MCoH881UM/AD
REV2

FLOATING-POINT
COPROCESSOR
USER'S MANUAL
SECOND EDITION

General Description

Programming Model

Operand Data Formats

Instruction Set

Coprocessor Programming

Exception Processing

Coprocessor Interface

Instruction Executive Timing

Functional Signal Descriptions

Bus Operation

Interfacing Methods

Electrical Specifications

Ordering Information and Mechanical Data

Glossary

Abbreviations and Acronyms

Index

MC68881/MC68882

FLOATING-POINT COPROCESSOR
USER'S MANUAL

Second Edition

)

PRENTICE HALL, Englewood Cliffs, N.J. 07632

Freescale Semiconductor, Inc., 1989

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

This document contains information on a new product. Specifications and
information herein are subject to change without notice. Freescale reserves
the right to make changesto any products herein to improve functioning or
design. Although the information in this document has been carefully re-
viewed and is believed to be reliable, Freescale does not assume any liabiliy
arising outoftheapplication oruse of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of
other.

Freescale Semiconductor, Inc. general policy does not recommend the use of its components

in life support applications where in a failure or malfunction of the component may directly
threaten life or injury. Per Freescale Terms and Conditions of Sale, the user of Freescale components
in life support applications assumes all risk of such use and indemnifies Freescale against

all damages.

Printed in the United States of America

I 0987654321

| SBN 0-13-5L7009-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A, Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Ric de Janeiro

Paragraph
Number

N -
PLWNh= D=

—) et) e e e e e e e e)))) e)
N R A S

21
2.2
2.2.1
2.2.2

2.3.1
23.2
233
2.3.4
24

3.1

3.2.1
3.2.2
3.2.3

MC68881/MC68882 USER'S MANUAL

ocnbwio

TABLE OF CONTENTS

Title

Section 1
General Description
The Coprocessor CONCEPL.....ccuiiiiriiiiiiiiiii e e e s anenees
Hardware OVeIVIEWociiiiiiiiiciiiii it crseen s e e n e
Bus Interface Unit.......ooiiiiiiiciiiiininiiiciein s veca s cns v aess
Coprocessor INterface.........cvvueiiiivinieiirini i naesiaes
Operand Data FOrmatsS.......ccoviiiiiiiiiiicieice et re s e e
Integer Data Formats..........ccccceuvneee S
Floating-Point Data FOrmats.........cveeiveeniiviniiiiiniciieie e
Packed Decimal String Real Data Format..............coiiiiiiiiinieinnns
Data FOrmat SUMMArY ...c.cveininiiiiieneiiriiiiiiereeaneseaaneninanes
INSTIUCHION SeL.... ettt e e e renaar e e e s enanes

Move Multiple REGISters c.......ccovvivieiiiiiiiiiiii it n e aiecenes
Monadic Operations......ccvcveeiiiiiiiiieii i eiciai e it entrarreanes
Dyadic Operationsccicoiiiiiiiiiiiieicier e e raes
Branch, Set, and Trap-On Conditionc.ccovveiireininiiiinnninnnnes,
Miscellaneous INSIFUCHIONS ... ocvieiiieiiiiiiniiiie i ien e
Addressing MOAES .. vvuivneiiiiiiiieii e
MCE8882 Programming Considerationscooeveviinininiranneerennanenns

Section 2
Programming Model
Floating-Point Data Registers.......o.oveieviiiiiiiiiiiiieneciiiiaainincanens
Floating-Point Control Registerccc.ccovviiiiiinniiiinn FRTP
FPCR Exception Enable Byte........ccoviviniiiiiiii
FPCR Mode Control Byte......cvcvvvirireiiniiiiiiieinicieioiiicncie e
Floating-Paint Status Register.............cocoviiiviiiiiiiiniciini i,
FPSR Floating-Point Condition Code Bytecoeeevviniiiiiinnnnnnn.
FPSR Quotient Bycvoviviiiiiieiii it srer et e ne s e nenes
FPSR Exception Status Byte..........ociiiiiiiiiiiii i iiiiincersnenenenns
FPSR Accrued Exception Bytec.c.ocoviiiiiiiiniiiiinicinen
Floating-Point Instruction Address Register.......c.c.cocveviiviiviiiiininnninn

Section 3
Operand Data Formats
Integer Data FOrmatscooeviieiiiiii e
Binary Real Data FOrmMatsocoviveiiiiinininr i cneaaas
Normalized NUMDBErsccoiviriiiiiiiiniiiiiiiics e

Page
Number

FREESCALE

\'

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
324 INFINIEIES . e e 3-5
3.25 NOt-A-NUMDbBEIS.....oiiriie i e e e 3-5
3.26 Binary Real Data SUMMANy....cc.ocoviiiiiieiiiiiii e e eveeee e eans 3-6
33 Packed Decimal Real Data FOrmatc.cocevivieiiieiiiieiiieeeeeenen, 36
34 Internal Data Format.........coooiiiiiniiiiiii s 3-7
3.5 FOrmat CONVErSIONSvvuiiei it eee et erae e vee s s ereeaenes 3-8
3.5.1 Conversion to Extended Precision Data Format.............coceevnvnenne 3-8
35.2 Conversions to Other Data Formats.......cccoocieiviieiiiiininiiiiieenaans 39
3.6 Data Format DetailS.....cccevieiiiiiiaiiiiiii et e e e e ene e aaeas 39
Section 4
Instruction Set _

4.1 Instruction Description Conventions..........ooiiiiiiiiiiiiiii e eaas 4-1
4.2 INSTrUCHION GrOUPS coveviniir it r ittt e e e s eearaanerananns 41
4.2.1 Data Movement Operations.............cooevieiiiiiiinin i 4.2
4.2.2 Dyadic Operationscociiiieiiiiiiii e e 4-2
4.2.3 Monadic OperationS......ccveiicvieiirireeirercrcrtieiateieieiraraaaeaeanenas 4-3
4.2.4 Program Control Operationsccciiiiieiiiiiiii i iieceeneeeanaans 4-4
4.25 System Control Operations.........coviiieiiiiiiiieaeaiiireeeeeaeaneenns 4-5
43 Computational ACCUFBCY......vuierrieitvreeaernitraieamrrntarieaeaeiereaenensnenenss 4-5
4.31 Arithmetic Instructionsc.cc.ooouees e erree e aaanens 4-6
432 Transcendental INStruCHONSieiinieiiiiii e 4-7
4.3.3 Decimal CoONVEISIONS...o..ivueciieiiiiieirrare e rreeaenaeinereaenenraananes 4-8
4.4 Conditional Test Definitionsc.ccovviiiriiiir v 4-8
4.41 IEEE NONaware TestS ...ocoueuiueiiiei e e ae e e e 4-10
44.2 [EEE AWEre TestS cuiviiiiiiriririi it et riteta e e s isaseaaaentsanass 4-11
4.4.3 Miscellaneous TestS....ccie.ciieriiee i eaenea e eanas 4-12
4.5 Detailed Instruction DesCriptionsc.viciiiiiiieiiiiii i reeaeeenens 4-12
4.5.1 Addressing ModeS. . .ccouieiiiiiiiiiiiiiiiie e e 4-12
45,2 Instruction Description Formatccooiiiiiiiiiiiiii e 4-13
453 Operation Tables................ et atiretereteretateraereeaetatarenaaaaaanis 4-13
454 N AN S ettt e sttt b e et a e esaenta e r e anana 4-15
4.5.4.1 Nonsignaling NANS. ... e 4-15
454.2 Signaling NANS ... e 4-15
455 Operation Post ProCesSiNg......cccvvieiiiiiiiiieeiiiiainnenenaaenaraeecsnnanss 4-15
4551 Setting Floating-Point Condition Codes.........cccceveeiiininenanenn. 4-16
455.2 Underfiow, Round, Overflow ..o 4-16
4.6 Individual Instruction Descriptionsc.cveveevueiirie e aanas 4-17
4.7 Instruction Encoding Details......cccoiviniiviiiiiiiiiii e e 4-125
4.71 General Type Coprocessor Instruction Format 4-125
4.7.1.1 Register-to-Register INStructions..........cccovvviiiiciiiiiiiiiniinn, 4-127
4.7.1.2 External Operand-to-Register Instructions............................ 4-127
4.7.1.3 Move Constant to Floating-Point Data Register Instructions..... 4-129
47.1.4 Move to External Destination Instructionsc.cooeeieiminenen. 4-129
4.7.15 Move System Control Register Instructions 4-130
4716 - Move Multipie Fioating-Point Data Registers Instructions........ 4-131
4.7.1.7 Undefined, Reserved Command Wordscoovvviiiiieninnnns 4-133

FREESCALE MC68881/MC68882 USER'S MANUAL
Vi

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
4,7.2 FDBcc, FScc, and FTRAPcc Instruction Formats......coovvveviiiniananns 4-133
47.3 Conditional Branch Instruction Format............c.ocovvvieiinineenn, 4-135
4.7.4 Save Instruction FOrmat.......c.oovviviiinniiiiie e e 4-137
4.7.5 Restore Instruction FOrmatcocvivviiiniininieieieinrcceneeas 4-137
4.8 Instruction Format SUMMaAry.....cocviiiiiii e eeneas 4-138
4.8.1 Coprocessor ID Field......ovuiiieiiiiie i e 4-138
4.8.2 Effective Address Fieldoooviviiiiiiiiiiiii s 4-138
4.8.3 Register/Memory Field........cooiiiiiiiiiii e 4-138
4.8.4 Source Specifier Field..........oiiviiiiiiniie e e 4-138
4.8.5 Destination Register Field............cciviiiiniiiin e, 4-139
4.8.6 Conditional Predicate Field.................coooiiiiiii ... 44139
4.9 [nstruction Format Diagramscoeuuveuiiiiinieneineiieercraiieeiaennae 4-141
Section 5
Coprocessor Programming

5.1 Applications Programming.....c.ccovveiveiieiinieiiirrreieiiiennnreiernseseanes 5-1
5.1.1 COMCUITENCY 1ttt et ree e et e e e e e e et e et s e e e v e e be s s s aenne 5-1
5.1.1.1 Concurrent Integer and Floating-Point Computatlons 5-1
5.1.1.2 Concurrent Floating-Point Computations.......c....c.coveeviinennes 5-2
5.1.2 Optimization of Code for the MCE8882..........c..cooevvviiiiiinieninnnnns 5-9
5.1.2.1 UNTolling LOOPS.cuuurererereiniiereieeireerntnieneteieirnanrererereannens 5-9
5.1.2.2 Avoiding Register Conflicts........cccoocciiiiiiiiiniiin 5-9
5.1.2.3 Arranging FMOVE InStructions..........cccovevvaiiiiiineninininennee, 5-9
5.1.24 Performance Improvement Exampleccoooviiciniiiiiinn 5-10
5.2 Systems Programming......c.cociviniiviiriiiiiiiineeicire i ererereraeaeenen 5-10
5.2.1 State Frame SizeS.....cciivriiiieiiiiiiiiiiiieeirre e iiiire e naranieaeas 5-10
5.2.2 Exception Handler Code.........coovveviviiiiiiiiiiiieiniiiene, e 5-11
5.2.3 Processing of Special Conditionscccoviveviiiininnens everrenenes 5-12
5.2.3.1 [T4 (] o1 € PSP 5-13
5.2.3.2 Bus Arbitration....c..coiiiiiiii e 5-13
5.2.3.3 Context SWItChING. ... ivvvririeiir e e raanenes 5-13
5.2.34 BUS EITOrS .ottt et et e ee st e 5-14
5.2.35 Exception ProCessing.........cicieviiiiiiininininiiniiine e, 5-14
5.2.3.6 Simultaneous Floating-Point Exception and Task

SWILCh INterTUPt. ..ot 5-14
5.24 Detecting Coprocessor Presence...........c.cccoeiveiiiciniiiiinn, SETTIo 5-15

Section 6
Exception Processing

6.1 Coprocessor-Detected EXCEPLIONS.......cocvivrrrieiiiiininiieiiinnieiiiinn, 6-2
6.1.1 Branch/Set on Unordered (BSUN) ...c.cociiiiiiviiiiviiiieeiennvrevinrnennes 6-5
6.1.2 ‘Signaling Not-a-Number ... 6-6
6.1.3 Operand Error e e e n et retebeeire e et e e eetn e aaeatas 6-7
6.1.4 OV OW et e e e e e e 6-9
6.1.5 UNderflowoevvviieiieeieieneineeennen e ert e et et r e aaaaaas 6-11
6.1.6 Divide Dy Zero....c.cooveiiiiiiiii e 6-14

MC68881/MC68882 USER'S MANUAL FREESCALE
Vii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
6.1.7 Inexact ResUlt.........oiiiiiiiiiiiiiei e e 6-15
6.1.8 Inexact Result on Decimal Input.........coccoviiiiiiiiiiii e 6-18
6.1.9 Multiple EXCEPLionsccoiiniiia e 6-19
6.1.10 IEEE Exception and Trap Compatibility........ccoooviviniininineniinnnns 6-19
6.1.11 lllegal Command WOrdsccoociiiiiiiiiiiiiieiir e 6-20
6.1.12 Coprocessor-Detected Protocol Violationccccevviiivinenininnnn. 6-20
6.1.13 Recovery from EXCeptionS.......ccccivveiinirinieieeieeeeiiiiieeneenean 6-22
6.2 Main Processor Detected EXCEPioNs........cccvvinminiiiiiiiiiiieeeiciinenennn, 6-24
6.2.1 - Trap on Coprocessor Condition Instructionccoceiiiieninnnnns 6-24
6.2.2 [llegal INStrUCHIONS ..uvnieiiiiiii e e e 6-24
6.2.3 Main-Processor-Detected Protocol Vlolatlons 6-25
6.24 Trace EXCEPLiONS ..ot e e eeeeeeaas 6-25
6.2.5 B 1414 T o) PP 6-26
6.2.6 Address and Bus Ermors.....cocviiieiiiiiie e 6-27
6.2.7 Privilege Violations........cooiiiiiiiiiiiiiii e e 6-27
6.2.8 Format Error EXCeptionsooviiiiieiiiiiiii e e 6-28
6.3 MC68882 Exception Handlers ..o 6-28
6.4 Context SWItCHING. ..o e eeee e e 6-28
6.4.1 FSAVE and FRESTORE Instruction Overviews................c.ccuvenee.. 6-29
6.4.2 State Frames ..ot e e 6-29
6.4.2.1 Null State Frame.....o.coveviiniiii it eeae e 6-32
6.4.2.2 Idle State Frameccoeoeeiniiviiiieii i 6-32
6.4.2.3 Busy State Frame..... oo e eeas 6-35
6.4.3 FSAVE Protocol.....coouiniiiiiiii it enee 6-36
6.4.3.1 ReSet Phase....cccoiieiiii et ae e eae e 6-37
6.4.3.2 ldie Phase ..o 6-38
6.4.3.3 Initial PRase....ccvviiiirii v 6-38
6.4.3.4 Middle Phase.......ccciiiiiiiiiiiiiiie ettt e a e 6-38
6.4.35 ENd Phase....coveiiieiiiiiii e 6-38
6.44 FRESTORE Protocolccoviniiiiiiiniiiacctunene s eieaaien e eeeeeanaes 6-38
6.4.5 Context Switching Summary..........coccoiiii it enee 6-39
Section 7
Coprocessor Interface

7.1 Chip-Select DECOTEvviiei it re ettt e et en s aeaanas 7-1
7.2 Coprocessor Interface Registerscovvviiieiiiiiioiiiiiierci e ieeees 7-2
7.2.1 Response CIR ($00) e ane 7-3
7.2.2 Control CIR ($02) ..euiuieiieiie et e e aeeeen e 7-4
7.23 Save CIR ($04) ..o et aaane 7-5
7.2.4 RESIOre CIR (BO06). ...ucneeneinieieee e et vemee e v evanns 7-5
7.25 Operation Word CIR ($08) ...cceviiniiiiiiieieiie i eeni e eceaneeeaes 7-5
7.2.6 - Command CIR ($0A). ..ottt e e eaes 7-5
7.2.7 Condition CIR ($OE}....cuien i e e 7-6
728 Operand CIR ($70) ...t e e 7-6
7.2.9 "Register Select CIR ($714) ..o e 7-7
7.2.10 Instruction Address CIR {$18) ..c...vvieiirrermiiiieeceiiiiie e ieaereeaes 7-7
7.2.11 Operand Address CIR {$1C) ..cvuininiiieiiie i e eeas 7-8

__]
FREESCALE MC68881/MC68882 USER'S MANUAL
viii

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
7.3 INterprocessor Transfers. . ..o i s en e s 7-8
7.4 Coprocessor INSTIUCHONS ...u.iivureirereiereieiiieerrnrerereenaarreeraeneseeeans 7-8
7.41 Instruction Protocol............cccvvvivenivivnnannnans et 7-9
74.2 ReSpoNnSe PrimitiVeS.......c.oioiivvieivieinre v asaia 7-10
7.4.21 NUll Primitive. oo e 7-11
74.2.2 Evaluate Effective Address and Transfer Data Primitive.......... 7-13
7.4.2.3 Transfer Single Main Processor Register Primitive 7-14
7.4.24 Transfer Multiple Coprocessor Registers Primitive................. 7-15
7.4.25 Take Pre-Instruction Exception Primitiveccovvvviiiiinninnnens 7-16
7.4.2.6 Take Mid-Instruction Exception Primitive........c.oevveiiviineennn.s 7-18
7427 Response Primitive Summary........cococviveieinainiiininnnnn, 7-19
75 instruction Dialogsccovuviiiiviiiiic 7-19
7.5.1 General INStrUCHiONS .. vt e rre e eaane 7-21
7.5.11 Register-to-Register (OPCLASS 000} ...vcvuvniviineiiiiiiiniiiinciens 7-22
7.5.1.2 External-to-Register (OPCLASS 010)....ccvveiviviiiiriiinianiniinenans 7-22
7513 Register-to-External {OPCLASS 011).....ccocovviiiiiiiiiinniiiinnnn, 7-24
75.14 Move Control Registers (OPCLASS 100 and 101)coeneeeen 7-26
7.5.1.5 Move Multiple FPn (OPCLASS 110 and 111).cvvvieiinininncnencnnns 7-27
- 75.2 Conditional INStrUCtIONSc.ovvivinieiiiii e e casaeacnenneass 7-28
7.5.3 Context Switch INStructions ...o.ooveiiiiiii i e 7-28
7.5.3.1 FSAVE........... TP ORISR 7-29
7.5.3.2 FRESTORE. ..ottt e et een e ens 7-30
75.4 Exception Processingvoceveeiereiiinieiei e i raeaacnaas 7-31
7.5.41 Take Pre-Instruction EXception.........ccovvviviiviiiiinvninininannens 7-31
75.4.2 Take Mid-Instruction Exception............cocviiviniiininiciiiennee. 7-32
7.5.43 Mid-Instruction Interrupt........coooviiviiiiciiiii 7-35
7.5.4.4 Take BSUN EXCePtioNc.covviiviiiniiiiiciiiiniiiimieicieeas 7-38
7.5.45 F-Line Emulator EXCeptionocvivivreeiiiiiiciiiii i 7-39
7.5.4.6 - Format Exception, FSAVE Instructioncoooovecvininiininennnns 7-39
7.54.7 Format Exception, FRESTORE Instruction............ccovevvenvnnnnen 7-40
Section 8
Instruction Execution Timing
8.1 Factors Affecting Execution Times......cc.ococvivvinireriminiiniiiiiinn, 8-1
8.1.1 Instruction Start-Up Phase............ e e e et '8-3
8.1.2 Calculation Phasecociviviiiiiiiiiiiin st 8-3
8.1.3 Round/Store Result Phasec..civvevvieniniececinniiinniiiiciinnces 8-4
8.2 Concurrent Instruction Execution..........covvvvieveiioiinniiinnnnd SO 8-4
8.3 INterrupt LatenCy TimeS...ccvrveirieienreiiiei e eiereirre et snenians 8-5
8.4 Coprocessor Interface Overhead..............coceciiiiiiiiiinin 8-6
8.5 Execution Timing Tablescccviviiiiiiiiiiiiiic e 8-10
8.5.1 Timing Tables for Typical EXecutioncocovuvivmiiiniiininnnnns 8-11
8.5.1.1 Effective Address Calculationsccoooviiiiiiininnciiiiineninens 8-12
85.1.2 . Arithmetic Operations.........cccciiiiviaiiiiiiiiie i 8-12
8.5.1.3 “MCB8882 Concurrent Operations........cccvevveviiuiniiiinianinannns 8-13
. 85.1.4 Move Control Register and FMOVEM Operations.................. 8-17

MC68881/MC68882 USER'S MANUAL FREESCALE
ix

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number
8.5.1.5 Conditional INStruCtiONS. . .ccviniiiieiciiiiirri i crcrcnarenreencaanas 8-18
8.5.1.6 FSAVE and FRESTORE Instructions......cccvcevnceenerninenenecnenenss 8-18
8.5.2 MC68881 Detail Timing Tables ..ocvvvviiiiniiiiie e 8-19
8.5.2.1 Instruction Start-Up.....c.cceeviieimiiiciiercicneniieerereevneareeenennes 8-25
8.5.2.2 Transfer OPeranad..........cooeioiii e eieeeeeevaeanen e 8-26
8.5.2.3 Input Operand CONVErsioncceiiiiiiciiiiniiec e eieeneenas 8-27
8.5.24 Arithmetic Calculation........coceviiiieiiiiiiiiiiicre e ieeceaees 8-27
8.5.25 Output Operand CONVErSIiON....cc.cveveiivereereriaencrneiisinnssereans 8-33
8.5.2.6 Rounding and Exception Handling........cccocveieiiiiinininennnnn... 8-33
8.5.2.7 Conditional Terminationccovoiiiiiiiiriii v e eneas 8-36
8.5.2.8 Multiple Register Transfer........ocoiciiiiiiiiiii i ieeeeeees 8-37
85.29 State Frame Transfer.....c.covviiiiciiiiiioicii e ees 8-38
8.5.2.10 Exception Processing..........ccooieimeiviiiiiiniiiiiiiiiiicieeens 8-39
8.6 Main Processor Instruction Overlap Timingccoooceiiiiieiinniieiiens 8-40
Section 9
Functional Signal Descriptions

9.1 Address Bus (AD-Ad).........oiniieieie et a e eneaes 9-1
9.2 Data Bus (D0 3T) ettt e a e naaaaas 9-2
9.3 SIZE (SIZE)....cuieiiiiiiiiiee e e e e ae e v tareneanrasae e aenraaraenenennn 9-2
9.4 Address Strobe (AS)........ccceiriiiecaiiiinierriieeireetaa e e 9-3
9.5 Chip Select (CS)........oovviiniiiiiiiii e 9-3
9.6 Read/Write (RW) ..ooovneiiiiii i, 9-3
9.7 Data Strobe (DS} 9-3
98 Data Transfer and Size Acknowledge {DSACKO, DSACK1}.........c..e.eee 9-3
9.9 ReSet (RESET) ..cuuuiniiiiiiiiii ettt e v aa e ae e eeeeas 94
9.10 0o Tt (o I S PO 94
9.11 Sense Device (SENSE]ociiiiiiiieiiciiiierireeiietisearteansearsiesnenannsnes 9-5
9.12 Power (VCC and GNDJ ..o e 9-5
9.13 NO ConnECt (NC) ... it ettt e e et e e e ara s naas 9-6
9.14 SIgnal SUMMATY ..ot tte s s are s e e ra i r e raaaraee 9-6

Section 10
Bus Operation

101 Basic Transfer Mechanism Overview...........cccocoiiiiiiiiniiiiiinineceens 10-1
10.1.1 32-Bit POt Siz@ ..iuiniiiiiii et 10-2
10.1.2 16-Bit Port Size et teeteeseeteereateaseraereesaneeieeraerneann.s 10-3
10.1.3 8-Bit POrt Size.....oeicuiniii s 104
10.2 Reset OpEration.........oceeiiiniiiiie ittt e e e raan e nas 10-5
10.3 - . Chip Select Timing....cciiiiiiiiiiiiiiiiir et ree e srae e e irr e ereaeee 10-6
10.4 Bus Cycle Functional Descriptionsc.cooviiiiiiiiiiiiiii s 10-7
10.4.1 Synchronous Read Cyclescoiiviiiiiiininiiniiiciiiieec e 10-9
10.4.2 Asynchronous Read Cycles.......ccvivviiiiiiiiiiiiiiriic e eereeas 10-12
10.4.3 Asynchronous Write CyCIESccuviiiuiirii e reeei e eeeees 10-13
105 Inter-Cycle Timing RestrictioNS....ccovvviinvevniiiiiaiiniiecaer v nee e 10-14
10.6 Coprocessor Interface Protocol Restrictionscoeevueeveeevnneeinneninnnns 10-15

FREESCALE MC68881/MC68882 USER'S MANUAL
X

TABLE OF CONTENTS (Concluded)

Paragraph Page
Number Title Number
Section 11
Interfacing Methods

11.1 FPCP and MPU Interfacingcoooviveiviieiiiiicieieiirsien e ceniiranaens 11-1
11.1.1 32-Bit Data Bus Coprocessor Connection.........cvcevvviiieneiniennnens, 11-1
11.1.2 16-Bit Data Bus Coprocessor CoOnnectionccovvvveieinennarannns 11-2
11.1.3 8-Bit Data Bus Coprocessor Connection...........cveveiviveriiervieennen, 11-2
11.2 interfacing the FPCP as a Peripheral...........cccooiiii i 11-3
11.2.1 16-Bit Data Bus Peripheral Processor Connectionccovvivens 11-3
11.2.2 8-Bit Data Bus Peripheral Processor Connection..............ccecvenenns 114
1.3 Peripheral Processor Operation........c.cooiveviiiiiiiiiniiiniieiniiieneeen, 11-4

Section 12
Electrical Specifications

121 Maximum Ratings........coveiiiiii e 1241
12.2 Thermal Characteristics — PGA Package.........c.ccccvviiiiiiiiniiiiinnnnn. 12-1
12.3 Power Considerationscoociviiiiiiiiiiiiiiciice e e 121
124 DC Electrical Characteristicsccovcvvviiniiiiiiiniiiniinnn 12-2
12.5 AC Electrical Characteristics — Clock Input............oovieiiveiinincinnennn... 12-3

12.6 AC Electrical Characteristics — Read and Write Cycles................o...e. 12-4

Section 13
Ordering Information and Mechanical Data

13.1 Standard MC68881/MC68882 Order Informationeiiiiininennen. 13-1
13.2 Pin AsSignments..........coiiiviiiiiiiiiii 13-2
13.3 Package DimeNnSiONS. ...cvirriiiiiiir it riteiatetarnaiseaesbanireraens 13-3
Appendix A
Glossary

Appendix B
Abbreviations and Acronyms

Index

MC68881/MC68882 USER'S MANUAL FREESCALE
Xi

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number
1-1 MC68881/MC68882 Programming Model......c..ocoviviiiiiiiiiinennivenaenins 1-4
1-2 Exception Status/Enable Byte et 1-4
1-3 Mode Control Bytecccuvieiiiiiiiiiiieiiiiciiiieree e neraneasssenaraneneas 1-5
1-4 Condition Code Byte.........cooiiiniiiiiiiiiiiiiii s 1-5
1-5 Quotient Byte.....c.cooiiiiniiiiiiiircii e e e e e e 1-5
1-6 Accrued Exception Byte.........oooeiiiiiiiiiiiiiii et ree s 1-5
1-7 Typical Coprocessor Configurationc.ceveiiriiiiiiiiernrienneraeeanns 1-6
1-8 MC68881 Simplified Block Diagramcccovuvenvveiiiiiiinienineceneness 1-7
1-9 MC68882 Simplified Block Diagram feeereraenreraaaernaaneranas 1-8
1-10 MC68881/MC68882 Data Format SUmMmMary......cccecveiviriiciciinnninenens 1-13
2-1 M(C68881/M(C68882 Programming Model.........c.c.ovveeenn. reeeteenanaranaes 2-1
2-2 MC68881/MC68882 FPCR Exception Enable Bye.........coovvevviiiininicinns 2-2
2-3 MC68881/MC68882 FPCR Mode Control Bytecocvevenviiininnnininnnes 2-3
2-4 MC68881/MC68882 FPSR Condition Code Byte.......ccocevvvvuininnnnens e 2-4
2-5 MC68881/MC68882 FPSR Quotient Byte.......coveverreniniiniiaceninienanses 2-6
2-6 M(C68881/MC68882 FPSR Exception Status Bytec.ooccoiieinnnan.e. 2-6
2-7 MC68881/MC68882 FPSR Accrued Exception Bytecocevevnvereennen, 2-7
3-1 Signed Integer Data FOrmats..........ccooiiiiniiini i e 31
3-2 Binary Real Data Formatsccovoviiiiiiiiiiiiiiii e 3-2
3-3 Format of Normalized Numbers..........ccccoviiiiiiiieiniiiiiiiccccne e, 34
3-4 Format of Denormalized Numbers..........ccooiiiiiiiiiiiiiiiniirneeecenee 34
35 FOrmat Of Zero..cciiiiiiieiiiiiiiii e cven e ea e e e e e 3-5
3-6 Format of Infinityccooiiiiiiii e 35
37 Format of Not-A-Numbers............. S P 3-6
3-8 Binary Real Data Type Summary.......ccooeiiiiiiiciiiiiii i ceare snnens 37
3-9 Packed Decimal Real Data Formatcocieiviiininiinriceiicrecrcrarnnenes 37
3-10 Intermediate Result Format..........cocoeiiiiiiiininin i e 38
3-11 Packed Decimal Real Data Format Detailcccooviiiiiiiiinnincnnnnes 3-13
4-1 Instruction Description Format........cocoeviiiiiiiiiiiiin i e, 4-14
4-2 Operation Table Example (FADD Instruction)ccocceivviiiiiieneninrnnnnn. 4-15
5-1 MC68881 Concurrency — FMUL Instruction..........cccovevivicninininnnnnn, 5-2
5-2 MC68881 Concurrency - FMUL Followed by FMUL and FMOVE........... 5-7
5-3 MC68882 Concurrency — FMUL Followed by FMUL and FMOVE......... 5-8
5-4 Rolled Version of Linpack LOOP.......cocovriiviiiiinniiiiiiiiniiinn 5-10
5-5 Optimized Linpack LOOP ...c.ovivriniiiiiiiiniir i e, 5-11
5-6 Minimum Exception Handlerccooiiiiiiiiiiiniiiinnncn s 5-12
5-7 Idle State Frame Access Example........coovverriiiiiinininiiiininen v 5-13
5-8 Simultaneous Task Switch interrupt and Floating-Point Exception 5-15
5-9 Coprocessor Identification Code............oviviiiiiiiiiiiiinn i, 5-16

MC68881/MC68882 USER'S MANUAL FREESCALE
xiii

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number
6-1 EXC and ENABLE Byte Bit AsSignments......ccceeveviveneienenieirenenennennens 6-5
6-2 Intermediate Result FOrmat.........ccoeiiiiimi i 6-16
6-3 Rounding Algorithm........... PO 6-17
6-4 MCB8881 State Frame FOrmatsccovviiniiiiiiiiiniciiec e eaen e 6-30
6-5 MC68882 State Frame FOrmats ...coveeveeviveieiiierieriierceecaeieraraenrnnenens 6-31
6-6 BIU Flag FOrmateeouiiiiiiiiiiiiit v e e ceea s in e cveaananenas 6-33
6-7 Full Context Save/Restore Instruction Sequences.........ccccevievininnnnnans 6-40
7-1 MPU Address Bus Encoding for Coprocessor ACCeSSESc.uvvviuininnnens 7-1
7-2° FPCP Coprocessor Interface Register Mapcceociiiiiiiniciiiieeninnnnnnn. 7-2
7-3 Control CIR Register.....cccoiiiiiiiiiiiiiiiire i e e ere e e e 7-4
7-4 Operand CIR Data AlIgnment.........ccciiiiiiiiiii e e e eeens 7-7
7-5 Coprocessor Instruction General Format.......cocoviviiiiiiiiiiiininnnne.. 78
7-6 FPCP Instruction Operation Wordc.ccvivieiiiviiieiceiirereeeeennas 7-9
7-7 MC68000 Coprocessor Response Primitive General Format................ 7-10
7-8 Null Primitive FOrmat.... oot et 7-11
7-9 Evaluate Effective Address and Transfer Data Primitive Format........... 7-13
7-10 Transfer Single Main Processor Register Primitive Format 7-14
7-11 Transfer Multiple Coprocessor Registers Primitive Format 7-15
7-12 Transfer Multiple Floating-Point Data Register to Stack Example......... 7-16
7-13 Take Pre-Instruction Exception Primitive Format.......c.covvviievvevnnnnnnes 7-17
7-14 Pre-Instruction Exception Stack Frame...........ocoeviivieiiiiiivicinieieeeeens 7-18
7-15 Take Mid-Instruction Exception Primitive Formatcc.ccvvieiiaee. 7-18
7-16 Mid-Instruction Stack Frame.......cccoviiiiiniiiiiiiiiii et e e enes 7-19
7-17 MC6E8881 Register-to-Register Instruction Dialog.....cccccvvvniverevenrennnn.. 7-23
7-18 MC68881/MC68882 External-to-Register Instruction Dialog................. 7-23
7-19 MC68882 External-to-Register Instruction Dialog.........cccooiiiiiinnne.. 7-24
7-20 MC68881/MC6E8882 Register-to-External Instruction Dialog................. 7-24
7-21 MC68882 Register-to-External Instruction Dialog (S,D, and X Formats) 7-26
7-22 Move Control Register Instruction Dialog..........ccoccvvininieiiiiiiniiinnnn, 7-26
7-23 Move Multiple Floating-Point Data Registers [nstruction Dialog........ . 7-27
7-24 Conditional Instruction Dialog........ccoceeieinieiiiiineniiaeannns e, 7-28
7-25 FSAVE Instruction Dialog.......cociiiiiiiiiiviiiiiiiiire e e eeenes 7-29
7-26 FRESTORE [nstruction Dialogccoviiiiiiiiiiiiiiiiiic e 7-30
7-27 Take Pre-Instruction Exception Dialog — MC68881..........cccceuiiiinannee. 7-31
7-28 Take Pre-Instruction Exception Dialog — MC68882......cccevevniniinennnen.n 7-33

7-29 Take Pre-Instruction Exception Dialog — MC68882
with No FSAVE Instruction in the Handlercooovoiiiiinnn.e. 7-33

7-30 Take Pre-Instruction Exception Dialog — MC68882
with No BSET Instruction in the Exception Handler........................ 7-34
7-31 Take Mid-Instruction Exception Dialog — MC68881............ccceennniie, 7-34

7-32 Take Mid-Instruction Exception Dialog — MC68882
General Concurrent Caseccvieieiiiniiiiiiicieiaiiiensseiacracanerees 7-36

7-33 Take Mid-Instruction Exception Dialog — MC68882
v FMOVE Concurrent Case.....cccieuiniiiiiiiiiiaiieaecianeniaeeaeaanarasneranes 7-36

7-34 Take Mid-Instruction Exception Dialog — MC68882
with No FSAVE Instruction in the Handlerccoooiii. 7-37

FREESCALE MC68881/MC68882 USER'S MANUAL
xiv

LIST OF ILLUSTRATIONS (Concluded)

Figure Page
Number Title Number

7-35 Take Mid-Instruction Exception Dialog — MC68882

with No BSET Instruction in the Handlerccccovviiiiiiiiennnns 7-37
7-36 Mid-Instruction Interrupt Dialogccooviiiiiiiiiiinii i 7-38
7-37 Take BSUN Exception Dialog..........ccoveiiiiniiniimiiiiiiiiiiienineranan, 7-38
7-38 Take F-Line Emulator Exception Dialog.............cooviviiiiiiiinininnn 7-39
7-3% FSAVE Format Exception Dialog.........c....cooiiiiiiiiiiiiiiiiiinnnn . 7-40
7-40 FRESTORE Format Exception Dialogc.covveivnveiinnirienrnniraninnenees 7-41
8-1 Nonconcurrent Instruction Execution, Interrupts Allowed................... 8-6
8-2 Best-Case Coprocessor Interface Overhead Timing..........c..coocveiinaes 8-8
8-3 Worst-Case FPCP Interface Overhead Timing e eeraeetianearaaaes 89
8-4 Instruction Overlap Examples — FMOVE.X FPm,FPn...........ccoovveieineen 8-22
8-5 Instruction Overlap Example — FMOVES.S (An),FPn........c.coveivvinnnins 8-23
9-1 MC68881/MC6E8882 tnput/Output Signals..........veeveeireeariiirineiiinnnen. 9-1
9-2 Sense Device Circuit Example.......cocooiiiiiviisiviiiiiiievreeneenneas 9-5
10-1 FPCP Data Bus Bit ASSIgNmentsco.ccuvieiiiniiiinininnir e eenaes 10-2
10-2 Data Bus Activity vs Port Size and Operand Alignment 10-2
10-3 FPCP Reset Logic Example.......ccoooiiiiiiiiiiniiiiineees 10-6
10-4 Example of Early Chip Select Circuits.........cccoieniiiiiiiiiiniiininnnnnnns 10-8
10-5 Example of Late Chip Select Circuitcccevrveviviiiiiiiiecieninnaens 10-9
10-6 Synchronous Read Cycle Timing Diagram........c.ccocvmuvreninenniaeinnenns 10-10
10-7 Asynchronous Read Cycle Timing Diagramc.ccovviiiiiniiiiinnnn, 10-12
10-8 Asynchronous Write Cycle Timing Diagramcocociiverniiiiiinnnnnans 10-13
11-1~ 32-Bit Data Bus Coprocessor Connection............ccccovuennnes erereravens 11-1
11-2 16-Bit Data Bus Coprocessor Connection...........ccooeiiiiiniiiiiiiiinnennn, 11-2
11-3 8-Bit Data Bus Coprocessor CoOnNECtioNc.c.vecieiiiiinianniiiennnianes 11-3
11-4 16-Bit Data Bus Peripheral Processor Connection...........c...cocoevvnnnnee. 11-4
11-5 8-Bit Data Bus Peripheral Processor Connectionccoveveiinennn, 11-5
12-1 Clock Input Timing Diagram......ccccoeiiviiiriieensiniinnrnes . 12-3
12-2 Asynchronous Read Cycle Timing Diagramc.ocoevveiiiininnnnininne. Foldout 1
12-3 Asynchronous Write Cycle Timing Diagram........c..cccviiiiviiiiiinininnn, Foldout 2
12-4 Synchronous Read Cycle Timing Diagram........c..ccocvviviiininiininininnnnns Foldout 3

MC68881/MC68882 USER'S MANUAL FREESCALE
XV

LIST OF TABLES

Table Page
Number Title Number
1-1 Exponent and Mantissa Sizesccevviviiiiinirieiriiraeiveiriereeneans 1-11
2-1 Condition Code versus Result Data Type......ccccceviiiiiiiiiiiiiciiiinnnennnn. 2-5
3-1 Single Precision Binary Real Format............ccccocimieiiiiiniiiiinennnineans 3-10
3-2 Double Precision Binary Real Formatccceeveiiicciiiiiinicinecenenns 3-11
3-3 Extended Precision Binary Real Format.........c..cocovvciiviiiviciniceninennnn, 3-12
3-4 Decimal String Type Definitionsceiviniieiineieirieerccrreeeeneenes 3-13
- 4-1 Data Movement Operations..........cc.eevvuieiiuiiiiieiieiie e reee i ecearneans 4-2
4-2 Dyadic Operation FOrmat..........coeevuiiniiiiiieeeee v ee 4-2
4-3 Dyadic OpPerations.....c.uovuiiiieiviiiieiaiiniieee et etaeretienseaenearareieieannen 4-3
4-4 Monadic Operation FOrmatcoeiuiniiiniieireieieeeee e enenni 4-3
45 Monadic OpPerationsccciviveiereiieearerueensnrarmeriarriaaeeraraeeaanrnes 4-3
4-6 Dual Monadic Operation FOrmatcccoviiriieeeiiiinirnsieeneieenioniinen. 4-4
4-7 Program Control Operations............ccvuiiiuiiiveiereiiririerinierrnrnsennannns 4-4
4-8 Conditional Test MNemONICScvviiiieiniiiiiieiie e cie e ae e 4-4
4-9 System Control Operationsc....cccevevnireiirorrreeivirreiiirisrenrernenesnes 4-5
4-10 Effective Addressing Mode Categories..........oeveiriieiiiiiiineniiineneenas 4-13
4-11 General Type Instruction Command Word Fieldsccoociaeaiin.. 4-126
4-12 Register Field ENCOAING....coeumniiiiiiii e e 4-127
4-13 Extension Field Encoding for Arithmetic Operations 4-128
4-14 Source Format Field ENncodingc.couvvuiininiermiiircicinenrieneenraennans 4-129
4-15 Destination Format Field ENcodingcociviiininiiincnanccnnvnrnrnnanes 4-130
4-16 Extension Field Encoding.......cooiiviiiiiiii e 4-131
4-17 Encoding for Move FPcr Operations.........c.cevevviviviineninirereeninsnaenas v 4-132
4-18 Encodings for Move Multiple FPn Operations.....ccccoocvivcinieniiicninnnee. 4-134
4-19 Encodings for the FDBcc, FScc, and FTRAPcc Instuctions................... 4-135
4-20 Conditional Predicate Evaluation Responses........cccovviedivniniierinnenians 4-136
4-21 Effective Address Field Encoding Summary......c.c..covevuieniiiceniannnnens 4-139
4-22 Conditional Predicate Field Encoding Summary.........ccovviniininiaiennnns 4-140
5-1 Minimum-Concurrency INStructionsc.coceeeieiiiccniiiinenens Cereaa 5-5
5-2 Monadic INStHUCIONScevriniiiieii v e en s rcn e s eaens 5-5
5-3 Dyadic OperalionS....c.cvueiieriri i ce e et aae e 5-6
5-4 Partial-Concurrency Instructions............coccoevevviiiieiiiiiiiinnn e, 5-6
5-5 Fully-Concurrent INStructions......c...cveriieiiiiiiiiiiiicniiiiinena 5-6
5-6 Conditional InStructions........ccvuiiiiiiii i e 5-7
5-7 FMOVE Instruction Execution Times......ccvcevirieiiniiiiviinninnnnees 5-10
B5-8 State Frame Sizescvceiiiiiiiiiiiiiiiiiiiinras e 5-11

MC68881/MC68882 USER'S MANUAL FREESCALE
Xvii

LIST OF TABLES (Continued)

Table Page
Number Title Number
6-1 MC68881/MC68882 Exception Vector Assignments........ccccevvnivieeennnn. 6-4
6-2 Possible Operand Errors........ovveiieiieiiieiivieireeereeere e veraeae e 6-8
6-3 Possible Divide-by-Zero EXCEptions.......covieiuiciiiieianiiiieieieeeeneanens 6-14
6-4 BlU Flag Bit Definitionscvuvuiivereneieiieeireieirieenereneeer e rnsneenenes 6-35
6-5 MC68881/MC68882 Responses to Save Command..........ccceevvviennnene. 6-36
6-6 MC68881/MC68882 Format Word Definitions........cccocvvueirinvniinencnaan. 6-37
7-1 MPU CPU Space Type Field ENcodingcovvvvieiviiiiriirereaireeneenns 7-2
7-2 Coprocessor Interface Register Characteristics......cvuveeenieriiniiennennenns 7-3
7-3 Null Primitive ENCOAINGS «..vcveiiiiiiii it v e e e eans 7-12
7-4 Coprocessor Valid Effective Address CoOdeso.vvervenvriiiimreanereiinnnn. 7-14
7-5 Evaluate Effective Address and Transfer Data Primitive Encading........ 7-14
7-6 FPCP Vector NUMDEIS.....cuiriiieireiie e v e e eeeeeae e eeenaneaenannes 7-17
7-7 MC68881/MC68882 Primitive RESPONSES «...vovieimivniiiiiniiiiiiiiiiniaaans 7-20
8-1 Effective Address Calculationsovceiiiiiiiiiniiiiiiiic e 8-13
8-2 MC6B8881 Overall EXecUtion TimeS.....coeuvreeieiiveieiieianeierieenenanraenenns 8-14
8:3 MC68882 Overall Execution TimMes .. .ccuveiiuiieireniereneinencireneaeeeenaans 8-15
8-4 Bus Cycle Activity — Arithmetic Operations......ccccveieviiiviienineninnnnn. 8-16
8-5 Timing Calculation Example......c..coorviiiiiiiniiiiii e 8-16
8-6 Move Control Register and MOVEM Execution Times..........c.ccevueenenn 8-17
8-7 Conditional Instruction Execution Timesceeieveiriiiiiinienniininenenean. 8-18
8-8 - FSAVE and FRESTORE Instruction Execution Times.......c.c.cocvecunnen.. 8-19
8-9 Instruction Start-Up TIMesS ...cccviiiiiieiriiiiiieieiiineiaresireennensenes 8-25
8-10 - Null Primitive Time Values......cccoivnininiiiiiii e ricivrareeeae i earaannas 8-26
8-11 Operand Transfer Time — External Operand..........c..ccooooviiiiiiiinennnn. 8-26
8-12 Operand Transfer Time — Immediate Operandccccovvveieiinnnnnnn, 8-26
8:13 Input Operand CONVErSIONiveiiiiiniie i rrevae e eaarneeaens 8-28
8-14 Arithmetic Calculation Times — Dyadic Operationscccceeevvenennen. 8-30
8-15 Arithmetic Calculation Times — Monadic Operations........cccccevveennen.. 8-34
8-16 Output Operand ConVErsion.........ovveviiircniierereirirerirereaenerraraeaenens 8-35
8-17 Output Operand Conversion — Binary Real Formats...............cc..c..... 8-35
8-18 Rounding Operation Time Values........c.ccoooviiiiiiiinininniiinncinenne. 8-35
8-19 Exception Handling Time Valuescocoiiiiiiiiiiiiiinii e, 8-35
8-20 Conditional Termination Times Valuesccccviieneiiiiiiininininenen., 8-37
8-21 Multiple Register Transfer Time Values.........ccoceviiiiiiiiiiiiiciiiiininnan. 8-38
8-22 State Frame Transfer Time Values.......c.ccviviiiiiirciiiiiniicicinrieneen, 8-38
8-23 Instruction Termination Praocessing Time Values............cccoveveiieenen., 8-38
8-24 Exception Processing Time Values.........ccooveiiiiiiiiiiniciiiiiniiiceiens 8-39
8-25 Overlap Allowed Times — Arithmetic Operations..........ccovvceniaiernnene. 8-40
9-1 Coprocessor Interface Register Selection..........cccovvieriiiiiiiinininninnn, 9-2
9-2 System Data Bus Size Configurationccocoiiiiiiiiin 9-2
-3 DSACK ASSEIIONS.c.ttuirieirrerneaaranararsirarctaiaeseeeasiacnaaassstnssaranssnsaes 9-4
9-4 Vcc and GND Pin AsSignments ..ouvvviieieiiiieniniriirerrceenmenees 9-6
95 SIgNAl SUMMIAIY . tu ettt ettt e eaerarararera e enaanneenen 9-7

|
FREESCALE MC68881/MC68882 USER'S MANUAL
xviii

PREFACE

This manual assumes that the MC68881/MC68882 is connected as a coprocessor
to the MC68020/MC68030 microprocessor. If the MC68881/MC68882 is used in a
system with a main processor other than the MC68020/MC68030, it is expected
that the main processor emulates the M68000 Family coprocessor interface as
required by the MC68881/MC68882.

This manual is divided into two major parts. The first part, sections 2 through 8,
describes the programmer’s model of the MC68881/MC68882 and the floating-
pointinstruction set that it implements. This part of the manual includes a detailed
description of each instruction and a section on instruction timing that can be
used for program optimization and to predict floating-point arithmetic perform-
ance.

The second part of the manual, sections 9 through 13, describes the hardware
interface of the MC68881/MC68882 to the main processor, and is most pertinent
to system hardware designers. Bus cycle timing diagrams, interface register ad-
dressing, etc., are discussed from the viewpoint of the MC68020/MC68030 hard-
ware conventions. A prior knowledge of the MC68020/MC68030 bus interface,
particularly as it pertains to the M68000 Family coprocessor interface, is quite
helpful in understanding the operation of the MC68881/MC68882 bus interface.

Throughout this manual, M68000 or M68000 Family is used to refer to the family
of devices that support the Freescale 68000 Family architecture. A number that is
preceded by MC, such as MC68020, MC68030, MC68881, or MC68882, refers to a
specific part. A reference to MC68881/MC68882 or FPCP applies to either floating-
point coprocessor, and a reference to MC68020/MC68030 or MPU applies to either
main processor.

The sections and appendices of the manual are:
Section 1. General Description
Section 2. Programming Model
Section 3. Operand Data Formats
Section 4. Instruction Set
Section 5. Coprocessor Programming
Section 6. Exception Processing
Section 7. Coprocessor Interface

. Section 8. Instruction Execution Timing
Section 9. Functional Signal Descriptions
Section 10. Bus Operation
Section 11. Interfacing Methods
Section 12. Electrical Specifications
Section 13. Ordering Information and Mechanical Data

Appendix A. Glossary
Appendix B. Abbreviations and Acronyms

MC68881/MC68882 USER'S MANUAL FREESCALE
Xix

SECTION 1
GENERAL DESCRIPTION

The MC68881 and M(C68882 floating-point coprocessors (FPCP) both fully implement the
/EEE Standard for Binary Floating-Point Arithmetic (ANSI-IEEE Std 754-1985) for use with
the Freescale M68000 Family of microprocessors. The coprocessors are both implemented
in VLSI technology to give system designers the highest possible functionality in a phys-
ically small device. The MC68882 provides an increased level of performance in a copro-
cessor that is fully compatible and physically interchangeable with the MC68881.

Intended primarily for use as coprocessors to the MC68020/MC68030 32-bit microprocessor
unit (MPU), the MC68881 and MC68882 provide a logical extension to the main processing
unit integer data processing capabilities. These coprocessors provide a very high perform-
ance floating-point arithmetic unit and a set of floating-point data registers utilized in a
manner that is analogous to the use of the integer data registers. The MC68881/MC68882
instruction set, a natural extension of all earlier members of the M68000 Family, supports
all of the addressing modes of the host MPU. Due to the flexible bus interface of the M68000
Family, the MC68881 or MC68882 can be used with any of the MPU devices of the family
and may also be used as a peripheral to other processors.

The major features of the MC68881 and MC68882 are:

e Eight general purpose floating-point data registers, each supporting a full 80-bit ex-
tended precision real data format (a 64-bit mantissa plus a sign blt and a 15-bit signed
exponent). .

® A 67-bit arithmetic unit to allow very fast calculations, with intermediate precision
greater than the extended precision format.

® A 67-bit barrel shifter for high-speed shifting operations (for normalizing, etc.).
® Forty-six instructions, including 35 arithmetic operations.

¢ Full conformance to the ANSI-IEEE 754-1985 standard, including all requirements and
suggestions,

o Support of functions not defined by the IEEE standard, including a full set of trigon-
ometric and transcendental functions.

¢ Seven data formats: byte, word, and long word integers; single, double, and extended
precision real numbers; and packed binary coded decimal string real numbers.

® Twenty-two constants available in the on-chip ROM, including m, e, and powers of 10.
® Virtual memory/machine operations.

o Efficient mechanisms for exception processing, context switches, and interrupt han-
dling. ,

¢ Fully concurrent instruction execution with the main processor.

¢ Use with any host processor, on an 8-, 16-, or 32-bit data bus.

MC68881/MC68882 USER'S MANUAL FREESCALE
11

In addition to these features, the MC68882 provides:

n ® Concurrent execution of multiple floating-point instructions.

® Special-purpose hardware for high-speed conversion of binary real memory operands
to/from the internal extended format.

® Simultaneous access to the floating-point registers by the MC68882’s conversion and
arithmetic processing units.

® Reduced coprocessor interface overhead to increase throughput.

1.1 THE COPROCESSOR CONCEPT

The FPCP functions as a coprocessor in systems where the MC68020 or MC68030 is the
main processor via the M68000 coprocessor interface. It functions as a peripheral processor
in systems where the main processor is the MC68000, MC68008, or MC68010.

The FPCP utilizes the M68000 Family coprocessor interface to provide a logical extension
of the MPU registers and instruction set in a manner that is transparent to the programmer.
The programmer perceives the MPU and FPCP execution model as if both devices were
implemented on one chip.

A fundamental goal of the M68000 Family coprocessor interface is to provide the pro-
grammer with an execution model based upon sequential instruction execution by the
MPU and the FPCP. For optimum performance, however, the coprocessor interface allows
floating-point instructions to execute concurrently with MPU integer instructions. Concur-
rent instruction execution is further extended by the MC68882, which can execute multiple
floating-point instructions simultaneously. However, the coprocessor interface and the
FPCP are designed to maintain a strictly sequential instruction execution model from the
programmer’s viewpoint.

The FPCP is a non-DMA type coprocessor that uses a subset of the general-purpose co-
processor interface supported by the MPU. Features of the interface implemented in the
FPCP are as follows:

¢ The main processor and the FPCP communicate via standard M68000 bus cycles.

® Communication between the main processor and the FPCP is not dependent upon the
architecture of the individual devices (e.g., instruction pipes or caches, addressing
modes).

® The main processor and the FPCP can operate at different clock speeds.
® The FPCP instructions support all addressing modes provided by the main processor.

® All effective addresses calculations and data transfers performed by the main processor
at the request of the coprocessor.

® Qverlapped {concurrent) instruction execution enhances throughput while maintaining
the programmer’s model of sequential instruction execution.

® Coprocessor detection of an exception that requires a trap to be taken is serviced by
the main processor at the request of the FPCP.

® Support of virtual memory/virtual machine systems is provided via the FSAVE and
FRESTORE instructions.

FREESCALE MC68881/MC68882 USER'S MANUAL
1-2

-® Up to eight coprocessors can reside in a system simultaneously.

® Multiple coprocessors of the same type are allowed. ‘ n
® Systems can use software emulation of the FPCP without reassembling or relinking

user software.

1.2 HARDWARE OVERVIEW

The MC68881 and MC68882 are high-performance floating-point devices designed to in-
terface with the MC68020 or MC68030 as coprocessors. These coprocessors fully support
the MPU virtual machine architecture and are implemented in HCMOQS, Freescale's low-
power, small-geometry process. This process allows CMOS and HMOS (high-density NMQS)
gates to be combined on the same device. CMQS structures are used where speed and
low power are required, and HMOS structures are used where minimum silicon area is
desired. As a result, HCMOS technology provides the combined advantages of high-per-
formance and low-power consumption without enlarging the die size.

In systems using the MC68000, MC68008, or MC68010 as the main processor, the MC68881
or MC68882 functions as a peripheral processor. The configuration of the FPCP as a peripheral
processor or coprocessor can be completely transparent to user software (i.e., the same
object code can be executed. in either configuration).

The architecture of the FPCP appears to the user as a logical extension of the M68000
Family architecture. Because of the coupling of the coprocessor interface;, the MPU pro-
grammer can view the FPCP registers as though the registers were resident in the MPU.
Thus, an MPU and FPCP device pair appears to be one processor that supports seven
floating-point and integer data types with eight integer data registers, eight address reg-
isters, and eight floating-point data registers. .

The FPCP programming model is shown in Figures 1-1 through 1-6 and consists of the
following: ‘

® Eight 80-bit floating-point data registers (FP7-FP0). These registers are analogous to
the integer data registers {(D7-D0) and are completely general purpose {i.e., any in-
struction may use any register).

® A 32-bit control register that contains enable bits for each class of exception trap, and
mode bits to set the user-selectable rounding and precision modes.

® A 32-bit status register that contains floating-point condition codes, quotient bits, and
exception status information.

® A 32-bit instruction address register that contains the main processor memory address
(virtual} of the last floating-point instruction that was executed. This address is used
in exception handling to locate the instruction that caused the exception.

The connection between the MPU and the FPCP is a simple extension of the M68000 bus
interface. The FPCP is connected as a coprocessor to the MPU, and a chip-select signal
{decoded from the MPU function codes and address bus} selects the FPCP. Figure 1-7
illustrates the coprocessor/MPU configuration.

As shown in Figure 1-8, the MC68881 is internally divided into two processing elements;
the bus interface unit{BIU) and the arithmetic processing unit (APU). The BIU communicates

MC68881/MC68882 USER'S MANUAL FREESCALE
1-3

19 63 0 _

w2
P3| rosnssroNT
. DATA FEEISTERS
G

FPE

FP?

31 23 15 7 0

Fe———————-
EXCEPTION| MODE
L_—-_E___— ENABLE | cowtro | FPER :}— CONTROL FEEISTER
I CONDITION EXCEPTION | ACCRUED

CO0E IGUU'HENTI STATUS EXCEFT(GNI FPSA :}— STATUS REGISTER

INSTRUCTICN ACOPESS
C | e |-

Figure 1-1. MC68881/MC68882 Programming Model

15 14 13 12 1" 10 9 8

BSUN SNAN OPERR OVFL UNFL 0z INEX2 INEX1

; INEXACT OECIMAL INFUT

INEXACT OPERATION

DIVIOE BY ZERO

UNDERFLOW

OVERFLOW

OPERAND ERROR

SIGNALLING NOT A NUMEER
BRANCH/SET ON UNOFDERED

Figure 1-2. Exception Status/Enable Byte

with the MPU, and the APU executes all MC68881 instructions. Though the BIU monitors
the state of the APU closely, it operates independently of the APU. The APU operates on
the command word and operands that the BIU passes to it. In return, the APU reports its
internal status to the BIU.

The BIU contains the coprocessor interface registers (CIRs). In addition to these registers,
the CIR register select and DSACK timing control logic is contained in the BIU. Finally, the
status flags used to monitor the status of communications with the main processor are
contained in the BIU.

The eight 80-bit floating-point data registers (FP7-FP0) and the 32-bit control, status, and
instruction address registers (FPCR, FPSR, and FPIAR) are located in the APU. In addition

. __|
FREESCALE MC68881/MC68882 USER'S MANUAL
1-4

PREC RND]

ROUNDING MQOE:
DO TQ NEAREST
01 TOWARD ZERO
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNDING PRECISIDN:
00 EXTENDED
D1 SINGLE
10 0OUBLE
11 {UNDEFINED, RESERVED)

Figure 1-3. Mode Control Byte

kil 30 29 28 27 26 25 24
0 N z ! NAN
L—— NOT A NUMBER OR UNDRDERED
INFINITY
ZER0
NEGATIVE
Figure 1-4. Condition Code Byte
23 22 21 20 19 18 17 16
S QUOTIENT
L SEVEN LEAST SIGNIFICANT

BITS OF QUOTIENT

SIGN OF QUOTENT

Figure 1-5. Quotient Byte

7 6 5 4 3 2 1 0
0P OVFL UNFL 0z INEX 0
L INEXACT
OIVIDE BY ZERQ
UNDERFLOW
OVERFLDW

INVALID DPERATION

Figure 1-6. Accrued Exception Byte

MC68881/MC68882 USER'S MANUAL FREESCALE
1-5

N | o

ADDRESS Mifg:%‘@“:g&iaz INPUT/DUTPUT
DECOOE 3 DEVICES

COPROCESSOR

frir 1pfr e it .-

FUNCTION CODE

MEMDAY

MC68020/MC68030

0
PROCESSOR ADDRESS BUS > | Grozat
EUS
< DATA BUS >

Figure 1-7. Typical Coprocessor Configurations

to these registers, the APU contains a high-speed 67-bit arithmetic unit used for both
mantissa and exponent calculations, a barrel shifter that can shift from 1 bit to 67 bits in
one machine cycle,and ROM constants (for use by the internal algorithms or user pro-
grams). '

The control section of the APU contains the clock generator, a two-level microcoded se-
quencer, the microcode ROM, and self-test circuitry. The built-in self-test capabilities of
the FPCP enhance reliability and ease manufacturing requirements; however, these di-
agnostic functions are not accessible outside of the special test environment supported by
VLSI test equipment.

In addition to the BIU and APU, as described for the MC68881 (refer to Figure 1-9), the
MC68882 has a conversion unit {CU) that performs data format conversions to the internal
extended format. The CU relieves the APU of a significant work load and allows the MC68882
to execute FMOVE instructions concurrently with arithmetic or transcendental operations.

1.2.1 Bus Interface Unit

All communications between the MPU and the FPCP are performed with standard M&68000
Family bus transfers. The FPCP is designed to operate on 8-, 16-, or 32-bit data buses.

The FPCP contains a number of coprocessor interface registers (CIRs), which are addressed
by the main processor in the same manner as memory. The M68000 Family coprocessor
interface is implemented as a protocol of bus cycles in which the main processor reads
and writes to these registers. The MPU implements this general-purpose coprocessor
interface protocol in hardware and microcode.

When the MPU detects a FPCP general type instruction, the MPU writes the command
word of the instruction to the memory-mapped command CIR, and reads the response

FREESCALE MC68881/MC68882 USER'S MANUAL
1-6

>
z
]
3
g =
-] 5 e
W =< . = =
| & B ledSE] 2 | =
=gl R s
8 ES
o
WO INVISND] =
a
.= § : -
o 2
&a H3LAIHS T3HdvE =
iE g
S pea] w i o
= 8 =] =
S g _ (VSSUNVIA} g
Sa = & SH3LSIII VYO LNIDd-ONILVOY
=9 =} 23 =30
Zonx 5 c e [(ININOJX3)
sER 23 2 2
s 2 \ & =4 =
R g 2 2
W oo EX = =
TH—
3 o -
a 21 [[= «
[o o
- z gl |8
= o« =3 E & 5 -3
st12] (8] lal& g IREIRE
= w o AR ©» = frv]
=] o« v = z
&% El |2] |2 HEREIRE z| [=f |2
g23 HEFIRE g1l (=] |2 sl & |&
08 = o 3 w | 7] o [7] =3
2Eo 8 =g 2| |2 2| |g
Q=& f_t = b_: o
£52 g < 3 S
=N o
e g vy
Zn
il]
{1383 '04¥SQ ‘\X2VSO ‘3218 'M/H 'S0 'SV '$D) 1nu1N03

\w«L
Voo =
GND >

{5v-0v} SS3IHOOY

v(h L N
L

(1£0-00} VLY0 (

Figure 1-8. MC68881 Simplified Block Diagram

MC68881/MC68882 USER'S MANUAL FREESCALE
1-7

1907 ONNOY

| vias onv usas waas

[unn 10uinaa NoiswaNoD |

¥

—._._zs zczzm&m.zo_mcgzou

na

[— ON9

lat— JJp

ndv

.l] -
3
2 ® _ 5 HI3 ONVH3d0
R =2 I
" S| S = 23 U1 193138 H1SI93Y
M £ I8 A = 23
= =liile 5 a8
= Blii 2 - @ E[= H12 SS30AY NOLLINKISNI
—_ & u o —_ m
ol o = 2 =
Sl el g
- a3l @l =
RS —l e m M
r & 419 NOLLIOND/ ONVWWO2 T gjﬁ
vl a =t
SOV14 SNIVLS 2
HIISIOM) B S
Wos 300730 NOLLINHLSNI i 2
v1d 3SNBdISIY &l
b
h HID 3SNOJSY &
) 2
{Svig f | 13
Wour 300930 NOLLINLSNI { Hid INvS al |z
n._ a
N —
¥ Yy = i N S
— ™ T\I UIKTIIINW m_ g
e vid HI2 1041NDI 2
Y : J TRELE SR D 2
st e 4 JEST] 2
04LNDD - 2
SHUSI9M ¥IVSQ ONY 137135 bl | o
18319138 HILSI9IY IIVAHILNI 3
HOLVYINIO %3012 NI L1ng H0S$3204d0J
t a1
ng

(1£0-00) viva

9. MC68882 Simplified Block Diagram

igure 1-

F

MC68881/MC68882 USER'S MANUAL

FREESCALE

1-8

CIR. In this response, the BIU encodes requests for any additional service required of the
MPU on behalf of the FPCP. For example, the response may request that the MPU fetch
an operand from the evaluated effective address and transfer the operand to the operand
CIR. Once the MPU fulfills the coprocessor request(s), the MPU is free to fetch and execute
subsequent instructions.

A key concern in a coprocessor interface that allows concurrent instruction execution is
synchronization during main processor and coprocessor communication. If a subsequent
instruction is written to the command CIR before the APU has completed execution of the
previous instruction (in the case of the MC68881) or before the CU has passed its results
to the APU (in the case of the MC68882), the response instructs the MPU to wait. Thus,
the choice of concurrent or nonconcurrent instruction execution is determined on an in-
struction-by-instruction basis by the coprocessor.

The only difference between a coprocessor bus transfer and any other bus transfer by the
MPU is that the function code issued by the MPU specifies the CPU address space during
the cycle {the function codes are generated by the M68000 Family processors to identify
one of eight separate address spaces). Thus, the memory-mapped coprocessor interface
registers do not infringe upon instruction or data address spaces. The MPU places a co-
processor ID field from the coprocessor instruction words onto three of the upper address
lines during coprocessor accesses. This 1D, along with the CPU address space function
code, is decoded to select one of eight possible coprocessors in the system.

Since the coprocessor interface protocol consists solely of bus transfers, the protocol is
easily emulated by software when the FPCP is used as a peripheral with any processor
capable of memory-mapped /0 over an M68000-style bus. When used as a peripheral
processor with the 8-bit MC68008 or either the 16-bit MC68000 or MC68010, all FPCP
instructions are trapped by the main processor to an exception handler at execution time.
Trapping the instructions enables the software emulation of the coprocessor interface
protocol to be totally transparent to the user. The FPCP can provide a performance option
for MC68000-based designs by changing the main processor to an MC68020 or MC68030.
The software migrates without change to the next generation equipment using the MPU.

Since the bus is asynchronous, the FPCP need not run at the same clock speed as the main
processor. Total system performance can therefore be customized. For a given CPU per-
formance requirement, the floating-point performance can be selected to meet particular
price/performance specifications, running the FPCP at slower (or faster) clock speeds than
the CPU clock.

1.2.2 Coprocessor Interface

The M68000 Family coprocessor interface is an integral part of the FPCP and MPU designs.
The interface partitions MPU and coprocessor operations so that the MPU does not have
to completely decode coprocessor instructions, and the FPCP does not have to duplicate
main processor functions {such as effective address evaluation).

This partitioning provides an orthogonal extension of the instruction set by permitting
FPCP instructions to utilize all MPU addressing modes and to generate execution time
exception traps. Thus, from the programmer’s view, the MPU and coprocessor appear to
be integrated onto a single chip. While the execution of the great majority of FPCP instruc-
tions can be overlapped with the execution of MPU instructions, concurrency is completely

MC68881/MC68882 USER'S MANUAL FREESCALE
1-9

transparent to the programmer. The MPU single-step and program flow (trace) modes are
n fully supported by the FPCP and the M68000 Family coprocessor interface.

While the M68000 Family coprocessor interface permits coprocessors to be bus masters,
the FPCP never functions as one. The FPCP requests that the MPU fetch all operands and
store all results. In this manner, the MPU 32-bit data bus provides high-speed transfer of
floating-point operands and results while reducing the pin count of the FPCP.

Since the coprocessor interface consists solely of bus cycles (to and from the CPU space)
and the FPCP never functions as a bus master, the coprocessor can be placed on either
the fogical or physical side of the system memory management unit (MMU) in an MCE8020
system. Since the MMU of the MC68030 is on-chip, the FPCP is always on the physical
side of the MMU in an MC68030 system.

The virtual machine architecture of the MPU is supported by the coprocessor interface and
the FPCP with the FSAVE and FRESTORE instructions. If the MPU detects a page fault and/
or a task timeout, the MPU can force the FPCP to stop whatever operation is in progress
at any time and save the FPCP internal state in memory. During the execution of a floating-
point instruction, the FPCP can stop at predetermined points as well as at the completion
of the instruction.

The size of the saved internal state of the FPCP is dependent upon the state of the APU at
the time that the FSAVE is executed. If the MPU is in the reset state when the FSAVE
instruction is initiated, only one word of state is transferred to memory. The stored word
may be examined by the operating system to determine that the coprocessor programmer’s
model is empty. If the APU is in the idle state when the FSAVE instruction is decoded, only
a few words of internal state are transferred to memory. If the APU is in the middle of
executing an instruction, it may be necessary to save the entire internal state of the machine.
Instructions that can complete execution in less time than it would take to save the larger
state in mid-instruction are automatically allowed to complete execution and then save
the idle state. Thus, the size of the saved internal state is kept to a minimum. The ability
to utilize several internal state sizes greatly reduces the average context switching time.

The FRESTORE instruction permits reloading an internal state saved earlier and continues
any previously suspended operation. Restoring the reset internal state re-establishes de-
fault register values, a function identical to the FPCP hardware reset.

1.3 OPERAND DATA FORMATS

The FPCP supports the following data formats:
Byte Integer (B)
Word Integer (W)
Long Word Integer (L)
Single Precision Real (S}
Double Precision Real (D}
Extended Precision Real (X}
Packed Decimal String Real (P)

The capital Jetters within the parentheses denote suffixes added to mnemonics of the
assembly language instructions to specify the data format to be used.

FREESCALE MC68881/MC68882 USER'S MANUAL
110

1.3.1 Integer Data Formats

The three integer data formats {byte, word, and long word) are the standard twos com-
plement data formats defined in the M68000 Family architecture. Whenever an integer is
used in a floating-point operation, the integer is automatically converted by the FPCP to
an extended precision floating-point number before being used. For example, to add an
integer constant of five to the number in floating-point data register 3 {(FP3), the following
instruction can be used:

FADD.W #5,FP3
{The Freescale assembler syntax uses “’#'' to denote immediate addressing.)

The ability to effectively use integers in floating-point operations saves user memory since
an integer representation of a number, if representable, is usually smaller than the equnv-
alent floating-point representation.

1.3.2 Floating-Point Data Formats

The floating-point data formats, single precision {32-bits) and double precision (64-bits),
are implemented in the FPCP as defined by the IEEE standard. These data formats are the
main floating-point formats and should be used for most calculations involving real num-
bers. Table 1-1 lists the exponent and mantissa sizes for single, double, and extended
precision. The exponent is biased, and the mantissa is in sign and magnitude form. Since
single and double precision require normalized numbers, the most significant bit of the
mantissa is implied as a one and is not included, thus giving one extra bit of precision.

Table 1-1. Exponent and Mantissa Sizés '

Data Exponent Mantissa
Format Bits Bits
Single 8 23(+1)
Double 1 52(+1})
Extended 15 64

The extended precision data format is also in conformance with the IEEE standard, but the
standard does not specify this format to the bit level as it does for single and double
precision. The memory format for the FPCP consists of 96 bits {three long words). Only 80
bits are actually used; the other 16 bits are for future expandability and for long-word
alignment of floating-point data structures in memory. Extended format has a 15-bit ex-
ponent, a 64-bit mantissa, and a 1-bit mantissa sign.

Extended precision numbers are intended for use as temporary variables, intermediate
values, or where extra precision is needed. For example, a compiler might select extended
precision arithmetic for evaluation of the right side of an equation with mixed sized data
and then convert the answer to the data type on the left side of the equation. It is anticipated
that extended precision numbers will not be stored in large arrays due to the amount of
memory required by each value.

1.3.3 Packed Decimal String Real Data Format

The packed decimal data format allows packed BCD strings to be transferred to and from
the FPCP. The strings consist of a 3-digit base 10 exponent and a 17-digit base 10 mantissa.

MC68881/MC68882 USER'S MANUAL FREESCALE
1-11

the entire string fits in 96 bits (three long words). As is the case with all data formats, when
packed BCD strings are supplied to the FPCP, the strings are automatically converted to
extended precision real values. This conversion allows packed BCD numbers to be used
as inputs to any operation. For example:

FADD.P #-6.023E + 24,FP5

n Both the exponent and mantissa have separate sign bits. All digits are packed BCD, and

BCD numbers can be supplied by the FPCP in a format readily used for printing by a
- program generated by a high-level language compiler. For example:

FMOVE.P FP3,BUFFER{# — 5}

This instruction converts the contents of floating-point data register 3 (FP3) into a packed
BCD string with five significant digits to the right of the decimal point (FORTRAN F format).

1.3.4 Data Format Summary

All data formats described in the preceding paragraphs are supported orthogonally by all
arithmetic and transcendental operations and by all appropriate MPU addressing modes.
For example, all of the following are valid instructions:

FADD.B #0,FPO

FADD.W D2,FP3

FADD.L BIGINT,FP7

FADD.S #3.14159,FP5

FADD.D (SP)+,FP6

FADD.X [(TEMP PTR,A7)1,FP3

FADD.P #1.23E25,FP0

Most on-chip calculations are performed in the extended precision format, and the eight
floating-point data registers always contain extended precision values. All operands are
converted to extended precision by the FPCP before a specific operation is performed, and
all results are in extended precision. This ensures maximum accuracy without sacrificing
performance,

Refer to Figure 1-10 for a summary of the memory formats for the seven data formats
supported by the FPCP.

1.4 INSTRUCTION SET

The FPCP instruction set is organized into six major classes:

Moves between the FPCP and memory or the MPU (to or from)
Move multiple registers (to or from)

Monadic operations

Dyadic operations

Branch, set, or trap conditionally

Miscellaneous

SN2

1.4.1 Moves

On all moves from memory (or from an MPU data register) to the FPCP, data is converted
from the source data format to the internal extended precision format. On all moves from

FREESCALE MC68881/MC68882 USER'S MANUAL
112

30 22 o
8-817 238IT)
— . e . e n

l-— SIGN OF FRACTION

62 51 0

Nerr 52-BIT
EXPDNENT FRACTION

DOUBLE REAL

SIGN OF FRACTION

94

16817 64.BIT
EXPONENT MANTISSA EXTENDED REAL
IMPLICIT BINARY POINT
SIGN OF MANTISSA
o 80 67]
i : H H T T T T T — T T T
3016 [X' HEHE
EXPONENT Vo bl mawmssa ! P PACKED DECIMAL REAL
IMPLICIT DECIMAL POINT

2 BITS, USEQ ONLY FOR INFINITY OR NAN(S), ZERQ OTHERWISE
‘m—m———— SIGN DF EXPONENT
SIGN OF MANTISSA

*Unless a binary-to-decimal conversion overflow occurs

Figure 1-10. MC68881/MC68882 Data Format Summary

the FPCP to memory (or to an MPU data register}, data is converted from the internal
extended precision format to the destination data format.

Note that data movement instructions perform arithmetic operations, since the result is
always rounded to the precision selected in the FPCR mode control byte. The result is
rounded using the selected rounding mode and is checked for overflow and underflow.

The syntax for the FMOVE instruction is:
FMOVE.<fmt> <ea>FPn Move to FPCP
FMOVE.<fmt> FPm,<ea> - Move from FPCP
FMOVE.X FPm,FPn Move within FPCP

where:
<ea> is an MPU effective address operand
<fmt> is the data format size
FPm and FPn are floating-point data registers.

1.4.2 Move Multiple Registers

The floating-point move multiple instruction on the FPCP resembles its integer counterpart
on the M68000 Family processors. Any set of the floating-point registers FPO through FP7

MC68881/MC68882 USER'S MANUAL FREESCALE
113

as 96-bit extended data with no conversion (hence no possibility of conversion errors).
Some examples of the move multiple instruction are as follows:

FMOVEM <ea>,FP0-FP3/FP7

FMOVEM FP2/FPA/FP6,<ea>

n can be moved to or from memory with one instruction. These registers are always moved

The move multiple instruction is useful during context switches and interrupts to save or
restore the state of a program. It is also useful at the start and end of a procedure to save
and restore the calling routine’s register set. In order to reduce procedure call overhead,
the list of registers to be saved or restored can be stored in a data register thus enabling
run-time optimization by allowing a called routine to save as few registers as possible.
Note that no rounding or overflow/underflow checking is performed by these operations.

1.4.3 Monadic Operations

A monadic operation has one operand. This operand may be in a floating-point data

register, in memory, or in an MPU data register. The result is always stored in a floating-

point data register. For example, the syntax for square root is any of the following:
FSQRT.<fmt> <ea>,FPn

FSQRT.X FPm,FPn
FSQRT.X FPn

The monadic operations available with the FPCP are as follows:
FABS Absolute Value FLOG2 Log Base 2
FACOS Arc Cosine FLOGN Log Base e
FASIN Arc Sine FLOGNP1 Log Base e of {x+1)
FATAN Arc Tangent FNEG Negate
FATANH Hyperbolic Arc Tangent FSIN Sine
FCOS Cosine FSINCOS Simultaneous Sine and Cosine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FETOX e to the x Power FSQRT Square Root
FETOXM1 e to the x Power —1 FTAN Tangent
FGETEXP Get Exponent FTANH Hyperbolic Tangent
FGETMAN Get Mantissa FTENTOX 10 to the x Power
FINT Integer Part FTST Test
FINTRZ Integer Part (Truncated) FTWOTOX 2 to the x Power

FLOG10 Log Base 10

1.4.4 Dyadic Operations

Dyadic operations have two operands each. The first operand is in a floating-point data

register, memory, or an MPU data register. The second operand is the contents of a floating-

point data register. The destination is the same floating-point data register used for the

second operand. For example, the syntax for floating-point add is either of the following:
FADD.<fmt> <ea>,FPn

FADD.X FPm,FPn

The dyadic operations available with the FPCP are as follows:
FADD Add FREM IEEE Remainder
FCMP Compare FSCALE Scale Exponent

FREESCALE MC68881/MC68882 USER'S MANUAL
114

FOIV Divide FSGLDIV Single Precision Divide
FMOD Modulo Remainder FSGLMUL Singie Precision Multiply
FMUL Multiply FSUB Subtract

Assuming that operands are single precision, the FSGLMUL and FSGLDIV instructions
round results as such while maintaining the range of extended precision. In special
applications where multiply and divide performance are more important than loss of pre-
cision, the FSGLMUL and FSGLDIV instructions can be used.

1.4.5 Branch, Set, and Trap-On Condition

The floating-point branch, set, and trap-on condition instructions implemented by the FPCP
are similar to the equivalent integer instructions of the M68000 Family processors, except
more conditions exist due to the special values in IEEE floating-point arithmetic. When a
conditional instruction is executed, the FPCP performs the necessary condition checking
and reports the result, true or false, to the MPU; the MPU then takes the appropriate action.
Since the FPCP and MPU are closely coupled, the floating-point branch operations are
quickly executed.

The FPCP ‘conditiona| operations are:

FBcc Branch

FDBcc Decrement and Branch

FScc Set According to Condition

FTRAPcc Trap-on Condition {(with an Optional Parameter)
where:

cc is one of the 32 floating-point conditional test specifiers listed in 3.3 PACKED DECIMAL
REAL DATA FORMAT.

1.4.6 Miscellaneous Instructions
Miscellaneous instructions include moves to and from the status, control, and instruction

address registers. Also included are the virtual memory/machine FSAVE and FRESTORE
instructions that save and restore the internal state of the FPCP.

FMQVE <ea>,FPcr Move to Control Register(s)
FMOVE FPcr,<ea> Move from Control Register(s)
FSAVE <ea> Virtual Machine State Save
FRESTORE <ea> Virtual Machine State Restore

1.5 ADDRESSING MODES

The FPCP does not perform address calculations. Thus, when the FPCP instructs the MPU
to transfer an operand via the coprocessor interface, the MPU performs the addressing
mode calculations requested in the instruction. In this case, the instruction is encoded
specifically for the MPU, and the instruction execution by the FPCP is dependent only on
the value of the command word written to the FPCP by the main processor.

This interface is quite flexible and allows any addressing mode to be used with floating-
point instructions. For the M68000 Family, these addressing modes include immediate,
postincrement, predecrement, data or address register direct, and the indexed/indirect

MC68881/MC68882 USER'S MANUAL FREESCALE
115

addressing modes of the MPU. Some addressing modes are restricted for some instructions
in keeping with the M68000 Family architectural definitions (e.g., program counter relative
addressing is not allowed for a destination operand).

The orthogonal instruction set of the FPCP, along with the flexible branches and addressing
modes of the MPU, allows a programmer or a compiler writer to think of the FPCP as
though it were part of the MPU. There are no special restrictions imposed by the copro-
cessor interface, and floating-point arithmetic is coded exactly like integer arithmetic.

1.6 MC68882 PROGRAMMING CONSIDERATIONS

To exploit the enhanced performance of the MC68882 requires the programmer to be aware
of the manner in which the coprocessor overlaps execution of instructions. Upgrading a
system to use the MC68882 requires minor system software changes but no user software
changes. To optimize applications code for the MC68882 may require reordering of floating-
point instructions. SECTION 5§ COPROCESSOR PROGRAMMING describes the concurrency
capabilities of the MC68882, the required system software changes, and the optimization
of existing software for the enhanced floating-point coprocessor.

]
FREESCALE MC68881/MC68882 USER'S MANUAL
1-16

SECTION 2
PROGRAMMING MODEL

This section describes the registers of the MC68881/MC68882 (FPCP) programming model.
The notation used to refer to the registers conforms to the Freescale assembler syntax.
The programming model for the MC68882 is identical to that for the MC68881.

Figure 2-1 is a pictorial representation of the registers in the FPCP programming model.
The following paragraphs describe each group of registers.

2.1 FLOATING-POINT DATA REGISTERS

The eight 80-bit floating-point data registers (FP7-FP0) are analogous to the integer data
registers (D7-D0) of all M68000 Family processors. Floating-point data registers always
contain extended precision numbers. The data format used is identical to the extended
precision data format described in Table 3-3, except that the reserved {unused) 16 bits are
deleted from the table. All external operands, regardless of the data format, are converted
to extended precision values before being used in any calculation or stored in a floating-
point data register. '

Areset function or a restore operaﬁon of the null state sets FP7-FP0 to positive nonsignaling
not-a-numbers (NANs), described in 3.2.5 Not-A-Numbers.

19 63 0

FP0
e
P2
P3| rLoanng-pomT
- DATA REGISTERS
FP5
6
)
—d
a 2 15 ? 0
pommmm————
EXCEPTION| _MODE
Lo 1R chwma | PR :I- CONTROL REGISTER

CONDITION EXCEPTION | ACCRUED

I CODE lﬂUOTlEN'T | STATUS |EXCEFTIUN FPSR :I— STATUS REGISTER
INSTRUCTION ADORESS

L | FPIAR :I_ REGISTER

Figure 2-1. MC68881/MC68882 Programming Model

MC68881/MC68882 USER'S MANUAL FREESCALE
21

2.2 FLOATING-POINT CONTROL REGISTER

The 32-bit floating-point control register (FPCR) contains an exception enable byte that
enables/disables traps for each class of fioating-point exceptions and a mode byte that
n sets the user selectable modes.

The control register can be read or written to by the user. Bits 31~16 are reserved for future
definition by Freescale. These bits are always read as zero and are ignored during write
operations (but should be zero for future compatibility). This register is cleared by the reset
function or a restore operation of the null state. When cleared, this register provides the
IEEE standard defaults.

2.2.1 FPCR Exception Enable Byte

One of the bits of the exception enable byte (ENABLE), shown in Figure 2-2, corresponds
to each floating-point exception class. The user can separately enable traps for each class
of floating-point exceptions.

if a bit in the status register exception byte is set by the FPCP and the corresponding bit
in the control register ENABLE byte is also set, an exception is signaled. The address of
the exception handler is derived from the vector address corresponding to the exception.
When a user writes to the control register ENABLE byte that enables a class of floating-
point exceptions, a previously generated floating-point exception does not cause a trap to
be taken regardiess of the value in the status register exception byte.

The eight floating-point exception classes shown in Figure 2-2 are described in greater
detail in SECTION 6 EXCEPTION PROCESSING. Note that the bits in the FPSR exception
byte and the FPCR enable byte occupy the same positions within each byte.

In a few cases, dual and triple exceptions can be generated by a single instruction execution.
When multiple exceptions occur with traps enabled for more than one exception class, the
highest priority exception is reported; the lower priority exceptions are never reported or
taken. The exception handler routine must check for multiple exceptions. The bits of the

15 14 13 12 N 10 9 8

8SUN | SNAN | QGPERR | OVFL UNFL Dz mex2 | omEx
l—————— INEXACT DECTVAL (NFUT
- INEXACT DPEPATION
OIVIDE BY ZERG

UNOERFLOW

OVERFLOW

OPERAND ERRGR
SIGKALUNG NOT A RUMEER
BRANCH/SET CN U%D20ERE]

Figure 2-2. MC68881/MC68882 FPCR Exception Enable Byte

FREESCALE MC68881/MC68882 USER'S MANUAL
2-2

ENABLE byte are organized in decreasing priority, left to right, i.e., BSUN is the highest
priority, and INEX1 is the lowest priority. The only multiple exception possibilities are:
SNAN and INEX1
OPERR and INEX2
OPERR and INEX1
OVFL and INEX2 and/or INEX1 n
UNFL and INEX2 and/or INEX1
INEX2 AND INEX1

2.2.2 FPCR Mode Control Byte

The mode control byte (MODE}, shown in Figure 2-3, controls the user-selectable rounding
modes and rounding precisions. A zero in this byte selects the IEEE defaults.

The rounding mode specifies how inexact results are rounded. “Round to the nearest”
specifies that the nearest number to the infinitely precise result should be selected as the
rounded value. In case of a tie, the even result is selected. "Round towards zero” truncates
the result. "Round towards plus infinity' always rounds numbers towards plus infinity.
“Round toward minus infinity'’ always rounds numbers towards minus infinity. See 6.1.7
Inexact Result for a detailed description of the rounding algorithm used.

The rounding precision selects where rounding of the mantissa occurs. For extended pre-
cision, the result is rounded to a 64-bit boundary. A single precision result is rounded to
a 24-bit boundary, and a double precision result is rounded to a 53-bit boundary.

The single and double rounding precisions are provided for emulation of machines that
only support those precisions. When the FPCP performs any operation, the calculation is
carried out using extended precision inputs and the intermediate result is calculated as if
to produce infinite precision. After the calculation is complete, this intermediate result is
rounded to the selected precision and stored in the destination.

If the destination is a floating-point data register, the stored value is in the extended
precision format rounded to the precision specified by the PREC bits. Thus, all mantissa
bits beyond the selected precision are zero after the rounding operation. Also, if the single

PREC FND 0

ROUNDING MOOE:
00 TQ NEAREST
01 TAWARD ZERQ
10 TOWARD MINUS INFINITY
11 TOWARD PLUS INFINITY

ROUNDING PRECISION:
00 EXTENDED
01 SINGLE
10 DOUBLE
11 {UNDEFINED. RESERVED)

Figure 2-3. MC68881/MC68882 FPCR Mode Control Byte

]
MC68881/MC68882 USER'S MANUAL FREESCALE
2-3

or double precision mode is selected, the exponent value is in the correct range for the
single or double precision format (although it is stored in extended precision format). An
important exception to this rule is for the FSGLDIV and FSGLMUL instructions. Regardless
of the precision specified by the PREC bits, these instructions round the result mantissa
to single precision and generate an extended precision exponent which may be out of
range for a single precision number.

if the destination is a memory location, the PREC bits are ignored. In this case, a number
in the extended precision format is taken from the source floating-point data register,
rounded to the destination format precision, and written to memory.

The execution speed of all instructions is degraded significantly when single and double
precision rounding modes are used. Because these modes are intended to be used for
emulation, this reduction is not detrimental. When operating in these modes, the FPCP
produces the same result as any other machine that conforms to the IEEE standard without
supporting extended precision calculations. However, the result obtained by performing a
series of operations with single or double precision rounding may not be the same as the
result of performing the same operations in extended precision and storing the final result
in the single or double precision format.

2.3 FLOATING-POINT STATUS REGISTER

The floating-point status register (FPSR) contains a floating-point condition code byte, a
floating-point exception status byte, quotient bits, and a floating-point accrued exception
byte. All bits in the FPSR can be read or written by the user. Execution of most floating-
point instructions modifies this register.

The reset function or a restore operation of the null state clears the FPSR.

2.3.1 FPSR Floating-Point Condition Code Byte

The floating-point condition code byte (FPCC), shown in Figure 2-4, contains four condition
code bits that are set at the end of all arithmetic instructions involving the floating-point
data registers. The FMOVE FPm,<ea>, move multiple floating-point data register, and
move system control register instructions do not affect the FPCC.

The operation result data type determines how the four condition code bits are set. Table
2-1 lists the condition code bit settings for each result data type. Because of the mutually
exclusive nature of the data types described by the condition code bits, the FPCP generates

31 30 29 28 27 25 25 24
0 N 2z ! NAN
|——— NOT A KUMEER OR UNCFIEFZD
INEINITY
ZERG
NEGATIVE

Figure 2-4. MC68881/MC68882 FPSR Condition Code Byte

FREESCALE MC68881/MC68882 USER'S MANUAL
2-4

Table 2-1. Condition Code versus Result Data Type

N Z t NAN Result Data Type

0 .0 0 0 + Normalized or Denormalized
1 0 0 0 — Normalized or Denormalized
0 1 0 0 |+0

1 1 0 o (-0

0 0 1 0 + Infinity

1 0 1 0 — Infinity

0 0 0 1 + NAN

1 0 0 1 — NAN

only eight of the 16 possible combinations. Loading the FPCC byte with one of the other
condition code bit combinations and executing a conditional instruction may produce an
unexpected branch condition.

The IEEE standard defines the following four conditions and only requires the generation
of the condition codes as a result of a floating-point compare operation. In addition to this
requirement, the FPCP can test these conditions at the end of any operation affecting the
condition codes.

EQ —Equal To

GT —Greater Than

LT —Less Than

UN —Unordered

An unordered condition occurs when one or both of the operands in a floating-point
compare operation is a NAN. For purposes of the floating-point conditional branch, set
byte on condition, decrement and branch on condition, and trap-on condition instructions,
the FPCP logically combines the four condition codes to form the IEEE conditions according
to the following equations:

EQ =2Z

GT =NvNANvZ

LT =NANANvZ

UN =NAN
where:

“A'" =Llogical AND

"v'" =Logical OR

Note that the setting of the FPCP condition codes is independent of the operation executed;
the condition codes only indicate the data type of the result generated. Unlike other M68000
condition codes, the IEEE defined conditions can always be derived from the data type of
the result. The setting of the M68000 integer condition codes is dependent upon the op-
eration executed as well as the result.

To aid programmers of floating-point subroutine libraries, the FPCP implements the four
previously described floating-point condition code bits in hardware instead of the four IEEE
defined conditions. The IEEE conditions are derived by an instruction when needed. For
example, the programmer of a complex arithmetic multiply subroutine usually prefers to
handie “special’ data types such as zeros, infinities, or NANs, separately from “normal”
data types. The FPCP condition codes allow. users to efficiently detect and handle these
“special” values.

MC68881/MC68882 USER'S MANUAL FREESCALE
2-5

2.3.2 FPSR Quotient Byte

The quotient byte (see Figure 2-5) is set at the completion of the modulo {(FMOD) or IEEE
remainder (FREM) instructions. This byte contains the seven least significant bits of the
quotient (unsigned) and the sign of the entire quotient.

23 22 21 20 19 18 17 16
S . DUOTIENT
T SEVEN LEAST SIGKFICANT

BITS OF QUOTIENT

SIGN OF QUOTIENT

Figure 2-5. MC68881/M(C68882 FPSR Quotient Byte

The quotient bits can be used in argument reduction for transcendentals and other func-
tions. For example, seven bits are more than enough to determine the quadrant of a circle
in which an operand resides. The quotient bits remain set until they are cleared by the
user, or until another FMQOD or FREM instruction is executed.

2.3.3 FPSR Exception Status Byte

The exception status byte (EXC), shown in Figure 2-6, contains a bit for each floating-point
exception that may have occurred during the most recent arithmetic instruction or move
operation. This byte is cleared by the FPCP at the start of most operations; operations that
cannot generate any floating-point exceptions (the FMOVEM and FMOVE control register
instructions) do not clear this byte. This byte can be used by an exception handler to
determine which floating-point exception(s) caused a trap.

If a bit is set by the FPCP in the EXC byte and the corresponding bit in the ENABLE byte
is also set, an exception is signaled to the main processor. When a floating-point exception
is detected by the FPCP, the corresponding bit in the EXC byte is set, even if the trap for

15 14 13 12 n 10 9 8
BSUN SNAN OPERR avFL UNFL Dz INEX2 INEX1
i“ INEXACT DECIMAL INPUT
INEXACT GPERATICN
DIVIDE BY ZERD
UNDERFLOW

OVERFLOW

OPEPAND ERROR

SIGNALUNG NOT A NUWEER
BRANCH/SET D UNORDERED

Figure 2-6. MC68881/MC68882 FPSR Exception Status Byte

FREESCALE MC68881/MC68882 USER'S MANUAL
2-6

that exception class is disabled. (A user write operation to the status register, which sets
a bit in the EXC byte, does not cause a trap to be taken regardless of the value in the
ENABLE byte.}

Note that the bits in the status EXC byte and control ENABLE byte are in the same bit
positions within each byte. The eight floating-point exception classes are described in
greater detail in SECTION 6 EXCEPTION PROCESSING.

2.3.4 FPSR Accrued Exception Byte

The accrued exception byte (AEXC), shown in Figure 2-7, contains the five exception bits
required by the IEEE standard for trap disabled operation. These exceptions are logical
combinations of the bits in the EXC byte. The AEXC byte contains the history of all floating-
point exceptions that have occurred since the user last cleared the AEXC byte. In normal
operations, only the user clears this byte (by writing to the status register). The AEXC byte
is cleared by the FPCP only by a reset or a restore operation of the null state.

7 6 5 4 3 2 1 o
0P DVFL UNFL 0z INEX : 0
L INEXACT

DIVIDE BY ZERD
UNDERFLOW
OVERFLOW

INVALID OPERATION

Figure 2-7. MC68881/MC68882 FPSR Accrued Exception Byte

Many users elect to disable traps for all or part of the floating-point exception classes. The
AEXC byte is provided to make it unnecessary to poll the EXC byte after each floating-
point instruction. At the end of most operations (all but the FMOVEM and FMOVE control
register instructions), the bits in the EXC byte are logically combined to form an AEXC
value that is logically ORed into the existing AEXC byte. This operation creates “sticky”
floating-point exception bits in the AEXC byte that the user need poll only once (at the end
of a series of floating-point operations, for example).

The setting or clearing of bits in the AEXC byte does not cause the FPCP to take an exception,

.nor does it prevent taking an exception. The relationship between the bits in the EXC byte
and the bits in the AEXC byte is shown by the following equations. These equations apply
to setting the AEXC bits at the end of each operation that affects the AEXC byte:

AEXC(IOP) = AEXC(IOP)VEXC(BSUNvSNANVOPERR)

AEXC(OVFL) = AEXC(OVFL)VEXC(OVFL) .

AEXC(UNFL) = AEXC{UNFL)VEXC(UNFLAINEX2)

AEXC(DZ) = AEXC(DZ)VEXC(DZ)

AEXC(INEX) = AEXC(INEX)VEXC(INEX1VINEX2vOVFL)
where:

"y"" = Logical OR

“A” = Logical AND

MC68881/MC68882 USER'S MANUAL FREESCALE
2-7

2.4 FLOATING-POINT INSTRUCTION ADDRESS REGISTER

A majority of the FPCP instructions operate concurrently with the MC68020/MC68030 (MPU).
That is, the MPU can be executing instructions while the FPCP is simultaneously executing
a floating-point instruction. Additionally, the MC68882 can execute two floating-point in-
n structions concurrently. As a result of this nonsequential instruction execution, the program
counter value stacked by the MPU, in response to an enabled floating-point exception trap
may not point to the offending instruction.

For the subset of the FPCP instructions that generate floating-point exception traps, the
32-bit floating-point instruction address (FPIAR) register is loaded with the logical address
of an instruction before the instruction is executed (uniess all arithmetic exceptions are
disabled). This address can then be used by a floating-point exception handler to locate a
floating-point instruction that has caused an exception. Since the FPCP FMOVE to/from the
FPCR, FPSR, or FPIAR and FMOVEM instructions cannot generate floating-point exceptions,
these instructions do not modify the FPIAR. These instructions can be used to read the
FPIAR in the trap handier without changing the previous value.

This register is cleared by the reset operation or a restore operation of the null state.

FREESCALE MC68881/MC68882 USER'S MANUAL
2-8

SECTION 3
OPERAND DATA FORMATS

The following paragraphs describe the MC68881/MC68882 (FPCP) operand data formats.
Seven data formats are supported: three signed binary integer formats, three binary float-
ing-point formats, and one packed binary-coded decimal (BCD) floating-point format. All
data formats are supported uniformly by all arithmetic and transcendental instructions.
These formats are as follows:

Byte Integer (B)

Word Integer (W) .

Long Word Integer (L)

Single Precision Real (S)

Double Precision Real (D)

Extended Precision Real {X)}

Packed Decimal Real (P)

The capital letter in parentheses is the suffix added to an instruction in the assembly
language syntax to specify the data format of operands external to the FPCP. All data
formats are organized in memory consistently with the M68000 Family data organization,
i.e., the most significant byte is located at the lowest address (nearest $00000000), with
each successively less significant byte located at the next address (N+1, N+2, etc.). The
least significant byte is located at the highest address (nearest $FFFFFFFF).

Within the floating-point data formats, there are five types of numbers that can be
represented: normalized numbers, denormalized numbers, zeros, infinities, and not-a-
numbers (NANs). These data types are represented with special encodings corresponding
to each data format.

3.1 INTEGER DATA FORMATS

The three signed (twos complement) integer data formats supported by the FPCP (byte,
word, and long word) are identical to those supported by the M68000 Family architecture
(see Figure 3-1).

7 0

8alTs BYTE INTEGER

15 0

16 BITS WORD INTEGER

3) 0

32818 LONG INTEGER

Figure 3-1. Signed Integer Data Formats

MC68881/MC68882 USER'S MANUAL FREESCALE
3-1

Since all FPCP internal operations are performed in full extended precision format, signed
integer operands are converted to extended precision values before the specified operation
is performed. Thus, mixed mode arithmetic is implicitly supported.

3.2 BINARY REAL DATA FORMATS

Floating-point numbers can be encoded in any of three binary real data formats: single
precision {32 bits), double precision (64 bits), and double-extended precision (96 bits, 80
of which are used). All three of these formats fully comply with the /EEE Standard for
Binary Floating-Point Arithmetic.

NOTE

The single-extended precision data format defined in the |EEE standard is redun-
dant in a device that supports the double-extended precision format. Thus, all
references in this manual to extended precision imply double-extended precision
as defined by the IEEE standard.

Since all FPCP internal operations are performed in extended precision, single and double
precision operands are converted to extended precision values before the specified operation
is performed. Thus, mixed mode arithmetic is implicitly supported. The memory formats
for the real data formats are shown in Figure 3-2.

The exponent in all three binary formats is an unsigned binary integer with an implied
bias added to it. The bias values for single, double, and extended precision are 127, 1023,
and 16383, respectively. When the bias is subtracted from the value of the exponent, the
result represents a signed twos-complement power of two that yields the magnitude of a
normalized floating-point number when muitiplied by the mantissa. Since biased exponents
are used, a program can execute an integer compare instruction (CMP) to compare floating-
point numbers in memory (regardless of the absolute magnitude of the exponents).

30 22 0

8.BIT 2387 N
EXPONENT FRACTION SNGE FEAL
|~— SIGN OF FRACTION
62 51 0
18T 52817 nrrE pos
EXPONENT FRACTION COUSE P22l
SIGN OF FRACTION
94 0
1581 i 64-BIT EXTENDED REAL
EXPONENT ! MANTISSA e
1— IMPLICIT BINARY POINT
SIGN OF MANTISSA
Figure 3-2. Binary Real Data Formats
FREESCALE MC68881/MC68882 USER'S MANUAL

3-2

Data formats for single and double precision numbers differ slightly from the data formats
for extended precision numbers in the representation of the mantissa. A normalized man-
tissa, for all three precisions, is always in the range [1.0... 2.0}). The extended precision
data format explicitly represents the entire mantissa, including the explicit integer part bit.
However, for single and double precision data formats, only the fractional portion of the
mantissa is explicitly represented and the integer part, always one, is implied.

The IEEE standard has created the term “‘significand” to bridge this difference and to avoid
the historical implications of the term mantissa. The IEEE standard defines a significand 3
as the component of a binary floating-point number that.consists of an explicit or implicit
leading bit to the left of the implied binary point. This manual uses the terms mantissa
and significand, defined as follows, interchangeably.

Single Precision Mantissa = Single Precision Significand

= 1.<23-Bit Fraction Field>

Double Precnsmn Mantissa = Double Precision Significand
= 1.<b2-Bit Fraction Field>
= Extended Precision Significand
= 1.Fraction
= <64-Bit Mantissa Field>

Extended Precision Mantissa

NOTE

Throughout this manual, ranges are specified using traditional set notation with
the format “bound . . . bound” specifying the boundaries of the range. The type
of brackets enclosing the range defines whether the endpoint is inclusive or ex-
clusive. A square bracket indicates inclusive, and a parenthesis indicates exclu-
sive. For example, the range specification “[1.0...2.0]" defines the range of numbers
greater than or equal to 1.0 and less than or equal to 2.0. The range specification
”(0.0... +inf]"” defines the range of numbers greater than 0.0 and less than or equal
to positive infinity.

Each of the three floating-point data formats can represent five unique floating-point data
types:

Normalized Numbers

Denormalized Numbers

Zeros

Infinities

Not-A-Numbers (NANs)

The normalized data type never uses the maximum or minimum exponent value for a
given format (except for the extended precision format, see following note). These exponent
values in each precision are reserved for representing the special data types: zeros, infin-
ities, denormalized numbers, and NANs. Details of each type of number for each format
are shown in 3.6 DATA FORMAT DETAILS.

NOTE

" There is a subtle difference between the definition of an extended precision num-
ber with an exponent equal to zero and a single or double precision number with
an exponent equal to zero. If the exponent of a single or double precision number
is zero, the number is defined to be denormalized, and the implied integer bit is
also a zero. However, an extended precision number with an exponent of zero
may have an explicit integer bit equal to one, which results in a normalized number
{even though the exponent is equal to the minimum value).

MC68881/MC68882 USER'S MANUAL FREESCALE
3-3

For simplicity, the following discussion treats all three real formats in the same manner,
where an exponent value of zero identifies a denormalized number. However, it should be
noted that the extended precision format may deviate from this rule.

3.2.1 Normalized Numbers

underflow thresholds, i.e., those numbers whose exponents lie between the maximum and
minimum values. Normalized numbers may be positive or negative. For normalized num-
bers, the implied integer part bit in single and double precision is a one {1). In extended
precision, the integer bit is explicitly a one (1). See Figure 3-3.

n Normalized numbers encompass all representable real values between the overflow and

MIN < EXPONENT < MAX MANTISSA = ANY BIT PATTERN

- SIGN OF MANTISSA, 0 OR 1

Figure 3-3. Format of Normalized Numbers

3.2.2 Denormalized Numbers

Denormalized numbers represent real values near the underflow threshold (underflow is
detected for a given data format and operation when the result exponent is less than or
equal to the minimum exponent value). Denormalized numbers may be positive or neg-
ative. For denormalized numbers, the implied integer part bit in single and double precision
is a zero {0). In extended precision, the integer bit is explicitly a zero (0). See Figure 3-4.

EXPONENT =0 MANTISSA = AKY NON-ZERD BIT PATTERN

l— SIGN OF MANTISSA, 0 OR 1

Figure 3-4. Format of Denormalized Numbers

Traditionally, floating-point number systems perform a "“flush-to-zero’’ when underflow is
detected. This leaves a large gap in the number line between the smallest magnitude
normalized number and zero. The IEEE standard implements gradual underflows: the result
mantissa is shifted right {denormalized) while the result exponent is incremented until the
result exponent reaches the minimum value. If all mantissa bits of the result are shifted
off to the right during this denormalization, the result becomes zero. In many instances,
gradual underflow limits the potential underflow damage to no more than a round-off
error. {This underflow and denormalization description ignores the effects of rounding and
the user selectable rounding modes.) Thus, the large gap in the number line created by
“flush-to-zero"” floating-point number systems is filled with representable {denormalized)
numbers in the |IEEE “gradual underflow’ floating-point number system.

FREESCALE MC68881/MC68882 USER'S MANUAL
3-4

NOTE

Since the extended precision data format has an explicit integer part bit, a number
can be formatted with a nonzero exponent (less than the maximum value) and a
zero integer bit, which is not defined by the IEEE standard. Such a number is
called an unnormalized number. The MC68881 never generates an unnormalized
number as the result of any operation. Unnormalized inputs are always converted
to normalized or denormalized numbers or zero before being used. Thus, as
required by the IEEE standard, the FPCP does not distinguish between redundant
encodings of extended precision values. n

3.2.3 Zeros

Zeros are signed (positive or negative) and represent the real values +0.0 and —0.0. See
Figure 3-5.

EXPONENT =0 MANTISSA = 0

SIGN OF MANTISSA, D DR 1

Figure 3-5. Format of Zero

3.2.4 Infinities

Infinities are signed (positive or negative) and represent real values that exceed the overflow
threshold. Overflow is detected for a given data format and operation when the result
exponent is greater than or equal to the maximum exponent value. {This overflow description
ignores the effects of rounding and the user selectable rounding modes.) See Figure 3-6.
For extended precision infinities, the most significant bit of the mantissa (the integer bit)
can be either one or zero.

EXPONENT = MAXIMUM MANTISSA=0*

SIGN OF MANTISSA, 0 OR 1

*For the extended precision format, the most significant bit of the mantissa (the integer bit) is a don't care.

Figure 3-6. Format of Infinity

3.2.5 Not-A-Numbers

When created by the FPCP, not-a-numbers (NANs) represent the results of operations that
have no mathematical interpretation, such as infinity divided by infinity. All operations
involving a NAN operand as an input return a NAN result. When created by the user, NANs
can protect against uninitialized variables and arrays, or represent user-defined special

MC68881/MC68882 USER'S MANUAL FREESCALE
3-5

number types. See Figure 3-7. For extended precision NANs, the most significant bit of
the mantissa (the integer bit) can be either one or zero.

EXPONENT = MAXIMUM MANTISSA = ANY NON-ZERD BIT PATTERY

l—— SIGN OF MANTISSA, D OR 1

n Figure 3-7. Format of Not-A-Numbers

Two different types of NANs are implemented by the FPCP. The value of the most significant
bit (MSB) of the fraction identifies the type. The identifying bit is the MSB of the mantissa
for single and double precision and the MSB of the mantissa minus one for extended
precision. NANs with a leading fraction bit equal to one are nonsignaling NANs; NANs
with a leading fraction bit equal to zero are signaling NANs {(SNANs). A SNAN can be used
as an escape mechanism for a user-defined non-lIEEE data type. The FPCP never creates
a SNAN as a result of an operation.

The IEEE specification defines the manner in which a NAN is processed when used as an
input to an operation. Particularly, if a SNAN is used as an input and the SNAN trap is not
enabled, a nonsignaling NAN must be returned as the result. The FPCP accomplishes this
by using the source SNAN, setting the most significant bit of the fraction, and storing the
resultant nonsignaling NAN in the destination. Due to the IEEE formats for NANSs, the result
of setting the most significant fraction bit of a SNAN is always a nonsignaling NAN.

When NANs are created by the FPCP, the NANs always contain the same bit pattern in the
mantissa; for any precision, all bits of the mantissa are ones. When a NAN is created by
the user, any nonzero bit pattern can be stored in the mantissa.

3.2.6 Binary Real Data Summary

Figure 3-8 presents a summary, for quick reference, of the five fioating-point data types
for the single, double, and extended precision formats.

3.3 PACKED DECIMAL REAL DATA FORMAT

The packed decimal floating-point data format consists of a 24 digit packed decimal string
as shown in Figure 3-9. A decimal floating-point source operand is converted to an extended
precision value before the specified operation is performed. Thus, mixed mode arithmetic
is implicitly supported.

The packed decimal representation for the special data types of zero, infinity, and NAN is
described in 3.6 DATA FORMAT DETAILS, which also defines all possible data patterns in
the packed decimal data format.

L.___ |
FREESCALE MC68881/MC68882 USER'S MANUAL
3-6

MIN <C EXPDNENT <C MAX ‘ SIGNIFICAND = ANY BIT PATTERN

SIGN OF SIGNIFIGAND, 0 OR 1

EXPONENT = 0 SIGNIFICAND = ANY NON-ZERO BIT PATTERN

SIGN OF SIGNIFICAND. 0 OR 1

EXPONENT =0 ‘ SIGNIFICAND = 0

SIGN OF SIGNIFICAND, O OR 1

EXPONENT = MAXIMUM SIGNIFICANO = 0

N

SIGN OF SIGNIFICAND, D OR 1

EXPDNENT = MAXIMUM SIGNIFICAND = ANY NON-ZERO BIT PATTERN

l— SIGN OF SIGNIFICAND, 0 OR 1

*For the extended precision format, the most significant bit of the significand {the integer bit} is a don't care.

Figure 3-8. Binary Real Data Type Summary

9 0
T T T T 1 A] 1]) T T 1
3-DIGIT) i | | | 17.01GIF i] IR | M
EXPONENT t ot b b1 mawmssa ! oo PACKED DECIMAL RE

IMPLICIT DECIMAL POINT

2 BITS, USED DNLY FOR £INFINITY OR NAN(S), ZERO OTHERWISE

SIGN OF EXPONENT

SIGN OF MANTISSA

*Unless a binary-to-decimal conversion averflow occurs

Figure 3-9. Packed Decimal Real Data Format

3.4 INTERNAL DATA FORMAT

All FPCP internal operations are performed in extended precision. All external operands,
regardless of data format, are converted to extended precision values before the specified
operation is performed.

The format used in the eight floating-point data registers is identical to the extended
precision data format described previously and in 3.6 DATA FORMAT DETAILS (with the

]
MC68881/MC68882 USER'S MANUAL FREESCALE
3-7

deletion of the 16 unused bits). The extended precision data format has a 15-bit biased
integer exponent and a 64-bit mantissa.

The format of an intermediate result is shown in Figure 3-10. The intermediate result
exponent for some dyadic operations (multiply and divide) can easily overflow or underflow
the 15-bit exponent. In order to simplify overflow and underflow detection, intermediate
results in the FPCP maintain a 17-bit twos-complement integer exponent. When an overflow
or underflow intermediate result is detected, the intermediate 17-bit exponent is always
canverted into a 15-bit biased exponent before it is stored in a floating-point data register.
Additionally, the mantissa is maintained internally as 67 bits for rounding purposes, but
is always rounded to 64 bits (or less, depending on the selected rounding precision) before
it is stored in a floating-point data register.

Y
VBT i 63-BIT i
EXPONENT s FRACTION "
LEAST SIGNIFICANT BIT OF FRACTION -—:I
INTEGER BIT GUARD BIT
L overrowanr ROUND BIT
STICKY BIT

Figure 3-10. Intermediate Result Format

3.5 FORMAT CONVERSIONS

Two cases of conversion between two data formats are:

e Converting an operand in any memory data format to the extended precision data
format and storing it in a floating-point data register, or using it as the source operand
for an arithmetic operation.

e Converting the extended precision value in a floating-point data register to any data
format and storing it in a memory destination.

3.5.1 Conversion to Extended Precision Data Format

Since the internal data format used by the FPCP is always extended precision, all external
operands, regardless of data format, are converted to extended precision values before
the specified operation is performed. If the external operand, regardless of data format, is
a denormalized number, the number is normalized before the specified operation is per-
formed. Conversion and normalization apply not only to loading a floating-point data
register but also to external operands involved in arithmetic operations.

Since floating-point data registers always contain extended precision data format values,
an external extended precision denormalized number moved into a floating-point data
register is stored as an extended precision denormalized number. In this case, the number

-
FREESCALE MC68881/MC68882 USER'S MANUAL
3-8

is first normalized and then denormalized before it is stored in the designated floating-
point data register. This method simplifies the handling of all other data formats and types.

If an external operand is an extended precision unnormalized number, the number is
normalized before it is used in an arithmetic operation. If the external operand is an ex-
tended precision unnormalized zero (i.e., with a mantissa of all zeros), the number is
converted to an extended precision normalized zero before the specified operation is per-
formed. This normalization and conversion applies not only to external unnormalized
operands involved in arithmetic operations, but also applies to loading a floating-point
data register. Note that the regular use of unnormalized inputs defeats the purpose of the
IEEE standard and may produce gross inaccuracy in the results.

3.5.2 Conversions to Other Data Formats

Conversion from the extended precision data format to any of the other six data formats
occurs when the contents of an FPCP floating-point data register are stored to memory or
an MPU data register. Since no operation performed by the FPCP can create an unnor-
malized result, the result of moving a floating-point data register to an extended precision
external destination can never be an unnormalized number.

3.6 DATA FORMAT DETAILS

The following paragraphs provide the format specification details for the single (S}, double
(D}, extended {X) precision binary real, and packed decimal (P) real string data formats,
Refer to Tables 3-1 through 3-4 and Figure 3-11.

MC68881/MC68882 USER'S MANUAL FREESCALE
3-9

Table 3-1. Single Precision Binary Real Format

Memory Format;

Field Size (in Bits):

s = Sign
e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Denormalized Numbers:
e = Format Minimum =
Bias of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand

Signed Infinities:
e = Format Maximum =
f = Mantissa = Significand

NANs (Not-A-Number):
g =
e = Format Maximum =
f=
Representation of f

XXX . . o XKXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Pgsitive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

31 N B0

BIASED

EXPONENT FRACTION

S

SRR

o

+127 ($7F)

0 < e < 255 ($FF)

Zero or Nonzerg

i

{—1s x 22—127 x 1§

0 (%00)

+126 ($7€)

Nonzero

of

(-1 x 2—126 % gf

0 {$00)
0f =00

255 (SFF}
of = 00

Den't Care

255 (SFF)

Non-Zero

0.1oox . . . xoocx, Nonsignaling
0.0xxxx . . . xxxx, Signaling
Nonzero Bit Pattern
o nn

34 x 1038
12 x 10538
14 x 10—45

FREESCALE MC68881/MC68882 USER'S MANUAL
3-10

Table 3-2. Double Precision Binary Real Format

Memory Format:

Field Size (in Bits):

s = Sign
e = Biased Exponent
f = Fraction

Total

Interpretation of Sign:
Positive Mantissa, s =
Negative Mantissa, s =

Normalized Numbers:
Bias of e
Range of e
Range of f
Mantissa = Significand =
Relation to Representation of Rea! Numbers

Denormalized Numbers:
e = Format Minimum =
Bias of e
Range of f
Mantissa = Significand =
Relation to Representation of Real Numbers

Signed Zeros:
e = Format Minimum =
f = Mantissa = Significand

f

Signed Infinities:
e = Format Maximum =
f = Mantissa = Significand

1

NANs (Not-A-Number):
s =
e = Format Maximum =
f=
Representation of f

XXXX . . . XXXX
f When Created by the FPCP

Ranges (Approximate):
Maximum Positive Normalized
Minimum Positive Normalized
Minimum Positive Denormalized

63 62 52 51

BIASED
S EXPONENT FRACTION

1

4]

52

64

0

1

+1023

0 < e < 2047 ($TFF)
Zero or Nonzero

1f

(—1)s x 20—1023 x 1f

0 ($000)

+1022 ($3FE)
Nonzero

0f
(-1 x 21022 x gf

0 (800}
0f =00

2047 (STFF)
of = 00

Don't Care

2047 ($7FF)

Nonzero

0.1xxxx . . . xxxx, Nonsignaling
0.0xxxx . .. xxxx, Signaling
Nonzero 8it Pattern
amnm

18 x 10307
2.2 x 10308
49 x 10-34

MC68881/MC68882 USER'S MANUAL FREESCALE
3-11

Table 3-3. Extended Precision Binary Real Format

Memory Format: 9%5 9 80 79 64 62 0
BIASED INTEGER PART
S EXPONENT ZERO FRACTION

Field Size (in Bits):

s = Sign 1

e = Biased Exponent 15

u = Zero, Reserved 18

j = Integer Part 1

f = Fraction ’ 63

Total 96

Interpretation of Unused Bits:

Input Don't Care

Output All Zeros
Interpretation of Sign:

Positive Mantissa, s = 1}

Negative Mantissa, s = 1

Normalized Numbers:

Bias of e + 16383 ($3FFF)

Range of e D <= e < 32767 {$7FFF)
i= 1

Range of f Zero or Nonzero

jf = Mantissa = Significand = 1f

Relation to Representation of Real Numbers (—1)8 x 26— 16383 jf

Denormalized Numbers:

e = Format Minimum 0 {soo00}

Bias of e + 16383 (S3FFF)

i= 0

Range of f Nonzero

jf = Mantissa = Significand = 0.f

Relation to Representation of Real Numbers (—1)s »x 2—16383 x of

Signed Zeros:

e = Format Minimum = 0 (S0000)
jf = Mantissa = Significand = 0.0
Signed Infinities:
e = Format Maximum = 32767 (STFFF)
j= Don't Care
jf = Mantissa = Significand j.000...0000
NANs (Not-A-Numbers):
§ = Don’t Care
i= Oon't Care
e = Format Maximum = 32767 (STFFF)
f= . Nonzero
Representation of f jxxx. .. oo, Non-Sigraling
j-0x0x. ... xxxx, Signaling
XXX . .. XXXX Non-Zero Bit Pattern
f When Created by the FPCP ..
Ranges (Approximate):
Maximum Positive Normalized 6 x 104931
Minimum Positive Normalized 8 x 10—4933
Minimum Pasitive Denormalized 9 x 104952

FREESCALE MC68881/MC68882 USER'S MANUAL
312

Table 3-4. Decimal String Type Definitions

Word 5 Word 4 Words 3-0
O?rey:‘e"d 5 | 14 | 13 | 12 1...0 15...0
SM SE y y 3-Digit Exponent 1-Digit Integer 16-Digit Fraction
*INFINITY 0/1 1 1 1 $FFF $xxx $00...00
+NAN 0/1 1 1 1 $FFF $xxxx Nonzero {see Note 1)
+SNAN 01 1 1 1 $FFF $XXXX Nonzero {see Note 1)
+ZERO 0 01 X X $000-$999 $xxx0 $00...00
—-ZERO 1 071 X X $000-$999 $xxx0 $00...00
+In-Range 0 0/1 X X $000-$999 $xxx0-$xxx9 $00...01-999...%99
—In-Range 1 071 X X $000-$999 T $xxx0-$xxx9 $00...01-%99...$99
NOTES:

1. A decimal string with the SE and y bits set, an exponent of $FFF, and a nonzero 16-digit decimal fraction is a NAN.
When this string is used by the FPCP, the fraction part of the NAN is moved bit-for-bit into the extended precision
mantissa of a floating-point register. The exponent of the register is set to signify a NAN, but no decimal-to-binary
conversion or any other conversion is performed. Therefore, the most significant bit of the most significant digit in the
decimal fraction {most significant bit of MANT15} is a don't care {as in extended NANs), and the most significant bit
minus one of MANT1S is the signaling NAN (SNAN) bit. If the NAN bit is a zero, then it is a SNAN.

2. If a nondecimal digit [$A . .. $F] appears in the exponent of a zero, the number is canverted to a true zero. The FPCP
does not detect nondecimal digits [$A . . . $F] in the exponent, integer, or fraction digits of an in-range decimal string.
These nondecimal digits are converted to binary in the same manner as decimal digits; however, the result is probably
useless although it is repeatable.

3. Since in-range numbers cannot overflow or underflow when converted to extended precision, normalized extended
precision numbers are always produced by conversion from the decimal data format,

SGN 0F MANTISSA 0 = POSITIVE, 1 = NEGATIVE (MPLICIT DECIMAL POINT ———
SIGN OF EXPONENT
—-— USED ONLY FOR INFINITY OR NAN(S) DON'T CARES
!
{ 1
v oee EXP1 EXPO {EXPY) XXXX | XXXX | MaNTiS
MANTIS | MANTIA | MANTI3 | MANTI2 | MANTI1T | MANTIO | MANTY MANTS
MANT? MANTE | MaNTS MANTS | MANT3 | MANT2 MANTI MANTO

MANTn Is the nth digit of the mantissa.

EXPn Is the nth digit of the exponent. EXP3 is only generated during a move out operation if the source
operand exponent exceeds the fnagnitude of a three digit exponent; otherwise, it is a don't care.
Only EXPO-EXP2 are used for input.

200X Are don't care bits, which are zero when written and ignored when read.

Figure 3-11. Packed Decimal Real Data Format Detail

—
MC68881/MC68882 USER'S MANUAL FREESCALE

313

FREESCALE MC68881/MC68882 USER'S MANUAL
3-14

SECTION 4
INSTRUCTION SET

This section describes the MC68881/MC68882 (FPCP) instruction set in detail, using the
Freescale assembly language syntax and notation. As an introduction, a summary of the
instruction set is presented, followed by a detailed description of each instruction. Also,
included at the end of this section is a listing of the binary pattens of all of the instructions
and an opcode map summary for use by assembler and compiler writers.

4.1 INSTRUCTION DESCRIPTION CONVENTIONS

The instruction set is discussed in this section using functional grouping and the following
notation:

B, W, L The same size codes as all M68000 Family processors; specifies a signed
integer data type (twos complement) of byte (8 bits), word (16 bits), or
long word (32 bits)

Single precision real data format (32 bits)

Double precision real data format (64 bits)

Extended precision real data fdrmat {96 bits, 16 bits unused)
Packed BCD real data format {96 bits, 12 bytes}

FPm, FPn One of eight floating-point data registers

FPcr One of the three floating-point system control registers (FPCR, FPSR, or
FPIAR)

<ea> Any valid MC68020/MC68030 (MPU) address mode

k A twos-complement signed integer (— 64 to + 17) that specifies the format
of a number to be stored in the packed decimal format

ccc An index into the FPCP constant ROM
<list> A list of floating-point data registers or control registers
<label> A relative label used by an assembler to calculate a displacement

w X O w

4.2 INSTRUCTION GROUPS

The following paragraphs briefly describe each instruction group along with tables showing
the Freescale syntax for each instruction. The FPCP instructions can be separated into the
following groups:

Data Movement

Dyadic Operations

Monadic Operations

Program Control

System Control

MC68881/MC68882 USER'S MANUAL FREESCALE
41

4.2.7 Data Movement Operations

This group of instructions includes those that load or store the user-visible configuration
of the FPCP and that move operands into, between, or out of the floating-point data reg-
isters. Data format conversion functions are also implicitly supported since all external
data formats are converted to extended precision for internal storage, and vice versa.
Operations to move the system control registers into and out of the FPCP are aiso provided.
The move constant ROM (FMOVECR) instruction allows floating-point data registers to be
loaded quickly with commonly used constants such as =, e, 0.0, 1.0, etc. Table 4-1 sum-
marizes the data movement instructions that are available and the operand data formats

supported.
n Table 4-1. Data Movement Operations
Instruction Operand Syntax | Operand Format Operation

FMOVE FPm,FPn X source $ destination
(ea),FPn BW.,LS.D.X.P
FPm.ea) B,W,LS,0,X
FPm, (ea){#k} p .
FPm,{ea){Dn} P
{ea),FPcr L
FPcr,{ea) L

FMOVECR #cce,FPn X ROM constant FPn

FMOVEM (ea)(list)! LX Listed register # destination
{ea),Dn X
(list)?,(ea) LX source # listed registers
Dn {ea) X

NOTE:

1. The register list may include any combination of the eight floating-point data registers, or it may
contain any combination of the three control register FPCR, FPSR, and FPIAR. If the register list
mask resides in a main processor data register, only floating-point data registers may be specified.

4.2.2 Dyadic Operations

The dyadic floating-point instructions provide several arithmetic functions that require two
input operands such as add, subtract, muitiply, and divide. For these operations, the first
operand may be located in memory, in an integer data register, or in a floating-point data
register, and the second operand is always contained in a floating-point data register. The
results of the operation are stored in the register specified as the second operand. With
two exceptions, all operations support any data format and are performed to extended
precision. The exceptions are the single precision multiply and divide instructions (FSGLMUL
and FSGLDIV). These instructions support any precision inputs, but return results accurate
only to singie precision. These instructions provide very high-speed operations by sacri-
ficing accuracy. The general format of the dyadic instructions is given in Table 4-2; the
available operations are listed in Table 4-3.

Table 4-2. Dyadic Operation Format

Instruction Qperand Syntax | Operand Format Operation
F(dop) {ea),FPn B,W,L,S,D,.X,P FPn {function) source $ FPn
FPm,FPn X
_ where:

<dop> is any one of the dyadic operation specifiers.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-2

Table 4-3. Dyadic Operations

Instruction Function
FADD Add
FCMP Compare
FDIV Divide
FMOD Modulo Remainder
FMUL Multipty
FREM |EEE Remainder
FSCALE Scale Exponent
FSGLDIV Single Precision Divide
FSGLMUL Single Precision Multiply
FSUB Subtract

4.2.3 Monadic Operations

The monadic floating-point instructions provide several arithmetic functions that require
only one input operand. Unlike the integer counterparts to these function (e.g., NEG <ea>),
a source and a destination may be specified. The operation is performed on the source
operand, and the result is stored in the destination, which is always a floating-point data
register. When the source is not a floating-point data register, all data formats are sup-
ported; the data format is always extended precision for register-to-register operations.
The general format of these instructions is shown in Table 4-4, and the available operations
are listed in Table 4-5. The form of the simultaneous sine and cosine instruction is given

in Table 4-6.
Table 4-4. Monadic Operation Format
Instruction Operand Syntax | Operand Format Operation
F(mop) {ea),FPn B.W,LS,D.XP source § function # FPn
FPm,FPn X
FPn X FPn ¢ function » FPn
where:

<mop> is any one of the monadic operation specifiers.

Table 4-5. Monadic Operations

Instruction Function Instruction Function
FABS Absolute Value FLOGN in{x)
FACOS Arc Cosine FLOGNP1 In(x+1)
FASIN Arc Sine FLOG10 Log1gix)
FATAN Arc Tangent FLOG2 Loga(x}
FATANH Hyperbolic Arc Tangent FNEG Negate
FCOS Cosine FSIN Sine
FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine
FETOX eX FSORT Square Root
FETOXM1 eX—1 FTAN Tangent
FGETEXP Extract Exponent FTANH Hyperbolic Tangent
FGETMAN Extract Mantissa FTENTOX 10X
FINT Extract Integer Part FTWQTOX 2%
FINTRZ Extract Integer Part, Rounded-to-Zero

]
FREESCALE

MC68881/MC68882 USER'S MANUAL

4-3

Table 4-6. Dual Monadic Operation Format

Instruction Operand Syntax | Operand Format Operation
FSINCOS (ea),FPc:FPs B,W,L,S.D,X,P SIN{source) ¢ FPs;
FPm,PFc:FPs X COS(source) # FPc

4.2.4 Program Control Operations

The program control instructions provide a means of affecting program flow based on
conditions present in the floating-point status register after any operation that sets the
condition codes. In addition to allowing direct control of program flow with the branch
conditionally (FPcc) and the decrement and branch conditionally (FDBcc) instructions, the
set conditionally (FScc) instruction allows the user to set a Boolean variable based on the
floating-point condition codes as an intermediate result in the evaluation of a complex
Boolean equation. Also included is a test operand instruction (FTST) that sets the floating-
point condition codes for use by the other program and system control instructions, and
a no operation instruction (FNOP) that may be used to force synchronization of the FPCP
with the main processor. Table 4-7 summarizes the program control instructions that are

available.
Table 4-7. Program Control Operations
Instruction Operand Syntax | Operand Formst Operation
FBec (label) w.L If Condition True,
Then PC+d # PC
FDBcc Dn,(label) w If Condition True, Then No Operation;
Else Dn—1 % Dn;
fDn# -1
The PC+d ¢ PC
FNOP- None None No Operation
FScc (ea) B If Condition True,
The 1's $ Destination
Else 0's § Destination
FIST (sa) BW.LS.D,XP Set FPSR Condition Codes
FPn X

The FPCP supports 32 conditional tests that are separated into two groups — 16 that cause
an exception if an unordered condition is present when the conditional test is attempted,
and 16 that do not cause an exception if an unordered condition is present. (An unordered
condition occurs when an input to an arithmetic operation is a NAN.) Table 4-8 lists the
32 condition code mnemonics along with the conditional test function. Refer to 4.4 CON-
DITIONAL TEST DEFINITIONS for a detailed description of the conditional equation used
by each test.

Table 4-8. Conditional Test Mnemonics

Exception on Unordered No Exception on Unordered
GE Greater Than or Equal OGE Ordered Greater Than or Equal
GL Greater Than or Less Than 0OGL Ordered Greater Than or Less Than
GLE Greater Than or Less OR Ordered
GT Greater Than OGT Ordered Greater Than

FREESCALE MC68881/MC68882 USER'S MANUAL
4-4

Table 4-8. Conditional Test Mnemonics (Continued)

Exception on Unordered No Exception on Unordered

LE Less Than or Equal OLE Ordered Less Than or Equal

LT Less Than OoLT Ordered Less Than

NGE Not {Greater Than or Equal) UGE Unordered or Greater Than Equal

NGL Not {Greater Than or Less Than) UEQ Unordered or Equal

NGLE Not {Greater Than or Less Than or Equal) -|UN Unordered

NGT Not Greater Than UGT Unordered or Greater Than

NLE Not (Less Than or Equal) ULE Unordered or Less Than or Equa!l
[NLT Not Less Than uLT Unordered or Less Than

SEQ Signaling Equat EQ Equal

SNE Signaling Not Equal NE Not Equal

SF Signaling Always False F Always False

ST Signaling Always True T Always True

4.2.5 System Control Operations

The system control instructions communicate with the operating system via a conditional
trap instruction (FTRAPcc) and save or restore (FSAVE or FRESTORE) the nonuser visible
portion of the FPCP during context switches in a virtual memory or other type of multi-
tasking system. The conditional trap instruction uses the same conditional tests as the
program control instructions and allows an optional 16- or 32-bit immediate operand to
be included as part of the instruction for passing parameters to the operating system Table
A-9 summarizes the system control instructions.

Table 4-9. System Control Operations

Instruction Operand Syntax Operand Size Operation
FRESTORE {ea) None State Frame # Internal Registers
FSAVE {ea) None Internal Registers # State Frame
FTRAPcc None None If Condition True,

#XXX w,.L Then Take Exception

4.3 COMPUTATIONAL ACCURACY

Whenever an attempt is made to represent a real number in a binary format of finite
precision, there is a possibility that the number cannot be represented exactly; this is
commonly referred to as round-off error. Furthermore, when two inexact numbers are used
in a calculation, the error present in each number is reflected and possibly aggravated in
the result.

One of the major reasons that the /EEE Standard for Binary Floating-Point Arithmetic (ANSI/
IEEE Std. 754-1985) was developed is to define the error bounds for calculation of binary

MC68881/MC68882 USER'S MANUAL FREESCALE
4-5

floating-point values so that all machines conforming to the standard produce the same
results for an operation. The operation must meet the following conditions:

1. Same input values,

2. Same rounding mode, and

3. Same precision.

The IEEE standard specifies not only the format of data items, but also defines:
1. The maximum allowable error that may be introduced during a calculation, and
2. The manner in which rounding of the resuit is performed.

However, the IEEE specification defines only the operation of some of the instructions
n supported by the FPCP; those not specified by the IEEE standard are described in detail

in the following paragraphs. The following paragraphs discuss the accuracy of the calcu-
lations performed by the FPCP, grouping them as follows:

1. The IEEE specified operations and nontranscendental functions,
2. The transcendental functions, and
3. The IEEE specified conversions between binary and decimal real formats.

4.3.1 Arithmetic Instructions

The IEEE Specification for Binary Floating-Point Arithmetic specifies that the following
operations must be supported for each data format: add, subtract, multiply, divide, re-
mainder, square root, integer part, and compare. Conversions between the various data
formats are also required. In addition to these arithmetic functions, the FPCP also supports
the nontranscendental operations of: absolute value, get exponent, get mantissa, negate,
modulo remainder, scale exponent, and test. Since the |[EEE specification defines the error
bounds to which all calculations are performed, the result obtained by any conforming
machine can be predicted exactly for a particular precision and rounding mode. The error
bound defined by the IEEE specification is one-haif unit in the last place of the destination
data format in the round-to-nearest mode and one unit in the last place in the other rounding
modes. ‘

The FPCP performs all calculations using a 67-bit mantissa for the intermediate results.
The three bits beyond the precision of the extended format aliow the FPCP to perform all
calculations as if to infinite precision and then round the result to the desired precision
before storing it in the destination. By performing calculations in this manner, the final
result is always correct for the specified destination data format before rounding is per-
formed (unless an overflow or underflow error occurs). The specified rounding operation
then produces a number that is as close as possible to the infinitely precise intermediate
value and is still representable in the selected precision. An example of how the 67-bit
mantissa allows the FPCP to meet the error bound of the IEEE specification is as follows:

Mantissa 1 g r s

intermediate Result: X.X......x00 1 0 0 (Tie Case)
Round-to-Nearest Result: X.X......X00

In this case, the least significant bit {1) of the rounded resuit is not incremented, even
though the guard bit (g} is set in the intermediate result. The IEEE standard specifies that
tie cases should be handled in this manner. Assuming that the destination data format is

|
FREESCALE MC68881/MC68882 USER'S MANUAL
4-6

extended, if the difference between the infinitely precise intermediate result and the round-
to-nearest result is calculated, the relative difference is 2. (the value of the guard bit). This
error is equal to one-half of the value of the least significant bit and is the worst-case error
that can be introduced when using the round-to-nearest mode. Thus, the term one-half
unit in the last place correctly identifies the error bound for this operation. This error
specification is the relative error present in the result; the absolute error bound is equal
to 2¢xponent x 2 = An example of the error bound for the other rounding modes is as
follows: '

Mantissa 1T g r s

Intermediate Result:x.x......x00 111
Round-to-Zero Result:x.x......x00

In this case, the difference between the infinitely precise result and the rounded result is
the error bound for this operation is not more than one unit in the last place. For all of the
the error bound for this operation is not more than one unit in the last place. For all of the
arithmetic operations, these error bounds are met by the FPCP, thus providing accurate
and repeatable results.

4.3.2 Transcendental Instructions

The IEEE specification does not define the error bound to which transcendental {except
square root) functions are to be performed. In this context, the transcendental functions
are all of those operations not mentioned in the previous paragraphs {i.e., the trigonometric,
hyperbolic, logarithmic, and exponential instructions). Due to the highiy recursive nature
of the aigorithms used to calculate these functions, the round-off error in the input operands
to a function, combined with the limited precision of the FPCP ALU, do not allow the
calculation of a result with the same error limit as the arithmetic functions. However, these
operations are quite accurate given the constraint of using an ALU with a finite precision
of 67 bits. In general, the worst-case accuracy of any transcendental function is one unit
in the last place of double precision (which is equal to 4096 units in the last place of
extended precision). The typical error bound for these instructions is approximately 64
units in the last place of extended precision. The following example illustrates the signif-
icance of this error bound:

Mantissa

Correct Result: x.x.....x00000000
FPCP Calculated Result: x.x......x01000000

In this case, the relative difference between the correct result and the result calculated by
the FPCP is 2_¥ {assuming an extended precision result}, which is 26 times the value of the
least significant bit. This difference corresponds to an error of 64 units in the last place.

Note that the transcendental functions perform limited checking for special case input
values such as boundary conditions. For example, the exponential functions check for a
zero input value, but do not check for exact integer values. Thus, raising a number to an
exact integer value may not produce an exact result {e.g., the instruction FTENTOX #?1,FPO
does not produce an extended precision value of exactly 10.0}, and the INEX2 bit in the
FPSR may be set even if an exact result is produced.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-7

4.3.3 Decimal Conversions

The |EEE standard does not specify the format of the decimal real representation used by
any conforming machine, but it does define the error bounds for conversions between
decimal and the single- and double-precision binary formats. Thus, such conversions al-
ways produce consistently rounded results, and those results are predictable and repeat-
able on any conforming system. However, it is not always possible to perform an exact
conversion between these data formats, due to the limited precision of the numbers and
the different radices of the values. The error bound for these conversions is 0.97 unit in
the last digit of the destination precision for the round-to-nearest mode; and 1.47 units in
-the last digit of the destination precision for the other rounding modes. When an input

conversion cannot produce an exact result, the FPCP sets the INEX1 bit in the FPSR ex-

ception byte. This indication allows for special handling of these conversion errors that is
separate from the handling of other types of inaccurate results. When an output conversion
cannot produce an exact result, the INEX2 bit is set.

The packed decimal data format supported by the FPCP allows the representation of double-
precision binary number in a decimal form, in accordance with the |EEE specification. When
a packed decimal number is converted to extended precision, the resuit is always in range
although the conversion may be inexact. The result is within range because the magnitudes
of the exponent and mantissa of a packed decimal number are less than the largest values
representable in the extended precision format. Refer to 6.1.8 Inexact Result on Decimal
Input for a description of the handling of inaccurate decimal-to-binary conversions.

When an extended precision number is converted to packed decimal, the result may be a
number that cannot be represented exactly, or a number that is too large to be represented
with a three-digit exponent. When this type of conversion is performed, the k factor specified
is used to locate the decimal rounding boundary. if the magnitude of the rounded decimal
result exponent exceeds 999, the FPCP signals an operand error and calculates a fourth
exponent digit, which is included in the destination operand (see Figure 3-11 for the position
.of the fourth digit). Refer to 6.1.7 Inexact Result for a description of the handling of inac-
curate binary-to-decimal conversions.

Note that the error bounds specified by the IEEE standard apply only to conversions of
values in the range of the double-precision format. The error bound for conversions by
the FPCP of extended precision values which cannot be represented in double precisian
is significantly larger. Software must be provided to convert such extended precision values
to decimal. The conversion must generate decimal results with an error bound analogous
to those specified in the |IEEE standard for double-precision values. The software envelope
must utilize a super extended precision to achieve such error bounds.

Note that the binary to/from decimal conversions performed by the FPCP utilize the on-
chip ROM values of powers of 10 for speed and accuracy, thus allowing exact conversions
in many cases (particularly for values that are exact powers of 10).

4.4 CONDITIONAL TEST DEFINITIONS

The FPCP provides a very simple mechanism for performing conditional tests of the result
of any arithmetic floating-point operation. First, the condition code bits in the FPSR are set
or cleared at the end of any arithmetic operation or move operation to a single floating-
point data register. The condition ¢code bits are always set consistently based on the result

FREESCALE MC68881/MC68882 USER'S MANUAL
4-8

of the operation. Second, the FPCP provides 32 conditional tests that are supported in
hardware by the M68000 Family coprocessor interface. This mechanism allows conditional
instructions that test floating-point conditions to be coded in exactly the same way as the
integer conditional instructions. The evaluation of the conditional test by the FPCP is per-
formd automatically. The combination of the consistent setting of the condition code bits
and the simple programming of conditional instructions gives the MC68020/MC68030 and
FPCP combination a very flexible, high-performance method of altering program flow based
on floating-point results.

One important programming consideration is that the inclusion of the NAN data type in

the IEEE floating-point number system requires each conditional test to include the NAN

condition code bit in its Boolean equation. Because a comparison of a NAN with anything n
is unodered f(i.e., it is impossible to determine if a NAN is bigger or smaller than an in-

range number), the compare instruction sets the NAN condition code bit when an unordered

compare is attempted. All arithmetic instructions also set the NAN bit if the result of an

operation is a NAN. The conditional instructions interpret the NAN condition code bit equal

to one as the unordered condition.

The inclusion of the unordered condition in floating-point branches destroys the familiar
trichotomy relationship (greater than, equal, less than) that exists for integers. For example,
the opposite of floating-point branch greater than {FBGT) is not floating-point branch less
than or equal (FBLE). Rather, the opposite condition is floating-point branch not greater
than (FBNGT). If the result of the previous instruction was unordered, FBNGT is true;
whereas, both FBGT would be false since unordered fails both of these tests (and sets
BSUN]). Compiler programmers should be particularly careful of the lack of trichotomy in
the floating-point branches since it is common for compilers to invert the sense of con-
ditions.

In the foliowing paragraphs, the conditional tests are described in three main categories:
1. IEEE nonaware tests,

2. |EEE aware test, and

3. Miscellaneous.

The set of IEEE nonaware tests is best used:

1. When porting a program from a system that does not support the IEEE standard to
a conforming system, or

2. When generating high-level language code that does not support [EEE floating-point
-concepts {i.e., the unordered condition).

When using the set of [EEE nonaware tests, the user receives a BSUN exception whenever
a branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ
or an FBNE. If the BSUN trap is enabled in the FPCR register, the exception causes a trap.
Therefore, the IEEE nonaware program is interrupted if something unexpected occurs.

The IEEE aware branch set should be used in programs that contain ordered and unordered
conditions by compilers and programmers who are knowledgeable of the IEEE standard.
Since the ordered or unordered attribute is explicitly included in the conditional test, the
BSUN bit is not set in the status register EXC byte when the unordered condition occurs.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-9

4.4.1 IEEE Nonaware Tests

All of the conditional tests in the following table, except EQ and NE, set the BSUN bit in
the status register exception byte if the NAN condition code bit is set when a conditional
instruction is executed.

Mnemonic Definition Equation Predicate
EQ Equal ¥4 000001
NE Not Equal Z 001110
GT Greater Than NANVZVN 010010

n NGT Not Greater Than NANvVZvN 011101
GE Greater Than or Equal Zv(NANVN) 010011
NGE Not (Greater Than or Equal) NANV{NAZ) 011100
LT Less Than NA(NANVZ) 010100
NLT Not Less Than NANv{ZvN) 611011
LE Less Than or Equal Zv(NANAN) ‘ 010101
NLE Not (Less Than or Equal) NANv(NVZ) 011010
GL Greater or Less Than NANvZ 010110
NGL Not (Greater or Less Than) NANvZ 011001
GLE Greater, Less or Equal NAN 010111
NGLE Not {Greater, Less or Equal) NAN 011000

where:

“v'"=Logical OR
“A" =Logical AND

|
FREESCALE MC68881/MC68882 USER'S MANUAL
410

4.4.2 |EEE Aware Tests

The following conditional tests do not set the BSUN bit in the status register exception
byte under any circumstances.

Mnemonic Definition Equation Predicate
€Q Equal 2 000001
NE Not Egual z 001110
0GT Ordered Greater Than NANvZVN 000010
ULE Unordered or Less or Equal NANvZvN 001101
0GE Ordered Greater Than or Equat ZviNANVN) 000011
uLT - Unordered or Less Than NANVINAZ) 001101
oL7 Ordered Less Than NA{NANVZ) 000100
UGE Unordered or Greater or Equal NANvZvN 001011
OLE Ordered Less Than or Equal Zv{NANAN) 000101
UGT Unordered or Greter Than NANV(NvZ) : 001010
OGL Ordered Greater or Less Than NANvVZ 000110
UEQ Unordered or Equal NANvZ 001001
OR Ordered NAN 000111
UN Unardered NAN 001000

where:

"v''=Logical OR

“A’"=Logical AND

MC68881/MC68882 USER'S MANUAL FREESCALE
4-11

4.4.3 Miscellaneous Tests

The following tests are not generally used but are implemented for completeness of the
set. f the NAN condition code bit is set, T and F do not set the BSUN bit, but SF, ST, SEQ,
and SNE do set the BSUN bit.

Mnemonic Definition Equation Predicate
F False False 000030
T True True 01111 |
| sF Signaling False False 010000 |
n ST Signaling True True g11111 i
SEQ Signaling Equal z 010001
SNE . Signaling Not Equal z 011110 |

4.5 DETAILED INSTRUCTION DESCRIPTIONS

Subsequent paragraphs contain detailed information about each instruction in the FPCP
instruction set. Instructions are arranged in alphabetical order by assembler mnemonic.
The following paragraphs provide background information to aid in reading the detailed
instruction information presented.

4.5.1 Addressing Modes

Due to the nature of the MC68020/MC68030 and FPCP coprocessor interface, the FPCP
supports all MC68020/MC68030 addressing modes. The MC68020/MC68030 effective ad-
dress modes are categorized by the manner in which the modes are used. The following
classifications are used in the instruction details.

Data If an effective address is used to refer to data operands, it is considered
a data addressing mode.

Memory If an effective address is used to refer to memory operands, it is con-
sidered a memory addressing mode.

Alterable If an effective address is used to refer to alterable (writable) operands,
it is considered an alterable addressing mode.

Control If an effective address is used to refer to memory operands that do not
have an associated size, it is considered a control addressing mode.

Table 4-10 shows the various addressing categories of each effective address mode. These
categories may be combined so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such classifications as memory
alterable or data alterable. The former refers to those addressing modes which are both
memory and alterable addresses (i.e., the intersection of the two sets of modes), and the
latter refers to addressing modes which are both data and alterable.

FREESCALE MC68881/MC68882 USER'S MANUAL
412

Table 4-10. Effective Addressing Mode Categories

Address Modes Mode Redgister Data Memory Control | Alterable |Assembler Syntax

Data Register Direct 000 - reg. no. X — — X Dn
Address Register Direct 100 reg. no. — — — X An
Address Register Indirect 010 |reg. no. X X X X {An)
Address Register Indirect

with Postincrement 011 Ireg. no. X X — X {An) +
Address Register Indirect . .

with Predecrement 100 |reg. no. X X — X —{An)
Address Register Indirect

with Displacement 101 reg. no. X X X X (d16.An)

Address Register Indirect with

Index (8-Bit Displacement) 110 reg. no. X X X X (dg.An,Xn)
Address Register indirect with

Index (Base Displacement) 110 reg. no. X X X X {bd,An,Xn}
Memory Indirect Postindexed 10 reg. no. X X X X {[bd,An],Xn,od}
Memory Indirect Preindexed 110 reg. no. X X X X {{bd,An,Xn},od}
Absolute Short m 000 X X X X (xxx}.W
Absolute Long m 001 X X X X {xxx).L
Program Counter Indirect

with Displacement 11 010 X X X — {d16.PC)
Program Counter Indirect with

Index (8-Bit) Displacement) 111 011 X X X — {dg.PC.Xn)
Program Counter (ndirect with

Index (Base Displacement) 11 011 X X X — {bd,PC,Xn)
PC Memaory indirect

Postindexed 11 o1 X X X — {{bd,PC].Xn,od)
PC Memory indirect

Preindexed M on X X X — {{bd,PC,Xnl,0d} -
Immediate m 100 X X — — #(data)

4.5.2 Instruction Description Format

The details of each instruction are provided in 4.6 INDIVIDUAL INSTRUCTION DESCRIP-
TIONS. Figure 4-1 illustrates what information is given in these instruction descriptions.

4.5.3 Operation Tables

An operation table is included for most instructions. This table lists the result data types
for the instruction based on types of input operand(s). For example, Figure 4-2 illustrates
the table for the FADD instruction.

In this table, the type of source operand is shown along the top, and the type of the
destination operand is shown along the side. In-range numbers are normalized, denor-
malized, or unnormalized real numbers, integers, or packed decimal numbers that are
converted to normalized or denormalized extended precision numbers upon entering the
FPCP. ‘

From this table, it can be seen that if both the source and destination operand are positive
zero, the result is also a positive zero. For another example, if the source operand is a
positive zero and the destination operand is an in-range number, then the ADD algorithm

MC68881/MC68882 USER'S MANUAL FREESCALE
413

INSTRUCTION NAME - - FABS

OPERATION DESCRIPTION (SEE 4.6 INDIVIDUAL INSTRUCTION DE- _» Operation: Absolute Value of Sou
SCRIPTIONS FOR NOTATION DEFINITIONS). —]
) Assembler FABS.<fmt> <ea
SYNTAX FOR THIS INSTRUCTION Syntax: FABS.X FPrr
FABS.X FPn
n Attributes: Format = (Byte, Word,
TEXT DESCRIPTION OF INSTRUCTION GPERATION ~——+—» Description: Converts the source 0
absolute value of that number in

|_» Operation Table:

RESULT OF GPERATION FOR INPUT OPERAND(S). {THIS TABLE DEFINES 1
THE DATA TYPE OF THE RESULT THAT IS RETURNEO FOR EACH COM-

s 17
BINATION OF INPUT OPERANDS.) ouree i

Destination +

Result Absc

NOTE: If the source operandisa

STATUS REGISTER EFFECTS > Status Register:

Condition Codes: Affected
DITION ¢

Quotient Byte: Not affe

Exception Byte: BSUN
SNAN
OPERR
OVFL
UNFL

Dz
INEX2

(NSTRUCTION FORMAT {THIS SPECIFIES THE BIT PATTERN AND FIELDS INEX1

OF THE OPERATION AND COMMAND WORDS, AND ANY OTHER WORDS

THAT ARE ALWAYS PART OF THE INSTRUCTION. THE EFFECTIVE ADDRESS Accrued Exception Byte: Affected

EXTENSIONS ARE NOT EXPLICITILY ILLUSTRATED. THE EXTENSION WORDS s
{IF ANY) FOLLOW IMMEDIATELY AFTER THE ILLUSTRATED PORTIDNS OF \ bility.
THE INSTRUCTIONS. REFER TG THE USER'S MANUAL OF THE MC68020 \
R MC68030 FOR THE FORMAT OF ANY REQUIRED EXTENSION WORDS.) Instruction Format:

15 14 13 12 n 1

| . 1 . COPROCESSO
MEANINGS AND ALLOWED VALUES (FOR THE VARIOUS FIELDS REQUIRED I 19
BY THE INSTRUCTIGN (FORMAT). 0 A 0 SCURCE

SPECIFIER

Figure 4-1. Instruction Description Format

FREESCALE MC68881/MC68882 USER'S MANUAL
414

Source In Range Zero infinity
Destination + - + - + -
{n Range * Add Add +inf —inf
_]
+ +0.0 0.01 .)
Zero Add 0.01 0.0 +inf ~inf
Zero + +inf +inf +inf NAN?2
- —inf —inf NAN? —inf
NQTES:

1. Returns +0.0 in rounding modes RN, RZ, and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte!
3. if either operand is a NAN, refer to 4.5.4 NANs for more information.

Figure 4-2. Operation Table Example (FADD Instruction)

is executed to obtain the result. Iif a label such as ADD appears in the table, it indicates
that the FPCP performs the indicated operation and returns the correct result.

A third example of using the tables is when a source operand is plus infinity and the
destination operand is minus infinity. Since the result of such an operation is undefined,
a not-a-number (NAN) is returned as the result, and the OPERR bit is set in the FPSR
exception byte.

45.4 NANs

In addition to the data types covered in the operation tables for each instruction, NANs
can also be used as inputs to an arithmetic operation. The operation tables do not contain
a row and column for NANs because NANs are handled the same way in all operations.

4.5.4.1 NONSIGNALING NANs. If either, but not both, operand of an operation is a NAN,
and it is a nonsignaling NAN, then that NAN is returned as the result. If both operands are
nonsignaling NANs, then the destination operand nonsignaling NAN is returned as the
result.

45.4.2 SIGNALING NANs. If either operand to an operation is a signaling NAN (SNAN),
then the SNAN bit is set in the FPSR EXC byte. If the SNAN trap enable bit is set in the
FPCR ENABLE byte, then the trap is taken and the destination is not modified. If the SNAN
trap enable bit is not set, then the SNAN is converted to a nonsignaling NAN (by setting
the SNAN bit in the operand to a one), and the operation continues as described in the
preceding paragraph for nonsignaling NANs,

455 Operation Post Processing

Most floating-point operations end with an identical post processing step. While reading
the summary for each instruction, it should be assumed that an instruction performs post
processing unless the summary specifically states that the instruction does not do so. The
fotllowing paragraphs describe past processing in detaif.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-15

4.5.5.1 SETTING FLOATING-POINT CONDITION CODES. Unlike the integel arithmetic
condition codes found in the MC68020/MC68030, which are set uniquely for each instruc-
tion, the floating-point condition codes are either not changed by an instruction or are
always set in the same way by an instruction. Therefore, it is not necessary to include
details of condition code settings for each FPCP instruction in the detailed instruction
descriptions. The following paragraphs describe how condition codes are set for all in-
structions that madify any condition codes.

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the FPSR
condition code byte. The four condition code bits are:
N Sign of Mantissa : | Infinity

n 7 Zero NAN Not-A-Number

These condition code bits differ slightly from integer condition codes. The floating-point
condition codes are not dependent on the type of operation being performed, but rather,
can be set at thé end of the operation by examining the result. (The M68000 integer
condition code bits N and Z have this characteristic, but the V and C bits are set differently
for different instructions.) At the end of any floating-point operation, the result is inspected,
and the condition code bits are set or cleared accordingly. For example, if the result of an
operation is a positive normalized number, then all of the condition code bits are set to
zero. If the result is a minus infinity, then the N and | bits are set, and the Z and NAN bits
are cleared. :

Refer to 2.3.1 FPSR Floating-Point Condition Code Byte for a description of the use of these
bits to generate the four conditions required by the IEEE floating-point standard. Refer to
4.4 CONDITIONAL TEST DEFINITIONS for a description of the use of the four condition
code bits to generate the 32 floating-point conditional tests.

4.5.5.2 UNDERFLOW, ROUND, OVERFLOW. During calculation of an arithmetic result,
the ALU of the FPCP has more precision and range than the 80-bit extended precision
format. However, the final result of these operations is an extended precision floating-
point value. In some cases, an internal result becomes either smaller or farger than can
be represented in extended precision. Also, the operation may have generated a larger
exponent or more bits of precision than can be represented in the chosen rounding pre-
cision. For these reasons, every arithmetic instruction ends by rounding the result and
checking for overflow and underflow.

At the completion of an arithmetic operation, the internal result is checked to see if it is
too small to be represented as a normatized number in the selected precision. If so, the
underflow (UNFL) bit is set in the FPSR EXC byte. It is also denormalized unless denor-
malization provides a zero value. Denormalizing a number causes a loss of accuracy, but
a zero is not returned unless absolutely necessary. If a number is grossly underflowed, the
FPCP returns a correctly signed zero or the correctly signed smallest denormalized number,
depending on the rounding mode in effect. For more details on underflow, refer to 6.1.5
Underflow.

if no underflow occurs, the internal result is rounded according to the user-selected round-
ing precision and rounding mode. Refer to Figure 6-3 for a detailed description of rounding.
After rounding, the inexact bit (INEX2) is set appropriately. Lastly, the magnitude of the
result is checked to see if it is too large to be represented in the current rounding precision.
If so, the overflow {OVFL) bit is set and a correctly signed infinity or carrectly signed largest

-
FREESCALE MC68881/MC68882 USER'S MANUAL
4-16

normalized number is returned, depending on the rounding mode in effect. For details on
overflow refer to 6.1.4 Overflow.

Two important exceptions to the above description are: the execution of the FSGLDIV
instruction and of the FSGLMUL instruction. For these two instructions, the rounding pre-
cision programmed in the mode control byte is ignored (although the selected rounding
mode is used). The input operands to these instructions are assumed to be single-precision
values, but no checking is performed to verify the inputs (each mantissa is truncated to
23 bits, and the exponent is accepted as an extended-precision value)}.

These two instructions first check the intermediate result for undeflow as previously de-
scribed, but use the underflow thresholid of extended precision regardless of the selected
rounding precision. If no underflow occurs, the mantissa is rounded to the single-precision
boundary and is denormalized if necessary. Finally, the exponent is checked for overflow,
again using the overflow threshold of extended precision. Thus, the final result generated
has the range of an extended-precision number with a mantissa accurate to only 23 bits.
If an underflow or overflow occurs, the correctly signed number returned (largest nor-
malized number, infinity, zero, or smalilest denormatized number) is an extended precision-
number with an extended-precision mantissa value.

4.6 INDIVIDUAL INSTRUCTION DESCRIPTIONS

The following notation is used in the detailed instruction definitions that follow:
(operand) Contents of the referenced location or register.

<fmt> Operand data format: Byte, word, fong, single, double, extended, or packed
{denoted in the assembler syntax as an extension to the instruction mne-
monic of .B, W, L, .S, .D, .X, or .P, respectively).

<ea> Any valid MC68020/MC68030 addressing mode.
<label> A relative label used by an assembler to calculate a displacement.

<list> A list of the floating-point data registers or control registers.

) The left operand is moved to the location specified by the right operand.

FPcr One of the three floating-point system control registers (FPCR, FPSR, or FPIAR).

FPn One of eight floating-point data registers {always specifies the destination
register).

FPm One of eight floating-point data registers (always specifies the source register).

FPc:FPs . Two of eight floating-point data registers. This notation is used only with the
FSINCOS instruction and specifies the register pair where the cosine and
sine values are stored.

+inf Postive infinity

—inf Negative infinity

NAN Not-A-Number

d Displacement

k An integer {—64 to +17) that specifies the format of a number to be stored
in the packed BCD format.

cce An index into the FPCP constant ROM.

MC68881/MC68882 USER'S MANUAL FREESCALE
417

FABS

Operation:

Assembler

Syntax:

Absolute Value FABS

Absolute Value of Source » FPn

FABS.<fmt> <ea>,FPn
FABS.X FPm,FPn
FABS.X FPn

n Attributes: Format={Byte, Word, Long, Single, Double, Extended, Packed)

Description:

Converts the source operand to extended precision {if necessary) and stores
the absolute value of that number in the destination floating-point data register.

Operation Table:

Status Register:
Condition Codes:

Quotient Byte:

Source In Range
Destination +

Zero Infinity . !
- + - + - |

Result Absolute Value Absolute Value Absolute Value

NOTE

If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES.

Exception Byte: BSUN

Accrued Exception Byte:

SNAN
OPERR
OVFL
UNFL

DZ
INEX2
INEX1

Not affected

Cleared

Refer to 4.5.4 NANs

Cleared

Cleared

If the source is an extended precision denor-
malized number, refer to 6.1.5 Underflow;
cleared otherwise.

Cleared

Cleared

If <fmt> is Packed, referto 6.1.8 inexact Result
on Decimal Input; cleared otherwise.

Affected as described in 6.1.10 lEEE Exception and Trap Com-

patibility.
Instruction Format:
501 1B 12N 10 g 8 7 § 5 a 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 ! 1 0 g 0 0 MODE :I REGISTER
SOURCE DESTINATION 1 ! oo j
0 [AM 0 SPECIFIER REGISTER 0 e e ety

FREESCALE

418

MC68881/MC68882 USER'S MANUAL

FABS Absolute Value FABS

Instruction Fields:
Copracessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’M =0, this field is unused, and should be all zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode I Register
Dn* 000 reg. number:Dn {xxx).W "1 000
An — — : {xxx}.L 1 001
(An) 010 reg. number:An #<data> m 100
(An) + 011 reg. number:An
—(An} 100 reg. number:An
{d16,An) 101 reg. -number:An {d16.PC) 1m 010
{dg,An,Xn) 110 reg. number:An {dg,PC,Xn} 111 on
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn} m o
{lbd.An,Xn],0d) 110 reg. number:An {{bd,PC,Xn},0d} 111 011
{{bd,An],Xn,od) 110 reg. number:An |__ {Ibd.PC|,Xn,od} 1m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register,
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’/M =0, specifies the source floating-point data register, FPm.
If R‘M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is then written
into the same register, If the single register syntax is used, Freescale assemblers
set the source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
419

FACOS . Arc Cosine FACOS

Operation: Arc Cosine of Source # FPn
Assembler FACOS.<fmt> <ea>,FPn
Syntax: FACOS.X FPm,FPn
FACOS.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and cal-

culates the arc cosine of that number. Stores the result in the destination floating-
point data register. This function is not defined for source operands outside of the
range [—1... +1]; if the source is not in the correct range, a NAN is returned as the
result and the OPERR bit is set in the FPSR. If the source is in the correct range, the
result is in the range of [0 ... w].

Operation Table:

Source In Range Zevro Infinity
Destination + - + - + -

Result Arc Cosine -2 | NANT

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is infinity, > -1 or < —1;
cleared otherwise.
OVFL Cleared
UNFL Cleared
D2 Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as describedin 6.1.10 IEEE Exception and Trap Com-

patibility.
Instruction Format:
s 1w 13 12 1 109 8 7 6 5 a 3 2 1 i
COPRDCESSDA EFFECTIVE ADDRESS
! ! ! ! D 0 0 0 MODE ! REGISTER
SOURCE DESTINATION | .
0 | RM YD SPECIFIER REGISTER 0 0 vy ¢ ¢

FREESCALE MC68881/MC68882 USER'S MANUAL
4-20

FACOS Arc Cosine FACOS

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to D=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’/M =0, this field is unused, and should be all zeros.
If R"/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W 111 000 n
An —_ — {xxx).L m - 001
(An} 010 reg. number:An #<data> 11 100
{An) + on reg. number:An
-{An) 100 reg. number:An
(d1g.An} 101 reg. number:An {d16.PC) m 010
(dg.AnXn} - 110 reg. number:An (dg,PC,Xn} 11 011
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn} 11 on
. {{bd,An,Xn],od)} 110 reg. number:An {[bd,PC,Xn},0d) m 011
({bd,An|,Xn,0d} 110 reg. number:An ([bd,PC],Xn,0d) m on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’/M =1, specifies the source data format: ’

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P - Packed Decimal Real
100 W Word Integer

101 D Doubie Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destmanon floating-point data register, FPn.
Iif R"M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Freescale assemblers
set the source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-21

FADD Add FADD

Operation: Source + FPn » FPn

Assembler FADD.<fmt> <ea>,FPn

Syntax: FADD.X FPm,FPn

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

that number to the number contained in the destination floating-point data register.

n Description: Converts the source operand to extended precision {if necessary) and adds
Stores the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity i
Destination + - + - + -
in Range ' Add Add ~inf ~inf
+ +00 0.0) :
Zero B Add 0.0? _00 —inf —inf |
Infinit +inf +inf ~inf NANZ |
nhinity ~inf —inf NANZ ~inf !

NOTES:
1. Returns +0.0 in rounding modes.RN, RZ, and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. [f either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
: CONDITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source and the destination are
opposite-signed infinities; cleared otherwise.
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Resuit.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 [EEE Exception and Trap
Compatibility.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-22

FADD add FADD

Instruction Format:

15 4 13 12 n 10 9 § 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE, ADDRESS

! ! ! } D o 0 ¢ MODE REGISTER
SOURCE DESTINATION

0 | RM 0 SPECIFIER REGISTER e jprjoejojogprye

Instruction Fields: ' n

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Maode Register

Dn* 000 reg. number;Dn {xxx).W m 000

An — — {xx).L 111 001

{An) 010 reg. number:An #<data> 111 100
(An}+ - on reg. number:An
—(An) 100 reg. number:An

{d16.An) 101 reg. number:An (d16.PC) 111 010

(dg.An,Xn) 110 reg. number:An (dg,PC.Xn) 11 011

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 011

{[bd,An,Xn],0d) 110 reg. number:An {{bd,PC,Xn),od) 11 011

{{bd,An],Xn,od) 110 reg. number:An {(bd,PC],Xn,0d) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 'D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-23

FASIN Arc Sine FAS'N

Operation: Arc Sine of the Source » FPn

Assembler FASIN.<fmt> <ea>,FPn

Syntax: FASIN.X FPm,FPn
FASIN.X FPn

n Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and cal-
culates the arc sine of the number. Stores the result in the destination floating-point
data register. This function is not defined for source operands outside of the range
[-1...+1]; if the source is not in the correct range, a NAN is returned as the result
and the OPERR bit is set in the FPSR. If the source is in the correct range, the result
is in the range of [~@/2 ... +@/2].

Operation Table:

Source In Range Zero Infinity
Destination + — + - + -

Result Arc Sine +0.0 ~0.0 NAN? |

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is infinity, > +1 or < —1;
cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Resuit.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 |[EEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-24

FASIN FASIN

Arc Sine
Instruction Format:
15 14 13 12 1 10 q 8 7 B 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! 1 ! D e 0 ¢ MODE REGISTER
SOURCE DESTINATION
¢ | RM 0 SPECIFIER REGISTER o 0 6 ! ! 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
if RIM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (o)W 11 D00
An — —_ (xx).L 11 001
(An) 010 reg. number;:An #<data> 1M1 100
{An) + on reg. number:An
—(An) 100 reg. number:An
(d16,An) 101 reqg. number:An {d16,PC) m 010
(dg,An,Xn} 110 reg. number:An (dg,PC,Xn) 11 011
(bd,An.Xn) 110 reg. number:An {bd,PC,Xn) m on
{[bd,An,Xn},0d) 110 reg. number:An {[bd,PC,Xn],ad) m on
{[bd,An],.Xn,od} 110 reg. number:An ({bd,PC),Xn,od} 1M m

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
Iif R/M =0, specifies the source floating-point data reglster FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Freescale assemblers
set the source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-25

FATA N Arc Tangent FATA N

Operation: Arc Tangent of Source » FPn

Assembiler FATAN.<fmt> <ea>,FPn

Syntax: FATAN.X FPm,FPn
FATAN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed}

Description: Converts the source operand to extended precision (if necessary) and cal-
culates the arc tangent of that number. Stores the result in the destination floating-
point data register. The result is in the range of [—w/2 ... +%/2].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Arc Tangent +0.0 -0.0 w2 -=2

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
: CONDITION CODES.
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
15 14 13 12 1 10 9 8 7 & 5 4 3 2 1 [s)
COPROCESSOR EFFECTIVE ADDRESS
' ! ! ! 1D LoD MQDE REGISTER
SOURCE DESTINATION ! | P
0 | RM | 0 SPECIFIER REGISTER 0 0 0 1 [

FREESCALE MC68881/MC68882 USER'S MANUAL
4-26

FATA N Arc Tangent FATA N

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP,
Effective Address Field — Determines the addressing mode for external operands.
if RIM =0, this field is unused, and should be all zeros.
If R/ M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn (xxx).W 11 000 n

An — — {xxx).L 111 001

(An) 010 reg. number:An #<data> M 100
{An)+ 011 reg. number:An
—{An} 100 reg. number:An

{d1g.An) 101 reg. number:An (d16,PC} m 010

(dg,An,Xn}) 110 reg. number:An {dg,PC,Xn) 111 011

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 11 011

{{bd,An,Xn],0d) 110 reg. number:An {ibd,PC,Xn],od) 111 o1

{{bd.An},Xn,od} 110 reg. number:An {{bd,PC],Xn,0d} 11 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R‘M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Freescale assemblers
set the source and destination fields to the same value.

e ___]
MC68881/MC68882 USER'S MANUAL FREESCALE
4-27

FATANH FATANH

Hyperbolic Arc Tangent

Operation: Hyperbolic Arc Tangent of Source % FPn
Assembler FATANH.<fmt> <ea>,FPn
Syntax: FATANH.X FPm,FPn
FATANH.X FPn
Attributes: Format={Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and cal-

culates the hyperbolic arc tangent of that value. Stores the result in the destination
floating-point data register. This function is not defined for source operands outside
of therange (-1 ... +1); and the result is equal to —infinity or +infinity if the source
is equal to +1 or —1, respectively. If the source is outside of the range [-1... +1],
a NAN is returned as the result and the OPERR bit is set in the FPSR.

Operation Table:

Source In Range Zero Infinity |
Destination + - + - + -
Hyperbolic _ ranl
Result Are Tangent +0.0 0.0 NAN i
NOTE:

1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Condition Cades:

Quotient Byte:

Not affected

Exception Byte: BSUN Cleared

SNAN Refer to 4.5.4 NANs.

OPERR Set if the source is > +1 or < —1; cleared
otherwise

OVFL Cleared

UNFL Refer to 6.1.5 Underflow.

DZ Set if the source is equal to +1 or —1; cleared
otherwise

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility)

Accrued Exception Byte:

]
FREESCALE MC68881/MC68882 USER'S MANUAL
4-28

FATANH FATANH

Hyperbolic Arc Tangent

Instruction Format:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS

! 1 ! i o 0 0 0 MODE AEGISTER
SOURCE DESTINATION

0 | My 0 SPECIFIER REGISTER 0o ot o

Instruction Fields:
Coprocessor D Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register]

Dn* 000 reg. number:Dn (o). W m 000

An — — (xxx).L 1" 001

{An) 010 reg. number:An #<data> 111 100
(An}+ 011 reg. number:An
—(An) 100 reg. number:An

{d16.An) 101 reg. number:An {d16.PC) 111 010

{dg,An,Xn) 110 reg. number:An (dg.PC,Xn) 11 011

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 01

{{bd,An,Xn},0d) 110 req. number:An ([bd,PC,Xn],0d) 1m 011

{[bd,An],Xn,od) 110 req. number;An ([bd,PC},Xn,0d) m 011

*Only if <fmt> is Byte, Word, Lang or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 - B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
Iif R/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is then written
into the same register. If the single register syntax is used, Freescale assemblers

" set the source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE

4-29

FBCC ' Branch Conditionatly) FBCC

O'peration: If condition true, then PC + d » PC
Assembler FBcc.<size> <label>
Syntax:

Attributes: Size= (Word, Long)

ues at the Jocation (PC) + displacement. The displacement is a twos-complement
integer that counts the relative distance in bytes. The value of the PC used to calculate
the destination address is the address of the branch instruction plus two. if the dis-
placement size is word, then a 16-bit displacement is stored in the word immediately
following the instruction operation word. If the displacement size is long word, then
a 32-bit displacement is stored in the two words immediately following the instruction
operation word.

n Description: |f the specified floating-point condition is met, program execution contin-

The conditional specifier cc selects any one of the 32 floating-point conditionatl tests
as described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byfe: The IOP bit is set if the BSUN bit is set in the exception byte.
No other bit is affected.

instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 4
1 []] 1+] coprocessorin | o [1 | suE | CONDITIONAL PREDICATE
16-BIT OISPLACEMENT, OR MOST SIGNIFICANT WORD OF 32-B1T DISPLACEMENT j
LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEDED) ~

]
FREESCALE MC68881/MC68882 USER'S MANUAL
4-30

FBCC Branch Conditionally FBCC

instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Size Field — Specifies the size of the signed displacement:
If Format =0, then the displacement is 16-bits and is sign extended before use.
If Format =1, then the displacement is 32-bits.
Conditional Predicate Field — Specifies one of 32 conditional tests as defmed in 4.4

CONDITIONAL TEST DEFINITIONS. ; n
' NOTE

When a BSUN exception occurs, the main processor takes a pre-instruction ex-
ception. If the exception handier returns without modifying the image of the PC
on the stack frame (to point to the instruction following the FBcc), then it must
clear the cause of the exception (by clearing the NAN bit or disabling the BSUN
trap) or the exception occurs again immediately upon return to the routine that
caused the exception.

L
MC68881/MC68882 USER'S MANUAL FREESCALE
4-31

FCMP FCMP

Compare
Operation: FPn — Source
Assémbler FCMP.<fmt> <ea>,FPn
Syntax: FCMP.X FPm,FPn
Attributes: Format = {Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision {if necessary) and sub-

tracts the operand from the destination fioating-point data register. The result of the
subtraction is not retained, but it is used to set the floating-point condition codes as
described in 4.5.5.1 SETTING FLOATING-POINT CONDITION CODES.

Operation TableThe entries in this operation table differ from those of the tables describing
most of the FPCP instructions. For each combination of input operand types, the
condition code bits that may be set are indicated. If the name of a condition code bit
is given and is not enclosed in brackets, then it is always set. If the name of a condition
code bit is enclosed in brackets, then that bit is either set or cleared, as appropriate.
if the name of a condition code bit is not given, then that bit is always cleared by the
operation. The infinity bit is always cleared by the FCMP instruction, since it is not
used by any of the conditional predicate equations. Note that the NAN bit is not shown,
since NANs are always handled in the same manner (as described in 4.5.4 NANs).

Source In Range Zero Infinity
Destination + - + - + -
In Range {NZ} none none none N none
g N iNzy | N N | N none
Zero + N none z Zz N none
~ N none NZ NZ N none
Infinit none none none none z none
ity N N N N[N NZ

NOTE: If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:
Quotient Byte:

_ Affected as described in the operation table above
Not affected

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 - Cleared
INEX1 If <fmt> is Packed, refer t0 6.1.8 Inexact Result

Accrued Exception Byte:

patibility

on Decimal Input; cleared otherwise

Affected as described in 6.1.10 IEEE Exception and Trap Com-

|
FREESCALE MC68881/MC68882 USER'S MANUAL
4-32

FCMP

FCMP

Compare
Instruction Format:
B 13 12N 10 9 8 7 8 5 4 3 2 3 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 1o 0 0 0 MODE REGISTER
SDURCE DESTINATION
0 | RM I 0 SPECIFIER REGISTER 0 1 L I 0 0 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. humber:Dn {xxx}.W m 000
An — — [xxx).L m 001
{An) 010 reg. number:An #<data> 111 100
{An)+ on reg. number:An
—{An}: 100 reg. number:An
{d16.An) 101 reg. number:An (d16.PC) 1 010
(dg,An,Xn) 110 reg. number:An - {dg,PC,Xn) m on
(bd,An,Xn}) 110 reg. number:An (bd,PC,Xn) 1 on
({bd,An,Xn],0d) 110 reg. number:An ({bd,PC,Xnj,0d) 1M on
{{bd,An],Xn,o0d) 110 reg. number:An {Ibd,PC},Xn,od) 11 011
*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea>> to register.

Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm.

If R’/M =1, specifies the source data format:

000 L . Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B8 Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-33

FCOS Cosine FCOS

Operation: Cosine of Source # FPn

Assembler FCOS.<fmt> <ea>,FPn

Syntax: FCOS.X FPm,FPn
FCOS.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision {if necessary) and cal-

culates the cosine of that number. Stores the result in the destination floating-point
data register. This function is not defined for source operands of {£) infinity. If the
source operand is not in the range of [~2n ... +2%], then the argument is reduced
to within that range before the cosine is calculated. However, large arguments may
lose accuracy during reduction, and very large arguments (greater than approximately
1029) lose all accuracy. The result is in the range of [—1... =1].

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Cosine +1.0 NANT

NOTE:
1. Sets the OPERR bit in the FPSR exception byte.
2. if the source operand is a NAN, refer to 4.5.4 NANs for more informatian.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
‘ CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is (+ or —Jinfinity;
cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 |IEEE Exception and Trap Com-
patibility.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-34

FCOS

FCOS Cosine
Instruction Format:
W 1312 n 1 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 1 0 6 6 0 MODE REGISTER
SOURCE DESTINATION i
o fRM D SPECIFIER REGISTER oo ! g

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for externai operands.
If RIM =0, this field is unused, and should contain zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Made Register

Dn* 000 reg. number:Dn {xxx}.W 1M1 000

An — —) (xxx).L m 001

(An}) 010 reg. number:An #<data> 11 100
{An)+ 011 reg. number:An
~{An) 100 reg. number:An

{d16,An) 101 reg. number:An -(d1g,PC) 111 010

(dg.An,Xn) 110 reg. number:An (dg.PC,Xn) 11 01

{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 11

{Ibd,An,Xn},od) 110 reg. number:An {{bd,PC,Xn],0d) 11 o

{{bd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) 11 011

*Only if <fmt> is Byte, Word, Long, or Single,

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
-1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format,
If R/M =0, specifies the source floating-point data register, FPm.

If R’M =1, specifies the source data format:

000 L Long Word integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

1017 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into.
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value. ’

MC68881/MC68882 USER'S MANUAL FREESCALE
4-35

FCOSH Hyperholic Cosine FCOSH

Operation: Hyperboiic Cosine of Source # FPn

Assembler FCOSH.<fmt> <ea>,FPn

Syntax: FCOSH.X FPm,FPn
FCOSH.X FPn

Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed}
n Description: Converts the source operand to extended precision (if necessary) and cal-

culates the hyperbolic cosine of that number. Stores the result in the destination
floating-point data register.

Operation Table:

Source {n Range Zero Infinity
Destination + - + - + -

Result Hyperbolic Casine +1.0 =inf

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer t0 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt>is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
% W 13 12 n 19 8 7 g 5 s 3 2 1 0
COPROCESSOR] EFFECTIVE ADDRESS i
1 ! ! 1 10 0 0 0 MODE REGISTER i
SOURCE DESTINATION ? : ;
0 [RM | 0 SPECIFIER REGISTER 0 0 ! 1 oo |1

'
FREESCALE MC68881/MC68882 USER'S MANUAL
4-36

FCOSH Hyperbolic Cosine FCOSH

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assembilers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Moade Register
Dn* 000 reg. number:Dn (xxx).W m 000) n
An — — (xxx).L. 111 001
(An) 010 reg. number:An #<data> 11 100
{An) + on reg. number:An
—{An} . 100 reg. humber:An }

(d1g,An) 101 reg. humber:An {d16,PC) M 010
(dg.An,Xn) 110 reg. number:An {dg,PC,Xn) m 011
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011

({bd,An,Xn],od) 110 reg. number:An {{bd,PC,Xn],od) m 011
{[bd,An],Xn,od) 110 reg. number:An {{bd,PCL,Xn,od) m 0

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
Iif R/M =0, specifies the source fioating-point data register, FPm.
if R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-37

FD Bcc Test Condition, Decrement, and Branch FD Bcc

Operation: If condition true then no operation
else Dn —1# Dn
ifDn # -1
then PC+d # PC
else execute next instruction

Assembler FDBcc Dn,<label>
Attributes: Unsized

Description: This instruction is a looping primitive of three parameters: a floating-point
condition, a counter {an MPU data register) and a 16-bit displacement. The FPCP first
tests the condition to determine if the termination condition for the loop has been
met, and if so, the main processor proceeds to execute the next instruction in the
instruction stream. If the termination condition is not true, the low order 16-bits of the
counter register are decremented by one. If the resuit is — 1, the count is exhausted,
and execution continues with the next instruction. if the result is not equa! to -1,
execution continues at the location specified by the current value of the PC plus the
sign-extended 16-bit displacement. The value of the PC used in the branch address
calculation is the address of the displacement word.,

The conditional specifier cc selects any one of the 32 floating-point conditional tests
as described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an |IEEE nonaware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
Dz Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte.
No other bit is affected.

|
FREESCALE MC68881/MC68882 USER'S MANUAL
4-38

FDBCC Test Condition, Decrement, and Branch FD BCC

Instruction Format:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 R 0
T
COPROCESSOR COUNT
1 1 1 1 D 0 0 1 0 0 1 REGISTER
0 0 0 0 0 T 0 l’ 0 0 0 0 CONDITIONAL PREDICATE
16-BIT DISPLACEMENT

Instruction Fields:

Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

Count Register Field — Specifies main processor data register that is used as the
counter.

Conditional Predicate Field — Specifies one of the 32 floating-point conditional tests
as described in 4.4 CONDITIONAL TEST DEFINITIONS.

Displacement Field — Specifies the branch distance (from the address of the instruction
plus two) to the destination in bytes.

NOTES:

1. The terminating condition is like that defined by the UNTIL loop constructs of high-
level languages. For example: FDBOLT can be stated as “decrement and branch until
ordered less than™.

2. There are two basic ways of entering a loop: at the beginning, or by branching to the
trailing FDBcc instruction. If a loop structure terminated with FDBcc is entered at the
beginning, the control counter must be one less than the number of loop executions
desired. This count is useful for indexed addressing modes and dynamically specified
bit operations. However, when entering a loop by branching directly to the trailing
FDBcc instruction, the count should egual the loop execution count. In this case, if
the counter is zero when the loop is entered, the FDBcc instruction does not branch,
causing a complete bypass of the main loop.

3. When a BSUN exception occurs, a pre-instruction exception is taken by the main
processor. If the exception handler returns without modifying the image of the PC on
the stack frame (to point to the instruction following the FDBcc), then it must clear
the cause of the exception (by clearing the NAN bit or disabling the BSUN trap) or
the exception occurs again immediately upon return to the routine that caused the
exception.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-39

FDIV FDIV

Divide
Operation: FPn (+) Source » FPn
Assembler FDIV.<fmt> <ea>,FPn
Syntax: FDIV.X FPm,FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed}
Description: Converts the source operand to extended precision (if necessary) and di-

vides that number into the number in the destination floating-point data register.
Stores the result in the destination floating-point data register.

Operation Table:

FREESCALE
4-40

Source In Range Zero Infinity
Destination + - + - + -
T I
zero ‘00 a0 NAN? 00 aa |
T I
NOTES:

1. Sets the DZ bit in the FPSR exception byte.
2. Sets the OPERR bit in the FPSR exception byte.
3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:
Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION
Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
Dz

INEX2
INEX1

CODES

Cleared

Refer to 4.5.4 NANs.

Set for 0(+)0 or infinity(=)infinity; cleared
otherwise

Refer to 6.1.4 Qverflow.

Refer to 6.1.5 Underflow.

Set if the source is zero and the destination is
in range; cleared otherwise

Refer to 6.1.7 Inexact Resulit.

If <fmt> is Packed, refer to 6.1.8 Inexact Result
on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility .

MC68881/MC68882 USER'S MANUAL

FDIV

Instruction Format:

Divide FD IV

15 14 13 12 M 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! ! D e 0 0 MQDE REGISTER
SDURCE ‘ DESTINATION
0 | RM) D SPECIFIER REGISTER 0 L 0 0 0 0 g

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this n
instruction. Freescale assemblers default to ID =1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands:
If R‘/M =0, this field is unused, and should be all zeros.
If RM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
| Dn* 000 reg. number:Dn [xxx).W 1 000
An — — Ooax). L 1 m L 001
{An) 010 reg. number:An #data 111 100
(An) + a11 reg. number:An
—-{An) 100 reg. number:An
(d15.An) 101 reg. number:An {d16.PC) 111 010
N
{dg.,An,Xn) 110 reg. number:An (dg,PC,Xn) m oM
{bd,An,Xn) 110 reg. number:An [bd,PC,Xn) 11 oM
((bd,An,Xn),ad) 110 reg. number:An {[bd,PC,Xn},ad} 111 011
({bd,An},Xn,od) 110 reg. number:An {{bd,PCl,.Xn,ad} m o011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm
If R’M =1, specifies the source data format:

000
001
010
011
100
101
110

CDUé'U)(U)I_

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

]
MC68881/MC68882 USER'S MANUAL FREESCALE

4-41

FETOX ex FETOX

Operation: e(Source) # FPn

Assembler FETOX.<fmt> <ea>,FPn

Syntax: FETOX.X FPm,FPn
FETOX.X FPn

Attributes; Format =(Byte, Word, Long, Single, Double, Extended, Packed)
n Description: Converts the source operand to extended precision (if necessary) and cal-

culates e to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result e +1.0 +inf ~0.0 |

NOTE: !f the source operand is a NAN, refer 1o 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal input; cleared otherwise.
- Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
15 14 13 12 " 10 g 8 7 6 5 4 3 2 1 o4
COPROCESSOR EFFECTIVE ADDRESS I
L 1 ! 1 D 0 0 0 MODE ! RZGISTER i
SOURCE DESTINATION i | |
O | RM | O SPECIFIER REGISTER 0 0 1 0 Lo 0y

FREESCALE MC68881/MC68882 USER'S MANUAL
4-42

FETOX ex FETOX

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W 1 000 n
An — — {xxx).L 11 001
{An) 010 reg. number:An #<data> 11 100
{An)+ 011 reg. number:An
— (An) 100 reg. number:An
{d16.AN) 101 reg. number:An {d16.PC) m . 010
{dg.An,Xn) 110 reg. number:An (dg,PC.Xn) m 011
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 011
{[bd,An,Xn],od} 110 reg. number:An {{bd,PC,Xn],0d) M 011
{[bd,An},Xni,0d) 110 reg. number:An {Ibd,PC},Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R’'M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Doubie Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
if R/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-43

FETOXM1 ex- 1 FETOXM1

Operation: elSource) _ 1§ Fpn
Assembler FETOXM1.<fmt> <ea>,FPn
Syntax: FETOXM1.X FPm,FPn
FETOXM1.X FPn
Attributes: Format={Byte, Word, Long, Single, Double, Extended, Packed)
n Description: Converts the source operand to extended precision (if necessary) and cal-
culates e to the power of that number. Then, subtracts one from that value, and stores
the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinity ;
Destination + - + - + -

Result eX -1 +0.0 -0.0 —inf -10 |

NOTE: if the source operand is a NAN, refer to 4.5.4 NANSs for more information.

Status Register: - _
Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer t0 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
5 4 13 12 1109 8 7 6 5 2 3 2 1 ¢
COPROCESSOR EFFECTIVE ADORESS
! ! ! ! 0 0 0 0 MODE REGISTER
. SOURCE DESTINATION i | P
Doy RM D SPECIFIER REGISTER 0 0 |0 ! Vb0 €

FREESCALE MC68881/MC68882 USER'S MANUAL
4-44

FETOXM1 ex- 1 FETOXM1

Instruction Fields:
Coprocessor iD Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
if RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* k 000 reg. number:Dn {xxx).W m 000

An —_ ~— {xxx).L 1M 001

{An} 010 reg. number:An #<data> 111 100
(An)+ on reg. number:An
—(An} ~ 100 reg. number:An

{d1g.An) 101 reg. number:An (d1g,PC) 11 010

{dg.An,Xn) 110 reg. number:An {dg.PC.Xn) 11 011

- {bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 011

({(bd,An,Xn},0d) 110 reg. number:An {{bd,PC,Xn],0d) m 011

{{bd,An},Xn,0d) 110 reg. number:An ([bd,PC],Xn,od) 1M1 011

*Only if <imt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D ° Double Precision Real
110 B Byte Integer ‘

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R‘/M=0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-45

FG ETEXP Get Expanent FG ETEXP

Operation: Exponent of Source » FPn

Assembler FGETEXP.<fmt> <ea>,FPn

Syntax: FGETEXP.X FPm,FPn
FGETEXP.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: - Converts the source operand to extended precision (if necessary) and ex-

tracts the binary exponent. Removes the exponent bias, converts the exponent to an
extended precision floating-point number, and stores the result in the destination
floating-point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result Exponent +0.0 -0.0 NANT

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. |f the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is (+ or —)infinity; cleared
otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 fnexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-46

FGETEXP

Instruction Format:

Get Exponent

FGETEXP

B ©Woowoo1 N W 3 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! !) 6y 00 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER 0 0 ! ! ! 1 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this

instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
if R‘M =0, this field is unused, and should be all zeros.
If R‘/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W m 000

An — - (xxx).L 1M 001

{An} 010 reg. number:An #<data> m 100
(An)+ on reg. number:An
~(An} 100 reg. number:An

{d16,An} 101 reg. number:An (d16.PC) 1M 010

{dg.An,Xn) 110 reg. number:An {dg,PC.Xn) m 011

{bd,An,Xn} 110 reg. number:An (bd,PC,Xn} m 011

{{bd,An,Xn},od) 110 reg. number:An ({bd,PC,Xn],0d) 111 o1

{{bd,An},Xn,o0d) 110 reg. number;An ({{bd,PC].Xn,0d) 11 o

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
if R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-47

FG ETMAN Get Mantissa FG ETMAN

Operation: Mantissa of Source # FPn

Assembler FGETMAN.<fmt> <ea>,FPn
Syntax: FGETMAN.X FPm,FPn
FGETMAN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
n Description: Converts the source operand to extended precision (if necessary} and ex-

tracts the mantissa. Converts the mantissa to an extended precision value and stores
the result in the destination floating-point data register. The result is in the range
{1.0...2.0) with the sign of the source mantissa, zero, or is a NAN.

Operation Table:

Source { In Range Zero Infinity
Destination + - + - + -

Result Mantissa +0.0 -0.0 NAN!T

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is (+ or —)infinity; cleared
otherwise
OVFL Cleared
UNFL Cleared
D2 Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 JEEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-48

FGETMAN

Instruction Format:

15 14 13 2 1] 10 9

Get Mantissa

8 7 [5

FGETMAN

3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS
1 ! ! ! 0 0.4 90 0 MQDE REGISTER
SOURCE DESTINATION
0 | RM 0 SPECIFIER REGISTER 0 ¢ 1 ! ! !)

Instruction Fields:

Coprocessor D Field — Specifies which coprocessor in the system is to execute this
instruction, Freescale assemblers default to D=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn Poxx)W 1M 000
An — - {xxx).L 111 001
(An) 010 reg. number:An #<data> 11 100
{An} + 011 reg. number:An
~{An) 100 reg. number:An
{d1g.An} 101 reg. number:An {d16.PC) m 010
(dg,An,Xn) 110 reg. number:An {dg,PC.Xn) 11 011
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) m 011
{lbd,An,Xn),0d) 110 reg. numbar:An {{bd,PC.Xn],0d) 1m 011
{{bd,An],Xn,od)} 110 reg. number:An {{bd, PCl.Xn,0d) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R'M =0, specifies the source floating-point data register, FPm.
if R‘'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word integer

101 D Double Precision Real
110 B ByteInteger

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-49

FINT Integer Part FINT

Operation: Integer Part of Source » FPn

Assembler FINT.<fmt> <ea>,FPn

Syntax: FINT.X FPm,FPn
FINT.X FPn

Attributes: Format= (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and ex-
tracts the integer part and converts it to an extended precision floating-point number.
Stores the result in the destination floating-point data register. The integer part is
extracted by rounding the extended precision number to an integer using the current
rounding mode selected in the FPCR mode control byte. Thus, the integer part returned
is the number that is to the left of the radix point when the exponent is zero, after
rounding. For example, the integer part of 137.57 is 137.0 for the round-to-zero and
round-to-minus infinity modes, and 138.0 for the round-to-nearest and round-to-plus
infinity modes. Note that the result of this operation is a floating-point number.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + - |

Resuit Integer +0.0 -0.0 +inf —inf]

NQTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Resuit.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-50

FINT 'FINT

Integer Part

‘Instruction Format:

] 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS

! 1 1 ! 1D 4 00 MODE REGISTER
SOURCE DESTINATION

o} RM | 0 SPECIFIER REGISTER by oo oot

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this

instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
if R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An — — {xxx).L 11 001.
(An} 010 reg. number:An #<data> 11 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An
{d16.An) 101 reg. number:An {d16.PC} m 010
{dg,An,Xn} 110 reg. number:An {dg.PC,Xn) 11 on
{bd,An,Xn} 110 reg. number:An {bd,PC,Xn)} 11 011
{ibd,An,Xn},od) 110 reg. number:An {{bd,PC.,Xn},0d} 1M 011 -
{Ibd,An].Xn,od) 110 reg. number:An {{bd,PC],Xn,0d) 11 on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If RIM =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101. D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
it RM =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-51

Fl NTRZ Integer Part, Round-to-Zero F l NTRZ

Operation: Integer Part of Source » FPn

Assembler FINTRZ. <fmt> <ea>,FPn

Syntax: FINTRZ.X FPm,FPn
FINTRZ.X FPn

Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and ex-

tracts the integer part and converts it to an extended precision floating-point number.
Stores the result in the destination floating-point data register. The integer part is
extracted by rounding the extended precision number to an integer using the round-
to-zero mode, regardless of the rounding mode selected in the FPCR mode contro!
byte {making it useful for FORTRAN assignments). Thus, the integer part returned is
the number thatis to the left of the radix point when the exponent is zero. For example,
the integer part of 137.57 is 137.0; the integer part of 0.1245x 102 is 12.0. Note that
the result of this operation is a floating-point number.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Integer, Forced

Round-To-Zero +0.0 -0.0 +inf —inf

Result

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT.
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-52

FINTRZ

Instruction Format:

" Integer Part, Round-to-Zero

FINTRZ

5 1w 138 12 no 1w 9 8 7 3 5 4 3 2 1 0
COPROCESSOR EFFECTIVE, ADDRESS
! L ! 1 D e 0 0 MODE REGISTER
SOURCE OESTINATION
0 | WM) 0 SPECIFIER REGISTER 0 0 0 0 ¢ 1 !

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R'M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W 111 000

An — — (xxx).L m 0071

{An) 010 reg. number:An #<data> 1m 100
[An}+ o reg. number:An
—{An) 100 reg. number:An

{d16,An) 101 reg. number:An (dys,PC} 111 010

{dg.An,Xn) 110 reg. number:An {dg,PC,Xn) 111 011

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1M on

{{bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xnl,0d} 111 011

({{bd,An],Xn,od) 110 reg. number:An ({bd,PC],Xn,0d} 11 o1

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.

if RM =1, specifies the source data format:

000
001
010
011
100
101
110

moé'oxmr—

Long Word Integer

Single Precision Real
Extended Precision Real
Packed Decimal Real

Word Integer

Double Precision Real

Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R“'M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

. __|
MC68881/MC68882 USER'S MANUAL

FREESCALE
4-53

FLOG10 FLOG10

Log1o

Operation: Log1p of Source $ FPn
Assembier FLOG10.<fmt> <ea>,FPn
Syntax: FLOG10.X FPm,FPn
FLOG10.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)
Description: Convert the source operand to extended precision (if necessary) and cal-

culates the logarithm of that number using base 10 arithmetic. Stores the result in the
destination floating-point data register. This function is not defined for input values
less than zero.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

logyg NAN? —inf2 NAN!

Result +inf

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.

OPERR Set if the source operand is <0; cleared
otherwise

OVEL Cleared

UNFL Cleared

DZ Setifthe sourceis {+ or —); cleared otherwise

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
. Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility
Instruction Format:

15 14 13 12 it 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS

! ! ! ! 0 6 [0 |0 MODE REGISTER
_ SOURCE DESTINATION

0 {RM 0 SPECIFIER REGISTER 0 1 0 1 0

FREESCALE MC68881/MC68882 USER'S MANUAL
4-54

FLOG10 Log10 - FLOG10

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field -— Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeros.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn o)W m 000
An — - {xxx).L 11 001
{An}) 010 reg. number:An #<data> m 100

. (An)+ 011 reg. humber:An

- {An) 100 reg. number:An
{d1g.An) 10 reg. number:An (d16.PC) 11 010
{dg.AnXn) 110 | reg. number:An (dg.PCXn) m 011
(bd.An,Xn) 110 reg. number:An {bd,PC,Xn) 1 011
({bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 111 on
([bd,An],Xn,od} 110 reg. number:An {ibd,PCl,Xn,od) 11 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R’'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 . X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B - Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R‘'M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the resuit is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-55

FLOG2 FLOG2

Log2
Operation: Log2 of Source FPn
Assembler FLOG2.<fmt> <ea>,FPn
Syntax: FLOG2.X FPm,FPn
FLOG2.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and cal-

culates the logarithm of that number using base two arithmetic. Stores the result in
the destination floating-point data register. This function is not defined for input vafues

{ess than zero.

Operation Table:

Destination

Source
+

In Range

2era

Infinity

Result Logy NAN? —inf2 +inf NAN?

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. if the source operand is a NAN, refer to 4.5.4 NANs for maore information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is < 0; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Set if the source is (+ or —)0; cleared other-
wise
INEX2 Refer to 6.1.7 Inexact Resuit.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
5 ¥ 13 12 1 1 93 8 7 3 5 g 3 2 1 0
’ COPROCESSOR EFFECTIVE ADDRESS
! 1 1 ! 0 0 0 o MODE REGISTER
SOURCE DESTINATION
° | M0 SPECIFIER REGISTER o0y 0y 1] 0

FREESCALE MC68881/MC68882 USER'S MANUAL
4-56

FLOG2 Loga FLOG2

Instruction Fields: ‘
Coprocessor |D Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to |D=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros. ,
If R'M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* : 000 reg. number:Dn {xxx).W m 000 n

An —_ — {xxx).L m 001

(An) 010 reg. number:An #<data> m 100
{An}+ 011 reg. number:An
—{An) 100 reg. number:An

(d16.An) 101 reg. number:An {d16.PC) m 010

(dg,An,Xn) 110 reg. number:An {dg,PC.Xn} 111 011

(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 o1

{[bd,An,Xn],ad) 110 reg. number:An {{bd,PC,Xn],0d) 11 011

(Ibd,An].Xn,od) 110 reg. number:An {(bd,PC],Xn,0d} 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
if R’M=0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-57

FLOGN Loge FLOGN

Operation: Loge of Source » FPn

Assembler FLOGN.<fmt> <ea>,FPn
Syntax: © FLOGN.X FPm,FPn
FLOGN.X FPn

Attributes: Format =(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operénd to extended precision {if necessary) and cal-
culates the natural logarithm of that number. Stores the result in the destination
floating-point data register. This function is not defined for input vaiues less than zero.

Operation Tabie:

Source - In Range Zero Infinity
Destination + - + - + -

Result In(x) NAN! —inf2 +inf NANT |

NOTES:
1. Sets the OPERR bit in the FPSH exception byte.
2. Sets the DZ bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

‘Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
, CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is < 0; cleared
otherwise
OVFL Cleared
UNFL Cleared
DZ Set if the source is (+ or —)0; cleared other-
wise
INEX2 Refer to 6.1.7 Inexact Resuit.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 {EEE Exception and Trap Com-

patibility
instruction Format:
5 4 @B 12 W w© 9 8 7 & 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS |
' 1 1 1 0 0 0 0 MODE REGISTER |
SOURCE DESTINATION
0 | wmt o0 SPECIFIER REGISTER 0 {0 p 3 0o} jofe

FREESCALE MC68881/MC68882 USER'S MANUAL
4-58

FLOGN

Instruction Fields:

Loge

FLOGN

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.

If R/M =0, this field is unused, and should be all zeros.

If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An - — {xxx).L 1 001
{An) 010 reg. number:An #<data> 111 100
' (An)+ [10] reg. number:An
—(An) 100 reg. number:An
{d16,An) 101 reg. number:An {d16,PC) 111 010
{dg.An,Xn) 110 reg. number:An (dg,PC.Xn) 1 011
{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) 111 011
{{bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 11 (1]
{{bd,An],Xn,0d) 110 reg. number:An {[bd,PC].Xn,od) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.

If R/M =0, specifies the source floating-point data register, FPm.

If R’/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real

010 X Extended Precision Real

011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real

110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the

source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-59

FLOGNP1 Loge (x+1) FLOGNP1

Operation: Loge of (Source + 1) % FPn

Assembler FLOGNP1.<fmt> <ea>,FPn

Syntax: FLOGNP1.X FPm,FPn
FLOGNP1.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary), adds
one to that value, and calculates the natural logarithm of that intermediate result.
Stores the result in the destination floating-point data register. This function is not

defined for input values less than —1.

Operation Table:

Source In Range Zero Infinity |
Destination + - + - + -

Result In{x+1) In{x+1)7 +0.0 -0.0 ~inf NANZ |

NOTES:
1. if the source is — 1, sets the DZ bit in the FPSR exception byte and returns a NAN. If the source
is < —1, sets the OPERR bit in the FPSR exception byte and returns a NAN.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
" Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is < —1; cleared
otherwise
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Set if the source operand is —1; cleared oth-
erwise
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility

FREESCALE MC68881/MC68882 USER'S MANUAL
4-60

FLOGNP1 FLOGNP1

Loge (x+1)
Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 ! 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 jRM [0 SPECIFIER REGISTER o000t 1]

Instruction Fields:
Coprocessor |D Field — Specifies which coprocessor in the system is to execute this

instruction. Freescale assemblers default to ID=1 for the FPCP,
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W m 000
An -_ - {xxx).L 1 001
(An) 010 reg. number:An #<data> m 100
{An) + 01 reg. number:An
—{An} 100 reg. number;An
(d16.An) 101 reg. number:An {d16.PC) m 010
(dg.An,Xn) 110 reg. number:An (dg,PC,Xn) " 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 1M1 0on
([bd,An,Xn},od) 110 reg. number:An ([bd,PC,Xn],od) 111 01
([bd,An],Xn,od) 110 reg. number:An {[bd,PC},Xn,0d) M 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation.is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-61

FMOD FMOD

Modulo Remainder

Operation: Modulo Remainder of (FPn (+) Source) » FPn

Assembler FMOD.<fmt> <ea>,FPn

Syntax: FMOD.X FPm,FPn

Attributes: Format={Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision {if necessary) and cal-

culates the modulo remainder of the number in the destination floating-point data
register, using the source operand as the modulus. Stores the result in the destination
floating-point data register, and stores the sign and seven least significant bits of the
quotient in the FPSR quotient byte (the quotient is the resuit of FPn (+) Source). The
modulo remainder function is defined as:
FPn — (Source x N)

where:

N =I[NT(FPn (/) Source) in the round-to-zero mode
The FMOD function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FREM instruc-
tion, which uses the round-to-nearest mode and thus returns the remainder that is
required by the /EEE Specification for Binary Floating-Point Arithmetic.

Operation Table:

Source In Range Zero Infinity {
Destination + ~ +]
in Range Modulo Remainder NANT FPn? j
‘)
+0.0 1 ~0.0 t
Zero 0.0 NAN _00 ,
Infinity + NANT NAN? NAN? “
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result is processed by the normal
instruction termination procedure to round it as required. Thus, an overflow and or inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:
Condition Codes: Affected as described in 4,5.5.1 SETTING FLOATING-POINT

CONDITION CODES

Loaded with the sign and least significant seven bits of the

quotient (FPn (=) Source). The sign of the quotient is the

exclusive OR of the sign bits of the source and destination

Quotient Byte:

operands.
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is zero, or the destination is
infinity; cleared otherwise
OVFL Cleared

|
FREESCALE MC68881/MC68882 USER'S MANUAL
4-62

FMOD Modulo Remainder FMOD

UNFL Refer to 6.1.5 Underflow.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Resulit.

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
5 ® 1’ 1 n w9 8 7 § 5 4 3 2 1 0
| COPROCESSOR EFFECTIVE ADDRESS
L R R 0 0|00 . MODE AEGISTER
SOURCE DESTINATION
o0 | AM | 0 SPECIFIER REGISTER 0 1 0 0 0 0 1

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands
If RAM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn 7 o)W m 000
An — — {xxx).L 1M 001
(An} 010 | reg. number:An #<data> 1m 100
(An) + 011 reg. number:An
—{An) 100 reg. number:An
{d16.An) 101 reg. number:An {d16,PC} 111 010
(dg.An.Xn) 110 reg. number:An {dg,PC.Xn) 1M 011
{bd,An.Xn) 110 reg. number:An {bd,PC,Xn) 111 01
{[bd,An,Xn},0d} 110 reg. number:An {{bd,PC,Xn],0d) 1M1 011
([bd,An}.Xn,0d) 110 reg. number:An {ibd,PC],Xn,0d} 11 on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
if R/M =0, specifies the source floating-point data register, FPm.
if R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-63

FM OVE Move Floating-Point Data Register FM OVE

Operation: Source $ Destination

Assembler FMOVE.<fmt> <ea>,FPn

Syntax: FMOVE.<fmt> FPm,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}

n Attributes: Format=(‘Byt¢, Word, Long, Single, Double, Extended, Packed)

Description: Moves the contents of the source operand to the destination operand.
Although the primary function of this instruction is data movement, it is also consid-
ered an arithmetic instruction since conversions from the source operand format to
the destination operand format are performed implicitly during the move operation.
Also, the source operand is rounded according to the selected rounding precision and
mode.

Unlike the M68000 Family integer data movement instruction, the floating-point move
‘instruction does not support a memory-to-memory format {for such transfers, it is
much faster to utilize the M68000 Family integer MOVE instruction to transfer the
floating-point data than to use the FMOVE instruction). The FMOVE instruction only
supports memory-to-register, register-to-register, and register-to-memory operations
(in this context, memory may refer to an MPU data register if the data format is byte,
word, long or single}. The memory-to-register and register-to-register operations use
a command word encoding distinctly different from that used by the register-to-memory
operation, and these two operation classes are described separately below.

"~ Memory-to-Register or Register-to-Register Operation:
Converts the source operand to an extended precision floating-point number (if nec-
essary) and stores it in the destination floating-point data register. Depending on the
source data format and the rounding precision, some operations may produce an
inexact result. In the following table, combinations that can produce an inexact resutlt
are marked with a dot (), but all other combinations produce an exact result.

Source Format: B WL S D X P

Rounding Precision: Single [e o o
Double o o
Extended L

Status Register:

Condition Codes: Affected as described in 4.56.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected

]
FREESCALE MC68881/MC68882 USER'S MANUAL
4-64

FMOVE

Move Floating-point Data Register

FMOVE

Exception Byte: BSUN Cleared

SNAN Refer to 4.5.4 NANs.

OPERR Cleared

OVFL Cleared

UNFL Refer to 6.1.5 Underflow if the source is an
extended precision denormalized number;
cleared otherwise.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result if <fmt>is L, D
or X; cleared otherwise.

INEX1 Refer to 6.1.8 Inexact Result on Decimal Input

if <fmt> is P; cleared otherwise.

Accrued Exception Byte: Affectedas describedin 6.1.10 IEEE Exception and Trap Com-

Instruction Format:

patibility

1514131211109 8 17 6 § 4 3 2 1 0
COPROCESSOR EFFECTIVE ACCRESS

1 1 1 1 D 0 0 0 MODE REGSTER
SOLRCE DESTINATION

0 [RM] O SPECFER REGSTER 0 o oo o

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this

instruction. Freescale assemblers defaultto ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R‘/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W 111 000
An — — {xxx).L 11 nn1
{An} 010 reg. number:An #<data> 111 100
{An} + 011 reg. number:An
—(An) 100 reg. number:An
(d1g,AN) 101 reg. number:An {d1g.PC) 1m 010
{dg.An,Xn) 110 reg. number:An - {dg,PC,Xn) 11 011
{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011
[Ibd,An,Xn},0d) 110 reg. number:An ({bd,PC,Xn},0d) 11 011
{{bd,An],Xn,od) 110 reg. number:An {[bd,PC),Xn,od) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

|
MC68881/MC68882 USER'S MANUAL FREESCALE
4-65

FMOVE Move Floating-Point Data Register FM OVE

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

0000 L Long Word Integer

001 . S Single Precision Real
010 X Extended Precision Real
o1 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

Register-to-Memory Operation:

Rounds the source operand to the size of the specified destination format and stores
it at the destination effective address. If the format of the destination is packed decimal,
a third operand is required to specify the format of the resultant string. This operand,
called the k-factor, is a 7-bit signed integer (twos complement} and may be specified
as an immediate value or in a main processor data register. If a data register contains
the k-factor, only the least significant seven bits are used, and the rest of the register
is ignored. :

Status Register: -

Condition Codes: Not affected

Quotient Byte: Not affected

Exception Byte: BSUN Cleared

<fmt>is B, W, orL SNAN Refer to 4.5.4 NANs.

OPERR Set if the source operand is infinity, or if the
destination size is exceeded after conversion
and rounding; cleared otherwise

OVFL . Cleared

UNFL Cleared

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 Cleared

FREESCALE MC68881/MC68882 USER'S MANUAL
4-66

FM OVE Move Floating-Point Data Register FM OVE

<fmt>is S, D, or X BSUN Cleared

SNAN Refer to 4.5.4 NANSs.

OPERR Cleared

OVFL Refer to 6.1.4 Overflow.

UNFL Refer to 6.1.5 Underflow.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 Cleared

<fmt> is P BSUN Cleared

SNAN Refer to 4.5.4 NANs.

OPERR Set if the k-factor > +17, or the magnitude of
the decimal exponent exceeds 3 digits; cleared
otherwise

OVFL Cleared

UNFL Cleared

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 Cleared

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility
Instruction Format:
s 14 13 92 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS

! ! ! 1 0 0 0 0 MODE REGISTER
DESTINATION SOURCE K-FACTDR
0t ! FORMAT REGISTER {iF REQUIRED)

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assembilers default to D=1 for the FPCP.

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-67

FM OVE Move Floating-Point Data Register FM OVE

Effective Address Field — Encoded with the M68000 addressing mode for the desti-
nation operand as shown:

Addressing Mode Mode Register Addressing Mode Mode Register ’

Dn* 000 reg. number:Dn {xxx).W 1 000 ;

An — — (xxx).L M 001 :

(An) 010 reg. number:An #<data> — — I

n (An) + 01 reg. number:An

—{An) 100 reg. number:An jj

(d16.An) 101 reg. number:An {d16,PC} — - {
(dg.An,Xn) 110 reg. number:An {dg.PC.Xn} — —
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) - —

({bd,An,Xn],od) 110 reg. humber:An {fbd,PC,Xn},0d} — — ' '

{{bd,An},Xn,0d} 110 reg. number:An {{bd,PC],Xn,0d) — — |

*Only if <fmt> is Byte, Word, Long, or Single.

Destination Format Field — Specifies the data format of the destination operand:

000 L Long Word Integer

001 S Single Precision Real

010 X Extended Precision Real

011 P{#k} Packed Decimal Real with static k-factor
100 W Word Integer

101 D Double Precision Real

110 B Byte Integer

11 P{Dn} Packed Decima! Real with dynamic k-factor

Source Register Field — Specifies the source floating-point data register, FPm.
k-factor Field — Only used if the destination format is Packed Decimali, to specify the
format of the decimal string. For any other destination format, this field should be
set to all zeros. For a static k-factor, this field is encoded with a twos-complement
integer where the value defines the format as follows:
—64 to 0 — Indicates the number of significant digit to the right of the decimal
point (Fortran “F" format).
+1 to +17 — Indicates the number of significant digits in the mantissa {Fortran
“E’" format).
+18 to +63 — Sets the OPERR bit in the FPSR exception bylte, treated as +17.
The format of this field for a dynamic k-factor is:

rrr0000
where:
“rrr'’ is the number of the main processor data register that contains the k-factor
value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-68

FM OV E Move Floating-Point Data Register FM OV E

The following table gives several examples of how the k-factor value affects the format
of the decimal string that is produced by the FPCP. The format of the string that is
generated is independent of the source of the k-factor {static or dynamic).

k-Factor Source Operand Value Destination String

-5 +12345.678765 +1.234567877 E+4
-3 +12345.678765 +1.2345679 E+4
-1 +12345,678765 +1.23457 E+4

0 +12345.678765 +1.2346 E+4
+1 +12345.678765 +1.E+4
+3 +12345,678765 +1.23E+4
+5 +12345.678765 +1.2346 E+4

MC68881/MC68882 USER'S MANUAL FREESCALE
4-69

FM OVE Move System Control Register FMOVE

Operation: Source # Destination
Assembler FMOVE.L <ea>,FPcr
Syntax: FMOVE.L FPcr,<ea>
Attributes: Size=(Long)

of the FPCP (the control registers are the FPCR, FPSR and FPIAR). The external operand
may be in memory or a main processor register. A 32-bit transfer is always performed,
even though the system control register may not have 32 implemented bits. Unim-
plemented bits of a control register are read as zeros and are ignored during writes
(but must be zero for compatability with future devices}.

n Description: Moves the contents of a floating-point system control register into or out

This instruction does not cause pending exceptions (other than protocol violations}
to be reported to the main processor. Furthermore, a write to the FPCR exception
enable byte or the FPSR exception status byte cannot generate a new exception,
regardless of the value written.

Status Register: Changed only if the destination is the FPSR; in which case all bits are
modified to reflect the value of the source operand.

Instruction Format:

15 14 13 12 1 10 9 8 7 [} 5 4 3 2 1 0
COPROCESSOR : EFFECTIVE ADDRESS
) 1 | 1 LD 0 0 0 MODE REGISTER
REGISTER {
1 0 dr SELECT 0 1] 0]] 1) 0 0 C [G

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn {xxx).W 11 Qo0 ’
An* 001 reg. number:An {xxxh.L m (vied) ‘
{An) 010 reg. number:An #<data> m 100 |
{An) + on reg. number:An (
—{An) 100 reg. number:An |
{d16.An} 101 reg. number:An {d16.PC) m 010 !
(dg.An,Xn} 110 reg. number:An (dg.PC,Xn) m 011 i
{bd,An,Xn} 110 reg. number:An (bd,PC,Xn) i 011 ;
{[bd.An,Xn],od) 110 reg. number:An {Ibd,PC Xn],od) 111 011 |
{{bd,An],Xn,od) 110 reg. number:An {{bd,PC],Xn,0d) 111 011 1

*Qnly if the source register is the FPIAR.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-70

FM OVE Move System Control Register FMOVE

Register-to-Memory

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn . (xxx).W 1M 000

An* 001 reg. number:An (xxx).L 1M 001

(An} 010 reg. number:An : #<data> — —
{An)+ B 011 reg. number:An
—-{An) 100 reg. number:An

{d1g.An} 101 reg. number:An (d15.PC} . — =

{dg.An,Xn] 110 reg. number:An {dg,PC,Xn) — —

{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) — —

{Ibd,An,Xn],0d} i 110 reg. number:An rb([bd,PC,Xn],odl — —

{[bd,An],Xn,od) 110 reg. number:An {{bd,PC],Xn,od) — —

*Only if the destination register is the FPIAR.

dr Field — Specifies the direction of the data transfer.
0 — Move an external operand to the specified system control register.
1 — Move the specified system control register to an external location.
Register Select Field — Specifies the system control register to be moved:
100 FPCR Floating-point Control Register
010 FPSR Floating-point Status Register
001 FPIAR Floating-point Instruction Address Register

MC68881/MC68882 USER'S MANUAL FREESCALE
4-71

FMOVECR Move Constant ROM FMOVECR

Operation: ROM Constant § FPn

Assembiler
Syntax: FMOVECR.X #cee,FPn
Attributes: Format ={Extended)

Description: Fetches an extended precision constant from the FPCP on-chip ROM, rounds
n it to the precision specified in the FPCR mode control byte, and stores it in the des-
tination floating-point data register. The constant is specified by a predefined offset
into the constant ROM. The values of the constants contained in the ROM are shown
in the offset table at the end of this description.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Cleared
OPERR Cleared
OVFL Cleared
UNFL Cleared
D2 Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 . Cleared
Accrued Exception Byte: Affected as described in 6.1.10 I[EEE Exception and Trap Com-
patibility '

Instruction Format:

B w13 12 w1 9 8 7 6 5 s 3 2 1 C

: i ; \

1 1 1 1 ':”PH%ESSOH 0 0 0 0 0 ol i ¢ oo
DESTINATION ROM

0 1 0 1 1 1 REGISTER OFFSET

FREESCALE MC68881/MC68882 USER'S MANUAL
4-72

FMOVECR Move Constant ROM FMOVECR

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Destination Register Field — Specifies the destination floating-point data register, FPn.
ROM Offset Field — Specifies the offset into the FPCP on-chip constant ROM where
the desired constant is located. The offsets for the available constants are:

‘Offset Constant
= K
$0B Log10(2)
$0C

e
$0D Log2(e)
$0E Logiofe)

$0F 0.0
$30 1n(2)
$31 1n{10)
$32 100
$33 107
$34 102
$35 104
$36 108
$37 1076
$38 1032
$39 1064
$3A 10128
$3B 10256
$3C . 10912
$3D 101024
$3E 102048
$3F 104096

The on-chip ROM contains other constants useful only to the on-chip microcode rou-
tines. The values contained at offsets other than those defined above are reserved for
the use of Freescale, and may be different on various mask sets of the FPCP.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-73

FMOVEM Move Multiple Data Registers FMOVEM

Operation: Register List » Destination
Source » Register List

Assembler FMOVEM.X <list>,<ea>

Syntax: FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>
FMOVEM.X <ea>,Dn

n <list> A list of any combination of the eight floating-paint data
registers, with individual register names separated by a
slash (/); and/or contiguous blocks of registers specified
by the first and last register names separated by a dash
=)

Attributes: Format = (Extended)

Description: Moves one or more extended precision numbers to or from a list of fioating-
point data registers. No conversion or rounding is performed during this operation,
and the FPSR is not affected by the instruction. This instruction does not cause pending
exceptions (other than protocol violations) to be reported to the main processor.

Any combination of the eight floating-point data registers can be transferred, with the
selected registers specified by a user-supplied mask. This mask is an 8-bit number,
where each bit corresponds to one register; if a bit is set in the mask, that register is
moved. The register select mask may be specified as a static value contained in the
instruction, or a dynamic value in the least significant 8-bits of a main processor data
register (the remaining bits of the register are ignored).

FMOVEM allows three types of addressing modes: the control modes, the predecre-
ment mode, or the postincrement mode. If the effective address is one of the control
addressing modes, the registers are transferred between the FPCP and memory start-
ing at the specified address and up through higher addresses. The order of the transfer
is from FP7-FPO.

if the effective address is the predecrement mode, only a register-to-memory operation
is allowed. The registers are stored starting at the address contained in the address
register and down through fower addresses. Before each register is stored, the address
register is decremented by 12 (the size of an extended precision number in memory}
and the floating-point data register is then stored at the resultant address. When the
operation is complete, the address register points to the image of the last floating-
point data register stored. Each register is stored in the format described in SECTION
3 OPERAND DATA FORMATS, with the most significant byte of the register image
stored at the lowest address, and the least significant byte at the highest address. The
order of the transfer is from FP7-FPO.

If the effective address is the postincrement mode, only a memory-to-register oper-
ation is allowed. The registers are loaded starting at the specified address and up

FREESCALE MC68881/MC68882 USER'S MANUAL
4-74

FMOVEM

through higher addresses. After each register is stored, the address register is incre-
mented by 12 {the size of an extended precision number in memory). When the op-
eration is complete, the address register points to the byte immediately following the
image of the last floating-point data register loaded. The order of the transfer is the

Move Multiple Data Registers

same as for the control addressing modes: FP7-FP0.

Status Register: Not Affected. Note that the FMOVEM instruction provides the only mech-
anism for moving a floating-point data item between the FPCP and memory without
performing any data conversions or affecting the condition code and exception status

bits.

Instruction Format:

FMOVEM

s 14 13 12 un w9 8 5 4 3 2 1 0
COPROCESSOR | EFFECTIVE ADDRESS

! 1 1 1 Y 0 MODE REGISTER

1 1 dr MODE | 0 | 0 REGISTER LIST

Instruction Fields:

Coprocessor D Field — Specifies which coprocessor in the system is to execute this

instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the operation:

Memory-to-Register

Addressing Mode Mode Register Addressing Mode Mode Register
Dn - — {xxx}.W 111 000
An - — {xxx).L 1 001
{An) 010 reg. number:An #<data> — —
{An)+ 011 reg. number:An
—{An) - —

{d1g.An) 101 reg. number:An {d16,PC) 1M1 010
(dg,An,Xn) 110 reg. number:An {dg,PC,Xn} m on
{bd,An,Xn} 110 reg. number:An {bd,PC,Xn} m [N

{[bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xn},od) 1M1 on
{ibd,An],Xn,od) 110 reg. number:An {[bd,PC],Xn,0d} 1M 011

L. __|
MC68881/MC68882 USER'S MANUAL

FREESC

ALE
4-75

FMOVEM Move Multiple Data Registers FMOVEM

~ Register-to-Memory

Addressing Mode Mode Register Addressing Mode Mode Register
Dn -—_ — (xoxx) W 1 000
An — — {xxx}.L m 001
{An) 010 reg. number:An #<data> — —
{An)+ — —

—{An) 100 reg. number:An
n ' (d1g.An) 101 reg. number:An {d16.PC} — —
(dg.An,Xn} 110 reg. number:An (dg.PC,Xn) — —
(bd.An,Xn) 110 reg. humber:An {(bd,PC,Xn) — —
({bd,An,Xn],0d) 110 reg. number:An {{bd,PC Xn),0d) — —
{{bd,An],Xn,0d) 110 reg. number:An © ([bd.PCLXn,0d) — —

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the FPCP.
1 — Move the listed registers from the FPCP to memory.
Mode Field — Specifies the type of the register list and addressing mode.
00 — Static register list, predecrement addressing mode.
01 — Dynamic register list, predecrement addressing mode.
10 — Static register list, postincrement or controf addressing mode.
11 — Dynamic register list, postincrement or control addressing mode.
Register List Field:
Static list — contains the register select mask; if a register is to be moved, the
corresponding bit in the mask is set as shown below, otherwise it is clear.
Dynamic list — contains the main processor data register number, rrr, as shown

below:

Register List Format
Static, —(An) . — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
Static, (An)+ or
Control — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
Dynamic — 0 r r r 0 0 0 0

The format of the dynamic list mask is the same as for the static list and is contained
in the least significant eight bits of the specified main processor data register.

Programming Note: This instruction provides a very useful feature, dynamic register list
specification, that can significantly enhance system performance. If the calling con-
ventions used for procedure calls utilize the dynamic register list feature, the number
of floating-point data registers saved and restored can be reduced. A minimum of six
bus cycles is required to load or save a floating-point data register {more if the memory
address is not long word aligned). Thus, a minimum of 36 clock cycles {2x6 bus
cycles X 3 clocks per bus cycle) is eliminated from the procedure call and return over-
head for each register not saved and restored unnecessarily.

In order to utilize the dynamic register specification feature of the FMOVEM instruction,
both the calling and the called procedures must be written to communicate information
about register usage. When cne procedure calls another, a register mask must be
passed to the calied procedure to indicate which registers must not be altered upen
return to the calling procedure. The called procedure then saves only those registers

FREESCALE MC68881/MC68882 USER'S MANUAL
4-76

FM OVE M Move Multiple Data Registers FM OV E M

that are modified and are already in use. There are several techniques that can be
used to utilize this mechanism, and an example follows.

In this example, a convention is defined by which each called procedure is passed a
word mask in D7 that identifies all floating-point registers in use by the calling pro-
cedure. Bits 15 -8 identify the registers in the order FP0~-FP7, and bits 0-7 identify the
registers in the order FPO-FP7 {the two masks are required due to the different transfer
order used by the predecrement and postincrement addressing modes). The code
used by the calling procedure consists of simply moving the mask (which is generated
at compile time) for the floating-point data registers currently in use into D7:

Calling procedure . .. :

MOVEW #ACTIVE, D7 Load the list of FP registers that are in use

BSR PROC-2 :

The entry code for all other procedures computes two masks. The first mask identifies
the registers in use by the calling procedure that are used by the called procedure
{and therefore saved and restored by the called procedure). The second mask identifies
the registers in use by the calling procedure that are used by the called procedure
{and therefore not saved on entry). The appropriate registers are then stored along
with the two masks:

Called procedure.. ..

MOVEW D7,D6 Copy the list of active registers

AND.W #WILL_USE,D7 Generate the list of doubly-used registers
FMOVEM D7,-(A7) Save those registers

MOVEW D7,-(A7) Save the register list

EORW D7,D6 Generate the list of not saved active registers
MOVE.W D6,P(A7) Save it for later use

if the second procedure calls a third procedure, a register mask is passed to the third
procedure that indicates which registers must not be altered by the third procedure.
This mask identifies any registers in the list from the first procedure that were not
saved by the second procedure, plus any registers used by the second procedure that
must not be altered by the third procedure. An example of the calculation of this mask
is:
Nested calling sequence . ..

MOVE.W UNSAVED Load the list of active registers not saved at entry

(A7),D7
ORW #ACTIVE,D7 Combine with those active at this time
BSR PROC-3

Upon return from a procedure, the restoration of the necessary registers follows the
same convention, and the register mask generated during the save operation on entry
is used to restore the required floating-point data registers:

Return to caller. ..

ADDQ.L #2A7 Discard the list of registers not saved

MOVE.B ~ {A7)+,D7 Get the saved register list (pop word, use byte)
FMOVEM (A7)+,D7 Restore the registers

RTS Return to the

calling routine

|
MC68881/MC68882 USER'S MANUAL FREESCALE
4-77

F M OVEM Move Multiple Contro! Registers F M OVEM

Operation: Register List # Destination
Source » Register List

Assembler FMOVEM.L <list>,<ea>
Syntax: FMOVEM.L <ea>,<list>
; <list> A list of any combination of the three floating-
: point system control registers (FPCR, FPSR and
n FPIAR) with individual register names sepa-
rated by a slash (/).

Attributes: Size =(Long)

Description: Moves one or more 32-bit values into or out of the specified system control
registers. Any combination of the three system contro! registers may be specified.
The registers are always moved in the same order, regardless of the addressing mode
used; with the FPCR moved first, followed by the FPSR, and the FPIAR moved last (if
a register is not selected for the transfer, the relative order of the transfer of the other
registers is the same). The first register is transferred between the FPCP and the
specified address, with successive registers located up through higher addresses.

When more than one register is moved, the memory or memory-alterable addressing
modes are allowed as shown in the addressing mode tables. If the addressing mode
is predecrement, the address register is first decremented by the total size of the
register images to be moved (i.e., four times the number of registers) and then the
registers are transferred starting at the resultant address. For the postincrement ad-
dressing mode, the selected registers are transferred to or from the specified address,
and then the address register is incremented by the total size of the register images
transferred. If a single system control register is selected, the data register direct
addressing mode may be used; or, if the only register selected is the FPIAR, then the
address register direct addressing mode is allowed. Note that if a single register is
selected, the opcode generated is the same as for the FMOVE single system contro!
register instruction.

Status Register: Is changed only if the destination list includes the FPSR; in which case
all bits are modified to reflect the value of the source register image.

Instruction Format:

15 14 13 12 n w9 8 7 § 5 4 3 2 1 C
COPROCESSOR EFFECTIVE ADDRESS i‘
' 1 ! ! D 0 ¢ 0 MODE ! REGISTER !
REGISTER ! | ;
1] dr ST) 0 0 0 0 0 0 0 joc e

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the operation:

FREESCALE MC68881/MC68882 USER'S MANUAL
4-78

FM OVE M Move Multiple Coptrol Registers F MOVEM

Memory-to-Register

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn : {xxx).W m 000
An** 001 reg. number:An {xxx).L m 001
{An} 010 reg. number:An #<data> m 100
{An)+ 011 reg. number:An
—(An} 100 reg. number:An
{d16,An} 101 reg. number:An (d16,PC) 11 010
{dg.An,Xn) 110 reg. number:An (dg,PC,Xn) m 0
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 01
{{bd,An,Xnj,od) 110 reg. number:An ([bd,PC,Xn},od) 111 a1
{{bd,An],Xn,cd) 110 reg. number:An ([bd,PC},Xn,0d) 1M 011

*Only if a single FPcr is selected.
**QOnly if the FPIAR is the single register seiected.

Register-to-Memory

Addressing Mode Mode Register Addressing Mode Mode Register
Dn# 000 reg. number:Dn (xxx).W m 000
An** 001 reg. number:An (xxx).L 111 001
(An) 010 reg. number:An . #<data> — —
{An) + o1 reg. number:An
~{An) 100 reg, number:An

(dyg.An) 110 reg. number:An {d16,PC) — —
(dg,An,Xn) 110 reg. number:An {(dg.PC,Xn] — —
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn)},0d) 110 reg. number:An {[bd,PC,Xn),0d} — —
{[bd,An],Xn,ad) 110 reg. number:An {{bd,PC],Xn,od) - —

*QOnly if a single FPcr is selected.
**Only if the FPIAR is the single register selected.

dr Field — Specifies the direction of the transfer.
0 — Move the listed registers from memory to the FPCP.
1 — Move the listed registers from the FPCP to memory.
Register List Field: — Contains the register select mask; if a register is to be moved,
the corresponding bit in the list is set, otherwise it is clear.
Bit Number — 12 1 10
Register — FPCR FPSR FPIAR

MC68881/MC68882 USER'S MANUAL FREESCALE
4-79

FMUL FMUL

Multiply
Operation: Source xFPn » FPn
Assembler FMUL.<fmt> <ea>,FPn
Syntax: FMUL.X FPm,FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed})
Description: Converts the source operand to extended precision {if necessary) and mul-

tiplies that number by the number in the destination floating-point data register. Stores
the result in the destination floating-point data register.

Operation Table:

Source In Range Zero Infinfty
Destination + - + - + -
e
zero 00 oo | ‘a0 a0 NANY
I
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set for 0 xinfinity; cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
Dz Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibitity

Accrued Exception Byte:

Instruction Format:
10 9 8 7 6 5 4 3 2 1 C

COPROCESSOR EFFECTIVE ADDRESS !
L L L ! i 0 0 0 MODE :l REGISTER ¢
SOURCE DESTINATION ! ! ,
0| AM 0 SPECIFIER REGISTER e 1 0 0 | 0 Ty

FREESCALE
4-80

MC68881/MC68882 USER'S MANUAL

FMUL witioy FMUL

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R‘M =0, this field is unused, and should be all zeros.
if R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register " Addressing Mode Mode Register n
Dn* 000 reg. number:Dn oo W 1M 000
An — S = (oo L 111 001 "
{An) 010 reg. number:An #<data> 1M 100
(An}+ (R reg. number:An —
—(An} 100 reg. number:An
{d95.An} 101 reg. number:An (d16.PC) 1 010
(dg,An,Xn) 110 reg. number:An {dg,PC.Xn) 1m 011
{bd,An,Xn) 110 reg. number:An | {bd,PC,Xn} 1m oo
(ibd, An Xn},od) 110 | reg. number:An | ({bd,PC.Xnl,0d) IE 011
([bd,An] Xn,0) 110 | reg. number:An | (bd,PCLXn o) i 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precisian Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

]
MC68881/MC68882 USER'S MANUAL FREESCALE
4-81

FN EG Negate FN EG

Operation: —(Source) » FPn

Assembler FNEG.<fmt> <ea>,FPn

Syntax: FNEG.X FPm,FPn
FNEG.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed}
n Description: Converts the source operand to extended precision (if necessary) and in-

verts the sign of the mantissa. Stores the result in the destination floating-point data
register.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + —

Result Negate ~-0.0 ~0.0 ~inf =inf

NOTE: |If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Cleared
OVFL Cleared
UNFL if source is an extended precision denormal-
ized number, refer to 6.1.5 Underflow; cleared
otherwise.
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-
patibility

__]
FREESCALE MC68881/MC68882 USER'S MANUAL
4-82

FNEG

FNEG

Negate
Instruction Format:
1 13 121N 1 8 7 B 5 2 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 i ¢ 0 8 MODE REGISTER
SOURCE DESTINATION
0 [RM L 0 SPECIFIER REGISTER 8 ¢ L L 0 L 0

Instruction Fields:

Coprocessor 1D Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’/M =0, this field is unused, and should be all zeros.
If R‘/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:On {xxx).W Mm 000

An — — {xxx).L m 001

{An) 010 reg. number:An #<data> m 100
(An)+ 011 reg. number:An
—(An) 100 reg. number:An

{d16.An) 101 reg. number:An (d16.PC) 1M1 010

{dg.An,Xn) 110 reg. number:An (dg,PC,Xn} m 011

{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) m 011

{{bd,An,Xn],od) 110 reg. number:An {[bd,PC,Xn],0d) 11 011

({{bd,An},Xn,od) 110 reg. number:An {[bd,PC}],Xn,0d) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.

If R/M =0, specifies the source floating-point data register, FPm.

If R/'M =1, specifies the source data format:

000 L Long Word integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M=0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-83

FNOP No Operation FNOP

Operation: None
Assembler
Syntax: FNOP

Attributes: Unsized

useful to force synchronization of the FPCP with a main processor, or to force proc-
essing of pending exceptions. The synchronization function is inherent in the way that
the FPCP uses the M68000 Family coprocessor interface. For most FPCP instructions,
the main processor is allowed to continue with the execution of the next instruction
once the FPCP has any operands needed for an operation, thus supporting concurrent
execution of floating-point and integer instructions. However, if the main processor
attempts to initiate the execution of a new floating-point instruction in the MC68881
before the previous one is completed, the main processor is forced to wait until that
instruction execution is finished before proceeding with the new instruction. FNOP is
treated in the same way as other instructions and thus cannot be executed until the
previous floating-point instruction is completed, and the main processor is synchro-
nized with the MC68881.

n Description: This instruction does not perform any explicit operation. However, it is

The MC68882 may not wait to begin execution of another floating-point instruction
until it has completed execution of the current instruction. However, the FNOP instruc-
tion synchronizes the coprocessor and MPU by causing the MPU to wait until the
current instruction {or both instructions) have completed.

The FNOP instruction also forces the processing of exceptions pending from the
execution of previous instructions. This is also inherent in the way that the FPCP utilizes
the M68000 Family coprocessor interface. Once the FPCP has received the input operand
for an arithmetic instruction, it always releases the main processor to exacute the next
instruction {regardless of whether or not concurrent execution is prevented for the
instruction due to tracing) without reporting the exception during the execution of
that instruction. Then, when the main processor attempts to initiate the execution of
the next FPCP instruction, a pre-instruction exception may be reported to initiate
exception processing for an exception that occurred during a previous instruction. By
using the FNOP instruction, the user can force any pending exceptions to be processed
without performing any other operations.

Status Register: Not Affected

FREESCALE MC68881/MC68882 USER'S MANUAL
4-84

FN 0 P Na Operation FN 0 P

Instruction Format:

COPROCESSOR
o

0o JoJoJoJoJoJolofJoJololoJololo]u

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

NOTE

FNOP uses the same opcode as the FBcc.W <label> instruction, with cc=F
(non-trapping false) and <label>=* +2 (which results in a displacement of

0).

MC68881/MC68882 USER'S MANUAL FREESCALE
4-85

FREM FREM

JEEE Remainder

Operation: IEEE Remainder of (FPn {+) Source} » FPn

Assembler FREM.<fmt> <ea>,FPn

Syntax: FREM.X FPm,FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and cal-

culates the modulo remainder of the number in the destination floating-point data
register, using the source operand as the modulus. Stores the result in the destination
floating-point data register, and stores the sign and seven least significant bits of the
guotient in the FPSR quotient byte (the quotient is the result of FPn {+) Source). The
IEEE remainder function is defined as:

FPn —(Source x N)
where:
N=INT{FPn { +) Source) in the round-to-nearest mode

The FREM function is not defined for a source operand equal to zero or for a destination
operand equal to infinity. Note that this function is not the same as the FMOD instruc-
tion, which uses the round-to-zero mode and thus returns a remainder that is different
from the remainder required by the JEEE Specification for Binary Floating-Point Arith-
metic.

Operation Table:

Source In Range Zero Infinity |
Destination + - + - + -
1

In Range IEEE Remainder NAN1 FPR2

+0.0 1 +0.0

Zero _0g0 NAN —0g

Infinity NANT NAN1 NAN!

NOTES:

1. Sets the OPERR bit in the FPSR exception byte.

2. Returns the value of FPn before the operation. However, the result is processed by the normal
instruction termination procedure to round it as required. Thus, an underflow and cr inexact
result may occur if the rounding precision has been changed to a smaller size since the FPn
value was loaded.

3. If either operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

- CONDITION CODES
Loaded with the sign and least significant seven bits of the
quotient (FPn (+) Source). The sign of the quotient is the
exclusive OR of the sign bits of the source and destination

Quotient Byte:

operands.
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is zero, or the destination is

infinity; cleared otherwise

FREESCALE MC68881/MC68882 USER'S MANUAL
4-86

FREM IEEE Remainder FREM

OVFL Cleared

UNFL Refer to 6.1.5 Underflow.

DZ Cleared

INEX2 Cleared

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

. patibility
Instruction Format:
5 W 13 1z 1 1 3 8 1 & 54 3 2 1 0
COPROCESSOR EFFECTIVE, ADDRESS
1 ! ! 1 D 0 0 0 MODE REGISTER
SOURCE DESTINATION
0| AM 0 SPECIFIER REGISTER o v e et o

Instruction Fields: ;
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RI'M =0, this field is unused, and should be all zeros.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode I Mode . Register

Dn* 000 reg. number:Dn {xxx).W 111 000

An — — . {xxx).L 1m 001

- {An} 010 reg. number:An #<data> 111 100
(An)+ RN reg. number:An
—(An) 100 reg. number:An

{d1p,An) 101 reg. number:An {d16.PC) m 010

{dg.An,Xn} 110 reg. number:An (dg,PC,Xn) 1m 01

(bd,An,Xn} 110 reg. number:An (bd,PC,Xn) m 011

{[bd,An,Xn},od) 110 reg. number:An ([bd,PC,Xn),0d) 111 011

* {[bd,An],Xn,od) 110 reg. number:An {{bd,PC},Xn,od) m 011

*Only if <fmt> is Byte, Word,i Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘IM =0, specifies the source floating-point data register, FPm.
If R/M=1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-87

FR ESTORE Restore Internal State FR ESTORE

(Privileged Instruction}

Operation: If in supervisor state
then FPCP State Frame # Internal State
else TRAP

Assembler

Syntax: FRESTORE <ea>

n Attributes: Unsized, privileged.

Description: Aborts the execution of any operation in progress, and loads a new internal
state from the state frame located at the effective address. The first word at the
specified address is the format word of the state frame, which specifies the size of
the frame and the revision number of the FPCP that created it. The MPU writes the
first word to the FPCP Restore CIR to initiate the restore operation, and then reads the
response CIR to verify that the FPCP recognizes the format word as valid. If the format
word is invalid for the FPCP (either because the size of the frame is not recognized,
or the revision number does not match the revision of the processor), the MPU is
instructed to take a format exception. The MPU then writes an abort to the control
CIR, and the FPCP enters the IDLE state. If the format word is valid, the appropriate
state frame is loaded, starting at the specified location and proceeding through higher
addresses.

The FRESTORE instruction does not normally affect the programmer’s mode! registers
of the FPCP (except for the NULL state size, as described below), but is used only to
restore the user invisible portion of the machine. The FRESTORE instruction is used
with the FMOVEM instruction to perform a full context restoration of the FPCP, in-
cluding the floating-point data registers and system control registers. in order to ac-
complish a complete restoration, the FMOVEM instructions are first executed to load
the programmer’s model, followed by the FRESTORE instruction to load the internal
state and continue any previously suspended operation. Refer to 6.4 CONTEXT
SWITCHING for more information.

The current implementation of the FPCP supports three state frames. Refer to 6.4.2
State Frames for the exact format of these state frames.

NULL: This state frame is four bytes long, with a format word of $0000. A FRESTORE
operation with this size state frame is equivalent to a hardware reset of
the FPCP. The programmer’s model is set to the reset state, with nonsig-
naling NANs in the floating-point data registers and zeros in the FPCR,
FPSR and FPIAR. (Thus, it is unnecessary to load the programmer’s model
before this operation.)

. __|
FREESCALE MC68881/MC68882 USER'S MANUAL
4-88

FR ESTORE Restore Internal State FR ESTORE

(Privileged Instruction)

IDLE: This state frame is 28 ($1C) bytes Jong in the MC68881, and 60 ($3C) bytes
long in the MC68882. An FRESTORE operation with this size state frame
causes the FPCP to be restored to the idle state, waiting for the initiation
of the next instruction. Exceptions that were pending before the execution
of the previous FSAVE instruction are pending following the execution of
the FRESTORE instruction. The programmer’s model is not affected by
ioading this type of state frame.

BUSY: This state frame is 184 ($B8) bytes long in the MC688381 and 216 ($D8)
bytes long in the MC68882. An FRESTORE operation with this size state
frame causes the FPCP to be restored to the busy state, executing the
instruction that was suspended by a previous FSAVE operation. The pro-
grammer’s model is not affected by loading this type of state frame (although
the completion of the suspended instruction after the restore is executed
may modify the programmer’s model).

Status Register: Cleared if the state size is NULL, otherwise not affected

instruction Format:

15 14 13 12) " 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 D 1 g t MODE REGISTER

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the state frame. Only
postincrement or control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx). W M 000
An — — {xxx).L 111 001
{An) 010 reg. number:An #<data> — —
(An)+ on reg. number:An
- (An) —_ —_

(d1g,An) 101 reg. number:An {d16,PC) 1M 010
{dg,An,Xn) 110 reg. number:An (dg.PC.Xn) A 11 on
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 11 011

{[bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) 111 011
{Ibd,An},Xn,od) 110 reg. number:An {[bd,PC],Xn,0d) m 011

MC68881/MC68882 USER'S MANUAL FREESCALE
4-89

F SAVE Save Internal State F SAVE

{Privileged Instruction)

Operation: If in supervisor state
then FPCP Internal State p State Frame
else TRAP

Assembler

Syntax: FSAVE <ea>

Attributes: Unsized, privileged.

Description: Suspends the execution of any operation in progress, and saves the in-
ternal state in a state frame located at the effective address. After the save operation,
the FPCP is in the idle state, waiting for the execution of the next instruction. The first
word written to the state frame is the format word, which specifies the size of the
frame and the revision number of the FPCP. The MPU initiates the FSAVE instruction
by reading the FPCP save CIR, which is encoded with a format word that indicates the
appropriate action to be taken by the main processor. The current implementation of
the FPCP always returns one of five responses in the save CIR:

Value Definition

$0018 Save NULL state frame
$0118 Not ready, come again
$0218 lllegal, take format exception
$XX18 Save IDLE state frame
$XXB4 Save BUSY state frame

where: _
XX is the FPCP version number.

The Not Ready format word indicates that the FPCP is not prepared to perform a state
save and that the MPU should process interrupts, if necessary, and then re-read the
save CIR. The FPCP uses this format word to cause the main processor to wait while
an internal operation is completed, if possible, in order to allow an IDLE frame to be
saved rather than a BUSY frame. The lllegal format word is used to abort an FSAVE
instruction that is attempted while the FPCP is executing a previous FSAVE instruction.
All other format words cause the MPU to save the indicated state frame at the specified
address. For state frame details see 6.4.2 State Frames. These state frames are defined
as follows:

NULL: This state frame is four bytes long. An FSAVE instruction that generates
this size state frame indicates that the FPCP state has not been modified
since the last hardware reset or FRESTORE instruction with a NULL state
frame. This indicates that the programmer’s mode! is in the reset state,
with nonsignaling NANs in the floating-point data registers and zeros in
the FPCR, FPSR, and FPIAR. (Thus, it is not necessary to save the pro-
grammer’s model.)

L. __ |
FREESCALE MC68881/MC68882 USER'S MANUAL
4-90

FSAV E Save Internal State FSAVE

(Privileged Instruction)

IDLE: This state frame is 28 ($1C) bytes long in the MC68881, and 60 ($3C) bytes
long in the MC68882. An FSAVE instruction that generates this size state
frame indicates that the FPCP was in an idle condition, waiting for the
initiation of the next instruction. Any exceptions that were pending are
saved in the frame and are then cleared internally. Thus, the pending
exceptions are not reported until after a subsequent FRESTORE instruction
loads the state frame. In addition to being used for context switching, this
frame may be used by exception handier routines, since it contains the
value of the operand that caused the last floating-point exception.

BUSY: This state frame is 184 ($B8) bytes long in the MC68881, and 216 ($D8)
bytes long in the MC68882. An FSAVE instruction that generates this size
state frame indicates that the FPCP was at a point within an instruction
where it was necessary to save the entire internal state of the processor.
This frame size is only used when absolutely necessary because of the
large size of the frame and the amount of time required to transfer it. The
action of the FPCP when this state frame is saved is the same as for the
IDLE state frame.

The FSAVE does not save the programmer’s model registers of the FPCP, but is used
to save only the user invisible portion of the machine. The FSAVE instruction may be
used with the FMOVEM instruction to perform a full context save of the FPCP including
the floating-point data registers and system control registers. In order to accomplish
a complete context save, an FSAVE instruction is first executed to suspend the current
operation and save the internal state, followed by the appropriate FMOVEM instruc-
tions to store the programmer’s model. Refer to 6.4 CONTEXT SWITCHING for more
information.

Status Register: Not affected

Instruction Format:

B 14 13 12 onm 1 9 8 7 6 54 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! L 1 D L 0 0 MODE REGISTER

MC68881/MC68882 USER'S MANUAL FREESCALE
4-91

FSAVE Save Internal State FSAVE

{Privileged Instruction)

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for the state frame. Only
predecrement or control-alterable addressing modes are allowed as shown:

n Addressing Mode Mode Register Addressing Mode Mode Register E
Dn — — {xxx).W m 000
An —_ — (xxx).L 111 001
{An} 010 reg. number:An #<data> — —
{An}+ — —
~(An) 100 reg. number:An
(dqg.An) 101 reg. number:An {d16,PC) — —
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) — —
{bd,An,Xn} 10 reg. number:An {bd,PC,Xn) — — :
{{bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],0d) — — ;
(‘[bd,An],Xn,od) 110 reg. number:An {[bd,PC].Xn,0d) — — i

FREESCALE MC68881/MC68882 USER'S MANUAL
4-92

FSCALE Scale Exponent ‘ FSCALE

Operation: FPn x INT(2S0urce) 3 FPn

Assembler FSCALE.<fmt> <ea>,FPn
Syntax: FSCALE.X FPm,FPn

Attributes: Format={(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to an integer (if necessary) and adds that
integer to the destination exponent. Stores the result in the destination floating-point’
data register. This function has the effect of multiplying the destination by 250urce,
but is much faster than a muitiply operation when the source is an integer value.

The FPCP assumes that the scale factor is an integer value before the operation is
executed. If not, the value is chopped {i.e., rounded using the round-to-zero mode) to
an integer before it is added to the exponent. When the absolute value of the source
operand is (=) 214, an overflow or underflow always resuits.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
In Range i Scale Exponent FPn1 NANZ2
+0.0 +0.0 2
Zero 00 ~00 NAN
- +inf +inf 2
Infinity —inf Zinf NAN

NOTES: .
1. Returns the value FPn before the operation. However, the result is processed by the normal
instruction termination procedure to round it as required. Thus, an underflow and/or inexact
result may occur if the rounding precision has been changed to a smailer size since the FPn
value was loaded.
2. Sets the OPERR bit in the FPSR exception byte. ’
3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is (+ or -)infinity;
cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-93

FSCALE FSCALE

Scale Exponent

DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap

Compatibility
n Instruction Format:
15 14 13 12 1 10 9 8 7 & 5 4 3 2 1 0
‘ | coproCESSOR EFFECTIVE ADDRESS E
! ! ! !) 0 0 ¢ MODE REGISTER i
SDURCE DESTINATION ‘
0 j M0 SPECIFIER REGISTER v o g

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID =1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode 1 Register Addressing Mode Mode [Register ;
Dn* 000 reg. number:Dn oo W 11 0a3
An — — {xxx).L ! a1
{An} 010 reg. number:An #<data> 111 1C5
(An) + 011 reg. number:An
—{An) 100 reg. number:An
(d16.An) 101 reg. number:An (d15.PC} 1 010
{dg.An,Xn) 110 reg. number:An {dg.PC.Xn) 111 011
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn} m 011
{{bd,An,Xn],od} 110 reg. number:An {[bd,PC,Xn],0d) 1 011
([bd,An],Xn,0d) 110 reg. number:An {[bd,PC],Xn,0d) 11| ot

*Only if <fmt> is Byte, Word, Long, or Single.

L

FREESCALE MC68881/MC68882 USER'S MANUAL
4-94

FSCALE

Scale Exponent FS CALE

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.

If RIM =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000
001
010
011
100
101
110

DDUE'UXU)I—

Long Word Integer
Single Precision Real
Extended Precision Real
Packed Decimal Real
Word Integer

Double Precision Real
Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

]
MC68881/MC68882 USER'S MANUAL

FREESCALE
4-95

FSCC Set According to Condition FSCC

Operation: If {condition true)
then 1s p Destination
eise Os # Destination

Assembler
Syntax: FScc.<size> <ga>
n Attributes: Size=(Byte)
Description: If the specified floating-point condition is true, sets the byte integer operand

at the destination to TRUE {all ones), otherwise sets the byte to FALSE (all zeros). The
conditional specifier cc may select any one of the 32 floating-point conditional tests
as described in 4.4 CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte.
No other bit is affected.

Instruction Format:

B 14 1B 12 1w 1 3 8 1 § 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS

! ! ! ! 0 0 0 L MODE | REGISTER

0 0 0 0 0o [oo 0 0 0 CONDITIONAL PREDICATE

FREESCALE MC68881/MC68882 USER'S MANUAL
4-96

FSCC Set According to Condition | FSCC

Instruction Fields: :
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
~instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Specifies the addressing mode for the byte integer operand:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 reg. number:Dn {xxx}.W 111 . 000
An — —_ {xxx).L m_ 001
(An) 010 reg. number:An #<data> — -)

{An}+ 011 reg. number:An
—{An} 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC} — —

{dg.An,Xn) 110 reg. number:An {dg,PC,Xn} — —

{bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

{(bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xn],od} — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,0d] — —

Conditional Predicate Field — Specifies one of 32 conditional tésts as defined in 4.4
CONDITIONAL TEST DEFINITIONS.

NOTE
When a BSUN exception occurs, a pre-instruction exception is taken by the
main processor. If the exception handler returns without modifying the image
of the PC on the stack frame (to point to the instruction following the FScc),
then it must clear the cause of the exception (by clearing the NAN bit or
disabling the BSUN trap) or the exception occurs again immediately upon
return to the routine that caused the exception.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-97

FSGLDI

Operation:

Assembler
Syntax:

Attributes:

Description:

Vv

Single Precision Divide

FPn {+) Source » FPn

FSGLDIV.<fmt>
FSGLDIV.X

<ea>,FPn
FPm,FPn

FSGLDIV

Format=(Byte, Word, Long, Single, Double, Extended, Packed}

Converts the source operand to extended precision (if necessary) and di-
vides that number into the number in the destination floating-point data register.
Stores the result in the destination floating-point data register, rounded to single
precision (regardless of the current rounding precision). This function is undefined for
0(+)0 and infinity(=)infinity.

Both the source and destination operands are assumed to be representable in the
single precision format. If either operand requires more than 24 bits of mantissa to
be accurately represented, the accuracy of the result is not guaranteed. Furthermore,
the result exponent may exceed the range of single precision, regardless of the round-
ing precision selected in the FPCR mode control byte. Refer to 4.5.5.2 UNDERFLOW,

ROUND, OVERFLOW for more information.

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -
in Range Divide +inf? ~inf! =0.0 00 |
ang {Single Precision) —infl +infl -0.0 -00 |
+0.0 -00 2 +00 -00 |
Zero ~0.0 +0.0 NAN -0.0 -00 |
- +inf —inf ~inf ~inf 2 |
Infinity —inf +inf| —inf ~inf NAN
NOTES:

1. Sets the D2 bit in the FPSR exception byte.

2. Sets the OPERR bit in the FPSR exception byte.

3. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quotient Byte:
Exception Byte:

FREESCALE
4-98

No
BS

SNAN
OPERR
OVFL
UNFL

DZ

INEX2
INEX1

t affected
UN

Cleared
Refer to 4.5.4 NANs.
Set for 0(=)0 or infinity{ =)infinity
Refer to 6.1.4 Overflow.

Refer to 6.1.5 Underflow.

Affected as described in 4.56.5.1 SETTING FLOATING-POINT
CONDITION CODES

Set if the source is zero and the destination is
in range; cleared otherwise

Refer to 6.1.7 Inexact Result.
If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

e |
MC68881/MC68882 USER'S MANUAL

FSGLDIV FSGLDIV

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

Single Precision Divide

Instruction Format:

10 9 8 7 6 5 4 3 3 1 0

COPROGESSOR EFFECTIVE ADDRESS
! ! 1 ! D 0 | 010 MODE REGISTER
SOURCE DESTINATION
0 {RM i 0 SPECIFIER REGISTER 0 1 0 0 1 0 0

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register | Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx). W T 000)

An — —] {xxx).L m 001
(An) 010 reg. number:An #<data> MM 100

{An} + on reg. number:An

- (An) 100 reg. number:An
{d16.An} 101 reg. number:An {d16.PC) 1M1 010
{dg.An,Xn) 110 reg. number:An (dg,PC.Xn) m " oon
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 1 o
{(bd,An,Xn],0d) 110 reg. number:An {[bd,PC,Xn},od) 1 011
{{bd,An},Xn,0d) 110 reg. number:An (lbd.PClXned) | 1M 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-99

FSGLMUL

Operation:

Assembler
Syntax:

Attributes:

Description:

Single Precision Multiply

Source x FPn » FPn

FSGLMUL. <fmt>
FSGLMUL.X
<ea>,FPn
FPm,FPn

FSGLMUL

Format ={Byte, Word, Long, Single, Double, Extended, Packed)

Converts the source operand to extended precision (if necessary) and mul-
tiplies that number by the number in the destination floating-point data register. Stores
the resuit in the destination floating-point data register, rounded to single precision
(regardless of the current rounding precision).

Both the source and destination operands are assumed to be representable in the
single precision format. [f either operand requires more than 24 bits of mantissa to
be accurately represented, the accuracy of the result is not guaranteed. Furthermore,
the result exponent may exceed the range of single precision, regardless of the round-
ing precision selected in the FPCR mode control byte. Refer to 4.5.5.2 UNDERFLOW,
ROUND, OVERFLOW for more information.

Operation Table:

Source In Range Zero Infinity Q
Destination + - + - * - !
In Range (Singf:girzlgision :gg :83 :::: ::::
Zero o0 iea | fes e NAN'
. Infinity i::: ;:g; NAN? L j::—:; ::::
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes:

Quatient Byte:

Exception Byte:

FREESCALE

4-100

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

BSUN
SNAN
OPERR

OVFL
UNFL
Dz

INEX2

Cleared

Refer to 4.5.4 NANs,

Set if one operand is zero and the other is in-
finity; cleared otherwise

Refer to 6.1.4 Overflow.

Refer to 6.1.5 Underflow.

Cleared

Refer to 6.1.7 Inexact Result.

MC68881/MC68882 USER'S MANUAL

FSGLMUL FSGLMUL

If <fmt> is Packed, refer to 6.1.8 Inexact Result
on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap

Single Precision Mutltiply

INEX1

Compatibility
Instruction Format:
5 1 13 12 mn 1w 9 8 7 3 5 4 3 2 1 0
COPROCESSOR EFFECTIVE AODRESS
1 ! 1 i i 0 0 g MODE REGISTER
SOURCE DESTINATION
0 [RM | O SPECIFIER REGISTER 0 ! 0 0 1 ! !

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W 111 000

An — — (o)L 1 001

(An) 010 reg. number:An #<data> m 100
{An)+ 011 reg. number:An
—{An) 100 reg. number:An

(d16.An) 101 reg. number:An {d16,PC) m 010

(dg.An,Xn) 110 reg. number:An {dg,PC,Xn) 1 011

{bd,An,Xn} 110 reg. number:An {bd,PC,Xn} 1 011

{Ibd,An,Xn},od) 110 reg. number:An {{bd,PC.Xn},od} 11 011

{{bd,An],Xn,od) 110 reg. number:An ({bd,PC],Xn,0d) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
~ Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

MC68881/MC68882 USER'S MANUAL
4-101

]
FREESCALE

FS l N » . Sine FS I N

Operation: . Sine of Source » FPn

Assembler FSIN.<fmt> <ea>,FPn

Syntax: FSIN.X FPm,FPn
FSIN.X FPn

Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n Description: Converts the source operand to extended precision (if necessary) and cal-

culates the sine of that number. Stores the result in the destination floating-point data
register. This function is not defined for source operands of { %)infinity. If the source
operand is not in the range of [~2n ... +2%], the argument is reduced to within that
range before the sine is calculated. However, large arguments may lose accuracy
during reduction, and very large arguments (greater than approximately 1029) lose all
accuracy. The result is in the range of [—1... +1}.

Operation Table:

Source (n Range Zero Infinity
Destination + - + - + -

Result Sine +0.0 -0.0 NANT

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source is {+ or -)infinity; cleared
otherwise.
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 ff <fmt> is Packed, referto 6.1.8 Inexact Resuit

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

—
FREESCALE MC68881/MC68882 USER'S MANUAL
4-102

FSIN

FSIN

Sine
Instruction Format:
B 13 12 110 3 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! 1 ' o 5 0 0 MODE REGISTER
SOURCE DESTINATIDN
v | M0 SPECIFIER REGISTER 0 0 0 ' ') 0

Instruction Fields:

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP,
Effective Address Field — Determines the addressing mode for external operands.
If RYM =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx).W 1m 000
An — — {xxx).L m 001
(An) 010 reg. number:An #<data> 111 100
(An)+ 011 reg. number:;An
~{An} 100 reg. number:An]

(dyg,An) 101 reg. number:An {d16.PC) 1M1 010
{dg,An,Xn} 110 reg. number:An {dg,PC,Xn} m 011
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 011

{{bd,An,Xn),0d) 110 reg. number:An {{bd,PC,Xn],0d} 111 011
{[bd,An],Xn,od) 110 reg. number:An {{bd,PC], Xn,0d) 1M1 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.

Source Specifier Field — Specifies the source register or data format.

If /M =0, specifies the source floating-point data register, FPm.

If R’M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R‘/M =0 and the source and destination fields are equal, then the input operand
is taken from the specified floating-point data register, and the result is written into
the same register. If the single register syntax is used, Freescale assemblers set the
source and destination fields to the same value.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-103

FSINCOS FSINCOS

Simultaneous Sine and Cosine

Operation: Sine of Source » FPs
Cosine of Source » FPc
Assembler FSINCOS.<fmt> <ea>,FPc:FPs
Syntax: FSINCOS.X FPm,FPc:FPs
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)

n " Description: Converts the source operand to extended precision {if necessary) and cal-
culates both the sine and the cosine of that number. Calculates both functions si-
multaneously; thus, this instruction is significantly faster than performing separate
FSIN and FCOS instructions. Loads the sine result into the destination floating-point
data register, FPs, and the cosine result into the destination floating-point data register
FPc. Sets the condition code bits according to the sine result. If FPs and FPc are specified
to be the same register, the cosine result is first loaded into the register and then is
overwritten with the sine result. This function is not defined for source operands of
{ +)infinity.

If the source operand is not in the range of {— 2w ... +27], the argument is reduced
to within that range before the sine and cosine are calculated. However, large argu-
ments may lose accuracy during reduction, and very large arguments {greater than
approximately 1029) lose all accuracy. The resuits are in the range of [~1... +1].

Operation Table:

Source In Range Zero Infinity !
Destination + . - + ~ t
FPs Sine +0.0 -00 NAN1 J[
FPc Casine +1.0 NAN! ;
NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2. W the source aperand is a NAN, refer to 4.5.4 NANSs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES (for the sine result)

Not affected

Cdndition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR - Set if the source is { +)infinity; cleared other-
wise
OVFL Cleared
UNFL Set if a sine underflow occurs, in which case

the cosine result is 1. Cosine cannot underflow.
Refer to 6.1.5 Underflow.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-104

FSI NCOS Simultaneous Sine and Cosine FSI NCOS

INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Resuit
on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap

Compatibility
Instruction Format:
5 % 13 12 1 1 9 .8 7 6 5 a 3 2 1 o
COPROCESSOR EFFECTIVE ADDRESS
1 1 ! ! D 0 0 0 MODE REGISTER
SDURCE DESTINATION DESTINATION
C | RM | 0 SPECIFIER REGISTER, FPs 0 1 1 0 REGISTER, FPc

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R’IM =0, this field is unused, and should be all zeros.
If R’M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 reg. number:Dn {xxx). W 111 000
An — — (xxx}.L 111 001
{An) 010 reg. number:An #<data> m 100 .
{An) + 011 reg. number:An
—{An) 100 reg. number:An
(dyg,An) 101 reg. number:An {d16,PC) 111 010
{dg,An,Xn} 110 reg. number:An (dg,PC,Xn} 111 011
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 on
([bd,An,Xn],0d) 110 reg. number:An {{bd,PC,Xn],od)} m 011
{{bd,An},Xn,od) 110 reg. number:An {[bd,PC|,Xn,0d) 1M1 o1

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R‘M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Rea!
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

MC68881/MC68882 USER'S MANUAL FREESCALE
4-105

FSINCOS Simultaneous Sine and Cosine FSINCOS

Destination Register, FPc Field — Specifies the destination floating-point data register,
FPc. The cosine result is stored in this register.

Destination Register, FPs Field — Specifies the destination floating-point data register,
FPs. The sine result is stored in this register. If FPc and FPs specify the same floating-
point data register, the sine resuit is stored in the register, and the cosine result is
discarded.

n If R’M=0 and the source register field is equal to either of the destination register
fields, the input operand is taken from the specified floating-point data register, and
the appropriate result is written into the same register.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-106

FSINH FSINH

Hyperbolic Sine

Operation: Hyperbolic Sine of Source § FPn
Assembler FSINH.<fmt> <ea>,FPn
Syntax: FSINH.X FPm,FPn
FSINH. X FPn
Attributes: Formatz(Byt.e, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and cal-
culates the hyperbolic sine of that number. Stores the result in the destination floating-
point data register.

Operation Table:

Source In Range Zera Infinity
Destination + - + - + -
Result Hyperbolic Sine +0.0 -0.0 +inf —inf
NQTE: |f the source operand is a NAN, refer to 4.5.4 NANs for more infarmation.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared '
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
Dz Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap Com-

patibility
Instruction Format:
B M 13 12 1110 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! 1 ! 10 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 [RM | O SPECIFIER REGISTER 0 0 0 0 0 ! 0

FREESCALE
4107

___]
MC68881/MC68882 USER'S MANUAL

FSI N H Hyperbolic Sine FS' N H

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to (D=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
if R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register iddressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx}.W 1m 000

An —_ — {xxx).L 111 001

{An) 010 reg. number:An #<data> 111 100
{An)+ 011 reg. number:An
—{An} 100 reg. number:An

(d16.An) 101 reg. number:An (d16.PC) m 010

(dg,An,Xn) 110 reg. number:An {dg.PC,Xn) m 011

{bd,An,Xn) 110 reg. number:An {bd,PC.Xn) m 011

([bd,An,Xn),od) 110 reg. number:An {{bd,PC,Xn],0d) 111 011

{[bd,An],Xn,od} 110 reg. number:An {{bd,PC],Xn,od) 111 [21]

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea>> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R'M =1, specifies the source data format:

000 L tong Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R/M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-108

FSQRT Square Root | FSQRT

Operation: Square Root of Source $ FPn

Assembler FSQRT.<fmt> <ea>,FPn

Syntax: FSQRT.X FPm,FPn
FSQRT.X FPn

Attributes: Format ={Byte, Word, Long, Single, Doubte, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and cal-
culates the square root of that number. Stores the result in the destination floating-
point data register. This function is not defined for negative operands.

Ay

Operation Table:

Source In Range Zero Infinity
Destination + - + - + -

Result VX NAN? +0.0 -0.0| +inf NANT

NOTES:
1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.56.1 SETTING FLOATING-POINT
CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Set if the source operand is not zero and is
negative; cleared otherwise
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 . Refer to 6.1.7 Inexact Resulit.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 {EEE Exception and Trap
Compatibility , :

]
MC68881/MC68882 USER'S MANUAL FREESCALE
4-109

FSQRT Square Root FSQRT

Instruction Format:

. W 13 o1 1 1w 8 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS i

1 1 1 1 0 0 0 0 MODE 7 REGISTER ;
SOURCE DESTINATION] -:

0 | RM| 0 SPECIFIER REGISTER g 0 0 0 1 c ;0

n Instruction Fields: :

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R’IM =0, this field is unused, and should be all zeros.
If R'M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register ,
Dn* 000 reg. number:Dn {xxx}.W 11 020
I An ~ — {xxx).L 111 001
{An} ’ 010 reg. number:An #<data> m 100
(An}+ 011 reg. number:An
—(An) 100 reg. number:An
{d16,An) 101 reg. number:An {d16.PC) m 010
{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 11 011
{bd,An,Xn} 110 reg. number:An {bd,PC,Xn) 1m 011
{{bd,An,Xn},0d) 110 | reg. number:An {{bd,PC.Xn},od) m 011 |
(ibd,An],Xn,od) 110 reg. number:An (Ibd,PC).Xn,0d) 1m 011 !

*Only if <fmt> is Byte, Word, Long or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R"'M =0, specifies the source floating-point data register, FPm.
If RI/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R/M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-110

FSUB

Subtract FSU B
Operation: FPn —Source » FPn
Assembler FSUB.<fmi> <ea>,FPn
Syntax: FSUB.X FPm,FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and sub-

tracts that number from the number in the destination floating-point data register.
Stores the result in the destination floating-point data register.

Operation Table:

Source in Range Zero) Infinity
Destination + - + - + -
in Range ‘Subtract Subtract - —inf +inf
+0.0! -0.0 - .
Zero Subtract _00 00!l "~ inf +inf
- + +inf +inf NANZ2 —inf
Infinity ~inf “inf ~inf NANZ
NOTES: :

1. Returns +0.0 in rounding modes RN, RZ; and RP; returns —0.0 in RM.
2. Sets the OPERR bit in the FPSR exception byte.
3. If the source operand is a NAN, refer to 4.5.4 NANs for mare information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANSs.
OPERR Set if both the source and destination are like-
signed infinities; cleared otherwise
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

MC68881/MC68882 USER'S MANUAL FREESCALE
4-111

FS U B Subtract FS U B

Instruction Format:

15 14 13 12 n 10 L] 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS [

! L 1 1 D 0 0 0 MODE REGISTER i
SOURCE DESTINATION]

¢ [RM | 0 SPECIFIER REGISTER 0 1 0 1 0 0 ¢

instruction Fields:
Coprocessor iD Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R’/M =0, this field is unused, and should be all zeros.
If R’'M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode *| Mode Register Addressing Mode Mode Register 1
Dn* 000 reg. number:Dn {xoxx). W m 000
An — — o)L m 091 ﬁ
{An) 010 reg. number:An #<data> 1m 100
{An)+ a1 reg. number:An
—(An)} 100 reg. number:An
{dy6,An) 101 reg. number:An (d16.PC) 11 010]
{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 1m 011 i
(bd,An,Xn) 110 reg. number:An {bd,PC,Xn) 111 011 \
{[bd.An,Xn],0d) 110 reg. number:An ([bd,PC,Xn},0d) m o1 |
(Ibd,An),Xn,od) 110 reg. number:An (Ibd,PC),Xn,0d) 111 on

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea>> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R’'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P- Packed Decimal Real
100 - W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.

FREESCALE MC68881/MC68882 USER'S MANUAL
4112

FTAN

Tangent FTA N

Operation: Tangent of Source » FPn
Assembler FTAN,<fmt> <ea>,FPn
Syntax: FTAN.X FPm,FPn
FTAN.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and cal-
culates the tangent of that number. Stores the result in the destination fioating-point
data register. This. function is not defined for source operands of (+)infinity. If the
source operand is not in the range of [-w/2... + /2], the argument is reduced to
within that range before the tangent is calculated. However, large arguments may lose
accuracy during reduction, and very large arguments (greater than approximately 1020)

lose all accuracy.

Operation Table:

Destination

Source [In Range Zero Infinity
+ - + - + -

Result

Tangent +0.0 -0.0 NAN?

NOTES:

1. Sets the OPERR bit in the FPSR exception byte.
2. If the source operand is a NAN, refer to 4,5.4 NANs for more information.

Status Register:
Condition Codes:

Quotient Byte:
Exception Byte:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

BSUN Cleared

SNAN Refer to 4.5.4 NANSs.

OPERR . Set if the source is (=)infinity; cleared other-
wise

OVFL Refer to 6.1.4 Overflow.

UNFL - Refer to 6.1.5 Underfiow.

DZ Cleared

INEX2 Refer to 6.1.7 Inexact Result.

INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 |EEE Exception and Trap

Compatibility

L. |
MC68881/MC68882 USER'S MANUAL FREESCALE

4113

' FTAN Tangent FTAN

Instruction Format:

15 14 13 12 n 10 9 8 7 B 5 4 3 2 1 g

COPROCESSOR EFFECTIVE ADDRESS '
1 ! 1 1 D 0 0 0 MODE REGISTER !
SOURCE DESTINATION i
6 [RM | 0 SPECIFIER REGISTER 0 0 0 ! 1 1 ! l

n Instruction Fields:

Coprocessor.ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assembiers default to ID=1 for the FPCP.

Effective Address Field — Determines the addressing mode for external operands.
If R’M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Made Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn {xxx).W 111 0ad

An — - {oxx).L 1 00

{An) 010 reg. number:An #<data> 111 103

{An)+ 011 reg. humber:An

—-(An) 100 reg. number:An |
{d1g,An} 10 reg. number:An (d16.PC) m 010 ;
(dg.An,Xn) 110 | reg. number:An {dg,PC,Xn) m 011 |
{bd,An,Xn) 110 reg. number:An {bd,PC.Xn) m 011 ;

{{bd,An,Xn],od) 110 reg. number:An {{bd,PC,Xn],0d) 11 011

{Ibd,An},Xn,od) 110 reg. number:An {[bd,PC]),Xn,0d) 1M o

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R‘'M =1, specifies the source data format:
' 000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R/M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4114

FTANH FTANH

Hyperbolic Tangent

Operation: Hyperbolic Tangent of Source # FPn
Assembler FTANH.<fmt> <ea>,FPn
Syntax: FTANH.X FPm,FPn
FTANH.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Pack_ed)
Description: Converts the source operand to extended precision (if necessary) and cal- n

culates the hyperbolic tangent of that number. Stores the result in the destination
floating-point data register.

Operation Table:

Destination

Source

+

In Range

+

Zero

+

Infinity

Result

+0.0

-0.0

+1.0

~1.0

Hyperbolic Tangent

NOTE: If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact

Result on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

MC68881/MC68882 USER'S MANUAL FREESCALE
4-115

FTA N H Hypefbolic Tangent FTA N H

Instruction Format:

5 " © 13 12 n 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS

L L R R & D o | 0 |0 MODE REGISTER
SOURCE DESTINATION

0 (RMI 0 SPECIFIER REGISTER 0 0 0 ' 0 0 1

n Instruction Fields: :
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an MB8000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register j
Dn* 000 reg. number:Dn {xxx). W 111 000 :
An = h~ fxxx).L 1 001
{An) 010 reg. number:An #<data> m 100
(An) + 011 reg. number:An
-~ {An) 100 reg. number:An
{d1g,An} . 101 reg. number:An 7 (d16,PC) 11 010
(dg,An,Xn) 110 reg. number:An (dg,PC.Xn) 11 on
{bd,An,Xn) 110 reg. number:An (bd.PC.Xn) 11 011
({bd,An,Xn},od) 110 reg. number:An {bd,PC,Xn],0d) 1 011 E
{{bd,An],Xn,od) 110 reg. number:An {[bd,PC].Xn,0d) 11 011 1

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R‘'M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 -X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-116

10x FTENTOX

FTENTOX

Operation: 10Source g FPn
Assembler FTENTOX.<fmt> <ea>,FPn
Syntax: FTENTOX.X FPm,FPn
FTENTOX.X FPn
Attributes: Format = (Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and cal-

culates 10 to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

Sowrce In Range Zero Infinity
Destination + - + - + -~

Result 10% +1.0 +0.0

+inf

NOTE: |If the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Affected as described in 4.5.5.1 SETTING FLOATING-POINT
CONDITION CODES

Not affected

Condition Codes:

Quotient Byte:

Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, referto 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

Instruction Format:

5 1 1B 2 1 w9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! D 0 0 0 MODE REGISTER
SOURCE DESTINATION »
RELEE SPECIFIER REGISTER ¢ ! 0 0 ! 0

MC68881/MC68882 USER'S MANUAL

FREESCALE
4117

FTENTOX 10x FTENTOX

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If R/M =0, this field is unused, and should be all zeros.
If R/M =1, this field is encoded with an M68000 addressing mode as shown:

Addressing Mode Mode Register Addressing Mode Mode Register E

Dn* . 000 reg. number:Dn {xxx}.W 11 000

An — — {xxx).L 11 001

{An} 010 reg. number:An #<data> 111 100
{An}+ 01 reg. number:An
—{An) 100 reg. number:An

{d16,An) 101 reg. number:An {d16.PC) 111 010

(dg.An,Xn) 110 reg. number:An {dg.PC.Xn) m 011

(bd,An,Xn} 110 reg. number:An {bd.PC.Xn) m 01

{Ibd,An,Xn},od) 110 reg. number:An {[bd,PC,Xn}],0d} 111 01

{Ibd,An],Xn,od) 110 reg. number:An {[bd,PC].Xn,0d) m 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R’/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination fioating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-118

FT RA PCC Trap Conditionally FT RA PCC

Operation: If condition true, then TRAP

Assembler FTRAPcc

Syntax: FTRAPcc.W #<data>
FTRAPcc.L #<data>

Attributes: Size=(Word, Long} .

Description: |f the selected condition is true, the main processor initiates exception
processing. A vector number is generated to reference the TRAPcc exception vector.
The stacked program counter points to the next instruction. If the selected condition
is not true, no operation is performed, and execution continues with the next instruc-
tion in sequence. The immediate data operand is placed in the word(s} following the
conditional predicate word and is available for user definition for use within the trap
handler.

The conditional specifier cc selects one of the 32 conditional tests defined in 4.4
CONDITIONAL TEST DEFINITIONS.

Status Register:

Condition Codes: Not affected
Quotient Byte: Not affected
Exception Byte: BSUN Set if the NAN condition code is set and the
condition selected is an IEEE nonaware test
SNAN Not Affected
OPERR Not Affected
OVFL Not Affected
UNFL Not Affected
DZ Not Affected
INEX2 Not Affected
INEX1 Not Affected

Accrued Exception Byte: The IOP bit is set if the BSUN bit is set in the exception byte.
No other bit is affected.

Instruction Format:

W 1B 12 nm W § 8 1 6 5 4 3 2 1 0
v] o T v] 1] coemocessorid [o o [o [0 [0 T] MODE
s o JoJ ol oJaJolofo]o CONDITIDNAL PREDICATE

16-BIT DPERAND DR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)
LEAST SIGNIFICANT WORD OR 32-BIT OPERAND (IF NEEDED)

MC68881/MC68882 USER'S MANUAL FREESCALE
4-119

FTRAPCC Trap Conditionally FTRAPCC

Instruction Fields: ‘

Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.

Mode Field — Specifies the form of the instruction.
010 — The instruction is followed by a word operand.
011 — The instruction is followed by a long word operand.
100 — The instruction has no operand.

Conditional Predicate Field — Specifies one of 32 conditional tests as described in 4.4

n CONDITIONAL TEST DEFINITIONS.
Operand Field — Contains an optiona! word or {ong word operand that is user defined.

NOTE

When a BSUN exception occurs, a pre-instruction exception is taken by the
main processor. If the exception handler returns without modifying the image
of the PC on the stack frame (to point to the instruction following the FTRAPcc),
it must clear the cause of the exception (by clearing the NAN bit or disabling
the BSUN trap) or the exception occurs again immediately upon return to
the routine that caused the exception. .

FREESCALE MC68881/MC68882 USER'S MANUAL
4-120

FTST FTST

Test Operand

Operation: Condition Codes for Operand » FPCC

Assembler FTST.<fmt> <ea>

Syntax: FTST.X FPm

Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)
Description: Converts the source operand to extended precision (if necessary) and sets

the condition code bits according to the data type of the result.

Operation Table: The contents of this table differ from the other operation tables. A letter
in an entry of this table indicates that the designated condition code bit is always set
by the FTST operation. All unspecified condition code bits are cleared during the

operation,
Source In Range Zero Infinity
Destination + - | + - + -
Result none N 4 NZ | Nt
NQTES:

1. If the source operand is a NAN, set the NAN condition code bit.
2. If the source operand is a SNAN, set the SNAN bit in the FPSR exception byte.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Cleared
UNFL Cleared
DZ Cleared
INEX2 Cleared
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

on Decimal Input; cleared otherwise.

Affected as described in 6.1.10 IEEE Exception and Trap
Compatibility

Accrued Exception Byte:

Instruction Format:

s 14 13 1 1 1 9§ 8 7 & & 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! ! 10 gj o)0 MODE REGISTER
SOURCE DESTINATION
U ojRM 0 SPECIFIER - REGISTER v ! 1 R 0

MC68881/MC68882 USER'S MANUAL

FREESCALE
4121

FTST Test Operand FTST

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to ID=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands.
If RIM =0, this field is unused, and should be all zeros.
If RIM =1, this field is encoded with an M68000 addressing mode as shown:

n Addressing Mode Maode Register Addressing Mode Mede Register

Dn* 000 reg. number:0n {xxx).W m 000
An - - {xxx).L 1 oo1
(An) 010 reg. number:An #<data> 11 100

{An)+ 01 reg. number:An

~—{An} 100 reg. number:An
(dyg.An) 101 reg. number:An {d1g.PC) 11 010
{dg,An,Xn) 110 reg. number:An (dg,PC,Xn) M 011
{bd,An,Xn) 110 reg. number:An {bd,PC,Xn) M 011
{[bd,An,Xn],0d) 110 reg. number:An ({bd.PC Xn],od) 111 011
({{bd.An},Xn,o0d) 110 reg. number:An {{bd,PC].Xn,od) 11 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If RIM =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:
000 L Long Word Integer

001 S Single Precision Rea!
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Since the FPCP uses a common command word format
for all of the arithmetic instructions {including FTST), this field is treated in the same
manner for FTST as for the other arithmetic instructions, even though the destination
register is not modified. This field should be set to zero in order to maintain com-
patibility with future devices, although the FPCP does not signal an illegal instruction
trap if it is not zero.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-122

FTWOTOX FTWOTOX

2x

Operation: 25ource y Fpn
Assembler FTWOTOX.<fmt><ea>,FPn
Syntax: FTWOTOX.X FPm,FPn
FTWOTOX.X FPn
Attributes: Format=(Byte, Word, Long, Single, Double, Extended, Packed)

Description: Converts the source operand to extended precision (if necessary) and cal-
culates two to the power of that number. Stores the result in the destination floating-
point data register.

Operation Table:

Source In Range Zero Infinity
Destination + - + + -
Result 2% +1.0 +inf +0.0
NOTE: |f the source operand is a NAN, refer to 4.5.4 NANs for more information.

Status Register:

Condition Codes: Affected as described in 4.5.5.1 SETTING FLOATING-POINT

CONDITION CODES
Quotient Byte: Not affected
Exception Byte: BSUN Cleared
SNAN Refer to 4.5.4 NANs.
OPERR Cleared
OVFL Refer to 6.1.4 Overflow.
UNFL Refer to 6.1.5 Underflow.
DZ Cleared
INEX2 Refer to 6.1.7 Inexact Result.
INEX1 If <fmt> is Packed, refer to 6.1.8 Inexact Result

‘ on Decimal Input; cleared otherwise.
Accrued Exception Byte: Affected as described in 6.1.10 IEEE Exception and Trap

Compatibility
Instruction Format:
LT TRt S 7 S DR [/ 8 7 6 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! 0 0 0 0 MOQE REGISTER
SQURCE DESTINATION
0 |RM [0 SPECIFIER REGISTER 0 ! 0 0 0 1

MC68881/MC68882 USER'S MANUAL FREESCALE
4123

FTWOTOX 24 FTWOTOX

Instruction Fields:
Coprocessor ID Field — Specifies which coprocessor in the system is to execute this
instruction. Freescale assemblers default to D=1 for the FPCP.
Effective Address Field — Determines the addressing mode for external operands
If R/IM =0, this field is unused, and should be all zeros.
if R/M =1, this field is encoded with an M68000 addressing mode as shown:

n Addressing Mode Mode Register Addressing Maode Mode Register

Dn* 000 reg. number:Dn o). W m 000
An - - pocdL 111 001
(An} 010 reg. number:An #<data> 11 100

{An) + 011 reg. number:An

—{An} 100 reg. number:An
(d16.An) 101 reg. number:An (d16,PC) 111 010
{dg.An,Xn) 110 reg. number:An {dg,PC.Xn) 11 011
{bd,An,Xn} 110 reg. number:An {bd.PC,Xn) 119 011
({bd,An,Xn],0d) - 110 reg. number:An {ibd,PC,Xnl.0d) 11 o1
{[bd,An),Xn,od) 110 reg. number:An {Ibd,PC].Xn.od) 111 011

*Only if <fmt> is Byte, Word, Long, or Single.

R/M Field — Specifies the source operand address mode.
0 — The operation is register to register.
1 — The operation is <ea> to register.
Source Specifier Field — Specifies the source register or data format.
If R/M =0, specifies the source floating-point data register, FPm.
If R/M =1, specifies the source data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W Word Integer

101 D Double Precision Real
110 B Byte Integer

Destination Register Field — Specifies the destination floating-point data register, FPn.
If R’M =0 and the source and destination fields are equal, the input operand is taken
from the specified floating-point data register, and the result is written into the same
register. If the single register syntax is used, Freescale assemblers set the source
and destination fields to the same value.

FREESCALE MC68881/MC68882 USER'S MANUAL
4124

4.7 INSTRUCTION ENCODING DETAILS

The following paragraphs provide the details of the object code formats for the general,
branch, set on condition, save, and restore type coprocessor instructions.

All FPCP instructions are from two to eight words in length as shown below (the longest
case is for an immediate operand of six words — the X or P format).
5 4 13 12 n W 9 & 1 6 S5 4 3 2 1 @
OPERATION WORD
MC68881 COMMAND WORO, OR CONDITIONAL PREDICATE
EFFECTIVE ADDRESS EXTENSION WORDS, DISPLACEMENT, OR IMMEDIATE OPERAND [iF ANY, 1-6 WORDS)

All FPCP instructions begin with an operation word, formatted as follows:

% 4 138 12 0w 1w 9 8 7 & 5 4 3 2 1 0
v 1 o] v] 1] corrocessorip | o | o [o | TYPE | TYPE DEPENDENT |

Coprocessor ID — Specifies which coprocessor in the system is to execute this in-
struction. Freescale assemblers default to ID=1 for the FPCP,
Type — Specifies the type of coprocessor instruction:
000 — General Instructions (Arithmetics, FMOVE, FMOVEM)
001 — FDBcc, FScc, FTRAPcc

010 — FBcc. W
011 — FBcc.L
100 — FSAVE

101 — FRESTORE
110 — {(Undefined, Reserved)
111 — (Undefined, Reserved)

Type Dependent — Normally specifies the effective address or conditional predicate,
but usage depends on the type field.

4.7.1 General Type Coprocessor Instruction Format

The general type coprocessor instruction format (shown below) is used for all FPCP arith-
metic, move, move multiple, move constant, and transcendental instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION WORD
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! 1 D 0 0 0 MODE REGISTER
COMMAND WORD
oPCLASS | RX | RY [EXTENSION

The interpretation of the command word fields, OPCLASS, RX, RY, and EXTENSION field
varies with the instruction type and is summarized in Table 4-11.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-125

Table 4-11. General Type Instruction Command Word Fields

Opclass RX RY Instruction Class
000 Source, Destination, |FPm to FPn. The extension field specifies the operation {move,
FPm FPn add, etc.)
001 — —_ Undefined, reserved.
010 000-110 " Destination, | Memory to Fpn. The extension field specifies the operation {move,
Source Data FPn add, etc.}.
Format
010 111 Destination, | Move constant to FPn. The extension field contains the offset of
FPn the ROM constant.
011 Destination Source, Move FPm to an external destination. If the destination format is
Data Format FPm packed decimal, the extension field specifies the k-factor {#k or
Dn}; otherwise it should be zero.
100 FPcr 000 Move single or multiple to the system control registers. The exten-
Select sion field should be zero.
101 FPcr 000 Move single or multiple system control registers to memory. The
Select extension field should be zero.
110 Register list 00m Move mutliple to the floating-point data registers. The least signifi-
and addressing cant bit of the RY field and the extension field contains the register
mode sefect. list, or the number of the main processor data register that con-
tains the list.
11 Register list 00m Move multiple from the floating-point data registers. The least sig-
and addressing nificant bit of the RY field and the extension field cantains the reg-
mode select. ister list, or the number of the main processor data register that

contains the list.

The FPCP general type instructions are classified into groups based upon instruction func-
tion and argument location {external or internal to the FPCP) as follows:

Floating-Point Register to Register

External Operand to Fioating-Point Data Register

Move Constant to Floating-Point Data Register

Move Floating-Point Data Register to External Destination
Move System Control Register

Move Multiple Floating-Point Data Registers

O wWwN =

Subdivision of the instruction set on this basis simplifies the specification of the MPU
services required by each FPCP instruction. The FPCP requests services from the MPU via
the coprocessor interface primitives described in 7.5 INSTRUCTION DIALOGS.

If the command word indicates that an operand external to the FPCP is to be fetched or
stored, the effective address field of the operation word is an MPU effective address de-
scriptor. When the FPCP requests an external data access, the MPU evaluates the source’
destination effective address based upon this effective address descriptor and transfers
operand(s) to/from the FPCP.

If all operands are contained in FPCP floating-point data registers, the effective address
field should be all zeros. If the effective address field is not all zeros, instruction execution
proceeds normally; no F-line emulator exception trap is taken. However, to ensure com-
patibility with future devices, assembler and compiler programmers should fill this field
with zeros when it is not used.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-126

4.7.1.1 REGISTER-TO-REGISTER INSTRUCTIONS. This class of instructions includes
floating-point data register to floating-point data register moves and the monadic, dyadic
arithmetic, and transcendental instructions. For dyadic arithmetic instructions, the desti-
nation operand is replaced by the result.

FPm <op> FPn » FPn

For monadic arithmetic instructions, the operand is the source FPm and the result is placed
into the destination FPn. The source FPm and destination FPn can be the same floating-
point data register.

FPm <op> » FPn

The encoding format for this class of instructions is: . n

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

v [v [1 [1 [coerocessorm [o [o [o JoJoJoJoJofo
SOURCE DESTINATION

o oo REGISTER REGISTER EXTENSION

Table 4-12 shows the encoding of the source and destination register field.

Table 4-12. Register Field

Encoding
000 — FPO 100 — FP4
001 — FP1 101 — FPS
010 — FP2 110 — FP6
011 — FP3 111 — FP7

The extension field indicates the operation to be performed. Table 4-13 lists the extension
field encodings and functions. Also shown are the services requested of the MPU by the
FPCP.

4.7.1.2 EXTERNAL OPERAND-TO-REGISTER INSTRUCTIONS. This class of instructions
includes external operand to floating-point data register move and arithmetic instructions.
External operands are located either in memory or an MPU data register (for B, W, L, or
S data types). Data format conversion from one of the seven memory data formats to the
extended data format is implicit in these instructions. For dyadic arithmetic instructions,
the value in FPn is replaced by the result.

External Operand <op> FPn » FPn

For monadic arithmetic instructions, the external operand is the source, and the result is
placed in the destination FPn.

External Operand <op> » FPn

The encoding format for this class of instructions is:

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 D o o]0 MODE | REGISTER
SOURCE DESTINATION
0 ! 0 FORMAT REGISTER EXTENSION

MC68881/MC68882 USER'S MANUAL FREESCALE
4127

Table 4-13. Extension Field Encoding for Arithmetic Operations

Extesr:i:i:el;ield Instruction Type MPU Extesnesri;:ef;'leld Instruction Type MPU
$00 FMOVE to FPn _ Note1 $18 FABS Note 1
$01) FINT Note 1 $18 FCOSH Note 1
$02 FSINH Note 1 $1A FNEG Note 1
$03 FINTRZ Note 1 $1C FACOS Note 1
$04 FSQRT Note 1 $10 FCOS Note 1
$06 FLOGNP1 Note 1 $1E FGETEXP Note 1
$08 FETOXM1 Note 1 $1F FGETMAN Note 1

n $09 FTANH Note 1 $20 FDIV Note 1
$0A FATAN Note 1 2 FMOD Note 1
$0C FASIN Note 1 $22 FADD Note 1
$0D FATANH Note 1 $23 FMUL Note 1
$0E FSIN Note 1 $24 FSGLDIV Note 1
$OF FTAN Note 1 $25 FREM Note 1
$10 FETOX Note 1 $26 FSCALE Note 1
$11 FTWOTOX Note 1 $27 FSGLMUL Note 1
$12 FTENTOX) Note 1 $28 FSUB Note 1
$14 FLOGN Note 1 $30-$37 FSINCOS Note 1
$15 FLOG10 Note 1 $38 FCMP Note 1
$16 FLOG2 Note 1 $3A FTST Note 1

$40-S7F [Undefined, Note 2
Reserved)
NOTES:

1. Two primitives can be issued for these operations. If the operation is register-to-register, the first primitive issued is
null. If any exceptions, other than BSUN, are enabled, PC is set to one to request that the MPU pass the current program
counter. If the operation is external aperand-to-register, the first primitive js evaluate effective address and transfer
data {with CA=1, and PC=1 if any exceptions other then BSUN are enabled}. The second primitive is null ({CA=0)to
terminate the instruction dialog.

2. The FPCP issues the take pre-instruction exception primitive with a vector number of 11 to instruct the MPU to take an
F-line emulator trap.

3. Some extension field encodings are unspecified, are redundant with valid instructions implemented by the FPCP, and
do not cause an F-line exception if executed. However, these encodings are reserved for future definition by MNotorola,
and thus should not be generated by assemblers or compilers. The redundant encodings are: $05, $07, $0B, $i3, $17,
$1B, $29-$2F, $39, and $3B~$3F.

The destination register is encoded as shown in Table 4-12.

The source format field specifies the data format of the external operand. From the external
operand are derived the length (in bytes) of the operand and the allowed effective ad-
dressing modes. The FPCP decodes the source format field as listed in Table 4-14. The
extension field indicates the operation to be performed. Table 4-13 lists the extension field
encodings and functions. Also listed are services requested of the MPU by the FPCP.

4.7.1.3 MOVE CONSTANT TO FLOATING-POINT DATA REGISTER INSTRUCTIONS. The
FPCP constant ROM contains frequently used constants such as 0.0 and =. These instruc-
tions load a correctly rounded constant into a floating-point data register without an ex-
ternal data access.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-128

Table 4-14. Source Format Field Encoding

Source Format External Operand Length Allowed
Encoding Data Format in Bytes <ea>
000 Long Word Integer 4 Data
001 Single Precision Real 4 Data
010 Extended Precision Real 12 Memory
01 Packed Decimal Real 12 Memory
100 Word Integer 2 Data
101 Double Precision Real 8 Memory
10 Byte Integer 1 Data
The encoding format for this class of instructions is:
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 COPROCESSOR ID I i} J o 0 [i L 0 [il | 0 { 0 I 0
0| 1 o | 1 1 1 DEHSETGTSA}TS,? N EXTENSION

The destination register field is encoded as shown in Table 4-12.

The extension field is used as an offset into the FPCP constant ROM. The. FMOVECR
instruction definition in 4.6 INDIVIDUAL INSTRUCTION DESCRIPTIONS provides the valid
extension field values for the FMOVECR instruction. The only service required by the FPCP
from the MPU is the passing of the MPU PC to FPIAR if exceptions (other than BSUN) are
enabled. This service is requested with the null (CA=1, PC=1) primitive.

4.7.1.4 MOVE TO EXTERNAL DESTINATION INSTRUCTIONS. External destinations are
either memory or an MPU data register. Data format conversion from the extended data
format to one of the seven memory data formats is implicit for these instructions. The
encoding format for this class of instructions is:

B 14 13 12N 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 1o 0 0 0 MODE REGISTER
DESTINATION SOURCE
0 1 1 FORMAT REGISTER EXTENSION

The source register field is encoded as shown in Table 4-12.

The destination format field indicates the data format of the external destination. The MPU
performs all transfers to an external destination at the request of the FPCP. When the FPCP

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-129

makes a request for a transfer to an external destination, the fength {in bytes) of the operand,
and the allowed effective addressing modes are specified in the primitive.

The FPCP decodes the destination format field to determine the fength of the operand to
be stored and the allowed effective addressing modes as listed in Table 4-15.

The extension field affects instruction execution anly when the destination data format is
packed decimal. A destination format encoding of 011 specifies a packed decimal string
destination with the formatting parameter, k, in the extension field (encoded as a twos-
complement value).

n Table 4-15. Destination Format Field Encoding

Destination Format External Operand " Length Allowed ﬁ«'
Encoding Data Format in Bytes <ea> ;
000 Long Word Integer 4 Data Alterable |
001 Single Precision Rea! 4 Data Atterable }
010 Extended Precision Rea! 12 Memory Alterable I
011 Packed Decimal Real with Static k-factor 12 Memory Alterzble i
100 Word integer 2 Data Alterable jf
101 Double Precision Real 8 Memory Alterable
110 Byte Integer 1 Data Alterable
111 Packed Decimal Real 12 Memory Alterable with Dynamic
k-factor

A destination format encoding of 111 indicates a packed decimal string destination with
the formatting parameter, k, in an MPU data register. The extension field contains the
number of the MPU data register that contains the k-factor. The MPU data register number
is encoded in bits 6-4 of the extension field; bits 3-0 should be zero. The seven {east
significant bits of the MPU data register contain a twos-complement k-factor. The 25 most
significant bits of the MPU data register are ignored. Table 4-16 lists the destination format
field encodings, related extension field encodings, instruction operation, and the services
requested of the MPU by the FPCP.

4.7.1.5 MOVE SYSTEM CONTROL REGISTER INSTRUCTIONS. This class of instructions
includes the move single system control register instruction and the move multiple systemn
control registers instruction. For the move single system control register instruction, ex-
ternal 32-bit operands may be immediate, in memory or an MPU register. For the move
multiple system control register instructions, external operands may only be immediate
or in memory (immediate addressing is only allowed if dr=0). The encoding format for
this class of instructions is:

% 4 138 1 u w s & 1 & 5 4 3 2 1 ¢
T COPROCESSOR EFFECTIVE ADDRESS }
A I L D 0 | 8 |0 MODE REGISTER
REGISTER
10 | o LSt o [oo of{of| oo [o]o]|o0

FREESCALE MC68881/MC68882 USER'S MANUAL
4-130

Table 4-16. Extension Field Encoding

Destination Extension External Operand MPU

Format Encoding Encoding Data Format Services
000 0000000 Long Word Integer Notes 1 and 2
001 0000000 - Singte Precision Real Notes 1 and 2
010 0000000 Extended Precision Real Notes 1 and 2
on kkkkkkk Packed Decimal Real with a Static k-factor Note 1
100 0000000 Word Integer Notes 1 and 2
101 0000000 Double Precision Real Notes 1 and 2
110 0000000 Byte Integer Notes 1 and 2
m rrr0000 Packed Decimal with a Dynamic k-factor Note 3 n

NOTES:

1. Four service requests can be issued for this instruction type:

a. - Null {CA=1, PC=x] can be first used to request the transfer of the PC to the FPIAR if exceptions are
enabled.

b. Null (CA=1,1A=1}is used to force the MPU to wait while the conversion takes place.

c. Evaluate effective address and transfer data (CA= 1} is issued to request the transfer of the converted
operand.

d. Null {CA=0) is used to terminate the dialog if no exception occurred. if an exception occurred, the
take mid-instruction exception primitive is used to terminate the dialog.

2. The extension field should be all zeros, but no F-line emulator trap is taken if it is not. Assemblers and
compilers should fill the extension field with zeros to ensure compatibility with future devices.

3. Bits 3-0 of the extension field should be zero, but no F-line emulator trap is taken if they are not. Assemblers
and compilers should set these bits to zero to ensure compatibility with future devices. Four service requests
are issued for this instruction:

a. Transfer single main processor register (CA=1, PC=x) is first used to request the transfer of the PC
1o the FPIAR (if exceptions are enabled) and to transfer the MPU data register containing the k-factor.

b. Null (CA=1,1A=1) is used to force the MPU to wait while the conversion takes piace.

c. Evaluate effective address and transfer data (CA =1} is issued to request the transfer of the converted
operand. :

d. Null (CA=0) is used to terminate the dialog if no exceptions occurred. If an exception occurred, the
take mid-instruction exception primitive is used to terminate the dialog.

The dr bit set to one indicates a read of the FPCP; cleared to zero indicates a write to the
FPCP. The register select field specifies the system control register or registers to be moved
during the operation. Table 4-17 lists the dr and register list field encodings, instruction
operation, operand size, allowed effective addressing modes, and services required of the
MPU by the FPCP for this instruction type.

Bits 9-0 of the command word should be zero, although no F-line trap is taken if they are
not. Assemblers and compilers should set these bits to zeros to ensure compatibility with
future devices. ' , :

4.7.1.6 MOVE MULTIPLE FLOATING-POINT DATA REGISTERS INSTRUCTIONS. This class
of instructions provides move multiple floating-point data register operations analogous
to the M68000 move multiple address and data registers instructions. Unlike the integer
counterpart, the floating-point register list can be specified either statically in the instruction
or dynamically in an MPU data register.

The addressing modes for the move multiple from memory to floating-point data registers
instruction are restricted to the control and address register indirect with postincrement
effective addressing modes.

The addressing modes for the move multiple from floating-point data registers to memory
instruction are restricted to the control alterable and address register indirect with prede-
crement effective addressing modes.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-131

Table 4-17. Encoding for Move FPcr Operations

Register Instruction Transfer Size A’(";:V:d ncc?;ggg
List Operation {in Bytes] Services
Move Memory to Registers {dr=0)

000 (Undefined, Reserved) — — Notes 1 and 2

001 Move to FPIAR 4 Any Note 1 |

010 Move to FPSR 4 Data Naote 1 ;

011 Move to FPSR and FPIAR 8 Memory Note 1 j}

100 Move to FPCR 4 Data Note 1 j
n 101 Move to FPCR and FPIAR 8 Memory Note 1 E

110 Move to FPCR and FPSR 8 Memary Note 1 |

111 Move to FPCR, FPSR, and FPIAR 12 Memory Note 1

Move Registers to Memory (dr=1)

000 (Undefined, Reserved) — — Notes1and2 |

001 Move from FPIAR 4 Alterable Note 1 %

010 Move from FPSR 4 Data Alterable 1 j

011 Move from FPSR and FPIAR 8 Memory Alterable 1 }

100 Move from FPCR 4 Data Alterable 1

101 Move from FPCR and FPIAR 8 Memory Alterable 1

110 Move from FPCR and FPSR 8 Memory Alterable 1

111 Move from FPCR, FPSR, and FPIAR 12 Memory Alterable 1

NOTES:

1. This operation requires two primitives to be issued to the MPU. The first primitive is evaluate effective address and
transfer data {CA=1), indicating the appropriate transfer size and allowed effective addressing mode. The second
primitive is null (CA=0) to terminate the instruction dialog.

2. For the current implementation of the FPCP, this encoding is redundant with the 001 encoding of the register selec:
field (i.e., it selects the FPIAR as the only register to be moved); however, this encoding is reserved for future use by
Freescale,

NOTE

The effective addressing mode restrictions for this instruction are enforced by the
MPU when the transfer multiple coprocessor registers response primitive is re-
ceived (not by the FPCP when it receives the command word). If the encoding of
the effective address field in the operation word is inconsistent with the encoding
of the dr and mode fields in the command word, unexpected resuits occur. In
some cases, the instruction is executed, but the order of the register transfer is
the reverse of the appropriate order for the addressing mode. However, system
integrity is preserved for all cases.

The encoding format for this class of instructions is:

1T U S R ¥ I} B | I 8 7 6 5 a 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS

! L L ! D 0 0 0 MODE | REGISTER

1 1| odr MODE 0 0 0 REGISTER LIST

FREESCALE MC68881/MC68882 USER'S MANUAL
4-132

The dr bit set to one indicates a read of the FPCP; dr cleared to zero indicates a write to
the FPCP. The mode field specifies the order of the register transfer and the location of
the register list. The definitions of the mode field bits are (bits shown as X may be either
2ero or one):

0X Transfer FP7 through FPO

1X Transfer FPO through FP7

X0 Register List is Static

X1 Register List is Dynamic

The order of the register transfer that is selected affects the interpretation of the register
list, because the list is always scanned starting with the most significant bit. Thus, for the
0X encoding of the mode field, the most significant bit of the register list corresponds to
FP7. and the least significant bit corresponds to FP0. For the 1X encoding, this relationship
is reversed.

The type of the register list also affects the interpretation of the register list field. If a static
list is selected, then the register list field of the command word contains the register list.
If adynamic register list is selected, then the register list field of the command word contains
the number of the MPU data register that contains the register list. The format of the
register list field in the command word for the various mode field encodings is shown in
the following table. If a bit in the register list is set, then the corresponding register is
moved, otherwise the list is scanned for the next bit that is set. For the dynamic register
list format, rrr specifies the MPU data register that contains the register list (X means either
zero or one). The format of a dynamic register list is the same as the format of the appro-
priate static list, and it is contained in the least significant eight bits of the MPU data

register.
Mode Field
Encoding Register List Field Format
00 — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPO
10 — FPO FP1 FP2 FP3 FP4 FP5 FP6 FP7
X1 — 0 r r r 0 0 0 0

Table 4-18 lists the dr and mode field encodings, instruction operation, allowed effective
addressing modes, and services required of the MPU by the FPCP for this instruction type.

4.7.1.7 UNDEFINED, RESERVED COMMAND WORDS. The command word encoding
shown below is undefined and reserved for future Freescale use. All undefined, reserved
command word encodings generate an F-line emulator exception.

15 14 13 12 1 10 9 8 7 b 5 4 3 2 1 0
1 1 1) COPROCESSOR ID 0 0 0 X X X X X X
0 [} 1 X X L X I X X X X X X X X X X

4.7.2 FDBcc, FScc, and FTRAPcc Instruction Formats

For these instruction types, the MPU writes a conditional predicate to the FPCP condition
CIR for evaluation. The FPCP determines whether the conditional predicate is true or false

MC68881/MC68882 USER'S MANUAL FREESCALE
4133

Table 4-18. Encodings for Move Muitiple FPn Operations

Mode tnstruction Allowed MPU |
Field Operation <ea> Modes Services J
Move Memory to Registers (dr=0)
00 {Invalid Operation) — & Note 1
01 {Invalid Operation) — Nate 1
10 Move to Registers, Static Register List {An}+ or Control Note 2
1 Move to Registers, Dynamic Register List {An) + or Control Note 3 ;

Move Registers to Memory (dr=1)

00 Move from Registers, Static Register List ~(An} | Now2
01 Move from Registers, Dyamic Register List ~(An) Note3

10 Move from Registeré, Static Register List Contral Alterable Note 2 !
" Move from Registers, Dynamic Register List Control Alterable Note3 |
NOTES:

1. These encodings cause the FPCP to perform an operation that is inconsistent with the M680DD Family move multiple
operations. For these cases, the selected registers are transferred in the order that is appropriate for the predecrement
addressing mode (i.e., FP7~FP0) using a static or dynamic register list, respectively. However, the MPU does not afiow
the predecrement addressing mode for a move from memory to multiple coprocessor registers operation. Thus, as-
semblers and compilers should not generate these encodings, or unexpected results may occur.

2. This instruction requires two primitives; the first is the transfer multiple coprocessor registers (CA=1) primitive to
request that the MPU evaluate the effective address, read the register select CIR, and transfer the number of registers
indicated by the mask (with an operand size of 12 bytes for each register). The second primitive is null (CA= 0}, which
is used to terminate the dialog.

3. This instruction requires three primitives; the first is the transfer single main processor register (CA=1) primitive to
request the transfer of the MPU data register that contains the dynamic registerlist. The second is the transfer mu'tiple
coprocessor registers (CA =1} primitive to request that the MPU evaluate the effective address, read the register select
CIR, and transfer the number of registers indicated by the mask (with an operand size of 12 bytes for each register}.
The third primitive is null {CA =0} to terminate the dialog.

based on the floating-point condition codes as described in 4.4 CONDITIONAL TEST DEF-
INITIONS. The true or false result is returned to the main processor with the null primitive.

These instructions all use the operation word type field encoding and command word
format shown below. The instruction specific field of the operation word determines the
instruction variation and is defined in Table 4-19 for each instruction type.

15 1L 13 12 n 10 9 8 7 6 5 4 3 2 1 0

1 { v [+ [1 | coprocessorip | o | o | 1 INSTRUCTION SPECIFIC
o J ol ool oJ o] o] o] o o] - CcONDIONAL PREDICATE

SR -

The conditional predicate field specifies the conditional test to be performed. Table 4-20
lists the conditional predicate encodings and the FPCP responses. For details of the cal-
culation of the response, refer to 4.4 CONDITIONAL TEST DEFINITIONS. Bits 15-6 of the
command word are shown to be filled with zeros; however, no F-line trap is taken if they
are not. To ensure compatibility with future devices, assemblers and compilers should fill
this field with zeros.

The displacement, extension, or operand words follow immediately after the conditional
predicate word. For the FDBcc instruction, the displacement is a 16-bit twos complement
integer that indicates the relative distance in bytes from the displacement word (i.e., the

FREESCALE MC68881/MC68882 USER'S MANUAL
4134

Table 4-19. Encodings for the FDBcc, FScc, and FTRAPcc Instructions

Instruction Instruction Selected MPU
Specific Field Operation <ea> Services
000 XXX FScc <ea> Dn Note 1
001 XXX FDBcc Dn,<label> — Note 2
010 XXX FScc <ea> {An) Note 1
011 XXX FScc <ea> (An) + Note 1
100 XXX FScc <ea> —{An}) Note 1
101 XXX FScc <ea> diglAn) Note 1
110 XXX FScc <ea> indexed/indirect Note 1
111 000 {Undefined, Reserved) — Note 3
111 001 (Undefined, Reserved) — Note 3
111 010 FTRAPcc.W #<data> — Note 4
1M1 0N FTRAPcc.l. #<data> - — Note 4
111 100 FTRAPcc with No Parameter — Note 4
11 101 {Undefined, Reserved) — Note 3
"1 110 {Undefined, Reserved) — Note 3
111 1M (Undefined, Reserved) — Note 3

NOTES:

1. The MPU evaluates the <ea> and writes the conditional predicate to the FPCP for evaluation. The null
{CA=0) primitive is used to return the true/false evaluation, and the appropriate value is then written
to the <ea> by the MPU. The value of XXX specifies the MPU data or address register {Dn or An) used
in the <ea> evaluation.

2. The MPU writes the conditional predicate to the FPCP for evaluation. The null {CA = 0} primitive is used
to return the true/false evaluation. If the condition is true, the MPU proceeds to the next instruction.
Otherwise, the counter register Dn.W (specified by the value of XXX) is decremented, and the new
value is compared with —1. If it is equal to — 1, the MPU proceeds to the next instruction; otherwise,
the 16-bit displacement is sign extended and added to the PC.

3. The MPU takes an F-line emulation trap.

4. The MPU writes the conditional predicate to the FPCP for evaluation. The null (CA=0) primitive is used
to return the true/false evaluation. If the condition is true, then the cpTRAPcc exception is taken. Oth-
erwise, the MPU proceeds to the next instruction, discarding the optional immediate operand if nec-
essary.

PC value used in the branch destination calculation is the address of the displacement
word). For the FScc instruction, the effective address extension words are formatted as
required by the main processor. For the FTRAPcc instruction, a one or two word user-
defined operand can be included with the instruction. Note that from the perspective of
the FPCP, these instructions are identical to the branch type coprocessor instructions. The
various operations are handled by the MPU in a manner that is transparent to the FPCP.

4.7.3 Conditional Branch Instruction Format

For this instruction type, the MPU writes a conditional predicate to the FPCP condition CIR
for evaluation. The FPCP determines whether the conditional predicate is true or false
based on the floating-point condition codes as described in 4.4 CONDITIONAL TEST DEF-
INITIONS. The true or false result is returned to the main processor with the null primitive.
The formats for this instruction type are shown below.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-135

Table 4-20. Conditional Predicate Evaluation Responses

/
c:;‘::iti:::l Mnemonic Definition hrﬁé?siz
Response
000000 F False Note 1
000001 EQ Equal Note 1
000010 oGT Ordered Greater Than Note 1
000011 OGE Ordered Greater Than or Equal) Note 1
000100 OoLT Ordered Less Than Note 1
000101 OLE Ordered Less Than or Equal Note 1
n 000110 OGL Ordered Greater Than or Less Than Note 1
000111 OR Ordered Note 1
| 001000 UN Unordered Note 1
001001 UEQ Unordered or Equal Note 1
001010 UGT Unordered or Greater Than Note 1
001011 UGE Unordered or Greater Than or Equal Note 1
001100 uLT Unordered or Less Than ' Note 1 |
001101 ULE Unordered or Less Than or Equal Note 1 |
001110 NE Not Equal Note 1 !
00M 1N T True Note 1)
010000 SF Signaling False Note 2
010001 SEQ Signaling Equal Note 2
010010 GT Greater Than Note 2
010011 GE Greater Than or Equal Note 2
010100 LT Less Than Note 2
010101 LE Less Than or Equal Note 2
010110 GL Greater Than or Less Than Note 2
010111 GLE Greater Than or Less Than or Equal Note 2
011000 NGLE Not (Greater Than or Less Than or Equal) Note 2 1
011001 NGL Not (Greater Than or Less Than) Note 2 __j
011010 NLE Not (Less Than or Equal) Note 2 2
011011 NLT Not {Less Than} Note 2
011100 NGE Not (Greater Than or Equal) Note 2
011101 NGT Not (Greater Than) Note 2
011110 SNE Signaling Not Equal Note 2
011111 ST Signaling True Note 2
1IXXXXX — (Undefined, Reserved) ‘L Note 3
NOTES:

1. Indicate the condition true or false result by using the null {CA=0) primitive.

2. if the NAN condition code bit is set, then set the BSUN bit in the FPSR. If the BSUN trap is enabled, then return the
take pre-instruction exception primitive with the BSUN vector number; otherwise, indicate the condition true false resuit
by using the null (CA=0} primitive,

3. Not used, redundant encodings with 0XXXXX. No F-line trap is taken if these bit patterns are used. To ensure com-
patibility with future devices, assemblers and compilers should use the 0XXXXX encodings.

FREESCALE MC68881/MC68882 USER'S MANUAL
4-136

15 14 13 12 1 10 9 8 7 [5 4 3 2 1 0

1 [+] v [v] coprocessorio [o [1 [o [CONDITIONAL PREDICATE
16-BIT DISPLACEMENT

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

1 [v [o] v] coemocessorm [o | 1 [1] CONDITIONAL PREDICATE
32-BIT DISPLACEMENT

The conditional predicate field specifies the conditional test to be performed. Table 4-20
lists the conditional predicate encodings and the FPCP responses. For details of the re-
sponse calculation, refer to 4.4 CONDITIONAL TEST DEFINITIONS.

The displacement is a twos-complement integer that indicates the relative distance in bytes
from the displacement word(s) (i.e., the PC value used in the branch destination calculation
is the address of the displacement word(s}). A 16-bit displacement is sign extended before
it is used in the branch destination calculation.

NOTE

From the perspective of the FPCP, the two forms of this instruction are identical.
The size of the displacement is determined by the MPU and is transparent to the
FPCP. Also, the FNOP instruction syntax that is recognized by Freescale assem-
blers generates an FBcc. W instruction with cc=F (false) and a displacement value
of zero.

4.7.4 Save Instruction Format'

The FSAVE instruction indicates that the FPCP must immediately suspend any current
operation and save the internal state in memory. Effective addressing modes are restricted
to control alterable and address register indirect with predecrement modes. The encoding
format for this instruction is:

% w4 13 12 0w ¢ & 1 & 5 4 3 2 0
COPRDCESSOR EFFECTIVE ADDRESS
! ! ! ! D ! 0 o MODE REGISTER

4.7.5 Restore Instruction Format

\
The FPCP restore instruction indicates that regardless of the current state of operation, a
new internal state is to be loaded immediately. Effective addressing modes are restricted
to control and address register indirect with postincrement modes. The encoding format
for this instruction is:

s ¥ 13 12 u w9 4 1 & 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 L ! ! 10 L 0 ! -MODE REGISTER

MC68881/MC68882 USER'S MANUAL FREESCALE
4137

4.8 INSTRUCTION FORMAT SUMMARY

The following paragraphs present a summary of the binary encodings for the FPCP in-
struction set. The unique encoding for each instruction is shown explicitly, with the encoded
fields common to all of the instructions listed in a single table at the beginning of this
section.

4.8.1 Coprocessor ID Field

This field of each instruction specifies which one of eight (seven, for the MC68030} possible
coprocessors in a system is to perform the operation. There are no restrictions placed on
the value of the ID field by the main processor in the system; however, certain conventions
should be followed. Freescale assemblers default to coprocessor D=1 for the FPCP. al-

though directives are available to change this default. Furthermore, due to the hardware
implementation of the MC68851 Paged Memory Management Unit, that device must be
assigned to coprocessor ID=0 if used in a system. Thus, the FPCP should not be assigned
to coprocessor ID=0 if it is anticipated that an MC68851 may be used in the system, or in
an MC68030 system.

4.8.2 Effective Address Field

This field specifies the M68000 Family addressing modethatisto be usedto locate operands
external to the FPCP {if required by the instruction). For some operations, restrictions are
placed on which of the available addressing modes are allowed. These restrictions are
enforced by hardware in the MPU and FPCP, and Freescale assemblers do not generate
operation words with disallowed effective addressing mode field encodings. The encodings
for this fields are shown in Table 4-21.

4.8.3 Register/Memory Field

This field is common to all of the arithmetic instructions and the FMOVE to FPn instruc-
tion. A zero in this field indicates that the operation is register-to-register, and a one in
this field indicates that the source operand is external to the FPCP.

4.8.4 Source Specifier Field

This field is common to all of the arithmetic instructions and the FMOVE floating-point
data register instruction. The definition of this field is affected by the value of the R M
field:

If R’M=0, it specifies the source floating-point data register, FPm.

If R“M =1, it specifies the source operand data format:

000 L Long Word Integer

001 S Single Precision Real
010 X Extended Precision Real
011 P Packed Decimal Real
100 W WordInteger

101 D Double Precision Real
110 B Byte Integer

FREESCALE MC68881/MC68882 USER'S MANUAL
4-138

Table 4-21. Effective Address Field Encoding Summary

Address Modes Mode | Register | Data | Memory | Control |Alterable Asssye':rt\:)l(er
Data Register Direct 000 | reg. no. X —_ — X Dn
Address Register Direct 001 reg. no. — — — X An
Address Register Indirect 010 reg. no. X X X X {An})
Address Register Indirect with Postincrement 011 reg. no. X X — X (An}+
Address Register Indirect with Predecrement 100 | reg. no. X X — X ~-(An)
Address Register Indirect with Disptacement 101 reg. no. X X X {d16.An)
Address Register Indirect with Index 110 | reg. no. X X X X {dg,An,Xn)
(8-Bit Displacement}
Address Register Indirect with Index 110 | reg. no. X X X X {bd,An,Xn)
(Base Displacement)
Memory Indirect Postindexed 110 | reg. no. X X X X {Ibd,An},Xn,od)
Memory Indirect Preindexed 110 | reg. no. X X X X ([bd,An,Xn},0d)
Absolute Short m 000 X X X X (xxx).W
Absolute Long 1m 009 X X X X {xxx}.L
Program Counter Indirect with Displacement 1m 010 X X X — {d16,PC)
Program Counter Indirect with Index 1M 011 X X X — {dg.PC.Xn}
(8-Bit Displacement}
Program Counter indirect with Index m on X X X — {bd,PC,Xn)
(Base Displacement)
PC Memory Indirect Postindexed 11 [N X X X — {[bd,PC],Xn,0d}
PC Memory Indirect Preindexed 1m on X X X — {{bd,PC,Xn},od)
Immediate 111 100 X X — #<data>

4.8.5 Destination Register Field

This field is common to all of the arithmetic instructions and the FMOVE to FPn instruc-
tion. This field specifies the floating-point data register that is to be used as the destina-
tion. The result of an operation is always stored in this register, and one of the source
operands is fetched from this register for dyadic instructions.

4.8.6 Conditional Predicate Field

This field is common to all of the conditiona!l instructions and specifies the FPCP condi-
tional test that is to be evaluated for the main processor. Table 4-22 shows the condi-
tional predicate binary encodings for the 32 conditional tests supported by the FPCP.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-139

Table 4-22. Conditional Predicate Field Encoding Summary

C:rnet:iit::::l Mnemonic Definition
000000 -F False
000001 EQ Equa!l
000010 OGT Ordered Greater Than
000011 OGE Ordered Greater Than or Equal
000100 OiT Ordered Less Than
000101 OLE Ordered Less Than or Equal
000110 OoGL Ordered Greater Than or Less Than
n 000111 . OR Ordered
001000 UN Unordered
001001 UEQ Unordered or Equal
001010 UGT Unordered or Greater Than
i o0p10M UGE Unordered or Greater Than or Equal
ggt1100 uLT Unordered or Less Than
001101 - ULE Unordered or Less Than or Equal
6061110 NE Not Equal
001111 T True
010000 SF Signaling Faise
010001 SEQ Signaling Equal
010010 GT Greater Than
010011 GE Greater Than or Equal
010100 LT Less Than }
010101 LE Less Than or Equal]
010110 GL Greater Than or Less Than
010111 GLE Greater Than or Less Than or Equa!
011000 NGLE Not (Greater Than or Less Than or Equal)
011001 NGL Not (Greater Than or Less Than)
011010 NLE Not {Less Than or Equal}
011011 NLT Not (Less Than]
011100 NGE Not {Greater Than or Equal}
011101 NGT Not {Greater Than)
011110 SNE Signaling Not Equal
011111 ST Signaling True

___]
FREESCALE MC68881/MC68882 USER'S MANUAL
4140

4.9 INSTRUCTION FORMAT DIAGRAMS

The instruction formats are summarized in this section.

FMOVE to FPn

15 14 13 12 " 10] 8 1 [5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS
! ! ! ! 10 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM Y0 SPECIFIER REGISTER oo oo a0

FINT
B w13 12w w9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! ! 10 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 [AM)0 SPECIFIER REGISTER 0 ¢ ¢ 0 ¢ 0 1
FSINH
15 14 13 12 n 10 9 8 7 6 5) 3 2)] 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! ! ! 0 0 0 g MODE REGISTER
SOURCE DESTINATION
0 | RM] 0 SPECIFIER REGISTER oo oot rtoao
FINTRZ
15 14 13 12 i 10 9 8 7 [5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 ! 1 0 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 (RM 0 SPECIFIER REGISTER 0 0 0 0 0 1 1
FSQRT
B w13 12 1 w9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! 1 1 iD 0 ¢ 0 MODE REGISTER
SOURCE DESTINATION
0 [RM} 0 SPECIFIER REGISTER 0 0 0 0 ! 0 ¢
FLOGNP1
B W 13 12 1" 9 8 ? 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! ! 1 1 0 e |0 |0 MODE REGISTER
SOURCE DESTINATION
o | RM | 0 SPECIFIER REGISTER 0 0 0 0 ! 1 ¢

MC68881/MC68882 USER'S MANUAL FREESCALE
4141

FETOXM1

15 14 13 12 1 10 9 8 7 4 3 2 f G
COPROCESSOR EFFECTIVE, ADDRESS {
1 1 1 D 0 0 MODE REGISTER |
SOURCE DESTINATION i |
0 | RM ;D SPECIFIER REGISTER 0 ! 0 ;0 ;0
FTANH
15 14 13 12 1 10 g 8 7 4 3 2 1 G
COPROCESSOR EFFECTIVE ADDRESS |
! 1 ! ! 10 b 0 MQDE REGISTER |
SDURCE DESTINATION {]
0 | PMY 0 SPECIFIER REGISTER o ryoe ey
FATAN
5 W 13 12 19 g 7 s 3 2 1 3
COPROCESSOR EFFECTIVE ADDRESS ;
1 ! ! 1 D o 0 MODE REGISTER ;
SOURCE DESTINATION : |
0 | RM o0 SPECIFIER REGISTER 0 ! g 1o
FASIN
s ¥ 1B 12 un w8 8 7 4 32 1 0
COPROCESSOR EFFECTIVE ADDRZSS L
1 ! 1 1 D 0 e MODE REGISTER
SDURCE DESTINATION | ! ;
U L SPECIFIER REGISTER 0 ! Vopobono
FATANH
v 1 1B 1z 1 1w g 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS !
! 1 ! [D ¢ 0 MODE i REGISTER :
SOURCE DESTINATION] ! b
b My SPECIFIER REGISTER ot
FSIN
5 W 13 12 " W 9 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS ;
1 i 1 1 o 0 0 MODE REGISTER 3
SOURCE DESTINATION | ; j
Rk SPECIFIER REGISTER R R s

FREESCALE
4-142

]
MC68881/MC68882 USER'S MANUAL

FTAN

5 W 1 1 1 w9 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 ! 1 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM 0 SPECIFIER REGISTER 0 1 ! 1 1
FETOX
B ¥ 1w o”r u w8 8 7 a 3 2 1 0
COPROCESSOR EFFECTIVE, ADDRESS
! ! ! ! D 0 0 MODE REGISTER
SOURCE OESTINATION
0 | RM 1 0 SPECIFIER REGISTER 1 0 0 0] 0
FTWOTOX
% W 13 2 1119 8 7 4 3 2 1 0
CDPRDCESSOR EFFECTIVE ADDRESS
! ! 1 L 10 0 0 MODE REGISTER
SDURCE DESTINATION
0 | RM 0 SPECIFIER REGISTER 1 0 0] 1
FTENTOX
B W 1 12 W 19 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADORESS
! ! ! ! I 0 1 0 MODE REGISTER
SOURCE DESTINATION
0 | RM ([0 SPECIFIER REGISTER 1 o 0 1 0
FLOGN
% ¥ 13 1 n 10 8 8 7 3 3 2 1 0
COPROCESSOR EFFECTIVE AODRESS
! L i ! o 0 0 MODE REGISTER
SOURCE DESTINATION
0 | AM Y 0 SPECIFIER REGISTER 1 0 1 0 0
FLOG10
5 14 13 12 1 1w 3 8 7 4 3 2 1 0
COPRDCESSOR EFFECTIVE ADDRESS
! ! 1 1 D 0 0 MODE REGISTER
SOURCE DESTINATION
e [RM Y 0 SPECIFIER REGISTER 1 0 1 6 1

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-143

FLOG2

5 W 13 12 1 9 8 7 4 3 2 1 °
COPROCESSOR EFFECTIVE ADDRESS
! 1) 1 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER ! u ! ! 0
FABS
5 14 13 12 u 1w 3 8 7 8 3 2 i 0
| COPROCESSOR EFFECTIVE ADDRESS [
| 1 ! 1 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM | 0 SPECIFIER REGISTER ! ! 0 0 0
FCOSH
5 4. 13 12 1N U 3 8 7 8 3 2 1 ¢
COPROCESSOR EFFECTIVE ADDRESS :
! ! L V D 0 0 MODE REGISTER i
SOURCE DESTINATION i
0 {RM} 0 SPECIFIER REGISTER 1 ! 0 0 L
FNEG
B w13 @2 1m0 8 8 7 4 3 2 1 ¢
COPROCESSOR EFFECTIVE ADDAESS i
1 1 1 i D 0 0 MODE REGISTER |
SOURCE DESTINATION *_
R SPECIFIER REGISTER Vv e prgpe
FACOS
5 14 13 12 1m0 3 8 7 8 3 Fi 1 e
COPROCESSOR EFFECTIVE ADDRESS |
! ! L 1 D 0 0 MODE REGISTER
SOURCE DESTINATION |] ;
O | RM D SPECIFIER REGISTER 1 ' 1|0 e
FCOS
5 w1 12 1w 9 8 7 1 3 2 1 g
COPROCESSOR EFFECTIVE ADDRESS
1 1 1 1 D 0 0 MODE | BEGISTER
SOURCE DESTINATION ‘ 1
L SPECIFIER REGISTER v e gt

FREESCALE
4144

MC68881/MC68882 USER'S MANUAL

FGETEXP

5 14 ©® 2z 1 w0 9 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 ! 1 ! i 0 0 MODE REGISTER
SOURCE DESTINATION
0 [RM | 0 SPECIFIER REGISTER 1 1 ! 1 0
FGETMAN
% W13 172 1 w9 8 7 a 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
v ! 1 0 0 0 MOOE REGISTER
SOURCE DESTINATION
0 {RM | 0 SPECIFIER REGISTER 1 ! 1 L 1
FDIV
5 M 13 12 N 10 9 8 7 4 3 2 1 8
COPROCESSOR EFFECTIVE ADDRESS
1 ! 1 ! 0 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM D SPECIFIER REGISTER 0 0 0 0 0
FMOD
5 M 13 12z 1 w9 g 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADORESS
1) 1 ! 1D 0 0 MODE REGISTER
) SOURCE DESTINATION
o fRM 0 SPECIFIER REGISTER 0 0 g 0 1
FADD
5 W 13 12 N 1 9 8 7 4 3 2 3 8
COPROCESSOR EFFECTIVE ADORESS
1 ! ! L 0 0 0 MODE REGISTER
SOURCE DESTINATION
8 | AM D SPECIFIER REGISTER 0 0 0 1 0
FMUL
5 W 13 12 1 1 9 8 7 3 3 2 1 0
COPROCESSOR EFFECTIVE AODRESS
1 ! ! ! 1 0 0 MODE REGISTER
SOURCE DESTINATION
0 | RM) 0 SPECIFIER REGISTER 0 0 0 ! !

MC68881/MC68882 USER'S MANUAL

FREESCALE
4-145

FSGLDIV

5 4 13 1 t w9 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS “
1 ! ! ! i) 0 0 MDDE REGISTER
SDURCE DESTINATION r
0 |RM | 0 SPECIFIER REGISTER 0 0 1 ¢ ¢ |
FREM
5 1B 1 ot 1w 3 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! L ! 1 0 0 0 MDDE REGISTER
SOUACE DESTINATION
0| WM D SPECIFIER REGISTER 0 0 1 0 1
FSCALE
5 1 13 1z 1w 8 8 7 s 3 2 1 ¢
COPROCESSOR EFFECTIVE ADDRESS !
U U D o]0 MODE REGISTER |
SOURCE DESTINATION
C [RM 0 SPECIFIER REGISTER 0 0 i 1 ¢
FSGLMUL
5 14 13 1z 11w 3 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS ;
1 ! 1 ! D 0 0 MODE REGISTER i
SOURCE DESTINATIDN
0 | RM | 0 SPECIFIER REGISTER e j o ! v
FsuB
5 w13 12 u 1w 3 8 7 4 3 2 1 o
COPROCESSOR EFFECTIVE ADDRESS ;
1 ! ! ! 0 0 0 MODE REGISTER |
SOURCE DESTINATION | i
C | RM | 0 SPECIFIER REGISTER 0 1 0 oyt
FSINCOS
5 1 1B 12 1w 3 8 7 ¥ 3 2 1 b
COPROCESSOR EFFECTIVE ADDRESS ‘
1 1 1 1 D 0 0 MODE REGISTER ;
SOURCE DESTINATION DESTINATION |
0 | AM | 0 SPECIFIER REGISTER, FPs ! 0 REGISTER, FPc |

FREESCALE
4-146

MC68881/MC68882 USER'S MANUAL

FCMP

5 1 13 12 u 13 8 7 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 ! ! D 0 0 MODE REGISTER
SOURCE DESTINATION
0 [RM | 0 SPECIFIER REGISTER 1 1 0 b 0
FTST
5 14 13 12 1 1 8 8 7 4 3 2 1)
COPROCESSOR EFFECTIVE ADORESS
1 1 1 ! 1D ¢ 0 MODE REGISTER
SOURCE DESTINATION
o | RM | 0 SPECIFIER REGISTER 1 1 0 1 v
FMOVECR

15 4 13 12 n 10 9 8 1 6 5 4 3 Y3 1]

1 1 1 1 COPRDCESSOR 1D 0] 0 0 0 0 0 0 0

DESTINATION
REGISTER

ROM

0 ! 0|1 ! ! QFFSET

ROM Offset Field — Specifies the offset in the FPCP Constant ROM where the desired
constant is located.

FMOVE from FPn
B 1 13 12 1w 8 & 1 & 5 4 3 2 + 0

COPROCESSOR EFFECTIVE ADDRESS
! ! ! 1 D 0 0 0 MODE REGISTER
DESTINATION SOURCE K-FACTOR
0 ! 1 FORMAT REGISTER [IF REQUIRED)

Destination Format Field — Specifies the data format of the destination operand as fol-
fows:
000 — Long Word integer
001 — Single Precision Real
010 — Extended Precision Real
011 — Packed Decimal Real, static k-factor
100 — Word Integer
107 — Double Precision Real
110 — Byte Integer
111 — Packed Decimat Real, dynamic k-factor
k-factor Field — Specifies the format of the packed decimal string to be generated (if the
destination format field indicates packed decimal), or the number of the main proces-
sor data register that contains the format specification. The interpretation of the
k-factor is:
—64 to 0 — Number of significant digits to the right of the decimal point.
+1 to +17 — Number of significant digits in the mantissa.
+ 18 to +63 — Sets the OPERR bit, treated as +17.
The format of this field for a dynamic k-factor is:
rrr0000
Where rrr is the number of the main processor data register that contains
the k-factor.

MC68881/MC68882 USER'S MANUAL FREESCALE
4-147

FMOVE FPcr

15 14 13 12 n 10 9 8 7 B 4 3 2 i
COPRDCESSDR EFFECTIVE ADDRESS
! ! 1 ! 0 0 0 0 MODE REGISTER
REGISTER

dr Field — Specifies the direction of the transfer:
0 — Move memory to system control register
1 — Move system control register to memory

Register Select Field — Specifies the system control register to be moved:

001 — FPIAR
010 — FPSR
100 — FPCR

FMOVEM FPcr

15 14 13 12 n 10 9 8 7 6 4 3 2 1
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 1 D 0 0 b MODE REGISTER
REGISTER
1 0 | dr LIST 0 0 0 0 0 0 0 0

dr Field — Specifies the direction of the transfer:
0 — Move memory to system control registers
1 — Move system control registers to memory
Register List Field — Specifies the system control registers to be moved:

000 — (Undefined, reserved) 100 — FPCR
001 — FPIAR 101 — FPCR, then FPIAR
010 — FPSR 110 — FPCR, then FPSR

011 — FPSR, then FPIAR 111 — FPCR, then FPSR, then FPIAR

FMOVEM FPn

15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFEBTWE, ADDRESS

1 1 1 0 0 0

! D
mooe [o] o] o

dr Field — Specifies the direction of the transfer
0 — Move the listed registers from memory to the FPCP
1 — Move the listed registers from the to memory
Mode Field — Specifies the type of the register list and addressing mode
00 — Static register list, predecrement addressing mode
01 — Dynamic register list, predecrement addressing mode
10 — Static register list, postincrement or control addressing mode
11 — Dynamic register list, postincrement or control addressing mode
Register List Field:
Static list — contains the select mask; if a register is to be moved, the corresponding
bit in the list is set, otherwise it is clear.

MODE REGISTER
REGISTER UIST

1 1 dr

FREESCALE MC68881/MC68882 USER'S MANUAL
4-148

Dynamic list — contains the main processor data register number, rrr, as shown be-

low:

Register List Format
Static, —(An) — FP7 FP6 FP5 FP4 FP3 FP2 FP1 FPQ
Static, {An}+ or Control — FP0O FP1 FP2 FP3 FP4 FP5 FP6 FP7
Dynamic — 0 r r r 0 0 0 0

The format of the dynamic list mask is the same as for the static list and is contained in
the least significant eight bits of the specified MPU data register.

K

15 14 13 12 b 10 9 8 7 6 5 4 3 2 1 0

COPROCESSOR EFFECTIVE ADDRESS
! 1 ! ! 0 0 0 1 MODE REGISTER
s o Jof ol oJoJolo]lo]o CONDITIONAL PREDICATE

FDBcc
5 4 13 2 u 1w s 8§ 7 6 5 4 3 2 1 0
N 1 | v | coprocessori | o [o | 1 [o [o [4 | countmecister
o JofoJoflofJoJo]olo]u CONDITIONAL PREDICATE
16-BIT DISPLACEMENT

Count Register Field — Specifies the main processor data register to be decremented

FTRAPcc
5 ® 1B 12 W 1w 8 8 7 6 5 4 3 2 1 0
t [v [v [1 [coprocessorio [o [o [1 | 1 [] 1] MODE
0 0 0o | o 0o [o] o 0 0 0 CONDITIONAL PREDICATE

16-BIT OPERAND DR MOST SIGNIFICANT WORD OF 32-BIT OPERAND (IF NEEDED)
LEAST SIGNIFICANT WORD OF 32-BIT OPERAND {{F NEEDED)

Mode Field — Specifies the form of the instruction:
010 — The instruction is followed by a 16-bit operand.
011 — The instruction is followed by a 32-bit operand.
100 — The instruction has no operand following it.

FNOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2z 1 0

t [+ [v [v [copnocessorio [o [1 [o [o] o o[o[o]0
o o]l oJolofloJoJoloJofJo]Jo[o]o]|o]o

MC68881/MC68882 USER'S MANUAL FREESCALE
4-149

FBcc

5 4 18 2z no w0 8 8 7 & 5 & 3 2 1 ¢
v |+ [v [v] coprocessorio T o | v [size] CONDITIONAL PREDICATE]
16-BIT DISPLACEMENT, OR MOST SIGNIFICANT WORD OF 32-BIT OISPLACEMENT

LEAST SIGNIFICANT WORD OF 32-BIT DISPLACEMENT (IF NEEOED)

Size Field — Specifies the size of the twos-complement displacement:
Size=0 — Displacement is 16-bits (and is sign extended before it is used).
Size=1 — Displacement is 32-bits.

FSAVE
5 0w 13 12 1" 1w 8 8 ? 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
1 1 1 i D 1 0 0 MODE REGISTER
FRESTORE
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
COPROCESSOR EFFECTIVE ADDRESS
! 1 1 1 0 [g ! MOOE REGISTER

L

FREESCALE MC68881/MC68882 USER'S MANUAL
4-150

SECTION 5
COPROCESSOR PROGRAMMING

This section describes the guidelines for programming Freescale's floating-point copro-
cessors. The first portion of the section presents the guidelines for applications program-
ming. It describes the concurrency with main processor instruction execution applicable
to both coprocessors, and the coprocessor instruction concurrency provided by the MC68882
coprocessor. It also discusses the optimization of code for the MC68882 coprocessor.

scribes the state frame sizes, and lists the instructions required in the exception handlers
for MC68881/MC68882 (FPCP) exceptions. The systems programming portion also de-
scribes the handling of exceptions by the MC68020/MC68030 (MPU) and FPCP combination,
and code that detects and identifies the coprocessor.

The second portion of the section discusses systems programming considerations. it de- n

This section primarily describes programming of the MC68882 coprocessor, since programs
that run successfully in the MC68882 also run successfully in the MC68881. It is advisable
to program for the MC68882 even if the MC68881 is currently being used, so that no program
changes are required for upgrading to the MC68882.

5.1 APPLICATIONS PROGRAMMING

All applications programs that run successfully on the MC68881 can be used on the MC68882
without alteration, but optimization of code for the MC68882 provides significant reduction
in execution time. The following paragraphs describe the concurrency available with the
MC68881, the greater concurrency provided by the MC68882, and optimization techniques
for MC68882 programs.

5.1.1 Concurrency

The M68000 coprocessor interface, the MC68020 and MC68030 microprocessors, and the
MC68881 and MC68882 coprocessors are designed to provide the conventional sequential
instruction execution models while instructions may actually be executed concurrently.
Applications programs can be written with no provisions for concurrency; the system
apparently executes the instructions in sequence. This apparent sequential execution is
automatic, and the programmer need not be concerned about it.

5.1.1.1 CONCURRENT INTEGER AND FLOATING-POINT COMPUTATIONS. The M68000
coprocessor interface is designed to provide full support for the sequential instruction
execution model. Although the M68000 coprocessor interface allows concurrency between
coprocessor and main processor operations, the coprocessor must implement this con-
currency while maintaining a programming model based on sequential instruction execution.

After the main processor initiates a floating-point instruction {by writing to the command
CIR), it reads the response CIR. When the CA bit (bit [15] of the response CIR} is set, it

MC68881/MC68882 USER'S MANUAL FREESCALE
5-1

indicates that the main processor should perform the specified service and then read the
response CIR again. The FPCP sets the CA bit to define portions of the floating-point
instruction that cannot operate concurrently with main processor instruction execution.
When the coprocessor can operate concurrently with main processor instructions, it clears
the CA bit in the response primitive. Clearing the CA aliows the main processor to proceed
to the next instruction after it has read the response CiR and performed the specified
service. This releases the main processor for concurrent operation. In the arithmetic
fioating-point instructions, the FPCP releases the main processor after the transfer phase
is completed. Refer to 8.2 CONCURRENT INSTRUCTION EXECUTION for further details of
main processor/coprocessor concurrent instruction execution.

Within the boundaries of a floating-paint instruction that does not allow concurrency with
main processor instructions (response primitives return CA=1}, the FPCP can allow the
main processor to service pending interrupts. Bit {8} of the null primitive is the interrupts
n allowed (IA} bit, used by the FPCP to allow the main processor to check for pending
interrupts and to service them before reading the response CIR again. This minimizes the
waorst case interrupt latency. Refer to 8.3 INTERRUPT LATENCY TIMES for details.

As shown in Figure 5-1, once the MPU has initiated a floating-point instruction in the
MC68881 and transferred the required operands to the coprocessor, the main processor
is free to perform other instructions. Meanwhile, the coprocessor converts the operand to
internal format, calculates the result, and rounds the result as required. The concurrency
shown in Figure 5-1 for an MC68881 applies also to an MC68882.

MC68020/MCEB030 | INITIATE | TRANSFER CONCURRENCY WITH MC6B020/MC6B030 INSTRUCTION

MC68881

FMUL | START |TRANSFER |CONVERT CALCULATE ROUND

Figure 5-1. MC68881 Concurrency — FMUL Instruction

5.1.1.2 CONCURRENT FLOATING-POINT COMPUTATIONS. An FPCP arithmetic instruc-
tion with a floating-point data register destination releases the main processor when the
coprocessor completes its transfer phase. If the next instruction is another floating-point
instruction and if the main processor writes to the command CIR to initiate the next in-
struction while the APU is still busy with the previous instruction, the MC68881 returns a
null (CA=1, IA=1) primitive in its response CIR. The MC68881 issues the nuil primitive
because the APU can execute only one instruction at a time. Since the bus interface unit
(BIU) cannot operate on any other instruction without the APU, no concurrency is possible.
The MC68881 cannot begin to execute the second instruction, including the prefetch of
necessary operands. The encoding of the response CIR remains unaltered until the instruc-
tion in the APU is completed. If the instruction terminates with an exception, a pre-instruc-
tion exception is taken.

With the MC68882, if the main processor initiates a second arithmetic instruction while a
preceding instruction is executing in the APU as described in the preceding paragraph, the
BIU transfers the instruction to the conversion unit {CU}). Depending on the instruction, the

FREESCALE MC68881/MC68882 USER'S MANUAL
5-2

operand syntax, and the operand data format, the CU completes execution of the instruction
in one of the following ways:
® The instructions that have operand data formats B, W, L, and P are listed in Table
5-1. When the CU receives an instruction with the operand data format of B, W, or L,
it requests the BIU to transfer the necessary operand. Then, the CU waits for the APU
to become idle so that it can hand off the instruction to the APU. If the instruction has
an operand with data format P, the CU does not request the prefetch of the operand.
In this case, it waits until the APU is idle to hand off the instruction to the APU.

o |f the instruction is an FMOVE.X FPm,FPn instruction, the CU does the following:

a.
b.

Releases the main processor.

Prefetches the source operand from FPm, unless the instruction currently operating
in the APU uses FPm as a destination. |n that case, the CU waits until the APU is
idle before prefetching. '

If the selected rounding precision is single or double, waits until the APU is idle
and hands off the instruction to the APU.

If the operand data type is NAN, denormalized, or unnormalized, waits until the
APU is idle and hands off the instruction to the APU.

If the instruction currently in the APU uses FPn, waits until the APU is idle before
proceeding.

Writes the source operand into the destination floating-point data register without
involving the APU.

® [f the instruction is an FMOVE <ea>, FPn with an operand format of S, D, or X, the
CU does the following:

a.

e.

f.

Prefetches the source operand from memory by using the evaluate <ea> and
transfer data primitive with CA = 0. This releases the main processor immediately
after the source operand is written to the operand CiR.

Converts the memory source operand to internal extended format. If the selected
rounding precision is single or double, waits until the APU is idle and hands off
the instruction to the APU.

Creates a tag that represents the data type of the converted source operand (nor-
malized, denormalized, zero, infinity, or NAN),

If the operand data type is NAN, unnormalized, or denormalized, waits until the
APU is idle and hands off the-instruction to the APU,

If the instruction currently in the APU uses FPn, waits until the APU is idle before
proceeding.

Writes the converted source operand into FPn without involving the APU.

@ |f the instruction is an FMOVE FPm,<ea> with a data format of S or D, the CU does
the following:

a.

Prefetches the source operand from FPm, unless the instruction currently operating
in the APU uses FPm as a destination. In that case, the CU waits until the APU is
idle before prefetching.

If the data type of the source operand is unnormalized, denormalized, or NAN,
waits until the APU is idle and hands off the instruction to the APU.

Converts the source operand to the destination data format.

If the conversion results in an overfiow or underflow, or if the INEX2 trap is enabled
waits until the APU is idle and hands off the instruction to the APU.

Creates a tag that represents the data type of the converted source operand (nor-

" malized, denormalized, zero, infinity, or NAN).

. __|
MC68881/MC68882 USER'S MANUAL FREESCALE

5-3

f. Transfers the converted operand to the memory destination {without involving the
APU} by using the evaluate <ea> and transfer data primitive with CA=0. This
releases the main processor immediately after the operand is read from the op-
erand CIR.

e |f the instruction is an FMOVE.X FPm,<ea>, the CU does the following:

a. Prefetches the source operand from FPm, unless the instruction currently operating
in the APU uses FPm as a destination. In that case, the CU waits until the APU is
idle before prefetching.

b. If the data type of the source operand is unnormalized, denormalized, or NAN,
waits until the APU is idle and hands off the instruction to the APU.

c. Transfers the converted operand to the memory destination {without involving the
APU) by using the evaluate <ea> and transfer data primitive with CA=0. This
releases the main processor immediately after the operand is read from the op-

n erand CIR.
e [f the instruction is listed in Table 5-4 and if the source (FPm) and destination (FPn or
FPc:FPs) are all floating-point data registers, the CU does the following:

a. Releases the main processor.
b. Prefetches the source operand from FPm if possible.
¢. Waits until the APU is idle and hands off the instruction to the APU.

e |f the instruction is listed in Table 5-4 and if the source is external to the MC68832,
the CU does the following:

a. Prefetches the source operand from memory by using the evaluate <ea> and
transfer data primitive with CA=0. This releases the main processor immediately
after the source operand is written to the operand CIR.

b. If the source operand format is single or double precision, converts the source
operand to the extended precision internal format.

c. Creates atag that represents the data type of the converted source operand {nor-
malized, unnormalized, denormalized, zero, infinity, or NAN}.

d. Waits until the APU is idle and hands off the instruction to the APU.

Table 5-1 lists the minimum-concurrency instructions. The monadic operations, designated
<mop> in Tables 5-1 and 5-4, are listed in Table 5-2. The dyadic operations, designated
<dop> in Tables 5-1 and 5-4, are listed in Table 5-3. Table 5-4 lists-the partially-concurrent
instructions, and Table 5-5 lists the fully-concurrent instructions.

The instructions that have external operands and are listed in Tables 5-4 and 5-5 prefetch
the source operand (if no register conflict exists) and release the main processor after the
operand is transferred. When a third instruction is received in the command CIR while the
APU is busy and the CU is either busy or waiting to hand off its instruction to the APU,
the third instruction must wait. The BIU encodes a null {CA=1, JA=1) primitive in the
response CIR until the CU becomes idle or hands off its instruction to the APU. Note that
this situation is analogous to the situation in the MC68881 when a second instruction is
received in the command CIR while the APU is still busy with a previous instruction. The
difference is that the MC68881 waits until the APU is available, while the MC68882 waits
until the-CU is available.

The conditional instructions listed in Table 5-6 do not allow concurrency. These instructions
are not executed unless both the CU and the APU are idle and all exception flags are
cleared. An extreme case occurs if the MPU writes to the condition CIR of the MC68882

FREESCALE MC68881/MC68882 USER'S MANUAL
54

Table 5-1. Minimum-Concurrency Instructions

. Operand Operand
Instruction Syntax Format
FMOVE <ea>,FPn B.W.LP
FPm,<ea> BW.L
FPm,<ea>{#k} P
FPm,<ea>{Dn} P
<ea>,FPcr L
FPcr,<ea> L
FMOVECR #ccc,FPn X
FMOVEM <ea>,<list> LX
<ea>,Dn X
<list>,<ea> LX
Dn,<ea> X
FTST FPm BW.LP
F<mop> <ea> FPn BW,LP
F<dop> <ea>,FPn BW,L,P
FSINCOS <ea>,FPc:FPs BW,LP

Table 5-2. Monadic Instructions

Instruction Function
FABS Absolute Value
FACOS Arc Cosine
FASIN Arc Sine
FATAN Arc Tangent
FATANH Hyperbolic Arc Tangent
FCOS Cosine
FCOSH Hyperbolic Cosine
FETOX eX
FETOXM1 eX—1
FGETEXP Extract Exponent
FGETMAN Extract Mantissa
FINT Extract Integer Part
FINTRZ Extract Integer Part, Rounded-to-Zero
FLOGN Inix)
FLOGNPY In{x+1)
FLOG10 Log1p(x)
FLOG2 Loga(x)
FNEG Negate
FSIN Sine
FSINH Hyperbolic Sine
FSQRT Square Root
FTAN Tangent
FTANH Hyperbolic Tangent
FTENTOX 10%
FTWOTOX 2%

MC68881/MC68882 USER'S MANUAL FREESCALE
5-5

Table 5-3. Dyadic Operations

Instruction Function
FADD Add
FCMP Compare
FDIV Divide
FMOD Modulo Remainder
FMUL Multiply
FREM |IEEE Remainder
FSCALE Scale Exponent
FSGLDIV Single Precision Divide
FSGLMUL Single Precision Multiply
FSUB Subtract

Table 5-4. Partial-Concurrency Instructions

" Operand Operand
Instruction Syntax Format
FTST <ea> $.0.X
FPm X
F<mop> <ea>,FPn S.D.X
FPm,FPn
F<dop> <ea>,FPn S.D.X
FPm,FPn
FSINCOS <ea>,FPc:FPs S.D.X
FPm,FPc:FPs X

Table 5-5. Fully-Concurrent Instructions

instuction | RN Format No Goncurrancy | Partial Goneurrency
FMOVE FPm,FPn X a b.c.f
FMQVE <ea>,FPn S.D b.c.f
FMOVE <ea>,FPn X b.cf
FMOVE FPm,<ea> sS.D a bde
FMOVE FPm,<ea> X a b

a. Register Conflict of FPm with preceding instruction’s des-

tination floating-point data register

NAN, Unnormalized or Denormalized Data Types
Rounding Precision in FPCR set to Single or Double
INEX2 bit in FFCR EXC byte is enabled

An Qverflow or Underflow occurs

Register conflict of FPn with preceding instruction’s desti-
nation floating-point data register

mepog

FREESCALE MC68881/MC68882 USER'S MANUAL
5-6

while both the CU and APU are busy, the appropriate exceptions are enabled, and the
instructions in the CU and APU each report an exception. The MC68882 reports these
exceptions, one at a time, until both exception handlers have been executed. As a con-
sequence, the conditional instruction is re-started twice to ensure that the reported con-
dition codes contain information reflecting the result of all previous instructions and related
exception handlers. Therefore, a sequential execution model can be guaranteed. It is pos-
sible that a BSUN exception is reported by the conditional instruction, but the BSUN
exception would be reported long after the instructions and related exceptions have been
executed and completed.

Table 5-6. Conditional Instructions

Instruction Operand Operand
¥ Syntax Size or Format
FBee <fabel> w,L
FDBec Dn,<tabel> W
FNOP None None
FSCC <ea> B
FTRAPcc None None
#xxx WL

Consider the case of two consecutive FMUL instructions followed by an FMOVE instruction,
as shown in Figure 5-2. The following assumptions apply:

1. Both FMUL instructions have external operands (opclass 010),

2. The FMOVE instruction has a memory destination (opclass 011}, and

3. No exceptions are enabled.

The main processor initiates the second FMUL instruction, and the MC68881 returns the
null {CA=1) primitive as long as the APU is involved in the calculate phase of the first
FMUL instruction. When the APU becomes available, the BIU returns the evaluate effective
address and transfer operands (CA=0) primitive and begins the transfer phase of the
second FMUL instruction. At this point, since the CA bit is clear, the main processor begins
the execution of another instruction while the MC68881 converts the operand to internal
format and begins the calculate phase of the second FMUL instruction. Since the next MPU
instruction is an FMOVE instruction, the MPU initiates the FMOVE instruction, but. the
MC68881 returns the null (CA=1) primitive until the second FMUL instruction completes.

MCBB020/MCB8030 .| INTIATE | TAANSFER | INTATE | o ﬂmﬁ:”&ﬁmm TRANSFER | INITIATE s ;‘\?alaen(:mg:ﬂ%wm) TRANSFER
MCessel
FMUL | START |TRANSFER [CONVERT]| CALCULATE | AOUND
FMUL musrmlcunvmrl CALCULATE] RuunnJ
FMOVE [sanr } TRANSFER
Figure 5-2. MC68881 Concurrency — FMUL Followed by FMUL and FMOVE
MC68881/MC68882 USER'S MANUAL FREESCALE

5-7

Then, the coprocessor completes the FMOVE by converting the operand and transferring
it to the main processor.

In this example, the MPU continues to examine the response CIR of the MC68881 while it
completes each of the two FMUL instructions. Should an interrupt occur during these times,
the main processor services the interrupt but does not initiate any other instruction.

The MC68882 can execute floating-point instructions concurrently by performing conver-
sions between external binary real data formats (S, D, and X) and the internal extended
format in the conversion unit (CU) while the arithmetic processing unit {APU) is calculating
the result of a preceding instruction. Additional concurrency is provided by making the
floating-point data registers accessible to both the CU and APU simultaneously.

Figure 5-3 shows the same three floating-point instructions executing in an MC68882. As
soon as the operand of the first FMUL instruction has been transferred to the coprocessor,
the main processor begins executing the next instruction, another FMUL instruction with

an external source operand. Provided the operand is a binary real operand and no register

conflict occurs, the coprocessor can transfer and convert the operand while it continues
to calculate the product of the first FMUL instruction. As soon as the operand transfer
completes, the main processor begins executing the FMOVE instruction. Since the CU
contains the converted operand for the second FMUL instruction at this time, it is not
available to convert the source operand of the FMOVE instruction. However, when the APU
completes the rounding phase for the first FMUL instruction, it accepts the operand from
the CU and begins calculations for the second FMUL instruction. The CU now converts the
source operand of the FMOVE instruction to the destination format. The bus interface unit
(BIU) transfers the converted operand to the external destination, completing the second
FMUL instruction.

The effect of the concurrency provided by the MC68882 is to execute three instructions
during a time period equal to the execution time of the first instruction plus the computation
time of the second instruction. Execution of the third instruction is completely overlapped
by the second instruction.

In this example, execution of the second FMUL instruction is partially concurrent with
execution of the first FMUL instruction, and execution of the FMOVE instruction is fully
concurrent with execution of the second FMUL instruction. Some MC68882 instructions
do not execute concurrently. Others execute partially concurrently, and some execute with
full concurrency. However, little concurrency is possible when the operand is in integer or
packed decimal format.

IDLE (INTERRUPTS.

EYT CCTRY ATy
MCB8020/MCE5030 | INITIATE | TRANSFER | INMATE | TRANSFER | INITIATE BUS ARBITRATION ALLDWED) TRANSFER | NEXT INSTRUCTICN
MCE8882
FMUL START | TRANSFER | CONVERT CALCULATE ROUND
FMUL START 1 TRANSFER | CONVERT CALCULATE ROUND
FMOVE START CONVERT | TRANSFER

Figure 5-3. MC68882 Concurrency — FMUL Followed by FMUL and FMOVE

FREESCALE MC68881/MC68882 USER'S MANUAL
5-8

5.1.2 Optimization of Code for the MC68882

A program that runs successfully on the MC68881 runs on the MC68882 with improved
performance. However, the code can be optimized to exploit the features of the MC68882
for the maximum performance improvement. Optimization requires the following steps:
1. Unroll any rolled loops to obtain at least a 2x unrolled version,
2. Eliminate register conflicts by rearranging FMOVE instructions, and
3. Rearrange FMOVE instructions so that the fastest FMOVE instructions follow the fast-
est arithmetic instructions, and the slowest FMOVE instructions follow the slowest
arithmetic instructions.

5.1.2.1 UNBROLLING LOOPS. A rolled loop consists of the instructions to perform the
operations of the loop once using a single index value during each iteration. The perform-
ance of the MC68882 is improved by unroling the ioop, so that an iteration performs those
operations more than once, using two or more index values. The recommended 2x unrolled
version performs the operations twice.

The rolled version of a loop allows little optimization; a register conflict is inevitable. The
2x unrolled version can use different floating-point data registers for each repetition of the
instructions. The FMOVE instructions can be placed in the optimum locations.

5.1.2.2 AVOIDING REGISTER CONFLICTS. The following rules define conflicts between
floating-point data registers.

¢ A register conflict occurs when the destination register of an instruction is the source
register of the following instruction, and that instruction is a fulty-concurrent instruction
listed in Table 5-5. For example:
FADD.D - (ea)FP0
FMOVE.D FPO,(ea) FPO conflicts

® A register conflict occurs when the destination register of an instruction is the desti-
nation register of the following instruction, -and that instruction is a fully-concurrent
instruction listed in Table 5-b. For example:
FADD.D (ea),FPO
FMOVE.D (ea) FPO FPO conflicts

® No other combination of source and destination registers of two consecutive instruc-
tions cause a register conflict.

The second case (where an FMOVE instruction uses the same destination register as the
preceding instruction) is an unlikely case, since the result of the first instruction is lost.
However, the MC68882 provides the same resuit as the MC68881 even for this case.

5.1.2.3 ARRANGING FMOVE INSTRUCTIONS. The FMOVE instruction is fully concurrent
when the operands are in binary real data format, no register conflicts exist, and the notes
of Table 5-5 do not apply. However, the execution time of the FMOVE instruction is hidden
completely only when the overlap time of the preceding instruction exceeds the execution
time of the FMOVE instruction. Thus, the fastest FMOVE instructions should follow the
fastest arithmetic instructions, FADD, for example. Aiso, the slowest FMOVE instructions
should follow the slowest arithmetic instructions, such as FMUL. Refer to the tables of

|
MC68881/MC68882 USER'S MANUAL FREESCALE
5-9

execution times in SECTION 8 INSTRUCTION EXECUTION TIMING for arithmetic instruction
execution times. Table -7 lists execution times for some FMOVE instructions.

Table 5-7. FMOVE Instruction Execution Times

Executi
Operand Type nm:‘(:gl;::s)
FMOVE.X FPx,FPy 21
FMOVE.D <ea>FPy 3
FMOVE.D FPy,<ea> 55

5.1.2.4 PERFORMANCE IMPROVEMENT EXAMPLE. The DAXPY subroutine inner loop of
the Linpack benchmark (Linpack loop) is an appropriate example for illustrating optimi-
n zation for the MC68882. Figure 5-4 shows the source code for the rolled version of the

Linpack loop.
* VECTOR TIMES A CONSTANT PLUS A VECTOR
* X[i) = YGPC +X(i)
MOVELL #countD0
FMOVED <ea.C>FPO
LOOPTOP " FMOVEX FPO,FP1
FMULD <ea Y(il> FPy
FADD.D <ea X{i)FP1
FMOVE.D FP1,<ea X(il
DBRA DO,LOOPTOP

Figure 5-4. Rolled Version of Linpack Loop

Optimization of this code for the MC68882 consists of unrolling the loop, and rearranging
the FMOQVE instructions. Notice that FP1 contains the result of the computations using
index i, and that FP2 contains the result of the computations using index i+ 1. Also notice
that the two FMOVE instructions that move registers to registers are executed following
FADD instructions, and that the FMOVE instructions that move registers to effective ad-
dresses are executed following FMUL instructions. Figure 5-5 shows the source code for
the optimized Linpack loop.

5.2 SYSTEMS PROGRAMMING

The guidelines for systems programming relate to exception processing. The sizes of the
state frames stored by exception handlers are discussed first. Next, the section discusses
the FSAVE, BSET, and FRESTORE instructions required in exception handlers. Then, the
handling of specific exceptions is discussed. Code that detects the presence of a floating-
point coprocessor and identifies the coprocessor is also discussed.

5.2.1 State Frame Sizes

The sizes of the state frames stored by the FSAVE instruction differ for the MC68882 and
MC68881, as shown in Table 5-8.

-/
FREESCALE MC68881/MC68882 USER'S MANUAL
510

* VECTOR TIMES A CONSTANT PLUS A VECTOR

* X(i) =Yy C + X{i)
MOVE.L #count,00
FMOVE.D <ea_C>FPO
FMOVEX
FPO,FP1
FMULD <ea.Yl{i)> FP1
BRA LOOPSTRT
LODPTOP FMOVEX FPO,FP1
’ FMULD <ea_Yli}>FP1
FMOVED FP2,<ea Xli+1)>
LOOPSTRT FADD.D <ea X(ilFP1
FMOVE.X FPO,FP2
FMULD <ea.Y{i+1}>FP2
FMOVE.D FP1,<ea _Xli}>
FABD.O <eaX{i+1)>FP2
DBRA 00,LOOPTOP
FMOVE.D FP2,<ea X{i+1}>

Figure 5-5. Optimized Linpack Loop

Table 5-8. State Frame Sizes

Device Null Frame idie Frame Busy Frame
MC68881 4 Bytes 28 Bytes 184 Bytes
MC68882 4 Bytes 60 Bytes 216 Bytes

The size of the null state frame is four bytes for both coprocessors. The size of the other
state frames is 32 bytes larger for the MC68882 than for the MC68881. The MC68882 uses
the additional bytes to store the state of the conversion unit.

5.2.2 Exception Handler Code

The code for floating-point exception handlers for the MC68882 must include the following
instructions: :
1. An FSAVE instruction at the beginning of the handler {(ahead of the first coprocessor
instruction)
2. A BSET or similar instruction following the FSAVE instruction to set the EXC-PEND
flag (bit 27) of the BIU flag in the idie state frame
3. An FRESTORE instruction immediately preceding the RTE instruction

Handlers for the following exceptions require these instructions even if the handlers contain
no floating-point instructions:

Branch or Set on Unordered Condition Operand Error
Inexact Result Overflow
Floating-Point Divide by Zero Signaling NAN
Underflow

L
MC68881/MC68882 USER'S MANUAL FREESCALE
5-11

Handlers for interrupts, F-line emulation, FTRAPcc instructions, and other exceptions must
not set the EXC_PEND bit in the BIU fiag long word, but any exception handler that contains
one or more floating-point instructions must begin with an FSAVE instruction and have
an FRESTORE instruction preceding the RTE instruction. No requirements are imposed on
the floating-point protocol violation exception because it is considered to be a catastrophic
exception from which no recovery is possibie.

When a floating-point exception handler that does not begin with an FSAVE instruction
executes in a system that uses an MC68882 coprocessor, one of two things happens. Either
the next MC68882 instruction takes the same exception, producing an infinite loop, or it
takes a protocol violation exception.

When a floating-point exception handler that begins with an FSAVE instruction but does
not set the EXC_PEND bit executes in a system that uses an MC68882 coprocessor, the
n next MC68882 instruction takes the same exception, also producing an infinite loop.

When a floating-point exception handler that begins with an FSAVE instruction but does
not end with an FRESTORE instruction is executed in a system that uses an MC68882
coprocessor, a partially-executed instruction following the exceptional instruction may
never be completed. Figure 5-6 shows the required instructions in a minimum exception
handler for an MC68882.

HANDLER FSAVE ~(sP) SAVE INTERNAL STATE
MOVEB [SP),00 FIRST BYTE OF STATE FRAME
BEQ NULL BRANCH IF NULL FRAME
ClRL Do CLEAR DATA REGISTER
MOVE.B 1(SP),D0 LOAD STATE FRAME SIZE
BSET #3,5P.D0) SET BIT 27 OF BIU

NULL FRESTORE (SP)+ RESTORE STATE
RTE RETURN

Figure 5-6. Minimum Exception Handler

An exception handler can access the idle state frame to obtain information about the
exception. The offsets of the exceptional operand, the operand register, and the BIU flags
are different in the MC68881 and the MC68882. In the MC68882, these offsets are greater
than those in the MC68881 by $20. For example, the offset for the exceptional operand is
$08 in the MC68881 and $28 in the MC68882. However, the negative offsets (from the
bottom of the state frame) are the same for both coprocessors. Figure 5-7 shows a code
fragment that can be used to access the exceptional operand and the operand register
image in an exception handler for either coprocessor.

5.2.3 Processing of Special Conditions

The designs of the MPU, the M68000 coprocessor interface, and .the FPCP provide the
performance benefits of concurrent operation while maintaining a conventional sequential
instruction execution model. Processing of special conditions is also performed as if in-
structions were executed sequentially. Refer to the coprocessor interface section of the
appropriate microprocessor user’s manual for additional information.

__|
FREESCALE MC68881/MC68882 USER'S MANUAL
512

XOPER EQU -16 FOR EXCEPTIONAL GPERAND

-OPEREG EQU -4 FOR OPERAND REGISTER
MOVE.B 1(SP,00 LOAD FRAME LENGTH INTO DO
MOVEL XOPER(SP,D0),{ea) ACCESSES THE FIRST LONGWORD OF THE EXCEPTIONAL OPERAND
MDVEL OPEREGI(SP,D0)(ea) ACCESSES THE OPERAND REGISTER IMAGE

Figure 5-7. Idle State Frame Access Example

5.2.3.1 INTERRUPTS. The main processor can process interrupts at any instruction

boundary and during the execution of a general or conditional category coprocessor in-

struction under either of two conditions. When the main processor receives a null (CA=1, n
IA=1) primitive, the MPU services any pending interrupts prior to reading the response

CIR. The MPU also services pending interrupts when the trace exception is enabled and

the MPU receives a nuill (CA=0, IA=1, PF=0) primitive.

The MPU uses the ten-word mid-instruction stack frame shown in Figure 7-16 when it
services interrupts during the execution of a general or conditional category coprocessor
instruction. Using this stack frame allows the MPU to perform all necessary processing
and return to read the response CIR. Thus, the MPU services the interrupt while the FPCP
continues to execute the coprocessor instruction. '

During execution of an FSAVE instruction, when the MPU reads the not ready format word,
it also services interrupts. After servicing any pending interrupts, the MPU returns and
reinitiates the FSAVE instruction.

5.2.3.2 BUS ARBITRATION. During execution of a floating-point instruction, the MPU can
relinquish contro} of the bus through bus arbitration. If the FPCP has released the MPU
and is completing execution of the instruction, relinquishing the bus has no effect on the
coprocessor. If the MPU is involved in a dialog with the coprocessor, relinquishing the bus

- delays the execution of the instruction in the FPCP. However, since the coprocessor com-
municates with the MPU by placing a response primitive in the response CIR for the MPU
to read, no adverse effect occurs. The only effect of the bus arbitration is a longer delay.
while the coprocessor awaits the services of the MPU.

5.2.3.3 CONTEXT SWITCHING. In a multi-tasking environment, the context of the FPCP
may be changed asynchronously with respect to coprocessor operations. The coprocessor
may be interrupted at any point during the execution of an instruction. The FSAVE and
FRESTORE instructions are used to save and restore the context of the coprocessor during
context switches.

An FSAVE instruction stops execution of the instruction in the coprocessor at the earliest
interruptable point, and stores the state of the coprocessor. The coprocessor is now avail-
able to the program executing in the new context. When the interrupted program resumes,
an FRESTORE instruction loads the saved state of the coprocessor, restoring the copro-
cessor to its previous state. The coprocessor continues from the point at which it was
interrupted.

L
MC68881/MC68882 USER'S MANUAL FREESCALE
5-13

The state frames defined for the null, idle, and busy states of the coprocessor contain all
the information the coprocessor requires to resume operation. Inclusion of the coprocessor
version number in the format word and the checking of that version number during exe-
cution of the FRESTORE instruction prevent restoration of an incompatible context {e.g.,
an MC68881 context in an MC68882).

5.2.3.4 BUS ERRORS. A bus error can occur during initiation of a coprocessor instruction
or while the MPU is accessing memory or CPU address space during execution of a co-
processor instruction. A bus error during initiation of an instruction is used as an indication
that the coprocessor is not present, and the MPU takes an F-line emulator exception. A
bus error during a memory access indicates that some fault (e.g., parity error or page fault)
prevents the memory system from providing the requested operand. The coprocessor
interface, being asynchronous, does not require the MPU to service the bus error exception
at once. No time restrictions on the main processor’s response to a bus error exception
n exist. After the exception handler has corrected the cause of the bus error, the MPU returns
to the point in the coprocessor instruction dialog at which the fault occurred.

5.2.3.5 EXCEPTION PROCESSING. During the execution of a coprocessor instruction, the
coprocessor releases the main processor after the main processor has completed all the
services the coprocessor requires to execute the instruction. Any exception processing the
main processor performs after being released and before initiation of another coprocessor
instruction has no effect on the coprocessor.

Either the main processor or the coprocessor can detect an exception during execution of
a floating-point instruction. The handlers for these exceptions are bracketed with FSAVE
and FRESTORE instructions as previously described to ensure that coprocessor state in-
formation about concurrently executing instructions is properly restored after execution
of the exception handler completes.

5.2.3.6 SIMULTANEOUS FLOATING-POINT EXCEPTION AND TASK SWITCH INTERRUPT.
Since an interrupt signal can occur at any time, a task switch interrupt can occur simul-
taneously with a floating-point exception detected by the coprocessor. The FPCP and the
coprocessor interface with the MPU are designed to preserve the sequential instruction
execution model in this case. Figure 5-8 shows an FMUL instruction executing in an MC68882,
followed by an FADD instruction. A task switch interrupt occurs as the main processor
responds to the exception. The sequence of events is as follows:

1. The MC68882 is executing the two instructions concurrently.

2. The FMUL instruction is executing in the APU, the CU has performed the conversion
of the source operand, and the CU is waiting to hand off the FADD instruction when
the APU becomes idle. The MC68882 is returning null (CA=0, IA=0} primitives to
synchronize the main processor. The main processor is reading the primitives, re-
sponding to any pending interrupts.

3. The FMUL instruction detects an exception, which is reported by the FADD instruction
 with a take mid-instruction exception primitive.

4. The main processor recognizes a pending interrupt as it reads the take mid-instruction
exception primitive. Because of the internal timing, however, the MPU processes the
- floating-point exception first.

FREESCALE MC68881/MC68882 USER'S MANUAL
5-14

FMULS <ea>, FPO | START | TRANSFER |CONVERT CALCULATION ENDS WITH AN EXCEPTION

SYNCHRONIZE
FADD.L <ea>>, FPO START | TRANSFER CONVERT{ CALCULATE | STORE
MID-INSTRUCTION INTERRUPT
EXCEPTION PRDCESSING - PROCESSING
f
EXCEPTION INTERRUPT
HANDLER HANDLER
FSAVE FSAVE
. [
. .
. .
BSET 8IT 27 OF BIU FLAG FRESTORE
FRESTORE RTE
RTE

Figure 5-8. Simultaneous Task Switch Interrupt and Floating-Point Exception

5. The processing of the exception completes, and the main processor begins processing
the interrupt before executing the first instruction in the floating-point exception han-
dler.

6. The main processor executes the interrupt handler. Because the interrupt handier
does not contain a BSET instruction that sets bit 27 of the BIU flag word, the state
restored by the FRESTORE instruction in the handler indicates that the floating-point
exception has not been serviced. The FADD instruction is not allowed to continue.

7. The floating-point exception handler is executed. This handler includes a BSET in-
struction that sets bit 27 of the BIU flags word. When the FRESTORE instruction
restores the state frame, the FADD instruction continues.

In this example, if the interrupt handler allowed the FADD instruction to continue, the FADD
instruction would have overwritten the contents of FP0, and the results would have been
incorrect. The MC68882 exception model handies this worst-case situation correctly.

5.2.4 Detecting Coprocessor Presence

A program or an exception handler may need to know if a floating-point coprocessor is
available, or which type coprocessor is present. The code fragment in Figure 5-9, which
executes at the supervisor privilege level, detects and identifies the coprocessor.

]
MC68881/MC68882 USER'S MANUAL FREESCALE
515

CLRB FLAG CLEAR NO PROCESSOR FLAG

FNOP DETECT COPROCESSOR {SEE NOTE)
MOVEB FLAG,DO LDAD FLAG
BNE NOCOP NO COPROCESSOR BRANCH
FSAVE —(SP) SAVE INTERNAL STATE
CLRL Do ZERD INDEX
MOVE.8 1(SP),Do DBTAIN STATE FRAME SIZE
CMPI #%$18,00 MC68881?
BEQ ONE YES
. CODE FOR MC68882
BRA START END OF M(68882 CODE
ONE . CODE FOR MC6BB81
START START OF CODE COMMON TO BGTH COPROCESSORS
n NOTE: When no coprocessor is present, an exception handler executes at this point. See text.

Figure 5-9. Coprocessor Identification Code

The FNOP instruction takes an F-line emulation exception when no floating-point copro-
cessor is available. The F-line emulation exception handler must set the no coprocessor
flag and increment the stacked PC value by four. The BNE instruction branches around
this code when no coprocessor is present. The instructions immediately following the BEQ
instruction are executed for an MC68882 coprocessor; those at label ONE are executed for
an MC68881.

FREESCALE MC68881/MC68882 USER'S MANUAL
5-16

SECTION 6
EXCEPTION PROCESSING

This section describes how the MC68881/MC68882 (FPCP) and the main processor handie
exceptional conditions during the processing of floating-point instructions. These excep-
tional conditions may be detected internally by the FPCP, internally by the main processor,
or externally by the main processor.

The MC68020/MC68030 (MPU) processes exceptions by treating any coprocessor in an
M68000 system as an extension to the main processor; the fact that a coprocessor is
separate from the main processor is transparent to the programmer. Thus, the exception
processing for all coprocessors in a system is coordinated by the main processor in a
manner that is consistent across ali exception types, whether detected during the execution
of an instruction native to the main processor or during a coprocessor instruction.

The processing of an exception detected during the execution of an FPCP instruction
involves the following basic steps:

1. Detect the exception

2. Determine the exception vector number and report the exception to the main pro-
cessor (if detected by the FPCP)
Change processing states if needed (user to supervisor)
Save the old context of the main processor (performed automatically by the MPU)
Load a new context from the address contained in the exception vector table
Execute the exception handler
Return to the previous context

Nooaw

The first two steps involve slightly different operations for exceptions detected by the main
processor and those detected by the FPCP, but the manner in which these operations are
performed is consistent with noncoprocessor related exceptions. The major difference in
the processing of exceptions detected by the FPCP and the main processor is the point at
which exception processing starts. For all main-processor-detected exceptions and some
coprocessor-detected exceptions, processing for the exception begins during the execution
of the coprocessor instruction by the main processor. However, for many of the copro-
cessor-detected exceptions, processing for the exception does not begin until after the
main processor completes execution of the offending instruction and attempts execution
of a new floating-point instruction. The manner of handling this type exception supports
a sequential instruction programming model!.

The action of the processor during step 7 depends upon the type of exception that was
previously taken. When the exception handier completes execution, a return from exception
{RTE) instruction is executed, and the previously interrupted program resumes execution
at one of the following points:
1. The beginning of the instruction that was pre-empted by an exception detected by or
reported to the MPU (pre-instruction exception)
2. The point where the exception occurred during the execution of an instruction {mid-
instruction exception)

MC68881/MC68882 USER'S MANUAL FREESCALE
6-1

3. The beginning of the instruction immediately following the instruction that caused or
detected the exception (post-instruction exception). Note that neither the MC68881
nor the MC68882 reports the post-instruction exception.

The following paragraphs describe the causes of various coprocessor-related exceptions
and how they are handled by the FPCP and the main processor. Throughout this discussion,
the main processor is assumed to be an MC68020 or MC68030, although any other pro-
cessor can be programmed to emulate the M68000 Family coprocessor interface that is
implemented on the MPU.

6.1 COPROCESSOR-DETECTED EXCEPTIONS

Coprocessor-detected exceptions fall into two categories: those related to communications
with the main processor (F-line traps and protocol violations) and those related to the
execution of floating-point instructions (computational errors such as divide by zero, or
instructions designed to cause a trap such as the FTRAPcc instruction). The protocol for

n handling each of these exception types is described in detail in this section.

The main processor coordinates all exception processing. Therefore, when the FPCP detects
an exception, it cannot always force exception processing immediately but must wait until
the main processor is ready to start exception processing. The main processor is always
prepared to process an exception whenever it reads the response coprocessor interface
register (CIR). For the MC68881 and, in most cases, for the MC68882, if a coprocessor-
detected exception occurs during the calculation phase of an instruction, it is held pending
within the FPCP until the next write to the command or condition coprocessor interface
register (CIR). Then, instead of returning the first primitive of the dialog for the new in-
struction, the FPCP returns the take pre-instruction exception primitive to start exception
processing for the offending instruction. (For the MC68881, the offending instruction is
always the previous floating-point instruction, since no mulitiple floating-point concurrency
is allowed; for the MC68882, the offending instruction may not necessarily be the previous
instruction.)

The FPCP may also report an exception after writing an operand to memory. In this case,
a take mid-instruction exception primitive is issued after the operand is stored in memory
(if a conversion error occurred). The mid-instruction exception allows the exception handler
to more easily determine the address of the exceptional operand, since the MC68020
includes the resuits of the effective address calculation for the destination operand in the
mid-instruction stack frame (the long word at offset +$10).

It is possible for the MC68882 to report a mid-instruction exception as a result of an
exception created by a previous instruction. This occurs when the instruction in the APU
reports an exception while a second instruction in the conversion unit (CU} is waiting to
be handed off to the arithmetic processing unit (APU). Consider the case of two FMUL
instructions:

FMUL.X FPO,FP1 (which results in an exception)

FMUL.B <ea>,FP2

At the time the second FMUL instruction is initiated, the first FMUL instruction is still
executing in the APU. The CU instructs the bus interface unit (BIU} to fetch the program
counter, and prefetch the byte operand. Since the CU cannot convert the byte operand, it
instructs the BIU to encode a null (CA=1, IA=1) in the response CIR, and waits to hand

FREESCALE MC68881/MC68882 USER'S MANUAL
6-2

off the instruction to the APU. When the first FMUL instruction finally finishes in the APU
and reports an exception, the second FMUL instruction is in the middle of the instruction,
hence a take mid-instruction exception is taken. Note that in this case, the destination
operand is a floating-point register, and therefore the effective address calculation for the
destination operand in the mid-instruction stack frame of the MPU is undefined.

The third point at which the FPCP can indicate an exception to the main processor is in
response to a protocol violation. If an unexpected access to a coprocessor interface register
causes a protocol violation, the FPCP immediately encodes the response CIR to the take
mid-instruction exception primitive with the protocol violation vector number. This allows
the protocol violation handler to determine the cause of the violation {either an illegal
primitive from the FPCP or an illegal access by the MPU) and perform necessary action.
Since an FPCP protocol violation is a catastrophic error, and the FPCP cannot return an
illegal primitive, the only appropriate action is to abort the task that detected the protocol
violation.

The basic protocol followed in response to a coprocessor-detected exception is:

1. The FPCP encodes the appropriate take exception primitive (pre- or mid-instruction),
along with the vector number, in the response CIR.

2. The MPU reads the response CIR {usually in an attempt to initiate the next instruction)
and receives the take exception request.

3. The MPU acknowiedges the request by writing an exception acknowledge to the
contro! CIR. The appropriate stack frame is then stored in memory, and control is
transferred to the exception handler routine.

4. The response to the exception acknowledge differs for the type of exception and for
the FPCP, as follows:

a. Protocol violation:

MC68881 — Aborts all internal operations that may be active and enters the
idle state.

MC68882 — Same as MC68881.

b. BSUN and F-line {detected by the coprocessor):
MC68881 — Clears the exception and enters the idle state.
MC68882 — Same as MC68881.

c. Arithmetic (Operr, Overflow, Underflow, Divide by zero, Inexact resuit):
MC68881 — Clears the exception and enters the idle state.
MC68882 — Refer to 5.2.2 Exception Handler Code.

The following paragraphs discuss the exception vector assignments used by the FPCP,
and each of the exception types that can be detected by the FPCP.

The ME8000 Family of processors uses a data structure called the exception vector table
as a localized dispatching point for all exceptional conditions that may occur in a system.
The exception vector table is a 1024-byte structure made up of 256 long word entries. Each
entry in the table is a pointer to the routine that services a specific exceptional occurrence.
When an exception occurs, the processor supplies an index that selects the vector entry
for the exception. The index, called the vector number, is an 8-bit value that is multiplied
by four to calculate an offset into the vector table. Of the 256 possible vector numbers, 64
are reserved by Freescale for definition by ME68000 Family devices; the remaining 192 are
for definition by system designers.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-3

Of the 64 reserved vectors, the MPU defines all but 25. The FPCP utilizes three of the same
vector entries defined by the MPU and defines seven additional vectors to support floating-
point exceptions. The vectors defined by the FPCP are shown in Table 6-1. The vector
number is the value (shown in decimal) that is encoded in the appropriate take exception
response primitive (except for the FTRAPcc vector number, which is generated internally
by the MPU). The vector offset is the location of the corresponding entry in the vector
table. The MPU adds the vector offset to the value contained in the vector base register
to calculate the absolute address of the vector. Refer to the appropriate main processor
user's manual for further information on the exception processing operations performed
by the MPU and for the full definition of the exception vector table.

Table 6-1. MC68881/MC68882 Exception
Vector Assignments

Vector !\(umber Vector O_ffset Assignment
(Decimal} {Hexadecimal)
7 $01C FTRAPcc Instruction
n 11 $02C F-Line Emulator
13 $034 Coprocessor Protocol Violation
48 $0Co Branch or Set on Unordered Condition
49 30C4 Inexact Result
50 $0C8 Floating-Point Divide by Zero
51 $occC Underflow
52 S0DO0 Operand Error
53 $0D4 Overflow
54 $0D8 Signaling NAN

The following paragraphs describe the causes for each exception, what information is
available to the trap handler, and what results occur if traps are enabled or disabled. FPCP
instruction exceptions arise from the detection of abnormal conditions during coprocessor
instruction execution. All coprocessor-detected instruction exceptions are enabled or dis-
abled via the FPCR ENABLE byte.

Any of eight exception conditions can be detected during the execution of a floating-point
instruction. The location of the exception bits in the EXC and ENABLE bytes (contained in
the FPSR and FPCR registers, respectively) is shown in Figure 6-1. If more than one enabled
exception ocecurs during the same instruction, then the highest priority instruction trap is
taken (BSUN is the highest; INEX2/INEX1 is the lowest). When multiple exceptions occur,
the FPCP traps to the highest priority exception that is enabled, and the lower priority
exception does not cause a second trap. It is the programmer’s responsibility to determine
if any of the exception bits that have lower priority than the exception taken are set.

FPCP instruction exceptions that arise from the move floating-point data register to external
destination instructions are reported to the MPU as mid-instruction exceptions. All other
MC68881-detected instruction exceptions are reported as pre-instruction exceptions, and
all other MC68882-detected instruction exceptions are reported as either pre-instruction or
mid-instuction exceptions. The FPCP move multiple and move system control register
instructions cannot generate coprocessor detected instruction exceptions. The FSAVE in-
struction can generate a coprocessor-detected exception only when it interrupts an FSAVE

FREESCALE MC68881/MC68882 USER'S MANUAL
6-4

15 14 13 12 W 10 9 8

BSUN SNAN OPERR OVFL UNFL 0z INEX2 INEXT

I——— INEXACT DECIMAL INPUT

INEXACT DPERATION

DIVIDE BY ZERD

UNDERFLOW

OVERFLOW

OPERAND ERRDR

SIGNALLING NOT A NUMBER
BRANCH/SET DN UNDRDERED

Figure 6-1. EXC and ENABLE Byte Bit Assignments

or FRESTORE operation in progress. The FRESTORE instruction can generate coprocessor-
detected instruction exceptions only when the state frame format written to the coprocessor
is not recognized.

In the following exception descriptions, the term *‘intermediate result” is used frequently.
During the execution of a floating-point operation, the FPCP arithmetic processing unit
(APU) contains a 67-bit mantissa (for rounding purposes) and a 17-bit exponent (to ensure
that overflow or underfiow can never occur during the main algorithm). At the end of the
operation, this intermediate result must be stored in a floating-point data register, in an
MPU data register, or in memory. This intermediate result is checked for underflow, rounded,
and checked for overflow to obtain the final result.

6.1.1 Branch/Set on Unordered (BSUN}

The BSUN exception is the result of performing a conditional test associated with the FBcc,
FDBcc, and FTRAPcc instructions when an unordered condition is present. {An unordered
condition occurs when an input to an arithmetic operation is a NAN.} The BSUN exception
can only occur during FPCP conditional instructions with the following IEEE nonaware
branch condition predicates:

GT Greater Than GL Greater Than or Less Than

NGT Not Greater Than NGL Not Greater Than or Less Than

GE Greater Than or Equal GLE Greater Than or Less Than or Equal

NGE Not Greater Than or Equal NGLE Not Greater Than or Equal Less Than or Equal
LT Less Than SF Signaling False

NLT Not Less Than ST Signaling True

LE Less Than or Equal SEQ Signaling Equal

NLE Not Less Than or Equal SNE Signaling Not Equal

if the APU is busy (MC68881) or if the CU {MC68882) is busy, a null (CA=1, JA= 1) primitive
is returned, and the MPU continues to reexamine the response CIR. If an exception is
pending, a take pre-instruction exception primitive is returned. After the appropriate ex-
ception handler is executed, the conditional instruction is restarted. When either the APU
is idle (MC68881) or the APU and CU are idle {MC68882) and no exceptions are pending,
FPCP checks for a BSUN exception, evaluates the conditional predicate, and reports the
result to the MPU.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-5

The MPU can write to the condition CIR of the MC68882 when both the CU and APU are
busy. If exceptions are enabled and if each of the instructions report an exception, the
MC68882 reports the exceptions and executes the handlers, one at a time. The MC68882
restarts the conditional instruction after returning from each exception handler; that is, the
MC68882 restarts the instruction twice. it is important to note that the coprocessor com-
pletes all previous instructions and the MPU completes any executing exception handler
before the conditional instruction checks for a BSUN exception, evaluates the conditional
predicate, and reports the result to the MPU.

The FPCP detects a BSUN exception if the conditional predicate is one of the IEEE nonaware
branches, and the NAN condition code bit is set. When the FPCP detects this exception, it
sets the BSUN bit in the FPSR exception status byte.

Trap Disabled Results: The FPCP evaluates the condition and reports the result to the MPU
in the response CIR.

Trap Enabled Results: The FPCP reports a pre-instruction exception to the MPU with the
BSUN vector number instead of a true or false indication.

n The BSUN exception is unique in that the trap is taken before the conditional predicate is

evaluated. Furthermore, the instruction that caused the BSUN exception is re-executed

following return from the BSUN trap handler. Therefore, it is the responsibility of the trap

handler to prevent the conditional instruction from taking the BSUN trap again. Four ways
are available to prevent taking the trap again.

The first way involves incrementing the stored program counter in the stack to bypass the
conditional instruction. This technique applies to situations where a fall-through is desired.
Be aware that accurate calculation of the program counter increment requires detailed
knowledge of the size of the conditional instruction being bypassed.

The second method is to clear the NAN bit of the FPSR condition code byte. However, this
alone cannot deterministically control the result indication (true or false} which would be
returned when the conditional instruction re-executes.

The third method is to disable the BSUN trap. Like the second method, this method cannot
control the result indication (true or false} which would be returned when the conditional
instruction re-executes.

The fourth method involves examining the condition predicate and setting the condition
code in the FPSR accordingly. This technique gives the most control since it is possible to
pre-determine the direction of program flow. Bit 7 of the F-line operation word indicates
where the conditional predicate is located. If bit 7 is set, the conditional predicate is the
lower six bits of the F-line operation word. Otherwise, the conditional predicate is the lower
six bits of the instruction word, which immediately follows the F-line operation word. Using
the conditional predicate and the table in 4.4.1 IEEE NonAware Tests, the condition codes
can be set to return a known result indication when the conditional instruction is re-
executed.

6.1.2 Signaling Not-a-Number

An SNAN is used as an escape mechanism for a user defined, non-lIEEE data type. The
FPCP never creates an SNAN as a result of an operation; a NAN created by an operand
error exception is always a nonsignaling NAN.

. __|
FREESCALE MC68881/MC68882 USER'S MANUAL
6-6

When an SNAN is an operand involved in an arithmetic instruction, the SNAN bit is set in
the FPSR exception byte. Since the FMOVEM, FMOVE FPcr, and FSAVE instructions do not
modify the status bits, they cannot generate exceptions. Therefore, these instructions are
useful for manipulating SNANs.

Trap Disabled Results: If the destination data format is S, D, X, or P, then the SNAN bit in
the NAN is set to one and the resulting nonsignaling NAN is transferred to the destination.
No bits other than the SNAN bit of the NAN are modified, although the input NAN is
truncated if necessary. If the destination data format is B, W, or L, then the 8, 16, or 32
most significant bits of the SNAN significand, with the SNAN bit set, are written to the
destination.

Trap Enabled Results: For memory or MPU data register destinations, the result is written
in the same manner as if the trap were disabled, and then a mid-instruction exception is
signaled. If desired, the trap handler can overwrite the resuit.

For floating-point data register destinations, instruction execution is terminated, and the
floating-point data registers are not modified. In this case, the SNAN trap handler should
supply the result.

Note that the trap handler should use only the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM cannot generate further exceptions. Also, only
an FMOVEM instruction can write a SNAN into a floating-point data register.

6.1.3 Operand Error

The operand error category encompasses problems arising in a variety of operations, and
inciudes those errors not frequent or important enough to merit a specific exception con-
dition. Basically, an operand error occurs when an operation has no mathematical inter-
pretation for the given operands. The possible operand errors are listed in Table 6-2. When
an operand error occurs, the OPERR bit is set in the FPSR exception status byte.

Trap Disabled Results: For a memory or MPU data register destination, several possible
results can be supplied, depending on the destination size and error type. {An operand
error is never generated when the destination is an MPU data register or memory and the
destination format is S, D, or X.})

If the operand error is caused by an integer overflow or if the floating-point data register
to be stored contains infinity, the resuit is the largest positive or negative integer that can
fit in the specified destination format size. If the destination is B, W, or L and the floating-
point number to be stored is a NAN, then the 8, 16, or 32 most significant bits of the NAN
significand are stored as the result.

For packed decimal results, if the k factor is greater than +17, the result returned is a
packed decimal string that assumes a k factor equal to +17. For packed decimal results
where the absolute value of the exponent is greater than 999, the decimal string is returned
with the three least significant exponent digits in EXP2, EXP1, and EXPO. The fourth digit,
EXP3, is supplied in the most significant four bits of the third byte in the string. Refer to
3.6 DATA FORMAT DETAILS for the packed decimal string format.

If the destination is a floating-point data register, an extended precision nonsignaling NAN
(with all ones mantissa) is stored in the destination floating-point data register.

L |
MC68881/MC68882 USER'S MANUAL FREESCALE
6-7

Table 6-2. Possible Operand Errors

Instruction Condition Causing Operand Error
FACOS Source is =infinity, >+1, or <—-1
FADD (+infinity} + { ~ infinity} or (~infinity) + {+ infinity} *f
FASIN Source is =infinity, >+1, or <-1
FATANH Source is >+ 1, or < -1, Source= zinfinity
FCOS Source is *infinity
FDIV 0/0 or infinity/infinity
FGETEXP 1Source is *infinity
FGETMAN Source is infinity
FLOG1D Source is <0, Source = ~infinity
FLOG2 Source is <0, Source = —infinity
FLOGN Source is <0, Source = —infinity
FLOGNP1 Source is <—1, Source= —infinity
FMOD Floating-Point Data Register is xinfinity or Source is 0, Other Operand is Not a NAN
n FMOVE to Integer Overflow/Underflow, Source is Non-Signaling NAN, or Source is =infinity
B.W, orL
FMOVE to P Result Exponent >999 {Decima)) or k-Factor > +17
FMUL One Operand is 0, Other Operand is *infinity
FREM Floating-Point Data Register is xinfinity or Source is 0, Other Operand is Not a NAN
FSCALE Source is *infinity, Other Operand is Not a NAN
FSGLDIV 0/0 or infinity/infinity i
FSGLMUL One operand is 0, Other Operand is infinity
FSIN Source is xinfinity
FSINCOS Source is =infinity
FSORT Source <0, Source= —infinity
FSUB Source and floating-point data register are +infinity or source and FPn are —infinity
FTAN Source is *infinity

Trap Enabled Results: For memory or MPU data register destinations, the destination
operand is written as if the trap were disabled, and then a take exception primitive is
returned to the MPU. This can only occur for the FMOVE FPm,<ea> instruction, and the
exception is reported as a mid-instruction exception. If desired, the trap handler can overwrite
the result generated by the FPCP.

If the destination is a floating-point data register, the register is not modified by the FPCP.
In this case, the trap handler should generate the appropriate result.

To enable the trap handler to return a result for memory or MPU data register destinations,
the MPU and the FPCP supply:

1. The address of the instruction where the error occurred {in the FPIAR). By examining
the instruction, the trap handler may determine the operation being performed, the
value of the second operand (for dyadic instructions), and the destination location.

2. The address of the destination in the mid-instruction stack frame (at offset +$10).
This allows the trap handier to overwrite the NAN, if necessary, without recalculating
the effective address.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-8

To enable the trap handler to return a result for floating-point data register destinations,
the MPU and the FPCP supply:

1. The address of the instruction where the error occurred {in the FPIAR). By examining
the instruction, the trap handler may determine the operation being performed, the
value of the second operand (for dyadic instructions}, and the destination location.

2. The exceptional operand in the FPCP idle state frame. For additional FSAVE state
frame information, refer to 6.4.2 State Frames. When an SNAN trap occurs, the ex-
ceptional operand is the source input argument converted to extended precision.

Note that the trap handler should use only the FMOVEM instruction to read or write the
floating-point data registers since FMOVEM cannot generate further exceptions or change
the condition codes.

6.1.4 Overflow

An overflow occurs when the intermediate result of an arithmetic operation is too large to n
be represented in a floating-point data register using the selected rounding precision. A
store-to-memory operation overflows when the value in the source floating-point data

register is too large to be represented in the destination format.

Overflow is detected for arithmetic operations where the destination is a floating-point
data register when the intermediate result exponent is greater than or equal to the max-
imum exponent value of the selected rounding precision. (Refer to 2.2.2 FPCR Mode Control
Byte.) Overflow is detected for store-to-memory operations when the intermediate result
exponent is greater than or equal to the maximum exponent value of the destination data
format. Overflow can only occur when the destination is in the S, D, or X format. Overflows
when converting to the B, W, or L integer and packed decimal formats are included as
operand errors. Refer to 3.6 DATA FORMAT DETAILS for the maximum exponent value
for each format. At the end of any operation that could potentially overflow, the intermediate
result is checked for underflow, rounded, and checked for overflow before it is stored to
the destination. If overflow occurs, the OVFL bit is set in the FPSR exception byte.

NOTE

An overflow can occur when the destination is a floating-point data register and
the selected rounding precision is single or double even if the intermediate result
is small enough to be represented as an extended precision number. The inter-
mediate result is rounded to the selected precision {both the mantissa and the
exponent), and then the rounded result is stored in extended precision format. If
the magnitude of the intermediate result exceeds the range of the selected round-
ing precision format, an overflow occurs. The FSGLMUL and FSGLDIV instructions
are the exceptions in that, although the mantissa of the intermediate result is
rounded to single precision, the exponent remains an extended format exponent.
Therefore, those instructions can never report an overflow as long as the inter-
mediate result is small enough to be represented in extended precision format.

Trap Disabled Results: The current rounding mode determines the value to be stored at
the destination, as follows:

MC68881/MC68882 USER'S MANUAL FREESCALE
6-9

Rounding

Mode Result
" RN Infinity, with the sign of the intermediate result
RZ Largest magnitude number, with the sign of the intermediate result
RM For positive overflow, largest positive number
For negative overflow, — infinity
RP For positive overflow, + infinity

For negative overflow, largest negative number

Trap Enabled Results: The result stored in the destination is the same as the resuit stored
when the trap is disabled, and a take exception primitive is returned to the MPU. If the
destination is memory or an MPU data register, the operand is stored, and then a take
mid-instruction exception primitive is issued. If the destination is a floating-point data
register, a take exception primitive is returned when the MPU reads the response CIR of
the FPCP. Since the MC68881 does not allow multipie fioating-point concurrency, a take
pre-instruction exception is reported when the MPU attempts the next floating-point in-
struction. The MC68882 can report an exception as a mid-instruction exception on a sub-
n sequent floating-point instruction.

The address of the instruction that causes the overflow is available to the trap handler in
the FPIAR. By examining the instruction, the trap handler can determine the arithmetic
operation type and destination location. The trap handler can execute an FSAVE instruction
to obtain additional information. When an FSAVE is executed, the exceptional operand is
stored in the state frame. Refer to 6.4.2 State Frames for details of the FSAVE instruction
state frames. When an overflow occurs, the exceptional operand is defined differently for
various destination types:

1. Memory or MPU data register destination — the value in the exceptional operand is
the intermediate result mantissa rounded to the destination precision, with a 15-bit
exponent biased as a normal extended precision number. In the case of a memory
destination, the evaluated effective address of the operand is available in the MPU
mid-instruction stack frame (at offset +$10). This altows the trap handler to overwrite
the default result, if necessary, without recalculating the effective address.

2. Floating-point data register destination — the value in the exceptional operand is the
intermediate result rounded to extended precision, with an exponent bias of
$3FFF-$6000 rather than $3FFF. The additional bias of —$6000 is used to “wrap” the
17-bit intermediate value into a value that can be represented in 15 bits. To recover
the 17-bit twos-complement exponent of the intermediate result, the 15-bit exponent
of the exceptional operand should be sign extended to at least 17 bits (i.e., if it is
manipulated in an MPU data register, it is sign extended to a long word value), and
then the bias of $3FFF-$6000 should be subtracted from that number. Note that for
most operations, the intermediate exponent value does not exceed 32,767 and thus
can be contained in a 16-bit integer. However, a completely general exception handler
should calculate a 17-bit exponent vaiue.

In addition to normal overflow, the exponential instructions implemented by the FPCP
{eX, 10X, 2X, SINH, COSH, and FSCALE) may generate results that overflow the 17-bit
exponent used for intermediate results. For example, the eX function can easily overflow
the 17-bit intermediate exponent if the source value is a large number (x = +18,192).
When such an overflow occurs (called a catastrophic overflow), the exceptional op-
erand exponent value is set to $0000. This value is easily distinguished from the
exceptional operand exponent values produced by normal overflow processing. The

FREESCALE MC68881/MC68882 USER'S MANUAL
6-10

smallest exceptional operand exponent value that can be produced by a normal ov-
erftow is $1FFF ($04000 + $3FFF-$6000, truncated to 15 bits), while the largest excep-
tional operand exponent value is $7FFF {$0A000 + $3FFF-$6000, truncated to 15 bits).
The catastrophic overflow exceptional operand exponent value of $0000 is produced
any time the unbiased exponent of the calculated intermediate result is a value greater
than $0A000.

Note that the trap handler should use only the FMOVEM instructions to read or write the
floating-point data registers since FMOVEM cannot generate further exceptions or change
the condition codes.

6.1.5 Underflow

An underflow occurs when the intermediate result of an arithmetic operation is too small
to be represented as a normalized number in a floating-point data register using the selected
rounding precision. A store-to-memory operation underflows when the value in the source
floating-point data register is too small to be represented in the destination format as a
normalized number. Underflow is detected for arithmetic operations where the destination
is a floating-point data register when the intermediate result exponent is less than or equal
to the minimum exponent value of the selected rounding precision (refer to 2.2.2 FPCR
Mode Control Byte).

Underflow is detected for store-to-memory operations when the intermediate result ex-
ponent is less than or equal* to the minimum exponent value of the destination data
format. :

Underflow can only occur when the destination format is S, D, or X. When the destination
format is packed decimal, underflows are included as operand errors. When the destination
format is B, W, or L, the conversion underflows to zero without causing either an underflow
or an operand error. See 3.6 DATA FORMAT DETAILS for the minimum exponent value
for each format.

At the end of any operation that could potentially underflow, the intermediate result is
checked for underflow, rounded, and checked for overflow before it is stored at the des-
tination. If an underflow occurs, the UNFL bit is set in the FPSR exception status byte.

NOTE

An underflow can occur when the destination is a floating-point data register and
the selected rounding precision is single or double even if the intermediate result
is large enough to be represented as an extended precision number. The inter-
mediate result is rounded to the selected precision (both the mantissa and the
exponent), and then the rounded result is stored in extended precision format. If
the magnitude of the intermediate result is too small to be represented in the
selected rounding precision format, an underflow occurs. The FSGLMUL and
FSGLDIV are exceptions in that, although the mantissa of the intermediate result
is rounded to single precision, the exponent remains an extended precision format

*Underflow is NOT detected for intermediate result exponents that are equal to the extended precision minimum exponent,
since the explicit integer part bit of extended precision permits representation of normalized numbers with a minimum
extended precision exponent.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-11

exponent. Therefore, these instructions can never report an underflow as long as
the intermediate result is large enough to be represented in the extended precision
format.

Trap Disabled Results: The resuit that is stored in the destination is either a denormalized
number or zero. The intermediate result is always normalized because the FPCP ALU and
temporary registers use a 17-bit exponent. Denormalization is accomplished by shifting
the mantissa of the intermediate result to the right while incrementing the exponent until
it is equal to the denormalized exponent value for the destination format. The denormalized
intermediate result is rounded to the selected rounding precision or destination format.

If, in the process of denormalizing the intermediate result, all of the significant bits are
shifted off to the right, the selected rounding mode determines the value to be stored at
the destination, as follows:

Rounding
Mode Result
RN Zero, with the sign of the intermediate result
n RZ Zero, with the sign of the intermediate result
RM For positive underflow, + zero
For negative underflow, smallest denormalized negative number
RP For positive underflow, smallest denormalized positive number

For negative underflow, — zero

Trap Enabled Results: The result stored in the destination is the same as the result stored
when traps are disabled, and a take exception primitive is returned to the MPU. If the
destination is memory or an MPU data register, the operand is stored, and then a take
mid-instruction exception primitive is issued. If the destination is a floating-point data
register, a take exception primitive is returned when the MPU reads the response CIR of
the FPCP, Since the MC68881 does not allow multipie floating-point concurrency, the ex-
ception is always reported as a pre-instruction exception when the next floating-point
instruction is attempted. The MC68882, however, may report an exception as a mid-
instruction exception on a subsequent floating-point instruction.

The address of the instruction that caused the underflow is available to the trap handler
in the FPIAR. By examining the instruction, the trap handler can determine the arithmetic
operation type and destination location. The trap handler can execute an FSAVE instruction
to obtain additional information. When an FSAVE instruction is executed, the exceptional
aperand is stored in the state frame. Refer to 6.4.2 State Frames for details of FSAVE state
frames. The exceptional operand is defined differently for various destination types:

1. Memory or MPU data register destination — the value in the exceptional operand is
the intermediate result mantissa rounded to the destination precision, with a 15-bit
exponent biased as a normal extended precision number. In the case of a memory
destination, the evaluated effective address of the operand is available in the MPU
mid-instruction stack frame (at offset +$10). This allows the trap handler to overwrite
the default result, if necessary, without recalculating the effective address.

2. Floating-point data register destination — the value in the exceptional operand is the
intermediate result mantissa rounded to extended precision, with an exponent bias
of $3FFF + $6000 rather than $3FFF. The additional bias of +$6000 is used to “wrap”
the 17-bit intermediate value into a value that can be represented in 15 bits. To recover
the 17-bit twos-complement exponent of the intermediate result, the 15-bit exponent

FREESCALE MC68881/MC68882 USER'S MANUAL
6-12

of the exceptional operand is sign extended to at least 17 bits (i.e., if it is manipulated
in an MPU data register, it is sign extended to a long-word value), and then the bias
of $3FFF + $6000 is subtracted from that number. Note that for most operations, the
intermediate exponent value is not less than — 32,768, and thus can be contained in
a 16-bit integer. However, a completely general exception handler should calculate a
17-bit exponent value.

In addition to normal underflow, the exponential instructions implemented by the
FPCP (ex, 10x, 2x. SINH, COSH, and FSCALE) may generate results that underflow
the 17-bit exponent used for intermediate results. For example, the ey function can
easily underflow the 17-bit intermediate exponent if the source value is a large number
(x = —8,192). When such an underflow occurs (called a catastrophic underflow), the
exceptional operand exponent value is set to $0000. This is the smallest exception
operand exponent value that can be produced by a normal underflow ($16001 +
$3FFF + $6000, truncated to 15 bits), whife the largest underflow exponent value is
$5FFF ($1C000 + $3FFF + $6000, truncated to 15 bits). The catastrophic underflow ex-
ceptional operand exponent value of $0000 is produced any time the unbiased 17-bit
exponent of a calculated intermediate result has a value less than or equal to $16001.

Note that the trap handler should use only the FMOVEM instructions to read or write to
the floating-point data registers since FMOVEM cannot generate further exceptions or
change the condition codes.

NOTE
The IEEE standard defines two causes of an underflow:

1. When a result is very small, the absolute value of the number is less than .
the minimum number that can be represented by a normalized number in
a specific format.

2. When loss of accuracy occurs while attempting to calculate a very small
-number (a loss of accuracy also causes an inexact exception).

The IEEE standard specifies that if the underflow trap is disabled, an underflow shoutd
only be signaled when both of these cases are satisfied (i.e., the result is too small to
represent with a given format, and there is a loss of accuracy during the calculation of the
final result). If the trap is enabled, the underfiow should be signaled any time a tiny result
is produced, regardless of whether accuracy is lost in calculating it.

The FPCP UNFL bit in the AEXC byte of the FPSR implements the IEEE trap disabled
definition, since it is only set when a very small number is generated and accuracy has
been lost when calculating that number. The UNFL bit in the EXC byte implements the
IEEE trap enabled definition, since it is set anytime a tiny number is generated. Thus, if
the FPCP underflow trap is enabled, a trap occurs when very small size alone is detected
{as the IEEE standard specifies) to support the emulation of machines that underflow to
zero, rather than using the |EEE gradual underflow method (i.e., denormatized numbers).
If the underflow trap is disabled, the UNFL bit in the AEXC byte may be examined at the
end of a calculation to determine if any result produced during the operation required
“representation as a denormalized number, and accuracy was lost when denormalizing and
rounding that result.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-13

6.1.6 Divide-by-Zero

This exception occurs when a zero divisor occurs in a division, or when a transcendental
function is asymptotic with infinity as the asymptote. Table 6-3 lists the instructions that
can generate the divide-by-zero exception. When a divide-by-zero is detected, the DZ bit
is set in the FPSR exception status byte.

Table 6-3. Possible Divide-by-Zero Exceptions

Instruction fnput Operand Value
FATANH Source Operand= *+1
FDIV Source Operand =0 and FPn is Not 2 NAN, Infinity, or Zero
FLOG10 Source Operand=0
FLOG2 Source Operand =0
FLOGN Source Operand=0
FLOGNP1 Source Operand= ~1
n : FSGLDIV Source Operand =0 and FPn is Not a NAN, Infinity, or Zero

Trap Disabled Results: Store the following results in the destination floating-point data
register:
® For the FDIV and FSGLDIV instructions, return an infinity with the sign set to the
exclusive OR of the signs of the input operands.

® For the FLOGXx instructions, return minus infinity.

® For the FATANH instruction, return a +infinity if the source operand is —~1; or a
—infinity if the source operand is +1.

Trap Enabled Results: The destination floating-point data register is not modified, and a
take exception primitive is returned when the MPU reads the response CIR of the FPCP.
Since the MC68881 does not allow multipie fioating-point concurrency, the exception is
always reported as a pre-instruction exception when the next fioating-point instruction is
attempted. The MC68882, however, may report an exception as a mid-instruction exception
on a subsequent floating-point instruction. The trap handier must generate a result to store
in the destination.

To assist the trap handler in this function, the FPCP supplies:

1. The address of the instruction where the divide-by-zero occurred {in the FPIAR)}. By
examining this instruction, the trap handler can determine the operation being per-
formed, the value of the source operand (for dyadic instructions), and the destination
floating-point register number.

2. The FSAVE instruction that places the exceptional operand in a state frame. For ad-
ditional FSAVE state frame information, refer to 6.4.2 State Frames. The exceptional
operand is the source input argument converted to extended precision.

Note that the trap handler should use only the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM cannot generate further exceptions or change
the condition codes.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-14

6.1.7 Inexact Resuit

The FPCP provides two inexact bits (INEX1 and INEX2) to help distinguish between inexact
results generated by decimal input (INEX1) and other inexact resuits (INEX2). Two inexact
bits are useful in instructions in which both types of inexacts can occur, such as:

FDIV.P #7E-1,FP3

In this case, the packed decimal to extended precision conversion of the immediate source
operand causes an inexact error to occur which is signaled as INEX1. Furthermore, the
subsequent divide might also produce an inexact result and cause INEX2 to be set. There-
fore, the FPCP provides two inexact bits in the FPSR exception status byte to distinguish
these two cases.

Note that only one inexact exception vector number is generated by the FPCP. If either of
the two inexact exceptions is enabled, the MPU fetches the inexact exception vector, and
the exception handler routine is initiated. Refer to 6.1.8 Inexact Result on Decimal Input
for a discussion of INEX1.

In a general sense, INEX2 is the condition that exists when any operation, except the input
of a packed decimal number, creates a floating-point intermediate result whose infinitely
precise mantissa has too many significant bits to be represented exactly in the selected
rounding precision (refer to 2.2.2 FPCR Mode Control Byte) or in the destination data format.
If this condition occurs, the INEX2 bit is set in the FPSR exception status byte, and the
infinitely precise result is rounded as described in the next paragraph.

The FPCP supports the four rounding modes specified by the IEEE standard. These modes
are round to nearest (RN), round toward zero (RZ), round toward plus infinity (RP), and
round toward minus infinity (RM). The rounding definitions are:

- Rounding
Mode Result _

RN The representable value nearest to the infinitely precise intermediate
value is the resuit. If the two nearest representable values are equally
near (a tie), then the one with the least significant bit equal to zero {even)
is the result. This is sometimes referred to as “round nearest, even”.

RZ The result is the value closest to, and no greater in magnitude than, the
infinitely precise intermediate result. This is sometimes referred to as
the “chop mode”, since the effect is to clear the bits to the right of the
rounding point.

RM The result is the value closest to and no greater than the infinitely precise
intermediate result (possibly minus infinity).

RP The result is the value closest to and no less than the infinitely precise

intermediate result {possibly plus infinity).

The RM and RP rounding modes are often referred to as “’directed rounding modes” and
are useful in interval arithmetic. Rounding is accomplished using the intermediate resuit
format shown in Figure 6-2.

Depending on the selected rounding precision or destination data format in effect, the
location of the feast significant bit of the fraction and the locations of the guard, round,
and sticky bits in the 67-bit intermediate result mantissa varies.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-15

4
1787] 53-BIT T
EXPONENT H FRACTION H
LEAST SIGNIFICANT BIT OF FRACTION —J
INTEGER BIT . GUARD BIT
L puerrLOw aIT AOUND BIT

STICKY BIT
Figure 6-2. Intermediate Result Format

The guard and round bits are always calculated exactly. The sticky bit is used to create the
illusion of an infinitely wide intermediate result mantissa. As shown by the arrow in Figure
6-2, the sticky bit is the logical OR of all the bits in the infinitely precise result to the right

of the round bit. During the calculation stage of an arithmetic operation, any nonzero bits

generated that are to the right of the round bit set the the sticky bit (which is used in

rounding) to one. Because of the sticky bit, the rounded intermediate result for all required
IEEE arithmetic operations in the round-to-nearest mode is in error by no more than one-
half unit in the last place. For transcendental instructions, the result may not be this accurate
(refer to 4.3 COMPUTATIONAL ACCURACY).

NOTE

When the FPCP is programmed to operate in the single or double precision round-
ing mode, a method referred to as ‘‘range control” is used to assure correct
emulation of a machine that only supports single or double precision arithmetic.
When the FPCP performs any calculation, the intermediate resuit is in the format
shown in Figure 6-2, and a rounded result stored into a floating-point data register
is always in the extended precision format. However, if the single or double
precision rounding mode is in effect, the final result generated by the FPCP is
within the range of the format (except for the FSGLDIV and FSGLMUL instructions,
as described in 4.5.5.2 UNDERFLOW, ROUND, OVERFLOW).

Range control is accomplished by not only rounding the intermediate result man-
tissa to the specified precision, but also checking the 17-bit intermediate exponent
to ensure that it is within the representable range of the selected rounding pre-
cision format. If the intermediate exponent exceeds the range of the selected
precision, the exponent value appropriate for an underflow or overflow is stored
as the result in the 15-bit extended precision format exponent. For example, if
the rounding precision and mode is single/RM and the result of an arithmetic
operation overflows the magnitude of the single precision format, the largest
normalized single precision value is stored as an extended precision number in
the destination floating-point data register (i.e., an unbiased 15-bit exponent of
$00FF and a mantissa of $FFFFFFO000000000). if an infinity is the appropriate
result for an underflow or overflow, the infinity value for the destination data type
is stored as the result (i.e., an exponent with the maximum value and a mantissa
of zero).

Figure 6-3 shows the algorithm that is used to round an intermediate result to the selected
rounding precision or destination data format. If the destination is a floating-point register,

FREESCALE MC68881/MC68882 USER'S MANUAL
6-16

BEGIN
IF GUARD, ROUND AND STICKY=0
THEN (RESULT IS EXACT)
DDN'T SET INEX2
DON‘T CHANGE THE INTERMEDIATE RESULT
ELSE (RESULT 1S INEXACT)
SET INEX2 IN THE FPSR EXC BYTE
SELECT THE ROUNDING MODE
RM: IF INTERMEDIATE RESULT IS NEGATIVE
THEN ADD 1 TD LSB
RN: IF GUARD =1 AND ROUND AND STICK=0 (TIE CASE)
THEN IFLSB=1 ADD 1 TO LSB
ELSE IF GUARD=1ADD 1 TO LSB
ENDIF
RP: IF INTERMEDIATE RESULT IS POSITIVE
THEN ADD 1 T0 LSB
RZ: {FALL THROUGH; GUARD, ROUND AND STICKY ARE CHOPPED)
END SELECT .
IF OVERFLDW =1
THEN
SHIFT MANTISSA RIGHT BY ONE BIT

ADD 1 TD THE EXPONENT
END IF '
SET GUARD, ROUND AND STICK TO 0
END IF
END
Figure 6-3. Rounding Algorithm

the rounding boundary is determined by the selected rounding precision in the FPSR. If
the destination is external memory or an MPU data register, the rounding boundary is
determined by the destination data format. If the rounded result of an operation is not
exact, then the INEX2 bit is set in the FPSR exception status byte.

Trap Disabled Results: The rounded result is delivered to the destination.

Trap Enabled Results: The rounded result is delivered to the destination, and an exception
is reported to the MPU. If the destination is memory or an MPU data register, a take mid-
instruction exception primitive is returned immediately after the operand is stored. If the
destination is a floating-point data register, a take exception primitive is returned when
the MPU reads the response CIR of the FPCP. Since the MC68881 does not allow multipie
floating-point concurrency, the exception is always reported as a pre-instruction exception
when the next floating-point instruction is attempted. The MC68882, however, may report
an exception as a mid-instruction exception on a subsequent floating-point instruction.

The address of the instruction that generated the inexact result is available to the trap
handler in the FPIAR. The trap handler can determine the location of the operand(s) by
examining the instruction. In the case of a memory destination, the evaluated effective .
address of the operand is available in the MPU mid-instruction stack frame (at offset +$10).
When an FSAVE is executed by an inexact trap handler, the value of the exceptional operand
in the state frame is not defined (refer to 6.4.2 State Frame). An inexact exception differs -
from the other exceptions in this respect. If an inexact condition is the only exception that
occurred during the execution of an instruction, the value of the exceptional operand is
invalid. If multiple exceptions occur during an instruction, the exceptional operand value
is related to a higher priority exception,

MC68881/MC68882 USER'S MANUAL FREESCALE
6-17

Note that the trap handler should use only the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM cannot generate further exceptions or change
the condition codes.

NOTE

The IEEE standard specifies that inexactness should be signaled on overflow as
well as for rounding. The FPCP implements this via the INEX bit in the FPSR AEXC
byte. However, the standard also indicates that the inexact trap should be taken
if an overflow occurs with the overflow trap disabled and the inexact trap enabled.
Therefore, the FPCP takes the inexact trap if this combination of conditions occurs,
even though the INEX1 or INEX2 bits may not be set in the FPSR EXC byte. In
this case, INEX is set in the AEXC byte and OVFL is set in both the EXC and AEXC
bytes.

n 6.1.8 Inexact Result on Decimal Input
In a general sense, inexact result 1 (INEX1) is the condition that exists when a packed

decimal operand cannot be converted exactly to extended precision in the current rounding
mode. If this condition occurs, the INEX1 bit is set in the FPSR exception status byte, and
the result of the decimal-to-binary conversion is rounded to extended precision (regardiess
of FPSR mode byte rounding precision} as shown in Figure 6-3. The FPCP provides two
inexact bits (INEX1 and INEX2) to help distinguish between inexact results generated by
decimal input conversions {INEX1) and other inexact results {INEX2).

Trap Disabled Results: If the instruction is an FMOVE to a floating-point data register, the
rounded result is stored in the floating-point data register. If the instruction is not an FMOVE,
the rounded result is used in the calculation.

Trap Enabled Results: The result is generated in the same manner as if traps were disabled,
except that a take exception primitive is returned when the MPU reads the response CIR
of the FPCP. Since the MC68881 does not allow multiple floating-point concurrency, the
exception is always reported as a pre-instruction exception when the next floating-point
instruction is attempted. The MC68882, however, may report an exception as a mid-
instruction exception on a subsequent floating-point instruction.

The address of the instruction that caused the inexact decimal conversion is available to
the trap handler in the FPIAR. The trap handler can determine the location of the decimal
string by examining the instruction, although the effective address of the string must be
recalculated (if possible) by the trap handler. When an FSAVE is executed by an inexact
trap handler, the value of the exceptional operand in the state frame is not defined (refer
to 6.4.2 State Frame). An inexact exception differs from the other exceptions in this respect.
If the inexact conversion is the only exception that occurs during the execution of an
instruction, the value of the exceptional operand is invalid. If multiple exceptions occur
during aninstruction, the exceptional operand value is related to a higher priority exception.

Note that the trap handler should use only the FMOVEM instruction to read or write the
floating-point data registers, since FMOVEM cannot generate further exceptions or change
the condition codes.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-18

6.1.9 Multiple Exceptions

Dual and triple instruction exceptions may be generated by a single instruction in a few
cases. When multiple exceptions occur with traps enabled for more than one exception
class, only the highest priority exception trap is taken; the other enabled exceptions do
not cause a trap. The higher priority trap handler must check for multiple exceptions. The
priority of the traps is as follows:

BSUN Highest Priority

SNAN

OPERR

OVFL

UNFL

Dz

INEX2ANEX1 Lowest Priority

The multiple instruction exceptions that can occur are:
SNAN and INEX1
OPERR and INEX2
OPERR and INEX1
OVFL and INEX2 and/or INEX1
UNFL and INEX2 and/or INEX1
INEX2 and INEX1

6.1.10 I1EEE Exception and Trap Compatibility

The JEEE standard defines only five exceptions. The FPCP FPSR AEXC byte contains bits
representing these five exceptions, which are defined to function exactly as the standard
specifies the exceptions. However, it may be more useful to differentiate the IEEE required
exceptions into the eight exceptions represented in the FPSR EXC byte. Since the FPCP
uses the bits in the FPSR EXC byte and the FPCR ENABLE byte to determine when to trap,
there are seven possibie instruction traps defined (INEX1 and INEX2 share one exception
vector) instead of the five defined by the standard.

If it is necessary to write an application program that only supports the five IEEE specified
traps, the BSUN, SNAN, and OPERR exception vectors should be set to point to the same
handler routine. This allows the FPCP to support the invalid operation exception defined
in the IEEE standard, which is represented by the invalid operation (IOP) bit in the AEXC
byte.

To satisfy other requirements in the IEEE standard, the FPCP does the following:
1. A one is ORed into the AEXC byte IOP bit if the BSUN, SNAN, or OPERR bit is set in
the EXC byte. :

2. A one is ORed into the AEXC byte UNFL bit only if both the UNFL and the INEX2 bits
of the EXC byte are set. However, per the JEEE standard, the underflow trap is based
only on the UNFL bit in the EXC byte,.

3. A one is ORed into the AEXC byte INEX bit if the INEX1, INEX2 or OVFL bit is set in
the EXC byte.

4, The JEEE standard requires that an inexact trap be taken if it is enabled, an overflow
occurs, and the overflow trap is disabled. Thus, if the OVFL bit is set in the EXC byte,
the OVFL bit is not set in the ENABLE byte, and the INEX2 bit is set in the ENABLE
byte, then the inexact trap is taken.

]
MC68881/MC68882 USER'S MANUAL FREESCALE
6-19

The equations for items 1, 2, and 3 are:
AEXC(IOP) = AEXC(IOP)VEXC(BSUNvSNANvOPERR)
AEXC(UNFL) = AEXC(UNFLIEXC{UNFLAINEX2)
AEXC(INEX) = AEXC{INEX)VEXC{INEX1vINEX2vOVFL)

The equation for item 4 (inexact trap taken) is:
Inexact Trap =
[[EXC{OVFL)VEXC(INEX2)JAENABLE({INEX2)]JVIEXC{INEX1)AENABLE(INEX1)]
where:
“v"”" =|ogical OR
A" =logical AND

6.1.11 lllegal Command Words

lllegal coprocessor commands are coprocessor command word bit patterns that are not
implemented by the FPCP. The FPCP reports illegal coprocessor commands as pre-instruc-
tion exceptions, using the F-line emulator vector number. The specific illegal command
n word bit patterns are defined in 4.7 INSTRUCTION ENCODING DETAILS.

FPCP instructions consist of an operation word, a coprocessor command word (if any),
and extension words (if any). The MPU detects an illegal operation word and the FPCP
detects an illegal command word.

For the case where a coprocessor-detected instruction trap is pending when the MPU writes
an illegal coprocessor command to the FPCP command CIR, the coprocessor first reports
the pending instruction exception as a pre-instruction exception. Following exception proc-
essing of the instruction exception, the MPU resumes execution of the main program at
the beginning of the illegal coprocessor command, by writing to the command CIR again.
The illegal instruction exception is then reported by the FPCP.

6.1.12 Coprocessor-Detected Protocol Violation

Alf interprocessor communications in the coprocessor interface occur as standard M&8000
bus cycles. A failure in this communication results in the FPCP reporting a mid-instruction
exception with the coprocessor protoco! violation vector number. When a protocol violation
has been detected by the FPCP, the response CIR is encoded to the take mid-instruction
primitive and the next read of the response CIR by the main processor terminates the
dialog.

The MC68881 signals a protocol violation when unexpected accesses of the command,
condition, register select, or operand CIRs occur. Coprocessor detected protocol violations
occur when:

1. The MC68881 is expecting a write to the command or condition CIR, and instead an
access of the register select or operand CiR occurs.

2. The MC68881 is expecting a read of the register select or operand CIR, and instead
a write to the command, condition, or operand CIR occurs.

3. The MC68881 is expecting a write to the operand CIR, and instead either a write to
the command or to the condition CIR or a read of the reglster select or of the operand
CIR occurs

FREESCALE MC68881/MC68882 USER'S MANUAL
6-20

The MC68882 signals a protocol violation when unexpected accesses of the command,
condition, register select, operand, or instruction address CIRs occur. For the MC68882,
coprocessor-detected protocol violations occur when:

1. The MC68882 is expecting a write to the command or condition CIR, but a read or
write operation to the register select CIR or to the operand CIR or a write operation
to the instruction address CIR occurs instead.

2. The MC68882 is expecting a read of the register select CIR or of the operand CIR, but
a write operation to the command CIR, the condition CIR, the operand CIR, the in-
struction address CIR, or the register select CIR occurs instead.

3. The MC68882 is expecting a write operation to the operand CIR, but a write operation
to the command CIR or to the condition C!R or a read of the register select CIR, the
operand CIR, or instruction address CIR occurs instead.

4. The MC68882 is expecting a write operation to the instruction address CIR, but a write
operation to the command CIR, the condition CIR, the operand CIR, or the register
select CIR or a read of the operand CIR or the register select CIR occurs instead.

For these violations, the FPCP maps the 16-bit register select CIR onto the upper word of
the 32-bit operand register. Thus, inconsistent data is read from the operand CIR, and write
cycles cannot store the correct value. Of course, this is of no consequence since the protocol
violation invalidates any operation being attempted by the FPCP or the main processor.

During normal operation, the FPCP synchroniies interprocessor communication by delay-
ing the assertion of DSACKYX, if necessary. However, upon detection of a protocol violation,
the MC68881 always terminates the access by immediately asserting DSACKx.

Note that in certain cases resulting from serious system programming errors, an unre-
coverable protocol violation may occur when using the MC68882. This particular case of
the protocol violation occurs during the coprocessor interface dialog for the FMOVE and
FMQOVEM instructions if a read of the operand CIR occurs before the evaluate <ea> and
transfer data {DR=1) or the transfer multiple coprocessor registers (DR=1) primitive is
issued. In this case, the protocol violation is not reported via the take mid-instruction
primitive as is the normal case. {nstead, the MC68882 ignores the access completely, and
it is the responsibility of the system watchdog timer to abort the access to the operand
CIR by asserting the bus error signal to the main processor. The MC68020 and MC68030
cannot cause this protocol violation to occur except through misuse of the MOVES instruc-
tion.

Spurious coprocessor-detected protocol violations may also be caused by hardware timing
design errors. When using an MC68020 or MC68030, a common oversight is to use a
buffered address strobe (AS) to the FPCP while not buffering the lower address lines
supplied to the FPCP. If the AS buffer delay used is long enough, it is possible to violate
FPCP specification #7. This problem is usually indicated by protocol violations during
FMOVEM instructions.

A protocol violation cannot occur as a result of an access to the reserved register locations,
a read of a write-only register, or a write to a read-only register (a read of a-reserved or
write-only register always returns a value of all ones). One exception to this rule is that a
write access to the register select CIR causes a protocol violation. Reads of the save or
response CIR are always valid as are writes to the restore or control CIR.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-21

While the MC68881 can request that the MPU write the instruction address CIR (by setting
the PC bit in a primitive response), accesses of this register are neither expected or un-
expected. Thus, when the MC68881 is utilized as a peripheral processor where no con-
current instruction execution occurs, requests to transfer the PC may be ignored without
incurring a protocol violation. When the instruction address CIR is written by the main
processor, the MC68881 updates the FPIAR with the written value without regard to “correct”
protocol.

Since the MC68882 provides concurrent execution of multiple floating-point instructions,
it requires program counter values to be transferred when requested to guarantee a valid
FPIAR for a concurrently-executed instruction which reports an exception. Whenever the
MC68882 requests the PC value, it reports a protocol violation if the main processor does
not transfer the PC value by writing the instruction address CIR.

A protocol violation is the highest priority coprocessor-detected exception. It is also con-
sidered to be a fatal exception, since the MPU acknowledgment of the protoco! violation
exception clears any pending FPCP instruction exceptions and aborts any instruction in

n progress.
NOTE

To distinguish between a protocol violation detected by the MPU or the FPCP, an
exception handier can read the response CIR and evaluate the returned primitive.
If the protocol violation is detected by the FPCP due to an unexpected access, the
operation being executed previously is aborted, and the FPCP assumes the idle
state when the-exception acknowledge is received. Therefore, the primitive read
from the response CIR is null (CA=D0). If the protocol violation is detected by the
MPU due to an illegal primitive, the FPCP response CiR contains that primitive
when the exception handler reads it. (Since the FPCP cannot internally generate
an illegal primitive, an MPU detected protocol violation indicates a hardware
failure.)

To read the response CIR in a hardware independent manner, the trap handler should use
the move alternate address space (IMOVES) instruction. For example, the following instruc-
tion sequence reads the response CIR of the coprocessor with CPID=1 into an MPU data

register:
MOVE.B #7,00 Prepare the SFC register
MOVEC D0,SFC for a CPU space cycle. ..

MOVES.W $00022000,D0 Execute a “coprocessor’” cycle.

6.1.13 Recovery from Exceptions

When a coprocessor-detected exception occurs, enough information is made avaiiable to
the trap handler to perform the necessary corrective action and then resume execution of
the program that caused the exception. Of course, in some instances, it may not be valid
to resume execution of the program; recovery is not possible for protocol violations. The
information available to an exception handler is described in the previous sections, and
the following paragraphs describe the methods used to resume execution of a program
after an exception is appropriately handled.

In all cases, the stack frame generated by the MPU in response to a coprocessor-detected
exception contains a program counter value that points to the instruction to be executed

FREESCALE MC68881/MC68882 USER'S MANUAL
6-22

upon return from the exception handler. In the case of pre-instruction exceptions, the
instruction to be executed upon return is the FPCP instruction that was attempted, but
preempted by a pending exception. For mid-instruction exceptions (other than interrupts),
two pointers are saved: the address of the FPCP instruction that caused the exception and
the address of the instruction immediately following that FPCP instruction. Furthermore,
the FPIAR contains a pointer to the FPCP instruction that caused the exception in both
cases. Thus, an exception handler can always locate the instruction that caused an excep-
tion, and identify the next instruction to be executed upon return from the handler.

When the MPU executes a return from exception (RTE) instruction, it reads the stack frame
from the top of the active system stack and restores that context. in the case where the
stack frame was generated by an FPCP pre-instruction exception, the context that is restored
is the MPU context of the pre-empted FPCP instruction. The FPCP instruction begins ex-
ecution in the normal manner, with the MPU writing the coprocessor command word to
the FPCP.

In the case where the RTE stack frame is generated by a coprocessor-detected mid-instruction
exception, the context restore operation is slightly different. In this case, the MPU must
complete execution of the instruction that was suspended by the exception. When the RTE
instruction completes execution, the MPU first reads the response CIR of the FPCP to
determine the next appropriate action.

NOTE

Since the MC68881 always finishes execution of the instruction that causes this
type of exception before reporting it, the response that is returned is null {CA=0,
PF=1), which releases the main processor to continue with the execution of the
next instruction. Note that after a take mid-instruction exception primitive is re-
turned, the main processor is not required by the MC68881 to perform a read
from the response CIR before initiating the next floating-point instruction, but the
MPU always performs this action when processing a mid-instruction stack frame.

An MC68881 arithmetic exception handler {i.e., a handler for any exception other than the
BSUN exception) routine is not required to perform any action to clear the cause of an
exception. In fact, an MC68881 arithmetic exception handler may consist of a single RTE
instruction (which produces the same logical effect as disabling an exception). This is
because the main processor acknowledges the exception by writing to the control CIR
when the coprocessor signals an exception to the MPU, and the exception acknowledge
clears any pending exceptions in the MC68881. Thus, the MC68881 arithmetic exception
handler is not required to clear any status bits or read any MC68881 registers in order to
prevent the reocurrence of an exception when an RTE instruction is executed. However,
an RTE instruction alone does not prevent the reoccurrence of an MC68882 exception. The
MC68882 does not clear the pending floating-point exception in response to the exception
acknowledge. An MC68882 arithmetic exception handier must meet certain requirements
in order to clear the cause of the exception. Refer to 5.2.2 Exception Handler Code for the
MC68882 exception handler requirements. In the case of the BSUN: exception handler,

. some action must be taken (as described in 6.1.1 Branch/Set on Unordered (BSUN) by the
exception handler to avoid an infinitely executing loop.

For the MC68881, if an exception handler includes any FPCP instruction other than an
FMOVEM, an FSAVE should be the first FPCP instruction to be executed. This assures that
an exception handler cannot generate any exceptions related to, or modify the context of,

MC68881/MC68882 USER'S MANUAL FREESCALE
6-23

the program that caused the exception. For the MC68882, all exception handiers must
begin with an FSAVE instruction, even when they do not contain any floating-point in-
structions. The FPIAR value must be saved before any instruction other than an FMOVEM
is executed, so that the address of the instruction that caused the exception is not lost.
When the exception handler completes the error recovery and is prepared to return to the
suspended program, an FRESTORE is executed as the iast FPCP instruction; this restores
the previous context of the program that caused the exception. Refer to 5.2.2 Exception
Handler Code for other requirements of the MC68882 exception handler.

6.2 MAIN PROCESSOR DETECTED EXCEPTIONS

The following paragraphs describe exceptions that are detected by the MPU during FPCP
instruction execution. Refer to the main processor user’s manual for additional information
on these exceptions, and the pre- and mid-instruction exception main processor stack
frames.

n 6.2.1 Trap on Coprocessor Condition Instruction

The FPCP trap on condition instruction is initiated when the MPU writes a conditional
predicate to the FPCP for evaluation and reads a true/false result in the FPCP response
primitive. If the FPCP indicates that the condition is true, the MPU takes a post-instruction
exception using the TRAPV/TRAPcc vector number.

The stack frame generated by the MPU in response to this exception contains two pointer
values:

1. A pointer to the FTRAPcc instruction that caused the exception

2. A pointer to the instruction that follows the FTRAPcc {the pointer to which the pro-
cessor returns if an RTE instruction is executed)

6.2.2 Nlegal Instructions

The FPCP instructions consist of an operation word, a coprocessor command word (if any),
and extension words (if any). The MPU detects illegal operation words, and the FPCP detects
illegal command words. When the MPU detects an illegal operation word for a coprocessor
instruction, it takes a pre-instruction exception using the F-line emulator vector number.
Refer to 4.7 INSTRUCTION ENCODING DETAILS for specific bit patterns that are illegal
coprocessor operation words.

In addition to detecting an illegal operation word, the MPU can detect an illegal instruction
even though the operation word is valid. This occurs when the addressing mode of the
instruction is not valid. When the FPCP returns a primitive response to the MPU that
requests a data transfer to or from the effective address, the FPCP either implicitly or
explicitly indicates the valid addressing modes for an instruction. Thus, the MPU can
determine that properly formed FPCP operation words and primitive responses are invalid
if they specify operations that are illegal, such as writing to a nonalterable effective address.

When the MPU detects an invalid instruction in this manner, it terminates the FPCP exe-
cution of the instruction by writing an abort to the control CIR. {The MC68882 only aborts

FREESCALE MC68881/MC68882 USER'S MANUAL
6-24

the instruction with the invalid effective address without disturbing concurrently-executed
instructions. The MPU then takes a pre-instruction exception using the F-line emulator
vector number. Termination of the FPCP instruction execution in this manner does not
alter any visible processor or coprocessor registers or status (such as pending coprocessor
exceptions). Use of the F-line emulator trap allows the operating system to emulate any
extensions to the FPCP that are not supported by a specific processor.

6.2.3 Main-Processor-Detected Protocol Violations

if the MPU reads an FPCP response primitive that it interprets as an illegal primitive, it
does not terminate the FPCP execution of the instruction by writing to the coprocessor
interface control register. Instead, the MPU takes a mid-instruction exception using the
coprocessor protoco! violation vector number.

Since the FPCP never issues an illegal response primitive, this feature of the MPU serves
to detect a failure of interprocessor communications. If a protocol violation is taken on an
FPCP instruction, whether detected by the FPCP.or the MPU, a system failure may be
assumed. Refer to 6.1.12 Coprocessor-Detected Protocol Violation for an example of how
an exception handler can determine the cause of a protoco! violation.

6.2.4 Trace Exceptions

To aid in program development, the MPU includes a facility to allow instruction-by-instruc-
tion tracing. In the single-step trace mode, after each instruction is executed, the MPU
takes a post-instruction exception using the trace vector number. This atlows a debugging
program in the trace exception handler to monitor the execution of a program under test.
Refer to the main processor user’s manual for a complete description of the trace mode.

Many FPCP instructions can operate concurrently with MPU instructions, and defer the
reporting of coprocessor detected instruction exceptions until the next FPCP instruction is
dispatched by the MPU. This provides a sequential instruction execution model even though
concurrent instruction execution may occur. To guarantee that pending exceptions are
always reported at the same point in an instruction sequence, regardless of whether tracing
is enabled, the FPCP always releases the MPU at the end of an instruction that allows
concurrency before reporting the exception. This sequence is important, because the MPU
{when in the trace mode) waits for an instruction to complete before proceeding.

To provide consistent reporting of exceptions, the FPCP always returns the null (CA=0,
PF=1) primitive when it completes execution of an instruction that allows concurrency,
and then reports a pending exception only after a write to the command or condition CIR.

The synchronization of the two devices in the trace mode is accomplished through the PF
bit in the null primitive (see 7.1 CHIP-SELECT DECODE). When the trace mode is enabled,
the MPU repeatedly reads the response CIR to determine when the FPCP completes in-
struction execution. If the null (CA=0, 1A= 1, PF=0) primitive is read, then the MPU checks
for pending interrupts, and if none are pending, reads the response CIR again. This process
continues until the MPU receives a null (CA=0, PF=1) primitive from the FPCP, at which
time it performs the trace exception processing.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-25

in order for a trace exception to be transparent to normal program execution, the trace
handler routine must take certain precautions to prevent disturbing the context of the FPCP.
When the main processor detects an exception, it automatically saves the most volatile
portion of the current context and processes the exception immediately; thus, the trace
handler routine is not required to perform any MPU context save in order for the system
to operate properly. The FPCP does not operate in this manner, since it cannot initiate
exception processing until the MPU attempts to execute a new floating-point instruction.
Also, the context information that must be saved for the FPCP is more extensive than that
‘of the main processor; thus, the software must perform the save only when necessary.
The important consideration for a trace exception handler is that it must perform a more
extensive context save for the FPCP than for the MPU {since part of the MPU context save
is automatic). Also, it should not execute any FPCP instruction that may cause a pending
exception to be reported, or a new exception to occur.

Because of these constraints, the first and last FPCP instructions of a trace exception handler
should be the FSAVE and FRESTORE instructions, respectively. By executing the FSAVE
instruction before any other floating-point instruction, the FPCP saves any pending excep-

tions in a state frame and then clears them internally; thus, an exception generated by the
n main program cannot be reported while the trace exception handler is executing. After the

FSAVE instruction is executed, the FMOVEM instruction can be used to save the user-
visible portion of the FPCP context. Then the trace handler is free to utilize the coprocessor
as desired, without affecting the main program context. When the trace handler is ready
to return to the main program, the FMOVEM instruction is used to restore the user-visible
context, followed by an FRESTORE instruction to reinstate the exact context of the FPCP
prior to the trace exception processing. Note that since the MPU is forced to wait until the
completion of an FPCP instruction before processing a pending trace exception, the exe-
cution of the FSAVE instruction by the trace handler always results in an idle state frame
being saved. The user-visible registers contain the results of the last floating-point instruc-
tion. This would not be the case if the trace exception handler were allowed to begin
execution before the FPCP instruction is completed. Processors other than the MPU must
implement the trace synchronization mechanism in software (by polling the PF bit) in order
to assure these conditions.

6.2.5 Interrupt

When the FPCP is busy executing an instruction, it may issue a nuli (CA=1, IA=1) primitive
response, which requests the MPU to continue polling the response register. {This only
occurs if the FPCP requires additional services from the MPU for the current instruction.)
This response also indicates to the MPU that it may sample interrupts between reads of
the response CIR. If there is no interrupt pending, the MPU reads the response CIR again.
If there is an interrupt pending, the MPU takes an interrupt exception using the mid-
instruction stack frame. Upon exiting from the interrupt handler, the MPU repolis the FPCP
response CIR to continue the suspended instruction dialog.

In the trace mode, an interrupt can temporarily break the synchronization of the, MPU and
the FPCP. This can occur when the MPU receives a null (CA=0, IA=1, PF=0) primitive. In
this case, the MPU checks for interrupts before reading the response CIR again; if an
interrupt is pending, the interrupt exception is processed immediately. In response to the
interrupt, the MPU saves a 10-word mid-instruction stack frame with the trace pending
status saved as part of the previous context information. When the interrupt handler com-
pletes execution and performs an RTE instruction, the MPU returns to the trace pending

FREESCALE MC68881/MC68882 USER'S MANUAL
6-26

mode and reads the response CIR to determine if the previous coprocessor instruction is
completed. In this manner, the exception processing for the interrupt is completely trans-
parent to the handling of the trace exception by the MPU and FPCP pair.

If an interrupt handler for a system using an FPCP requires the use of the FPCP, or if a task
switch requires that the context be saved, an FSAVE instruction should be the first floating-
point instruction executed by the routine. To restore the original context, an FRESTORE
must be executed by the routine before the RTE instruction. If an interrupt handler does
not interact with the FPCP, no context save operations are required.

Many FPCP instructions require a fairly fong time to execute, and the MPU may be forced
to wait until the FPCP execution is complete before proceeding to the next instruction
(either because the instruction does not allow concurrency or the main processor is in the
trace mode). Normally, the MPU can only process pending interrupts when it reaches an
instruction boundary, but this might adversely affect interrupt latency if it is not allowed
to process interrupts while waiting on the FPCP. To reduce interrupt latency as much as
possible, the FPCP always sets the interrupts allowed (IA) bit in the null {CA=1) and null
{CA =0, PF=0) primitives; thus allowing interrupts to be processed while the MPU is waiting
for the coprocessor to complete an operation. In fact, most FPCP instructions, regardiess
of their overall execution time, provide for very small interrupt latency times. The worst-
case interrupt latency instruction for the FPCP is the FRESTORE with a busy state frame
(see 8.3 INTERRUPT LATENCY TIMES for more information).

6.2.6 Address and Bus Errors

Bus cycle faults may occur while processing FPCP instructions during the MPU accesses
of the coprocessor interface registers, or during memory cycles run by the MPU to access
instructions or data. If the MPU receives a fault while running the bus cycle which initiates
an FPCP instruction (i.e., the initial write to the command or condition CIR)}, it assumes
that no FPCP is present in the system, and takes a pre-instruction exception using the
F-line emulator vector number. Thus, an MPU system may utilize software emulation of
the FPCP or provide hardware floating point, and the actual configuration is transparent
to the application program. If any other access to the FPCP is faulted, it is assumed that
the coprocessor has failed, and the MPU takes a bus error exception.

if the MPU has a memory fault while executing an FPCP instruction, it takes an address
error or bus error exception. After the fault handler corrects the fault condition, it may
return and communication with the FPCP continues as if the fault had not occurred.

6.2.7 Privilege Violations

The MPU operates at one of two privilege levels: the user level or the supervisor level.
The privilege level determines which operations are legal, and the S bit in the MPU status
register determines the privilege level. Most programs execute at the user level where
accesses are controlled, and effects on other parts of the system are limited. The operating
system executes at the supervisor level, has access to all resources, and may execute all
instructions; hence, it performs the overhead tasks for the user-level programs.

The FPCP FSAVE and FRESTORE instructions are privileged instructions; all others are
nonprivileged. An attempt to execute the FSAVE or FRESTORE instructions while at the

MC68881/MC68882 USER'S MANUAL FREESCALE
6-27

user privilege level results in the MPU taking a pre-instruction exception using the privilege
violation vector number.

6.2.8 Format Error Exceptions

- When the FRESTORE instruction is executed, the FPCP checks the validity of the format
word written to the restore CIR by the MPU. Refer to 6.4.2 State Frames for information
on the format word. The FPCP returns an invalid format word ($02XX) in the restore CIR
when the format word from MPU is not valid. The MPU then takes a pre-instruction ex-
ception using the format error vector number. Refer to 7.5.4.7 FORMAT EXCEPTION, FRES-
TORE INSTRUCTION for further information on the FRESTORE format error exception.

When an FSAVE instruction is initiated while the FPCP is executing a previous FSAVE or
FRESTORE instruction, the FPCP returns an invalid format word ($02XX) in the save CIR.
The MPU then takes a pre-instruction exception using the format error vector number.
Refer to 7.5.4.6 FORMAT EXCEPTION, FSAVE INSTRUCTION for further information on the
n FSAVE format error exception.

6.3 MC68882 EXCEPTION HANDLERS

MC68882 exception handlers can be derived by modifying existing MC68881 handlers. The
required modifications are discussed in 5.2.2 Exception Handler Code. Note that if the
guidelines in the referenced text are met, the resulting MC68882 handlers can be used with
no adverse effects for systems that use the MC68881. Since the MC68882 is pin-compatible
and user-software-compatible with the MC68881, the exception handlers can be written to
meet the system software requirements of both the MC68881 and the MC68882. When this
is done, systems that only use the MC68881 at present can replace the MC68881 with the
MC68882 using the same socket, without changing either applications or systems software.

6.4 CONTEXT SWITCHING

In most types of multitasking systems, it is often necessary to take control from one program
and give control to another program. This requires the operating system to extract (from
the FPCP) data corresponding to one program context and load the context corresponding
to the next program to be executed. The information that must be exchanged is divided
into two categories:

1. Programmer’s model consists of data accessible by the programmer using nonpri-
vileged instructions. This data is saved and restored using the FMOVEM instructions.

2. Internal state consists of various internal flags and registers that are vital in restoring
the FPCP to the proper state. The application program need not be concerned with
the internal state. These internal flags and registers are accessed by the privileged
FSAVE and FRESTORE instructions.

The following paragraphs describe how this context information is manipulated.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-28

6.4.1 FSAVE and FRESTORE Instruction Overviews

The basic mechanism for performing a context switch on the FPCP is provided by the
FSAVE and FRESTORE instructions. These instructions are a logical extension to the in-
struction continuation mechanism that is used by the MC68010, MC68020, and MC68030
processors to support virtual memory. The FSAVE instruction is treated much like a
microcode-level interrupt to the FPCP, instructing it to suspend any operation that is being
executed (at the earliest possible boundary) and make a complete copy of the internal state
of the machine into memory. This is similar to the effect of the assertion of bus error to
the main processor. To restore the internal state saved by the FSAVE instruction, the
FRESTORE instruction is used, which is similar to the RTE instruction on the main processor.

The internal state information that is stored in memory by the FSAVE instruction contains
the image of the flags and registers not visible to the user, including the address in the
microprogram counter, temporary register values, and pending exception information.
After the execution of an FSAVE, the FPCP enters the idle state, and any pending exceptions
are cleared. To perform a complete context save, FMOVEM instructions must be used to
save the user-visible portion of the machine; and then a new context may be loaded. When
it is necessary to reload the context that was previously saved, these steps are reversed:
first, the FMOVEM instructions load the user-visible context, followed by an FRESTORE
instruction, which loads the nonuser-visible context. After the execution of the FRESTQORE,
the FPCP returns to the exact context that existed just before the FSAVE instruction was
executed, and execution continues from that point.

Depending on the state of the FPCP when an FSAVE instruction is executed, the format of
the internal state information written to memory may be in one of three forms: idle, null,
or busy. Also, the FPCP may force the MPU to wait for a short time while the internal state
is prepared for the save operation. During execution of an FRESTORE instruction, the FPCP
interprets the state information read from memory (and written to the restore CIR) to
determine the appropriate response action. The FRESTORE is destructive in that the FPCP
immediately stops any operation that it may be performing and begins to load the next
context; thus there is no need for a mechanism in the FRESTORE instruction to allow the
FPCP to make any service requests to the MPU. The protocol of the FSAVE and FRESTORE
instructions is described in detail in a subsequent paragraph.

6.4.2 State Frames

The three state frame formats that are generated by the MC68881 are shown in Figure
6-4. In all three state frames, the first long word of the frame has the same format. The
least significant word of this long word is reserved for future definition by Freescale; it is
included to allow long word alignment of a state frame in memory. The most significant
word of the first iong word (called the format word) contains the version number of the
coprocessor that generated the state frame (in the most significant byte) and the size of
the internal state stored in the frame (in the least significant byte). For the null state frame,
the size value is undefined. Although the version number and frame size values are defined
by the MC68881, the MB8000 Family coprocessor interface defines the null format word
which is the one format word value that must be recognized by any coprocessor as de-
scribed in a subsequent paragraph.

Two of the state frame formats for the MC68882, shown in Figure 6-5, differ from the
corresponding state frames for the MC68881 in two respects. First, the idle and busy state

MC68881/MC68882 USER'S MANUAL FREESCALE
6-29

NULL STATE FRAME

3 2 15 7 0
{ $00 _ wnoeenen) | {RESEAVED) |
IDLE STATE FRAME
3 23 15 7 0

$00 VERSIDN NUMBER $18 (RESERVED)
504 COMMAND /CONOITION REGISTER {RESERVED)
508
soc EXCEPTIONAL DPERAND

{12 BYTES})
$10
$1a OPERAND REGISTER
$18 BIU FLAGS

BUSY STATE FRAME
3 23 15 7 o

500 VERSION NUMBER I 584 (RESERVED)
504
508
soc / INTERNAL REGISTERS /
$AC {180 BYTES)
580
e

Figure 6-4. MC68887 State Frame Formats

frames each contain 32 additional bytes, which store the CU internal state. Second, the
saved CU internal state is saved at the top of the frame, immediately following the format
word. This resuits in offsets to the APU information that are greater than those for cor-
responding data in the MC68881 state frames by $20. The null state frame consists only
of the format word in both coprocessors.

When an FSAVE instruction is executed, the format word is the first data item transferred
to the MPU, and the main processor uses the size value to perform the correct address

FREESCALE MC68881/MC68882 USER'S MANUAL
6-30

NULL STATE FRAME

3 3 15 7 0
$00] UNDERINED) [(RESERVED)]

IDLE STATE FRAME

kil 23 15 7 0

$00 VERSION NUMBER $38 (RESERVED}
$04 COMMAND/CONDITION REGISTER {RESERVED)
$08
) INTERNAL REGISTERS
{32 BYTES} /
24
$28 v
s EXCEPTIONAL OPERAND
{12 BYTES)
$30 _
534 DPERAND REGISTER
$38 BIU FLAGS
BUSY STATE FRAME
3 23 15 7 0
$00 VERSION NUMBER | $D4 {RESERVED)
$04
$08
soc / INTERNAL REGISTERS /
o {212 BYTES)
$00
$n4

Figure 6-5. MC68882 State Frame Formats

calculations. During an FRESTORE instruction, the format word is written to the FPCP to
initiate the restore operation. When this occurs, the FPCP checks the version number and
frame size values for validity and signals a format exception if they are not valid for this
particular device. The version number is an 8-bit vaiue that identifies the microcode version
of the FPCP, and the format of this number is defined internally by the FPCP. Future devices
will use a unigue combination of the version number and frame size values in order to
guarantee that various revisions of the device cannot incorrectly utilize an internal state
frame that is not valid for that revision.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-31

In addition to being used by the FPCP to validate a state frame before it is used in a restore
operation, the format word can be used by a user program to identify the format of a state
frame and the saved state of the FPCP. In the following descriptions of the three state
frames, the data format within a frame is guaranteed only for those version number and
frame size values given in the accompanying tables. Routines that utilize state frame in-
formation must examine the format word to correctly identify any data formats that are
subject to change by Freescale.

NOTE

The state size value in the format word indicates the size {in bytes) of the FFCP
internal state information. This size value does not include the format word or
the reserved word.

6.4.2.1 NULL STATE FRAME. As shown in Figures 6-4 and 6-5, no internal state infor-
mation is saved in the null state frame. Only the coprocessor version number (0) is indicated.

Version number 0 is a wild card number, allowing this state frame type to be restored to
n a coprocessor of any version. The size value of a null state frame is not assumed to be

valid during a save operation and is ignored by the FPCP during a restore operation. A
restore of the null state performs the reset function with all floating-point data registers
loaded with nonsignaling NANs and with the FPCR and FPSR set to zero. A save of the
null state results when no FPCP instructions have been executed since the {ast null state
restore or hardware reset. Note that a save of a null state indicates that the FPCP pro-
grammer’s model is empty, and thus does not need to be saved with a FMOVEM instruction.

6.4.2.2 IDLE STATE FRAME. As shown in Figure 6-4, 24 bytes of internal state are saved
in the idle state frame for the MC68881. For the MC6882, the idle state frame consists of
56 bytes (see Figure 6-5). The format word indicates the coprocessor version number and
state size (24 or 56 bytes in addition to the format word). An idle state frame is produced
if an FSAVE occurs when a floating-point instruction is not being executed, or when the
current instruction is in the end phase (refer to 6.4.3.5 END PHASE for a definition of the
end phase).

In addition to being used for context switching, the idle state frame contains information
that is useful to most floating-point exception handlers. First, it contains the exceptional
operand value, which can be evaluated by an exception handler to determine the cause
of an exception. Second, it contains the BIU flag word that indicates the status of the FPCP
at the time of an FSAVE instruction. For example, this information can be used by the trace
exception handler in a debug monitor to display the pending exception status along with
the register state of the machine.

As shown in Figure 6-4, the idle state frame for the MC68881 contains four data items: the
command/condition register image, the exceptional operand, the operand register image,
and the BIU flags. A reserved word is also included in order to align the state frame to a
long-word boundary; it is written as $FFFF and ignored during restore operations. The
command/condition word and operand register may contain temporary information, as
indicated by the BIU flags.

The idle state frame for the MC68882 contains 32 words of CU internal register and state
information between the command condition register and the exceptional operand. It is
otherwise identical to the idle state frame for the MC68881.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-32

The format of the BIU flag word is shown in Figure 6-6. Only the 16 most significant bits
in the BIU flag word are defined; the undefined bits are written as ones during save

operations and ignored during restore operations.
The definitions of the 16 flag bits are:

Bits 16-19 These bits contain internal state information about the CU and should
not be modified.

Bits 20-23 These bits are set when valid data is contained in the operand register
image of the state frame. There is one flag bit for each byte in the
32-bit operand register image; if a bit is one, there is valid data in the
corresponding byte. If a bit is zero, the data in the corresponding byte
is assumed to be invalid. These bits can be used to qualify the image
of the operand register and should not be modified.

Bits 24-25 These bits contain internal state information about the CU and should
not be modified.

Bit 26 This bit indicates that the FPCP has completed any necessary operand
conversions and is ready to write an operand 1o memory. If this bit is a
zero, an operand transfer to memory is pending. This bit should not be
modified.

INTEANAL STATE INFORMATION
(MCEB882 ONLY)

31 26 23 20 15 7 0

l— OPERAND REGISTER BITS 24-31 VAUD

DPERAND REGISTER BITS 16-23 VALID
OPERAND REGISTER BITS 8-15 VALID
DPERAND REGISTER BITS 0-7 VALID
DPERAND TD MEMORY MOVE PENDING
FLDATING-POINT EXCEPTION PENDING
ACCESS OF DPERAND REGISTER EXPECTED
PENDING INSTRUCTION DR ACCESS TYPE
INSTRUCTION PENDING

PROTOCOL VIOLATION PENDING

UNDEFINED, RESERVED (1 WHEN READ)

Figure 6-6. BIU Flag Format

MC68881/MC68882 USER'S MANUAL FREESCALE
6-33

Bit 27 This bit indicates that a floating-point exception is pending, which is
reported when the MPU attempts to initiate the next floating-point in-
struction (after a FRESTORE of this state frame). If this bit is zero, an
exception is pending, and the logical AND of the FPSR EXC and FPCR
ENABLE bytes indicates the type of the pending exception. This bit may
be read by an exception handler (particularly a trace routine) to deter-
mine the exception status of the FPCP. As described in a subsequent
paragraph, a user program can modify this bit and the FPSR EXC and
FPCR ENABLE byte images to create a software generated pending
exception.

NOTE

This bit must be set by the exception handler immediately before an
FRESTORE and RTE instruction. When this bit is not set in the exception
handler, the MC68882 re-executes the handler.

Bit 28 This bit indicates that the FPCP is expecting the next coprocessor inter-
face register access to be to the operand CIR. This bit is used by the BIU
as part of the protocol violation checking hardware and should not be
modified. If this bit is a zero, an access of the operand CIR is pending,
and the state of bit 29 determines whether the expected access is a read
or write cycle. Bits 28-30 combine to define the pending operation as
listed in Table 6-4.

Bit 29 This bit defines the type of pending operand access that is expected or
the type of pending operation that is saved in the command/condition
register image. This bit should not be modified. Bits 28-30 combine to
define the pending operation as listed in Table 6-4.

Bit 30 This bit indicates that the FPCP has received a new command word or
conditional predicate from the MPU, but has not been able to begin
execution of that operation. If this bit is zero, the command word or
conditional predicate that was received is contained in the command’
condition register images of the state frame. This bit should not be
modified. Bits 28-30 combine to define the pending operation as listed
in Table 6-4.

Bit 31 This bit indicates that a protocol violation has been detected by the FPCP,
and the MPU has not responded with an exception acknowledge or abort
operation. If this bit is a one, a protocol violation is pending. This bit
should not be modified.

NOTE

The formats of the idle state frame and the BIU flags shown are for the initial
production versions of the FPCP; this format is identified by the format word
values ($1F18 and $3F18 for the MC68881, and $1F38 for the MC68882). Freescale
reserves the right to utilize different state frame formats and format word values
to support future revisions to the FPCP.

FREESCALE MC68881/MC68882 USER'S MANUAL
6-34

Table 6-4. BIU Flag Bit Definitions

Definition
{Undefined, Reserved)

Conditional Instruction Pending

W
(=]
[
w
n
-]

{Undefined, Reserved)

General Instruction Pending
Write of Operand CIR Pending
{Undefined, Reserved)

Read of Operand CIR Pending

No Pending Instruction or Operand CIR Access

mlam|lamlalolololo
- = |o|lOlals OO
e A= Bl L= N N = I R =]

The only bit in the BIU flag word that can be modified by software is bit 27, the exception

pending bit. If this bit is zero, an exception is pending and may be cleared by changing it

to a one. Alternatively, the type of the pending exception can be changed by modifying

the FPSR EXC byte and/or the FPCR ENABLE byte before executing an FRESTORE. Finally, n
if the pending exception bit is one (indicating that no exception is pending), it can be

changed to make an exception pending; the type of exception pending is defined by the

FPSR EXC and FPCR ENABLE bytes. In all of these cases, the change in the exception status

takes effect when the state frame is utilized by an FRESTORE instruction.

The exception pending bit (referred to as EXC PEND} in the BIU flag word is the image of
the exception pending signal internal to the FPCP. Normally, EXC PEND is negated by the
FPCP execution unit when an instruction (other than an FMOVEM, FMOVE control register,
FSAVE, FRESTORE} begins execution, and is asserted if an exception occurs during the
instruction. The bus interface unit uses EXC PEND to determine the primitive response
that is encoded in the response CIR after a write to the command or condition CIRs, or
after the completion of the transfer of a floating-point operand to memory. If EXC PEND
is true when an attempt is made to initiate an FPCP instruction (other than an FMOVEM,
FMOVE control register, FSAVE, or FRESTORE), the response CIR is encoded to the take
pre-instruction exception primitive {or the take mid-instruction primitive when the instruc-
tion in the CU is reporting an exception caused by the instruction in the APU); otherwise,
the dialog for the instruction is started. If EXC PEND is true at the end of the move of a
floating-point operand to memory, the response CIR is encoded to the take mid-instruction
exception primitive; otherwise it is encoded to the null ({CA=0, PF=1) primitive. The vector
number that is encoded in the take exception primitive is determined by the state of the
FPSR EXC and FPCR ENABLE bytes and corresponds to the highest priority exception that
is enabled. The MPU responds to the take exception primitive by writing an exception
acknowledge to the control CIR. When the MC68881 detects the exception acknowledge,
it clears EXC PEND. However, the MC68882 does not clear the EXC PEND bit. It is the
responsibility of the exception handler to clear EXC PEND, using the instructions listed in
5.2.2 Exception Handler Code. ' .

With this understanding of how EXC PEND {and its image in the BIU flag word) affects the
operation of the FPCP, a programmer can make exceptions pending in the FPCP under
software control. Or, conversely, a pending exception type may be changed or cleared if
necessary. :

6.4.2.3 BUSY STATE FRAME. As shown in Figure 6-4, 180 bytes of internal state are saved
in the MC68881 busy state frame. The format word indicates the coprocessor version

L _____________________________________
MC68881/MC68882 USER'S MANUAL FREESCALE
6-35

number and state size (180 bytes). The busy state is produced if an FSAVE occurs when a
floating-point instruction is in the initial or middle phase. Due to the volatile nature of the
FPCP internal state during calculation, this state frame does not contain any information
useful to applications programs, and the frame should not be modified in any way.

The MC68882 busy state frame contains 212 bytes, including 32 bytes of CU internal state
information (refer to Figure 6-5). The format word contains the coprocessor version number
and the state size. Otherwise the MC68882 busy state frame is identical to the busy state
frame of the MC68881.

6.4.3 FSAVE Protocol
Table 6-5 lists five possible phases of the execution of a floating-point instruction that can

apply at the time an FSAVE instruction is executed. For each phase, the table shows the
response time and the state frame type.

n Table 6-5. MC68881/MC68882 Responses
to Save Command
Phase Name Response Time State Frame Type
Reset Immediate Null
Idle Immediate Idle
{nitial Immediate Busy
Middle Periodic Busy
End Delayed Idle

When the MPU decodes an FSAVE instruction, it attempts to initiate a save operation in
the FPCP by reading from the save CIR. If the FPCP is ready to perform the save, it responds
with a valid state frame format word. The format word informs the MPU that the copro-
cessor is ready to transfer the state frame and also what size frame is to be saved. If the
FPCP is not ready to begin the transfer of the state frame, it returns the come-again format
word, forcing the MPU to wait. When the MPU receives the come-again format word, it
checks for pending interrupts and processes them if necessary. Otherwise, it repeatedly
reads the save CIR until a format word other than come again is returned. When the FPCP
receives a valid format word, it reads the number of bytes indicated by the format word,
- four bytes at a time, from the operand CIR and writes them to memory.

The FPCP always returns one of five format words in the save CIR. Table 6-6 shows the
five format word values and their meanings. In this table, the version number of the idle
and busy format words corresponds to the version number of the initial production versions
of the MC68881; future revisions of the device will utilize different version numbers to
identify unique state frame formats. If the format of the idle or busy state frame of a future
version of the FPCP differs from that of versions $1F and $3F for the MC68881 or $1F for
the MC68882, Freescale will provide the new format information when the new version is
available.

The come-again format word is returned by the FPCP to force the MPU to wait, as previously
described. When the FPCP is ready to complete a save operation, it returns one of the
other valid format words (null, idle, or busy) to the main processor and then transfers the

FREESCALE MC68881/MC68882 USER'S MANUAL
6-36

Table 6-6. MC68881/MC68882 Format
Word Definitions

Format Word Definition and Frame Size J
-$00xx* Null State
$01xx* Come Again
$02xx* Illegal, Format Error
$wvigrr Idle State (MC68881)
$vvBar* Busy State (MC68881)
$vv38** Idle State {MC68882)
$vvDa** Busy State (MC68882)

*The frame size byte for these format words is undefined for
the M68000 Family coprocessor interface. The value encoded
by each version is consistent; however, different versions are
not guaranteed 1o use the same values. '

**Each different version encodes a unique version number in
“vv'’ while using the same frame size value.

appropriate state frame. The only time that the FPCP uses the illegal format word is when
a read of the save CIR occurs while the FPCP is performing a state save or state restore.
Normally, this only occurs when the execution of an FSAVE or FRESTORE instruction is
suspended (e.g., due to a page fault during the save or restore operation} and an attempt
is made to execute a new FSAVE instruction. If this happens, the illegal format word is
returned to cause a format exception to be taken by the main processor. When the MPU
receives the illegal format word, it writes an abort to the control CIR and initiates exception
processing. in this case, the format error handler routine examines the instruction that was
being executed when the format error occurred and can determine whether the second
FSAVE instruction failed due to ‘‘nesting” of save or restore operations. Such an error is
considered to be a catastrophic system error since the FPCP context is lost and cannot be
recovered.

When the MPU receives an idle or busy format word, the bytes in the frame (four bytes
at atime) are transferred from the operand CIR to memory. First, the format word is written
to memory at the evaluated effective address. For the predecrement addressing mode, the
value of the specified address register is saved in a temporary register, the size of the state
frame is subtracted from the address register, and the format word is pushed to that
address. {Thus, the required stack space is aflocated before the save operation is started.)
The state frame is then filied, from higher addresses to lower addresses, using the tem-
porary register as a pointer. For the control alterable addressing modes, the format word
is written to the specified address; then the address of the last word of the frame is
calculated (in a temporary register) and the frame is filled from higher addresses to lower
addresses. After the last byte of the state frame is written to memory, the FPCP is in the
idle state with no pending exceptions, and the MPU executes the next instruction (it does
not read the save or response CIR after the save operation).

The following paragraphs describe the response of the FPCP to an FSAVE instruction for
the various phases of instruction execution.

6.4.3.1 RESET PHASE. In this phase, no FPCP instructions have been executed since the
last hardware reset or FRESTORE of a null state frame. When the FPCP is in this state and
an FSAVE is executed, a null format word is returned immediately.

MC68881/MC68882 USER'S MANUAL FREESCALE
6-37

6.4.3.2 IDLE PHASE. In this phase, the FPCP is not executing an instruction, but at least
one instruction has been executed since the last hardware reset or FRESTORE of a null
state frame. When the MC68881 is in this state and an FSAVE is executed, an idle format
word is returned immediately, and an idle state frame is stored.

6.4.3.3 INITIALPHASE. In this phase, the FPCP is acquiring instruction and operand words
from the MPU. In a virtual memory system, a memory fault can occur during this phase
due to an attempt to access an operand that is not resident in main memory. In this case,
the MPU traps to a fault handler to initiate a transfer from secondary storage, typically
.involving one or more disk accesses. After initiating the transfer, the operating system
usually switches the main processor and coprocessor(s) to another program, thus neces-
sitating a save of the coprocessor state and restoration of the state of the copracessor
relative to the next program. To facilitate saving and restoring the coprocessor, the FPCP
responds immediately to a save command during the initial phase by storing a busy state
frame.

n 6.4.3.4 MIDDLE PHASE. The middle phase occurs only in FPCP instructions that take
significant processing time (i.e., remainder, transcendental functions, and BCD conver-
sions). During this phase, the internal microcode sequence of the FPCP provides for periodic
checkpoints to determine if the MPU has issued a save command. If the MPU initiates a
save command to the FPCP between check points, the FPCP sets an internal flag to denote
the receipt of the command and returns a come-again format word to the MPU. The MPU
repeatedly reads the save CIR until it receives a valid format word. The FPCP continues
internal processing up to the next checkpoint, at which time processing stops, and the next
read of the save CIR acquires the appropriate format word to start the save operation. At
this point, the save command proceeds to completion, and the FPCP supplies a busy state
frame.

6.4.3.5 END PHASE. This phase begins when the FPCP is almost finished with a long
instruction. The length of the end phase is approximately equal to the amount of time
required to perform a save of a busy state frame. When the FPCP reaches the end phase,
it takes less time to complete execution of the instruction and save an idle frame than to
immediately save a busy state. During this phase, the FPCP uses the come-again format
word to force the MPU to wait for the completion of the instruction, and then saves an
idle state frame.

Note that most of the FPCP instructions proceed directly from the initial phase to the end
phase, and thus, most state frames generated by the FPCP are idle frames.

6.4.4 FRESTORE Protocol!

When the MPU decodes an FRESTORE instruction, it evaluates the effective address to
locate the format word for the state frame, and writes that format word to the restore CIR
of the FPCP. In response to this write cycle, the FPCP aborts any operation that may be in
progress and prepares to load a new internal state. The format word that is written to the
restore CiR is checked for validity (it must be a null, idle, or busy format word with a version
number that matches that of the specified device) before the restore operation begins.
After the MPU writes the format word to the FPCP, it then reads the restore CIR to verify

FREESCALE MC68881/MC68882 USER'S MANUAL
6-38

that the format word is valid. If the format word is valid, the FPCP returns the same format
word that was written; if the format word is not valid, an illegal format word {$02xx} is
returned. If the format word is successfully verified, the MPU begins to transfer the state
frame, four bytes at a time, from memory to the FPCP operand CIR.

When transferring the state frame from memory to the FPCP, the MPU first transfers the
format word and, after it is verified, transfers the remainder of the state frame. The order
of transfer is the same for both the postincrement and the control addressing modes. The
long word at the lowest address is transferred first, followed by the long words at suc-
cessively higher addresses. For the postincrement addressing mode, the specified address
register is not updated by the MPU until the entire frame has been successfully transferred.
Thus, a fault during an FRESTORE instruction generates a stack frame that does not overwrite
any part of the FPCP state frame. :

After the entire state frame has been transferred to the FPCP, the MPU continues with the
execution of the next instruction (it does not read the response CIR). If an exception related
to the FPCP caused the suspension of the task earlier, an RTE instruction is eventually
executed to return to the original context. Depending on the exception type, the RTE may
re-establish the MCU/coprocessor protocol of the suspended operation or begin the exe-
cution of a new FPCP instruction.

6.4.5 Context Switching Summary

To perform a complete context save or restore operation, three FPCP instructions are
required. First, the FSAVE and FRESTORE instructions are used to transfer the nonuser-
visible portion of the machine state between the FPCP and memory. Second, the FMOVEM
instruction may be used to transfer the user-visible portion of the machine, including the
floating-point data and control registers.

An important aspect of the FMOVEM instruction is that it cannot cause an exception or
report a pending exception; thus the context of the FPCP, including pending exceptions,
can be saved and restored in a manner that is completely transparent to a user program.
Note that if an FSAVE instruction stores a null state frame, the floating-point data and
control registers are reset to their default states, and the FMOVEM instructions are not
needed. Figure 6-7 illustrates the manner in which a full context switch might be performed.

L _____________________________________
MC68881/MC68882 USER'S MANUAL FREESCALE
6-39

INSTRUCTION SEQUENCE TO STORE THE PREVIOUS CONTEXT

FSAVE ~{An) SAVE MC68381 STATE FRAME
TST.B (An} CHECK FOR A NULL FRAME
BEQ NULLSV - SKIP PROGRAMMER'S MODEL; SAVE IF NULL
FMOVEM FPO-FP7, - (An) ELSE, SAVE DATA REGISTERS
FMOVEM FPCR/FPSR/FPIAR, — (An} AND SAVE CONTAOL REGISTERS
MOVE.L #—1,—(An) PLACE NOT-NULL FLAG ON STACK

NULLSV.

INSTRUCTION SEQUENCE TQ LOAD THE NEXT CONTEXT

TSTB ‘ {An) CHECK FOR NULL FRAME OR NOT-NULL FLAG
BEQ NULL_RST SKIP PROGRAMMER'S MODEL; RESTORE IF NULL
ADDOL #4.An ELSE, THROW AWAY THE NOT-NULL FLAG
FMOVEM {An)+ FPCRFPSR/FPIAR RESTORE THE CONTROL REGISTERS
FMOVEM {An) + FPO-FPT RESTORE THE DATA REGISTERS

NULLRRST FRESTORE {An}+ RESTORE THE FPCP STATE FRAME

n Figure 6-7. Full Context Save/Restore Instruction Sequences

]
FREESCALE MC68881/MC68882 USER'S MANUAL
6-40

SECTION 7
COPROCESSOR INTERFACE

This section describes the coprocessor interface with respect to the communication pro-
tocol utilized by the MC68881/MC68882 (FPCP) and MC68020/MC68030 (MPU). This com-
munication protocol includes electrical and command-level mechanisms that allow a
coprocessor to act as an extension to the main processor,

The connection between the MPU and the FPCP is an extension of the M68000 bus interface,
with the FPCP connected as an auxiliary device to the MPU. The FPCP is selected by a
chip-select (CS) signal that is decoded from the MPU function code and address bus lines.

The FPCP contains a set of coprocessor interface registers (CIRs) by which the main pro-
cessor and coprocessor communicate. These registers are not related to the programming
model implemented by the FPCP. Rather, they are used as communication ports that have
specific functions associated with each register. When the FPCP is used as a coprocessor
to the MPU, the programmer is never required to explicitly access these interface registers,
since the coprocessor interface is implemented in the hardware and microcode of the MPU.
A main processor other than an MPU explicitly accesses the FPCP CiIRs using a software
routine that simulates the behavior of the MPU with respect to the coprocessor interface.

For more information on the electrical interconnection between the main processor and
the FPCP, refer to SECTION 11 INTERFACING METHODS.

7.1 CHIP-SELECT DECODE

The MPU does not require any special bus signals, beyond the normal M68000 Family bus
control signals, for connection to the FPCP, The former MCE8000 interrupt acknowledge
address space {function code 111) is extended in the MPU to become the CPU address
space. A portion of this space, identified by the MPU address bus, is dedicated to copro-
cessor devices. Figure 7-1 illustrates the information presented on the MPU address bus
for coprocessor accesses in the CPU address space.

During CPU space cycles, address bits A19-A16 indicate the CPU space function that the
main processor is performing. The MPU utilizes four of the possible 16 encodings of
A19-A16 as listed in Table 7-1.

The coprocessor identification (Cp-ID), A15-A13, is taken from the coprocessor instruction
operation word (refer to 7.4 COPROCESSOR INSTRUCTIONS). The coprocessor interface

3 ' 20 1 615 13 12 5 4 0
uoonnnonnnoanoln]cwn]noaoﬂoon] CIR SELECT

Figure 7-1. MPU Address Bus Encoding for Coprocessor Accesses

MC68881/MC68882 USER'S MANUAL FREESCALE
71

Table 7-1. MPU CPU Space Type Field Encoding

('::I:: dsl::c;_;::;’ CPU Space Transaction
0000 Breakpoint Acknowledge
0001 Access Level Control
0010 Coprocessor Communications
111 Interrupt Acknowledge

register (CIR select) field, A4-A0, is decoded by the FPCP to select the appropriate CIR. For
a map of the FPCP coprocessor interface registers in the CPU address space, refer to Figure
7-2. Since address bits A31-A20 are not present on all implementations of M&8000 pro-
cessors, these bits are not essential for decoding CPU space transactions and therefore
are don't care bits.

3t 16 15 0
500 RESPONSE
502 CONTROL
504 SAVE
506 RESTORE
$08 OPERATION WORD
$0A COMMAND
50C (RESERVED)
$0E CONDITON
$10 ' OPERAND
$14 REGISTER SELECT {RESERVED)
$18 INSTRUETION ADDRESS
$ic OPERAND ADDRESS

Figure 7-2. FPCP Coprocessor Interface Register Map

The FPCP chip-select decode, therefore, uses the MPU function codes (FC2~FC0), the CPU
space type field (A19~A16), and the Cp-ID field (A15~A13). The FPCP decodes the address
bits A4~-A0 to determine the function (as defined by the selected CIR) of any coprocessor
access.

7.2 COPROCESSOR INTERFACE REGISTERS

Table 7-2 identifies the FPCP coprocessor interface register (CIR) locations in the CPU space
that are used for communications between the MPU and the FPCP. Figure 7-2 illustrates
the memory map of the CiRs on a 32-bit bus. When CS is asserted, the FPCP decodes the
CIR select field of the address bus (A4-AQ) to select the appropriate coprocessor interface
register.

" When the FPCP is used on a 32-bit bus, the coprocessor interface registers appear at the

logical addresses shown in Figure 7-2 and Table 7-2. The M68000 dynamic bus sizing

FREESCALE MC68881/MC68882 USER'S MANUAL
7-2

protocol is used to place all word registers on the upper word of the data bus (D31-D16).
This is accomplished by asserting DSACK1 and leaving DSACKOQ negated when any word
register {other than the register select CIR) is accessed, regardiess of the value of A1.

The following paragraphs describe the characteristics of each of the coprocessor interface
registers as implemented by the FPCP. In each description, the read/write attribute of each
register is included. If a register is read only, write accesses to that location are ignored;
while read accesses of a write-only register always return all ones. In all cases, the FPCP
asserts DSACKXx in response to the assertion of CS in order to terminate the bus cycle.

Table 7-2. Coprocessor Interface Register Characteristics

Register A4-A0 Offset Width Type

Response 0000x $00 16 Read
Control 0001x $02 16 Write
Save 0010x $04 16 Read
Restore 0011x $06 16 RW
Operation Word* 0100x $08 16 RW
Command 0101x $0A 16 Write
(Reserved) 0110x $oC 16 —
Condition 0191x $0E 16 Write
Operand 100xx $10 32 RW
Register Select 1010x $14 16 Read
{Reserved) . 1011x - $16 16 —
Instruction Address 110xx $18 32 Write
Operand Address* 111xx $1C 32 AW

*These CIRs are optionally implemented by a coprocessor only if they are needed; since they are not used by
the MCE8881, they are not implemented. Writes to these locations are ignored, and reads always return all
ones,

7.2.1 Response CIR ($00)

This 16-bit read-only register is used to communicate service requests from the FPCP to
the main processor. A read of the response CIR is always legal, regardless of the state of
an instruction dialog. The formats of the response primitives that are returned through
this register are detailed in 7.4.2 Response Primitives.

The execution of an instruction by the FPCP does not start until the main processor reads

" the response CIR for the first time after a write to the command CIR. Furthermore, a read
of a primitive from the response CIR usually causes the FPCP to proceed to the next state
in an instruction dialog. For example, if an evaluate effective address and transfer data
primitive is encoded in the response CIR and the main processor reads that primitive, it is
assumed that the primitive was successfully transferred (and saved for later use, if nec-
essary) and that the requested service is performed. In this case, the FPCP then changes
the encoding of the response CIR to the null primitive and waits for an access of the operand
CIR to transfer the operand.

I
MC68881/MC68882 USER'S MANUAL FREESCALE
7-3

7.2.2 Control CIR ($02)
This 16-bit write-only register is utilized by a main processor to issue an exception ac-

knowledge or instruction abort to the FPCP. Figure 7-3 illustrates the format of this register.
Only two of the 16 bits are defined: the exception acknowledge (XA) and abort (AB) bits.

15 14 13 12 1] 10 9 8 7 § 5 4 3 2 i 0

UNDEFINED, RESERVED | xa | a8 |

Figure 7-3. Control CIR Register

The implementation of the MC68881 does not utilize these two bits; instead, it interprets
a write to this CIR address as an abort command, regardless of the data pattern written.
Thus, an exception acknowledge (in response to a take exception primitive) or abort (in
response to an itlegal format word or an invalid primitive request) issued during any
MC68881 instruction protocol, or an explicit write {e.g., with the MOVES instruction) to the
control CIR always has the same effect on the MC68881. Also, write cycles to this register
are never illegal since the MC68881 always responds in the same manner.

The response of the MC68881 to a write of the control CiR is:

1. To immediately terminate processing for any instruction that may be in progress. If
an arithmetic instruction is in progress when an abort is issued, the content of the
destination floating-point data register is undefined. No other user-visible registers
are disturbed.

2. To clear any pending exceptions.

3. To reset the bus interface unit to the idle condition. Thus, the MC68881 is ready to
begin a new instruction protocol following the write cycle.

Unlike the MC68881, the MC68882 distinguishes a write to the AB bit from a write to the
XA bit. A write to the AB bit is interpreted as an abort of the last instruction received.
However, an abort is only recognized during a certain window, which begins when the
main processor writes an instruction to the command CIR and extends to the last CIR read
or write required for that instruction. if the write to the AB bit of the control CIR occurs
during this abort window, an abort function is initiated. Otherwise, a write to the AB bit is
undefined and produces an undefined result. The response of the MC68882 to a write to
the AB bit is:

1. To immediately terminate the instruction to which the abort window applies. Any
concurrent instruction in progress within the MC68882 is allowed to complete.

2. To reset the bus interface unit to the idle condition, leaving the MC68882 ready to
begin a new instruction protocol following the write cycle.

The write to the XA bit signals the MC68882 that the main processor is responding to an
MC68882-detected exception. This write operation is necessary to clear any pending ex-
ceptions. However, the write operation alone does not guarantee that the exception is
cleared. For the floating-point exception traps, it is the responsibility of the exception
handler to clear the exception. If the handler does not clear the exception, the MC68882
continues reporting the same exception every time the main processor reads the response
CIR. Refer to 5.2.2 Exception Handler Code for additional exception handler requirements.

FREESCALE MC68881/MC68882 USER'S MANUAL
7-4

7.2.3 Save CIR {$04)

This 16-bit read-only register is used by the main processor to issue a context save com-
mand to the FPCP, and by the FPCP to return the format word of the FPCP state frame to
the main processor. A read of this register causes any operation that may be executing
{except a state save or restore} to be suspended, and a state save operation is initiated.

Following the read of a not-ready, come-again format word from the save CIR, the next
expected access is a read of the save CIR. After the read of an idle or busy format word,
the next expected access is to the operand CIR (to transfer the state frame). After the read
of a null format word, the FPCP is in the reset state, and the next expected access is to the
command or condition CIR.

The only time that a read of this register is illegal is when the FPCP is executing a state
frame transfer for an FSAVE or FRESTORE instruction; a read of the save CIR is legal at
any other time. If the main processor reads the save CIR at an illegal time, the invalid
format word is returned. In response to the invalid format word, the main processor can
write an abort to the FPCP to return it to the idle state.

7.2.4 Restore CIR ($06)

This 16-bit read/write register is used by the main processor to issue a context restore
command to the FPCP and to validate the format word of a state frame. A write of this
register causes the FPCP to immediately stop any operation that may be executing and
prepare to load a new internal state context from a memory-resident state frame.

After the main processor writes a format word to the restore CIR, it must read the restore
C!R to receive the result of the format word verification. If the written format word is valid,
that format word is read back from the restore CIR to indicate the successful verification.
If the format word is invalid, the invalid format, take exception value is placed in the restore
CIR to indicate the verification failure. After a successful verification is signaled, the next
expected access is to the operand CIR (to transfer the state frame). After a verification
failure is signaled, the main processor should write an abort to the control CIR in order to
return the FPCP to the idle state. (The MPU does this automatically.)

7.2.5 Operation Word CIR ($08)

This 16-bit write-only register is not used by the FPCP. The only time that this CIR location
is used by the M68000 Family coprocessor interface is when a coprocessor issues the
transfer operation word primitive, in which case the main processor writes the F-line word
of the instruction to the operation word CIR. Since the FPCP never issues the transfer
operation word primitive, the operation word CIR location should never be written by the
main processor. If a write to this location occurs, it is ignored; it does not cause a protocol
violation.

7.2.6 Command CIR ($0A)

This 16-bit write-only register is used by the main processor to initiate the dialog for a
general type coprocessor instruction. When the FPCP detects a write to this CIR location,

MC&8881/MC68882 USER'S MANUAL FREESCALE
7-5

the data value is latched from the data bus. If the MC68881 is executing a previous instruc-
tion in the APU or if the CU of the MC68882 is still busy when the command CIR is written,
the-latched command word is saved for later use, and the response CIiR is encoded with
the null (CA=1, IA=1) primitive. If the FPCP is in the idle or reset state when a write to
the command CIR occurs, it encodes the first primitive for the selected instruction dialog
in the response CIR in order to begin the execution of the new instruction.

A write to this CIR location is legal at any time except when the FPCP is in the initial phase
of a general instruction or before the read of the conditional evaluation for a previous
conditional instruction. If a write to the command CIR occurs when it is not expected, a
protocol violation occurs, and the command word that is written is not saved by the FPCP.

7.2.7 Condition CIR ($0E)

This 16-bit write-only register is used by the main processor to initiate the dialog for a
conditional type coprocessor instruction. When the FPCP detects a write to this CIR location,
the data value is latched from the data bus. If the FPCP is executing a previous instruction
when the condition CIR is written, the latched conditional predicate is saved for later use,
and the response CIR is encoded with the null {CA=1, 1A=1) primitive. If the FPCP is in
the idle or reset state when a write to the condition CIR occurs, it evaluates the selected
condition and returns the null (CA=0, TF =x) primitive (where the TF bit indicates whether
the conditional evaluation is true (1) or false (0)).

A write to this CIR location is legal at any time except when the FPCP is in the initial phase
of a general instruction, or before the read of the conditional evaluation for a previous
conditional instruction. If a write to the condition CIR occurs when it is not expected, a
protocol violation occurs, and the conditional predicate that is written is not saved by the
FPCP.

. 7.2.8 Operand CIR ($10)

This 32-bit read/write register is used by the main processor to transfer data to and from
the FPCP. The FPCP transfers data through this CIR location in the following cases:

1. Following an evaluate effective address and transfer data primitive

2. Following the read of the register select CIR after a transfer multiple coprocessor
registers primitive

3. Following a transfer single main processor register primitive
4, Following a read of an idle or busy format word from the save CIR
5. Following a write of an idle or busy format word to the restore CIR

These five cases are the only times when an-access to the operand CIR is legal. At any
other time, an access to this CIR location causes a protoco! violation.

The FPCP expects all operands that are to be transferred through this CIR location to be
aligned with the most significant byte of the register. Any operand larger than four bytes
is transferred through this register using a sequence of long-word transfers. If the operand
is not a multiple of four bytes in size, the portion remaining after the initial long-word

FREESCALE MC68881/MC68882 USER'S MANUAL
7-6

transfers is aligned with the most significant byte of the operand CIR. Figure 7-4 illustrates
the operand CIR data alignment expected by the FPCP when transferring data through the

operand CIR.
TRANSFER
OROER 31 24 23 16 15 8 7 0
1| eeorao | NO TRANSFER]
| WORD GPERANG NO TRANSFER]
o THREE BYTE DPERAND NOTRANSFER |
o LONG WORD OR SINGLE PRECISION OPERAND]
1 MSB
N DOUBLE PRECISION OPERANG
2 LB
1 MSB
2 EXTENDED PRECISION GR PACKED DECIMAL OPERAND

3 ! S8

Figure 7-4. Operand CIR Data Alignment

7.2.9 Register Select CIR ($14)

This 16-bit read-only register is read by the main processor to transfer the register mask
from the FPCP during a move muitiple floating-point data registers operation. The only
time that an access to this register is [egal is immediately following the issue of a transfer
multiple coprocessor registers primitive to the main processor; at any other time, an access
of this CIR location causes a protocol violation.

Although a 16-bit register, the FPCP only utilizes the most significant eight bits; the least
significant eight bits are always read as zeros. The most significant eight bits contain the
register mask for the multiple register transfer, with each bit set if the corresponding
floating-point register is to be transferred. The main processor should not interpret the
order of the bits in the register mask, but rather count the number of ones in the mask to
determine the number of registers to transfer. Each FPCP floating-point data register is 12
bytes long, and thus requires three long-word transfers.

7.2.10 Instruction Address CIR ($18)

This 32-bit write-only register is used by the main processor to transfer the address of the
FPCP instruction being executed when the PC bit of any primitive is set. The FPCP only
sets the PC bit in the first primitive returned during the dialog for an instruction that can
cause an exception, or a take pre-instruction exception primitive for a BSUN exception.
When the coprocessor is an MC68881, the main processor may optionally transfer the
program counter value to the instruction address CIR at that time or ignore the request.
{This choice is left to the discretion of the system designer in order to support exception

MC68881/MC68882 USER'S MANUAL FREESCALE
7-7

handlers in the most efficient manner.) When the coprocessor is an MC68882, tne main
processor must transfer the program counter value. The MC68882 issues a protocol vio-
lation when the main processor fails to transfer the program counter value. The MPU
always transfers the PC when needed.

For the MC68881, accesses to the instruction address CIR are neither expected nor unex-
pected at any point in an instruction dialog; thus, an access to this CIR location never
causes a protocol violation. Awrite to the instruction address CIR updates the FPIAR register
in the MC68881 programming model; a read always returns all ones.

Internaily, the MC68882 has three instruction address registers. One register is associated
with each of the stages of the MC68882 pipeline (BIU, CU, and APU). The instruction address
register associated with the arithmetic processing unit{APU} is the floating-point instruction
address register (FPIAR). Since only the APU can report an exception, the FPIAR always
points to the instruction that causes the exception whenever an exception occurs. When
the instruction address CIR is written (whenever the program counter value is passed), the
program counter value is also written to the instruction address register associated with
the bus interface unit (BIU) stage of the pipeline. The MC68882 interprets this program
counter value as the address of the instruction currently in the BIU. The instruction and
its address are moved up the pipeline until the instruction reaches the APU stage of the

. pipeline. If that instruction causes an exception, its address is in the FPIAR (since the FPIAR

is the instruction address register for the APU). This implementation is necessary to ensure
that an exception handler can point to the correct instruction, the one that causes the
exception. However, this implementation requires that the instruction address CIR be writ-
ten whenever the MC68882 requests it. The MC68882 issues a protocol violation whenever
the main processor fails to supply the requested program counter value. A read of the
instruction address CIR always returns ali ones.

7.2.11 Operand Address CIR ($1C})

This 32-bit read/write register is used by the main processor to transfer an operand address
in response to the evaluate and transfer effective address or take address and transfer data
primitives. Since the FPCP does not utilize either of these primitives, this CIR is not required
for operation and is not implemented. An access to this CIR location does not cause a
protocol violation; read cycles always return all ones, and the data is ignored during write
accesses.

7.3 INTERPROCESSOR TRANSFERS

Al interprocessor transfers are initiated by the MPU. During the processing of an FPCP
instruction, the MPU transfers instruction information and data to the FPCP using standard
M68000 write bus cycles. The MPU also receives data, requests for service, and status
information from the FPCP using standard M68000 read bus cycles. A detailed description
of the electrical characteristics of the FPCP bus interface is contained in SECTION 10 BUS
OPERATION and SECTION 12 ELECTRICAL SPECIFICATIONS.

7.4 COPROCESSOR INSTRUCTIONS

FPCP instructions are from one to eight words in length. The first word of the instruction
is called the operation word, and the second word of the instruction is called the copro-
cessor command word. Additional words specify the operands and are either extensions

FREESCALE MC68881/MC68882 USER'S MANUAL
7-8

to the effective addressing mode specified in the operation word or immediate operands
that are part of the instruction. The general format of an FPCP instruction is illustrated in
Figure 7-5.

OPERATIDN WDRD
COPROCESSOR COMMAND WORD (IF ANY)
EFFECTIVE ADORESS EXTENSION WORDS (1 T8 6, IF ANY)

Figure 7-5. Coprocessor Instruction General Format

All coprocessor operations are based on the F-line operation codes (i.e., operation words
with bits [15:12] = $F) which instruct the MPU to call upon a coprocessor for execution of
the instruction. Figure 7-6 illustrates the format of this word.

B 14 13 12 110
rl R 11 o0] TYPE [TYPE DEPENDENT]

Figure 7-6. FPCP Instruction Operation Word

The Cp-ID field indicates which coprocessor isto be selected. Cp-IDs of 000-101 are reserved
by Freescale, and Cp-IDs 110 and 111 are reserved for user definition. The Freescale MPU
and FPCP assembler supplies 001 as the Cp-ID for FPCP instructions by default. The type
field indicates to the MPU which type of coprocessor operation is selected: general, branch,
conditional, save, or restore. The type and type-dependent fields and the coprocessor
command word for all FPCP instructions are described in 4.7 INSTRUCTION ENCODING
DETAILS.

g 8 7 6 5 4 3 2 1 0

7.4.1 Instruction Protocol

All FPCP instructions have a typical protocol which the MPU and FPCP use. This com-
munication protocol is as follows:

1. When the MPU detects an F-line operation word, communication is initiated by writing
information (a command, condition selector, or restore format word) to the appro-
priate FPCP coprocessor interface register location. (The FPCP save instruction is
initiated by a read operation.)

2. The MPU then reads the coprocessor response to the previous write operation. The
response may indicate any of the following:

a. The FPCP is busy. MPU checks for interrupts, processes them if any are pending,
and then queries the coprocessor again. This allows synchronizing the main pro-
cessor and coprocessor.

b. An exception condition exists, and the FPCP instructs the MPU to take an exception
using a specific exception vector. The MPU acknowledges the exception and ini-
tiates exception processing.

MC68881/MC68882 USER'S MANUAL FREESCALE
7-9

c. There is an FPCP service request (for example, to evaluate the effective address
and transfer data between the effective address and the FPCP). The FPCP may aiso
request that the MPU query the coprocessor after the service is performed.

d. The MPU isnot needed for further processing of the coprocessor instruction. Com-
munication is terminated, and the MPU is free to begin execution of the next
instruction. If the MPU is in the trace mode, the MPU does not take the trace
exception until the FPCP completes the processing of the coprocessor instruction.

Each FPCP instruction type has specific requirements based upon this simplified protocol.
The main processor requests required for each FPCP instruction are described in 4.7
INSTRUCTION ENCODING DETAILS. All FPCP main processor service requests {response
primitives) are described in the following paragraphs. In addition, the dialog used by the
MPU and the FPCP during the execution of each instruction is detailed in 7.5 INSTRUCTION
DIALOGS.

7.4.2 Response Primitives

Data read from the FPCP coprocessor interface response register is referred to as a primitive.
Although the M68000 Family coprocessor interface defines 18 response primitives, the
FPCP only uses six of those primitives. For additional information on the complete set of
response primitives and how they are serviced; refer to the appropriate processor user’s
manual. The following paragraphs summarize all FPCP response primitives and how they
are used.

The M68000 coprocessor response primitives are encoded in a 16-bit word that is trans-

ferred to the main processor through the response CIR. Figure 7-7 illustrates the general
format of a response primitive.

% 14 13 12 W w 9 8 7 6 5 4 3 2 1 0

[CA , PC [qu FUNCTION L PARAMETER J

Figure 7-7. M68000 Coprocessor Response Primitive General Format

The encoding of bits [12-0] of a coprocessor response primitive is dependent on the in-
dividual primitive being implemented. Bits [15-13], however, are used to specify particular
attributes of the response primitive that can be utilized in most of the primitives defined
for the M68000 coprocessor interface.

Bit [15] in the primitive format, denoted by CA, is used to specify the come-again operation
of the main processor. Whenever the main processor receives a response primitive from
the FPCP with the CA bit set to one, it should perform the service indicated by the primitive
and then return to read the response CIR again.

Bit {14] in the primitive format, denoted by PC, is used to specify the pass-program-counter
operation. If the main processor reads a primitive from the FPCP that has the PC bit set,
the main processor should immediately pass the current value of the program counter to
the instruction address CIR as the first operation when servicing the primitive request. The
value of the program counter passed from the main processor is usually the address of
the operation word of the coprocessor instruction executing when the primitive is received.

FREESCALE MC68881/MC68882 USER'S MANUAL
7-10

(This is always the case if the main processor is the MPU.) The FPCP always sets the PC
bit in the first primitive of a general type instruction that might cause an exception (i.e.,
all of the arithmetic and move single floating-point data register instructions when excep-
tions are enabled), or the take pre-instruction exception primitive for a BSUN trap during
a conditional instruction. By updating the FP!AR in this manner, the FPCP can release the
main processor for concurrent execution after all operands are fetched, and exception
handlers can later locate an instruction that causes an exception. It should be noted that
the PC bit is set in only one primitive response during any instruction dialog, and that the
MC68881 does not issue a protocol violation if the main processor ignores the request to
transfer the PC. The MC68882 issues a protocol violation if the main processor fails to
transfer the PC in response to a request.

Bit [13] in the primitive format, denoted by DR, is the direction bit; it controls the direction
of operand transfers between the main processor and the FPCP. if DR is zero, the direction
of the transfer is from the main processor to the FPCP (a main processor write). If DR is
one, the direction of the transfer is from the FPCP to the main processor {a main processor
read). If the operation indicated by a given response primitive does not jnvolve an explicit
operand transfer, the value of this bit is dependent on the particular primitive encoding.

All primitives issued by the MC68881, with the exception of the null primitive,
have the CA bit equal to one, causing the MPU to check the response CIR after
any service is performed. This allows the MC68881 to assure correct internal
operation and to report exceptions immediately after a service is performed.
However, the MC68882 may occasionally issue an evaluate <ea> and transfer
data primitive with CA equal to zero. This is done in cases where internal oper-
ations are not adversely affected by the omission of the read of the response CIR
after the operand transfer.

The following paragraphs describe the response primitive encodings used by the FPCP
and the expected main processor response to each one in detail.

7.4.2.1 NULL PRIMITIVE. This primitive is used by the FPCP to synchronize operation
with the main processor and to allow concurrent execution by the main processor. The
format of the null primitive is shown in Figure 7-8. In addition to the variable bits CA and
PC previously discussed, the null primitive uses three other variable bits to identify the
required action to be taken by the main processor. Bit [8], denoted by |A, is used to specify
that the main processor may process pending interrupts if necessary. Bit {1], denoted by
PF, is used to indicate the status of the FPCP during concurrent instruction execution, If
the PF bit is zero, the FPCP is executing an instruction; otherwise it is idle. Bit [0], denoted
by TF, is used to communicate the true or false result of a conditional evaluation. If TF
equals one, the condition is true; otherwise it is false.

“ W 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Icn[rclo 01 0 u[m]u 0 0 0 o ulrr]ﬂ

Figure 7-8. Null Primitive Format

MC68881/MC68882 USER'S MANUAL FREESCALE
7-11

As indicated by the format of this primitive, there are 32 possible null primitive encodings
of which the FPCP uses only seven. Table 7-3 lists the FPCP nulil primitive encodings and
the circumstances in which they are used.

Table 7-3. Null Primitive Encodings

CA PC 1A PF TF Usage

0 0 0 Q x Returned by the FPCP in response to the write of a conditional predicate to the
condition CIR. The TF bit indicates the result of the conditional evaluation; TF=1
if the condition is true; TF=0 if the condition is false.

0 0 0 1 0 Returned when the FPCP is in the idle state. The PF bitindicates that no instruction
is being executed; thus, there is no expected response to this primitive.

[i] 0 1 0 0 Returned when the FPCP enters the middle or end phase of an instruction to allow
concurrent execution by the main processor.The CA bit indicates that no further
service is required of the main procesor, but the PF bit indicates that the FPCP
has not completed execution of the instruction. The IA bit indicates that if the
main processor is in the trace mode, it may process interrupts while waiting for
the FPCP to complete execution of the instruction. Since this primitive does not
request any specific service, there is no expected response from the main pro-
cessor,

0 1 1 0 0 | The same as the preceding response, except that the main processor is requested
to pass the current program counter before proceeding with the next instruction.
This response is returned only as the first response of a dialog.

1 0 1 0 0 Returned when the FPCP is executing an instruction and requires further service
from the main processor before the next instruction can be executed. This re-
sponse is also used when a new FPCP instruction is initiated while a previous
one is still being executed. The expected response is for the main processor to
re-read the response CIR {after servicing pending interrupts).

1 1 1 0 0 | The same as the preceding response, except that the main processor is requested
to pass the current program counter before processing any pending interrupts
and re-reading the response CIR. This response is returned only as the first re-
sponse of a dialog.

The meanings of the CA and PC bits are as previously described. If IA equals one, the main
processor can process pending interrupts as part of the service for the null primitive;
otherwise, interrupts should be ignored. The IA bit is set to a one by the FPCP for most
null responses thus allowing the main processor to process pending interrupfs anytime

- that it is “waiting"’ on the FPCP.

The PF bit indicates the processing state of the FPCP during concurrent instruction exe-
cution. In normal operation, the PF bit is of no concern to the main processor. However,
if the main processor is in the trace mode, it should wait until the FPCP has completed
execution of an instruction before taking the trace exception. By monitoring the PF bit in
the null response primitive, the main processor can synchronize with the FPCP in this case.
If PF equals zero, the FPCP is executing an instruction; otherwise, it is idle.

The TF bit applies only to the conditional instructions. When the main processor writes a
conditional predicate to the condition CIR, the FPCP uses the null primitive to return the
true or false result of the conditional evaluation. if TF equals one, the condition is true;
otherwise, it is false. For all reads of the response CIR for other instruction types, TF is a
don't care bit.

FREESCALE MC68881/MC68882 USER'S MANUAL
712

7.4.2.2 EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA PRIMITIVE. This pri-
mitive is used by the FPCP to request the transfer of a data item between the floating-point
data and control registers and an external location {either memory or a main processor
register). The format of this primitive is shown in Figure 7-9. The main processor services
this request by evaluating the effective address indicated by the F-line word of the instruc-
tion and transferring the number of bytes indicated by the length field of the primitive to
or from the operand CIR.

% 14 13 12 1 108 B 7 65 5 4 3 2 1 0
Iu[rclnnh 0 I vALD <ea> | LENGTH]

Figure 7-9. Evaluate Effective Address and Transfer Data Primitive Format

Note that the FPCP returns this primitive only once during an instruction dialog. When this
primitive is read from the response CIR, it is discarded by the FPCP, and the response
encoding is changed to the null primitive. By doing this, the FPCP avoids spurious service

request primitives in systems where the MPU is not the main processor.

The meanings of the CA and PC bits are as previously described. The DR bit indicates the
direction of data transfer between the effective address location and the operand CIR of
the coprocessor. If DR equals zero, the operand is transferred from the effective address
location to the coprocessor. If DR equals one, the operand is transferred from the copro-
cessor to the effective address location.

The effective address that is to be evaluated is specified in the F-line operation word, and
any required extension words are fetched by the main processor as needed. If the prede-
crement or postincrement addressing mode is used, the address register is decremented
or incremented before or after the transfer by the size of the operand, as indicated in the
length field.

The valid EA field specifies various classes of addressing modes with the encodings shown
in Table 7-4. If the effective address in the operation word is not of the specified class, the
main processor should write an abort to the control CIR and take an F-line emulator trap.
The addressing categories in Table 7-4 are as defined for all M68000 Family processors.

The number of bytes transferred to or from an effective address location is indicated in
the length field. If the effective address is a main processor register (register direct), then
only lengths of one, two, or four bytes are used. If the effective addressing mode is im-
mediate, the length is always one or even, and the transfer is effective address to copro-
cessor. If the effective address is a memory location, any length is legal (inciuding odd).
If the effective address mode is predecrement or postincrement, with A7 as the specified
register and a length of one, the transfer causes the stack pointer to be decremented or
incremented by two in order to keep the stack aligned on a word boundary.

Table 7-5 lists the encodings of the evaluate effective address and transfer data primitive
that are used by the FPCP and the cases for which they are used.

MC68881/MC68882 USER'S MANUAL FREESCALE
713

Table 7-4. Coprocessor Valid Effective
Address Codes

000 Control Alterable

001 Data Alterabie

010 Memory Alterable

01 Alterable

100 Control

101 Data

110 Memory

111 Any Effective Address

Table 7-5. Evaluate Effective Address and Transfer Data Primitive Encoding

Valid
Usage CA PC DR <ea> Length

F<op><ea>FPn {QOPCLASS 010}
Issued as the first primitive of an instruction dialog to request the transfer 1 » [10 1
of an operand from memory or @ main processor data register to the| 1 * 0 101 2
7 FPCP. The length field indicates the size of the operand: byte, word, long | ** * 0 101 4
or single, double, extended, or packed BCD. bt * 0 110 8
il * [¢] 110 12

FMOVE FPm,<ea> {OPCLASS 011}
Issued after the conversion from the internal extended precision format 1 0 1 001 1
to the destination format is completed to request the transfer of an op-| 1 0 1 001 2
erand from the FPCP to memory or a main processor data register. The| ** 0 1 001 4
length field indicates the size of the operand: byte, word, long or single,| ** 0 1 010 8
doubie, extended, or packed BCD. b 0 1 010 12

FMOVE <ea>FPcr and FMOVEM <ea> FPcr_list {OPCLASS 100)
Issued as the first primitive of an instruction dialog to request the transfer 1 0 0 i 4
of one or more control registers from memory or a main processor reg- 1 4] 0 101 4

ister to the FPCP. The length fiold indicates the total size of all control{ 1 0 0 110 8 |
registers to be moved, 4 bytes per register. 1 1] 0 110 12 !

FMOVE FPcr,<ea> and FMOVEM FPcr_list,<ea> (QOPCLASS 101)
Issued as the first primitive of an instruction dialog to request the transfer{ 1 0 1 on 4
of one or more control registers from the FPCP to memory or a main| 1 0 1 001 4
processor register. The length field indicates the total size of all contro! 1 0 1 010 8
registers to be moved, 4 bytes per register. 1 0 1 010 12

*PC =1 if any arithmetic exceptions are enabled; otherwise PC=0.
**CA =0 for some MCB68882 instructions with S,0,X instruction operand formats; otherwise, CA=1.

7.4.2.3 TRANSFER SINGLE MAIN PROCESSOR REGISTER PRIMITIVE. This primitive is
used by the FPCP to request the transfer of one main processor register. The format of
this primitive is shown in Figure 7-10. The main processor services this request by writing
a long word to the operand CIR.

15 14 13 12 11 10 9 & 7 6

5 4 3 2 1 0
ICAJPClDRiU T 10 n—fu) UTD/A[HEGlSTERJ

Figure 7-10. Transfer Single Main Processor Register Primitive Format

FREESCALE MC68881/MC68882 USER'S MANUAL
7-14

This primitive is only utilized for the move muitiple floating-point data register instruction
when the register list is specified as dynamic. Therefore, when this primitive is issued by
the FPCP (to fetch the register list), CA is always set; DR, PC, and D/A are always clear
{D/A identifies the selected register as a data or address register; zero indicates it is a data
register). The least significant three bits identify the main processor data register that
contains the register list.

Note that the FPCP returns this primitive only once during an instruction dialog. When this
primitive is read from the response CIR, it is discarded by the FPCP, and the response
encoding is changed to the null primitive until the request has been serviced. By doing
this, the FPCP avoids spurious service requests in systems where the MPU is not the main
Processor.

7.4.2.4 TRANSFER MULTIPLE COPROCESSOR REGISTERS PRIMITIVE. This primitive is
used by the FPCP to request the transfer of a list of floating-point data registers to or from
memory. The format of this primitive is shown in Figure 7-11. The main processor services
this request by performing an implied effective address evaluation, reading a register list
from the register select CIR, and transferring the selected registers (where each register is
the size indicated by the length field of the primitive) between the operand CIR and memory.
The MPU uses long-word transfers whenever possible while servicing this primitive.

% 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

[CAJ Pclnn[o 0 o 0 1 LENGTH]

Figure 7-11. Transfer Multiple Coprocessor Registers Primitive Format

Note that the FPCP returns this primitive only once during an instruction dialog. When this
primitive is read from the response CIR, it is discarded by the FPCP, and the response
encoding is changed to the null primitive until the request has been serviced. By doing
this, the FPCP avoids spurious service requests in systems where the MPU is not the main
processor.

The meanings of the CA and PC bits are as previously described. For this primitive, CA is
always set, and PC is always clear (since the FMOVEM instruction cannot cause an excep-
tion). The DR bit indicates the direction of the transfer between the effective address location
and the operand CIR. If DR equals zero, the listed registers are transferred from the effective
address location to the FPCP. If DR equals one, the listed registers are transferred from
the FPCP to the effective address location.

The length field indicates the size, in bytes, of each register to be transferred; for the FPCP,
the length is always 12 bytes. The register list that is read from the register select CIR is
used by the main processor to determine the number of registers to be transferred (but
not the order of the transfer). For each bit that is set in the 16-bit register list, one operand
of the size indicated by the length field in transferred. Thus, the total number of bytes
transferred in response to this primitive is the product of the length and the number of
ones in the register list. Since the FPCP has only eight floating-point data registers, the
register list always has zeros in the least significant byte.

The effective address that is evaluated by the main processor is specified in the F-line
operation word, and any required extension words are fetched by the main processor, as

MC68881/MC68882 USER'S MANUAL FREESCALE
7-15

needed. If the predecrement or postincrement addressing mode is used, the address reg-
ister is decremented or incremented (before or after the transfer) by the size of the operand
as indicated by the length field. The effective addressing modes that are valid for this
primitive are determined by the DR bit, and the mode is validated by the main processor.
If DR equals zero, the contro! and postincrement addressing modes are allowed. If DR
equals one, the control alterable and predecrement addressing modes are aflowed. If the
effective address field of the operation word is not valid for the selected multiple register
transfer, the main processor writes an abort to the control CIR (before reading the register
select CIR) and takes an F-line trap.

For the control and postincrement addressing modes, the registers are transferred using
ascending addresses. For the postincrement addressing mode, the address register is
incremented by the length value after each register is transferred. Thus, the final value of
the address register is the initial value plus the total number of bytes transferred during
the primitive execution.

For the predecrement addressing mode, the operands are written to memory with de-
scending addresses, but the bytes within each operand are written to memory with as-
cending addresses. For example, Figure 7-12 illustrates the transfer of two floating-point
data registers to a stack, using the —(An) addressing mode. The designated stack pointer
is decremented by 12 bytes before the transfer of each register. Then the bytes within each
register are written to memory with ascending addresses. Thus, the address register is
decremented by the total number of bytes transferred by the end of the primitive execution.

7.4.25 TAKE PRE-INSTRUCTION EXCEPTION PRIMITIVE. Take exception primitives are
used by the FPCP to instruct the main processor to abort the current operation and initiate
exception processing. The main processor services these requests by writing an exception
acknowledge to the control CIR (which clears the pending exception in the FPCP), by
creating the appropriate stack frame on the currently active supervisor stack, and by be-
ginning execution of an exception handler. The exception handler is located by using the
vector number that is supplied as part of the take exception primitive. Table 7-6 lists the
vector numbers used by the FPCP.

Note that the MC68881 returns one of these primitives only once during the instruction
dialog. When an exception acknowledge is written to the control CIR, the take exception
primitive is discarded by the MC68881, and the response encoding is changed to the null
primitive. By doing this, the MC68881 assures that the take exception request is received

3 o
FIAI\II‘AI i: —_—] MSB, WRITTEN FIRST
FP1, WRITTEN LAST
LS8, WRITTEN LAST
An - 12 —] MSB, WRITTEN FIRST
FPO, WRITTEN FIRST
LS8, WRITTEK LAST
INTIAL An —— TOP OF STACK BEFORE REGISTER TRANSFER }

Figure 7-12. Transfer Multiple Floating-Point Data Register to Stack Example

FREESCALE MC68881/MC68882 USER'S MANUAL
7-16

Table 7-6. FPCP Vector Numbers

Vector Number Vector Assignment
Decimal Hexadecimal Offset (Hexidecimal)
11 $0B $02C F-Line Emulator
13 $0D $034 Coprocessor Protocol Violation
48 $30 $0C0 Branch or Set on Unordered Condition
49 $31 $0C4 Inexact Result
50 $32 $0C8 Floating-Point Divide by Zero
51 $33 $0cC Underflow
52 $34 $0D0 Operand Error
53 $35 $0D4 Overflow
54 $36 $0D8 Signaling NAN

by the main processor, but avoids spurious service reguest primitives in systems where
the MPU is not the main processor.

The MC68882, however, does not discard the primitive unless a read of the save CIR is

detected. This is to ensure that the FSAVE instruction is executed and the state of the

conversion unit (CU} is saved. The state of the CU must be saved because a second
instruction, in the CU, may be partially executed.

While the M68000 coprocessor interface defines three take-exception primitives, the FPCP
utilizes only two of them. The other take exception primitive is described in the next section.

The take pre-instruction exception primitive is used by the FPCP when an arithmetic (OP-
CLASS 000, 010, and 011} or conditional instruction is initiated and an exception is pending
from a previously executed, concurrent instruction. This primitive is also returned if an
illegal command word is written to the command CIR or if a protocol violation occurs.
Finally, this primitive is issued when a conditional instruction is executed that utilizes one
of the {EEE nonaware conditional predicates, and the NAN bit in the FPSR condition code
byte is set. The format of this primitive is shown in Figure 7-13.

v 14 13 12 11 10 9 6 5 4 3 2 1 0

8 7
Ln rpc [u 11 1 0 nJ VECTOR NUMBER 1

Figure 7-13. Take Pre-Instruction Exception Primitive Format

The CA bit is always zero for this primitive, since there is an implied protocol pre-emption
in this service request. The PC bit is zero if the exception is pre-empting the execution of
a new FPCP instruction. The PC bit is one if the exception is due to an illegal command
word, or if it is reported during the execution of a conditional instruction in lieu of the true/
false result of the conditional evaluation. The vector number identifies the type of the
exception and is used by the main processor to locate the exception handler routine.

In response to this primitive, the MPU creates a four-word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 7—11_1. The value
of the program counter in the stack frame is the address of the F-line operation word of

MC68881/MC68882 USER'S MANUAL FREESCALE
717

the FPCP instruction that was preempted by the exception [i.e., the arithmetic or conditional
instruction attempted in the case of an exception pending from a previous instruction or
an F-line exception, or the conditional instruction in the case of a BSUN exception). Thus,
if no modifications are made to the stack frame within the exception handler, an RTE
instruction causes the MPU to return and reinitiate the instruction that was being attempted
when the primitive was received. Refer to the appropriate user’s manual for further details
on exception handling by the MPU.

15 0
P —| STATUS REGISTER
+802
PROGRAM COUNTER
ss06{0 0 0 o] VECTOR OFFSET

Figure 7-14. Pre-Instruction Exception Stack Frame

7.4.2.6 TAKE MID-INSTRUCTION EXCEPTION PRIMITIVE. This primitive is used by the
FPCP when an exception occurs during the execution of an FMOVE FPm,<ea> instruction.
In the MC68882, an exception caused by a previous instruction is reported by the current
instruction using this primitive. See 7.4.2.5 TAKE PRE-INSTRUCTION EXCEPTION PRIMI-
TIVE for information common to both take exception primitives. The format of this primitive
is shown in Figure 7-15.

% 14 1312 n 0 9 8 7 6 5 4 3 2 1 0

[0]ﬂl—[o1 1 1 0 1 1 VECTGR NUMBER 1

Figure 7-15. Take Mid-Instruction Exception Primitive Format

The CA bit is always zero for this primitive, because there is an implied protocol pre-
emption in this service request. The PC bit is always zero, since a null primitive earlier in
the dialog for the move-out instruction is used to request the program counter transfer.
The vector number identifies the type of the exception, and is used by the main processor
to locate the exception handler routine.

In responseto this primitive, the MPU creates a ten-word stack frame on top of the currently
active supervisor stack. The format of this stack frame is shown in Figure 7-16. If the
exception is due to an FMOVE FPn,<ea> instruction, the ScanPC value is the address of
the instruction immediately following the FMOVE instruction. The value of the program
counter in the stack frame is the address of the F-line operation word of the FPCP instruction
that caused the exception. The operation word image contains the F-line word of the FMOVE
instruction. The effective address value is the memory address of the destination operand.
Note that the take mid-instruction exception primitive is used in this case solely for the
purpose of placing the evaluated effective address in the stack frame, to avoid requiring
an exception handler to recalculate it.

FREESCALE MC68881/MC68882 USER'S MANUAL
7-18

8P STATUS REGISTER
+$02
SCAN PC
+806 1 0 0 1 VECTOR OFFSET
+$08
: PROGRAM COUNTER
+$0C INTERNAL REGISTER
+$0E OPERATION WORD
+§t0
EFFECTIVE ADORESS

Figure 7-16. Mid-Instruction Stack Frame

If the exception is caused by a previous instruction, the ScanPC value is the address of the
instruction immediately following the instruction that reported the exception. The value of
the PC in the stack frame is the address of the F-line operation ward of the instruction that
reported the exception. The operation word image contains the F-line word of the instruc-
tion that reported the exception. The effective address only contains the valid effective
‘address when an evaluate <ea> primitive was issued before the exception was reported.

If no modifications are made to the stack frame within the exception handler, an RTE
instruction causes the MPU to return to read the response CIR. Thus, the main processor
continues the execution of the instruction upon return.

7.4.2.7 RESPONSE PRIMITIVE SUMMARY. Table 7-7 lists in numeric order a summary
of all primitive responses utilized by the FPCP.

7.5 INSTRUCTION DIALOGS

The following paragraphs describe in detail the coprocessor communications dialogs that
are executed by the FPCP and MPU during each floating-point instruction. In this discussion,
a dialog refers to the sequence of command and data transfers to the FPCP, and the service
request primitives that are returned to control that sequence. Although the following dis-
cussion assumes that the main processor is an MC68020 or MC68030, information is also
presented that may be used by designers of systems that utilize a different main processor.

The diagrams presented in the following paragraphs represent the activity of the MPU and
the FPCP during the execution of a floating-point instruction. In these diagrams, boxes are
used to identify periods of time during which a device is actively participating in the
execution of an instruction; the absence of a box during a period indicates that a device
is waiting on the other one to complete an operation, or that concurrent execution of
unrelated instructions may take place.

Each box in the following diagrams is labeled to indicate the activity depicted by that box.
The labels above the boxes identify the actions taken by the main processor, and the labels
below the boxes identify the encoding of the response CIR at any time during a dialog.

MC68881/MC68882 USER'S MANUAL FREESCALE
7-19

Table 7-7. MC68881/MC68882 Primitive Responses

Primitive
Value Primitive Type Comments
$0800 Nuil CA=0,PC=0,lA=0,PF=0, TF=0
$0801 CA=0,PC=0,1A=0,PF=0, TF=0]
$0802 CA=0,PC=0,1A=0, PF=1, TF=0 i
$0900 CA=0,PC=0,1A=1,PF=0, TF=0 I
$1504 Evaluate <ea> and Transfer Data Single w
$1608 CA=0, PC=0, DR=0 (External to MC68882} Double H
$160C Extended |
$1C0B Take Pre-Instruction Exception F-Line Emulator i
$1C31 PC=0 Inexact Result I
$1C32 Fioating-Point Divide by Zero ;
$1C33 ’ Underflow i
$1C34 Operand Errar i
$1C35 Overflow]
$1C36 Signaling NAN {
$1D0D Take Mid-Instruction Exception Coprocessor Protocol Violation X
$1D31 PC=0) Inexact Result
$1D32 Floating-Point Divide by Zero i
$1D33 Underflow i
$1D34 Oeprand Error :
$1D35 Overflow |
$1D36 Signaling NAN !
7 $3104 Evaluate <ea> and Transfer Data Single 1
$3208 CA=0, PC=1, DR=1 (MC68882 to External) Double i
$320C Extended |
$4900 Null CA=0,PC=1,1A=1, PF=0, TF=0 .
$5504 Evaluate <ea> and Transfer Data Single !
$5608 CA=0, PC=1, DR=0 (External to MC68882) Double
$560C Extended
- $5C30 Take Pre-Instruction Exception Branch or Set On Unordered
PC=0 l
$810C Transfer Multiple Coprocessor Registers J
CA=1, PC=0, DR=0 (Memory to FPCP} |
$8900 Null CA=1,PC=0,1A=1, PF=0, TF=0
$8C00 Transfer Single Main Processor Register DO
$8C01 CA=1, PC=0, DR=0 (Main Processor to FPCP) |D1
$8C02 D2 .
$8C03 D3 i
$8C04 D4 i
$8C05 D5 |
$8C06 . D6 i
$8C07 ’ D7
$9501 Evaluate <ea> and Transfer Data Byte ‘,
$9502 CA=1,PC=0, DR=0 (External to FPCP) Word ;
$9504 Long, Single, FPCR, or FPSR (
$9608 Double or Two FPCR’s {Memory Gnly} :
$960C Extended, Packed, or Three FPCR’s {Memory Only) i
$9704 FPIAR i
$A10C Transfer Multiple Coprocessor Registers ;
CA=1, PC=0, DR=1 (FPCP to Memory) ;
$8101 Evaluate <ea> and Transfer Data Byte L
$B102 CA=1, PC=0, DR=1 (FPCP to External} Word
$8104 Long, Single, FPCR, or FPSR
$B208 Double or Two FPCR’s {(Memory Onfy} f
$B820C Extended, Packed or Three FPCR’s {Memory Only) |
$B304 FPIAR i

FREESCALE MC68881/MC68882 USER'S MANUAL
7-20

Table 7-7. MC68881/MC68882 Primitive Responses {Continued)

Primitive
Value Primitive Type Comments

$C900 Nuli CA=1,PC=1,IA=1, PF=0, TF=0
$CCO0 Transfer Single Main Processor Register Do
$CCO1 CA=1, PC=1, DR=0 (Main Processor to FPCP} | D1
$CC02 D2
$CCo3 D3
$CCo4 . D4
$CCo5 DS
$CC06 : D6
$CCO7 D7
$D501 : Evaluate <ea> and Transfer Data Byte
$D502 CA=1, PC=1, DR=0 {External to FPCP) Word
$D504 Long or Single
$D608 Double (Memory Only)
$D60C . | Extended or Packed {Memory Only)

When a response CIR encoding is indicated, that encoding is received by the main processor
any time that the response CIR is read until the next primitive encoding is indicated.

In all of the succeeding paragraphs, the following assumptions are made:

1. Before the start of an instruction dialog, except for the FSAVE and FRESTORE instruc-
tions, the FPCP is in the idle state.

2. The MPU and the FPCP communicate via a 32-bit data bus.
3. The memory width is 32 bits, and all memory operands are long-word aligned.

Also, for periods during which the MPU is required to wait for the FPCP (i.e., during move-
to-memory operation, or if the MPU is in the trace mode), only one of the response CIR
reads is explicitly indicated. In actual operation, numerous reads of the response CIR may
occur in these cases. Similarly, if the FPCP is not idle before the initiation of a new instruc-
tion, multiple reads of the null {CA=1,1A=1; $8900) primitive may occur after the command
or condition CIR write and before the read of the first primitive shown in a diagram.

7.5.1 General Instructions

This group of instructions includes all of the arithmetic instructions, the move system
contro! register instructions, the move instructions, and the move muitiple floating-point
register instructions, The factor common to these instructions is the format of the F-line
operation word, which uses the cpGEN format of the M68000 Family coprocessor instruc-
tion set. Thus, the initial phase of the communications dialog for these instructions is
identical, with the MPU writing the command word to the FPCP and then relying on the
FPCP to control the remainder of the dialog through the use of the coprocessor interface
response primitive set. The following paragraphs discuss the five different protocols that
are used by the FPCP for this group of instructions.

For each of the general instruction dialogs, with the exception of the register-to-register
dialog, there is an important consideration for systems that use the FPCP with a main
processor other than an MPU. This consideration is that the come-again request in any
evaluate effective address and transfer data primitive or transfer multiple coprocessor

MC68881/MC68882 USER'S MANUAL FREESCALE
7-21

registers primitive should not be ignored. The FPCP sets the CA bit in these primitives to
assure correct operation regardiess of the frequency relationship between the FPCP clock
and the main processor clock. By requiring the main processor to perform a final read of
the response CIR (which is a cycle that is synchronous with the FPCP CLK signal) after the
last operand CIR access and before continuing with the next instruction, the FPCP assures
that the operand transfer is completed internally before the main processor can initiate

_the next instruction by writing the command or condition CIRs. This sequence assures that

spurious protocol violations {detected by the FPCP) do not occur in systems where the
main processor clock frequency is much faster than the MC68881 clock frequency.

During the instruction dialogs for external-to-register {opclass 010 and register-to-external
(opclass 011)) instructions, the MC68882 in some cases issues the evaluate effective address
and transfer data primitive with CA=0 instead of CA=1. In these cases, the main processor
need not read the response CIR after the coprocessor has transferred the operands for that
instruction. This provides more potential instruction overlap with the next coprocessor
instruction. Normally, a second coprocessor instruction causes the main processor to write
to the command or condition CIR and then to read from the response CIR. If the read from
the response CIR of the second instruction occurs earlier than three clocks after the com-
pletion of the last operand transfer of the previous instruction, spurious protocol violations
may occur. In a worst-case situation, the main processor uses these three clocks in writing
to the command CIR. However, if the main processor has a higher clock frequency than
the MC68882, it is possible that the write to the command CIR can take less than three
MC68882 clocks. The design of the MC68882 allows the MPU clock frequency to be as
much as 1.5 times the MC68882 clock frequency. For main processors other than the
MC68020 or MC68030, the system designer must ensure that the main processor does not
read the response CIR during the initiation of an instruction less than three MCE8882 clocks
after the last operand transfer of the previous instruction.

7.5.1.1 REGISTER-TO-REGISTER (OPCLASS 000). This dialog is utilized for all of the arith-
metic and move instructions that use floating-point data registers for both the source and
destination operands and for the FMOVECR instruction. Since the FPCP contains both
operands when such an instruction is initiated, no external data references are required
before the calculation can be performed. Thus, after the MPU has written the command
word to the FPCP, it is released to execute the next instruction. If any arithmetic exceptions
are enabled, the FPCP requests the transfer of the program counter. This request can be
ignored by a main processor using an MC68881, but the MC68882 issues a protoco! violation
if the main processor ignores this request. The program counter write cycle does not affect
instruction execution time (since it cccurs concurrently with the FPCP instruction execution).

The FPCP dialog for this instruction type is shown in Figure 7-17. Also shown in this figure
is the key for all of the dialog figures presented in subsequent paragraphs.

7.5.1.2 EXTERNAL-TO-REGISTER (OPCLASS 010). This dialog is utilized for all of the
arithmetic and move instructions that reference memory or a main processor register for
the source operand. Since the FPCP does not contain both operands when such an instruc-
tion is initiated, external data references are required before the calculation can be per-
formed. The FPCP requests the fetch of the required external operand with the first primitive
of the dialog. The second primitive of the dialog is then used to release the main processor
to execute the next instruction (once the operand transfer is completed}. Note that the read
of the first primitive causes the response CIR encoding to be changed to the null primitive,

FREESCALE MC68881/MC68882 USER'S MANUAL
7-22

KEY: Indicates an optional operation. The MC68881
atlows the “Pass PC" operation to be performed at
the discretion of the main processor without causing
a protocol violation {the MC68020/MCB8030 always
passes the PC when it is requested). However, the
MC68882 requires the “Pass PC” operation to be
performed when requested. Some operand transfer
bus transactions are optional, based on the size and
tocation of source or destination aperands external to
the MC68881 /MCE8882.

DECODE INSTRUCTION
WRITE COMMAND
READ RESPONSE

MC68020/MC68030 |

MCB3881/MC68882 CALCULATE I HOUNO] - Indicates an operation that is performed only for
certain cases of the instruction or operation being

= 88 & = executed. These operations are identified explicitly in

& L2 % & _the diagrams as to the conditions under which they

=3 e = < are executed.

X it 3 I

S 4 § g b italics Indicates the encoding of the Response CIR at points
o

® g4 & E in an instruction dialog where it will normally not be

s ¢ $ read by the MC68020/MC68030. This information is

h s ¢ iy included for designers of systems thet do not utilize

§ = %’ %‘ the MCE8020/MC68030 as the main processor.

E3 2 ES ES When an encoding is indicated for the Response CIR,

it is not changed until a new encoding is given.

Figure 7-17. MC68881 Register-to-Register Instruction Dialog

thus avoiding spurious request primitives in non-MPU based systems. The MC68881 dialog
for this instruction type, which also applies to the MC68882 with operand data formats
other than single, double, or extended, is shown in Figure 7-18.

When the operand data format is single, double, or extended, the MC68882 issues the
evaluate <ea> and transfer data primitive with CA=0 instead of CA=1. Figure 7-19 shows
the dialog for the MC68882 external-to-register instructions with single, double, or extended
data format operands.

If any arithmetic exceptions are enabled, the FPCP requests the transfer of the program
counter with the first primitive. However, the main processor using an MC68881 can ignore
this request; the MC68882 issues a protocol violation if the main processor ignores the

request.
2 e
= o =
2 % g 2 g 8
g = 2 Y £ 2
) = O o« [
- # = “ &
(=] < = = [}
o «C <
g E g g g g
MC63020/MCS8030 |
MCBB881/MCE8882 convert | catcuwate | Rouno |
= s & sae o
5 E5 8 § o8 N s
Iy EIf £2 i
g grz T 3
= gk = = :
R 2= F I Z
& A% = £ _
¥ Ve T & ¥
g pg 8 3 <
e 3 = - =
=2
g g 2 S 2

Figure 7-18. MC68881/MC68882 External-to-Register Instruction Dialog

MC68881/MC68882 USER'S MANUAL FREESCALE
7-23

DECODE INSTRUCTIDN
WRITE COMMAND
READ RESPONSE
EVALUATE <ea>
TRANSFER OPERAND

MC68020/MC68030 [
MC688682

———

',,‘
=
=
%
[S
-
-3

CONVERT imcuuml FGUKD J

= = = ~ o
S I £ 23
& 25 & & |;_
by Ew ¥ o <
X I ¢ = =
< g2 o 5 =
n 25 s < -
& AL & 2 2
< S o < <
X Va & s 3
s pe 8 S g
2 £° 2 3 =
p=) = = =
S < g £ =
Z

Figure 7-19. MC68882 External-to-Register Instruction Dialog

respectively, by the MPU. Those operand transfer boxes that are shaded are optionally
executed, depending on the size and location of the source operand. For example, none
of the shaded boxes are executed for source operands that reside in the MPU registers.
Also, note that the FMOVECR instruction, while it is an opclass 010 instruction, uses the
register-to-register protocol described in 7.5.1.1 REGISTER-TO-REGISTER (OPCLASS 000).

- The operation boxes that are marked “R” and “W" indicate an operand read or write cycle,

7.5.1.3 REGISTER-TO-EXTERNAL (OPCLASS 011). This dialog is utilized only for the move
from floating-point data register instruction. The MC68881 dialog for this instruction type,
which also applies to the MC68882 except when the data format is single, double, or
extended, is shown in Figure 7-20. The first primitive returned depends on the destination

QECOOE INSTRUCTION
WAITE COMMAND
READ RESPONSE
READ RESPONSE
EVALUATE <ea>
TRANSFER DPERAND
READ NESPONSE

EY
%

MC68020/MC68030

MCE3881/MC68882 5 CONVERT

Qog— L

- = . =
.“_g (== o T
%8 s 2 5 =
- =3 Zo <3
i T8 ¢ =
ET ;
= =9 pap} =
< ¢S z = 5
i ik & = el
g g~ A& e
: oo
S = se ;
& » Va i
=<
< = Eg =
> i = "
s 3 2 s
2 = .‘>: =

L‘ ONLY IF A DYNAMIC k-FACTQR 1S USED

Figure 7-20. MC68881/MC68882 Register-to-External Instruction Dialog

FREESCALE MC68881/MC68882 USER'S MANUAL
7-24

data format, since additional format information is required to generate a packed decimal
destination operand when a dynamic k factor is specified. If the destination data type is
packed decimal and a dynamic k factor is used, the first response is the transfer single
main processor register primitive (to transfer the contents of the register containing the k
factor). For all other destination data formats, the first request is the null (CA=1) primitive,
since a conversion from the internal data format to the desired destination format must
be performed before any further action is required of the main processor. For the dynamic
k-factor case, the conversion starts after the main processor register transfer is completed.
The conversion starts immediately after the first read of the response CIR for all other
destination operand formats. The main processor is allowed to service pending interrupts
while it is waiting for the conversion to complete.

If any arithmetic exceptions are enabled, the first primitive requests the transfer of the
program counter. However, this request can be ignored when the main processor uses an
MC68881; the MC68882 issues a protoco! violation when the main processor ignores this
request. The program counter write cycle may not affect instruction execution time (since
it can occur concurrently with the operand conversion if the destination format is not packed
decimal with a dynamic k factor). Only the first primitive requests the transfer of the
program counter; thus, if the transfer single main processor register primitive is issued
first, the PC bit is not set in any subsequent null primitive. If the first primitive is the null
primitive and the program counter transfer is required, the PC bit is set.

The pass program counter operation is requested in one of two of the primitive encodings
(shown in Figure 7-20 with the notation “PC=x""). For the packed decimal with a dynamic
k-factor case, the dark shaded operations are always performed with the PC bit set if
necessary. The MPU services the transfer single main processor primitive with the PC bit
set by first transferring the program counter and then transferring the requested register.
For all other destination data formats, the dark shaded operations are not performed, and
the box labeled “Convert” is “folded under” the first box labeled “Read Response”. For
these cases, the null primitive may request the transfer of the PC, and that transfer occurs
concurrently with the operand conversion by the FPCP.

When the operand conversion is completed, the next read of the response CIR returns the
evaluate effective address and transfer data primitive. The main processor then reads the
conversion result from the operand CIR and writes it to the appropriate destination location.
Note that the read of the evaluate effective address and transfer data primitive causes the
response CIR encoding to be changed to the null primitive, thus avoiding spurious request
primitives in non-MC68020 or non-MC68030 based systems.

The operation boxes that are marked “R"” or “W" indicate an operand read or write cycle,
respectively, by the MPU. Those operand transfer boxes that are lightly shaded are op-
tionally executed, depending on the size and location of the source operand. For example,
none of the shaded boxes are executed for destination operands that reside in the MPU
registers. :

The MC68882 dialog differs from the dialog shown in Figure 7-20 when the operand data
format is single, double, or extended, except for the following conditions:

© The data in the floating-point register is data type NAN, unnormalized, or denormaiized.

e A rounding overflow or underflow has occurred, and the operand data format is single
or double,

® The INEX2 bit of the FPSR exception enable byte is set, and the operand data format
is single or double.

MC68881/MC68882 USER'S MANUAL FREESCALE
7-25

When any of these conditions occurs, the dialog shown in Figure 7-20 applies. Otherwise,
when the operand data format is single, double, or extended, the MC68882 issues the
evaluate <ea> and transfer data primitive with CA=0 instead of CA=1. Figure 7-21 shows
the M(C68882 dialog.

DECQOE INSTRUCTION
WRITE COMMANG
READ RESPONSE
READ RESPONSE
EVALUATE <ea>
TRANSFER DPERAND

PASS PC
r .

MC68020/MCE8030 (
MCe8882 CONVERT

=
E 3
=
N W |
*

=0, PC=G, IA=G, PF=1)
$0802

=1, PC=x, |A=1, PF=0)
$8900 OR $C900

=0, PC=0, OR=1)

EVALUATE <ea> AND TRANSFER
DATA (CA

NULL (CA
NULL (CA

Figure 7-21. MC68882 Register-to-External Instruction Dialog (S, D, and X Formats}

7.5.1.4 MOVE CONTROL REGISTERS (OPCLASS 100 and 101). This dialog is utilized for
the move single or multiple floating-point system control registers instructions. The dialog
for this instruction type is shown in Figure 7-22. The first primitive of the dialog requests
that the main processor evaluate the effective address and transfer the appropriate number
of bytes to or from the operand CIR. The read of the first primitive causes the response
CIR encoding to be changed to the null primitive, thus avoiding spurious request primitives
in non-MC68020 ar non-MC68030 based systems. When the transfer data primitive service
is complete, the miain processar is released to begin execution of the next instruction. Note

= @

£ o =

2 5 8§ § 2 g
g £ 2 V & S
ES =1 4] B [Z]
w = & = =5 =
g £ g 3 2 s

<
g § 8 ¢ B 2
T T =
MC68020/MC8030 | R|wisiwiriw
MCBEB2)/MCEBBE2 1 i
S SR |
R=1
7% IIgh o o =3
i8 BIfE.._ T If
< g w 1R w AW BRI WIg
o ~ Ao | R 4 Led
= oa = 1 [=
L~ =z T oo 1] 1o
e £8 % R0 <
I Va & 1
3 ol S =
8 g5 S b
o E] 3 -
g g = =
2

Figure 7-22. Move Control Register Instruction Dialog

FREESCALE MC68881/MC68882 USER'S MANUAL
7-26

that since this instruction type cannot cause an exception, the PC bit is not set in any
primitive; thus, these instructions can be used to read or write the control registers without
overwriting the FPIAR contents.

The operation boxes that are marked “R” or “W"’ indicate an operand read or write cycle,
respectively, by the MPU. Those operand transfer boxes that are shaded are optionally
executed, depending on the size and location of the source operand. For example, none
of the shaded boxes are executed for source operands that reside in the MPU registers.

7.5.1.5 MOVE MULTIPLE FPn (OPCLASS 110 and 111). This dialog is utilized for the move
multiple floating-point data registers instruction. The dialog for this instruction type is
shown in Figure 7-23. The first primitive of the dialog depends on the type of register list
specified by the instruction. If the static register list form of the instruction is used, the
first service request issued is the transfer multiple coprocessor registers primitive. For the
dynamic register list form, the first primitive requests the transfer of the main processor
data register that contains the register mask, and then the transfer multiple coprocessor
registers primitive is issued. In response to the transfer multiple coprocessor registers
primitive, the main processor reads the register fist from the register select CIR and transfers
one register for each bit that is set in the list. (Note that the register list can be equal to
zero; in which case, no register transfer occurs.)

The read of the transfer single main processor register and transfer multiple coprocessor
registers primitives causes the response CIR encoding to be changed to the null primitive,
thus avoiding spurious request primitives in non-MC68020 or non-MC68030 based systems.
If the transfer single main processor register primitive is issued, the transfer multiple
coprocessor register primitive is not issued untif the first service request is completed.
When the transfer multiple coprocessor register primitive service is complete, the main
processor is released to begin execution of the next instruction. Note that since this in-
struction type cannot cause an exception, the PC bit is not set in any primitive; thus, these

5 o s =

2 £ ¥ A= 2 B
g £ S v 5 B g
= 58 g 2 S = &
= - = = g2 5 &
g E 2 S 3 =z 2
= = 3]] = B

MC6RA20/MCBR030 [RIwl]rR|w/(RrR]|w
MCE88B1/MCERERY
~ - DR=1) -
= = (oR —
N =] =
18 5L 78 ig
$ 8o 2 [Rlwlr]wle]|wl|s
< o = =
3 | =
; 3 & (DR=0) g
z ErE 15
§_ b= < ‘l 3
3 £2 3 STER =1
w =
2 2 g REPEAT FOR EACH REG) 2
3

SELECTED 8Y THE REGISTER MASK

ONLY IF A DYNAMIC REGISTER LIST 15 USED

Figure 7-23. Move Multiple Floating-Point Data Registers Instruction Dialog

MC68881/MC68882 USER'S MANUAL FREESCALE
7-27

instructions can be used to read the floating-point data registers without overwriting the
FPIAR contents.

The operation boxes that are marked R’ and “W'" indicate an operand read or write cycle,
respectively, by the MPU.

7.5.2 Conditional Instructions

This group of instructions includes the FBec, FDBcc, FNOP, FScc, and FTRAPcc instructions.
These instructions have two factors in common. First, the execution of each instruction is
inherent in the M68000 Family coprocessor instruction set definition, and the dialog used
for all of them is the same. Second, in each of these instructions, the coprocessor completes
all previous floating-point instructions before it begins to evaluate the result of the received

‘conditional predicate. This guarantees a sequential execution model. The dialog begins

when the main processor writes the conditional predicate to the FPCP and then reads the
response CIR. If the APU and the CU (in the case of an MC68882) are not idle, a null primitive
(CA=1,1A=1, PC=0, TF=0) is returned, and the main processor reads the response CIR
again later. This process of rereading the response CIR continues until the coprocessor is
idle. Note that it is possible for a pre-instruction exception to be reported at any time during
this process. If no exception is reported, and when the coprocessor is finally idle, the
coprocessor evaluates the condition and responds with a null primitive {CA=0, TF=x,
where x is the true or false result). The main pracessor then proceeds with the appropriate
conditional action. The dialog {assuming that the coprocessor is idle when the conditional
predicate is written) is shown in Figure 7-24.

7.5.3 Context Switch Instructions

This group of instructions includes the FSAVE and FRESTORE instructions. The factor
common to these instructions is that the execution of each one is inherent in the M68000
Family coprocessor instruction set definition, and the coprocessor does not control the

DECODE INSTRUCTIDN
WRITE PREDICATE
READ AESPDNSE
PERFORM CONDITIONAL
ACTION

MC68020/MCE2030 [J
MC68881/MLBBBB2Z

w]
& ==
’-ﬂ
[~ < <
i 11 o
= o
< 5 8
@ g3
2 =%
< o
[<‘ T
o
<L <
=~ (=]
=
=

NULL (CA

Figure 7-24. Conditional Instruction Dialog

FREESCALE MC68881/MC68882 USER'S MANUAL
7-28

dialog in the flexible manner available with the general and conditional instruction types.
The dialog consists of the save or restore command, followed by the transfer of the ap-
propriate state frame. The only control that the FPCP has over this dialog is for the FSAVE
instruction; in which case, it may request that the main processor delay the save operation
until the FPCP is ready to perform it. These dialogs are discussed in the following para-
graphs.

7.5.3.1 FSAVE. This dialog is utilized for the context save instruction. The dialog for this
instruction is shown in Figure 7-25. There are no primitive responses during this dialog;
instead, the FPCP controls the frame transfer to a limited extent through the use of the
format word encoding.

ONLY IF THE MC68881/MC68882 IS NOT READY TQ START THE SAVE DPERATION

]

DECOOE INSTRUCTION
READ SAVE CIR
EVALUATE <ea>
STORE FORMAT WORD
STORE STATE FRAME
(IF NOT NULLY

MC68020/MC68030 | Rlw|ar|w] eeel B | W | R W]
MC68881/MCE8882
Wy > o =
g8 EE IE| |
S = @z o
55 &5 g 1
33 w = = 6 T0 53 LONG-WORD TRANSFERS
Bl eg s
= =
£ 2 <
w 17
g 3
=
2

Figure 7-25. FSAVE Instruction Dialog

The main processor initiates this dialog by reading from the save CIR. During this read
cycle, the FPCP returns a format word that indicates the current state of the machine. For
most cases of this dialog with the MC68881, the first read of the save CIR returns the idle
format word, and the main processor then proceeds to transfer six long words from the
operand CIR to memory. {n this dialog with the MC68882, the idle format word is followed
by 14 long words. Optionally, the first primitive may be a null format word, in which case
no state frame is transferred. Alternatively, the first primitive may be a busy format word,
in which case 45 (63 for the MC68882) long words are transferred. Finally, the save CIR
read may return the not-ready, come-again format word. In this case, the main processor
may process pending interrupts and restart the instruction, or reread the save CIR until a
different format word is received. The invalid format word may also be returned, as dis-
cussed in 7.5.4.6 FORMAT EXCEPTION, FSAVE INSTRUCTION.

After the MPU receives a valid format word, it then evaluates the effective address and
writes the format word to that address. The appropriate state frame is then transferred to
the effective address, and the main processor is free to proceed with the execution of the

MC68881/MC68882 USER'S MANUAL FREESCALE
7-29

next instruction. Note that by using this sequence, the MPU can take a pre-instruction
exception in response to a pending interrupt (if a not-ready, come-again format word is
received) and then return to restart the instruction rather than taking a mid-instruction
exception.

Note that after the state save operation is complete, the FPCP is in the idle state with no
pending exceptions.

7.5.3.2 FRESTORE. This dialog is utilized for the context restore instruction. The dialog for
this instruction is shown in Figure 7-26. There are no primitive responses during this dialog;
instead, the FPCP controls the frame transfer to a limited extent through the use of the
format word encoding.

OECODE INSTRUCTION
EVALUATE <ea>
FETCH FORMAT WORD
WRITE RESTORE CiR
READ RESTORE CiR
FETCH STATE FRAME
(IF NOT NULL)

MC63020/MC68030 r L ’

R w R W [eee ---u W R w
MC68881/MC68882
W >= o
82 28| J£€
5 == T 2E
s 53 53 £=
S 3 SZE Q0 6 T0 53 LONG-WORD TRAKSFERS o o
< g us
w o> o T & 3§
g= 4% % B
b=} =4 =<

?; = - 5z
& s =<
£ e &

é

vt

=)

=

Figure 7-26. FRESTORE instruction Dialog

The main processor initiates this dialog by evaluating the effective address, fetching a
format word from that address, and writing the format word to the restore CIR. The main
processor then reads the restore CIR to verify that the format word is valid. During this
read cycle, the FPCP returns a format word that indicates if the format word that was
written is valid for the current revision of the device. If the format word is valid, the same
value that was written is read back from the restore CIR, and the main processor proceeds
to transfer the state frame appropriate for the format word. The state frame size is 0, 6, or
45 long words for the current implementation of the MCE8881. For the M(C68882, the
corresponding state frame sizes are 0, 14, and 53 long words. The invalid format word
may also be returned as discussed in 7.5.4.7 FORMAT EXCEPTION, FRESTORE INSTRUC-
TION.

Note that after the state restore operation is complete, the FPCP is in the state of the
instruction that was previously suspended with an FSAVE instruction.

L ___|
FREESCALE MC68881/MC68882 USER'S MANUAL
7-30

7.5.4 Exception Processing

This group of dialogs is actually a set of special cases of the dialogs described previously;
they are grouped here for quick reference, and to simplify the preceding discussions. For
each of the exception processing dialogs, only the differences from the normal instruction
dialogs shown previously are discussed here. Also, it should be noted that these dialogs
do not include all exception processing sequences that involve the FPCP; they only include
those exceptions that are directly related to the coprocessor interface operation. For ex-
ample, main processor detected F-line exceptions are not included since no coprocessor
interface dialog occurs as part of the exception processing for this type of an exception.

The dialog for the coprocessor protocol violation exception is also omitted from the fol-
lowing diagrams. This is because these exceptions are not expected to occur during the
normal operation of a fully debugged system, and the dialog is not readily predictable
(either before or after the protocol violation occurs). By definition, the cause of the exception
for main processor detected protocol violations is a hardware failure (since the FPCP cannot
return an illegal response primitive).

For FPCP-detected protoco! violations, the cause is most likely a software failure that causes
a new instruction to be initiated before the previous instruction dialog is completed. In this
case, the new instruction dialog is aborted immediately, but the previous instruction dialog
may not terminate for some time. {The previous dialog may be completed incorrectly, since
the protocol violation is never reported to the previous instruction.)

7.5.4.1 TAKE PRE-INSTRUCTION EXCEPTION. This dialog is utilized by the MC68881 when
an arithmetic {OPCLASS 000, 010, or 011) or conditional instruction is initiated and an
arithmetic exception is pending from a previous instruction, or when the main processor
writes an undefined, reserved command word to the command CIR. In either case, this
dialog consists of two write cycles and one read cycle, as shown in Figure 7-27. First, the
main processor attempts to initiate a new instruction by writing to the command CIR; it
then reads the response CIR to determine the next required action. The MC68881 returns
the take pre-instruction exception in this case, indicating the appropriate vector number.

DECODE INSTRUCTION
WRITE COMMAND
READ RESPONSE
WRITE EXCEPTION
ACKNOWLEDGE
PERFORM EXCEPTION
PROCESSING

MCE8020/MEGBD3D I—]
MC68881/MC68882

0, PF=1)
$0802

=0)
0, PF=1)
$6802

0, 1A=0,

0, PC=0,

TAKE PRE-INSTRLCTION
EXCEPTION {PC:
0, 1A

0, PC:

NULL (CA
NULL (CA

Figure 7-27. Take Pre-Instruction Exception Dialog — MC68881

MC68881/MC68882 USER'S MANUAL FREESCALE
7-31

The main processor services this primitive by writing an exception acknowledge to the
control CIR and initiating exception processing.

Note that the write of the exception acknowledge causes the response CIR encoding to be
changed to the null primitive, thus assuring that the take exception primitive is received
by the main processor while avoiding spurious request primitives in non-MPU based sys-
tems.

The MC68882 uses a similar dialog for pre-instruction exceptions. However, when the main
processor writes an exception acknowledge to the control CIR, the MC68882 does not enter
the idle state. Instead, the MC68882 retains the take pre-instruction exception primitive in
its response register. Any floating-point instruction other than an FSAVE (or an FRESTORE
of the null state) reports the same exception again. An FSAVE (or an FRESTORE of the null
state} restores the MC68882 to an idle state, allowing subsequent floating-point instructions
to execute. Figure 7-28 shows the dialog which includes the minimum instructions rec-
ommended for an exception handler. (Refer to 5.2.2 Exception Handler Code.)

Figure 7-29 shows the dialog that usually occurs when the handler for a pre-instruction
exception does not begin with an FSAVE instruction. A protocol violation could occur; in
which case, the dialog would not apply. Otherwise, as the dialog shows, at the completion
of the exception handler routine, the main processor attempts to execute the same instruc-
tion again, and that instruction takes the same exception. If the exception handier included
a floating-point instruction but no preceding FSAVE instruction, the floating-point instruc-

_tion would take the original exception again, nesting the repetitions of the exception han-
dler.

Figure 7-30 shows the dialog that applies when an exception handier does not set the
exception pending bit, even though it begins with an FSAVE instruction and closes with
an FRESTORE. A protocol! violation cannot occur in this case, but because the exception
pending bit is not set, the instruction again takes the exception when it is reinitiated after
returning from the exception handler.

7.5.4.2 TAKE MID-INSTRUCTION EXCEPTION. The MC68881 uses this dialog only if an
exception occurs during the execution of the FMOVE FPm,<<ea> instruction. In this case,
‘the protocol for the normal execution of the instruction is followed, and then the mid-
instruction exception is reported with the last primitive (in lieu of the null primitive normaily
used to terminate the dialog). The main processor services this primitive by writing an
exception processing acknowledge to the control CIR and initiating exception processing.

The dialog for this operation is shown in Figuré 7-31. {For simplicity, this diagram assumes
that the destination data format is not packed decimal with a dynamic k factor.} Note that
a write of the exception acknowledge causes the response CIR encoding to be changed to
the nuli primitive, thus assuring that the take-exception primitive is received by the main
processor while avoiding a spurious request primitive in non-MC68020 or non-MC88030
based systems.

The MC68882 uses the mid-instruction exception if an exception occurs in the FMOVE
FPm,<ea> instruction, as the MC68881 does. However, since the MC68882 allows con-
current execution of floating-point instructions, an instruction that has begun exscution
can report an exception caused by a previous instruction. When the previous instruction

FREESCALE MC68881/MC68882 USER'S MANUAL
7-32

ONLY IF THERE WERE AN UNCOMPLETED

=
=29
ze
Eha
2=«
= a r========= .
=G & H
S E<S : g
: g=g ! g
\ 25z ! 5= Z
1 o -) g = Z
1 = W a
: 8§22 V5§
1 = (o] wa = 1 e
i 25 : 1 = (0=0d) NOILd30X3
| i g e | NOLLONYLSNI-Hd INVL ~
5 & =
& L " 2
i B * g3 } / 3
i | 13 0 =3 O
| NDILIRHLSN 314 3 20108 & Sg =
' 81 i24d 0=v1 0=0d 0=v2) TIOW ‘E’ g | =
1
« | Q
21 & 3903IMONNIY o
we ! E l NOILdITX3 3LHM o 'g
@ 2
2= & o {0=2d) NOLLd3ITX3 © T
< w -
28 % ISNOdSIH Qv NOLLORYISNY384 IVL AT
[~} 5 o
2! / a ONYWWOD 3LIdM 5S
| aveneam 5 A 5.
I PETTE = 1 « Qc
] 5
1 20808 Q) 2 20
d / (4=4d 0=V1 0=0d 0=¥2) TN] 1oe3 w g
i X ! Sz ((£ 3
i n] ze o ik
1 = a —
| Z c [] = 0
: 2 o ! = 004 NOILI30XT sE
| b [|| NOLLONYLSNI-34d WYL Ew
! (0=0d) NOILd30X3 = = @n >
H / NOLLONHLSNI-THd INVL ,E = $ 3:)
1 &
i c 285 e
1 - W
L o= L & g8 {7 & o
3 a ge (0=0d) NOILJTIXT i’ =
52 ° g NOLLONYLSNI-35d YL o
g2 /7 R~ 3903 IMONNIY = x
=3 ’S NOILAIIXT LM o 3
e
g (0=0d) NOILd3XT . — 10=34) NDILAIN3 N
g NOLLONHISNI-3Hd 3Y Vi -] NOLLINYISNI3 VL ~
3003MONNDY ! 4
Nnuaaa:a\ muam '; NV LKA ".:;
{0=04) NOL43OX3 = Z0008 o=
3
I5N0dS3H 0V NOILINHLSHI-Hd 2L o NOLLINHLSHI 300030 (edd O=p1 0=0d B=v0) T
ONVWIND3 LM w s =
1008 g 2
8 8
NOILINBLSNI 300330 {1=4d Q=v1 0=0d 0=¥2) 1IN g =
S
8
=

MC68882

MC66020/MC68030 I

MC68881/MC68882 USER'S MANUAL FREESCALE
7-33

CONTINUE INSTRUCTION

ISNOISTY 0¥ o S
S
(0=3d} NOWLAIDX3 1
NDJSTH 0¥
13ND43 NOILINYLSNI-THd InvL H / Z
)
ONVWWOD LM \
] |
T - 1 =
! ! gz | |5 o
) S 3 =
i z5 =1
| - S| |3 g
] ferii) =
' [Z ! & L g
' Z - o | = =
! £8 o) = > -
. |- g | nHEE 2
1 o W
i 28 8 . | NOLINELSNI L 8 2
g= 1 <
{ (0=0d) NOILdIIXT s2 = o]
I NOLLINYLSNI =l g
| NOLIMULSNI 314 NOLLONHLSNI-FHd I5vL 2 LB 2 =
: @ | 5 ER g I
g | & 2T EE o
g 2 S c a1 d
230 £ =95 & L
]
7 gg, ag 1 9V NE 3L 3
SEN c @ : 4022 112 135
i L
1) Z g ! (1242 D=¥) D=0 =50 TI°% =
| 8 Q@ } o
: oS -] ! « g
, (144 ‘0=1'0=0d 0=v0) MW 3§ & 1 g 2
1 & i g o]
' — o (0=0d} N33,
[=) ~
| w e c ‘ OIS L i Y =
' 3 = .02 1 =)
1 = Q = 1 -
: =3 ! S
| {0=3d) NOLLS30X3 9 E J E
! NOUDYLSNIFYD TNVL c ®w Lo 7
| (- = =
I L—
o g =
1 = —
[T - alg &g =
=z =3
£y 28 £5 Z %
82 © Sg 0041 NUEZIG 2
= 3 | o] (=4 = . . . -f-
SH Z .2 = KOUONELSNICIH =
=g (=3
g€ (0=0d) NOLL4IOXT ® £ 90VAORIY -
&S = NOWJIINT LM
Y NOLLOMHLSNI-THd XYL ~°3 e
JIQIMONNIY e ISN04S T OV ~
NDIL43IXT UM s &
{0=d) NDIL432¥3 2 =
v
ISN0dS3Y V3 NOUINYLSNI-38d I4vL [=
i
ONVWWOD LM KOLYYI0 QUSINDT 00
20008
1] 1 El
NOLLINGLSNI 366330 | (1=4d 0=¥1 0=0d 0=¥2) TIN
. 11=¥2 S3TF AN ZUSTELS
§ § 3Sh0dSIH OV3Y 40 3S\aasE:)
2
8 2 ONYWADT TLM
= =
S
s
b NOWINBISK 300330
3
=

MC6AR87

MCGBN20/MEGR030 I

FREESCALE MC68881/MC68882 USER'S MANUAL
7-34

makes an exception pending, the exception is reported on the next read operation of the
response CIR. Therefore, all reads of the response CIR must be ready to take an exception.
If the read of the response CIR occurs in the middle of an instruction, a take mid-instruction
exception is taken. The dialog shown in Figure 7-32 is a generic case that applies to all
instructions and to every read of the response CIR after the instruction has issued its first
response. The first response is the response issued by the conversion unit {CU) or the
arithmetic processing unit (APU} to the bus interface unit (BIU), not the null primitive (CA=1,
IA=1) at the beginning of an instruction when (in an MC68881) the APU is busy or {in the
MC68882) the CU is busy.

The MC68882 dialog is similar, except that the exception handler must begin with an FSAVE
instruction. The significant difference is that the write exception acknowledge operation
does not cause the MC68882 to return a null primitive. The FSAVE instruction of the
exception handler changes the primitive to a null primitive.

In the MC68882, an instruction that is executing in the arithmetic processing unit (APU)
concurrently with another instruction in the conversion unit {CU} may cause an exception.

The instruction in the CU reports the exception as a mid-instruction exception when it
completes. Figure 7-32 shows the dialog for this case using a general instruction dialog.

When the previous instruction causes an exception, the read response CIR operation for

the current instruction reads a take mid-instruction primitive, and the main processor
performs exception processing. As in the nonconcurrent case, the write exception ac- 7
knowledge operation does not cause the MC68882 to return a null primitive. The FSAVE
instruction of the exception handler changes the primitive to a null primitive. Figure 7-33

shows the same case but with a specific instruction (FMOVE FPm,<ea>>) in the CU.

When the exception handier does not contain an FSAVE instruction, the take mid-instruction.
exception primitive is not replaced by a null primitive, and the next floating-point instruction
takes the exception again. Figure 7-34 shows the dialog for a mid-instruction exception
that uses an incomplete handler.

Figure 7-35 shows the concurrent case using an exception handier that does not include
the BSET instruction. Following the return from the exception handler, the main processor
reads the take mid-instruction exception primitive from the response CIR and performs
exception processing again for the same exception.

7.5.4.3 MID-INSTRUCTION INTERRUPT. This dialog is utilized by the FPCP only if an
interrupt is pending during the calculation phase of the FMOVE FPm,<ea> instruction. In
this case, the protocol for the normal execution of the instruction is followed except that
the main processor performs exception processing for the interrupt, executes the interrupt
handler, and returns to the point where the dialog was suspended in the middie of the
execution of the instruction by the FPCP. From the perspective of the FPCP, the dialog
appears to follow the normal sequence, with a long delay between successive reads of the
response CIR by the main processor.

The dialog for this operation is shown in Figure 7-36. (For simplicity, this diagram assumes
that the destination data format is not packed decimal with a dynamic k factor.} Note that
it is possible {even probable) that the conversion of the output opérand is completed before
the main processor returns from the interrupt. Thus, the response CIR is prepared to return
the evaluate effective address and transfer data primitive as soon as the main processor
returns. Since the read of this primitive causes the FPCP to discard it and change the

L |
MC68881/MC68882 USER'S MANUAL FREESCALE
7-35

j DEDSIIN/DZ08IW

=
2
2
2
3
KULL (CA=0. PC=0, 1A=0. FF=1; T
WRITE CCWYANS
TRANSFER SINGLE MAIN PROCESSOR R
REGISTER (CA=1, PC=x, OR=0) READ FES7CNSE
—T ! | PASSPD
ONISSID0H4 NULL (CA<1. PC=0. 1A=1. PF=0; ANSFER FEGSTER
NOILJIIXI WHD¥3d 20808 e00 o
(1=4d ‘0=Y) 0=0d 0=¥2) TINN ~ TAKE MID-INSTRUCTION gg
- & EXCEPTICN [PC=0) @
NDILLJ3DX3 ILI4M @ TAKE MID-INSTRUCTION]
i © EXCEPTION (PC=C s
— (0=04} NOWL4IX3 (&) |
NOLLOMHLSNI-GIW NVL = I |
I
)
| i >
- 1
o P —_—
e -) £
] ! a
S .
7 Q. NULL (CA=0. PG=0. (A=, PF=1) / t Se
5o $0832 i =8
=8 smeTreE | e
)
1=y THE E:U FLAG) o £
[T 1 x <
oS 1 w =
x @ [S
(VTR S e 3
=1 - 1= e c
QNVHI40 HI4SNVHL S o = 1ZEX 5B 6
o = 17} 1 2= 1T
00608 B8R g 158 39
<ea>3 v . P . (&) B 12 -
LVITVAS (0=4d ‘1=v1 004 D=V TN B = = B>
(1=0 ‘0=0d "1=v2) vLva % = g e £Q
v TH0 0=l 1= g e =
35N0d53 0v3Y HLSNVEL ONY <e5> avmivel = 2 Z ' =
T e 1 = -
— =) - 1 E
S = - [H)
& NULL (CA=1, PC=0, IA=1, PF=0) =g I 2
z - =1
S| oosss © 900 2S 1 =
(=] B . . T Z 1
(03 "1=91 0=0d I=V) TN & 23 | =
_— =1 b -
00628 - = H)
35N0dS 34 03 (0=4d 1=Vi 1=2d 1=V TN o ! g
e @ /7 | 5
ONYWWOJ 3L ~ : |5
Q ' -
20R0S A ——_—— | [~2}
) . o
NOILLINKLSNY 300330 (1=4d 0=¥i 0=0d 0=V2} TION g, EVALUATE <a>> AND TRANSFER PEan FESFO ey
i DATA (CA=1, PC=0, DR=1} ki
o o™~
] o
2 2 EVALUATE <Cea>
w ©w
(=] (=]
= =
S = l = | TRANSFER CPERAYD
o~ o0
o o
=3 o
8 8 il
= }
r=+--
1 =1
' 1
| SR S |
.
13 x 1
i
1 =)
t 1 1
| S S}
Py
] = 1
md

NULL (CA=0. PC=0. 1A=0, PF=1)
86862

FREESCALE MC68881/MC68882 USER'S MANUAL
7-36

NOWLJIIXNT TLbM

(0=0d) NOW43IX3

35N04534 0V3Y NOLLINGLSNEI WYL

NOWYHI40 03L5IN0TY 00

wi

{(=v2) 90TYI0 NOILINGLSN! NOILYH340 031530038 00

B0 V3 40 .ISNOJSIY 1SHI.,

ANVWWOD LM

{1=v2} 90IVID NOLLINYISNI

ISND4S3H Qv 40 .ISNOJSI LSHH..

{0=0d) NDLL433K3
ND4SIH OV] NOLLAMHLSNI-QIW vt
R,
]
I
]
1
' /
'
]
1 Z=
1 =
SE
0=0d) NOILd33X3 i Eg
=
ISNDIS3H 03K NOILONHLSNI-OIW WV i 53
r)
|]
i i (0-0d) NOYLAFOXT
! / | NOLINSISHI 3 NOLLINULSNI-GIN T4
| £ S
H 3! 4 0
| = E, 5 8
5! gz & gz g Q =
W == <20 -]
=] “ e ("] O E E —_—
wZ 25] 5! °
EF! 58 [r] el
2z, Inge Q = I §
o S]
"B = ! {7 8%
8 \ I - i -0
I — @ | 20808 8 e
1 Y —] =44 D=V ‘D=4 ‘0= b
| NOLLOMHISN 34 2 © ! f1=4d ‘0=y1 0=0d ‘0=V'2) TIN 2 -
—]
' _‘1 K | « 58
! (o] X : = = u’j
: Z Z [} 1 e Q.
| §< ! g2
[.- = ! (0=0d) NOLLdIIXT X B
= o .E ! w
5 £ 1 NOLLONSLSNI-OIN 3V c
g2 x o i 25
(SR / [u S b mm—m— e - .0
Z28 [T [T
= p =31 & 2 e
g 0=0d) NOLL430X3 c 2 = ES
& NOILLONYLSNI-QIW 34vL s 3 g2 } 2 s
I90TIMONNIY S £ 24 =2
NOLL430X3 LiEM suw EE (0=0) NOLaFIXT S
JSNO4S3H QYR 0=0d! NOLL432X3 c <>,: & NOLLONBLSNIOIA 33w SG
NOLINHLSNI-GUN 33YL =3 —— P
' : 5o
) -3
£= 62
© L= O £
[~ 'E
b ®
b 5
™~ o
o ic
=
S
i
i

20908

NOILINHISN: 300330 (t=4d D=1 0=0d 0=42) TN

ONYWWOD LM

20808

NOILINBLSNI 300730 li=2d 0=Y1 0-0d D=2) TIN

MC68882

MCEB020/MCE8030 l

MC88020/MCEBO30 L
MC68882

MC68881/MC68882 USER'S MANUAL FREESCALE
7-37

=
g 5 2
o =] = <
2 f g & g 4 & %
3 = = b= = F4 e [=
g g & v 22 2= g Y 2 g
- B8 &g Eg = 2 & = 2
g o £ & 54 E= £ = g =
S = o oy 28 S% o 2 =z =
2 £] 1 E2 o R = s £ =
= = & R ol] = o = =
) N 7 T T T
MC88020/MCER03D | o ~ R WiRiwlriw
t fomedoondoo
MC58881/MCE8882 CONVERT]] J 1 J
[S [—
= 58 & « = s =8
I¥ PE§R &3 78 =8
<& =g & 28 & =g
o — e = a o - <
0 o < S N -
2 2o . =5 = £
- 1=} N Qa _ "
< o O = N < =3
) L1 T -4 ‘F " i
& ge R A g E
o - = 8) "
3 o3 Vs z =
S g %] w g 3 b}
Q < < B2 < =
3 g 3 2 3 g
= = = s = =
=

(A SIMILAR SEQUENCE 1S FOLLOWED DURING THE INMIAL PHASE OF AN FSAVE INSTRUCTICN
AS INDICATEQ IN THE FSAVE PROTOCOL DIAGRAM

Figure 7-36. Mid-Instruction Interrupt Dialog

response CIR encoding to the null primitive, the interrupt handler {or any other routine)
must not casually read the response CIR to determine the status of the FPCP, or the
suspended protocol is disrupted. Rather, the only valid method for checking the status of
the FPCP is to execute the FSAVE instruction and examine the state frame that is generated;
followed by an FRESTORE instruction to reinstate the previous context of the FPCP.

7.5.4.4 TAKE BSUN EXCEPTION. This dialog is utilized by the FPCP when a conditiona!l
instruction is initiated by writing one of the IEEE nonaware conditional predicates to the
condition CIR with the SNAN enable bit and the NAN condition code bit set. The dialog is
shown in Figure 7-37. ’

z £
= - = =
o = I [=} a
2 % ¢ g 8
7] =] e w2 T2
g & £ 8= =
o S w o NF za
w = & e T8 [
Q = =] n =Z =]
S & == 9 & E8
5 =z = £ =2 & s
MC68020/MC68030 l J
MCE8881/MCBBB82
o &
=]
g g

TAKE PRE-INSTRUCTIDN
EXCEPTION (PC=1)

NULL (CA=0, PG=0, 1A=0, PF=1)
NULL (CA=0, PC=0, IA=0. PF=1)

Figure 7-37. Take BSUN Exception Dialog

FREESCALE MC68881/MC68882 USER'S MANUAL
7-38

When the main processor reads the response CIR to receive the true/faise result of the
conditional evaluatian, the FPCP returns the take pre-instruction exception primitive instead
of the null primitive. In order ta update the FPIAR, the PC bit of this primitive is also set.
The main processor services this primitive by transferring the program counter, writing
an exception acknowledge to the control CIR, and then initiating exception processing.
Although the MC68020 or MC68030 always performs the program counter transfer when
it is requested, other main processors may choose to ignore this request from an MC68881
without incurring a protoco! violation. The MC68882 returns a protocol violation whenever
the main processor ignores a request far transfer of the program counter.

Note that the write of the exception acknowledge causes the response CIR encoding to be
changed to the null primitive, thus assuring that the take exception primitive is received
by the main processor while avoiding spurious request primitives in non-MC68020 or non-
MC68030 based systems.

7.5.4.5 F-LINEEMULATOR EXCEPTION. This dialog is utilized by the FPCP when a general
instruction is initiated, and the value written to the command CIR is not a legal FPCP
command word encoding. In this case, the dialog consists of two write cycles and one

read cycle, as shown in Figure 7-38. First, the main processor attempts to initiate a new
instruction by writing to the command CIR; it then reads the response CIR to determine

the appropriate action to be taken. In this case, the first read of the response CIR returns 7
a take exception primitive with the F-line emulator vector number. The main processor

services this primitive by writing an exception acknowledge to the control CIR and initiating

exception processing.

Note that the write of the exception acknowledge causes the response CIR encoding to be
changed to the null primitive while avoiding spurious request primitives in non-MC68020
or non-MC68030 based systems.

7.5.4.6 FORMAT EXCEPTION, FSAVE INSTRUCTION. This dialog is utilized by the FPCP
when an FSAVE or FRESTORE instruction dialog is interrupted by an attempt to initiate a

DECODE INSTRUCTION
WRITE COMMAND
READ RESPONSE
WRITE EXCEPTION
ACKNOWLEDGE
PERFORM EXCEPTION
PROCESSING

L

MCEB020/MC58030 [
MCE8881/MC688E2

= z = =
Tg gu l.'ll_g
& ‘5‘?— &
b Ez b3
= I =
. E~ .
[] [
o =])
2 &% 2
& =3 =
2 = z
S S
3 3
=1 =
= =

Figure 7-38. Take F-Line Emulator Exception Dialog

MC68881/MC68882 USER'S MANUAL FREESCALE
7-39

new FSAVE instruction (by reading from the save CIR). In this case, the FPCP returns the
invalid format word to signal the illegal nesting of the FSAVE instruction. The main pro-
cessor services this format word by writing an abort to the control CIR and initiating
exception processing. The dialog for this operation is shown in Figure 7-39.

DECODE INSTRUCTION
REAQ SAVE TR
WRITE ABORT
PERFORM EXCEPTION
PROCESSING

MC68020/MC68030 J
MC58881/MCEB882

$0602

(RESPONSE CIR IS IN THE
STATE OF THE PREVIOUS FSAVE
OR FRESTORE OPEBATION)
INVALID FORMAT WORD

NULL (CA=0, PC=0, 1A=0, PF=1)

Figure 7-39. FSAVE Format Exception Dialog

Since the MPU writes an abort to the FPCP in response to the illegal format word, the
FSAVE or FRESTORE that was interrupted by the nested FSAVE is destructively aborted
with no indication to the suspended instruction of this occurrence. Thus, a suspended save
operation continues to read the “frame’’ from the operand CIR if it is resumed, even though
the data in the operand CIR is not valid. Likewise, a suspended restore operation writes
the remainder of the frame to the operand CIR if it is resumed, even though the data written
is ignored and the restore operation is not performed. Due to the destructive behavior of
a nested FSAVE instruction, programmers must be certain that the FPCP is not executing
an FSAVE or FRESTORE instruction prior to an attempt to execute a new FSAVE instruction.
If there is a possibility that a nested FSAVE might occur, the MPU MOVES instruction might
be used to read the save CIR before the FSAVE is executed. If the value returned from the
save CIR is the illegal format word, then the new FSAVE should be postponed. Reading
the save CIR in this manner is not destructive.

7.5.4.7 FORMAT EXCEPTION, FRESTORE INSTRUCTION. This dialag is utilized by the FPCP
when an FRESTORE instruction is initiated by writing an invalid format word value to the
restore CIR. {In this context, the term invalid format value refers to any value that is not a
null, idle, or busy format word value recognized by the FPCP.) In this case, the FPCP returns
the explicit invalid format word ($02xx) to signal the unrecognized format word value. The
main processor services this format word by writing an abort to the control CIR and initiating
exception processing. The dialog for this operation is shown in Figure 7-40. Note that this
is a destructive exception since any instruction that was executing is aborted when the
FRESTORE instruction is initiated. However, this should not be detrimental since a suc-
cessful restore operation also aborts any previously executing. instruction.

FREESCALE MC68881/MC68882 USER'S MANUAL
7-40

INISSIIDYL
NOiLd3JX3 WH0IH3d

1409V LM

HIJ 3404534 GY3Y
10 3U0LSIY AWM
QHOM LYWHOS HOLZ
<ea> JIYATVA3

NOLLONWLISKE 380030

MC6E8020/MCE8030 r [l

MCB8881/MCE8882

20808
{1=3d 0=¥1 0=0d '0=¥2) TN

DYDM LYWHDI QNVANI

31V ANV NI 38
AVI HID ISNOISIH)

Figure 7-40. FRESTORE Format Exception Dialog

FREESCALE

MC68881/MC68882 USER'S MANUAL

7-41

FREESCALE MC68881/MC68882 USER'S MANUAL
7-42

SECTION 8
INSTRUCTION EXECUTION TIMING

This section gives the instruction execution times for the MC68881/MC68882 (FPCP) in
terms of external clock cycles. This section provides the user with some reasonably accurate
execution timing guidelines, but not exact timings for every possible circumstance. This
approach is used since the exact execution time for an instruction is highly dependent on
such things as external data formats, input operand values, operand type combinations,
and timing relationships with respect to the main processor. The timing numbers presented
in the following tables allow the assembly language programmer or compiler writer to
predict worst-case timings needed to evaluate the performance of the FPCP or to optimize
code for concurrent execution. Also, the effect that various data formats and operand values
have on execution times can be observed to allow optimizing data structures for the highest
performance for a given application. Finally, the timings for exception processing, context
switching, and interrupt processing are included so that designers of multitasking or real-
time systems can predict such things as task switch overhead and maximum interrupt
latency due to floating-point operations.

When binary real data formats are used and no register conflicts occur, the MC68882
performs the operand transfer and data conversion for most general type instructions
concurrently with calculations for preceding instructions. This section includes timing in-
formation that shows the amount of instruction overlap this concurrency provides.

8.1. FACTORS AFFECTING EXECUTION TIMES

When investigating instruction execution timing for the FPCP, it is assumed that the fol-
lowing information is required in order to make informed engineering trade-offs:

® Best case instruction execution timings, for determining whether or not an FPCP-based
system can meet certain data processing performance criteria.

e Worst-case instruction timings and how they affect execution concurrency, to allow
programs and compilers to be optimized to take maximum advantage of overlap under
any timing circumstances.

® Guidelines to indicate how various programming practices can be utilized to improve
upon the worst-case execution times, and thus allow performance to approach, as
closely as possible, the best case execution times for a given task.

® The effects that an FPCP might have on system-related timings such as context switch
overhead time in multitasking systems, or interrupt latency time in a real-time system.

First of all, when defining the performance of any machine that can operate in an asyn-
chronous manner, or where data dependencies affect execution times, a set of assumptions
must be made in order to provide a measurable environment. in this manual, instruction
execution times are shown in clock cycles to remove clock frequency dependencies, and
the following assumptions apply to define the context of the times shown.

® The main processor is an MC68020, acting as the host to the FPCP, and the two devies
use the same clock input.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-1

® When the main processor initiates a command to the FPCP, any previous floating-
point instruction has been completed and the FPCP is in the idle state.

o All operands in memory, as well as the system stack, are long word aligned.

o A 32-bit data bus is used for communications between the MC68020 and both the
FPCP and the system memory.

o All memory accesses occur with no wait states (i.e., three clock cycle reads and writes).

o All coprocessor accesses, except those to the response and save CIRs, occur with no
wait states. Accesses to the response and save CiRs require two wait cycles (five clock
reads).

Note that the clock signal relationship between the MC68020/MC68030 (MPU) and the FPCP
assumed for these discussions is not a system requirement, but merely a simplification
that allows easy measurement of instruction times. However, the ratio of MPU clock fre-
quency to FPCP clock frequency can be any reasonable value. In general, the clock frequency
of the FPCP affects absolute instruction timing more than that of the MPU, since floating-
point operations are usually computation intensive. However, the clock frequency rela-
tionship of the MPU and FPCP can affect the execution time of an instruction due to the
time needed to transfer operands of various sizes and due to actual activity of the two
devices. The magnitude of the dependency of execution times on the clock frequency of
the MPU varies with instruction types, since some instructions spend a relatively small
amount of their overall execution time in communication with the main processor; whereas,
other instructions spend almost all of their execution time in communication with the main
n processor.

With this set of assumptions as a starting point, several factors must be defined that
" contribute to the overall execution time for a given instruction. Some of these factors are
common to all instructions, while others are only applicable to certain instructions or data
types. Particularly, the execution times for the conditional and system control instructions
are not widely variable, but the execution time for an arithmetic or data movement in-
struction is heavily affected by data values and exception checking. In order to better
understand how these factors are combined to calculate the execution time for an arithmetic
or move-to-floating-point register instruction, it is helpful to divide coprocessor instruction
execution into the following steps:

1. Receive the command word from the host processor, decode it, and return the first
service request primitive,

Receive the main processor program counter, if required.

Receive an external operand, if required.

Convert the operand to the internal extended format.

Perform the algorithm specified by the command word on the operand(s).

@ o bk w N

Round the result to the correct precision, check the result of the computation for
conditions such as overflow, then store the result into a floating-point data register.

The first three of these steps require approximately the same amount of time for any
instruction, but the last three steps can require widely varying amounts of time even when
comparing the execution time for a given instruction with different data inputs. For pur-
poses of this discussion, the first three steps are referred to as the instruction start-up
phase, the fourth step as the conversion phase, the fifth step as the calculation phase, and

FREESCALE MC68881/MC68882 USER'S MANUAL
8-2

the sixth step as the round/store phase. The following paragraphs discuss the factors that
affect the execution time of an arithmetic instruction during each of these phases.

8.1.1 Instruction Start-Up Phase

The factor that affects execution time most heavily during this phase of an instruction is
the location and format of an external oprand. The three possible locations for an input
operand are:

1. In a floating-point data register,

2. In a main processor data register, and

3. In external memory.

If an operand resides in a floating-point data register before an instruction starts, no data
movement operation is required to prepare it for the calculation phase, and thus, the start-
up phase is very short. If an operand resides in a main processor data register, the FPCP
uses the evaluate effective address and transfer data response primitive to request it from
the MPU. in this case, the MPU does not generate any operand memory cycles, and the
operand is transferred to the FPCP with a single bus cycle. The FPCP then converts the
signed integer or single precision floating-point number to extended precision and pro-
ceeds to the calculate phase.

For the third operand location case, execution time can vary widely due to two separate
mechanisms, the addressing mode and alignment of the operand in memory, and the data
format and value of the operand. The addressing mode used to locate an operand affects n
execution time in a straightforward manner due to the fixed nature of effective address
calculations by the MPU. For example, if the addressing mode used is address register
indirect, {An)}, then no instruction prefetch words and one long-word indirect address fetch
may be required to calculate the final address of the operand. Then, once the operand is
located, up to three long word fetches may be required to transfer the operand to the FPCP.
The execution times for these operations are quite predictabie (i.e., there are no data
dependencies involved), although they are affected by instruction stream alignment, MPU
cache hits, memory access times, memory width, and operand alignment. As mentioned
earlier, certain assumptions are made with regard to these factors (for the purposes of this
discussion) so that the tables in this section may be simplified. In order to include the
effects of these factors, refer to the MC68020 user’s manual or the MC68030 user's manual
for more information regarding bus operation.

The second mechanism that can affect execution times for operands in memory is the data
format. For the integer and binary floating-point formats, the execution times for conver-
sions required to prepare the operand for the calculation are refatively free from data
dependencies. However, for the packed decimal floating-point format, execution times can
vary significantly due to the value of the input operand.

8.1.2 Calculation Phase

This is the most volatile portion of an instruction with respect to execution times. The main
factor that affects the calculation time is the operation to be performed (e.g., a sine operation
requires far more time than an add operation), but for a given operation, the execution
time is data dependent. For the monadic operations, the data dependency is limited to the
type and value of the input operand; for the dyadic operations, the combination of the

L
MC68881/MC68882 USER'S MANUAL FREESCALE
8-3

types and values of the two operands can also affect execution time {in this context, data
type refers to the FPCP-extended precision representation of one of the five |EEE data
types: normalized, denormalized, zero, infinity, and not-a-numer). Because execution times
vary due to data values and type combinations, Tables 8-14 and 8-15 indicate the execution
time for each arithmetic operation with typical arguments, along with timing values for
special case operand types such as zero, infinity, etc.

8.1.3 Round/Store Result Phase

The execution time for this phase of an instruction is dependent on the mode of operation
that is programmed into the floating-point control register, as well as the value of the
result. For example, if the rounding precision is programmed to be extended, execution
is faster than if it is single. Also, if the result of a calculation overflows or underfiows the
destination precision, then more time is required to handle that exception. In the following
paragraphs, the overall execution times for the arithmetic operations assume the best case
round/store phase time. Table 8-16 lists the values used to calculate execution times for
various rounding precisions and exception handling operations.

8.2 CONCURRENT INSTRUCTION EXECUTION

An important factor that should be considered when optimizing MPU and FPCP programs
is the amount of concurrent execution time that an instruction allows. It is also an important
consideration in calculating overall execution time.

Concurrency between MPU and the FPCP applies when the main processor executes MPU
instructions while the coprocessor completes execution of a floating-point instruction. The
MC68882 can execute two floating-point instructions concurrently, providing additional
concurrency not available in the MC683881.

Overlap time between instructions determines the degree of concurrency that is possible.
Overlap time is derived from the combination of the tail of an instruction with the head of
the next instruction, where tail and head are portions of the total execution time of an
instruction. The tail is the portion of the total execution time during which another instruc-
tion can be executed. The head is the portion of the total execution time that can be
performed while another instruction is completing. The overlap time of two consecutive
instructions is either the tail of the first instruction or the head of the second, whichever
is less.

The tail of a floating-point instruction is the time during which the MPU can execute a
subsequent instruction. It consists of the time during which the processor releases the
MPU to allow a subsequent instruction to begin. During this period, the coprocessor is still
performing the calculations.necessary to complete the current instruction.

in the case of the MC68881, overlap occurs only when the subseguent instruction is an
MPU instruction. Table 8-25 is used to calculate the portion of the MCB8881 instruction
that can overlap with an MPU instruction. If the subsequent instruction is a floating-point
instruction, the MPU is requested to wait to execute it until the coprocessor finishes the
current instruction. That is, the head portion of the execution time for a floating-point
instruction executing in an MC68881 is zero.

FREESCALE MC68881/MC68882 USER'S MANUAL
8-4

The MC68882, however, can obtain the operand of a subsequent floating-point instruction
and convert the operand to internal format during the tail of the previous instruction. This
portion of the instruction is defined as the head of the MC68882 instruction. It is the portion
of the instruction that begins when the instruction is initiated by the MPU, and ends when
the present coprocessor instruction can no longer operate under the tail of a previous
instruction. The actual values of head and tail that apply to the MC68882 floating-point
instructions are shown in Table 8-3. The tails of MC68882 floating-point instructions can
execute concurrently with MPU instructions as well as with other MC68882 instructions.
The head times for the MC68882 instructions indicate the degree of concurrency that is
allowed.

Each floating-point instruction of the MC68882 is either fully concurrent, partially concur-
rent, or nonconcurrent. Instructions for which the head time equals the total execution
time are fully concurrent. Those for which head and tail values are shown are partially
concurrent. The instructions that have zero head values are noncurrent.

Concurrent execution of floating-point instructions in the MC68882 can significantly im-
prove coprocessor performance. Refer to 5.1.2 Optimization of Code for the MC68882 for
more information on the effects of concurrency on the performance of programs.

8.3 INTERRUPT LATENCY TIMES

In real-time systems, a very important factor pertaining to overall system performance is
the response time required for a processor to handle an interrupt. In the M68000 Family
of processors, interrupts are allowed to be asserted to the processor asynchronously, and
they are handled on the next instruction boundary. While the average interrupt latency for
the MPU is quite short, the maximum latency is often of critical importance since real-time
interrupts cannot require servicing in less than the maximum interrupt latency. The max-
imum interrupt latency for the MPU is approximately 250 clock cycles (for the MOVEM.L
{[d32,An],Xn,d32), DO-D7/A0-A7 instruction where the last data fetch is aborted with a bus
error; refer to the MC68020 user’s manual or the MC68030 user’s manaul for more detailed
information}, but some FPCP instructions may take two or three times that long to execute
with typical operand types, combinations and values.

it may be unacceptable in a real-time system to have a worst-case intefrupt latency time
as large as 600 or more clock cycles {the length of some long floating-point instructions).
Therefore, the FPCP allows interrupts to be processed in the middie of the execution of a
floating-point instruction, whenever possible, to reduce the latency time. The FPCP does
this in four ways:

1. By returning the null {CA=0, IA=1, PF=0) primitive when it enters the calculated
phase of an instruction that allows concurrency. If the MPU is not in the trace mode,
it is then free to fetch the next instruction and process any pending interrupts at the
instruction boundary. If the MPU is in the trace mode, it waits for the FPCP to complete
execution and returnthe null {CA=0, PF=1) primitive before continuing with the next
instruction, but it services pending interrupts while it is waiting.

2. By returning the null (CA=1, IA=1) primitive when the main processor attempts to
initiate a floating-point instruction while the FPCP is unable to begin another operation,
thus allowing the MPU to service interrupts whl(e waiting for the coprocessor to start
execution of the new instruction.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-5

3. By returning the null {CA=1, IA=1) primitive during internal conversions for non-
concurrent instruction execution (e.g, FMOVE.<fmt>FPn,<ea> in the MC68881 or
FMOVE.W FPn,<ea> in the MC68882) before returning service request primitives to
complete the operation.

4. By returning the not-ready, come-again format code during internal operations re-
quired by the FSAVE instruction. The FPCP returns this format code in some cases
{as described in 6.4 CONTEXT SWITCHING) to enable it to store a smafler state frame,
and the MPU can process interrupts while waiting for the save operation to begin.

- For the first two cases, the MPU is allowed to process interrupts during the tail period
defined in 8.2 CONCURRENT INSTRUCTION EXECUTION. For the third case, the period
during which the MPU can process interrupts is iliustrated in Figure 8-1. The timing for
the fourth case is similar to the third case, except that the periods labefed “Convert,”
“Round,” and ““Transfer” for the FPCP are not used for those purposes but instead for
saving of the internal state.

MC68020/MC68030 I INITIATE INSTRUCTION WAIT INTERRUPTS ALLOWED Sirst]

MC688881/MCE8882 START-UP CONVERT I ROUND TRANETER I

Figure 8-1. Nonconcurrent Instruction Execution, Interrupts Allowed

n Basically, the maximum interrupt latency time for any FPCP instruction is equal to the

worst-case execution time minus the interrupts allowed time, where both of these values
are calculated using the tables in this section. For concurrent instructions, the execution
time and allowed concurrency times are shown, and the interrupt fatency is the difference
between these two values. For nonconcurrent instructions, the amount of time during which
interrupts are allowed is shown in the tables as the number of allowed overlap clock cycles,
and the interrupt latency is approximately equal to the total execution time minus the
allowed overlap time. However, as shown in Figure 8-1, there may be two separate time
periods during which the MPU is not allowed to process interrupts. For some instructions,
such as the FMOVE.P FPn,<ea> instruction, these two periods are approximately equal
and make up a small fraction of the overall execution time for the operation. On the other
hand, for the FRESTORE and FSAVE instructions, the time required to transfer a busy state
frame is roughiy equal to the overall execution time. In fact, the worst-case interrupt latency
due to an FPCP instruction is for the FRESTORE instruction with a busy state frame.

. 8.4 COPROCESSOR INTERFACE OVERHEAD

For all of the instruction timings shown in the following tables, all coprocessor interface
bus cycle timing and associated processing are included in the overaif execution times.
However, it is assumed that when the main processor beings execution of a floating-point
instruction, the FPCP has completed execution of any previous instruction and is ready to
begin a new instruction. {(Note that the criteria for determining the readiness of the MC68881
is different from that of the MC68882. The MC68881 is ready to begin an instruction if the
previous instruction is completed. The MC68882, however, is ready to begin an instruction
if the instruction has completed executing in the CU and the CU has handed off the in-
struction to the APU.) Thus, the MPU is never required to wait while the FPCP completes

FREESCALE MC68881/MC68882 USER'S MANUAL
8-6

an instruction, Also, it is assumed that when the MPU is waiting for the FPCP during a
nonconcurrent instruction, the main processor reads the response register at exactly the
moment when the FPCP is prepared to return a service request primitive to complete or
continue the instruction. If these conditions are not met, the actual instruction execution
time can be shorter or longer than the values shown in the tables, due to synchronization
of the two devices.

First, it must be noted that the FPCP does not begin execution of an instruction until the
start of the read cycle from the response CiR in which the first primitive of the instruction
dialog is returned to the main processor. If the MPU attempts to initiate a floating-point
instruction before the previous one has completed and the coprocessor is ready, the FPCP
queues the command word or conditional predicate and then instructs the MPU to wait
(by encoding the null {CA=1, IA=1) primitive in the response CIR) until the previous
instruction is completed and the FPCP is ready to begin the next instruction. When the
previous instruction has completed execution, the FPCP does not begin execution of the
queued instruction until the next read of the response CIR. The sequence of events for this
situation is:

1. The FPCP allows concurrent instruction execution by returning the nult (CA=0, IA=1,
PF=0) primitive to the MPU.

2. The MPU encounters the next FPCP instruction and attempts to initiate execution by
writing to the command or condition CIR. The MPU then starts a read from the
response CIR to determine what further action should be taken.

3. The FPCP queues the instruction initiation request and changes the encoding of the
response CIR to null (CA=1, IA=1), causing the MPU to wait.

4. The MPU continues to read the response CIR repeatedly until a new primitive is
encoded or an interrupt becomes pending {if an interrupt occurs, the MPU resumes
polling of the response CIR after the interrupt handler executes an RTE instruction).

5. The MC68881 APU becomes idle (by complieting the previous instruction) and waits
for the next read of the response CIR. In the MC68882, the CU hands off the instruction
to the APU after the APU completes the previous instruction and waits for the next
read of the response CIR.

6. The MPU reads the response CIR, which either results in the return of a take exception
primitive {due to an exception during the previous instruction) or causes the FPCP to
begin execution of the new instruction by returning the first primitive required for
that operation.

The timing relationship of the main processor and the FPCP during this sequence can affect
the overall execution time of the new instruction, due to synchronization between the two
devices. Specifically, if the MPU begins a read of the response CIR exactly one clock cycle
before the FPCP completes the execution of the previous instruction in the APU, the FPCP
immediately begins execution of the new instruction by returning the first primitive of the
new instruction dialog during that read cycle. This case is shown in Figure 8-2, which
iflustrates the best-case timing for coprocessor interface overhead: two clock cycles.

Figure 8-2 also illustrates the typical coprocessor interface overhead timing, which occurs
when the MPU initiates a new instruction and the FPCP is in the idle state. For this case,
there is no overlap with a previous instruction at the beginning of the instruction dialog,
and the coprocessor interface overhead for the new instruction is 11 clock cycles. Also,

MC68881/MC68882 USER'S MANUAL FREESCALE
8-7

SO St 82 S3 54 S5 SD S1 S2 53 54 S5 SO S1 S2 Sw Sw Sw Sw S3 54 S5

MC68020/MC68030 x START NEW INSTRUCTION — cpGEN

BUS ACTIVITY ~———————{ PREFETCH X WRITE COMMAND X READ RESPONSE —

MCE8831/MC58852 COMPLETE PREVIDUS WSTRUCTION y———r———{_ START RV STR_
\ A
v

BEST CASE OVERLAP — § CLOCKS 2 CLOCK OVERHEAD

Figure 8-2. Best-Case Coprocessor Interface Overhead Timing

note that this example assumes that the instruction prefetch requested by the cpGEN start-
up operation was not satisfied by the previous prefetch bus cycle, and it does not hit in
the MPU on-chip instruction cache. Refer to 8.5.2 MIC68881 Detail Timing Tables for further
discussion of the effects of instruction prefetching by the MPU.

if the read cycle to the response CIR occurs before the FPCP has completed execution of
the previous instruction, the MPU processes the null (CA=1, |A=1) primitive thatis returned
{by checking for pending interrupts and re-reading the response CIR if there are none).
This operation requires 10 MPU clock cycles, and thus there is a 10 clock cycle worst-case
n synchronization period that is part of the effective execution time for the new instruction.
(The worst case occurs if the response CIR read cycle starts two clock cycles before the
previous instruction in the APU is completed.) The worst-case timing is shown in Figure
8-3. The exact amount of synchronization time required is dependent on the system en-
vironment, such as the clock signal relationship between the MPU and the FPCP, and the
context of an instruction sequence. In all of the following tables, the typical case of no
overlapped execution is assumed; thus, a coprocessor interface overhead value of 11 clock
cycles is included in the timing numbers. If an attempt is made to optimize an instruction
sequence for overlapped execution, the coprocessor interface overhead may be reduced
by as much as nine clock cycles. However, incorrect “optimization” may result in an 11
clock cycle overhead, which is no worse than the no overlap case previousty described.

A similar overhead effect occurs for nonconcurrent instructions that allow interrupt pro-

~ cessing by returning the not-ready format code (FSAVE instruction), or the null (CA=1,
A= 1) primitive in the middle of instruction execution (i.e., the FSAVE and FMOVE FPn,<ea>
instructions). In these cases, the FPCP completes as much of the instruction as possible
while allowing interrupts, and then prepares to encode a valid format code or service
request primitive in the save or response CIR during the next read by the MPU. The timing
relationship between the start of the read cycle and the completion of internal operations
by the FPCP is identical to the timing previously described for the instruction start-up
phase. Thus, the same 10 clock cycle overhead factor might be added to the execution
time for these instructions.

in the following tables, the assumptions stated earlier apply (i.e., the main processor is an
MPU running on the same clock as the FPCP), and the coprocessor interface overhead for
all operations other than instruction initiation is included based on those assumptions. If
an instruction is executed under conditions other than those described, the execution time
may be increased in increments of 10 clock cycles if necessary.

FREESCALE MC68881/MC68882 USER'S MANUAL
8-8

Bfujun| peayiaaQ 33epalu] dIdd4 3seD-I1SIOM £-8 ainbiy

OVIHY3AO0 %2012 1L SX3012 0 — JVIHIAD ISVI LSHOM
A A
/ 'S \

ryr— L 788890
MIN LHULS) { NOLINYLSNT SNOIAZES LUTI4WD) /138390
4 ISNOS3 V3 »> ~ ISNOJS Qvau X onwwnoswm X HOLBHd e E>_mhwm
t=v "t=va) TN X N39% — NOINHLSNI MaN 1ws X \wmmmwwx

GS ¥S £S M5 MS MS NS ZS IS DS SS §S €5 MG M MS MS IS IS OS §S ¢S €5 IS 1S 0S 55 ¥§ €S IS IS 05

FREESCALE

MC68881/MC68882 USER'S MANUAL

8-9

8.5 EXECUTION TIMING TABLES

In the following paragraphs, timing tables are presented that allow the calculation of best-
case, typical, and worst-case execution times for any FPCP instruction. These tables are
based on the assumptions previously stated and include the total execution time for each
instruction. In other words, the nhumbers that are calculated using these tables indicate the
time from the beginning of execution of the coprocessor instruction by the MPU (i.e., when
the instruction has been prefetched and loaded into the instruction decode register) to
completion of the instruction by the FPCP and/or MPU (i.e., when a read of the response
CIR indicates a null (CA=0, PF=1), when conditional processing is completed, or when
the last operand transfer to or from the FPCP has been completed).

Bus cycle activity is also indicated by the tables and includes all bus cycles generated by
a particular operation. Note that instruction prefetch and operand write cycles requested
by the execution of a given instruction may not actually be executed during the excution
of the instruction, but are queued by the MPU bus interface unit for completion as soon
as the bus is available. (Refer to the MC68020 and MC68030 user’'s manual for more
information on bus cycle overlap.} When a floating-point operation is completed, a prefetch
request has been generated by the MPU to replace each word of the instruction stream
used by the instruction or to refill the instruction pipe in the case of a conditional branch,
a trap instruction, or an exception.

The timing information shown in the following tables for some operations includes three
numbers that depend on the context of the instruction {i.e., the alignment of the instruction
stream, whether the MPU instruction cache is enabled, and whether the cache contains
the instruction.)

1. The best-case value, where prefetches hit in the MPU on-chip cache and the instruction
benefits from the maximum overlap, in the MPU pipeline, with other instructions. Due
to the highly volatile nature of the instruction pipeline, this case is not easy to achieve
intentionally but occurs occasionally.

2. The cache-only case, where prefetches hit in the MPU on-chip cache, but the instruc-
tion does not overlap with preceding or foilowing instructions.

3. The worst-case, where prefetches do not hit in the MPU on-chip cache or the cache
is disabled, and there is no instruction overlap. Itis further assumed that the instruction
is aligned so that a prefetch is executed before the MPU writes to the FPCP command
CIR.

The execution time entries in most of the following tables contain seven numbers. The
left-most number is the total execution time for the operation in clock cycles, followed by
the number of clock cycles of the total execution time that is allowed to overlap with
execution of other operations by the main processor. Then, in parenthesis, the bus cycle
activity is included, which indicates the number of instruction prefetch, operand read,
operand write, coprocessor read, and coprocessor write bus cycles that are generated by
the execution of the instruction. An example of the format of an entry from the timing
table is:

XX/XX XX/ XX/ XX/XX%/Xx)
Total execltion time ! l
Overlap with subsequent MPU instructions
Number of prefetch bus cycles
Number of operand read bus cycles
Number of operand write bus cycles

Number of coprocessor read bus cycles
Number of coprocessor write bus cycles

FREESCALE MC68881/MC68882 USER'S MANUAL
8-10

The total number of clocks required for the bus activity in each entry can be derived by
multiplying the total number of bus cycles by three. (This does not account for the fact
that reads from the response and save CIRs require five clocks rather than three, but the
two clock-cycle discrepancy is usually negligible compared with the overall execution time
for an instruction.) For some instructions, the number of coprocessor read cycles indicated
by the tables may not reflect the actual number of read cycles that are executed during
the dialog for the instruction. This is because only the first occurrence of a series of null
{CA=1,lA=1)ornull (CA=0, PF=0, A= 1) primitives isincluded in the tables. For example,
the FPCP forces the main processor to wait during the conversion phase of the FMOVE
FPn,<ea> instruction by using the null response primitive. The MPU may perform nu-
merous response CIR read cycles during the time that it waits for the FPCP, but only the
first of this series of read cycles is included in the timing table entry. Although this sim-
plification may fail to indicate the true number of coprocessor read cycles executed by the
MPU, it allows the tables to accurately indicate the minimum number of different response
primitive and operand reads that must be executed by a main processor, regardless of its
type or clock and bus speed.

The timing tables in the following paragraphs are divided into two major groups. First,

several tables are presented that allow quick determination of the typical execution time

for all instructions. These tables are comprehensive but assume typical operand inputs

and operating conditions for simplicity. No more than two tables are used to determine

the typical execution time for a given instruction. One table is used to determine the basic

execution time for the selected instruction, and a second table {one of five listing the

instruction groups) is used to determine the additional time required for the calculation of

the effective address by the MPU, for those instructions that require an effective address n
calculation.

The second group of tables is used to calculate a more precise execution timing value for
a specific instruction, addressing mode, and operand type combination than is available
in the first group of tables. This group of tables is also useful for the calculation of execution
times where the main processor is not a MPU, since the timing for each phase of instruction
execution is included in a separate table. This alows timings that are only dependent on
the FPCP to be calculated and added to the timing characteristic of the main processor.

8.5.1 Timing Tables for Typical Execution

This set of tables allows a quick determination of the typical execution time for any FPCP
instruction when the MPU is used as the main processor. The first table presented is for
effective address calculations performed by the MPU. Entries from this table are added to
the entries in the other tables in this subsection, if necessary, to obtain the overall execution
time for an operation. The assumptions that apply to the following tables are:
® The main processor is an MC68020 and operates on the same clock as the FPCP.
Instruction prefetches do not hit.in the MCE8020 cache (or it is disabled), and the
instruction is aligned so that a prefetch occurs before the command CIR is written by
the MC68020.
NOTE
The timing numbers are derived assuming that the main processor is an
MC68020. The MC68030 has a more optimized coprocessor interface and can
benefit from the data cache hits. These improvements of the coprocessor
interface are not used in determining typical operation. Actual operation
when using the MC68030 always yields better values than the calculations
derived from these tables.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-11

® A 32-bit memory interface is used, and memory accesses occur with zero wait states.
All memory operands, as well as the stack pointers, are long word aligned.

® Accesses to the FPCP require three clock cycles, with the exception of read accesses
to the response and save CIRs, which require five clock cycles.

¢ No instruction overlap is utilized so the coprocessor interface overhead is 11 clocks.
This can be reduced to two clock cycles if optimized code sequences are used or may
be 11 clock cycles if overlap is attempted and a synchronization delay is required.

® Typical operand conversion and calculation times are used [i.e., input operands are
assumed to be normalized numbers in the legal range for a given function).

® No exception is enabled, no exception occurs, and the default rounding mode and
precision of round-to-nearest, extended precision is used.

8.5.1.1 EFFECTIVE ADDRESS CALCULATIONS. For any instruction that requires an op-

erand external to the FPCP, an evaluate effective address and transfer data response pri-

mitive is issued by the FPCP during the dialog for that instruction. The amount of time
" that is required for the MPU to calculate the effective address while processing this primitive

for each addressing mode, excluding the transfer of the data to the FPCP, is shown in Table

8-1. The times shown in this table include all bus cycles required to perform the address
n calculation (such an instruction prefetches and memory indirect fetches).

For the FMOVEM instruction, Table 8-1 is also used to determine the time required for the
MPU to perform an address calculation {(implied by the transfer multiple coprocessor reg-
isters primitive). For the FScc, FRESTORE, and FSAVE instructions, the request to evaluate
an effective address is implied by the F-line instruction word; therefore, no response
primitive is issued by the FPCP to request the evaluation. The following table is used for
these three instructions to adjust the basic instruction execution time to reflect the ad-
dressing mode that is used.

Note that Table 8-1 applies only to the MPU effective address calculation time for copro-
cessor instructions. The execution times included in this table are not the same as the
calculate effective address times given in the MPU user’'s manuals for normal instruction
execution,

8.5.1.2 ARITHMETIC OPERATIONS. Three tables provide the typical instruction execution
time for each arithmetic instruction. This group of instructions includes the majority of the
FPCP operations such as FADD, FSUB, etc. In addition to the instructions that perform
arithmetic calculations as part of their function, the FCMP, FMOVE, and FTST instructions
are also included since an implicit conversion is performed by those operations. For mem-
ory operands, the timing for the appropriate effective addressing mode must be added to
the numbers in these tables to determine the overall instruction execution times. in order
to simplify these tables, the overall execution times for the MC68881 are listed in Table 8-
2, the overall execution times for the MC68882 are listed in Table 8-3, and the bus cycle
activity numbers are listed in Table 8-4. In addition to the total execution times for the
MC68882, Table 8-3 lists the head and tail values required for calculating concurrency.

I

FREESCALE MC68881/MC68882 USER'S MANUAL
8-12

Table 8-1. Effective Address Calculations

Addressing Modes Best Case Cache Case Worst Case
Dn or An 0/0 (0/0/0/0/0) 0/0 (0/0/0/0/0) 0/0 {0/0/0/0/0)
{An} 0/0 {0/0/0/0/0) 2/0 (0/0/0/0/0) 2/0 {0/0/0/0/0)
{An}+ 3/0 (0/0/0/0/0) 6/0 {0/0/0/0/0) 6/0 (0/0/0/0/0)
- (An} 3/0 (0/0/0/0/0) 6/0 (0/0/0/0/0) 6/0 (0/0/0/0/0}
(d1g,An) or (dyg,PC) 0/0 (0/0/0/0/0) 2/0 (0/0/0/0/0) 3/0 (1/0/0/0/0)
(xxx). W 0/0 (0/0/0/0/0) 2/0 {0/0/0/0/0) 3/0 {1/0/0/0/0)
{xxx).L 1/0 (0/0/0/0/0) 4/0 (0/0/0/0/0) 5/0 {1/0/0/0/0)
#<data> 0/0 (0/0/0/0/0) 0/0 {0/0/0/0/0) 0/0 {0/0/0/0/0)
(dg,An,Xn) or {dg,PC,Xn) 1/0 {0/0/0/0/0) 4/0 (0/0/0/0/0) 5/0 {1/0/0/0/0)
(d16.An,Xn) or (d16,PC.Xn) 3/0 (0/0/0/0/0) 6/0 {0/0/0/0/0} 7/0 (1/0/0/0/0)
(8) 3/0 {0/0/0/0/0) 6/0.(0/0/0/0/0) 7/0 (1/0/0/0/0)
{d1g,8) 5/0 {0/0/0/0/0) 8/0 {0/0/0/0/0) 9/0 (1/0/0/0/0)
(d33,8) 11/0 {0/0/0/0/0) 14/0 {0/0/0/0/0) 16/0 {2/0/0/0/0)
(sLn 8/0 (0/1/0/0/0) 11/0 {0/1/0/0/0) 12/0 {1/1/0/0/0)
((Bl..d1g) 8/0 (0/1/0/0/0) 11/0 {0/4/0/0/0) 12/0 {1/1/0/0/0)
((B1..d32) 10/0 (0/1/0/0/0) 13/0 (0/1/0/0/0) 15/0 (2/1/0/0/0)
{ld15.B).D) 10/0 (0/1/0/0/0) 13/0 (0/1/0/0/0) 14/0 (1/1/0/0/0)
({d16.8).1.d1g) 10/0 (0/1/0/0/0) 13/0 (0/1/0/0/0} 15/0 (2/1/0/0/0)
{Id16.B],1.d32) 12/0 (0/1/0/0/0) 15/0 (0/1/0/0/0) 17/0 (2/1/0/0/0)
{id32.BL.) 16/0 {0/1/0/0/0) 19/0 (0/1/0/0/0) 21/0 {2/1/0/0/0)
{[d32,8].1.d16) 16/0 {0/1/0/0/0) 19/0 {0/1/0/0/0) 21/0 {2/1/0/0/0)
{[d32,8],1,d32) 18/0 {0/1/0/0/0) 21/0 (0/1/0/0/0) 24/0 {3/1/0/0/0)

B=Base address; 0, An, PC, Xn, An+Xn, PC+ Xn. Form does not affect timing.
I=Index; 0 or Xn.
NOTE: Xn cannot be in B and | at the same time. Scaling and size of Xn does not affect timing.

8.5.1.3 MC68882 CONCURRENT OPERATIONS. The MC68882 overall instruction timing
table, Table 8-3, contains the H and T numbers, which are helpful in estimating the instruc-
tion execution overlap resulting from concurrent execution of floating-point instructio_ns.

¢ H — Head. The effective address calculation should be added to the head to obtain
the true head time. (This does not apply for FMOVE to memory if a register conflict
occurs.)

® T — Tail. The period during which the MC68882 can begin another floating-point
instruction.

The total execution time for a set of instructions is the sum of the overall execution times
of the individual instructions in the set minus the total overlap time. This formula applies
to both the MC68881 and the MC68882; for the MC68881, the overlap between floating-
point instructions is zero.

Table 8-5 lists an example of the use of the timing tables to calculate the execution time
for a sequence of instuctions. The table compares the execution times, in clock cycles, of
the individual instructions and the total execution time for the sequence using the MC68881

MC68881/MC68882 USER'S MANUAL FREESCALE
8-13

Table 8-2. MC68881 Overall Execution Times

[. Memory Source or Destination Operand Format ;
Instruction FPn to FPm i
Integer Single Double Extended | Packed i
FABS 35 62 54 60 58 872 !
FACOS 625 652 644 650 648 1462 |
FADD 51 80 72 78 76 883 i
| FASIN 581 608 600 805 604 | 1418 |
FATAN 403 430 422 428 426 l 1240 !
FATANH 693 720 712 718 716 1530
FCMP 33 62 54 60 58 870 ‘
FCOS 39 418 410 416 414 1228 {
FCOSH 607 634 626 632 630 1444 ;
FDIV 103 132 124 130 128 940
FETOX 497 524 516 522 520 1334
FETOXM1 545 572 564 570 568 1382
FGETEXP i 45 72 64 70 68 882
FGETMAN 31 58 50 56 54 858
FINT 55 82 74 80 78 892 j
FINTRZ 55 82 74 80 78 j g2z i
FLOGN 525 552 544 550 548 1352 ‘
FLOGNP1 571 598 530 596 594 1403
FLOG10 581 608 600 606 504 I 1418 :
n FLOG2 581 608 600 606 604 1418 i
FMOD 70 99 91 97 95 907 :
FMOVE to FPn a3 60 52 58 56 870 '
FMOVE to memory — 100 80 86 72 | 2002 |
FMOVECR 29 — — - — ! —
FMUL 71 100 92 98 95 | 938 !
FNEG 35 62 54 60 58 | g72 i
FREM 100 129 121 127 125 ! a37 !
FSCALE 41 70 62 68 66 | 878 ;
FSGLDIV 69 98 90 96 94 936 |
FSGLMUL 59 88 80 86 84 893 :
FSIN 391 418 410 416 414 1225]
FSINCOS 451 478 470 476 474 1288
FSINH 687 714 706 712 710 1524
FSQRT 107 134 126 132 130 a1 !
FSUB) 51 80 72 78 76 i 883 |
FTAN 4713 500 492 498 495 1310 :
FTANH 661 688 680 686 €84 i 1438 |
FTENTOX . 567 594 586 592 590 1404
FTST a3 60 52 58 56 870
FTWOTOX 567 594 586 592 590 1404

*Add the appropriate effective address calculation time.
**{f the source or destination is an MPU data register, subtract five or two clock cycles, respectively.
***Assumes a static k factor is used if the destination data format is packed decimal. Add 14 clock cycles if a dynamic k

factor is used.
****The source operand is from the constant ROM rather than a floating-point data register.

L.__ |
FREESCALE MC68881/MC68882 USER'S MANUAL
8-14

Table 8-3. MC68882 Overall Execution Times

Memory Source or Destination Operand Format***

Monadic FPn to FPm | Integer***+ Single**** Double Extended Packed

H T Total| H T Total{ H T Total| H T Total| H T Total!l H T Total
FABS 177 17 38121 28 68 30 20 51 |36 20 57 |42 20 63 |13 811 893
FACOS 17 607 628 |21 618 658 |30 610 641 | 36 610 647 |42 610 653 | 13 1401 1483
FADD 177 35 56 |21 54 94 |30 38 69 |36 38 75 |42 38 81 |13 827 909
FASIN 17 563 584 |21 574 614 | 30 566 597 |36 566 603 | 42 566 609 | 13 1357 1439
FATAN 17 385 406 | 21 396 436 |30 388 419 | 36 388 425 |42 388 431 | 13 1179 1261
FATANH 17 675 696 |21 686 726 |30 678 709 |36 678 715 {42 678 721 | 13 1469 1551
FCMP 17 17 38 (21 36 76 |30 20 51 |36 20 57 |42 20 63 |13 809 891
FCOS 17 373 394 |21 384 424 |30 376 407 |36 376 413 |42 376 419 | 13 1167 1249
FCOSH 17 589 610 |21 600 640 | 30 592 623 | 36 592 629 | 42 592 635 | 13 1383 1465
FDIV 17 87 108 {21 106 146 {30 90 121 |36 90 127 {42 90 133 |13 879 961
FETOX 17 479 500 |21 490 530 | 30 482 513 |36 482 519 |42 482 525 | 13 1273 1355
FETOXM1 17 527 548 |21 538 578 (30 530 561 | 36 530 567 {42 530 573 | 13 1321 1403
FGETEXP 17 27 48 |21 38 78 |30 30 61 |36 30 67 [42 30 73 |13 821 903
FGETMAN 17 13 34 |21 24 64 {30 16 47 |36 16 53 {42 16 59 [13 807 889
FINT 17 37 58 {21 48 88 130 40 71 |36 40 77 |42 40 83 |13 831 913
FINTRZ 17 37 58 |21 48 88 30 40 71 |36 40 77 {42 40 83 [13 831 913
FLOGN 17 507 528 |21 518 558 | 30 510 541 | 36 510 547 | 42 510 553 | 13 1301 1383
FLOGNP1 17 553 574 | 21 564 604 | 30 556 587 | 36 556 593 | 42 556 599 | 13 1347 1429
FLOG10 17 563 584 } 21 574 614 | 30 566 597 | 36 566 603 | 42 566 609 | 13 1357 1439
FLOG2 17 563 584 [21 574 614 | 30 566 597 | 36 566 603 |42 566 609 | 13 1357 1439
FMOD 17 %4 75)21 73 113 |30 57 88 (36 57 94 (42 57 100 | 13 846 928
FMOVE to FPn 21 * 21|21 8 48|34 * 34 (40 * 40 {46 * 46 |13 809 8N
FMOVE to FPn** 10 0 21721 B8 48|28 6 34|34 6 40|40 6 46 |13 809 891
FMOVE to memory*****| — — ~ 0o 0 110 38 * 38 (44 * 44 150 * 5 1t 0 0 2006
FMOVE to memory** - - = 0 010} 0 0 3380 0 4} 0 0 5] 0 020086
FMOVECR****** MW 0 2|—— —|—— — |- = — |- = — |= = —
FMUL 17 55 76 121 74 114 |30 58 89 |36 58 95 (42 58 101 | 13 847 929
FNEG 17 17 38 |21 28 68 (30 20 651 [36 20 57 {42 20 63 {13 811 893
FREM 17 84 105 {21 103 143 {30 87 118 |36 87 124 ;42 87 130 {13 876 958
FSCALE 77 25 46 |21 44 84 |30 28 59 |36 28 65 (42 28 71 |13 817 899
FSGLDIV 17 53 74 {21 72 112 {30 56 87 |36 56 93 {42 56 99 |13 845 927
FSGLMUL 17 43 64 |21 62 02|30 46 77 |36 46 83 |42 46 89 |13 835 917
FSIN 17 373 394 |21 384 424 |30 376 407 |36 376 413 | 42 376 419 | 13 1167 1249
FSINCOS 17 433 454 | 21 444 484 | 30 436 467 |36 436 473 |42 436 479 | 13 1227 1309
FSINH 17 669 690 [21 680 720 |30 672 703 | 36 672 709 |42 672 715 | 13 1463 1545
FSORT 17 83 110 |21 100 140 |30 92 123 |36 92 129 (42 92 135 | 13 883 965
FSuB 17 35 56 |21 54 94 |30 38 69 136 38 75)42 38 81 |13 827 909
FTAN . 17 455 476 { 21 466 506 | 30 458 489 | 36 458 495 |42 458 501 | 13 1249 1331
FTANH 17 643 664 | 21 654 694 | 30 646 677 | 36 646 683 | 42 646 €89 | 13 1437 1519
FTENTOX 17 549 570 | 21 560 600 | 30 552 583 | 36 552 589 |42 552 595 | 13 1343 1425
FTST 177 15 36 (21 26 66 (30 18 49 136 18 55 142 18 61 }13 809 891
FTWOTOX 17 549 570 | 21 560 600 |30 552 583 | 36 552 589 |42 552 595 | 13 1343 1425

*These instruction do not have a tail time. The next instruction’s head can be added to determine the effective head
time.
**When register conflict occurs, concurrency is decreased.
**+pdd the effective address time to obtain overall execution time. Add the effective address time to obtain effective .
head time. (This does not apply to the FMOVE to memory instruction.)
+*»+if the source or destination is an MPU data register, subtract five or two cycles, respectively.

+#++Assumes a static k factor is used if the destination data format is packed decimal. Add 14 clock cycles if a dynamic

k factor is used.
**#*x*The source operand is from the constant ROM rather than a floating-point data register.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-15

Table 8-4. Bus Cycle Activity — Arithmetic Operations

Memory Source or Destination Operand Format*
Operation Type FPm Source N
Integer*” Single** Double Extended Packed
FPn Destination (1/0/0/1/1} (1/1/0/2/2) (11/0/12/2) (1/2/0/2/3) (1/3/0/2/4) (13024}
Move to Memory*** — {1/0/1/4/1} (1/0/1/4/1) (1/0/2/5/1) (1/073'6:1) (1/0381)

*Add the appropriate effective address calculation bus cycle activity.
*%If the source or destination is an MC68020 data register, subtract {0/1/0/0/0} or (0/0/1/0/0), respectively.

**¥*Includes the read of one null (CA=1, IA=1) primitive when the conversion starts, the evaluate effective address and
transfer data primitive when the conversion is complete, and a null {CA=0) primitive after the transfer is complete. The
MPU reads additional null {CA =1, JA= 1) primitives while waiting for the transfer to start. For an MCE88881, if no interrupts
occur, the number of additional response CIR read cycles is 5 for integer, 3 for single or double, 1 for extended and ~194
far packed. For an MC68882, the number of additiona!l response read cycles is 5 for integer and ~194 for packed.

Table 8-5. Timing Calculation Example

MCe8881 MCE8882
. <ga>
Instruction) ! . Effective Head Actual
Time Times
m Times Adjusted EMective Tall Overlap
FMUL.D <ea> FP1 6 98 a5
H=36 36+6=42
T=58 58 58 58
FMOVE.D FP2,<ea> 6 86 a4
H=44 244 6=50 40+42=92
n - *
FADD.D<ea>,FP1 6 78 75
H=36 36+6=42
T=38 33 38 38 i
I
FMOVE.X FPO,PF2 0 33 21 ;
H=21 21 21+42=63
T=* *
|
FMUL.D <ea>,FP2 6 98 95 i
H=36 36+6=42 |
T=58 58 59 58 !
FMOVE.D FP1,<ea> 6 86 44 1
H=44 44+ 6=50 51+42=93 i
T=* - |
FADD.D <ea>,FP2 6 78 75
H=36 36+6=42
T=38 38 38
FMOVE.X FPO,FP1 0 33 21
H=21 21 21 21
T=* *
Total 36 557 470 175
overall 881 time: 557+ 36= 593
overall 882 time: 40+36-175= 331
ratio: 593/331= 1.80

FREESCALE MC68881/MC68882 USER'S MANUAL
8-16

with the corresponding times using the MC68882. The first column lists the instructions
in the set. The second column lists the time required to obtain the operand at the effective
address. These numbers are taken from Table 8-1. This time applies to both coprocessors;
itis added to the execution time for the instruction. The third column lists the total execution
times for each instruction when executing in the MC68881.

The four columns to the right list values that apply to the MC68882. From left to right, the
columns contain the following values:

1. The overall execution time for each instruction when executing in the MC68882, and
the H and T numbers for each of the instructions. The T values for the fully-concurrent
FMOVE instructions are shown as T="*,

2. The adjusted head time, which is the sum of the effective address calcuiation time
and the head time. For the FMOVE to memory instructions {opclass 011), the effective
address calculation is not added to the head time. The tail time is not altered.

3. The effective head and effective tail time for each instruction. Where T is shown as
T=*, the effective head time is the sum of the FMOVE H time plus the H time of the
subsequent instruction. The tail time is not altered.

4. The actual overlap time, which is the lesser of the effective tail and the effective head
of the column to the left.

At the bottom of the table, the totals show the overall times. For the MC68881, this time
is the sum of the total execution time plus the effective address time. For the MC68882, it
is the sum of the total execution time plus the effective address time, less the actuai overlap
time. The conclusion is that for the instruction sequence shown here, the MC68881 required
1.80 times longer to execute compared to the MC68882.

8.5.1.4 MOVE CONTROL REGISTER AND FMOVEM OPERATIONS. Table 8-6 shows the
execution times for the FMOVE FPcr and FMOVEM instructions. The timing for the appro-
priate effective addressing mode must be added to the numbers in this table to determine
the overall instruction execution times.

Table 8-6. Move Control Register and MOVEM Execution Times

Operation* Best Case Cache Case Worst Case

FMOVE FPcr,Rn 29/6 (0/0/0/3/1) 31/6 (0/0/0/3/1) 34/9 (1/0/0/3/1)
FPcr,<ea> 31/6 (0/0/1/3/1) 33/6 {0/0/1/311) 36/9 (1/0/1/3/1)
Rn,FPcr 26/6 (0/0/0/2/2) 28/6 {0/0/0/2/2) 31/9 {1/0/0/2/2)
<ea>,FPcr 31/6 {0/1/0/2/2) 33/6 (0/1/0/2/2) - 36/9 (1/1/0/2/2)
#<data>,FPer 30/6 (0/0/0/2/2) 30/6 (0/0/0/2/2) 31/9 {2/0/0/2/2)

FMOVEM FPcr_list,<ea> 25+6n/6 (0/0/n/2+n/1) 27+6n/6 {0/0/n/2+n/1) 30+6n/9 {1/0/n/2+n/1)
<ea>,FPer_list 25+6n/6 (0/n/0/2/1+n) 27+6n/6 {0/n/0/2/1 +n) 30+6n/9 {1/n/0/2/1 +n)
#<data), 24+6n/6 {0/0/0/2/1+n) 25+6n/6 {0/0/0/2/1 + n}) 29+6n/9 {1+ n/0/0/2/
FPcr_list 1+n)

FMOVEM FPdr_list,<ea> 35+25n/6 (0/0/3n/3+3n/1) | 37+25n/6 {0/0/3n/3+3n/1) | 40+25n/9 (1/0/3n/3+3n/1)
<ea> FPdr_list 33+31n/6 (0/3n/0/3/1+3n) | 35+31n/6 (O/3n/0/3/1+3n) | 38+31n/9 (1/3n/0/3/1 +3n)
Dn,<ea> 49+25n/6 (0/0/3n/4+3n/2) | 51+26n/6 {0/0/3n/4+3n/2) | 54+25n/9 (1/0/3n/4+3n/2)
<ea>,Dn 47+31n/6 (0/3n/0/4/2+3n) | 49+31n/6 (0/3n/0/4/2+3n) | 52+31n/9 (1/3n/0/4/2 +3n)

*Add the appropriate effective address calculation time. n is the number of registers transferred. Add two clocks if the
copraocessor is an MC68882,
NOTE: FPer or FPdr indicates any one of the floating-point contral or data registers, respectively. FPcr_list or FPdr_ist
indicates a list of any combination of the floating-point control or data registers, respectively.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-17

8.5.1.5 CONDITIONAL INSTRUCTIONS. Table 8-7 lists the execution times for the FPCP
conditional instructions. Each entry in this table, except those for the FScc instruction, is
complete and does not required the addition of values from any other table. For the FScc
instruction, the only additional factor that must be included is the caiculate effective address
time for the operand to be modified.

Table 8-7. Conditional Instruction Execution Times

Operation Comments Best Case Cache Case Worst Case
FBcc.W Branch Taken 18/6 (000/1/1) 206 {0/00'1/1} 2362001 1) .
Branch Not Taken 16/6 {0°0:0/1/1) 18'6 {0°0.0'1/1) 196(1001 1) |
FBec L Branch Taken 18/6 {0/0°0/1/1} 206 (0'001/1) 236{20011) §
Branch Not Taken 166 {0:0°01/1) 186 {00011) 216{2001 1) !
FDBcc True, Not Taken 186 (0°0°0°1/1} 206{00011) 24920011}
False, Not Taken 22/6 {000°1/1) 246(00011) 32940011}
False, Taken 186 {000'1/17) 206(00017) 269(30011}
FNOP No Operation 166 {0001/1) 186 (0001.1) 19810011
FScc Dn 166 {0.0.0/1/1} 186 (00011) 2138{(2001 11
(An)+ or —{An)* 18/6 {0/0/1/1/1) 226(0011.1) 25920111}
Memory** 16/6 {0/0/1/1/1} 20'6 (0°0'1/11) 238(20111)
FTRAPcc Trap Taken 36/6 {(0/1/4:1/1) 39'6 (01/41/1) 479(31411) |
Trap Not Taken 16/6 {0/0/0/1/1) 186 (0.001:1) 229{(20011) i
FTRAPcc.W Trap Taken 38% (01174111} 41,6 (0:1/4"1/1) 458(31411} ;
Trap Not Taken 18/6 {0'0:0'1/1) 206 (00.01/1) 2392001 1M)
FTRAPcc.L Trap Taken 406 {(0"1/41/1) 436{01411) 52841411
Trap Not Taken 206 (00011} 226000 1:1) 27830013 1)

*For candition true; subtract one clock for condition false.
**Add the appropriate effective address calculation time.

Since the conditional instructions are intrinsic to the M68000 Family coprocessor interface
{i.e., they are not defined by the FPCP through the use of response primitives}, the MPU
performs most of the processing associated with these instructions. The only part of the
instruction that the FPCP performs is the evaluation of the condition predicate written to
the condition CIR. Thus, the execution times shown in Table 8-7 are heavily dependent on
the environment in which the main processor executes.

The overlap allowed times listed for these instructions indicate the time at the beginning
of the instruction that can overlap with the execution of the previous instruction by the
FPCP. No overlap is allowed at the end of the instruction since the FPCP is always idle
while the MPU is completing the operation.

8.5.1.6 FSAVE AND FRESTORE INSTRUCTIONS. The time required for a context save or
restore operation is shown in Table 8-8. The appropriate calculate effective address times
must be added to the values in this table to obtain the total execution time for these
operations. For the FSAVE instruction, the FPCP may use the not-ready format code to
force the MPU to wait while internal operations are completed in order to reduce the size
of the saved state frame or reach a point where a save operation can be performed. The
idle time occurs if the FPCP is in the idle phase when the save CIR is written {refer to 6.4.3
FSAVE Protocol and 6.4.4 FRESTORE Protocol for definitions of instruction phases). The
busy time occurs if the FPCP is in the initial phase or at a save boundary in the middle

L __|
FREESCALE MC68881/MC68882 USER'S MANUAL
8-18

phase when the save CIR is written. Times for the MC68882, which stores eight additional

long words in the idle and busy state frames, are shown in separate table entries.

Table 8-8. FSAVE and FRESTORE Instruction Execution Times

Coprocessor Operation State Frame Best Case Cache Case Worst Case
MCE8881 FRESTORE Null 19/4* (0/1/0/1/1) 21/4* {0/1/0/1/1) 22/4* {1/1/0/1/1)
Idle 55/4% (0/7/0/1/7) 57/4* {0/7/0/1/7) 58/4* (1/7/0/A/7)
Busy 289/4* (0/46/0/1/46) 291/4* (0/46/0/1/46) 292/4* (1/486/0/1/46)
MC68881 FSAVE Null 14/1 (0/0/1/1/0) 16/1 {0/0/1/1/0) 18/1 {1/0/1/1/0)
Idle 50/1 {0/0/7/7/0) 52/1 (0/0/777/0) 54/1 {1/0/7/7/0}
Busy 284/1 (0/0/46/46/0) 286/1 (0/0/46/46/0) 288/1 (1/0/46/46/0)
MC68882 FRESTORE Null 19/4* (0/1/0/1/1} 21/4* (0/1/0/1/1) 22/4* (1/1/0/1/1}
ldle 103/4* {0/15/0/1/15) 105/4* (0/15/0/1/15) 106/4*% {1/15/0/1/15)
Busy 337/4% (0/54/0/1/54) 339/4% (0/54/0/1/54) 340/4* (1/54/0/1/54)
MC68882 FSAVE Nuli 14/1 (0/0/1/1/0) 16/1 (0/0/1/1/0} 18/1 (1/0/1/1/0)
Idle 98/1 (0/0/15/15/0} 100/1 (0/0/15/15/0} 102/1 (1/0/15/15/Q)
Busy 332/1 (0/0/54/54/0) 334/1 {0/0/54/54/0) 336/1 (1/0/54/54/0)

*Add the appropriate effective address calculation time. Note that the overlap time available for the FRESTORE instruction
is of little use, since this operation destroys the previous context of the FPCP.
**The second overlap allowed number represents the period during which the FPCP is preparing to perform the save operation
and the MPU can process interrupts,

8.5.2 MC68881 Detail Timing Tables

This set of tables provides the information needed to calculate a more precise execution
time for an instruction executing in the MC68881, based on the input operand format and
type, than can be obtained with the typical timing tables shown previously. Also, these
tables contain the information necessary to determine instruction execution timing for a
system that does not utilize the MPU as the main processor. The assumptions stated
previously are used for these tables, with further restrictions described separately for each
table. Note that the timing numbers in the typical timing tables are derived, in most cases,
by using the following set of tables.

In order to better understand the relationship of each table in this group, the following
diagrams are included. These diagrams break each basic instruction type into separate
execution components. For each component, the appropriate tables that are used to cal-
culate the execution time are identified. These diagrams can also be used to clarify the
distribution of responsibility for instruction execution between the MPU and the MC68881
and 1o more clearly illustrate the periods of time during which overlapped execution may
occur. In these diagrams, the numbers inside each box indicate the table that is used to
determine the timing for that phase of the instruction; the identification key for these tables

Memory-to-Register, Register-to-Register Operations

1 1 EVALUATE ¢ TRANSFER 1

] 1 1
1 - 1 1 ! 1 1 1
MCE3020/MCs3030 1SV ART-UP (e2) OPERAND y CONVERT 1§ CALCULATE § ROUND
1 2 3 H
MCs8881 j 1 3 TREE 5

FREESCALE
8-19

MC68881/MC68882 USER'S MANUAL

Move Register-to-Memory

s 1 EVALUATE | TRANSFER
! START-UP 1 CONVERT ' (ea) ! OPERAND

MC68020/MC68030 1
1 2 3

MCe8ag1 [!] ‘ 3

Conditional Operations

1 1 EVALUATE
! START-UP } CONDITION PRDCEED

MC68020/MCB8030 [:__
\ [

MC68881 8¢

*The timing for the evaluation of the conditional predicate is shown separately in 8.5.2.7 CONDI-

TIONAL TERMINATION.
**The action taken by the MC68020/MC68030 after the conditional predicate is evaluated by the — xCCw

on the instruction {FPce, FDBcc, FSce, or FTRAPcc).

Move Control or Multiple Registers

1 EVALUATE § REGISTER 1 TRANSFER

!]
H - 1
MC88020/MC56030 | START-UP 4 (2@) SELECT REGISTERS !
[— ! 2 9 []

MCE8881 | 1 9 s |

Context Save Operation

. 1 EVALUATE I TRANSFER 1
MCos02Meeeoa0 L START-UP | (e 1 prepamer | rRAME |
T 10 ‘

MC63881 10 w_ |

*During this period, the MC68881 may force the MC68020/MC68030 to wait while an internal operation
is completed, or reaches a point where a save operation can be performed.

Context Restore Operation

t

EVALUATE 1 TRANSFER :

MC6B020/MCE8030 START-UP {ea) FRAME ! CONTINUE* 1[
em—————

1 2 10] 1

C e e LT T |

MCeB8s1 0 - o o o

*When the context restore operation is completed, the MC68881 continues with any operation that
was suspended by a previous context save. The MC68020'/MC68030 does not re-establish commu-
nications with the MC68881 during the FRESTORE instruction, but the execution of a subsequent RTE
instruction restores the MC68020/MC68030 context to the state of the previously suspended operation
if necessary.

. __|
FREESCALE MC68881/MC68882 USER'S MANUAL
8-20

Table ldentification:
1 — Instruction Start-Up
— Effective Address Calculations
— Operand Transfers
— Input Operand Conversions
— Arithmetic Calculations
— Rounding and Exception Handling
Output Operand Conversions
— Conditional Instructions
— Multiple Register Transfers
— State Frame Transfers
— Exception Processing

S O WOVNAOATTAEWN

—_

As an example of the use of the information in the following paragraphs, consider the
FADD.P (A0} + ,FPO instruction. First, the instruction start-up table is used to determine the
time required by the MPU to initiate the instruction (by writing the command word and
reading the first response primitive). In this case, the first response is evaluate effective
address and transfer data (with the PC bit set if any exceptions are enabled). The operand
transfer table is then used to determine the time required to transfer the packed decimal
string from memory to the MC68881, and this table requires the addition of the effective
address calculation time. Thus, the calculate effective address table is used to determine
the time required by the MPU to calculate the effective address, (A0) +, and those numbers
are added to the start-up and transfer timing numbers. Note that these first three values
are almost entirely dependent on the MPU and do not apply if the main processor is not
an MC68020 or MC68030.

To complete the timing calculation, a fourth table is used to determine the decimal-to-
binary conversion time, based on the input operand data type and value. Finally, the fifth
and sixth tables used determine the time required for the addition and rounding operations.
The second set of three operations are totally independent of the main processor, and
timing numbers derived for them can be utilized by non-MPU based system designers.

As a further aid to understanding the interaction of the MPU with the MC68881 during the
execution of an instruction, four diagrams are presented in Figures 8-4 and 8-5. The bus
cycle activity and overlapped execution that is allowed during the communications dialog
is shown in the diagrams, in addition to illustrations of the effect of instruction alignment,
enabled exceptions, and device synchronization. These diagrams represent the clock-cycle-
by-clock-cycle activity of the two devices for four cases of the FMOVE instruction. The first
three diagrams describe the FMOVE.X FPm,FPn instruction for worst-case and cache-case
operation, and the fourth diagram describes the FMOVE.X (An),FPn instruction.

The three diagrams in Figure 8-4 show three cases of the FMOVE.X FPm,FPn instruction.
The first and second cases show worst-case operation {where the instruction prefetches
required to replace the FMOVE instruction do not hit in the MPU on-chip cache) for the
two possible alignments of the instruction. If the first word of the instruction is at an even
word address, the prefetch request generated by the cpGEN start-up operation (to replace
the F-line operation word) causes an external bus cycle to be executed. This prefetch
acquires two words, one of which fills the cpGEN request, and one that is held in a tem-
porary register. The time required to execute this prefetch cycle adds directly to the overall
execution time for the instruction, as well as the front-end overlap allowed time. When the
null {CA=0) primitive is processed by the MPU, a second prefetch request is generated
{to replace the command word which is filled with the word from the temporary register).
Thus, the null operation prefetch request does not generate an external bus cycle.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-21

WORST CASE, EVEN-WORD ALGNED:

CLOCK |— 1‘

{SEE NOTE 1) (SEE NQTE 2

[S R D T O O I |
L L L L L L

MCg8020/ caGEN (FMOVE.X FPm, FPn)

MC68030

“REM \
BUS CYCLES .V!E".L’< PREFETCHX tp WRITE x cp READ e PR

MCB3881 -~ PREVIOUS WSTRUCTION

CONVERT | cace | POUND |

OVERI.AP TIME ’ EFFECTIVE EXECUTION TIME ‘ OVERLAP TIVE
9 cLocxs 12 CLOCKS 12 CLOCKS

OVERALL EXECUTION TIME

33 CLOCKS
WORST CASE, 0DO0-WORD ALIGNEC: {SEE NOTE 1) ISEE KOTE 2)
A A
7 v \
CLOCK
m%%%%ﬁ.[!’ | coGEN (FMOVEX FPer, FPe) (wam) I wowcazo | SURSEQUENT INSTRUCTIONS 1

auscvotes N CowRre X o Ria0 Yy PRI — = o~ — o m m o= S

MCGB381 | PREVIUS INSTRUCTIONS |

CONVERT IR ROUND j

OVERLAP TIME - EFFECTIVE EXECUTION TIME l‘ OVERLAP TivE
6 CLOCKS 13 CLOCKS] 11 CLOCXS i

OVERALL EXECUTION TIME 2!
Uil 30 Ctocks g
CACHE CASE: |SEE NOTE 1) (SEE NOTE 2)
A A
r v \

0100

MCEB020/ .
MCGB020/ [L_cotts rmaveX em. Fon (v | howca=o | SUBSEQUENT IRSTRUCTIONS]
BUS CYCLES Mm o e
Mcssga1 | PREOUS iNsTRUCTION | CONVERT { cuc | RCUND |

OVERLAP TIME 3 I " EFFECTIVE EXECUTION TIME - OVERLAP TIME
§ CLOCXS 12 CLOCKS bl 12 Ctacks

OVERALL EXECUTIDN TIME

[

NOTES:
1. These six clocks do not add 10 the overall execution time for the instruction, onty the efective execution

time for the MC68020.

30 CLOCKS

2. This operation daes not add to the overail execution time far the instruction, only the etfective exezut:ion

time for the MC68020.

Figure 8-4. Instruction Overlap Examples — FMOVE.X FPm,FPn

FREESCALE
8-22

MC68881/MC68882 USER'S MANUAL

udd4'(uy) $'3IAONS — ajdwexy depaag uononsisuj g-g a4nbig

‘'OZOBIIW 8U1 J0j 3w UOIINIAXR JAII2HD AYL AJUO "UDIIONIISUS U JO} SI} UONNDIAXS |IEJSAC B O} PRE 1ou SS0P LoNBISdO Syl '

"DZ0OB9DW 3Ul 1O} Bl UCKNIAXS BANBYS BYI AJUO “UDIANIISUI By} JO§ AL} UOINDAXS ||219A0 31 O} PPE 10U OP SO UBASIE BSAUL 'L

‘S310N
le $HI019 95 |
WL NDLLAD3X3 T1VH3AD
401 2L e $42079 5€ ol $4010 6
L Y ILIA0 _A WL NOUNIFXA IALIIHI _ L AV IHIAC
f annoy {oma | 1H3ANOD 1 H3SNVHL] I NOLONWLSN SNOWZ¥d | 188890

O, Y S ST1JAD
mm e TS s €T (T e € e G LD, €T D 4 pr o

[snouonuism iangssans [o=vainnw | A t=v2 | vivauzsswulony <es>avmwas 1= | ww {ud Tuv) § IA0W) N3O8 _\mmmwmw«“

3073

rJ‘IL y /

(z 310N 335! (1 310N 335} ‘03NINY OHOM-NIAI ‘ISVI LSHOM

FREESCALE

MC68881/MC68882 USER'S MANUAL

8-23

When the MPU polis the response CIR, the MC68881 begins execution of the instruction
in the fourth clock cycle of the read cycle. As the MC68881 proceeds with the conversion
operation, the MPU then completes the cpGEN start-up operation and processes the null
{CA=0} primitive. The 10 clock cycles required to perform these operations overlap with
the execution of the instruction by the MC68881 and, thus, are not included in the overall
execution time calculation (although they are included in the effective execution time
calculation}. The same consideration applies to the second and third diagrams in Figure
8-4.

As shown in the second diagram of Figure 8-4, if the first word of the instruction is at an
odd word address, the prefetch requested by the cpGEN start-up is filled from the temporary
register (which was loaded by a prefetch requested during the previous MPU instruction)
and an external bus cycle is not required. When the null (CA=0) primitive is processed, a
second prefetch request is generated which must be filled by the execution of an external
bus cycle. Thus, the start-up operation for this case is a minimum of three clock cycles
shorter than the first case (although the overlap allowed time is also shorter) while the
time required to process the null primitive is at least one clock cycle longer. Since the null
processing overlaps with the execution of the operand conversion by the MC68881, the
overall execution time for the instruction is shorter, although the overlap allowed time at
the end of the instruction is reduced.

For the third case, both of the instruction prefetch requests generated during the instruction
execution are satisfied by either the temporary register or the on-chip instruction cache.
Thus, the overall execution time achieves the absolute best case while allowing the max-
n imum possible overlap between the two devices.

The diagram in Figure 8-5 illustrates the execution of the FMOVE.S {An),FPn instruction
where the instruction is even-word aligned, the MPU cache is disabled, and at least one
of the arithmetic exceptions is enabled. Under these conditions, the cpGEN start-up op-
eration is identical to the first diagram in Figure 8-4, except that the primitive returned by
the M(68881 is evaluate effective address and transfer data with the PC and CA bits set.
Thus, the first operation performed by the MPU while processing this primitive is to pass
the program counter, which adds two clock cycles to both the effective and overall execution
times. (Note that the third clock cycle of the coprocessor write cycle overlaps with the
effective address calculation.) The MPU then evaluates the effective address, (An), which
requires two clock cycles, and transfers the 32-bit single precision operand from memory.
The come-again operation is then performed, which requires 10 clock cycles, followed by
a four clock period during which the null (CA=0) primitive is processed.

The MC68881 does not start the input conversion operation until the single precision
operand is internally passed to the execution unit. The MC68881 bus interface unit requires
three clocks from the end of the operand write cycle to transfer the operand to the execution
unit; thus, the conversion does not begin until three clock cycles after the end of the write
cycle. This three-clock-cycle transfer operation and part of the conversion operation occur
simultaneously with the completion of the CA=1 and null processing by the MPU. Thus,
15 clock cycles of the MPU effective execution time do not contribute to the overall exe-
cution time for the instruction.

The previous four examples are intended to clarify the meaning of the detailed execution
timing tables that follow. The only difference between the FMOVE instruction examples
presented and any of the monadic or dyadic instructions is that the convert and calculate
times are different. (The round time is aiso different if an exception occurs.) Also, the

FREESCALE MC68881/MC68882 USER'S MANUAL
8-24

effective address calculation and operand transfer times are different. Notice that the timing
prior to the start of the conversion operation is aimost entirely dependent on the execution
characteristics of the main processor, while the timing for the rest of the instruction is
dependent solely on the FPCP. This distinction is useful when the execution timing for a
main processor other than the MC68020 or MC68030 is to be determined. =

NOTE

The term ““not normalized” is used frequently in the following tables. This term
is used where conditions allow the input of a denormalized or unnormalized
number, and the term ““denormalized” is used where only a denormalized input
is possible. Refer to 3.2.2 Denormalized Numbers for a description of the denor-
malized and unnormalized data types.

8.5.2.1 INSTRUCTION START-UP. When the MPU encounters an FPCP instruction, it de-
codes the type of the coprocessor instruction and then initiates communications with the
FPCP using the appropriate coprocessor interface bus cycle. Table 8-9 lists the execution
timing of the MPU for the start-up phase of each of the coprocessor instruction types. For
the general instruction type, the start-up time includes the command CIR write and response
CIR read cycles that initiate the instruction dialog between the MPU and the FPCP. For the
conditional instruction types, the start-up time includes the condition CIR write and re-
sponse CIR read cycles.

Table 8-9. Instruction Start-Up Times

Instruction Type Best Case Cache Case Worst Case
General* 12/6 {0/0/0/1/1) 14/6 {0/D/0/1/1) 17/9 {1/0/0/1/1)
FBcc 12/6 {0/0/6/1/1) 14/6 {0/0/0/1/1} 14/6 {0/0/0/1/1}
FDBcc, FScc and FTRAPcc 12/6 {0/0/0/1/1) 14/6 {0/0/0/1/1) 17/9 (1/0/0/1/1)
FSAVE** 13/1 {0,0/1/1/0) 15/1 (0/0/1/1/0} 15/1 (0/0/1/1/0)
| FRESTORE** 16/4** (0/1/0/11} 18/4%* {0/1/0/1/1) 18/4%* (0/1/0/1/1)

*These execution time numbers represent the overall execution time for this operation with respect
to the MPU, and therefore, are used to calculate the effective execution time of the instruction.
However, six clock cycles always overlap with the execution of a register-to-register instruction
(OPCLASS 000) by the FPCP, and therefore, should not be included in the calculation to generate
the overall execution time.

**Add the appropriate effective address calculation time. Note that the overlap time available for
the FRESTORE instruction is of little use, since this operation destroys the previous context of
the FPCP.

For the FSAVE instruction, the start-up time includes the read of the save CIR and the write
of the format word to memory. For the FRESTORE instruction, the start-up time includes
the read of the format word from memory, the write of the restore CIR, and the read of
the restore CIR to validate the format word. The effective address calculation time is not
included for the FSAVE and FRESTORE instructions; the appropriate values must be ob-
tained from the calculate effective address table and added to the start-up values for these
instructions.

If an enabled pre-instruction exception is pending when the MPU attempts to initiate an
FPCP instruction, the instruction start-up operation is performed for the general or con-
ditional instruction types, and then the MPU proceeds to perform exception processing {at

]
MC68881/MC68882 USER'S MANUAL FREESCALE
8-25

the request of the FPCP). In this case, the start-up timing numbers are added to the values
from the exception processing tables to determine the time required to begin execution
of the exception handler.

The MPU terminates all instructions except FSAVE and FRESTORE by processing a null
{CA =0) primitive {unless a mid-instruction exception occurs). Therefore, the timing values
in Table 8-10 should be included in the calculation of the effective execution time for the
MPU, where appropriate.

Table 8-10. Null Primitive Time Values

Primitive Type Best Case Cache Case 1 Worst Case
Null [CA=0) with no tracing 4/4* {0:00 00} 44*(00000) 1‘ 55* (10000

*Overlap is allowed for register-to-register and external-to-register instructions only (OPCLASS 030
and 010}.

8.5.2.2 TRANSFER OPERAND. Tables 8-11 and 8-12 show the timing for the transfer of
an operand to or from the FPCP by the MPU. Table 8-11 shows the values for external -
source or destination operands that reside in an MPU register or in memory, and Table 8-
12 shows the values for immediate source operands. For input transfers, the timing num-
bers shown include the time required by the MPU to process the evaluate effective address
and transfer data (with CA=1) primitive, and for the FPCP to perform the internal transfer

of the operand to the execution unit. For the MPU, the last clock cycle of the transfer

operation and the processing for CA=1 always overlaps with the input operand transfer
and conversion operations by the FPCP, and therefore, is not added to the overall execution
time for the instruction (although these operations are included in the calculation of the
effective execution time for the MPU).

Table 8-11. Operand Transfer Time — External Operand

Transfer Type Operand Format .

Byte Word Lang, Single Double Ext., Packed - ;

From MC68020 Dn 14/0 {0/0/0/1/1} 14/0 (0/0/0/1/1) 140 (0:0°0/11) — — {

From Memory* 19/0 {0/1/0/1/1) 19/0 {0/1/0/1/1} 190 (0:1,01:1) 250(02012) 31000310 s

To MC68020 Dn 17/0 (0/0/0/3/0} 17/0 {0/0/0/3/0} 17/0 {00030} — — hql
To Memory** 19/0 (0/0/1/3/0} 19/0 {0:0/1/3-0) 190 (00°1:30) 250(00240) 3i0(00350)

*Add the appropriate effective address calculation time. Eleven clocks of the MPU processing overlap with execution by
the MC68881, which requires five or three clock cycles after the last coprocessor write cycle to complete the internal
transfer for double or any other format, respectively. Thus, reduce the numbers above by six clocks for doub!e or eight
clocks for any other format for calculation of the overall execution time.

**Add the appropriate effective address calculation time. In the event the destination is packed decima! and a dynamic k
factor is used, add 14/0 {0/0/0/1/1).

Table 8-12. Operand Transfer Time — Immediate Operand

Immediate Operand Format Best Case Cache Case Warst Case
Byte, Word 14/0 (0:0°0'1/1) 140(0001/1) 170{10011)
Long, Single 180 {0:0'0'1:1} 18000011} 190410011} |
Double 22/0 (00012} 22000012} 2401(20012)
Extended, Packed 26/0 (0.00'1/3) 260(000173) 300130013}

FREESCALE MC68881/MC68882 USER'S MANUAL
8-26

For output operand transfers, the timing numbers include the processing for the evaluate
effective address and transfer data primitive (with CA=1). Since no overlap occurs during
an output transfer, the values in the table are used directly in the overall execution time
calculation. Note that the bus cycle activity numbers include the read of the evaluate
effective address and transfer data primitive at the end of the conversion {even though the
execution time for the conversion is not included). The read time is included because null
{CA=1,1A=1) primitives are read during the instruction start-up operation and while wait-
ing for the conversion to complete, and the evaluate effective address and transfer data
primitive is read during the processing of one of those primitives.

In order to calculate the effective execution time for the MPU for either input or output
transfers, the processing time for the nult (CA=0) primitive that terminates the dialog must
be included. For output conversions that cause an enabled exception, the take mid-instruc-
tion exception primitive is returned after the operand transfer is complete. In this case, the
appropriate exception processing execution time values must be included in lieu of the
null {CA=0]) processing time in the calculation of the overall execution time.

8.5.2.3 INPUT OPERAND CONVERSION. All FPCP instructions that require an input op-
erand execute an implied conversion to the 80-bit extended precision format that is used
internally. The amount of time required to perform this conversion depends on the format,
value, and type of the input operand. Table 8-11 shows the amount of time required to
convert an input operand to the internal data format, starting from the end of the internal
operand transfer after the last write cycle to the operand CIR.

For dyadic operations, one portion of Table 8-13 for conversions from each combination
of source data format and type versus destination data type is included. For monadic
operations, one portion includes the conversion timing for any data format and type. Only
one number is listed in each entry, since the total number of clock cycles required is equal
to the number of overlap allowed clock cycles, and no bus cycles are generated during
this stage of an instruction (since the FPCP does not require any further services of the
MPU after this stage of an instruction starts).

8.5.2.4 ARITHMETIC CALCULATION. Tables 8-14 and 8-15 show the time required by the
MC68881 to perform any of its general-purpose arithmetic operations. One portion of Table
8-14 shows the execution time values for each dyadic instruction with respect to the com-
bination of input operand data types. Table 8-15 shows the execution time values for all
of the monadic operations. Each entry in these tables includes the time from the end of
the input operand conversion to completion of the calculation. Only one number is shown
for each entry, since no bus cycles are generated during this stage of an instruction. Also,
the total number of clock cycles required for the calculation is equal to the number of
overlap allowed clock cycles, since the FPCP does not require any further services of the
MPU after this stage of an instruction starts.

Some entries in these tables refer to a footnote that contains more detailed timing infor-
mation for an operation (e.g., the table for addition contains an entry that references the
ADD footnote, which contains three numbers, based on the input operands). Furthermore,
in some cases, an entry refers to another table that contains the execution time required
to handle certain input.operands. For example, if an entry contains NAN1, refer to the entry
of the same name in 8.5.2.10 EXCEPTION PROCESSING.

L
MC68881/MC68882 USER'S MANUAL FREESCALE
8-27

Table 8-13. Input Operand Conversion

Dyadic Input Conversions — Source Operand is Byte, Word, or Long:

Destination Souree Nirmallied Nor:z:ized Zero Infinfty NAN
Normalized 24 26 — 22 — —
Unnormalized 36 38 — 34 — —
Zero 30 32 — 28 — —
Infinity 28 30 —_ 26 —_ —_
NAN 30 32 —_ 28 —_ —_

Dyadic Input Conversions — Source Operand is Single Precision:

Destination Source Normalized Norr':::riz ed Zero Infinity NAN
Normalized 18 36 22 24 26
Unnormalized 30 48 34 36 38
Zero 24 42 28 30 32
Infinity 22 40 26 28 30
n NAN 24 42 28 30 32

Dyadic Input Conversions — Source Operand is Double Precision:

Destination Source | ormalized Nor::fim gl zero Infinity NAN
Normalized 16 34 20 22 24
Unnormalized 28 48 32 34 36

Zero 22 40 26 28 30
Infinity 20 38 24 26 28 |
NAN 22 40 26 28 30 |

Dyadic Input Conversions — Source Operand is Extended Precision:

Destination Source Normalized Nor:‘;:ize d Zero Infinity NAN 5
Narmalized 10 26 12 12 | 12 ;
Unnormalized 22 38 24 24 26
Zero 16 32 18 18 20 i
Infinity 14 30 16 16 18 i
NAN 16 32 18 18 0 |

L __|
FREESCALE MC68881/MC68882 USER'S MANUAL
8-28

Table 8-13. Input Operand Conversion (Continued)

Monadic or Dyadic Input Conversions — Source Operand is Packed Decimal:

Destination Source Normalized Nor:::ize d Zero Infinity NAN
Normalized ~822 ~822 22 22 24
Unnormalized ~848 ~848 34 34 36
Zero ~842 ~842 28 28 30
Infinity ~840 ~840 26 26 28
NAN ~842 ~842 28 28 30

~Indicates a typical conversion time. The minimum maximum conversion time is 954 clock cycles.

Monadic or Dyadic Input Conversions — Source Operand is FPm:

Destimane Source| normalized No”':"‘a’:ize gl zero Infinity NAN
Normalized 14 30 16 .16 18
Unnormalized 26 42 . 28 28 30
Zero 20 36 22 22 2
Infinity 18 34 20 20 22
NAN 20 36 22 22 24

Monadic Input Conversions — Source Operand is in Memory:

Format Tvpe N:.rmallied Norrll\:gltized Zero Infinity NAN
Byte, Word, Long 22 24 — 20 — —
Single 16 30 20 24 24
Double 14 28 18 22 22
Extended 8 20 10 12 12

L |
MC68881/MC68882 USER'S MANUAL FREESCALE
8-29

Table 8-14. Arithmetic Calculation Times — Dyadic Operations

FADD Calculation Time:

Source|{ Normalized Zero Infinity NAN
Destination + - + - + - + -
+
Normalized _ ADD 2+ 6 NAN2
+
Zero 6 26
- 2+ 25 e 6 NAN2
Infinity * 6 6 6 2 NANZ
- 20 6
+
NAN _ NAN1 NAN2 NAN2 NAN3
ADD: 24+ if the source and estination exponents are equal, and the source mantissa

is less than the destination mantissa.

26+ ifthe source and destination exponents are equal, and the source mantissa
is greater than or equal to the destination mantissa.

28+ if the source and destination exponents are not equal.

FCMP Calculation Time:

Source| Normalized Zero Infinity NAN
Destination + - + - + - + -
+
Normalized CMP 6 8 6
-1 6 CMP 6 5 g NAN4
+
Zero 8 6 8 6
~ 6 8 67 5 g NAN4
- +
Infinity _ 6 6 6 NAN4
+
NAN N NAN1 NAN2 NAN2 NAN3
CMP: 8 if thesource exponent is greater than the desination exponent.

10 if the source exponent is less than or equal to the destination exponent.

FDIV Calculation Time:

Source| Normalized Zero Infinity NAN
Destination + - + - + - + -

+

Normalized _ DIV 20 g g NAN2
T

Zero | s 8 20 6 8 NAN2
- +

Infinity | s 8 6 8 20 NAN2
+

NAN _ NAN1 NAN2 NAN2 NAN3

DIv: 78+ if the intermediate result is normalized.

80+ if the intermediate result is denormalized.

L ___|
FREESCALE MC68881/MC68882 USER'S MANUAL
8-30

Table 8-14. Arithmetic Calculation Times — Dyadic Operations (Continued)

FMOD Calculation Time:

Source| Normalized Zero Infinity NAN
Destination + - + - + -

. +

Normalized ~ _ MOD 20 6+ NAN2
+

Zero _ 6+ 20 6+ NAN2
L +

Infinity B 0P 20 20 NAN2
+

NAN _ NAN1 NAN2 NAN2 NAN3

MOD: 18+ if the quatient is zera; else:
{40+70 [INT (1+destination exponent — source expanent }))+

{

FMUL Caiculation Time:

((

)

Source| Normalized Zero Infinity NAN
Destination + - + - + -
Normalized MUL g g NAN2
+
Zero | 6 8 20 NAN2
. +
Infinity _ [] 8 20 6 8 NAN2
+
NAN _ NAN1 NAN2 NAN2 NAN3
MUL: 46+ if the intermediate result is normalized.
48+ if the intermediate result is not normalized.
FREM Calculation Time:
Source| Normalized Zero Infinity NAN
Destination + - + - + -
. +
Normalized REM 20 6+ NAN2
T
Zero _ 6+ 20 6+ NAN2
- +
Infinity K5 0P 20 20 NANZ
NAN y NAN1 NAN2 NAN2 NAN3
REM: 18+ if the quotient is zero; else:
{40+70 (INT { 1+destination exponent—source exponent }}}+
{ { (64 M

MC68881/MC68882 USER'S MANUAL FREESCALE
8-31

FSCALE Calculation Time:

Table 8-14. Arithmetic Calculation Times — Dyadic Operations (Continued)

Source{ Normalized Zero Infinity NAN
Destination + -~ + ~
Normalized SCALE 6+ 20 NAN2
+
Zero 6 6 20 NAN2
Infinity 6 6 20 NAN2
+
NAN _ NAN1 NAN2 NAN2 NAN3
SCALE: 12+ if the source exponent (unbiased) is less than zero.
16+ if the source exponent (unbiased) is in the range [0 ... 15].
20+ if the source exponent (unbiased) is greater than 15.
FSGLDIV Calculation Time:
Source| Normalized Zero Infinity " NAN
Destination . + - + -
+
Normalized SGLDIV 20 g g NAN2
+
Zero 1 6 B8 20 6 8 NAN2
. +
Infinity | s 8 20 NANZ
+
NAN _ NAN1 NAN2Z NAN2 NAN3
SGLDIV: 44 if no extendedprecision underflow or overflow occurs.
62 if an extended precision overflow occurs.
90 if an extended precision underflow occurs.
FSGLMUL Calculation Time:
Source| Normalized Zero Infinity NAN
Destination + - + -
+
Normalized _ SGLMUL g g NAN2
+
Zero _| s 8 20 NAN2
- +
Infinity _| s 8 20 6 8 NAN2
+
NAN _ NAN1 NAN2 NANZ NAN3
SGLMUL: 34 if no extended precision underflow or overflow occurs.

52 if an extended precision overflow occurs.
80 if an extended precision underfiow occurs.

FREESCALE MC68881/MC68882 USER'S MANUAL
8-32

FSUB Calculation Time:

Table 8-14. Arithmetic Calculation Times — Dyadic Operations (Concluded)

Source| Normalized Zero Infinity NAN
Destination + - + - + - +

. +

Normalized suB 2+ 8 NAN2

Zero * 26 8

- 4+ 8 2 8 NAN2

+
Infinity 20 8

- 6 6 g 20 NAN2
+

NAN _ NAN1 NAN2 NAN2 NAN3

SUB: 24+ ifthe source and destination exponents are equal, and the source mantissa

is less than the destination mantissa.

if the source and destination exponents are equal, and the source mantissa
is greater than or equal to the destination mantissa.

if the source and destination exponents are not equal.

26+

28+

If an entry in these tables is appended with a plus sign (+), the appropriate timing numbers
-from the rounding and exception handling tabie (in 8.5.2.10 EXCEPTION PROCESSING)
must be used to calculate the overall execution time for an instruction.

Otherwise, the numbers from these tables include the time to handie exceptional operand
cases and produce the final resulit.

8.5.2.5 OUTPUT OPERAND CONVERSION. The FMOVE.<fmt> FPn,<ea> instruction per-
forms an implicit conversion from the 80-bit extended precision format used internally by
the FPCP to an external data format. Table 8-16 lists the conversion times for most output
operations. Since the execution timing for conversions from the internal extended precision
format to either single or double precision is highly data dependent, the timing for these
operations (for in-range, nonzero input values) is listed in a second table, Table 8-17.

The amount of time required to perform this conversion depends on the value and type
of the input operand and the format of the desired output. The values given in the following
tables, in FPCP clock cycles, include the time from the fourth clock cycle of the first response
CIR read {which returns a null (CA=1, IA=1) primitive) to completion of the conversion
(when a read of the response CIR returns an evaluate effective address and transfer operand
primitive). Only one number is shown for each entry, since no bus cycles are generated
during this stage of an instruction. Also, the total number of ciock cycles required for
operand conversion is equal to the number of overlap allowed clock cycles (during which
time interrupts may be handled; normal program execution is not allowed), since the FPCP
does not require any services of the MPU during this stage of an instruction.

8.5.2.6 ROUNDING AND EXCEPTION HANDLING. Tables 8-18 and 8-19 contain the ex-
ecution times for rounding and for various exception handling operations. For the typical
execution time tables shown previously, it is assumed that the MC68881 uses the defaulit
operating mode of round-to-extended precision, and no overflow or underflow exceptions
occur. If this is not the case, the round/store phase of most arithmetic instructions takes
longer to execute. The entries in the typical execution time tables include the processing
time for no underfiow, overflow, or round overflow as indicated in Table 8-18.

|
MC68881/MC68882 USER'S MANUAL FREESCALE
8-33

Table 8-15. Arithmetic Calculation Times — Monadic Operations

Source| Normalized Zero Infinity NAN
Operation + - + ~ + - + -
FABS 4+ 4+ 8 NAN2
FACOS 594+ 121 20 NAN2

202
FASIN 550 + 6 20 NAN2
FATAN 372+ [} 12 141 NANZ2
202 222

FATANH 662+ 6 20 NANZ
FCOS 360+3 8 20 NANZ___“
FCOSH 576+ 8 NAN2
FETOX 466+ 8 NAN2Z
FETOXM1 514+ 6 6 8 NAN2
FGETEXP exponent="0:16 6 20 NAN2

exponent>0:20
expanent<0:22

FGETMAN 6 6 20 NAN2
FINT, FINTRZ fraction=0:8 [€0 NAN2Z
fraction+0:30
result=0:28
FLOGN 494+ 0P 22 6 20 NAN2 !
FLOGNF1 540+4 6 6 20 NAN2 ;
n FLOG10 550+ |OP 22 6 20 NAN2
FLOG2 550+ (QP 22 6 20 NAN2
FMOVE to FPn 2+ 6 6 NAN2
FMOVECR 187 — — —
’ 262
FNEG 4+ 4+ 8 NAN2
FSIN 360+3 6 20 NAN2
FSINCOS 420+3 20 26 NANS |
FSINH 656+ 6 6 NAN2)
FSQRT 76+ 10P 6 6 20 NAN2
FTAN 442+3 6 20 NAN2
FTANH 630+ 6 8 NAN2
FTENTOX 536+ 8 6 NAN2
FTST 8 8 8 NANS
TFTWOTOX 536+ 8 5 NAN2]
NOTES:

1. If the extended precision rounding mode is used.

2. If the single or double precision rounding mode is used.

3.This assumes that the source operand is in the range (—9... + 8). If the source operand is outsice
of that range, the appropriate REM calculation time required to perfarm the argument reduction
must be added to this value.

4, If the source operand is less than or equal to ~ 1, use the IOP time.

FREESCALE MC68881/MC68882 USER'S MANUAL
8-34

Table 8-16. Output Operand Conversion

g:rsr:;at So-;lrce Nt_:rmaliied Nor:\::ize 4 Zero Infinity NAN
ype
Integer, No Qverflow 60 62 60 62 18 — 29
Integer, Overflow 52 56 62 - 66 18 24 26 24
Single (see below) | (see below) 16 18 NAN?
Double (see below) | (see below} 16 18 NAN7
Extended 18 {see note 1) 16 16 NAN7
Packed {see note 2) | {see note 2) 24 24 NAN2
NOTES:

1. 26 clocks if the source operand is an unnormalized number. 56 clocks if the source operand is a
denormalized number.

2. 1942 clocks is the typical time required for the conversion, if no overfiow occurs. The maximum
time is 3674 clocks.

Table 8-17. Output Operand Conversion — Binary Real Formats

Conversion Result Source Type Normalized Not Normalized

No Underflow, Overflow or Round Overflow 38 48

No Underflow or Overflow; Round Overflow 42 52

Overflow; RN or RZ Mode; No Round Overflow 44 54

Overflow; RN or RZ Mode; Round Overflow 48 58

Overflow; RM or RP Mode; No Round Overflow 46 56

Overflow; RM or RP Mode; Round Overflow 50 60
Underflow; No Round Overfiow 66 . 76
Underflow; Round Overflow 70 80 T

Table 8-18. Ro'unding Operation Time Values

Rounding Resuit Clock Cycles
Precision)
Extended No Underflow, Overfiow, or Round Overflow 6
No Underflow or Overflow: Round Overflow 6
Underflow 34
Overflow; RN or RZ Mode; No Round Overflow 14
Overflow; RM or RP Mode; No Round Overflow 16
Round Overflow (Not Caused By Rounding}; RN or RZ Mode 16
Round Overflow {Not Caused By Rounding); RM or RP Mode 18
Round Overflow (Caused By Rounding); RN or RZ Mode 20
Round Overflow (Caused By Rounding); RM or RP Mode 22
Single or Result is Zero 6
Double No Underflow, Overflow, or Round Overflow 24
No Underflow or Overflow; Round Overflow 28
Underflow; No Round Overflow ' 56
Underflow; Round Overfiow 60
Overfiow; RN or RZ Mode; No Round Overfiow 30
Overflow; RM or RP Mode; No Round Overflow . 32
Overflow; RN or RZ Mode; Round Overflow 34
Overflow; RM or RP Mode; Round Overflow 36

L _____________________________________
MC68881/MC68882 USER'S MANUAL FREESCALE
8-35

Table 8-18 indicates the number of clock cycles that should be added in the calculation of
the execution time for an arithmetic instruction {both the total and the overlap allowed
numbers) to account for the various rounding precision and exception handling combi-
nations. The entries in the table include the time from the end of the calculation phase to
completion of the FPCP instruction execution (i.e., when the PF bit in the null {CA=0)
primitive is clear if the response CIR is read).

When an FMOVE instruction that moves data between FP registers is executed in the
MC68882 and the FPCR mode contro! byte specifies single or double precision rounding,
no instruction execution concurrency is allowed. Similarly, an FMOVE instruction that
moves data to a single or double precision memory location executes without overlap in
the MC68882.

Table 8-19 includes the entries referenced previously in the arithmetic calculation and
output operand conversion tables for exceptional operand inputs. The valfues in this table
are used for the calculation or conversion timing in lieu of a value from the appropriate
table. For example, if an output operand conversion table entry references NAN7, then the
timing number from the NAN7 entry in Table 8-13 is used as the conversion time value.

Table 8-19. Exception Handling Time Values

Exception oot
Identifier Conditions Clock Cycles

IOP Source Operand is Not Denormalized 20
Source Operand is Denormalized 32

NAN1 Destination is a QNAN, Source is not Denormalized 28
Destination is a QNAN, Source is Denormalized 52
Destination is an SNAN, Source is not Denormalized 30
Destination is an SNAN, Source is Denormalized 54 |

NAN2 - The NAN is a QNAN 28 ;
The NAN is an SNAN 30 i

NAN3 Both NANs are QNANs 28 ‘
Source is a @NAN, Destination is an SNAN 30
Source is an SNAN, Destination is a QNAN 32
Both NANs are SNANs 30

NAN4 The NAN is a QNAN 30
The NAN is an SNAN 32

NANS The NAN is a QNAN 8
The NAN is an SNAN 10

NAN6 The NAN is a QNAN 38
The NAN is an SNAN 40 {

NAN7 The NAN is a QNAN 22 !
The NAN is an SNAN 24 i

8.5.2.7 CONDITIONAL TERMINATION. The effective execution time for the conditional
and context switch instructions is not heavily dependent on the FPCP, since the execution
of these operations is performed, for the most part, by the MPU. In order to calculate the
effective execution time for these instructions, Table 8-20 shows the termination timing
for the MPU. The termination processing starts four MPU clock cycles after the end of the
response CIR read and ends when the MPU begins execution of the next instruction. Note
that the allowed overlap time in this table is always zero, since the FPCP is in the idle state
when these instructions reach the termination phase. However, if multiple coprocessors

FREESCALE MC68881/MC68882 USER'S MANUAL
8-36

Table 8-20. Conditional Termination Times Values

Instruction Type Best Case Cache Case Worst Case
FBcc.W Branch Taken 6/0 {0/0/0/0/0) 6/0 (0/0/0/0/0) 9/0 (2/0/0/0/0)
Branch Not Taken 4/0 {0/0/0/0/0) 4/0 (0/0/0/0/0) 5/0 (1/0/0/0/0)
FBcc.L Branch Taken 6/0 (0/0/0/0/0) 6/0 (0/0/0/0/0) 9/0 (2/0/0/0/0)
Branch Not Taken 4/0 {0/0/0/0/0) 4/0 (0/0/0/0/0) 7/0 (2/0/0/0/0)
FDBcc True, Not Taken 6/0 {0/0/0/0/0) 6/0 (0/0/0/0/0) 7/0 (1/0/0/0/0}
False, Not Taken 10/0 (0/0/0/0/0) -10/0 {0/0/0/0/0} 15/0 (3/0/0/0/0)
False, Taken 6/0 {0/0/0/0/0) 6/0 (0/0/0/0/0) 9/0 (2/0/0/0/0)
FScc Dn 4/0 {0/0/0/0/0) 4/0 (0/0/0/0/0) 4/0 (1/0/0/0/0)
{An) +or —(An)* 6/0 (0/0/1/0/0) 8/0 (0/0/1/0/0) 8/0 (1/0/1/0/0)
Memory** .4/0 (0/0/1/0/0) 6/0 (0/0/1/0/0/} 6/0 (1/0/1/0/0)
FTRAPcc |Trap Taken 24/0 (0/1/4/0/0) 25/0 (0/1/4/0/0) 30/0 (2/1/4/0/0)
Trap Not Taken 4/0 {0/0/0/0/0) 4/0 (0/0/0/0/0) 5/0 (1/0/0/0/0)
FTRAPcc.W |Trap Taken 26/0 (0/1/4/0/0) 27/0 {0/1/4/0/0) 28/0 {2/1/4/0/0)
Trap Not Taken 6/0 {0/0/0/0/0) 6/0 (0/0/0/0/0) 6/0 {1/0/0/0/0)
FTRAPcc.L |Trap Taken 28/0 (0/1/4/0/0) 29/0 (0/1/4/0/0) 35/0 {3/1/4/0/0)
Trap Not Taken 8/0 (0/0/0/0/0) 8/0 {0/0/0/0/0) 10/0 (2/0/0/0/0)

*For condition true; subtract one clock for condition false.
**Add the appropriate effective address calculation time.

are used in a system, the execution of other coprocessors may overlap with the execution
of these instructions.

In order to determine the execution time for a conditional operation performed by a pro-
cessor other than an MPU, it is necessary to know the timing for the conditional evaluation
by the FPCP. This value is shown in Table 8-20 {in FPCP clock cycles) and indicates the
best-case time from the start of the condition CIR write to the end of the response CIR read
{which are the only two coprocessor accesses required). :

8.5.2.8 MULTIPLE REGISTER TRANSFER. Table 8-21 lists the number of clock cycles and
bus cycles required for the MPU to perform a multiple register transfer to or from the FPCP.
These transfers occur during the FMOVEM instruction for either the floating-point control
register or floating-point data register form of the instruction. The timing values shown in
the table include the processing time for either the evaluate effective address and transfer
data or transfer multiple coprocessor registers primitive (for the control or data register
form, respectively} with CA=1. Assuming that the main processor is an MC68020 or
MC68030, the time required to process the nuil (CA=0) primitive after the transfer is
compiete must be included. ‘

For the transfer of multiple contro! registers, the register select list is included in the
instruction, and all of the selected registers are transferred as a single operand (from the
perspective of the main processor). For the transfer of multiple data registers, the MPU
must read the register select mask before starting the register transfer. The amount of time
required by the MPU to read and process the register mask is included in the Table 8-21
entries. If a dynamic register list is used, the time required by the MPU to process the
transfer single main processor register primitive must be included and is shown at the top
of the table.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-37

Table 8-21. Multiple Register Transfer Time Values

Transfer Type Timing
Move Single To an MC68020 Register 17,0 {0'0.0'2:0)
Control Register | To Memory* 180 (0:0°1/2.0)
From an MC88020 Register 140 (0°0°0'1/1)
From Memory 180 {01:0'11)
#(data) 19°0 {1:0:0/11}*
Move Muitiple To Memory 13+6n0{0:0'n/1+n 0}
Control Registers | From Memory 13+6n/0 (0"n'0'1/n)
#(data) 12+6n/0 {n/0/0/1/n)*
Move Multiple To Memory 23 +25n/0 {0.0/3n'2 +3n°0)
Data Registers From Memory 21+23n/0 {0/3n/0'2/3n}

n ~ is the number of registers transferred.
*If the immediate operand resides in the MPU cache, the number of clock cycles is reduced by 3n
and the number of instruction prefetch bus cycles is zero.

8.5.2.9 STATE FRAME TRANSFER. Table 8-22 lists the number of clock cycles and bus
cycles required for the MPU to transfer an internal state frame to or from the MC68881.
These transfers occur during the FSAVE and FRESTORE instructions. The timing values
shown in the table include the time from the end of the instruction start-up operation to
the end of the last operand write cycle, assuming that the main processor is an MC68020
or MC68030.

Table 8-22. State Frame Transfer Time Values

n Operation Frame Type Timing
State Save Idle 360{(00660)

Busy 2700 (0045450)
State Restore Idle 360 {0/60.06)
Busy 270.0 (0’45 0.0.45)

Before the transfer of a state frame to the FPCP during an FRESTORE instruction, the MPU
must read the format word from memory, write it to the restore CIR, and verify that it Is
valid by reading the restore CIR. Likewise, during an FSAVE instruction, the MPU must
read the format word from the save CIR and store it in memory. The instruction start-up
timing table entries include these operations for MC68020/MC68030-based systems.

During an FSAVE operation, the FPCP may require the main processor to wait until the
current instruction is completed or a save boundary is reached before starting the state
frame transfer. The maximum time that the main processor can be forced to wait is shown
atthe top of Table 8-22, and should be included in the calculation of the worst-case FSAVE
execution time.

In order to calculate overall execution time for the MPU during a FSAVE or FRESTORE
instruction, the instruction termination processing time must be included. Table 8-23 lists
the timing values for this processing, which is from the end of the last operand write cycle
to the beginning of the execution of the next instruction by the MPU.

Table 8-23. Instruction Termination Processing Time Values

Instruction Type Best Case Cache Case Worst Case
FSAVE 1/0 {0/0/0/0/0} 1/0 (0/0/0/0/0) 30 1/0.000)
FRESTORE 3/0 {0/0/0/0/0) 3/0 (0/0/0/0/0) 4/0 (1/0'00 0)

L.___ |
FREESCALE MC68881/MC68882 USER'S MANUAL
8-38

8.5.2.10 EXCEPTION PROCESSING. Table 8-24 indicates the time required for exception
processing related to the execution of FPCP instructions. The values in the table for the
second and third entries indicate the time from the start of processing the take exception
primitive until the MPU resumes normal instruction execution in the appropriate exception
handier.

Table 8-24. Exception Processing Time Values

QOperation

Best Case

Cache Case

Waorst Case

Pass Program Counter

2/2% (0/0/0/0/1)

3/3* (0/0/0/0/1)

3/3* (0/0/0/0/1)

Take Pre-Instruction Exception

22/0 (0/1/4/0/0)

22/0 (0/1/4/0/0)

24/0 (2/1/4/0/0)

Take Mid-Instruction Exception

32/0 (0/1/7/0/0)

32/0 (0/1/7/0/0)

38/0 (2/1/7/0/0)

Process Pre-Instruction Interrupt (| stack)

26/26 {0/2/4/0/0)

26/26 {0/2/4/0/0)

33/33 (2/2/4/0/0}

Process Pre-Instruction Interrupt (M stack)

41/41 {0/2/8/0/0)

41/41 {0/2/8/0/0)

48/48 (2/2/8/0/0)

Process Mid-Instruction Interrupt {i stack)

35/35 (0/2/6/0/0)

36/36 (0/2/6/0/0)

42/42 (2/2/6/0/0)

Process Mid-Instruction Interrupt (M stack)

46/46 (0/2/9/0/0)

47/47 (0/2/9/0/0)

53/53 {2/2/9/0/0}

Process FSAVE Interrupt (I stack)

26/26 (0/2/4/0/0}

26/26 (0/2/4/0/0)

33/33 (2/2/4/0/0)

Process FSAVE Interrupt (M stack)

41/41 (0/2/8/0/0)

41/41 (0/2/8/0/0)

48/48 (2/2/8/0/0)

Format Error, FRESTORE Instruction

23/0 {0/1/4/0/0)

24/0 (0/1/4/0/0)

29/0 (2/1/4/0/0)

ATE, Pre-Instruction Frame

20/20 (0/4/0/0/0)

21/21 (0/4/0/0/0)

24/24 (2/4/0/0/0)

RTE, Mid-Instruction Frame

31/24 (0/6/0/1/0)

32/25 (0/6/0/1/0)

33/26 (1/6/0/1/0)

RTE, Throwaway Frame

16/15 (0/4/0/0/0)

16/16 {0/4/0/0/0)

18/18 (0/4/0/0/0)

*Overlap is allowed only for floating-point register-to-register and register-to-external operations.

To determine the overall exception latency for a pre-instruction exception, the instruction
start-up time (for the arithmetic or conditional instruction that is pre-empted by the ex-
ception) is added to the exception processing time from Table 8-24. The exception pro-
cessing time for a take mid-instruction exception primitive is added to the overall execution
time for the FMOVE to memory instruction that caused the exception. For conditional
instructions that cause a BSUN exception, the pass program counter time shown in the
table is also added to the instruction start-up and exception processing time to calculate
the overall exception latency for the instruction.

For the take interrupt operations, the values in Table 8-24 include the time from the end
of the processing of a response primitive that allows interrupts to the resumption of normal
MPU instruction execution in the interrupt handler. (The possible responses are the null
(CA=1,1A=1) and null (CA=0, |A=1, PF=0) primitives, or the not ready format code.} If
an interrupt is processed during an FMOVE to memory instruction or when the main
processor is in the trace mode and receives a null (CA=0, IA=1, PF=0) primitive, a mid-
instruction stack frame is used. A pre-instruction stack frame is used for interrupts proc-
essed during an FSAVE instruction. The M-stack and I-stack designation indicates whether
the M bit of the MPU status register was set or clear, respectively, before the interrupt
occurred.

The processing time for an FRESTORE format error includes the time from the end of the
FRESTORE start-up operation to when the MPU resumes normal instruction execution in
the format error exception handler. Since the characteristics of an FSAVE format error
exception are not predictable (and since such an occurrence is catastrophic), execution
timing required to handie the error is not included in the table.

MC68881/MC68882 USER'S MANUAL FREESCALE
8-39

The entries in the table for the return from exception {RTE} instruction include the time
from the beginning of the execution of the RTE by the MPU to the resumption of the
previously aborted operation. If the RTE instruction processes a pre-instruction frame, the
time in the table includes the time required to restore the processor context and prepare
to execute the instruction at the address in the stack frame program counter image. For
the mid-instruction frame, the time in the table includes the time required to restore the
processor context and read the response CIR to continue the previously suspended operation.
The “RTE, throwaway frame" entries include the time required to read and process the
throwaway stack frame (normally from the top of the interrupt stack) and then perform
RTE processing for the stack frame on top of the resulting active stack (normally either the
master or user stack). Thus, if the MPU must return from an interrupt that occurred while
the M bit in the MPU status register was set, a throwaway frame is first processed from
the interrupt stack, followed by the processing of the appropriate frame from the master
stack {(which returns the processor to the context saved by the interrupt processing). For
such a case, the “RTE, throwaway frame'’ times are added to the RTE execution times for
the second stack frame to derive the overall execution times for the operation.

In addition to the occurrence of an exception, whether exceptions are enabled or not, can
also affect instruction execution time. This is because the FPCP requests the transfer of
the program counter at the start of any arithmetic instruction if any exception (other than
the BSUN exception) is enabled. If the source operand resides in a floating-point data
register, the transfer of the PC does not affect overall execution timing, since it takes place
concurrently with the execution of the operation by the FPCP, However, for source operands
external to the FPCP, the MPU first passes the PC, and then passes the operand; thus,
n execution time is affected for this case.

8.6 MAIN PROCESSOR INSTRUCTION OVERLAP TIMING
The MPU overlap allowed table for the MC68881 applies to overlap between MPU and

floating-point instructions. Table 8-25 lists the overlap time allowed by the MC68881. The
MPU overlap time allowed by the MC68882 is shown in the T columns of Table 8-3.

Table 8-25. Overlap Allowed Times — Arithmetic Operations

Operation FPm Memory Source or Destination Operand Format]

Type Source Integer Single Double | Extended | Packed |

FPn Destination* -3 -22 -22 ~28 -34 —-34]
Move to Dn or — 41 29 29 9 113 1
Memory** |

*Subtract these numbers from the overall execution time value in the previous table to determine
the allowed overlap time for a particular instruction.
**These numbers represent the amount of time in the middle of the instruction during which the
MPU can process interrupts.
~ Indicates a typical time for the binary-to-decimal conversion.

FREESCALE MC68881/MC68882 USER'S MANUAL
8-40

SECTION 9
FUNCTIONAL SIGNAL DESCRIPTIONS

This section contains a brief description of the input and output signals for the MC68881/
MC68882 (FPCP) floating-point coprocessor. The signals are functionally organized into
groups as shown in Figure 9-1.

NOTE

The terms assertion and negation are used extensively to avoid confusion when
describing "active-low’ and "active-high” signals. The term assert or assertion
is used to indicate that a signal is active or true, regardless of whether that level
is represented by a high or low voltage. The term negate or negation is used to
indicate that a signal is inactive or false.

Vee

MC58881/MCE8882
FLOATING-POINT AS
COPROCESSOR [~ 7
oK W
E &5
ST OSACKD _
TN DIATK] -~

Figure 9-1. MC68881/MC68882 Input/Output Signals

9.1 ADDRESS BUS (A4-A0)

These active-high address line inputs are used by the main processor to select the copro-
cessor interface register locations located in the CPU address space. These lines control
the register selection as listed in Table 9-1.

When the FPCP operates with an 8-bit data bus, the AQ pin is used as an address signal
for byte accesses of the coprocessor interface registers. When the FPCP operates with a
16- or 32-bit system data bus, both the A0 and SIZE pins are strapped high and/or low as
listed in Table 9-2.

MC68881/MC68882 USER'S MANUAL FREESCALE
9-1

Table 9-1. Coprocessor Interface Register Selection

A4-AD Offset Width Type Register

0000x $00 16 Read Response

0001x $02 16 Write Control

0010x $04 16 Read Save

0011x $08 16 Read Write | Restore |
0100x $08 18 — (Reserved) ﬂf
0101x $O0A 16 Write Command |
0110x $0C 16 — (Reserved)

0111x $0E 16 Write Condition

100xx $10 32 ReadWrite {Qperand

1010x $14 16 Read Register Select

1011x $16 16 — (Reserved)

110xx $18 32 Wiite Instruction Address i
et) $1C 32 Read Write | Operand Address i

*Not used by the MC68881 or M(C68882

Table 9-2. System Data Bus Size Configuration

Al Size Data Bus
— Low 8-Bit
Low High 16-Bit

n High High 32:Bit

9.2 DATA BUS (D31-D0)

This 32-bit, bidirectional, three-state bus serves as the general-purpose data path between
the MC68020/MC68030 (MPU) and the FPCP. Regardless of whether the FPCP is operating
as a coprocessor or a peripheral processor, all interprocessor transfers of instruction in-
formation, operand data, status information, and requests for service occur as standard
M68000 bus cycles.

The FPCP can operate with an 8-, 16-, or 32-bit system data bus. To operate with the
required system data bus size, both the A0 and SIZE pins must be connected specifically
for that applicable bus size. (Refer to 9.1 ADDRESS BUS (A4—A0) and 9.3 SIZE (SIZE) for
further details.)

9.3 SIZE (SIZE)

This active-low input signal is used in conjunction with the A0 pin to configure the FPCP
for operation over an 8-, 16-, or 32-bit system data bus. When the FPCP is configured to
operate over a 16- or 32-bit system data bus, the SIZE and A0 pins must be strapped as
listed in Table 9-2.

FREESCALE MC68881/MC68882 USER'S MANUAL
9-2

9.4 ADDRESS STROBE (AS)

This active-low input signal indicates that there is a valid address on the address bus, and
both the chip select (CS) and read/write (R/W) signal lines are valid.

95 CHIP SELECT (CS)

This active-low input signal enables the main processor access to the FPCP coprocessor
interface registers. When operating the FPCP as a peripheral processor, the chip-select
decode is system dependent (i.e., like the chip select on any peripheral). The CS signal
must be valid (either asserted or negated)} when AS is asserted. Refer to 10.3 Chip Select
Timing for further discussion of timing restrictions for this signal.

9.6 READ/WRITE (RW)

This input signal indicates the direction of a bus transaction (read/write) by the main
processor. A logic high (1) indicates a read from the FPCP, and a logic low (0) indicates a
write to the FPCP. The R/W signal must be valid when AS is asserted.

9.7 DATA STROBE (DS)

This active-low input signal indicates that there is valid data on the data bus during a write
bus cycle.

9.8 DATA TRANSFER AND SIZE ACKNOWLEDGE (DSACK1, DSACKO)

These active-low, three-state output signals indicate the completion of a bus cycle to the
main processor, The FPCP asserts both the DSACK1 and DSACKO signals when the MPU
asserts CS.

If the bus cycle is a main processor read, the FPCP asserts DSACK1 and DSACKO signals
to indicate that the information on the data bus is valid. (Both DSACK signals can be
asserted in advance of the valid data being placed on the bus.} If the bus cycle is a main
processor write to the FPCP, DSACK1 and DSACKO are used to acknowledge acceptance
of the data by the FPCP.

The FPCP also uses DSACK1 and DSACKQ signals to dynamically indicate to the MPU the
port size (system data bus width) on a cycle-by-cycle basis. Depending upon which of the
two DSACK pins is asserted for a bus cycle, the MPU assumes data has been transferred
to/from an 8-, 16-, or 32-bit wide data port. Table 9-3 lists the DSACK assertions that are
used by the FPCP for the various bus cycles over the various system data bus configurations.
Refer to 10.1 BASIC TRANSFER MECHANISM OVERVIEW for details of data bus utilization
by the FPCP.

Table 9-3 indicates that all accesses using a 32-bit bus with A4 equal to zero are to 16-bit
registers, The FPCP implements all 16-bit coprocessor interface registers on data lines
D31-D16 (to eliminate the need for on-chip multiplexors); however, the MPU expects 16-
bit registers that are located in a 32-bit port at odd word addresses {A1=1) to be imple-
mented on data lines D15-D0. For accesses to these registers when configured for 32-bit

MC68881/MC68882 USER'S MANUAL FREESCALE
9-3

Table 9-3. DSACK Assertions

Data Bus . DSACKT DSACKD Comments
32-Bit 1 L L Valid Data on D31-D0
32-Bit 0 L H Valid Data on D31-D16
16-Bit X L H Valid Data on D31-D16 or D15-D0
8-Bit X H L Valid Data on D31-D24, D23-D16,
D15-D8, or D7-D0O
All X H H Insert Wait States in Current Bus Cycle

Table 9-3 indicates that all accesses using a 32-bit bus with A4 equal to zero are to 16-bit
registers. The FPCP implements all 16-bit coprocessor interface registers on data lines
D31-D16 {to eliminate the need for on-chip multiplexors); however, the MPU expects 16-
bit registers that are located in a 32-bit port at odd word addresses (A1=1) to be imple-
mented on data lines 015~D0. For accesses to these registers when configured for 32-hit
bus operation, the MC68881/M68882 generates DSACK signals as listed in Table 9-3 to
indicate to the MPU that the valid data is on D31-D16 instead of on D15-D0.

External holding resistors are required to maintain both DSACK1 and DSACKQ high between
bus cycles. In order to reduce the signal rise time, the DSACK1 and DSACKQ lines are
actively pulled up {negated) by the FPCP following the rising edge of AS or DS, and both
DSACK lines are then three-stated (placed in the high-impedance state} to avoid interference
with the next bus cycle.

n 9.9 RESET (RESET)

This active-low input signal causes the FPCP to initialize the floating-point data registers
to nonsignaling not-a-numbers (NANs) and clears the floating-point control, status, and
instruction address registers.

When performing a powerup reset, external circuitry should keep the RESET line asserted
for a minimum of four clock cycles after Vg is within tolerance. This assures correct
initialization of the FPCP when power is applied. For compatibility with all M68000 Family
devices, 100 milliseconds should be used as the minimum.

When performing a reset of the FPCP after VCC has been within tolerance for more than
the initial powerup time, the RESET line must have an asserted pulse width greater than
two clock cycles. For compatibility with all M68000 Family devices, 10 clock cycles should
be used as the minimum.

9.10 CLOCK {CLK)

The FPCP clock input is a TTL-compatible signal that is internally buffered for development
of the internal clock signals. The clock input must be a constant frequency square wave
with no stretching or shaping techniques required. The clock should not be gated off at
any time and must conform to minimum and maximum period and pulse width times.

FREESCALE MC68881/MC68882 USER'S MANUAL
9-4

9.11 SENSE DEVICE (SENSE)

This output pin may be used optionally as an additional GND pin or as an indicator to
external hardware that the FPCP is present in the system. This signal is internally connected
to the GND of the die, but it is not necessary to connect it to the external ground for correct
device operation.

Figure 9-2 shows an example of a circuit to sense the presence of an FPCP in a socket
prepared for it. The circuit asserts BERR when the MPU selects the coprocessor and no
coprocessor is plugged in.

10k
- SYSTEM
Dc BERR

Figure 9-2. Sense Device Circuit Example

el
m
=
e
m

al

9.12 POWER (V¢ and GND)

These pins provide the supply voltage and system reference level for the internal circuitry
of the FPCP. Care should be taken to reduce the noise level on these pins with appropriate
capacitive decoupling.

The FPCP is fabricated in Freescale's advanced HCMOS process and is capable of operating
at clock speeds of 25 MHz. Although the use of CMOS for a device containing such a large
number of transistors allows significantly reduced power consumption in comparison to
an equivalent NMOS device, the high clock speed makes the characteristics of the power
supplied to the part quite important. The power supply must be as free from noise as
possible, and it must be able to supply large amounts of instantaneous current when the
FPCP performs certain operations. In order to meet these requirements, more detailed
attention should be given to the power supply connection to the FPCP than is required for
older NMOS devices that operate at slower clock rates.

In order to provide a solid power supply interface, four VcC pins, eight primary GND pins,
and two secondary GND pins are provided. This allows two Vcc and GND pins to supply
the power for the data bus, while the remaining V¢ and GND pins are used by the internal
fogic and DSACK drivers. The two secondary GND pins are not intended to provide the
main power supply interface, but merely to augment it as required. {One of these pins is
the SENSE pin which may be used as an optional GND connection.)

Three Vg and four GND pin positions are reserved for future use by Freescale and should
be connected appropriately in order to maintain pin compatability with all future versions
of the FPCP. Table 9-4 lists the Vcc and GND pin assignments.

In order to reduce the amount of noise in the power supplied to the FPCP, common
capacitive decoupling techniques should be observed. While there is no recommended

MC68881/MC68882 USER'S MANUAL FREESCALE
9-5

Table 9-4. V¢ and GND Pin Assignments

Devices Supplied Vee GND
D31-D16 H8 Js
D15-D00 88 B?
Internal Logic, DSACKT, DSACKO E2, E9 A2, B2, B3, B4*, C3, E10, K3
Separate — [oy]
Extra A1, B1,J2 A10, D2, F2, H9

*B4 is the SENSE pin and may be used optionally as a ground pin or to detect the presence of
the FPCP in the system,

layout for this capacitive decoupling, it is suggested that a combination of low, middle,
and high frequency filter capacitors be placed as close to the chip as possible. {(For example,
a set of 10 pF, 0.1 uF, and 330 pF capacitors in parallel provides filtering for nearly the
entire frequency spectrum present in a digital system.) In a system that utilizes the MC68020
as the main processor, these capacitive decoupling practices should also be observed for
the main processor. In particular, the 10 wF “tank” capacitor should be reasonably close
to both devices (since the two devices are typically placed next to each other on a board)
to provide for the high instantaneous current requirements of both the MPU and the FPCP.

In addition to the capacitive decoupling of the power supply, care should be taken to ensure
a low resistance connection between the FPCP Vcc and GND pins and the system power
supply traces. In particular, the connections to pins B7 and J8 {the GND pins for the data
bus pins} must have very low resistance. This is necessary because a read of the FPCP can

cause the data bus drivers to sink very large amounts of current to ground in order to pull
n the data bus signals low (if the data pattern that is read contains mostly zeros). If low

resistance connections are not provided on pins B7 and J8, the ground potential internal
to the package may rise, the fall time of the data signals may be increased, and the low
output voltage noise margin may be reduced.

9.13 NO CONNECT (NC)

One pin of the FPCP package is designated as a no connect (NC). This pin position is
reserved for future use by Freescale and should neither be used for signal routing nor
connected to Ve or GND.

9.14 SIGNAL SUMMARY

Table 9-5 provides a summary of all the FPCP signals described in this section.

FREESCALE MC68881/MC68882 USER'S MANUAL
9-6

Table 9-5. Signal Summary

Signal Name Mnemonic Input/Output | Active State Three State
Address Bus ’ A4-AQ Input High —
Data Bus D31-D0 Input/Output High Yes
Size SIZE Input Low —
Address Strobe AS Input Low —
Chip Select cs Input Low -
Read/Write RW Input High/Low —
Data Strobe DS Input Low —_
Data Transfer and Size Acknowledge DSACKT, DSACKO Output Low Yes
Reset RESET Input Low —
Clock CLK Input — —
Sense Device SENSE Input/Output Low No
Power Input vee Input — -
Ground GND input — —

MC68881/MC68882 USER'S MANUAL FREESCALE
9-7

FREESCALE MC68881/MC68882 USER'S MANUAL
9-8

SECTION 10
BUS OPERATION

This section describes the functional characteristics of the MC68881/MC68882 (FPCP) bus
interface and the mechanisms used to execute data transfers between the FPCP and the
main processor. This discussion includes descriptions of the functional characteristics of
individual bus cycles as well as descriptions of the operand transfer protocols that require
multiple bus cycles.

Although the FPCP is designed primarily for use as a coprocessor to the MC68020/MC68030
{(MPU), there are no characteristics of the bus operation that preciude the use of the FPCP
as a peripheral device with any other processor. This is because the M68000 Family co-
processor interface utilizes standard bus cycles to transfer instructions and data between
the main processor and coprocessors in a system, with no special signals required for
these transfers. Because of this general-purpose transfer mechanism, the type of the main
processor and the nature of the system bus interface are transparent to the FPCP.

10.1 BASIC TRANSFER MECHANISM OVERVIEW

In order to execute a floating-point instruction, the FPCP and the main processor com-
municate using a series of bus cycles, instructions, and data according to a predefined
protocol as described in 7.5 INSTRUCTION DIALOGS. Most of these bus cycles transfer an
entire item in a single transfer, although large items such as extended precision floating-
point numbers require multiple bus cycles to transfer the entire operand. Also, if an FPCP
port size of 8 or 16 bits is selected, multiple bus cycles can be required to transfer items
that can be transferred with a single cycle over a 32-bit port.

The communications mechanism utilized by the FPCP and the main processor uses a set
of mail-box registers, called the coprocessor interface registers (CIRs), to move data, in-
structions, and control information between the devices. The characteristics of the CIRs
and the manner in which they are used by the FPCP and a main processor are described
in SECTION 7 COPROCESSOR INTERFACE. The discussions in the following paragraphs
are not specific to any particular CIR or instruction protocol, except where noted.

When a single bus cycle is able to accommodate an entire item, the transfer mechanism
is obviously quite simple and the only requirement that must be met is that the bit alignment
of the FPCP and main processor match. Figure 10-1 shows the bit assignment and signif-
icance of the 32-bit data bus of the FPCP, which must be matched to the main processor
(for the MPU, this matching is accomplished by connecting D31 of the FPCP to D31 of the
MC68020, D30 to D30, etc.).

When multiple bus cycles are required to transfer an item, the additional requirements of
correct transfer order and port alignment must also be met. Figure 10-2 shows the data
alignment of the FPCP for each port size. In this figure, if a section of the data bus is shaded
for a particular encoding of SIZE, A4, A1 and AQ, that section of the data bus is active
during the transfer (i.e., valid data is expected during a write cycle, and the bus is driven

MC68881/MC68882 USER'S MANUAL FREESCALE
10-1

MDST SIGNIFICANT BIT OF BYTE LEAST SIGNIFICANT BIT OF BYTE

I

l. ¢J¢ 'y by

31 24 .23 16 15 8 7 0

MOST SIGNIFICANT MIODLE MOST MIDDLE LEAST LEAST SIGN'FICANT
BYTE SIGNIFICANT BYTE. SIGNIFICANT BYTE BYTE

Figure 10-1. FPCP Data Bus Bit Assignments

SZE A4 Al AD PORTSIZE | DSACK1/DSACKD ACTIVE DATA BUS SECTIONS
R 3288 L " N .

Hov ox 1 L L by % 4 -
H 0D x 0 L

H 1 0 0 16 BITS L

1 1 0 L L

L D x @ H L .

L 0 x 1 H L

L 1 00 8BITS H L e

L 1 0 1 H L L

L o1 1 0 H L

L1 1 H L

Figure 10-2. Data Bus Activity vs Port Size and Operand Alignment

during a read cycle). Otherwise, it is idle during the transfer. Note that the port size is not
determined by the SIZE pin alone, but by the combination of the SIZE pin and A0. The
following paragraphs describe the transfer order for each port size.

10.1.1 32-Bit Port Size

When SIZE and A0 are both high, the FPCP port size is defined to be 32 bits. In most cases,
this configuration is statically selected by connecting the SIZE and AQ pins directly to VCC;
although dynamic port size selection is possible if the proper timing constraints are followed
for the SIZE and AO pins. Although this configuration selects a 32-bit port size, the FPCP
utilizes the dynamic bus sizing capabilities of the MPU to reduce the amount of multiplexing
logic on the chip. The value of A4 during a bus cycle determines which bytes of the 32-bit
port are used to drive or receive data. Since all of the coprocessor interface registers in
the lower haif of the CIR address range {A4=0, offsets $00 through $0F) are 16-bit registers,
dynamic bus sizing is utilized to place all of those CIRs on data bus pins D32-D16, and the

FREESCALE MC68881/MC68882 USER'S MANUAL
10-2

DSACK encoding returned indicates a 16-bit port size. All of the CIRs in the upper half of
the CIR address range (Ad=1, offsets $10-$1F) are either 32-bit registers or 16-bit registers
paired with undefined register locations. Therefore, the DSACK encoding used to terminate
accesses in this range indicates a 32-bit port (during a read of the register select CIR, data
bits 15-0 are undefined, reserved, and are driven high). In both of these cases, A4 deter-
‘mines the DSACK encoding that is returned, and A1 selects the appropriate word location.
A0 is always one, to select a 32-bit FPCP port size, and thus individual bytes cannot be
accessed in this configuration. Furthermore, the FPCP always expects a full 16 or 32 bits
of data to be transferred during a bus cycle when SIZE is high; A0 is one, and A4 is zero
or one, (with the exception of immediate byte or word operands, as discussed in the next
paragraph).

When the FPCP is used in a 32-bit configuration, most CIR accesses transfer an entire
instruction or data item in a single bus cycle. The one exception to this is for accesses to
the operand CIR, which is used to transfer large items such as floating-point numbers and
state frames. When an item is larger than four bytes, multiple accesses of the operand CIR
are required to complete the transfer. In this case, the correct transfer order must be
observed, in addition to the bit and byte alignment previously discussed. In ail cases, each
part of an item is transferred with the most significant bit aligned with bit 31 of the operand
CIR (i.e., they are transferred across D31-D24, D31-D16, or D31-D0 for bytes, words, or
long words, respectively). With the exception of byte and word immediate operands, the
FPCP never requests the transfer of an item that is not a multiple of four bytes in length.
An immediate byte or word operand is transferred in a single bus cycle and is left-aligned
with the operand CIR. Al other operands are transferred through the operand CIR in
32-bit units until the entire item is transferred.

When multiple bus cycles are required to transfer an item, the first operand CIR access
transfers the most significant long word of the item; each successive access transfers the
next least significant long word. For example, when an extended precision number is
moved, the first operand CIR access is used to transfer bits 95-64 of the operand, the
second access transfers bits 63-32, and the third access transfers bits 31-0 to compiete
the operand transfer. Note that the manner in which the operand is read from or written
to memory is transparent to the FPCP, which allows the operand to be stored in memory
in the native format of the main processor.

The amount of data transferred with each access to the operand CIR is dependent on the
state of an instruction dialog and is determined by the FPCP, not the main processor. For
example, if the FPCP issues an evaluate effective address and transfer data primitive with
a length of 12 bytes, three accesses of the operand CIR are expected (with each access
transferring four bytes). Thus, for a 32-bit port, the main processor is not allowed to transfer
the operand with a series of word or byte transfers, but must use long-word transfers to
move the operand.

10.1.2 16-Bit Port Size

When SIZE is high and A0 is low, the FPCP port size is defined to be 16 bits. In most cases,
this configuration is statically selected by connecting the SIZE and AO pins directly to VCC
and GND, respectively, although dynamic port size selection is possible if the proper timing
constraints are followed for the SIZE and AQ pins. Although A0=0 in this case, this value
is not specifically used to select even byte addresses; rather, it is used to configure the
data port to be 16 bits wide. When the FPCP is configured in this manner, alt CiR accesses

MC68881/MC68882 USER'S MANUAL FREESCALE
10-3

are assumed to transfer a fuil 16 bits to the word address seiected by A1 (except for the
case of an immediate byte operand, as discussed in a following paragraph). The DSACK
encoding returned always indicates that the port is 16 bits wide; individual bytes cannot
be accessed in this configuration.

In order to eliminate the need for on-chip muitipiexing, the FPCP drives data on or receives
data from only 16 bits of the data bus, depending on the encoding of A1 and A4 (thus
allowing D31 and D15 of the FPCP to be tied together, D30 to be tied to D14, D29 to D13,
etc., as described in SECTION 11 INTERFACING METHODS. For all accesses with A4 equal
to zero, or with A4 equal to one and A1 equal to zero, data is transferred across D31-D16.
Data is transferred across D15-D0 when A4 and A1 are both equal to one.

When the FPCP is used in the 16-bit configuration, most CIR accesses transfer an entire
instruction or data item in a single bus cycle. The one exception to this is for accesses to
the operand CIR, which is used to transfer large items such as floating-point numbers and
state frames. When an item is larger than two bytes, multiple accesses of the operand CiR
are required to complete the transfer. In this case, the correct transfer order must be
observed, in addition to the bit and byte alignment previously discussed. In all cases, each
part of an item is transferred with the most significant bit aligned with bit 31 or bit 15 of
the operand CIR, depending on the value of A4 and A1 as described in the previous
paragraph. With the exception of byte and word immediate operands, the FPCP never
requests the transfer of an item that is not a multiple of four bytes in length. immediate
byte operands are transferred in a single bus cycle and are left-aligned with the operand
CIR (i.e., they are transferred across D31-D24). All other operands are transferred through
the operand CIR in 16-bit units until the entire item is transferred.

When mulitiple bus cycles are required to transfer an item, the first operand CIR access
transfers the most significant word of the item; each successive access transfers the next
least significant word. For example, when an extended precision number is moved, the
first operand CIR access is used to transfer bits 95-80 of the operand, the second access

transfers bits 79-64, and the third through sixth accesses transfer bits 63-48, 47-32, 31-16
m and 15-0, respectively, to complete the operand transfer. Note that the manner in which

the operand is read from or written to memory is transparent to the FPCP, which allows
the operand to be stored in memory in the native format of the main processor.

The amount of data transferred with each access to the operand CIR is dependent on the
state of an instruction dialog and is determined by the FPCP, not the main processor. For
example, if the FPCP issues an evaluate effective address and transfer data primitive with
a length of 12 bytes, six accesses of the operand CIR are expected (with each access
transferring two bytes). Thus, for a 16-bit port, the main processor is not allowed to transfer
the operand with a series of long-word or byte transfers, but must use word transfers to
move the gperand.

10.1.3 8-Bit Port Size

When the SIZE signal is low, the FPCP port size is defined to be eight bits. in most cases,
this configuration is statically selected by connecting the SIZE pin directly to GND, aithough
dynamic port size selection is possible if the proper timing constraints are followed for the
SIZE and AQ pins. In this case, the value of AD is used to select the correct byte address,
rather than to configure the data port size. When the FPCP is configured in this manner,
all CIR accesses transfer one byte to the address selected by A4-AQ, and the DSACK

FREESCALE MC68881/MC68882 USER'S MANUAL
10-4

encoding returned always indicates that the port is 8 bits wide. In order to eliminate the
need for on-chip multiplexing, the FPCP drives data on or receives data from only 8 bits
of the data bus, depending on the encoding of A0, A1 and A4 (thus allowing D31, D23,
D15 and D7 of the FPCP to be tied together; D30 to be tied to D22, D14 and D6; D29 to
D21, D13 and D5, etc., as described in SECTION 11 INTERFACING METHODS). Figure 10-
2 shows which bytes of the data bus are driven or received for each encoding of the AQ,
A1, and A4 lines.

When the FPCP is used in the 8-bit configuration, most transfers require multiple CIR
transfers to move an entire instruction or data item. The one exception to this is for accesses
to the operand CIR to transfer a byte immediate operand. When an item is larger than one
byte, multiple accesses of the appropriate CIR are required to complete the transfer. In this
case, the correct transfer order must be observed, in addition to the bit and byte alignment
previously discussed. In all cases, each part of an item is transferred with the most sig-
nificant bit aligned with bit 31, 23, 15, or 7 of the FPCP, depending on the value of AQ,-A1,
and A4 as described in the previous paragraph. With the exception of byte and word
immediate operands, the FPCP never requests the transfer of an item that is not a multiple
of four bytes in length. Immediate byte operands are transferred in a single bus cycle and
are left-aligned with the operand CIR (i.e., they are transferred across D31-D24). All other
operands are transferred through the appropriate CIR in 8-bit units until the entire item is
transferred.

When muitiple bus cycles are required to transfer an item, the first operand CIR access
transfers the most significant word of the item; each successive access transfers the next
least significant word. For example, when an extended precision number is moved, the
first operand CIR access is used to transfer bits 95-88 of the operand, the second access
transfers bits 87-80, and the third through twelfth accesses transfer bits 79-72, 71-64,
63-56, 55-48, 47-40, 39-32, 31-24, 23-16, 15-8 and 7-0, respectively, to compiete the
operand transfer. Note that the manner in which the operand is read from or written to
memory is transparent to the FPCP, which allows the operand to be stored in memory-in

the native format of the main processor. m
The amount of data transferred with each access to the operand CIR is dependent on the

state of an instruction dialog and is determined by the FPCP, not the main processor. For
example, if the FPCP issues an evaluate effective address and transfer data primitive with
a length of 12 bytes, 12 accesses of the operand CIR are expected (with each access
transferring one byte). Thus, for an 8-bit port, the main processor is not allowed to transfer
the operand with a series of word or long-word transfers, but must use byte transfers to
move the operand.

10.2 RESET OPERATION

Before the FPCP can be used for any operation after power has been appiied to the system,
it must be initialized using a hardware reset function. This is done when power is initially
applied to the system by asserting RESET for at least four clock cycles (with reference to
the FPCP CLK signal) after V¢ has reached the nominal operating level. After power has
been stable and the FPCP has executed a power-up reset operation, a subsequent reset
operation may be initiated by asserting RESET for at least two cycles of the FPCP CLK
signal. Note that in order to maintain compatibility with all M6800C Family devices, the
power-on reset pulse for a system should be a minimum of 100 ms, while a 10 clock
minimum {with respect to the clock signal of the slowest M68000 Family device in the
system) should be used for reset operations after power is stable.

MC68881/MC68882 USER'S MANUAL FREESCALE
10-5

When a hardware reset operation is performed, the FPCP immediately aborts any operation

. that may have been in progress and returns to the idle state. All of the floating-point data
registers are loaded with nonsignaling NANs, and the FPCR and FPSR are cleared to all
zeros (thus clearing any. old status information and selecting the |IEEE standard default
operating modes). An identical operation may be performed under software control by a
FRESTORE of a null state frame {(although a hardware reset must be executed at power-
up in order to initialize the FPCP).

One consideration that should be given to the RESET signal of the FPCP is the treatment
of a RESET instruction by an M68000 Family processor. When the RESET instruction is
executed by an M68000 Family processor, the internal state of the processor is not affected,
but the external system should respond to the reset operation. Since the FPCP is considered
to be part of the internal state of the main processor, prudent system design suggests that
the FPCP should not respond to the assertion of the RESET signal by the main processor.
This can be accomplished in many ways, depending on the requirements of the system.
A simple circuit to support this operation is shown in Figure 10-3. if a software RESET
function is needed, it is suggested that this be implemented by an FRESTORE of a null
frame.

45V

SNT4ALSO5

MC68881/MCE8882
RESET

Figure 10-3. FPCP Reset Logic Example

10.3 CHIP SELECT TIMING

Most of the bus cycle timing requirements of the FPCP are straightforward, with all signal
timing following the normal M68000 Family conventions. The only signal timing that is
specific to the FPCP bus interface is the relationship of the assertion of chip select (CS) to
the assertion of the address strobe (AS) and data strobe (DS). Unlike most M68000 Family
peripherals that require the assertion of CS to follow the assertion of AS or DS, the FPCP
allows the CS assertion to precede the assertion of the AS and DS.

In_order to detect the start or end of an access, the FPCP_monitors the AS, DS, CS, and
R/W signals. A cycle start is detected when AS, CS, and DS or RW (for a write cycle) are
asserted, and a cycle end is detected when the first strobe (AS or DS) is negated. The order
in which these signals are sequenced is not critical to correct operation, and in the case
of CS the occurrence of a negated or asserted edge is not needed to detect a new access.
For example, it is not required that CS be negated between successive accesses to the
FPCP, since the negation and assertion of the AS and DS signals causes the FPCP to detect
the end of one access and the start of the next.

The FPCP conditions the DSACK generation logic internally with AS and CS. To ensure
that DSACKx assertion is not delayed longer than necessary, CS should be asserted before

FREESCALE MC68881/MC68882 USER'S MANUAL
10-6

AS is asserted (since CS is system dependent but AS is MPU dependent). This design is
called "“early chip select”. On the other hand, when CS is asserted after AS has been
asserted, the design is called “late chip select”’. A late chip-select design may add wait
states to the FPCP accesses.

A timing restriction on CS occurs on a FPCP access followed immediately by a non-FPCP
access. CS, which is asserted during the FPCP access, must negate in time for it to occur
before the assertion of AS of the subsequent non-FPCP access.

To satisfy this timing restriction with an early chip select, neither AS or DS can be used
to generate CS. Figure 10-4 shows some circuits that correctly generate an early chip-select
signal for MPU-based systems. Note that in these circuits only the following terms are
included in the CS equation:

® FC2-FCO=7 — CPU Space

® A19-A16=2 — Coprocessor Communications

¢ A15-A13=1— Cp-ID One (Freescale Assembler Defauit)

For systems that use the MC68020 or the MC68030 with an FPCP, the maximum time for
an early chip select is:

tAVCS =tAVSA
where: _
tAVCS = Address/function code valid to CS asserted {(maximum).
tAVSA = MC68020/MC68030 address/function code valid to AS asserted {AC electrical
specification #11 minimum).

For a 20-MHz MPU and a 25-MHz FPCP:
tAvVCS = 10 ns maximum.

The 74AS02 and 74AS30 implementation shown in Figure 10-4 or a PAL lmplementation
witha maximum decode delay time of 10 ns may be used.

For a 25-MHz and 33-MHz MPU/FPCP system, refer to EB116 entitled Chip-Select Generation
for a 33.33-MHz MC68030 Microprocessor and a 33.33-MHz MC68882 Floating-Point Co-
Processor.

Alate chip-select design can use slower {(and, therefore, less expensive) logic. To implement
this design, the CS generation togic should include AS. Another consideration in using
slower logic is that if a non-FPCP access follows an FPCP access, the CS for the FPCP must
not remain asserted inadvertently during the non-FPCP access. However, AS should be
included in the decode logic as shown in Figure 10-5(A), along with the timing that the
logic provides. When AS is used in an AND gate with the decode logic output as shown
Figure 10-5(B), CS is asserted after the start of the non-FPCP access, as the timing diagram
shows. This implementation in Figure 10-5(B} is incorrect.

10.4 BUS CYCLE FUNCTIONAL DESCRIPTIONS

The FPCP executes three types of bus cycles, according to the direction of the transfer and
the CIR that is selected by the main processor. The three bus cycle types are: synchronous
read cycles, asynchronous read cycles, and asynchronous write cycles. In this context, the
terms synchronous and asynchronous convey slightly different meanings than when they

MC68881/MC68882 USER'S MANUAL FREESCALE
10-7

FCO-FC2 —57
CPU Space (A16-A19) —$2

Cp-1D (A13-A15) ~—$1 (default)
74x138 Tax52!
<
A1} —— AD 00 {——— BKFT FCO — A0 80
A1g ———{ Al 01 p—— Fo1 —— Al B1
At? ——— A2 02 }——— Al3 — A2 B2
0 p— Ald —— A3 B3
04 f—— 5 (Cp-1Dx10) A15 ——] A4 B4
05 §—— €3 (Cp-Dm1) AlB —— A5 B5
06— AlT —— AS B6
07 }——— A Al8 —— A7 87
€1 E2 E3 { 0 —t—
74x00 T T =
1
S (p-T 001
fCO e {Cp)
Up to two coprocessors in the system, with Up to seven coprocessors in the system.
additional decode for BKPT and IACK cycles.
T4x521
FC2 i
FC1 ———
Al 80
] 74AS30
F‘;g Al 81
A Do— £5 (cp40 001) fo0 —— A2 B2
a9 Al FC1 ———a A3 83
A8 Al —— A4 B4
A7} —— AS 85
AlB A18 ——] A6 86
A5 A19 — A7 B7
| 0 L
e o— T 7 -
= 7502 — T {00 o)
Up to seven coprocessors in the system. Only one coprocessor in the system.
Decode Delay Times®
Programmable Array Logic (PAL) =10 - 25 ns max.
74x00/74x138 combined propagation delay = 9.5~ 12.8 ns max.
74x521 compare delay =55~ 11 ns max.

74AS02/74AS30 combined propagation delay = 9 ns max.

“The ‘x’ represents various combinations of logic families including F, AS, or fast CMOS.

Figure 10-4. Example of Early Chip Select Circuits

L ___|
FREESCALE MC68881/MC68882 USER'S MANUAL
10-8

a__ /T «__/ T\

A1B.A13 AIg-AT3
fcofcy FPCPACCESS X NONFPCP ACCESS fcofey _ FPCPAGCESS X' NON-EPCP ACCESS

AS / \ &S / ‘ \
Xns |<— . Xns '4—
i /‘——l - s ——

€S NEGATED AT START

QF NON-FPCP ACCESS 8 _/
{CORRECT)
. T3 ASSERTED DURING

NON-FPCP ACCESS
{INCORRECT)

A19A13 <:>
DECODE —
Foo-Fe2 <:> xnsDiay O & A18-A13 © .
DECODE cs
« {X ns DELAY) s
I FC0-FG2 <:>
I
a) CORRECT Implementation of a "late chip select” b) INCORRECT Implementation of & “late chip select’”

Figure 10-5. Example of Late Chip-Select Circuit

are used to describe the bus transfer characteristics of a microprocessor {(e.g., where the m
MC68030 microprocessor and an external device perform either synchronous or asyn-

chronous cycles, depending on the relationship between the clocks used in the MPU and

the external device). Here, the terms synchronous and asynchronous are used with respect

to the FPCP clock. The following paragraphs describe the functional characteristics of each

bus cycle type (for an AC parametric description of the FPCP bus interface, refer to SECTION

12 ELECTRICAL SPECIFICATIONS).

in the following discussions, the main processor is assumed to be an MC68020 or MC68030,
with the FPCP and the MPU both driven by the same clock signal. Thus, the terminology
and conventions used are identical to the bus description for the MPU. This clock frequency
relationship is not required, but the following discussions are simplified by assuming that
both devices use the same clock signal. Where appropriate, references are made to vari-
ations in bus cycle operations if the main processor is not an MC68020 or MC68030.

10.4.1 Synchronous Read Cycles

When the main processor performs a read access to either the response or save CIR, the
FPCP responds by executing a synchronous read bus cycle. In this context, the term syn-
chronous signifies that the bus cycle timing is directly related to the FPCP clock signal, but

MC68881/MC68882 USER'S MANUAL FREESCALE
10-9

the FPCP clock is not required to be synchronous with the main processor clock during
the transfer. By synchronizing the bus cycle to the FPCP clock, the appropriate response
primitive or format word is always returned based on the current status of the FPCP. Also,
since these bus cycles are used to transmit service requests to the main processor, the
synchronous bus cycle timing allows the main processor and FPCP to be synchronized at
critical points in an instruction dialog, without requiring synchronous clock signals for the
two devices,

The functional timing for the synchronous read cycle is shown in Figure 10-6. The FPCP
detects the start of a synchronous read cycle when chip select and address strobe are
asserted, read/write is high, and the address pins are encoded to 500 {to select the response
CIR) or $04 (to select the save CIR). When either of these conditions is met, the FPCP begins
to sample the address strobe, data strobe, and chip-select lines on each rising edge of the
CLK signal. When all three of these signals are sampled as asserted, the FPCP latches
certain internal state flags and uses those flags to determine the appropriate response
primitive or format word to be placed on the data bus. One and one-half clock cycles later,
the FPCP begins to drive the data value onto the bus and assert the appropriate data
transfer and size acknowledge encoding. The data value remains on the data pins and
DSACKx remains asserted until the first of the two signals, AS or DS, is negated; then the
bus cycle is terminated by placing the data bus in the high-impedance state and negating
DSACKXx.

As shown in Figure 10-6, this type of bus cycle requires five clock cycles (two wait cycles)
when the MPU and the FPCP share the same clock. Under certain conditions, these bus

(%]
o

se St §2 Sw Sw Sw Sw S3 s

w_ [N S S \‘l_/
Ad-AT X |

X

v -
—

>_

031-00 __<

MC68881/MC68882 MCE8881/MCE8882 DSACK AND
RECOGNIZES CYCLE START DATA DRIVERS TRIGGERED $CE2020/NMTERTE

CATAVALLE
MCE8020/14C6E030
RECOGNIZES DSACK ASSERTION
Figure 10-6. Synchronous Read-Cycle Timing Diagram
FREESCALE MC68881/MC68882 USER'S MANUAL

10-10

cycles may require as many as six or seven.clock cycles. Two separate mechanisms de-
termine whether additional clock cycles are required for this type of a bus cycle:

1. The relationship between the assertion of AS, DS, or CS and the rising edge of the
FPCP clock signal

2. The relationship between the assertion of DSACKx by the FPCP and the falling edge
of the MPU clock signal

As previously described, DSACKXx is triggered to assert one and one-half clock cycles after
AS, DS, and CS are sampled as asserted; thus, the best-case timing occurs when all three
of these signals are asserted as early in the bus cycle as possible. Since the MPU triggers
the assertion of AS and DS with the falling edge of the CLK signal {which is assumed to
be the same for both devices) and the FPCP. samples those signals, along with CS, on the
rising edge of the CLK signal, the best-case cycle timing occurs only if AS, DS, and CS are
all asserted to provide the required setup time to the next rising edge of the clock. Thus,
the maximum assertion and propagation delays for these signals must be less than the
clock pulse width low in order to guarantee the best-case bus cycle timing. Although the
maximum specifications for the assertion, by the MPU, of AS or DS from the falling edge
of the clock do not guarantee the best-case timing for operation at 16.67 MHz under worst-
case system environments, the best-case timing normally occurs under typical system
conditions. In order to assure the possibility that the best-case timing occurs, system
designers should utilize the CS generation methods described.in 10.3 CHIP SELECT TIMING
to prevent propagation delays of the CS logic from lengthening the bus cycle by one clock.

In the same manner as just described (where the FPCP misses the assertion of AS, DS, or
CS), one clock cycle may be added to the bus cycle timing if the MPU misses the assertion
of DSACKx by the FPCP, The assertion of DSACKx by the FPCP is triggered by the falling
edge of the clock, and the propagation delay for this assertion can be quite long (slightly
longer than one 16.67 MHz clock cycle under worst-case system conditions). Since the
MPU samples DSACKx on the falling edge of the clock, the assertion of DSACKx triggered
by a given falling clock edge may not be completed ahead of the setup time to the next
falling clock edge. There is very little that a system designer can do to assure that the
DSACKXx assertion is recognized on the first falling clock edge after it is triggered, since
the propagation delay is dependent on individual device characteristics as well as system
conditions such as temperature and power supply levels.

Due to the nature of the two mechanisms just described, it is possible that for an individual
system the bus cycle timing for synchronous read cycles may be different under varying
system conditions. For example, when a system is first turned on {and thus the devices
are at room temperature} it is quite likely that synchronous read cycles require five clock
cycles as shown in Figure 10-6. As the temperature increases to the normal operating
range, the synchronous read cycle timing may change to six clock cycles. If the temperature
rise affects both of the synchronization mechanisms enough (particularly if the CS gen-
eration logic causes the assertion of CS to foliow the assertion of AS and/or DS), the timing
for these operations may increase to seven clock cycles or even vary on a cycle-by-cycle
basis between six and seven clock cycles. Some other factors that may affect the timing
for synchronous reads cycles are the power supply levels for the FPCP and MPU, the
individual device characteristics {due to manufacturing variances), and the capacitive load-
ing of the control signals.

It should be noted that the timing variances for synchronous read cycles do not affect the
overall performance of a system significantly. Specifically, one or two additional clock

|
MC68881/MC68882 USER'S MANUAL FREESCALE
10-11

cycles per synchronous read cycle results in a small percentage change in the overall
execution time for an instruction (since most instructions typically require over 50 clock
cycles to execute). The only environment where these timing variances may be of concern
is when a programmer is attempting to optimize an instruction sequence for maximum
overlap. In this case, these factors should be added to the instruction execution timing
variability mechanisms discussed in SECTION 8 INSTRUCTION EXECUTION TIMING.

104.2 Asyhchronous Read Cycles

When the main processor performs any access to the FPCP with RW high other than a
read of the response or save CIR, the FPCP responds by executing an asynchronous read
cycle. In this context, the term asynchronous signifies that the bus cycle timing is not
related to the FPCP or MPU clock signals in any way. The FPCP supports this type of
operation by implementing all of the CIRs, except the response and save CiRs, as dual
ported structures. Thus, the main processor can access these CiRs at the maximum speed
regardless of the clock frequency of the FPCP, while the FPCP internally accesses these
CIRs in a synchronous manner.

The functional timing for the asynchronous read cycle is shown in Figure 10-7. The FPCP
detects the start of an asynchronous read cycle when chip select, address strobe, and data
_strobe are asserted; read/write is high; and the address pins are not encoded to SC0 or
$04 (which selects the response or save CIR, respectively}. When this condition is met, the
FPCP responds by placing the data from the selected CIR an the data bus and asserting
the appropriate data transfer and size acknowledge encoding. The data value remains on
the data pins and DSACKx remains asserted until the first of the two signals, AS or DS, is
negated at which time the bus cycle is terminated by placing the data bus in the high-
impedance state and negating DSACKx.

st 5t s2 83 54 85
AdAL X
RAW /

BSATR \

—{
D31-00 <

Figure 10-7. Asynchronous Read Cycle Timing Diagram

FREESCALE MC68881/MC68882 USER'S MANUAL
1012

As shown in Figure 10-7, this type of bus cycle requires three clock cycles {no wait cycles)
when the MPU and the FPCP share the same clock. Due to the asynchronous timing of the
data transfer and size acknowledge assertion by the FPCP, this bus cycle timing does not
depend on the clock frequency of the FPCP (there are some exceptions to this rule, as
discussed in 10.5 INTER-CYCLE TIMING RESTRICTIONS). For example, if the MC68881
clock frequency is 12.5 MHz and the MPU clock frequency is 16.67 MHZ, this bus cycle
requires three MPU clock cycles since the assertion of DSACKx is recognized by the MPU
on the falling edge of S2. This assumes that the chip-select logic causes the assertion of
AS and DS so that the AS/DS assertion delay is not lengthened by the chip-select logic
propagation time.

10.4.3 Asynchronous Write Cycles

When the main processor performs any access to the FPCP with R/W low, the FPCP responds
by executing an asynchronous write cycle. The definition of asynchronous in the first
paragraph of the preceding subsection applies also to asynchronous write cycles.

The functional timing for the asynchronous write cycle is shown in Figure 10-8. The FPCP
detects the start of an asynchronous write cycle when chip select and address strobe are
asserted and read/write is low. When this condition is met and an asserted pulse occurs
on DS, the FPCP responds by asserting the appropriate data transfer and size acknowledge
encoding and latching the value of the data bus into the selected CIR. The DSACKx encoding
remains asserted until AS is negated; then the bus cycle is terminated by negating DSACKx,

As shown in Figure 10-8, this type of bus cycle requires three clock cycles (no wait cycies)
when the MPU and the FPCP share the same clock. Due to the asynchronous timing of the

data transfer and size acknowledge assertion by the FPCP, this bus cycle timing does not
depend on the clock frequency of the FPCP (there are some exceptions to this rule, as

S0 $1 §2 53 S4 S5

AdAD X
R/W \

BSATK: \

D31-00 {

Figure 10-8. Asynchronous Write Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL FREESCALE
10-13

discussed in 10.5 INTER-CYCLE TIMING RESTRICTIONS). For example, if the MC68881
clock frequency is 12.6 MHz and the MPU clock frequency is 16.67 MHz, this bus cycle
requires three MPU clock cycles since the assertion of DSACKx is recognized by the MPU
on the falling edge of S2. This assumes that the chip-select logic causes the assertion of
CS to precede the assertion of AS and DS so that the AS/DS assertion to DSACKx assertion
delay is not lengthened by the chip-select logic propagation time.

10.5 INTER-CYCLE TIMING RESTRICTIONS

The bus interface of the MC68881 is designed to operate satisfactorily at any reasonable
clock frequency relationship between the MC68881 and the main processor. In most cases,
differences in the clock frequency of the two devices does not affect the operation of the
bus; and particularly, it does not affect the timing of individual bus cycles. However, there
are some cases where the timing of a bus cycle is modified if the MC68881 is overrun by
the main processor.

During coprocessor interface dialogs, certain bus cycles trigger actions by the FPCP on the
negated edge of data strobe. Operations internal to the FPCP that are initiated in this manner
are completed within four clock cycles after the negation of DS, but the main processor
may initiate a subsequent asynchronous bus cycle before those internal operations are
completed. In these cases, the MC68881 delays the subsequent asynchronous access by
not responding to the bus cycle (and thus not asserting DSACKx) untif the internal oper-
ations are completed. Synchronous accesses (i.e., accesses to the response or save CIR}
execute in the normal manner regardless of preceding accesses. The following is a list of
the bus cycles that initiate internal operations on the negated edge of DS, where a sub-
sequent asynchronous bus cycle might overrun the FPCP and necessitate a delay in the
assertion of DSACKx:

1. A write cycle to the least significant byte of the control CIR

m 2. A write cycle to the least significant byte of the restore CIR

3. The last write cycle to the least significant byte of the operand CIR during a restore
operation with a busy state frame

4. The first read from the least significant byte of the operand CiIR during a save operation
with an idle or busy state frame

in all of these cases, the term least significant byte indicates a transfer of any size that
includes the least significant byte of the referenced CIR and does not indicate that only
byte transfers cause conditions that require delays in subsequent bus cycles.

In addition to the cases just described, the possibility exists that the main processor may
overrun the FPCP if the main processor clock frequency is greater than that of the FPCP.
There are two cases where this might occur:

1. The main processor reads the operand or register select CiR before the FPCP has data
ready for transfer to the main processor.

2. The main processor writes to the operand CIR before the data from the previous write
cycle has been stored internally.

In both of these cases, the FPCP does not respond to the initiation of an asynchronous bus
cycle until the internal data transfers are completed (synchronous bus cycles are not de-
layed).

FREESCALE MC68881/MC68882 USER'S MANUAL
10-14

10.6 COPROCESSOR INTERFACE PROTOCOL RESTRICTIONS

As just described, the FPCP delays asynchronous bus cycles, if necessary, until internal
operations are completed. However, even though the response to these bus cycles is
delayed, the FPCP bus interface unit control logic does detect the beginning of each access
regardiess of the state of the execution unit. Thus, it is possible that an access to a CIR
may be detected before the bus interface unit has completed previous operations and
updated status flags to reflect the state of an instruction dialog. This can result in spurious
protocol violations if the coprocessor interface protocol is not strictly observed.

The most important protocol that must be observed is that the come-again request included
by the FPCP in every evaluate effective address and transfer data primitive must not be
ignored by the main processor. For example, if the come-again request is ignored and the
main processor clock is much faster than the FPCP clock, the following situation might
occur:

1. The main processor receives the evaluate effective address and transfer data request
primitive, processes it, and begins to transfer the operand.

2. The last operand part is written to the operand CIR.

3. The main processor ignores the come-again request and begins execution of the next
instruction immediately,

4. The next instruction is an FPCP instruction that the main processor initiates by writing
the command word to the command CIR.

5. Since the internal operand transfer is not complete, the BIU flags still indicate that
the next expected access is to the operand CIR; thus the access to the command CIR
is deemed illegal, and a protocol violation occurs.

In this case, if the main processor folfows the protocol and services the come-again request

by reading the response CIR immediately after the last operand CIR access, a nuil {CA=1,

IA=1) primitive may be returned by the MC68881. Since the response CIR read-cycle timing

is synchronous with the MC68881 clock signal, this read cycle allows the main processor m
to be synchronized to the MC68881 internal operations. Thus, the next read of the response

CIR normally occurs after internal operations are completed. At that time, the response

encoding is changed to null (CA=0) to allow the main processor to proceed, and the

subsequent access to the command CIR is a legal access.

In addition to the previously mentioned restrictions, the MC68882 may return an evaluate
<ea> and transfer data primitive with CA=0, which does not require the main processor
to read the response register before proceeding to the next instruction. After the last write
to the operand CIR, if the next instruction is another MC68882 instruction, the write to the
command CIR can occur immediately without adverse effects. However, if the read of the
response CIR (which normally follows the write of the command CIR) occurs sooner than
three MC68882 clocks after the completion of the previous operand CIR write operation, a
protocol violation occurs. Therefore, if the main processor is an MC68020 or MC680390, its
clock frequency cannot be more than 1.5 times the frequency of the MC68882 ciock.
Otherwise, the read response CIR operation might occur too soon and cause a protocol
violation. A main processor other than an MC68020 or MC68030 must also observe this
timing requirement to avoid a protocol! violation.

]
MC68881/MC68882 USER'S MANUAL FREESCALE
10-15

FREESCALE MC68881/MC68882 USER'S MANUAL
10-16

SECTION 11
INTERFACING METHODS

This section contains information about the interface logic required to connect the MC68881/
MC68882 (FPCP) to an MC68020/MC68030 (MPU) as a coprocessor, or to an MC68000,
MC68008, or MC68010 as a peripheral processor.

11.1 FPCP AND MPU INTERFACING

The following paragraphs describe the connectihg of the FPCP to an MPU for coprocessor
operation using an 8-, 16-, or 32-bit data bus.

11.1.1 32-Bit Data Bus Coprocessor Connection

Figure 11-1 illustrates the coprocessor interface connection of an FPCP to an MPU using

a 32-bit data bus. The FPCP is configured to operate over a 32-bit data bus when both the
A0 and SIZE pins are connected to VCC.

MC8B020/MC68030 MC68881/MC68882
FCO-FC2 »
cHip
A20-A31 |— =
243 SELECT s
A1B-A19 »{ DECODE
At3-A15 >
A5-A12 pemmm vop —» SiZE
Al-A4 Al-A4
Al Ve —» AD
1Y »! AS
b3 0s
R/W » AW
D24-031 pest »{ 024-D31
016-023 |t 1 D18-023
DB-D15 [»! 08-015
00-07 (- = 00-07
DSACKD | DSACKD
DSACK] [OSACK1

! t

MAIN PROCESSOR COPRDCESSDR
CLOCK CLock

Figure 11-1. 32-Bit Data Bus Coprocessor Connection

MC68881/MC68882 USER'S MANUAL FREESCALE
111

11.1.2 16-Bit Data Bus Coprocessor Connection

Figure 11-2 illustrates the coprocessor interface connection of an FPCP to an MPU using
a 16-bit data bus. The FPCP is configured to operate over a 16-bit data bus when the SIZE
pin is connected to VCC, and the A0 pin is connected to GND. The sixteen least significant
data pins {D15-D0) must be connected to the sixteen most significant data pins (D31-D16)
when the FPCP is configured to operate over a 16-bit data bus (i.e., connect DO to D16, D1
to D17, ... and D15 to D31). The DSACKx pins of the two devices are directly connected,
although it is not necessary to connect the DSACKG pin since the FPCP never asserts it in
this configuration.

MC68020/MC68030 MCEB881/MCE8EE2
FLO-FC2 »
CHIP
A20-A31 f— SELECT &
A16-218 »| DECODE
A13-A15 »

AsA12 b—o Voo —»| SE
ALA4 ALAS
a0 p— GO~ AD
AS » AS
oS »! D5
R/W > RAV
24031 » 02403
D16-023 [« » 016023
08015 —— > 08015
00-07 — >4 0007
OSACKD |~ DSACRO
DSECKT | TSATK

. MAIN PROCESSDR COPROCESSOR
cLacx CLocK

Figure 11-2. 16-Bit Data Bus Coprocessor Connection

11.1.3 8-Bit Data Bus Coprocessor Connection

Figure 11-3 illustrates the connection of an FPCP to an MPU as a caprocessor over an
8-bit data bus. The FPCP is configured to operate over an 8-bit data bus when the SIZE pin
is connected to GND. The 24 least significant data pins (D23-D0) must be connected to
the eight most significant data pins (D31-D224) when the FPCP is configured to operate
over an 8-bit data bus (i.e., connect DO to D8, D16 and D24; D1 to D9, D17, and D25; . .. and
D7 to D15, D23, and D31). The DSACKx pins of the two devices are directly connected,
although it is not necessary to connect the DSACK1 pin since the FPCP never asserts it in
this configuration.

FREESCALE MC68881/MC68882 USER'S MANUAL
11-2

MC68020/MCE8030 MC68681/MC68882

FCO-FC2 »-
A20-A31 sm;r > T
A16-A19 DECODE
A13-A15
AS-A12 b— GND ~ SIZE
Al-A4 > Al-A4
AD » AD
AS > RS
0§ »! 05
R/W »! R/W
024-D31 |- »{ D24-03
D16-023 (—— »{ 016-023
08-D15 —— »| 08015
00-07 — » D0-D?

OSACKO |-

DSACK) e DSACK]
MAIN PROCESSOR COPRDCESSDR
CLOCK CLOCK

Figure 11-3. 8-Bit Data Bus Coprocessor Connection

11.2 INTERFACING THE FPCP AS A PERIPHERAL

The following paragraphs describe the connecting of the FPCP to an MC68000, MC68008,
or MC68010 processor for operation as a peripheral using an 8- or 16-bit data bus.

11.2.1 16-Bit Data Bus Peripheral Processor Connection

Figure 11-4 illustrates the connection of an FPCP to an MC68000 or MC68010 as a peripheral
processor over a 16-bit data bus. The FPCP is configured to operate over a 16-bit data bus
when the SIZE pin is connected to VCC, and the AD pin is connected to GND. The 16 least
significant data pins (D15-D0) must be connected to the 16 most significant data pins
{D31-D16) when the FPCP is configured to operate over a 16-bit data bus (i.e., connect D0
to D16, D1 to D17,... and D15 to D31). The DSACK1 pin of the FPCP is connected to the
DTACK pin of the main processor, and the DSACKO pin is not used.

When connected as a peripheral processor, the FPCP chip select (CS) decode is system
dependent. If the MC68000 is used as the main processor, the FPCP CS must be decoded
in the supervisor or user data spaces. However, if the MC68010 is used for the main
processor, the MOVES instruction can be used to emulate any CPU space access that the
MPU generates for coprocessor communications. Thus, the CS decode logic for such sys-
tems may be the same as in an MC68020 or MC68030 system; that is, the FPCP does not
use any part of the data address spaces.

MC68881/MC68882 USER'S MANUAL FREESCALE
11-3

MC68000 DR MCB8DID MC68881/MCE8882

FCO-FC2 = —
A20-A23 DR A31 o SELECT
DECODE _
A18-A19 - o &
A13-A15 {SYSTEM
AS-A12 o] DEPENDENT) .
AtA4 At
GND —m] AD
s » AS
_U§ " —
A/ o ww
024031
» D16-023
D8-015 |ee ol 05015
0007 fee o poo?
TSACKD
DTATK < BSACRT
MAIN PROCESSOR COPROCESSOR
CLocK o

Figure 11-4. 16-Bit Data Bus Peripheral Processor Connection

11.2.2 8-Bit Data Bus Peripheral Processor Connection

Figure 11-5 illustrates the connection of an FPCP to an MC68008 as a peripheral processor
over an 8-bit data bus. The FPCP is configured to operate over an 8-bit data bus {i.e.,
connect DO to D8, D16, and D24; D1 to D9, D17, and D25; . . . and D7 to D15, D23, and D31).
The DSACKO pin of the FPCP is connected to the DTACK pin of the MCE8008, and the
m DSACKT pin is not used.

When connected as a peripheral processor, the FPCP chip-select (CS) decode is system
dependent, and the CS must be decoded in the supervisor or user data spaces.

11.3 PERIPHERAL PROCESSOR OPERATION

The FPCP.can be used as a peripheral processor on systems where the main processor
does not have a coprocessor interface by using instruction sequences that emulate the
protocol of the coprocessor interface. When an FPCP instruction is encountered by an
MC68000, MC68008, or MC68010, the instruction causes an F-line emulator trap to be taken.
The trap handler then emulates the coprocessor interface protocol. Refer to SECTION 7
COPROCESSOR INTERFACE for details of the communications protocol,

The FPCP requests services from the main processor via coprocessor interface response
register primitives. SECTION 7 COPROCESSOR INTERFACE describes the main processor
service requests required for the execution of each FPCP instruction type. Also included
in SECTION 7 COPROCESSOR INTERFACE is a summary of all FPCP response primitives.

FREESCALE MC68881/MC68882 USER'S MANUAL
11-4

MC68008 MCE8881/MCE88B2
FCO-FC2 wi CHIP
SELECT
A16-A19 DECODE &
A13-A15
{SYSTEM
AS-Al2 »1 DEPENDENT)
GND —»~ SIZE
Al-A4 - AT-A4
AD 1 AQ
A »{ A5
bs -»| 0§
R/W »{ R/W
»! D24.031
»| 016-023
- 08015
00-07 »! D0-D7
OTACK == G5Acka
—1 O8ACKI
MAIN PROCESSOR COPROCESSOR
CLOCK cLocK

Figure 11-5. 8-Bit Data Bus Peripheral Processor Connection

MC68881/MC68882 USER'S MANUAL FREESCALE
11-56

FREESCALE MC68881/MC68882 USER'S MANUAL
11-6

SECTION 12
ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for the
MC68881/MC68882 (FPCP).

12.1 MAXIMUM RATINGS

Rating Symbol Value Unit This device contains circuitry to pro-
tect the inputs against damage due to
high static voltages or electric fields;
Input Voltage Vin —05t0 +7.0 \Y however, it is advised that normal pre-
cautions be taken to avoid application
of any voltage higher than maximum-
Storage Temperature Tstg -55to +150 °C rated voltages to this high-impedance
circuit. Reliability of operation is en-
hanced if unused inputs are tied to an

12.2 THERMAL CHARACTERISTICS — PGA PACKAGE appropriate logic voltage level (e.g.
either GND or Vg

Supply Voltage vee -0.3to +7.0 \

Operating Temperature Ta 0to 70 °C

Characteristic Symbol Value Rating

Thermal Resistance — Ceramic °C/W
Junction to Ambient ByA 30*
Junction to Case 64C 15*

*Estimated

12.3 POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C can be obtained from:

TJ=TA+(PD*06JA) (1)
where:
TA = Ambient Temperature, °C
8JA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD =PINT+Pi/O
PINT =Ilccx Ve, Watts — Chip Internal Power
Pi/0 =Power Dissipation on Input and Qutput Pins — User Determined

For most applications PiyQ<PINT and can be neglected.
The following is an approximate relationship between Pp and Ty (if Py/Q is neglected):

Pp=K<+(TJ+273°C) {2)
Solving equations (1) and (2) for K gives:
K=Pp+(TA+273°C)+6JA » PD2 (3)

where K is a constant pertaining to the particular part. K can be determined from equation
(3) by measuring Pp (at equilibrium) for a known TA. Using this value of K, the values of
Pp and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA.
The total thermal resistance of a package (8 JA) can be separated into two components,
8JC and 9CA., representing the barrier to heat flow from the semiconductor junction to the
package (case) surface (6JC) and from the case to the outside ambient (6CA). These terms

are related by the equation:
8JA=0JCTOCA (4)

]
MC68881/MC68882 USER'S MANUAL FREESCALE
121

0JC is device related and cannot be influenced by the user. However, 8CA Is user de-
pendent and can be minimized by such thermal management techniques as heat sinks,
ambient air cooling, and thermal convention. Thus, good thermal management on the part
of the user can significantly reduce 8CA so that 6 A approximately equals 8JC. Substitution
of 6)C for 8JA in equation (1) will result in a lower semiconductor junction temiperature.

Values for thermal resistance presented in this document, unless estimated, were derived
using the procedure described in Freescale Reliability Report 7843, “Thermal Resistance
Measurement Method for MC68XX Microcomponent Devices,” and are provided for design
purposes only. Thermal measurements are complex and dependent on procedure and
setup. User derived values for thermal resistance may differ.

12.4 DC ELECTRICAL CHARACTERISTICS
(Ve =5.0 Vdc=5%; GND=0 Vdc, Tp=0°C to 70°C}

. Characteristic Symbol Min Max Unit
Input High Volitage VIH 2.0 Vee \Y
Input Low Voltage ViL |GND —-058 0.8 Vo

) Input Leakage Current @ 5.25 V CLK, RESET,_ AW, AD-A4, lin —_ 10 pA |

CS, DS, AS, SIZE

Hi.Z (Off State) Input Current G 2.4 V/0.4 V DSACKO, DSACK1, D0-D31} lyg) —_ 20 ! wA
Output High Voltage (IgH = ~400 pA) DSACKD, DSACKT, DO-D31| Voy 24 — | v
Output Low Voltage (1o =5.3 mA} DSACKO, DSACKT, D0-D31| VoL — 0.5 v
Output Low Current (Vo = GND) SENSE| gL — 500 pA
Power Dissipation Pp — {075 | W |
Capacitance* (Vin=0, TaA=25°C, f=1 MHz) Cin — 20 | pF |
Qutput Load Capacitance CL — 130 | pf |

*Capacitance is periodically sampled rather than 100% tested.

___]
FREESCALE MC68881/MC68882 USER'S MANUAL
12-2

12.5 AC ELECTRICAL CHARACTERISTICS — CLOCK INPUT
Voo =5.0 Vde +5%; GND=0 Vdc, TA=0°C to 70°C) {see Figure 12-1)

16.67 MHz | 20 MHz 25MHz | 33.33 MHz |
Num Characteristic Min | Max | Min | Max | Min | Max | Min | Max | UMt

Frequency of Operation 8 |1667| 125 | 20 [125 | 25 | 167 {3333 MHz

1 Cycle Time 60 126 | 50 80 40 80 30 60

2,3 |Clock Pulse Width (Measured from 1.5V to | 24 95 20 54 15 59 14 66 ns
1.5V for 33 MHz}

4,5 [Rise and Fall Times

CLocK

\ /

NOTE:
1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high
voltage of 2.0 volts, unless otherwise noted. The voltage swing through this range should

start outside, and pass through, the range such that the rise or fall will be linear between
0.8 volts and 2.0 volts.

Figure 12-1. Clock Input Timing Diagram

. __]
MC68881/MC68882 USER'S MANUAL FREESCALE

12-3

12.6 AC ELECTRICAL CHARACTERISTICS — READ AND WRITE CYCLES
(Vee =5.0 Vde £5%; GND =0 Vdc, Tao=0°C to 70°C) (see Figures 12-2 through 12-4)

1667 HMz | 20 MHz 25MHz | 3333 MHz | ‘
Num Charagteristic Min | Max | Min | Max | Min | Max | Min | Max | Ut |
65 |Address Valid to AS Asserted 5| —l1w]—]5] |5 —] ns
6A5. |Address Valid 1o DS Asserted (Read) 5| —|1w0w| -5 —~1]51]— ns
6B5 |Address Valid to DS Asserted (Write) 50 | — {50 | —]3| ~| 2] — ns
76 [AS Negated to Address Invalid 0| —|10] —15]| —|5|— ns
7A8 |DS Negated to Address Invalid 0| — 10| — 5 — 5 — 1 ns
89 [CS Negated to AS Asserted 0 — 0 — 0 — 0 — | =ns
8A2 TS Negated to DS Asserted (Read} e | — {0 | —| 0| —] 0] —: &ns
8B [CS Asserted to DS Asserted (Write) 30 | — (25 — 20| —1]15]— ns
9 |AS Negated to CS Negated 0| — 10| — 5 — 5 | — | »ns
9A |DS Negated to CS Negated : 0] — | 10| — 5 — 5 — i ns
10 - |R/W High to AS Asserted (Read) B — {10 — 5 — 5 — | e
10A |RAW High to DS Asserted {Read) 15 — 10 — 5 — 5 — i ns ‘
108 |RW Low to DS Asserted (Write) 3% | — |3 | — | 253 — |25] — ns
11 |AS Negated to RW Low (Read) or AS 0 — {10 — 5 — 5 | — rs
Negated to R/W High {Write) | I :
11A DS Negated to RW Low (Read) or DS Wl —f{1w0f{—|5|~18:.—1 ns
Negated to R/W High (Write) i '
12 |DS Width Asserted (Write) 0 | — |3} — |30 | —]23]|— ns
13 |DS Width Negated 0 | — |38} — |30} — | 23 — ns |
13A4 rD—S Negated to AS Asserted 30 — 30 — 25 | — 18 | — ns |
142 |CS, DS Asserted to Data-Out Valid) (Read) | — | 80 | — | 45 | — | 45 | — | 30 ns |
15 |DS Negated to Data-Out Invalid (Read) o | =l o]l —]o] —] ol — ns |
16 DS Negated to Data-Out High Impedance — 50 - 30 — 30 — 20 ns |
(Read) | i
17 Data-In Valid to DS Asserted (Write) 15 — 10 — 5 — 5 - ns |
18 DS Negated to Data-In Invalid (Write) 15 — 10 —_ 5 — 5 5 — s
192 |START True to DSACKO and DSACK1 — s | -3 | —}25] — 1] 20 rs |
Asserted i
19A7 |DSACKO Asserted to DSACKT Asserted (Skew) | ~15 | 15 | -10| 10 | -10| 10 | — | 5 as |
20 |DSACKO or DSACKT Asserted to Data-Out | — | 50 | — | 43 | — | 32 [— | 17 ns
Valid
218 |START False to DSACKO and DSACK1 — 50 — 30 - 30 — 20 .’ ns I
Negated i
228 |START False to DSACKO and DSACK1 — 70 —_ 40 — 40 — |l =2 ns
High Impedance i :
- Continued -

FREESCALE MC68881/MC68882 USER'S MANUAL
12-4

12.6 AC ELECTRICAL CHARACTERISTICS — READ AND WRITE CYCLES (Continued)

16.67 HMz 20 MHz 25 MHz 33.33 MHz
Num Characteristic Min | Max | Min | Max | Min | Max | Min | Max | Unt
2338 |START True to Clock High 0 — 0 — 0 — 0 — ns
{Synchronous Read)
243 |Clock Low to Data-Out Valid — |15 — |8 | — [60| — | 45 ns
{Synchronous Read)
2538 |START True to Data-Out Valid — |105+| — |80+ | — |60+ | — |45+ ns
{Synchronous Read) 1.5 2,5 1.5 25 1.5 25 1.5 2.5 Clks
263 |Clock Low to DSACKO and DSACK] Asserted| — 75 — 55 — 45 — 30 ns
{Synchronous Read)
2738 |START True to DSACKG and DSACKT — |75+ | — |85+ | — |45+ | — |30+ | s
Asserted {(Synchronous Read) 1.8 25 1.5 2.5 1.5 2.5 15 25 Clks
NOTES

1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless
otherwise noted. The voltage swing through this range should start outside, and pass through, the range such that
the rise or fall will be linear between 0.8 volts and 2.0 volts.

2. These specifications only apply if the MC68882 has completed all internal operations initiated by the termination of
the previous bus cycle when DS was negated.

. Synchronous read cycles occur onfy when the save or response CIR locations are read.

. This specification only applies to systems in which back-to-back accesses (read-write or write-write) of the operand
CIR can occur. When the MC68882 is used as a coprocessor to the MC68020/MC68030, this can occur when the
addressing mode is Immediate.

. If the SIZE pin is not strapped to either Vo or GND, it must have the same setup times as do addresses.

. If the SIZE pin is not strapped to either Ve or GND, it must have the same hold times as do addresses.

. This number is reduced to 5 nanoseconds if DSACKO and DSACK1 have equal loads.

. START is not an external signal; rather, it is the logical condition that indicates the start of an access. The logical
equation for this condition is START = CS+AS+ R/W-DS. _ _

9. If a subsequent access is not a FPCP access, CS must be negated before the assertion of AS and/or DS on the non-
FPCP access. These specifications replace the old specifications 8 and 8A (the old specifications implied that in all
cases, transitions in C5 must not occur simultaneously with transitions of AS or DS. This is not a requirement of the
/MC68882).

& w

[NN X

Timing diagrams (Figures 12-2, 12-3,
and 12-4) are located on foldout pages
at the end of this document.

]
MC68881/MC68882 USER'S MANUAL FREESCALE
12-5

FREESCALE MC68881/MC68882 USER'S MANUAL
12-6

SECTION 13
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68881/MC68882
(FPCP). In addition, detailed information is provided to be used as a guide when ordering.

13.1 STANDARD MC68881/MC68882 ORDERING INFORMATION

Package Type Frequency {(MHz} Temperature Order Number
Pin Grid Array 12.5 0°C to 70°C MC68881RC12
RC Suffix —-40°C to +85°C MC68881LRC12
—55°C to +125°C MC68881ERC12
16.67 0°C to 70°C MC68881RC16
—40°C to +85°C MC68881LRC16
-55°C to +125°C MC68881ERC16
20 0°C to 70°C MC68881RC20
—-40°C to +85°C MC68881LRC20
—55°C to +125°C MC68881ERC20
25 0°C to 70°C MC68881RC25
Pin Grid Array 33.33 0°C tp 70°C MC68882RC33
RC Suffix 16.67 0°C to 70°C MC68882RC16
20 0°C to 70°C MC68882RC20
25 0°C to 70°C MC68882RC25
MC68881/MC68882 USER'S MANUAL FREESCALE

131

13.2 PIN ASSIGNMENTS
68-PIN GRID ARRAY

Ve
k(00O 0O 0O0OO0OOO O)
Al R/W GND*DSACK1 D30 D23 D27 D25 D24 D22
J O O 00O OO0 O 0O OO0
A3 Vpc** CS DSACKO D3t D28 025 GNO D23 OOt
H{ O O O O 0 0
AS Az A Vee GND** D19
c6y © O O O
DS A4 D20 D18
Fl © O O O
SIZE GND** D17 D16
E O O O O
NC Ve Vee GND
0] O O O O
RESET GND** D12 DS
c] O O O O O O
GND CLK GND D3 D13 D4
s8] O O O O O O O O O O
Vec" GND*® GND*SENSE D2 DS GND Vge DI DN
sl O O O O O O O O O O
\VCC" GND* DO D1 D3 D4 D6 D7 D8 GND"/

1 2 3 4 5 13 7 8] 10
Pin Group Vee GND
D31-D16 H8 Js
D15-D00 88 B7
Internal Logic, E2, E9 A2, B2, B3, BA***,
DSACK1, DSACKO C3, E10, K3
Separate — Cc1

Extra A1, B1,J2 A10, D2, F2, H9

*New assignment for the A93N mask.
**Reserved for future Freescale use.
**#SENSE pin, may be used as an additional GND pin.

FREESCALE MC68881/MC68882 USER'S MANUAL
13-2

13.3 PACKAGE DIMENSIONS

RC SUFFIX
PIN GRID ARRAY

CfﬂSE 765A-03 NOTES:

T 1. DIMENSIONS A AND B ARE DATUMS AND TIS
DATUM SURFACE.

2. POSITIONAL TOLERANCE FOR LEADS (68 PLACES)
(o015 @[TG [ED)]

3, CIMENSIONING AND TOLERANCING PER ANS)
Y145M, 1962,

4. CONTROLLING DIMENSION: INCK.

7
)

O

— =

[eLmETERS | wchEs. |
MAX

MIN | MAX | WIN
667 105 | 1070

387 | 2707 | 1.050 | 1070
151 | 286 | 0075 | 0405)

043 | 080) 0097 | 0024
254 BSC 0.100 BSCJ

o | 4@ 1o (o]

loJojolozojolo]
OOV

4 5 6 78 91

P@ OO0 MO I LR

H [olcclelolcRoXoXolo)
o KeleleXoJoyoiooloXol

« OO

—
o]
Q
—

_h(

:
=

PN AL

MC68881/MC68882 USER'S MANUAL FREESCALE
13-3

FREESCALE MC68881/MC68882 USER'S MANUAL
13-4

APPENDIX A
GLOSSARY

ALGORITHM
A procedure for solving a mathematical problem in a finite number of steps that
frequently involves repetition of an operation.

BCD {Binary-Coded-Decimal) Number
The representation of cardinai numbers 0 through 9 by 10 binary codes of any length.
The minimum length is four and there are over 29 x 10° possible four-bit BCD codes.
However, codes in which the four bits contain the hexadecimal representation of 0
through 9 are the more commonly used codes, for obvious reasons.

BIASED EXPONENT
The sum of the exponent and a constant (bias) chosen to make the biased exponents
range non-negative.

BINARY FLOATING-POINT NUMBER
A bit string characterized by three components: a sign, a signed exponent, and a
significand. {See single, double, and extended precision.) The numerical value of the
bit string is the signed product of the significand and two raised to the power of the
exponent.

DENORMALIZED NUMBER
A floating-point number having all zeros in the exponent and a non-zero value in the
fraction/mantissa.

DOUBLE PRECISION
A 64-bit binary floating-point operand format composed of three fields: a one-bit sign
field, an 11-bit biased exponent field, and an 52-bit fraction (significand) field.

DYADIC OPERATION
' An operation on two operands.

E FIELD
See exponent (E field).

EXPONENT
A symbol written above and to the right of a mathematical expression to mdncate the
operation of rising to a power.

EXPONENT (E FIELD)
The component of a binary fioating-point number that normally signifies the integer
power to which two is raised in determining the value of the represented number.
Occasionally, the exponent is called the signed or unbiased exponent.

MC68881/MC68882 USER'S MANUAL FREESCALE
A1

EXTENDED PRECISION
A 96-bit binary floating-point operand format composed of four fields: a one-bit sign
field, an 15-bit biased exponent field, a 16-bit undefined field, and a 64-bit mantissa
(significand) field.

F FIELD
See fraction (F field).

FIXED-POINT
Pertaining to a numeration system in which the position of the radix point is fixed
with respect to one end of the numerals, according to some convention. The integer
data types used by the FPCP are fixed-point numbers.

FLOATING-POINT
Pertaining to a system in which the location of the radix point does not remain fixed
with respect to one end of the numerical expressions, but is regularly recalculated.
The location of the point is usually given by expressing a power of the base {or radix).
The single, double, and extended precision data types used by the FPCP are floating-
point numbers.

FRACTION (F FIELD)
The field of the significand that lies to the right of its implied binary point.

INTEGER
~ Any of the natural numbers, the negatives of these numbers, or zero.

MANTISSA
Mantissa and significand are interchangeable throughout this manual. See significand.

MODULO
A mathematical operation that yields the remainder of division. Thus, 39 modulo 6=3.

MONADIC OPERATION
An operation on one operand, for example, negation.

- NAN (Not-A-Number)

A symbolic entity encoded in floating-point format. There are two types of NANs;
signaling and quiet. Signaling NANs signal the valid operation exception whenever
appearing as operands. Quiet NANs propagate through almost every arithmetic op-
eration without signaling exceptions.

NORMALIZE
To convert a floating-point number to one whose significand consists of an integer
bit of 1.

OPERAND
‘Thatwhich is, or is to be operated upon. An operand is usually identified by an address
field of an instruction.

ORTHOGONAL
Statistically independent.

FREESCALE MC68881/MC68882 USER'S MANUAL
A-2

SBIT -
See sign bit (S field).

S FIELD
See sign bit (S field).

SIGN BIT (S FIELD)
Denotes the sign of the operand: zero for positive and one for negative. Floating-point
numbers are in sign-magnitude form, which means that only the S bit is complemented
to change the sign of the represented number.

SIGNIFICAND
The component of a binary floating-point number that consists of an explicit or implicit.
leading bit to the left of the implied binary point and a fraction field to the right of the
implied binary point. Significand and mantissa are interchangeable throughout this
manual. See fraction (F field).

SINGLE PRECISION
A 32-bit binary floating-point operand format composed of three fields: a one-bit sign
field, an 8-bit biased exponent field, and a 23-bit fraction (significand) field.

TRANSCENDENTAL
Being, involving, or representing a function (sine x, log x) that cannot be expressed
by a finite number of algebraic operations.

UNNORMALIZED NUMBER
An extended precision external operand that contains an explicit integer part bit {j) of
zero and an exponent that is neither the maximum nor the minimum for the format.

MC68881/MC68882 USER'S MANUAL FREESCALE
A-3

FREESCALE
A-4

MC68881/MC68882 USER'S MANUAL

APPENDIX B
ABBREVIATIONS AND ACRONYMS

A Address

Abs Absolute

AEXC Accrued exception

ALU Arithmetic logic unit

APU Arithmetic processing unit

AS Address strobe

B Byte integer

BCD Binary coded decimal

BIU Bus interface unit

B8SUN Branch/set on unordered

cc Condition code

CLK Clock

Ccwmp Compare

cp Coprocessor

cPU Central processor unit

CPRED Conditional predicate

Cs Chip select

Ccu Conversion unit

d Displacement

D Data

D Double precision binary real floating-point

DivV Divide

DMA Direct memory access

Ds Data strobe

DSACK Data and size acknowledge

Dz Divide by zero

e Exponent

ea Effective address

EQ Equal

EXC Exception

EXP Exponent

ENAB Enable
MC68881/MC68882 USER'S MANUAL FREESCALE

B-1

f Fraction

F False

F Floating-point

FB Floating-point branch

FBEQ Floating-point branch equal

FBGT Floating-point branch greater than

FBLE Floating-point branch less than or equal

FBNEQ Floating-point branch not equal

FBNGT Floating-point branch not greater than

FDB Floating-point decrement and branch

FDBEQ Floating-point decrement and branch equal
FDBGT Floating-point decrement and branch greater than
FDBLE Floating-point decrement and branch less than or equal

FDBNEQ Floating-point decrement and branch not equal
FDBNGT Floating-point decrement and branch not greater than

_FP Floating-point
FPCC Floating-point condition code
FPCP MC68881/MC68882 coprocessor
FS Floating-point set
FSEQ Floating-point set equal
FSGT Floating-point set on greater than
FSLE Floating-point set on less than or equal
FSNEQ Floating-point set not equal
FSNGT Floating-point set on not greater than
FT Floating-point trap on
FTEQ Floating-point trap equal
FTGT Floating-point trap greater than
FTLE Floating-point trap less than or equal
FTNEQ Floating-point trap not equal
FTNGT Fioating-point trap not greater than
FTP Floating-point trap on parameter
GE Greater than or equal
GLE Greater or less or equal
GND Ground
GT Greater than
/0 Input/output
| Infinity
IADDR Instruction address
D Identification
Imm Immediate
INEX Inexact
INEX1 Inexact arithmetic
INEX2 Inexact conversion
10P Invalid operation
i Integer part
FREESCALE MC68881/MC68882 USER'S MANUAL

B-2

L Long word integer

LE Less than or equal

LSB Least significant bit/byte

LT Less than

MANT Mantissa

MOD Modulo

MPU Main processing unit

MPU MC68020/MC68030 processor
MSB Most significant bit’/byte

MUL Multiply

n Number

N Negative

NAN Not-a-number

NEQ Not equal

NGE Not greater than or equal
NGL Not greater or less than
NGLE Not greater or less or equal
NGT Not greater than

NLE Not less than or equal

NLT Not less than

OGE Ordered greater than or equal
OGL Ordered greater or less than
OGT Ordered greater than

OLE Ordered less than or equal
OLT Ordered less than

OPERR Operand error

OR Ordered

OVFL Overflow

P Packed binary coded decimal real string
PC Program counter

QuoT Quotient

R/W Read/write

REM Remainder

RM Round toward minus infinity
RN Round to nearest

RP Round toward plus infinity
Rz Round toward zero
MC68881/MC68882 USER'S MANUAL FREESCALE

B-3

UEQ
UGE
UGT
ULE
ULT

UNFL

X

+inf

—inf

FREESCALE
B-4

Sign

Single precision binary real floating-point

Sign of exponent

- Signaling equal

Signaling false
Single

Sign of mantissa
Signaling NAN
Signaling not equai
Set on condition
Signaling true
Subtract

Trap
True
Transistor-transistor logic

Unordered or equal
Unordered or greater or equal
Unordered or greater
Unordered or less or equal
Unordered or less than
Unordered

Underflow

Word integer

Don’t care, irrelevant

Extended precision binary real floating-point

Zero
Hexadecimal
Positive infinity

Negative infinity

MC68881/MC68882 USER'S MANUAL

—A—

AC Electrical Characteristics
Clock Input, 12-3
Read and Write Cycles, 12-4
Accrued Exception Byte, 1-5, 2-7
Accuracy,
Arithmetic Instruction, 4-6
Computational, 4-5
Decimal Conversion, 4-8
Transcendental Instruction, 4-7
Address Bus, 7-1, 9-1, 10-1-10-5, 10-7,
11-2,11-3
Encoding, Coprocessor, 7-1
Address Error Exception, 6-28
Address Strobe Signal, 9-3, 10-6, 10-9-10-12
Addressing Modes, 1-15, 4-12
AEXC Byte, 2-6, 2-7, 6-19
Algorithm, Rounding, 6-17
Arithmetic
Calculation Times, 8-27
Instruction Accuracy, 4-6
Operation
Bus Cycle Activity, 8-14
Timing, 8-11
Timing, MC68881, 8-14
Timing, MC68882, 8-15
Arranging FMOVE Instructions, MC68882, 5-9
AS Signal, 9-3, 10-6, 10-8-10-13
Assignments,
Data Bus Bit, 10-2
Exception Vector, 6-4
Pin, 13-2
Assumptions,
Execution Timing, 8-1
Typical Execution Timing, 8-11
Asynchronous
Read Cycle Timing, 10-12
Read Cycles, 10-
Write Cycle Timing, 10-13
Write Cycles, 10-13
A0-Ad Signals, 7-2, 9-1, 10-1-10-5, 11-2, 11-3
A13-A15 Signals, 10-7
A16-A19 Signals, 10-7

Benchmark, Linpack, 5-10, 5-11
Binary Real Formats, 3-2
Bit,

CA, 7-10

DR, 7-10

EXC_PEND, 5-11, 6-35

MC68881/MC68882 USER'S MANUAL

INDEX

Bit (Continued)
1A, 7-11
PC, 7-11
PF, 7-11
TF, 7-11
BIU, 1-6
Flags, 5-11, 6-32, 6-33
Block Diagram,
MCe68881, 1-7
MC68882, 1-8

Branch/Set on Unordered Exception, 6-5

BSUN Exception, 6-5
Dialog, 7-33, 7-36
Bus,

Address, 7-2, 9-1, 10-1-10-4, 10-6,

1-2, 113
Arbitration Processing, 5-13

Cycle Activity, Arithmetic Operation, 8-16
Data, 7-2, 9-2, 10-1-10-5, 11-2, 11-3

Error
Exception, 6-26
Processing, 5-13
Interface Unit, 1-6
Transfer Qverview, 10-1
Busy State Frame, 6-35
Format,
MC68881, 6-30
MCe8882, 6-31
Byte,

Accrued Exception, 1-5, 2-6, 2-7

AEXC, 2-6, 2-7, 6-18
Condition Code, 1-5, 2-4
ENABLE, 6-5, 6-18, 6-34
EXC, 2-6, 6-4, 6-18, 6-34
Exception

Enable, 14, 2-2, 6-4

Status, 1-4, 2-6, 6-4
Mode Control, 1-2, 2-3
Quotient, 1-5, 2-6

—C —

CA Bit, 7-10
Calculation Phase Timing, 8-3
Characteristics,
AC Electrical
Clock Input, 12-3

Read and Write Cycles, 12-4

DC Electrical, 12-2
Thermal, 12-1

Chip Select
Decode, 7-1, 7-2, 11-3

Signal, 7-3, 9-3, 10-6, 10-8, 10-9, 10-10

Timing, 10-6

FREESCALE
INDEX-1

—C—

CA Bit, 7-10
Calculation Phase Timing, 8-3
Characteristics,
AC Electrical
Clock Input, 12-3
Read and Write Cycles, 12-4
DC Electrical, 12-2
Thermal, 12-1
Chip Select
Decode, 7-1, 7-2, 11-3
Signal, 7-3, 9-3, 10-6, 10-8, 10-9, 10-10
Timing, 10-6
CIR, 1-6, 7-2, 7-3, 8-2, 10-1
Command, 5-1, 5-2, 5-4, 6-20, 6-21, 6-25, 6-36,
7-4-7-6, 7-17, 7-21, 7-30, 7-39, 8-6,
8-25, 10-15
Condition, 6-21, 6-25, 6-36, 7-56-7-7, 7-21,
7-38, 8-6, 8-18, 8-25, 8-37
Control, 6-21, 6-23, 6-24, 6-36, 7-4-7-6,
7-13, 7-16, 7-31, 7-35, 7-39, 10-14
[nstruction Address, 6-21, 6-22, 7-8
Operand, 5-4, 6-20, 6-32, 6-35, 7-3-7-7,
7-13, 7-15, 7-29, 7-40, 10-3, 10-4, 10-5,
10-14-10-16
Operand Address, 7-8
Operation Word, 7-6
Register Select, 6-21, 7-7, 7-15, 7-27, 10-2,
10-15
Response, 5-1, 5-2, 5-4, 5-8, 5-13, 6-3, 6-5, 6-10,
6-12, 6-13, 6-17, 6-20~6-22,
6-23, 6-25, 6-35, 6-37, 6-39, 7-3-7-6,
7-10, 7-19, 7-32, 8-6-8-10,
8-24, 8-25, 8-33, 8-34, 8-40, 10-9, 10-11,
10-14-10-15
Restore, 6-21, 6-38, 7-5, 7-6, 7-30, 8-38, 10-14
Save, 6-21, 6-35-6-37, 7-5-7-7, 7-17,
7-28, 7-38, 8-18, 8-38, 10-10, 10-12, 10-15
CLK Signal, 9-6, 10-5, 10-9, 10-10
Clock Signal, 9-6, 10-5, 10-8, 10-10
Code,
Exception Handler, 5-10
Optimization, MC68882, 5-11
Codes, Effective Address, Valid, 7-13

Command CIR, 5-1, 5-2, 5-4, 6-20, 6-21, 6-25, 6-35,

7-3-7-6, 7-17, 7-22, 7-31, 7-39, 8-7, 8-25, 10-15
Command Word,
General Type Instruction, 4-125
Undefined, 4-133
Compatibility, IEEE
Exception, 6-19
Trap, 6-19
Computational Accuracy, 4-5
Concept, Copracessor, 1-2
Concurrency,
Instruction, 5-1
MC68881 FMUL and FMOVE Instruction, 5-7
MC68881 FMUL Instruction, 5-2
MC68882 FMUL and FMOVE Instruction, 5-8

FREESCALE
INDEX-2

Concurrent
Floating-Point Computations, 5-1, 5-2
Instruction Execution, 8-4
Integer Computations, 5-1
Operations, MC68882, 8-13
Condition CIR, 6-20, 6-25, 6-35, 7-5-7-7, 7-19,
7-35, 8-7, 8-18, 8-25, 8-36
Condition Code
Byte, 1-4, 2-4
Processing, 4-15
Conditional Branch Instruction Format, 4-131
Conditional
Instruction, 1-14, 5-7
Dialog, 7-28
Encoding, 4-135
Execution Times, 8-18
Format, 4-135
Conditional (Continued)
Predicate Field, 4-139
Encoding, 4-140
Predicates, 4-136
Termination Times, 8-36, 8-37
Test
Definitions, 4-8
Mnemonics, 4-4
Configuration, Typical Coprocessor, 1-6
Connections, Power Supply, 9-5
Considerations,
Power, 12-1
Programming, 1-16
Constant-to-Register Instructions, 4-129
Format, 4-129
Context
Restore Instruction Sequence, 6-40
Save Instruction Sequence, 6-40
Switch
Instruction Dialogs, 7-28
Processing, 5-12, 5-13
Switching, 6-28
Summary, 6-39
Control CIR, 6-21, 6-22, 6-23, 6-35, 7-3-7-6, 7-13,
7-16, 7-31, 7-33, 7-39, 10-13
Conventians, Instruction Description, 4-1
Coprocessor
Address Bus Encoding, 7-1
Applications Programming, 5-1
Concept, 1-2
Condition Trap Instruction Exception, 6-24
Connection,
16-bit Bus, 11-2
32-bit Bus, 11-1
8-bit Bus, 11-2, 11-3
Detection, 5-15
1D Field, 4-138
Identification, 5-15
Example, 5-16
Instruction, 7-8
Format, 4-125

MC68881/MC68882 USER'S MANUAL

—C—

Interface, 1-2, 1-9, 7-1
Overhead, 8-6
Overhead Timing, 8-8, 8-9
Protocol Restrictions, 10-15
Register, 1-6, 7-2, 7-3, 9-2, 10-1
Response Primitive, 7-10
Systems Programming, 5-10
Coprocessor-Detected
Exceptions, 6-2
Protocol Violation Exception, 6-20
Cp-ID, 7-9
CPU Space Types, 7-2
CS Signal, 7-3, 9-3, 10-6, 10-9, 10-11, 10-12

—_D —

D Format, 3-11
Data Bus, 7-3, 9-2, 10-1, 10-3-10-5, 11-2, 11-3
Bit Assignments, 10-2
Operand Alignment, 10-2
Size, 9-2
Data Formats, 1-10, 3-1
Data Movement Instructions, 4-2
Data Strobe Signal, 9-3, 10-6, 10-9-10-13
Data Transfer and Size Acknowledge Signals, 1-6,
6-21, 7-2, 7-3, 9-3, 10-2-10-5, 10-6,
10-9-10-11, 10-13, 11-2, 11-3
Data Types, 3-3, 3-13
Summary, 3-6
DC Electrical Characteristics, 12-2
Decimal Conversion Accuracy, 4-8
Decode, Chip Select, 7-1, 7-2, 11-3
Decoupling, Vcg., 9-5
Definitions,
Conditional Test, 4-8
Format Word, 6-36
Denormalized Numbers, 3-4
Description, General, 1-1
Descriptions, Instruction, 4-18-4-124
Destination Format Field Encoding, 4-130
Destination Register Field, 4-139
Detection, Coprocessor, 5-15
Diagrams, Timing, Foldout
Dialog,
Conditional Instruction, 7-28
External-to-Register Instruction, 7-22
MCe8882, 7-24
F-Line Emulator Exception, 7-39
Format Exception,
FRESTORE Instruction, 7-40
FSAVE Instruction, 7-39
FSAVE Instruction, 7-28
Mid-Instruction Interrupt, 7-35, 7-38
Move Control Registers Instruction, 7-26
Move Multiple FPn Registers Instruction, 7-27
OPCLASS 000 Instruction, 7-22
OPCLASS 010 Instruction, 7-22, 7-23
MC68882, 7-24
OPCLASS 011 Instruction, 7-24, 7-25
MC68882, 7-26

MC68881/MC68882 USER'S MANUAL

QOPCLASS 100 instruction, 7-26, 7-27
OPCLASS 101 Instruction, 7-26, 7-27
OPCLASS 110 Instruction, 7-27, 7-28
OPCLASS 111 Instruction, 7-27, 7-28
Register-to-External Instruction, 7-22, 7-23
MC68882, 7-26
Register-to-Register Instruction, 7-22
RESTORE Instruction, 7-30
Take BSUN Exception, 7-38
Take Mid-Instruction Exception, 7-32
MC68881, 7-34
MCe8882, 7-34
Take Pre-Instruction Exception, 7-31
MC68882, 7-33, 7-34
Dialogs,
Context Switch Instruction, 7-28
Exception Processing, 7-31
General Type Instruction, 7-21
Instruction, 7-19
Dimensions, Package, 13-3
Divide-by-Zero Exception, 6-14
Double Precision Format, 3-11
DR Bit, 7-10
DS Signal, 9-3, 10-6, 10-10-10-14
DSACKO Signal, 1-4, 6-21, 7-3, 9-3,
10-2-10-4, 10-6, 10-10, 10-11, 10-13, 11-2,
11-3,11-4
DSACK1 Signal, 1-5, 6-21, 7-3, 9-3,
10-2-10-4, 10-6, 10-10, 10-11, 10-13, 11-2,
11-3,11-4
Dual Monadic Operation Instruction Format, 4-4
Dyadic Operation
Calculation Times, 8-30-8-33
Instruction, 1-14, 4-2, 4-3, 5-6
Format, 4-2
DZ Exception, 6-14
D0-D31 Signals, 7-3, 9-3, 10-1-10-5, 11-2-11-4

—E —

Early Chip Select Logic Example, 10-8
Effective Address
Calculation Timing, 8-11
Field, 4-138
Encoding, 4-140
Electrical Characteristics,
AC
Clock Input, 12-3
Read and Write Cycles, 12-4
DC, 12-2
Electrical Specifications, 12-1
ENABLE Byte, 6-4, 6-19, 6-34, 6-35
Encoding,
Conditional Instruction, 4-133
Conditional Predicate Field, 4-140
Destination Format Field, 4-130
Effective Address Field, 4-139
Extension Field, 4-128, 4-131
Move FPcr, 4-132
Move Multiple FPn, 4-134
Register Field, 4-127
Source Format Field, 4-129

FREESCALE
INDEX-3

—E—

Encodings,
Evaluate Effective Address and Transfer Data
Primitive, 7-14
Null Primitive, 7-11
End Phase, 6-38
Errors, Operand, 6-7, 6-8
Evaluate Effective Address and Transfer Data
Primitive, 7-14
Encodings, 7-14
Format, 7-13
Example,
Coprocessor |dentification, 5-16
Early Chip Select Logic, 10-8
\dle State Frame Access, 5-13
Late Chip Select Logic, 10-9
MC68881 Instruction Overlap, 8-22, 8-23
MC68882 Performance Improvement, 5-10
Minimum Exception Handler, 5-12
Reset Lagic, 10-6
Sense Device Circuit, 9-5
Timing Calcutation, 8-16
Transfer Multiple Coprocessor Registers, 7-16
EXC Byte, 2-6, 6-5, 6-19, 6-34, 6-35
EXC_PEND Bit, 5-11, 6-33
Exception,
Address Error, 6-27
Branch/Set on Unordered, 6-5
BSUN, 6-5
Bus Error, 6-27
Coprocessor Condition Trap Instruction, 6-24
Coprocessor-Detected Protocol Violation, 6-20
Divide-by-Zero, 6-14
DZ, 6-14
Format Error, 6-28
Ilegal Command Word, 6-20
lllegal Instruction, 6-24
Inexact
Decimal Result, 6-18
Result, 6-15
INEX1, 6-18
INEX2, 6-15
Interrupt, 6-26
MPU-Detected Protocol Violation, 6-25
Operand Error, 6-7
OPERR, 6-7
QOverflow, 6-9
OVFL, 6-9
Privilege Violation, 6-27
Signaling Not-A-Number, 6-6
SNAN, 6-6
Trace, 6-25
Underflaw, 6-11
UNFL, 6-11
Exception
Enable Byte, 1-4, 2-2, 6-5
Handler Code, 5-11
Handlers, MC68882, 6-28
Handling Times, 8-36

FREESCALE
INDEX-4

Processing, 5-14, 6-1
Dialogs, 7-30
Times, 8-39
Recovery, 6-22
Status Byte, 14, 2-6, 6-4
Vector
Assignments, 6-4
Numbers, 7-17
Exceptions,
Coprocessor-Detected, 6-2
MPU-Detected, 6-24
Multiple, 6-18
Execution Times,
Conditional Instructions, 8-18
FMOVE FPcr and FMOVEM Instructions, 8-17
FSAVE and FRESTORE Instructions, 8-19
MC683882 FMOVE Instructions, 5-10
Execution Timing
Assumptions, 8-1
Factors, 8-1
Tables, 8-10
Exponent Sizes, 1-11
Extended Precision Format, 3-12
Conversion, 3-8
Extension Field Encoding, 4-128, 4-131
External-to-Register Instructions, 4-127
Dialog, 7-23
MC68882, 7-24
Format, 4-127

—F—

Factors, Execution Timing, 8-1
FCQ-FC2 Signals, 10-7
Field,
Conditional Predicate, 4-139
Coprocessor D, 4-138
Destination Register, 4-13%
Effective Address, 4-138
Register/Memory, 1-138
Source Specifier, 4-138
Flags, BIU, 5-11, 6-33, 6-35
F-Line Emulator Exception Dialog, 7-39
Floating-Point
Computations, Concurrent, 5-1, 5-2
Control Register, 2-2, 2-3, 6-4, 6-19, 10-6
Data Register, 2-1
Formats, 1-10, 3-2
Instruction Address Register, 2-8, 6-21, 7-7, 7-26,
7-28, 7-35
Status Register, 2-4-2-7, 64, 6-19, 10-5
FMOVE FPcr and FMOVEM Instructions Execution
Times, 8-17
Format,
Busy State Frame,
MC68881, 6-30
MC68882, 6-31
Conditional Branch Instruction, 4-135
Conditional Instruction, 4-133
Constant-to-Register Instruction, 4-129

MC68881/MC68882 USER'S MANUAL

—F—

Format, (Continued}
Coprocessor Instruction, 4-125
D, 3-11
Double Precision, 3-11

Dual Monadic Operation Instruction Format, 4-4

Dyadic Operation Instruction, 4-2
Evaluate Effective Address and Transfer Data
Primitive, 7-13
Extended Precision, 3-12
External-to-Register Instruction, 4-127
FRESTORE instruction, 4-137
FSAVE Instruction, 4-137
General Type Instruction, 4-16
Idie State Frame,
MC68881, 6-30
MC68882, 6-31
Instruction Description, 4-14
Intermediate Result, 6-16
internal, 3-7
Monadic Operation {nstruction, 4-3
Move Control Registers Instruction, 4-130
Move Multiple FPn Registers Instruction, 4-131
Null Primitive, 7-11
Null State Frame, 6-30, 6-31
P, 3-13
Packed Decimal Real, 1-11, 3-7, 3-13
Register-to-External Instruction, 4-129
Register-to-Register Instruction, 4-127
Response Primitive, 7-10
S, 3-10
Single Precision, 3-10
Take Mid-Instruction Exception Primitive, 7-18
Take Pre-Instruction Exception Primitive, 7-17
Transfer Multiple Coprocessor Registers
Primitive, 7-15
Transfer Single Main Processor Register
Primitive, 7-14
X, 3-12
Format Conversion,
Extended Precision, 3-8
Other, 3-8
Format Error Exception, 6-28
Format Exception Dialog,
FRESTORE Instruction, 7-41
FSAVE Instruction, 7-40
Format Summary, 1-12, 1-13
Format Word Definitions, 6-37

Formats,
Binary Real, 3-2
Data, 1-11 3-1

Floating-Point, 1-11, 3-2
Integer, 1-11, 3-1)
State Frame, 6-29
FPCC, 2-4
FPCR, 2-2, 2-3, 6-4, 6-19, 10-6
FPIAR Register, 2-8, 6-23, 7-8, 7-27, 7-28, 7-33
FPSR, 2-4-2-6, 6-4, 6-18, 10-6

MC68881/MC68882 USER'S MANUAL

FRESTORE Instruction
Dialog, 7-30
Format, 4-137
Exception Dialog, 7-40
Overview, 6-29
Protocol, 6-38

FSAVE and FRESTORE Instructions Execution

Times, 8-19
FSAVE Instruction

Dialog, 7-29

Format, 4-137

Exception Dialog, 7-39

Overview, 6-29

Protocol, 6-36
FSGLDIV Instruction, 4-17
FSGLMUL Instruction, 4-17

Fully-Concurrent Instructions, 5-6

Function Code Signals, 10-7

—G—

General Description, 1-1

General Type Instruction
Dialogs, 7-21
Command Word, 4-126
Format, 4-15

GND Pin Assignments, 9-6

—H—

Hardware Overview, 1-2

IA Bit, 7-11

Identification, Coprocessor, 5-15

Idle Phase, 6-38
Idle State Frame, 6-32
Access Example, 5-13
Format,
MC68881, 6-30
MC68882, 6-31
IEEE
Aware Tests, 4-11

Exception Compatibility, 6-19

Nonaware Tests, 4-10
Trap Compatibility, 6-19
lllegal

Command Word Exception, 6-20

Instruction Exception, 6-24
Inexact

Decimal Result Exception, 6-18

Result Exception, 6-15
INEX1 Exception, 6-18
INEX2 Exception, 6-15
infinities, 3-5
Information, Ordering, 13-1

FREESCALE
INDEX-5

Initial Phase, 6-38
Input Operand Conversion Times, 8-28, 8-29
Instruction
Concurrency, 5-1
Conditional, 1-14, 5-7
Coprocessor, 7-8
Description
Conventions, 4-1
Format, 4-14
Notations, 4-17
Descriptions, 4-18-4-124
Dialogs, 7-19
Dyadic Operation, 1-14, 4-2, 4-3, 5-6
Execution,
Concurrent, 8-4
Timing Chart, 8-5
Format Summary, 4-141-4-150
FSGLDIV, 417
FSGLMUL, 417
Miscellaneous, 1-15
Monadic Operation, 1-14, 4-3, 5-5
Move, 1-13
Operation Word, 7-9
Overlap
Example, MC68881, 8-22, 8-23
Times, MC68881, 8-40
Protocoi, 7-9
- Sequence,
Context Restore, 6-40
Context Save, 6-40
Set, 1-12
Start-Up Times, 8-25
Termination Times, 8-38
Instruction Address CIR, 6-20-6-22, 7-7
Instructions,
Constant-to-Register, 4-129
Data Movement, 4-2
External-to-Register, 4-127
Fully-Concurrent, 5-6
Minimum Concurrency, 5-5
Move Control Registers, 4-130
Move Multiple FPn Registers, 1-13, 4-130
Partially-Concurrent, 5-6
Program Control, 4-4
Register-to-Register, 4-127
System Control, 4-5
Integer
Computations, Concurrent, 5-1
Formats, 1-11, 3-1
Inter-Cycle Timing Restrictions, 10-14
Interface, Coprocessor, 1-2, 1-9, 7-1
Intermediate Resuit Format, 6-16
Internal Format, 3-7
Interprocessor Transfers, 7-8
Interrupt
Exception, 6-26
Latency, 8-5
Processing, 5-13
Task Switch, 5-14, 5-15

FREESCALE
INDEX-6

—L—

Late Chip Select
Logic Example, 10-9
Timing, 10-9
Latency, Interrupt, 8-5
Linpack Benchmark, 5-10, 5-11
Loops, MC6&8882 Instruction, 5-9

—_M—

Mantissa Sizes, 1-11
Maximum Ratings, 12-1
MC68881
Arithmetic Operation Timing, 8-14
Block Diagram, 1-7
Busy State Frame Format, 6-30
Detail Timing Tables, 8-19
FMUL and FMOVE Instruction Concurrency, 5-7
FMUL Instruction Concurrency, 5-2
Idle State Frame Format, 6-30
Instruction Overlap
Example, 8-22, 8-23
Times, 8-40
Take Mid-Instruction Exception Dialog, 7-34
MC68882
Arithmetic Operation Timing, 8-15
Block Diagram, 1-8
Busy State Frame Format, 6-31
Code Optimization, 5-9
Concurrent Operations, 8-13
Exception Handlers, 6-28
External-to-Register Instruction Dialog, 7-24
FMOVE Instruction
Arranging, 5-9
Execution Times, 5-10
FMUL and FMOVE Instruction Concurrency, 5-8
ldle State Frame Format, 6-31
Instruction Loops, 5-9
QPCLASS 010 Instruction Dialog, 7-22
OPCLASS 011 Instruction Dialog, 7-24
Performance Improvement Example, 5-10
Programming Considerations, 1-16
Register Conflicts, 5-9
Register-to-External Instruction Dialog, 7-26
Take Mid-Instruction Exception Dialog, 7-36,
7-37
Take Pre-Instruction Exception Dialog, 7-33,
7-34
Mid-Instruction
Exception
Dialog, MC68881, 7-34
Dialog, MC68882, 7-36, 7-37
Primitive, 7-18
Primitive Format, 7-18
Stack Frame, 7-19
Interrupt Dialog, 7-35, 7-38
Middle Phase, 6-38
Minimum
Concurrency Instructions, 5-5
Exception Handler Example, 5-12

MC68881/MC68882 USER'S MANUAL

Miscellaneous
Instruction, 1-15
Tests, 4-12
Mnemonics, Conditional Test, 4-4
Mode Controf Byte, 1-5, 2-3
Model, Programming, 14, 2-1
Modes,
Addressing, 1-15, 4-13
Rounding, 6-15
Monadic Operation
Calculation Times, 8-34
Instruction, 1-14, 4-3, 5-5
Format, 4-3
Move Control Registers Instructions, 4-130
Dialog, 7-26, 7-27
Format, 4-130
Move FPcr Encoding, 4-132
Move Instruction; 1-12

Move Multiple FPn Registers Instructions, 1-13,

4-130

Dialog, 7-26, 7-27

Encoding, 4-134

Format, 4-132
MPU-Detected

Exceptions, 6-24

Protocot Violation Exception, 6-25
Multiple

Exceptions, 6-19

Register Transfer Times, 8-38

—N—

NAN, 3-5, 4-15, 10-6
NC Pin, 9-6
No Connect Pin, 9-6
Normalized Numbers, 3-4
Not-A-Numbers, 3-5, 4-15, 10-6
Signaling, 3-6, 4-15
Notations, Instruction Description, 4-17
Null Primitive, 7-11
Encodings, 7-12
Format, 7-11
Times, 8-26
Null State Frame, 6-32
Format, 6-30, 6-31
Numbers,
Denormalized, 3-4
Normalized, 3-4

—_0—

QOPCLASS 000 Instruction Dialog, 7-22

QOPCLASS 010 Instruction Dialog, 7-22
MC68882, 7-24

OPCLASS 011 Instruction Dialog, 7-24, 7-25
MC68882, 7-26

OPCLASS 100 Instruction Dialog, 7-26, 7-27

MC68881/MC68882 USER'S MANUAL

OPCLASS 101 Instruction Dialog, 7-26, 7-27
OPCLASS 110 Instruction Dialog, 7-27, 7-28
OPCLASS 111 Instruction Dialog, 7-27, 7-28
Operand Address CIR, 7-8
Operand Alignment, Data Bus, 10-2
Operand CIR, 5-4, 6-20, 6-34, 6-36, 7-3,
7-4-7-7, 7-13, 7-29, 740, 10-3-10-5,
10-14, 10-15
Operand Errors, 6-7
Exception, 6-7
Operand Transfer Times, 8-26
Operation,
Peripheral Processor, 11-4
Reset, 10-5
Tables, 4-15
Word, Instruction, 7-9
Operation Word CIR, 7-5
OPERR Exception, 6-7
Ordering Information, 13-1
Other Format Conversion, 3-9

Output Operation Conversion Times, 8-33-8-35

Overflow
Exception, 6-9
Processing, 4-15
Overhead, Coprocessor Interface, 8-6
Overview,
Bus Transfer, 10-1
FRESTORE Instruction, 6-29
FSAVE Instruction, 6-29
Hardware, 1-3
OVFL Exception, 6-9

—P —

P Format, 3-13
Package Dimensions, 13-3
Packed Decimal Real Format, 1-11, 3-6, 3-7,
3-13
Partially-Concurrent Instructions, 5-6
PC Bit, 7-11
Peripheral Connection,
16-bit Bus, 11-3, 11-4
8-bit Bus, 11-3, 11-4
Peripheral Processor Operation, 11-4
PF Bit, 7-11
Phase,
End, 6-38
Idle, 6-38
Initial, 6-38
Middle, 6-38
Reset, 6-37
PIn
Assignments, 13-2
GND, 9-5, 9-6
Vee. 9-5, 9-6
NC, 9-6
No Connect, 9-6
Port Size,
16-Bit, 10-3
32-Bit, 10-2
8-Bit, 10-4

FREESCALE
INDEX-7

—P—

Power Considerations, 12-1
Power Supply Connections, 9-6
Pre-Instruction Exception
Dialog, 7-31
MC68882, 7-33, 7-34
Primitive, 7-18
Format, 7-18
Stack Frame, 7-18
Predicates, Conditional, 4-136
Primitive,
Coprocessor Response, 7-10

Evaluate Effective Address and Transfer Data, 7-13

Null, 7-11
Take Mid-Instruction Exception, 7-18
Take Pre-Instruction Exception, 7-17
Transfer Multiple Coprocessor Registers, 7-15
Transfer Single Main Processor Register, 7-14
Privilege Violation Exception, 6-27
Processing,
Bus
Arbitration, 5-13
Error, 5-14
Condition Code, 4-16
Context Switch, 5-13, 5-14
Exception, 5-14, 6-1
Interrupt, 5-13
Overflow, 4-16
Round, 4-16
Underflow, 4-16
Program Control Instructions, 4-4
Programming,
Coprocessor
Applications, 5-1
Systems, 5-10
Considerations, 1-16
Model, 1-4, 2-1
Protocol,
FRESTORE Instruction, 6-38
FSAVE Instruction, 6-36
Instruction, 7-9
Restrictions, Coprocessor Interface, 10-16
Violation Exception,
Coprocessor-Detected, 6-20
MPU-Detected, 6-25

—Q—

Quotient Byte, 1-5, 2-6

RW Signal, 9-3, 10-6, 10-12

Ratings, Maximum, 12-1

Read Cycles,
Asynchronous, 10-12
Synchronous, 10-9, 10-10

FREESCALE
INDEX-8

Read/Write Signal, 9-3, 10-6, 10-12
Recovery, Exception, 6-22
Register,
Conflicts, MC68882, 5-9
Coprocessor Interface, 1-6, 7-2, 7-3, 9-2,
10-1
Floating-Point
Control, 2-2, 2-3, 6-4, 6-18, 10-5
Data, 2-1
Field Encoding, 4-127
Instruction Address, 2-8, 6-22, 7-7, 7-27, 7-28,
7-35
Status, 2-4-2-7, 6-4, 6-19, 10-5
FPIAR, 2-8, 6-23, 7-8, 7-27, 7-28, 7-39
Register Select CIR, 6-21, 7-7, 7-15, 7-27, 10-3,
10-14
Register-to-External Instructions, 4-129
Dialog, 7-24
MC68882, 7-26
Format, 4-129
Register-to-Register Instructions, 4-127
Dialog, 7-22, 7-23
Format, 4-127
Register/Memory Field, 4-138
Reset
Logic Example, 10-6
Operation, 10-5
Phase, 6-37
RESET Signal, 94, 10-5
Response CIR, 5-1, 5-2, 54, 5-8, 5-13, 6-3, 6-5, 6-10,
B-14, €-17, 6-20-6-22, 6-25, 6-35,
6-37, 7-3-7-6, 7-10, 7-18, 7-31,
8-7-8-11, 8-24, " 8-25, 8-33, 8-36,
10-8, 10-12, 10-14, 10-15
Response Primitive,
Coprocessor, 7-10
Format, 7-10
Summary, 7-18
Responses, Save Command, 6-36
Restore CIR, 6-21, 6-38, 7-5, 7-6, 7-30, 10-13
Restrictions,
Coprocessor Interface Protocol, 10-15
Inter-Cycle Timing, 10-14

-Round Processing, 4-16

Round/Store Result Phase Timing, 8-4
Rounding

Algorithm, 6-17

Modes, 6-15

Operation Times, 8-35

—_S—

S Format, 3-10

Save CIR, 6-21, 6-35-6-37, 7-5-7-7, 7-17, 7-28,
7-40, 8-18, 10-9, 10-14, 10-15

Save Command Responses, 6-36

ScanPC, 7-19

Sense Device
Circuit Example, 9-5
Signal, 9-5

MC68881/MC68882 USER'S MANUAL

—_S —

SENSE Signal, 9-5
Set, Instruction, 1-12
Signal,
Address Strabe, 9-3, 10-6, 10-9-10-12
AS, 9-3, 10-6, 10-9-10-12
Chip Select, 7-3, 9-3, 10-6, 10-8, 10-10, 10-11
CLK, 9-4, 10-5, 10-10
Clock, 9-4, 10-5, 10-10
CS, 7-3, 9-3, 10-6, 10-8, 10-10, 10-11
Data Strobe, 9-3, 10-6, 10-9-10-13
DS, 8-3, 10-6, 10-9~10-13
DSACKO, 1-6, 6-21, 7-3, 9-3, 10-2-10-4
10-6, 10-9-10-11, 10-13, 11-2, 11-3
DSACK1, 1-6, 6-21, 7-3, 9-3, 10-2-10-4
10-6, 10-10~10-13, 10-14, 11-2, 11-3
R/W, 9-3, 10-6, 10-12
Read/Write, 9-3, 10-6, 10-12
RESET, 9-4, 10-5
Sense Device, 9-5
SENSE, 9-5
SIZE, 9-2, 10-1, 10-2, 10-3, 10-4, 11-2,
11-3
Summary, 9-6
Signaling Not-A-Numbers, 3-5, 4-15
Exception, 6-6
Signals,
AO0-A4, 7-2, 9-1, 10-1-10-4, 11-2, 11-3
A13-A15, 10-7
A16-A19, 10-7

Data Transfer and Size Acknowledge, 1-6, 6-21,

7-2, 7-3, 9-3, 10-2-10-4, 10-6,
10-9-10-11, 10-13, 71-2, 11-3
D0-D31, 7-3, 9-3, 10-1, 10-3-10-5, 11-2, 11-3
FCO-FC2, 10-7
Function Code, 10-7
Significand, 3-3
Single Precision Format, 3-10
Size, Data Bus, 9-2
SIZE Signal, 9-2, 10-1-10-4, 11-2, 11-3
" Sizes,
Exponent, 1-11
Mantissa, 1-11
State Frame, 5-10
SNAN, 3-6, 4-15
Exception, 6-6
Source Format Field Encoding, 4-129
Source Specifier Field, 4-138
Specifications, Electrical, 12-1
Stack Frame,
Mid-instruction Exception, 7-18
Pre-Instruction Exception, 7-18
Start-Up
Phase Timing, 8-3
Times, Instruction, 8-25
State Frame,
Busy, 6-35
Formats, 6-29
Idle, 6-32
Null, 6-32

MC68881/MC68882 USER'S MANUAL

Sizes, 5-10
Transfer Times, 8-38
Summary,
Context Switching, 6-39
Data Types, 3-7
Format, 1-12, 1-13
Instruction Format, 4-141-4-150
Response Primitive, 7-19
Signal, 8-7
Switching, Context, 6-28
Synchronous Read Cycles, 10-9
Timing, 10-10
System Control Instructions, 4-5

—_T —

Tables,
Execution Timing, 8-10
MC68881 Detail Timing, 8-19
Operation, 4-1%
Take BSUN Exception Dialog, 7-38
Take F-Line Emulator Exception Dialog, 7-39
Take Mid-Instruction Exception
Dialog, 7-32
MC68881, 7-34
MC68882, 7-36, 7-37
Primitive, 7-18
Format, 7-18
Take Pre-Instruction Exception
Dialog, 7-31
MC68882, 7-33, 7-34
Primitive, 7-16
Format, 7-17
Task Switch Interrupt, 5-14, 5-15
Tests,
IEEE Aware, 4-11
IEEE Nonaware, 4-10
Miscellaneous, 4-12
TF Bit, 7-11
Thermal Characteristics, 12-1
Times,
Arithmetic Calculation, 8-30
Conditional Termination, 8-36, 8-37
Dyadic Operation Calculation, 8-30-8-33
Exception
Handling, 8-33
Processing, 8-39
Input Operand Conversion, 8-27, 8-28
instruction
Overlap, MC68881, 8-40
Start-Up, 8-25
Termination, 8-38
Monadic Operation Calculation, 8-34
Multiple Register Transfer, 8-38
Null Primitive, 8-26
Operand Transfer, 8-26
Output Operation Conversion, 8-33, 8-35
Rounding Operation, 8-35
State Frame Transfer, 8-38

FREESCALE
INDEX-9

—_T—

Timing,
Arithmetic Operation, 8-12
MC68881, 8-12
MC68882, 8-12
Asynchronous
Read Cycle, 10-12
Write Cycle, 10-13
Calculation
Example, 8B-16
Phase, 8-3
Chart, Instruction Execution, 8-6
Chip Select, 10-6
Coprocessor Interface Overhead, 8-8, 8-9
Diagrams, Foldout
Effective Address Calculation, 8-12
Late Chip Select, 10-9
Restrictions, Inter-Cycle, 10-14
Round/Store Result Phase, 8-4
Start-Up Phase, 8-3
Synchronous Read Cycle, 10-9
Trace Exception, 6-25
Transcendental Instruction Accuracy, 4-7
Transfer Multiple Coprocessor Registers
Example, 7-16
Primitive, 7-15
Format, 7-15
Transfer Singie Main Processor Register
Primitive, 7-14
Format, 7-14
Transfers, Interprocessor, 7-8
Types,
CPU Space, 7-2
Data, 3-3, 3-13
Typical
Coprocessor Configuration, 1-6
Execution Timing Assumptions, 8-11

—_U—

Undefined Command Word, 4-133
Underflow

Exception, 6-11

Processing, 4-15

FREESCALE
INDEX-10

UNFL Exception, 6-11
Unit, Bus Interface, 1-6

—_V —

Valid Effective Address Codes, 7-14
vce]

Decoupling, 9-6

Pin Assignments, 9-6
Vector Numbers, Exception, 7-17

—W—

Write Cycles, Asynchronous, 10-13

—X—
X Format, 3-12
— 72—
Zeros, 3-5
— NUMERALS —
16-bit
Bus

Coprocessor Connection, 11-2
Peripheral Connection, 11-3, 114
Port Size, 10-3
32-bit
Bus Coprocessor Connection, 11-1
Port Size, 10-2
8-bit
Bus
Coprocessor Connection, 11-2, 11-3
Peripheral Connection, 11-3, 114
Port Size, 104

MC68881/MC68882 USER'S MANUAL

_ j:(ﬂ

R/W

~

STaRtT! M:'\\

DSACK? :
-+
TEATKO :
~ O ©
D0-D31 : =
NOTES:

1. STARTIis actually a logical condition, butis shown as an active low signal for clarity. The logical equation for

this signal is START = C§ + AS + (R/W+D3).

2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the

range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-2. Asynchronous Read Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL

FREESCALE
Foldout-1

AD-A4 >:<C

?
}

— 10b

JE——— A
START! 5‘ \

T3 | e e

<~ O

~
BSACK
()~ [~
TSATKD
nooa
- |
NOTES:

1. START s actually alogical condition, but is shown as an active low signal for clarity. The logical equation for

this signal is START = CS + AS + (R/WeDS).

2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the

range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-3. Asynchronous Write Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL

FREESCALE
Foldout-2

CLK

AC-A4

R/W

START!

DSACK1

DSACKO

00-031

NOTES:

1. STARTisactually alogical condition, but is shown as an active low signal for clarity. The logical equation for

this signal is START = CS + AS + (R/W+DS).

2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.Qvolts,
unless otherwise noted. The voltage swing through this range should start outside, and pass through, the

range such that the rise or fall will be linear between 0.8 volts and 2.0 volts.

Figure 12-4. Synchronous Read Cycle Timing Diagram

MC68881/MC68882 USER'S MANUAL

FREESCALE
Foldout-3

Timing Diagrams

| NO POSTAGE
@ FREESCALE NECESSARY

IN THE

UNITED STATES
L
BUSINESS REPLY MAIL ——
L
FIRST-CLASS MAIL PERMIT NO. 7650 AUSTIN, TX L
R
POSTAGE WILL BE PAID BY ADDRESSEE EEES——
L]
FF{EEEES;(:/\[_EE R
MICROPROCESSOR & MEMORY TECHNOLOGIES GROUP e
M68000 TECHNICAL PUBLICATIONS GROUP (OE33) ———

6501 WILLIAM CANNON DR W
AUSTINTX 78735-9833

lllIIIIIIIIIIlllllllllllllllllllllllllllllllllllllll

Tear Here

Read Other Side!

Freescale 68000 F amily
Document Card

Company Name

Your Name
Title

{
I
I
I
{
f
{
i
{
I
[
[
[
[
|
: Mailing Address Mail Drop
i
|
|
1
]
I
]
I
I
I
1
1
1
1
)

City State Zip
Telephone)

Fax No.

M68000
Part Number(s)

(Located at Top
Corner of Document) @ FREESCALE

Please send your own input or suggestions to Fax No. (512) 891-8593

Tear Here

Attention !

This card will be used to issue real-time updates and revisions to your 68000 farnily
document(s). By including your fax number, immediate updates and revisions can be
sent to you as they occur. Your documentation never needs to be out of date again.
If the card is not returned to Freescale, we have no way of sending updates and
revisions to you.

(This form may aiso be used to let us know about address / fax # changes).

This material will be sent from the Austin Oak Hill site. Non-US recipients of this book,
please insert this card in an envelope and send to the address on the front of the card.

General Description

Programming Model

Operand Data Formats

Instruction Set

Coprocessor Programming

Exception Processing

Coprocessor Interface

Instruction Executive Timing

Functional Signal Descriptions

Bus Operation

BN
(@)

Interfacing Methods

=
=

2 Electrical Specifications

=

=

3 Ordering Information and Mechanical Data
Glossary
Abbreviations and Acronyms

Index

1ATX31094-2 Printed in USA 12/93 BANTA CO. MOTO 11 3,000 MPU YGABAA

	TITLE
	FRONT MATTER
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	PREFACE

	SECTION 1 - GENERAL DESCRIPTION
	SECTION 2 - PROGRAMMING MODEL
	SECTION 3 - OPERAND DATA FORMATS
	SECTION 4 - INSTRUCTION SET
	SECTION 5 - COPROCESSOR PROGRAMMING
	SECTION 6 - EXCEPTION PROCESSING
	SECTION 7 - COPROCESSOR INTERFACE
	SECTION 8 - INSTRUCTION EXECUTION TIMING
	SECTION 9 - FUNCTIONAL SIGNAL DESCRIPTIONS
	SECTION 10 - BUS OPERATION
	SECTION 11 - INTERFACING METHODS
	SECTION 12 - ELECTRICAL SPECIFICATIONS
	SECTION 13 - ORDERING INFORMATION AND MECHANICAL DATA
	APPENDIX A - GLOSSARY
	APPENDIX B - ABBREVIATIONS AND ACRONYMS
	INDEX
	FOLDOUTS

