0 

Cac he Stat us 
St8tus 

Access Control 

7 a 7 0 7 0 
,'---CA-l --=', ,r--YA-l ----.;;" I SCC , 

32 

o 

Bre6kpoint ACknowledge 
D~H 6 Regl st ers 

Bre6kpolnt Acknowledge 
Control Registers 

BAD7 BAC7 
BAD6 BAC6 
BADS BACS 
BAD4 BAC4 
BAD3 BAC3 
BAD2 BAC2 
BAD1 BAC1 
BADO BACO 

Fig. 8-15. 68851 block diagram. 
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to know what users (or programs) are authorized 
to use what parts of memory. This can help protect 
programs from crashing, simplify multitasking and 
multiuser systems, and provide data security and 
privacy. 

D Support of multiple logical and physical bus 
masters. 

D Support of logical and physical data cache. 
D Support of instruction breakpoints for soft­

ware debugging and program control. 

Purposes. In fact, all of these features come 
down to three basic purposes of the PMMU: 

1. It translates logical into physical addresses. 
2. It provides a protection and privilege 

mechanism for memory. 
3. It supports breakpoint operations to make 

programming easier. 

The most important task of these three is the 
first, and so the chip is optimized to perform at very 
high speed. It takes the 32-bit logical address (from 
the CPU) and the 4-bit function code and then 
begins a translation. It searches for the page 
descriptor corresponding to the logical-to-physical 
mapping in the onchip (on the 68851) translation­
lookaside module (TLM). This is a very fast 
64-entry fully-associative cache memory (just 
described in the features) that stores recently used 
page descriptors. By keeping recently used page 
descriptors in a fast memory, the speed of the overall 
process of translanting an address is increased. Most 
programs will use many of translating an address 
is increased. Most programs will use many of the 
addresses from the same pages frequently, when in 
a certain part of the program. 

If the descriptor isn't found in the TLM, the bus 
cycle of the logical bus master is aborted and the 
68851 executes enough bus cycles to find the 
descriptor in the translation table in physical 
memory. This table is hierarchical and contains the 
page descriptors that control the logical-to-physical 
address translations. The 68851 has 64 bit primary 
root pointer registers that point to the head of the 
translation tables. Once the proper page descriptor 
is found, it is loaded into the TLM and the logical 
bus master retries its bus cycle. This should result 

in the correct translation. 

Protection Mechanism. The 68851 has a 
hierarchical protection scheme that examines and 
enforces the access rights of the currently executing 
process cycle-by-cycle. There are eight levels of 
privilege and the levels are coded in the upper three 
bits of the incoming logical address LA (31-29). The 
68851 compares those three bits against the value 
in the current access level register (CAL in Fig. 8-15) 
and if the priority level of the incoming address is 
less incoming the current access level, the 68851 will 
terminate the access as a fault. The 68020 module 
call and return functions (CALLM/RTM) are sup­
ported and this means you can thus change privilege 
levels during module operation. 

Coprocessor Interface. The 68851 uses the 
6800 family coprocessor interface. This interface is 
built into the 68020, 68881, and 68851 chips and 
allows instructions to be put in a program that are 
not executed by the main Cpu. Each of the 
coprocessors has a special set of instructions that 
are customized for its task. When the 68020 runs 
into one of these instructions in the program and 
tries to decode it, it will automatically request the 
special help of the coprocessor. Whatever part of the 
instruction can be carried out efficiently by the 
68020 will be carried out by the 68020. 

Programmers do not need to worry about the 
coprocessors. All they need to know is that they have 
more instructions to work with when the 
coprocessors are included in the hardware. The 
coprocessor interface can be used with these chips, 
future Motorola chips, and any special processors 
the user wants to implement. 

New Instructions. The 68851 extends the 
68000 instruction set. The new instructions let you 
control the following: 

1. Loading and storing of values in the MMU 
registers. 

2. Testing access rights and conditionals 
based on the result of the tests. 

3. MMU control functions. 

The new instructions are as follows: 
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PMOVE. This moves data to or from a 68851 
register. 

PVALID. This compares access rights requested 
by logical address and traps if it is less than the cur­
rent access level. 

PTEST. This searches the translation tables to 
determine the access rights to an effective address. 
It also sets the 68851 status register according to 
the results. 

PFLUSH. This flushes translation cache entries 
by any of a number of methods: root pointer; root 
pointer and effective address; or root pointer, effec­
tive address, and function code. 

PSAVE. Saves the internal state of the 
coprocessor interface (for support of 68020 virtual 
memory). 

PRES1DRE. Restores the internal state of the 
coprocessor interface (the inverse of the PSAVE in­
struction). 

PBcc. Branches conditionally on 68851 con­
dition. 

PDBcc. Tests 68851 condition, decrements, and 
then branches. 

PScc. Tests the operand according to the 68851 
condition. 

PTRAPcc. Traps according to the 68851 con­
dition. 
68451 MMU 

The 68451, like the 68851, is a memory 
management chip to control the large memory space 
that the 68000 family can address. This chip does 
two things: it translates addresses and it provides 
address protection. The 68451 comes in 4,6,8, and 
10 megahertz versions. 

Each processor in the 68000-based system 
sends a function code and an address during each 
bus cycle. The function code tells what address 
space to use and the address specifies an address 
within that space. The function codes determine 
whether User or Supervisor space (and then 
whether data or program space) is addressed. By 
separating memory this way, the operating system 
can be protected from application programs, and in­
dividuals memory can be protected from unauthor­
ized access. Special provision has even been made 
for a separate address space for employing the 
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68450 DMAC (Direct Memory Access Controller). 
The protection and control of memory provided by 
an MMU simplifies the creation of multitasking and 
multiuser operating systems. 

The 68451 has the following features: 

1. Provides efficient memory allocation. 
2. Separates address spaces of system and 

other user resources. 
3. Provides write protection. 
4. Supports paging and segmentation. It can 

work with 32 segments of variable size with each 
MMD. Multiple MMUs can therefore expand the 
system to any number of segments. Intertask com­
munication is simple through the use of shared 
segments. 

5. Is DMA compatible. 

68452 BAM 

The 68452 is the sort of chip you wouldn't 
have to worry about in an 8-bit system: the systems 
just didn't get that complicated. The more complex 
16- and 32-bit 68000 systems, however, need con­
trol of the bus. For instance, a shared memory area 
shouldn't be accessed by two different chips at once. 
A chip such as the 68452 is needed to keep that 
from happening. 

The Bus Arbitration Module (BAM) is an asyn­
chronous controller that allows multiple local buses 
to be multiplexed onto a common global bus. The 
local buses to be multiplexed onto a common global 
bus. The local buses can then share memory and 
I/O and can also communicate with one another. 
One 68452 BAM arbitrates for up to eight local 
buses. Those are assigned a priority, from zero to 
seven, and the higher priority unit takes precedence 
over a lower priority unit when both try to access 
a common site at the same time. 

The 68452 words in one of two modes: cycle­
by-cycle or block. Cycle-by-cycle arbitrates after 
every transfer. This could slow down fast devices, 
so systems with speedy chips (such as DMA and 
disk controllers) often use block mode. In that mode, 
a device has the global bus for a number of cycles. 
Even in block mode, memory access will be slowed 
because another layer of logic has to be worked 
through. 



68120lPC 

The 68120 and 68121 are Intelligent Peripheral 
Controllers (IPC). There are slight differences be­
tween the two. The 68120 has 2K bytes of ROM 
on the chip, the 68121 does not. The 68121 has 5 
parallel 1/0 lines, the 68120 has 21 such lines. IPCs 
are used to harness other peripheral devices, which 
then don't have to be directly connected to the CPU. 

The IPCs have the following features: 

1. Bus compatibility with 68000 (asyn-
chronous), 6809 and 6800 chips. 

2. 6809 source and object code compatibility. 
3. 128 bytes of dual-ported RAM. 
4. Multiple operation modes from single chip 

to expanded. 
5. Six shared semaphore registers. (These 

hold messages from CPU to IPC or IPC to CPU). 
6. Parallel 110 lines (21 on the 68120 and 5 

on the 68121). 
7. A 16-bit three function timer_ 
8. A serial communications interface. 
9. An 8 x 8 multiply instruction. 

10. External and internal interrupts. 
11. HaltlBus available capability control. 

68440 DDMA 

If microprocessors were restricted to moving a 
single byte or word at a time, the data movement 
bottleneck would severely hurt system perfonnance. 
Moving a lot of data in a hurry is a very important 
computer function. For example, while many peo­
ple believe the main advantage to having a hard disk 
drive is that it can store a huge amount of informa­
tion. That isn't accurate. In fact, the much higher 
speed of data transfer that hard disks are capable 
of actually does more to improve system per­
formance. 

Moving data is such a simple task that it doesn't 
make sense to use a complicated and powerful CPU 
to do it. Therefore, advanced systems take advan­
tage of DMA (Direct Memory Access) where the 
CPU turns over bus control to another chip. That 
chip, called the DMAC (DMA Controller) quickly 
shuffles large sequences of information from input 

to memory, memory to output, or from one part of 
memory to another. 

Typically, DMA takes place between a disk 
drive and memory. Instead of having a CPU loop 
through some MOVE instructions, the CPU signals 
the DMAC that it wants a certain amount of data 
moved from a source to a destination. The DMAC 
then controls the entire movement, and returns con­
trol to the CPU when the transfer is complete. This 
sort of transfer is much faster, and the CPU can even 
be attending to other business while the DMAC is 
handling the transfer. 

A DMAC is a complicated, specialized pro­
cessor. The 68000 family has several DMACs. The 
first is the 68440 DDMA (Dual Direct Memory Ac­
cess Controller) which is a subset of the 68450 
DMAC. The 68440 chip has these features: 

1. Bus compatibility with 68000, 68008, 
68010. 

2. 16 Megabyte addressing range. 
3. Byte or word transfers. 
4. Two independent channels. 
5. Onchip registers for complete program con­

trol by system MPU (microprocessing unit). 
6. Memory-to-memory, memory-to-per­

ipheral, and peripheral-to-memory transfer 
capability. 

7. Programmable channel prioritization. 
8. Vectored Interrupt Capabilities with two 

vectors per channel. 

A transfer operation has three phases: initializa­
tion, transfer, and tennination. During initialization, 
the CPU loads the DDMAC registers with control 
information and address pointers for the device ad­
dress, memory address, and memory transfer count. 
Then bus control is given to the DDMAC which pro­
vides the addressing and bus controls for the 
transfer. When the transfer is complete, the tennina­
tion phase begins. The DDMAC sends status infor­
mation to the CPU, returns bus control to the CPU, 
and then idles until it is called again. 

68450 DMAC 

The other Direct Memory Access Controller 
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(DMA) chip in the 68000 family is the 68450. This 
chip has these features: 

1. Four independent DMA channels. 
2. Memory-to-memory, memory-to-per­

ipheral, and peripheral-to-memory capability. 
3. Array-chained and linked-array-chained 

ability. 
4. On-chip registers for complete program­

mability by the MPU (microprocessing unit). 
5. Ability to transfer to 68000 or 6800 

peripherals. 
6. Programmable channel prioritization. 
7. Two vectored interrupts for each channel. 
8. Up to 4 Megabytes/second transfer rate. 

68230 PI/T 

The peripheral chips used most often are those 
that help handle 110 tasks. Even small systems 
which don't need the raw horsepower of the DMA, 
FPC, and MMU chips still have considerable 110 
tasks. The 68230 Parallel Interface/Timer uses the 
following features to handle two common I/O jobs: 

1. A variety of port modes: bit I/O, Unidirec-
tional 8-bit and 16-bit, Bidirectional 8-bit and 16-bit. 

2. Selectable handshaking. 
3. A 24-bit programmable timer. 
4. Programmable timer modes. 
5. Interrupt Vector generation logic. 
6. Separate port and timer interrupt service 

requests. 
7. Onchip registers that are directly ad­

dressable from the 68000. 
8. Direct DMA compatibility. 

Timers are registers that the programmer puts 
a value into. The value of the timer register will then 
be regularly decremented. Typically, once that value 
reaches zero, it returns to the original value and 
begins counting down again. The zero point can be 
used to generate periodic interrupts, a single inter­
rupt, or square waves. 

The onchip registers of any of these peripheral 
devices are treated just as memory locations by the 
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68000. But once you move the proper data to those 
locations, the peripheral chip can work as a separate 
processor, controlling memory, buses, or timing 
within the system. 

DATA COMMUNICATIONS CHIPS 

With the need to communicate between systems, 
there are a number of communications and support 
chips available. This section covers six such chips 
to support the 68000 microprocessors. 

68652 MPCC 

The 68652 MultiProtocol Communications Con­
troller (also known as the 2652) formats, transmits, 
and receives synchronous serial data and uses Bit­
Oriented (BOP) or Byte-Control (BCP) protocol. It 
has a parallel bus which will work with 6800 or 
68000 microprocessors. 

68653 PGC 
The 68653 is a good example of the special­

ized chips included in the 68000 family. A PGC is 
a polynominal generator checker and character com­
parator circuit that is used with a 
Receiver/Transmitter (R/T, UART, USRT, or 
USARf). What does all of that mean? The 68653 
monitors the characters that are transferred between 
the microprocessor and the RlT chip. It checks for 
errors or searches for particular characters by per­
forming the block check character (BCC) operation 
and a parity check on the transferred data. 

68661 EPCI 

Enhanced Programmable Communications In­
terface is an enhanced version of the popular 
Signetics 2651 communications controller chip. It 
can be hooked to 8-bit or 16-bit microprocessors and 
will work in polled or interrupt-driven systems. The 
68661 (also called the 2661) can be programmed and 
will handle both synchronous and asynchronous 
serial protocols at full- or half-duplex mode. The EP­
CI can simultaneously translate serial data into 
parallel and parallel into serial. 

There are three versions of this chip: A, B, and 



C. Each has a different set of baud rates (which can 
be set internally or externally). 

1. Synchronous operation. 
2. Asynchronous operation. 
3. All operations. 

68681 DUART 

The Dual Asynchronous Receiver/Transmitter 
has two UARTs on the chip that are independent 
and full-duplex. The chip is compatible both with 
the 68000 family and with many other 
microprocessors. It can be used in a polled or an in­
terrupt driven system. A UART (pronounced "you­
art") is a very common microcomputer system chip 
because it is the foundation of communication be­
tween different computer systems and subsystems. 

In a polled system, the microprocessor polls or 
asks the peripheral devices if they have anything 
to say. Typically, a timer is set up and each time it 
counts to zero, the microprocessor asks each of the 
peripherals in turn if they have new information to 
report. 

An interrupt drive system lets the peripherals 
tell the microprocessor about new information at 
any time. When anyone of them has something to 
report, they assert an interrupt to the CPU. If the 
priority of the interrupt is high enough, the inter­
rupt is acknowledged and the CPU listens to the 
peripheral. The advantage of this system is that im­
portant messages don't have to wait for a polling, 
they can be received and acted upon right away. 

Some of the features of the 68681 are as follows: 

1. Quadruple buffered receiver data registers. 
2. Programmable data format. 
3. Programmable baud rate for each receiver 

and transmitter. 
4. External Ix or 16x clock. 
5. Parity, framing, and overrun error 

detection. 
6. False start bit detection. 
7. Line break detection and generation. 
8. Programmable channel mode. 
9. Multi-function 6-bit input port. 

10. Multi-function 8-bit output port. 

11. Versatile interrupt system. 
12. Single interrupt output with eight maskable 

interrupting conditions. 
13. Automatic wake-up mode for multidrop ap­

plications. 

68562 DUSCC 

The 68562 Dual Universal Serial Communica­
tions Controller chip puts two independent, 
multiprotocol, full duplex receiver/transmitter con­
trollers on a single chip. It can handle asynchronous 
and synchronous communications protocols and will 
format, synchronize, and validate data. It can work 
in polled, interrupt drive, or DMA (Direct Memory 
Access) systems. 

Each channel has the following: 

1. Receiver. 
2. Transmitter. 
3. 16-bit multifunction counter/timer. 
4. Digital phase-locked loop (DPLL). 
5. Parity/CRC generator and checker. 

Though both channels share a bit rate 
generator, they can be programmed for different 
data formats and operating modes. 

68564 SIO 
One of the first peripheral chips provided for 

any microprocessor is a SIO (Serial Input/Output) 
controller. The 68564 handles this chore for the 
68000 family, and is, in fact, two SIOs on a single 
chip. It can work with asynchronous, byte syn­
chronous (bisync), and synchronous bit-oriented pro­
tocols (HDLC and SDLC). It can also handle almost 
any serial protocol including noncommunications 
protocols such as floppy disk interfacing. The 68564 
has these features: 

1. Self test built-in. 
2. Directly addressable registers. 
3. Two independent full-duplex channels. 
4. Quadruple buffered receiver registers and 

double buffered transmitter registers. 
5. Daisy-chain priority interrupt logic. 
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6. Baud-rate generators. 
7. Asynchronous, byte synchronous, and bit 

snychronous. 
8. Address field recognition. 
9. CRC generation and checking. 

MOSTEK PERIPHERAL CHIPS 

As I mentioned once before, second source 
manufacturers of the 68000 don't only make the 
CPUs. They also produce and design peripherals. 
The following pages describe some example 
peripheral chips from Mostek (which makes the 
68000 and 68008 CPUs). 

68901 MFP 

The Mostek 68901 Multi-Function Peripheral 
has four 8-bit timers with preprogrammed scalers, 
an interrupt controller for 16 sources, eight parallel 
110 lines and a full duplex USART with program­
mable DMA signals all in a 48-pin plastic DIP. It 
is intended for small applications such as instrumen­
tation and personal computers and packs a variety 
of functions into one box to make system design 
simple. 

Mostek's 68901 MFP combines several impor­
tant functions on a single chip. 

1. Four timers: two multimode timers and two 
delay timers. 

2. An interrupt controller (for 16 sources). 
3. Eight parallel I/O lines. 
4. A single channel USART. 

In many cases, this one chip will handle all of 
the extra functions a system needs. The 68901 has 
24 directly addressable internal registers for both 
controlling the chip and monitoring its status. These 
registers are connected to the system bus and can 
be loaded, checked, and manipulated by the CPU. 
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68564510 

The 68564 Serial 110 Controller has two in­
dependent, full duplex serial channels. It can han­
dle asynchronous and a number of synchronous 
communications protocols and was designed for 
high-level protocol applications. It has directly ad­
dressable registers and can be used in polled, in­
terrupt (vectored and non-vectored) or DMA 
transfer systems. 

68345 FIFO 

The 68345 is the highest density FIFO (First­
In First-Out) (512x9) memory on the market. It is 
used in high-speed parallel 110 applications where 
one data rate needs to be synchronized with another. 
By using this one chip, more complicated and cost­
ly interface circuitry may be eliminated. 

68590 LANCE 

The 68590 Local Area Network Controller for 
Ethernet combined with an SIA (Serial Interface 
Adapter) will handle the physical and data link levels 
of Ethernet. This is a second-sourced chip that in­
terfaces to other 16-bit microprocessors too. Because 
it has a DMA controller on the chip, it can handle 
up to 128 messages in a queue without bothering 
the Cpu. It also has a 48 byte buffer. 

SUMMARY 

There are many, many more 6800 and 68000 fami­
ly chips all of which are used in 68000 systems. Ex­
cept for the programmable coprocessors, you (the 
programmer) don't have to know much about these 
chips. There are times when you will read or write 
a particular SIO or timer register, but the documen­
tation of the computer system you are working with 
should cover that task as a part of the 110 memory 
map. 

But even though you won't be soldering these 
chips into printed circuit boards, you should be 
aware of their existence and uses. They are as vital 
to microelectronic systems as are microprocessors 
themselves. 
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Assembly Language 
T HIS CHAPTER WILL DESCRIBE WHAT A COM­

puter language is and what the different 
language levels are_ Then it will introduce you to 
assembly language_ Don't expect to be able to pro­
gram in assembly language just from reading this 
book You also need the documentation for a par­
ticular assembler, some fundamental routines (from 
magazines or books), and lots of practice_ Beyond 
that, to write efficient and useful programs, you'll 
need some acquaintance with general pro­
gramming principles_ 

Don't be overawed by those requirements_ This 
book is a good place to start_ It will allow you to 
write very simple routines and to understand the 
assembler documentation and subroutines you will 
read in the future_ 

COMPUTER LANGUAGES 

Digital computers process 1s and Os_ All of their in­
formation is represented by those two symbols, 
whether that information is a set of population 
statistics from 18th century Russia, a love letter 

written today, or a color picture of the rings of 
Saturn_ 

People, however, don't speak or think in 1s and 
Os_ So between the people and the computers there 
has to be a translation. You might think that a single 
translation between the human language and the 
computer language is all that is necessary. It is not 
that simple. Not only are the people and computer 
languages widely separated-which suggests the 
possibility of intermediate languages-but different 
computers don't even speak the same language. 

Machine Language 

The first computer programs were written 
directly in the 1s and Os that make up machine 
language. The programmers had to be dedicated, 
highly-trained workers: yet their productivity was 
severely limited. Programming was slow and error­
filled-almost a black art. 

Figure 9-1 shows the most common hierarchical 
breakdown of computer languages. The absolute 
bottom is represented by binary machine code. 
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Level Language Type Examples Symbols 

Highest Level Procedural Pascal, ElASIC Similar to English 
Macro-Assembly 

Assembly 68000 Assembly Mnemonics 
Hex Machine Hexadecimal Numbers 

Lowest Level Machine 68000 Machi ne Eli nary Numbers 

Fig. 9-1. Hierarchy of computer languages. 

While a small amount of machine level program­
ming is necessary for assembly language I/O opera­
tions and hardware debugging, with the analysis 
and software utility programs available today, no one 
needs to program entirely in binary machine 

language. Figure 9-2 shows some of the advantages 
and disadvantages of programming at this level. 

Level 

High 

Low 

As you can see, the disadvantages of machine­
level programming are considerable, including defi­
ciencies in programming speed, accuracy, and por-

Language 

BASIC 

Advantages 

Efficipnt: UsPS httlp progr irnmpr timp. 

Easy-to-rud: USPs English pxpr.ssions. 

Powprful: Individuil instructions translatp 

into miny machiOP instructions. 

Portablp: Cin bp usily adaptpd to many 

diffprpnt computprs. 

Macro-assembly SppPd: Combinps asspmbly spppd with 

soml' of High-lpn I progr ammpr's timp 

pfficipncy. 

Assembly 

Hex Machine 
and 

SppPd: Runs much fast PI" than high-Ipnl. 

Mpmory pfficipncy: Usps much Ipss 

mfmory than high-Ipn I. 

Control: Allows control of pnry bit and 

addrpss. 

Contro I: Working with pnry bit insidp 

ind outsidp of thp micropr'ocpssor 

Binary Machine Spppd: Can run fistpr than any othpr. 

Disadvantages 

Mpmory Inpfficipnt: USPS morp 

mpmory than low-lpnllinguagp. 

lack of contro I: Difficult to 

control singlp bits, pspl'cially 

for timing and I/O. 

Slow: Cannot bp optimizpd for 

sp .. d as much as a low-lpvfl. 

Skill Rpquirpd: Hardpr to lparn 

and to us. than High-IfnI. 

Skill Rpquirpd: Hardpr to I .. rn 
and to usp than High-lpnl. 

Inffficil'nt: Usps lots of 

programmfr's timp. 

Not Portiblp: Diffprpnt languigf 

for most microprocpssors. 

Inpfficipnt: Vpry difficult to work 

with -- usps maximum timp. 

Not Portablp: Diffprpnt languagp 

for pypry systfm and pnry 

microprocpssor. 

Fig. 9-2. Advantages and disadvantages of computer language levels. 
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tability. Those first two disadvantages are opposite 
sides of the same coin. The machine language pro­
grammer must stare at columns and pages of Is and 
Os for hours, days, and weeks. Out of that confus­
ing welter he must recognize instructions, address­
ing modes, relative branches, and data tables. To do 
this for a long program is simply not a human ac­
tivity. Not only will the programmer take a long 
time to write anything, he will make endless 
mistakes. 

Remember, a single bit misplaced or otherwise 
in error can completely derail a program. If you are 
not convinced, try something far simpler than 
machine-level coding. Write a page full of 8-bit 
groups of Is and Os. Don't try to make them mean­
ingful by looking up op codes, just take the easy 
route and write random numbers. Now, try to make 
an exact copy of that page to another page. (And 
not with a copy machine.) Finally, imagine doing 
that over and over, often working with a page full 
of numbers that someone else wrote. 

There is a slightly higher level of machine 
language available. Hexadecimal representation of 
the bytes in a program will reduce the program­
ming time and programmer's mistakes. This is still 
machine-level coding, but the distinction between 
symbols is improved enormously. It didn't take long 
for hexadecimal-binary translation programs to be 
written. These programs, sometimes called hex 
loaders, translate hexadecimal numbers into binary. 
They allow the programmer to write his lines of in­
struction in hexadecimal symbols. 

Because one hex symbol stands in for four 
binary symbols, the ocean of Is and Os on a page 
is quickly refined to a river. Still, programmers must 
make all the translations between numbers and 
operations in their mind and specify everything. 
They must work out the mathematics of relative ad­
dressing instructions, the destination of each jump 
or subroutine, and even the exact location that the 
program will occupy in memory. On computers that 
don't have an assembler program, the best you can 
do for direct coding in the microprocessor is to use 
hexadecimal machine language. (Some personal 
computers give memory locations and internal data 
in decimal or octal code instead of hex.) 

Portability is a concern when working with 
machine language. A program is portable if it is 
written for one computer and yet will run on another 
computer. This is a different level of relations be­
tween systems than the concept of software com­
patibility described in Chapter 2, but it is related. 

Like compatibility, portability is rarely 100 per­
cent complete. But writing a program in a portable 
language means that only slight modifications will 
be necessary to run it on another computer. High­
level languages are very portable. Almost any com­
puter runs some versions of BASIC, for instance. 
As explained below, if you use the standard rules 
for BASIC, the program you write can be translated 
and then run on most any other computer. 

Assembly language is far less portable than 
high-level languages. Because it is basically a faster, 
clearer way to write machine language programs 
(and every CPU or microprocessor has a different 
machine language) assembly and machine language 
programs cannot easily move from one machine to 
another. 

Assembly Language 

The next step after machine language was a 
natural: a program was written that translates ab­
breviated names into hexadecimal machine 
language. That program is called an assembler. 
Every different microprocessor or CPU has a dif­
ferent assembly language because the assembly 
language is just an easier way of writing and sym­
bolizing the machine language instructions. 
Therefore, every different CPU will need a different 
assembler program. 

An assembler is used in the following way: 

1. The program is written with the special ab­
breviations and symbols. This can be done with an 
editor (the name for a simple word-processing pro­
gram). As long as the proper abbreviations and 
punctuation rules are followed, any editor can be us­
ed. The finished program is called the source code. 

2. The assembler program is run on a com­
puter. This computer can be the computer the final 
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program is to run on, or it can be any other com­
puter. At this stage, the program isn't going to be 
used, it is just going to be translated from one bunch 
of symbols to another. A huge mainframe computer 
could be, and often is, used to run an assembler that 
can translate the source code into the object code. In 
fact, a large computer will often do the job faster 
and more efficiently (if you have access to a large 
computer, that is). The object code is machine 
language. You are now done with the assembler. 

3. A program called a loader is used to put the 
new object code machine language program into the 
right place in computer memory. If you have more 
than one piece of object code, and you need to put 
them together, you can use another program called 
a linker. There are even linking loaders. 

4. You run the program. If there are any 
problems (and there always are), you return to step 
1, use the editor, and debug/rewrite the source code. 
You will then have to assemble again, load again, 
and run again to see if you fixed the program. 

Any computer equipped with a program called 
an assembler can be programmed in assembly 
language. The programmer writes an assembly 
language program and the assembler translates it 
into the machine language for the computer. A 
disassembler is a program that accomplishes the 
reverse. It translates machine language into 
assembly language. That is useful for modifying or 
understanding a program; reading assembly is much 
easier than reading machine code. 

Figure 9-2 also lists the advantages and disad­
vantages of assembly language. The two most im­
portant advantages are complete control of the 
microprocessor (which yields faster programs and 
efficient use of memory). By working directly with 
the raw material registers, addresses, and flags, the 
programmer can observe and manipUlate each in­
dividual byte or word. 

Not all programs have to work quickly, but 
many do. Even though some of the newer high-level 
languages create speedy programs, no one will 
argue with you that an experienced assembly 
language programmer can write a faster, leaner pro­
gram than any assembler or compiler can turn out. 

Early microcomputers, and all computers, were 
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limited severly by memory considerations. Even to­
day, although bigger memories are much cheaper 
and more widely available than they used to be, in­
creased program complexity still means that a pro­
grammer cannot afford to waste memory. On 
machines with small memory, the problem becomes 
not one of cost, but of feasibility. 

A program written in assembly language by a 
competent programmer occupies the least memory. 
Also, a well-written assembly language program 
uses the least RAM space during operation. 

Symbolic naming is the premier strength of 
assembly language. Not all assemblers allow sym­
bolic names for everything. But they all allow sym­
bolic instruction codes. These are called mnemonics. 
They stand for the instructions and are sometimes 
called opcodes. (Sometimes that name is applied to 
the binary instruction; it depends on who you talk 
to.) A mnemonic is an easier form to use and 
remember. 

An example of symbolic coding demonstrates 
another facet of assembly language. An assembly 
instruction can be translated into more than a single 
byte of machine code. Symbolic naming almost 
always extends beyond the actual names of instruc­
tions. The next most common use of symbolic 
names is in addressing. More often than not, this 
involves jumps or subroutine calls. Instead of 
calculating the destination address that must be 
loaded into the program counter and then inserting 
that number in the program, you can simply assign 
a name such as DEST and then later either define 
the name or put a label in the program. This facili­
ty also means that the program will be re10catab1e. 

Fundamentally, assembly language program­
ming preserves the best parts of machine language 
and adds facilities such as symbolic addressing that 
will ease most program jobs. Because it caters to 
the human programmer more than machine 
language and because it is easier to read, use, and 
debug, it is a higher level of language than machine 
language. 

High-Level Languages 

It didn't take long for programmers to chafe at 



the restrictions of assembly language. Its ab­
breviated forms, its strict adherence to the machine 
language functions, and its elemental operations all 
kept programmers working long hours. The next 
step was to write translator programs that could do 
even more of the work. 

High-level languages are the outcome of this 
drive for productivity. A program called a compiler 
(or an interpreter) directly translates the high-level 
source code into machine language. 

Instead of using the abbreviations of assembly 
languages, high-level languages frequently allow full 
words, standard mathematical operations, direct 
printing of letters, and other features dear to the 
hearts of programmers. Because the high-level 
languages offer such flexibility and allow the pro­
grammers to use words and numbers that they are 
all familiar with from other human disciplines, pro­
grammers can write far more program in far less 
time. 

However, because the compiler has to do so 
much work, and has so much to understand, com­
piling takes more time, and the compiler takes up 
much more memory than an assembler would. In­
terpreters are a special sort of compiler. They are 
explained in more depth in the following 
paragraphs. 

There are many high-level languages. Although 
a few of the most famous high-level languages like 
BASIC and Pascal are used for many tasks, many 
high-level languages are designed for specific pur­
poses. LISp, for instance, is primarily used for Ar­
tificial Intelligence work. GPSS is used for 
simulation. In fact, high-level languages are also 
called problem-oriented or procedure-oriented 
languages. 

Like assembly language, these languages must 
be translated into the machine code of binary that 
a computer can understand. The program that does 
the translating is called a compiler or an interpreter. 
A compiler waits for an entire program to be com­
plete before translating it: an interpreter repeated­
ly compiles the same code. That makes the 
interpreter slower but more interactive. The follow­
ing procedure is used for working with a high-level 
language: 

1. Write the source code. This is done using 
an editor. Most high-level languages have a built-in 
editor (word-processing program) for writing the 
symbols. 

2. Compile the source code into object code. 
The object code is the machine language that the 
computer can understand. An interpreter translates 
each line as it is entered. Interpreters produce a final 
object program that takes up more memory space 
and doesn't run as fast as a compiled code, but the 
instant translation helps while you are writing and 
debugging the program. 

3. Load the compiled program. 
4. Run the compiled program. 
5. If there are any problems, return to step 1 

to debug/edit the source code. Then you have to 
recompile, load, and run it again to see if it is fixed. 
If you use an interpreter, you only have to fix the 
code and run it. The intervening steps aren't 
necessary. 

BASIC is the most famous and widely used 
high-level language for microcomputers. Most 
microcomputers have BASIC compilers and inter­
preters available. Figure 9-3 shows the brevity of 
a BASIC program compared to the equivalent pro­
gram in assembly or machine language. The abili­
ty to write easy-to-read, short, and portable 
programs makes high-level languages ideal for 
speed of programming. On the other hand, as listed 
in Fig. 9-2, the disadvantages of high-level languages 
include a lack of programmer control and of 
memory efficiency. 

The first of these problems is evident in 
languages such as BASIC where the programmer 
has no easy way of finding out what is in a particular 
register. Efficiency is limited because a compiler or 
interpreter must be very careful to translate the 
source code into a machine code that will always 
adhere to the programmer's intentions. That 
cautious attitude shackles the translation and pro­
duces careful code that is rarely as optimized as that 
produced by human programmer. Optimization is 
the act of tightening and shortening a program by 
eliminating unnecessary instructions, changing ad­
dressing modes to use shorter and quicker instruc-
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BASIC 

10 LET A = 6*4 

Assembly 

ANOI.L "'O,DO 

ANOI.L "'O,D 1 

MOVE.L 6,00 

MOVE.L .., 4,D 1 

MULS D 1 ,DO 
MOVE.L DO,A 

RTS 

Fig. 9-3. A program fragment in several computer languages. 

tions, and generally editing a program. 
Because a single line of BASIC can be 

translated into a dozen machine language instruc­
tions, there is often ample opportunity for optimiza­
tion. There are always a number of ways to do 
something in assembly language, and some of them 
take much longer than others. A programmer can 
decide to sacrifice memory space or calculation 
precision to gain some extra speed in a certain 
predicament. A compiler or interpreter cannot. 

In fact, for many real-time applications such as 
graphics or process control, high-level languages are 
often just not fast enough. 

A Quick Comparison 

Figure 9-3 shows a piece of a program written 
at four different levels: straight binary machine 
language, hex machine language, assembler, and 
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Machine 
Hexadecimal Binary 

0280 0000001010000000 

0000 0000000000000000 

0000 0000000000000000 

0281 0000001010000001 

0000 0000000000000000 

0000 0000000000000000 

2039 0010000000111001 

bbbb bbbbbbbbbbbbbbbb 

bbbb bbbbbbbbbbbbbbbb 

223C 0010001000111100 

0000 0000000000000100 

0000 0000000000000000 

C1Cl 1100000111000001 

23CO 0010001111000000 

6666 aaaaaaaaaaaaaaaa 
6666 aaaaaaaaaaaaaaaa 
4E75 0100111001110101 

(high-level) BASIC. Notice the following: 

1. It is easier to find a mistake in lines of hex 
code than in endless binary. 

2. It is easier to understand the assembly code 
than the machine language code. 

3. The high-level language program is shorter 
and clearer than any of the other languages. 

LANGUAGE SELECTION 

There is no way to pick the one and only best com­
puter language. Selection depends on what you 
want to accomplish. Although there are languages 
that are admittedly almost never a popular choice 
of programmers, you probably haven't heard of 
them. A language that is unusable dies before 
reaching any sizable audience. Of the languages you 
hear about, both low and high level, each has some 



advantages and disadvantages. 
Perhaps there is some truth to the observation 

that newer languages are improved over earlier 
languages and that FORTRAN is passed up by 
Pascal, but the observation is a lame truth. Of 
course the faults of previous languages are impor­
tant to language designers of today, but that doesn't 
mean you shouldn't learn a language such as FOR­
TRAN. Computer languages are not as complicated 
as foreign languages. Once you learn a mainstream 
language such as BASIC, Pascal, FORTRAN, or 
Forth, other languages will be much easier to learn. 

A simple language may be easy to learn, but 
it won't support complicated data structures that the 
programmer wants to use later. A complicated 
language may allow you to use layers of algorithms 
and file constructs not possible with a simple 
language, but the complexity of the language means 
it will take a long time to learn and master; and then 
the program will be hard to maintain; no one else 
will know the language. 

Don't think of computer languages as you think 
of foreign languages. Learning another computer 
language, or several, is not a sign of culture that you 
can use when traveling or when eating in a fancy 
restaurant. Computer languages are more like 
modes of transportation. There is no best mode; the 
ideal circumstance is to have all modes available to 
you: feet, bicycle, car, and plane. 

In summary, use the level of language that is 
best suited to your task. Understanding all levels 
is a good idea, even if you don't have immediate 
plans to use them. But don't use machine language 
unless you have to or you will spend far too much 
time debugging your code of irritant and impossi­
ble to find errors. Sometimes, simple computers are 
not equipped with assemblers, and hand assembly, 
writing and placing the instructions into the com­
puter byte by byte is necessary. Avoid machine 
language and stick to assembly language unless you 
really want to know what is happening on each wire 
coming out of the chip. 

USING A 68000 ASSEMBLER 

Assembly language is a symbolic language. To use 

an assembler you have to learn the symbols it 
recognizes. Those symbols include opcode 
mnemonics, directives, and formating symbols, and 
they differ from assembler to assembler. 

Opcode Mnemonics 

Each assembler program has its own symbols 
and practices. In fact, the mnemonics used to repre­
sent an instruction doesn't have to match those in 
this book. Whatever mnemonics you want to use are 
perfectly OK. You will have a hard time discussing 
your program with anyone else if you don't use sym­
bols that are at least partially standard, though. And 
your assembler won't understand you unless you use 
the mnemonics it expects. Also, if you write in 
nonstandard mnemonics, you won't be able to 
transport your program to another system or 
assembler: you will have lost all portability. 

Since Motorola invented the 68000 chip and 
provided the first documentation, its mnemonics are 
the most often used. Motorola opcode mnemonics 
are three, four, or five letters long and are always 
capitalized. They are generally acronyms for the 
operations performed by the instruction. Chapter 
6 describes all of the instructions the 68000 can per­
form: they are listed alphabetically by their 
mnemonics. Figure 9-4 presents a complete list of 
68000 mnemonics. 

Directives 

Directives are assembler instructions. They are 
not part of the CPU instruction set. These com­
mands are used to specify the address for the begin­
ning of a program, set variable values, reserve 
memory space for data structures, or define macros. 
(Macros are compound instruction sequences that 
are used to save time in programming.) Figure 9-5 
lists and defines the directives common to most 
assemblers. 

Syntax 

Syntax is the set of rules for correctly putting 
symbols together in a wayan assembler can 
recognize, work on, and properly translate. Chapter 
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ABeD CLR LSR ORI to SR TRAP 

ADD CMP MOVE PEA TRAPV 
ADDA CMPA MOVE 10 CCR RESET TST 

ADDE CMPI MOVE 10 SR ROL UNLK 
ADDQ CMPM MOVE from SR ROR 
ADDX DBee MOVE USP ROXL 
AND DIVS MOVEA ROXR 
ANDI DIVU MOVEM RTE 
ANDI to CCR EOR MOVEP RTR 
ANDI to SR EaRl MOVEQ RTS 
ASL EaRl to CCR MULS SBeD 
ASR EORI to SR MULU Sec 
Bee EXG NBCD STOP 
BCHG EXT NEG SUB 
BClR ILLEGAL NEGX SUBA 
BRA JMP NaP SUBI 
BSET JSR NOT SUBO 
BSR LEA OR SUBX 
BTST LINK ORI SWAP 
CHK lSl ORI10 CCR TAS 

Fig. 9-4. 68000 mnemonics. 

Directive Abbreviation Definition 

DATA DATA Enters data into fixed progrem memory. 
EqUATE EqU Relotes symbolic names to addresses or data. 
END END Marks the end of a program. 
ENTRV XDEF Shows thot name is available for use. 
EXTERNAL XREF Shows the name is defined somewhere else. 
LIST LIST Prints the source program. 
NAME NAME Prints the program name at the top of each page. 
ORIGIN ORG Specifies memory 10cet1on where progrem 

or deta wi 11 si t. 
PAGE PAGE Skips listing to next pege. 
RESERVE RESERVE Allocates memory. 

Fig. 9-5. Common assembler directives. 
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4 covers some of the major points of assembler syn­
tax. The most important point that you should 
remember is syntax varies from assembler to 
assembler. While the most basic functions will 
almost always have the same representations, more 
advanced functions will not be the same. The source 
code you write and edit for one assembler may just 
not run on another assembler. Worse yet, another 
assembler may make different assumptions about 
default addresses and values. That could lull you in­
to thinking everything was fine when the second 
assembler translated your source code into object 
code when, unfortunately, that object code may not 
work or may not produce the result you need. Read 
the documentation for your assembler. Figure 9-6 
lists some common syntax rules. 

Format 
Assemblers organize the assembly language 

program in divisions called fields. These are not 
part of the actual code; they are visual structures 
that the assembler uses to simplify communication 
with the programmer. When you are programming, 
you have to enter the information in the proper fields 
or the assembler will not understand it. When the 
assembler is printing out a program listing for you 
to read, it prints in these fields so the program 
makes sense to you. 

There are three main fields: label, instruction, 
and comment. Two other sections, the line numbers 
and the addresses, are important but are rarely 
called fields. Figure 9-7 shows the structure of a sim­
ple assembly program. This is the organization of 

1. Use symbols to show what number system is used: 
B or % = binary 

o or ~ = octal 
o = deci mal 
H or $ = hex8decimal 

2. Write the opcode of the instruchon first, then write the oper8nds. 
3. Separate source and desti nation operands bU a comma. 
4. Use an extension letter to show the operand size (no letter indicates 8 

'Word opera1ion) . 
. 8 = Byte 
.W = Word 
.l = long-'Word 

5. Use parentheses to show indirection. A p8ir of parentheses around a 
register sign shows that the register value is to be used as an 
indirect address. 

6. Use signs to show post; ncrement and predecrement addressi n9: 
+ after the parentheses to show postincrementing. 

before the par~ntheses to show predecrementi ng. 
7. Use a space or colon after a l8bel. 
8. Use a space after the opcode. 

Fig. 9-6. Common assembler syntax rules. 
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Address LaDels Opcode Operands 

DATA Eau $0010000 
PROGRAM Eau $0012000 

ORG DATA 
0010000 TEMP DSW 
0010002 COUNT DSW 

ORG PROGRAM 
0012000 SHIfTER MOVEW TEMP,DO 
0012004 MOVEW COUNT,D 1 
0012008 ROR.B Dl,DO 
001200A MOVEW DO,VALUE 
001200E RTS 

END SHifTER 

Fig. 9-7. Assembly language editing structure. 

the source code that the assembler will translate into 
object code. The line number is almost always the 
leftmost area of the display. The numbers count up 
from 1 and are used only for organizing the program 
on the page. They don't directly affect the code. 

The memory locations are frequently the next 
column of the information. They are given in hex­
adecimal or decimal values and identify the address 
in memory where the program lines will be stored. 
Sometimes the addresses are not specified because 
the program is not destined for a particular place 
in memory. 

The next area is the label field. This is used to 
contain symbolic labels or addresses of the various 
instructions. the assembler can then use the sym­
bolic addresses to specify jump. branch, or return 
movements. Labels are optional: you can choose 
when to use them and when to leave this field blank. 

The next field is truly the most important. The 
instruction field breaks down into two portions. The 
first is the opcode listing. The next portion is the 
operands listing. Some assemblers call this another 
field. The operands that relate to the previously 
listed opcodes are listed here. 
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Comments 

SET WHERE TO STORE DATA 

SET WHERE TO STORE PROGRAM 

VALUE TO ROTATE 

NUMBER Of POSITIONS TO ROTATE 

GET VALUE TO ROTATE 

GET ROTATION COUNT 

ROTATE 

REPLACE OLD TEMP WITH NEW ROTATED TEMP 

Finally, the comment field finishes the display. 
Comments are optional, and don't change the 
translation or operation of the program. But you 
should use them. With the inclusion of explanatory 
and descriptive comments your program will be 
easier to write, to read, and to debug. If you have 
to modify your own program later, you'll be forever 
thankful that you added comments. 

MACRO ASSEMBLERS 
AND CROSS ASSEMBLERS 

There are several types of assemblers. A powerful 
assembler known as the macro assembler that you 
may hear of lets you write macros and reuse them. 
These macros are short pieces of assembly code 
which are given a name. Once you have included 
a macro a single time in the source code, all you have 
to do is give the macro name, and the assembler will 
make a copy of that routine wherever you put the 
name. This is not the same thing as subroutines in 
BASIC because the macro is actually written into 
the object code in every place it has to be used. 

Another important type of assembler is the cross 
assembler. While many programmers work on the 



system they are going to run the program on using 
resident assembler programs, this is not a require­
ment. In fact, since creating, editing, and assem­
bling source code into object code is abstract (it 
doesn't require the actual microprocessor), program­
mers frequently use assemblers that are written on 
large, powerful minicomputers. That way, the 
editing and assembling are simplified by the speed 
and utilities of the minicomputer. Once the assembly 
is complete, the program will normally be run on 
the actual microprocessor to test execution speed 
and to see that the program really works. Minicom-

puters even have emulation programs that would 
allow the programmer to run the object code on an 
imaginary microprocessor that the minicomputer 
simulates with software. 

Programmers that don't have minicomputers 
can still work with development systems. These are 
complete microcomputer systems that have the 
same microprocessor as the target computer and yet 
have more power in the form of more memory, pro­
grams, 1/0 devices, and disk space. Microprocessor 
manufacturing firms such as Motorola supply 
development systems for their chips. 
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68000 

68000-Based Systems 
T HE 68000 FAMILY OF MICROPROCESSORS HAS 

already appeared in many systems and con­
tinues to occupy a favored position in the hearts of 
computer designers. Its powerful 32-bit architec­
ture, its orthogonal, mainframe-like instruction set, 
and its range of chips (8-bit, 16-bit, and 32-bit) have 
made it prominent as one of the top two 
microprocessor families (the other being the 8086 
family from Intel). 

The 68000 appears in systems ranging from in­
dustrial controllers to minicomputers. This chapter 
attempts to show a few examples of its use in com­
puters. Because the microprocessor world changes 
so quickly, however, some of these machines may 
well be defunct by the time you are reading this 
chapter. Others will have changed designs. 
Nonetheless, new systems that perform much the 
same tasks as these will no doubt appear. 

Don't forget that the 68000 can also be found 
in many systems such as robotic controllers and 
laboratory instruments. However, because fewer 
readers of this book are likely to be programming 

such machines, I haven't included examples of 
these here. 

Each example system is discussed and, where 
possible, illustrated by a photo. Some of the 
systems are allotted more space than others. The 
Sinclair QL, is described in detail. It is an example 
of a 68008 system and will probably be the cheapest 
complete 68000 system available for some time 
(several firms offer add-on 68008 boards for the Ap­
ple II and IBM PC). 

Other systems, such as the Synapse N + 1 
minicomputer system, are important examples of 
the high-end power of the 68000, but are not 
described in too much detail because most people 
who read this book will rarely encounter, and never 
program one. 

There are far more systems than are even men­
tioned here. Choosing the Sinclair, Apple, and IBM 
systems was simple. Deciding which minicomputer 
and which of the larger microcomputers to discuss 
was not. The systems shown here were chosen to 
illustrate the diversity of 68000 uses. 
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SINCLAIR QL 
The first system example is the Sinclair QL. 
Sinclair chose the 68008 for a CPU because it was 
the most advanced 8-bit data bus microprocessor 
on the market and seemed destined to be a future 
industry standard. It incorporates the power of the 
68000 family but can be designed into an inexpen­
sive system. The Sinclair QL could well compete 
with the Apple Macintosh for the title of best-selling 
68000-based system. 

The Sinclair QL was announced at the begin­
ning of 1984 with an estimated U.S. price of $500. 
QL stands for Quantum Leap, which is supposed 
to be in computing performance. It is aimed at 
serious home, business, or educational users. 
Sinclair Research Limited of London is the same 
company that put out the phenomenally successful 

rock-bottom priced ZX80 and ZX81 (which became 
the TimeX/Sinclair 1000). These machines, based 
on the Z80 microprocessor, were introduced as the 
first computers under $200 at a time when others 
almost all cost at least five times that much. It is 
clear that with the QL they are again attempting 
to make a revolutionary jump instead of an evolu­
tionary step. 

The software supplied with it is its own in­
tegrated set written by Psi on. The programs are 
called QL Abacus (spreadsheet), Archive (database 
management), Easel (graphics), and Quill (word­
processing). 

The QL has high resolution color graphics, 
128K RAM memory (expandable externally by the 
0.5MB RAM pack shown in Fig. 10-1 to 640K; 32K 
of this RAM is dedicated to the screen bit map, two 

Fig. 10-1 . Sinclair QL with 0.5 megabyte add-on RAM (courtesy of Sinclair)_ 
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built-in lOOK QL Microdrives, and a full-size, pro­
fessional, QWERTY keyboard. 

The QL is 138 x 46 x 472 mm (5 3/8 NCH x 
13/4" x 183/8") and weighs 1388 gms (3.055Ibs.). 
It has rear peripherals ports for full networking, 
dual joystick, and ROM cartridge expansion. 

It has standard RS-232C interfaces (for 
printers, modems, or other computers), and an RGB 
monitor and TV port for color or monochrome 
monitor or TV. The microdrive expansion slot lets 
you add up to a total of six Microdrives stacked ex­
ternally for BOOK mass storage. 

It is built around the 68008, four Sinclair­
designed semicustom ICs, and a 32K SuperROM 
that contains the Sinclair QDOS and Sinclair Super­
BASIC (an enhanced version of Spectrum BASIC). 
ROM is expandable by the ROM cartridge to 64K. 
QDOS was developed by Sinclair and handles 
single-user multiple tasking, time-sliced priority job 
scheduling, display handling for multiple screen 
windows, and device-independent I/O. 

The semicustom ICs are made by several firms. 
The first is made by both Plessey and Synertek, 
and controls both display and memory. The second, 
made by NCR and Synertek, controls the 
microdrives, LAN, and RS-232C transmission. The 
third and fourth, made by Ferranti, provide the 
analog functions required by the Microdrives. 

The Microdrives have a capacity of lOOK bytes 
each, 3.5 seconds average access time, and load 
programs or data into internal RAM at up to 15K 
bytes/second. 

The serial ports are 2 standard RS-232C inter­
faces that transmit from 75 to 19200 baud or full 
duplex transmit/receive at seven rates up to 9600 
baud. Up to 64 Sinclair QL or ZX Spectrums can 
be connected to the LAN; data transmission over 
the net is at lOOK baud. 

Sinclair Research claims "potential expansion 
for other peripherals including, say, a memory 
manager, is almost unlimited due to the QI:s advanc­
ed Motorola 68008 32-bit processor with its one 
megabyte linear address capability:' The 68008 runs 
at 7.5 MHz for all principal functions. As describ­
ed in Chapter 8, the 68008 is the full 32-bit 68000 
architecture with a 8-bit external data bus. A second 

processor, the Intel 8049) controls the keyboard, 
sound, RS-232C receive, and real-time clock 
functions. 

IBM SYSTEM 9000 

This computer was originally designed as a 
laboratory computer. It is essentially aimed at 
automating the laboratory as the IBM PC is aimed 
at automating the office. Because of that emphasis, 
it has quite a few ports: three RS-232C, bidirec­
tiona18-bit parallel, IEEE-488, three timers, clock, 
32 programmable interrupts, and four DMA 
channels. 

It runs on a real-time, multitasking operating 
system (called CSOS) so that it can collect, store, 
process, analyze, display, and output data all at the 
same time. 

There are two versions. A lab model and an of­
fice model. The 9001 benchtop holds the computer, 
a display, and a multicolor printer/plotter. The 9002 
is smaller and is intended for desktops. XENIX (a 
version of the UNIX operating system) is available 
for the 9000, but while still offering multiuser, 
multitasking capacity, it isn't as good as CSOS for 
real-time control. To use XENIX, you need a hard­
disk, memory management card, 640 K and an 
8-inch floppy. The 9000 has a large membrane 
keypad available with 57 user programmable keys 
and overlays. 

The 9000 measures 6 x 18 X 22", and weighs 
64 lbs. Its CPU is a 68000 running at 8 MHz with 
four DMA channels. The memory is 128K of ROM 
with 128K RAM. The memory can be expanded 
in 256K increments. Three RS-232C, one bidirec­
tional 8-bit parallel, one IEEE-488 port make up the 
110 capacity. There are 10 user-definable function 
keys below the screen as well as an 83-key 
keyboard with a numeridcursor keypad. The mass 
storage includes an optional 640K 5114" floppy of 
985K 8" floppy. Inside the 9000 are five expansion 
slots. The 9000 costs approximately $7000. 

APPLE LISA AND APPLE MACINTOSH 

Apple Computer Corporation's first great succ~ss 
was the Apple II. Kept alive by a number of Im-
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Fig. 10-2. Apple LISA (courtesy 01 Apple). 

provements (resulting in the IIc model), the Apple 
II line is built around the 6502 microprocessor. This 
8-bit chip was originally chosen because it could do 
the job and was cheap. 

When Apple looked around for a more power­
ful chip for its more advanced computers, if 
latched onto the 68000 family. As this book points 
out, even though the original member of the fami­
ly (the 68000 chip itself) is a 16-bit microprocessor 
externally; it is intentionally a 32-bit chip. So Ap­
ple was able to leapfrog from 8-bit systems to 
16/32-bit systems. 

The first 68000-based system from Apple was 
the LISA shown in Fig. 10-2. The LISA appeared 
in 1983. Based on a number of ideas like icons, 
mice, and windows that were originally developed 
by Xerox, the LISA was unlike any other personal 
computer. It was designed to be extremely easy to 
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learn to use. It was also designed to sell to office 
workers who didn't know much about computers_ 

Unfortunately, it did not sell very welL The 
reason may have been the high price (approximate­
ly $10,000), the slow processing (the 68000 had 
voluminous software and a screen to handle), or its 
lack of IBM PC compatibility (the PC is the stan­
dard in many companies). Whatever the cause, 
when January 1984 rolled around and Apple was 
set to release the Macintosh (described below), it 
also rolled out three new, more powerful, but 
cheaper version of the LISA: the Lisa 2, Lisa 2/5, 
and Lisa 2/10. All include the same icons and win­
dowing software as the original LISA. The 2/5 has 
a 5 megabyte external hard disk drive and the 2/10 
has a 10 megabyte internal hard disk drive. 

The Apple Macintosh, shown in Fig_ 10-3, was 
released in January of 1984_ Priced at $2500 and 



incorporating many of the software ideas of the 
LISA, the Macintosh depends on a 68000 to han­
dle both screen display and processing chores. The 
enonnOllS amount of processing necessary to han· 
die overlapping windows and the complex graphics 
of the Macintosh require a chip with 68000 power. 
The Macintosh now comes with 512K RAM though 
the original version sold with only 128K. Newer 
Macintosh features include built-in hard disks, a 
second floppy disk drive, and a color display. The 
black and white screen has an unusually high 
resolution (for personal computers) and the mouse 
can be used for many manipulations. 

The Macintosh has a standard computer­
human interface that is embedded in ROM and 
used by most programs. This interface includes pull­
down menus, windows, icons, and click commands. 

Fig. 10-3. Apple Macintosh (courtesy of Apple) . 

Together the LISA and the Macintosh make 
up Apple's line of 32-bit supermicros. New versions 
of these machines will undoubtedly appear, in­
cluding a Macintosh with more memory. In addi­
tion, Apple will freely admit that it is looking at the 
more powerful chips in the 68000 family, induding 
the 68020, for future designs. Because the Macin­
tosh is already designed around the 68000, 
switching shouldn't be too difficult. 

DIMENSION 

The Dimension 68000, shown in Fig. 10·4, is an at­
tempt to make a microcomputer that will run soft­
ware written for any of the popular 
microcomputers. One of the problems in microcom­
puting is that programs written for one computer, 
say the IBM PC, will not run on another, such as 
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Fig. 1().4. Dimension 68000 (courtesy of Micro Craft). 

the Apple II. Dimension advertises that its 68000 
computer (built around its namesake 68000 chip) 
will run software written for Apple II, IBM PC, 
TRS-80, Osborne, Kaypro, and many other com­
puters. 

The 68000 chip in the Dimension is supported 
by a disk controller, Centronics-style parallel port, 
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a RS-232 serial port, a real-time clock, a 83-key 
Keyboard with 10 programmable function keys, a 
ten key numeric pad, a game control port, a CRT 
display controller for composite color or 
monochrome, and 6 expansion slots. The amount 
of memory your Dimension will have, both solid 
state and disk, depends on what you pay. You can 



get 256 K or S12K RAM, and 2 floppy disk drives 
(either 400KB or 800KB each). You can also get 
a 20MB or a 50MB hard disk drive with the con­
troller and the cables. 

The way the 68000 runs software for the other 
computer systems is by emulating them with the 
help of an additional processor card. You have to 
buy extra processor cards to plug into your Dimen­
sion: an 8086 card if you want to run IBM PC soft­
ware, a 6502 card to run Apple II software, or a Z-80 
card to run CP/M-80 software (such as the Kaypro 
or Osborne runs). Having the other microprocessor 
is necessary because the programs are specific to 
a particular chip. The instruction sets and the ad­
dressing modes differ. Along with the circuit board 
(called a card), you get the proper software to allow 
the new processor, the 68000 processor, and the ap­
plication program to operate. 

The 68000 chip in the Dimension is a Motorola 
MC68000LB running at 7.19 MHz. The Dimension 
comes with the CP/M-68K operating system soft­
ware, UniBASIC, and various utility programs. 

CONVERGENT TECHNOLOGIES 
MINIFRAME AND MEGAFRAME 

Convergent Technologies is the sort of computer 
company that many people never hear of. These 
firms build computers for other computer com­
panies. For example, Convergent Technologies 
manufactures the MiniFrame microcomputer and 
then sells it, in large numbers, to another computer 
company. That other company then adds some soft­
ware, terminals, and perhaps a few minor hardware 
features and resells the systems to the public. 

The MiniFrame, shown in Fig. 10-5, is built 
around a 10 MHz 68010. Its other hardware is 
designed to allow the 68010 to run with no wait 
states, or in other words, at full speed. Because of 
all that power, the MiniFrame can support up to 
8 users. The 68010 is a Virtual Memory 
Microprocessor and the MiniFrame makes heavy 
use of that capabi lity. 

The 110 capacity includes 2 RS-232C ports, a 
parallel Centronics-compatible printer port, and a 
RS-422 line. The standard memory of 0.5 MB can 

be expanded to 2 ME. The system is available with 
5.25" hard disk drives which hold 13, 26, or 50 ME. 
A 5.25" floppy disk drive that will store 640 KB 
is also built-in. 

Convergent Technologies also make the 
MegaFrame computer. This system, that runs up 
to 8 MIPS, is comparable to a superminicomputer. 

Fig. 10-5. Convergent Technologies Miniframe (courtesy of 
Convergent Technologies). 
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Fig. 10-6. Synapse N + 1 (courtesy of Synapse). 

It uses up to sixteen 68010s all integrated together 
and has up to 28 megabytes of RAM. 128 users can 
work simultaneously on the MegaFrame. Again, 
the virtual memory capacity of the 68010 is put to 
good use. Virtual memory is almost mandatory to 
systems that handle so many users. The boards are 
designed so that the 68020 can be plugged into 
them when it becomes available. 

SYNAPSE N+ 1 

The Synapse N + 1 online transaction-processing 
system (shown in Fig. 10-6) is a very powerful 
minicomputer built around 68000 family chips. This 
computer is dedicated to fault tolerance. That is a 
branch of computers that is growing very rapidly. 
Fault tolerant machines are able to keep working 
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even if some part of the software or hardware 
breaks down. 

There are many schemes to realize fault 
tolerance. Synapse's scheme involves connecting 
many 68010 based processors together. Total 
systems can be built with just a few processors or 
with many. That way, the system can grow with 
the users needs. And if one processor stops work­
ing, another takes over its load. The software for 
this must necessarily be more complex and expen­
sive than that for single processor systems, but cer­
tain online uses, such as airline reservations and 
bank transactions, cannot afford to miss any pro­
cessing time. If their computers are down, they lose 
business and data. They are willing, therefore, to 
pay a premium for reliable machines. 
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