

MASTERING THE

68000
MICROPROCESSOR

Also by the Author from TAB BOOKS Inc.

1656 The Programming Guide to the Z80™ Chip

MASTERING THE

MICROPROCESSOR
PHILLIP R. ROBINSON

FIRST EDITION

FIRST PRINTING

Copyright © 1985 by TAB BOOKS Inc.

Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the use of the information herein.

Library of Congress Cataloging in Publication Data

Robinson, Phillip R.
Mastering the 68000 microprocessor.

On t.p. the registered trademark symbol "TM" is
superscript following "6800" in the title.

Includes index.
1. Motorola 68000 (Microprocessor) I. Title.

QA76.8.M6895R63 1985 001.64 85-4666
ISBN 0-8306-0886-9

ISBN 0-8306-1886-4 (pbk.)

MC68000 is a trademark of Motorola Inc.

Contents

Preface

Acknowledgments

Introduction

1 Why Bother About Microprocessors?
Power and Popularity 1
Standardization Versus Specialization 3
Cost and Yield 3
Intel's Breakthrough 4
Microprocessor Evolution 5
Microprocessors and Microcomputers 6
Software Versus Hardware 7
Compatibility and Chip Families 7

2 Architecture
History and Design Philosophy 9

68000 History-Power Versus Compatibility
8, 16, or 32 Bits 11
Buses 13

Data Bus-Address Bus-Control Bus
Registers 15

General Purpose-Special Purpose
Arithmetic LogiC Unit 17

ix

xi

xv

1

9

Decoder 17
Prefetch Queue 19
Addressing Modes 20
Data Types 20
Instructions 20
Operating Modes 20
Speed 21
Interrupts and Exceptions 22

3 Registers
Register Advantages 23
Register Types 24
68000 General-Purpose Registers 25

Data Registers-Address Registers
68000 Special-Purpose Registers 26

Stack Pointers-Status Register-Program Counter

4 Addressing
Operand Sizes 35
The Shape of Memory 36

Registers-Memory
Addressing Modes 38

Register Specification-Effective Address-Syntax-Register Direct Modes-Memory Address
Modes-Special Addressing Modes-Quick Immediate-Absolute Addressing-Relative
Addressing-Implicit Reference Addressing

Importance of Addressing Modes 46

5 Instruction Groups
You Don't Have to Learn Them All 48
Instruction Groups 49

Data Movement-Integer Arithmetic-Decimal-Logical-Shift and Rotate-Bit Manipulation­
Program Control Operations-System Control-Nothing Instructions

Summary 76

6 Instruction Set

7 Exceptions
Polling, Interrupts, and Exceptions 157
68000 Processing States 158
68000 Privilege Modes 158

User Mode-Supervisor Mode
Reference Classification 160
Exception Processing 160

Types of Exceptions-Exception Priorities
Summary 163

8 The 68000 Family
CPU Chips 167

68000-68008--68010-68020-68200
Peripheral Chips 183

68881 FPC-68851 PMMU-68451 MMU-68452 BAM-68120 IPC-68440 DDMA-68450
DMAC-68230 PlfT

Data Communications Chips 192
68652 MPCC-68653 PGC-68661 EPCI-68681 DUART-68562 DUSCC-68564 SIO

Mostek Peripheral Chips 194
68901 MFP-68564 S10-68345 FIFO-68590 LANCE

Summary 194

23

35

47

n

157

165

9 Assembly Language
Computer Languages 195

Machine Language-Assembly Language-High-Level Languages-A Quick Comparison
Language Selection 200
Using a 68000 Assembler 201

Op Code Mnemonics-Directives-Syntax-Format
Macro Assemblers and Cross Assemblers 204

10 68000-Based Systems
Sinclair QL 208
IBM System 9000 209
Apple LISA and Apple Macintosh 209
Dimension 211
Convergent Technologies MiniFrame and MegaFrame 213
Synapse N+1 214

195

207

Index 215

--

Preface

Most introductions to microprocessors center on
8-bit chips. Because I6-bit chips such as the 68000
microprocessor are powerful, they are often con­
sidered too complicated for beginners. I want this
book to fight that image and that custom.

The 68000 is far more powerful than the 8-bit
chips that were the basis of the first personal com­
puters, but it is also, in many ways, easier to use.
This pair of characteristics-power and ease of
use-haven't washed away all of the reasons to learn
about 8-bit chips. The best chips of the 8-bit genera­
tion are still used and programmed in personal com­
puters, controllers, and instrumentation. But for
those who want to keep up-to-date, or to catch up
on technology, I6-bit chips are the natural choice.
They are built into most new microprocessor-based
systems including virtually all new personal com­
puters.

The 68000 is no more difficult to program than
any of the 8-bit chips. It just has more depth and
more capability than those chips. Sure, to get the
full use of the 68000 you must understand ad-

vanced concepts such as frame pointers, supervisor
mode, and memory management, but you don't have
to use them.

The 68000 can be used for simple programs just
as an 8-bit chip can. But if you have a complicated
data structure or routine to program, the 68000 will
make your life easier because it provides you with
more tools for implementing such things. An 8-bit
chip makes you do all the work with long sequences
of simple instructions: the 68000 lets you use just
a few, more powerful instructions. Many functions
that took planning and programming on an 8-bit
chip are reduced to a single, automatic operation
on the 68000. This process appears in many
technologies and is particularly strong in microelec­
tronics. While the chips become more powerful, us­
ing them doesn't get more difficult (which is nice
because we aren't getting smarter). The elemental
functions of the chips just keep advancing. Multiply­
ing I6-bit numbers or setting up a portion of the
stack for a subroutine was a major programming
task on a 4-bit microprocessor and required a

ix

carefully written subroutine on an 8-bit chip. Do­
ing the same jobs on a I6-bit chip such as the 68000
only requires a single instruction.

Keep in mind that you don't have to use all or
even most of the 68000's power. By learning a few
instructions and addressing modes, you can begin
to write fast, practical, and clean routines and
programs.

If you're an old hand in the microprocessor
business, you'll know that the 68000 is one of the
most widely used 16-bit chips. If you're new to
microprocessors, there is a no reason why you

x

shouldn't start with the 68000: it is one of the two
most popular 16-bit chips, and you can apply the
68000 concepts you learn to 8-, 16-, or 32-chips.

In fact, the 68000 is more than a 16-bit
microprocessor. Many of its features handle 32-bits
at a time. The 68000 family-which is also de­
scribed in this book-is a set of chips that includes
the 68008 (found in inexpensive home computers)
and the 68020 (a full 32-bit chip that is found in
super-minicomputers). Learn about the 68000 and
you will know most of the details of these chips, too.

Acknowledgments

I would like to thank Cindy Martin, my wife, who
helps me continue my real life while I'm caught up
in the pages of a book. I also thank the people at
TAB BOOKS Inc. (especially Kimberly Tabor, Ray­
mond Collins, Sandy Shatzer, and Leslie Wenger)
who were patient and helpful all the way from

sending me foundation materials for this book to ac­
cepting my pleas for more time.

The people in the computer industry, from chip­
makers to computer crafters, who sent me informa­
tion and photographs of their products helped me
greatly. These include the following individuals:

Stan Victor of Mostek Corporation.
David Anderson, James Lovegrove, Susan Dunn,

and Lothar Stem of Motorola Inc.
Erica Vogler of Apple Computer Corporation.
Jill Palmquist of Corvus Systems.
Barbara Henry of Micro Craft Corporation.
Donna Caruso of Charles River Data Corporation.
Mike Radisich and Dennis Steiner of Hewlett-

Packard.
Rick Bennett of Synapse Computer Corporation.
Tracy Adams of Convergent Technologies.
Leslie Baba of Callan Data Systems.
Sinclair Research, Ltd.

xi

MASTERING THE

68000
MICROPROCESSOR

Introduction

This book has two purposes. First, it introduces you
to microprocessors using the 68000 chip as a guide.
If you are unfamiliar with microcomputing
technology, the 68000 is an excellent choice as a first
microprocessor. Despite its deserved reputation as
a very powerful 16-bit microprocessor, the 68000
can be both understood and used by beginners. The
fundamental programming elements of the
68000-from instructions to addressing modes-are
no more complicated to learn than those of far less
powerful 8-bit chips. But because those elements
contain more punch and because the 68000 family
includes chips with advanced instructions and
memory addressing schemes, a 68000 program gets
more done than a comparable program for an 8-bit
chip. For that reason, if you are familiar with
microcomputing, you'll probably have heard of the
power and influence of the 68000 microprocessor.

The second purpose of this book is to present
the fundamental information you need to under­
stand and write 68000 assembly language pro­
grams. From the architecture to the individual in-

structions, this book covers each vital part of the
chip. There are some advanced details of the 68000
that this book doesn't attempt to cover, including
such things as the exact timing of instructions, the
interfacing of peripherals, and the algorithms for
assembly language subroutines. Those subjects are
better left to the original literature from the chip­
maker or a book dedicated to this subject.

My intention is to present the software side of
the 68000 in a simple and painless way. If you want
to learn about the hardware side of the 68000, you
still need to know what is in this book. After you
have read it, then you'll be ready to study the
manufacturers' hardware details and specifications.

Chapter 1 explains the genesis and the impor­
tance of microprocessors and the 68000. This is not
a detailed history-plenty of those have been writ­
ten elsewhere. Instead, Chapter 1 is just a refresher
on the reasons why any of us bother with these tiny
and complicated chips along with some suggestions
on how to use this book.

Chapter 2 describes the inside of the 68000. As

xv

with the rest of the book, this chapter assumes no
prior knowledge of microprocessors. Before describ­
ing a feature of the 68000, the meaning and use of
that feature will be covered in general. Chapter 2
begins by explaining the difference between 8-, 16-,
and 32-bit microprocessors and then details the
registers, memory addressing space, flags, instruc­
tions, addressing modes, and interrupts that the
68000 has. This chapter compares other 16-bit chips
to the 68000. Chapters 3 through 7 explore in more
detail the chip elements first listed in Chapter 2.

Chapter 3 details the registers and compares
them to those on other microprocessors. The struc­
ture, function, and use of each register is explained.

Chapter 4 begins by explaining the reasons for
different modes of address and then takes each
68000 addressing mode in turn and shows its use,
flexibility, and restrictions.

Chapter 5 explains what an instruction is and
what it can do. The orthogonality of the 68000 in­
struction set is explained. The instructions are
grouped by function and their uses and idiosyn­
crasies are discussed.

Chapter 6 is the longest chapter in the book. It
describes each instruction individually with defini­
tions, condition code effects, allowable addressing
modes, and a quick bit-breakdown of the object
code.

Chapter 7 explains exception processing. This
subject is called Interrupts on many other
microprocessors, but the 68000 adds new categories
of exceptional processing that help the programmer
handle everything from meaningless mathematics
to unauthorized memory access.

Chapter 8 lists the members of the 68000 chip
family, including CPUs and peripherals. All of the
CPUs (68008, 68010, 68020, 68200) and some of
the more important peripherals are discussed.

Chapter 9 begins with a quick introduction to
computer languages. Since this is a manual and not
a programming exercise book, the coverage is brief.
The chapter then launches into a discussion of the
advantages of assembly language and the basics of
assembly language technique.

Chapter 10 pictures and describes sample
products that use the 68000. These range from per-

xvi

sonal computers that cost $500 to minicomputers
that cost half-a-million dollars. The last category is
chosen to show the range and power of the 68000
family.

The experienced reader of technical material
will be familiar with the style of a microelectronics
manual such as this one. Novices, however, may be
awed and confused by the repetition of words and
phrases. A common complaint from those who
overhear the language of computerese is that the
lingo is impenetrable and that it was probably
designed to obscure meaning and cloak the subject
in mystery. The language may be impenetrable for
those who haven't opened the technical dictionary,
and it can and is used as obfuscation.

In a book such as this, however, use of technical
terms is vital and is the only practical way to con­
vey the information in less than an encyclopedic
length. Each term will be explained, but once ex­
plained the terms will be used. When you are
familiar with the terms, you'll be glad to avoid the
endless repetition of definitions. When you begin
to learn a foreign language it is hard to even know
the subject of a conversation. But once you are gain­
ing fluency, you wouldn't want to have every word
followed by a snippet from a dictionary. The same
is true of technical terminology. Technical disciplines
are built on technical lingo just as surely as
mathematics is built on numbers and letters.
Without using these symbols, the science would be
crippled.

Microelectronics is built on an edifice of
understood terms. Their combinations and relations
make their meaning; adopting a more mellifluous
set of names and terms would make for easier
reading and less understanding. In studying a sub­
ject such as this one, just remember this: what looks
complicated and needlessly obscure now will be too
simple to bother with later, except when you explain
it to the next novice.

Most authors place the requert for debugging
in the acknowledgments, but because I know that
most people, myself included, don't read
acknowledgments unless they have reason to believe
their own names are included, I'll mention debug­
ging here. Please let me know about any errors in

this book so that I can correct them. By errors, I
mean factual mistakes, typos, and even omissions
of material. Obviously, I and my editors have tried

to catch these problems, but there is no more
vigilant or observant proofreader than a user who
is cursing the transposition of a 1 and a O.

xvii

1

Data ~ (8)
24

Address ~ (8)

~ SP

SP

PC

~
68000

Why Bother
About Microprocessors?

M OST ELECTRONIC CHIPS ARE NAMED WITH
a number. The 68000 chip is a micro-

processor chip. By microprocessor, I mean that the
68000 is a single, small, square piece of silicon that
has been impregnated with all the electrical circuits
of the heart of a computer. It can be put to use in
everything from a household appliance to a million­
dollar computer.

This chapter is written for those who aren't sure
why microprocessors have captured so much news
attention. Many other books are available that
describe in detail the people and events that led to
the invention and improvement of microprocessors.
This chapter only sketches the role of
microprocessors and a few of the concepts vital to
understanding them.

Microprocessors are the pivot of the informa­
tion revolution. They are the brains of the electronic­
chip world and so are vital to computers and
thousands of other products, from sewing machines
to railroad cars, advanced X-ray equipment to
pacemakers.

POWER AND POPULARITY
The 68000 has both facets necessary to make it a
leading microprocessor: it is powerful and popular.
Without power, a microprocessor will soon be Jeft
behind in the technological race. An unpopular chip,
no matter how state-of-the-art, will not have enough
software to be quickly useful in future situations.

The question of a microprocessor's popularity
is an interesting one. The first chip that fulfills the
system designers' needs will often be the most
popular chip. But if the previous generation of
microprocessors can still handle most designer
demands, the first chip marketed may be left behind
by a later, more powerful chip.

In addition, there is a snowballing effect to
microprocessor popularity. Once a chip begins to be
popular, programs for it start to appear. Those pro­
grams make the chip even more popular and result
in more systems being designed with that chip.
More systems means even more software will ap­
pear for it. And around and around it goes. In the
final analysis, the size and reputation of the com-

Fig. 1·1. The 68000 chip (courtesy of Motorola).

2

panies that use the chip in their systems are also
vital to its popularity.

The 68000 is not the preeminent
microprocessor today. Some older 8-bit chips, such
as the Z-80 and 6502, are sold in larger numbers.
The 8086, a chip from the same 16-bit generation
as the 68000, can be found in more personal com­
puter designs than the 68000, but it is less power­
ful. In many ways, the selection of the 8088 (a close
relative of the 8086) by IBM for its personal com­
puters was the largest single boost to that chip.

68000s are found in more engineering and in­
strumentation systems than the 8086 and are begin­
ning to appear in personal computers such as the
Apple Macintosh, Apple LISA, and the Sinclair QL.
Together, the 8086 and the 68000 have captured
most of the 16-bit microprocessor market. Figure
1-1 shows a microphotograph of the 68000.

The next generation of microprocessors will
work with 32-bits at a time. These super
microprocessors will have as much power as many
full-size computers have now. The 68000 opens the
door to this world in two ways. First, the 68000 uses
32-bits in internal processing, so in some ways it is
a hybrid 16- and 32-bit microprocessor. Second, the
68000 family already includes a full 32-bit processor
called the 68020 that can run all the programs writ­
ten for the 68000. The 8086 doesn't have this ad­
vantage. Its 32-bit relative, the 80386, was not yet
available when the 68020 started to appear in
systems.

STANDARDIZATION VERSUS SPECIALIZATION

The entire field of microelectronics is rooted in both
World War II and the space race. Missiles and air­
craft need control systems that are lightweight and
reliable, yet very complex in design. The technology
that provides all these benefits is solid-state elec­
tronics.

Several breakthroughs took place during the
late 1950s and throughout the 1960s that allowed
designers to put more and more electronic circuit
elements on the surface of a single crystalline sheet.
The silicon chips of these processes have since been
celebrated in books, magazines, songs, and lent their

name to the Santa Clara Valley in California, where
much of the groundbreaking work was done.

Simultaneously with the miniaturization of
flight electronics, the science and technology of
computers exploded. Computer designers quickly
adopted solid-state electronics and integrated cir­
cuits because of their high reliability, low power
demands, and fast operation. Microelectronics was
used to build the central processors and memories
of the huge computers of the 1960s. By 1970,
however, a roadblock had appeared in the way of
further development of integrated circuits.

COST AND YIELD

The complex and subtle processes used to implant
microscopic transistors, resistors, capacitors, and
other electronic components on a block of extremely
pure crystal are difficult to master and require very
expensive equipment and highly trained personnel.
The more complex a circuit, the harder it is to
fabricate correctly. In fact, with increasing complex­
ity the number of working circuits drops precipitous­
ly. This relationship is shown in Fig. 1-2.

At the beginning of the process of creating cir­
cuits, each sheet of silicon crystal is laid with the
foundations for several hundred chips. By the end
of two dozen different steps, only a fraction of those
chips will have been formed perfectly. Almost any
flaw, no matter how small, destroys the chip. The
percentage of good chips from a wafer or sheet of
silicon is called the yield. Cost is directly related to
yield.

If the engineers cannot get a high enough yield
out of a wafer, the resulting microcircuits will be
too expensive. These costs were looming like a wall
in the face of progress in the late 1960s. Since
microcircuits are difficult to design and even harder
to produce, they can only be economical if they are
sold in large volume. A chip that has only a few uses
will be very expensive and so will only appear in
special costly systems.

Except for memory chips, chip designers were
having a hard time coming up with new chips that
would sell in volumes large enough to pay for design
and process development.

3

I
/\
I
I

"C

Q)

::>-
0)
c
(II
C)
Q)
L
U
C

II
'" I
I -... -...
(II

o
u
0)
c
(II
C)
Q)
L.
U
C

Increasing Circuit Complexity (Gates) --)

Fig. 1-2. The learning curve (Idealized).

INTEL'S BREAKTHROUGH

The breakthrough came in the guise of something
known as programmability. Computers are pro­
grammable. Usually, they are not dedicated to any
particular use: instead, the computer does whatever
it is programmed to do. A programmer, or computer
engineer, writes a series of instructions that tells the
computer exactly what steps to take to solve a
problem. Solving a problem doesn't mean just work­
ing out math equations. From cataloging finger­
prints to keeping the books, from playing games to
controlling traffic lights, computers perform a huge
variety of tasks. In fact, the magic of computers is
that they are malleable machines. If you think of
a new job that needs doing, all you have to do is
write a program. You don't have to design and build
an entirely new machine. The microcircuit
engineers were slow to realize that this fact could
provide the answer to their design problems.

A few IC (integrated circuit) manufacturers
were employed by calculator companies to fashion
the central parts of a calculator on a single chip.
When chips are economical, they are very
economical, even downright cheap. Typically the
costs of an integrated circuit will halve every two
or three years. That's because the yields rise with
processing experience: a phenomenon known as the
learning curve. An idealized version of the learn­
ing curve is shown in Fig. 1-3. Other advantages of

4

ICs over conventional circuits on fiberglass boards
include lower power consumption and higher
reliability. So the calculator companies were hop­
ing that the primitive computing functions of their
machines could be incorporated into ICs and thus
become cheaper to produce and more reliable to
work with.

Intel was the first manufacturer to get all the
circuits on a single IC, but the chip wasn't fast
enough (it took too long to make its calculations).
So the calculator companies went back to their old
methods of making circuits and Intel tried, without
a lot of hope, to sell an already paid for, slow­
calculating chip.

That chip, the Intel 4004, was the first
microprocessor. It began to sell, and sell, and sell.
It sold so well that Intel quickly put out an im­
proved version, the 4040 (like the 4004, a 4-bit chip)
and then an even more powerful8-bit chip, the 800S.
The 8008, in turn, gave way to the 8080. Other
manufacturers developed competing chips, such as
the Motorola 6800, and the microprocessor revolu­
tion was on its way. Who was buying all those chips?
A lot of people.

Though they were slow compared to the re­
fined circuits of the calculator manufacturers, these
chips had the advantage of programmability. In
other words, different people could use them for dif­
ferent purposes. The breakthrough in chip design

high

Cost/Chip

loW'

a 100,000,000

Cumulative Number of Chips Sold

Fig. 1-3. Sales of microprocessor chips vs. cost per chip.

was the development of a general-purpose chip that
anyone could use. The same chip would work for
many applications; only the program, or software,
needed changing. Industrial engineers designed
microprocessors into machine controllers;
automobile manufacturers designed them into
engines; hobbyists designed them into just about
everything.

The ability of a microprocessor to gather infor­
mation, to manipulate that information, to test it,
and then to make a decision based upon the pro­
grammer's earlier decision, and finally to initiate the
action of some other machinery makes it into a tiny
thinking device. The unreliable and limited
mechanical controllers in traffic lights, microwave
ovens, airplanes, and vending machines can all be
replaced with microprocessors. In addition, systems
that didn't use controllers before, could now be
made more efficient by the judicious use of
microprocessors. Applications appeared where no
one had even thought to look. IC manufacturers
found that they could concentrate on making bet­
ter processors and support chips rather than wor­
rying about specialized chips that no one could
afford. Better yet, they discovered that designers
who bought microprocessors would then order lots
of memory chips (which is where the IC companies
made their profits).

The breakthrough came in hardware design.
But now, because of that breakthrough, designers
needed to become software experts just as much as
hardware experts.

MICROPROCESSOR EVOLUTION
The first microprocessors were 4-bit devices. Like
most computers, they were based on digital elec­
tronics and the binary number system (which
represents all information by strings of 1s and Os).
Digital systems can be made more reliable and more
precise than analog systems.

Four-bit microprocessors deal with groups of
four binary digits, or bits, at a time. Although these
were adequate for simple applications, many users
soon needed 8-bit devices. The manufacturers were
quick to respond. Figure 1-4 depicts the family tree
of the most popular microprocessors. There are
many other microprocessors that are not shown or
discussed here. Some are used solely for military
applications, others never appeared in many
systems, and still others have just recently appeared
and are not yet well known.

There are several important trends in the
microprocessor field. The first is the development
of chips that can handle more bits at a time. The
first chips were founded on the use of 4 bits; with

5

double length registers (locations on the chip for
storing bits), 8 bits could be used for some opera­
tions. In some circumstances, this capability of chips
to work with twice their fundamental bit number
helps to confuse the labeling of chips. You'll hear
of 8-bit, 16-bit, and 32-bit chips, but you'll also pro­
bably run into mention of 8/16-bit chips and 32-bit
chips with 8-bit buses. I'll explain some of those
mysteries in Chapter 2, but for now, remember that
16-bit chips are generally more powerful than 8-bit
chips, and 32-bit chips are the most powerful now
available.

The second new branch in the tree of
microprocessors is the single-chip microcomputer.
Most microprocessors need support chips such as
clock oscillators, bus multiplexors, and 110 (In­
put/Output) controllers. Single-chip microcomputers
have all of these functions integrated on a single
chip. The 68200 is an example of such a chip (see
Chapter 8 for more information on the 68200).

4-bits 6-bHs

4004
4040 -- 6006

6060
6065

6068

Z80

6800 I

6809

6502

Fig. 1-4. Genealogy of some popular microprocessors.

6

MICROPROCESSORS AND MICROCOMPUTERS

Almost as soon as microprocessors made the vital
central processing unit (CPU) available in a small,
affordable package, hobbyists started building them
into tiny computers. By attaching a power supply,
110 devices, and some memory, a microcomputer
was created (as mentioned above, the term
microcomputer is sometimes also used for a
microprocessor that has additional functions
packaged onto a single chip). The early microcom­
puter models quickly gave way to sophisticated
packages with keyboards, monitors, large memories,
peripherals, and even systems software.

The first hobby computers were built around
the 8-bit chips such as the 8080 and the Z-80. But
as professionals, business people, and engineers
began to use hobby computers-soon renamed per­
sonal computers or PCs-the computer designers
knew they needed more power than the 8-bit chips

16-bHs 32-bHs

6066 60366
60186

80286

Z8000 Z80000

68000 68020
68008

68010

65816

16032 32032
9900

could provide. At that point, 16-bit chips like the
68000 and the 8086 began to appear in PCs.
Microcomputers soon became a faster growing seg­
ment of the computer market than the traditional
mainframes and minicomputers and can now be
found in homes, schools, businesses, and
laboratories.

SOFTWARE VERSUS HARDWARE

As the information revolution proceeds, fewer peo­
ple design hardware and more use commercial hard­
ware as a tool to design software. Way back in the
early 1970s, if you wanted a microcomputer, you had
to build it from a kit. You had to understand the elec­
trical aspects of microprocessors just to be able to
use one. That isn't true any longer. In fact, only
dedicated hobbyists or inventors need to worry
about enable signals, line buffers, race conditions
and all the other esoteric aspects of hardware.
Before, you had to build a computer to own one; to­
day it is much cheaper to buy a standard system and
program it to do what you want. This book is
aimed at software because that is where the action
is.

Very few people today will interface a 68000
chip to other chips. Many, many people will be pro­
gramming 68000-based systems in machine,
assembly, and high-level languages. This book
sketches some of the hardware aspects of the 68000
so that you will know what hardware people are
talking about when they discuss 68000 systems. But
by far the majority of the book leans on the things
you must know to program a 68000 microprocessor
or to understand how a 68000 program works.

To understand and create software for 68000
CPUs, this book should be sufficient. You won't have
to get the manufacturers data. However, it is always
a good idea to have manufacturers literature in hand.
In some cases, learning to read the original
documentation is as important a skill as actually
programming a chip.

If you want to incorporate a 68000 chip into
some hardware, this is not the only book you'll need.
You'll need the software knowledge in this book and
the hardware facts in the chip manufacturers' latest
manuals. In fact, a single book couldn't hold all the

necessary software and hardware facts and explana­
tions and still be easy to carry.

COMPATIBILITY AND CHIP FAMILIES

Besides a software emphasis, I also try to be diligent
in explaining the concepts of compatibility and chip
families. The 68000 isn't really a single chip. In­
stead, it is a family of CPU chips and peripheral
chips.

Other CPU chips include an 8-bit chip (the
68008), a 16-bit virtual memory chip (the 68010),
a single chip controller (the 68200), and a super­
powerful 32-bit CPU (the 68020). The peripheral
chips are dedicated to relieving the CPU of par­
ticular tasks including memory management, I/O
(input/output), floating point arithmetic, and
peripheral device control. Many of these chips are
discussed in detail in Chapter 8. Throughout the
bulk of this book, almost all explanations refer to
the 68000 and the 68008.

This family of chips presents the programmer
with two types of compatibility. First is the com­
patibility of learning. The CPU chips all have very
similar structures and operation (with the 68200
varying more than the rest). That means you only
have to learn one chip to have command of 8-bit,
16-bit, and 32-bit microprocessors. Also, you need
only learn one set of peripheral chips because the
CPUs in the 68000 family are specifically de­
signed to work with many of the same peripheral
chips.

The second type of compatibility has a stricter
meaning. 68000 CPU chips are designed to run soft­
ware written for other 68000 family CPUs. Not on­
ly do you only have to learn one chip, but many
programs you write will run without change on
other 68000 CPUs. The software written for a small
8-bit personal computer can be run on a 16-bit
engineering workstation or a 32-bit superminicom­
puter. With programmers and programming
representing the major slice of most computer
budgets, that time and effort savings is substantial
and important.

The rules of this compatibility are fairly sim­
ple. First, the 68200 doesn't figure into the pattern.
It is only a similar chip, like a distant cousin, instead

7

of a sibling. Other than that special case, programs
written for a less powerful member of the family
will run on a more powerful member but programs
written on the more powerful chip will not necessari­
ly (but often will) run on the less powerful chip.

For instance, the 68008 is, at 8-bits, the minor
member of the 68000 family. Programs that run on
the 68008 will run without modification on the
68000. However, programs that work on the 68000
may use some of the additional power-in the form
of instructions and interrupt priorities-that the
68008 doesn't provide. Those programs won't run
properly on the 68008. Similarly, programs for the
68010 will run on the 68020, but a program that
runs on and uses the advanced addressing and in­
structions of the 68020 will not run on the 68010.

Motorola, the designer of the 68000, claims that
future members of the 68000 family, while more
powerful, will be software compatible with the

8

present chips. While hardware designers will have
to look up the particular facts for the particular
68000 chip they use, be it 68000, 68008, 68010,
68020, etc., software designers can learn one chip
and use any of the others with only a little extra
study.

Remember that Motorola reserves the right, as
do most semiconductor manufacturers, to change
any of its chips to improve their design, function,
or reliability. You can bet, though, they'll do what
they can to keep the chips compatible. That's
something that's easier for you as a software
designer than for your hardware compatriots. Chips
are often changed at the hardware level. Speeds,
chip size, and other details can change with evolu­
tionary improvements in chip production and
design. Those changes are made though with the
thought uppermost that the software must run un­
disturbed.

2

Data ~ (8)
24

Address ~ (8)

~ SP
SP

PC

~
68000

Architecture
T HE ARCHITECTURE OF A MICROPROCESSOR

is its internal structure: it includes such
elements as registers, interrupt signals, instructions,
and addressing modes. This chapter will explain
what those things are and why they are important.
Chapters 3, 4, 5, 6, and 7 each treat one aspect of
the 68000's architecture in much more detail. The
organization of these chapters follows the outline
in this chapter.

HISTORY AND DESIGN PHILOSOPHY

The 68000 design effort started at Motorola in the
middle 1970s. The Motorola 6800 family of 8-bit
microprocessors was very popular, but users were
asking for more power. It was soon clear that only
a 16-bit chip could have all that users were looking
for. To design that chip, a project called MACSS
(Motorola's Advanced Computer System on Silicon)
began to investigate quite a number of possible ar­
chitectures and design strategies. Finally, the
project team settled on one design that held the
most promise. They used that design to start the
68000 family.

68000 History

Motorola formally introduced the 68000 fami­
ly's first chip, the 68000 itself, in late 1979. The
68000 has a 16-bit data bus and a 23-bit address bus.
While Motorola designed the 68000 and still
manufacturers it, other companies also manufacture
it (and are designing some of their own peripheral
chips to go with it). Those other companies are
known as second sources and include International,
Signetics/Phillips, Mostek, Hitachi, and EFCIS
(Thomson-CSF). Motorola also makes peripheral
chips, support systems, and development systems
for the 68000.

By the way, Motorola refers to the 68000 series
as the MC68000 series. I have left off the prefixes
in this book to avoid confusion. Other manufacturers
who second source the 68000 or make peripherals
for it also attach prefixes to their chips. Mostek, for
instance, calls its main CPU the MK68000. It is the
same chip as the MC68000 and operates in exactly
the same way.

Motorola intended to create an entire family of
chips with a standardized architecture. The 68008

9

was the next chip in the family and has an 8-bit data
bus and a 20-bit address bus. The 68008 was clear­
ly aimed at allowing even those who wanted 8-bit
systems to use the 68000 family. The 68010, in­
troduced next, is the first chip in the series that has
the virtual memory capabilities. The 68020, with
32-bit data and address bu'ses, was announced in
1984.

When the 68000 (sometimes called the 68K)
first came out, it was used mainly in expensive com­
puters, because of its very high performance and
fairly high price. In 1984, however, because its price
had fallen from the original $450 (for a single chip)
to approximately $50, the 68000 started showing up
in personal and even home computers.

Power Versus Compatibility

Chip designers soon discover that you can't have
everything when you design a new chip. Maximiz­
ing some aspect of the chip's performance will often
have a direct negative impact on some other aspect.
Also, you can't just cram every innovation onto a
single chip. If you try to design the perfect chip,
chances are it will be very difficult to manufacture.
And if a chip can't be made cheaply, it probably
won't be widely used and will just end up as a
curiousity in magazine comparisons.

The rapidly changing state of semiconductor
process technology means that you can't just decide
what can be made at present. You have to make a
guess at what the state-of-the-art will be when you
have finished designing the chip; you have to try to
judge what the manufacturing engineers and their
equipment will be able to make when you finish
designing your chip. Guess too conservatively and
the competition's more advanced chips will leave you
in the silicon dust. Jump too far out ahead, and you
may have the devil of a time getting a working pro­
totype.

There are many other design considerations in
any computer design-not just in microprocessors
or microcomputers. Software compatibility is a vital
factor in any design. Software is a huge part of the
expense of computers. Users may well say, "So
what?" if you offer them a newer, faster superchip

10

for which they will have to write all new software.
It pays to make a new processor that can run the
software written for the previous chip.

The 68000 designers decided not to shoot for
direct software compatibility with the earlier 8-bit
chips because those chips were designed without the
future in mind. Eight-bit processors appeared within
a very short time after the very first
microprocessors. Their designs were often just
quick copies of minicomputers or commonly
available circuit boards. Many manufacturers
thought of them mainly as ways to sell more
memory chips. In particular, the 8-bit chips were
very hardware oriented: there wasn't much con­
sideration given for easy adaptation of the chip to
high-level language software. Future expansion of
systems was, for the most part, ignored.

To design an exciting new 16-bit chip so that
it would run the programs written for a workhorse
8-bit chip would handicap the newcomer. Motorola's
designers decided against it. They wanted a power­
ful, flexible microprocessor that would be de­
signed from scratch to be easy to use and would
simplify the job of writing high-level language
systems software. High-level languages are the most
efficient medium for writing large programs. They
are explained in more detail in Chapter 9.

There was another sort of compatibility that
Motorola found important: peripheral chip com­
patibility. Chips are rarely the monolithic entities
that beginners see. Instead they are families. Hav­
ing a marvelous CPU won't mean much (that is, it
won't be designed into many systems) unless there
are Input/Output controllers, memory managers,
CRT controllers, floppy disk controllers, interrupt
handlers, timers, and a horde of other chips that can
be directly and easily hooked up (or interfaced) to
the CPU. The MC6800 had such a family. In fact,
because many I/O operations don't require more
than 8 bits of transfer at a time, 16-bit I/O chips are
rarely necessary: 8-bit chips can handle the jobs.

The 68000 was designed to interface directly
to the 8-bit 6800 peripheral chips. Therefore the day
the 68000 was introduced there was a whole fami­
ly waiting to greet it.

8, 16, OR 32 BITS
Why is a 16-bit chip more powerful than an 8-bit
chip? For a number of reasons. But before getting
into those reasons, take a look at those two numbers.
Is a 16-chip going to offer exactly twice the power
of its 8-bit cousin? No. Although 16 is twice 8, the
comparison of programming punch is much more
complicated. For instance, the number of possible
values that can be held by 16 bits is 256 times as
many as can be held in 8 bits. Where the 8-bit chip
could only have 256 separate and distinguishable
values in a register, such as for instructions, the
16-bit chip can have 65536 (64K as shown in Fig.
2-1). Even that's not an endless number. Those bits
get eaten up in a hurry.

Registers are small memory spaces on the
microprocessor chip itself. Because they are directly
on the chip they can manipulate information far
faster than if that information had to be taken from
memory and then put back. But if you have 16 main
registers (as the 68000 does), specifying which one
of those registers will be used in any given opera­
tion requires at least four bits of information (this
is shown in Fig. 2-2). That single use-specifying

" of Bits Effective Multi plication

1 2
2 2*2
3 2*2*2
4 2*2*2*2
5 2*2*2*2*2
6 2*2*2*2*2*2
7 2*2*2*2*2*2*2
B 2*2*2*2*2*2*2*2

a register-would swallow half of the bits of the in­
struction byte in an 8-bit CPU.

Addressing modes are another important com­
ponent of microprocessing. By having a variety of
modes, you can build data structures and program
interrupt mechanisms that make for quick and ef­
ficient programs. But 8 modes will require 3 more
bits of specification. Along with 16 registers, 8 ad­
dressing modes would almost exhaust the instruc­
tion byte of an 8-bit chip. There are ways around
the problem. The specification bits can be sent in
several sequential bytes. That approach, however,
just makes for other problems. More bits are eaten
up just to tell the CPU that another instruction byte
is coming. Waiting for those bytes slows execution;
and speed is supposed to be what computers are all
about.

A larger number of bits also allows for many
more instructions. That in turn allows more com­
plex instructions to be written into the repertoire
of the chip. Division and multiplication that take pro­
grammer time and slow down execution in 8-bit
chips are often implemented directly as single in­
structions on 16-bit chips.

Addressable Memory

2 bytes
4 bytes
B bytes

16 bytes
32 bytes
64 bytes

12B bytes
256 bytes

16 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2 64 kilobytes
24 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2* 16 megebytes

2*2*2*2*2*2*2*2
32 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2* 4 gigabytes

2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*2

Fig. 2-1. Addressing bits and addressable memory.

11

Values of
4 specifyi n9 Bits Re9isters 1 - 16

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1 011
1100
11 01
11 1 0
1 1 1 1

1
2
3
4
5
6

7

8
9

10

11
12
13
14
15
16

Fig. 2-2. Bits required for register specification.

Another good reason to have more bits in the
CPU is to address larger memory spaces. eight bits
can address 64K. That may sound like a lot, and
it is quite impressive compared to the memory
spaces of some of the early computers. But for
modern applications, single programs can easily re­
quire lOOK of memory. Implement 110 devices,
screen memory, and multiple character sets, and
64K is soon gone. Sixteen bits, on the other hand,
can address 256 times more memory. Add a single
bit to a CPU address bus and you double the ad­
dressable memory space. That's some sort of binary
magic.

The width of the data bus is so important that
it 'is often the sole criterion for deciding whether or
not a chip is 16-bit. A bus that is twice as wide can
move information twice as fast. In programs that
require lots of writing to or reading from memory,
a 16-bit chip with the same clock frequency as an

12

8-bit chip would be almost twice as fast for that
single reason alone.

Is the 68000 a 16-bit chip? Apple (which uses
it in the Macintosh) likes to call it a 32-bit chip.
Sixteen-bit chips in general are not easy to classify
as 8-bit chips. In fact, a close examination of many
of the newer microprocessors shows that few are
completely in the 8-bit, 16-bit, or 32-bit camp.
Manufacturers love to claim as much width as possi­
ble for their chips, but users often discover limita­
tions on data bus, address bus, internal buses,
operation units, and other specifications. The data­
bus width is generally used as the main indicator
of chip type, but unless a chip has an op code that
can reach x-bits, it probably shouldn't be called an
x-bit CPU. Figure 2-3 lists a number of popular
chips.

The MC68000 family has 32 bit registers but
a 16-bit ALU and data path. The 68000 was the first
16-bit microprocessor that was actually, internally,
a 32-bit microprocessor. It was also the first with
16-megabytes of unsegmented directly addressable
memory.

I conclude that the 68000 is basically a 16-bit
chip with many internal 32-bit features. For in­
stance, its main registers (described in Chapter 3)
are 32-bits wide. Also, its program counter (that
specifies the location of the present instruction) is
32-bits wide. But the 68000 is clearly a 16-bit chip.
It fetches data 16-bits at a time (a word at a time).
It can work with bits, nibbles, bytes, words, or long­
words (1, 4, 8, 16, or 32 bits).

Because its instructions are coded into words
(see Chapter 6 for more detail on individual word

8-bHs 8/16-bits 16-bHs

8080 8088 8086
8085 80186
ZBO 68000
6502 Z8000
6800

Fig. 2-3. Some popular microprocessors.

D4 DS
03 06

D2 07
D8 01

DO 09
AS 010

UOS
lOS - 8 012 __ R/'W

OTACK _ 014
-- BO GND BGACK

BR
Vee ;'22
GNO elK 16 Vee

__ H;'lT
;'19 RESET --

VMA A17 E
VPA A16

BERR ;'15
IPl2 24

A14
IPL1 A13

IPlO 40 A12
FC2

Al0
All

Fel
FCO

A8
A9

Al
A2 1>.7

A3 A6
1>.4 32 33 A5

Fig. 2-4. 68000 pinout (assignments).

coding), it frequently requires only a single word
to fully describe an instruction. Some instructions
do require 16-bit extension words. These follow the
op code in the assembly coding. The extensions add
addressing information and can increase the length
of an instruction to as much as 5 words.

BUSES

The standard 16-bit, NMOS 68000 comes in a
64-pin package. That is, it has 64 separate wires or
lines that connect the chip to the outside world.
Figure 2-4 shows the pins of a 68000 and Fig. 2-5
is a logical layout of the pin functions. A group of
similar signal lines is called a bus. The 68000 buses
are shown in Fig. 2-6.

Data Bus

The data bus (shown in Fig. 2-7) is 16-bits wide.
It has 16 separate lines. The lines are bidirectional;
information can move on them out from the 68000

CPU or in to it, but not both directions at once. This
is the bus that handles the actual bits of informa­
tion. The width of the data bus cannot be used as
the sole criterion for the bits of a microprocessor.

For instance, the 68008, described in more
detail in Chapter 9, has all of the attributes of the
68000 except that its data bus is limited to 8 bits.
Does that make it an 8-bit microprocessor? No. With
32-bit registers and the ability to multiply and divide
16-bit operands, it certainly should not be classified
with other 8-bit chips such as the Z80.

Address Bus

The 68000 address bus (shown in Fig. 2-8) is
23-bits wide and is unidirectional. It is mainly
used to send addresses from the 68000 to memory.
It also carries interrupt information. The 23-bit
width of the address bus may be surprising, in view
of the 32-bit width of the program counter (which
holds addresses to be sent out on this bus). But the
68000 designers decided that 68000 users didn't
need a full 32-bit address; that a 24-bit address
would encompass enough memory. Using the full
address would have pushed the required number of

Vee .t.ddrfSS

GNO
Bus

CU(Data
Bus

AS
FCO

R /iji PrOCl'ssor FC1 Asynchronous
Status UOS Bus Control

FC2
LOS

OTACK

6800 E

Pl'riphtral VMA BR Bus

Conkol VPl BO
ArbItration

Control
BGACK

BERR iiiLo
Systtm RESET iPU

Int.rrupt
Control Control __

IPL2 HALT

Fig. 2-5. 68000 pinout (functional).

13

-

Addrttss Bus (AO- A23)

Data Bus (00-D15)

Procl>ssor Status

080 00

Control Bus

Po'W'(>r I Ground, Timing

-

Fig. 2-6. 68000 buses.

pins beyond the already huge 64-pin package. On
advanced chips such as the 68020 (described in
Chapter 9), a full 32-bit address bit is used, but these
chips are much more expensive than the 68000 and
must be packaged in a pin-grid array type of
package that has more pins that the DIP used for
the 68000.

The 68000 depends on direct linear addressing:
some other systems get by with a narrower address
bus by complicated schemes of paging and
segmenting.

68000 110 (Input/Output) is memory mapped.
That means the same instructions are used to move
data to peripherals as within memory itself. Some
microprocessors have a different set of instructions
that refer specifically to I/O devices.

Memory management (MM) is a technique
used in many computers. Memory is divided into
blocks and the area any programmer can use or see
can be limited by a system supervisor. That isn't
done just to protect secrets. It's also to keep a wild
program from dicing up everyone else's memory.
Sometimes a special chip called an MMU (Memory
Management Unit) does this job. Other times, it is

14

6900 Pttriphttr a 1

Systttm

Asynchronous Bus

Bus Arbitr atlon

Int(>rrupt Control

<----00----)

<----01----)

<----02----)

<----03----)

<----04----)

<----05----)

<----06----)

<----07----)

68000 <----08----)

Fig. 2-7. Data bus.

<----09----)

1"----010----)

1"----011----)

----012----)

----013----)

----014----)

----015----)

---- A 1---- >

----A2---->

----A3---- >

---- A4---- >

---- A5---- >

---- A6---- >

----A7---->

---- A8---- >

---- A9---- >

---Al0---->

68000 ---A"---->

---A12---->

--- A 13---- >

---A14---->

--- A 15---- >

--- A 16---- >

--- A 17---- >

--- A 18---- >

--- A 19---- >

---A20---->

---A21---->

---A22---->

--- A23---- >

Fig. 2-8. Address bus.

a combination of software, operating system, and
chips. As an application programmer, you wouldn't
know it was there. You just write programs and the
system takes care of MM. Chapter 8 describes the
68000 family Memory Management Chips. The
68000 does distinguish between two types of
memory references: data and program. All operand
writes are to data space.

Control Bus

The control bus (shown in Fig. 2-9) contains a

dress buses. These are the signals that provide com­
munications between other chips and the CPU.
There are both asynchronous control lines (for
68000 peripherals devices) and synchronous control
lines (for 6800 peripherals and other slower 8-bit
peripherals).

REGISTERS

Registers are memory storage places on the CPU
chip itself. Because they are easily addressed and

68000

----Feo----)
----FC ,---- >
----FC2---- >

-----E----->

---YM"A---- >
<----VPA----

----BERR----

---RESET--->

<---HAL T--->

---- AS---- >

----R/W---->
----UDS---->

--- -LOS----)

<---or ACK---

<-----BR-----

----BG----- >

---BGACK---)

<----IPlO---­

<----IPll---­

<----IPL2----

more diverse group of signals than the data or ad- Fig. 2-9. Control bus.

15

are built into the microprocessor, they are very
quickly read or written to. So instructions that refer
to registers can execute faster than instructions that
refer to external memory locations. Advanced
microprocessors often have more registers than sim­
ple microprocessors.

Registers can be dedicated to a special purpose
or they can be so-called general purpose. Special-

(Bit Positions)

31 15

31 15

Us.r Stack Point.r (USP)

purpose registers often include stack pointers and
flag registers and cannot be used for other tasks.
General-purpose registers may still have commonly­
assigned tasks that their design slants them toward,
but you can use general-purpose registers for a
variety of tasks. For example, any general purpose
register can be used as an index register.

Figure 2-10 shows the 68000 registers.

1 0

00

01

02

03 Date
04 Registers
05

06

01

0

0'.0 .-
0'.1

0'.2

0'.3 Address
0'.4 Registers
0'.5

0'.6

14.1 (Stack
Sysif'm Stack Point..-r (SSP) Pointers)

31 0

Program Count.r (PC) Program
Counter

15 1 0

Isy st..-m By t. I USt'r Byt. Status
Regi ster

Fig. 2-10. 68000 registers.

16

General Purpose

The 68000 has 16 32-bit, general-purpose
registers divided into 8 data registers and 8 address
registers. The data registers can work with byte,
word, or long-word operands while the address
registers can only work with word or long-word
operands. The data registers commonly perform the
function that the accumulator performs on many
8-bit microprocessors: acting as a central point for
logical and arithmetical operations.

The address registers replace the base address
registers and index registers found on many 8-bit
CPUs. They can also operate as stack pointers.

Special Purpose

Register A7 is in many ways a special-purpose
register. The 68000 bas two stack pointers, the User
stack pointer (USP) and the Supervisor stack
pointer (SSP). These are 32-bit registers that con­
tain the address of the top of. the stack (as ex­
plained in more depth in Chapter 3). Only one of
the two stack pointers is active at any given time.
The other still exists physically on the chip but is
not normally available to the programmer. When the
68000 is in User state-when the S bit in the condi­
tion codes holds a O-register A7 is the User stack
pointer. When the 68000 is in Supervisor state­
when the S bit holds a I-register A7 is the Super­
visor stack pointer.

Other special-purpose registers include the pro­
gram counter (PC) and the status register (SR). The
PC holds the address of the current instruction and
is 32 bits wide. The 68000 only uses the lower 24
bits to specify memory addresses (23 of them go out
over the address bus). By coincidence, that is the
same direct addressing space as the IBM 370 main­
frame computer. Most of those memory locations
are free; not many have a dedicated purpose. The
lowest 8 bytes hold the reset vector. Other addresses
in the bottom 1024 bytes are used for interrupt vec­
tors, error vectors, and exception vectors in general
(explained in Chapter 7).

The status register is 16 bits wide. The low byte
of the SR is called the User byte or condition codes
register (CCR). On many other microprocessors this

is the flags register. Five bits of this byte hold in­
formation about the last operation performed by the
microprocessor.

The high byte is called the System byte. Five
bits of this byte contain information about the status
of the microprocessor such as what priority of in­
terrupt to acknowledge, whether the CPU is in user
state, and whether the trace mode is on.

ARITHMETIC LOGIC UNIT

The part of the microprocessor that does the actual
computing as most people use the word (meaning
calculating and figuring) is the ALU But when you
look at it objectively, the ALU is no more the heart
of the chip than is the data bus, the register, or the
decorder. They all need each other.

Data from memory or the registers is routed
through the ALU, where the mathematical and
logical operations are performed. Then the pro­
cessed data is sent on to the final destination.

The 68000 has three ALUs: one for data and
two for addresses. There is a 16-bit ALU that makes
all the data calculations and single pass evaluation
of the 16-bit data. Thirty-two-bit data operations are
done in two passes, first at the lower word and then
at the upper word.

Two other internal ALUs are each 16 bits wide
and are used together to calculate addresses (that
is, to find operand effective addresses: see Chapter
4 for more detailed explanations). The effective ad­
dress (EA) is the final result that is generated from
the instruction data and the addressing mode. It is
necessary to use two such ALUs because the ad­
dresses are 32 bits wide. With powerful addressing
modes, this kind of calculation can take up a lot of
time; having dedicated ALUs speeds it up.

The address calculation and the 16-bit data
calculation can take place at the same time. This
approach is a sort of parallel execution.

DECODER

The decoder is the microprocessor part that inter­
prets instructions. It breaks up the patterns of Is
and Os that make up machine language and tells the
rest of the microprocessor what to do. Tn some ways,

17

~:i:· .. t:~~'~':T':'?f', :. ',~,.. : . :. :':'~~,~ 7' .• L .]. . , • • ~ -I' "1' " ',.., . -.. -j' - I. - I • • 1. . 1. . 1. _I. J . J: J ~_ J ~ • '" ' J J.' J • ! '

- i . ,
. ,

MC68000 11,000 TRANSlST~S
241.211 IIILS .

Fig. 2-11. 68000 floor plan showing function of the chip regions.

18

it is an even smaller microprocessor within the
68000 microprocessor. Studying the design of the
decoder quickly brings to light the worlds within
worlds of a microprocessor.

One of the first decisions microprocessor
designers have to make is between hard-wired ran­
dom logic and microprogramming. Early
microprocessors were generally random logic. The
designers simply decided what they wanted the chip
to do and then found a way to string the microscopic
wires together to do it.

More advanced microprocessors like the 68000
are often microcoded. They have, in effect, a smaller
microprocessor that runs the rest of the larger
microprocessor. There is a ROM memory that is
programmed with tiny instructions to tell the
microprocessor what to do (look at Fig. 2-11 to see
what these ROMs look like). This simplifies the ac­
tual design of very complicated chips; software takes
the place of very tangled hardware. Designing,
testing, and fixing the chip all become easier. The
entire microprocessor chip doesn't have to work the
first time.

The tiny microprocessor is called a microse­
quencer. Its instructions are simpler than machine
language. They involve elemental actions (called
microwords) such as sending a signal to a certain
gate or unlatching a particular bit of the status
register. ~icrowords are built into microroutines
that become the instructions of assembly language.
Microroutines can have branches and conditions just
like assembly language. You do not have to ever con­
cern yourself with microprogramming.

Another major advantage of microcoding is that
upgrading the chip will be much easier because the
designers only have to change the final processing
step for the onchip ROM. A new CPU chip, with
different or more powerful instructions and address­
ing modes, can be designed simply by changing the
microcode.

Microcoding on chips takes up as much as 20%
more space than hardwiring because there will be
circuits and gates that aren't used efficiently. That
disadvantage is far outweighed by the ease of mak­
ing and changing the chip in the first place.

There are two types of microprogramming:

horizontal and vertical. Horizontal is more direct;
a single bit of the microword may enable a register.
Horizontal microwords are long and require wide
microbuses and storage facilities. All of this extra
real estate, as chip designers refer to it, adds to the
cost of the chip. Nor is horizontal microprogram­
ming a particularly efficient scheme. For example,
a full microword with just a bit in the 2 position
might be required just to enable register 2.

Vertical microwords encode the information for
16 registers in 4 bits. This scheme is slower, because
the microword itself has to be decoded, but it does
take up less chip area.

Believe it or not, both forms of microcoding are
used in the 68000. That dual use means that the
68000 has nanocode. The microcode information
points to the microsubroutines in nanocode which
actually do the routing, selecting, and directing.
Because of the two levels, the microcode routines
can share subroutines of nanocode instead of hav­
ing to keep them in several different places.

PREFETCH QUEUE

One special design feature of the 68000 is an in­
struction prefetch queue. While one instruction is
being executed, another can be decoded and another
fetched. While this won't always speed execution
of a program (a branch or jump may eliminate the
utility of the instructions grabbed) it can still yield
significant improvement in most circumstances. The
conditional aspect of a jump may not allow
knowledge beforehand of what instructions must be
used.

The queue is fairly intelligent. It will try to stay
just as full as is useful. When a conditional jump
is detected, it will grab the instruction after the jump
and the one that may be jumped to. The unneeded
operation is ignored and the useful one performed.
There are special attractions to the prefetch queue.
The Move Multiple Registers instruction uses it to
speed the data transfers, fetching one while
decoding another, so each takes only the time
necessary to fetch the next code. The prefetch queue
keeps the bus busy about 90% of the time: far bet­
ter than that of chips without such a queue.

19

ADDRESSING MODES

Every microprocessor has certain ways of address­
ing operands. Those ways are called addressing
modes and range from simply including data in the
instruction to complicated, calculated addresses that
are built of original values, displacements, and in­
dexes. These modes allow the programmers to find
what they need within the 16 linear megabytes of
the 68000's addressing range.

The 68000 has a set of 14 addressing modes.
These are explained in detail in Chapter 4 and are
listed in Fig. 2-12.

DATA TYPES

The 68000 can work with bits, nibbles, bytes, words,
and long-words. These 5 data types work with many
of the instructions and provide quite a bit of flex­
ibility for the programmer. Chapter 6 provides in­
formation on which data types can be used for each
instruction.

INSTRUCTIONS

The 68000 has a large and orthogonal set of instruc­
tions. They are listed in Fig. 2-13 and are detailed

1. Dete Register Direct

in Chapters 5 and 6. These are the basic operations
that the 68000 can perform and range from no
operation at all (the NOP instruction just marks
time), to moving data (the particularly flexible
MOVE instruction), to multiplying two numbers
together (which 8-bit chips cannot do with a single
instruction).

The flexibility of the MOVE instruction is
typical of the entire instruction set. The instructions
are simple, with the programming variety and
power coming from the addressing modes, choice
of operand size, and wealth of registers. The aim
of making the operation of different functions
similar is taken seriously. This is called orthogonali­
ty. For instance, different types of addition instruc­
tions have the same addressing modes.

OPERATING MODES

After you realize you're working with a 16/32-bit
chip (meaning a chip from a family that works with
either 16 or 32 bits of information at a time), the
next thing to realize is that the 68000 chips have
two basic modes: User and Supervisor. This is one
of the ways in which the 68000 more closely
resembles a minicomputer than it does classic

2. Address Regi ster Di rect
3. Address Register Indirect
4. Address Register Indirect with Postincrement
5. Address Register Indirect with Predecrement
o. Address Register Indirect with Displacement
7. Address Register Indirect with Index
8. Absolute Short Address
9. Absolute Long Address

10. Progrem Counter with Displacement
11. Program Counter with Index
12. Immediate
13. Quick Immediate
14. Implicit

Fig. 2-12. Addressing modes.

20

,. ABCD 18. DIVU
2. ADD 19. EaR
3. AND 20. EXG

4. ASl 21 EXT
5. ASR 22. IllEGAL
6. Bee 23. JMP
7. BCHG 24. JSR
8. BClR 25. LEA
9. BRA 26. LINK

10. BSET 27. LSl
11. BSR 28. LSR
12. BTST 29. MOVE
13. CHK 30. MULS
14. ClR 31. MULU
15. CMP 32. NBCD
16. DBce 33. NEG
17. DIVS 34. NOP

Fig. 2-13. 68000 Instruction set.

microprocessors. User mode is the most common­
ly used mode, particularly for application programs.

The difference occasioned by Supervisor mode
is simple; Supervisor mode allows more freedom,
more access to memory, and more executable in­
structions. Operating systems and systems software,
in general, use the supervisor mode (which is ex­
plained in more depth in Chapters 3 and 7). The

35. NOT 52. TST
36. OR 53. UNlK
37 PEA
38. RESET
39. ROl
40. ROR
41. RH
42. RTR
43. RTS
44. SBCD
45. Sec
46. STOP
47. SUB
48. SWAP
49. TAS
50. TRAP
51. TRAPV

User mode of all 68000 chips is kept very similar,
to make software compatibility between CPUs as
complete as possible.

SPEED

The 68000 can run at 4, 6, 8, and 10 MHz (de­
pending on the chip you buy). These choices are
listed in Fig. 2-14. The speed is coded as a number

Speed CPU
Number Frequency Clock Period

6E1000L4
6E1000L6
6E1000LB
6E1000Ll0

Fig. 2-14. 68000 speeds.

4 MHz 250 microseconds
6 MHz 167 microseconds
EI MHz 125 mi croseconds

10 MHz 100 microseconds

21

after the 68000 code. for instance, the code
MC68000L4 runs at 4 MHz and the MC68000LlO
runs at 10 MHz.

The clock periods for those chips are 250, 167,
125, and 100 ns. The shortest instruction, copying
one register into another, takes four clock cycles.
The longest, 32 by 16 signed division, takes up to
170 clock cycles.

INTERRUPTS AND EXCEPTIONS
The 68000 has both hardware and software inter-

22

rupts. There is also a trace mode for debugging (and
a trace bit in the status register). On the 68000,
however, all special cases are lumped into a large
class called exceptions that includes everything from
illegal instructions to external interrupts. Exceptions
are explained in Chapter 7. When an exception is
generated, the regular processing ends, and the ex­
ception service routine is processed. The address
for that routine can be found in a number of ways,
depending on what sort of exception occurred.

3

Data ~ (8)
24

Address ~ (8)

~ SP

SP

PC

~
68000

Registers
A MICROPROCESSOR MOVES AND S1DRES BITS

of information. There are three basic places
a particular bit can be stored: mass storage, memory
chips, and registers. Figure 3-1 lists the three and
some characteristics of each.

The first form of storage, mass storage, is ac­
tually a large category of devices including magnetic
tape, magnetic disks, and optical disks. These
devices can store huge amounts of data but are com­
paratively slow. After the microprocessor asks for
a particular bit of information it must wait some
time before receiving the information.

The second storage form, memory chips, is
much faster and more expensive than mass storage.
Whenever someone tells you that a computer has
so many K of memory, they are referring to the
memory chips that are built into the computer itself.
These chips can be either ROM (which have per­
manent information and therefore can only be read
from, not written to) or RAM (that can be read from,
written to, or erased).

The third storage form is based on the same
technology as memory chips. The difference is that

registers are on the microprocessor chip itself: they
are in essence a small memory chip built into the
CPU.

REGISTER ADVANTAGES
Registers are the fastest form of storage for two
reasons. First, they are closer to the microprocessor
elements that manipulate data and so the signals
don't have to run out to a distant chip and back.
Second, because the number of registers is far
smaller than the number of memory addresses, it
will take fewer bits of instruction to specify a
register. That, in turn, means the instructions us­
ed with registers can be shorter than those used
with memory chip addresses. Smaller instructions
execute faster than long instructions and so pro­
grams that work with registers execute faster than
those that depend on outside memory.

Programmers eagerly consume registers. The
6800 had two registers, A and B, for data work and
one index register for addressing. By designing
enough-but not too many-registers onto a
microprocessor, you can improve its performance:

23

Type Devices Speed E)(pense

Mess Ston,ge
Memory Chips
Registers

Oi 51< Dri ves, T epe Ori ves
RAM, ROM, Bubble Memories
RAM-on-chip

Slow
High

Very High

Low
High

Very High

Fig. 3-1. The three types of memory.

too few and the chip will be forced to use only slow
memory instructions; too many and the advantages
of registers will disappear.

REGISTER TYPES
Registers can be dedicated to a particular task, or

l80

8- bit General Pur pose Registers

A F A' F'

B C B' C'

0 E 0' E'

H L H' l'

Special Pur pose Registers

IX

1'1'

SP

PC

6800

I Accumulator A

I Accumulator B

Ind. x R.gist.r X

Progr am Count.r (PC)

Shck Point.r (SP)

I Status R.gist.r

Fig. 3-2. Registers of some popular microprocessors.

24

they can be flexible, which gives them the ability
to handle many different tasks. These two types of
registers are called special-purpose and general­
purpose. Special-purpose registers (also known as
dedicated registers) can only work in a certain way
with certain instructions for a certain purpose.

8086

General Purpose Registers

AH Al
BH Bl
CH Cl
OH Dl

I ndex Registers

Stack Poinh·r (SP)

Bas. Point.r (BP)

Sourc. Ind.x (SO

D.stination Ind. x (00

Seoment ReQisters

Data 5.gm.nt (DS)

Stack 5.gm.nt (55)

Extra 5'gm,nt (E5)

Progr am Count.r

5tatus R.gist.r

Figure 3-2 shows the register sets of some
popular microprocessors. Figure 3-3 shows the
68000 register set. Most other 16-bit microprocessor
register sets are either smaller or less flexible than
the 68000's set. Eight-bit microprocessors typical­
ly have much smaller register sets.

The 68000 leans heavily on general-purpose
registers. They are harder to design into a chip, but
they make that chip easier to program.

(Blt Posltlons)

31 15

31 15

Us.r Stack Point.r CUSP)

68000 GENERAL-PURPOSE REGISTERS

In many ways, a 68000 is a 32-bit microprocessor.
The general-purpose registers (shown in Fig. 3-3)
are a prime example of that: they are 32 bits wide.
The general-purpose registers are divided into eight
data registers, seven address registers, and two
stack pointers. (The special-purpose program
counter (PC) is also 32 bits wide, even though only

1 0

00
Dl

02

03 Dete
04 Registers
05

06
D7

0

AO

AI

A2

A3 Address
A4 Registers
A5

A6

A7 (Stock
Syst.m St.ck Polnt.r (SSP) Pointers)

31 0

Pro9r.m Counter (PC) Progr6m
Counter

15 1 0

ISyst.m Byte I Us.,. Byt. St6tus
Register

Fig. 3-3. 68000 register set.

25

the lower 24 bits are sent out to become the 68000
address bus.)

Data Registers

There are eight 32-bit data registers as shown
in Fig. 3-3. They are labeled DO through D7. These
registers can be used with bytes, words, or long
words. The data always sits as low as it can in the
register: bytes run from bit position 0 to bit posi­
tion 7, words from bit position 0 to bit position 15,
and long-words from it position 0 to bit position 3l.
The data registers perform the work that more
specialized registers such as index registers and ac­
cumulators handle on many other microprocessors.
Because the 68000 lets programmers decide how
to use the general-purpose registers, they can have
as many as 7 accumulators (which handle
arithmetic) or none at all, whichever is more useful
at a particular point within a program. The task of
a data register can be changed instantly and
whenever desired during the execution of a
program.

Both data and address registers are general pur­
pose. They can be used for many computing pur­
poses, but the data registers are more flexible for
data storage and the address registers are well­
adapted to storing addresses. Bytes or words in the
data registers are only sign extended in a few ex­
ceptional cases. Words loaded into an address
register are automatically sign extended. When a
data register has an operand written into it or read
from it, only the operand is affected. All other bit
positions are left unaffected.

All of the data registers can work as ac­
cumulators for arithmetic. They can also work as
index registers or counters. This flexibility makes
them more powerful than even a similar number of
registers would be on an 8-bit microprocessor.

Address Registers

The eight 32-bit wide address registers (shown
in Fig. 3-3) are labeled AO through A7. They are
also general purpose registers. While they cannot
handle byte-size data, they are otherwise quite
similar to the data registers. Word operands sit in

26

the low-order word of address registers. Long-words
occupy the entire address register.

There are some differences between data and
address registers. For instance, the address registers
sign-extend words automatically while the data
registers do not. Another difference appears be­
tween data register D7 and address register A7.
Data register D7 is just like the other data registers,
but address register A 7 is quite different from the
rest of the address registers. A7 has the special func­
tion of stack pointer. That function is explained in
detail in the special-Purpose Registers discussion
that follows.

Finally, when a word is written to an address
register, the entire register is affected (the operand
is size-extended to fill the register). Within a data
register, only the operand is affected.

68000 SPECIAL-PURPOSE REGISTERS

The 68000 has several special-purpose registers
(shown in Fig. 3-3) that are used for program con­
trol and support. Most of these registers are quite
similar to standard registers found on other
microprocessors. The existence of two stack points
and of an extended status register adds significant­
ly to the advantage the 68000 has over 8-bit chips.

The 68000 has two major modes of operating:
Supervisor and User. A bit-position in the special­
purpose condition codes register (also known as a
flag) controls which mode it is in. The Supervisor
mode is also known as System mode and the User
mode is known as Normal mode. If you want to be
able to use any instruction, keep the microprocessor
in Supervisor mode. The User mode is more
restricted.

The basic reason for dividing the 68000 opera­
tion into two modes is to let the system software,
the operating system, have complete control of the
computer (in Supervisor mode) while the applica­
tions software, the particular software that handles
jobs, have only partial control (User mode). That
keeps application software from controlling the
system.

Stack Pointers

There are two stacks, both controlled by the

Status of memory area used by the Stack
(shown after each titled operation)

109 13
A 108 235

Section 107 47
of 106 9

Memory 105 29
numbered 104 84

by 103 126
Words 102

101
100

Start

Stack POinter 103

Fig, 3-4, An example of stack manipulation,

13
235
47
9

29
64
126
255

255~
Push

102

stack pointers at A7 in the register bank: the Super­
visory stack and the User stack. The stack pointer
that you will find when you look at A7 is the active
stack pointer for the mode the CPU is in,

A stack pointer is a special-purpose register
that, like the program counter, is a pointer to
memory, A stack is a data structure that is useful
for many purposes such as interrupt processing,
Figure 3-4 shows how items are moved into and out
of a stack.

LIFO (Last In First Out) is an acronym used to
describe stacks. Each item entered into a stack is
pushed onto the stack. The item entered before the
most recent item is now covered up. A newer item
is always pushed on top of the previous top item.
An item removed from the stack is popped off of the
stack. Only one word at a time can be popped from
a 68000 stack, and that word is always the most re­
cent addition to the stack. The last item in is the
first item out. Although the typical real-life exam­
ple of a stack given by computer science texts is the
stack of plates in a restaurant, you should realize

13
235
47
9

29
84
128
255
33

~
33 Push

101

13
235
47
9

29
84
126
255

33 V
Pop

102

that stacks can grow up or down in memory.
As mentioned, stacks are particularly handy for

servicing interrupts or subroutines. When the CPU
operation is interrupted, the programmer will want
to remember what the present CPU state is so that
he can return to it after the interrupt is taken care
of. By executing push instructions that deposit vital
register contents on the stack, the programmer can
be sure that the CPU will be able to remember the
important aspects of its current state, When the in­
terrupt is over, the important data (including PC and
certain register values) can be recovered from the
stack. In fact, some of the 68000 instructions are
designed to do this automatically (see the RTR in­
struction for an example). If such data were only
saved in a particular special register, what would
the CPU do if a second interrupt broke into the first
interrupt routine? It couldn't just save the new status
in the special registers because the data necessary
to eventually recover from the first interrupt would
be lost.

Even a hardware stack could be overwhelmed

27

by a relatively small number of such nested inter­
rupts or routines. So most microprocessors, in­
cluding the 68000, now use a software stack. All
they need is a special-purpose register that points
to an address in memory along with the CPU logic
that will automatically decrement the register value
when data is pushed onto the stack (the stack grows
downward in memory toward smaller addresses)
and increments the register value when data is
popped off of the stack.

This special register, called a stack pointer con­
tains the address of the top of the stack. Unfor­
tunately, because the 68000 stack rows downward
in memory, the top of the stack has the lowest ad­
dress of any stack location. When you push a value
onto the stack, the values within the stack don't ac­
tually get pushed any deeper into memory, they just
get pushed further away from the changing stack
pointer value. That is a tough concept to grasp at
first; but it will soon seem like second nature.

The stack is just an area of memory: it isn't
delimited by any boundary. If you popped enough
data off of the stack you would go beyond all of the
pushed on values, but you would still get data com­
ing out. Such data would just be the values at the
addresses the stack pointer pointed to. And because
the stack is implemented in memory, it can grow
to a huge size (theoretically as large as the full
memory space). Because of that flexibility, a soft­
ware stack can handle almost any number of nested
routines.

The 68000 actually has two stack pointers: User
stack pointer (USP) and Supervisor stack pointer
(SSP). They are shown in Fig. 3-3 as address
register A7. Whenever you; try to write or read that
register, you will actually get either the USP or the
SSP. What decides which one you get? The active
stack pointer will be in A 7 and the mode of the
68000 controls which stack pointer is active. The
following paragraph explains that controL

To isolate system software from application soft­
ware, the 68000 has an advanced facility called
modes. There is a bit in the status register (ex­
plained next) called the Supervisor or S flag. If that
bit is set, the CPU is in Supervisor mode; if it is
cleared, the CPU is the User mode. In Supervisor

28

mode, the A 7 register will contain the Supervisor
stack pinter. In User mode, A7 will contain the User
stack pointer. The active stack pointer is the one
used (unless an instruction specifies USP or SSP)
and the other stack pointer is not directly available
to inspection or change (except through the privi­
ledged USP instruction). In most cases, the pro­
grammer doesn't have to address a particular stack
pointer: the CPU decides that automatically. But the
programmer must be aware of which is being used
because they can and most often do point to dif­
ferent parts of memory and so will point to different
values.

The MOVE USP instruction is built into the in­
struction set so that programs in the Supervisor
mode can see and change what is in the User stack
pointer. The LINK and UNLK instructions are very
powerful, complex routine controllers that depend
on stack manipulations and frames. Look these in­
structions up in Chapter 6 for detailed explanations.

Status Register

All computers must have some way of know­
ing what has happened in the recent past. The nor­
mal way of doing this is to have a status register.
This register is a collection of a number of small
registers (many only a single bit wide). Single bit
positions of the status register are commonly
called flags.

Flags are the essence of computers. The abili­
ty to make decisions without human intervention
is the vital factor that makes computers the power­
ful machines they are and computers make those
decisions by testing the flags. Even the simplest pro­
cessor has a few flags because of their critical role
in branching and condition testing. The versatility
of a computer program lies in the decision capabili­
ty designed into it; that versatility and capability
rest, in turn, on proper use of flags.

The 68000 status register (shown in Fig. 3-5)
is 16-bits wide and is divided into two different
parts: the system byte and the User byte.

User Byte. The lower (less significant) byte
of the status register is also known as the condition
codes register. This byte contains 5 active flags (in

System Byte
----~-

,r--------

Fig. 3-5. Status register.

the least significant 5-bit positions) and 3 bits that
aren't used. The condition codes register cor­
responds directly to the flags register on most other
microprocessors.

Each flag is affected by some instructions but
not by others. Also, not all instructions affect a given
flag the same way. In fact, the effects are sometimes
quite different. See the individual instructions
descriptions in Chapter 6 for a detailed description
of the flag effects of each instruction.

Some terms that you will hear repeatedly in
microprocessing and particularly in reference to
flags are defined next.

Set. A bit position that has a 1 value put into
it has been set. Another word for a 1 is True. Un­
fortunately, the word set is also used as a more
general verb such as set to the value shifted out of
the register in which case it doesn't refer only to Is.

Cleared. This is the opposite of set. A bit posi­
tion or flag has been cleared if a 0 has been put in­
to it. Unfortunately (again) the terms set and cleared
can even be mixed as in "A cleared bit has been set
to 0." Try not to worry about it. The words false and
reset are also sometimes used to mean clear_

Undefined. A flag that is undefined can be either
o or l.

Not Affected. This means the same as none
under the Chapter 6 descriptions of individual in­
structions. This means the flag retains whatever
value it had before the instruction was fetched for
execution.

The 5 active flags have the following names,
positions, and uses:

User Byte

Bit Position 0 is the C flag (for Carry). There
are three ways this flag is used. First, and simplest,
is that any carry out of the most significant bit of
an operation will be represented here. After the in­
struction, a 1 in this flag means an operation
resulted in a carry; a 0 means no carry occurred_
Figure 3-6 shows such an operation.

Borrows are also shown in this flag_ As ex­
plained in the Chapter 6 descriptions of subtraction
and compare operations, an instruction that could
cause a borrow (and doesn't deal with carries) will
interpret the C flag as the borrow flag. After the
instruction, a 1 in the flag means the operation caus­
ed a borrow; a 0 means no borrow occurred. Figure
3-7 shows a subtraction with a borrow.

Finally, the rotate and the shift instructions fre­
quently deposit the bit values that fall off the end
of the operand in the C flag. Figure 3-8 shows both
a shift and a rotate that each result in a new C value.

Bit Position 1 is the V flag (for oVerflow). The
V flag seems simple to understand but it is more
complex than it looks. It tells when an operation
overflowed the register. When an arithmetic opera­
tion result is larger than a register can hold, the V
flag is set to one. This is done by setting the V flag
equal to the exclusive-OR value of the carries into
and out of the most significant bit of the register.
That is, when the carry out is different from the
carry in, the V flag is set. Otherwise, the V flag is
cleared. This operation is shown in Fig. 3-9.

Many other operations also affect the V flag.
Moves, rotates, and multiplies, for instance, clear
the V flag (put a zero into it).

29

Fig. 3-6. Example of a carry.

C Flag Bytes to Add

@Jll00ll00l

+
1000111

0]100 10 1000

Bit Position 2 is the Z flag (for Zero). The Z flag
is set to one if the result of an operation is zero,
otherwise the flag is cleared (set equal to zero).

wise, the N flag is cleared (to zero). N follows the
most significant bit of the operand whether that
operand is 8,16, or 32 bits long. Figure 3-10 shows
how the most significant bit gets transferred to this
flag.

Bit Position 3 is the N flag (for Negative). This
flag is set to one if a signed arithmetic operation
or arithmetic shift produces a negative result. Other- Bit Position 4 is the X flag (for eXtend). This

C Flag Bytes to Subtrect

[TIl 0 1 0 1 0 1 0 1

11010011

@Jll 00000 10

Fig. 3-7. Example of a borrow.

30

C F1~g Byte to ShHt

~I 1 1 101000
Logical Shift Left

OJI 1 1010000

X Flag C Flag Byte to Rotate

@]QJ I 1 1 1 1 000 0
Rotate with Extend R1ght (3 positions)

[I][QJ 1 000 1 1 1 1 0

Fig. 3-8. Examples of a shift carry and a rotate carry.

V F18g Bytes to Add

@] '--1 0-1-0-0-0-1 -1 ----'0 1

+
101001001

OJl1 0001111

Fig. 3-9. Example of an overflow.

31

N F1e9 Byte to be Menipuleted

~I L--0_1_1 _---J

After some operation

ITJll0000000

Fig. 3-10. Example of an N flag change.

flag is a special sort of carry flag and is typically
used for multiple-precision arithmetic operations.
It is affected by special "with-extend" add, subtract,
negate, and shift instructions. These instructions set
X in the same way as they set C. The relevant in­
struction descriptions in Chapter 6 explain the use
of the X flag.

System Byte. The more significant byte of the
status register is called the system byte. It contains
an interrupt mask (that is 3 bits wide), a Super­
visor/User state flag, and a Trace mode flag.

The interrupt mask comprises bit positions 8,
9, and 10 of the status register. These three bits can
hold any value from 0 to 7. When outside devices
want to interrupt what the 68000 microprocessor
is doing, they send signals on three priority pins.
Those signals can also represent any number from
o to 7. The interrupt will only be recognized-that
is, will only be effective-if the interrupt request
signal number is equal to or less than the interrupt
mask number.

By manipulating the interrupt mask bits, the
programmer can control which devices can interrupt
the 68000. Chapter 7 explains interrupts and all ex­
ceptions in more detail.

The T flag is in bit position 15. If it is set to
1, the 68000 is in Trace mode. This special environ­
ment generates an exception after every instruction.
That lets the programmer force the CPU through
the program one instruction at a time. Such control
is vital to program debugging.

The S flag (which stands for Supervisor) deter-

32

mines whether the CPU is in Supervisor or User
mode. This dichotomy was explained in the descrip­
tion of Supervisor and User stack pointers earlier
in this chapter.

Basically, User and Supervisor mode differ in
two ways:

1. Active Stack Pointer. Address register 7 is
always the stack counter. But in User mode that
register will have the User stack pointer value while
in Supervisor mode the Supervisor stack pointer
will be in that position. Whichever mode you are
in, any reference to address register 7 can only elicit
the active stack pointer. Figure 3-3 (earlier in this
chapter) shows this arrangement.

2. Instruction Set. The Supervisor mode has
several instructions that the User mode does not.
These instructions-called privileged-cannot be
executed in User mode and will only generate an
exception. The individual descriptions in Chapter
6 will tell you which instructions are privileged and
which are not.

Program Counter

A good case can be built that the program
counter (known as the PC and shown in Fig. 3-11)
is the most important of the special-purpose
registers. Virtually every microprocessor has a Pc.
This 32-bit register monitors and controls the posi­
tion of the microprocessor within the program. The
data it contains is the address of the next instruc­
tion to be executed.

Fig. 3-11. Program counter.

At the beginning of each instruction, the PC
value is sent to memory to fetch the next byte from
the stored program. In the course of executing the
instruction, the CPU automatically increments the
Pc. It is increased by as many bytes as the instruc­
tion is long. That variable increase ensures that the
PC points at the next instruction in the sequence.
This sequential execution is a foundation of almost
all computer architectures. Even the NOP (No
Operation) instruction increments the PC: that is
so elemental that it is considered no operation.

After any instruction, then, the PC holds the ad­
dress of the next instruction. The exception to this
rule is caused by jump, branch, or reset operations.
These cause a new value to be directly fed into the
PC: the new value will move the processing to a dif­
ferent point in the program. Returning from
subroutines, similarly, requires the reloading of the
original PC value.

Even though the 68000 PC is 32-bits wide, on­
ly 24 bits of it are wired through to the pins on the

chip. The result is that only 24 bits can be used to
address memory space. By keeping to only 24 lines,
the 68000 designers were able to fit the chip into
a 68-pin DIP. This is still a much larger package
than most other microprocessors use. Still, the
24-bit address means the 68000 can address 16
megabytes of memory. That space in hexadecimal
addresses ranges from 000000 to FFFFFF. It is 256
times larger than the 64K (65536) that most 8-bit
microprocessors can address. The 68008 has a
smaller memory space and the 68010 and 68020
have much larger memory spaces (see Chapter 8 for
more information).

As is explained in Chapter 4, the memory is
organized in a particular way. Words and long-words
are found at even numbered addresses; bytes are
located on the odd numbers or even numbers. Bits
1 through 23 of the PC become address lines Al
through A23. Bit 0 of the PC is manipulated inter­
nally with the operand length specified with in the
instruction to make two data strobe signals.

For the hardware aficionados, those strobe
signals (pulses on particular pins) are UDS bar (Up­
per Data Strobe), and LDS bar (Lower Data Strobe).
Both strobes assert to move a word; to move a byte
only one strobe is asserted (an even numbered byte
strobes UDS and an odd-numbered byte strobes
LDS).

33

4

Data ~ (8)

Address ~ (8)

SP ~ SP

PC

~
68000

Addressing
A COMPUTER, OR MICROPROCESSOR, PROCESS­

es data. It must be told both how to process
the data and where to find the data. The instruc­
tion set of a microprocessor is a list of what the com­
puter can do (the 68000 instruction set is detailed
in Chapters 5 and 6). Some operations are self­
contained; once the instruction has been decoded,
it can be immediately executed. But others require
a specified location that contains or will contain
necessary data. These locations give the instruction
something to add, somewhere to put the result, or
something to move. The methods provided for
finding the data are called addressing modes. Each
mode offers the programmer a different way of
directing the CPU in its reach for necessary bits,
bytes, or blocks of information.

Early computers had only a few addressing
possibilities. As the art of computer design has pro­
gressed, many designers have come to believe that
having many flexible addressing modes is more im­
portant than having many instructions. A deft pro­
grammer can use different modes to create a huge

number of different instructions from a basic in­
struction set.

Programmers quickly discover that, while in­
structions are important, understanding addressing
is very important. In fact, it is a little silly to talk
about instructions and addressing modes as though
they are completely different things_ Instructions
are only as good as the addressing modes that they
use to find and place operands. Addressing modes,
if not accompanied by a clear and complete set of
instructions, can add little more than complexity to
the programming environment.

The 68000 has a large family of addressing
modes. This chapter describes these modes after a
couple of quick detours into operand sizes and the
shape of memory.

OPERAND SIZES

Another subject that is directly related to address­
ing is operand size. A microprocessor can only work
with certain selected chunks of data. The 68000 is

35

N6me Number of Bits

Bi1 1
Ni bble 4
Byte 8
Word 16
long- 'Word 32

Fig. 4-1. 68000 operand sizes.

quite flexible: it can work with bits, nibbles, bytes,
words, long-words, or multiple long-words (1, 4, 8,
16, 32, or more bits at a time). Not all instructions
can work with all operand sizes, however. Explicit
instructions work with bytes, words, or long-words:
Implicit instructions don't all use all three data sizes.
Figure 4-1 shows the various data sizes.

Many single instructions can work with bytes,
words, or long-words by simply changing the letter
extension on the mnemonic. For instance, MOVE.B
will move a byte, MOVE.W will move a word, and
MOVE.L will move a long-word. Other
microprocessors that have the ability to work with
bytes, words, and long-words sometimes use dif­
ferent instructions for the various sizes.

Some special instructions on the 68000 allow
it to handle special data sizes such as mUltiple
registers or nibbles. The BCD instructions (listed
in the Decimal Group in Chapter 5) work with
groups of 4 bits (4 bits is a nibble). MOVEM can
work with words or long-words and can send or
receive the full register set.

THE SHAPE OF MEMORY

Memory can be shaped, or organized, in many dif­
ferent ways. The 68000's memory organization is
detailed in the following descriptions and figures.

Registers

As has already been described, a small amount
of the memory in a 68000 system is organized into

are used for either specific, dedicated tasks or for
fast, general tasks.

The eight data registers work with bits, bytes,
words, or long-words.The eight address registers
work with words or long-words. See Chapter 3 for
the details of register organization.

The PC (program counter) works with long­
words. The status register works with bits, bytes,
or words. These registers are also described in detail
in Chapter 3.

Memory

The simplest way to look at memory is as a
series of bytes. This scheme is shown in Fig. 4-2.
Each byte has an address that is a single bit larger
than the previous byte. This is a common method
of working with memory.

The 68000, however, can work with 16 bits at
a time (its data bus is a full word wide). Memory
is therefore also organized in words as shown in Fig.
4-3. The bytes are put side by side, with the lower
addressed byte in the high-order position of the
word. That may surprise you. What it accomplishes
is that words are all addressed by even numbers
(with the address also referring to the high-order
byte of the word). Long-words appear with the high­
order word first (lower in memory) and then the low­
order word. This is shown in Fig. 4-4.

Bit PosHions

7 6 S 4 3 2 1 0

~
Byte ffFFFF ~ I

,-___ ... _1. __ _ .. __
Byte OOOOOZ

Byte 000001

Byte 000000

registers. These registers are on the 68000 chip and Fig. 4-2. Memory addressing (bytes).

36

Bi1 Positions

15 14 13 12 11 1098 7 6 5 4 3 2 1 0

(Byt. FFFFfE) Word fffffE (By t. F'FF'FFr)
•

? I

5 I

(By t. 000004)

(By1. 000002)

(By1.000000)

Fig. 4-3. Memory addressing (words).

Word 000004

Word 000002

Word 000000

x

x

7

x

x

x

x

6

x

x

Word 000004 (Byt. 000005)

Word 000002 (Byt.000003)

Word 000000 (By t. 000001)

A Byte ln Memory

x x x x x x x x x x x x

x x x x x x x x x x x x

5 4 3 2 1 0 x x x x x x

A Word in Memory
I

x x x x x x x x x x x x
I

x x x x x x x x x x x x

Word 000004

Word 000002

Word 000000 1 ~ 14 1312111098765432

A I.ong-word in Memory
J

x x x x x x x x x x x x x x

15 14131211 109 8 7 6 5 4 3 2 ,

x x

x x

x x

x x

x x

1 0

x x

1 0

Word 000004

Word 000002

Word 000000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Fig. 4-4. Memory organization (bytes, words, and long-words).

37

Bit PosWons
15 14 13 12 11 10 9 8 7 6 5 4 321 0

Word 000004

Word 000002
t

Word 000000 BCD 0 BCD 1 BCD 2 BCD 3

B1 nery Word

BCD BCD 0 BCD 1 BCD 2 BCD 3

Fig. 4-5. Memory organization (nibbles: BCD).

BCD (Binary Coded Decimal) data is stored as
shown in Fig. 4-5. The nibbles (4-bit chunks) are
addressed in the opposite order of the bit positions.

ADDRESSING MODES

Addressing modes are the ways a computer uses to
determine data locations. The 68000 has three ma­
jor types of modes: register specification, effective
address, and implicit reference. Register specifica­
tion uses a part of the object code to tell which
register to use. Effective address uses any of the ad­
dressing modes listed in Fig. 4-6 except Implicit. Im­
plicit reference is the name given to the instructions
that imply a particular use of registers.

As a momentary aside, you should be aware of
the mess computer designers have made of naming
addressing modes. Don't just look at the manufac­
turer's name for a mode; look at how it works. In
a number of cases, the same name on two
microprocessors refers to quite different machina­
tions. For example, in the 8-bit microprocessor
world, the 6502 has an indexed addressing mode

38

that is not at all the same as the indexed address­
ing on the 6800.

Figure 4-6 lists the 68000 addressing modes.
Using these, the 68000 assembly language program­
mer can expand the fundamental instruction set of
the 68000 many times. But don't let the number of
modes scare you. As with instructions, you don't
have to use them all. Knowledge of just a few will
permit you to write programs.

Register Specification

Instructions that work with register specification
use a field within the instruction to signify whether
the register used is a data register or an address
register. Another field contains the number of the
register to use.

Effective Address

Motorola uses the term effective address to refer
to the address determined by two fields within of
the 68000's addressing modes: a register number
field and a mode field. These are typically coded

Data Register Direct
Address Register Direct
Address Register Indirect
Address Regi ster I ndi rect with Posti ncrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement
Address Regi ster I ndi rect wi th Index
Absolute Short Address
Absolute Long Address
Program Counter with Displacement
Program Counter with Index
Immediate
Quick Immediate
Implic1t

Fig. 4-6. 68000 addressing modes.

as the least significant six bits of the object code
as shown in Fig. 4-7. Three bits are used to repre­
sent the mode and three more to represent the
register number that mode is to use.

to represent the addressing mode. Each of the
modes below will show both the proper syntax and
an example of the mode's use.

If two effective addresses are needed, two sets
of six bits may appear in the object code. This may
occur because a source is addressed in one way and
a destination in another. Further information can be
contained in extension instruction words.

Syntax

The syntax of an addressing mode is the way
that the symbols are written in assembly language

15 14 13 12 11 10 9 8

x X X X X X X X

There are several syntax rules that you should
be aware of before you read through this section.

1. Instructions are written with the op code
first, then the operands. For example,

ADD Dl,D2

adds the contents of data register 1 to the contents
of data register 2. Dl is the source and D2 is the
destination.

76543210

X x Mode I Register I
Effective Address

l-wordJ Single Effective-Address Instruction

Fig. 4-7. Effective address coding.

39

ADD D2,Dl

would add the same two values but the result would
end up in data register 1 instead of data register 2.
When an instruction needs only a single operand,
that operand follows the op code and there is no
comma in the instruction.

2. The operand size is specified by an exten­
sion letter to the op code. For example,

ADD.B Dl,D2

performs the same operation as in the example
above except that only the low-order byte of each
register is used. The three extensions are as follows:

.B for bytes

.W for words

. L for long-words

If no specification is made and the instruction may
work with more than one operand size, the default
size (word) is used.

3. Most assemblers use the $ symbol to mean
hexadecimal. A number without this symbol will nor­
mally be interpreted as a decimal value. I say nor­
mally because there are two other systems
used-octal and binary-which also have symbols
(B or % for binary; Q or C for octal). Those systems,
however, are rarely seen and are explained in
Chapter 9. Different assemblers may use differ­
ent symbols: read your assembler instruction
manual before jumping into programming.

4. Parentheses are used to indicate indirec­
tion. The symbol A4 means the instruction will
work with the value in address register 4 as an ad­
dress. The value found at that address in memory
is the value the instruction will work with. This in­
direction is a two stage process. If you think that's
complicated, you should know that many
microprocessors have what is termed true indirec­
tion where the instruction finds an address, takes
the contents of that address in memory and inter­
prets it as a new address, takes the contents of that
new address and uses it as the operand.

5. As mentioned before, many instructions
need two operands. Each operand may have its own
addressing mode, but not every mode will work for

40

every instruction. See the individual instruction
descriptions in Chapter 6 for a listing of the available
modes.

Register Direct Modes

This mode keeps the data itself in a data
register or address register. The register number
is specified in the instruction.

Data Register Direct. This mode simply
puts the name of a data register into the instruc­
tion's operand field. For example;

NEG X D6

negates (with the extend flag) the value in data
register 6. D6 is found by Data Register Direct ad­
dressing .

Address Register Direct. This mode puts
the name of an address register into the instruction's
operand field. For example;

EXG A3,A2

exchanges the values inside address registers 2 and
3. What was in A3 is now in A2 and what was in
A2 is now in A3. Both A2 and A3 in this instruc­
tion are examples of Address Register Direct ad­
dressing mode.

Memory Address Modes

These modes specify a location in memory.
They all use indirection. The first value found is the
address of the value the program will work with.
The examples below will show this process clear.

The advantage of using indirect addressing is
that you don't have to repeat a full address over and
over. Instead of having that address appear in the
code, you only need to deal with a register. The
value in that register can be quickly and efficiently
changed, and the object code needs only a few bits
to specify a register.

Address Register Indirect. This mode
doesn't directly point to the desired data as Address
Register Direct does. Instead, it specifies an address
register that holds the address of the data. The data

is in memory. Address Register Direct specifies a
register that holds the data itself. For example;

CPM (A5),D3

compares the A source value to a destination value.
The destination can only be found using Data
Register Direct mode, as D3 does. The source can
be found using any address mode.

In this case, the parentheses around A5 signifies
indirection. It is not the value in A5 that will be com­
pared. Rather, the value in A5 will be interpreted
to be an address in memory. The value at that ad­
dress will be compared to the value of data register
3.

Address Register Indirect with Postin­
crement. This mode is a lot simpler than it sounds.
Together with the next mode, Address Register In­
direct with Predecrement, this mode allows 68000
programmers to implement data structures such as
stacks and queues using the general-purpose ad­
dress registers.

The first part of Address Register Indirect with
Postincrement mode works just as Address Register
Indirect mode does. An address register is specified
and the value within that register is interpreted as
the address in memory of the operand. Then,
however, the address register is incremented (by 1
if the instruction specifies byte, by 2 if the instruc­
tion specifies word, and by 4 if the instruction
specifies long-word). For example;

TSTW (Al)+

will use the contents of address register 1 as an ad­
dress in memory. The value of the word at that ad­
dress will be tested and the flags will be set
according to the results. The + symbol indicates
that address register 1 will be incremented (by 2
because of the W suffix) at the end of this instruc­
tion. The stack pointer will always be decremented
by 2 (to keep it on a word boundary) if it is the
specified address register.

Address Register Indirect with
Predecrement. This mode, too, is simpler than
it sounds. This instruction begins by decrementing

(by 1 if the instruction specifies byte, by 2 if the in­
struction specifies word, and by 4 if the instruction
specifies long-word) the value of the specified ad­
dress register. From that point on, Address Register
Indirect with Predecrement mode works just as Ad­
dress Register Indirect mode does. The (now
decremented) value of a specified address register
is interpreted as the address in memory of the
operand. For example;

TSTW (Al)-

will decrement (by 2 because of the .W suffix) the
contents of address register 1. The symbol - in­
dicates that this is predecrement mode. The new
value in address register 1 is interpreted as an ad­
dress in memory. The value of the word at that ad­
dress will be tested and the flags will be set
according to the result. The stack pointer will
always be decremented by 2 (to keep it on a word
boundary) if it is the specified address register.

Postincrement mode and predecrement mode
can be used to transform address registers into stack
pointers. One mode is used to push data onto the
stack and the other mode is used to pull data off
of the stack. Similar word sizes must be used so that
the stack doesn't get misaligned. Such a stack can
be made to grow up or down in memory.

Queues (waiting lines with FIFO-First in First
Out-activity) can be implemented using postincre­
ment or predecrement modes. One address register
is the Put pointer and another is the Get pointer
(corresponding to opposite ends of the queue).

Address Register Indirect with
Displacement. This mode is also called Register
Indirect with Displacement but only address
registers may be used. While this mode resembles
the Address Register Indirect mode described
above, it adds one more step to the final address
calculation.

The address in the address register is added to
a signed 16-bit displacement value (which is the
second word-the first extension word-of the in­
struction). That sum is interpreted as the address
in memory of the desired operand. For example;

ROR 11(A2)

41

will take the value of address register 2 and add 11
(decimal) to it. The 11 is the displacement value and
is always shown outside the parentheses as in this
example. That sum will be interpreted as a memory
address. The contents of that address will be rotated
to the right. The default operand size (word) will
be used.

This addressing mode lets you create many dif­
ferent data structures. The science and use of data
structures is beyond the coverage of this book, but
I will briefly explain one possibility here and one
after the description of the Register Indirect with
Index and Displacement mode.

The displacement addressing mode can be
used to find specific fields within a record. Data
storage systems frequently divide large sets of in­
formation into files, records, and fields. A file con­
tains a number of records. A record contains
information about a particular subject and is made
up of several fields. A field contains a finite number
of characters.

For example, a company might have a file of all
employees salaries. That file would have a separate
record for each employee. Each record would have
fields like the following:

Name
Social Security Number
Date of Hire
Current Salary
Number of exemptions

These fields would contain characters that gave in­
formation relating to the field.

To find several facts about a particular
employee, the computer would first have to load the
employee's record into memory. The address of the
beginning of the record would be loaded into an ad­
dress register. At this point, each fact about an
employee could be found simply by varying a
displacement value. The address register value
points to the beginning of the record and the
displacement values add to the address just enough
to reach name, social security number, or whatever
you want to know.

42

Address Register Indirect with
Displacement and Index. This mode is also
known simply as Register Indirect with Displace­
ment and Index or Address Register Indirect with
Index. It is a special offshoot of Address Register
Indirect and resembles Address Register Indirect
with Displacement but is more complicated than
either of those modes.

The instruction that uses this mode needs at
least one extension word. The low-order byte of that
word will be an 8-bit displacement value. The high­
order byte will specify a register that holds an in­
dex value. Both the displacement and the index
values are added to the address register value and
the final sum is interpreted as an address in
memory. The value contained at that address is the
operand for the instruction. For example;

EOR.B D2,11(A6,D1.B)

Now this is getting complicated. But if you
unravel it step by step it isn't so bad. First, EOR.B
is the op code. This exclusive-OR operation will be
performed on the low-order byte (.B) of the source
and destination operands. The source, Dl, is found
by Data Register Direct addressing mode. The
destination, 11(A6,D1.B), is found by Address
Register Indirect with Index and Displacement ad­
dressing mode. The 11 is the displacement (and will
be found in the low-order byte of the second instruc­
tion word). Address register A6 is the indirection
register. Data register Dl is the index register. The
low-order byte (.B) of the value in that register is
the indexing value. In this instruction, therefore, two
different operand sizes are specified.

The actual destination operand value is found
in three steps.

1. Adding the index value, the displacement
value, and the address register value.

2. Using that sum as an address.
3. Using the contents of that address as the

operand.

This addressing mode also lets you create and
work with a variety of data structures. An example
is given next.

The displacement and index mode can be used
to find specific fields within a number of records.
As explained earlier under the Address Register In­
direct with Displacement mode, storage systems
work with files, records, and fields. The same ex­
ample of a company's salary files can be used again
here.

Addressing with Displacements and Indexing
helps you find out the same facts about several dif­
ferent employees. The computer first loads the
salary file into memory. The address of the begin­
ning of the file is loaded into an address register and
each record has the same known length. Also, each
field within a record has the same length. At this
point, if you wanted to load into the microprocessor
all of the employees' salaries (to find an average, for
example) you would use the length of records as an
index value and the length of the fields as a displace­
ment. By increasing the index values by regular
steps, you can walk through the file, hitting each
record. Each time you land on a record, the displace­
ment value would put you into the salary field.

Special Addressing Modes

These effective addressing modes use the EA
field to specify a special mode instead of a particular
register.

Immediate. After Implicit addressing, Im­
mediate addressing is probably the simplest mode
to understand. Immediate addressing uses data that
is immediately available. Such data is contained
within the instruction words themselves. The effec­
tive address is the value in the program counter after
the operation code has been fetched.

There are typically three operand sizes available
for immediate addressing: byte, word, and long­
word. The first instruction word contains the code
that specifies operand size and addressing mode. If
the immediate data is supposed to be one byte long,
the low byte of the second instruction word is the
data. A word of immediate data is the entire second
instruction word. A long-word is the second and
third instruction words, with the second instruction
word being the high word and the third instruction
word the low word. If that is all too confusing, look
at Fig. 4-8 to see how this works.

The second and third instruction words are
sometimes called extension words which can confuse
things even more because the second instruction
word is the first extension word, and so on. For
example;

DIVU 165,Dl

divides the value within data register 1 by 165
(decimal) and puts the result into data register l.
The 165 value is an immediate value. (The use of
Dl is an example of Data Register Direct mode ad­
dressing for the destination.)

Quick Immediate. The quick instructions­
such as ADDQ and SUBQ-are actually immediate
instructions that don't need even a single extension
word. These instructions make room within the first
word of op code for some immediate data. Because
there isn't much space, the data is limited to the
range from 1 to 8. These instructions can execute
especially quickly because they are so short (and
so the mode is termed Quick Immediate). MOVEQ
is another such instruction, see Chapter 6 for a
detailed description of its operation.

Absolute Addressing

These two modes are related to immediate ad­
dressing. The difference is that, instead of providing
the operand within the instruction code, they pro­
vide the operand's address within the instruction
code.

Absolute Short Addressing. The second
word of the instruction (the first extension word) is
a 16-bit address. That 16-bit value is sign-extended
(the value of bit position 15 is copied to bit positions
16 through 31) to a full 32 bits. That long-word is
the address in memory of the operand. Because of
the extension of the sign-bit, this mode can work
with addresses in the ranges $0000 through $7FFF
(the lowest part of memory) and $FFFF8000
through $FFFFFF (the highest part of memory).

For example;

PEA 1000

43

Instruction using on Immediote Byte

1 st InstrUeti?n Ope ode

2nd Ix x x x x x x x Ilmmediote Byte

1st

Instruction using on Immediote Word

InstrUeti?n Opcode

2nd I mmedi ~te Word

1st

Instruction using on Immediote Long-word

InstrUCti?n Opcode

2nd I High word of Imm~diote Long-word I

3rd I Low word of Imm~di6te Long-word I

Fig. 4-8. Format of immediate data.

forms an effective address using the decimal value
1000. After sign-extension, that value is pushed onto
the stack. If the number 1000 has a # symbol in
front of it, it would be interpreted as immediate
data. Without that symbol, it is absolute data.
Because this instruction is only two words long and
doesn't require calculation other than sign­
extension, it can execute quickly.

Absolute Long Addressing. The second
and third words of the instruction (the first and
second extension words) are a 32 bit address. The
first extension word is the high-order word of the
address and the second extension word is the low­
order word of the address. That long-word address

44

is the location in memory of the operand.
For example:

SUBLL 43,$AOOOO

subtracts the immediate data 43 (decimal) from the
contents of the long-word starting at address AOOOO
(hexadecimal). If the $AOOOO had a # symbol in
front of it, it would be interpreted as immediate
data. Without that symbol, it is absolute data.

Relative Addressing

This type of special addressing finds the
operand by working with the current PC (Program

Counter) value. This is typically used for instruc­
tions that change the program's direction such as
jumps and branches. By using relative values in­
stead of absolute addresses, programmers can make
their code more relocatable. In other words, the same
program will work at any point in memory instead
of just in the exact spot it was written for. It is nor­
mally better, though, to let the assembler calculate
the distance for jumps and branches by giving it
symbolic names instead of numbers.

Program Counter Relative with
Displacement. This addressing mode works in
much the same way that Address Register Indirect
with Displacement mode works. In fact, this mode
can be seen as a special case of Register Indirect
mode. The I6-bit displacement value (found in the
instruction extension word) is sign-extended and the
PC value is incremented (as it is by any instruction).
Then the two values are added together.

For example;

DIVS.w 250(PC),Dl

adds the decimal value 250 to the incremented PC
value. (Actually, most assemblers will add 248 to the
PC value because they assume that the program­
mer wanted to use the point 250 bytes beyond the
beginning of the DIVS instruction. Assemblers
often let you use the symbol * to mean the present
PC value.) That sum will be interpreted as an ad­
dress. The low word of data register 1 will be divid­
ed by the contents of that address.

Program Counter Relative with Index
and Displacement. For an introduction to this
mode, you should read the description of Address
Register Indirect with Index and Displacement
because the two modes are quite similar. The PC
instead of an address register is used as the foun­
dation register.

The format for this instruction is tricky; check
your assembler's instructions to see how to write
it. For example;

CHK $AF(PC,AI),D4

checks the contents of the low-order word of D4

Implied
Instruction Registers

Bee, BRA PC
BSR PC, SP
CHK SSP,SR
DBee PC
DIVS SSP, SR
DIVU SSP,SR
JMP PC
JSR PC,SP
LINK PC,SP

MOVE to CCR, MOVE from CCR SR
MOVE to SR, MOVE from SR SR

MOVE USP USP
PEA SP
RTf PC,SP,SR
RTR PC.SP.SR
RTS PC, SP

TRAP SSP, SR
TRAPV SSP, SR
UNlK SP

ANDI to CCR, EORI to CCR,) ORI to CCR, ANDI to SR, SR
EORI to SR, ORI to SR

Fig. 4-9. Instructions that depend entirely upon Implicit Ad­
dressing.

against the source value. The source value is
calculated by adding both the hexadecimal value AF
(the displacement) and the contents of register Al
(the index) to the program counter value.

Implicit Reference Addressing

Some instructions do not offer you any address­
ing choice. These instructions, listed in Fig. 4-9, by
their very nature specify exactly what addresses
they will work with. Implicit addressing, called im­
plied addressing on some other chips, is often

45

associated with fast instructions because they can
be shorter and do not have to calculate an effective
address.

IMPORTANCE OF ADDRESSING MODES

Let me add a postscript about addressing modes:
Don't ignore them. Beginning programmers are
often thrilled to learn instructions and only learn the
bare minimum about addressing. Such behavior is

46

the same as high-level language programmers
learning only instructions and avoiding data struc­
tures. Both addressing modes and data structures
are vital to efficient, maintainable (meaning so­
meone can fix it) programs. If you play with address­
ing modes, learning when to use which, you will
soon write more efficient and more structured pro­
grams than those who stick to immediate and im­
plict addressing.

5

Data ~ (8)
24

Address ~ (8)

16

SP ~ SP

PC

~
68000

Instructions Groups
A MICROPROCESSOR WITHOUT A PROGRAM IS

just a lifeless lump of silicon, metal, and
plastic. To write programs in machine or assembly
language you have to understand the registers, ad­
dressing modes, and the instruction set of the
microprocessor.

The fundamental operations that a
microprocessor can perform are represented by in­
structions. They are the words in the microprocessor
language. The full instruction set of the 68000 is
shown in Fig. 5-1. Learn a few and you can make
a little sense. Combine the few with a knowledge
of the punctuation of flags and the grammar of ad­
dressing modes and you can write simple programs.
If you learn most of the instructions available on a
microprocessor, you will have a full vocabulary. (Not
even professional programmers use all of the in­
structions. Some are just not that practical.) True
fluency requires the vocabulary plus understanding
of data structures and control sequences along with
lots of practice.

This book will provide you with the first ingre­
dients: the vocabulary of instructions, the grammar

of flags, and addressing modes. For an under­
standing of programming concepts, you should refer
to a general book on computer science or program­
ming. For practice, find a way to use a 68000 bas­
ed system with an assembler program, and go to
it. Eventually you'll want a library of subroutines
to study, imitate, and use, but at first all you'll need
is this book, the system, time, and some patience.

By the way, because most microprocessors are
designed to perform similar tasks, they have similar
instruction sets. While the actual codes used in
assembly language to represent the instructions dif­
fer from chip to chip, the functions of the instruc­
tions are in many cases identical. In other words,
once you learn the language of one chip, learning
the next chip language (especially the fundamen­
tal instructions) will be quick and easy.

Advanced instructions do tend to diverge more
from chip to chip. Different designers have a varie­
ty of ideas on what functions users would like to see.

The number of instructions on a microprocessor
isn't necessarily related to its power. A small
number of instructions with a variety of flexible ad-

47

ABCO ClR lSR ORI to SR TRAP

ADO CMP MOVE PEA TRAPV

AOOA CMPA MOVE to CCR RESET TST

AOOE CMPI MOVE to SR ROl UNlK
AOOQ CMPM MOVE from SR ROR

AOOX OBee MOVE USP ROXl
AND OIVS MOVEA ROXR
ANOI OIVU MOVEM RTf
ANOI to CCR EOR MOVEP RTR
ANOI to SR EORI MOVEQ RTS
ASl EORI to CCR MULS SBCD
ASR EORI to SR MULU Sec
Bee EXG NBCO STOP
BCHG EXT NEG SUB
BClR ILLEGAL NEGX SUBA
BRA JMP NOP SUBI
BSET JSR NOT SUBQ
BSR LEA OR SUBX
BTST LINK ORI SWAP
CHK lSl ORI to CCR TAS

Fig. 5-1. 68000 instruction set.

dressing modes can often accomplish more than a
large but rigid set of instructions with few address­
ing modes. The 68000 depends on flexibility and
addressing and has an orthogonal instruction set.
That means that each instruction is made to work
much as the other instructions work with different
data sizes (byte, word, or long-word) and with as
many addressing modes as possible (see Chapter 4
for a description of these).

YOU DON'T HAVE TO LEARN THEM ALL

Not all of the microprocessor's instructions are
equally important. In fact, you can write virtually
any program using just a small portion of the in­
struction set. Certainly beginners should learn the
simple instructions and use them with the various
addressing modes before worrying about learning

48

the more advanced and unusual instructions.
The particular selection of 68000 instructions

shown in Fig. 5-2 and Fig. 5-3 are not set in con­
crete: use them as suggestions. The three and four
letter codes are called the mnemonics for the instruc­
tions. As with most computer languages, the pro­
grammers don't want to have to write out the entire
instruction each time they use it. Using "BSR" in­
stead of "Branch to Subroutine" saves typing time,
printing space, and memory space. It won't take you
long to learn what the mnemonics stand for. Some,
like SIDP, are even obvious.

The 68010 and 68020 chips brought some new
instructions to the 68000 family, and changed the
performance of some old instructions. These in­
structions are listed in Fig. 5-4 and Fig 5-5 and are
detailed in Chapter 9.

ADD DIVU MUlU
AND EOR NEG
ASl EXG NOP
ASR EXT NOT
Elce JMP OR
ElRA JSR ROL
ElSR lSL ROR
CLR lSR RTS
CMP MOVE STOP
DIVS MULS SUEI

Fig. 5-2. Beginning instructions.

INSTRUCTION GROUPS

The fundamental instructions of any microprocessor
can be divided into functional groups. Those groups
are quite similar from chip to chip. The 68000 chip
family groups defined in this book shown in Fig. 5-6.

While all of the instructions are described in­
dividually in Chapter 6, this chapter will discuss the
uses of the various groups of instructions. Instruc­
tions can't be easily separated from the addressing
methods they use. This chapter will, however, try
to concentrate on the essence of each instruction.

ABCD NElCD TRAPV
BCHG PEA TST
BCLR RESET UNLK
ElSET RTE
BTST RTR
CHK SElCD
DBce Sce
ILLEGAL SWAP
LEA TAS
LINK TRAP

Fig. 5-3. Advanced instructions.

New
Instructions

MOVE from CCR
MOVEC
MOVES
RTD

Modified
Instructions

MOVE from SR
RTE

Fig. 5-4. New or changed 68010 instructions.

Data Movement

This group, shown in Fig. 5-7, is often de­
scribed first because it includes some of the very
first instructions any programmer uses. Many peo­
ple think of computers as mathematics machines,
when in fact their major use is as symbol storage
and manipulation machines. Any program has to
move the various bits and bytes around from input
to output (at the very least), to memory and back,
and within the CPU.

On the 68000, the bulk of this group is made
up of a single instruction.

MOVE

When combined with the addressing modes and
the byte, word, and long-word options, this single

CMP2 BFTST cpDBcc
DIVSL PACK cpGEN
DIVUL UNPK cpRESTORE
EXTB CAllM cpSAVE
BFCHG RTM cpScc
ElFClR ElKPT cpTRAPcc
ElFEXTS CHK2
ElFEXTU TRAPcc
ElFFFO CAS
ElF INS CAS2
ElFSET cpElcc

Fig. 5-5. New 68020 instructions.

49

Data Movement
Integer Arithmetic
Decimal
Logical
Shift and Rotate
Bit Manipulation
Program Control
System Control
Nothing

Fig. 5-6. 68000 instruction groups.

instruction is capable of moving almost any piece
of information anywhere the microprocessor bus
lines go. It can move information from register to
register, register to memory, or memory to memory.
In contrast to many other microprocessors, the
68000's limited number of instructions and their or­
thogonality (explained above) makes it easy for you
to memorize the instructions.

MOVE and most of the other instructions in this
group don't really move the information. They make
a copy of the information and put that copy in the
destination. The source retains its data. Some in­
structions, though, do alter the source contents.
EXG, for example, moves the destination contents
to the source and so completely erases the original
source value.

While other microprocessors often have I/O (In­
put/Output) instructions that differ from the inter­
nal data movement instructions, the 68000 uses
memory-mapped 110. That means that all you have
to do with the 68000 is wire up any 110 device to
a memory address and use the same MOVE instruc­
tion you would use if the CPU was working with
a memory chip instead of an 110 device.

MOVE can move either addresses or data. Data
moves can work with byte, word, or long-word in­
formation. Address moves work with word or long­
word operands.

There are also instructions that are special
cases of the MOVE instruction. These lead the list
in Fig. 5-7.

50

MOVE to CCR (condition codes register),
MOVE to SR (status register), and MOVE from SR
are actually just different ways of addressing the
MOVE instruction. They are separated here
because they deal with the status register. Any such
dealings can completely change the 68000's
status,and possibly disrupt a program. In fact,
MOVE to SR and MOVE from SR are specifically
protected as privileged instructions. Because they
directly affect the S flag, which determines whether
the 68000 is in supervisor or user state, both of
these instructions have to be shielded from user pro­
grams. Figure 5-8 shows the structure of the status
register for both the System byte and User byte also
known as the condition codes register). See
Chapters 3 for a more extensive explanation of what
Supervisor and User mode mean.

MOVE USP (User stack pointer) is another
privileged instruction. There is no reason to use this
instruction when the CPU is in User mode; the User
stack pointer is then simply addressed as address
register A 7. When the S flag is set and the CPU
is in the Supervisor mode, however, there is no other
way to reach the User stack pointer. In Supervisor
mode, address register A7 is the System stack
pointer. Figure 5-9 shows the arrangement of two
stack pointers.

MOVEA, which stands for MOVE Address, is

Data Movement Instruct ions

EXG
LEA

LINK
MOVE

MOVEM
MOVEP
MOVEO

PEA
SWAP
UNLK

Fig. 5-7. Data movement instructions.

System Byte

------~----~---

Fig·. 5-8. Status register.

simply the instruction used if the MOVE instruc­
tion specifies the destination directly as an address
register. Besides that addressing change, the only
other difference is that MOVEA doesn't affect any
of the flags, while MOVE does. Thus, the program­
mer can use MOVEA to set up for an operation by
moving the necessary address information into
registers, without upsetting the state of the flags.

MOVEM, which stands for MOVE Multiple
registers, is a complex instruction that beginners
will rarely use. It moves the data in a group of
registers to or from memory. This saves program­
ming work, and is very helpful to high-level
languages that have to save and restore the infor­
mation in the CPU. For example, if a program re­
quires that processing shift to another point for a

15 8 7

Use r Stec k Poi nte r
System Steck Poi nter

Fig. 5-9. Address registers and the stack pointers.

User Byte

._",

while, and then come back, the program should save
the information in the data registers, address
registers, and flags. MOVEM does this with a single
instruction, putting the information into a sequence
of memory addresses. Figure 5-10 portrays the pat­
tern MOVEM uses to relate register data to memory
data.

MOVEp, or MOVE Peripheral data, is a special
MOVE command designed to make it easy for the
CPU to send information to or receive information
from peripheral devices. Such chips frequently read
or write data in 8-bit chunks (bytes): MOVEP does
also. With the automatic incrementing of this in­
struction (similar to that of MOVEM), the data com­
ing from or going to the several byte-wide addresses
of a peripheral can be handled with a single instruc-

0

AO
A1
A2
A3
A4 Address

A5 Registers

A6

A7

51

Effective Address in the Control Mode
---(Oete ce n move eit he r di recti 0 n) ---

Memory Stert et the 3pecified eddre33 and climb

through higher addre3ses

Registers Stert with the leest significant bit of

the mesk (DO) end climb through more 3iQnificant

bits of the mesk (01 through 07 end AO through

A7) Only move the register3 wh03e mesk bits are

set.

MASK

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 0 I A7 A6 AS A4 A3 A2 AI AD 07 06 05 04 03 02 01 DO

EffectIve Address in the Postincrement Mode
-(Oete cen only move from memory to regi3ter3)--

Memory Start at the ~pecified add re~~ and climb

through higher addre~3e~

Registers Stert with the leest significent bit of

the me~k (DO) end climb through more significant

bit~ of the me~k (01 through 07 a nd AD through

A 7) On1 y move the reg1sters whose mesk bits ere

set

MASK

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 0
I A 7 A6 AS A4 A3 A2 A I AD 07 06 05 04 03 02 DIDO

Effective Address in the Predecrement Mode
-(Deta cen on1 y move from register~ to memory)--

Memory Stert et the specified eddress end load the

register vel ue3 into progressivel y lower eddre3ses.

Registrs Stert with the register represented by the leest

sigmficent bit of the mesk (A7) end proceed through the

more signiflcent bits of the mesk (A6 through AO and then

07 through DO) Only transfers registers whose mask bit

is set

MASK

15 14 13 12 11 10 9 8 7 (, 5 4 3 2 1 0

DO 01 02 D3 04 05 06 07 AD Al A2 A3 A4 AS A6 A71

Fig. 5-10. MOVEM addressing.

52

tion. With MOVEP's organization of data, the bytes
from a peripheral can be automatically sand­
wiched into the long-word size of 68000 registers.
Figure 5-11 shows the way MOVEP organizes data.

register. That byte is sign-extended to a full 32 bits.
Because the addressing is implicit and the instruc­
tion is only a single word long, MOVEQ can save
time over MOVE. If used within a heavily-worked
part of the program, such as a counting loop, the
incremental time saved can add up to quite a bit.

MOVEQ is dedicated to fast execution (MOVE
Quick). Several other instructions also have this sort
of variant. While MOVEQ is fast, it is limited. It
can only move a byte of immediate data (data that
is contained within the instruction word) to a data

EXG performs the work of three MOVE in­
structions: it exchanges the contents of two
registers. If you had to program that with MOVE,

31

31

I Top Byt('

Fig. 5-11. MOVEP addressing.

How the Bytes Fit

Word Tr&nsfer
(to or from &n odd &ddress)

Regis1er

I High-byt('

Memory
15 o

Low-byt('

High-byt('

long-'Word Transfer
(to or from en even address)

o
Low-byt(' I

4

2

o

Register 0

I UppE'r By t. Ilowt"r By tt" I Bottom By t.1

Memory
15 0

Top Byt. 6

Upp.r BytE' 4

LowE'r Byt. 2

Bottom BytE' 0

53

EXG working on two Data Registers

Before EXG
03 05

1011010110111101 I 10101011101101011

03
After EXG

05

0101011101101011

Fig. 5-12. EXG in action.

you'd need to move the contents of the first register
into a third, then move the contents of the second
register into the first, and finally move the contents
of the third register into the second register. Figure
5-12 shows the action of EXG.

SWAP moves words, exchanging the low and
high words of a data register. Figure 5-13 shows how
SWAP switches the contents of the two halves of
a single data registers.

LEA means Load Effective Address. Load is the
term used on many microprocessors for data move­
ment instructions. The Effective Address is the ad­
dress information calculated from addressing mode
and specified data. LEA does the calculating and
then puts the EA in an address register. This can
be useful for setting up to access a table in memory.

PEA pushes an Effective Address (explained in
the previous paragraph) onto the stack. The stack
was reached by address register 7, the active stack
pointer: User stack pointer if the 68000 is in User
mode; System stack pointer if the 68000 is in Super­
visor mode. Push and Pop are verbs that mean,
respectively, to put onto or take off of a stack (stacks
are explained in more detail in Chapter 3). A stack
is a LIFO (Last-in, First-out) data structure that is
implemented in memory by the CPU control of a
16-bit stack pointer register.

The 68000 stack grows down in memory, so the
stack pointer contains the address of the lowest ad-

54

1011010110111101

dress of the stack, which, unfortunately, is known
as the top of the stack. PEA decrements the stack
pointer by two (there are two bytes in a word) and
puts the low word of the EA on the stack. Then the
stack pointer is again decremented by two and the
high word of the EA is put, or pushed, onto the
stack.

LINK (Link and Allocate) and UNLK (Unlink)
are advanced instructions that you won't find on
simpler, 8-bit microprocessors. What LINK does,
UNLK undoes. Together, they let you manipulate
the stack to organize different stack memory areas
for subroutines,functions, and program modules.

If a program section needs to use the stack, but
you don't want to disturb the main program infor­
mation on the stack, you can employ LINK to put

06t6 Register before SWAP

I 1111111111111111 100000000000000001

Det6 Register 6fter SWAP

I 0000000000000000 111111111111111111

Fig. 5-13. SWAP in action.

a new value into the stack pointer. A section of stack
is called aframe, and an address register that holds
the value to be put onto the stack is called a frame
pointer. The present contents of the frame pointer
address register is put onto the stack. Then the new
stack pointer value (the stack pointer was
automatically decremented when a new value was
put onto the stack) is saved in the frame pointer ad­
dress register. A negative displacement value
(negative because the stack grows downward) which
is essentially the size of the frame, is then added
to the stack pointer to open up as large a frame as
the subroutine needs.

Integer Arithmetic

The Integer Arithmetic instructions are shown
in Fig. 5-14. While the 68000 can perform the same
add and subtract operations that all microprocessors
must, it also has multiply and divide instructions.
That will come as a relief to 8-bit programmers who
had to use routines of simpler instructions to im­
plement those operations.

ADD means to add using binary arithmetic.
This differs from the other addition instruction,
ABCD, which employs BCD (Binary Coded
Decimal) arithmetic. (ABCD is explained later in
this chapter in the Decimal Arithmetic Group
section.)

ADD sums the source and destination operands.

Integer Arithmetic

ADD
ADDX
CLR
CMP
DIVS
DIVU
EXT

MULS

MULU
NEG

NEGX
SUB

SUBX
TAS
TST

Fig. 5-14. Integer arithmetic instructions.

The operands may be reached by any of a large
number of addressing modes. ADD demonstrates
another common feature of 68000 instructions in its
placement of the result. The result is stored in the
destination, erasing the previous destination con­
tents. ADD is also representative of 68000 instruc­
tions in that addressing is split into two cases. The
first cases uses a data register as the destination and
can use any addressing mode for the source. The
second case uses a data register as the source and
employs any of nine different addressing modes to
reach the destination (Program Counter Relative
and Immediate modes cannot be used).

Binary arithmetic is the foundation of all digital
computing. If you don't know how to add Is and Os,
you can still program computers, but not in
assembly language. Any elementary programming
or computer science book can explain the methods
of adding, subtracting, and complementing the bits
(binary digits) of bytes, words, and long-words.

A quick summary of binary arithmetic is shown
in Fig. 5-15. The terms unsigned and two's comple­
ment should also be referred to another text. Simp­
ly put, unsigned binary numbers interpret the entire
string of Is and Os as a single positive number. Two's
complement binary numbers use the most signifi­
cant bit as a sign bit. A 0 means the entire number
is positive; a 1 means negative. To make things more
complicated, a negative two's complement number
is written in a special form with most of the bits in­
verted (Os become Is and Is become Os). It sounds
crazy, I know, but it does make arithmetic a lot
easier, and you'll appreciate it once you learn the
system and work through some problems.

ADD affects all of the condition code flags. C
(carry) and X (extend) are set if the addition results
in a carry. Z (zero) is set if the result is zero. N
(negative) is set if the result is negative. Finally, V
(overflow) is set if the addition causes an overflow.
These results are all straightforward, and apply to
most other arithmetic instructions, except that sub­
traction operations work with a borrow instead of
a carry for the C flag.

ADD A (Add Address) is a special form of ADD.
It adds a source operand, specified by any of the
addressing modes, to an address register destina-

55

Addition

0+0=0
0+1=1
1+0=0
1+ 1 = 10

or
1 + 1 =0 plus e cerry of
1 + 1 + 1 = 1 plus e cerry of

So

00011101
+ 10111001

11010110

Subtrection

0-0=0
1-0=1
1-1=0

0- 1 = 1 with e borrow of

30

11001010
-01100100

01100110

Fig. 5-15. Rules of binary arithmetic.

tion. What's the big difference between ADD and
ADDA? ADDA doesn't affect any of the condition
code flags. That means you can manipulate ad­
dresses and set up the address registers with values
you need for the addressing modes of succeeding
instructions without altering the status of the chip.
Remember that address registers cannot work with
byte-size data, only words and long-words. This is
explained in Chapter 3.

ADD! means Add Immediate. This instruction
adds the data contained within the instruction (a

56

Mult i pI i ceti on

0*0=0
1*0=0
0*1=0
1 * 1 = 1

30

00101101
* 101

00101101
000000000

0010110100
11100001

Division

0/1=0
1/1= 1

110 end 0/0 ere not I egel opereti ons

30

10 1 1 1 1 001 1 0 = 0 1 0 1 1 1 1 0

byte, a word, or a long-word) to a cestination
operand. It differs from the ADD instruction
because when ADD has an immediate source, it can
only use Data Register Direct mode to find the
destination. ADD! can use any of eight different ad­
dressing modes.

ADDQ (Add Quick), like MOVEQ, is dedicated
to quick execution. Its addressing range is narrower
than ADD's; only Quick Immediate mode can be
used for the source. Its immediate data size is more
limited than that of ADD!; only a single byte can

be added. These two restrictions allow the entire
instruction to fit into a single instruction word and
to execute very quickly. Again, as with MOVEQ, us­
ing ADDQ in sensitive positions where the addition
may be repeated many times can save a lot of pro­
cessing time. ADDQ is a good demonstration of the
orthogonality of the 68000 instruction set. Many in­
structions have the same special cases and forms:
MOVEA and ADDA; MOVEQ and ADDQ.

ADDX, which stands for Add Extended, main­
ly differs from ADD in its effect on the Z flag. ADD
sets (1) the Z flag if the sum equals zero and clears
it (0) otherwise. ADDX leaves the Z flag un­
changed if the result equals zero and clears it if the
result is nonzero (anything but zero). This special
effect adapts the ADDX instruction to multiple­
precision (also known as extended) addition.
Multiple-precision arithmetic works with numbers
that are too large to fit into bytes, words, or long­
words. Figure 5-16 shows a simple example of
multiple-precision arithmetic.

Multiple-precision addition often begins by us­
ing the MOVE to CCR instruction to set the Z flag
(putting a 1 in it). Then the addition is performed.
Any nonzero result will clear the flag. Thus the pro­
gram is alerted to the data that may affect other
parts of the addition.

There are two forms of ADDX: register to
register and memory to memory. Memory to
memory uses predecrement mode so that the multi­
ple operands for extended arithmetic may be easi­
ly addressed in order.

SUB is the binary subtraction instruction. It

operates very much as the ADD instruction except
that the source operand is subtracted from the
destination operand and the C and X flags are set
if the operation results in a borrow instead of a carry.
SUBA is Subtract Address, SUBI is Subtract Im­
mediate, SUBQ is Subtract Quick, and SUBX is
Subtract Extended. See the analogous addition in­
struction descriptions above (ADDA, ADDI, ADDQ,
ADDX) for the purposes of these instructions.

MULU and MULS are the multiplication in­
structions. One of the advantages of 16-bit chips
such as the 68000 is that they have multiplication
and division instructions: 8-bit chips have to perform
those operations with routines of move, shift, and
compare instructions.

MULU stands for Multiply Unsigned; MULS
stands for Multiply Signed. As in our previous
discussion of binary numbers, the most significant
bit can be used to indicate the sign of the number
or the number can be assumed to be positive.
MULU multiplies two unsigned 16-bit operands to
yield a 32-bit unsigned result. MULS multiplies two
signed 16-bit operands to yield a 32-bit signed
result. both operations take register operands from
the low word of a register and ignore the high word.

DIVU and DIVS are the Division Unsigned and
Division Signed instructions respectively. DIVU
divides a 32-bit destination operand by a 16-bit
source operand using unsigned binary numbers.
The 32-bit result is stored in the destination (which
must be a data register). The low word of the result
is the quotient and the high word is the remainder.
DIVS does the same thing as DIVU but uses

Multiple-precision Addition

BytE' 8 BytE' 7 BytE' 6 BytE' 5 BytE' 4 BytE' 3 BytE' 2 Byt .. 1

00000001

10111100

00 1 1 001 0 1 0 1 0 1 1 00 1 1 1 1 0000 1 0 1 1 1 1 00 1 0 1 1 00 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1

01 00001 0 111 01010 11 0101 1 1 010 11 010 1 1 1 1 1 1 11 00001 1 01 01011 010

01 1 1 0 1 01 1 001 0111 1 1 00 1 000 0001 01 1 1 1 01 1 00 1 0 01 1 00011 000 1 1 001 1 011 1 1 1 01

Fig. 5-16. Multiple-precision binary addition.

57

signed arithmetic. The sign of the remainder is
always the same as that of the divided unless the
remainder equals zero.

Division carries with it two special cir­
cumstances. Any attempt to divide by zero will
automatically be trapped and exception processing
will take over from the main program. See Chapter
7 for more details on exception processing and the
divide by zero trap.

The second special circumstance involves
overflow. If the division operation causes an
overflow which is detected before the instruction is
completely executed, the overflow condition will be
signaled by the flags and the original division
operands will be left as they were. The more ad­
vanced 68020 doesn't have to worry about this cir­
cumstance and is fully capable of dividing 32 bits
by 32 bits as well as multiplying 32 bits by 32 bits.

Computers also need to compare, clear, and
negate the values within registers or memory ad­
dresses. Because the 68000 can work with several
different data sizes, it also needs a sign-extension
instruction to allow byte and word data to operate
correctly in 32-bit registers. The instructions shown
in Fig. 5-14 handle these chores.

CLR (which stands for Clear) is probably the
simplest to understand of this lot: it puts zero into
the destination. The destination can be a data
register or a memory location and is filled with as
many zeros as the size specification requires (either
byte, word, or long-word). CLR also effects most of
the condition code flags; it sets Z and clears N, V,
and C.

CMp, for Compare, offers a basic instruction
and a number of special cases, just as ADD, SUB,
and MOVE do. CMP compares a source and a
destination operand (by subtracting and source con­
tents from the destination contents), sets the con­
dition code flags, and leaves the source and
destination unchanged. Because the CMP operation
is a subtraction, the C flag is treated as a borrow
flag (see the SUB description earlier in this chapter
for details of this treatment).

CMPA (Compare Address) is a special case of
CMP that uses an address register as the destina­
tion. Also, CMPA extends the source value to

58

32-bits before subtracting it from the destination
value.

eMP! (Compare Immediate) can only have im­
mediate data as the source. Otherwise, it operates
as does CMP.

CMPM (Compare Memory) is a complicated
special case of CMP that compares the contents of
two memory locations. Both source and destination
are addressed by the specified address registers by
the postincrement register indirect addressing
mode. In other words, the instruction specifies two
address registers. The contents of one of those
registers specifies the source location. The contents
of the other is the address of the destination. After
the source contents are subtracted from the destina­
tion contents and the flags are set, the values of the
two address registers are incremented (by 1 if a byte
operation, by 2 if a word operation, by 4 if a long­
word operation).

The use of an automatically incrementing ad­
dressing mode eases the design of loops. For in­
stance, CMPM is used in loops that search for a
particular value in memory. If the automatic in­
crementing weren't available, the programmer
would have to write incrementing instructions into
the loop so that a region of memory could be se­
quentially searched (compared against a known
value).

TST and TAS are special comparison opera­
tions. TST subtracts zero from the destination con­
tents and manipulates the condition code flags
according to the results. In other words, the flags
are changed according to the value in memory. If
that value is negative, the N flag is set. If that value
is zero, the Z flag is set. Flags V and C are always
cleared. The X flag is not affected. The effects of
TST on the flags is considerably different than the
effects of CMP on those flags.

TAS is a more complex instruction that TST.
TAS can only work with a single byte, though the
operand containing that byte can be addressed by
any of eight different modes. The byte is examined
and the Nand Z flags are set according to its value.
Then the high-order bit of the byte is set (equal to
1). A vital aspect of this instruction is that it uses
a read-modify-write memory cycle. This way of

reading memory makes TAS indivisible. In other
words, TAS cannot be interrupted: no other device,
CPU or peripheral, can get at that particular
memory location while TAS is working on it. Ex­
ternal interrupt or bus requests are ignored while
TAS is executing. The point of this is to allow you
to set flags in memory that multiple devices can use
to communicate with each other.

If TAS could be interrupted, the following se­
quence of events could occur and disrupt process­
ing. The first processor checks the flag and finds
it cleared (meaning the other processor hadn't
touched it yet). The second processor interrupts the
first, checks the flag, and then sets it. After the in­
terruption, the first processor goes back to what it
is doing convinced the second processor hasn't
checked the flag location. TAS, therefore, allows
synchronization of independent processes.

NEG means Negate. The destination value
(there is no source) is subtracted from zero using
two's complement binary arithmetic. The result is
stored in the destination, replacing the former con­
tents. Because this is a subtraction operation, the
flags are affected in the same way as with the SUB
instruction. Although negation is a necessary tool
in binary arithmetic, you will probably not use it
until you have a firm grasp on binary algorithms.
Figure 5-17 shows an example of negation.

NEGX means Negate Extended and is a special
form of NEG that affects the X flag. The operand
and the X flag value are subtracted from zero.
NEGX is intended to simplify multiple-precision
arithmetic work, as are ADDX and SUBX. Figure

5-16 expands on multiple-precision binary
arithmetic.

EXT extends the sign bit of a binary number.
Its action is shown in Fig. 5-18. A binary number
can be interpreted as signed or unsigned. When in­
terpreted as signed, the most significant bit is read
as the sign of the number: a 0 means positive and
a 1 means negative. The most-significant bit of a
byte is in the Bit 7 position. For a word, it is in the
bit 15 position, and for a long-word it is in the bit
31 position. Because the 68000 can work on bytes,
words, or long-words, the sign of a value could be
forgotten or mistakenly manipulated. For instance,
a data register that holds a negative number will
have a 1 in the bit 31 position. If you then moved
a positive word into the data register, the 1 would
still be in a bit position 31 and so the data register
value would still be interpreted as negative even
though the bit 15 position (the sign bit of the moved­
in word) held a 0 (meaning positive). The solution
is to extend the meaningful sign bit. In this case,
EXT would be used to write the 0 sign bit in bit
position 15 into all the bit positions up to and in­
cluding 31. If a byte is used, EXT extends the bit
in position 7 up to and including bit 15. Some other
instructions automatically sign-extend values to
keep from corrupting results.

See (for Set According to Condition) is put into
the Program Control group of instructions by some
books. Like some other Program Control instruc­
tions (Bcc and DBcc), Scc is a conditional instruc­
tion. It tests the flags for a programmer specified
condition and only performs its set (1) task if the

011010011S neg6ted by subtr6cting 1t from zero
(but zero wil1 provide 6 higher bit for borrowing)

100000000
- 0 1 101001

100 10 1 1 1

So 10010111 is the result of the neg6tion.

Fig. 5-17. Negation-NEG.

59

Byte

00000000 00000000 00000000 100101 1 1

becomes

00000000 00000000 1 1 11 1 1 1 1 100101 1 1

Word

00000000 00000000 101 1 1 1 1 1 01000000

becomes

1 1 1 1 1 1 1 1 1 1 1 1 1 I 11 101 1 1 1 1 1 01000000

Fig. 5-18. Sign extension-EXT.

condition is met. The conditions the programmer
can choose from are listed in Fig. 5-19. If the condi­
tion is true, the addressed byte is set to all Is. If
the condition is false, the addressed byte is cleared
to all Os.

Decimal

Although digital computers are built around
binary Is and Os, not all arithmetic is done using
the rules shown in Fig_ 5-15. The binary digits can
be interpreted by a variety of codes. One of the
popular codes is called BCD (for Binary Coded
Decimal). BCD, illustrated in Fig. 5-20, uses groups
of four bits to represent the numbers from 0 through
9. This is a more direct translation of the decimal
numbers people use when not thinking of com­
puters. Because much of the data we put into and
take out of computers is in decimal number form
already, using BCD saves some translation time.
However, BCD numbers cannot work with the same

60

CC Carry Cleer

CS Cerry Set

EO Equal
F False
GE Greater or EQuel
GT Greeter Then
HI High
LE Less or EQuel
LS Low or Same
L T Less Then
MI Minus
NE Not E quel
PL Plus
T True
VC Overflow Clear
VS Overflow Set

Fig. 5-19. Sec conditions available.

0000 = 0 0001 0000 = 10

0001 = 1 0001 0001 = 11

0010 = 2 0001 0010 = 12
0011 = 3 00010011 = 13
0100 = 4 00010100 = 14
0101 = 5
0110 = 6 0010 011 1 = 27
0111 = 7
1000 = B 0100 1000 = 4B
1001 = 9
1010 = i llegBl code 1 00 1 1 00 1 0 1 1 1 =
1011 = i 11 egBl code
1100 = ill egBl code
1 101 = illegBl code
1110 = i 11 egBl code
1 1 1 1 = ill egBl code

Fig. 5-20. BCD numbers.

Addition

1. Add bits with1n nlbbles by binBry rules.
2 If the sum within B nibble is more thBn 9,

6dd 6 to the sum Bnd move the Bppropri6te
cBrry vBlues to the next higher nibble.
(Adding 6 cBrries the vBlue PBst the
illegBl codes)

SubtrBct ion

1. SubtrBet bits within nibbles by binBry
rules

2 If the result within B nlbble requ1res B
borrow, remember to subtrBct six to
move beyond the 111 egBl codes.

Fig. 5-21. BCD addition and subtraction rules.

997

61

arithmetic rules as standard binary numbers. The
rules of BCD arithmetic ar shown in Fig. 5-21.

The 08000 has three instructions for calculating
with BCD data. These are shown in Fig. 5-22.

ABCD means Add using BCD with extend.
ABCD is quite similar to ADDX, which also adds
two operands together and affects the flags (in­
cluding X). It is called "with extend" because it does
affect the X flag and is therefore useful for multiple­
precision arithmetic. BCD multiple-precision work
is done much the same as the binary multiple­
precision examples shown in Fig. 5-10 (using BCD
rules, however). The Z flag is normally set before
the addition. ABCD will interpret the operands it
works with as BCD data, even if they are not.

ABCD can add two operands that are in data
registers or two operands that are in memory. The
memory case is accomplished with the predecre­
ment addressing mode.

SBCD subtracts BCD data and operates in the
same way ABCD does, though of course subtrac­
tion replaces addition and the C flag is affected by
borrows instead of carries. Decimal borrows are dif­
ferent from binary borrows. If you are going to use
BCD arithmetic much, you should understand it well
first, and be able to work some problems by hand.

NBeD is Negate BCD with extend. Again, use
NEG and ABCD as comparisons for this. The
operand is negated by subtracting it and the X flag
value from zero. The outcome of this operation is
the ten's complement if the X flag equals 0 and the
nine's complement if the X flag equals 1. NBCD can
only work with bytes.

Logical

All digital computers make heavy use of logical
operations. The 68000 provides the logical opera-

62

Decimol

ABCD
NBCD
SBCD

Fig. 5-22. Decimal instructions.

Loglcel

AND
OR
EOR
NOT

Fig. 5-23. Logical instructions.

tions shown in Fig. 5-23. If you do not know the
AND, OR, EOR, and Nar functions, you'll need to
learn them before doing any serious programming.
Any introductory computer science text will in­
troduce you to them. As a quick introduction or
review, Fig. 5-24 through Fig. 5-27 show each of
those functions applied to two bytes. Logical opera­
tions are used to clear, set, and test specified bit
positions of a byte, word, or long-word.

AND compares a source and a destination
operand bit position by bit position. Whatever bit
positions are set (equal to 1) in both operands are
also set in the result. The other positions are cleared
(equal to 0) in the result. This operation is shown
in Fig. 5-24. The result is stored in the destination

AND

o AND 0 = 0
o AND 1 = 0
1 AND 0 = 0
1 AND 1 =

so

10110110
AND

00001 11 1
00000110

Fig. 5-24. AND operation.

and the condition code flags are set according to that
result.

AND is typically used to mask off bits. By set­
ting one of the operands with a desired sequence
of 1s and Os, you can clear any pattern of bit posi­
tions. Wherever a 0 appears in your constructed
operand, that bit position in the result will be a 0
regardless of the value in that bit position of the
other operand. Try this for yourself on paper and
see.

AND! merely uses an immediate source
operand and performs the same operation as AND.
AND! had two special forms.

AND! to CCR
AND! to SR

They perform the same AND operation, but they
use some part of the status register as the
destination.

AND! to CCR works with a single immediate
byte and the low-byte of the status register: the con­
dition codes register (CCR). This instruction helps
you control the flag values.

AND! to SR works with an immediate word and
the full status register (SR). Because the System
byte (the high byte) of the SR contains the flag that

OR

o OR 0
o OR 1
1 OR 0
1 OR 1

so

= 0
=
=
=

10110110
OR

00001 1 1 1
10111111

Fig. 5-25. OR operation.

controls Supervisor and User mode, this instruction
is privileged. The processor must be in Supervisor
mode to execute it. If the CPU is only in User mode,
AND! to SR will not execute, and a Trap will be
generated instead.

OR compares a source and a destination
operand bit position by bit position. Whatever bit
positions are set (equal to 1) in either operand are
also set in the result. The other bit positions (those
that have Os in both operands) are cleared in the
result. This operation is shown in Fig. 5-25. The
result is stored in the destination and the condition
code flags are set according to that result.

OR is typically used to mask in bits. By setting
one of the operands with a desired sequence of 1s
and Os, you can set any pattern of bit positions.
Wherever a 1 appears in your constructed operand,
that bit position in the result will be a 1, no matter
what value that bit position of the other operand
has. Again, try this for yourself on paper and see.
Masking is something you should develop a facility
for. It is about the only part of assembly language
where you'll actually care about individual bit values
(except for flags contents). Masking is particularly
important in 110 operations.

OR! uses an immediate source operand and per­
forms the same operation as OR. ORI has two
special forms also.

ORI to CCR
ORI to SR

They perform the same OR operation, but they use
some part of the status register as the destination.

OR! to CCR works with a single immediate byte
and the low-byte of the status register: the condi­
tion codes register (CCR). This instruction helps you
control the flag values.

OR! to SR works with an immediate word and
the full status register (SR). Because the System
byte (the high byte) of the SR contains the flag that
controls Supervisor and User mode, this instruction
is privileged. The processor must be in Supervisor
mode to execute it. If the CPU is only in User mode,
ORI to SR will not execute, and a Trap will be
generated instead.

63

EOR

o EOR 0 = 0
o EOR 1 =
1 EOR 0 = 1
1 EOR 1 = 0

so

10110110
EOR

00001 111
10111001

Fig. 5-26. EOR operation.

EaR compares a source and a destination
operand bit position by bit position. Whatever bit
positions are set (equal to 1) in one or the other
operand, but not in both, are also set in the result.
The other bit positions (those that have Os in both
operands) are cleared in the result. The operation
is shown in Fig. 5-26. The result is stored in the
destination and the condition code flags are set ac­
cording to that result.

EOR is used to invert bits. By setting one of the
operands with a desired sequence of Is and Os, you
can invert chosen bit positions of the result.
Wherever a 1 appears in your constructed operand,
or mask, the value of that bit position in result will
be the opposite of the value of that bit position in
the second operand. Check this out by doing it, bit
by bit, on paper.

EaRl uses an immediate source operand and
performs the same operation as EOR. EORI has two
special forms.

EORI to CCR
EORI to SR

They perform the same EOR operation, but EaRl
to CCR works with a single immediate byte and the

64

low-byte of the status register (the condition codes
register (CCR). This instruction helps you control
the flag values.

EaRl to SR works with an immediate word and
the full status register (SR). Because the System
byte (the high byte) of the SR contains the flag that
controls Supervisor and User mode, this instruction
is privileged. The processor must be in Supervisor
mode to execute it. If the CPU is only in User mode,
EORI to SR will not execute, and a Trap will be
generated instead.

NOT complements the value of the destination
. and then stores that new value in the destination.

As shown in Fig. 5-27, the one's complement (which
is the type used in this instruction) of a value
changes all the Is to Os and the Os to Is.

Shift and Rotate

This group of functions doesn't correspond to
high-level language functions as do the groups
previously described. Still, the ability to move or
change the contents of an operand within that
operand's location is useful. As you will see, shift
and rotate instructions perform similar functions.
Figure 5-28 lists the 68000's shift and rotate in­
structions.

The bits of any location, register or memory,
are numbered. Figure 5-29 shows the appropriate

NOT

NOT 0 =
NOT 1 = 0

so

NOT
10110110
01001001

Fig. 5-27. NOT operation.

ASL
ASR
LSL
LSR
ROL
ROR
ROXL
ROXR

Fig. 5-28. Shift and rotate instructions.

scheme for both registers and memory locations on
the 68000. The least significant bit is typically
shown on the right, just as it true of binary numbers
themselves. The bit positions traditionally start at
o because bit string that are interpreted directly as
binary numbers give the symbol in that position the
value of 2 to the 0 power. In tum, each bit position
to the left adds one to the power, as shown in Fig.
5-30. The result of this is that the most significant
bit of an 8-bit byte is bit position 7; and of a 32-bit
long-word is bit position 31.

The bit positions are storage cells that can hold
either a 1 or a o. Shift and rotate instructions move
the values sideways from one bit position to the next
through a register or memory location instead of
transferring complete sets from one location to
another.

Shift Instructions. LSL is called Logical
Shift Left and is shown in Fig. 5-31. The term logical
is used to differentiate this from arithmetic shifting,
which will be described later in this section. LSL
moves the bit values to the left, or toward the more
significant bit position.

If you are using LSL on a register operand, you
can choose the number of bit positions in the shift.
A shift of one bit will move whatever was in the bit
o position to the bit 1 position. the former bit 1 posi­
tion value will be in the bit 2 position. Either im­
mediate (for a shift of from 1 to 63 bits) data can
specify the size of the shift.

The differences in shift operations normally ap­
pear in their treatment of the end bits. In other
words, what happens to the bit that is shifted off
the end of the operand and what appears in the bit
position that is at the other end of the operand?

LSL feeds zeros into the least significant bit
position. That is, the position that has a bit shifted
out of it and no bit below it to shift in will be cleared.
In fact for each bit position of shift, a zero will be
put into the shifting string of values. A 3 bit posi­
tion shift will put zeros in bit positions 0, 1, and 2.
the arithmetic left shift, ASL, also feeds zeros into
the least significant bit position.

LSL puts copies of the last value to be shifted
out (of the most significant bit position) into both
the C and X flags. the most significant bit position

Regl sters

31 30 29 28 27 26 2S 24 23 22 21 20 19 18 1 7 16 1 S 14 1 3 12 11 10 9 8 7 6 S 4 3 2 1 0

Memory

1514131211109876 S 4 3210

Fig. 5-29. Bit positions of registers and memory.

65

Bit Position

P . t· Power of 2
OSl 10n /"'"

Value "- Decimal

Fig. 5-30. Numeric values of bit positions.

doesn't have to be the bit 31 of a register. When
shifting register contents, you can specify byte,
word, or long-word shifts. The most significant bit
positions of those various operand sizes differs. If
you choose to shift a byte one bit position to the left,
the former bit position 7 value will be copied into
both the C and X flags. If you shifted that byte two
bit positions instead of one, the former bit position
6 value would appear in the C and X flags, and the
original bit position 7 value would just disappear.

LSR, Logical Shift Right, is similar to LSL. The
main difference, naturally, is that LSR moves the
bit values to the right, or toward the more signifi­
cant bit position as shown in Fig. 5-32. As with LSL,
there is an arithmetic right shift relative to LSR,
called ASR, that will be discussed further on in this
section.

If LSR is working on a register operand, you
can choose the number of bit positions in the shift.
A shift of one bit will move whatever was in the bit
1 position to the bit 0 position. The former bit 2 posi­
tion value will be in bit 1 position. Figure 5-33 shows

7

7

6

6

5

5

4

4

3 2

3 2

128 64 32 16 8 4 2

o

o

the LSR shift. Either immediate (for a shift or from
1 to 8 bit positions) or register (for a shift of from
1 to 63 bits) data can specify the size of the shift.
As mentioned above,the orthogonality of the in­
struction set makes the sizing rules for LSL and
LSR virtually the same.

LSR feeds zeros into the most significant bit
position. That position has a bit shifted out of it and
no bit above it to shift in. It is cleared for each bit
position of shift. A 3 bit position shift of a long-word
will put zeros in bit positions 29, 30, and 3l.

The most significant bit position doesn't have
to be the bit position 31 of a 32-bit register. When
shifting register contents, you can specify byte,
word, or long-word shifts. The most significant bit
position of those various operands sizes differs. If
you choose to shift a word one bit position to the
right, the former bit 0 value will be copied into both
the C and X flags. If you shifted that byte two posi­
tions instead of one, the former bit 1 value would
appear in the C and X flags, and the original bit 0
value would just disappear.

LSL of Memory Word
15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

o

Fig. 5-31. LSL operation.

66

Most Significant Least Significant

115 14 13 12 10 11 9 8 7 6 5 4 3 2 01

Fig. 5-32. Most Significant and least significant bit positions.

ASL is called Arithmetic Shift Left. The term
arithmetic is used to differentiate this from the
logical shifts described earlier. ASL moves the bit
values to the left, or toward the more significant bit
position just as LSL does. The difference between
the two instructions is in what happens at the ends
of the operand.

If ASL is working on a register operand, you
can choose the number of bit positions in the shift.
A shift of one will move whatever was in the bit °
position to the bit 1 position. The former bit 1 posi­
tion value will be in bit 2 position. Figure 5-34 shows
the ASL shift. Either immediate (for a shift of from
1 to 8 bit positions) or register (for a shift of from
1 to 63 bits) data can specify the size of the shift.

The differences in shift operations on any
microprocessor normally appear in their treatment
of the end bits. In other words, what happens to the
bit that is shifted off the end of the operand and
what appears in the bit position that is at the other
end of the operand?

LSL feeds zeros into the least significant bit
position. That is, the position that has a bit shifted
out of it and no bit below it to shift in will be cleared
for each bit position of shift. A 3-bit position shift

will put zeros in bit positions 0, 1, and 2. The
arithmetic left shift, ASL, also feeds zeros into the
least significant bit position.

ASL puts copies of the last value to be shifted
out of the most significant bit position into both the
C and X flags. The most significant bit position
doesn't have to be the bit 31 of a register. When
shifting register contents, you can specify byte,
word, or long-word shifts. The most significant bit
positions of those various operand sizes differs. If
you choose to shift a byte one bit position to the left,
the former bit 7 value will be copied into both the
C and X flags. If you shifted that byte two bit posi­
tions instead of one, the former bit 6 value would
appear in the C and X flags, and the original bit 7
value would just disappear.

ASL puts a zero in the least significant bit posi­
tion. That is why ASL is called an arithmetic shift.
Shifting an operand one bit position to the left is
the same thing as multiplying it by two. This fact
is often used in complicated mathematical
algorithms as long as no new digits are added to
the operand. Shifting two bit positions to the left
is the equivalent of multiplying by four, and so on.
lf some value other than a ° were put in the least

LSR of Memory Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

o

Fig. 5-33. LSR operation.

67

ASl of Memory Word
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Fig. 5-34. ASL operation.

significant bit position (bit O) this relationship
wouldn't be true.

ASR is called Arithmetic Shift Right. The term
arithmetic differentiates this from the logical shifts
described earlier. ASR moves the bit values to the
right, or toward the less significant bit position just
as LSR does. The difference between the two in­
structions is in what happens at the ends of the
operand.

If ASR is working on a register operand, you
can choose the number of bit positions in the shift.
A shift of one bit will move whatever was in the bit
1 position to the bit 0 position. the former bit 2 posi­
tion value will be in bit 1 position. Figure 5-35 shows
the ASR shift. Either immediate (for a shift of from
1 to 8 bit positions) or register (for a shift of from
1 to 63 bits) data can specify the size of the shift.

Unlike LSR, which feeds zeros into the most
significant bit position, ASR puts a copy of the
original most significant bit value into that position.

o

In other words, the most significant bit value won't
change, no matter how many bit positions are
shifted. This means the sign value won't change.
Furthermore, the two's complement binary
arithmetic used requires that the top bit be repeated
for the digits of the operand not to be altered. The
outcome is that ASR works as a division operation.
Each shift of a bit position to the right equals a divi­
sion by two.

A point to keep in mind is that when shifting
register contents, you can specify byte, word, or
long-word shifts. The most significant bit positions
of those various operand sizes differs. The bit that
is repeated may be bit 7 (of a byte), bit 15 (of a
word), or bit 31 (of a long-word).

ASR puts copies of the last value to be shifted
out of the least significant bit position into both the
C and X flags. If you choose to shift a word one bit
position to the right, the former bit 0 value will be
copied into both the C and X flags. If you shifted

ASR of Memory Word

15 14 13 12 11 10 9 B 7 6 5 4 3 2 0

Fig. 5-35. ASR operation.

68

ROL of Memory Word

c 15 14 13 12 11 10 9 B 7 6 5 4 3 2 o

Fig. 5-36. ROL operation.

that word two bit positions instead of one, the
former bit 1 value would appear in the C and X
flags, and the original bit 0 value would just
disappear.

Rotate Instruction. The shift instructions
move the bit that falls off the end of the register or
memory location into the C and X flags. Rotations
move the bit around and put it back into the opposite
end of the register or location.

ROL stands for Rotate Left. The action of this
instruction is shown in Fig. 5-36. The bit values are
moved to the left, more-significant end of the
register or memory location. The bit value that
moves out of the most significant bit position is
moved into the C flag and the least significant bit
position (bit 0).

Remember, as mentioned in the discussion of
the Shift instructions, the most significant bit posi­
tion will not necessarily be the highest bit of the
register. Although memory locations can only work
with word operands, registers can work with byte,
word, or long-word operands. That means the most
significant bit position in your operation on a
register operand can be bit 7 (for a byte), bit 15 (for
a word), or bit 31 (for a long-word).

You can choose the number of bit positions in
the rotation. Immediate data can specify a rotation
of from 1 to 8 bit positions. You may notice that a
rotation of as many as 63 bits will be to loop the
values through the register or location more than
once. That is ok. Modulus arithmetic sometimes re­
quires that sort of manipulation.

ROR of Memory Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o c

Fig. 5-37. ROR operation.

69

ROXL of Memory Word

x c 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

Fig. 5-38. ROXL operation.

ROR is a rotation right. This instruction uses
the same rules except that the rotation direction is
reversed from ROL. Figure 5-37 shows ROR's per­
formance.

Because ROR moves the bits to the right, the
bit that falls off and is copied into the C flag comes
from the least-significant bit position.

ROXL is Rotate Left with Extend. That with
Extend simply means that the X flag is put into the
rotation loop (this is shown in Fig. 5-38). While ROL
moves the last, most significant drop-off bit into the
C flag, that flag is not actually in the loop. The drop­
off bit also is rotated directly into the least signifi­
cant bit position. ROXL puts the X flag in between
the most significant and least significant bit posi­
tions, so that bits move from the most significant
bit, to the X flag, and then to the least significant

bit. The first bit value to be shifted into the least
significant bit position comes from the X flag. The
C flag still receives a copy of the same bit that will
also go into the X flag.

ROXL offers the same choices of operand size
and number of rotation positions as ROL. Registers
can be shifted from 1 to 63 bit positions and can
operate on bytes, words, or long-words. Memory
locations can only work with words.

ROXR is Rotate Right with Extend. Figure 5-39
shows its action. ROXR works just like ROXL ex­
cept that the rotation is to the right. The X flag is
put between the least significant and the most
significant bit positions.

Bit Manipulation

These instructions can work on individual bits,

ROXR of Memory Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o x c

Fig. 5-39. ROXR operation.

70

BTST
B5ET
BCLR
BCHG

Fig. 5-40. Bit manipulation instructions.

instead of bytes, words, or long-words. Figure 5-40
lists the four 68000 bit manipulation instructions.

BTST is the Test a Bit instruction. BTST simp­
ly tests the value of a particular bit location and then
uses the Z flag to communicate that value to you.
If the Z flag is set (equal to 1), the tested bit was
zero. If the Z flag is cleared (equal to 0), the tested
bit was equal to 1. That may sound contradictory;
it is. But what choice did the designers have? If they
had reflected the bits value directly in the Z flag,
the same logic of "setting if the condition is met"
that is used for other flags couldn't have been used
for the Z flag. That, in tum, would have seemed con­
tradictory.

BSET is called Test a Bit and Set. After testing
the particular bit, BTST only works on the Z flag.
BSET tests the particular bit, works on the Z flag,
and then sets (equal to 1) the tested bit. The Z flag
is used in the same way as described above for
BTST.

BCLR is called Test a Bit and Clear. Like BSET
and BTST, BCLR tests a single bit and then uses
the Z flag to report the value. BCLR, however, then
clears the tested bit.

BCHG is Test a Bit and Change. As you might
guess from the previous descriptions, BCRG tests
a particular bit, reports the value in the Z flag, and
then changes the value of the tested bit to the op­
posite of whatever it originally was (a 1 in that posi­
tion would become a 0 and a 0 would become a 1).

Program Control Operations

The Program Control instructions, listed in Fig.
5-41, are used in loops, jumps, and subroutines.
There are three subgroups within this main group.

Unconditional Branches and Jumps.
These are the easiest program control instructions
to understand. Any of these instructions forces the
program to continue processing at a new position
within the program. Program instructions are nor­
mally written in a sequence in memory. The address
of the instruction that is to be executed next is kept
in the PC (Program Counter) register. Unconditional
control instructions put a new value into the PC so
that processing will continue at a new address.

BRA means Branch Always. Branching is a
computerese term that means changing to another
part of the program. BRA uses Program Counter
with displacement addressing mode to find the new
PC value. This mode adds an 8- or 16-bit, two's com­
plement number to the old PC value. This means
that a new PC value between 32766 bytes behind

Cond! t 1 on6l

Bee
DBee
See

UneondH ionel Returns

Fig. 5-41. Program control instructions.

BRA
BSR
JMP
JSR

RTR
RTS

71

or 32769 bytes ahead of the old value can be used.
8-bit microprocessors are normally limited to 8-bit
displacement values, which only allows jumps to
-126 to + 129 bytes. The forward and backward
values are not equal for two reasons.

First, two's complement representation allows
a larger negative number than positive number with
a limited number of bits. More importantly, the
displacement is from the PC value at the end of the
BRA instruction. That value has been incremented
by two (because that is the length of the BRA in­
struction) from the beginning of BRA. When you
use machine code you have to keep this rule in mind.
When you use assembly language, however, you on­
ly need calculate from the beginning of the BRA
instruction; the assembler will automatically sub­
tract two from your suggested branch displacement.

BSR means Branch to Subroutine. This instruc­
tion is almost identical to BRA. The difference is
that BSR saves the address of the next instruction
on the stack before adding the displacement value
to the PC. The advantage of BSR and the reason
that subroutine is in the name is that processing can
return to the saved address after the subroutine is
complete. If BRA were used, the CPU wouldn't
know where to return to. RTS returns processing
after a subroutine and is explained below.

It is a good programming habit to use labels in­
stead of absolute displacement values for branching
addresses. Labels keep the program code flexible:
slight changes will not ruin labeled code but they
can totally disrupt absolute code. Chapter 9 explains
labels in more detail.

IMP (which stands for Jump) forces processing
to continue at a new address. The major difference
between JMP and BRA is that while BRA can on­
ly use the Program Counter Relative with Displace­
ment addressing mode, JMP can use any of seven
different addressing modes to find the new PC
value. That flexibility means that JMP can force
processing to any point in the 68000's address space.
JMP is an unconditional program control statement.

ISR (Jump to Subroutine), like BSR, saves a
value on the stack so that processing can return to
its present position after the subroutine is pro­
cessed. The value saved is the address of the instruc-

72

tion right after JSR. JSR is an unconditional jump
and can use any of the seven addressing modes JMP
uses. RTS, explained below, is the instruction used
to return processing after the subroutine.

Conditional Branches and Jumps. Con­
ditional means the branch or jump isn't always
made. If the state of the flags isn't right, the condi­
tional instruction will perform no function at all ex­
cept to increment the PC (so the next instruction
will be addressed).

Bee stands for Branch Conditionally. Like BRA,
Bcc changes the PC value using Program Counter
Relative with Displacement mode to execute a dif­
ferent part of the program. Bcc, however, first
checks to see if a certain condition is met. The con­
ditions the programmer can choose from are listed
in Fig. 5-42. Once one of these conditions is added
to the root Bcc instruction, the mnemonic changes.
For instance, the instruction to "branch if the
overflow is set" is coded as follows:

BVS

The second and third letters signifying the con­
dition. Some of the conditions are straightforward.
For example, Carry Set and Carry Clear simply

CC Carry Cl ear
CS Carry Set
EQ Equal
GE Greater or EQuel
GT Greeter Then
HI High
LE Less of Equal
LS Low or Same
L T Less Than
MI Minus
NE Not Equal
PL Plus
VC Overflow Clear
VS Overfl ow Set

Fig. 5-42. Bcc conditions available.

(N AND V AND (NOT Z)) OR ((NOT N) AND (NOT Y) AND (NOT Z))

N*Y*Z + N*Y*Z

N, V, and Z are the Negative, Overflow, and Zero Flags

Fig. 5-43. Boolean equation for the "greater than" condition.

refer to the value of the C (carry) flag. Other condi­
tions are more complex. "Greater than" can be
represented by a Boolean equation as shown in Fig.
5-43. Boolean Algebra is a special mathematics that
is often used in computer science. The logical in­
structions described earlier in this chapter (AND,
OR, EOR, NOT) are the basic ingredients of
Boolean Algebra. Those ingredients are then com­
bined into more complicated, compound statements.
Don't worry if you don't understand them when you
begin programming; you won't need to use them.
The same warning about using labels instead of ab­
solute displacements and the discussion of the
distance you can branch that accompanied the BRA
instruction above, also apply to Bcc.

If the condition is met, the branch is made. If
the condition is not met, the branch isn't made, and
processing continues with the instruction following
Bce.

DEee is called Test Condition, Decrement, and
Branch (though the mnemonic looks more like
Decrement and Branch on Condition). Many
microprocessors have an instruction such as this one
that helps the programmer set up loops. Loops,
where processing repeats itself more than once, are
very useful structures in programs. Programs
typically use a counter to know how many times to
process through a loop. This is a value stored in a
particular place that specifies how many times to
loop.

DBcc first tests a condition, just as Bcc does.
(DBcc does have two more condition choices than
Bcc has: the full DBcc set is shown in Fig. 5-44.)

As with Bcc, the DBcc instruction mnemonic takes
on the two letters of the condition. Test for Equal,
Decrement, and Branch is coded as follows:

DBEQ

You will never see DBcc in a program. Two con­
dition letters must take the place of the cc.

lf the chosen condition is met, no operation is
performed and processing continues with the in-

CC Corry Clear
CS Corry Set
EQ Equal
F False
GE Greater or Equal
GT Greater Than
HI High
LE Less or Equal
LS Low or Some
LT Less Than
MI Minus
NE Not Equal
PL Plus
T True
VC Overflow Clear
VS Overflow Set

Fig. 5-44. OBcc conditions available.

73

struction after DBcc. If the condition is not met, the
next stage of DBcc takes place. The value of the
low word of a specified data register, called the
counter, is decremented by 1. If the counter then
equals -1, the counter is exhausted. That is, the
counter has counted all the way down. In that case,
processing continues with the instruction after
D Bcc. If the counter is not yet equal to -1, a branch
is made. A displacement value is added to the PC
just as BRA would make. Using labels is also a good
idea with DBcc.

The actions of DBcc can be summarized as
follows:

1. The condition is tested. A true condition
sends processing to the next instruction. This is the
opposite of what is normally implemented. Most in­
strucitons would perform the branch if the condi­
tion were true. In fact, Bcc is the opposite of this:
Bcc makes the branch if the condition is met (is
true).

2. If the condition was false, the counter is
decremented. Once the counter reaches -1, the pro­
cessing continues with the next instruction. If the
counter hasn't reached -1 yet, the branch is made.

The branch will typically send processing back
to repeat instructions just executed. In the way,
DBcc is the last instruction in a loop which will
repeat until the condition changes or the counter
reaches -1. By setting the counter properly, the pro­
grammer can control the number of times the pro­
gram runs through the loop.

Return Instructions. These instructions
bring the program back, or return It, after a
subroutine has been processed. They differ in what
values they retrieve from the stack.

RTS is the basic return instruction. Return from
Subroutine pulls a value from the stack and puts
it into the program counter. Processing then con­
tinues at the new PC location. If the PC value was
saved before a subroutine was processed, and the
subroutine didn't alter the stack, processing will
have returned to the instruction after the branch or
jump to subroutine instruction.

74

RTR (Return and Restore Condition Codes)
does just a bit more work than RTS. RTR first pulls
the condition codes off of the stack, then it pulls the
PC value off. Just as with RTS, processing will
return to the point after the subroutine branch or
jump, but RTR will have restored more of the CPU's
status because the flags will have their previous
value.

RTE (Return from Exception) is a privileged in­
struction. If the CPU is in supervisor state, RTE
will put the complete SR (shift register) value and
then the PC value off of the stack. (The Supervisor
stack is used because the 68000 is in Supervisor
mode.) If the CPU isn't in Supervisor mode, RTE
will generate a Trap.

System Control

The 68000 System Control instructions that are
listed in Fig. 5-45 deal with the status register, the
condition codes, or traps and are divided into three
groups: privileged, Trap generating, and condition
code register.

Privileged. These instructions are privileged
to restrict User programs from changing the system
status. Most can alter the status register contents.
Privileged instructions will only execute when the
CPU is in Supervisor mode. If the CPU is in User
mode, a Trap will be generated (Chapter 7 describes
Exceptions and Traps).

ANDI to SR, EORI to SR, ORI to SR, MOVE
to SR, MOVE USp, and RTE have all been de­
scribed earlier in this chapter. AND! to SR, EORI
to SR, and ORI to SR in the section on Logical In­
structions; MOVE to SR and MOVE USP in the
section on Data Movement instructions; and RTE
in the Program Control section.

RESET asserts the Reset line (signal wire)
which resets all external devices. Processing then
continues with the next instruction.

STOP loads the immediate word (the second
word of the STOP instruction) into the status
register (SR). The PC is incremented as it would
be with any instruction and then the CPU stops.
While stopped, no instructions are fetched or ex­
ecuted. The CPU will remain stopped until a trace,
interrupt, privilege, or reset exception occurs.

Prlvlleged

ANDI to SR
EORI to SR
MOVE EA to SR
MOVE SR to EA
MOVE USP
ORI to SR
RESET
RTE
STOP

Trep Generetlng

CHI(
TRAP
TRAPV

Fig. 5-45. System control instructions.

1. If the T (trace) bit of the status register is
set (meaning the CPU is the trace state) a trace ex­
ception will occur when STOP is executed.

2. Any interrupt request which has priority
higher than the current processor priority (which
is stored as the interrupt priority mask in the status
register) will cause an interrupt exception. A lower
priority interrupt request will have no effect.

3. If the value loaded into the status register
clears the S bit (the Supervisor mode flag), a
privilege violation exception will occur immediately.

4. An external reset (a low pulse on the reset
line) will always generate a reset exception.

Condition Code Register. These instruc­
tions manipulate the low byte of the status register.
That byte contains the X, N, Z, V and C flags. AN­
DI to CCR, EORI to CCR, ORI to CCR, and MOVE
to CCR have all been described earlier in this
chapter: ANDI to CCR, EORI to CCR, and ORI to
CCR in the Logical section; MOVE to CCR in the
Data Movement section.

'!rap Generating. Traps are a particular sort
of internal interrupt that the 68000 uses to control
processing. They are described in detail in Chapter
7.

CHK can Check a value against set limits. If
the value is outside those limits, an exception is
generated and regular processing ceases while ex-

Condition Code Register

ANDI toCCR
EORI to CCR
MOVE CCR to EA
ORI to CCR

ception processing takes over.
CHK examines the low word of a data register

and compares it to a specified upper bound (a two's
complement integer that can be addressed with any
of 11 addressing modes). If the examined data
register word is less than zero or greater than the
upper bound, a Trap is generated. Normal process­
ing ceases and exception processing begins with the
CHK exception vector. CHK is very useful for a
quick and easy check to see that a number, such as
an array size, hasn't been exceeded.

TRAP generates a Trap and initiates exception
processing. Any of 16 different Trap vectors can be
specified by immediate data. The vector specifies
at what address the exception processing should
begin.

TRAPV, called Trap on Overflow, is a condi­
tional form of the TRAP instruction. TRAPV ex­
amines the V (overflow) flag and generates a trap
if that flag is set (equal to 1). The exception pro­
cessing takes place at the TRAPV vector address.
If the V flag is not set, processing continues with
the instruction after TRAPV.

Nothing Instructions

This is not a joke category. Most
microprocessors have such instructions. On the
68000 they are called NOP and ILLEGAL (shown
in Fig. 5-46).

75

NOP
ILLEGAL Fig. 5-46. Nothing instructions.

NOP stands for No Operation. All this instruc­
tion does is increment the PC (Program Counter)
so the next instruction is ready to execute. Why have
it at all? A finite length instruction can help in
building timing loops. Having a harmless filler can
also give you extra space in a program while you
are still debugging that program.

ILLEGAL is a very interesting instruction. Us­
ing it will cause an illegal instruction exception. In
fact, that is what will happen when the CPU tries
to execute any object code that doesn't represent
one of the instructions listed in this chapter. The
difference with the particular illegal instruction code
of this instruction and all other illegal instruction
codes is that Motorola promises that this code will

76

remain illegal. While future, improved chips (such
as the 68020) will use some of the object codes that
are illegal on the 68000 for their own legal instruc­
tions, the ILLEGAL object code will remain illegal
through all future chips.

Why have this instruction at all? So that the pr0-

grammer can work with the Illegal instruction ex­
ception and yet write upwardly compatible code. By
using ILLEGAL instead of some random object
code, the programmer is ensuring that the program
will run the same way on future 6800 family chips.

SUMMARY

Those are all of the 68000 instructions. While this
chapter attempted to describe them briefly and
show their relation to other 68000 instructions.
Chapter 6 shows the actual code, condition code ef­
fects, and addressing modes for each and every in­
struction.

6

Data ~ (8)

Address ~ (8)

SP ~ SP

PC 0

~
eaooo

Instruction Set
T HE PREVIOUS CHAPfER DESCRIBES WHAT AN

instruction is and what general categories of
instructions the 68000 provides to the programmer.
This chapter describes all of the 68000 instructions
individually. It does not cover the instructions that
are specific to the other 68000 CPUs (such as the
68020).

The instructions are listed alphabetically by
their mnemonics (remember that the mnemonics
are the abbreviated instruction names used in
assembly language). The information vital to pro­
grammers appears at the top of the listing:
mnemonic, definition (the full name of the instruc­
tion), description (what the instruction does), ad­
dressing (which addressing modes you can use),
operand size (byte, word, and long-word), flag ef­
fects (which condition codes are affected and how),
and notes (special aspects of the instruction or pit­
falls to watch out for). Following these elements is
a breakdown of the binary object code for the in-

struction (this bit by bit description of the instruc­
tion is important to a complete understanding of
how microprocessors are designed and built, but is
not necessary for programming). Assembly
language syntax (the way the instruction is written)
depends on the addressing mode used. Read
Chapter 4 to learn how the different modes are
written.

If you don't know the mnemonic for a particular
instruction, check in the instruction groups in
Chapter 5. For instance, if you want to do some BCD
arithmetic, check in the Decimal group. Then, when
you find a particular instruction (such as ABCD for
BCD addition) come back to the individual descrip­
tions in this chapter.

Browsing through these instructions is a great
way to glimpse the power of the 68000. Once you
know some instructions, a few addressing modes,
and the assembly language format, you'll be ready
to experiment with assembly language.

77

ABeD
Definition: add decimal (with extend).
Description: ABCD adds the least significant byte (the bottom byte) of source
operand, and the value of the extend flag, to the least significant byte of the destina­
tion. It then stores the result in the destination. The term decimal means that this
addition is done with BCD (Binary Coded Decimal) arithmetic. ABCD has two
major cases, register-to-register and memory-to-memory.

1. Register-to-register uses data registers for both source and destination.
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is
decremented (predecrement addressing mode).
Addressing:

1. Register-to-register. Data Register Direct mode is used for both source
and destination. (The values are stored in registers and are specified directly by
the instruction).

2. Memory-to-memory. Address Register Indirect mode is used for both
source and destination (the instruction specifies the address registers that hold
the memory addresses of both source and destination). Before the values in the
address registers are used, they are decremented by 1. This helps in multibyte
BCD addition.
Operand size: byte.
Instruction length: 1 word.
Condition code effects:
C Set if a decimal carry results from the operation; otherwise cleared.
X Set if a decimal carry results from the operation; otherwise cleared.
Z Cleared if the result is not equal to zero; unchanged if the result equals

zero.
N Undefined (could be set or cleared).
V Undefined (could be set or cleared).

Object code:
1. Register-to-register: 1100aaa100000bbb

Breakdown
1100: ABCD instruction.
aaa: Destination data register.
100000: Specifies register-to-register case.
bbb: Source data register.

2. Memory-to-memory: 1100aaa1000001bbb

Breakdown
1100: ABCD instruction.
aaa: Destination data register.

78

100001: Specifies memory-to-memory case.
bbb: Source data register.

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result.

ADD
Definition: add (binary).
Description: ADD adds the contents of the source to the contents of the destina­
tion and stores the result in the destination. There are two forms of this instruc­
tion that differ only in addressing (as described in the next paragraph).
Addressing: ADD can be used with any of a large number of addressing modes.
The two forms of this instruction offer different addressing choices.

1. Data Register Direct destination. The destination must be addressed by
Data Register Direct mode. Any addressing mode can be used for the source.

2. Data Register Direct source. The source must be addressed by Data
Register Direct mode. Almost any addressing mode (except Program Counter
Relative with Displacement, Program Counter Relative, or Immediate) can be
used for the destination including:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word. As noted below, bytes cannot be used with
Address Register Direct mode.
Instruction length: 1 word.
Condition code effects:
C Set if a carry occurs; otherwise cleared.
X Set if a carry occurs; otherwise cleared.
Z Set if the result is zero; otherwise cleared.
N Set if the result is negative; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.

Object code: 1l01aaabccdddeee

Breakdown
1101: ADD instruction.
aaa: Data register number (for either source or destination Data Register Direct

addressing).

79

b: Operating mode.
o means the data register is the destination.
1 means the data register is the source.

cc: Size specification.
00 means byte.
01 means word.
10 means long-word.

ddd: Addressing mode.
eee: Addressing register number.

Notes: If Address Register Direct addressing is used, the operand size cannot be
specified as byte because address registers cannot work with bytes (only with words
and long-words).

ADDA
Definition: add address.
Description: ADDA is a special case of the ADD instruction. ADDA adds the source
operand to the specified address register and stores the result in that address
register.
Addressing: The destination is only reached by Address Register Direct mode.
Any mode can be used for the source operand.

Data Register Direct
Address Register Direct
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: words or long-words. The full destination address register is used
no matter which operand size is chosen. A word source-operand will be size­
extended to a long-word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 1101aaab11cccddd

Breakdown
1101: ADDA instruction.
aaa: Address register (destination).
b: Size specification.

o means word.

80

1 means long-word.
11: ADDA instruction continued.
ccc: Source addressing mode.
ddd: Source addressing register.

Definition: add immediate.
ADDI

Description: ADD! adds immediate data (which is contained in the next byte or
bytes of the instruction) to the specified destination operand. The result is stored
in the destination.
Addressing The source is addressed by Immediate mode. The destination is
reached any of:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 2 words (if the immediate data is a byte or a word, the first
word is the instruction and the second contains the data); 3 words (if the immediate
data is a long-word, the first word is the instruction and the next two are the long­
word data).
Condition code effects:
C Set if a carry occurs; otherwise cleared.
X Set if a carry occurs; otherwise cleared.
Z Set if the result is zero; otherwise cleared.
N Set if the result is negative; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.

Object code: First word (00000110aabbbccc)
Second word (immediate data)
Third word (immediate data)

00000110: ADD! instruction.
aa: Size specification.

00 means byte.
01 means word.

Breakdown

10 means long-word. If a byte is specified, the low-order byte of the next in­
struction is used by the assembler.

bbb: Destination addressing mode.

81

ccc: Destination addressing register.
immediate data: Byte data is held in the low-order byte of the second word. Word

data is the second word. Long-word data requires a three word instruction
with the second and third words representing the data.

ADDQ
Definition: add quick.
Description: ADDQ adds immediate data (contained within the instruction word
itself) to the specified destination operand. The result is stored in the destination.
As the definition implies, ADDQ is used for quick execution.
Addressing: For the source operand, you can use only Immediate mode. For the
destination operand, you can use any of these modes:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
C Set if a carry occurs; otherwise cleared.
X Set if a carry occurs; otherwise cleared.
Z Set if the result is zero; otherwise cleared.
N Set if the result is negative; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.

Object code: 0101aaaObbcccddd

Breakdown
0101: ADDQ instruction.
aaa: Data field (holding three bits of immediate data with 000 representing 8 and

001 through 111 representing 1 through 7).
0: ADDQ instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
10 means long-word. If a byte is specified, the low-order byte of the next in­
struction is automatically used by the assembler.

ccc: Destination addressing mode.
ddd: Destination addressing register number.

82

Note: If Address Register Direct addressing is used, the operand size cannot be
specified as byte because address registers cannot work with bytes (only with words
and long-words).

ADDX
Definition: add extended.
Description: ADDX adds the source contents and the extend flag to the destina­
tion contents. Stores the result in the destination. ADDX has two major cases,
register-to-register and memory-to-memory.

1. Register-to-register uses data registers for both source and destination.
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified
address register and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is
decremented (predecrement mode).
Addressing: Register-to-register uses Data Register Direct mode; Memory-to­
memory uses Address Register Indirect mode.
Opemnd size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
C Set if a carry occurs; otherwise cleared.
X Set if a carry occurs; otherwise cleared.
Z Cleared if the result is nonzero; otherwise unchanged.
N Set if the result is zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.

Object code:
1. Register-to-register: 1101aaal bbOOOccc

Breakdown
1101: ADDX instruction.
aaa: Destination data register number.
1: ADDX instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

000: ADDX instruction (cont.) Register-to-register case.
ccc: Source addressing data register number.

2. Memory-to-memory: 1101aaalbbOOlccc

Breakdown
1101: ADDX instruction.
aaa: Destination address register number.
1: ADDX instruction (cont.).

83

bb: Operand size specification.
00 means byte.
01 means word.
10 means long-word.

001: ADDX instruction (cont.) Memory-to-memory case.
ccc: Source address register number.

AND
Definition: AND logical.
Description: AND performs a logical AND operation on the contents of a specified
destination operand. Stores the result in the destination. There are two forms of
this instruction, that differ only in addressing, as described in the next paragraph.
Addressing: AND can be used with any of a large number of addressing modes.
The two forms of this instruction offer different addressing choices.

1. Data Register Direct destination. The destination must be addressed by
Data Register Direct mode. Any addressing mode except Address Register Direct
can be used for the source including:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

2. Data Register Direct source. The source must be addressed by Data
Register Direct mode. Almost any addressing mode (except Program Counter
Relative with Displacement, Program Counter Relative, and Immediate) can be
used for the destination including:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word. As noted just above, bytes cannot be used

84

with Address Register Direct mode.
Instruction length: 1 word.
Condition code effects:
N Set if the MSB (Most Significant Bit) of the result is one; otherwise

cleared.
Z Set if the result is zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 1100aaabccdddeee

Breakdown
1100: AND instruction.
aaa: Data register number (for either source or destination, depending on case).
b: Determines addressing case.

o means data register is destination.
1 means data register is source.

cc: Operand size.
00 means byte.
01 means word.
11 means long-word.

ddd: Addressing mode.
eee: Addressing register number.

Notes: If Address Register Direct addressing is used, the operand size cannot be
specified as byte because address registers cannot work with bytes (only with words
and long-words).

ANDI
Definition: AND logical immediate.
Description: AND! performs a logical AND operation on the contents of a specified
destination operand and an immediate value (contained in the next program words).
AND! then stores the result in the destination.
Addressing: The source is addressed by Immediate mode. The destination is
reached any of:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

85

Operand size: byte, word, or long-word.
Instruction length: 2 words (if the immediate data is a byte or a word, the first
word is the instruction and the second contains the data); 3 words (if the immediate
data is a long-word, the first word is the instruction and the next two words are
the long-word data).
Condition code effects:
N Set if the MSB (Most Significant Bit) of the result is one; otherwise

cleared.
Z Set if the result is zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: First word (00000010aabbbccc)
Second word (immediate data)
Third word (immediate data)

00000010: AND! instruction.
aa: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

bbb: Addressing mode.

Breakdown

ccc: Addressing register number.
immediate data: Byte data is held in the low-order byte of the second word. Word

data is the second word. Long-word data requires a three word instruction
with the second and third words representing the data.

ANDI to CCR

Definition: AND logical immediate to condition codes register.
Description: This is a special form of the AND! instruction. AND! to CCR per­
forms a logical AND operation of the contents of the condition code register (CCR:
the low-order byte of the status register) and the immediate value (contained in
the low-order byte of the next program word). The result is then stored in the CCR.
Addressing: The source is addressed by Immediate mode. The destination is the
condition code register.
Operand size: byte.
Instruction length: 2 words (the first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds
all zeros.)
Condition code effects: (These are set directly from the operation's results, which
are stored in the flag register.)
N Cleared if bit 3 of the immediate operand is zero; otherwise unchanged.
Z Cleared if bit 2 of the immediate operand is zero; otherwise unchanged.

86

V Cleared if bit 1 of the immediate operand is zero; otherwise unchanged.
C Cleared if bit 0 of the immediate operand is zero; otherwise unchanged.
X Cleared if bit 4 of the immediate operand is zero; otherwise unchanged.

Object code: First word (0000001000111100)
Second word (immediate data)

Breakdown
0000001000111100: AND! to CCR instruction.
immediate data: The high-order byte is filled with zeros; the low-order byte holds

the immediate data.

ANDI to SR
Definition: AND logical immediate to status register (privileged).
Description: This is a special form of the AND! instruction and is a privileged
instruction. The CPU must be in the supervisor state for this instruction to ex­
ecute. ANDI to SR performs a logical AND operation on the contents of the full
status register and the immediate value contained in the next program word. The
result is stored in the status register. Clearly, this instruction must be privileged
because it can change the entire state of the CPU.
Addressing: The source is addressed by Immediate mode. The destination is the
status register.
OPemnd size: word.
Instruction length: 2 words (the first is the instruction word and the second con­
tains the immediate value).
Condition code effects: (These are set directly from the operation's results, which
are stored in the status register).
N Cleared if bit 3 of the immediate operand is zero; otherwise unchanged.
Z Cleared if bit 2 of the immediate operand is zero; otherwise unchanged.
V Cleared if bit 1 of the immediate operand is zero; otherwise unchanged.
C Cleared if bit 0 of the immediate operand is zero; otherwise unchanged.
X Cleared if bit 4 of the immediate operand is zero; otherwise unchanged.

Object code: First word (0000001001111100)
Second word (immediate data)

Breakdown
0000001001111100: AND! to SR instruction.
immediate data: The full 16 bits of this word hold the immediate data to be add­

ed to the status register.

ASL
Definition: arithmetic shift left.
Description: Shifts the bits of the specified location to the left. The last bit shifted
out of the most significant bit position will be copied into both the C and X flags.
The least significant bit position will be filled with a O. A register or a memory
location can be shifted.

87

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted (the shift count) is specified in one of two ways. A. The shift count
can be held in the least significant six bits of a data register. That can specify
a shift of from 0 to 63 bits. B. Immediate data can specify a shift number that
can range from 1 to 8 bits. (A value of 000 means a shift of 8 positions.)

2. Memory shifts can only be a single bit position.
Addressing:

1. Register. Uses Register Direct mode for the register to be shifted (the
destination).

2. Memory. Uses any of the following modes for the memory location to be
shifted:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

OPerand size:
1. Registers: byte, word, or long-word.
2. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if the most significant bit changes at any point during the shift;

otherwise cleared.
C Set by the last bit shifted out of the operand (which is copied into the C

flag). C is cleared if a shift count of zero is performed.
X St by the last bit shifted out of the operand. That bit is copied into the

X flag. X, unlike C, is unaffected by a shift count of zero.

Object code:
1. Register: 1110aaa1bbcOOddd

Breakdown
1110: ASL instruction.
aaa: Shift count or number of specified register(which it is depends on bit 5, "c",

as described below).
1: ASL instruction.
bb: Operand size specification.

00 means byte.
01 means word.
11 means long-word.

88

c: Specifies where the shift count is held. 0 means the shift count is held in bits
9, 10, and 11 ("aaa"). 1 means the shift count is held in a data register specified
by"aaa."
1 means the shift count is held in a data register specified by "aaa".

00: ASL instruction.
ddd: Specifies the data register to be shifted.

2. Memory: 1110000111aaabbb

Breakdown
1110000111: ASL instruction, memory.
aaa: Addressing mode.
bbb: Addressing register number.

ASR
Definition: arithmetic shift right.
Description: Shifts the bits of the specified location to the right. The last bit shifted
out of the least significant position will be copied into both the C and X flags.
The most significant bit position will retain its value no matter how many bit posi­
tions are shifted. Either a register or a memory location can be shifted.

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted (the shift count) is specified in one of two ways. A. The shift count
can be held in the least significant six bits of a data register. That can specify
a shift of from 0 to 63 bits. B. Immediate data can specify the shift number and
that can range from 1 to 8 bits. (A value of 000 means a shift of 8 positions.)

2. Memory shifts can only be a single bit position.
Addressing:

1. Register. Uses Register Direct mode for the register to be shifted (the
destination).

2. Memory. Uses any of the following modes for the memory location to be
shifted:

Operand size:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

1. Registers: byte, word, or long-word.
2. Memory: 1 word.

Instruction length: 1 word.

Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Unaffected.

89

C Set by the last bit shifted out of the operand. That bit is copied into the
C flag. C is cleared if a shift count of zero is performed.

X Set by the last bit shifted out of the operand. That bit is copied into the
X flag. X, unlike C, is unaffected by a shift count of zero.

Object code:
1. Register: 1110aaaObbcOOddd

Breakdown
1110: ASR instruction.
aaa: Shift count or number of specified register (which it is depends on bit 5, "c, "

as described below).
0: ASR instruction.
bb: Operand size specification.

00 means byte.
01 means word.
11 means long-word.

c: Specifies where the shift count is held.
o means the shift count is held n bits 9, 10, and 11 ("aaa").
1 means the shift count is held in a data register specified by "aaa."

00: ASR instruction.
ddd: Specifies the data register to be shifted.

2. Memory: 1110000111aaabbb

Breakdown
1110000111: ASR instruction, memory case.
aaa: Addressing mode.
bbb: Addressing register number.

Bee
Definition: branch (conditionally).
Description: Bee tests the state of a particular flag (condition code) in the status
register. If the condition (which is specified in the instruction by the program­
mer) is met, the PC (program counter) is set to a new value. Otherwise, if the
condition is not met, execution continues with the next instruction. You can choose
from any of the following conditions.

Symbol Title Operation

HI High -C AND -Z
LS Low or same COR Z
CC Carry clear -C
CS Carry set C
NE Not equal -Z
EQ Equal Z
YC Overflow clear -Y

90

Symbol

VS
PL
MI
GE
LT
GT
LE

Title

Overflow set
Plus
Minus
Greater or equal
Less than
Greater than
Less or equal

V
-N
N

Operation

(N and V) OR (-N AND -V)
(N AND -V) OR (-N AND V)
(N AND V AND -Z) OR (-N AND V AND -Z)
Z OR (N AND -V) OR (-N AND V)

The Bcc instruction is written with the specified condition symbol replacing
the "cc." For example, BNE means "branch if not equal:'
Addressing: Program Counter Relative is the only mode used for this instruction.
That means the displacement from the present instruction's location can only be
from -126 to + 129 or from -32766 to +32769 bytes (depending on whether you
choose the 8-bit or the 16-bit displacement). The displacement is added to the
program counter value (after the program counter value has been incremented
by two). The displacement value, either 8 bits or 16 bits, is interpreted as a two's
complement integer specifying a distance in bytes.
Operand size: byte or word.
Instruction length: 1 or 2 words. 1 word if the displacement is 8 bits long (with
the low-order byte being the displacement); 2 words if the displacement is 16 bits
long (with the low-order byte of the first word equal to zero and the second word
being the displacement).
Condition code effects: none.
Object code: First word (0110aaaabbbbbbbb)

Second word (displacement)

Breakdown
0110: Bcc instruction
aaaa: Specifies the condition to be tested. (See the table above).
bbbbbbbb: Displacement value. After incrementing the PC by two (because of

the current Bee instruction) add the sign-extended value of the 8-bit displace­
ment to the PC to get the new processing address. If the 8-bit displacement
is equal to zero, the displacement value to use is the sign-extended value of
the next instruction word.

displacement: As mentioned just above, if the 8-bit displacement value is zero,
this word represents the displacement value.

Note: If you try to program a branch to the next word, you have to use the 2 word
instruction (with the 16-bit displacement). A value of zero in the 8-bit displace­
ment (which would be necessary for such a branch) tells the CPU to consider the
next word as the displacement value.

BCHG
Definition: bit test and change.
Description: BCHG tests a specified bit of a specified operand (found in either data

91

register or memory location) and indicates the result in the Z flag (which is set
if the tested bit is zero and is cleared otherwise). After it is tested, the bit is com­
plemented (made the opposite of its present value).
Addressing: An operand must be addressed and then a particular bit within that
operand must be specified.

1. The operand can be specified by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

2. The bit to test can be specified in either of two ways. A. Data Register
Direct. The contents of a data register specify the bit to test. Even at this level,
there are two possibilities: a. Any of the 32 bits in a data register may be tested.
The least significant 6 bits of the specifying data register determine which of the
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least
significant 3 bits of the specifying data register determine which of the 8 bits to
test. B. Immediate. Immediate data in the word following the instruction word
specifies which bit to test. As in section a. above, there are two possibilities here:
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits
of a memory location can be tested. The least significant 3 bits of the immediate
data determine which of the 8 bits to test.
Operand size: byte or long-word.
Instruction length: 1 word (if the bit to test is specified by a data register) or 2
words (if the bit to test is specified by immediate data).
Condition code effects:
N Not affected.
Z Set if the bit tested equals zero; otherwise cleared.
V Not affected.
C Not affected.
X Not affected.

Object code:
1. Data Register specification of bit to test (this is called bit number dynamic);

0000aaa101bbbccc

Breakdown
0000: BCRG instruction.
aaa: Specifies the data register that holds the bit to test.
101: BCRG instruction.

92

bbb: Addressing mode for the operand holding the bit to test.
ccc: Addressing register number for the operand holding the bit to test.

2. Immediate specification of bit to test (called bit number static):
First word (0000100001aaabbb)
Second word (bit number)

Breakdown

0000100001: BCRG instruction.
aaa: Addressing mode for the operand holding the bit to test.
bbb: Addressing register number for the operand holding the bit to test.
bitnumber: This word specifies the number of the bit to test. The upper 8 bits

are all zeroes, the lower 8 bits are the bit number. If the bit to test is in a
data register, the least significant 6 bits determine its bit position; if the bit
to test is in a memory location, the least significant 3 bits determine its bit
position.

BCLR
Definition: bit test and clear.
Description: BCLR tests a specified bit in a specified location (either data register
or memory location) and indicates the result in the Z flag (which is set if the tested
bit is zero and is cleared otherwise). After it is tested, the bit is cleared (set equal
to zero). BCLR is very similar to BCRG. The only difference is that this instruc­
tion clears the tested bit instead of complementing it.
Addressing: An operand must be addressed and then a particular bit within that
operand must be specified.

1. The operand can be specified by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

2. The bit to test can be specified in either of two ways. A. Data Register
Direct. The contents of a data register specify the bit to test. Even at this level,
there are two possibilities: a. Any of the 32 bits in a data register may be tested.
The least significant 6 bits of the specifying data register determine which of the
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least
significant 3 bits of the specifying data register determine which of the 8 bits to
test. B. Immediate. Immediate data in the word following the instruction word
specifies which bit to test. As in section a. above, there are two possibilities here:

93

a. Any of the 32 bits in a data register may be tested. The least significant 6 bits
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits
of a memory location can be tested. The least significant 3 bits of the immediate
data determine which of the 8 bits to test.
OPerand size: byte or long-word.
Instruction length: 1 word (if the bit to test is specified by a data register) or 2
words (if the bit to test is specified by immediate data).
Condition code effects:
N Not affected.
Z Set if the bit tested equals zero; otherwise cleared.
V Not affected.
C Not affected.
X Not affected.

Object code:
1. Data register specification of bit to test (this is called bit number dynamic):

0000aaall0bbbccc

Breakdown
0000: BCLR instruction.
aaa: Specifies the data register that holds the bit to test.
110: BCLR instruction.
bbb: Addressing mode for the operand holding the bit to test.
ccc: Addressing register number for the operand holding the bit to test.

2. Immediate specification of bit to test (called bit number static): First word
(0000100010aaabbb)

Second word (bitnumber)

Breakdown
0000100010: BCLR instruction.
aaa: Addressing mode for the operand holding the bit to test.
bbb: Addressing register number for the operand holding the bit to test.
bitnumber: This word specifies the number of the bit to test. The upper 8 bits

are all zeroes, the lower 8 bits are the bit number. If the bit to test is in a
data register, the least significant 6 bits determine its bit position if the bit
to test is in a memory location, the least significant 3 bits determine its bit
position.

BRA
Definition: branch (unconditionally).
Description: BRA forces the CPU to continue processing at a new point in the pro­
gram. It accomplishes this by putting a new value into the program counter register
(PC). The specified address for new processing is found by adding the current
PC value (after it has been incremented by two), and a displacement value. The

94

displacement (which is sign-extended) is a two's complement number found in the
lease significant byte of the instruction word or (when that byte is equal to zero)
in the next word in the instruction sequence.
Addressing: Only the Immediate mode can be used to produce the new PC value.
OPerand size: byte or word.
Instruction length: 1 or 2 words (1 word if the displacement is 8 bits; 2 words if
the displacement is 16 bits).
Condition code effects: none.
Object code: first word (01100000aaaaaaaa)

second word (displacement)

Breakdown
01100000: BRA instruction.
aaaaaaaa: Byte displacement value. If equal to zero, the next instruction word is

the displacement value.
displacement: The immediate displacement value is found here if it is 16 bits long.

Note: As with Bcc, you cannot branch to the next instruction with a short (8-bit)
displacement. Such a branch would require a zero value for the 8 bits, which would
tell the CPU that the next word was the 16-bit displacement.

BSET
Definition: bit test and set.
Description: BSET tests a specified bit in a specified operand (either data register
or memory location) and indicates the result in the Z flag (which is set if the tested
bit is zero and is cleared otherwise). After it is tested, the bit is set to 1.
Addressing: An operand must be addressed and then a particular bit within that
operand must be specified.

1. The operand can be specified by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

2. The bit to test can be specified in either of two ways. A. Data Register
Direct. The contents of a data register specify the bit to test. Even at this level,
there are two possibilities: a. Any of the 32 bits in a data register may be tested.
The least significant 6 bits of the specifying data register determine which of the
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least
significant 3 bits of the specifying data register determine which of the 8 bits to
test. B. Immediate. Immediate data in the word following the instruction word

95

specifies which bit to test. As in section A above, there are two possibilities here:
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits
of a memory location can be tested. The least significant 3 bits of the immediate
data determine which of the 8 bits to test.
OPerand size: byte or long-word.
Instruction length: 1 word (if the bit to test is specified by a data register) or 2
words (if the bit to test is specified by immediate data).
Condition code effects:
N Not affected.
Z Set if the bit tested equals zero; otherwise cleared.
V Not affected.
C Not affected.
X Not affected.

Object code:
1. Data register specification of bit to test (this is called bit number dynamic):

OOOOaaalllbbbccc

Breakdown
0000: BSET instruction.
aaa: Specifies the data register that holds the bit to test.
111: BSET instruction.
bbb: Addressing mode for the operand holding the bit to test.
ccc: Addressing register number for the operand holding the bit to test.

2. Immediate specification of bit to test (called bit number static): First word
(0000100011aaabbb)

Second word (bitnumber)

Breakdown
0000100011: BSET instruction.
aaa: Addressing mode for the operand holding the bit to test.
bitnumber: This word specifies the number of the bit to test. Theupper 8 bits

are all zeros, the lower 8 bits are the bit number. If the bit to test is in a data
register, the least significant 6 bits determine its bit position; if the bit to test
is in a memory location, the least significant 3 bits determine its bit position.

BSR
Definition: branch to subroutine.
Description: BSR forces the CPU to continue processing at a new point in the pro­
gram. It accomplishes this by putting a new value into the program counter register
(PC). This is called a branch to a subroutine, because unlike BRA (which is just
a ranch) the old PC value is saved (on the system stack). That means you can return
to the same point in the program later, for example, after executing a subroutine.

96

The specified address for new processing is found by adding the current PC value
(after it has been incremented by two), and a displacement value. The displace­
ment (which is sign-extended) is a two's complement number found in the least
significant byte of the instruction word or (when that byte is equal to zero) in the
next word int he instruction sequence.
Addressing: Immediate.
Operand size: byte or word.
Instruction length: 1 or 2 words (1 word if the displacement is 8 bits; 2 words if

the displacement is 16 bits).
Condition code effects: none.
Object code: First word (01100001aaaaaaaa)

Second word (displacement)

Breakdown
01100001: BSR instruction.
aaaaaaaa: Byte displacement value. If equal to zero, the next instruction word is

the displacement value.
displacement: The immediate displacement value is found here if it is 16 bits long.

Note: As with Bcc, you cannot branch to the next instruction with a short (8-bit)
displacement. Such a branch would require a zero value for the 8 bits, which would
tell the CPU that the next word was the 16-bit displacement.

BTST
Definition: bit test.
Description: BTST test a specified bit in a specified location (either data register
or memory location) and indicates the result in the Z flag (which is set if the tested
bit is zero and is cleared otherwise).
Addressing: An operand must be addressed and then a particular bit within that
operand must be specified.

1. The operand can be specified by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

2. The bit to test can be specified in either of two ways. A. Data Register
Direct. The contents of a data register specify the bit to test. Even at this level,
there are two possibilities: a. Any of the 32 bits in a data register may be tested.
The least significant 6 bits of the specifying data register determine which of the
32 bits to test. b. Any of the 8 bits of a memory location can be tested. The least

97

significant 3 bits of the specifying data register determine which of the 8 bits to
test. B. Immediate. Immediate data in the word following the instruction word
specifies which bit to test. As in section A. above, there are two possibilities here:
a. Any of the 32 bits in a data register may be tested. The least significant 6 bits
of the immediate data determine which of the 32 bits to test. b. Any of the 8 bits
of a memory location can be tested. The least significant 3 bits of the immediate
data determine which of the 8 bits to test.
Operand size: byte of long-word.
Instruction length: 1 word (if the bit to test is specified by a data register) or 2
words (if the bit to test is specified by immediate data).
Condition code effects:
N Not affected.
Z Set if the bit tested equals zero; otherwise cleared.
V Not affected.
C Not affected.
X Not affected.

Object code:
1. Data Register specification of bit to test (this is called bit number dynamic):

0000aaa100bbbccc

Breakdown
0000: BTST instruction.
aaa: Specifies the data register that holds the bit to test.
100: BTST instruction.
bbb: Addressing mode for the operand holding the bit to test.
ccc: Addressing register number for the operand holding the bit to test.

2. Immediate specification of bit to test (called bit number static): First word
(0000100000aaabbb)

Second word (bitnumber)

Breakdown
0000100000: BTST instruction.
aaa: Addressing mode for the operand holding the bit to test.
bbb: Addressing register number for the operand holding the bit to test.
bitnumber: This word specifies the number of the bit to test. The upper 8 bits

are all zeros, the lower 8 bits are the bit number. If the bit to test is in a data
register, the least significant 6 bits determine its bit position; if the bit to test
is in a memory location, the least significant 3 bits determine its bit position.

CHK
Definition: check register against boundaries.
Description: CHK compares the contents of a data register to a specifies source
value (either in a data register or in memory) and to zero. If the data register con-

98

tents are less than zero, or greater than the source contents, CHK generates a
TRAP and begins exception processing (see both the TRAP instruction and
Chapter 7, Exceptions). Exception processing will use the CHK vector stored in
the exception vector table (which begins at OI8H in memory). Only the low-order
word of the specified source data register is compared. The comparison is made
using two's complement integers.
Addressing: The destination (the data register to be checked) is only addressed
by Data Register Direct mode. The source (the operand to check against) can be
addressed by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Pre decrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: word.
Instruction length: 1 word.
Condtion code effects:
N Set if the destination contents are negative; cleared if they are greater

than the upper bound (the source contents).
Z Affected but undefined (value could be 1 or 0).
V Affected but undefined.
C Affected but undefined.
X Not affected.

Object code: OIOOaaall0bbbccc

Breakdown
0100: CHK instruction.
aaa: Number of the source data register.
110: CHK instruction (cont.).
bbb: Destination addressing mode.
ccc: Destination addressing register number.

Note: CHK can be useful for ensuring that array references don't run beyond the
array's dimensions.

CLR
Definition: clear an operand.

99

Description: Clears a specified location (fills the location with zeros).
Addressing: These modes can specify the location (destination) to clear:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
Z Always set.
N Always cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: OlOOOOlOaabbbccc

Breakdown
01000010: CLR instruction.
aa: Specifies operand size.

00 means byte.
01 means word.
10 means long-word.

bbb: Destination addressing mode.
ccc: Destination addressing register number.

CMP
Definition: compare.
Description: CMP subtracts the contents of a specified location (the source) from
the contents of a data register (the destination). The flags in the status register
are set according to the result. Neither the source contents nor the data register
contents are changed.
Addressing: The destination is only addressed by Data Register Direct mode. The
source can be addressed by any addressing mode:

100

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect

Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Because this is a subtraction operation, C operates as a borrow flag.

This is, if a borrow occurs, this flag is set. Otherwise, it is cleared.
X Not affected.

Object code: 10llaaaObbcccddd

Breakdown
1011: CMP instruction.
aaa: Specifies the destination data register.
0: CMP instruction (cont.).
bb: Specifies the operalid size.

00 means byte.
01 means word.
10 means long-word.

ccc: Source addressing mode.
ddd: Source addressing register number.

Note: Remember that the carry flag (C) represents a borrow for this instruction
and not a carry.

CMPA
Definition: compare address.
Description: CMPA subtracts the contents of a specified location (the source) from
the contents of an address register (the destination). The condition codes (flags)
in the status register are set according to the result. Neither the source nor the
destination contents are changed. CMPA is a special case of the CMP instruction.
Addressing: The destination is only addressed by Address Register Direct mode.
The source can be addressed by any addressing mode:

Data Register Direct
Address Register Direct
Address Register Indirect

101

Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: word or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result if negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Because this is subtraction operation, C operates as a borrow flag. That

is, if a borrow occurs, this flag is set. Otherwise, it is cleared.
X Not affected.

Object code: 1011aaab11cccddd

Breakdown
1011: CMPA instruction.
aaa: Specifies the destination address register.
b: Specifies the operand size.

o means word.
1 means long-word.

11: CMPA instruction (cont.).
ccc: Source addressing mode.
ddd: Source addressing register number.

Note: Remember that the carry flag (C) represents a borrow for this instruction
and not a carry. This instruction is nearly identical to CMP except that, because
it uses an address register, it cannot work with bytes (only with words or
long-words) .

CMPI
Definition: compare immediate.
Description: CMPI subtracts the immediate data (found in the next program in­
struction word) from the contents of the specified destination and then sets the
flags according to the result. The destination contents are not changed.
Addressing: The source (the data to subtract) is addressed by the Immediate mode.
The destination can be addressed by any of these modes:

Data Register Direct

102

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Opemnd size: byte, word, or long-word.
Instruction length: 2 or 3 words (2 words if the immediate data is 8 or 16 bits long,
3 words if it is 32 bits long).
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Because this is a subtraction operation, C operates as a borrow flag.

That is, if a borrow occurs, this flag is set. Otherwise, it is cleared.
X Not affected.

Object code: First word (00001100aabbbccc)
Second word (immediate)
Third word (immediate)

00001100: CMPI instruction.
aa: Specifies the operand size.

00 means byte.
01 means word.
10 means long-word.

Breakdown

bbb: Destination addressing mode.
ccc: Destination addressing register number.
immediate: If the immediate data is 8 bits (as specified by aa above) it is held

in the low-order byte of the second instruction word. If the immediate data
is 16 bits, it is held in the full second instruction word. And if the immediate
data is a full 32 bits long, it is held in both the second and third instruction
words.

Note: Remember that the carry flag (C) represents a borrow for this instruction
and not a carry.

CMPM
Definition: compare memory.
Description: CMPM subtracts the contents of the specified source memory loca­
tion from that of the specified destination memory location. The status flags are
set according to the result. Neither the contents of the destination nor of the source
are changed by this instruction.

103

Addressing: Both source and destination are always addressed by Postincrement
Register Indirect mode. After the two specified address registers have been used
to get the two operands, and the operands have been compared, each of the
specified address registers is incremented (by 1 if a byte was specified, by 2 if
a word was specified, and by 4 if a long-word was specified).
Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Because this is a subtraction operation, C operates as a borrow flag.

That is, if a borrow occurs, this flag is set. Otherwise, it is cleared.
X Not affected.

Object code: 10llaaalbbOOlccc

Breakdown
1011: CMPM instruction.
aaa: Specifies the address register that holds the destination address.
1: CMPM instruction (cont.).
bb: Specifies the operand size.

00 means byte.
01 means word.
10 means long-word.

001: CMPM instruction (cont.).
ccc: Specifies the address register that holds the source address.

Note: Remember that the carry flag (C) represents a borrow for this instruction
and not a carry.

DBcc
Definition: test condition, decrement and branch.
Description: DBcc is a simple looping instruction. It first tests whether the specified
condition (the choices are listed below) has been met. If it has, the processing goes
on to the next instruction in the program. If the condition has not been met, the
low-order word the specified data register (often called the counter) is decremented
by 1. If the contents of that data register are then equal to -I, the processing
goes on to the next program instruction. If the contents are not equal to -I, the
program branches to a new location. That location is found by adding a 16-bit
(sign-extended) displacement to the PC. You can choose any of the following con­
ditions:

Symbol

T
F

104

Title

True
False

Operation

1
o

Symbol Title Operation

HI High -C AND -Z
LS Less or same COR Z
CC Carry clear -C
CS Carry set C
NE Not equal -Z
EQ Equal Z
VC Overflow clear -V
VS Overflow set V
PL Plus -N
MI Minus N
GE Greater or equal (N AND V) OR (-N AND -V)
LT Less than (N AND -V) OR (-N AND V)
GT Greater than (N AND V AND -Z) OR (-N AND V AND -Z)
LE Less or equal Z or (N AND -V) OR (-N AND V)

The instruction is written with the condition symbol replacing the "cc." For ex­
ample, DBNE means "Test, decrement, and branch until not equal."
Addressing: The counter data register is only reached by Data Register Direct
mode. The new program execution address is found by Program Counter Relative
with Displacement mode.
Operand size: word.
Instruction length: 2 words
Condition code effects: none.
Object code: First word (0101aaaall001bbb)

Second word (displacement)

Breakdown
0101: DBcc instruction.
aaaa: Specifies the condition to be tested.
11001: DBcc instruction (cont.).
bbb: Specifies the data register to be decremented.
displacement: This is the 16-bit value added to the PC to get the new execution

address (the displacement value is counted as a two's complement number
of bytes).

DIVS
Definition: signed divide.
Description: DIVS divides (using two's complement arithmetic) the long-word in
the destination data register by the word source operand. It then stores the result
in the destination data register (with the 16-bit quotient in the lower word and
the 16-bit remainder in the upper word). The sign of the remainder is the same
as that of the dividend (unless the remainder equals zero). There are two special
circumstances involved in using this division instruction:

1. Division by zero is not possible and causes a TRAP. Exception process-

105

ing begins automatically. The vector is 014H (also known as vector #5). See the
TRAP instruction description for more details.

2. An overflow may be detected before the instruction is complete. The flag
will be set and the operands won't be affected.
Addressing: The destination can only be addressed by Data Register Direct mode.
The source can be addressed by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared (except that it is unde­

fined if there is an overflow).
Z Set if the result is zero; cleared otherwise (except that it is undefined if

there is an overflow).
V Set if there is an overflow. This will happen if the source contents are

larger than the destination contents. The V flag will be set before divi­
sion is performed, and the operands will not be changed. In other
words, the division will not be carried out.

C Always cleared.
X Not affected.

Object code: 1000aaa111bbbccc

Breakdown
1000: DIVS instruction.
aaa: Specifies the destination data register.
111: DIVS instruction (cont.).
bbb: Source addressing mode.
ccc: Source addressing register number.

DIVU
Definition: Unsigned divide.
Description: DIVU divides (using unsigned binary arithmetic) the long-word in
the destination data register by the word source operand. It then stores the result

106

in the destination data register (with the 16-bit quotient in the lower word and
the 16-bit remainder in the upper word). There are two special circumstances in­
volved in using this division instruction:

1. Division by zero is not possible and causes a TRAP. Exception process­
ing begins automatically. The vector is 014H (also known as vector #5). See the
TRAP instruction description for more details.

2. An overflow may be detected before the instruction is complete. The
overflow flag will be set, the instruction won't be executed, and the operands won't
be affected.
Addressing: The destination can only be addressed by Data Register Direct mode.
The source can be addressed by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

OPemnd size: word.
Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the quotient is set; cleared otherwise

(except that it is undefined if there is an overflow).
Z Set if the result is zero; cleared otherwise (except that it is undefined if

there is an overflow).
V Set if there is an overflow. This will happen if the source contents are

larger than the destination contents. The V flag will be set before divi­
sion is performed, and the operands will not be changed. In other
words, the division will not be carried out.

C Always cleared.
X Not affected.

Object code: 1000aaaOllbbbccc

Breakdown
1000: DIVU instruction.
aaa: Specifies the destination data register.
011: DIVU instruction (cont.).
bbb: Source addressing mode.
ccc: Source addressing register number.

107

Note: If the quotient is larger than 16 unsigned bits, an overflow will occur.

EOR
Definition: exclusive logical OR.
Description: EOR performs a bit-by-bit exclusive-OR operation on the contents of
a specified data register and a specified destination operand. The result is stored
in the destination data register. Exclusive-OR sets each bit where either one or
the other, but not both, of the bit positions of the source and destination are set.
All other bit positions of the result are cleared.
Addressing modes: The source can only be addressed by Data Register Direct mode.
The destination can be addressed by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is set; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 10llaaa1bbcccddd

Breakdown
1011: EOR instruction.
aaa: Specifies the source data register.
1: EOR instruction (cont.).
bb: Specifies the operand size.

00 means byte.
01 means word.
10 means long-word.

ccc: Destination addressing mode.
ddd: Destination addressing register number.

EORI
Definition: exclusive-OR immediate.
Description: EORI performs a bit-by-bit exclusive-OR operation on the immediate

108

data (found in the next program instruction words) and the contents of a specified
destination operand. The result is stored in the destination. Exclusive-OR sets
each bit where either one or the other, but not both, of the bit positions of the
source and destination are set. All other bit positions of the result are cleared.
Addressing modes: The source (data to be compared) is reached only by the Im­
mediate mode. The destination can be reached by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 2 or 3 words (2 if the immediate data is 8 bits or 16 bits long,
3 words if the immediate data is 32 bits long).
Condition code effects:
N Set if the most significant bit of the result is set; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: First word (00001010aabbbccc)
Second word (immediate)
Third word (immediate)

00001010: EORI instruction
aa: Specifies the operand size.

00 means byte.
01 means word.
10 means long-word.

Breakdown

bbb: Destination addressing mode.
ccc: Destination addressing register number.
immediate: If the immediate data is specified as 8 bits (by aa above), the lower

byte of the second word contains that data. If the immediate data is 16 bits,
the full second word is that data. If the immediate data is a full 32 bits,
both the second and third instruction words contain the data.

EORI to CCR
Definition: exclusive-OR immediate to condition codes register.
Description: This is a special form of the EORI instruction. EOR performs a bit-

109

by-bit exclusive-OR operation on the contents of the condition codes register (CCR:
the low-order byte of the status register) and the immediate value contained in
the low-order byte of the next program word. The result is stored in the CCR.
Exclusive-OR sets each bit where either one or the other, but not both, of the bit
positions of the source and destination are set. All other bit positions of the result
are cleared.
Addressing: The source is addressed by Immediate mode. The destination is the
condition code register.
Operand size: byte.
Instruction length: 2 words. (The first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds
all zeros.)
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register).
N Changed if bit 3 of the immediate operand is one; otherwise unchanged.
Z Changed if bit 2 of the immediate operand is one; otherwise unchanged.
V Changed if bit 1 of the immediate operand is one; otherwise unchanged.
C Changed if bit 0 of the immediate operand is one; otherwise unchanged.
X Changed if bit 4 of the immediate operand is one; otherwise unchanged.

Object code: First word (0000101000111100)
Second word (immediate)

Breakdown
0000101000111100: EORI to CCR instruction.
immediate data: The high-order byte is filled with zeros; the low-order byte holds

the immediate data.

EORI to SR
Definition: exclusive-OR immediate to status register (privileged).
Description: This is a special form of EORI and is a privileged instruction: it can
only be performed if the CPU is in supervisor mode. EOR performs a bit-by-bit
exclusive-OR operation on the contents of the status register and the immediate
value contained in the next program word. The result is stored in the CCR.
Exclusive-OR sets each bit where either one or the other, but not both, of the bit
positions of the source and destination are set. All other bit positions of the result
are cleared.
Addressing: The source is addressed by Immediate. The destination is the status
register.
OPerand size: word.
Instruction length: 2 words. (The first is the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds
all zeros.)
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register).
N Changed if bit 3 of the immediate operand is one; otherwise unchanged.

110

Z Changed if bit 2 of the immediate operand is one; otherwise unchanged.
V Changed if bit 1 of the immediate operand is one; otherwise unchanged.
C Changed if bit 0 of the immediate operand is one; otherwise unchanged.
X Changed if bit 4 of the immediate operand is one; otherwise unchanged.

Object code: First word (0000101001111100)
Second word (immediate)

Breakdown
0000101001111100: EORI to SR instruction.
immediate data: The second instruction word is the immediate data.

Note: Remember that when the entire status register is used as a destination for
EOR (of the other logical instructions), EORI becomes a privileged instruction,
so it can only be used from the Supervisor mode.

EXG
Definition: exchange registers.
Description: Exchanges the contents of one 32-bit register with that of another
32-bit register. This is the equivalent of several Move operations. The entire value
in one register is replaced with that of the second register and the second register
is filled with the previous contents of the first register. The exchange can be made
between Data Register and Data Register, or Data Register and Address Register,
or Address Register and Address Register.
Addressing Modes: The source and destination are addressed by either Data
Register Direct mode or Address Register Direct mode.
Operand size: long-word.
Instruction length: 1 word.
Conditon code effects: none.
Object code: llOOaaa1bbbbbccc

Breakdown
1100: EXG instruction.
aaa: Specifies a register. If the exchange is between a data and an address register,

ccc specifies the data register.
1: EXG instruction (cont.).
bbbbb: Specifies the mode of the operation.

01000 means both source and destination are data registers.
01001 means both are address registers.
10001 means a data and an address register are to be exchanged.

ccc: Specifies a register. If the exchange is between a data and an address register,
ccc specifies the address register.

EXT
Definition: sign extend.
Description: EXT is used only with a data register. It extends the sign-bit of a

111

datum to the most significant bit of the register space. In other words, for a byte,
the sign-bit (bit 7) is extended through bit 8 to bit 15 of the register. For a word,
the sign-bit (bit 15) is extended through bit 16 to bit 32 of the register. This in­
struction helps keep arithmetic correct when you are working with bytes or
words-data that doesn't fill the data register. If the sign bit weren't extended,
the sign of the number wouldn't be read. Since the register is 32 bits long, the
bit 32 is assumed to be the sign bit. EXT instruction extends the true sign bit
to the usable position.
Addressing mode: The data register to be manipulated is found by Data Register
Direct mode.
Operand size: word or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result of the operation is negative; otherwise cleared.
Z Set if the result of the operation is zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 01001000aaOOObbb

01001000: EXT instruction.
aa: Size specification.

Breakdown

10 means to extend a low-order byte to a word.
11 means to extend a low-order word to a long-word.

000: EXT instruction (cont.).
bbb: Specifies the data register.

ILLEGAL
Definition: illegal instruction.
Description: ILLEGAL forces the illegal instruction exception to start processing.
(This instruction will be retained in the newer 68000 family CPUs.) Other illegal
instruction object codes may be used in other CPUs for new instructions. The
PC value and the SR value will be saved on the stack and then the Illegal Instruc­
tion Vector will be put into the PC.
Addressing: none. As noted above, the PC (program counter) is loaded with the
Illegal Instruction Vector.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100101011111100

Breakdown
0100101011111100: ILLEGAL instruction.

112

JMP
Definition: jump.
Description:]MP forces an unconditional jump to a different place in the program.
In other words, the program counter value is replace with a new value (specified
by the instruction). Processing will continue with the instruction found at that new
address. Because memory is organized in bytes, the new program counter value
will be found in the specified address and the specified address + 2.
Addressing: The new value to put into the PC can be found by any of these ad­
dressing modes:

Address Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index

OPemnd size: no operand.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111011aaabbb

0100111011:]MP instruction.
aaa: Addressing mode.
bbb: Addressing register number.

Definition: jump to subroutine.

Breakdown

JSR

Description: JSR, like JMP, unconditionally forces processing to a different part
of the program. The PC (program counter) value will be replaced by the value
specified by the instruction. Unlike JMP, JSR saves the old PC value (the long­
word address of the instruction following JSR) on the system stack. That is done
so that-once the subroutine has been completed-processing of the main program
can resume where it left off. An RTS (Return from Subroutine) instruction will
handle the return duties as long as the stack values (both stack pointer and stack)
haven't been changed while processing the subroutine.
Addressing: The new value to put into the PC can be found by any of these ad­
dressing modes:

Address Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

113

Program Counter Relative with Displacement
Program Counter Relative with Index

operand size: no operand.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111010aaabbb

0100111010: JSR instruction.
aaa: Addressing mode.
bbb: Addressing register number.

Definition: load effective address.

Breakdown

LEA

Description: LEA forms an effective address using one of the addressing modes
listed below, and loads the address into an address register. This instruction is
unusual because it loads the address-not the contents found at that address­
into the destination register.
Addressing: The destination-the register to load the address into-is only
reached by Address Register Direct mode. The source can be reached by any of
these addressing modes:

Address Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index

Operand size: long-word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100aaa111bbbccc

0100: LEA Instruction.
Breakdown

aaa: Destination address register number.
111: LEA instruction (cont.).
bbb: Source addressing mode.
ccc: Source addressing reg:ster number.

LINK
Definition: link and allocate.
Description: LINK pushes the contents of a specified address register onto the

114

system stack. That address register is called a frame pointer. The stack pointer
is then loaded into that address register. Then a sign-extended two's complement
displacement value-from the next word of the instruction-is added to the stack
pointer. All of this manipulating lets you use a certain space of the stack-called
frame-for the variables in a subroutine. The displacement moves the active stack
pointer to the new frame. An UNLK instruction reverses this process.
Addressing: immediate.
Operand size: no operand.
Instruction length: 2 words.
Condition code effects: none.
Object code: First word (0100111001010aaa)

Second word (displacement)

Breakdown
0100111001010: LINK instruction.
aaa: Address register number.
displacement: This 16-bit value is interpreted as a two's complement number and

is sign-extended to a full 32-bits.

Note: This is a tricky instruction for beginners to understand and use. For instance,
if you specify a positive displacement, the new frame contents may overlay-and
thus obliterate-previous stack contents that you didn't want to lose.

LSL
Definition: logical shift left.
Description: LSL shifts the contents of the specified location to the left. The last
bit shifted out of the most significant bit position will be copied into both the C
and X flags. The least-significant bit position will be filled with a O. LSL performs
just as ASL does. The shift can be made on a register or on a memory location.

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted is specified in one of two ways. A. The shift count can be held in
the least significant six bits of a data register. That can specify a shift of from
o to 63 bits. B. Immediate data can specify the shift number and that can range
from 1 to 8 bits. (A value of 000 means a shift of 8 positions.)

2. Memory shifts can only be a single bit position.
Addressing:

1. Register. Uses Register Direct mode for the register to be shifted (the
destination).

2. Memory. Uses any of the following modes for the memory location to be
shifted:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index

115

Operand size:

Absolute Short
Absolute Long

1. Registers: byte, word, or long-word.
1. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if the most significant bit changes at any point during the shift;

otherwise cleared.
C Set by the last bit shifted out of the operand. That bit is copied into the

C flag. C is cleared if a shift count of zero is performed.
X Set by the last bit shifted out of the operand. That bit is copied into the

X flag. X, unlike C, is unaffected by a shift count of zero.

Object code:
1. Register: 1110aaa1bbcOlddd

Breakdown
1110: LSL instruction.
aaa: Shift count or number of specified register (which it is depends on bit 5, "c",

as described below).
1: LSL instruction.
bb: Operand size specification.

00 means byte.
01 means word.
11 means long-word.

c: Specifies where the shift count is held.
o means the shift count is held in bits 9, 10, and 11 ("aaa").
1 means the shift count is held in a data register specified by "aaa".

01: LSL instruction.
ddd: Specifies the data register to be shifted.

2. Memory: 1110001111aaabbb

Breakdown
1110001111: LSL instruction, memory.
aaa: Addressing mode.
bbb: Addressing register number.

LSR
Definition: logical shift right.
Description: LSR logically shifts the contents of the specified operand to the right.
The last bit shifted out of the least significant bit position will be copied into both

116

the C and X flags. The most significant bit position will be filled with a zero, no
matter how many bit positions are shifted. LSR is the same as the ASR instruc­
tion except the LSR puts a zero in the most significant position and ASR repeats
the previous value in that position. The shift can be made on a register or on a
memory location.

1. Register shifts can range from 1 to 63 bit positions. The number of posi­
tions shifted is specified in one of two ways. A. The shift count can be held in
the least significant six bits of a data register. That can specify a shift of from
o to 63 bits. B. Immediate data can specify the shift number and that can range
from 1 to 8 bits. (A value of 000 means a shift of 8 positions.)

2. Memory shifts can only be a single bit position.
Addressing:

1. Register. Uses Register Direct mode for the register to be shifted (the
destination).

2. Memory. Uses any of the following modes for the memory location to be
shifted:

Operand size:

Address Register Indirect
Post increment Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

1. Registers: byte, word, or long-word.
2. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Always cleared.
Z Set if the result equals zero; otherwise cleared.
V Unaffected.
C Set by the last bit shifted out of the operand. That bit is copied into the

C flag. C is cleared if a shift count of zero is performed.
X Set by the last bit shifted out of the operand. That bit is copied into the

X flag. X, unlike C, is unaffected by a shift count of zero.

Object code:
1. Register: 111OaaaObbcOlddd

Breakdown
1110: LSR instruction.
aaa: Shift count or number of specified register (which it is depends on bit 5, "cH

,

as described below).
0: LSR instruction (cont.).

117

bb: Operand size specification.
00 means byte.
01 means word.
11 means long-word.

c: Specifies where the shift count is held.
o means the shift count is held in bits 9, 10, and 11 ("aaa").
1 means the shift count is held in a data register specified by "aaa".

01: LSR instruction.
ddd: Specifies the data register to be shifted.

2. Memory: 1110001011aaabbb

Breakdown
1110001011: LSR instruction, memory.
aaa: Addressing mode.
bbb: Addressing register number.

MOVE
Definition: move data (from source to destination).
Description: A very flexible instruction that can move data from register to register,
register to memory, or memory to register. Other microprocessors often use a varie­
ty of instructions-such as Store, Load, Input-in the place of MOVE.
Addressing: MOVE is flexible because the programmer only needs to learn a single
instruction, and can use most of the addressing modes available to all other in­
structions. Any of the addressing modes can be used to reach the source:

118

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

These addressing modes can be used to reach the destination:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect

Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set according to the moved data value.
Z Set according to the moved data value.
V Always cleared.
C Always cleared.
X Not affected.

Object Code: OOaabbbcccdddeee

00: MOVE instruction.
aa: Size specification.

01 means byte.
11 means word.
10 means long-word.

Breakdown

bbb: Destination addressing register number.
ccc: Destination addressing mode.
ddd: Source addressing mode.
eee: Source addressing register number.

Note: MOVEQ is a quicker version of MOVE but cannot use all the addressing
modes that MOVE can. If you want to move a value directly to a register, use
MOVEA.

MOVE to CCR
Definition: move to condition code register.
Description: MOVE to CCR is a special case of the MOVE instruction. It moves
the contents from the specified source to the low byte (the condition code register)
of the status register.
Addressing: The destination is always the CCR. The source can be reached by
any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short

119

Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

OPemnd size: word.
Instruction length: 1 word.
Condition code effects: All of the condition codes (flags) are changed directly by
the result of the operation because that result is stored in this register.
N Set to the same value as bit 3 of the source contents.
Z Set to the same value as bit 2 of the source contents.
V Set to the same value as bit 1 of the source contents.
C Set to the same value as bit 0 of the source contents.
X Set to the same value as bit 4 of the source contents.

Object Code: 0100011011aaabbb

Breakdown
0100001011: MOVE to CCR instruction.
aaa: Source addressing mode.
bbb: Source addressing register number.

MOVE from SR
Definition: move from the status register.
Description: MOVE from SR is a special case of the MOVE instruction. It moves
the contents of the status register to the specified destination.
Addressing: The source is always the status register. The destination can be
reached by any of these modes:

Operand size: word.

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Instruction length: 1 word.
Condition code effects: none.
Object Code: 0100000011aaabbb

Breakdown
0100000011: MOVE from SR instruction.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

120

MOVE to SR
Definition: move to the status register (privileged).
Description: MOVE to SR is a special case of the MOVE instruction and is a
privileged instruction. It moves the contents of the specified destination to the
status register.
Address: The destination is always the status register. The source can be reached
by almost any addressing mode (except by Address register direct):

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: word.
Instmction length: 1 word.
Condition code effects: All of these are changed directly by the result of the opera­
tion (which is stored in this register).
N Set to the same value as bit 3 of the source contents.
Z Set to the same value as bit 2 of the source contents.
V Set to the same value as bit 1 of the source contents.
C Set to the same value as bit 0 of the source contents.
X Set to the same value as bit 4 of the source contents.

Object Code: 0100011011aaabbb

Breakdown
0100011011: MOVE to SR instruction.
aaa: Source addressing mode.
bbb: Source addressing register number.

MOVE USP
Definition: move user stack pointer.
Description: Moves the contents of the User stack pointer (also known as address
register 7 while the CPU is in User mode) to or from a specified address register.
This is a privileged instruction and can only be executed from Supervisor mode.
Addressing: The address register is always specified by Address Register Direct
mode, whether data is transferred from the address register to the USP or from
the USP to the address register (in other words, whether the address register is
source or destination).

121

Operand size: long-word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 010011100110abbb

Breakdown
010011100110: MOVE USP instruction
a: Direction of the transfer.

o means to move data from an address register to the stack pointer.
1 means to move data from the stack pointer to the address register.

bbb: Specifies the address register.

Note: MOVE USP is a privileged instruction and so can only be executed while
the CPU is in Supervisor mode. While in that mode, the User stack pointer con­
tents are not visible because any reference to address register 7 will bring up the
value of the System stack pointer. MOVE USP, therefore, makes it possible for
a Supervisor mode program to see what is in the User stack pointer.

MOVEA
Definition: move address.
Description: MOVEA is a special case of the MOVE instruction. It moves the con­
tents of a specified source to a specified address register.
Addressing: The destination is always reached by Address Register Direct mode.
The source can be specified by any addressing mode:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand size: word or long-word.
Instrnction length: 1 word.
Condition code effects: none.
Object code: 00aabbb001cccddd

Breakdown
00: MOVEA instruction.
aa: Specifies the operand size.

122

11 means a word (If a word is used, it is sign-extended before it is moved).
10 means a long-word.

bbb: Destination address register.
001: MOVEA instruction (cont.).
ccc: Source addressing mode.
ddd: Source addressing register number.

MOVEM
Definition: move multiple registers.
Description: MOVEM moves the contents of multiple registers to or from con­
secutive memory locations. The registers to move are specified by setting the ap­
propriate bits in a mask that is the second word of the instruction (the mask is
detailed below). Either words or long-words can be transferred. If words are
selected, the low-order word of a register is transferred. Also, word values are sign­
extended to a full 32 bits.
Addressing modes: There is one set of permissible addressing modes for register­
to-memory transfers and another for memory-to-registers transfers.

1. Move Multiple Registers from Memory. The source-the beginning of the
consecutive locations in memory whose contents will be copied to the registers­
can be addressed by:

Address register indirect
Postincrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index

The registers that accept that data are specified by the mask that is the sec­
ond word of the instruction (this is explained in the Object code breakdown below).

2. Move Multiple Registers to Memory. The destination-the beginning of
the consecutive locations in memory that the register contents will be copied to-can
be addressed by:

Address Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index

The registers are specified by the mask that is the second word of the instruc-

123

tion (this is explained in the Object code breakdown below).
Addressing is not simple with MOVEM. There are also three different inter­

pretations of the consecutive memory addressing, which depend on the address­
ing mode.

1. Postincrement mode (which can only be used for memory-to-register move­
ment) loads the registers with the contents starting at the specified location and
climbing up through higher addresses. The order of the registers is from DO
through D7 and then AO through A7. The incremented address register will finally
contain the address of the last word loaded plus two.

2. Predecrement mode (which can only be used for register-to-memory move­
ment) loads memory from the registers starting at the specified address minus
two and then moves down through lower addresses. The order of the registers
is from A 7 through AO and then D7 through DO. The decremented address register
will finally contain the address of the last word stored.

3. All other permissible addressing modes listed about (which can be used
to move data in either direction) copy data starting with the specified address and
then climb up through higher addresses. The order of the registers is from DO
through D7 and then AO through A7 (just as in Postincrement mode).
Operand size: word or long-word.
Instruction length: 2 words.
Condition code effects: none.
Object code: First word (01001a001bcccddd)

Second word (mask)

01001: MOVEM instruction.
a: Specifies transfer direction.

Breakdown

o means register to memory.
1 means memory to register.

001: MOVEM instruction (cont.).
b: Specifies operand size.

o means word.
1 means long-word.

ccc: Source addressing mode.
ddd: Source addressing register number.
mask: The second word of this instruction is a mask that tells which registers

to move. For all addressing modes except Predecrement, the mask is set up
like this:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A7 A6 A5 A4 A3 A2 Al AO D7 D6 D5 D4 D3 D2 D1

For Predecrement mode, the mask is set up like this:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
DO D1 D2 D3 D4 D5 D6 D7 AO Al A2 A3 A4 A5 A6

124

0
DO

0
A7

If a register's bit position is set to 1 in the mask, it will be transferred; other­
wise it will not.

Note: This is a great instruction for quick moves of processor status to memory.
It is also, however, a difficult instruction to use. Be sure you understand it before
incorporating it into your programs. There are extra factors to consider such as
an extra read bus cycle that occurs for memory operands. Also, the assembler
syntax for this instruction includes special notations. D2/D3 to means to load
registers D2 and D3 and D2-D5 means to load registers D2 through D5.

MOVEP
Definition: move peripheral data.
Description: MOVEP moves two or four bytes between a specified data register
and alternate byte locations in memory. This is called a peripheral data move
because it simplifies the transfer of data from the CPU to peripheral devices that
require 8 bits of data at a time.
Addressing modes: The data register that the data will be transferred to or from
is reached only by Data Register Direct mode. Address Register Indirect with
Displacement mode is used to find the memory location. If the memory address
is even, the data is transferred on the most significant half of the data bus. If the
memory address is odd, the data is transferred on the least significant half of the
data bus. The organization of the bytes that are transferred is described below:

1. Words. The two bytes in a data register correspond to the two bytes in
memory as shown in Fig. 6-1.

Word Tren3fer
(to or from en odd addre,s)

31
Regi3ter

I High-by tt"

Memory
15 o

low-byt.

High-byt.

o
low-byt. I

4

2

o
Fig. 6-1. MOVEP data organization-words in register and memory.

2. Long-words. The four bytes in a data register correspond to the four bytes
in memory as shown in Fig. 6-2.
Operand size: word or long-word.
Instmction length: 2 words.

125

lonq-'VIord Tren~fer
(to or from en even addre,,)

31 Regi,ter 0

I Top Byt. (Upp.r Byt. IloW'.r Bytf I Bottom Byt.1

Memory
lS 0

Top By tIP Eo

Upper By te 4

low.r 8ytIP 2

BoUom BlJt. 0

Fig. 6-2. MOVEP data organization-long-words in register and memory.

Condition code effects: none.
Object code: First word (OOOOaaalbcOOlddd)

Second word (displacement)

Breakdown
0000: MOVEP instruction.
aaa: Specifies the data register that the data will be transferred to or from.
1: MOVEP instruction (cont.).
b: Specifies the direction of information transfer.

1 means from memory to register.
o means from register to memory.

c: Specifies the operand size.
o means word.
1 means long-word.

001: MOVEP instruction (cont.).
ddd: Specifies the address register that holds the memory address.
displacement: A 16-bit value that is added to the address register specified by

ddd to find the memory location for data transfer.

MOVEQ
Definition: move quick.
Description: MOVEQ moves the immediate data (found in the least-significant byte
of the instruction code) to a specified data register. The eight bits of immediate
data are sign-extended to 32 bits and the ful132 bits is then put in the destination
data register.
Addressing modes: The source data is found only by Immediate mode. The destina-

126

tion data register is found only by Data Register Direct mode.
Operand size: long-word.
Instruction length: 1 word.
Conditon code effects:
N Set if the immediate data is negative; otherwise cleared.
Z Set if the immediate data is zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 0111aaaObbbbbbbb

Breakdown
0111: MOVEQ instruction.
aaa: Destination data register number.
0: MOVEQ instruction (cont.).
bbbbbbbb: Immediate data.

Note: Because this instruction has a limited addressing ability and the immediate
data is included within the single word, it executes faster than the standard MOVE
instruction.

MULS
Definition: multiply signed.
Description: MULS multiplies (using two's complement arithmetic) two signed,
16-bit operands. The signed 32-bit result is stored in the destination (which is
always a data register).
Addressing: The destination is always a data register and is addressed only by
Data Register Direct mode. The source can be addressed by any of these modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

A source or destination operand taken from a register is always taken from
the low word of that register. The upper word of the source is not disturbed: the
upper word of the destination is overwritten by the result.
Operand size: word.

127

Instruction length: 1 word.
Condition code effects:
N Set if the product is negative; otherwise cleared.
Z Set if the product equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 1100aaa111bbbccc

Breakdown
1100: MULS instruction.
aaa: Destination data register number.
111: MULS instruction (cont.).
bbb: Source addressing mode.
ccc: Source addressing register number.

MULU
Definition: multiply unsigned.
Description: MULU multiplies (using unsigned binary arithmetic) two unsigned,
16-bit operands. The unsigned 32-bit result is stored in the destination data register.
Addressing: The destination is always a data register and is only specified by Data
register direct mode. The source can be specified by any of the following modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

A source of destination operand taken from a register is always taken from
the low word of that register. The upper word of the source is not disturbed: the
upper word of the destination is overwritten by the result.
Operand size: word.
Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is set; otherwise cleared.
Z Set if the product is zero; otherwise cleared.
V Always cleared.

128

C Always cleared.
X Not affected.

Object code: 1100aaa011bbbccc

Breakdown
11000: MULU instruction.
aaa: Destination data register number.
011: MULU instruction (cont.).
bbb: Source addressing mode.
ccc: Source addressing register number.

NBCD
Definition: negate decimal (BCD) with extend.
Description: NBCD subtracts the destination contents and the Extend flag con­
tents from zero. The result is stored in the destination. NBCD can only work with
one data byte. The term decimal means that this addition is done with BCD (Binary
Coded Decimal) arithmetic. NBCD produces the ten's complement of the destina­
tion value if the extend flag equals 0, the nine's complement is the extend flag
equals l.
Addressing: Only the destination needs to be specified. It can be reached by any
of these addressing modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Pre decrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte.
Instruction length: 1 word.
Conditon code effects:
N Undefined.
Z Cleared if the result is not zero; unchanged if the result is zero.
V Undefined.
C Set if a borrow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared.

Object code: 0100100000aaabbb

Breakdown
0100100000: NBCD instruction.
aaa: Destination addressing mode.

129

bbb: Destination addressing register number.

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result.

NEG
Definition: negate.
Description: NEG subtracts the destination contents from zero and stores the result
in the destination. The computation is done using two's complement binary
arithmetic.
Addressing: Only the destination needs to be specified. It can be reached by any
of these addressing modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the operation result is negative; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Set if a borrow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared.

Object code: 01000100aaabbbccc

01000100: NEG instruction.
aa: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

Breakdown

bbb: Destination addressing mode.
ccc: Destination addressing register number.

NEGX
Definition: negate with extend.
Description: NEGX subtracts the destination contents and the extend flag con­
tents from zero. It then stores the result in the destination. The operation is per-

130

formed using two's complement binary arithmetic. Because the extend flag is
included, this is the binary negation instruction to use for multiple precision
arithmetic.
Addressing: Only the destination needs to be specified. It can be reached by any
of these addressing modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Cleared if the result is non-zero; otherwise unchanged.
V Set if an overflow occurs; otherwise cleared.
C Set if a borrow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared.

Object code: 01000000aabbbccc

01000000: NEGX instruction.
aa: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

Breakdown

bbb: Destination addressing mode.
ccc: Destination addressing register number.

Notes: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result.

NOP
Definition: no operation.
Description: Just as the name implies, NOP doesn't do anything. The PC (pro­
gram counter register) is incremented to point to the next instruction, but other
than that this is just a way of wasting time. It is, however, not a wasted instruc­
tion. Though NOP is rarely used in final programs, there are many cases where
NOP is used while writing or debugging a program to leave a space for a label,
to precisely time some operation or loop, or to replace unwanted instructions.

131

Addressing: none.
Opemnd size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111001110001

Breakdown
0100111001110001: NOP instruction.

NOT
Definition: logical NOT (complement).
Description: NOT performs the logical NOT operation on the contents of the
destination operand and stores the result in the destination. In other words, each
bit of the source is examined, 1s are changed to Os, Os are changed to 1s, and
the final complemented result is put into the destination.
Addressing: Only the destination needs to be specified. It can be reached by any
of these addressing modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Opemnd size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 01000110aabbbccc

01000110: NOT instruction.
aa: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

Breakdown

bbb: Destination addressing mode.
ccc: Destination addressing register number.

132

OR
Definition: OR logical.
Description: OR performs the logical inclusive-OR operation on the contents of
the specified source and the specified destination. The result is stored in the
destination. There are two forms of this instruction, that differ only in address­
ing, as described in the next paragraph.
Addressing: OR can be used with any of a large number of addressing modes.
The two forms of this instruction offer different addressing choices.

1. Data Register Direct destination. The destination must be addressed by
Data Register Direct; any addressing mode except Address Register Direct can
be used for the source including:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

2. Data Register Direct source. The source must be addressed by Data
Register Direct. Almost all the addressing modes (except Program Counter Relative
with Displacement, Program Counter Relative, and Immediate) can be used for
the destination including:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

If you want to directly address a data register, use the first case described
above, not Data Register Direct in this mode.
Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the MSB of the result is one; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.

133

V Always cleared.
C Always cleared.
X Not affected.

Object code: 1000aaabccdddeee

Breakdown
1000: OR instruction.
aaa: Specifies data register number (four source or destination, depending on first

or second case).
b: Specifies operation mode (first or second case).

o means first case (data register is destination).
1 means second case (data register is source).

cc: Operand size specification.
00 means byte.
01 means word.
10 means long-word.

ddd: Effective addressing mode.
eee: Effective addressing register number.

Notes: Address register contents cannot be used as an operand.

ORI
Definition: OR logical immediate.
Description: ORI performs the logical inclusive-OR operation on the contents of
a specified destination and an immediate value contained in the next program
words. The result is stored in the destination.
Addressing: The source is addressed by Immediate. The destination is reached
by any of these addressing modes.

Data Register Direct
Address Register Indirect.
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 2 words (if the immediate data is a byte or a word, the first
word is the instruction and the second contains the data); 3 words (if the immediate
data is a long-word, the first word is the instruction and the next two are the long­
word data).
Condition code effects:
N Set if the result is negative; otherwise cleared.

134

Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: First word (OOOOOOOOaabbbccc)
Second word (immediate data)
Third word (immediate data)

Breakdown
00000000: ORI instruction.
aa: Operand size specification (if byte is specified, the low-order byte of the im­

mediate instruction word will be used).
00 means byte.
01 mean word.
10 means long-word.

bbb: Destination addressing mode.
ccc: Destination addressing register number.
immediate data: Byte data is held in the low-order byte of the second word. Word

data is the second word. Long-word data requires a three word instruction
with the second and third words representing the data.

ORI to CCR
Definition: OR logical immediate to condition code register.
Description: This is a special form of the ORI instruction. ORI to CCR performs
a logical inclusive-OR operation on the contents of the condition codes register
(CCR: the low-order byte of the status register) and the immediate value contain­
ed in the low-order byte of the next program word. The result is stored in the CCR.
Addressing: The source is addressed by Immediate. The destination is the condi­
tion code register.
Operand size: byte.
Instruction length: 2 words (the first in the instruction word and the second con­
tains the data as the low-order byte. The high order byte of the second word holds
all zeros.)
Condition code effects: (these are set directly from the operation's results, which
are stored in the flag register)

N Set if bit 3 of the immediate data equals 1; otherwise unchanged.
Z Set if bit 2 of the immediate data equals 1; otherwise unchanged.
V Set if bit 1 of the immediate data equals 1; otherwise unchanged.
C Set if bit 0 of the immediate data equals 1; otherwise unchanged.
X Set if bit 4 of the immediate data equals 1; otherwise unchanged.

Object code: First word (0000000000111100)
Second word (immediate data)

135

Breakdown
0000000000111100: ORI to CCR instruction
immediate data: The high-order byte is filled with zeros; the low-order byte holds

the immediate data.

ORI to SR
Definition: OR logical immediate to statues register (privileged).
Description: This is a special form of the ORI instruction and is a privileged in­
struction: the CPU must be in the Supervisor state for this instruction to execute.
ORI to SR performs a logical AND operation on the contents of the full status
register and the immediate value contained in the next program word. The result
is stored in the status register. This instruction is privileged-meaning it can only
be executed if the processor is in the Supervisor state-because it can change the
entire state of the CPU.
Addressing: The source is addressed by Immediate mode. The destination is the
status register.
Operand size: word.
Instruction length: 2 words (the first is the instruction word and the second con­
tains the immediate value).
Condition code effects: (these are set directly from the operation's results, which
are stored in the status register)
N Set if bit 3 of the immediate data equals 1; otherwise unchanged.
Z Set if bit 2 of the immediate data equals 1; otherwise unchanged.
V Set if bit 1 of the immediate data equals 1; otherwise unchanged.
C Set if bit 0 of the immediate data equals 1; otherwise unchanged.
X Set if bit 4 of the immediate data equals 1; otherwise unchanged.

Object code: First word (0000000001111100)
Second word (immediate data)

Breakdown
0000000001111100: ORI to SR instruction.
immediate data: The full 16 bits of the word hold the immediate date to be add­

ed to the status register.

PEA
Definition: push effective address.
Description: PEA puts together an effective address and stores that long-word ad­
dress on the stack. Chapter 4 explains what an effective address is.
Addressing: The address to be put on the stack can be calculated using any of
these addressing modes:

136

Address Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short

Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index

Operand size: long-word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100100001aaabbb

0100100001: PEA instruction.
aaa: Effective addressing mode.

Breakdown

bbb: Effective addressing register number.

RESET
Definition: reset external devices (privileged).
Description: RESET sends a pulse out on the RESET pin. Such pulses reset ex­
ternal devices (peripherals that are hooked to the 68000). RESET is a privileged
instruction and so cannot be executed unless the CPU is in Supervisor state. The
internal state of the 68000 CPU doesn't change, except that the PC is incremented
by two to move to the next instruction.
Addressing: none. The RESET pin is always the target on the output pulse.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111001110000

Breakdown
0100111001110000: RESET instruction.

ROL
Definition: rotate left (without extend).
Description: ROL rotates the bits of the specified location to the left. In other words,
the contents of each bit position is moved to a more significant bit position. The
bit content of the most significant bit is moved into both the least significant bit
position and into the carry flag (replacing whatever was in the flag). The rotation
can be made on a data register or on a memory location.

1. Data register rotations can range from 1 to 63 bit positions. The number
of positions rotated is specified in one of two ways. A. The rotation count can be
held in the least significant six bits of a data register. That can specify a rotation
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation
of 8 positions.)

2. Memory location rotations can only be a single bit position.
Addressing:

137

1. Register. Uses Data Register Direct mode for the register to be rotated
(the destination).

2. Memory. Uses any of the following modes for the memory location to be
rotated:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

OPerand size:
1. Registers: byte, word, or long-word.
1. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C The last bit shifted out of the operand is copied into the C flag. C is

cleared if a shift count of zero is performed.
X Not affected.

Object code:
1. Register: 1110aaalbbc11ddd

Breakdown
1110: ROL instruction.
aaa: Rotation count or number of specified.

Register (which it is depends on bit 5, "c," as described below).
1: ROL instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
11 means long-word.

c: Specifies where the rotation count is held.
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the
rotation count is held in a data register specified by "aaa."

11: ROR instruction (cont.).
ddd: Specifies the data register to be rotated.

2. Memory: 1110011111aaabbb

Breakdown
1110011111: ROL instruction, memory.

138

aaa: Destination addressing mode.
bbb: Destination addressing register number.

ROR
Definition: rotate right (without extend).
Description: ROR rotates the bits of the specified location to the right. In other
words, the contents of each bit position are moved to a less significant bit posi­
tion. The bit content of the least significant bit is moved into both the most signifi­
cant bit position and into the carry flag (replacing whatever was in the flag). The
rotation can be made on a data register or on a memory location.

1. Data register rotations can range from 1 to 63 bit positions. The number
of positions rotated is specified in one of two ways. A. The rotation count can be
held in the least significant six bits of a data register. That can specify a rotation
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation
of 8 positions).

2. Memory location rotations can only be a single bit position.
Addressing:

1. Register. Uses Data Register Direct mode for the register to be rotated
(the destination).

2. Memory. Uses any of the following modes for the memory location to be
rotated:

Operand size:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

1. Registers: byte, word, or long-word.
2. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C The last bit rotated out of the operand is copied into the C flag. C is

cleared in a rotation count of zero is performed.
X Not affected.

Object code:
1. Register: 1110aaaObbcllddd

139

Breakdown
1110: ROR instruction.
aaa: Rotation count or number of specified register (which it is depends on bit

5, "c," as described below).
0: ROR instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word,
11 means long-word.

c: Specifies where the rotation count is held.
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the
rotation count is held in a data register specified by "aaa."

11: ROR instruction (cont.).
ddd: Specifies the data register to be rotated.

2. Memory: 1110011011aaabbb

Breakdown
1110011011: ROR instruction, memory.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

ROXL
Definition: rotate left (with extend).
Description: ROXL rotates the bits of the specified location to the left. In other
words, the contents of each bit position is moved to a more significant bit posi­
tion. The contents of the most significant bit is moved into the carry flag and the
extend flag (replacing whatever was in the flags). The previous extend flag value
is moved into the least significant bit position of the specified destination. By in­
cluding the extend flag in the rotation, this instruction is useful for multiple preci­
sion arithmetic. The rotation can be made on a data register or on a memory
location.

1. Data register rotations can change from 1 to 63 bit positions. The number
of positions rotated is specified in one of two ways. A. The rotation count can be
held in the least significant six bits of a data register. That can specify a rotation
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation
of 8 positions.)

2. Memory location rotations can only be a single bit position.
Addressing:

1. Register. Uses Data Register Direct mode for the register to be rotated
(the destination).

2. Memory. Uses any of the following modes for the memory location to be
rotated:

Address Register Indirect

140

Postincrement Register Indirect
Pre decrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size:
1. Registers: byte, word, or long-word.
2. Memory: word.

Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C The last bit rotated out of the operand is copied into the C flag. C is

cleared if a rotation count of zero is performed.
X The last bit rotated out of the operand is copied into the X flag. A rota­

tion count of zero leaves the X flag unaffected.

Object code:
1. Register: 1110aaa1bbc10ddd

Breakdown
1110: ROXL instruction.
aaa: Rotation count or number of specified register (which it is depends on bits

5, "c", as described below).
1: ROXL instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
11 means long-word.

c: Specifies where the rotation count is held.
o means the rotation count is held in bits 9, 10, and 11 ("aaa"). 1 means the
rotation count is held in a data register specified by "aaa".

10: ROXL instruction (cont.).
ddd: Specifies the data register to be rotated.

2. Memory: 1110010111aaabbb

Breakdown
1110010111: ROXL instruction, memory.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

ROXR
Definition: rotate right (with extend).

141

Description: ROXR rotates the bits of the specified location to the right. In other
words, the contents of each bit position is moved to a less significant bit position.
The contents of the least significant bit is moved into the carry flag and the ex­
tend flag (replacing whatever was in the flags). The previous extend flag value
is moved into the most significant bit position of the specified destination. By in­
cluding the extend flag in the rotation, this instruction is useful for multiple preci­
sion arithmetic.

The rotation can be made on a data register or on a memory location.
1. Data register rotations can range from 1 to 63 bit positions. The number

of positions rotated is specified in one of two ways. A. The rotation count can be
held in the least significant six bits of a data register. That can specify a rotation
of from 0 to 63 bits. B. Immediate data can specify the rotation number and that
can range from 1 to 8 bits. (A value of 000 in the immediate data means a rotation
of 8 positions.)

2. Memory location rotations can only be a single bit position.
Addressing:

1. Register. Uses Data Register Direct mode for the register to be rotated
(the destination).

2. Memory. Uses any of the following modes for the memory location to be
rotated:

Address Register Indirect
Postincrement Register Indirect
Pre decrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

OPerand size:
1. Registers: byte, word, or long-word.
2. Memory: word.

Instruction length: 1 word.
Conditon code effects:
N Set if the most significant bit of the result is 1; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C The last bit rotated out of the operand is copied into the C flag. C is

cleared if a rotation count of zero is performed.
X The last bit rotated out of the operand is copied into the X flag. A rota­

tion count of zero leaves the X flag unaffected.

Object code:
1. Register: 1110aaaObbc10ddd

Breakdown
1110: ROXR instruction.

142

aaa: Rotation count or number of specified register (which it is depends on bit
5, HC," as described below).

0: ROXR instruction (cont.).
bb: Operand size specification.

OOmeans byte.
01 means word.
11 means long-word.

e: Specifies where the rotation count is held.
o means the rotation count is held in bits 9, 10, and 11 (Haaa"). 1 means the
rotation count is held in a data register specified by "aaa."

10: ROXR instruction (cont.).
ddd: Specifies the data register to be rotated.

2. Memory: 1110010011aaabbb

Breakdown
1110010011: ROXR instruction, memory.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

RTE
Definition: return from exception (privileged).
Description: RTE loads the SR (status register) and then the PC (program counter)
from the system stack. The first word pulled off the Supervisor stack is put into
the SR; the second and third words pulled are put into the PC (the second becomes
the high word and the third and low word of the PC). The previous SR and PC
values are lost. This is typically the last instruction executed in an exception pro­
cessing service routine. RTE is a privileged instruction and so will only execute
when the CPU is in supervisor state. The new state of the CPU will depend on
the values put into the status register. The bits of the status register that have
not yet been assigned values will always retain a o.
Operand size: none.
Instruction length: 1 word.
Condition code effects: Set directly from the value pulled off the stack and stored
in the status register.
Object code: 0100111001110011

Breakdown
0100111001110011: RTE instruction.

RTR
Definition: return and restore condition codes.
Description: RTR pulls a word off the active stack and puts the five least signifi­
cant bits of that word into the condition codes in the status register. Then the PC
is filled from the top two words of the stack. The stack pointer is incremented
to keep up with these manipulations. This allows a return from subroutine-with

143

replacement of the user flags-without affecting the system byte of the status
register.
Addressing: none.
Operand size: none.
Instruction length: 1 word.
Conditon code effects: Set directly from the value pulled off the stack and stored
in the status register.
Object code: 0100111001110111

Breakdown
0100111001110111: RTR instruction.

Note:
1. Some microprocessors automatically save the condition codes (or flags)

when they jump to a subroutine: the 68000 does not. You have to add a MOVE
from SR instruction to your program to save the flags if you want to recall them
later with this RTR instruction.

2. The only difference between RTR and RTE is that RTR doesn't affect
the new value of the high word of the SR.

3. Remember that RTR doesn't only restore the condition codes, it also
restores the PC.

RTS
Definition: return from subroutine.
Description: RTS pulls the top two words off of the active stack and puts them
into the PC. The first word pulled becomes the high word of the PC and the
second word pulled becomes the low word. The stack pointer is incremented by
2 after each word is pulled off. RTS is used to return the program control to the
point it was at before a subroutine.
Addressing: none.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111001110101

Breakdown
0100111001110101: RTS instruction.

SBCD
Definition: subtract decimal (with extend).
Description: SBCD subtracts the least significant byte of the source, and the ex­
tend flag, from the least significant byte of the destination. It then stores the result
in the destination. The term decimal means that this addition is done with BCD
(Binary Coded Decimal) arithmetic. SBCD has two major cases, register-to-register
and memory-to-memory.

1. Register-to-register uses data registers for both source and destination.

144

2. Memory-to-memory uses memory locations for both source and destina­
tion. The memory address of the source operand is stored in an instruction-specified
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is
decremented (predecrement addressing mode).
Addressing:

1. Register-to-register. Data Register Direct mode is used for both source
and destination. (The values are stored in registers and the registers are specified
directly by the instruction).

2. Memory-to-memory. Address Register Indirect mode is used for both
source and destination (the instruction specifies the address registers that hold
the memory addresses of source and destination. Before the values in the address
registers are used, they are decremented by 1. This helps in multibyte BCD sub­
traction).
Operand size: byte.
Instruction length: 1 word.
Condition code effects:
N Undefined.
Z Cleared if the result is not equal to zero; unchanged if the result equals

zero.
V Undefined.
C Set if a borrow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared. (Set in the same way as the

carry (C) flag.)

Object Code:
1. Register-to-register: 1000aaa100000bbb

Breakdown
1000: SBCD instruction
aaa: Specifies destination data register.
100000: Specifies register-to-register case.
bbb: Specifies the source data register.

2. Memory-to-memory: 1000aaa100001bbb

Breakdown
1000: SBCD instruction
aaa: Specifies destination data register.
100001: Specifies memory-to-memory case.
bbb: Specifies the source data register.

Note: Programmers often set the Z flag before using this instruction for multiple­
precision arithmetic. The set flag makes it easy to check for a zero result.

145

See
Definition: set (conditionally).
Description: Scc tests the state of the flags in the status register. If the condition
(which is specified within the instruction) is met, all of the bits of the specified
byte are set (equal to 1; this is called TRUE). Otherwise, if the condition is not
met, the bits are all cleared (equal to 0; called FALSE). You can choose from any
of the following conditions:

Symbol Title Operation

T True 1
F False 0
HI High -C AND -2
LS Low or same COR 2
CC Carry clear -C
CS Carry set C
NE Not equal -2
EQ Equal 2
VC Overflow clear -V
VS Overflow set V
PL Plus -N

MI Minus N
GE Greater or equal (N AND V) OR (-N AND -V)
LT Less than (N AND -V) OR (-N AND V)
GT Greater than (N AND V AND -2) OR (-N AND V AND -2)
LE Less or equal 2 or (N AND -V) OR (-N AND V)

The instruction is written with the condition symbol replacing the "cc." For
example, SNE means "set if not equal."
Addressing: The byte to set or clear is addressed by any of these modes:

OPerand size: byte.

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Instruction length: 1 word.
Condition code effects: none.
Object code: 0101aaaallbbbccc

146

Breakdown
0101: Scc instruction.
aaaa: Specifies the condition to be tested.
11: Scc instruction (cont.).
bbb: Effective addressing mode.
ccc: Effective addressing register number.

STOP
Definition: load status register and stop (privileged).
Description: STOP loads an immediate word into the status register and then stops
fetching and executing instructions. Execution will resume when a trace, inter­
rupt, or reset exception occurs. The PC is incremented by four to point to the next
instruction: the word following STOP is the immediate data.

A trace occurs immediately if the T flag is set when STOP is executed.
Exception processing from interrupt will occur if an interrupt request of high

enough priority is detected. If the external reset signal goes low, the reset excep­
tion will begin.

STOP is privileged; it can only be executed from the Supervisor mode. At­
tempting to execute it in User mode will violate privilege and begin exception pro­
cessing.
Addressing: The value to load into the status register is found by Immediate mode
and is the second word of the instruction.
Operand size: none.
Instruction length: 2 words.
Condition code effects: All of the flags are changed by the word that is loaded into
the status register. The old values are lost.
Object code: First word (0100111001110010)

Second word (immediate)

Breakdown
0100111001110010: STOP instruction.
immediate: This is the value that is put into the SR.

SUB
Definition: subtract (binary).
Description: SUB subtracts the source operand from the destination operand and
stores the result in the destination. There are two forms of this instruction that
differ only in addressing, as described in Addressing.
Addressing: SUB can be used with any of a large number of addressing modes.
The two forms of this instruction offer different addressing choices.

1. Data Register Direct destination. The destination must be addressed by
Data Register Direct mode; any addressing mode can be used for the source in­
cluding:

Data Register Direct
Address Register Direct

147

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

2. Data Register Direct source. The source must be addressed by Data
Register Direct mode. Almost all the addressing modes (except Program Counter
Relative with Displacement, Program Counter Relative, and Immediate) can be
used for the destination including:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word. As noted below, bytes cannot be used with
Address Register Direct mode.
Instruction length: 1 word.
Condition code effects:
N Set if the result in negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared.
C Set if a borrow occurs; otherwise cleared.

Object code: 1001aaabccdddeee

Breakdown
11010: SUB instruction.
aaa: Data register number (for either source or destination Data Register Direct

addressing).
b: Operating mode.

o means the data register is the destination.
1 means the data register is the source.

cc: Size specification.

148

00 means byte.
01 means word.
10 means long-word.

ddd: Addressing mode.
eee: Addressing register number.

Notes:
1. If Address Register Direct addressing is used, the operand size cannot

be specified as byte because address registers cannot work with bytes (only with
words and long-words).

2. To use a data register as a destination you must use the Data Register
Direct mode.

SUBA
Definition: subtract address.
Description SUBA is a special case of the SUB instruction. SUBA subtracts the
source operand from the destination address register contents and stores the result
in that address register.
Addressing: The destination is only reached by Address Register Direct. Any mode
can be used for the source operand including:

Data Register Direct
Address Register Direct
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long
Program Counter Relative with Displacement
Program Counter Relative with Index
Immediate

Operand Size: words or long-words. The full destination address register is used
no matter which operand size is chosen. A word source-operand will be size­
extended to a long-word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 1001aaabllcccddd

1001: SUBA instruction.
aaa: Destination address register.
b: Size specification.

o means word.
1 means long-word.

Breakdown

149

11: SUBA instruction (cont.).
ccc: Source addressing mode.
ddd: Source addressing register.

SUBI
Definition: Subtract immediate.
Description: SUBI subtracts immediate data (which is contained in the next in­
struction byte or bytes) from the specified destination operand. The result is stored
in the destination.
Addressing: The source is addressed by Immediate mode. The destination is
reached by any of the following modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 2 or 3 words. 2 words if the immediate data is a byte or a word
(the first word is the instruction and the second contains the data). 3 words if the
immediate data is a long-word (the first word is the instruction and the next two
are the long-word data).
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Set if a borrow occurs; otherwise cleared.
X Set if a borrow occurs; otherwise cleared.

Object code: First word (00000100aabbbccc)
Second word (immediate data)
Third word (immediate data)

00000100: SUBI instruction.
aa: Size specification.

00 means byte.
01 means word.
10 means long-word.

Breakdown

If a byte is specified, the low-order byte of the next instruction is used by
the assembler.

bbb: Destination addressing mode.

150

cce: Destination address register.
immediate data: Byte data is held in the low-order byte of the second word. Word

data is the second word. Long-word data requires a three word instruction
with the second and third words representing the data.

SUBQ
Definition: subtract quick.
Description: SUBQ subtracts immediate data (contained within the instruction word
itself) from the specified destination operand. The result is stored in the destina­
tion. As the definition implies, SUBQ is used for quick execution.
Addressing: For the source operand you can use only Immediate mode. For the
destination operand you can use any of the following modes:

Data Register Direct
Address Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative; otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Set if an overflow occurs; otherwise cleared.
C Set if a borrow occurs; otherwise cleared.
X Set if borrow occurs; otherwise cleared.

Object code: 0101aaa1bbcccddd

Breakdown
0101: SUBQ instruction.
aaa: Data field (holding three bits of immediate data with 000 representing 8 and
001 through 111 representing 1 through 7).
1: SUBQ instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
10 means long-word.
IF a byte is specified, the low-order byte of the next instruction is automatically
used by the assembler.

151

ccc: Destination addressing mode.
ddd: Destination register number.

Note: If Address Register Direct addressing is used, the operand size cannot be
specified as byte because address registers cannot work with bytes (only with words
and long-words).

SUBX
Definition: subtract with extend.
Description: SUBX subtracts the source contents, and the extend flag, from the
destination contents. The result is stored in the destination. SUBX has two major
cases, register-to-register and memory-to-memory.

1. Register-to-register uses data registers for both source and destination.
2. Memory-to-memory uses memory locations for both source and destina­

tion. The memory address of the source operand is stored in an instruction-specified
address register, and the destination address is stored in another instruction­
specified address register. Before the operation, each address register is
decremented (predecrement mode).
Addressing: Register-to-register uses Data Register Direct mode for both source
and destination. Memory-to-memory uses Address Register Indirect mode.

OPerand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:

N Set if the result is negative; otherwise cleared.
Z Cleared if the result is not equal to zero; otherwise unchanged.
V Set if an overflow occurs; otherwise cleared.
C Set if a carry occurs; otherwise cleared.
X Set if a carry occurs; otherwise cleared.

Object code:
1. Register-to-register: 1001aaa1bbOOOccc

Breakdown
1001: SUBX instruction.
aaa: Destination data register number.
1: SUBX instruction (cont .).
bb: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

000: SUBX instruction (cont.).
ccc: Source address data register number.

152

2. Memory-to-memory: 1001aaa1bb001ccc

Breakdown
1001: SUBX instruction.
aaa: Destination address register number.
1: SBUX instruction (cont.).
bb: Operand size specification.

00 means byte.
01 means word.
10 means long-word.

001: SUBX instruction (cont.). Memory to memory case.
ccc: Source address register number.

SWAP
Definition: swap register halves.
Description: SWAP exchanges the contents of the low word and high word of a
specified data register.
Addressing: The only mode used is Data Register Direct.
OPerand size: word.
Instruction length: 1 word.
Condition code effects:
N Set if the result is negative (if the most significant bit of the 32-bit result

is set); otherwise cleared.
Z Set if the result equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 0100100001000aaa

Breakdown
0100100001000: SWAP instruction.
aaa: Number of the data register to be swapped.

TAS
Definition: test and set an operand.
Description: TAS tests a specified byte, sets the Nand Z flags according to the
contents of that byte, and sets the high-order bit of the byte (equal to 1). This is
called an indivisible instruction because the CPU uses a read-modify-write memory
cycle that cannot be interrupted (which means that no other device can get that
operand while this instruction is being executed). This allows separate processors
to synchronize their activities.
Addressing: Any of these modes can be used to find the byte:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect

153

Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

OPerand size: byte.
Instruction length: 1 word.
Condition code effects:
N Set if the most significant bit of the operand is set; otherwise cleared.

The bit is tested at the beginning of the instruction, because after the
instruction the MSB will be set.

Z Set if the operand contents equal zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 0100101011aaabbb

Breakdown
0100101011: TAS instruction.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

TRAP
Definition: trap.
Description: TRAP initiates exception processing (see Chapter 7 for an explana­
tion of exceptions). The PC value is incremented (as it would be to get the next
instruction) and then is pushed onto the system stack (using the Supervisor stack
pointer: SSP). The status register word is pushed onto the stack next. Two words
from the exception vector table-specified by the 4-bit vector of the instruction
word-are put into the PC. The sixteen possible vectors allow different process­
ing for different types of exceptions. The T (trace) flag is set to zero and the S
(Supervisor) flag is set to one. All of this activity saves the old status of the CPU
before moving to the new status. Processing continues at the new PC value.
Addressing: none.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 010011100100aaaa

Breakdown
010011100100: TRAP instruction.
aaaa: Vector number. This value specifies the address is the exception vector table

from which the new PC value will be taken. This table is shown in Chapter
7. aaaa can specify sixteen different addresses. These are addresses 32
through 47 in the 255 vector table.

154

TRAPV
Definition: trap on overflow.
Description: TRAPV checks the V (overflow) flag and initiates exception process­
ing if that flag is set. See Chapter 7 for details on exception processing. Exception
processing increments the PC value (as it would to get the next instruction) and
then pushes it onto the system stack (using the Supervisor stack pointer: SSP).
The status register word is pushed onto the stack next. Two words from the ex­
ception number 7 of the vector table (beginning at OlCR) are put into the PC.
The T (trace) flag is set to zero and the S (Supervisor) flag is set to one. All of
this activity saves the old status of the CPU before moving to the new status. Pro­
cessing continues at the new PC value.
Addressing: none.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111001110110

Breakdown
0100111001110110: TRAPV instruction.

TST
Definition: test and operand.
Description: TST tests the contents of a specified operand and sets the Nand Z
flags according to the result. This instruction doesn't change anything in the CPU
or memory except the flags.
Addressing: The operand to test can be found by any of the following addressing
modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: byte, word, or long-word.
Instruction length: 1 word.
Condition code effects:
N Set if the tested operand is negative; otherwise cleared.
Z Set i the tested operand equals zero; otherwise cleared.
V Always cleared.
C Always cleared.
X Not affected.

Object code: 01001010aabbbccc

155

01001010: TST instruction.
aa: Operand size.

00 means a byte.
01 means a word.
10 means a long-word.

bbb: Operand addressing mode.

Breakdown

ccc: Operand addressing register number.

Note: This can be a very handy instruction to change flag values without af­
fecting anything else in the CPU (except the PC, of course).

UNLK
Definition: unlink.
Description: UNLK loads the contents of a specified address register into the
system stack pointer. That address register, called a frame pointer, is then loaded
with a long word from the stack. This, in effect, restores the frame pointer and
the system stack pointer to what their state was before a LINK instruction was
executed. See the description of the LINK instruction to understand the overall
action of this command.
Addressing: none.
Operand size: none.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100111001011aaa

Breakdown
0100111001011: UNLK instruction.
aaa: Specifies the frame pointer address register.

-------~ ~ ~----------------

AdJ e-s s i 1'1~ ;t{ 0 ck..s :
.#l.ck ~ oft:

156

Dr'I 000 ¢-+
4 n 001. {I1-':f.

(A~)

(An)+
-(An)

deAn)

01-0

C> I I

lOCi

\ 0 ,

deAn, Xi)
Ab$'. \AI
Abs. L

J. (PL.)

d(PG/ Xi,)

r~l'n".

~ock ~.lf.
\I 0 .t!:f - 1

II I P6y/

I I I .I!f tt' 1.

JI' "1 6

ill 011

I I I I 00

7

Data ~ (8)

Address ~ (8)

SP ~ SP

PC

~
68000

Exceptions
E XCEPTIONS ARE SPECIAL OCCURRENCES

that require processing outside of normal in­
struction execution. If an exception occurs, normal
processing will cease and exception processing will
commence. The high-order byte of the status
register controls many aspects of exception pro­
cessing.

There are two main reasons to define excep­
tions. The first is to allow the microprocessor to act
quickly when some special situation occurs (such
as someone pressing a key on the keyboard of a
computer). The second is to allow the
microprocessor to report and deal with errors. Divi­
sion by zero or the execution of a nonexistent in­
struction are just two situations that would require
exception processing.

POLLING, INTERRUPTS, AND EXCEPTIONS
Microprocessors have to respond to many outside
events. These may range from alarm signals to disk
information input. There are two basic ways of
watching for such inputs: polling and interrupts.

When a microprocessor asks an 110 device if
that device has any information, the microprocessor
is polling that device. Polling schemes are
sometimes used because they are simple to imple­
ment and ensure that every 110 device is monitored.
The problem with polling is in the timing. If there
is a large polling loop and a device needs to signal
the microprocessor just after having been polled,
that device will have to wait for its next turn in the
polling loop. Even though the information from the
device might be urgent (such as an alarm condition)
the microprocessor wouldn't have any way of re­
acting immediately.

Interrupts avoid the timing problems associated
with polling. While interrupt hardware and software
is more complex than polling schemes, it ensures
timely response to events. Interrupt schemes also
allow the programmer to dynamically assign
priorities to the various I/O devices.

How are interrupts implemented? When an I/O
device has some information for the CPU, it sends
an interrupt request signal and a priority signal.

157

When the microprocessor is free to answer­
typically after the current instruction is done
executing-it will compare the signalled priority to
its stored priority level. If the interrupt request has
a high enough priority, the microprocessor will jump
to an interrupt handling routine. When that routine
is finished, the microprocessor will return process­
ing to the point it had reached before the interrupt.

Most interrupt handling schemes allow multi­
ple, simultaneous interrupts. When a second inter­
rupt (which must be of greater priority than the
first) breaks in on the first, the microprocessor sends
processing to the second interrupt handling routine.
Then, when the second interrupt has been com­
pletely taken care of, processing will take up in the
first interrupt handling routine where it left off. The
68000 has seven levels of interrupt priority; the cur­
rent level is stored in the mask in the Status register.

The addressing of interrupt handling routines
can be simple or complex. Some systems have a
single routine, others have a long table full of
routines that are called for different types of inter­
rupts. Other systems allow the programmer to
modify addresses from within the program.

8-bit microprocessors commonly have interrupt
handling capability. As explained above, interrupts
are requests by devices outside the microprocessor
for special processing. The program routine that is
used to handle the interrupt may come from any of
a variety of addresses, depending on the
microprocessor's vectoring scheme. The vector is the
value that points to the interrupt service routine.
Different microprocessors have different methods
to calculate vectors.

Exception is a broader term than interrupt. The
68000 also has interrupt handling abilities, but they
are classified as one type of exception.

68000 PROCESSING STATES

There are three processing states that a 68000 can
be in: normal, halted, or exception. In the normal
state, the microprocessor is fetching and executing
instructions. There is also the special normal state
case of the SIDP instruction which stops the
referencing of memory.

The halted state is different from the stopped

158

condition of the Normal state. Only a catastrophic
hardware error can send the CPU into the halted
state. The only way out of the halted state is an ex­
ternal reset (having the right pulse of electricity sent
to the correct pin of the microprocessor). Program­
mers don't have to worry about halted state.

The exception state may be generated internally
(by instructions) or externally (by an interrupt, a bus
error, or a reset). The exception state is used to work
with interrupts, traps, and tracing.

68000 PRIVILEGE MODES

There are two privilege modes that the 68000 can
be in: User mode and Supervisor mode. The status
register Supervisor/User bit (flag) controls which
mode the microprocessor is in and therefore con­
trols the following:

1. Which instructions are legal.
2. How external memory management

reaches memory.
3. Which stack pointer, Supervisor or User,

is active.

These two Privilege modes are intended as a
basic security structure for 68000 systems. In other
words, general computation is done in the User
mode and system modification is done in Supervisor
mode.

User Mode

The microprocessor is in User mode if the S
flag contains a O. Certain privileged instructions will
not execute while the CPU is in this mode. This
restriction protects programs by not allowing ap­
plications to work with system software. Non­
privileged instructions execute the same way in both
User and Supervisor modes.

SIDP and RESET are both privileged. Also,
instructions that can modify the entire status
register are privileged because they could be used
to get into Supervisor mode. Figure 7-1 lists the
68000's privileged instructions.

The active stack pointer in User mode is the
User stack pointer, naturally. Any references to the

ANDI to SR
EORI to SR

MOVE to SR
MOVE USP
ORI to SR

RESET
RTE

STOP

Fig. 7-1. Privileged instructions.

stack pointer or to address register 7 will encounter
the USP.

When the CPU is in user mode, and working
through instructions, only an exception can move
it into supervisor mode_ Exception processing
always begins by asserting the S bit, thereby put­
ting the CPU into Supervisor mode.

The four instructions that allow the user to
move from Supervisor to User mode are among
those listed in Fig. 7-1. RTE gets the new SR and
PC values from the Supervisor stack. MOVE, AN­
DI, EORI change the SR and therefore the S bit and
are able to change mode.

Supervisor Mode

If the Supervisor/User bit in the status register

Funct IOn Codes
(put out on ~'llon811i nes)

FC2 FC 1 FCO

0 0 0
0 0 1
0 0
0 1 1
1 0 0

0
1 0
1 1

Fig. 7-2. Types of memory reference.

has a 1 value, the CPU is in Supervisor mode. In
the Supervisor mode, all instructions function and
all of memory is available. Supervisor mode,
therefore, is the more powerful mode. Address
register 7 (the stack pointer) is the Supervisor stack
pointer (SSP) in this mode.

Exceptions are always processed in the Super­
visor mode. If the Supervisor/User bit isn't 1 when
the exception starts, it will be changed to execute
the exception.

REFERENCE CLASSIFICATION

Whenever the 68000 CPU refers to memory, the
reference is classified as shown in Fig. 7-2. These
references show up as various voltage levels on the
FCO, FC!, FC2 pins so that external devices can
understand what the 68000 is doing. This allows ex­
ternal address translation and memory protection.

EXCEPTION PROCESSING

When an exception is processed by the 68000, it
automatically saves the PC and SR values, and then
it puts an exception vector address in the PC for fur­
ther processing. The exception vectors are stored
in low memory. Because the PC and SR values were
saved, processing can resume at the same point
later. The exception handling routines are, in

Type of Reference

Un6ssigned
User Dat6
User Progr6m
Un6ssigned
Un6ssigned
Supervi sor D6ta
Supervi sor Progr6m
Interrupt Acknowledge

159

Even Byte Odd B~te

New low-word for Program Counter (Exception Vector * 4) + 2
Exception Vector * 4 New high-word for Pro9ram Countar

Fig. 7-3. Exception vector format.

essence, subroutines from which processing will
return.

Exception processing takes place in four steps.

1. The SR is copied and saved and then filled
with a new SR value for the exception. The S flag
is set and the T flag is cleared. Reset and interrupt
exceptions also bring the interrupt mask up to data
with a new level.

2. The vector number is found. Interrupts get
the vector number from a processor fetch (which is
known as an interrupt acknowledge). All other ex­
ceptions get the vector number internally from the
type of exception. The vector number is used to get
a vector address (this is explained shortly).

3. The current CPU information is saved. The
Reset exception is the only one that doesn't save
CPU status information. The PC and the SR values
are put on the Supervisor stack.

4. A new context (CPU information including
PC value) is put in place and processing starts at
the new address.

The vectors tell the CPU where to go to handle
a particular exception. All vectors are two words
long, except RESET which is four words long. All

vectors are in Supervisor data space except RESET
which is in Supervisor program space. The vectors
are numbered by byte numbers. These bytes,
multiplied by four, give the offset of the exception
vector from O. The exception vector format is shown
in Fig. 7-3.

The numbers can be generated internally or ex­
ternally. For interrupts, some outside device pro­
vides a byte vector number on lines DO through D7.
The format of this vector is shown in Fig. 7-4.

The CPU left shifts the vector number two bit
positions and puts zeros into the most significant
bits. This generates a 32-bit long-word vector off­
set. For the 68000 and the 68008, this is the actual
address (absolute) to find the vector. The address
is then truncated to fit the address bus available on
the particular Cpu. For the 68010, the offset is add­
ed to a 32-bit vector base register (VBR) to get the
absolute address of the vector. The VBR is shown
in the Chapter 8 description of the 68010. For more
details, et the 68010 documentation.

When an exception occurs, the CPU needs a
routine to handle the exception. The 68000, unlike
some CPUs that use one routine for all exceptions
(the routine then has to determine what happened)
uses different routines for the different exceptions.

15141312111098765432 0

Not U!led

Fig. 7-4. Format of external device vector.

160

IV7 v6 v5 v4 v3 v2 vI vol

Most

S19niftcant

B1t

Lust

S19n1f1cant

B;t

Vectm­
Nu.mb"'I~

o

c·
~.J

6
l
B
9

10
11
1 ~;:
1 ~,
14

15

16
to

24

' c::·
.. ::. ... J

::?6
27
28
29
30
31

32
to
47

48
to
63

f~d(Jr"ess

(DEC)

o
l].

B
1:?
16
:?<)
::'4
28

60

96

inCI

104
108
112
1.16
1. ~?O
124

1.28
t.o
1.91

1 <12
to
255

(~ddt"·eE":;

(HEX)

Ouo
004
008
one
010
014
01£3
Ole
0::,::(1
024
o ~,:E!
0::)1;

I.UU
0::;4
(l:~;8

03C

040
to
U~.,F

060

06""'1-
068
06C
070
07'+
078
07C

080
tr.:;
OBF

OCO
to
OFF

fype of ExceptIon
c)t"" i ni::f?t"Tupt

Pespt:
Reset:

Irutlal !:,SP
Intitla.l PC:

E<u S ."t- r· Ot··

f~ddt"f!!~;', err-or·
Illegal instr-uction
D1 vi de b·y' zen]
CHf::. instxuci:.iun
IRAPV instr-uctiun
Privilege VIolatIon
T !'- ~·3.C: e
LIne 1010 emulator­
Line 1111 emulator­
(Unassigned, r-eser-veJ)
(Unas'''1 gned, reser··vE!cil
For-mat Err-or (MC6bOl0 only,
reser-veel unassigned on 68000 and
6[Vl(8)
Uninitjalized Inter-r-upt Vector-

(Unassigned, reserved)

Spurious interrupt (when ther-e is a
bus pr-r-or- during inter-r-upt
p!-ucr·':~:;:;i r·,C)
Level 1 inter-tupt autovector­
Level 2 interrupt autovector­
Level 3 inter-rupt autovector­
Level 4 inter-rupt autovector­
Level 5 inter-r-upt autovector
Level 6 interr-upt autovector
Level 7 intpr-r-upt autovector

TnAF' i nstr-ucti on vector~; (#0
thr-ough #15. TRAP *n uses vector
nl.l.mbf'~I- ::',2 .+ n)

(UnaSSigned, but reser-ved
Motorola for futur-e expansion)

by

64 256 100 User interrupt vector-s
to to to
255 1023 3FF
Addresses that are unassigend, but reserved, should not be used
for peripherals assignemensts, etc. Motorola may use them in a
futur-e ver-sion of the chip, and then the peripherals would have
to be reassigned to work proper-Iy.

Fig. 7-5. Complete table of 68000 exception vectors.

161

The bottom 1K of memory, 1024 bytes, are re­
served specifically for the addresses of all the
routines. Each address has a 4-byte chunk of this
1024 bytes, each chunk is called an exception vec­
tor. The vectors are numbered (each number being
the address divided by four).

Internal traps have implicit vectors, the user
cannot choose where they will head. External in­
terrupts that use auto-vectoring are the same. The
designed-in circuitry of the CPU and the system
decides the vector number.

The full table of exception vectors is shown in
Fig. 7-5. This table takes up 1024 bytes of memory
and starts at address O. There are 255 unique vec­
tors, though many are reserved for TRAPS and
system functions. 192 vectors are reserved for User
interrupt vectors.

Types of Exceptions

There are two main types of exceptions: inter­
nal and external. All of these are shown in Fig. 7-6.

Internal exceptions, or traps, come from instruc­
tions, address errors, or tracing. Some instructions
generate exceptions automatically (ILLEGAL, il­
legal instructions, TRAP) and some may generate
an exception in special circumstances (DIVS or
DIVU by zero, CHK, TRAPV). Word fetches from
odd addresses and privilege violations on instruc­
tions also generate exceptions. Tracing is a high
priority internal interrupt after each instruction.

External exceptions, or interrupts, indicate that
some outside device wants the CPU's time and at-

tention. Bus errors and reset inputs are also
classified as external exceptions.

Exception Priorities

Figure 7-7 shows the priorities of exceptions.
Group 0 is the highest priority and Group 2 is the
lowest. Group 0 exceptions cause the current in­
struction to abort; Group 1 exceptions let the cur­
rent instruction finish before changing to exception
processing. Group 2 exceptions take place as part
of regular instruction processing. Within Group 0,
Reset is highest, bus error next, and address error
lowest in priority. Within Group 1 the order of priori­
ty from highest to lowest is trace, external inter­
rupts, and then illegal instructions and privilege
violations. Group 2 doesn't have to worry about
priorities because only one instruction at a time can
execute.

If multiple exceptions occur simultaneously,
these priority levels determine which is processed
first. Just as with interrupt priorities, when a higher
priority exception breaks into the processing of a
lower priority exception, the higher priority is pro­
cessed first, and then attention is returned to the
lower priority exception.

SUMMARY

There's a lot more to know about exceptions, but
you need some programing experience before you
can use this 68000 feature. Just as a reminder,
though, a few of the specific reasons for exceptions
are explained here.

External Internal

Interrupts
Bus Error
External Reset

Fig. 7-6. Exception types.

162

Illegal Instructions
TRAP, TRAPV, CHK instructions
Privileged Violations
Addressing Error
Tracing
Division by Zero

Priority Priority Exception Timing of the
Level Group Number Types Exception Processing

RfSft Begi ns withi n 2 clock cycles
Highest 0 Addrfss Error

Bus Error

Tract> Begins before next instruction
Middle Intt>rrupt

l11t>gal Instruction

Privilfgf Violation

Lowest 2
TRAP ,TRAPV ,CHI<

Dividt> by Zt>ro

Sterted by normal instruction
execution

Fig. 7-7. Exception priorities.

1. RESET lets the processor be started from
scratch. This is used on every microprocessor to
escape from such problems as endless loops.

2. Illegal instruction exceptions protect pro­
gram execution from trying to execute something
that is not an instruction. All of the object codes that
haven't been implemented (and the ILLEGAL in­
struction itself) are in this category. Because of the
vector address scheme, new instructions can be add­
ed in software emulation. That is, if you want a new
instruction, just specify an unused object code for

it and put the routine that will be the instruction
in the right part of memory (where the vector will
find it).

3. Tracing allows the programmer to slow ex­
ecution and see what happens after every instruc­
tion. This is vital to debugging.

4. CHK lets the programmer keep instruction
work within certain bounds. This helps implement
the data type and size protection available in some
high-level languages.

163

8

Data ~ (8)

Mdress ~ (8)

SP ~ SP

PC

~
68000

The 68000 Family
T HE 68000 IS A FAMILY OF CHIPS, NaT A LONE

microprocessor. This family includes several
different microprocessors and a large number of
peripheral chips. If you want to use the true power
of the CPU, you have to unbundle many system
tasks and assign them to other specialized chips.

The 68000 family of chips breaks into three
natural divisions. The first category is the CPUs
themselves. Choosing the right chip from this set
can save money and design time. The standard
68000 is not ideal for every system. The next
category is the 6800 support chips. These 8-bit chips
can be used with the 6800 microprocessor or with
the 68000 (any of them will interface directly with
the 68000). The last group is the 68000 support
chips. These are dedicated to supporting the CPU,
although some of them are as complicated, or even
more complicated, than the CPU itself. Figure 8-1
lists the 68000 family.

Although Motorola invented the 68000, there
are other companies that make the chip. These com­
panies, licensed by Motorola, are called second
sources. Designers don't like to work with chips that

only come from a single supplier; they are afraid
of what will happen if that supplier goes out of
business or has some production problems. Second
sources don't necessarily make all of Motorola's
68000 peripheral chips of their own.

The 68000 second sources are as follows:

Hitachi Ltd.
Mostek Corp.
Philips

Rockwell International
Signetics
Thompson EFCIS

These are true partnerships with Motorola with
exchange of masks and joint product development.
(The masks are the actual patterns used to put the
transistors on a chip.)

Figure 8-2 shows a complete 68000-based
system. Although you will never see a real system
that includes all of these peripheral devices, this il­
lustration depicts where they would attach to the
buses.

This chapter will describe the following:

1. All of the 68000 CPUs. There are only four

165

Chip Acronym Description

68000 CPU 16- bit Microprocessor

68008 CPU Reduced- bus (8- bit) Microprocessor

68010 CPU 16- bit Vi rtual- memorv Microprocessor

68020 CPU 32- bit Vi rtual- memorv Microprocessor ...,ith Cache
68120 IPC I ntel1igent Peri pheral Cont roller
68121 IPC-NR I ntelligent Peri pheral Controller ...,ith No ROM

68122 CTC Cl uste~ Termi nal Controller

68153 BIM Bus Interrupt Module
68172 [- BUSCON VMf Bus Controller
68173 S-BUSCON VMf Bus Controller
68174 E-BAM VME Bus Arbitration Module
68200 MCU Micro-computer Unit

68230 PIIT Parallel Interface!Ti mer
68340 DPR Dual Port RAM
68341 lEE E FP IEEE Floating Point (Soft...,are Package - M68KFPS)

68342 RH Reol Ti me Executive (Soft are Package)
68343 FFP Fast Floating Point (Soft are Package - M68KFFP)
68345 FIFO Fi rst - i n/Fi rst - out
68430 DMAI Di rect Memory Access Interface
68440 DDMA Dual Direct Memory Access
68450 DMAC Di rect Memory Access Controller
68451 MMU Memory Management Unit
68452 BAM Bus Arbitration Module
68454 IMDC Intelligent Multiple Disk Controller
68459 DPLL Disk Phase-Locked-Loop
68465 FDC Floppy Disk Controller
68485 RMC Raster Memory Controller
68486 RMI Raster Memorv Interface
68561 MPCC- " Multi - protocol CommUnication Controller II
68562 DUSCC Dual Universal Serial Communications Controller
68564 SIO Serial Input/Output
68590 LANCE Local Area Net...,ork Controller
68605 SOMA Serial Di rect Memory Access
68652 MPCC Multi - protocol Communications Controller
68653 PGC Pol vnomial Generator Checker
68661 EPCI Enhanced Programmable Communications Interface
68681 DUART Duel Universal Asynchronous Receiver !Transmitter
68802 LAN- 802.3 Local Area Net...,ork (I E [£ 802.3 Standard)
68851 PMMU Paged Memory Management Unit
68881 FPCP Floeti ng Poi nt Co- processor
68901 MFP Multifunction Peri pheral
68920 MAC Memory Access Controller

Fig. 8-1. Chips in the 68000 family.

166

68881
68000

Coprocessor
68008 6821 6844 6847
68010

68451
6835 6845 6850

68440 V- 68020
68851

6840 6846 6860
68450 MMU

DMA CPU 6800 Peri pherals

[68661 J l68652 J l 68564 J I 684541 68120 l 68230 J I 68590 II 68802 j I 68465 J
I I 68121 I

\ Network I
I

I Parallel 1/0 floppy Dis k 168450 I Async. CRT l68653 J Data link
I I Pri nters

Sync CRT Hard Disk

68452
68153

I

Other Buses

Fig. 8-2. Block diagram of a system built around the 68000 family.

major members of this group: 68008, 68000, 68010,
and 68020. The 68200 is a special case. It is related
to the 68000, but it is not directly compatible.

2. Some of the 68000 peripheral chips. There
are many of these chips; describing them all would
require another book. Also, because new chips are
introduced all the time from every 68000 manufac­
turer, only a few chips are described here. Those
should be enough to give you a feel for the uses and
applications of peripheral chips.

3. None of the 6800 peripheral chips. There
are also quite a few of these chips, and they have
all been described before in many books about the
6800 microprocessor.

CPU CHIPS

The CPUs of the 68000 family are shown in Fig.
8-3. They differ in a number of respects yet they
are all built around the same architecture and have
a great deal of compatibility. Which one is used in
a system will depend on how much power the
system needs, and how much it can afford.

68000
The standard of the family is the 68000. It was

the first chip of the family, introduced in 1979. As
demonstrated by Fig. 8-4, you have choices to make
even if you opt for the 68000. Besides having to
decide on a package material (which is true when
you buy many chips) you have to choose a speed.

The ''!;' of the chip number indicates a ceramic
package; different letters are used for the other
packages. G or Y stands for a plastic DIP package
(with 64 pins), ZB stands for Type B Leadless Chip
Carrier, and ZC or Z stands for a Hi-reI Type C
Leadless Chip Carrier. Leadless Chip Carriers are
square and take up much less circuit board space
than traditional DIP packages.

The digits at the end of the chip number in­
dicates the speed of the chip. Increased clock fre­
quency means a shorter clock period (time for the
clock to run through one cycle). That also means
less time spent on each instruction, and thus, faster
program execution.

Chips with a faster clock may work through pro­
grams faster, but they will also cost more than

167

68000

68008

68010

68020

68200

Fig. 8-3. 68000 CPUs.

16-bit Microprocessor

Reduced-bus (8-bit) Mlcroprocessor

16-bit Virtual Memory Microprocessor

32-bit Vlrtual Memory Microprocessor

Micro-computer Unit

slower chips. In addition, for faster chips to be able
to use their speed, other components may also have
to be chosen for speed tand will therefore be more
expensive). For instance, in many systems a change

to a fast microprocessor may require a change to
faster memory chips (chips that can be read or writ­
ten to in less time) for system speed to actually in­
crease. If you specify faster chips for all the

M C 6 8 0 0 0 C I 8 X l_
I I -.-- I ---r-

Manufacturer: Temperature Range Clock frequency:

MC = Motorola Blank = O°C to 70°C 4 = 4 MHz
MK = Mostek C = - 40°C to 85°C 6 = 6 MHz
(there lire others) A = - 55°C to 125°C 8 = 8 MHz

10= 10 MHz
Chi p Type 12 = 12 MHz

68000 = 16- bit Microprocessor
68008 = Reduced Datil Bus (8- bit) 16- bit Microprocessor Package Type:
68010 = 16- bit Vi rtual Memory Microprocessor l = Cerllmic
68020 = 32- bit Vi rtuel Memory Microprocessor with Cache G = Plastic with Heat Sprellder

ZB= Type B leadlessChipCarrier

ZC= Type C leadless Chi p Carrier

R = Pin Grid Array

Testi ng Endured:

X II level I, 100% temperature cycli ng. Ten cycles r-
from - 25°C to + 150°C.

1 00% High temperature functional test.

D = Level II, 100% burn-in (168 hourset + 125°C)

100% post burn-i n dc parametric test at 25°C

DS = level III, combi nation of Level I and Level II.

Fig. 8-4. CPU specification codes-package and speed.

168

positions, system design may become more difficult
because problems of line isolation and spurious
signals may worsen.

So, in most cases you cannot just plug a faster
68000 in and watch a computer fly. Nevertheless,
you do have a choice of 68000 speeds ranging from
the 68000L4 which runs at 4 MHz to the 68000L12
which flies at 12.5 MHz.

Theoretically, a system with a 68000L12 (and
all the support chips necessary) will run a program
more than three times faster than a system with a
68000L4. However, since many programs are 110
bound-that is, most of the program time is spent
waiting for the human operator to enter or read
data-the increased speed may not even appear.

The 68000 will not be covered in any more
detail here: the rest of this book takes care of that
task.

68008
The 68008 is completely code compatible with

the 68000. Programs written for either one will
generally run on the other. The programmer only
needs to understand a few minor software
differences-such as the limited interrupt priorities
and changed memory organization of the 68008-to
quickly adapt programs written on the 68000 for
use on the 68008. Programs written for the 68008
will run without any modification at all on the
68000.

The 68008 has a different memory organiza­
tion, as shown in Fig. 8-5. The register and instruc­
tion set of the 68008 are the same as on the 68000.
Because the two chips are so familiar, and the rest
of this book is devoted to the 68000, only the func­
tional differences between the chips are described
in this chapter.

68008 vs. 8-Bit CPUs. The main
difference between the 68008 and the 68000 is that
the 68008 has a data-bus that is only 8 bits wide
(which is why it has the "8" on the end of the
number). The standard 68000 has a 16-bit data bus.
To provide the 16-bit chip (with a 32-bit internal
structure) advantages for 8-bit system designers, the
68008 was invented. The narrow data-bus allows

systems are typically simpler and therefore less ex­
pensive than 16-bit systems. The 68008 comes
packaged in a 48-pin DIP instead of the 64-pin DIP
of the 68000.

Why is an 8-bit wide data bus cheaper to work
with than a 16-bit wide data bus? Because systems
costs are reduced. Byte-wide memories and
peripheral components (chips that address a full
byte of memory at a time instead of a single bit can

Bytes
Bit P03ition3

7 6 5 432 1 0

Byte 3
Byte 2

Byte 1
Byte 0

Words
Bit P03ition3

7654321 0

'--Word 1
Low Bytt'

High Bytt'

'--Word 0
Low Bytt'

High Bytt'

Long-words
Bit P03ition3

7 6 5 4 3 2 1 0

-Low Word
Bytt' 3

-long-Yord 0
Bytt' 2

Bytt' 1
-High Word

Bytt' a

0003
0002
0001
0000

0003
0002
0001
0000

0003
0002
0001
0000

A

d

d

r

e
3

3

A

d
d
r

e
3

3

A
d
d

r

e
3

3

simpler printed circuits than 16-bit bus allows. 8-bit Fig. 8-5. 68008 memory organization.

169

Selection U ne
(Lo", lets the Dete11 nes feed throuqh to the outputs,

High lets the Address 11 nes feed through the the outputs)

~
Data 1 " "

Dete 1
/

/ or
Data 2 " Address 1

/ Multiplexer

" Address 1 /

Addres~ 2 " /

Fig. 8-6. An example of multiplexing.

be used. This decreases the chip cost associated
with the memory portion of the system.

Why use the 68008 instead of some 8-bit pro­
cessor? Because the 68008 retains all of the power
of the 68000 instructions, addressing modes, and
internal architecture. This, in effect, lets you use a
32-bit architecture in what was formerly 8-bit ter­
ritory. Only the external data-bus is narrowed to 8
bits.

Some microprocessors use multiplexed buses to
save pins on the chip. Multiplexing allows more
signals to use a limited number of lines, as shown
in Fig. 8-6. The disadvantage of multiplexing is that
it requires extra chips on the circuit board to
demultiplex the signal lines. The 68008 8-bit data­
bus is not multiplexed, nor is the address bus.

68008-68000 Compatibility. Because the
68008 object code is directly compatible with that
of the 68000, any software written for the 68000 will
execute on the 68008 (and vice-versa). Having the
68008 (an 8-bit data-bus CPU), the 68000 and
68010, (16-bit data buses), and the 68020 (32-bit
data bus), allows the programmer to learn a single
assembly language which can be used for systems
ranging from simple controllers to super­
minicomputers.

Memory Addressing and Data Organiza-

170

Date 2

" / or
Address 2

tion. The 68008 can address 1 megabyte of
non segmented linear address space. That means
it can directly reach for information in up to 1
megabyte of memory. Segmenting is a technique of
adding extra address bits to determine a chunk of
memory within which the actual address will be
used to find the data. Many microprocessors that
claim to be able to access a large memory space
(such as 1 megabyte) must use segmenting to do so.
You can segment if you want to with the 68008, and
the segmenting can be quite flexible. You can let
each program use segments of different lengths,
whatever is most efficient for that program. Other
microprocessors force you (the programmer) to use
a set segmenting scheme.

Data organization is a bit different with the
68008 than with the 68000 because the 68008 can
only move a single byte at a time on its 8-bit data
bus. The 68000 individually addresses bytes with
the high-order bytes having an even address (the
same as the addressed word). This gives the low­
order byte an odd address one count higher than the
word address. Another facet of 68000 addressing
is that multibyte data is only addressed on word
boundaries (the 68020, on the other hand, is not
limited to this).

The 68008 fetches a pair of bytes, or a word,

at a time to ensure compatibility with the 68000
which fetches words. The 68000 addresses data as
shown in Fig. 8-5. Instructions always start on a
word boundary to keep compatibility with the
68000. Function codes are used to indicate the ad­
dress space being accessed during a bus cycle. Bits
are specified from bit 0 to bit 7 (the high bit) within
a byte. Bytes are addressed in order in memory.
Words are addressed with the most significant byte
at the lower address and the least significant byte
one position higher in memory. Long-words are ad­
dressed with the high-order word first (lower in
memory) and the low-order word last(at a higher
point in memory) and the division within the words
within the long word remains that same as just
described. This may sound complicated, but once
you inspect the illustration and use the 68008 a few
times, it will be second nature.

The Chip and Its Pinout. Figure 8-7 shows

Vee

ONO
CLK

Processor reo

Status FCl

fC2

68008
6800

Peripheral E

Control VPA

System
BERR

Control
RESET
HAL T

Fig. 8-7. 68008 pinout (functional).

the signals for the 68008 chip. These are, of course,
somewhat different from the 68000 because of the
change of bus sizes. The following list describes the
similarities and differences between 68000 and
68008 signals. This information is only presented
for the interest of those who will have personal com­
puters built around the 68008; it is not vital to pro­
gramming.

The physical pinout of the 68008 is shown in
Fig. 8-8. The 68008 comes in a standard DIP
package but has only 48 pins compared to the 64
of the 68000. The 68008 comes in versions that run
at 8, 10, or 12.5 megahertz.

Address Bus. The address bus (AO-A19) is only
20 lines wide instead of the 23 (A1 through A23)
on the 68000. As with the 68000, this bus provides
the address for bus operations during all cycles ex­
cept interrupt acknowledge cycles. Then, lines A1,
A2, and A3 provide the level of the interrupt (just

Address Bus

Data Bus

AS Asynchronous
R/W Bus
os Control

DTACI(

BR Bus Arbitration

BG Control

IPll Interrupt
IPl2/0 Control

171

A3 A2

A4 Al

A5 AO

A6 FCO

A7 FCl

A9 FC2

A9 IPL2/0

Al0 IPL1

All BERR

Al2 VPA

A13 E

A14 RESET

Vee 68008 HALl

A15 GND

GND CLK

A16 BR
A17 BG

A19 OTACK

A19 R/W

07 OS

D6 AS
05 DO

D4 Dl
D3 D2

Fig. 8-8. 68008 pinout (assignments).

as on the 68000) and lines AO, and A4 through A19
are all set high (on the 68000 lines A4 through A23
are all set high).

Data Bus. The data bus (DO-D7) is only 8 bits
wide instead of the 16-bits (DO-D15) of the 68000.
As with the 68000, during interrupt
acknowledgements, the interrupt vector is supplied
~o the CPU by the interrupter on lines DO-D7.

Asynchronous Bus Control. Asynchronous bus
control changes slightly from the 68000 to the

172

68008. The 68000 has address strobe, read/write,
upper data strobe, lower data strobe, and data
transfer acknowledge. The 68008's difference is that
it has only a single data strobe signal instead of the
upper and lower data strobes.

Bus Arbitration Control. Bus arbitration control
uses only two signals instead of the three (Bus Re­
quest, Bus Grant, and Bus Grant Acknowledge) on
the 68000. The 68008 uses Bus Request and Bus
Grant. These handle all daisy-chained networks,
priority encoded networks, or combinations. The
BR is wire ORed with all other devices that could
control the bus. Those devices may ask for the bus
at any time. BG indicates to all other bus controllers
that the CPU will release control of the bus at the
end of the current bus cycle. The only time BG can­
not be issued is during the two clock interval be­
tween the transition of AS from inactive to active.
When a 68008 is put into a 68000 system the BR
and BGACK signals should be ANDed and then
connected to BR.

Interrupt Control. A device requesting an inter­
rupt uses these pins to indicate to the CPU the
priority of the interrupt. The 6800 uses three pins
to accept these signals, (IPLObar, IPLl bar, and
IPL2bar); the 68008 uses only two, (IPLO/IPL2 and
IPLl). The 68000 thus can handle seven levels of
priority (a zero on the three pins indicates no inter­
rupt with level seven not being maskable.) For the
interrupt request to be acknowledged, the priority
must be greater than the contents of the processor
status register interrupt level. The 68008 attaches
the IPLO/IPL2 pin to both IPLO and IPL2 internal­
ly and therefore can only fit values of 0, 2, 5, and
7. Level seven, as in the 68000, is a nonmaskable
edge-triggered interrupt. IPLObar is the least
significant bit and IPL2 is the most significant bit.
The level must be less than or equal to the processor
status register level for two successive clocks before
triggering an internal interrupt request. Interrupt
acknowledgement is made by all of the function
code lines (FeO-Fe2) going high.

System Control. System control is accom­
plished in the same way as on the 68000. BERR is
used for Bus Errors, RESET is used to reset the
processor from an external signal, and HALT is us-

ed to stop the processor after the current bus cycle.
M6800 Peripheral Control. Peripheral control

differs a little from the 68000 method. This is the
interfacing of synchronous peripherals to the asyn­
chronous MC68000. The 68000 supplies a valid
memory address (VMA) signal, but the 68008 does
not. This signal (on the 68000) tells the peripherals
that a valid address is on the bus and that the CPU
is synchronized to the enable clock. When using the
68008, this signal can be generated externally (out­
side the CPU chip).

Processor Status. The processor status (FeO,
RCl, Fe2) signals are the same on both the 68000
and the 68008.

There are other differences between the chips
that involve things already mentioned. For instance,
the 68000 must use an internal AO signal to deter­
mine which byte to grab from memory when the in­
struction specifies a byte operation, read or write.
The 68008 has an external AO for that job.

That is the extent of the signal differences be­
tween the 68008 and the 68000. Most of what you
just read, except the Interrupt priority discussion,
is hardware stuff that a programmer doesn't need
to remember.

Exception Processing. The 68000 and the
68008 do differ slightly in exception processing
because, among other things, the 68008 cannot
recognize the full seven levels of interrupt priority.
Because of the limited pins (as explained above in
the "Interrupt Control" section) the 68008 can on­
ly work levels 0, 2, 5, and 7 of the 68000's interrupt
priorities. So 68000 programs that depend on full
ordering of interrupt priorities will have to make
some accommodations to run on the 68008.

Summary. Basically, having the 68008 to
work with means you can use the powerful 68000
architecture and assembly language even in smaller
and cheaper systems. You can apply the same
knowledge, and even the same programs, to a wider
variety of problems.

68010

The 68010 is an improved and more powerful
68000 CPU. It is completely program compatible

with the 68000. The 68010 uses the same address­
ing modes, registers, buses, package, and instruc­
tions as the 68000. What it adds is new exception
processing power and Virtual Memory (in fact, it
is called the 16-bit Virtual Memory
Microprocessor) .

Figure 8-9 shows the 68010 register set. The
new Vector Base Register and the Alternate Func­
tion Code Registers, along with the new instruc­
tions, protect Supervisor mode from User mode and
allow the 68010 chip to understand when virtual
memory operations are necessary.

Virtual memory is a common technique in main­
frame and minicomputers because it allows the com­
puter to access a much larger address area than is
built into the memory chips. The virtual memory
information is kept in a larger storage medium, such
as a disk. The microprocessor keeps track of what
information is loaded into the memory chips. When
an address that is outside the presently stored area
is called for by an instruction, a page fault has oc­
curred. That page fault stops the execution, loads
the necessary information from the disk into the
memory chips, and then continues the instruction
execution-all without letting the programmer
know that such a special memory operation was
necessary. The 68010 uses hardware-including
new registers and stack controls-to run virtual
memory.

You can program a 68010 system just as if it
had a 68000 (as long as you realize that a few in­
structions have been modified-see the descriptions
below). If you want to understand virtual memory
operations, look for a general computer science
textbook. To understand the action of the new 68010
registers, which are outside the territory of this
book, read the manufacturer's original manuals such
as, M68000: 16/32-bit Microprocessor Programmers
REference Manual, from Motorola.

New 68010 Instructions. The following
pages describe the new 68010 instructions in the
same manner that Chapter 6 of this book describes
the 68000 instructions. The 68010 uses the entire
set of 68000 instructions (though a few are modified)
and adds these instructions. You'll need to know dif­
ferences if you work on a 68010 machine.

173

(8;t Poslhons)

31 15 7 0

DO
01

02

03 Dete
04 Registers
05

06

07

31 15 0

AO
AI
A2

A3 Address
A4 Registers
A5

A6

Ust'r Stack Pointt',. (USP) A7 (Stock
S",s~t'm S~ack Po;nt.,. (ssp) Pointers)

31 0

Pro9ram Count.r (pc) Program
Counter

15 7 0

ISystltm Byt.1 Unr Bytt' I Status
Register

31 0

Vector Bese Register Interrupt
Reglster

s AltermHe

d Function Code
Registers

Fig. 8-9. 68010 registers.

174

MOVE from CCR
Definition: move from condition code register
(68010).
Description: MOVE from CCR is a special case of
the MOVE instruction and is a 68010 instruction.
It moves the contents from the low byte (the condi­
tion code register) of the status register to the
specified destination.
Addressing: The source is always the CCR. The
destination can be reached by any of these follow­
ing modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100001011aaabbb

Breakdown
0100001011: MOVE from CCR instruction.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

MOVE from SR
Definition: move from the status register (68010).
Description: MOVE from SR is a special case of the
MOVE instruction. It moves the contents of the
status register to the specified destination. The
68010 version of MOVE from SR is the same as the
68000 version except that it is a privileged instruc­
tion. If the CPU tries to execute it while in User
state, a TRAP will be generated.
Addressing: The source is always the status
register. The destination can be reached by any of
the following modes:

Data Register Direct
Address Register Indirect
Postincrement Register Indirect

Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

Operand size: word.
Instruction length: 1 word.
Condition code effects: none.
Object code: 0100000011aaabbb

Breakdown
0100000011: MOVE from SR instruction.
aaa: Destination addressing mode.
bbb: Destination addressing register number.

MOVEC
Definition: move control register (68010).
Description: MOVEC is a special case of the MOVE
instruction that is only implemented on the 68010,
not the 68000. It moves data either from a specified
control register to a specified general register, or
from a specified general register to the specified
control register.

The data is copied, so the source contents aren't
changed by this instruction. Even if the control
register doesn't use a full 32 bits, the transfer is
always of a long-word. The unused bits are read as
zeros.

Addressing: The general register (which functions
as source or destination) is specified by either Data
Register Direct mode (if it is an address register)
or Address Register Direct mode (if it is an address
register).
Operand size: long-word.
Instruction length: 2 words.
Condition code effects: none
Object code: First word

(010011100111101a)
Second word (bcccdddddddddddd)

Breakdown
010011100111101: MOVEC instruction.
a: SPECIFIES the transfer direction.

o means control to general.
1 means general to control.

b: Specifies the type of the general register.

175

o means a data register.
1 means an address register.

ccc: Specifies the general register number.
dddddddddddd: Specifies the control register.

000000000000 means the source function code
(SFC) register.
000000000001 means the destination function
code (DFC) register.
100000000000 means the User stack pointer.
100000000001 means the vector base register
for the exception vector table.

Note: Any code other than those shown for the con­
trol register specification will force an illegal instruc­
tion exception.

MOVES
Definition: move address space (68010).
Description: MOVES is a privileged instruction that
is found on the 68010 and not the 68000. It moves
a byte, word, or long-word between a general
register and a memory location.
Addressing: The memory location is addressed by
the SFC (source function code) register-if it is the
source-or the DFC (destination function code)
register-if it is the destination. The general register
is specified by any of the following addressing
modes:

Address Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Displacement
Register Indirect with Index
Absolute Short
Absolute Long

If the destination general register is a data
register, the operand replaces the low-order bits (and
doesn't affect the higher bits). If the destination
general register is an address register, the operand
is sign-extended to 32-bits and then is put into the
register.
Operand size: byte, word. or long-word.
Instruction length: 2 word.
Condition code effects: none.
Object code: First word (00001110aabbbbbb)

176

Second word (cdddeOOOOOOOOOOO)
Breakdown

00001110: MOVES instruction.
aa: Specifies the operand size.

00 means byte
01 means word
10 means long-word

bbbbbb: Specifies the effective address of the
memory location.

c: Specifies the type of general register used.
o means a data register.
1 means an address register.

ddd: Register number.
e: Specifies the transfer direction.

o means from memory to the general register.
1 means from the general register to memory.

RTD
Definition: return and deallocate parameters
(68010).
Description: A long-word is pulled off of the stack
and put into the PC (program counter). The previous
PC value is lost. A word displacement value-which
is the second word of the instruction-is then sign­
extended to a full 32 bits and added to the stack
pointer. This instruction doesn't work on the 68000;
it is only a 68010 instruction.
Addressing: none.
Operand size: not applicable.
Instruction length: 2 words.
Condition code effects: none.
Object code: First word (0100111001110100)

Second word (displacement)
Breakdown

0100111001110100: RDE instruction
displacement: This two's complement value is
sign extended to 32 bits and then added to the
stack pointer.

RTE
Definition: return from exception (privileged)
(68010).
Descrition: RTE loads the SR (status register) and
then the PC (program counter) from the system
stack. The first word pulled off the Supervisor stack
is put into the SR; the second and third words

pulled are put into the PC (the second becomes the
high word and the third the low word). The previous
SR and PC values are lost. This is typically the last
instruction executed in an exception processing ser­
vice routine. RTE is a privileged instruction and so
will only execute when the CPU is in Supervisor
state. The new state of the CPU will depend on the
values put into the Status Register. The bits of the
status register that have not yet been assigned
values will always retain a O. RTE is slightly dif­
ferent on the 682010 than on the 68000. The 68010
RTE also pulls the vector offset from the stack and
then examines the format field to see how much
data is to be restored (see the note below for details).
Operand size: none.
Instruction length: 1 word.
Condition code effects: Set directly from the value
pulled off the stack and stored in the status register.
Object Code: 0100111001110011

Breakdown
0100111001110011: RTE instruction.

The vector offset word has 10 bits of vector off­
set (bits 0 through 9), 2 bits that don't change (both
bit 10 and bit 11 are always 0), and 4 bits of format
(this is the field: bits 12 through 15). The format
field specifies the amount of data to restore (to pull
from the top of the stack):

0000 means to short restore. 4 words are restored.
1000 means to long restore. 29 words are restored.

Any other pattern means the CPU will take the
format error exception.

68020

The 68020 was formally announced by
Motorola on June 28,1984. It took 60 person-years
to design it and it is supposed to offer four times
the power of the 68010. The only full 32-bit
microprocessor to precede it onto the commercial
market was the 32032 from National Semiconduc­
tor. Motorola disputes this, claiming its chip is the
first true 32-bit chip around. Other 32-bit firms,
though, including Hewlett-Packard with its HP
Focus CPU and Western Electric with the Bellmac

32 had been producing 32-bit processors for their
own machines (but not for sale to other manufac­
turers)

The 68020, then, was the first commercial,
32-bit, upwardly-compatible chip from a major
microprocessor maker. Intel had yet to weigh in with
its 80386 entry (although the iAPX 432 had been
announced several years before, it had an unusual
design and had affected future microprocessor
designers more than it had gained commercial ac­
ceptance).

Having a particular microprocessor included in
the design of a new product is called a design win.
A big win is a product that will lead the market
either in technological complexity or in volume of
sales. The 68020, by virtue of its compatibility and
its position as an early entrant, will clearly have a
large number of design wins. In fact, Motorola cir­
culated most of the specifications of the 68020 for
at least a year before the chip was available. Be­
tween that, and working directly with important
customers to let them know of the chip's develop­
ment progress, Motorola was able to use the feed­
back to make a better chip and to announce a chip
that was already in several computers that were
about to hit the market.

Why use the 68020, and why is it important? All
you really need to know, as a software designer, is
that the 68020 is a superset of the 68010. Once you
learn 68000 code, you can write programs for the
68020, a chip that will be used well into the 1990s.
That means your 68000 knowledge is guaranteed
to have a future. Second, the 68020 is more power­
ful than the 68000 or 68010 with more instmctions,
more addressing modes, and greater speed.

The 68020 is Motorola's most advanced
microprocessor. It is completely 32-bit, that is, the
internal and external data and address paths (or
buses) are 32-bits and are not multiplexed-a dif­
ferent wire is dedicated to each signal. That means
no time is lost decoding whether a line is supposed
to carry addresses or data. The registers are all
32-bit wide, the ALUs are 32-bits wide, and the pro­
gram counters and stack pointers are also 32-bits
wide.

HCMOS Thchnology. Motorola makes the

177

68020 using a 2-micron HCMOS process. 2-micron
is a way of referring to the design rules for the
smallest features on the chip. A micron is a millionth
of a meter (a micrometer). That isn't the smallest
design rule, some chips are now made using 1
micron design rules. Smaller design rules mean
more transistors can be fitted into a smaller space.
Theoretically, ignoring power buses and other real­
world factors, a 1-micron design rule chip could hold
4 times as many transistors as a 2-micron design
rule chip. Conversely, a 2-micron design rule chip
will be easier to make than a 1-micron design rule
chip. Larger features means higher yields from the
wafers and lower prices for the final chip.

With any chip as complex as the 68020, densi­
ty (getting the maximum number of transistors on­
to the chip), chip size (keeping the actual chip as
small as possible so that the number of working
devices per processed wafer are high), speed (keep
it as high as possible by putting everything on a
single wafer and yet use a technology to make the
transistors that can work at a high frequency), power
consumption (as low as possible so heat won't be
a problem and the chip can be used in systems with
smaller, cheaper power supplies), and manufac­
turability (make it easy to make by using transistors
as large as possible, and techniques that are pro­
ven) are vital factors.

There are many ways to make the tiny tran­
sistors on a silicon wafer. PMOS was one of the first
used (it stands for P-channel Metal-Oxide­
Semiconductor). Then NMOS (N-channel MOS)
became more prevalent because it allowed more
transistors in the same area. Finally in the 1980s,
CMOS, a technology of making transistors that had
been invented years before at RCA, became the
most popular.

CMOS, which stands for Complementary MOS,
uses very little power compared to PMOS and
NMOS. It has the disadvantages that it takes up
more space and the circuits it makes are traditional­
ly slower than NMOS. However, when very small
design rules are used, it was discovered that CMOS
can work pretty quickly. Because it uses little power,
it doesn't heat up the chip as much as the other
techniques. Heat becomes a major barrier to larger,

178

more complex chips, because all those transistors
are giving off heat and when the temperature of a
chip rises the chip becomes more likely to make
mistakes and, eventually, stop working.

HCMOS is an advanced type of CMOS process
(High-performance and High-density CMOS). This
mixture of NMOS and CMOS (90% CMOS with
NMOS for critical circuits) combines the advantages
of low-power operation with high speed.

Chip Geography. The 68020 has 200,000
transistors on a chip of silicon that is 375 by 350
mils (thousandths of an inch), or about 3/8 of an inch
square. The 68000 has 70,000 transistors. The
68020 transistors are divided up into the functional
regions you see in Fig. 8-10. It uses the 68010 as
a core (subset) but has a 32-bit barrel shifter which
by itself has more transistors than the entire 6800
microprocessor. The barrel shifter speeds execution
of shifts, multiplications, divisions, and other in­
structions.

The Execution Unit is made up of three parts:
the program counter section, the address section,
and the data section. The program counter section
calculates instruction addresses and maintains in­
struction stream pointers. The address section
calculates operand addresses and stores the U ser­
visible address register set. The data section per­
forms all the data operations and also contains the
User-visible data register set, a barrel shifter, and
elements of the instruction pipe.

The /lROM (microROM) and nROM
(nanoROM) are a modified 2-level control store.
That is, the /lROM is a permanent memory that
holds the information needed for decoding the
68000 instructions. The nROM is a permanent
memory that holds the information needed to
decode the /lROM instructions.

At this point, no further ROMs are necessary;
the instructions in the nROM are just directly im­
plemented in hardware. If the nROM and the /lROM
were given different values to permanently store,
the instruction set of the 68000 would be different.
This approach to microprocessor design allows the
designer to fix bugs, add features, and improve the
chip without completely redesigning it. In other
words, the /lROM controls the sequence of actions

- '- Ii.. - -I

I
:·· ,
'J:

: ... · 1

I

• .Jft .. - . I....L} .-•L:...!, I
~---

Fig. !l-10. 68020 floor plan (courtesy of Motorola).

the bus controller and the micromachine (of the
microprocessor) make to carry out machine
language instructions. The nROM controls the
operation of the micromachine.

The Instruction Decode Unit decodes the in­
structions. Within this unit, the Al PLA makes the
initial decoding. This section determines if the in­
struction is legal and provides the initial microad­
dress. The A2/A3 PLA generates the rest of the
microaddresses necessary for instruction decoding.

The A5/A6 PLA decodes the coprocessor opera­
tions. PLA, by the way, stands for Programmable
Logic Array. PLAs are arrays of gates that can be
customized to particular uses by the layout of the
final metal layer in processing. So, as with the
ROMs, PLAs can be changed easily without com­
pletely changing chip design.

T he Instruction Cache has a Tag Cache and a
Data Cache. The Tag Cache contains instruction tag
information (including the address and a validity

179

bit). The Data Cache doesn't actually contain data.
It does hold the instruction stream.

The Bus Controller manages memory access
(including access of the cache).

The Control Unit controls the parts of the
micromachine. It interprets nROM information and
combines it with secondary decoding of the instruc·
tion pipe to finally control the micromachine.

Other parts shown in Fig. 8-10 include the In­
struction Pipe, the Clock Generators, the FC Logic,
the Size Logic, the Address Buffers, and the Data
Buffers.

Packaging_ The VLSI 68020 data and address
buses aren't multiplexed, and because they are
32-bits wide, the normal DIP package can't hold the
chip. Instead, a 114-lead pin-grid array package is
used (shown in Fig. 8-11). This is a square package
with the chip in the center and with many pins stick­
ing out of the bottom like a bed of nails. The pin
grid array package also offers a small size (small

Fig. 8-11 . Pin-grid array package (courtesy of Motorola).

180

footprint compared to a DIP) and high reliability (for
better heat dissipation as ceramic packages have).
The pins are in a 13 x 13 square with 114 pins total.
Not all of the pins are used: the 114-pin package
is a standard size.

Speed. The 68020 comes in different versions
that run at different speeds. Not all of these will be
available immediately. The first samples ran at 12.5
MHz. 1985 will see the emergence of 16.65 MHz
samples that have a clock with a 60 nanosecond
period and dissipate less than 1.5 watts (which is
less than the original 68000 or the 68008 dissipate).
A common measure of large computer speed is the
MIPS. One MIPS means that a computer can ex­
ecute one Million Instructions Per Second. That is
an averaged figure, and depends on the type of in­
structions. The 68020 can cruise at 2 to 3 MIPS (say
2.5) for interger processing and can run in short
bursts (with the right sort of instructions) at up to
8 MIPS.

Improvements

Doubled Clock frequency
32- bit Dete Bus
On- boerd Cache

New Instructions

Fig. 8-12. 68020 improved performance factor estimates.

Motorola feels that the 68020 is 2.5 times more
powerful than any other chip on the market. (The
newest member of the very popular DEC VAX
minicomputer line, the 111785, is rated at 1.35
MIPS.) The 68020 MIPS measurement depends on
application. The 8 MHz 68000 runs at 0.5 to 0.75
MIPS. Motorola estimates that the 68020 runs bet­
ter because of the factors shown in Fig. 8-12. These
factors would add up to 5.8 times the performance
of the 68000. This means that the 68020 will run
at 2 to 3 MIPS with typical instructions, no waits,
and no MMU (which would slow it down).

Memory Space. Because it is a completely
32-bit chip, it can address 4 gigabytes of memory
directly. There are no instruction timing differences
for byte, word, and long-word operations. The 68020
is also built to use Virtual Memory. That is, though
it can address 4 gigabytes, it doesn't have to have
that much memory directly available as chips. If an
area of memory is addressed that isn't on the chips
in the system, but is within the 4 gigabytes, the com­
puter system can be set up to grab that part of
memory from whatever source it is on and bring it
into active chip memory.

Data Bus Adjustment. An unusual feature
of the 68020 is its ability to adjust the data bus
width to whatever is needed; 8-bit, 16-bit, or 32-bit.
That doesn't mean the pins disappear, just that the
proper lines are all that is used. At every cycle, the
bus can be adjusted by the 68020 itself. Besides eas­
ing the programmer's job, that means that 8- and
16-bit peripheral chips will be easy to hook to the
68020. That is important because most peripheral

F6ctor
(66020/66000 6 MHZ)

2.0
1.3

1.25
1.25

chips probably will be 8- or 16-bit: more bits aren't
really useful for most 110 functions.

New Addressing and Instruction
Features. The 68020 has some new addressing
modes, such as full displacements, true memory in­
direction, and scaled indexing. It also has new in­
structions such as bit-field operators, double-ended
bounds checking, BCD data compression and expan­
sion, module support, and enhanced system calling
functions. Both of these additions help high-level
languages work more easily with the 68020. Some
instructions that did exist on the previous 68000
family chips, but could not work with long-words,
are extended to work with a full 32-bits on the
68020.

Another surprise waiting for 68020 program­
mers is the existence of 2 Supervisor system stack
pointers. These are included to make task switching
easier, and to separate task-related exceptions from
system-related exceptions. The master stack pointer
is active with user tasks so all task-related excep­
tions are within a user's control block. Other excep­
tions are handled by the interrupt stack.

Price. As with all microprocessors, the 68020
is expensive: The introductory price for 12.5 MHz
samples in late 1984 was $487. But as production
experience is gained, and the volume sold climbs,
that price will drop. The 6800 started at $450. The
68000 first sold, in 1979, for nearly $450 and now
costs around $50 at local electronic hobbyshops.
Motorola thinks that by 1989 the 68020 will cost
approximately $50.

At that price, and with its speed and memory

181

addressing ability, the 68020 is bound to show up
in engineering workstations, high-perfonnance com­
puters, and communications and control systems.
Eventually, there is little doubt it will find its way
into the personal computer field as users demand
more and more power. Motorola expects to see
MC68000 based CAD, CAM, and CAE worksta­
tions (individual computers dedicated to Computer
Aided Design, Manufacturing, and Engineering),
fault-tolerant processors, graphics processing, small
to intermediate business computer systems,
robotics, and telecommunications switching
networks.

Compatibility. Because the 68020 has the
same architecture as the other 68000 chips all ob­
ject code written for the others will run without
change on the 68020. Because of its new features,
however, some programs written for the 68020 will
not run on the previous chips. In fact, because of
improvements in clock speed and other new
features, that code will probably run faster. The
Cache helps speed regular operation and makes
multiprocessing easier to accomplish. The new ad­
dressing modes help with full flexibility and make
high-level languages run better on the chip. The new
instructions make complex data manipulations,
graphics, robotics, and high-speed controllers work
better. Operating systems will be easier to imple­
ment because of the program counter, and complete
control of the onchip instruction cache. Also,
because the user, I/O, and supervisor infonnation
are separated.

At the time this book was written (late 1984)
there was not yet a second source for the 68020.
There will certainly soon be one.

The 68020 has the elements that are found in
the earlier 68000 family CPU chips: the 7 address
registers, 7 data registers, and 2 stack pointers. It
now has an architecture that includes (and all of
these are 32-bit) a program counter, a user stack
pointer, an interrupt stack pointer, a master stack
pointer, a ALU, a cache control register, a cache ad­
dress register, 7 address registers, 7 data registers,
address bus, and data bus.

Cache. The 68020 has a 64-word, on-chip,
direct-mapped, instruction cache. The cache-which

182

takes 120 nanoseconds (ns) for access-is faster than
external memory that requires a minimum of 180
ns for access (and the minimum can only be
reached if very expensive 90 ns RAMs are used for
no wait state accessing).

The cache holds recently used instruction se­
quences. The 68000, executing typical instructions,
uses the bus 950/0 or the time, leaving only 50/0 for
DMA. The 68020 with cache and prefetch, uses the
bus as little as 65-700/0 of the time. The pipelining
is done in 3 stages: prefetch, decode (and address
calculations), and execute. The 68020 has a pipeline
that is 4 active words long where the 68000 has a
3 word long pipeline. Caches and pipelines let the
CPU get data and instructions faster: look for a com­
puter science text for more details of these
structures.

Peripherals and Coprocessors. This is
short and sweet: the present peripheral chips that
work with the 68000 will also work with the 68020.
In addition, because of its coprocessor interface and
huge memory address space, it is easy to interface
other processors, chips, or systems to the 68020.

The 68020 coprocessor interface allows the chip
to be easily attached to other processors. Because
the interface is generalized, the 68020 can work with
different coprocessors. (Some other microprocessors
are customized to work only with certain
coprocessors.) A 68020 system will support up to
8 coprocessors. The way the interface works is that
when the 68020 doesn't know how an instruction
works, it passes that instruction to coprocessor
which decodes it and tells CPU what to do.

The most important coprocessor is the 68881
FPC (Floating Point mathematical processor) which
is described in detail later in this chapter. The
68881, 68851 PMMU (Paged Memory Manage­
ment Unit: also described in this chapter) and the
68020 chip set will rival the performance of any
superminicomputer. Motorola claims that it will
have the power as a DEC VAX 111785 minicom­
puter. (The 688 prefix is Motorola's code for
coprocessors.)

68200
This is a 16-bit, single-chip microcomputer from

Mostek. Microcomputers is a term sometimes
used for chips that integrate a microprocessor and
various peripheral functions onto a single silicon
piece. Microcomputers are typically used as con­
trollers for equipment.

In the expanded bus mode, the 68200 directly
interfaces to the 68000. It has three timers and a
full duplex USART with address wake-up. It has
a 128 word RAM, timers and a serial port on the
chip.

There are two versions of the 68200. The first
has an onchip ROM in a 48-pin plastic DIP. The
second is an emulator version in a 84-pin ceramic
LCC.

Most instructions operate on both bytes and
words. Several 68200 chips can be connected by a
single serial channel or a shared parallel bus. In the
expandable parallel mode, RAM, ROM, and 110 on
the chip are accessed without using the shared bus.
H has 4K of onchip ROM and 256 bytes of RAM
and addresses a full 64K bytes of memory. Denser
memory, faster, and CMOS versions will appear in
the future. It has more than 50 instruction types and
a number of addressing modes. Most instructions
are kept to one word to minimize the use of memory
for programs. There are rapid bit-manipulation in­
structions for both registers and memory.

Instead of the memory organization of the
68000 (which is made for larger systems), the 68200
addresses 64K as 32K x 16-bits. All I/O is memory
mapped. The top lK bytes hold the onchip 110.
There are nine addressing modes including a short­
form address that takes only a single word to reach
frequently used I/O data. Single-chip microcom­
puters spend a lot of time getting I/O, so this ad­
dressing mode improves performance. Mostek
claims the 68200 will perform mathematics faster
than the Intel 8096 microcontroller.

The 68200 has an extensive and flexible I/O
capability including a serial channel, 2 parallel ports,
an interrupt controller, and three 16-bit binary
timers for internal timing, pulse-width measurement
and generation functions. Every 110 device is pro­
grammable. Up to 40 pins are available for 110.

An interesting new trick is that the serial chan­
nel has a wake-up mode. By adding a wake-up bit

to each data word, it can transmit and receive wake­
up signals. This is an efficient and expedient way
to interrupt and process new data, particularly when
68200s are interconnected serially.

The onchip interrupt capability has a reset, a
nonmaskable interrupt, and 14 independent vec­
tored interrupts (about twice as many as the com­
peting 8096). The 68200 and the 8096 can be placed
in external bus mode for addressing additional
memory or for operating standalone. The 68200 can
be used as a universal peripheral controller; the
8096 cannot. The onchip bus arbitration logic lets
it do DMA transfer to and from system memory.

The 68200 is not 68000 compatible; it is mod­
eled after the 68000. The registers, instructions, and
addressing are similar to those of the 68000. The
instructions use the same mnemonics to make it
easier to use for 68000 programmers.

PERIPHERAL CHIPS

Some of the peripheral chips of the 68000 family
were listed in Fig. 8-1. Several of the most impor­
tant devices are detailed in this section. These chips
are designed to do specialized tasks for the 68000
microprocessors and thus ease their processing
burden. Some are microprocessors in their own
right.

68881 FPC

The Floating-Point Coprocessor (FPC) chip is
a special processor that is used for very fast floating­
point arithmetic calculations. It is made to support
all required and most suggested features of the
IEEE proposed floating-point standard. All features
are built into the hardware and don't depend on
special programs from the outside. Because it can
interface directly to the 68020's special bus, it is also
known as a coprocessor.

Floating Point Numbers. There are two
fundamental kinds of arithmetic processing in com­
puters. The first is called integer arithmetic. That
is the simpler form and consists of work on numbers
that don't have any exponents or fractional parts.
For instance, the following numbers are integers:

183

1
2
64,378
1,024,000,000,000

Integers can be as large as you want, but mak­
ing them larger requires more and more bits in the
number. That makes them awkward for computing
where the large number of bits in the numbers
makes integer calculations slow. Another disadvan­
tage of integers is that they cannot represent those
numbers less than 1 and more than zero: fractions.

Floating-point numbers can represent larger
and smaller values within the same number of bits.
The floating-point description refers to the fact that
these numbers don't automatically have the radix
point (called the decimal point for those humans
amongst us who work with base 10) at the right
hand end of the number. Instead, the position of the
radix point is determined by the exponent value.

For instance 1 x 104 is a floating point
number. This would frequently be shown, in com­
puter books, as 1E4. You could also find the floating
point number 1E-4 which stands for 1 x 10-4, or
0.0001.

(In computers, however, the actual representa­
tion of floating point numbers is more complex than
this. They are often figured to base 16 exponents
and have an automatic value subtracted from that.)

Anyway, lots of computer arithmetic calls out
for the size and flexibility of floating point numbers.
However, that arithmetic can be slow and cumber­
some for the CPU because the mantissa (main
value) and its sign, and the exponent and its sign
(as well as the various bases involved) have to be
remembered and manipulated by a whole list of
rules. The MC68881 is faster at performing such
arithmetic than a CPU is because it is dedicated to
that purpose only.

Architecture. The Motorola 68881 is made
in the HCMOS technology (high-performance
CMOS) and is specially designed to work with the
68020. That doesn't stop it from working with other
CPUs too. It provides a wide range of abilities that
match those found in some large computers. It is
about as complex as the 68020. Inside, it has a high-

184

speed 65-bit ALU for mantissa arithmetic. There
is a barrel shifter that can handle a shift of from 1
to 67 bits in a single machine cycle. This shifter
speeds standard arithmetic and is fundamental to
the transcendental functions (such as sin, cos, tan).

Because it was designed as an extension of the
68000 family, it keeps many of the same architec­
tural hallmarks. It is, for instance, a register based
processor, with 8 80-bit floating-point data registers
(shown in Fig. 8-13). These must be so long because
they contain a very precise mantissa, an exponent,
and the two sign bits. They hold what is called full
extended-precision numbers.

The 68881 also contains three special 32-bit
registers: the control, status, and instruction address
registers. The control register contains bits for mode
selection and exception enabling. The status
register contains a condition code byte (for flags
similar to those in the 68020), the FREM and
FMOD quotient bits, the exception byte, and the
accrued-exception byte. These help control
arithmetic and exception handling for the processor.
The instruction address register holds the address
of the last instruction executed. Because it hangs
on to that information, the instruction address
register can be useful in tracing the faulty instruc­
tion that causes an exception.

The 68881 is internally divided into the Bus In­
struction Unit (BIU) and Execution Unit (EU). The
EU executes the instructions while the BIU com­
municates with the CPU. When the 68020 detects
a 68881 instruction, it writes the instruction to the
memory mapped coprocessor interface command
register and reads the coprocessor interface
response register. The BIU encodes any addition
action the 68020 must do for the 68881.

The 68881 also supports the virtual machine
architecture. If the 68020 finds a page fault, and/or
a task time out, the main processor can stop the
68881 at any time-even in the middle of
execution-and save its internal state. It can also
reload the 68881 state.

Data 1Ypes. The 68881 can handle four new
data types: Single Precision Real (referred to as S),
Double Precision Real (D), Extended Precision Real
(X), and Packed Real Decimal String (P). The codes

(S, D, X, and P) are used in assembly language pro­
gramming just as the B, W, and L codes were used
before: they are appended to the end of opcodes.

The first three data types use the organization
shown in Fig. 8-14. All numbers are converted to
full precision, though, when they enter the floating
point registers. This means mixed type arithmetic
is possible and that there will be no loss of preci­
sion (even of integers and BCD strings).

Operation Types. There are five major
operation types. Dyadic (2 operands) operations
have a source argument that is a 68020 memory
location, data register, or floating-point data register.
If the source isn't already in extended precision
form, it is converted. The destination argument is
always one of the floating-point registers. The
result, also in extended-precision form, is stored in
the destination.

Monadic (1 operand) operations have a single
68020 memory, data register, or floating-point
register argument. Again, it is converted to extend­
ed precision form and then the result is stored in
the destination (a floating point register). Moves and
Conversions can move and convert (from one data
type form to another) anything in the floating-point
registers.

Conditional tests (FBcc, FScc, FDBcc, FTcc,
and FTPcc) are identical to the same conditional
tests in the 68020 except that the condition code
register referred to is the 68881's. Control operations
read and write the control status and the instruc­
tion address registers and the full 68881 context.

Coprocessor Interface. The special
coprocessor interface is built into both the 68020 and
the 68881. It is a hardware construction that pro­
grammers don't need to worry about. This interface

Bit Positlons
79 o

Floating-point Data Register 7

Floating-point Data Register 6

Floating-point Data Register 5

Floating-point Data Register 4

Floating-point Data Register 3

Floating-point Data Register 2

Floating-point Data Register 1

Floating-point Data Register 0

31 o
Control
Statu,

31 o
I nstruchon Address

Fig. 8-13. 68881 register set.

185

A number such as thIs:

- 5763 * 108

Breaks down thi sway:

Data
Type

Single

Number of Eli ts
Sign Exponent Mantissa Total

B 23 32

- 1S the SIgn

5763 IS the Mantissa
8 1S the Exponent

Double 11 52 64

Extended 15 64 BO

Which would be arranged thIS way

I Sign I Exponent Mantissa

Fig. 8-14. 68881 data types.

allows the two chips to specialize in what they do
best. When the 68881 requires certain services that
are ably handled by the 68020, it requests and
receives those services. The 68881 is a full processor
in its own right. Once it gets its instructions it can
process without direct help from the 68020. In fact,
depending on the instructions, the 68881 can pro­
cess concurrently with the 68020, overlapping the
processing and speeding overall performance. (The
great majority of 68881 instructions do overlap.)

Because the interface is simple, though, you can
design and use your own coprocessors. Also, multi­
ple coprocessors are allowed. The 68881 can be
treated as peripheral in other systems by software
reproduction of the handshaking that takes place
between the 68020 and the 68881.

IEEE Floating Point Standard. The IEEE
standard requires and the 68881 performs the
following:

1. Recognition of these data types: Positive
True Zero, Negative True Zero, Plus Infinity, Minus
Infinity, Denormalized Numbers, Not-a-Numbers
(NaN's).

2. Performance of these operations (in full
precision): add, subtract, multiply, divide, re­
mainder, compare, square root, integer part.

3. Performance of these rounding modes: to

186

nearest, towards plus infinity, toward minus infini­
ty, towards zero.

4. Performance of these rounding precisions
(even though the 68881 makes all calculations to 80
bits of precision, it can emulate narrower precision
by appropriate rounding): Round to extended (this
is the default), Round to double, Round to single.
The traps for exceptions are handled through the
68020, which is signalled and given a vector by the
68881, and handles the exceptions just like any
other traps.

But the 68881 goes beyond those requirements.
It also has additional instructions and transcenden­
tal support.

Additional instructions: Absolute value, negate,
scale, exponent, set byte determined by floating­
point condition, branch on floating-point condition,
move constant to floating-point register, get fraction
of floating-point number, get exponent of floating­
point number, modulo, test, single precision fast
multiply, and single precision fast divide.

Transcendental support. Mathematical functions
such as sine, cosine, and logarithms are called
transcendental functions. The 68881 includes hard­
ware that will find the value, to double precision of
sine, cosine, arctangent, log base 2, log base e, log
base 10, 2X, ex, lOx, tangent, hyperbolic arctangent,

hyperbolic sine, hyperbolic cosine, hyperbolic
tangent, arccosine, arcsine, log base e(x+l), and
simultaneous Sine and Cosine.

68851 PMMU

Like the other 68020 peripheral chips and the
68020 itself, the 68851 is made by the HCMOS
(High-performance Complementary Metallic Oxide
Semiconductor) technology. The chip first became
available in 1985. It is a vital keystone to a system
built on the 68020.

The 68851 is a paged memory management
unit (PMMU). That is, it helps logically organize
the huge memory space that the 68020 can address
and translates logical addresses from the 68020 in­
to physical addresses for the RAM and ROM chips.
It is specifically intended to help implement a vir­
tual memory scheme. The 68851 can also be used
with other CPUs such as the 68010.

Virtual Memory. Virtual memory is called
virtual because it is a design scheme where the
memory chips aren't all actually, physically in the
system. In other words, although the 68020 can ad­
dress 4 gigabytes of memory, most systems won't
want to put that many chips into the computer. (If
they did it would be very expensive and probably
wouldn't fit on a desktop). Instead, a reasonable
amount of memory is built into the computer, say
512K bytes or even a 1 Megabyte RAM. Whenever
the CPU asks for something that is within that
memory space, the request passes through the
MMU which refers it directly to the memory chips.
If the CPU asked for something within the second
megabyte of RAM, however, the MMU would
receive the request and realize that the second
megabyte worth of memory wasn't within the ac­
tual chip space. Instead, the contents of those
memory addresses would be on a longer term
storage device, such as a disk.

The MMU would execute the proper instruc­
tions to move the contents of the second megabyte
of memory into the actual chips, swapping it for the
first megabyte of memory. Once the new informa­
tion was within the chips, the MMU would relay the
desired address and the memory chips would supply
the needed values to the CPU.

In particular, the 68851 is paged memory
management unit. It can move single pages into the
out of actual physical memory. It doesn't have to
move the whole ball of wax. Up to 6 68851s can be
used in a system to handle a huge memory space.

Features. Figure 8-15 shows the major struc­
tures of the 68851 that are characterized by the
following features:

D High speed. It translates logical ad­
dresses into physical addresses very quickly. If the
memory management scheme isn't quick, all the
speed of the CPU, such as the 68020, can be wasted
waiting for information from memory.

D Logical Addresses that consist of a 4-bit
function code and a 32-bit address.

D A full 32-bit physical address. This means
the 68851 won't hold back advanced processors such
as the 68020 that can address a full 4 gigabytes of
memory.

D Eight different page sizes (from 256 bytes
to 32K bytes). This means it can swap a variety of
sizes of data into and out of physical memory. This
allows flexibility in programming. Swapping larger
pages takes longer than swapping smaller pages, but
may be more efficient in some cases because of the
way a particular program accesses memory.

D A fully associative 64 entry onchip transla­
tion cache. As with the 68020, having an onchip
cache speeds up the chip performance.

D A translation cache can hold descriptors for
multiple processes. The translation cache holds the
information the chip needs to decode logical address
requests from the CPU into physical address for the
memory.

D Internal hardware that maintains translation
tables and the onboard cache.

D A MC68020 instruction set extension and
instruction oriented interface using M68000 fami­
ly coprocessor interface. This simplifies interfacing
because all external control chips such as this and
the 68881 floating point coprocessor attach to the
68020 in basically the same way.

D A linear address space of 4 gigabytes or a
hierarchical protection mechanism with eight levels
of privilege and protection. Another duty that an
MMU can carry out for a microcomputer system is

187

63

31

Bit Positions

CPU Root
Pointer

DMA Root
Poi nter

Supervisor Root
Poi nter

T rensletion Control

Protection Control Registers
15 0

Cac he Stat us
St8tus

Access Control

7 a 7 0 7 0
,'---CA-l --=', ,r--YA-l ----.;;" I SCC ,

32

o

Bre6kpoint ACknowledge
D~H 6 Regl st ers

Bre6kpolnt Acknowledge
Control Registers

BAD7 BAC7
BAD6 BAC6
BADS BACS
BAD4 BAC4
BAD3 BAC3
BAD2 BAC2
BAD1 BAC1
BADO BACO

Fig. 8-15. 68851 block diagram.

188

to know what users (or programs) are authorized
to use what parts of memory. This can help protect
programs from crashing, simplify multitasking and
multiuser systems, and provide data security and
privacy.

D Support of multiple logical and physical bus
masters.

D Support of logical and physical data cache.
D Support of instruction breakpoints for soft­

ware debugging and program control.

Purposes. In fact, all of these features come
down to three basic purposes of the PMMU:

1. It translates logical into physical addresses.
2. It provides a protection and privilege

mechanism for memory.
3. It supports breakpoint operations to make

programming easier.

The most important task of these three is the
first, and so the chip is optimized to perform at very
high speed. It takes the 32-bit logical address (from
the CPU) and the 4-bit function code and then
begins a translation. It searches for the page
descriptor corresponding to the logical-to-physical
mapping in the onchip (on the 68851) translation­
lookaside module (TLM). This is a very fast
64-entry fully-associative cache memory (just
described in the features) that stores recently used
page descriptors. By keeping recently used page
descriptors in a fast memory, the speed of the overall
process of translanting an address is increased. Most
programs will use many of translating an address
is increased. Most programs will use many of the
addresses from the same pages frequently, when in
a certain part of the program.

If the descriptor isn't found in the TLM, the bus
cycle of the logical bus master is aborted and the
68851 executes enough bus cycles to find the
descriptor in the translation table in physical
memory. This table is hierarchical and contains the
page descriptors that control the logical-to-physical
address translations. The 68851 has 64 bit primary
root pointer registers that point to the head of the
translation tables. Once the proper page descriptor
is found, it is loaded into the TLM and the logical
bus master retries its bus cycle. This should result

in the correct translation.

Protection Mechanism. The 68851 has a
hierarchical protection scheme that examines and
enforces the access rights of the currently executing
process cycle-by-cycle. There are eight levels of
privilege and the levels are coded in the upper three
bits of the incoming logical address LA (31-29). The
68851 compares those three bits against the value
in the current access level register (CAL in Fig. 8-15)
and if the priority level of the incoming address is
less incoming the current access level, the 68851 will
terminate the access as a fault. The 68020 module
call and return functions (CALLM/RTM) are sup­
ported and this means you can thus change privilege
levels during module operation.

Coprocessor Interface. The 68851 uses the
6800 family coprocessor interface. This interface is
built into the 68020, 68881, and 68851 chips and
allows instructions to be put in a program that are
not executed by the main Cpu. Each of the
coprocessors has a special set of instructions that
are customized for its task. When the 68020 runs
into one of these instructions in the program and
tries to decode it, it will automatically request the
special help of the coprocessor. Whatever part of the
instruction can be carried out efficiently by the
68020 will be carried out by the 68020.

Programmers do not need to worry about the
coprocessors. All they need to know is that they have
more instructions to work with when the
coprocessors are included in the hardware. The
coprocessor interface can be used with these chips,
future Motorola chips, and any special processors
the user wants to implement.

New Instructions. The 68851 extends the
68000 instruction set. The new instructions let you
control the following:

1. Loading and storing of values in the MMU
registers.

2. Testing access rights and conditionals
based on the result of the tests.

3. MMU control functions.

The new instructions are as follows:

189

PMOVE. This moves data to or from a 68851
register.

PVALID. This compares access rights requested
by logical address and traps if it is less than the cur­
rent access level.

PTEST. This searches the translation tables to
determine the access rights to an effective address.
It also sets the 68851 status register according to
the results.

PFLUSH. This flushes translation cache entries
by any of a number of methods: root pointer; root
pointer and effective address; or root pointer, effec­
tive address, and function code.

PSAVE. Saves the internal state of the
coprocessor interface (for support of 68020 virtual
memory).

PRES1DRE. Restores the internal state of the
coprocessor interface (the inverse of the PSAVE in­
struction).

PBcc. Branches conditionally on 68851 con­
dition.

PDBcc. Tests 68851 condition, decrements, and
then branches.

PScc. Tests the operand according to the 68851
condition.

PTRAPcc. Traps according to the 68851 con­
dition.
68451 MMU

The 68451, like the 68851, is a memory
management chip to control the large memory space
that the 68000 family can address. This chip does
two things: it translates addresses and it provides
address protection. The 68451 comes in 4,6,8, and
10 megahertz versions.

Each processor in the 68000-based system
sends a function code and an address during each
bus cycle. The function code tells what address
space to use and the address specifies an address
within that space. The function codes determine
whether User or Supervisor space (and then
whether data or program space) is addressed. By
separating memory this way, the operating system
can be protected from application programs, and in­
dividuals memory can be protected from unauthor­
ized access. Special provision has even been made
for a separate address space for employing the

190

68450 DMAC (Direct Memory Access Controller).
The protection and control of memory provided by
an MMU simplifies the creation of multitasking and
multiuser operating systems.

The 68451 has the following features:

1. Provides efficient memory allocation.
2. Separates address spaces of system and

other user resources.
3. Provides write protection.
4. Supports paging and segmentation. It can

work with 32 segments of variable size with each
MMD. Multiple MMUs can therefore expand the
system to any number of segments. Intertask com­
munication is simple through the use of shared
segments.

5. Is DMA compatible.

68452 BAM

The 68452 is the sort of chip you wouldn't
have to worry about in an 8-bit system: the systems
just didn't get that complicated. The more complex
16- and 32-bit 68000 systems, however, need con­
trol of the bus. For instance, a shared memory area
shouldn't be accessed by two different chips at once.
A chip such as the 68452 is needed to keep that
from happening.

The Bus Arbitration Module (BAM) is an asyn­
chronous controller that allows multiple local buses
to be multiplexed onto a common global bus. The
local buses to be multiplexed onto a common global
bus. The local buses can then share memory and
I/O and can also communicate with one another.
One 68452 BAM arbitrates for up to eight local
buses. Those are assigned a priority, from zero to
seven, and the higher priority unit takes precedence
over a lower priority unit when both try to access
a common site at the same time.

The 68452 words in one of two modes: cycle­
by-cycle or block. Cycle-by-cycle arbitrates after
every transfer. This could slow down fast devices,
so systems with speedy chips (such as DMA and
disk controllers) often use block mode. In that mode,
a device has the global bus for a number of cycles.
Even in block mode, memory access will be slowed
because another layer of logic has to be worked
through.

68120lPC

The 68120 and 68121 are Intelligent Peripheral
Controllers (IPC). There are slight differences be­
tween the two. The 68120 has 2K bytes of ROM
on the chip, the 68121 does not. The 68121 has 5
parallel 1/0 lines, the 68120 has 21 such lines. IPCs
are used to harness other peripheral devices, which
then don't have to be directly connected to the CPU.

The IPCs have the following features:

1. Bus compatibility with 68000 (asyn-
chronous), 6809 and 6800 chips.

2. 6809 source and object code compatibility.
3. 128 bytes of dual-ported RAM.
4. Multiple operation modes from single chip

to expanded.
5. Six shared semaphore registers. (These

hold messages from CPU to IPC or IPC to CPU).
6. Parallel 110 lines (21 on the 68120 and 5

on the 68121).
7. A 16-bit three function timer_
8. A serial communications interface.
9. An 8 x 8 multiply instruction.

10. External and internal interrupts.
11. HaltlBus available capability control.

68440 DDMA

If microprocessors were restricted to moving a
single byte or word at a time, the data movement
bottleneck would severely hurt system perfonnance.
Moving a lot of data in a hurry is a very important
computer function. For example, while many peo­
ple believe the main advantage to having a hard disk
drive is that it can store a huge amount of informa­
tion. That isn't accurate. In fact, the much higher
speed of data transfer that hard disks are capable
of actually does more to improve system per­
formance.

Moving data is such a simple task that it doesn't
make sense to use a complicated and powerful CPU
to do it. Therefore, advanced systems take advan­
tage of DMA (Direct Memory Access) where the
CPU turns over bus control to another chip. That
chip, called the DMAC (DMA Controller) quickly
shuffles large sequences of information from input

to memory, memory to output, or from one part of
memory to another.

Typically, DMA takes place between a disk
drive and memory. Instead of having a CPU loop
through some MOVE instructions, the CPU signals
the DMAC that it wants a certain amount of data
moved from a source to a destination. The DMAC
then controls the entire movement, and returns con­
trol to the CPU when the transfer is complete. This
sort of transfer is much faster, and the CPU can even
be attending to other business while the DMAC is
handling the transfer.

A DMAC is a complicated, specialized pro­
cessor. The 68000 family has several DMACs. The
first is the 68440 DDMA (Dual Direct Memory Ac­
cess Controller) which is a subset of the 68450
DMAC. The 68440 chip has these features:

1. Bus compatibility with 68000, 68008,
68010.

2. 16 Megabyte addressing range.
3. Byte or word transfers.
4. Two independent channels.
5. Onchip registers for complete program con­

trol by system MPU (microprocessing unit).
6. Memory-to-memory, memory-to-per­

ipheral, and peripheral-to-memory transfer
capability.

7. Programmable channel prioritization.
8. Vectored Interrupt Capabilities with two

vectors per channel.

A transfer operation has three phases: initializa­
tion, transfer, and tennination. During initialization,
the CPU loads the DDMAC registers with control
information and address pointers for the device ad­
dress, memory address, and memory transfer count.
Then bus control is given to the DDMAC which pro­
vides the addressing and bus controls for the
transfer. When the transfer is complete, the tennina­
tion phase begins. The DDMAC sends status infor­
mation to the CPU, returns bus control to the CPU,
and then idles until it is called again.

68450 DMAC

The other Direct Memory Access Controller

191

(DMA) chip in the 68000 family is the 68450. This
chip has these features:

1. Four independent DMA channels.
2. Memory-to-memory, memory-to-per­

ipheral, and peripheral-to-memory capability.
3. Array-chained and linked-array-chained

ability.
4. On-chip registers for complete program­

mability by the MPU (microprocessing unit).
5. Ability to transfer to 68000 or 6800

peripherals.
6. Programmable channel prioritization.
7. Two vectored interrupts for each channel.
8. Up to 4 Megabytes/second transfer rate.

68230 PI/T

The peripheral chips used most often are those
that help handle 110 tasks. Even small systems
which don't need the raw horsepower of the DMA,
FPC, and MMU chips still have considerable 110
tasks. The 68230 Parallel Interface/Timer uses the
following features to handle two common I/O jobs:

1. A variety of port modes: bit I/O, Unidirec-
tional 8-bit and 16-bit, Bidirectional 8-bit and 16-bit.

2. Selectable handshaking.
3. A 24-bit programmable timer.
4. Programmable timer modes.
5. Interrupt Vector generation logic.
6. Separate port and timer interrupt service

requests.
7. Onchip registers that are directly ad­

dressable from the 68000.
8. Direct DMA compatibility.

Timers are registers that the programmer puts
a value into. The value of the timer register will then
be regularly decremented. Typically, once that value
reaches zero, it returns to the original value and
begins counting down again. The zero point can be
used to generate periodic interrupts, a single inter­
rupt, or square waves.

The onchip registers of any of these peripheral
devices are treated just as memory locations by the

192

68000. But once you move the proper data to those
locations, the peripheral chip can work as a separate
processor, controlling memory, buses, or timing
within the system.

DATA COMMUNICATIONS CHIPS

With the need to communicate between systems,
there are a number of communications and support
chips available. This section covers six such chips
to support the 68000 microprocessors.

68652 MPCC

The 68652 MultiProtocol Communications Con­
troller (also known as the 2652) formats, transmits,
and receives synchronous serial data and uses Bit­
Oriented (BOP) or Byte-Control (BCP) protocol. It
has a parallel bus which will work with 6800 or
68000 microprocessors.

68653 PGC
The 68653 is a good example of the special­

ized chips included in the 68000 family. A PGC is
a polynominal generator checker and character com­
parator circuit that is used with a
Receiver/Transmitter (R/T, UART, USRT, or
USARf). What does all of that mean? The 68653
monitors the characters that are transferred between
the microprocessor and the RlT chip. It checks for
errors or searches for particular characters by per­
forming the block check character (BCC) operation
and a parity check on the transferred data.

68661 EPCI

Enhanced Programmable Communications In­
terface is an enhanced version of the popular
Signetics 2651 communications controller chip. It
can be hooked to 8-bit or 16-bit microprocessors and
will work in polled or interrupt-driven systems. The
68661 (also called the 2661) can be programmed and
will handle both synchronous and asynchronous
serial protocols at full- or half-duplex mode. The EP­
CI can simultaneously translate serial data into
parallel and parallel into serial.

There are three versions of this chip: A, B, and

C. Each has a different set of baud rates (which can
be set internally or externally).

1. Synchronous operation.
2. Asynchronous operation.
3. All operations.

68681 DUART

The Dual Asynchronous Receiver/Transmitter
has two UARTs on the chip that are independent
and full-duplex. The chip is compatible both with
the 68000 family and with many other
microprocessors. It can be used in a polled or an in­
terrupt driven system. A UART (pronounced "you­
art") is a very common microcomputer system chip
because it is the foundation of communication be­
tween different computer systems and subsystems.

In a polled system, the microprocessor polls or
asks the peripheral devices if they have anything
to say. Typically, a timer is set up and each time it
counts to zero, the microprocessor asks each of the
peripherals in turn if they have new information to
report.

An interrupt drive system lets the peripherals
tell the microprocessor about new information at
any time. When anyone of them has something to
report, they assert an interrupt to the CPU. If the
priority of the interrupt is high enough, the inter­
rupt is acknowledged and the CPU listens to the
peripheral. The advantage of this system is that im­
portant messages don't have to wait for a polling,
they can be received and acted upon right away.

Some of the features of the 68681 are as follows:

1. Quadruple buffered receiver data registers.
2. Programmable data format.
3. Programmable baud rate for each receiver

and transmitter.
4. External Ix or 16x clock.
5. Parity, framing, and overrun error

detection.
6. False start bit detection.
7. Line break detection and generation.
8. Programmable channel mode.
9. Multi-function 6-bit input port.

10. Multi-function 8-bit output port.

11. Versatile interrupt system.
12. Single interrupt output with eight maskable

interrupting conditions.
13. Automatic wake-up mode for multidrop ap­

plications.

68562 DUSCC

The 68562 Dual Universal Serial Communica­
tions Controller chip puts two independent,
multiprotocol, full duplex receiver/transmitter con­
trollers on a single chip. It can handle asynchronous
and synchronous communications protocols and will
format, synchronize, and validate data. It can work
in polled, interrupt drive, or DMA (Direct Memory
Access) systems.

Each channel has the following:

1. Receiver.
2. Transmitter.
3. 16-bit multifunction counter/timer.
4. Digital phase-locked loop (DPLL).
5. Parity/CRC generator and checker.

Though both channels share a bit rate
generator, they can be programmed for different
data formats and operating modes.

68564 SIO
One of the first peripheral chips provided for

any microprocessor is a SIO (Serial Input/Output)
controller. The 68564 handles this chore for the
68000 family, and is, in fact, two SIOs on a single
chip. It can work with asynchronous, byte syn­
chronous (bisync), and synchronous bit-oriented pro­
tocols (HDLC and SDLC). It can also handle almost
any serial protocol including noncommunications
protocols such as floppy disk interfacing. The 68564
has these features:

1. Self test built-in.
2. Directly addressable registers.
3. Two independent full-duplex channels.
4. Quadruple buffered receiver registers and

double buffered transmitter registers.
5. Daisy-chain priority interrupt logic.

193

6. Baud-rate generators.
7. Asynchronous, byte synchronous, and bit

snychronous.
8. Address field recognition.
9. CRC generation and checking.

MOSTEK PERIPHERAL CHIPS

As I mentioned once before, second source
manufacturers of the 68000 don't only make the
CPUs. They also produce and design peripherals.
The following pages describe some example
peripheral chips from Mostek (which makes the
68000 and 68008 CPUs).

68901 MFP

The Mostek 68901 Multi-Function Peripheral
has four 8-bit timers with preprogrammed scalers,
an interrupt controller for 16 sources, eight parallel
110 lines and a full duplex USART with program­
mable DMA signals all in a 48-pin plastic DIP. It
is intended for small applications such as instrumen­
tation and personal computers and packs a variety
of functions into one box to make system design
simple.

Mostek's 68901 MFP combines several impor­
tant functions on a single chip.

1. Four timers: two multimode timers and two
delay timers.

2. An interrupt controller (for 16 sources).
3. Eight parallel I/O lines.
4. A single channel USART.

In many cases, this one chip will handle all of
the extra functions a system needs. The 68901 has
24 directly addressable internal registers for both
controlling the chip and monitoring its status. These
registers are connected to the system bus and can
be loaded, checked, and manipulated by the CPU.

194

68564510

The 68564 Serial 110 Controller has two in­
dependent, full duplex serial channels. It can han­
dle asynchronous and a number of synchronous
communications protocols and was designed for
high-level protocol applications. It has directly ad­
dressable registers and can be used in polled, in­
terrupt (vectored and non-vectored) or DMA
transfer systems.

68345 FIFO

The 68345 is the highest density FIFO (First­
In First-Out) (512x9) memory on the market. It is
used in high-speed parallel 110 applications where
one data rate needs to be synchronized with another.
By using this one chip, more complicated and cost­
ly interface circuitry may be eliminated.

68590 LANCE

The 68590 Local Area Network Controller for
Ethernet combined with an SIA (Serial Interface
Adapter) will handle the physical and data link levels
of Ethernet. This is a second-sourced chip that in­
terfaces to other 16-bit microprocessors too. Because
it has a DMA controller on the chip, it can handle
up to 128 messages in a queue without bothering
the Cpu. It also has a 48 byte buffer.

SUMMARY

There are many, many more 6800 and 68000 fami­
ly chips all of which are used in 68000 systems. Ex­
cept for the programmable coprocessors, you (the
programmer) don't have to know much about these
chips. There are times when you will read or write
a particular SIO or timer register, but the documen­
tation of the computer system you are working with
should cover that task as a part of the 110 memory
map.

But even though you won't be soldering these
chips into printed circuit boards, you should be
aware of their existence and uses. They are as vital
to microelectronic systems as are microprocessors
themselves.

9

Data ~ (8)
24

Address ~ (8)

~ SP
SP

PC

~
68000

Assembly Language
T HIS CHAPTER WILL DESCRIBE WHAT A COM­

puter language is and what the different
language levels are_ Then it will introduce you to
assembly language_ Don't expect to be able to pro­
gram in assembly language just from reading this
book You also need the documentation for a par­
ticular assembler, some fundamental routines (from
magazines or books), and lots of practice_ Beyond
that, to write efficient and useful programs, you'll
need some acquaintance with general pro­
gramming principles_

Don't be overawed by those requirements_ This
book is a good place to start_ It will allow you to
write very simple routines and to understand the
assembler documentation and subroutines you will
read in the future_

COMPUTER LANGUAGES

Digital computers process 1s and Os_ All of their in­
formation is represented by those two symbols,
whether that information is a set of population
statistics from 18th century Russia, a love letter

written today, or a color picture of the rings of
Saturn_

People, however, don't speak or think in 1s and
Os_ So between the people and the computers there
has to be a translation. You might think that a single
translation between the human language and the
computer language is all that is necessary. It is not
that simple. Not only are the people and computer
languages widely separated-which suggests the
possibility of intermediate languages-but different
computers don't even speak the same language.

Machine Language

The first computer programs were written
directly in the 1s and Os that make up machine
language. The programmers had to be dedicated,
highly-trained workers: yet their productivity was
severely limited. Programming was slow and error­
filled-almost a black art.

Figure 9-1 shows the most common hierarchical
breakdown of computer languages. The absolute
bottom is represented by binary machine code.

195

Level Language Type Examples Symbols

Highest Level Procedural Pascal, ElASIC Similar to English
Macro-Assembly

Assembly 68000 Assembly Mnemonics
Hex Machine Hexadecimal Numbers

Lowest Level Machine 68000 Machi ne Eli nary Numbers

Fig. 9-1. Hierarchy of computer languages.

While a small amount of machine level program­
ming is necessary for assembly language I/O opera­
tions and hardware debugging, with the analysis
and software utility programs available today, no one
needs to program entirely in binary machine

language. Figure 9-2 shows some of the advantages
and disadvantages of programming at this level.

Level

High

Low

As you can see, the disadvantages of machine­
level programming are considerable, including defi­
ciencies in programming speed, accuracy, and por-

Language

BASIC

Advantages

Efficipnt: UsPS httlp progr irnmpr timp.

Easy-to-rud: USPs English pxpr.ssions.

Powprful: Individuil instructions translatp

into miny machiOP instructions.

Portablp: Cin bp usily adaptpd to many

diffprpnt computprs.

Macro-assembly SppPd: Combinps asspmbly spppd with

soml' of High-lpn I progr ammpr's timp

pfficipncy.

Assembly

Hex Machine
and

SppPd: Runs much fast PI" than high-Ipnl.

Mpmory pfficipncy: Usps much Ipss

mfmory than high-Ipn I.

Control: Allows control of pnry bit and

addrpss.

Contro I: Working with pnry bit insidp

ind outsidp of thp micropr'ocpssor

Binary Machine Spppd: Can run fistpr than any othpr.

Disadvantages

Mpmory Inpfficipnt: USPS morp

mpmory than low-lpnllinguagp.

lack of contro I: Difficult to

control singlp bits, pspl'cially

for timing and I/O.

Slow: Cannot bp optimizpd for

sp .. d as much as a low-lpvfl.

Skill Rpquirpd: Hardpr to lparn

and to us. than High-IfnI.

Skill Rpquirpd: Hardpr to I .. rn
and to usp than High-lpnl.

Inffficil'nt: Usps lots of

programmfr's timp.

Not Portiblp: Diffprpnt languigf

for most microprocpssors.

Inpfficipnt: Vpry difficult to work

with -- usps maximum timp.

Not Portablp: Diffprpnt languagp

for pypry systfm and pnry

microprocpssor.

Fig. 9-2. Advantages and disadvantages of computer language levels.

196

tability. Those first two disadvantages are opposite
sides of the same coin. The machine language pro­
grammer must stare at columns and pages of Is and
Os for hours, days, and weeks. Out of that confus­
ing welter he must recognize instructions, address­
ing modes, relative branches, and data tables. To do
this for a long program is simply not a human ac­
tivity. Not only will the programmer take a long
time to write anything, he will make endless
mistakes.

Remember, a single bit misplaced or otherwise
in error can completely derail a program. If you are
not convinced, try something far simpler than
machine-level coding. Write a page full of 8-bit
groups of Is and Os. Don't try to make them mean­
ingful by looking up op codes, just take the easy
route and write random numbers. Now, try to make
an exact copy of that page to another page. (And
not with a copy machine.) Finally, imagine doing
that over and over, often working with a page full
of numbers that someone else wrote.

There is a slightly higher level of machine
language available. Hexadecimal representation of
the bytes in a program will reduce the program­
ming time and programmer's mistakes. This is still
machine-level coding, but the distinction between
symbols is improved enormously. It didn't take long
for hexadecimal-binary translation programs to be
written. These programs, sometimes called hex
loaders, translate hexadecimal numbers into binary.
They allow the programmer to write his lines of in­
struction in hexadecimal symbols.

Because one hex symbol stands in for four
binary symbols, the ocean of Is and Os on a page
is quickly refined to a river. Still, programmers must
make all the translations between numbers and
operations in their mind and specify everything.
They must work out the mathematics of relative ad­
dressing instructions, the destination of each jump
or subroutine, and even the exact location that the
program will occupy in memory. On computers that
don't have an assembler program, the best you can
do for direct coding in the microprocessor is to use
hexadecimal machine language. (Some personal
computers give memory locations and internal data
in decimal or octal code instead of hex.)

Portability is a concern when working with
machine language. A program is portable if it is
written for one computer and yet will run on another
computer. This is a different level of relations be­
tween systems than the concept of software com­
patibility described in Chapter 2, but it is related.

Like compatibility, portability is rarely 100 per­
cent complete. But writing a program in a portable
language means that only slight modifications will
be necessary to run it on another computer. High­
level languages are very portable. Almost any com­
puter runs some versions of BASIC, for instance.
As explained below, if you use the standard rules
for BASIC, the program you write can be translated
and then run on most any other computer.

Assembly language is far less portable than
high-level languages. Because it is basically a faster,
clearer way to write machine language programs
(and every CPU or microprocessor has a different
machine language) assembly and machine language
programs cannot easily move from one machine to
another.

Assembly Language

The next step after machine language was a
natural: a program was written that translates ab­
breviated names into hexadecimal machine
language. That program is called an assembler.
Every different microprocessor or CPU has a dif­
ferent assembly language because the assembly
language is just an easier way of writing and sym­
bolizing the machine language instructions.
Therefore, every different CPU will need a different
assembler program.

An assembler is used in the following way:

1. The program is written with the special ab­
breviations and symbols. This can be done with an
editor (the name for a simple word-processing pro­
gram). As long as the proper abbreviations and
punctuation rules are followed, any editor can be us­
ed. The finished program is called the source code.

2. The assembler program is run on a com­
puter. This computer can be the computer the final

197

program is to run on, or it can be any other com­
puter. At this stage, the program isn't going to be
used, it is just going to be translated from one bunch
of symbols to another. A huge mainframe computer
could be, and often is, used to run an assembler that
can translate the source code into the object code. In
fact, a large computer will often do the job faster
and more efficiently (if you have access to a large
computer, that is). The object code is machine
language. You are now done with the assembler.

3. A program called a loader is used to put the
new object code machine language program into the
right place in computer memory. If you have more
than one piece of object code, and you need to put
them together, you can use another program called
a linker. There are even linking loaders.

4. You run the program. If there are any
problems (and there always are), you return to step
1, use the editor, and debug/rewrite the source code.
You will then have to assemble again, load again,
and run again to see if you fixed the program.

Any computer equipped with a program called
an assembler can be programmed in assembly
language. The programmer writes an assembly
language program and the assembler translates it
into the machine language for the computer. A
disassembler is a program that accomplishes the
reverse. It translates machine language into
assembly language. That is useful for modifying or
understanding a program; reading assembly is much
easier than reading machine code.

Figure 9-2 also lists the advantages and disad­
vantages of assembly language. The two most im­
portant advantages are complete control of the
microprocessor (which yields faster programs and
efficient use of memory). By working directly with
the raw material registers, addresses, and flags, the
programmer can observe and manipUlate each in­
dividual byte or word.

Not all programs have to work quickly, but
many do. Even though some of the newer high-level
languages create speedy programs, no one will
argue with you that an experienced assembly
language programmer can write a faster, leaner pro­
gram than any assembler or compiler can turn out.

Early microcomputers, and all computers, were

198

limited severly by memory considerations. Even to­
day, although bigger memories are much cheaper
and more widely available than they used to be, in­
creased program complexity still means that a pro­
grammer cannot afford to waste memory. On
machines with small memory, the problem becomes
not one of cost, but of feasibility.

A program written in assembly language by a
competent programmer occupies the least memory.
Also, a well-written assembly language program
uses the least RAM space during operation.

Symbolic naming is the premier strength of
assembly language. Not all assemblers allow sym­
bolic names for everything. But they all allow sym­
bolic instruction codes. These are called mnemonics.
They stand for the instructions and are sometimes
called opcodes. (Sometimes that name is applied to
the binary instruction; it depends on who you talk
to.) A mnemonic is an easier form to use and
remember.

An example of symbolic coding demonstrates
another facet of assembly language. An assembly
instruction can be translated into more than a single
byte of machine code. Symbolic naming almost
always extends beyond the actual names of instruc­
tions. The next most common use of symbolic
names is in addressing. More often than not, this
involves jumps or subroutine calls. Instead of
calculating the destination address that must be
loaded into the program counter and then inserting
that number in the program, you can simply assign
a name such as DEST and then later either define
the name or put a label in the program. This facili­
ty also means that the program will be re10catab1e.

Fundamentally, assembly language program­
ming preserves the best parts of machine language
and adds facilities such as symbolic addressing that
will ease most program jobs. Because it caters to
the human programmer more than machine
language and because it is easier to read, use, and
debug, it is a higher level of language than machine
language.

High-Level Languages

It didn't take long for programmers to chafe at

the restrictions of assembly language. Its ab­
breviated forms, its strict adherence to the machine
language functions, and its elemental operations all
kept programmers working long hours. The next
step was to write translator programs that could do
even more of the work.

High-level languages are the outcome of this
drive for productivity. A program called a compiler
(or an interpreter) directly translates the high-level
source code into machine language.

Instead of using the abbreviations of assembly
languages, high-level languages frequently allow full
words, standard mathematical operations, direct
printing of letters, and other features dear to the
hearts of programmers. Because the high-level
languages offer such flexibility and allow the pro­
grammers to use words and numbers that they are
all familiar with from other human disciplines, pro­
grammers can write far more program in far less
time.

However, because the compiler has to do so
much work, and has so much to understand, com­
piling takes more time, and the compiler takes up
much more memory than an assembler would. In­
terpreters are a special sort of compiler. They are
explained in more depth in the following
paragraphs.

There are many high-level languages. Although
a few of the most famous high-level languages like
BASIC and Pascal are used for many tasks, many
high-level languages are designed for specific pur­
poses. LISp, for instance, is primarily used for Ar­
tificial Intelligence work. GPSS is used for
simulation. In fact, high-level languages are also
called problem-oriented or procedure-oriented
languages.

Like assembly language, these languages must
be translated into the machine code of binary that
a computer can understand. The program that does
the translating is called a compiler or an interpreter.
A compiler waits for an entire program to be com­
plete before translating it: an interpreter repeated­
ly compiles the same code. That makes the
interpreter slower but more interactive. The follow­
ing procedure is used for working with a high-level
language:

1. Write the source code. This is done using
an editor. Most high-level languages have a built-in
editor (word-processing program) for writing the
symbols.

2. Compile the source code into object code.
The object code is the machine language that the
computer can understand. An interpreter translates
each line as it is entered. Interpreters produce a final
object program that takes up more memory space
and doesn't run as fast as a compiled code, but the
instant translation helps while you are writing and
debugging the program.

3. Load the compiled program.
4. Run the compiled program.
5. If there are any problems, return to step 1

to debug/edit the source code. Then you have to
recompile, load, and run it again to see if it is fixed.
If you use an interpreter, you only have to fix the
code and run it. The intervening steps aren't
necessary.

BASIC is the most famous and widely used
high-level language for microcomputers. Most
microcomputers have BASIC compilers and inter­
preters available. Figure 9-3 shows the brevity of
a BASIC program compared to the equivalent pro­
gram in assembly or machine language. The abili­
ty to write easy-to-read, short, and portable
programs makes high-level languages ideal for
speed of programming. On the other hand, as listed
in Fig. 9-2, the disadvantages of high-level languages
include a lack of programmer control and of
memory efficiency.

The first of these problems is evident in
languages such as BASIC where the programmer
has no easy way of finding out what is in a particular
register. Efficiency is limited because a compiler or
interpreter must be very careful to translate the
source code into a machine code that will always
adhere to the programmer's intentions. That
cautious attitude shackles the translation and pro­
duces careful code that is rarely as optimized as that
produced by human programmer. Optimization is
the act of tightening and shortening a program by
eliminating unnecessary instructions, changing ad­
dressing modes to use shorter and quicker instruc-

199

BASIC

10 LET A = 6*4

Assembly

ANOI.L "'O,DO

ANOI.L "'O,D 1

MOVE.L 6,00

MOVE.L .., 4,D 1

MULS D 1 ,DO
MOVE.L DO,A

RTS

Fig. 9-3. A program fragment in several computer languages.

tions, and generally editing a program.
Because a single line of BASIC can be

translated into a dozen machine language instruc­
tions, there is often ample opportunity for optimiza­
tion. There are always a number of ways to do
something in assembly language, and some of them
take much longer than others. A programmer can
decide to sacrifice memory space or calculation
precision to gain some extra speed in a certain
predicament. A compiler or interpreter cannot.

In fact, for many real-time applications such as
graphics or process control, high-level languages are
often just not fast enough.

A Quick Comparison

Figure 9-3 shows a piece of a program written
at four different levels: straight binary machine
language, hex machine language, assembler, and

200

Machine
Hexadecimal Binary

0280 0000001010000000

0000 0000000000000000

0000 0000000000000000

0281 0000001010000001

0000 0000000000000000

0000 0000000000000000

2039 0010000000111001

bbbb bbbbbbbbbbbbbbbb

bbbb bbbbbbbbbbbbbbbb

223C 0010001000111100

0000 0000000000000100

0000 0000000000000000

C1Cl 1100000111000001

23CO 0010001111000000

6666 aaaaaaaaaaaaaaaa
6666 aaaaaaaaaaaaaaaa
4E75 0100111001110101

(high-level) BASIC. Notice the following:

1. It is easier to find a mistake in lines of hex
code than in endless binary.

2. It is easier to understand the assembly code
than the machine language code.

3. The high-level language program is shorter
and clearer than any of the other languages.

LANGUAGE SELECTION

There is no way to pick the one and only best com­
puter language. Selection depends on what you
want to accomplish. Although there are languages
that are admittedly almost never a popular choice
of programmers, you probably haven't heard of
them. A language that is unusable dies before
reaching any sizable audience. Of the languages you
hear about, both low and high level, each has some

advantages and disadvantages.
Perhaps there is some truth to the observation

that newer languages are improved over earlier
languages and that FORTRAN is passed up by
Pascal, but the observation is a lame truth. Of
course the faults of previous languages are impor­
tant to language designers of today, but that doesn't
mean you shouldn't learn a language such as FOR­
TRAN. Computer languages are not as complicated
as foreign languages. Once you learn a mainstream
language such as BASIC, Pascal, FORTRAN, or
Forth, other languages will be much easier to learn.

A simple language may be easy to learn, but
it won't support complicated data structures that the
programmer wants to use later. A complicated
language may allow you to use layers of algorithms
and file constructs not possible with a simple
language, but the complexity of the language means
it will take a long time to learn and master; and then
the program will be hard to maintain; no one else
will know the language.

Don't think of computer languages as you think
of foreign languages. Learning another computer
language, or several, is not a sign of culture that you
can use when traveling or when eating in a fancy
restaurant. Computer languages are more like
modes of transportation. There is no best mode; the
ideal circumstance is to have all modes available to
you: feet, bicycle, car, and plane.

In summary, use the level of language that is
best suited to your task. Understanding all levels
is a good idea, even if you don't have immediate
plans to use them. But don't use machine language
unless you have to or you will spend far too much
time debugging your code of irritant and impossi­
ble to find errors. Sometimes, simple computers are
not equipped with assemblers, and hand assembly,
writing and placing the instructions into the com­
puter byte by byte is necessary. Avoid machine
language and stick to assembly language unless you
really want to know what is happening on each wire
coming out of the chip.

USING A 68000 ASSEMBLER

Assembly language is a symbolic language. To use

an assembler you have to learn the symbols it
recognizes. Those symbols include opcode
mnemonics, directives, and formating symbols, and
they differ from assembler to assembler.

Opcode Mnemonics

Each assembler program has its own symbols
and practices. In fact, the mnemonics used to repre­
sent an instruction doesn't have to match those in
this book. Whatever mnemonics you want to use are
perfectly OK. You will have a hard time discussing
your program with anyone else if you don't use sym­
bols that are at least partially standard, though. And
your assembler won't understand you unless you use
the mnemonics it expects. Also, if you write in
nonstandard mnemonics, you won't be able to
transport your program to another system or
assembler: you will have lost all portability.

Since Motorola invented the 68000 chip and
provided the first documentation, its mnemonics are
the most often used. Motorola opcode mnemonics
are three, four, or five letters long and are always
capitalized. They are generally acronyms for the
operations performed by the instruction. Chapter
6 describes all of the instructions the 68000 can per­
form: they are listed alphabetically by their
mnemonics. Figure 9-4 presents a complete list of
68000 mnemonics.

Directives

Directives are assembler instructions. They are
not part of the CPU instruction set. These com­
mands are used to specify the address for the begin­
ning of a program, set variable values, reserve
memory space for data structures, or define macros.
(Macros are compound instruction sequences that
are used to save time in programming.) Figure 9-5
lists and defines the directives common to most
assemblers.

Syntax

Syntax is the set of rules for correctly putting
symbols together in a wayan assembler can
recognize, work on, and properly translate. Chapter

201

ABeD CLR LSR ORI to SR TRAP

ADD CMP MOVE PEA TRAPV
ADDA CMPA MOVE 10 CCR RESET TST

ADDE CMPI MOVE 10 SR ROL UNLK
ADDQ CMPM MOVE from SR ROR
ADDX DBee MOVE USP ROXL
AND DIVS MOVEA ROXR
ANDI DIVU MOVEM RTE
ANDI to CCR EOR MOVEP RTR
ANDI to SR EaRl MOVEQ RTS
ASL EaRl to CCR MULS SBeD
ASR EORI to SR MULU Sec
Bee EXG NBCD STOP
BCHG EXT NEG SUB
BClR ILLEGAL NEGX SUBA
BRA JMP NaP SUBI
BSET JSR NOT SUBO
BSR LEA OR SUBX
BTST LINK ORI SWAP
CHK lSl ORI10 CCR TAS

Fig. 9-4. 68000 mnemonics.

Directive Abbreviation Definition

DATA DATA Enters data into fixed progrem memory.
EqUATE EqU Relotes symbolic names to addresses or data.
END END Marks the end of a program.
ENTRV XDEF Shows thot name is available for use.
EXTERNAL XREF Shows the name is defined somewhere else.
LIST LIST Prints the source program.
NAME NAME Prints the program name at the top of each page.
ORIGIN ORG Specifies memory 10cet1on where progrem

or deta wi 11 si t.
PAGE PAGE Skips listing to next pege.
RESERVE RESERVE Allocates memory.

Fig. 9-5. Common assembler directives.

202

4 covers some of the major points of assembler syn­
tax. The most important point that you should
remember is syntax varies from assembler to
assembler. While the most basic functions will
almost always have the same representations, more
advanced functions will not be the same. The source
code you write and edit for one assembler may just
not run on another assembler. Worse yet, another
assembler may make different assumptions about
default addresses and values. That could lull you in­
to thinking everything was fine when the second
assembler translated your source code into object
code when, unfortunately, that object code may not
work or may not produce the result you need. Read
the documentation for your assembler. Figure 9-6
lists some common syntax rules.

Format
Assemblers organize the assembly language

program in divisions called fields. These are not
part of the actual code; they are visual structures
that the assembler uses to simplify communication
with the programmer. When you are programming,
you have to enter the information in the proper fields
or the assembler will not understand it. When the
assembler is printing out a program listing for you
to read, it prints in these fields so the program
makes sense to you.

There are three main fields: label, instruction,
and comment. Two other sections, the line numbers
and the addresses, are important but are rarely
called fields. Figure 9-7 shows the structure of a sim­
ple assembly program. This is the organization of

1. Use symbols to show what number system is used:
B or % = binary

o or ~ = octal
o = deci mal
H or $ = hex8decimal

2. Write the opcode of the instruchon first, then write the oper8nds.
3. Separate source and desti nation operands bU a comma.
4. Use an extension letter to show the operand size (no letter indicates 8

'Word opera1ion) .
. 8 = Byte
.W = Word
.l = long-'Word

5. Use parentheses to show indirection. A p8ir of parentheses around a
register sign shows that the register value is to be used as an
indirect address.

6. Use signs to show post; ncrement and predecrement addressi n9:
+ after the parentheses to show postincrementing.

before the par~ntheses to show predecrementi ng.
7. Use a space or colon after a l8bel.
8. Use a space after the opcode.

Fig. 9-6. Common assembler syntax rules.

203

Address LaDels Opcode Operands

DATA Eau $0010000
PROGRAM Eau $0012000

ORG DATA
0010000 TEMP DSW
0010002 COUNT DSW

ORG PROGRAM
0012000 SHIfTER MOVEW TEMP,DO
0012004 MOVEW COUNT,D 1
0012008 ROR.B Dl,DO
001200A MOVEW DO,VALUE
001200E RTS

END SHifTER

Fig. 9-7. Assembly language editing structure.

the source code that the assembler will translate into
object code. The line number is almost always the
leftmost area of the display. The numbers count up
from 1 and are used only for organizing the program
on the page. They don't directly affect the code.

The memory locations are frequently the next
column of the information. They are given in hex­
adecimal or decimal values and identify the address
in memory where the program lines will be stored.
Sometimes the addresses are not specified because
the program is not destined for a particular place
in memory.

The next area is the label field. This is used to
contain symbolic labels or addresses of the various
instructions. the assembler can then use the sym­
bolic addresses to specify jump. branch, or return
movements. Labels are optional: you can choose
when to use them and when to leave this field blank.

The next field is truly the most important. The
instruction field breaks down into two portions. The
first is the opcode listing. The next portion is the
operands listing. Some assemblers call this another
field. The operands that relate to the previously
listed opcodes are listed here.

204

Comments

SET WHERE TO STORE DATA

SET WHERE TO STORE PROGRAM

VALUE TO ROTATE

NUMBER Of POSITIONS TO ROTATE

GET VALUE TO ROTATE

GET ROTATION COUNT

ROTATE

REPLACE OLD TEMP WITH NEW ROTATED TEMP

Finally, the comment field finishes the display.
Comments are optional, and don't change the
translation or operation of the program. But you
should use them. With the inclusion of explanatory
and descriptive comments your program will be
easier to write, to read, and to debug. If you have
to modify your own program later, you'll be forever
thankful that you added comments.

MACRO ASSEMBLERS
AND CROSS ASSEMBLERS

There are several types of assemblers. A powerful
assembler known as the macro assembler that you
may hear of lets you write macros and reuse them.
These macros are short pieces of assembly code
which are given a name. Once you have included
a macro a single time in the source code, all you have
to do is give the macro name, and the assembler will
make a copy of that routine wherever you put the
name. This is not the same thing as subroutines in
BASIC because the macro is actually written into
the object code in every place it has to be used.

Another important type of assembler is the cross
assembler. While many programmers work on the

system they are going to run the program on using
resident assembler programs, this is not a require­
ment. In fact, since creating, editing, and assem­
bling source code into object code is abstract (it
doesn't require the actual microprocessor), program­
mers frequently use assemblers that are written on
large, powerful minicomputers. That way, the
editing and assembling are simplified by the speed
and utilities of the minicomputer. Once the assembly
is complete, the program will normally be run on
the actual microprocessor to test execution speed
and to see that the program really works. Minicom-

puters even have emulation programs that would
allow the programmer to run the object code on an
imaginary microprocessor that the minicomputer
simulates with software.

Programmers that don't have minicomputers
can still work with development systems. These are
complete microcomputer systems that have the
same microprocessor as the target computer and yet
have more power in the form of more memory, pro­
grams, 1/0 devices, and disk space. Microprocessor
manufacturing firms such as Motorola supply
development systems for their chips.

205

10

Data ~ (8)

Address ~ (8)

SP ~ SP

PC

~
68000

68000-Based Systems
T HE 68000 FAMILY OF MICROPROCESSORS HAS

already appeared in many systems and con­
tinues to occupy a favored position in the hearts of
computer designers. Its powerful 32-bit architec­
ture, its orthogonal, mainframe-like instruction set,
and its range of chips (8-bit, 16-bit, and 32-bit) have
made it prominent as one of the top two
microprocessor families (the other being the 8086
family from Intel).

The 68000 appears in systems ranging from in­
dustrial controllers to minicomputers. This chapter
attempts to show a few examples of its use in com­
puters. Because the microprocessor world changes
so quickly, however, some of these machines may
well be defunct by the time you are reading this
chapter. Others will have changed designs.
Nonetheless, new systems that perform much the
same tasks as these will no doubt appear.

Don't forget that the 68000 can also be found
in many systems such as robotic controllers and
laboratory instruments. However, because fewer
readers of this book are likely to be programming

such machines, I haven't included examples of
these here.

Each example system is discussed and, where
possible, illustrated by a photo. Some of the
systems are allotted more space than others. The
Sinclair QL, is described in detail. It is an example
of a 68008 system and will probably be the cheapest
complete 68000 system available for some time
(several firms offer add-on 68008 boards for the Ap­
ple II and IBM PC).

Other systems, such as the Synapse N + 1
minicomputer system, are important examples of
the high-end power of the 68000, but are not
described in too much detail because most people
who read this book will rarely encounter, and never
program one.

There are far more systems than are even men­
tioned here. Choosing the Sinclair, Apple, and IBM
systems was simple. Deciding which minicomputer
and which of the larger microcomputers to discuss
was not. The systems shown here were chosen to
illustrate the diversity of 68000 uses.

207

SINCLAIR QL
The first system example is the Sinclair QL.
Sinclair chose the 68008 for a CPU because it was
the most advanced 8-bit data bus microprocessor
on the market and seemed destined to be a future
industry standard. It incorporates the power of the
68000 family but can be designed into an inexpen­
sive system. The Sinclair QL could well compete
with the Apple Macintosh for the title of best-selling
68000-based system.

The Sinclair QL was announced at the begin­
ning of 1984 with an estimated U.S. price of $500.
QL stands for Quantum Leap, which is supposed
to be in computing performance. It is aimed at
serious home, business, or educational users.
Sinclair Research Limited of London is the same
company that put out the phenomenally successful

rock-bottom priced ZX80 and ZX81 (which became
the TimeX/Sinclair 1000). These machines, based
on the Z80 microprocessor, were introduced as the
first computers under $200 at a time when others
almost all cost at least five times that much. It is
clear that with the QL they are again attempting
to make a revolutionary jump instead of an evolu­
tionary step.

The software supplied with it is its own in­
tegrated set written by Psi on. The programs are
called QL Abacus (spreadsheet), Archive (database
management), Easel (graphics), and Quill (word­
processing).

The QL has high resolution color graphics,
128K RAM memory (expandable externally by the
0.5MB RAM pack shown in Fig. 10-1 to 640K; 32K
of this RAM is dedicated to the screen bit map, two

Fig. 10-1 . Sinclair QL with 0.5 megabyte add-on RAM (courtesy of Sinclair)_

208

built-in lOOK QL Microdrives, and a full-size, pro­
fessional, QWERTY keyboard.

The QL is 138 x 46 x 472 mm (5 3/8 NCH x
13/4" x 183/8") and weighs 1388 gms (3.055Ibs.).
It has rear peripherals ports for full networking,
dual joystick, and ROM cartridge expansion.

It has standard RS-232C interfaces (for
printers, modems, or other computers), and an RGB
monitor and TV port for color or monochrome
monitor or TV. The microdrive expansion slot lets
you add up to a total of six Microdrives stacked ex­
ternally for BOOK mass storage.

It is built around the 68008, four Sinclair­
designed semicustom ICs, and a 32K SuperROM
that contains the Sinclair QDOS and Sinclair Super­
BASIC (an enhanced version of Spectrum BASIC).
ROM is expandable by the ROM cartridge to 64K.
QDOS was developed by Sinclair and handles
single-user multiple tasking, time-sliced priority job
scheduling, display handling for multiple screen
windows, and device-independent I/O.

The semicustom ICs are made by several firms.
The first is made by both Plessey and Synertek,
and controls both display and memory. The second,
made by NCR and Synertek, controls the
microdrives, LAN, and RS-232C transmission. The
third and fourth, made by Ferranti, provide the
analog functions required by the Microdrives.

The Microdrives have a capacity of lOOK bytes
each, 3.5 seconds average access time, and load
programs or data into internal RAM at up to 15K
bytes/second.

The serial ports are 2 standard RS-232C inter­
faces that transmit from 75 to 19200 baud or full
duplex transmit/receive at seven rates up to 9600
baud. Up to 64 Sinclair QL or ZX Spectrums can
be connected to the LAN; data transmission over
the net is at lOOK baud.

Sinclair Research claims "potential expansion
for other peripherals including, say, a memory
manager, is almost unlimited due to the QI:s advanc­
ed Motorola 68008 32-bit processor with its one
megabyte linear address capability:' The 68008 runs
at 7.5 MHz for all principal functions. As describ­
ed in Chapter 8, the 68008 is the full 32-bit 68000
architecture with a 8-bit external data bus. A second

processor, the Intel 8049) controls the keyboard,
sound, RS-232C receive, and real-time clock
functions.

IBM SYSTEM 9000

This computer was originally designed as a
laboratory computer. It is essentially aimed at
automating the laboratory as the IBM PC is aimed
at automating the office. Because of that emphasis,
it has quite a few ports: three RS-232C, bidirec­
tiona18-bit parallel, IEEE-488, three timers, clock,
32 programmable interrupts, and four DMA
channels.

It runs on a real-time, multitasking operating
system (called CSOS) so that it can collect, store,
process, analyze, display, and output data all at the
same time.

There are two versions. A lab model and an of­
fice model. The 9001 benchtop holds the computer,
a display, and a multicolor printer/plotter. The 9002
is smaller and is intended for desktops. XENIX (a
version of the UNIX operating system) is available
for the 9000, but while still offering multiuser,
multitasking capacity, it isn't as good as CSOS for
real-time control. To use XENIX, you need a hard­
disk, memory management card, 640 K and an
8-inch floppy. The 9000 has a large membrane
keypad available with 57 user programmable keys
and overlays.

The 9000 measures 6 x 18 X 22", and weighs
64 lbs. Its CPU is a 68000 running at 8 MHz with
four DMA channels. The memory is 128K of ROM
with 128K RAM. The memory can be expanded
in 256K increments. Three RS-232C, one bidirec­
tional 8-bit parallel, one IEEE-488 port make up the
110 capacity. There are 10 user-definable function
keys below the screen as well as an 83-key
keyboard with a numeridcursor keypad. The mass
storage includes an optional 640K 5114" floppy of
985K 8" floppy. Inside the 9000 are five expansion
slots. The 9000 costs approximately $7000.

APPLE LISA AND APPLE MACINTOSH

Apple Computer Corporation's first great succ~ss
was the Apple II. Kept alive by a number of Im-

209

T _"'-"'::. ~"" -

Fig. 10-2. Apple LISA (courtesy 01 Apple).

provements (resulting in the IIc model), the Apple
II line is built around the 6502 microprocessor. This
8-bit chip was originally chosen because it could do
the job and was cheap.

When Apple looked around for a more power­
ful chip for its more advanced computers, if
latched onto the 68000 family. As this book points
out, even though the original member of the fami­
ly (the 68000 chip itself) is a 16-bit microprocessor
externally; it is intentionally a 32-bit chip. So Ap­
ple was able to leapfrog from 8-bit systems to
16/32-bit systems.

The first 68000-based system from Apple was
the LISA shown in Fig. 10-2. The LISA appeared
in 1983. Based on a number of ideas like icons,
mice, and windows that were originally developed
by Xerox, the LISA was unlike any other personal
computer. It was designed to be extremely easy to

210

learn to use. It was also designed to sell to office
workers who didn't know much about computers_

Unfortunately, it did not sell very welL The
reason may have been the high price (approximate­
ly $10,000), the slow processing (the 68000 had
voluminous software and a screen to handle), or its
lack of IBM PC compatibility (the PC is the stan­
dard in many companies). Whatever the cause,
when January 1984 rolled around and Apple was
set to release the Macintosh (described below), it
also rolled out three new, more powerful, but
cheaper version of the LISA: the Lisa 2, Lisa 2/5,
and Lisa 2/10. All include the same icons and win­
dowing software as the original LISA. The 2/5 has
a 5 megabyte external hard disk drive and the 2/10
has a 10 megabyte internal hard disk drive.

The Apple Macintosh, shown in Fig_ 10-3, was
released in January of 1984_ Priced at $2500 and

incorporating many of the software ideas of the
LISA, the Macintosh depends on a 68000 to han­
dle both screen display and processing chores. The
enonnOllS amount of processing necessary to han·
die overlapping windows and the complex graphics
of the Macintosh require a chip with 68000 power.
The Macintosh now comes with 512K RAM though
the original version sold with only 128K. Newer
Macintosh features include built-in hard disks, a
second floppy disk drive, and a color display. The
black and white screen has an unusually high
resolution (for personal computers) and the mouse
can be used for many manipulations.

The Macintosh has a standard computer­
human interface that is embedded in ROM and
used by most programs. This interface includes pull­
down menus, windows, icons, and click commands.

Fig. 10-3. Apple Macintosh (courtesy of Apple) .

Together the LISA and the Macintosh make
up Apple's line of 32-bit supermicros. New versions
of these machines will undoubtedly appear, in­
cluding a Macintosh with more memory. In addi­
tion, Apple will freely admit that it is looking at the
more powerful chips in the 68000 family, induding
the 68020, for future designs. Because the Macin­
tosh is already designed around the 68000,
switching shouldn't be too difficult.

DIMENSION

The Dimension 68000, shown in Fig. 10·4, is an at­
tempt to make a microcomputer that will run soft­
ware written for any of the popular
microcomputers. One of the problems in microcom­
puting is that programs written for one computer,
say the IBM PC, will not run on another, such as

211

~
,. ", " ,- " " " ,. , , . • • • • •• ••• • • • - . . • • • • • • • • •• ••

Fig. 1().4. Dimension 68000 (courtesy of Micro Craft).

the Apple II. Dimension advertises that its 68000
computer (built around its namesake 68000 chip)
will run software written for Apple II, IBM PC,
TRS-80, Osborne, Kaypro, and many other com­
puters.

The 68000 chip in the Dimension is supported
by a disk controller, Centronics-style parallel port,

212

a RS-232 serial port, a real-time clock, a 83-key
Keyboard with 10 programmable function keys, a
ten key numeric pad, a game control port, a CRT
display controller for composite color or
monochrome, and 6 expansion slots. The amount
of memory your Dimension will have, both solid
state and disk, depends on what you pay. You can

get 256 K or S12K RAM, and 2 floppy disk drives
(either 400KB or 800KB each). You can also get
a 20MB or a 50MB hard disk drive with the con­
troller and the cables.

The way the 68000 runs software for the other
computer systems is by emulating them with the
help of an additional processor card. You have to
buy extra processor cards to plug into your Dimen­
sion: an 8086 card if you want to run IBM PC soft­
ware, a 6502 card to run Apple II software, or a Z-80
card to run CP/M-80 software (such as the Kaypro
or Osborne runs). Having the other microprocessor
is necessary because the programs are specific to
a particular chip. The instruction sets and the ad­
dressing modes differ. Along with the circuit board
(called a card), you get the proper software to allow
the new processor, the 68000 processor, and the ap­
plication program to operate.

The 68000 chip in the Dimension is a Motorola
MC68000LB running at 7.19 MHz. The Dimension
comes with the CP/M-68K operating system soft­
ware, UniBASIC, and various utility programs.

CONVERGENT TECHNOLOGIES
MINIFRAME AND MEGAFRAME

Convergent Technologies is the sort of computer
company that many people never hear of. These
firms build computers for other computer com­
panies. For example, Convergent Technologies
manufactures the MiniFrame microcomputer and
then sells it, in large numbers, to another computer
company. That other company then adds some soft­
ware, terminals, and perhaps a few minor hardware
features and resells the systems to the public.

The MiniFrame, shown in Fig. 10-5, is built
around a 10 MHz 68010. Its other hardware is
designed to allow the 68010 to run with no wait
states, or in other words, at full speed. Because of
all that power, the MiniFrame can support up to
8 users. The 68010 is a Virtual Memory
Microprocessor and the MiniFrame makes heavy
use of that capabi lity.

The 110 capacity includes 2 RS-232C ports, a
parallel Centronics-compatible printer port, and a
RS-422 line. The standard memory of 0.5 MB can

be expanded to 2 ME. The system is available with
5.25" hard disk drives which hold 13, 26, or 50 ME.
A 5.25" floppy disk drive that will store 640 KB
is also built-in.

Convergent Technologies also make the
MegaFrame computer. This system, that runs up
to 8 MIPS, is comparable to a superminicomputer.

Fig. 10-5. Convergent Technologies Miniframe (courtesy of
Convergent Technologies).

213

=

Fig. 10-6. Synapse N + 1 (courtesy of Synapse).

It uses up to sixteen 68010s all integrated together
and has up to 28 megabytes of RAM. 128 users can
work simultaneously on the MegaFrame. Again,
the virtual memory capacity of the 68010 is put to
good use. Virtual memory is almost mandatory to
systems that handle so many users. The boards are
designed so that the 68020 can be plugged into
them when it becomes available.

SYNAPSE N+ 1

The Synapse N + 1 online transaction-processing
system (shown in Fig. 10-6) is a very powerful
minicomputer built around 68000 family chips. This
computer is dedicated to fault tolerance. That is a
branch of computers that is growing very rapidly.
Fault tolerant machines are able to keep working

214

nll

I iiiiiiiiiiiii@i; :!ii"

l CO" "~

even if some part of the software or hardware
breaks down.

There are many schemes to realize fault
tolerance. Synapse's scheme involves connecting
many 68010 based processors together. Total
systems can be built with just a few processors or
with many. That way, the system can grow with
the users needs. And if one processor stops work­
ing, another takes over its load. The software for
this must necessarily be more complex and expen­
sive than that for single processor systems, but cer­
tain online uses, such as airline reservations and
bank transactions, cannot afford to miss any pro­
cessing time. If their computers are down, they lose
business and data. They are willing, therefore, to
pay a premium for reliable machines.

Index

A
ABCD, 62, 78
absolute addressing, 44
absolute long addressing, 44
absolute short addressing, 44
ADD, 55,79
ADDA, 55, 80
ADDI, 55, 81
ADDQ, 55, 82
address bus, 13
address register direct, 40
address register indirect with

displacement and index, 42
address register indirect with

displacement, 41
address register indirect with postin­

crement,41
address register indirect with

predecrement, 41
address register indirect, 40
address registers, 26
addressing modes, 11, 20, 35, 38
addressing modes, importance of,

46
addressing, 35
ADDX, 56, 83
AlU, 17
AND, 63, 84
ANDI to CCA, 63, 86

Index
ANDI to SA, 63, 87
ANDI, 63, 85
Apple Lisa, 3, 209
Apple Macintosh, 3, 209
arithmetic logic unit, 17
ASl, 67, 87
ASR, 68, 89
assembler format, 203
assembly language, 195, 197

B
BASIC, 199,204
Bcc, 72, 90
BCHG, 71, 91
BClA, 71,93
bit manipulation instructions, 70
BAA, 71, 94
branches and jumps, conditional, 72
branches and jumps, unconditional,

71
branching, 71
BSET, 71, 95
BSA, 72, 96
BTST, 71, 97
buses, 13

cache, 182
CCA,17

c

chip families, 7
CHK, 75, 98
CLA, 58, 99
CMP, 58,100
CMPA, 57, 101
CMPI, 58, 102
CMPM, 58, 103
compatibility, 170, 182, 197
computer languages, 195
condition codes register, 17, 75
control bus, 15
Convergent Technologies, 213
CPUs, 68000, 167-183
cross assemblers, 204

D
data bus, 13
data communications chips, 192
data movement instructions, 49
data movement, 49
data organization, 170
data register direct, 40
data registers, 26
data types, 20
DBcc, 73, 104
decimal instructions, 60
decoder, 17
development systems, 205
Dimension, 211

217

directives, 201
DIVS, 57, 105
DIVU, 57, 106

E
effective address, 38
80386,3
8080,6
8086, 3
8088, 3
EOR to eCR, 64, 109
EOR to SR, 64, 110
EOR, 64,108
EORI, 64, 108
exception priorities, 163
exception processing, 160, 173
exception vector, 160
exceptions, 22, 157
exceptions, types of, 163
EXG, 53,111
EXT, 59,111

F
families of chips, 7
family of chips, 68000, 165·194
flags register, 17
flags, 28·32
format, 203
frame pointer, 55
frames, 28, 55

G
GPSS, 199

H
hardware, 7
hexadecimal, 40
high·level languages, 198
history of 68000, 9

I
IBM System 9000, 209
IBM,3
ILLEGAL, 76, 112
immediate, 43
implicit reference addressing, 45
instruction set, 78-156
instruction groups, 49
instruction set, 78·156
instruction set, orthogonal, 48
instructions, 20, 47
instructions, bit manipulation, 70
instructions, branches and jumps,

71,72
instructions, condition code, 75
instructions, data movement, 49
instructions, integer arithmetic, 55
instructions, logical, 62
instructions, new 68010, 173
instructions, nothing, 75
instructions, privileged, 74

218

instructions, return, 74
instructions, shift and rotate, 64
instructions, trap generating, 75
instructions, decimal, 60
integer arithmetic instructions, 55
Intel,4
interrupt mask, 32
interrupts, 157
interrupts, 22

JMP, 72, 113
JSR, 72, 113

J

jumps and branches, conditional, 72
jumps and branches, unconditional,

71
L

language selection, 200
language, symbolic, 21, 201
languages, computer, 195-201
LEA, 54, 114
LINK, 54,114
LISP, 199
logical instructions, 62
LSL, 65, 67, 115
LSR, 66,116

M
machine language, 195
macro assemblers, 204
masking, 63
mass storage, 22
memory address modes, 40
memory addressing, 170
memory chips, 23
memory management, 14
memory organization, 36
memory space, 181
memory, 36
microcode, 19
microcomputers, 6
microprocessor design, 9
microprocessor evolution, 5
microprocessor history, 9
microprocessor, cost and yield of, 3
microprocessors, 1, 6
microprocessors, compatibility of, 7
microprocessors, popularity of, 1
microprocessors, power of, 1
microprocessors, specialization of, 3
microprocessors, standardization of,

3
microprogramming, 19
microROM, 178
microsequencer, 19
mnemoniCS, 48
mnemonics, opcode, 201
modes, 28
Mostek peripheral chips, 194
MOVE from SR, 120
MOVE to eeR, 50, 119

MOVE to SR, 50, 121
MOVE USP, 50, 121
MOVE, 49, 118
MOVEA, 50, 122
MOVEM, 51,123
MOVEP, 51, 125
MOVEQ, 53, 126
MULS, 57, 127
MULU, 57, 128

N
nanocode, 19
nanoROM, 178
NBCD, 62, 129
NEG, 59,130
NEGX, 59, 130
NOP, 75, 76, 131
NOT, 64,132
nothing instructions, 75

o
operand sizes, 35
operating modes, 20
OR, 63, 133
ORI to CeR, 63, 135
ORI to SR, 63, 136
ORI,134
orthogonal, 48

p
PC, 17
PEA, 54,136
peripheral chips, 183
peripheral chips, Mostek, 194
personal computers, 3
personal computers, 6
polling, 157
portability, 197
prefetch queue, 19
privileged instructions, 74
privilege modes, 158
processing states, 158
program control operations, 71
program counter relative with

displacement, 45
program counter relative with index

and displacement, 45
program counter, 17, 32
programmability, 4

Q
quick immediate, 44

R
reference classification, 160
register direct modes, 40
register size, 11
register specification, 38
register types, 24
registers, 15, 23, 36
registers, address, 26

•

registers, data, 26
registers, general-purpose, 17, 25
registers, special-purpose, 17, 26
relative addressing, 44
RESET, 74, 137
return instructions, 74
ROL, 69,137
ROR, 70,139
rotate instructions, 69
ROXL, 70, 140
ROXR, 70, 141
RTE, 74, 143
RTR, 74, 143
RTS, 74, 144

SBeD, 62, 144
Scc, 59, 146

s

shift and rotate instructions, 64
shift instructions, 65
Sinclair QL, 3, 208
6502, 3
6800,9
68000 assembler, 201
68000 based systems, 207
68000 history, 9
68000 power vs. compatibility, 10
68000, 3, 167
68008,7,9, 167, 169
68010, 7, 173
68020 chip geography, 178
68020 compatibility, 182
68020 data bus adjustment, 181
68020 intelligent peripheral con-

trollers, 191
68020 memory space, 181
68020 packaging, 180

Edited by Brint Rutherford

68020 peripherals and coproces-
sors, 182

68020 price, 181
68020, 3, 7, 177
68020, new addressing and instruc-

tion features, 181
68200, 6, 7, 182
68230 parallel interface/timer, 192
68345 first-in first-out, 194
68440 dual direct memory access

controller, 191
68450 direct memory access con­

troller, 191
68451 memory management unit,

190
68452 bus arbitration module, 190
68562 dual universal serial com­

munications controller, 193
68564 serial I/O controller, 194
68564 serial inpuUoutput controller,

193
68652 multiprotocol communica­

tions controller, 192
68653 polynomial generator

checker, 192
68661 enhanced programmable

communications interface, 192
68681 dual universal asyn­
chronous receiver/transmitter,
193

68851 paged memory management
unit, 187

68881 floating-point coprocessor,
183

68901 multi-function peripheral, 194
software, 7
special address modes, 43

speed, 21, 180
SR,1
SSP, 17
stack pointers, 26
status register, 17
status register, 28
STOP, 74, 147
SUB, 57,147
SUBA,149
SUBI,150
SUBQ,151
SUBX, 152
supervisor mode, 28, 159
supervisor stack pointer, 17
SWAP, 54, 153
Synapse N + 1, 214
syntax, 39, 201
system byte, 17, 32
system control, 74

T
TAS, 58,153
trap generating instructions, 75
TRAP, 75, 154
TRAPV, 75, 154
TST, 58, 154

u

UNLK, 54, 156
user byte, 17, 28
user mode, 28, 158
user stack pointer, 17
USP, 17

z
Z-80, 3, 6

219

OTHER POPULAR TAB BOOKS OF INTEREST
The Computer Era-1985 Calendar Robotics and Artifi­

cial Intelligence (No. 8031-$6.95)
Using and Programming the IBM PCjr®, including 77

Ready-to-Run Programs (No. 1830-$11.50 paper;
$16.95 hard)

Word Processing with Your ADAMTM (No. 1766-$9.25
paper; $15.95 hard)

The First Book of the IBM PCjr® (No. 1760-$9.95 paper;
$14.95 hard)

Going On-Line with Your Micro (No. 1746-$12.50 paper;
$17.95 hard)

Mastering Multiplan ™ (No. 1743-$11.50 paper; $16.95
hard)

The Master Handbook of High-level Microcomputer lan­
guages (No. 1733-$15.50 paper; $21.95 hard)

Apple logo for Kids (No. 172S-$11.50 paper; $16.95
hard)

Fundamentals of TI-99/4A Assembly language (No.
1722-$11.50 paper; $16.95 hard)

The First Book of ADAMTMthe Computer (No. 1720-$9.25
paper; $14.95 hard)

BASIC Basic Programs for the ADAMTM (No. 1716--$825
paper; $12.95 hard)

101 Programming Surprises & Tricks for Your Apple
II®/I/®e Computer (No. 1711-$11.50 paper)

Personal Money Management with Your Micro (No.
1709-$13.50 paper; $18.95 hard)

Computer Programs for the Kitchen (No. 1707-$13.50
paper; $18.95 hard)

Using and Programming the VIC-20®, including Ready­
to-Run Programs (No. 1702-$10.25 paper; $15.95
hard)

25 Games for Your TRS-80™ Model 100 (No. 1698-
$10.25 paper; $15.95 hard)

Apple® Lisa™: A User-Friendly Handbook (No. 1691-
$16.95 paper; $24.95 hard)

TRS-80 Model 100-A User's Guide (No. 1651-$15.50
paper; $21.95 hard)

How To Create Your Own Computer Bulletin Board (No
1633-$12.95 paper; $19.95 hard)

Using and Programming the Macintosh TM, with 32
Ready-to-Run Programs (No. 1840-$12.50 paper;
$16.95 hard)

Programming with dBASE II® (No. 1776-$16.50 paper;
$26.95 hard)

Making CP/M-80® Work for You (No. 1764-$9.25 paper;
$16.95 hard)

Lotus 1-2-3™ Simplified (No. 1748-$10.25 paper;
$15.95 hard)

The Last Word on the TI-99/4A (No. 1745-$11.50 paper;
$16.95 hard)

101 Programming Surprises & Tricks for Your TRS-80™
Computer (No. 1741-$11.50 paper)

101 Programming Surprises & Tricks for Your ATARI®
Computer (No. 1731-$11.50 paper)

How to Document Your Software (No. 1724-$13.50
paper; $19.95 hard)

101 Programming Surprises & Tricks for Your Apple
1I®j1/®e Computer (No. 1721-$11.50 paper)

Scuttle the Computer Pirates: Software Protection
Schemes (No. 1718-$15.50 paper; $21.95 hard)

Using & Programming the Commodore 64, including
Ready-to-Run Programs (No. 1712-$9.25 paper;
$13.95 hard)

Fundamentals of IBM PC® Assembly Language (No.
1710--$15.50 paper; $19.95 hard)

A Kid's First Book to the Timex/Sinclair 2068 (No.
170S-$9.95 paper; $15.95 hard)

Using and Programming the ADAMTM, including Ready­
to-Run Programs (No. 1706-$7.95 paper; $14.95
hard)

MicroProgrammer's Market 1984 (No 1700-$13.50
paper; $18.95 hard)

Beginner's Guide to Microprocessors-2nd Edition (No.
1695-$9.95 paper; $14.95 hard)

The Complete Guide to Satellite TV (No. 1685-$11.50
paper; $17.95 hard)

Commodore 64 Graphics and Sound Programming (No.
1640-$15.50 paper; $21.95 hard)

ITAB I TAB BOOKS Inc.
Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

I
I
I
I
I
I
I
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Mastering the 68000 '" Microprocessor
by Phillip R. Robinson

• A complete introduction to microprocessors highlighting Motorola's
advanced 68000 family of CPUs and support chips.

• Covers the 68000, the 68008, the 68010, and the 68020-the first
fully supported full 32-bit chip in practical use-as well as peripherals.

• Provides a complete, detailed breakdown of the 68000 architecture­
registers, memory addressing space, flags, exception processing (in­
terrupts), flags, and buses.

• Fully analyzes the 68000 instruction set with definitions, condition code
effects , allowable addressing modes, and object codes.

• Introduces assembly language techniques as they apply to the 68000
microprocessors.

If you're looking for expert guidance and to-the-point advice on master­
ing the use of the 68000 microprocessors, you 'll find this an exceptionally
complete resource. It 's an ideal reference for those with a special interest
in the 68000 family of chips for hardware design and for assembly language
programmers of 68000-based micro and mini computers including: Apple 's
Macintosh, ATARI 's new STseries, the Commodore Amiga, the IBM 9000, the
Sinclair al, new CAD/CAM micros from Apollo and Imagatex, the Synapse®
N + 1, the Convergent Technologies series, and other state-of-the-art
machines.

Putting his emphasis on the software aspects of the 68000, the author
covers the entire family of chips, including the 32-bit 68020 with explana­
tions of currently available packages and applications. In addition he pro­
vides detailed illustrations and diagrams and invaluable data tables referenc­
ing 68000 chips, computers, and information sources.

Phillip R. Robinson is an engineer and electronics professional whose
previous books for TAB include The Programming Guide to the Z80'" Chip.

ITABI TAB BOOKS Inc.
Blue Ridge Summit, Pa. 17214

Send for FREE TAB Catalog describing over 750 current titles in print.

FPT > $ 16· 9 5 IS BN 0-8306-1886-4

