
i \SSEMBLY LANGUAGE PROGRAMMING i

SECOND EDITION

68000

Assembly Language

Programming

68000

Assembly Language

Programming

Second Edition

Lance A. Leventhal,

Doug Hawkins, Gerry Kane,

and William D. Cramer

Osborne McGraw-Hill

Berkeley, California

Osborne McGraw-Hill
2600 Tenth Street

Berkeley, California 947 10
U.S.A.

For information on translations and book distributors outside of the U.S.A., write to Osborne
McGraw-Hill at the above address.

68000 is a trademark of Motorola Microsystems.

68000 Assembly Language Programming, Second Edition

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

1234567890 DODO 89876

ISBN 0-07-881256-9

About the Authors

Gerry Kane is co-author of several volumes of the well-known series, An Introduction to
Microcomputers. Most recently, he authored the CRT Controller Handbook and the 68000
Microprocessor Handbook, both part of the new Osborne Handbook Series. He received his
B.S. degree from the United States Coast Guard Academy.

Doug Hawkins is vice president of engineering for Phoenix Digital Corporation, Phoe-
nix, Arizona, with responsibility for the design and implementation of microprocessor-based

systems for distributive plant monitoring and process control. Previously, Mr. Hawkins
worked for Motorola Microsystems, the primary source for the MC68000, as manager of
language systems. He received his B.S.E.E. degree from Michigan State University, and
M.S.E.E. and M.B.A. degrees from Arizona State University.

Lance Leventhal is a partner in Emulative Systems Company, Inc., a San Diego-based
consulting firm specializing in microprocessors and microprogramming. He is a national
lecturer on microprocessors for the IEEE, the author of ten books and over sixty articles on

microprocessors, and a regular contributor to such publications as Simulation and Micro-
computing. He also serves as technical editor for the Society for Computer Simulation and as

contributing editor for Digital Design magazine.
Dr. Leventhal authored the original books in this series and has just begun work on a new

series, Assembly Language Subroutines. He received a B.A. degree from Washington Univer-
sity in St. Louis, and M.S. and Ph.D. degrees from the University of California at San Diego.

He is a member of SCS, ACM, IEEE, and the IEEE Computer Society.

William D. Cramer is the co-author of 68000 Microprocessor Handbook, Second Edi-
tion, and Mac Tele communications. Mr. Cramer received a B.S. in computer science and

mathematics from Texas Christian University.

Digitized by the Internet Archive

in 2013

http://archive.org/details/68000assemblylan00lanc

Contents

Introduction xi

Section I Fundamental Concepts 1

1 Introduction to Assembly Language Programming 3

2 Assemblers 9

3 MC68000 Machine Architecture 19

Section II Introductory Problems 53

4 Beginning Programs 59

5 Simple Program Loops 75

6 Character-Coded Data 95

7 Code Conversion 117

8 Arithmetic Problems 131

9 Tables and Lists 147

Section III Advanced Topics 171

10 Parameter Passing Techniques 173

11 Subroutines 177

12 Advanced MC68020 Addressing and Instructions 195

13 Connecting to Peripherals 201

14 Exception Processing 211

15 Interrupts and Other Exceptions 225

Section IV Software Development 257

16 Problem Definition 261

17 Program Design 275

18 Documentation 311

19 Debugging 323

20 Testing 357

Section V MC68000 Instruction Set 363

21 Descriptions of Individual MC68000 Instructions 371

Section VI Appendices 469

A Alphabetic Listing of Instructions 471

B Numeric Listing of Instructions 475

Index 479

Acknowledgments

A special thanks to Jeff Bork and Karyn Reott of Altos Computer Corporation for providing
an Altos 3068 system for the development of all 68020 material in this book.

Introduction

68000 Assembly Language Programming, Second Edition, describes assembly language

programming for the 68000 family of microprocessors — the 68008, 68010, 68012, and 68020. It
assumes that you are familiar with microprocessor principles and have a basic understanding

of one or more high-level programming languages. A good introductory book on micropro-
cessors is An Introduction to Microcomputers by Adam Osborne (Berkeley: Osborne/

McGraw-Hill, 1980). You can find additional 68000-specific information in 68000 Micro-
processor Handbook, Second Edition, by Cramer and Kane (Berkeley: Osborne, McGraw-

Hill, 1986).

We divide our discussion of assembly languages into five sections: Section I describes
assembly languages in general and introduces you to the 68000 family of microprocessors. In

Section II we begin writing assembler programs to solve some simple (but common) program-
ming problems such as looping and arithmetic. In Section 111 we introduce you to more

advanced topics, such as input output and exception processing. Section IV presents tools for
software development that are particularly appropriate to programming in assembly language.
Finally, Section V enumerates the instructions available on the 68000 family of processors,
paying particular attention to the unique 68020 instructions.

PRINTING AND WORDING

INFORMATION

As you can see from the text on this page, this book contains both boldface and lightface
type. The material in boldface type provides the most important information on a given topic;
the text in lightface type expands on the topic. Therefore, depending on the level of detail you
want, you may choose to read only the boldface text or both the boldface and the lightface.

This book discusses all members of the 68000 family. From a software perspective, the

microprocessors are nearly identical, particularly when they are used in normal applications.
However, in some of the advanced areas (particularly with 68020 instructions), certain family
members differ slightly from others. We explicitly identify these differences in the text; if you

don't read anything to the contrary, you may assume that a concept is valid for all family
members.

xi

Fundamental Concepts

The chapters in this section provide basic information on assembly language in general
and the MC68000 processors in particular. Chapter 1 discusses the purpose of assembly

language programming and compares it with programming in high-level languages. Chapter 2
discusses general assembler syntax and the program development sequence. Chapter 3 de-

scribes the architecture and the instruction set of the MC68000 microprocessor family.

1

Introduction to

Assembly Language Programming

If you are familiar with programming in a high-level language, you've probably seen a
statement similar to this one:

BALANCE = BALANCE + AMOUNT

To a programmer who uses high-level languages, this statement is self-explanatory. Unfortu-
nately, computer design is not yet sufficiently sophisticated for a machine to understand this

command directly. To execute this statement, the computer must first convert it into a form it
understands; that is, into machine language. The conversion is made by means of a translation

program: either a "compiler" or an "interpreter."
From the high-level language programming point of view, it doesn't matter how this

translation takes place or what form the final output of the translation takes. However, to the
computer executing this compiled program, the form of the output matters greatly. The output
of a program compiled on an Apple Macintosh, for example, differs substantially from the

output produced by compiling the same high-level program on an IBM PC. If you try to run
the Macintosh version of the program on the PC, or vice versa, you will end up with a very
confused computer!

3

4 68000 Assembly Language Programming

MACHINE LANGUAGES

The reason for this problem is that although two computers may support the same

high-level language, each may be built around a different "processor" — for example, the
Macintosh is built on the Motorola MC68000, and the PC AT on the Intel 80286. Each

processor has its own "architecture," or set of circuits, and its own set of primitive "instruc-
tions" for manipulating data in and around these circuits.

The basic unit of measurement commonly used in today's computers is a "switch," which
can register one of two possible states, ON or OFF, at any given time. Machine instructions
consist of sets of such switches. The computer responds to the condition of these switches by
opening or closing electrical gates within its internal circuitry. The opening and closing of the
circuits has some desired effect, such as adding one number to another.

Because switches have only two conditions, ON or OFF, it is convenient to express their

values in "binary" (base 2) terms, where OFF=0 and ON=l. We can express machine
instructions as sets of "binary digits" (or "bits"). One combination of bits represents one
machine instruction; another combination represents a second instruction.

Programming in a high-level language is all well and good for most applications; writing
an accounts-receivable business package, for example, is best accomplished through use of a
high-level language. However, at some point, you need to be able to write programs aimed
specifically at the machine level; for example, the compiler for the high-level language is
probably written at the machine-specific level.

So how do you write programs at the machine level? Clearly, defining bit patterns for

instructions becomes tedious. The preceding simple high-level program statement may trans-
late into anywhere from 8 bits to 200 or more bits, depending on the computer being used.

One way of simplifying bit patterns is to group the bits. If you are familiar with mathe-

matic "radices," or "bases," you know that a binary number (base 2) can be grouped evenly
into an octal number (base 8) or into a hexadecimal number (base 16). Unfortunately, base 2

doesn't convert easily into base 10, the radix with which we are most famliar. Binary numbers
map into octal and hexadecimal numbers, as shown in Table 1-1. From this table, you can see
that a 24-bit number can be grouped into an eight-digit octal number or a six-digit hexadecimal
number:

001 001 011 101 001 011 100 101 = 11351345 (octal)
0010 0101 1101 0010 1110 0101 = 25D2E5 (hexadecimal)

ASSEMBLY LANGUAGE

Using octal or hexadecimal notation simplifies the representation of bit patterns. How-
ever, many programs consist of thousands of instructions and would be extremely difficult to

write even using hexadecimal notation. Further, nothing in the notation would tell you whether
an instruction requests an addition, a subtraction, or some other machine function.

Assembly language serves as an intermediate step between machine-level instructions,
which are directly understood by the machine, and high-level language designed to be read

easily by humans. "Mnemonics, "abbreviations representing the function of a machine instruc-
tion, make this possible. Programs may be written using mnemonics and then translated into

the appropriate bit patterns of machine instructions. For example, the MC68000 assembly
instruction

Introduction to Assembly Language Programming 5

ADD D0,D1

translates to the machine instruction

1101 0010 0100 0000.

Performing this translation by hand, while less tedious than generating bit patterns, still
represents a fairly difficult task. However, a computer does repetitive translation very well. A

program for translating assembly-language programs into binary machine instructions is

called, quite appropriately enough, an "assembler/'
Software developers write assemblers for a new computer on existing computers and then

transfer the generated code to the new machine. In time, developers can write "utilities" (such
as operating systems, assemblers, disk drivers, and printer drivers) that allow direct program

development on the new computer — thus the machine actually contributes to its own
maturity.

WHY ASSEMBLY LANGUAGE?

You may have noted from this discussion that an assembler works suspiciously like a

high-level-language compiler. This is quite true: both convert statements readable by humans
into instructions executable by a computer. There are two main differences between the
assembler and the compiler, however, that deal with the formats of the statements themselves:

• Assembly-level statements address the architecture of the microprocessor directly.

They often deal with storage circuits called "registers" and manipulate data at the bit
level. High-level languages usually deal with data on a more abstract level as "vari-
ables"and "constants," whose internal location and bit encryption is of no importance
to the programmer.

• Assembly-level statements correspond one-to-one with machine-level instructions. A
high-level language statement may translate into one, two, or many machine-level
instructions.

Table 1 - 1 . Binary / Octal/ Hexadecimal Conversion Table

Hexadecimal Digit Binary Equivalent Octal Equivalent
0 0000 0
1 0011 1
2 0010 2
3 0011

3
4 0100 4
5 0101 5
6 01 10 6
7

01 1 1
7

8 1000
10

9 1001 1 1
A 1010

12

B 101 1

13

C 1 100 14
D 1101

15

E 1110
16

F 1111 17

6 68000 Assembly Language Programming

If you were to make a decision based on these facts alone, you would most likely choose to

program in a high-level language. And indeed, high-level languages have many positive
features, including:

• Simple formula statement. A complex mathematical formula may translate into many

machine statements but can be written as a single statement in a high-level language.
One of the first high-level languages, FORTRAN, was designed specifically to facili-

tate "formula translation."
• Block-structured code. Modern programming theory shows that the most readable

and maintainable code consists of programs that are broken into "logical blocks" that
perform specific tasks. High-level languages provide constructs that make block-
structured code easier to write.

• Productivity. Studies show that the average programmer produces ten lines of
debugged code per day. This figure holds true regardless of whether the source

language is assembly or a high-level language. If one high-level statement converts to
three machine-executable statements, this means that the high-level language pro-

grammer is three times as prolific as the assembly programmer.

• Level of complexity. Clearly, if the programmer must deal with hardware details, he or

she must be much more technically oriented than a programmer working in a high-
level language. For some tasks this technical orientation is good; however, a technical
person may not be acquainted with the business processes needed to write a good

data-processing package. In such a situation, the programmer has enough to worry
about without the added complexity of manipulating bits inside the computer.

• Portability. As stated at the start of this chapter, high-level compilers are available for a
variety of languages on a variety of machines. Most programs written on one computer
will run with little or no modification on any other computer; programmers simply

recompile the program using the new computer's compiler. This works because most
high-level languages have "standards" that compiler writers adhere to when writing a
new compiler.

Assembly programs are machine-specific; you can't simply reassemble an 8088
program with a MC68000 assembler and expect it to run. Some attempts have been

made to standardize assembly language; however, these generally result in hard-to-
understand code that doesn't make efficient use of instructions or data.

• Abstract data types. Most modern high-level languages allow you to define and
manipulate many data types, such as floating-point values, records and arrays (groups
of simpler data types), and high-precision values. Assembly-language programs are
restricted to use of the data types provided by the processor and, oftentimes, the
processor supplies only 16-bit integer data.

Readability. Most high-level languages are, to some extent, self-documenting, in that a
newcomer to the programmer can read the code and get a general idea of its function.
Assembly code is terse and deals in primitive instructions that may tell little about the
function of the program.

High-level language programs are not without their faults, however. Areas in which
assembly-language programs may outperform their high-level counterparts include:

• Size. In most cases, the amount of machine code produced by a high-level language

Introduction to Assembly Language Programming 7

compiler exceeds the amount required to write the program in assembly language.
This is because the compiler must create code general enough to work in all cases;
assembly language programmers can take shortcuts because they deal directly with the
machine. For example, some compilers may use memory (external to the processor)
for counter variables, while an assembly program can make use of registers (internal to
the processor).

• Speed. Since assembly programs deal directly with the processor, they can make use of

high-speed instructions that may not be available directly through the high-level
language. For example, requesting division by two from a compiled language often
generates a Divide instruction, while an assembly programmer knows that a division
by two can be accomplished by a Left Shift instruction, which executes much faster
than a Divide instruction.

• Overhead. Since they allow for abstract data types, most high-level languages perform

"typechecking" on variables, to make sure that the programmer has used the data type
correctly. While typechecking can be very useful in many instances, it adds overhead in
both size and speed of execution.

Advanced high-level language compilers provide for varying amounts of "optimization."
Such compilers look for certain usage patterns, just as an assembly programmer might, and
make substitutions of faster or more compact code. However, even the best compilers cannot
produce code as efficient as that produced in assembly language.

APPLICATIONS FOR DIFFERENT

LANGUAGES

As is clear from the preceding discussion, different languages lend themselves to different

applications. Applications for high-level languages include:

• Scientific problems. Since they permit high-precision and floating-point capabilities,
high-level languages allow the programmer to deal with values commonly found in
scientific applications.

• Record-oriented problems. Again, since high-level languages allow the user to define
records, they permit the programmer to deal with data in logical groups rather than
primitive data types.

• Business applications. Many business applications require that data be moved between

memory and disk storage, that data from multiple sources be combined, and that

printed reports be generated. Assembly language requires far too much internal detail
to produce such programs efficiently.

• Portable programs. Often, a software house may want to produce a program that will

run on many different host computers. Generally, such a program can be produced

from a single version of a high-level language program that is recompiled for the
required host.

• Maintainability. Studies show that as much as 70% of the work on a program is done in

modifying its function. Because assembly-language programs often take shortcuts,

they become difficult to understand and especially difficult to modify. High-level
programs, because they are easier to understand, are usually easier to modify.

8 68000 Assembly Language Programming

• Special-purpose programs. Many languages have been designed to solve a specific type
of problem. For example, a model simulation problem is best solved with a language

that facilitates the use of queues and random-event generation.

Applications that require assembly-language code include:

• Input/ output intensive programs. When a program is designed to move a high volume
of data into and out of the computer, assembly language may be appropriate. Such
programs generally need little heavy computation, and the speed gained with assembly
programming often justifies its use. An example of an I/O intensive program is a

"device handler," which might interface the computer to a peripheral such as a disk
drive. If the disk handler cannot read incoming data fast enough, the data may be lost.

• Time-dependent applications. Certain applications require very precise timing con-
trol. For example, process control (using a computer to control peripheral devices,

such as valves and sensors in a manufacturing plant) requires that events take place at

specific intervals. High-level languages may sometimes add just enough overhead to
cause a malfunction in the process.

• Graphics displays. Graphics programs require manipulations of "pixels," or picture
elements. In most implementations, pixels correspond directly to bits (through "bit
maps"). Since assembly code provides direct access to individual bits, it allows rapid
generation of displays.

With the development of new medium-level languages, the choice between assembly
language and a higher-level language becomes more difficult. Medium-level languages provide
high-level data structures and block-oriented code, while allowing the programmer to use

many machine-level instructions. An example of a medium-level language is the "C" language.

HIGH LEVEL ASSEMBLY, OR BOTH

Clearly, the trend in program development is toward specialized high-level languages.
However, there will always be a need for assembly-language programming for the specialized
applications discussed earlier. Even the advent of medium-level languages will not make
assembly language obsolete; some applications need to save every instruction or memory
location possible, and this can be accomplished only with assembly language.

Many applications are or will become "hybrids" in their use of programming languages.
After studying the executing patterns of a program written in a high-level language, a system
analyst may determine that a particular piece of code is executed repeatedly; rewriting that

particular piece of the program in assembly language may speed the program's execution by
several orders of magnitude.

Another argument for learning assembly language is that while a high-level language
routine is simpler to code and understand, inevitably a piece of code comes along that just

doesn't work as you think it should. Looking at the assembly code produced by the compiler
(when available) often reveals the hidden bugs in your program.

2

Assemblers

In this chapter we discuss the functions performed by assemblers. We start by defining just
what an assembler does. We then describe some of the more common features of assembler

"source code." Some of the material described in this chapter may seem foreign to you until you
have a little assembler experience under your belt. Feel free to skim this chapter for now. You
may want to come back to it after writing a few programs while working through later
chapters.

FUNCTIONS OF ASSEMBLERS

As stated in Chapter 1, assemblers allow you to write machine-level programs using
mnemonic commands instead of strings of bits. However, assemblers do more than convert
mnemonics to machine instructions. An instruction must perform its function on some piece of

data; this datum is called an "operand." The location of the operand is specified by the operand
portion of the instruction code. The assembler must be capable of evaluating the operand field
and including it as part of the machine instruction. Depending on the addressing modes
allowed by the processor, this evaluation may be simple or quite complex.

Assembly programs, like high-level programs, require memory space not only for storing
their instructions but also for storing variables. An assembler must be capable of defining

9

10 68000 Assembly Language Programming

memory storage. Ultimately, machine instructions refer to data and code stored in other
locations in memory by the memory address (a binary number). However, to make the code

more readable and easier to modify, assemblers let you define "labels." Labels are like variable
and function names in high-level languages. The assembler translates these labels into binary
memory addresses so that programs can refer to the location by its logical name rather than its

physical number.

Assemblers produce "object code." In most cases, however, this object code isn't in a
format that the system can load into memory and run. A "linker" converts this object code into
a load module or task image that the system can load into memory. The linker also permits you
to combine the object code of several modules into one program. This lets you keep the size of
your source files to a minimum.

Assemblers let you pass along commands to the linker through "directives." Directives let
you define the starting memory location of your program, the location of the first instruction of

your program, sections of your program that are "read only," and many other attributes. We
will discuss linkers and their associated assembler directives in more detail later in this chapter.

TYPES OF ASSEMBLERS

Assemblers come in many packages. In the optimum case, your assembler runs on the
same machine for which it produces code. However, this is not always possible. New computers
may not have the operating system features required to run an assembler. Some computers,

particularly microprocessors, are "embedded" within other systems; a printer, for example,
often has an embedded microprocessor. In such cases, program development (editing, assem-

bling, and linking) is done on another computer and then transferred to the final host.

Assemblers used for these applications are called "cross assemblers."
Another type of assembler is the "macro assembler." In addition to the primary purpose of

an assembler (that is, translating mnemonics into machine instructions), these assemblers let

you use "macros." Macros are another form of mnemonic. Unlike assembly mnemonics,
however, macros translate into more than one machine instruction.

Macros serve a number of purposes. For example, when you use the same string of
instructions several times in a program, you can avoid retyping by defining the entire string as a
macro. Then, each time you want to perform this function, you can simply type in the macro
name and the assembler will expand the macro into the predefined set of instructions.

ASSEMBLY LANGUAGE FORMAT

Now that we have discussed some of the features of assemblers, let's look at a typical
assembly language program. (Remember, however, that not all assemblers are alike. The
format of your assembler may differ slightly from that shown here.)

Assembly language, unlike many high-level languages, is line-oriented. This means that,
by and large, one complete statement fits on a single line. Assembly language is further

restricted in that it expects the components of the statement to lie in specific "fields" on the line.
Assembly instructions are made up of three such fields: the label field, the instruction field,
and the opcode field.

While some early assemblers required that you start fields in specific columns, most

assemblers let you separate labels from instruction mnemonics and operands with "delimiters."

Assemblers 11

Delimiters are special characters such as blanks, tab characters, commas, and semicolons.
The assembler often assumes that a statement consists of a label (if present) always

starting in column I, followed by a delimiter, followed by the mnemonic, followed by a
delimiter, followed by one or more operands. For example:

Label Mnemonic Operand

START CLR.L DO

The statement may have more than one operand; again, the operands are separated by
delimiters (usually commas). For example:

START ADD.L D0.D1

LABELS

Let's look at the components of an assembler statement in detail, starting with labels. You
use labels to assign named values to memory locations such as variables and the start of a
subroutine. Writing code that refers to a variable as TOTAL makes much more sense than
referring to the variable by its binary memory location. Likewise, labeling a subroutine as
COSINE is infinitely clearer than calling it 000110010011000.

When the assembler encounters a new label in a program, it stores the value in a special

table called a "symbol table." When it finds a reference to the label later in the assembly process,
it knows that TOTAL is actually address 0010100101100110, for example, and inserts this
address into the instruction.

Different assemblers have different rules for label names. In general, label names must
consist of only certain characters, must be less than a certain number of characters long, and

must be unique; you can't give the same label name to two locations. For example, an assembler
may require that labels consist of uppercase letters and numbers and must be eight characters
or less in length. In this context, START, FUNC2, and C 12345 are all valid labels, while Z**2F,
jki3##, and PROGRAM _N AM E are illegal.

In addition to the assemblers rules for labels, some commonsense rules also apply to
selecting label names. These rules include:

• Use meaningful names. "DDD" and "F$" may be legal, but they say little about the
variable or code they represent.

• Don't use label names that are the same as instruction mnemonics. The assembler may
permit this, but it makes the code difficult to understand.

• Make each label obviously different from all others. Labels such as SYSCOM and
SYSCON may be legal, but they are easily confused.

These are recommendations, not rules. You needn't follow them, but if you don't, you may
find yourself wasting time correcting needless errors.

INSTRUCTION MNEMONICS

One primary task of the assembler is to transform mnemonics into their equivalent

machine-readable instructions. The assembler keeps a table of legal assembler mnemonics;

when it reads a mnemonic in your source code, it looks up the instruction code in the table. The

table also lists the number and type of operand associated with the mnemonic.

12 68000 Assembly Language Programming

Instruction mnemonics are thus standard within the assembler. For the most part, you
have no choice in selecting mnemonic names.

OPERANDS

Operands come in many shapes and sizes. The particular format of an operand depends

on the "addressing mode." The addressing mode determines where in memory the operand is
located. Common addressing modes include

Immediate. The instruction names the operand(s) explicitly (the operand directly
follows the instruction).

Register direct. The operand resides in a special location in the processor (a register).

• Absolute. The operand resides in a memory location specified by an address following
the instruction.

Relative. The operand resides in a memory location specified by the sum of an address
following the instruction and a processor register (such as the program counter).

• Indirect. The address of the operand (in memory) is specified by a processor register or
an intermediate memory location.

Indexed. The address of the operand (in memory) is specified by the sum of two

processor registers (one specifying a "base" and the other specifying an "index").

MC68000-family addressing modes will be discussed further in Chapter 3.

DIRECTIVES

Directives are a special type of assembly instruction. They don't translate into machine
code; rather, they instruct the assembler on "how" to perform the assembly. Several common
assembly directives will be discussed in this section.

Data Definition

Commonly, an assembly program must define a good deal of space in the computer's
memory. Such storage space may contain text, loop counters, memory "commons, "tables, and
temporary workspace. Typically, the assembler allows the program to set aside memory for
single data items (bytes, words, longwords), text strings, arrays (homogenous groups of strings
or single data items), and records (heterogenous groups of single data items, text, and arrays).

In addition, most assemblers permit the programmer to "initialize" (assign values) to the
defined memory locations.

Labels are often associated with data-definition directives. When the assembler encoun-

ters these directives in a program, it allocates a portion of the produced object code to the
defined data (the amount of allocated code is specified by the directive). If the statement line
includes a label, the assembler includes the address/ label name in the symbol table. When the
assembler finds a reference to this item (through an operand in an instruction statement), it
inserts the corresponding address into the instruction.

Constant Definition

While assembly language permits you to specify exact values in instruction statements
(with immediate addressing), common sense dictates that named values are more meaningful

Assemblers 13

than numeric values. For example,
ADD #RECORD_SIZE,DO

is clearer than

ADD #120,D0

even though the assembler produces the same object code for each.

Assemblers typically let you define named constants (also known as "equates"). Whenever
an assembler encounters a named constant in your source code, the assembler substitutes the
numeric value before translating the line into a binary instruction.

In addition to making code more readable, constants make your code easier to modify.
You might often use the same constant several times in a program. If for some reason you need
to change this constant value, you can use equates to change the value at the point of definition,
and all references to the equate (by name) are unchanged.

External Definition

If you have ever written a large program, you know that it is good programming practice
to break the program into several logical pieces, each of which is stored in a discrete file and
assembled separately. As we have said, the assembler creates a symbol table of all labeled
addresses in the source. However, if a value (a function name, for example) is defined in a
different source file, the assembler has no knowledge of it.

Most assemblers permit you to define "external" or "global" names. After the assembler
has completed the translation of your source, it places such "unresolved references" into a
second symbol table. When you link the modules of the program, the linker resolves all of the
references in this symbol table.

Program Sections

In many instances, you will find it convenient to keep all of your data together, separated
from all of your code. You may wish to combine together all data from each source code file. In

some cases, you will want the code to be "read only" so that the system hardware will protect
your program code from being written over. In other cases, you might need the code or data to
begin on a specific memory address boundary.

Program sections permit you to divide your code into discrete, named segments, each of

which can have separate characteristics, including read/ write protection, memory-address
origin, and memory alignment.

Macros

As we have said, assembly language is line-oriented. Since even simple functions may

require several lines of code, your source file may grow quite large and cumbersome. One

convenient way of slimming down your program is to combine commonly used lines of code

into a single macro. Macros, like machine-instruction mnemonics, often have operand fields.

Macros are typically used to set up a call to a system routine, a routine to handle printing a

string of characters, for example. A subroutine called "PRINT" may require you to provide
certain parameters (address of the string, length of the string, and so on). Setting up these

parameters may require several lines of code. Here is an example:

MOVE.L #STRING,-(SP)

14 68000 Assembly Language Programming

MOVE.W //STRING __LENGTH, - (SP)
JSR PRINT

However, because you may make many calls to this routine, you may define a macro

"PRINT STRING" that lets you code:

PRINT STRING ^STRING, //STRING _LENGTH

When the assembler encounters this statement, it checks its list of defined macros and

expands PRINT STRING into the appropriate code.
Macros are a powerful tool in writing assembly language. However, each assembler has its

own syntax for creating macros; we won't use macros in this book, to avoid confusion with real
machine instructions. Be aware, however, that they can be a real aid in writing assembly

programs.

Conditional Assembly

When writing a general program utility, or writing a function that may run in a variety of
environments, you may often need to add instructions, delete instructions, or use different
versions of instructions. For example, you may wish to write a program that can display data
on several types of terminals, each of which requires different commands to perform the same
function.

"Conditional assembly" permits you to define a constant (through use of an equate) and
then generate different pieces of code based on the value of the constant. For example, you may
define a constant called TERM, whose value may be NORMAL or KEYPAD. Your code may
then read

.if TERM=NORMAL

MOVE B #' [, DO .else

MOVE B #'_, DO .endif

Note here that the syntax for the conditional assembly (".if", ".else", and ".endif") will
differ from assembler to assembler; these are only examples. Further, note that the decision on
which line of code to generate is made at assembly time, not at run time.

File Inclusion

For large-scale projects, it is often necessary for everyone working on the project to use the
same set of constants; also, system calls often require that you define specific constants before

making the call. Most assemblers permit you to "include" library files in the assembly process.
These included files may contain constant definitions, macro definitions, and other

pertinent data. The assembler treats these files as though they were physically present in your
source code.

Listing Control

Most assemblers are capable of providing a variety of listings based on the results of the
assembly. For example, the assembler may produce no listings at all, listings with just the source

Assemblers 15

given, listings with the object given, listings including the symbol table, listings showing macro
expansions, and so on. You can specify the format of the listing file by using assembler
directives.

COMMENTS

While technically not required, comments contribute immeasurably to an assembly
program. Comments may lie on separate lines, or they may occur after the operand field of an
assembly statement. Often the comment must begin with a special character (such as a
semicolon or apostrophe) so that the assembler can recognize it as a comment rather than a
translatable statement. For example:

; Function CHECK TEMP reads the fuel tank temperature sensors
; and calculates the temperature in Celsius.

CHECK TEMP: MOVE.B SENSOR1.D0 ; get sensor value

We will discuss commenting along with documentation in a later chapter, but here are
some guidelines on when and how to use comments:

• Use comments to describe what the code is doing in the "big picture" — that is,
comments should say things such as "is temperature over limit?" or "bump loop
counter." Don't use comments that repeat the assembly statement: for example, "jump
to START" or "increment Dl."

• Avoid using abbreviations. Comments should be as descriptive as possible.

• Comment all instructions whose purpose may not be immediately clear; instructions
dealing with registers rather than memory are often difficult to understand since they
deal with register data rather than named memory data.

• You needn't necessarily comment every line; in some cases, a single comment may
apply to several statements.

• Comment major sections of code (for example, subroutines) with several lines of

comments. Don't rely solely on the comments following the instruction operand.

• Make all comments uniform in both appearance and terminology. All in-line com-
ments should start in the same column. Don't refer to the same variable as "route

distance" in one comment and "location delta" in another.

• Be especially careful to document instructions or algorithms that you found difficult to
understand or write. Such code will be equally difficult for a newcomer to you code to

understand. (Ignore the old adage, "It was difficult to write, so by golly it should be
difficult to read!").

PROGRAM DEVELOPMENT

Now that we have described the basic functions of assemblers, let's look at how they fit
into the "big scheme" of program development. There are several steps required to create a
working program. These steps include designing, editing, assembling, linking, and loading.

16 68000 Assembly Language Programming

DESIGN

The first thing to do when you begin to write a program is turn off your terminal. Studies
have shown that a rule of thumb for projecting the time requirements for a project is 40/ 20/40;
that is, 40% of the time is spent in design, 20% in coding, and 40% in testing and integration.

Many different methodologies are available for designing a program. We will present some
of these in Section IV.

EDITING

After you have designed the program to your satisfaction, you may begin to enter source

code into the computer. To do this, you need some sort of "editor." Editors come in a variety of
flavors. "Character-oriented" editors are, at best, cumbersome to work with. They provide
basic data entry capabilities, but often require that you move a character pointer to the position
where you want to edit or insert material, and they do not automatically provide visual
feedback.

On the other end of the spectrum, "full screen" editors let you treat a program as though it
were printed on a long sheet of paper. This allows you to look at and edit any part of the
program at any time. Such editors provide continuous visual feedback; for example, if you
want to insert a character into a line, you simply move the cursor (usually, by pressing the arrow
keys on the keyboard) to the point of insertion and press the desired characters. The editor puts
them into the text and they appear on the screen. Often, such screen editors require that you use
a specific type of terminal so that the editor can give the proper commands to control the
display.

ASSEMBLY

Once you have a source file entered into the computer (and saved onto disk), you must
assemble the program. As we discussed earlier, the assembler translates the source code into an

"object file" containing the machine-instruction code as well as the symbol table entries of any
"global" data defined in the source file.

LINKAGE

Often, a single program is made up of several modules, each of which resides in a separate

source file. Also, many programs will refer to "library functions." Library functions are
common utility programs that may be called from your program. In order to resolve the

addresses defined as "unresolved" by the assembler, you must "link" all of the modules (and
library) together.

The linker looks through all of the symbol tables of the object files. When it finds an
unresolved symbol in one object file defined in another object file, it replaces the unresolved
value with its true value.

In addition to resolving addresses, the linker also builds a "load module." Since the
assembler is aware of only a single source module, it often produces an object module
beginning at address 0. The linker must concatenate each of the object modules; to do this, it
must modify all address references so that Module l precedes Module 2, which precedes
Module 3, and so on.

Assemblers 17

Some linkers are more powerful than others. In advanced systems, the linker lets you
create overlaid programs, multiuser programs, and programs that share code or data with
other programs.

LOADERS

The product of the linker is a "load module." This module is almost a program; however, it
needs a "loader" to move the load module from disk to memory. Typically, the load module
contains some information other than the code and data produced by the assembler. This

information is often called the "header," and tells the loader where to load the remainder of the
module, what data and devices the program may need prior to running the program, and other

system-dependent information.
Once loaded, the program is ready to run. Depending on the system, you simply tell the

computer to begin execution by typing "RUN" or perhaps by entering the program name.
Often, the RUN instruction tells the system to load the program into memory if it isn't already
there.

ALTERNATIVES

These program development steps just outlined are required in most cases. However, in
some systems, one or more of these steps may be combined. For example, some assemblers
produce a loadable image; that is, they perform both the assembly and the linkage. Other

systems use a "linking-loader," which performs the necessary linking at the time that the
program is loaded into memory.

Both of these alternatives were common in early systems, whose programs were smaller
and less modular than those of current systems. However, in these times of cheap memory and
advanced software engineering techniques, only the most rudimentary programs can be
conveniently produced with these tools. Most modern systems follow the basic development
steps we have described.

3

MC68000 Machine Architecture

In this chapter, we describe the architecture of the MC68000 family in terms of the
accessible internal components of the central processor, memory characteristics, instruction
sets, and addressing modes.

THE CENTRAL PROCESSING UNIT

As its name implies, the central processing unit, or CPU, serves as the chief component of
the computing portion of the computer. The CPU handles both functions that the user requests
explicitly and functions that its own internal components and peripherals request implicitly.

The CPU performs explicit functions as directed by your program. Such functions

may include arithmetic (adding two numbers together, for example), decision-making

("if. . . then . . . else" constructs), and data storage and retrieval. The CPU also handles certain
types of errors generated by your programs; for example, division by zero (an illegal operation).

Besides directly executing the instructions of your programs, the CPU is also responsible
for controlling the peripherals that are connected to it. In this context, such peripherals include
main memory (for example, random access memory, or RAM), controllers (for example,

disk-drive controllers), and support processing units (for example, floating-point processors).
Whenever your program accesses one of these peripherals, the CPU must perform certain

"handshaking" functions to ensure that the data transfer between itself and the peripheral
follows standard rules.

Many peripherals are capable of "interrupting" normal program execution within the
CPU. Such interruptions may occur when the peripheral needs to transfer some data; for
example, when you press a key on the keyboard. The CPU must arbitrate interrupts between
different peripherals and also determine what actions it needs to take in regard to servicing the
interrupt. Typically, the CPU stops execution of the current program and begins execution of

another program called an "interrupt handler routine."

CPU COMPONENTS

The CPU consists of several discrete components. These components include address registers,
data registers, and status/ control registers, all of which your program can access. In addition,

the CPU contains many control registers that contain current instruction information, proces-
sor status information, and data buffers. Normally, your program cannot access these registers.
Typically, an instruction will ask the CPU to take a value (from a register or memory),

perform some operation on it, and then store it into a destination location (either a register or
memory). The arithmetic logic unit, or ALU, is responsible for performing all such operations.

The CPU provides pathways on which data can move between registers, external memory,

and the ALU. These pathways are called "buses." CPUs have address buses (for specifying

19

20 68000 Assembly Language Programming

CPU
Registers ALU

Internal
Buffers

Data Bus-
— Address Bus

Control Bus"

Memory

RAM, ROM,
etc.

Peripherals Disk, Tape,

Keyboard,
Modem, etc.

Figure 3-1. Simplified Computer System Block Diagram

memory addresses), data buses (for moving data around the CPU), and control buses (for
handling data transfers and manipulating the peripherals attached to the CPU).

Figure 3-1 shows how these CPU components relate to one another.

MODES OF OPERATION

Most advanced microprocessors, like larger mainframe processors, have more than one
mode of operation. The MC68000 family of microprocessors has two modes, the user mode
and the supervisor mode. Most of the programs that you will write operate in the user mode.

Operating-system functions operate in the supervisor mode.

The supervisor mode provides the operating system with special instructions that aren't
necessary for normal application programs. These "privileged" instructions give the operating
system access to data and registers that are associated with task scheduling and interrupt
handling. When the system includes a memory management unit, or MMU, supervisor
programs may have access to all of memory. User programs, on the other hand, have access
only to the memory that contains their code and data. This limited access protects the

operating system and other programs from corruption by out-of-control user programs.
The supervisor can change the CPU mode to user mode. The opposite is naturally not

possible; the user cannot put the CPU into supervisor mode. The only way for the processor to
change from user mode to supervisor mode is through an exception. Exceptions include
peripheral interrupts and illegal instructions. When these occur, the processor changes to
supervisor mode and begins program execution at an address typically known only by the

operating system. It is virtually impossible for a user-mode program to gain access to
supervisor-mode data.

Most of the programs in this book are intended to be run in user mode.
The supervisor modes of the various MC68000 family members differ in their capabilities.

Their register structures also differ slightly from one another. Because of these differences, we
will discuss the supervisor mode registers separately from the user mode registers.

USER MODE REGISTERS

The MC68000 processor family members have a common set of user-mode data registers,
address registers, program counters, and condition code registers, as shown in Figure 3-2.

MC68000 Machine Architecture 21

31 30 29 28 27 26 25 24 23 22 21201918171615 14 13 12 1 1 10 9 876543210
III I I I I 1 1

^ Bit No (for all

D0'\ registers)

Data

Registers

Registers

16 15
USP (A7) (User Stack Pointer)

7 6 5 4 3 2 10

I H~Hv|.

CCR (Condition Code
Register)

Figure 3-2. User Mode Register Set

Data Registers

The MC68000 has eight 32-bit data registers, DO through D7. Programs use data registers

to hold arithmetic values (such as sums, counters, increments, and so on), as well as "indexes"
(which we will discuss later in this chapter). Data registers can hold 1-bit values, 8-bit bytes,
16-bit words, and 32-bit long words. It is important to note here that byte and word operations
on data registers affect only the lower portion of the register. That is, a byte-sized movement
into a data register affects only the least significant 8 bits of the register. The upper 24 bits are
unaffected.

The various-sized operands are positioned within the data registers as shown by Figure
3-3.

Address Registers

The MC68000 has eight 32-bit address registers, AO through A7. Programs use these
values to hold memory pointers; the registers may also contain index values. Since they hold
addresses, they are limited to storing 16-bit words and 32-bit long words (no bit or byte data).
Operations that move values into an address register affect the entire 32 bits; in a word

movement, the CPU "sign extends" the word into the whole 32 bits of the register (that is, it
replicates bit 15 into bits 16 through 31).

22 68000 Assembly Language Programming

31 30 29 28 2 7 26 25 24 23 22 21 20 19 18 1 7 16 15 14 13 12 1110 9 7 6 5 4 3 2
1 1 1 I 1 1 I I 1 I 1 1 1 1111111 NTT

-Data Register
(D0-D7)

Byte Operands -
Word Operands

Long Word Operands

Figure 3-3. Operands Positioned Within Data Registers

Not all of the MC68000 processors permit 32-bit addresses; the actual number of bits used
depends on the size of the address bus. Table 3-1 summarizes the size of the address buses on
each of the processors. When fetching or writing data via an address register, the CPU uses
only as much of the address register as corresponds to the address bus. It ignores any

additional high-order bits.
Seven of the address registers (A0-A6) are general purpose registers. The eighth, A 7, is the

user stack pointer, or USP. (The supervisor mode uses A7 as a separate stack pointer, as will be
discussed later in this chapter.) A stack is a special data structure in memory whose function is

to store temporary data. It operates in a "last in, first out" ("UFO") method; that is, the last
datum "pushed" onto the stack will be the first datum "pulled" off of the stack.

The MC68000 fills a stack from high memory to low memory. For example, on a
subroutine call, the processor decrements the stack pointer, pushes the program counter onto
the stack, and branches to the subroutine. On return from the subroutine, the processor pulls

the program counter from the stack and then increments the stack pointer. Figure 3-4 shows
this operation.

Program Counter

The program counter, or PC, keeps track of the address of the next instruction to execute.
Each time the CPU requires a new instruction, it reads the instruction pointed to by the PC and
then increments the PC. If the instruction is more than one word long, the CPU reads the next

Table 3-1 . MC68000 Family Address Buses

Processor Bus Width Address Space
MC68000

24
16 megabytes

MC68008
20

1 megabyte
MC68010

24
16 megabytes

MC68012
31 2 gigabytes MC68020
32 4 gigabytes

MC68000 Machine Architecture 23

word pointed to by the program counter.
Like the address registers, the PC is 32 bits long; however, the actual maximum address

depends on the size of the address bus of the particular processor.

Condition Code Register

After completing most operations, the CPU must indicate certain results; for example,
after comparing two values, the CPU must be able to indicate whether they were equal. The

user portion of the status register, or SR, contains bit-sized flags, or "condition codes," which
may be true (value 1) or false (value 0); this portion of the status register is also known as the

"condition code register," or CCR.
The Carry bit (C) holds the carry from the most significant bit produced by arithmetic

operations or shifts. For example, if the sum of two numbers is larger than the destination can
hold, the Carry bit is set to true (1); likewise, if in a subtraction, the second number is larger

than the first, the Carry bit is set to true. In this context, the bit functions as a "borrow" bit.
The Zero bit (Z) is true (1) when the operation results in a zero value. It is false (0) when the

operation produces a nonzero result.
The negative bit (N) takes on the most significant bit of a result. Thus, a true (1) value

means that the result was negative, and a false (0) value means the result was positive or zero.
The overflow bit (O) is true (1) when the result of an operation has a magnitude greater

than can be represented by the destination and Carry bit.
The Extend bit (X) is always the same as the Carry bit.

SUPERVISOR MODE REGISTERS

FOR THE MC68000 AND MC68008

The supervisor mode on the MC68000 and MC68008 processors has access to two

registers in addition to the user mode registers, as shown in Figure 3-5.

Status Register

The status register for the MC68000 and MC68008 consists of the condition codes, which
lie in the lower byte and are accessible by the user mode, and the upper byte, which is accessible
only by the supervisor mode (the supervisor mode has access to both bytes).

The Supervisor bit, (S), specifies the execution mode of the processor. If true (1), the
processor is in supervisor mode; if false (0), the processor is in user mode.

The Trace bit, (T), when true (1), specifies that the processor is operating in trace mode. In

this mode, after executing an instruction, the processor automatically "traps" to a supervisor
routine. The trace mode implements a single-step mode of execution. This allows a debugger

program to monitor the results of an application program on an instruction-by-instruction
basis.

The MC68000 processors can operate at any one of eight levels, or "priorities." The
interrupt mask bits, (10,11,12), form a binary number that specifies the current operation level.

External devices may attempt to interrupt the processor by asserting signals on three input
lines connected to the processor. When the processor receives an interrupt request, it compares
the bits of the interrupt mask to the values on the interrupt lines.

24 68000 Assembly Language Programming

Memory
Address

\ 15 0 15 0 15 0

n I

 1 SP— ̂ High-Order PC
I
 1

n+2 I i — Low-Order PC I

SP-^n+4 (Top of Stack)

I

1

 1

SP— ►

(Top of Stack)

n+6
 1

1 1
 1
I

n+8 1 1

T
"

n+10 1
1

 1
1

 1
I

Before Call After Call After Return

Figure 3-4. Incrementing the Stack Pointer

31 16 15 0 I I SSP1A7) System
— . 1 Stack Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|t| |s| I |h|..k
zlvlcl

Figure 3-5. Additional Registers Available in Supervisor Mode (MC68000, MC68008)

If the CPU priority is equal to or greater than the interrupt level, the CPU ignores the
interrupt (for the time being) and continues execution. Later, if and when the CPU lowers its
priority, the device can interrupt the processor. If the CPU priority is less than the incoming
interrupt level, the CPU responds to the interrupt request by suspending the execution of the

current program and jumping to an interrupt-handler routine. When this happens, the
processor raises its priority to the level indicated by the interrupt lines.

Normally, application programs run at priority 0 (lo^Ii^b^O). This gives all peripherals
the ability to interrupt the processor. Since the CPU raises its priority for interrupts, it can

"prioritize" the peripherals. For example, the system clock usually has the highest priority (that
is, level 7), while a terminal port may have a lower priority; say, level 4. In this instance, the

MC68000 Machine Architecture 25

clock can interrupt an applications program as well as the interrupt handler for the terminal

port. The terminal-port interrupt can interrupt the applications program but cannot interrupt
the clock-interrupt routine. This ensures that time-dependent functions (like the clock or disk
input/ output) occur without the chance of corruption.

Stack Pointer

The MC68000 and MC68008 use two stacks, the user stack and the supervisor stack. Naturally,
this means that they require two stack pointers, the user stack pointer (abbreviated USP or A7)

and the supervisor stack pointer (abbreviated SSP or A7'). The CPU uses the stack that
matches the current mode. Since the stack selection is made internally, each mode has access
only to its own stack pointer. In an assembler program, a reference to A7 (either explicitly as
A7, or implicitly through a subroutine call or return) decodes to the same machine instruction;
at execution time, the CPU selects the appropriate stack. The MC68000 processors include a
special instruction to a supervisor mode program to access the user mode stack pointer.

SUPERVISOR MODE REGISTERS

FOR THE MC68010 AND MC68012

The MC68010 and MC68012 processors both have supervisor stack pointers and status
registers identical to those in the earlier models. These processors have three additional

registers. The supervisor mode register set is shown in Figure 3-6.

31
16 15

SSP(A7) System
Stack Pointer

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ItI Isl I kkH I I IxHzHd »

31 VBR Vector
Base Register

SFC Source Function Code Register

DFC Destination Function Code Register

2 1 0

2 1 0

Figure 3-6. Additional Registers Available in Supervisor Mode (MC68010. MC680I2)

26 68000 Assembly Language Programming

Vector Base Register

The MC68000 processors use a specially defined block of memory called a "vector table."
This table defines the starting addresses (or vectors) of interrupt handlers, illegal instruction

code handlers, system-reset routines, and other operating system-oriented vectors.
In the MC68000 and MC68008, this table always starts at address 0000H. The MC68010

and MC68012 permit the operating system to redefine the starting address by use of a 32-bit
vector base register, or VBR. At system reset, the vector table resides at 0000H. After reset,
however, the operating system may modify this address through the VBR.

Alternate Function Code Registers

The MC68000 processors have three function code output lines (called FCO, FC1, and
FC2). Whenever the processor reads or writes to memory, these function codes reflect
information about the state of the processor. Specifically, they show the CPU mode (user or
supervisor) and the contents of the memory accessed (instruction or data). Often, these lines
are connected to the memory management unit (MMU) and permit the program to define

separate memory for each CPU mode and memory-access type.
In normal execution, the processor sends well-defined data function codes. Certain

instructions, however, permit the program to send out alternate codes. The source function
code register, or SFC, specifies the code for memory reads. The destination function code
register, or DFC, specifies the code for memory writes.

SUPERVISOR MODE REGISTERS FOR THE MC68020

The supervisor mode of the MC68020 offers several registers that are not available in the

earlier MC68000-family processors. Some of these registers are completely new and others are
redefined versions of old registers. These registers are shown in Figure 3-7.

Status Register

The supervisor byte of the status register for the MC68020 has new bit definitions in

addition to those of its predecessors, as shown in Figure 3-7.
The MC68020 defines a second trace bit (TO) in addition to the one found in the earlier

processors (Tl). These two bits combine to allow more specific tracing than the single trace bit
permitted. When the trace bits are equal to 00, no tracing takes place. When they are equal to
01 , a tracing trap takes place only on a change of program flow (such as execution of a branch
or subroutine call). When the trace bits are equal to 10, the processor traps after every
instruction (as do the other processor models). The 11 bit value is undefined.

The MC68020 divides the supervisor mode into two submodes, master and interrupt,
through the use of a Master bit, (M), which functions in conjunction with the Supervisor bit,
(S). The only difference between the two is in the selection of stack pointer.

The interrupt mask bits in the MC68020 status register function identically to the mask in
the other processors.

MC68000 Machine Architecture 27

Stack Pointers

As indicated previously, the MC68020 supervisor mode can use one of two supervisor
stacks. These are called the interrupt stack pointer, or ISP (A7'), and the master stack pointer,
or MSP (A7"). When the M bit is 0, the processor uses the ISP, just as the other MC68000 processors do. When the M bit is 1, the MC68020 uses the MSP.

Having two supervisor stacks may seem redundant to you if you are new to systems
programming. However, in some situations (for example, multitasking), a second supervisor
stack provides a "cleaner" interface. The master stack can hold task-dependent information
and provide temporary storage for operating-system routines. The interrupt stack then holds
information associated with hardware interrupts.

This distinction may not be evident to you yet. For now, suffice it to say that the CPU
automatically chooses which stack to use based on its current operating status (defined by the
M and S bits of the status register).

Cache Control

Most programs spend the better part of execution time running in loops. While in these
loops, they execute the same set of instructions over and over. Each time the processor needs to

31
16 15

16 15

31

ISP(A7') Interrupt Stack
Pointer

MSP(A7") Master Stack Pointer
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|t,|tJs!m| !l||.K1 I l |x|n|z|v|c| SR Status Register 0
VBR Vectorbase Register

2 0

2 0

31

31

SFC Source Function
Code Register

DFC Destination Function
Code Register

CACR Cache Control
Register

CAAR Cache Address
Register

Figure 3-7. Additional Registers Available in Supervisor Mode (MC68020)

28 68000 Assembly Language Programming

execute an instruction, it must fetch it from memory.

The MC68020 processor includes a 256-byte instruction cache, which contains the most
recently executed instructions. In the case of a looping segment of code, the processor only has
to fetch the instruction from memory once. It stores the instruction in the cache, displacing an

instruction that hasn't been used lately. Subsequent memory requests for the instruction are
canceled because the processor already has the instruction in the cache.

The operation of the instruction cache is transparent to user programs. However, running
programs through the cache may not always be appropriate. Since the cache can hold only a
limited number of instructions, nonlooping code may displace looping code. The supervisor
mode has, therefore, the ability to enable, disable, and otherwise manipulate the cache through
two registers, the cache address register, or CAAR, and the cache control register, or CACR.

MEMORY

The MC68000 memory is arranged as a single, linear, logically contiguous block of storage
cells. At any given time, a program can access any point in the total address space of the system
(as defined by the width of the address bus). In practice, however, the operating system uses the
memory management unit to limit a program to accessing only as much memory as it needs;
this may be 10K bytes, 100K bytes, or 1M byte.

This linear arrangement differs from that of some popular microprocessors, where the
CPU may access memory in 64K byte segments; such microprocessors must set up segment
registers that point to the starting addresses of these segments. To access an instruction or
datum outside the current segments, the programmer must explicitly instruct the CPU to
change its segment registers.

All peripheral devices appear to the MC68000 processor as unique memory locations. In

this sense, the processor uses memory-mapped input/ output to the peripherals; a program can
use the same instruction to move data to a peripheral as it does to move data to a memory

location. This contrasts with other processors that connect peripherals to "ports," which
require special instructions for interfacing.

ACCESS SIZES

The basic unit of memory access on the MC68000 processors is the byte (8 bits). Each byte
of memory has its own address. The processors may also access words (16 bits) and long words

(32 bits). On all processors but the MC68020, word and long-word operands must reside on
even-address boundaries; that is, the address must be evenly divisible by two.

On the MC68020, words and long words can start on odd addresses. However, the
processor accesses them by making two or three consecutive accesses to memory; this increases
accessing time. For maximum efficiency, you should always keep words aligned on even
boundaries and long words aligned on address boundaries divisible by four, regardless of the
particular processor in use.

On all processors, instructions must begin on word boundaries. This simplifies the
instruction-fetch logic of the CPU.

BYTE ORDERING

The MC68000 processors store data in memory exactly as they do in registers, as shown in

Figure 3-8. This implies that the most significant bit of a long word (bit 31) stored in a register

MC68000 Machine Architecture 29

Bit Data

1 Byte = 8 Bits
7 6 5 4 3 2 1 0

I I I

Integer Data

1 Byte = 8 Bits
15 14 13 12 11

10
9 8 7 6 5 4 3 2 10

MSB Byte 0 LSB
Byte 1

Byte 2 Byte 3

1 Word =16 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Word 0 LSB
 Word 1
Word 2

Even Bytes Odd Bytes

7654321 o| 76543210

1 Long Word = 32 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB High Order

Low Order LSB

Addresses

1 Address = 32 Bits
15 14 13 12 11 10 98765432 1 0
MSB High Order

Low Order
LSB

MSB = Most Significant Bit
LSB = Least Significant Bit

Decimal Data
2 Binary Coded Decimal Digits = 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSD BCD.O BCD.1 LSD

BCD. 2 BCD 3

BCD. 4 BCD. 5 BCD. 6 BCD. 7

MSD=Most Significant Digit
LSD = Least Significant Digit

Figure 3-8. Data Organization in Memory

30 68000 Assembly Language Programming

resides as the first bit at its address in memory. This storage setup contrasts with those of other
processors, which reverse the byte order of words and long words in memory. That is, they
store a word in memory so that the least significant byte resides at the address of the word and
the most significant byte resides at the address plus one.

INSTRUCTION SET

The MC68000 processors have a rich instruction set that allows for data movement,
arithmetic, logical testing, bit manipulation, and program flow control. The instructions are

upwardly compatible in that programs written and assembled on a lower-end product, such as
the MC68000, will run unaltered on an upper-end product, such as the MC68020. The opposite
is not true, however; programs written for the MC68020 will not necessarily run on the
MC68000. This is because there are more instructions and addressing modes available on the
MC68020 than on the other processors.

The MC68000 processors' instruction sets are "regular." This means that most instruc-
tions follow the same format and may use any combination of address modes. For example, the

same machine op-code may request data movement between two registers, between a register
and memory, between two memory locations, or between a register and a peripheral. The only
difference between the two requests lies in the operand portion of the instructions. The
regularity of the MC68000 instruction set contrasts with other microprocessors, which limit
many instructions to specific addressing modes.

This regularity of the instruction set has several important implications for you, the

assembly-level programmer. First, it means that you needn't memorize all sorts of different
instructions and formats; most instructions look the same except for the instruction mnenonic.
For example, many processors have separate LOAD and STORE instructions. The MC68000
processors have only a MOVE instruction; the direction of the movement depends on the
ordering of the operands.

Second, the basic instruction operates on all sizes of data. In MC68000 assembly lan-
guage, the size of the operation (that is, byte, word, or long word) is specified by a suffix to the

mnemonic — either .B, . W, or .L. In the machine code, the size is specified by special bits in the
instruction code.

Finally, this simplification means that you needn't worry about keeping registers free for
specific operations. You can use any of the eight data registers for any operation requiring a
data register; you can use any of the seven general purpose address registers for an operation
requiring an address register.

We will introduce each of the instructions in subsequent chapters by using them in sample
programs. For now, we will give you an overview of the MC68000 instruction set.

DATA MOVEMENT

Data movement instructions provide for movement of data between registers, between a
register and a memory location, and directly between two memory locations. The instructions
allow for data movement, address movement, register data exchange, multiple register loading
and storing, and stack frame linking and unlinking.

Table 3-2 lists the data-movement instructions.

A few things to note here about the data-movement instructions: First, there are no

MC68000 Machine Architecture 31

explicit stack push or pull instructions. This is in keeping with the instruction set uniformity.
System stack operations use the general MOVE instruction in combination with register A7
(the stack pointer).

Second, there are no block movement instructions. On other processors, such instructions
tell the CPU to move a certain number of bytes (or words or long words) starting at some
address to a block of memory starting at another address. Again, in keeping with uniformity,

the processor allows block movement through a combination of simple movement instruc-
tions, addressing modes, and loop instructions. We will discuss such looping in detail in

Chapter 5.
Finally, the word move is somewhat of a misnomer here. The processor actually copies the

data from one place to another. After the operation, the data resides in two places, the source
and the destination. However, in keeping with convention, we will use the term move.

The MC68000 processors provide for the basic four integer arithmetic functions of add,
subtract, multiply, and divide. Also provided for are aids useful in arithmetic operations for
comparing two integers, zeroing an integer, negating an integer, and performing multiprecision
arithmetic.

Table 3-3 summarizes the integer-arithmetic instructions.

The MC68000 processors allow for the Boolean (logical) operations of AND, OR,
Exclusive OR, and NOT. Boolean arithmetic treats its operands on a true/ false (or on/ off)

basis, in much the same way that the computer's internal circuitry does. These instructions are
useful for creating and manipulating masks, testing status words, and setting bit patterns for
graphics applications.

Table 3-4 summarizes the Boolean operations.

INTEGER ARITHMETIC

BOOLEAN ARITHMETIC

Table 3-2. Data Movement Instructions

Mnemonic
Operation

EXG

LEA
LINK
MOVE
MOVE A
MOVEC
MOVEM
MOVEP
MOVEQ
MOVES
PEA
UNLK

Exchange registers
Load effective address
Link and allocate stack
Move source to destination
Move source to address register
Move control register
Move multiple registers
Move to peripheral
Move short data to destination
Move address space
Push effective address
Unlink stack

32 68000 Assembly Language Programming

Table 3-3. Integer Arithmetic Instructions

Mnemonic
Operation

ADD Add source to destination
ADDA Add source to address register
ADDI Add immediate data to destination
Anno muu biiun udid to Ucoiindiion
ADDX Add with extend bit to destination

CLR Clear operand
CMP Compare source to destination
CMPA C^r~\ m naro c^i irro tr\ aHHrocc ronictor uum ipai c ouui Lc iu duuicsb i cy isici
CMPI Compare immediate data to destination
CMPM Compare memory

CMP2*

Compare register to upper/lower bounds
DIVS

Signed divide
DIVU Unsigned divide

DIVSL*
Long signed divide

DIVUL*
Long unsigned divide

EXT Sign extend
EXTB Sign extend byte

MULS Signed multiply
MULU Unsigned multiply
NEG

Negate
NEGX Negate with extend

SUB Subtract source from destination
SUBA Subtract source from address register
SUBI Subtract immediate from destination
SUBQ Subtract short from destination
SUBX Subtract with extend bit from destination

*68020 only

SHIFT AND ROTATE

The MC68000 processors permit you to shift and rotate the bits of an integer. Like
Boolean operations, Shift and Rotate instructions are helpful in creating and evaluating
masks. Shifts are also a handy means of performing simple multiplication and division. While
the MC68000 has multiplication and division instructions, the Shift instruction operates much
faster than these instruction types.

Table 3-5 summarizes the Shift and Rotate instructions.

INDIVIDUAL BIT MANIPULATION

The MC68000 permits you to test, clear, set, and logically NOT an individual bit of an
operand. Such operations are useful when you need to manipulate bit flags; a single word can

MC68000 Machine Architecture 33

Table 3-4. Boolean Instructions

Mnemonic Operation

AMR AND AND source to destination
ANDI AND immediate data to destination
EOR Exclusive OR source to destination
FORI Exclusive OR immediate data to destination
NOT NOT destination

OR OR source to destination

ORI OR immediate data to destination Sec

Test condition codes and set operand
TST Test operand and set condition codes

Table 3-5. Shift and Rotate Instructions

Mnemonic
Operation

ASL Arithmetic shift left
ASR Arithmetic shift right
LSL Logical shift left
LSR Logical shift right
ROL Rotate left
ROR Rotate right
ROXL Rotate left with extend bit
ROXR Rotate right with extend bit
SWAP Swap words of a long word

contain several true/ false flags.

Table 3-6 summarizes the individual bit-manipulation instructions.

BIT FIELD MANIPULATION

Besides allowing you to manipulate individual bits, the MC68020 processor lets you

manipulate strings of consecutive bits, called "fields." These fields may be up to 32 bits in
length. Using them allows you to compress your data into the minimum storage space needed
for a given variable. To reach the bit field, you specify any of the MC68000 addressing modes.

In addition, you must suffix the addressing mode with the start bit and the number of bits in the
field.

Table 3-7 summarizes the bit field manipulation instructions.

34 68000 Assembly Language Programming

Table 3-6. Bit Manipulation Instructions

Mnemonic Operation

BCHG Change bit
BCLR Clear bit
BSET Set bit
BTST Test bit

Table 3-7. Bit Field Instructions

Mnemonic
Operation

BFCHG*
Change bit field

BFCLR*

Clear bit field

BFEXTS*
Extract and sign extend bit field

BFEXTU*
Extract and zero extend bit field

BFFFO*

Find first set bit in bit field

BFINS*

Insert bit field

BFSET*
Set bit field

BFTST*

Test bit field

*68020 only

BINARY-CODED DECIMAL

The MC68000 processors allow you to perform addition and subtraction on binary-coded
decimal, or BCD, numbers, so they provide a simple means of manipulating numbers without

first converting these numbers to binary. Binary-coded decimal notation is a form of internal
coding in which decimal numbers (0-9) are stored as separate digits (as with ASCII coding),
but the numbers are in 4-bit binary format. For example,

1234 (10) = 0001 0010 0011 0100 (BCD)

PROGRAM FLOW CONTROL

For a program to be of much use, it must be able to test conditions and skip instructions
based on results of the test. It must also be able to make calls to subroutines and return from

those subroutines. The MC68000 processors allow for several conditional and unconditional
branches and subroutine calls, as shown in Table 3-9.

MC68000 Machine Architecture 35

Table 3-8. Binary-Coded Decimal Instructions

Mnemonic O Deration

ABCD Add source to destination
NBCD Negate destination

PACK*

Pack source to destination
SBCD Subtract source from destination

UNPK*
Unpack source to destination

*68020 only

SYSTEM CONTROL

In some instances, a user mode program needs to gain access to the supervisor mode. To
do this, it may execute certain instructions that change the state of the supervisor bit (in the
status word) and branch through the vector table to a special handler (usually in the operating
system). The supervisor mode program must then be able to change back to user mode upon

completion of the user mode program's request. Table 3-10 summarizes the instructions that
affect the supervisor bit.

Table 3-9. Program Flow Instructions

Mnemonic
Operation

BCc

Branch conditionally
BRA Branch unconditionally
BSR Branch to subroutine

CALLM*
Call module DBCC
Test, decrement, and branch

JMP Jump to address
JSR Jump to subroutine
NOP No operation

RTD**

Return and deallocate stack
RTE+ Return from exception

RTM*

Return from module
RTR Return and restore condition codes
RTS Return from subroutine

+ privileged instruction

*68020 only
**68010-68020 only

36 68000 Assembly Language Programming

Table 3-10. System Control Instructions

Mnemonic
Operation

ANDI AND immediate to status register/condition
code register

BKPT Breakpoint trap

CHK Trap on upper out-of-bounds operand

CHK2*
Trap on out-of-bounds operand

EORI Exclusive OR immediate to status
ILLEGAL Illegal instruction trap
MOVE Move to/from status register/condition code

register
MOVFr-f- iviuv i fV/lowo ir\/irr\tx\ n nr^t rr\ I ronictor iviuvt iu/ nuni lui in ui rt?yibifc?r
MOVES+ Move to/from address space
RESET+ Assert RESET line
STOP+ Stop processor
TRAP Trap unconditionally

TRAPCc*
Trap on condition

TRAPV Trap on overflow

+ privileged instruction
*68020 only

MULTIPROCESSOR/COPROCESSOR

COMMUNICATIONS

A MC68000-based computer system may consist of more than one processor. Systems of

this sort are called "multiprocessor systems." In order to prevent one processor from accessing
a memory location at the same time as another processor, certain instructions use a read-
modify-write cycle, which gives a processor sole use of the system bus for the duration of its
execution.

In addition to its multiprocessor capabilities, the MC68020 also permits a system to

include coprocessors. From the user's point of view, these coprocessors appear to be integral to
the CPU. Motorola currently supports two coprocessors: the MC68881, a high-precision,
floating-point unit, and the MC68851, a memory management unit.

Table 3-ll lists the multiprocessor/coprocessor instructions.

ADDRESSING MODES

As we have stated in previous sections, associated with nearly every instruction is one or
more operand(s). An operand may reside in one of two places: internal to the CPU (in a
register), or external to the CPU (in memory). The addressing mode determines how the CPU

will compute the "effective address" of the operand, either in a register or in memory.
In some addressing modes, the operand is part of the instruction itself. In other addressing

MC68000 Machine Architecture 37

Table 3-11 . Multitask/ Multiprocessor Instructions

Mnemonic
Operation

LAo Compare and swap with operand

CAS2*
Compare and swap with operands

cpBcc*
Branch on coprocessor condition

cpDBcc*
Test coprocessor, decrement, and branch

cpGEN*
General coprocessor instruction

cpRESTORE*
Restore coprocessor state

cpSAVE*
Save coprocessor state

CpScc*
Test coprocessor condition

cpTRAPcc*
Trap on coprocessor condition

TAS Test and set operand

* 68020 only

modes, the effective address is a sum of several registers and displacement values determined
by the operand field portion of the instruction. Some of the addressing modes are difficult to
understand; we will explain why these more complex modes are useful and describe typical

examples from real applications. You should try to trace these examples, since an understand-
ing of the use of the various addressing modes is essential to writing good programs.
In our discussion of addressing modes, we will use the MOVE instruction exclusively to

show how the CPU evaluates an effective address. The MOVE instruction simply moves a
value from a source address to a destination address, where the first operand specifies the
source and the second operand specifies the destination. We will use the dollar sign

("$") to denote hexadecimal numbers. Note that we use standard Motorola syntax for our
addressing modes. Your assembler may use a slightly different syntax.

IMPLICIT ADDRESSING

Most instructions let you specify one or more operands. A few instructions, however,
always work on the same operand. For example, the Return from Subroutine instruction
(RTS) always fetches its operand (the return address) from the top of the stack. Similarly, the
Trap on Overflow instruction (TRAPV) uses the system stack and a predefined address in the
vector table. Some instructions, such as RESET and NOP, have no operands at all.

Instructions of this type use implicit addressing, since the location of their operands is

determined by the instruction operation codes. Several other instructions use implicit address-
ing along with one of the other addressing modes. For example, a branch instruction (BRA)

always affects the program counter. In addition, it requires a second explicit operand to specify
the branch address.

DIRECT ADDRESSING MODES

In the direct addressing modes, the assembly instruction explicitly gives the location of the
operand.

38 68000 Assembly Language Programming

Data Register Direct

In this addressing mode, a data register contains the operand. You specify this mode by

using the mnemonic Dn, where "D" means that the operand is a data register and "n" is a
number from 0 to 7 that specifies the particular data register. An illustration of this follows:

Data register:

Assembler syntax: Dn

operand

For example, DO may contain a subtotal. You may want to perform additional arithmetic
on this subtotal but keep the original value; hence, you will need to copy the value to another
register. If the data registers contain the following:

'egister
DO
D3

then after execution of the instruction

MOVE.L

the registers will contain

contents
10204FFF
1034F88A

D0,D3

register DO
D3

contents
10204FFF
10204FFF

Address Register Direct

Address register direct mode is similar to data register direct, except that the register in use

is an address register. You specify this mode with the mnemonic An, where "A" specifies address
register and "n" is a number from 0 through 7, giving the register number. An illustration of this
follows:

Address register:

Assembler syntax: An
operand

For example, AO may contain the base address of some table in memory. You may need to
copy this address to another address register. If the address registers contain the following:

register contents
AO 00200000
A3 0004F88A

then after execution of the instruction

MOVE.L A3,A0

the registers will contain

register AO
A3

contents
00200000
00200000

MC68000 Machine Architecture 39

Immediate

In immediate addressing, the operand is part of the instruction; the data follows the
operation code in memory. In assembler code, you specify this addressing mode by preceding
the operand with the "#" character; for example, #123. Optionally, you may follow the operand
with a length descriptor of .B, .W, or .L. If you omit this suffix, the assembler will pick a size
based on the value magnitude. An illustration of this mode follows:

Extension word(s).
operand

Assembler syntax: #xxxx.size

Many times in a program you must load a register with a constant value. If the registers
look like this

then the instruction

results in

register DO

MOVE.L

contents
012309FF

#$1FFFF,D0

register DO contents
0001 FFFF

Good programming practice dictates that the constant value be named. For example, if
the value in the example was actually a bit mask for an operation, we might define a constant

"STATU S__ MASK" and give it the value S1FFFF. Then, our instruction might read

MOVE.L tfSTATUS — MASK, DO

Absolute Addressing

In this addressing mode, the address of the operand follows the instruction word. The
address may be 16 or 32 bits long. If it is only 16 bits long, then the CPU sign extends the value
before using it. The assembler syntax for this mode is the address value followed optionally by
.L or .W. The assembler, if it knows the value of the address, can decide whether the address

should be 16 or 32 bits long. An illustration of this mode follows:

Extension word:

Memory:

sign-extended memory address

operand
points to

Assembler syntax: xxxx W

Usually you will write programs so that they are "position-independent." This means that
you must treat addresses as relative to some other value (see the address register and program
counter indirect modes). However, there are times that you may need to access a location by its
exact value. For example, a device driver may be loaded anywhere in memory; however, it must

40 68000 Assembly Language Programming

access a port (located at a fixed address in memory) that it knows only by its physical location.

A second example is the operating system's manipulation of the vector table. This table has a
specific location in memory, and hence must be accessed by its physical location.

If memory looks like

address contents
00000008 00
00000009 . 00
0000000A 00
0000000B 00

then the instruction

MOVE.L #$10030,8

uses an effective destination address of 00000008 and results in

address contents
00000008 00
00000009 01
0000000A 00
OOOOOOOB 30

Again, good programming practice dictates that you use named values instead of literal
numbers, so your instruction may read

MOVE.L #BUS_ERROR_ROUTINE, BUS_ERROR_VECTOR

REGISTER INDIRECT ADDRESSING MODES

In register indirect addressing, the operand is pointed to by an address register or the
program counter. In some modes, the CPU includes additional offsets or indexes to calculate
the operand in memory.

Address Register Indirect

In this addressing mode, the operand is located in memory; an address register contains
the operand address. To specify this addressing mode, you enclose the address register in
parentheses; for example, (A3). An illustration of this mode follows:

Address register:

Memory:

Assemble syntax: An

memory address

operand
points to

For example, A3 may contain the address of a database record where you want to move a
value from DO. If the registers and memory are

register contents memory contents
AO 00001000 00001000 AO
DO 1043834F 00001001 02

00001 002 3F
00001 003 00

MC68000 Machine Architecture 41

after execution of the instruction

MOVE.L DO,(AO)

the effective address for the destination is $1000 and the registers and memory will contain

register contents memory contents
AO 00001000 00001000 10
DO 1043834F 00001001 43

00001002 83
00001003 4F

Address Register Indirect

With Predecrement

In this addressing mode, as in simple address register indirect, an address register contains
an address in memory. However, before determining the address of the operand, the CPU
subtracts a value from the address register, leaving the actual address in memory. The value
subtracted depends on the size of the operation: 1 for a byte operation, 2 for a word operation,

and 4 for a long-word operation.
After the subtraction, the CPU stores the new value into the address register and uses its

new value as the effective address of the operand. In an assembler statement, this mode is

specified by preceding the parenthesized address register with a minus sign, as in — (A5). An
illustration of this mode follows:

Address register:

Operand size (1, 2, or 4):

Memory:

Assembler syntax: -(An)

memory address

operand points to

This mode is most commonly used to implement a push onto a memory stack. If registers
and memory are

register
A7
DO

contents
00001002
00000143

memory

00001000
00001001
00001002
00001003

contents 10
12

83
4F

then the operation

MOVE.W D0,-(A7)

uses an effective address of $1000 for the destination and leaves the registers and memory as

register
A7
DO

contents
00001000
00000143

memory

00001000
00001001
00001002
00001003

contents

01

43

83

4F

42 68000 Assembly Language Programming

Address Register Indirect
With Postincrement

In this addressing mode, as in the predecrement mode, an address register contains an
address in memory, and the CPU modifies the address register according to the size of the
operation. However, in this case, the CPU uses the value currently in the address register as the
effective address of the operand. After storing this value internally, the CPU adds the operation
size to the address register. The assembler syntax for this mode is the parenthesized address
register followed by a plus sign, as in (A5)+. An illustration of this mode follows:

Address register:

Operand size (1, 2, or 4):

Memory:

Assembler syntax: (An)+

memory address

operand

points to

This mode is commonly used to move through a table or string of data. It is also used to

implement a pull (also called a "pop") of data from a memory stack. If the registers and
memory are

register
A7 DO

contents
00001000
0000FFFF

memory

00001000
00001001
00001002
00001003

contents 10 12

83
4F

then the operation

MOVE.W (A7) + ,D0

uses an effective address of $ 1000 for the source operand and leaves the registers and memory as

register
A7
DO

contents
00001002
00000143

memory

00001000
00001001
00001002
00001003

contents

01

43

83 4F

The system does not allow a program to push or pull a single byte from the system stack
(A7). If you attempt to do so, the CPU will automatically increment or decrement the stack
pointer by 2 instead of 1. Since the CPU uses the system stack to store the program counter

during subroutine calls, this ensures that the stack is always aligned on an even-address
boundary (remember that word and long-word access to odd addresses is prohibited on the
MC68000-MC68012 and is inefficient on the MC68020). User-defined stacks (using A0-A6)
allow byte-sized operations.

Address Register Indirect

With Displacement

In this addressing mode, the effective address of the operand is the sum of a fixed 16-bit

signed "displacement" and the contents of an address register. Before the CPU adds the

MC68000 Machine Architecture 43

displacement to the value from the address register, it "sign extends" the displacement; that is,
it replicates the value in bit 15 into bits 16 through 31 . This allows a program to have both positive
and negative displacements.

Like the other register indirect modes, the assembler syntax for this mode uses the address
register enclosed in parentheses. The displacement value precedes the address register; for
example, 10(A1). The value of the displacement is a constant, while the value of the address
may vary during program execution. An illustration of the calculation of the effective address
for this mode follows:

Address register:

16-bit displacement:

Memory:

Assembler syntax: (die, An)

memory address

sign-extended displacement

operand points to

This addressing mode is particularly useful for accessing an entry in a record-data
structure. For example, a vehicle-information record may consist of a license number, year,
color code, and serial number. To access a particular field in the record, you first load an
address register so that it points to the start of the record. Now, if you know that year entry is
word value offset $6 bytes from the start of the address, you can use address register indirect
with displacement to access this field. If the registers and memory look like

register contents
memory

contents
AO 00001020 00001020

31

DO 00000000 00001021
34 00001022 35

00001023

31
00001024 4A
00001025

4C

00001026
07 00001027 BF

then the instruction

MOVE.W $6(A0),D0

uses an effective address of $1026 for the source and leaves memory and the registers as

register contents memory contents
AO 00001020 00001020 31
DO 000007BF 00001021 34

00001022 35
00001023 31
00001024 4A
00001025 4C
00001026 07
00001027 BF

You seldom use numeric constants for the displacement; rather, you use symbolic con-
stants defined through equate statements. In the preceding example, you could have defined a

constant called "YE AR" and given it the value $6. Then, your assembler statement would have
read

MOVE.W YEAR(A0),D0

This substitution makes for code that is descriptive and easy to modify. It makes

44 68000 Assembly Language Programming

absolutely no difference in the machine code produced.

Address Register Indirect With Index and Displacement

In this addressing mode, the effective address is the sum of the value in the address register,
a second index register, and a signed displacement. The index register may be any of the data
registers or address registers. The CPU may use either 16 or 32 bits of the index register. If only
16 bits are used, the CPU sign extends the value before adding it to the value from the address

register. The displacement may be either 16 or 32 bits; again, the CPU sign extends any 16-bit
value.

Indexing provides an additional degree of variation in indirect addressing. This mode is

often used for complex data structures. A two-dimensional array can be described quite well
with this mode; the address register may define the address of start of the first subscript; the
index register may then define the offset needed to reach the entry (that is, the second
subscript).

In the assembler syntax for this mode, the address register and index register are enclosed
within parentheses; the address register is specified first, followed by a comma, and then by the
index register specification. To specify the size of the value in the index register, you follow its
name with .W or .L. The displacement precedes the parenthetical expression. For example, in
the expression 20(A3,A6.L), 20 is the displacement, A3 is the address register, and A6 is the
index register, while .L tells the CPU to use all 32 bits of A6.

The MC68020 processor adds further capabilities to this addressing mode. With this

processor, you may specify 8-bit displacements as well as 16- and 32-bit displacements. In

addition, the MC68020 allows you to "scale" the value in the index register. Scaling tells the
processor to multiply the value in the index register by 1,2, 4, or 8 before adding it to the

effective address. If you have a two-dimensional array, scaling lets you use true subscripts in
your index register. For example, if the array contains word entries, you might scale by 2; if it

contains long-word entries, you would set the scale to 4.
The syntax for this advanced form of indexing is similar to that on the other MC68000

processors. To specify the scale of the index register, you follow it with an asterisk and the scale;
for example, 10(A0,A3.L*4). The calculation of the effective address is

Address register: memory address

8-bit displacement: sign-extended displacement

Index register sign-extended index

Scale (68020 only— 1, 2, 4, or 8)
scale

points to Memory: operand

Assembler syntax:
68020:

(d8,An, Xn.size)

(d8,An, Xn.size*scale)

MC68000 Machine Architecture 45

If you have defined a two-dimensional table starting at address 1000, which was four rows

(0-3) by five columns (0-4) and contained byte values, then to access the element at (2,2), you
would load an address register with $A (row number 2, times the number of columns per row,
5) and an index register with the column number, 12. If the registers and memory look like

register contents memory contents
AO OOOOOOOA 00001 OOA C3
DO 00000002 00001 00B A4
D1 00000000 00001 00C 25

then the instruction

MOVE.B $1000(A0,D0),D1

uses an effective source address of S100C ($1000 + $A + $2) and leaves the registers and
memory as

register contents memory contents
AO OOOOOOOA 00001 OOA C3
DO 00000002 00000002 A4
D1 00000025 00000025 25

If you were using the MC68020, and the table contained long words rather than bytes, then
to access the element at (2,3), you would load the address register with $28 (row 2 times 5
columns per row times 4 bytes per entry) and an index register with the column number (3). If
memory and the registers look like

register contents memory contents
AO 00000028 00001034 C3
A3 00000003 00001035 A4
D1 FFFFFFFE 00001036 25

00001037 30

then the instruction

MOVE.L D1,$1000(A0,A3.L*4)

will result in an effective destination address of $1034 ($28 + 3*4) and yield

register contents memory contents
AO 00000028 00001034 FF
A3 00000003 00001035 FF
D1 FFFFFFFE 00001036 FF

00001037 FE

Program Counter Indirect

With Displacement

This addressing mode functions identically to address register indirect with displacement,

except that the effective address is a displacement from the current contents of the program

counter instead of an address register. The PC value used is the address of the operand word

portion of the instruction. The displacement in this mode is a 16-bit signed value. To signify this

mode, you enclose the displacement and the PC mnemonic in parentheses, for example, 10(PC).

46 68000 Assembly Language Programming

The calculation of the effective address is

Program counter:

16-bit displacement:

Memory:

Assembler syntax:

address of extension word

sign-extended displacement

operand

(die, PC)

points to

If the registers and memory look like

register PC
DO

then the instruction

contents
00001020
00000000

MOVE.B

memory

00001000
00001001

(-$22,PC),D0

uses an effective address of $1000 ($1022 H — $22), which results in

contents
05

43

register PC
DO

contents
00001024
00000005

memory

00001000
00001001

contents
05

43

Usually you use a label name as the displacement; for example, (HEAD, PC). At assembly
time (or at link time, depending on the system), the system evaluates the value of the label (that

is, its address) and calculates the relative displacement from the instruction's location.

Program Counter Indirect With Index

And Displacement

In this mode, as with the indexed/displaced mode using an address register, the effective
address of the operand is the sum of a register (in this case, the program counter), the value of

the displacement, and the value in the index register. As with the former version, the displace-
ment may be 16 or 32 bits long (or, on the MC68020, 8 bits long), and the index register may be

a data or address register whose value is 16 or 32 bits long (and may be scaled on the MC68020).
To signify this mode, you enclose the mnemonic PC and the index register name in

parentheses and precede this expression with the displacement value; for example, (10, PC, DO).
The calculation of the effective address is

Program counter:

8-, 16-, or 32-bit displacement

Index register:

address of extension word

sign-extended displacement

sign-extended index

Scale (68020 only— 1, 2, 4, or 8)

Memory:

scale

operand

nts to

Assembler syntax: (dn, PC, Xn.size)
68020: (dn, PC, Xn.size*scale)

MC68000 Machine Architecture 47

This mode is useful for accessing an array of data using position-independent code. For

example, if you have a table of bytes, labeled "TABLE," which starts at address $1000, then if
the registers and memory look like

register contents memory contents
PC 00001024 00001000 05
DO 00000002 00001001 43
D1 00000000 00001002 FF

00001003 FC

then the instruction

MOVE.B (TABLE, PC, DO), D1

uses an effective address of $1002 ($1026 - $26 + $2) and results in

register contents memory contents
PC 00001028 00001000 05
DO 00000002 00001001 43
D1 000000FF 00001002 FF

00001003 FC

MEMORY INDIRECT MODES

In the memory indirect addressing modes, the processor must evaluate two effective
addresses before coming up with the operand. Unlike the register indirect modes, where a
register points to the operand, in this mode a location in memory points to the operand. The
memory indirect modes are available only on the MC68020 processor.

Memory Indirect Postindexed

In this mode, the CPU must use five values in order to come up with the effective address

of the operand: the contents of an address register, a 16- or 32-bit base displacement, the value
in an intermediate memory location, the scaled value from an index register, and a second 16- or
32-bit outer displacement.

Both displacement values, as well as the index register, are sign extended if necessary. The
address register, displacements, and index register are all optional; you may use any or all of

them to specify your operand. The assembler syntax for this mode encloses the base displace-
ment and address register in square brackets, followed by the index register and scale, followed

by the outer displacement, with the whole expression enclosed in parentheses; for example,
([$10,A0],D0.L*4,$20). If you want to omit one of the entries, leave it blank; for example,
([,A0],D1*4,) leaves both of the displacements out of the calculation.

The calculation of the effective address is as follows.

48 68000 Assembly Language Programming

Address register:

16- or 32-bit base displacement:

Memory:

memory address

sign-extended displacement

memory address points to

1

Index register:

Scale (1, 2, 4 or 8):

16- or 32-bit outer displacement

Memory:

sign-extended index

scale

value at indirect
memory address

sign-extended displacement

operand
points to

Assembler syntax: ([bd,An], Xn.size*scale, od)

Typically, you won't use all of the potential fields in the effective address calculation.
However, for the sake of demonstration, if the registers and memory look like

register AO
DO

D1

then the instruction

contents
00001000
00000002
0000FFCC

MOVE.W

memory

00001010
00001011
00001012
00001013
0000200A
0000200B

([$10,A0],D0*2,$6), D1

contents
00
00 20

00
FF
CC

uses an effective address of $200 A ($ 10 + $ 1000 gives the intermediate address of $ 1010. This
address contains the value $2000 to which the outer displacement of $6 and the scaled index
value of 2*2 are added.) This results in

register AO
DO
D1

contents
00001000
00000002
0000FFCC

memory

00001010
0000101 1
00001012
00001013
0000200A
0000200B

contents
00
00 20

00
FF
CC

You will normally use named values for the displacements.

Memory Indirect Preindexed

This mode uses the same values in determining the effective address of the operand as does

the postindexed version. The difference between the two modes is in the order of the evalua-
tion. The postindexed version added the scaled index value to the value at the intermediate

address; the preindexed version uses the scaled index value as part of the calculation to get the
intermediate address. An illustration of this mode follows.

MC68000 Machine Architecture 49

Address register:

16- or 32-bit base displacement

Index register:

Scale (1, 2, 4, or 8)

Memory:

memory address

sign-extended displacement

sign-extended index

1 scale

memory address

©
5

points to

16- or 32-bit outer displacement: sign-extended displacement

Memory. operand

Assembler syntax: ([bd,An,Xn.size*scale], od)

If the registers and memory look like

register AO
DO
D1

then the instruction

contents
00001000
00000002
0000F000

memory

00001014
00001015
00001016
00001017
00002006
00002007

value at indirect
memory address

contents
00 00
20

00
FF CC

points to

MOVE.W ([$10,A0,D0*2],$6), D1

uses an effective address of $2006 for the source operand. ($10 + $1000 + 2*2 gives $1014, the
address of the intermediate address. $1014 contains the value $2000, to which the outer

displacement of $6 is added.) This gives

register AO
DO
D1

contents
00001000
00000002
OOOOFFCC

memory

00001014
00001015
00001016
00001017
00002006
00002007

contents
00
00
20
00
FF
CC

Program Counter Memory Indirect

With Postindex

In this addressing mode, like the other memory indirect modes, the CPU uses an
intermediate memory location to determine the actual address of the operand. In this case,
however, rather than using an address register, the CPU uses the current value of the PC (when

50 68000 Assembly Language Programming

it is pointing to the extension word following the op-code word). The assembler syntax is
similar, with substitution of the program counter mnemonic for the address register name; for
example, ([$10,PC],D0*2,$20). The calculation of the effective address is

Program counter:

16- or 32-bit base displacement:

Memory:

address of extension word

sign-extended displacement

memory address
points to

Index register:

Scale (1, 2, 4, or 8):

16- or 32-bit outer displacement

Memory:

sign-extended index

le ♦(*>■

value at indirect
memory address

sign-extended displacement

operand
points to

Assembler syntax: ([bd, PC],Xn.size*scale,od)

If you have a table of pointers labeled PTRS that begins at $1000, and if the registers and
memory look like

register PC
DO
D1

then the instruction

contents
00001020
00000002
00000000

memory

00001000
00001001
00001002
00001003
00002012

contents
00
00
20
00

FF

MOVE.B ([PTRS,PC],D0»1,$10), D1

affects address $2012. ($ 1022 + -$22 gives the intermediate address $ 1000. $ 1000 contains the
value $2000, to which the CPU adds the index register value of $2 and the outer displacement
value of $10.). This yields

register PC
DO
D1

contents
00001028
00000002
000000FF

memory

00001000
00001001
00001002
00001003
00002010

contents
00
00
20
00

FF

Program Counter Memory Indirect
With Preindex

Like the previous addressing mode, the CPU uses the value from an intermediate memory
location (pointed to, in part, by the PC) to reach the operand. However, instead of adding the

MC68000 Machine Architecture 51

index register to the intermediate value, in this mode the CPU includes the index register in
finding the address of the intermediate value. The assembler syntax is similar to address
register memory indirect; for example, ([$10,PC,D0*2],$20). The calculation of the effective
address is

Program counter:

16- or 32-bit base displacement:

Index register:

Scale (1, 2, 4, or 8)

Memory:

address of extension word

sign-extended displacement

sign-extended index

scale
1

memory address

16- or 32-bit outer displacement: sign-extended displacement

Memory:
operand

w) points to

value at indirect
memory address

points to

Assembler syntax: ([bd, PC, Xn.size*scale],od)

If you have a table of pointers labeled PTRS that begins at $1000, and if the registers and
memory look like

register contents memory contents
PC 00001020 00001004 00
DO 00000001 00001005 00
D1 00000001 00001006 20

00001007 00
00002010 FF

then the instruction

MOVE.B D1, ([PTRS,PC,D0*4],$10)

affects address $2010. ($1022 + -$22 + $2 gives the intermediate address of $1002, which

contains the value $2000. To this value, the CPU adds the outer displacement value of $10.)
This yields

register contents memory contents
PC 00001028 00001004 00
DO 00000001 00001005 00
D1 00000001 00001006 20

00001007 00
00002010 FF

52 68000 Assembly Language Programming

CONCLUSION

Various documentation sources describe the architecture, instruction set, and addressing
modes of the MC68000 family from differing points of view. For example, some documentation

separates the 16-bit version of absolute addressing from the 32-bit version, calling the modes

"absolute short" and "absolute long." Some documentation groups the absolute short and long
modes together with the immediate mode as "program counter relative modes." Some docu-

mentation groups the processor instructions in groups other than the way we grouped them

here in this chapter; for example, by the numeric order of the op-code.
While none of these documentation methods is better or worse than another, each aims at

a certain audience. This book is directed at the novice assembly programmer. As you become

more familiar with the MC68000, we would encourage you to read some of the more hardware-
oriented books on the processors; such books will give you a slightly different perspective from
the one put forth here on the architecture of the device.

A further note: some of the addressing modes and instructions may seem complex.
Fortunately, assemblers know what instructions and syntax to look for, and they can generate
the correct instruction codes and addressing details for you. In some cases, however, you may
need to know the format of instructions and addressing modes; Appendix A describes the
internal format of instructions and addressing modes.

II

Introductory Problems

The only way to learn assembly language is to work with it. The chapters of Section 1 1 con-
tain examples of simple programs that perform common programming chores. You should read

each example carefully and try to execute the programs on a MC68000-based computer. Work
the problems at the end of each chapter and run the resulting programs to ensure that you
understand the material.

GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts:

• A title that describes the general problem.

• A statement of purpose that describes the task that the program performs as well as the
variables (memory) required to perform that task.

• A sample problem with data and results.

• A flowchart (if the program logic is complex).

• An assembler listing of the program (showing the source as well as the generated
hexadecimal code).

• A discussion of the finer points of the program.

For ease of reference, we have named each of the program examples according to their
occurrence in the chapter, as follows:

This is the Yth program example in the chapter

Underscore character is commonly used in names where
space characters (which are not allowed within
a name) might otherwise appear

The program example appears in Chapter X

All program names begin with these three characters

By this convention,

PGM_6_3,

names the third program example in Chapter 6.
This convention is useful for our purpose of clearly naming sample programs. You might

want to store the programs in disk files of the same name. However, we don't want to give you
the impression that you should use such naming conventions in real-life applications. Clearly, a

Program
Name

PGM_X _ Y

53

54 68000 Assembly Language Programming

name like COSINE has more meaning in a large application than does an internally coded
name like

MOD_1 _A.

Always use meaningful names for your programs and modules.

NOTATION CONVENTIONS

Many companies offer MC68000-based systems and products. Since we don't know which
of these products you have at your disposal, we chose to write our sample programs in a generic
format. We use only the simplest of assembler directives, labels, and radices, so that you can
concentrate on learning MC68000 assembly language. We aim our notation at the simplest of
systems. If your system is more powerful, we encourage you to experiment with its advanced
features.

NAMES AND LABELS

All variables, constants, and labels consist of one to eight characters, the first of which
must be an uppercase letter. The characters that follow that initial character may be uppercase
letters, or numbers, or the special characters ., $, or _ . Labels start in column 1 of the program
line. Each label is separated from the remainder of the line by either a colon or a space.

Your system may permit you to use longer names than we use and allow "local" labels.
Both concepts are useful, and if your system permits, we encourage you to experiment with
them.

MNEMONICS

We use the standard Motorola mnemonics throughout this book. Because many operators
can operate on various sizes of data, the size of the operator is indicated by a suffix of . B (byte),
.W (word), or .L (long). We use uppercase letters for all operator mnemonics.

COMMENTS

Comments may appear on the same line as an assembler statement or on lines of their

own. In-line comments must follow the assembler statement and are separated from that
statement by one or more spaces. For comments appearing alone on a line, we start the line
with an asterisk in column 1 of that line.

Your system may require you to use special characters to indicate the start of comments,
such as a semicolon (;) or a slash (/). Consult your assembler manual for its requirements.

Introductory Problems 55

CONSTANTS AND RADICES

Differing circumstances often call for different formats for constant data. For example, if
a constant represented an ASCII character, we would want to use that character rather than a
hexadecimal number. Similarly, we might want to use the binary radix to represent a bit mask.
We will use the following convention for representing data and constants:

• Decimal. A number with no prefix or suffix. For example:
12345

• Hexadecimal. A number prefixed with a dollar sign. For example:
$1234

• Binary. A number (all Os and Is) prefixed with a percent sign. For example:
%00101001

• ASCII. A character or string of characters enclosed in single or double quotes. For
example:

"Test #0"

EXPRESSIONS

Most assemblers permit you to use certain logical and arithmetic operators in constant
expressions. The assembler will evaluate the expression and insert the appropriate constant
value into the object code. The operators our assembly programs will use are

+ addition
— subtraction
* multiplication
/ division

» shift right
« shift left
& logical AND
I logical OR

~ logical NOT
<. .> parenthetical expression

Note, however, that you can only combine constants in these expressions. Also note that
expressions must result in values of 32 or fewer bits.

DIRECTIVES

Our assembly programs will use only the most simple directives so you can pay more
attention to the MC68000 instructions. The directives we use include

DC Define data. This directive defines a location in memory and initializes that data

with some constant value. To indicate the size of the memory location reserved for the

data, you suffix the DC mnemonic with B, W, or .L. For example:

FILE CNT: DC.B 4

56 68000 Assembly Language Programming

defines a byte in memory (labeled FINECNT) and initializes it with the value 4. You

can also initialize several consecutive locations in memory with a single DC instruc-
tion. For example:

POWER _ 10: DC.W 1, 10, 100, 1000, 10000

defines five words in memory. The first word, 1, has the memory label POWER 10.
The most common use of this directive is to initialize strings of text. For example,

ERR MSS: DC.B "File not found — create?"

defines 25 consecutive bytes in memory and initializes them to the given characters.

DS Define storage. The directive lets you define one or more units of memory (but
leaves them uninitialized). As with DC, you specify the size of the data by suffixing the
mnemonic. You specify the repetition of the unit as an operand to the DS mnemonic.
For example:

COUNTER: DS L 1

defines one long word of memory and gives it the label COUNTER.

OUTBUF: DS.B 20

defines 20 bytes of memory, labeling the first as OUTBUF.

EQU Equate. This directive equates a constant value to a constant name. For example:

BUFF_CNT EQU 10

defines a constant called BUFF CNT and gives it the value of 10.

ORG Origin. This directive defines the origin, or starting address, of a block of code or
data. When the assembler produces object code, it will use this value as the basis for
evaluating label addresses and offsets.

END End of program. This directive signals the end of the assembly program.

Note that each of the directives has one or more arguments or operands. These operands
can be literal constants, named constants, or program/code labels. In the example

BUF_SIZE EQU 10
BUFFER DS.BBUF_SIZE
BUF_PTR DC.L BUFFER

the assembler allocates 10 bytes of data, which it labels BUFFER. It then allocates one long
word labeled BUF PTR, which it initializes to the address of BUFFER.

Introductory Problems 57

PROGRAM FORMAT

We will use a standard format for presenting each of our sample programs. For example:

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
006000 00000002
006002 00000002

00004000

004000 30386000
004004 31C06002

004008 4E75

VALUE

RESUL"

ORG
D5 . W
DS . W
ORG

DATA
1
1

PROGRAM

VALUE TO TRANSFER
STORAGE FOR TRANSFERRED DATA

PGM_4_1 MOVE.W VALUE, DO GET DATA TO BE MOVED
MOVE.W DO, RESULT SAVE DATA
RTS

END PGM 4 1

Note several things about this listing:

• We define the starting locations of the code and data segments in equates and then use
the ORG directive to pass this information along to the assembler. The numbers in the
far left column represent the addresses of the code and data.

• The second column of numbers represents the hexadecimal code for the command
given by the source line. For directives, this data may be address, constant, or data
values. For MC68000 instructions, this data is the object code produced by the
instruction operator and operand(s).

• The third column and those columns to the right represent the source code. This is the
data that you will type into your computer (via its editor).

RUNNING THE PROGRAMS

In our examples, the last executable statement is always a Return from Subroutine (RTS)
instruction. Depending on your computer and operating system, this may or may not be an
appropriate way to end your program. You might prefer to end the program with a STOP
instruction or with a call to the operating system, which will signal it that you want to return

control to its monitor. This is machine- and operating-system dependent; you must look through

your system's manuals to find the system call and syntax.
If your system includes a machine-level debugger, we urge you to use it. Such debuggers

allow you to single-step interactively through a program; that is, they let you execute instruc-
tions one at a time. After the computer has executed an instruction, the debugger lets you

examine memory and the registers. You therefore have a valuable tool for learning how
instructions execute.

4

Beginning Programs

This chapter contains some very elementary programs. They will introduce
some fundamental features of the MC68000. In addition, these programs demonstrate
some primitive tasks that are common to assembly language programs for many
different applications.

PROGRAM EXAMPLES

4-1 . 1 6-BIT DATA TRANSFER

Purpose: Move the contents of one 16-bit variable VALUE at location 6000 to
another 16-bit variable RESULT at location 6002.

Sample Problem:

Input: VALUE-(6000) = 2E56
Output: RESULT-(6002) = 2E56

59

60 68000 Assembly Language Programming

Program 4-1 :

00006000 DATA EQU $6000
00001+00 0 PROGRAM EQU $4000

00006000
006000 00000002
006002 00000002

VALUE
RESULT

ORG
DS.W
DS . W

DATA
1
1

VALUE TO TRANSFER
STORAGE FOR TRANSFERRED DATA

00004000 ORG PROGRAM

004000 30386000
004004 31C06002

MOVE.W VALUE, DO
MOVE.W DO, RESULT

GET DATA TO BE MOVED
SAVE DATA

004008 4E75
RTS

END

This program solves the problem in two simple steps. The first instruction loads

data register DO with the 16-bit value in location VALUE. The next instruction saves
the 16-bit contents of data register DO in location RESULT.

Remember — if you want to try this program with some sample data, you must
first load the data that is to be transferred into the variable VALUE at memory location
6000. If your system does not allow this, use the Define Constant directive.

During the execution of this program, only the least significant 16 bits of the 32-
bit data register DO are affected. The most significant 16 bits are not modified, since

both instructions specified an operation size of word (16 bits) by using the \W instruc-
tion suffix. If a data transfer of one byte (8 bits) or one long word (32 bits) is desired, a

size suffix of \ET or \L\ respectively, should be used.
The MC68000 combines three classes of instruction provided by most

microprocessors — load register, store register, and transfer between registers — into a
single class of instructions — MOVE. Using a register as the source operand (first

operand) with a MOVE instruction is similar to a typical microprocessor's store register
operation. Using a register specified as a destination operand with the MOVE instruc-

tion is similar to a typical microprocessor's load register operation. Using internal
registers to provide both the source and destination operands with a MOVE instruction

accomplishes the same function as a typical microprocessor's register transfer instruc- tion.

When you use the MOVE instruction to accomplish the LOAD, STORE, or
TRANSFER function, it generally affects the status flags in the status register. The
execution of most MOVE instructions sets or clears the Negative (N) and Zero (Z) flags
depending on the value moved, while clearing the Overflow (V) and Carry (C) flags.
The Extend (X) flag is not affected.

In addition to moving data between registers, and between registers and memory,
the MOVE instruction can also be used to move data between two memory locations. As

a result, the two MOVE instructions in PGM 4-1 can be replaced by the single instruc-
tion:

MOVE W VALUE, RESULT

This version of the MOVE instruction moves the 16-bit word contained in
memory location VALUE to memory location RESULT without utilizing any of the data
or address registers. The status register is still affected.

If you examine the instruction set of the MC68000 you will see that a number of
other instructions are capable of operating on memory in this same manner.

Beginning Programs 61

4-2. ONE'S COMPLEMENT

Purpose: Form the bitwise complement of the contents of the 16-bit variable VALUE
at location 6000.

Sample Problem:

Input. VALUE-(6000) = 7F3E
Output: VALUE-(6000) = 80C1

Program 4-2:

00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA 006000 00000002 VALUE DS .W 1 VALUE TO BE COMPLEMENTED

00004000 ORG PROGRAM

004000 30386000 PGM_4_2 MOVE . W VALUE, DO FETCH VALUE
004004 4640 NOT. W DO LOGICAL COMPLEMENT OF VALUE
004006 31C06000 MOVE . W DO, VALUE STORE COMPLEMENTED RESULT

00400A 4E75 RTS

END PGM 4 2

This program solves the problem in three steps. The first instruction moves the
contents of location VALUE into data register DO. The next instruction takes the logical
complement of data register DO. Finally, in the third instruction the result of the logical
complement is stored in VALUE.

Note that any data register may be referenced in any instruction that uses data
registers. (The same is true of address registers although you must pay special attention
to register A7 which the processor uses as the stack pointer.) Thus, in the MOVE

instruction we've just illustrated, any of the eight data registers could have been used.
The two MOVE instructions in this program, like those in Program 4-1, demon-

strate two of the MC68000,s addressing modes. The data reference to VALUE as either
a source or destination operand is an example of absolute addressing. In absolute
addressing the address for the data being referenced is contained in the extension

word(s) following the operation word of the instruction. As shown in the assembly list-
ing, the address (6000) corresponding to VALUE is found in the extension word for the

MOVE instructions.

Since the address of VALUE requires only one extension word, the MC68000
refers to this form of absolute addressing as short absolute. Addresses in the ranges
from 00000000 to 00007FFF and FFFF8000 to FFFFFFFF may be referenced using
short absolute addressing. This range may appear somewhat different than expected,

but it is consistent with the MC68000,s treatment of 16-bit addresses and address dis-
placements which are always sign-extended to 32 bits. This technique of addressing

memory allows the system designer to organize his or her memory map so as to permit
the usage of efficient short absolute addressing for both memory and peripheral device
references. One way of achieving this would be to organize random access memory
(RAM) starting at address 0 and peripheral devices In the upper 64K memory bytes.

Another form of absolute addressing is long absolute. This form is similar to short
absolute except that two extension words are required to reference the data. Therefore

62 68000 Assembly Language Programming

to reduce your program size, you should strive to keep your frequently referenced varia-
bles in the short absolute addressing range.
Most programs in this book use short absolute addressing. Try modifying the

value of DATA to a value outside the short absolute addressing range such as 9000|(i.
What happens to the generated object code? To ensure that the assembler generates the
short absolute form whenever possible, you should try to define all data references prior

to their use. Try moving the two assembler psuedo-instructions ORG DATA and
VALUE DS.W 1 to the end of the program. Note the resulting object code.

The other addressing mode used in all instructions in Program 4-2 is data register
direct. In this mode, the contents of the data register are directly affected. The contents
are either loaded, modified, or stored as specified by the instruction.

The MOVE instruction allows any of the processor's 14 different addressing
modes to be used to specify the source operand. However, the destination operand must

be specified using addressing modes which reference memory locations that are "altera-
ble.11 Thus you cannot use program counter relative or immediate addressing modes

since such memory locations may be located in nonalterable, read-only memory.
If you want to perform a MOVE-type instruction with an address register as the

destination, the MOVEA instruction must be used. The MOVEA instruction performs
the same function as the MOVE instruction, but it does not affect the status register.

Motorola's MC68000 assemblers allow you to specify an address register as the destina-
tion operand in a MOVE instruction. However, in this case the assembler actually

generates the machine code for a MOVEA instruction; thus the status flags are
unchanged.

Program 4-2 is another example where a single instruction may replace two or
more instructions. The three instructions in this program may be replaced by the single
instruction:

NOT.W VALUE

With this instruction, the contents of the variable VALUE are complemented
without using the data or address registers. The operation is performed directly on the
designated memory location VALUE.

4-3. 16-BIT ADDITION

Purpose: Add the contents of the 16-bit variable VALUE1 at location 6000 to the
contents of the 16-bit variable VALUE2 at location 6002 and place the
result in the 16-bit variable RESULT at location 6004.

Sample Problem:

Input: VALUE1-(6000) = 10F5
VALUE2-(6002) = 2621

Output: RESULT-(6004) = 3716

Program 4-3a:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000
006000 00000002
0 06 00? 00000 00 2
006004 00000002

ORG
VALUE1 DS.W
VALUE 2 DS.W
RESULT DS.W

DATA
1
1
1

FIRST VALUE
SECOND VALUE
16 BIT STORAGE FOR ADDITION RESULT

Beginning Programs 63

00004000 ORG PROGRAM

004000 30386000
004004 D0786002
004008 31C06004

PG, M_4_3A MOVE.W VALUE 1, DO
ADD . W VALUE2,D0
MOVE.W DO, RESULT

GET FIRST VALUE
ADD SECOND VALUE TO FIRST VALUE
STORE RESULT OF ADDITION

00400C 4E75
RTS

END PGM_4_3A

The ADD instruction in this program is another example of a two-operand

instruction. However, unlike the MOVE instruction, this instruction's second operand
not only represents the instruction's destination but also is operated upon to calculate the result. The format

is common to many of the MC68000,s instructions.
We should note at this point that the MC68000 processor provides an external 16-

bit data bus for data accesses to memory. Internally, however, the processor also sup-

ports 8- and 32-bit data operations. Therefore, the ADD instruction, just like the
MOVE and most other MC68000 instructions, permits data operations on all three data
sizes. By simply changing the .W suffix to .B or .L anywhere in the programs we have

shown, the programs would be converted to 8-bit or 32-bit addition programs.
As we noted in Program 4-1, the MC68000 allows many instructions to have both

operands in memory. You should note, however, that this capability is not available
with all instructions; for example, the ADD instruction only allows the source or
destination operand to reference memory. Thus you could not add the contents of one
memory location directly to the contents of another memory location.

As with any microprocessor, there are many instruction sequences you can

execute with the MC68000 which will solve the same problem. Program 4-36, for exam-
ple, is a modification of Program 4-3a and uses address register indirect addressing

instead of absolute short addressing. If you use address register indirect addressing, the
address of the actual operand may not (need not) be known until execution time.

Program 4-3b:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG
DATA 006000 00000002 VALUE 1 DS . W 1 FIRST VALUE

006002 00000002 VALUE 2 DS.W 1 SECOND VALUE
006004 00000002 RESULT DS . W i 16 BIT STORAGE FOR ADDITION RESULT

00004000 ORG PROGRAM
004000 207C00006000 PGM_4_3B MOVE A . L #VALUE1,A0 INITIALIZE AO WITH ADDRESS OF VALUE
004006 3010 MOVE .W (AO), DO GET FIRST VALUE IN DO
004008 D1FC00000002 ADDA . L #2, AO INCREMENT ADDRESS REGISTER AO BY 2
00400E D050 ADD. W (AO), DO ADD SECOND VALUE TO FIRST VALUE
00401 0 D1FC00000002 ADDA . L # 2 , AO INCREMENT AO BY 2 AGAIN
0040 16 30 80 MOVE . W DO, (AO) STORE RESULT OF ADDITION
00401 8 4E75 RTS

The MOVEA instruction introduces two addressing modes — immediate and
address register direct, which we have not used previously. Immediate addressing lets

you define a data constant and include that constant in the instruction's associated

SOURCE Operation DESTINATION — DESTINATION

END PGM 4_3B

64 68000 Assembly Language Programming

object code. Motorola assembler format identifies immediate addressing with a pound
sign (#) preceding the data constant. The size of the data constant varies depending on
the instruction. Immediate addressing is extremely useful when small data constants
must be referenced.

The second addressing mode — address register direct — is similar to data register
direct except the address register is affected instead of the data register. Only word or
long word references are permitted with address direct. When word size operands are

used to modify an address register, the 16-bit operand is always sign-extended to 32 bits.
Program 4-36 also demonstrates the use of address register indirect addressing. In

this mode the address of the operand is contained in the specified 32-bit address register.
Since an extension word is not required, the address register indirect mode of address-

ing is more memory-efficient than absolute addressing. Because of the need to set up the
address register, several references must be made to a particular data item before this

mode really becomes more memory-efficient.
Another advantage of this addressing mode is its faster execution time as com-
pared to absolute addressing. This improvement occurs because the address extension

word(s) does not have to be fetched from memory prior to the actual data references.
A final advantage is the flexibility provided by having the reference address in an

address register instead of fixed as part of the instruction. This flexibility allows the
same code to be used for more than one address. Thus if you wanted to add the values
contained in consecutive variables VALUE3 and VALUE4, you could simply change
the contents of AO.

4-4. SHIFT LEFT ONE BIT

Purpose: Shift the contents of the 16-bit variable VALUE at location 6000 to the left
one bit. Store the result back in VALUE.

Sample Problem:

Input: VALUE-(6000) = 57B6 0101 01 1 1 101 1 01 102
Output: VALUE-(6000)=AF6C 1010 1 1 1 1 01 10 1 1002

Program 4-4:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA 006000 00000002 VALUE DS.W 1 VALUE TO BE SHIFTED LEFT

00004000 ORG PROGRAM

004000 30386000 PGM_4_4 MOVE . W VALUE, DO GET VALUE TO BE SHIFTED
004004 E348 LSL. W HI, DO SHIFT LEFT LOGICALLY ONE
004006 31C06000 MOVE . W DO, VALUE STORE SHIFTED RESULT

00400A 4E75 RTS

END PGM 4 4

The LSL instruction is used to perform a logical shift left. Using the operand for-
mat of the LSL instruction shown in Program 4-4, a data register can be shifted from 1

to 8 bits on either a byte, word or long word basis. Another form of the LSL instruction
allows a shift count (modulo 64) to be specified in another data register. A final form of

Beginning Programs 65

the LSL instruction, which uses only one operand, allows the contents of a memory
location to be shifted one bit to the left without the use of a data register.

Except for different status register results, the following sequences all could
replace the instruction LSL #1, DO, and produce the same results in DO:

MOVE «1,D1
LSL D1,D0

LSL VALUE
MOVE VALUE, DO

ROL #1,00
BCLR HO, DO

ADD DO, DO

How many others can you find? Which of those presented will execute the
fastest?

4-5. BYTE DISASSEMBLY

Purpose: Divide the least significant byte of the 8-bit variable VALUE at location
6000 into two 4-bit nibbles and store one nibble in each byte of 16-bit varia-

ble RESULT at location 6002. The low-order four bits of the byte will be
stored in the low-order four bits of the least significant byte of RESULT.
The high-order four bits of the byte will be stored in the low-order four bits
of the most significant byte of RESULT.

Sample Problem:

Input: VALUE-(6000) = 5F
Output: RESULT-(6002)=050F

Progra m 4-5a:

00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA 0000000F MASK EQU $0 0 0F MASK FOR LOWER NIBBLE
006000 00000001 VALUE DS.B 1 BYTE TO BE DISASSEMBLED
006001 00000001 DS.B 1 ALIGN RESULT ON WORD BOUNDARY
006002 00000002 RESULT DS . W 1 STORAGE FOR DISASSEMBLED BYTE

00004000 ORG PROGRAM

004000 10386000 PGM_4_5A MOVE .B VALUE, DO GET BYTE TO BE DISASSEMBLED
004004 0200000F AND . B #MASK,D0 ISOLATE LOWER NIBBLE OF BYTE 004008 1 1C0600 3 MOVE.B DO, RESULT+1 SAVE LOWER ORDER NIBBLE
00400C 10386000 MOVE . B VALUE, DO GET BYTE TO BE DISASSEMBLED
004010 E808 LSR.B #4, DO ISOLATE HIGH NIBBLE
0040 1 2 11C06002 MOVE .B DO, RESULT SAVE HIGH ORDER NIBBLE

004016 4E75 RTS

END
PGM_4_5

This is an example of byte manipulation. The MC68000 allows most instructions

which operate on words also to operate on bytes. Thus, by using the .B suffix, all the

instructions in Program 4-5a perform byte operations.

Remember that the MOVE instruction, in addition to performing register-to-

memory and memory-to-register transfers also performs register-to-register transfers.
This use of the MOVE instruction is quite frequent.

66 68000 Assembly Language Programming

Generally, it is more efficient in terms of program memory usage and execution

time to minimize references to memory. Program 4-5b is a modification of the above
problem which demonstrates this.

Program 4-5b:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000001 VALUE DS.B 1 BYTE TO BE DISASSEMBLED
006001 00000001 DS.B 1 ALIGN RESULT ON WORD BOUNDARY
006002 00000002 RESULT DS.W 1 STORAGE FOR DISASSEMBLED BYTE

00004000
ORG

PROGRAM

004000 4240 PGM_4_5B CLR.W
DO

CLEAR DATA REGISTER D0(0:15)
004002 10386000 MOVE . B VALUE, DO BYTE TO BE DISASSEMBLED IN D0(0:7)
004006 E958 ROL . W #4, DO MOVE BYTE TO D0(4 : 1 1)
004008 E808 L5R.B H4,D0 SHIFT D0(4: 7) TO D0(0: 3)
00400A 31C06002 MOVE . W DO , RESULT STORE DISASSEMBLED BYTE
00400E 4E75

RTS

END PGM_4_5B

The CLR.W instruction is required to clear the least significant 16 bits of data
register DO. Only the least significant byte of DO is affected by the byte transfer from
VALUE. The ROL instruction rotates the least significant word of DO such that the

high-order nibble of VALUE is in the second byte of DO. Could the ROXL instruction
be used in place of the ROL instruction?

Although the MC68000 allows manipulation of various data sizes, you must take

care when you define a program's data. All of the processor's instructions, when making
memory references to 16-bit or 32-bit data, assume the least significant bit of the
memory address to be zero — that is, an even address. For this reason, an additional
byte of memory storage is required to align the variable RESULT on an even address

(60021()) instead of at the next available memory location which would be 6001 16. Would
the results of Program 4-5a have been the same if the memory addresses associated with

RESULT had been 6001 16? What about Program 4-5/??

4-6. FIND THE LARGER OF TWO NUMBERS

Purpose: Find the larger of two 32-bit variables VALUE1 (at location 6000) and
VALUE2 (at location 6004). Place the results in the variable RESULT at
location 6008. Assume the values are unsigned.

Sample Problems:

Input: VALUE 1 - (6000) 12345678

VALUE2 -
(6004) 87654321

Output: RESULT -
(6008) 87654321

Input: VALUE 1 -
(6000) 12345678

VALUE2 - (6004) OABCDEF1
Output: RESULT -

(6008) 12345678

Beginning Programs 67

Program 4-6:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000004 VALUE1 DS.L 1 FIRST VALUE
0C6004 0 0 00 0 0 04 VALUE 2 DS.L 1 SECOND VALUE
006008 00000004 RESULT DS.L 1 RESERVE LONG WORD STORAGE

00004000 ORG PROGRAM

004000 4CF800036000 PGM_4_6 MOVEM.L VALUE1,D0/D1 LOAD VALUES TO BE COMPARED
004006 B280 CMP.L D0,D1 COMPARE 32 BIT VALUES
004008 6 2000004 BHI STORE IF VALUE 2 >= VALUE1 THEN GOTO STORE
00400C 2200 MOVE.L D0,D1 ...ELSE Dl = VALUE1
00400E 21C16008 STORE MOVE.L Dl , RESULT STORE LARGER VALUE

004012 4E75 RTS

END PGM_4_6

The MOVE Multiple instruction, MOVEM, used in Program 4-6, lets us transfer
the contents of selected address/data registers to or from a block of consecutive memory

locations. In Program 4-6, DO and Dl are loaded via the MOVEM instruction with the
contents of the variables VALUE1 and VALUE2, respectively.

While you can specify which registers are to be selected with the MOVEM instruc-
tion, the order in which the register contents are transferred is not subject to your

control. The transfer order is always data register DO (or the lowest data register number
you have specified) through data register D7 (or the highest data register you have
specified) and then address registers AO through A7 (once again, with the same

limitations). The only exception to this sequence occurs when you use the predecre-
ment addressing mode; in this case, the order is just the reverse of that which we have

described. For details on the register specification and sequence, refer to the description
of the MOVEM instruction in Chapter 22.

The Compare instruction, CMP, in Program 4-6 sets the status register flags as if
the source, DO, were subtracted from the destination, Dl. The order of the operands is
the same as the operands in the subtract instruction, SUB.

The conditional transfer instruction BHI transfers control to the statement labeled

FINI if the unsigned contents of Dl are greater than or equal to the contents of DO.
Otherwise, the next instruction, (MOVE.L D0,D1) is executed. At STORE, register
Dl will always contain the larger of the two values.

The BHI instruction is one of fourteen conditional branch instructions. To change

the program to operate on signed numbers, simply change the BHI to BGE:

CMP.L D0,D1
BGE ',TOKL"

You can use the following table to determine which conditionals to use when perform-
ing signed and unsigned comparisons:

Compare Condition Signed Unsigned
greater than or equal BGE BCC

greater than BGT BHI

equal
BEQ BEQ

not equal BNE BNE
less than or equal BLE BLS
less than

BLT
BCS

68 68000 Assembly Language Programming

Note that the same instructions are used for signed and unsigned addition,
subtraction, or comparison; however, the comparison operations are different.

The branch conditionally instructions are an example of program counter relative

addressing. In other words, if the branch condition is satisfied, control will be trans-
ferred to an address relative to the current value of the program counter. The MC68000

permits two sizes of relative displacement, either 8-bit or 16-bit. Since the displacement

is a two's complement byte displacement, and the displacement is from the program
counter after it has been incremented, the branch instructions permit a maximum back-

ward reference of either 126 or 32766 bytes, or a maximum forward reference of either
128 or 32768 bytes.

Dealing with compares and branches is an important part of programming the

MC68000. Don't confuse the sense of the CMP instruction. After a compare, the rela-
tion tested is:

DESTINATION condition SOURCE.

For example, if the condition is "less than," then you test for destination less
than source. Become familiar with all of the conditions and their meanings.
Unsigned compares are very useful when comparing two addresses.

4-7. 64-BIT ADDITION

Purpose: Add the contents of two 64-bit variables VALUE1 (at location 6000) and
VALUE2 (at location 6008). Store the result in RESULT (at location
6010).

Sample Problem:
Input: VALUE1

VALUE2

Output: RESULT

Program 4-7:
00006000
00004000

DATA
PROGRAM

(6000) = 12A2
(6002) = E640 12A2E640F210123
(6004) = F210
(6006) = 0123
(6008) = 0010
(600A) = 19BF 00101 9BF40023F51
(600C) = 4002
(600E) = 3F51
(6010) = 12B3
(6012) = 0000
(6014) = 3212
(6016) = 4074

12B30000321 24074

EQU
EQU

$6 000
$4000

00006000 ORG DATA
006000 00000008 VALUE1 DS.L 2 FIRST VALUE
006008 00000008 VALUE 2 DS.L 2 SECOND VALUE
006010 00000008 RESULT DS.L 2 RESERVE 64 BITS FOR RESULT

00004000 ORG PROGRAM

004000 4CF8 00 0F6 00 0 PGM_4_7 MOVEM.L VALUE1,D0-D3 D0-D1 := VALUE1 AND D2-D3 := VALUE 2
004006 D283 ADD . L D3,D1 ADD LEAST SIGNIFICANT LONG WORD
004008 D182 ADDX.L D2,D0 ADD MOST SIG. LONG WORD WITH EXTEND
00400A 48F800036010 MOVEM.L D0-D1, RESULT STORE 64 BIT ADDITION RESULT
004010 4E75 RTS

END PGM 4 7

Beginning Programs 69

The usefulness of the Move Multiple (MOVEM) instruction is again demon-
strated in this 128-bit transfer to data registers DO through D3. The status register flags

are not affected by the transfer. Both the Carry and Extend flags are affected by the
ADD instruction. The condition of the Extend flag is used in the ADDX (Add with

Extend) instruction to include in the addition the carry from the previous 32-bit addi-
tion operation.

4-8. TABLE OF FACTORIALS

Purpose: Calculate the factorial of the 8-bit variable VALUE at location 6010 from a
table of factorials FTABLE which occupies memory locations 6000 through
600F. Store result in the 16-bit variable RESULT at location 6012. Assume
VALUE has a value between 0 and 7.

Sample Problem:

Input: FTABLE- (6000) = 0000 0! = 1 1 Q
(6002) =0001 1! = 11Q
(6004) = 0002 2! = 21Q
(6006) = 0006 3! = 6.0
(6008) =0018 4! = 24
(600A) =0078 5! = 1201Q
(600C) = 02D0 6! = 7201Q
(600E) = 13B0 7! = 50401Q

VALUE- (6010) =05
Output: RESULT- (601 2) = 0078 5! = 1 201Q

Program 4-8a:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG
DATA

- TABLE OF FACTORIALS

006000 000 1 FTABLE DC 1
0 !

= 1

006002 000 1 DC 1 1 !

= 1

006004 0 00 2 DC 2 2 !

= 2

006006 0006 DC
6

3!

= 6

006008 0018 DC
24

4 !
r 24

00600A 0 0 7 8
DC 120

5 !

= 120

00600C 02D0 DC
720 6 !

= 720
00600E 13B0

DC
5040

7 !

= 5040

006010 00000001 VALUE DS.B 1 DETERMINE FACTORIAL FOR THIS VALUE 006011 00000001 DS.B 1 ALIGNMENT STORAGE 006012 00000002 RESULT DS.W 1 RESULT OF FACTORIAL
00004000 ORG PROGRAM

004000 4240 PGM_4_8A CLR . W DO DOCO : 15) := 0
004002 10386010 MOVE .B VALUE, DO

GET
VALUE

004006 D000 ADD . B DO, DO DO (0 : 7) := 2 :: VALUE 004008 307C6000 MOVEA. W ttFTABLE, AO INITIALIZE POINTER TO FACTORIAL TABLE
00400C 31F000006012 MOVE . W 0(A0, DO), RESULT STORE FACTORIAL RESULT
0040 1 2 4E75 RTS

END PGM_4_8A

The approach to this table lookup problem, as implemented in Program 4-8a,
demonstrates the use of the address register indirect addressing mode with index. The

first two instructions, CLR and MOVE, load the index register DO with the contents of

70 68000 Assembly Language Programming

VALUE. The CLR instruction is required since the data size of VALUE is byte and the
index register size used in this addressing mode is either word or long word. The
MC68000 allows either a data register or an address register to be used as the index
register.

The Move Address (MOVEA) instruction initializes address register AO with the
address of the factorial table. All 32 bits of the address register are affected by the move

regardless of the instruction's data size. When the data size is word, as in Program 4-8a,
the source operand is sign-extended to 32 bits.

The actual calculation of the entry in the table is determined by the first operand
of the MOVE.W instruction. The long word contents of address register AO are added to

the sign-extended word contents of data register DO to form the effective address used
to address the table entry. When DO is used in this manner, it is referred to as an index
register. As in most MC68000 addressing modes, the usage of an address or data
register in determining the effective address does not alter the contents of the register.
The direct, postincrement, and predecrement addressing modes are exceptions to this
rule.

The address register indirect with index mode permits either the 16-bit or 32-bit
contents of the index register to be used in the calculation of the effective address. The
size of the index register to be used is specified by the size suffix of the index register
operand specification. As in the specification of the instruction size, the default suffix is

\W' or word. Why can't the suffix .L be used for index register DO in Program 4-8a?
In addition to allowing the effective address to be determined by the contents of

the address and index registers, the address register indirect with index mode also per-
mits a small displacement. The displacement field allows for an 8-bit value. However,

like the 16-bit index, this displacement is sign-extended. Thus, displacements of from

— 126 bytes to +129 bytes are possible.

Program 4-8b:
00006000 DATA EQU $60 00
00004000 PROGRAM EQU $4000

00006000 ORG DATA
:: TABLE OF FACTORIALS

006000 0 0 0 1 F TABLE DC 1 0 !

= 1

006002 0 00 1
DC

1
1 !

= 1

006 001+ 0 00 2
DC

2 2 !

= 2

006006 0 006
DC

6

3 !

= 6

006008 0018
DC

24

4 ! = 24

00600A 0 0 78
DC

1 20

5 !

= 120

00600C 02D0
DC

720 6 !
= 720

00600E 1 3B0

DC

5040
7 ! = 5 040

006010 0000000 1 VALUE DS.B 1 DETERMINE FACTORIAL FOR THIS
00601 1 00000001 D5.B 1 ALIGNMENT STORAGE
006012 00000002 RESULT DS.W 1 RESULT OF FACTORIAL

00004000 0 R G PROGRAM

004000 4240 PGM_4 8B CLR.W
DO

D0C0 : 1 5) : = 0
004002 10386010 MOVE .B VALUE, DO

GET

VALUE
004006 D000 ADD . B DO, DO D0(0:7) := 2 :: VALUE 004008 3 040 MOVEA. W DO, AO MOVE TABLE OFFSET TO ADDRESS
00400A 31E860006012 MOVE . W FTABLE(AO), RESULT STORE FACTORIAL RESULT

0040 10 4E75 RTS

END PGM48B

Beginning Programs 71

Program 4-8/? performs the same function as Program 4-8a except it demonstrates
the use of another addressing mode — it uses address register indirect with displace-

ment addressing. In this addressing mode, the effective address of the operand is the

sum of the address register and the sign-extended 16-bit displacement. The displace-
ment is stored in the extension word following the instruction in program memory.

In Program 4-8/7, the "displacement" is actually the base of the table, while the
address register is the offset into the table. It is very important to remember that the 16-
bit displacement is sign-extended when used. Therefore, if FTABLE had been located at

any address of 8000)6 or higher, the sign extension of bit 15 (=1) would cause an
address of FF800016 through FFFFFFlb to be loaded as the table base address. Thus, for

example, Program 4-86 would not work if FTABLE were located at address 015000|6.

This method of using the "displacement1' as a base address is only useful in the address
range of 0-7FFF,6 or FF800016 through FFFFFF16.

Program 4-86 usage of address register indirect with displacement addressing is
not a typical example of this addressing mode. Generally, the address register will con-

tain the address of a table or data structure while the displacement will represent a fixed
offset from the base of the table or structure.

PROBLEMS

4-1 . 64-BIT DATA TRANSFER

Purpose: Move the contents of memory locations 6000 through 6006 to locations
6800 through 6806.

Sample Problem:

Input: (6000) = 3E2A
(6002) = 42A1
(6004) = 21F2
(6006) = 60A0

Output. (6800) = 3E2A
(6802) = 42A1
(6804) = 21 F2
(6806) = 60A0

4-2. 1 6-BIT SUBTRACTION

Purpose: Subtract the contents of the 16-bit variable VALUE1 at location 6000 from

the contents of the 16-bit variable VALUE2 at location 6002 and store the
result back in VALUE1.

Sample Problem:

Input: VALUE1 - (6000) = 3977
VALUE2 - (6002) = 2182

Output: VALUE1 - (6000) = 1 7F5

72 68000 Assembly Language Programming

4-3. SHIFT RIGHT THREE BITS

Purpose: Shift the contents of the 16-bit variable VALUE1 at location 6000 right
three bits. Clear the three most significant bit positions.

Sample Problem:

a Input: VALUE1 - (6000) = 41 5D
Output: VALUE1 - (6000) = 082B

b Input VALUE1 - (6000) = C15D
Output: VALUE1 - (6000) = 182B

4-4. WORD ASSEMBLY

Purpose: Combine the low four bits of each of the four consecutive bytes beginning at

location 6000 into one 16-bit word. The value at 6000 goes into the most
significant nibble of the result; the value at 6003 becomes the least signifi-

cant nibble. Store the result in location 6004.

Sample Problems:

Input: (6000) = OC
(6001) = 02
(6002) = 06
(6003) = 09

Output: (6004) = C269

4-5. FIND SMALLEST OF THREE NUMBERS

Purpose: Locations 6000, 6002, and 6004 each contain an unsigned number. Store
the smallest of these numbers in location 6006.

Sample Problem:

Input: (6000) = 9125
(6002) = 102C
(6004) = 7040

Output: (6006) = 102C

4-6. SUM OF SQUARES

Purpose: Calculate the squares of the contents of word VALUE 1 at location 6000
and word VALUE2 at 6002 and add them together. Place the result into
the long word RESULT at location 6004. Use signed arithmetic.

Sample Problem:

Input: VALUE1 - (6000) = 0007
VALUE2 - (6002) = 0032

Output: RESULT - (6004) = 000009F5

That is, 72 + 502 = 49 + 2500 = 2549 (decimal)
72 + 322 = 31 + 9C4 = 9F5 (hexadecimal)

Beginning Programs 73

Sample Answer:
MOVE.W VALUE 1, DO
MULS.W VALUE1,D0
MOVE.W VALUE2,D1
MULS.W VALUE2,D1
ADD . L D0,D1
MOVE.L 01, RESULT

4-7. SHIFT LEFT VARIABLE NUMBER OF BITS

Purpose: Shift the contents of the word VALUE at memory location 6000 left. The
number of positions to shift is contained in the word COUNT at memory
location 6002. Assume that the shift count is less than 32. The low-order
bits should be cleared.

Sample Problems:

a. Input: (6000) = 182B
(6002) = 0003

Output: (6000) = C158

b. Input: (6000) = 182B
(6002) = 0010

Output: (6000) = 0000

Sample Answer:

MOVEM.W VALUE, D0/D1
LSL.W D1,D0
MOVE . W DO, VALUE

shift left 3 positions

shift left 1 6 positions

5

Simple Program Loops

The program loop is the basic structure that forces the CPU to repeat a
sequence of instructions. Loops have four sections:

1. The initialization section, which establishes the starting values of counters,
pointers, and other variables.

2. The processing section, where the actual data manipulation occurs. This is the
section that does the work.

3. The loop control section, which updates counters and pointers for the next
iteration.

4. The concluding section, that may be needed to analyze and store the results.

The computer performs Sections 1 and 4 only once, while it may perform Sections
2 and 3 many times. Therefore, the execution time of the loop depends mainly on the
execution time of Sections 2 and 3. Those sections should execute as quickly as possible,
while the execution times of Sections 1 and 4 have less effect on overall program speed.

Figure 5-1 and 5-2 contain two alternative flowcharts for a typical program
loop. Following the flowchart in Figure 5-1 results in the computer always executing
the processing section at least once. On the other hand, the computer may not execute

the processing section in Figure 5-2 at all. The order of operations in Figure 5-1 is
more natural, but the order in Figure 5-2 is often more efficient and eliminates the prob-

lem of the computer going through the processing sequence once even where there is no
data for it to handle.

The computer can use the loop structure to process large sets of data (usually

called "arrays"). The simplest way to use one sequence of instructions to handle an
array of data is to have the program increment a register (usually an index register or

75

76 68000 Assembly Language Programming

Q Start ̂

Initialization
Section

Processing

Section
The computer always executes the
processing section at least once.

Loop Control
Section

Concluding

Section

Figure 5-1. Flowchart of a Program Loop

stack pointer) after each iteration. Then the register will contain the address of the
next element in the array when the computer repeats the sequence of instructions. The
computer can then handle arrays of any length with a single program.

Register indirect addressing is the key to processing arrays with the MC68000
microprocessor, since that mode allows you to vary the actual address of the data (the

"effective address'1) by changing the contents of a register. In the absolute addressing
modes, the instruction completely determines the effective address; that address is

therefore fixed if program memory is read-only.

The MC68000's autoincrementing mode is particularly convenient for process-
ing arrays since it automatically updates the address register for the next iteration. No

additional instruction is necessary. You can even have an automatic increment by 2 or 4

if the array contains 16-bit or 32-bit data or addresses.
Although our examples show the processing of arrays with autoincrementing

(adding 1, 2, or 4 after each iteration), the procedure is equally valid with autodecre-
menting (subtracting 1, 2, or 4 before each iteration). Many programmers find moving

backward through an array somewhat awkward and difficult to follow, but it is more effi-
cient in many situations. The computer obviously does not know backward from for-
ward. The programmer, however, must remember that the MC68000 increments an

address register after using it but decrements an address register before using it. This

Simple Program Loops 77

f Start J

Initialization
Section

Loop Control
Section

^*ihe task been*^

>V completedx^^
• No

Processing
Section

The computer need not execute the processing
section at all if it finds that there is
nothing to be done.

Yes

Concluding

Section

c
End

Figure 5-2. An Alternative for a Program Loop

difference affects initialization as follows:

1. When moving forward through an array (autoincrementing), start the address
register at the lowest address occupied by the array.

2. When moving backward through an array (autodecrementing), start the
address register one step (1, 2, or 4) beyond the highest address occupied by
the array.

PROGRAM EXAMPLES

6-1. 16-BIT SUM OF DATA

Purpose: Calculate the sum of a series of numbers. The length of the series (in words)
is defined by the variable LENGTH at location 6000. The starting address of

the series is contained in the long-word variable START at location 6002.
Store the sum in the variable TOTAL at location 6006. Assume that the

sum is a 16-bit number so that you can ignore carries.

78 68000 Assembly Language Programming

Sample Problem:

Flowchart 5-1 :

Input: LENGTH
- (6000) = 0003

START
- (6002) = 00005000

(5000)
= 2040

(5002)
= 1C22

(5004)
= 0242

Output: TOTAL - (6006)
= (5000) + (5002) + (5004)
= 2040 + 1C22 + 0242 = 3EA4

c Start J

Pointer = START

Sum =
0

Count =
= LENGTH

i

Pointer = Pointer + 2

Sum = Sum + (Pointer)

Count = Count - 1

TOTAL

Sum

c

I End
J

Program 5-1a:

00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000
006000 00000002
006002 00000004
006006 00000002

00004000

004000 20786002
004004 7000
004006 32386000

00400A D058
00400C 5341
00400E 66FA

004010 31C06006

004014 4E75

LENGTH
START TOTAL

ORG DATA
DS.W 1
DS.L 1
DS .W 1
ORG PROGRAM

PGM_5_1A MOVE A . L START, AO
MOVEQ #0,D0
MOVE.W LENGTH, Dl

LOOP ADD. W
SUBQ. W
BNE

MOVE . W
RTS

END

(A0)+,D0
S1,D1 LOOP

DO, TOTAL

PGM 5 1A

NUMBER OF DATA ELEMENTS
ADDRESS OF DATA ELEMENTS
SUM OF DATA ELEMENTS

INITIALIZE POINTER REGISTER
INITIALIZE SUM TO ZERO
INITIALIZE ELEMENT COUNT

SUM NEXT ELEMENT
UPDATE ELEMENT COUNT
IF COUNT NOT ZERO THEN GOTO LOOP

STORE SUMMATION

Simple Program Loops 79

The initialization section of the program consists of the first three instructions,
which set the data pointer, sum, and counter to the appropriate initial values. In this
program we encounter the first example of parameter passing where the parameters
include an address (the contents of START) along with such parameters as size or count
(LENGTH) which we have encountered in previous programs. The first MOVE instruc-

tion in the program loads the beginning address (from location START) of the data ele-
ments into address register AO. Once again we will defer a detailed discussion of

parameter passing until Chapters 10 and 11; at this point, you must simply ensure that
the required starting address is in the long word at location 6002 prior to attempting to
execute this program.

Frequently in programming, you must initialize a data register with a small data

value as we have done in Program 5-\a. For values in the range —128 to +127, you
should use the MOVEQ instruction. The MOVEQ instruction encodes the value within
the instruction word, thus eliminating an additional operand word that would otherwise
be needed to define the initial value. You should note that the MOVEQ instruction,
unlike most other MC68000 instructions, only has a data size of long word. We could
have used the CLR instruction to initialize the sum to zero; both the MOVEQ and CLR
instructions require the same number of bytes and microprocessor cycles. In what cases
is the use of the CLR instruction preferred?

The processing section of Program 5- la consists of the single instruction ADD.W

(A0)-l-,D0 which adds the contents of the memory location addressed by address
register AO to the contents of data register DO. This instruction does all the real work of
the program and is the first example of the address register indirect with postincrement
mode of addressing. You probably noticed that the program contained no explicit
instruction to update the address register to the next word in the series. Instead, the
address register is implicitly updated by execution of the ADD instruction. Thus, this
instruction is also part of the loop control section. In the postincrement addressing
mode, the processor increments the contents of the address register after the address
register has been used to determine the effective address of the data references. The
contents of the address register are incremented by either 1, 2, or 4 depending on the
size of the data being referenced. An increment of 1 is used for byte references, 2 for
word references and 4 for long word references. Thus, the instruction ADD.W

(A0)-l-,D0 results in the contents of address register AO being incremented by 2. This
addressing mode is extremely useful when you are performing operations on data tables.

The loop control section of the program consists of the single instruction
SUBQ.W, since the instruction ADD.W (A0) + ,D0 updates the pointer automatically.

The SUBQ instruction decrements the counter that keeps track of the number of itera-
tions the processor has left to perform. The Subtract Quick (SUBQ) instruction is

another instruction which you'll find useful in reducing the size of your programs. Like
the MOVEQ instruction, SUBQ allows the encoding of small data values within a single
instruction word. Unlike the MOVEQ instruction, SUBQ only allows data values in the
range from 1 to 8. However, you can use the SUBQ instruction to operate on byte, word
or long word data and SUBQ can be used to operate on memory directly, or on any
address register as well as a data register.

The instruction BNE causes a branch if the Zero (Z) flag is reset (that is, if the

result of decrementing Dl was not zero). The offset part of the BNE instruction is a

two's complement number, determined by the distance between the destination and the

80 68000 Assembly Language Programming

instruction. In this case, the distance is from memory location 4010 (the address of the
BNE instruction + 2) to memory location 400A (the destination). So the offset (using

two's complement arithmetic) is:

400A 400A
-(400E + 2) = +BFFO

FFFA

The offset of $FA corresponds to a negative six (— 6) bytes which is the number
of bytes to the label LOOP from the location of the branch instruction plus two. This

single byte sign-extended form of the branch instruction allows offsets in the range —63
words to +64 words from the location of the branch instruction. The address range is
described in words rather than bytes since all MC68000 instructions must start on a
word boundary and have sizes which are word multiples. Another form of the branch

instruction allows a 16-bit sign-extended offset, thus providing a branching range of

— 16383 words to + 16384 words. When you use this form, an additional operand word
is required.

If the Zero flag is 1 (that is, if the result of decrementing Dl was zero), the pro-
cessor continues its normal sequence. Thus the result of executing BNE is:

LOOP if the result of decrementing D1 is zero

PC = (PC) + 2 if the result of decrementing D1 is zero

The extra 2, as usual, comes from the two bytes occupied by the BNE instruction itself.
This is true for either form of the branch instruction since the PC is incremented by two

in either case, before adding the offset. With the 16-bit offset, the PC is incremented by
another two if the branch is not taken. The result is the same for both the 8-bit and the

16-bit offset; the instruction following the conditional branch will be executed if the test
fails.

Most programmers make computer loops count down rather than up so that
they can use the setting of the Zero flag as an exit condition. Remember that the Zero
flag is 1 if the most recent result was zero and 0 if that result was not zero. Try rewriting
the program so that it loads register Dl with zero initially and increments it after each
iteration. Which approach is more efficient?

Program 5-la executes correctly for all initial values unless the number of ele-
ments is zero. This problem is solved by modifying Program 5-\a to include a specific

check for this condition prior to the loop processing as shown in Program 5-16.

Program 5-1 b:
00006000 DATA EQU $6 0 0 0
00004000 PROGRAM EQU $4000

00006000 ORG DATA 006000 00000002 LENGTH
DS.W.

1 NUMBER OF DATA ELEMENTS
006002 00000004 START DS.L 1 ADDRESS OF DATA ELEMENTS
006006 00000002 TOTAL DS.W 1 SUM OF DATA ELEMENTS

00004000 ORG PROGRAM

001+000 20786002 PGM_5_1B MOVE A . L START, AO INITIALIZE POINTER REGISTER
004004 70 0 0

MOVEQ
0 , DO INITIALIZE SUM TO ZERO

004006 32386000 MOVE . W LENGTH, Dl INITIALIZE ELEMENT COUNT

00400A 6706 BEQ. S DONE IF LENGTH r 0 THEN DONE

Simple Program Loops 81

00400C D058 LOOP ADD . W (A0)+,D0 SUM NEXT ELEMENT
00400E 5341 SUBQ.W #1,D1 UPDATE ELEMENT COUNT
004010 66FA BNE LOOP IF COUNT NOT ZERO THEN GOTO LOOP

004012 31C06006 DONE MOVE.W DO, TOTAL STORE SUMMATION

004016 4E75 RTS
END PGM 5 IB

In this program, the single instruction BEQ is used to check for number of

elements equal to zero, and it will cause the program's flow of control to be
transferred to DONE if there are no numbers in the series. You may have noticed that

the BEQ branch instruction had a suffix of ".S" This suffix is used by the assembler to
determine which offset form of the branch instruction should be used. This suffix is

only necessary when the label in the operand field is a forward reference and the
assembler default is the long offset form.

The order in which the processor executes instructions is often very important. In

Program 5-\b, BEQ must come immediately after the MOVE.W LENGTH, Dl instruc-
tion; otherwise, an intervening instruction might change the Zero flag. Similarly, the

SUBQ instruction must be followed immediately by the BNE instruction.

5-2. 32-BIT SUM OF DATA

Purpose: Calculate the sum of a series of unsigned 16-bit numbers. The length of the

series (in words) is defined by the variable LENGTH at location 6000. The

starting address of the series is contained in the long-word variable START

at location 6002. Store the sum in the long word (32-bit) variable TOTAL at
location 6006. Take carries into account.

Sample Problem:

Input: LENGTH
START

Output: TOTAL

(6000) = 0003
(6002) = 00005000
(5000) = 2040
(5002) = 1C22
(5004) = E242
(6006) = (5000) + (5002) + (5004)

= 2040 + 1C22 + E242
= 0001 1EA4

Program 5-2a:

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
006000 00000002
005002 0000000*+
006006 00000004

00010000

ORG
LENGTH DS.W
START DS.L
TOTAL DS.L
CARRYBIT EQU

DATA 1
1
1
$10000

NUMBER OF DATA ELEMENTS
ADDRESS OF DATA ELEMENTS
SUM OF DATA ELEMENTS
CARRY BIT VALUE

00004000

004000 20786002
004004 7000
004006 32386000

00400A 670E

ORG

PGM_5_2A MOVE A . L MOVEQ

MOVE . W

BEQ.S

PROGRAM

START, AO
«0,D0 LENGTH, Dl

DONE

INITIALIZE POINTER REGISTER
INITIALIZE SUM TO ZERO
INITIALIZE ELEMENT COUNT

IF LENGTH = 0 THEN DONE

82 68000 Assembly Language Programming

00400C D0 58 LOOP ADD . W (A0) + ,D0 SUM NEXT ELEMENT
00400E 6^+06 BCC.S LOOPTEST IF CARRY = 0 THEN GOTO LOOPTEST

0040 1 0 0680000 1 0000 ADD I . L #CARR YB I T, DO ...ELSE ADD 16-BIT CARRY

004016 5341 LOOPTEST SUBQ.W #1,D1 UPDATE ELEMENT COUNT
004018 66F2 BNE LOOP IF COUNT NOT ZERO THEN GOTO LOOP

00401A 21C06006 DONE MOVE . L DO, TOTAL STORE SUMMATION

0040 1E 4E75 R TS

END PGM 5 2A

Flowchart 5-2:

Pointer = START
Sum = O
Count = LENGTH

Pointer = Pointer + 2

Sum = Sum + (Pointer)

1

Count = Count - 1

TOTAL =
Sum

(E"d)

This program differs only slightly from the 16-bit addition program. Since a 32-bit
sum is to be generated, we must now handle the carry generated by the ADD instruc-

tion. The two new instructions (BCC and ADDI) test for the carry during addition and
add the carry bit back into the sum when a carry occurs.

Simple Program Loops 83

The instruction BCC causes a jump to memory location LOOPTEST if the Carry

(C) flag = 0. Thus, if there is no carry from the 16-bit addition, the program jumps
around the statement that increments the most significant 16 bits of the sum. The rela-

tive offset for BCC LOOPTEST is:

4016
(400E +2)

The relative offset for BNE LOOP is:

4016
-4010

06

400C

(4018+2) =

400C
401A

- OE

FFF2

The relative offset for BEQ.S DONE is:

401A
-(400A+2)

401 A
-400C

OE

The long word form of the ADD instruction might simplify this program.

However, since the series consists of 16-bit values we must do some extra work to make
these values into long words. Program S-2b accomplishes this.

Program 5-2b:

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
006000 00000002
006002 00000004
006006 00000004

00004000

004000 20786002
004004 7000
004006 2400
004008 32386000

00400C 6708

00400E 3418
004010 D082
004012 5341
004014 66F8

004016 21C06006

00401A 4E75

ORG DATA
LENGTH DS.W 1
START DS.L 1
TOTAL DS.L 1

ORG

PGM_5_2B MOVE A . L MOVEQ

MOVE .L
MOVE . W

LOOP

PROGRAM

START, AO
ao,oo D0,D2
LENGTH, Dl

BEQ.S DONE
MOVE.W (A0)+,D2
ADD . L D2,D0
SUBQ.W H,D1
BNE LOOP

MOVE.L DO, TOTAL
RTS

END PGM_5_2B

NUMBER OF DATA ELEMENTS
ADDRESS OF DATA ELEMENTS
SUM OF DATA ELEMENTS

INITIALIZE POINTER REGISTER
INITIALIZE SUM TO ZERO
CLEAR TEMPORARY REGISTER
INITIALIZE ELEMENT COUNT

IF LENGTH = 0 THEN DONE

D2[1 5-0] : = DATA ELEMENT
ADD DATA ELEMENT TO SUM
UPDATE ELEMENT COUNT
IF COUNT NOT ZERO THEN GOTO LOOP

STORE SUMMATION

We clear the most significant 16-bits of register D2 during the initialization sec-

tion; since these bits will never change, we don't need to clear them each time through
the loop. The 16-bit values from memory are then loaded into the low-order 16 bits of
D2 and then a long add (ADD.L) is used to add the 32-bit contents of D2 to register DO.

84 68000 Assembly Language Programming

Because the purpose said the values were unsigned numbers, the high-order 16 bits will
always be zero.

Note that we need not check for carry in the loop processing section since, with a

32-bit operation, any carry from the low-order 16 bits will automatically be propagated
into the high-order portion of DO. The changes in the loop processing section reduced
the number of instructions in the loop and perhaps make the program easier to under-

stand. The number of bytes in the loop is also reduced. However, does this make the

loop execute faster? The processing section in Program 5-2a takes 18 or 36 cycles:

ADD 8 cycles
BCC 10 cycles (12 if branch not taken)
ADDI.L (16) cycles (not always executed)

18 (36) cycles (if BCC.S used - 18 (32) cycles)

The second version takes 16 cycles:

MOVE 8 cycles
ADD.L (8) cycles

1 6 cycles

The second version is both smaller and faster. However, you may not always find this to
be the case. A single more powerful instruction may take longer to execute than two or
more simpler instructions that perform the same task. Can you find an example of this?

5-3. NUMBER OF NEGATIVE ELEMENTS

Purpose: Determine the number of negative elements in a series of signed 16-bit
numbers. Negative elements are identified by a 1 in the most significant bit
position (bit 15). The length of the series is defined by the variable
LENGTH at location 6000. The starting address of the series is defined by

the long word variable START at location 6002. Store the number of nega-
tive elements in the variable TOTAL at location 6006.

Sample Problem:

Input. LENGTH - (6000) = 0003
START - (6002) = 00005000

(5000) = F1 DC
(5002) = 7E0A
(5004) = 824B

Output: TOTAL - (6006) = 0002, since memory locations 5000 and
5004 contain negative numbers

Program 5-3:
00006000
00004000

DATA
PROGRAM

EQU
EQU

$6 0 0 0
$4000

00006000
006000 00000002
006002 00000004
006006 00000002

LENGTH
START
TOTAL

ORG
D5 . W
DS .L
DS .W

DATA
1
1
1

NUMBER OF DATA ELEMENTS
ADDRESS OF DATA ELEMENTS
SUM OF DATA ELEMENTS

00004000
or:, PROGRAM

004000 20786002
004004 7000 .
004006 32386000

PGM_5_3 MOVE A . L START, AO
MOVEQ #0,D0
MOVE.W LENGTH, D 1

INITIALIZE POINTER REGISTER
NNEG := 0
INITIALIZE ELEMENT COUNT

Simple Program Loops 85

00400A 670A BEQ.S DONE IF LENGTH = 0 THEN DONE

00400C 4A58
00400E 6A02

004010 5240

004012 5341
004014 66F6

LOOP

004016 31C06006

00401A 4E75

TST. W
BPL. S

DONE

CA0) + LOOPTEST

ADDQ.W #1,D0

LOOPTEST SUBQ.W #1,D1
BNE LOOP

MOVE.W DO, TOTAL
RTS

END PGM 5 3

TEST DATA ELEMENT
IF > 0 THEN GOTO LOOPTEST

. . .ELSE NNEG : = NNEG + 1

UPDATE ELEMENT COUNT
IF COUNT NOT ZERO THEN GOTO LOOP

STORE NUMBER OF NEGATIVE ELEMENTS

Flowchart 5-3:

Q Start ̂

Pointer = START
Nneg = O
Count = LENGTH

86 68000 Assembly Language Programming

The TST instruction is used to determine if the next element in the series is a

negative number. TST compares the operand with zero and sets the status flags accord-
ingly. Thus, the operation of the TST instruction is essentially equivalent to:

SUBQ#0,(A0) +

Why should you use TST instead of SUBQ in cases like this? Because it provides clearer
documentation.

While testing the operand, TST sets the Negative (N) and Zero (Z) flags accord-
ing to the results of the comparison. The Carry (C) and Overflow (V) flags are always

reset to zero.

The Negative (N) flag simply reflects the value of bit 15 of the most recent result.

If you are using signed numbers, bit 15 is, in fact, the sign (0 for positive, 1 for nega-
tive); the mnemonics for Branch if Plus (BPL) and Branch if Minus (BMI) assume that

you are using signed numbers. However, you can use equally well bit 15 for other pur-
poses, such as the status of peripherals or other 1-bit data. In these cases you can still

test bit 15 with BMI (bit 15 = 1) or BPL (bit 15 = 0); although the mnemonics no
longer make sense, the operations work. The computer performs its operations without
considering whether the user thinks they are sensible or meaningful. The interpretation

of the results is the programmer's problem, not the computer's.
Negative signed numbers all have a most significant bit of 1 and thus are actually

larger, when considered as unsigned numbers, than positive numbers.

In Program 5-3, the BPL (Branch if Plus) instruction causes a branch if the Nega-
tive flag is 0. Which other branch instructions could you use in place of BPL?
We could also replace:

TST (A0) +
BPL LOOPTEST

with

MOVE (A0) + .D3
BTST #15,D3
BEQ LOOPTEST

The BTST instruction tests a specific bit in the destination. If the bit is zero, the
Zero (Z) flag is set; if the bit is one, the Zero (Z) flag is reset to zero. This instruction is
most useful in testing bits other than the sign bit; for example, when you need to test
the status of a peripheral device. Although the BTST instruction allows you to directly
test the contents of memory, only bits within a single byte can be tested in this mode.

How could you rewrite Program 5-3 so that BTST tests the most significant byte of a 16-
bit element in memory?

5-4. FIND MAXIMUM VALUE

Purpose: Find the largest element in a series of 16-bit unsigned binary numbers. The
length of the series is defined by the variable LENGTH at location 6000 and
the starting address of the series is defined by the long word variable
START at location 6002. Store the maximum (largest unsigned element) in
the value MAXNUM at location 6006.

Simple Program Loops 87

Sample Problem:

Input: LENGTH - (6000) = 0004
START - (6002) = 00005000

(5000) = A48E
(5002) = 71 AC
(5004) = 34F1
(5006) = E57A

Output: MAXNUM - (6006) = E57A, since this is the largest of
the four unsigned numbers.

Flowchart: 5-4a:
c Start j

Pointer = START
Max = 0
Count = LENGTH

Count = 0
?

Yes

1 ►¥ No
Temp = (Pointer)
Pointer = Pointer + 2

Temp > Max
?
Yes

Max = Temp
J

Count =
Count - 1

MAXNUM
Max

88 68000 Assembly Language Programming

Program 5-4a:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA 006000 00000002 LENGTH DS.W 1 NUMBER OF DATA ELEMENTS
006002 00000004 START DS.L 1 ADDRESS OF DATA ELEMENTS
0 06 0 06 00000002 MAXIMUM DS.W 1 MAXIMUM NUMBER IN SERIES

00004000 ORG PR OGR AM

004000 20786002 PGM_5_4A MOVE A . L START, AO INITIALIZE POINTER REGISTER
0 040 04 7000

MOVEQ

0 , D 0 MAX : r 0
004006 32386000 MOVE . W LENGTH, Dl INITIALIZE ELEMENT COUNT

00400A 6 70C BEQ.S DONE IF LENGTH = 0 THEN DONE

00400C 3418 LOOP MOVE . W (A0)+,D2 TEMP := NEXT DATA ELEMENT
00400E B042 CMP.W D2,D0 COMPARE TEMP WITH MAX, "MAX-TEMP 004010 6402 BCC.S LOOPTEST IF MAX > OR = TEMP GOTO LOOPTEST

004012 300 2 MOVE . W D2,D0 ...ELSE NEW MAX, MAX := TEMP

004014 5341 LOOPTEST SUBQ. W 11, Dl UPDATE ELEMENT COUNT
004016 66F4 BNE LOOP IF COUNT NOT ZERO THEN GOTO LOOP

004018 31C06006 DONE MOVE.W DO, MAXNUM STORE MAXIMUM NUMBER IN SERIES

00401C 4E75 RTS

END PGM_5_4A

The first three instructions of this program form the initialization section.
In this program we take advantage of the fact that zero is the smallest unsigned

binary number. If you make zero the initial estimate of the maximum, then the program
will set the maximum to a larger value unless all elements in the array are zeros. The
maximum will also be set to zero if the series contains no elements.

The two instruction sequence MOVE.W (A0) + ,D2 and CMP.W D2,D0
compares the next element in the series with the current maximum value. The CMP
instruction affects the Carry and Zero flags as follows (TEMP is the value of the current
element and MAX is the current maximum value):

Carry = O if MAX > TEMP (Higher or Same)
Carry = 1 if MAX < TEMP (Lower)
Zero = 0 if MAX = TEMP (Not Equal)
Zero = 1 if MAX = TEMP (Equal)

The program uses the branch BCC (Carry Clear) instruction which tests both the Carry
and Zero flags. If either flag is set, the program replaces the maximum with the current
element using the instruction MOVE.W D2,D0. The branch instruction BHI could have

been used instead of BCC and would have been easier to understand. Why is BCC a bet-
ter choice of branch instructions?

The program does not work properly if the numbers are signed, because negative

numbers all appear to be larger than positive numbers. You must use the Sign (Nega-
tive) flag instead of the Carry in the comparison. However, you must also consider the

fact that two's complement overflow can affect the sign; that is, the magnitude of a
signed result could overflow into the sign bit. The MC68000 has special instructions —
BGT, BGE, BLE and BLT — which perform signed comparison branches and automat-

ically handle two's complement overflow.

Simple Program Loops 89

As we have seen before, the MC68000 allows for some operations to be
performed directly on memory without requiring the use of an additional data register.

Program 5-46 uses this feature to eliminate the MOVE.W (AO) + ,D2 instruction in Pro-
gram 5-4a.

Program 5-4b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $40 0 0

00006000 ORG DATA
006000 00000002 LENGTH DS.W 1 NUMBER OF DATA ELEMENTS
006 002 00000004 START DS . L I AnnPPQQ HP Pi A TA CI CMCMTC nUUKC j j Ur UA 1 A CLtritNIb
006006 00000002 MAXNUM DS.W 1 MAXIMUM NUMBER IN SERIES

00004000 ORG PROGRAM

004000 20786002 PGM_5_4B MOVE A . L START, AO INITIALIZE POINTER REGISTER
004004 7000

MOVEQ

H0, DO
MAX : = 0

004006 32386000 MOVE .W LENGTH, Dl INITIALIZE ELEMENT COUNT

00400A 6 70C BEQ.S DONE IF LENGTH = 0 THEN DONE

00400C B058 LOOP CMP.W (A0)+,D0 COMPARE DATA ELEMENT WITH MAX
00400E 6404 BCC.S LOOPTEST IF MAX > OR = ELEMENT GOTO LOOPTEST

004010 3028FFFE MOVE . W -2(A0),D0 ...ELSE NEW MAX, MAX := ELEMENT

004014 5341 LOOPTEST SUBQ.W
n,Di

UPDATE ELEMENT COUNT
004016 66F4 BNE LOOP IF COUNT NOT ZERO THEN GOTO LOOP

004018 31C06006 DONE MOVE . W DO, MAXNUM STORE MAXIMUM NUMBER IN SERIES

00401C 4E75 RTS

END PGM_5_4B

Although the CMP.W (A0) + ,D0 instruction appears to simplify this program, it

does cause one slight problem — it increments register AO while performing the com-
pare. Now, when updating the maximum value, the new maximum is no longer in any

data register or pointed to by any address register. The address register indirect with dis-
placement addressing mode can be used to overcome this problem. By using a displace-

ment of -2, we essentially back the pointer up to the element we just compared. The
effective address for the instruction MOVE -2(A0),D0 is calculated as follows:

Effective Address of -2 (AO) = (AO) -2

The contents of register AO are not changed by this calculation.
At first glance CMP.W (AO) + ,D0 may appear not to optimize the loop processing

since the loop processing of Program 5-46 requires the same number of words as Pro-
gram 5-4a. However, the execution cycles for program 5-4a are 17 or 20 cycles:

MOVE 8 cycles
CMP 4 cycles
BCC 5 cycles (4 if branch not taken)
MOVE (4) cycles (not always executed)

1 7 (20) cycles

compared to 13 or 24 cycles for Program 5-46:

CMP 8 cycles
BCC 5 cycles (4 if branch not taken)
MOVE (12) cycles (not always executed)

13 (24) cycles

90 68000 Assembly Language Programming

Although both programs require the same number of loop cycles to update the max-
imum, the second program is slightly more efficient when no update is required.

5-5. NORMALIZE A BINARY NUMBER

Purpose: Shift a 32-bit binary number until the most significant bit of the number is 1.
The address of the numbenis defined by the long word variable NUMBER
at location 6000. Store the normalized number (shifted number) in the
variable NORMNUM at location 6004. Store the number of left shifts

required in the byte variable SHIFTNUM at location 6008. If the number is
zero, clear both variables NORMNUM and SHIFTNUM.

The processing is just like converting a number to a scientific notation; for
example:

00057 5 7
10

-3

Sample Problems:

a. Input: NUMBER

Output: NORMNUM -
SHIFTNUM -

b. Input: NUMBER

Output: NORMNUM -
SHIFTNUM -

c. Input: NUMBER

Output: NORMNUM -
SHIFTNUM -

d. Input: NUMBER

Output. NORMNUM -
SHIFTNUM -

(6000)
(5000)
(6004)
(6008)
(6000)
(5000)
(6004)
(6008)
(6000)
(5000)
(6004)
(6008)
(6000)
(5000)
(6004)
(6008)

00005000
30001000
C0004000

02 00005000
00000001
80000000 1F

00005000
00000000
00000000
00
00005000
C1234567
C1234567
00

Program 5-5:

00006000
00004000

DATA
PROGRAM

EQU
EQU

$6 000
$4000

006000
006004
006008

00006000
00000004
00000004
00000001

NUMBER
NORMNUM
SHIFTNUM

ORG
DS.L
DS.L
DS.B

DATA 1
1
1

00004000 ORG PROGRAM

004000
004002
004006
004008

7000
20786000
2210
6F06

PGM_5_5
MOVEQ

MOVE A . L
MOVE . L
BLE. S

«0,D0 NUMBER, AO
CA0),D1
DONE

00400A
00400C
00400E

5240 E389
6AFA

JUSTIFY ADDQ. W
LSL.L BPL

#1,D0
#1,D1
JUSTIFY

004010
004014

1 1C06008
21C16004 DONE MOVE .B

MOVE . L DO, SHIFTNUM Dl , .NORM

004018 4E75 RTS

ADDRESS OF NUMBER TO BE NORMALIZED
NORMALIZED NUMBER
NUMBER OF SHIFT REQUIRED TO NORMALIZE

INITIALIZE SHIFT COUNT
GET ADDRESS OF NUMBER TO NORMALIZE
GET NUMBER TO BE NORMALIZED
IF ZERO OR NORMALIZED THEN DONE

INCREMENT SHIFT COUNT
SHIFT NUMBER 1 BIT TO THE LEFT
AGAIN IF MSB = 0

STORE SHIFT COUNT
STORE NORMALIZED NUMBER

PGM 5 5

Simple Program Loops 91

Flowchart 5-5:

C Start

T

 '

Shift Count = 0

Numb = NUMBER

Yes

^JLNo

Nshift = Nshift + 1
Shift Numb

left 1 bit

No
Is >v C MSB of Numb >

= I ?
Yes

NORMNUMB - Numb

SHIFTNUM =
Shift Count

c
End

The BLE instruction performs both the test for number being zero and being

already justified. The status conditions for the branch are set during the MOVE instruc-
tion which loads the number into data register DO. BLE causes a branch to DONE if the

Zero flag is 1. If the number is already normalized, the most significant bit will be 1 and
the Negative flag will be set by the MOVE. In this case, BLE causes a branch to DONE if
the Negative flag is 1. Why can BLE be used to perform this last test, since the state of
the Overflow (V) flag must also be taken into consideration when you use the BLE
instruction?

LSL.L #1,D0 (Logical Shift Left Long) shifts the contents of the specified data
register DO left one bit and clears the least significant bit. The most significant bit ends
up in the Carry flag and the old Carry value is lost. This use of LSL is equivalent to
adding DO to itself; the result is, of course, twice the original number.

BPL causes a branch to JUSTIFY if the Negative flag is 0. This condition may
mean that the result was a positive number, or it may just mean that the most significant

bit of the result was 0; the microprocessor simply performs the operation; only the pro-
grammer can provide the interpretation. Since the LSL instruction affects the state of

the Carry flag, how could you modify this program to use BCC (Branch if Carry Clear)
instead of BPL?

92 68000 Assembly Language Programming

PROBLEMS

5-1. CHECKSUM OF DATA

Purpose: Calculate the checksum of a series of 8-bit numbers. The length of the series
is defined by the variable LENGTH at location 6000. The starting address of

the series is contained in the long-word variable START at location 6002.
Store the checksum in the variable CHECKSUM at location 6006. The

checksum is formed by Exclusive-ORing all the numbers in the list.

Note: Checksums are often used by paper tape and cassette systems to ensure that data
has been correctly read. A checksum calculated when reading the data is compared to a
checksum that is stored with the data on the tape. If the two checksums do not agree, the
system will usually indicate an error, or automatically read the data again.

Sample Problem:

Input: LENGTH
START

Output: CHECKSUM

- (6000) = 0003
- (6002) = 00005000
(5000) = 28
(5001) = 55
(5002) = 26

- (6006) = (5000)0(5001)0(5002) = 28-055 0 26
01101000

= 001010101
01111101

000100110
01011011

5B

5-2. NUMBER OF ZERO, POSITIVE, AND NEGATIVE
NUMBERS

Purpose: Determine the number of zero, positive (most significant bit zero, but
entire number not zero), and negative (most significant bit 1) elements in a

series of signed 16-bit numbers. The length of the series is defined by the
variable LENGTH at location 6000 and the starting address is defined by
the contents of the long word variable START at location 6002. Place the
number of negative elements in variable NUMNEG at location 6006, the
number of zero elements in variable NUMZERO at location 6008, and the
number of positive elements in variable NUMPOS at location 600A.

Sample Problem:

Input: LENGTH - (6000) = 0006
START - (6002) = 00005000

(5000) = 7602
(5002) = 8D48
(5004) = 2120
(5006) = 0000
(5008) = E605
(500A) = 0004

Simple Program Loops 93

Output: 2 negative, 1 zero, 3 positive, so

NUMNEG - (6006) = 0002
NUMZERO - (6008) = 0001
NUMPOS - (600A) = 0003

5-3. FIND MINIMUM

Purpose: Find the smallest element in a series of unsigned byte data. The length of
the series is defined by the variable LENGTH at location 6000 and the start-

ing address of the series is contained in the long-word variable START at
location 6002. Store the minimum byte value in the variable NUMMIN at
location 6006.

Sample Problem:

LENGTH - (6000) =
= 0005

START - (6002) =
= 00005000

(5000) =

= 65

(5001) =

= 79

(5002) =

= 15

(5003) =

= E3

(5004) =

= 72

NUMMIN - (6006) = = 1 5, since this is the smallest of five unsigned numbers

5-4. COUNT 1 BITS

Purpose: Determine the number of bits which are one in the 16-bit variable NUM at
location 6000, and store the result in the variable NUMBITS at location
6002.

Sample Problem:

Input: NUM -(6000) = B794 = 101 101 1 1 10010100
Output: NUMBITS - (6002) = 09

5-5. FIND ELEMENT WITH MOST 1 BITS

Purpose: Determine which element in a series of 16-bit numbers has the largest num-
ber of bits that are one. The length of the series is defined by the variable

LENGTH at location 6000 and the starting address of the series is contained

in the long-word variable START at location 6002. Store the value with the
most 1 bits in the variable NUM at location 6006. If two or more elements

have the same number of 1 bits, use the value of the earliest element in the
series.

Sample Problem:

Input: LENGTH
START

Output: NUM

(6000) = 0005
(6002) = 00005000
(5000) = 6779 = 0110011101111001
(5002) = 15E3 = 00010101 1 1 10001 1
(5004) = 68F2 = 01 1010001 1 1 10010
(5006) = 8700 = 1000011100000000
(5008) = 592A = 0101 100100101010
(6006) = 6779, since this element is the first element

in the series to have ten bits = 1

6

Character-Coded Data

Microprocessors often handle data which represents printed characters rather
than numeric quantities. Not only do keyboards, teletypewriters, communications

devices, displays, and computer terminals expect or provide character-coded data, but
many instruments, test systems, and controllers also require data in this form.

ASCII (American Standard Code for Information Interchange) is the most com-
monly used code; others include Baudot (telegraph) and EBCDIC (Extended Binary-

Coded-Decimal Interchange Code).
Throughout this book, we will assume all of our character-coded data to be

seven-bit ASCII, as shown in Table 6-1; the character code occupies the low-order
seven bits of the byte, and the most significant bit of the byte holds a 0 or a parity bit.

HANDLING DATA IN ASCII

Here are some principles to remember in handling ASCII-coded data:

1. The codes for the numbers and letters form ordered sequences. Since the

ASCII codes for the numbers 0 through 9 are 3016 through 3916, you can con-
vert a decimal digit to the equivalent ASCII characters (and ASCII to decimal)

by means of a simple additive factor: 3016 = ASCII 0. Since the codes for the
upper-case letters (41 16 through 5A16) are ordered alphabetically, you can
alphabetize strings by sorting them according to their numerical values.

2. The computer does not distinguish between printing and non-printing
characters. Only the I/O devices make that distinction.

3. An ASCII I/O device handles data only in ASCII. For example, if you want

an ASCII printer to print the digit 7, you must send it 3716 as the data; 0716 is
the bell character. Similarly, if an operator presses the 9 key on an ASCII

keyboard, the input data will be 3916; 0916 is the horizontal tab character.

95

96 68000 Assembly Language Programming

Table 6-1. Hexadecimal ASCII Character Codes

\MSBs

LSBs\
0 1 2 3 4 5 6 7 Control Characters

0 NUL DLE CD
or

(J

(S)

P P NUL Null DC1 Device control 1
1 SOH DC1 1 A Q a q SOH

Start of heading DC2 Device control 2
2 STX

DC2 Z, B R b r CTV
O I A

otari ot text Device control 3
3 ETX DC3

44- Tf
3 C S c s ETX End of text DC4 Device control 4

4 EOT DC4 $ 4 D T d t EOT End of transmission NAK Negative acknowledge
5 ENQ NAK % 5 E U e u

ENQ Enquiry
SYN Synchronous idle

6 ACK SYN & 6 F V f V ACK Acknowledge ETB End of transmission block
7 BEL ETB 7 G W 9 w BEL

Bell, or alarm CAN Cancel
8 BS CAN (8 H X h X

BS

Backspace
EM

End of medium
9 HT EM) 9 I Y i y

HT
Horizontal tabulation SUB

Substitute
A LF SUB * J Z j z

LF
Line feed ESC

Escape

B VT
ESC + > K [k VT Vertical tabulation

FS

File separator
C FF

FS
l < L \ I I FF Form feed

GS
Group separator

D CR
GS M] m

CR Carriage return

RS

Record separator
E SO

RS
> N n

SO
Shift out

US
Unit separator

F SI
US / ? 0 0 DEL

SI

Shift in

SP

Space DLE Data link escape DEL Delete

4. Many ASCII devices do not use the entire character set. For example,

devices may ignore many control characters and may not print lower-case
letters.

5. ASCII control characters often have widely varying interpretations. Each
ASCII device typically uses control characters in a special way to provide
features such as cursor control on a CRT, and to allow software control of
characteristics such as rate of data transmission, print width, and line length.

6. Some widely used ASCII control characters are:

0AIA line feed (LF)

0Dl6 carriage return (CR)

08 l6 backspace
7F|6 rubout or delete character (DEL)

7. Each ASCII character occupies eight bits. This allows a large character set but
is wasteful when only a few characters are actually being used. If, for example,
the data consists entirely of decimal numbers, the ASCII format (allowing one
digit per byte) requires twice as much storage, communications capacity, and
processing time as does the BCD format (allowing two digits per byte).

Most assembly languages have features that make character-coded data easy to

handle. In Motorola's assembly language, quotation marks around a character indicate
the character's ASCII value. For example,

MOVE.B # 'A', DO is the same as
MOVE.B # $41, DO

The first form is preferable for several reasons. It increases the readability of the
instruction; it also avoids errors that may result from looking up a value in a table. The
program does not depend on ASCII as the character set, since the assembler handles the
conversion using whatever code has been designed into it.

Character-Coded Data 97

PROGRAM EXAMPLES

6-1. LENGTH OF A STRING OF CHARACTERS

Purpose: Determine the length of a string of characters. The starting address is con-
tained in the 32-bit variable START at location 6000. The end of the string is

marked by an ASCII carriage return character (0Dl6). Place the length of the
string (excluding the carriage return) in the variable LENGTH at location
6004.

Sample Problems:

Input: START
- (6000) 00005000

(5000) OD

Output: LENGTH - (6004) 0000
Input: START

- (6000) 00005000
(5000) 4D W

(5001)

43 *C
(5002)

36 '6'

(5003)

38 '8'

(5004)

30 '0'

(5005)

30 '0'

(5006)

30 '0'

(5007) OD CR
Output. LENGTH

- (6004)
07

Flowchart 6-1 a: C Start J

Pointer = (START)

Length = 0

Yes

Length =Length + 1
Pointer = Pointer + 1 (LENGTH) = Length

C End

Program 6-1a:
00006000
00004000

DATA EQU
PROGRAM EQU

$6000
$4000

00006000 ORG DATA
006000 00000004 START DS.L 1 ADDRESS OF STRING
006004 00000002 LENGTH DS.W 1 NUMBER OF CHARACTERS IN STRING

98 68000 Assembly Language Programming

0000000D
C R

E Q U

$ 0D
ASCII VALUE FOR CARRIAGE RETURN

00004000

0 R r>

r K Uh K AM

004000
004004

20786000
7 00 0

PGM_6_
1A MOVEA.L MOVEQ START, AO

HO, DO
POINTER TO START OF STRING
INITIALIZE LENGTH COUNTER

004006
00400A

0C18000D
6 7 04

LOOP CMPI .B
BEQ. 5

KCR, (A0)+
DONE

IS CURRENT CHAR A CARRIAGE RETURN?
IF YES THEN DONE

00400C
00400E

5240
60F6

ADDQ.W
BRA

#1,D0
LOOP

...ELSE INCREMENT LENGTH COUNTER
CONTINUE SCAN

004010 31C06004 DONE MOVE . W DO, LENGTH SAVE STRING LENGTH

004014 4E75 RTS

END PGM_6_1A

As far as the processor is concerned, the carriage return (CR) is just another

ASCII code (0D16). The fact that the carriage return can cause an output device to per-
form a control function rather than print a symbol does not affect the processor. The

processor simply treats 0D16 as a value that is to be searched for.
The search is performed using the compare instruction CMPI. This instruction

sets the flags as if the immediate operand, the carriage return (0D16) character, had been
subtracted from the destination operand. The destination operand (the next character in
the string) is not affected. In this program the CMPI instruction affects the Zero (Z) flag
as follows:

Z = 1 if the character in the string is a carriage return.
Z = O if it is not a carriage return.

In addition to performing the compare, the CMPI instruction also uses the post-
incrementing address mode to update the string character pointer. Thus, a portion of the

loop control processing shown in Flowchart 6-\a has been completed. Normally, com-
bining several instructions like this makes a program more efficient. However, how

would the results of the flowchart and program differ if you also needed to save the
pointer to the carriage return?

The postincrementing address mode is another variation of the MC68000 address
register indirect modes. Like the address register indirect mode, the contents of the
specified address registers are used to determine the address of operand. However after
the data reference, the processor updates the contents of the register by incrementing it
by the size associated with the data reference. Incrementing is by one, two, or four bytes
depending on whether the data reference size is byte, word, or long word, respectively.
The only exception to this occurs when address register A7 (the stack pointer) is used
and the data size is byte. In this case the stack pointer is incremented by two bytes to
ensure that the pointer is properly aligned on a word boundary.

The instruction ADDQ adds 1 to the string length counter in data register DO.
This counter was initialized to zero before the loop began by the MOVEQ #0,D0
instruction. You must remember to initalize variables before using them in a loop;
failure to do so is a common programming error.

By rearranging the logic and changing the initial conditions, you can shorten the

program and decrease the execution time. If we rearrange the flowchart so that the pro-
gram increments the string length before it checks for the carriage return, only one

branch instruction is needed instead of two.

Character-Coded Data 99

Program 6-1 b:
00006000
00004000

DATA
PROGRAM

EQU
EQU

$6000
$4000

006000
006004

00006000
00000004
00000002

START
LENGTH

ORG
DS.L
DS . W

DATA
1
1

0000000D
CR

EQU
$0D

00004000 ORG PROGRAM

004000
004004
004006

20786000
70FF
7 20D

PGM_6_1B MOVEA. L MOVEQ
MOVEQ

START, AO #-l,D0
#CR,D1

004008
00400A
00400C

5240
B218
66FA

LOOP ADDQ. W
CMP.B
BNE

H,D0 (A0)+,D1
LOOP

00400E 31C06004 MOVE . W DO, LENGTH
0040 1 2 4E75 R rs

END PGM 6 IB

Flowchart 6-1 b:

c Start

I

Pointer = (START)

Length = — 1

Length = Length + 1

Yes

Pointer=Pointer + 1

ADDRESS OF STRING
NUMBER OF CHARACTERS IN STRING

ASCII VALUE FOR CARRIAGE RETURN

POINTER TO START OF STRING
INITIALIZE LENGTH COUNT
INITIALIZE WITH ASCII VALUE OF CR

INCREMENT LENGTH COUNT
IS CURRENT CHAR A CARRIAGE RETURN?
IF NO THEN CONTINUE SCAN

...ELSE DONE, SAVE LENGTH COUNT

(LENGTH) = Length

C

I
End

J

As you can see in Program 6-\b, incrementing the string length at the beginning
of the loop rather than at the end allows elimination of one of the branch instructions.

We have made another less obvious change in the loop of Program 6-\b that further
decreases execution time of the loop: we have used data register direct addressing for
the source operand of the Compare instruction instead of using immediate data as we

did in Program 6-\a. This change reduces the object code for the Compare instruction

100 68000 Assembly Language Programming

by two bytes and saves the microprocessor from loading the ASCII value for carriage
return each time through the loop. In general, eliminating the use of the immediate

operands within loops can improve the loop efficiency. The family of "quick" instruc-
tions such as MOVEQ and ADDQ is an exception to this general rule. You should also

note that the use of immediate operands does provide for better program documenta-
tion.

Neither of the preceding programs has loops which terminate by decrementing a
counter to zero or by incrementing a counter to reach a maximum value. In fact, the
processor will simply continue examining characters until it finds a carriage return.
Obviously, this will create a problem if the string, because of an error or an omission,
does not contain a carriage return. It is good programming practice to place a maximum
count in a loop like this even though it does not appear to be necessary. What would
happen if the example programs were used on a string which does not contain a carriage

return? Program 6-lc corrects this problem.

Program 6-1 c:
00006000 DATA EQU $6000
000040 0 0 PROGRAM EQU $1+000

00006000 ORG DATA
006000 00000004 START DS.L 1 ADDRESS OF STRING
006004 00000002 LENGTH DS.W 1 NUMBER OF CHARACTERS IN STRING

0000000D CR EQU $00 ASCII VALUE FOR CARRIAGE RETURN

00004000 ORG PROGRAM

004000 20786000 PGM 6 1C MOVE A . L START, AO POINTER TO START OF STRING

Character-Coded Data 101

004004 74FF
004006 3002
004008 720D

MOVEQ #2 56-1 , D2 MOVE.W D2,D0
MOVEQ #CR,D1

INITIALIZE MAX STRING LENGTH = 256
LENGTH COUNT := MAX STRING LENGTH
INITIALIZE WITH ASCII VALUE OF CR

SCAN STRING FOR CARRIAGE RETURN. STOP SCAN WHEN
CARRIAGE RETURN FOUND OR 256 CHARACTERS SCANNED.

00400A B218
00400C 57C8FFFC

LOOP CMP.B DBEQ
(A0)+,D1
DO, LOOP

IS CURRENT CHAR A CARRIAGE RETURN?
IF NO AND NOT END OF STRING - CONT.

004010 9440
004012 31C26004

SUB.W D0,D2
MOVE.W D2 , LENGTH

DETERMINE STRING LENGTH
SAVE STRING LENGTH

004016 4E75
RTS

END PGM 6 1C

This program makes use of one of the Test Condition, Decrement and Branch

instructions, DBcc. This set of instructions can be very useful in loop or array process-
ing. The DBcc instructions have the form

and perform the following steps:

1. If the condition being tested is satisfied, control passes to the instruction
following the DBcc.

2. If the condition is not satisfied then

a. The lower 16-bits of the specified data register are decremented by one.

b. If the result is a — 1, control passes to the instruction following the DBcc.

c. If the result is not — 1, control is transferred to the specified branch loca-
tion. The location must be within a sign-extended 16-bit displacement

from the current PC value.

The conditional tests allowed by the DBcc instructions are identical to the tests

allowed by the Bcc instructions except that DBcc also permits the conditions "never
true" or "false" (F) and "always true" (T). The Motorola MC68000 assembler allows
DBRA as well as DBF.

With the DBEQ instruction, the two instruction sequences CMP and DBEQ will
scan a string with a maximum length of 256 bytes for a carriage return character. The
scan will terminate either when a carriage return is found or when the entire 256

character string has been searched. You will note that in either termination, the instruc-
tion immediately following the DBEQ will always be executed. In this program the same

calculation will be performed regardless of the cause of termination. However, in some
programs you may want to perform different operations based on which condition
caused the termination. When this is necessary, you can follow the DBcc instruction
with an appropriate Bcc branch instruction to transfer control to the program associated
with the conditional test that caused termination.

When using the DBcc instructions, you must be careful to properly initialize data

counters. In Program 6-lc, the counter was initialized to 256—1 (255), since the loop
terminates when the counter reaches -1, not zero. The operand form 256-1 instead
of 255 was used in order to more clearly document this initialization condition.

After the loop terminates, the counter does not contain the length of the string:

we must calculate the string length by subtracting the counter contents from the max-
imum string length minus 1. (Remember the termination condition!)

DBcc Dn, < label >

102 68000 Assembly Language Programming

6-2. FIND FIRST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for a non-blank character. The starting
address of the string is contained in the 32-bit variable START at location
6000. Store the address of the first non-blank character in the 32-bit variable
POINTER at location 6004. A blank character is the same as a space and the
ASCII code for this character is 20li:.

Sample Problems:
a. Input:

Flowchart 6-2:

START - (6000) = 00005000

Output: POINTER
Input: START

Output: POINTER

(5000) = 37 '7' (6004) = 00005000
(6000) = 5000
(5000) = 20 blank
(5001) = 20 blank
(5002) = 20 blank

(5003) = 46 'F' (5004) = 20 blank
(6004) = 00005003. since the previous
memory locations all contained blanks.

C Start J

T

 4

Pointer = (START)

Program 6-2:

Pointer =
Pointer + 1 (POINTER) = Pointer

C

J
End

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
006000 00000004
006004 00000004

00000020

00004000

004000 20786000
004004 7220

START
ORG
DS.L DATA 1

1 POINTER DS.L

BLANK EQU.B 1 '
ORG PROGRAM

PGM_6_2 MOVE A . L START, AO
MOVEQ tt BLANK , D 1

ADDRESS OF STRING
ADDRESS OF FIRST NON-BLANK

ACSII VALUE FOR BLANK/SPACE

POINTER TO START OF STRING
INITIALIZE WITH ASCII VALUE FOR

004006 B21 CMP.B (A0)+,D1
S CURRENT CHAR A BLANK'

Character-Coded Data 103

004008 67FC BEQ LOOP IF YES THEN CONTINUE SCAN

00400A 5388 SUBQ.L «1,A0 ..ELSE ADJUST POINTER TO CURRENT CHAR
OO^OOC 2 1 C 86 0 01+ MOVE A . L AO, POINTER SAVE ADDRESS OF FIRST NON-BLANK
004010 4E75 RTS

END PGM 6 2

Note the use of the apostrophes 0) or single quotation marks before and after the
ASCII character. You can place a single ASCII character in an MC68000 assembly
language program by preceding it and following it with an apostrophe C) as in the EQU
statements. The EQU is not a MC68000 instruction but rather an assembly language
directive which assigns the expression in the operand field to the label in the label field.

The .B suffix is required to put the ASCII code in the low-order byte; otherwise the
assembler puts the ASCII value in the high-order byte of a 16-bit value and fills out the
16-bit value with zero bits.

You can place a string of ASCII characters in memory by using the DC (Define
Constant) directive of the MC68000 assembler. Like the EQU directive, the string is
placed within apostrophes in the DCs operand field. If an apostrophe is contained
within the string, the apostrophe must be preceded by another apostrophe. Examples
of some string definitions are:

DC 'ABCD' Defines string ABCD
DC 'IT"S' Defines string IT'S

Each ASCII character requires eight bits of storage, as compared to four bits for a
BCD digit. Therefore, ASCII is a relatively inefficient format in which to store or
transmit numerical data.

Looking for spaces in strings is a common task in microprocessor applications.
Programs often reduce storage requirements by removing spaces that serve to increase

readability or fit data in particular formats. Storing and transmitting extra space charac-
ters obviously can waste memory, communications capacity, and processor time.

However, operators find it easier to enter data and programs when the computer accepts
extra spaces; the entry is then said to be in free format rather than fixed format. One use
for microcomputers is to convert data and commands between the forms that are easy

for people to handle and the forms that are most efficient for computers and com-
munication systems.

The autoincrement addressing mode used in the CMP (AO) + ,D1 instruction pro-
vides us with a fast and simple way to step to the next character. However, once we have

found the first non-blank character, we must remember that the pointer has already
been incremented past the address we want to save. We must therefore explicitly
subtract the increment of 1 with the instruction SUBQ #1,A0. This instruction would
not be necessary if we were working backwards instead of forward, since the MC68000
autodecrements before using the address. However, as we noted earlier, if you use
autodecrementing you must use a starting address that is one beyond the end of the
string.

6-3. REPLACE LEADING ZEROS WITH BLANKS

Purpose: Edit a string of ASCII decimal characters by replacing all leading zeros with

blanks. The starting address of the string is contained in the long-word varia-
ble START at location 6000. The first two bytes of the string represent the

length of the string in bytes. The actual string of characters starts in the third

byte.

104 68000 Assembly Language Programming

a. Input: START - (6000) = 00005000
(5000) = 0002 Length of the string in bytes

(5002) = 36 '6'
(5003) = 39 '9'

The program leaves the string unchanged, since the leading digit is not zero.

b. Input: START (6000) 00005000
(5000) 0008

(5002)

30 '0'

(5003)

30 '0'

(5004)

38 '8'

(5002) 20 Space
(5003) 20 Space
(5004)

38 '8'

The program replaces the two leading zeros with ASCII spaces. The printed

result would be ' 8...1 instead of 4008...\

Flowchart 6-3:

c Start J

Pointer = (START)
Count = (Pointer)
Pointer = Pointer+2

Character-Coded Data 105

Program 6-3:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000004 START DS . L ADDRESS OF STRING

00000030 CHAR_0
EQU. B

' 0 1 ASCI I VALUE FOR ZERO
00000020 BLANK EQU . B ASCII VALUE FOR BLANK/SPACE

00004000 ORG PROGRAM

004000 20786000 PGM_6_3 MOVE A . L START, AO POINTER TO START OF STRING
n n u n n u 7 0 3 0 M O W F r» TrLrlMK U ; UU INITIALIZE WITH ASCII ZERO
004006 7220

MOVEQ
ft B LANK, D 1 INITIALIZE WITH ASCII BLANK

0 040 0 8 3418 MOVE . W (AO)+ D2 ctd [Mr 1 FMrTH Tn rio
00400A 6 70E BEQ.S DONE IF LENGTH = 0 THEN DONE
00400C 5 342 SUBQ. W #1,D2 ADJUST STRING COUNTER FOR DBRA

00400E B018 LOOP CMP.B (A0)+,D0 IS CURRENT CHAR A ZERO?
0040 10 6608 BNE . S DONE IF NO THEN DONE

004012 1 141FFFF MOVE .B D1,-1(A0) REPLACE ZERO BY BLANK IN CURR CHAR
004016 5 1CAFFF6 DBRA D2, LOOP STOP SCAN IF ALL CHAR = '0*

0000401A DONE EQU DONE

00401A 4E75 RTS

END
PGM_6_3

The string storage format with the length of the string immediately preceding the
actual string is quite frequently used in microprocessor applications. With this format

the length is known; thus you don't have to scan for a carriage return and can easily
move strings in memory.

Editing strings of decimal digits to improve their appearance is a common task
in microprocessor programs. Typical procedures include the removal of leading zeros,

justification, the addition of signs (-1- or —), delimiters or symbols for units (such as $,
%, or #), and rounding. Programs should print numbers in the form that the user

wants and expects; results like "0006", "$27. 34382", or "135000000" are annoying
and difficult to interpret.

This loop has two exits — one if the processor finds a non-zero digit and the other
if it scans the entire string. In an actual application, you would have to be careful to leave
one zero if all the digits in the string are zero. How would you modify the program to do
this?

We have assumed that all the digits in the string are in ASCII; that is, the digits

used are 3016 through 3916 rather than the binary representation of the numbers 0 to 9.
Converting a digit from BCD to ASCII is simply a matter of adding 30 16 (ASCII zero),
while converting from ASCII to decimal involves subtracting the same number.

The instruction MOVE.B Dl,- 1(A0) places an ASCII space (2016) in a memory
location that previously contained an ASCII zero. Address register indirect addressing

with a displacement of — 1 is used to make up for the + 1 that was added to register AO
by the CMP.B (A0) + ,D0 instruction.

The DBRA instruction ensures that the program does not continue beyond the
end of the string. DBRA is a form of the DBcc instruction for which the conditional test
is never true. DBRA, or its equivalent form DBF, is functionally equal to the instruction
sequence:

SUBI.W #1,D2
BNE LOOP

106 68000 Assembly Language Programming

The DBRA instruction thus always causes a branch back to LOOP unless the

entire string has been processed (D2= — 1).

6-4. ADD EVEN PARITY TO ASCII CHARACTERS

Purpose: Add even parity to a string of 7-bit ASCII characters. The starting address of
the string is contained in the long word START at location 6000. The first
word of the string represents the string length in bytes. The actual string of
characters starts in the third byte. The parity bit is the most significant bit of a
byte; for even parity the bit is set to 1 if that makes the total number of 1 bits
in the byte an even number; otherwise it is set to 0. In either case the final
number of 1 bits is even.

Sample Problem:

Input: START - (6000) =
00005000

(5000) =
0006 string length

(5002) = 31 001 1 0001
(5003) = 32 001 1 0010

(5004) =
JO 001 1 001 1

(5005) =
34

001 1 0100

(5006) = 35 001 1 0101
(5007) =

36 001 1 01 10
Output (5002) = B1

101 1 0001
(5003) =

B2 101 1 0010

(5004) =
33 001 1 001 1

(5005) =
B4 101 1 01 00

(5006) =
35 001 1 0101

(5007) =
36

001 1
01 10

Progra m 6-4:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000004 START DS.L 1 ADDRESS OF STRING

00004000 ORG PROGRAM

004000 20786000 PGM_6_4 MOVEA. L START, AO POINTER TO START OF STRING
004004 3418 MOVE . W (A0)+,D2 STRING LENGTH TO D2
004006 6 7 20 BEQ.S DONE IF LENGTH = 0 THEN DONE
004008 5342 5UBQ.W #1,D2 ADJUST STRING COUNTER FOR DBRA
00400A 76 0 0

MOVEQ
#0,D3 CONSTANT ZERO FOR ADDX INSTRUCTION

0000400C MAIN LOOP EQU
00400C 1218 MOVE.B (A0)+, Dl GET CURRENT CHARACTER
00400E 7 000

MOVEQ
#0,D0 CLEAR BIT COUNTER

00004010 PAR I TY_ LOOP EQU
004010 E309 LSL.B #1,D1 SHIFT MSB OF CHAR INTO C & X-BITS 004012 D103 ADDX.B D3,D0 ADD X-BIT TO BIT COUNT
004014 4A01 TST.B Dl TEST IF ALL BITS = 1 COUNTED
004016 66F8 BNE PAR I TY_LOOP IF NO THEN CONTINUE COUNTING

004018 08000000 BTST.B HO, DO ...ELSE CHECK FOR ODD PARITY
00401C 6 706 BEQ. S NEXT_CHAR IF EVEN THEN PROCESS NEXT CHAR
0040 1E 08E80007FFFF BSET.B #7, -1(A0) . . .ELSE SET PARITY BIT

00004024 NEXT CHAR EQU
004024 51CAFFE6 DBRA D2,MAIN_LOOP CONTINUE IF CHAR LEFT IN STRING

00004028 DONE EQU STRING NOW HAS EVEN PARITY

004028 4E75 RTS

END PGM 6_4

Character-Coded Data 107

Flowchart 6-4:

c Start

Pointer = (START)
Count = (Pointer)

Pointer = Pointer + 2

Bit Count = 0
Data = (Pointer)

Pointer = Pointer + 1

Shift Data Left
One Bit Logically

(LSB = 0)

Bit Count = Bit Count + Extend Flag

Parity Loop

Yes

Is1

Bit Count"
Jven(LSB±OL ?

Set MSB of
(Pointer - 1) to 1

Count = Count - 1

Is

Count
Yes

108 68000 Assembly Language Programming

Parity provides a simple means of checking for errors on noisy communications
lines. If the transmitter sends parity along with the actual data, the receiver can then
check for correct parity of the data that it receives. If the parity is not correct, the
receiver can request retransmission of the data. If there is a single bit in error, the parity
will be incorrect, since the number of 1 bits in the data will clearly change from even to
odd or odd to even. However, two bit errors will just as obviously result in the same
parity as the original data. Thus we say that parity detects single but not double bit
errors. Of course, single bit errors are usually more common than are double bit errors,
so the test is still useful.

A more serious problem with parity is that it provides no way to correct errors.

An error in any bit position will produce the same change in parity, so the receiver can-
not determine which bit is wrong. More advanced coding techniques provide for error

correction as well as error detection. Parity, however, is easy to calculate and ade-
quate in situations in which retransmission of data is tolerable.
The procedure for calculating parity is to count the number of 1 bits in each byte

of data. If that number is odd and even parity is desired, the program sets the most

significant bit (MSB) of the data byte to 1 to make the parity even. One of th6 advan-
tages of the 7-bit ASCII code is that it leaves the most significant bit available for parity;

the 8-bit EBCDIC code does not.
The LSL instruction clears the least significant bit of the data register or memory

location that it is shifting. Therefore, a series of LSL instructions will eventually

result in a zero value, regardless of the original data. (Try it!) The bit counting pro-
cedure in the example program does not use a counter for termination since it stops as

soon as all the remaining data bits are zero. This procedure is simple and reduces execu-
tion time in most cases.

Note that Program 6-4 assumes that the most significant bit (the parity bit) of
each 8-bit data byte being processed is set to 0 at the outset; if this bit were initially set to
1, then Program 6-4 would generate odd parity instead of even.

In addition to clearing the least significant bit of the data byte, the LSL instruction
affects the Carry (C) and Extend (X) flags as follows:

C=X=1 if MSB of data = 1 prior to shift
C=X=0 if MSB of data = 0 prior to shift

The state of the Extend flag is used in the ADDX.B D3,D0 instruction which has the
same affect as:

DO=DO+D3+X=DO+0+X=DO+X

Thus the number of 1 bits in the byte is counted in register DO.
Like the other Add instructions, ADDX affects the status flags, so the TST

instruction is used to determine if the LSL instruction cleared the data register. TST.B

Dl compares the contents of the low-order byte of register Dl with zero and sets the
status flags accordingly without modifying the data register contents. The TST instruc-

tion is thus an optimized form of the Compare Immediate instruction CMPI#0, Dl.

Bit Manipulation Instructions

The MC68000 allows operations on individual bits within a single byte or long word.
The Bit Clear (BCLR) instruction is used to clear a single bit. Bit Change (BCHG) is

Character-Coded Data 109

used to change the state of a specified bit. The Bit Set (BSET) instruction is used to set a
specific bit to 1. Finally, you may use the Bit Test (BTST) instruction to test the state of
a single bit without altering its state. All of these bit operation instructions perform an
implicit Bit Test (BTST) instruction prior to operating on the specified bit.

6-5. PATTERN MATCH

Purpose: Compare two strings of ASCII characters to see if they are the same. The start-
ing addresses of the strings are contained in the long word variables START1

at location 6000 and START2 at location 6004. The first byte of each string
contains the string length (in bytes) and is followed by the string. If the two
strings match, clear the variable MATCH at location 6008; otherwise set its

value to — 1 (all ones = FFFF16).

Sample Problems:

Input: START 1
START2

Output: MATCH -

Input: START 1 -
START2 -

Output: MATCH

c. Input: START1
START2

Output: MATCH -

(6000)
(6004)
(5000)
(5001)
(5002)
(5003)
(5400)
(5401)
(5402)
(5403)
(6008)
match
(6000)
(6008)
(5000)
(5001)
(5002)
(5003)
(5400)
(5401)
(5402)
(5403)
(6008)

00005000
00005400
03

43 'C

41 'A'

54 T
03

43 'C

41 'A'

54 T
0000 0, since the strings

00005000
00005400
03 43

41

54 03

52
41

54 FFFF -1, since the first
characters differ
(6000) = 00005000
(6004) = 00005400
(5000) = 03
(5400) = 04
(6008) = FFFF -1, since the strings are
not the same length

Note: the matching process ends as soon as we find a difference. The rest of the string is
not examined.

110 68000 Assembly Language Programming

Flowchart 6-5a:

^ Stert ̂

Pointer1=(START1)
Pointer2=(START2)
Match Flag = FFFF
Length = (Pointer 1)
Pomterl = Pointerl + 1

Pomter2 = Pointer 2 + 2

Yes

Length = Length - 1

LOOP

Pointer 1 = Pomterl + 1
Pointer 2 = Pointer2 + 1

Length = Length ■

Match Flag = 0000

(MATCH) = Match Flag

Character-Coded Data 111

Program 6-5a:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000004 START 1 DS.L 1 ADDRESS OF FIRST STRING
nnfinnii UUUUUUUH c T A D T O D 1 AK 1 L DS.L 1 ADDRESS OF SECOND STRING
006008 00000002 MATCH DS .W 1 MATCH FLAG

nnnniinnn UUUUHUUU nor D D r\C D AW rKUbK An

nnLnnn uutuuu ZU/oDUUU PGM 6 5A nU V t A . L CTADT1 AH b 1 AR 1 1 , AO POINTER TO FIRST STRING
004004 22786004 MOVE A . L START2, Al POINTER TO SECOND STRING
004008 72FF

MOVEQ
#-l,Dl ASSUME NO MATCH

nnunnA 7 0 0 0 fy Q QQ
00400C 1018 MOVE .B (A0)+,DO INITIALIZE LENGTH COUNTER
nouooF U U "T U U L_ B 0 1 9 CMP . B ctdtm(" i c kit rue criHAi o 3 1 K 1 IN tj L L l\Hj 1 n 3 tyUAL:
004010 6610 BNE.S DONE IF NOT = THEN NO MATCH

004012 4A00 TST.B DO STRING LENGTHS = 0?
U U 4 U 1 4 6 7 0 A B E Q . S SAME IF = 0 THEN STRINGS MATCH

004016 5340 SUBQ.W #1,D0 ADJUST COUNTER FOR DBNE

004018 B308 LOOP CMPM.B (A0)+,(A1)+ COMPARE CURRENT STRING ELEMENTS
00401A 56C8FFFC DBNE D0,LOOP IF MATCH AND NOT END OF STR I NG-CONT

00401E 6602 BNE.S DONE IF NO MATCH AND END THEN DONE

004020 4641 SAME NOT. W Dl STRING MATCH

004022 31C16008 DONE MOVE . W Dl, MATCH SAVE MATCH STATE

004026 4E75 RTS

END PGM_6_5A

Matching strings of ASCII characters is an essential part of recognizing names or
commands, identifying variables or operation codes in assemblers and compilers,
accessing named files, and many other tasks.

The MOVEQ #— 1,D1 instruction has the effect of assuming there will be no
match. If a match is found, the match flag is cleared by using the NOT.W Dl instruction
which complements the state of each bit in the destination operand; thus a zero bit
becomes 1 and a one bit becomes 0. Had we not initialized the match flag in this way, the
end of the program would have been more complicated:

BNE DONE
SAME : MOVE

#-1,

MATCH
BRA

DONE
FINI : MOVE

#0,

MATCH DONE : RTS

Assuming a result is true until proven false, or false until proven true, is a com-
mon technique that simplifies many programs.
The Compare Memory instruction CMPM allows data in memory to be compared

directly without first moving one of the data elements into a data register. The CMPM
instruction is extremely useful and efficient in performing string comparisons. Note that
only the postincrementing address mode can be used with this instruction to specify the
operands. Of course, this is exactly the mode that is most useful for comparing strings
since the addresses are automatically incremented to point to the next elements to be
compared.

When control is passed to the instruction following the DBNE instruction, we
know that either a match did not occur on a given pair of string elements, or that the two
strings are identical. The BNE instruction is used to determine which condition caused

112 68000 Assembly Language Programming

the exit from DBNE. The correct execution of the BNE instruction depends on the fact
that the DBNE instruction does not affect the status flags.

Why must the instruction MOVEQ #0,D0 be used prior to loading the lower byte
of DO with the string length?

This program is much more complicated than it need be. We can treat the length
bytes of the strings as if they were part of the string. If the lengths are unequal, the
strings are unequal.

Flowchart 6-5b:

r Start
i ;

Pointer1 = (START1)
Pointer2=(START2)
Match Flag = FFFF
Length = (Pointerl)

Pointer1=Pointer1+1

Pointer2 = Pointer2 + 1

Length = Length - 1

Match Flag = OOOO

J

(MATCH) = Match Flag

C End)

Program 6-5b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006 000 0 0 00 0 0 04 START 1 DS.L 1 ADDRESS OF FIRST STRING
006004 00000004- START2 DS.L 1 ADDRESS OF SECOND STRING

Character-Coded Data 113

006008 00000002 MATCH DS.W 1 MATCH FLAG
00004000 ORG PROGRAM

004000 20786000 PGM_6_5B MOVE A . L START1 , AO POINTER TO FIRST STRING
004004 22786004 MOVE A . L START2, Al POINTER TO SECOND STRING
004008 72FF MOVEQ #-l,Dl ASSUME NO MATCH
00400A 7000 MOVEQ «0,D0 LENGTH COUNTER := 0
00400C 1010 MOVE.B (AO), DO INITIALIZE LENGTH COUNTER

00400E B308 LOOP CMPM.B (A0)+,(A1)+ COMPARE CURRENT STRING ELEMENTS
004010 56C8FFFC DBNE DO, LOOP IF MATCH AND NOT END OF STR I NG-CONT

004014 6602 BNE.S DONE IF NO MATCH AND END THEN DONE

004016 4641 SAME NOT.W Dl STRING MATCH

004018 31C16008 DONE MOVE.W Dl, MATCH SAVE MATCH STATE

00401C 4E75 RTS

END PGM_6_5B

If the string lengths are unequal, the program will terminate after the first itera-
tion. Why can we use the string length as a loop counter without first decrementing it

by 1?

PROBLEMS

6-1. LENGTH OF A TELETYPEWRITER MESSAGE

Purpose: Determine the length of an ASCII message. AH characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is embedded has
a starting address which is contained in the variable START at location 6000.

The message itself starts with an ASCII STX character (02 16) and ends with

ETX (03 16). Save the length of the message (the number of characters be-
tween the STX and the ETX but including neither) in the variable LENGTH

at location 6004.

Sample Problem:

Input: START

Output: LENGTH

- (6000) = 00005000
(5000) = 02 STX

(5001) = 47 'G'
(5002) = 4F *0' (5003) = 03 ETX

— (6004) = 02, since there are two
characters between the STX in
location 5000 and ETX in
location 5003.

6 2. FIND LAST NON-BLANK CHARACTER

Purpose: Search a string of ASCII characters for the last non-blank character. Starting
address of the string is contained in the variable START at location 6000 and
the string ends with a carriage return character (0D,6). Place the address of the
last non-blank character in the variable ADDRESS at location 6004.

114 68000 Assembly Language Programming

Sample Problems:

a. Input: START - (6000) = 00005000

(5000) = 37 '7' (5001) = OD CR
Output: ADDRESS - (6004) = 5000

Since the last (and only) non-blank character is in memory location 5000.

b. Input: START - (6000) = 5000

(5000) = 41 'A' (5001) = 20 SP

(5002) = 48 'H'
(5003) = 41 'A' (5004) = 54 T' (5005) = 20 SP
(5006) = 20 SP
(5007) = OD CR

Output: ADDRESS - (6004) = 5004

6-3. TRUNCATE DECIMAL STRING TO INTEGER FORM

Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of

the decimal point with ASCII blanks (2016). The starting address of the string
is contained in the variable START at location 6000 and the string is assumed

to consist entirely of ASCII-coded decimal digits and a possible decimal point
(2El6). The length of the string is stored in the variable LENGTH at location
6004. If no decimal point appears in the string, assume that the decimal point
is at the far right.

Sample Problems:

(6000) = 00005000
(6004) = 0004 Length of string

(5000) = 37 '7* (5001) = 2E 7

(5002) = 38 '8' (5003) = 31 *r

(5000) = 37 '7'
(5001) = 2E '.' (5002) = 20 SP
(5003) = 20 SP
(6000) = 00005000
(6004) = 0003 Length of string

(5000) = 36 '6'
(5001) = 37 'I' (5002) = 31 'V

Output: Unchanged, as number is assumed to be 671.

Input: START
LENGTH

Output:

Input: START
LENGTH

6-4. CHECK EVEN PARITY AND ASCII CHARACTERS

Purpose: Check for even parity in a string of ASCII characters. A string's starting
address is contained in the variable START at location 6000. The first byte of
the string is its length which is followed by the string itself. If the parity of all
the characters in the string is correct, clear the variable PARITY at location
6004; otherwise, place all ones (FFFF.J into PARITY.

Character-Coded Data 115

Sample Problems:

a. Input: START - (6000) = 00005000
(5000) = 03 Length of string
(5001) = B1 = 101 1 0001
(5002) = B2 = 101 1 0010
(5003) = 33 = 001 1 001 1

Output: PARITY - (6004) = 0000, since all the
characters have even parity.

b. Input: START - (6000) = 5000
(5000) = 03 Length of string
(5001) = B1 101 1 0001
(5002) = B6 101 1 01 10
(5003) = 33 001 1 001 1

Output: PARITY — (6004) = FFFF, since the character in memory location
5002 does not have even parity.

6-5. STRING COMPARISON

Purpose: Compare two strings of ASCII characters to see which is larger (that is, which
follows the other in alphabetical ordering). Both strings have the same length

as defined by the variable LENGTH at location 6000. The strings' starting
addresses are defined by the variables START1 at location 6002 and START
at location 6006. If the string defined by START 1 is greater than or equal to
the other string, clear the variable GREATER at location 600A; otherwise, set

GREATER to all ones (FFFF)6).

Sample Problems:

a. Input: LENGTH - (6000) = 0003 Length at each string
START1 - (6002) = 00005000
START - (6006) = 00005400

(5000) = 43 'C

(5001) = 41 'A' (5002) = 54 T

(5400) = 42 'B'
(5401) = 41 'A' (5402) = 54 'T

Output: GREATER - (600A) = 0000, since CAT is
"larger" than BAT.

b. Input: LENGTH - (6000) = 0003 Length at each string
START 1 - (6002) = 00005000
START - (6006) = 00005400

(5000) = 43 'C

(5001) = 41 'A' (5002) = 54 'T
(5400) = 43 'C

(5401) = 41 'A'
(5402) = 54 T* Output: GREATER - (600A) = 0000, since CAT is not
"larger" than CAT

116 68000 Assembly Language Programming

C. Input: LENGTH
START1
START

(6000) = 0003 Length of each string
(6002) = 00005000
(6006) = 00005400

(5000) = 43 'C

(5001) = 41 'A' (5002) = 54 T

(5400) = 43 'C

(5401) = 55 'U' (5402) = 54 T' Output: GREATER - (600A) = FFFF, since CUT is
'larger' than CAT

7

Code Conversion

Code conversion is a continual problem in microcomputer applications. Peri-
pherals provide data in ASCII, BCD, or various special codes. The microcomputer

must convert the data into some standard form for processing. Output devices may

require data in ASCII, BCD, seven- segment, or other codes. Therefore, the
microcomputer must convert the results to the proper form after it completes the pro-
cessing.

There are several ways to approach code conversion:

1. Some conversions can easily be handled by algorithms involving arithmetic
or logical functions. The program may, however, have to handle special cases
separately.

2. More complex conversions can be handled with lookup tables. The lookup
table method requires little programming and is easy to apply. However, the
table may occupy a large amount of memory if the range of input values is
large.

3. Hardware is readily available for some conversion tasks. Typical examples

are decoders for BCD to seven-segment conversion and Universal
Asynchronous Receiver/Transmitters (UARTs) for conversion between
parallel (ASCII) and serial (teletypewriter) formats.

In most applications, the program should do as much as possible of the code con-
version work. This approach reduces parts counts and power dissipation, saves board

space, and increases reliability. Furthermore, most code conversions are easy to pro-
gram and require little execution time.

117

118 68000 Assembly Language Programming

PROGRAM EXAMPLES

7-1 . HEXADECIMAL TO ASCII

Purpose: Convert the contents of the variable DIGIT at location 6000 to an ASCII

character representing the hexadecimal value of the variable. DIGIT con-
tains a single hexadecimal digit (the four most significant bits are zero).

Store the ASCII character in the variable CHAR at location 6001.

Sample Problems:

a. Input: DIGIT - (6000) = OC
Output: CHAR - (6001) = 43 X'

b. Input: DIGIT - (6000) = 06
Output: CHAR - (6001) = 36 '6'

Flowchart 7-1 :

CHAR = Result

Code Conversion 119

Program 7-1 :
onoofi oon DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 DIGIT EQU $6 000 MUUKt j j Ur Ulbl 1
n n n nft n n i U U U U U \J V 1 CHAR EQU $6 00 1 ADDRESS OF CHAR

nnnnunnn ORG pr nr,R am

004000 10386000 PGM 7 1 MOVE . B r> i c t t n n
004004 0C00000A CMP.B #10, DO IS DIGIT < 10?
004008 6D02 BLT. S

ADD_0
IF YES THEN ADD '0' ONLY

00400A 5E00 ADD . B # 'A'- »0'-10,D0 . . .ELSE ADD OFFSET FOR 'A
00400C 06000030 ADD_0 ADD . B # ' 0 ■ ,D0 CONVERT TO ASC I I
004010 1 1C06001 MOVE .B

DO, CHAR STORE ASC II DIGIT

004014 4E75 RTS

END PGM_7 1

The basic idea of this program is to add ASCII 0 (3016) to all the hexadecimal
digits. This addition converts the digits 0 through 9 to ASCII correctly. However, the
letters A through F do not follow immediately after the digit 9 in the ASCII code;
instead, there is a break between the ASCII code for 9 (39, ,) and the ASCII code for A

1 0

(41 ,6), so that the conversion must add a further constant to the values greater than 9
(A, B, C, D, E, and F) to account for the break. The first ADD instruction does this by

adding 'A' — *(T — 10 to data register DO. Can you explain why the extra factor for let-
ter digits has the value 'A1 — '0' — 10? Note that this value is small enough to fit into

the 3-bit data field of an ADDQ instruction. The assembler discovers this and automat-
ically generates the ADDQ object code (even though the instruction mnemonic does

not indicate this). How can you force the assembler to create the object code for ADDI?
We have used the ASCII forms for the addition factors in the source program; a

single quotation mark (apostrophe) before and after a character indicates the ASCII
equivalent. We have also left the offset for the letters as an arithmetic expression to
make its meaning as clear as possible. The extra assembly time is a small price to pay for
the great increase in clarity. A routine like this is necessary in many applications; for
example, monitor programs must convert hexadecimal digits to their ASCII equivalents
in order to display the contents of memory locations in hexadecimal on an ASCII printer
or CRT display.

7-2. DECIMAL TO SEVEN-SEGMENT

Purpose: Convert the contents of the variable DIGIT at location 6000 to a seven-seg-
ment code and store in the variable CODE at location 6001. If DIGIT does

not contain a single decimal digit, clear CODE.

Figure 7-1 illustrates the seven-segment display and our representation of it as a
binary code. The segments are usually assigned the letters a through g as shown in

Figure 7-1. We have organized the seven-segment code as shown: segment g is in bit
position 6, segment fin bit position 5, and so on. Bit position 7 is always zero. The seg-

ment names are standard, but the assignment of segments to bit positions is arbitrary; in
actual applications, this assignment is a hardware function.

The table in Figure 7-1 is a typical example of those used to convert decimal num-

120 68000 Assembly Language Programming

bers to seven-segment code; it assumes positive logic, that is, 1 = on and 0 = off. Note
that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid confu-

sion with lower-case b, and 6F for 9 rather than 67 (bottom bar off) for symmetry with
the 6.

Sample Problems:

a. Input: DIGIT - (6000) = 03
Output: CODE - (6001) = 4F

b. Input: DIGIT - (6000) = 28
Output: CODE - (6001) = 00

c. Input: DIGIT - (6000) = OA
Output: :C0DE - (6001) = 00

Flowchart 7-2:

Data = DIGIT

Note that the addition of base address (SSEG) and index (Data) produces the
address that contains the answer.

Code Conversion 121

Digit Code

o
3F 1 06

2 5B
3 4F
4 66
5 6D 6 7D
7

07 8 7F
9

6F

6 5 4 Bit Number

Code

Figure 7-1. Seven-Segment Arrangement

Program 7-2:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000001 DIGIT DS.B 1 DIGIT
006001 00000001 CODE DS.B 1 BCD CODE
006002

3F
SSEG DC.B $3F, $06, $5E J,$4F,$66,$6D,$7D,$0 7,$7F,$6F

00004000 ORG PROGRAM

004000
004006
004008
00400C
004010

207C00006002
4201
10386000
0C000009
6206

PGM_7_2 MOVEA.L
CLR.B
MOVE.B
CMP.B
BHI .S

#SSEG,A0
Dl
DIGIT, DO
#9, DO
DONE

POINTER TO CONVERSION TABLE

GET DIGIT
VALID DIGIT?
IF NOT VALID THEN CLEAR RESULT

004012
004014

4880
12300000

EXT.W
MOVE .B

DO
0(A0,D0),D1

MAKE INDEX BYTE LOOK LIKE A WORD
GET SEVEN-SEGMENT CODE FROM TABLE

004018 11C16001 DONE MOVE.B Dl,CODE SAVE BCD CODE

00401C 4E75 RTS

END PGM_7_2

The Clear instruction (CLR) , like the MOVEQ + instruction, can be used to clear

all 32 bits of a data register and requires only one instruction word. However, CLR,

unlike MOVEQ +, can also be used to clear just the lower byte or word of a data

register. (In this program, we use CLR.B Dl to clear the least significant 8 bits of Dl).

In addition, we can clear a memory location directly with CLR. Why does the MC68000
have several means of clearing memory or registers?

The program calculates the memory address of the seven-segment code by

adding an index - the digit to be converted - to the base address of the seven-seg-

ment code table. This procedure is known as a "table lookup." The addition does not

122 68000 Assembly Language Programming

require any explicit instructions, since the processor performs it automatically as part of
the calculation of the effective address in the indexed addressing mode. Since all 32 bits

of the address register are used in this indexing addition, we can place the table any-
where in memory.
When indexed addressing is used, all 32 bits of the primary address register are

involved in the address calculation, but only the least significant word of the specified
index register (or offset register) is used. In the program, the offset into the table is a
byte value and loading this byte offset into a data register affects only the least significant

8 bits of the register. The other 24 bits of the register are not affected. Bits 8-15 of the
data register must be cleared in order for the register to be used as an index register.
This is accomplished by using the EXT instruction which extends the most significant
bit (MSB) of the byte or word data in the data register to a word or long word. If the MSB
is 0, all bits to the left of the data are cleared; if the bit is 1, all bits are set to one.

Using the Define Constant (DC) Directive

The assembler directive DC (Define Constant) places constant byte-length data in
program memory. Such data may include tables, headings, error messages, prompting
messages, format characters, threshold values, and mathematical constants. The

optional label attached to a DC pseudo-operation is assigned the value of the address in
which the assembler places the first byte of data.

The assembler assigns the data from the DC directive to consecutive memory
addresses, with no changes other than numerical conversions. One DC directive can fill

many bytes of memory; all the programmer must do is separate the entries with com-
mas.

Tables are a simple, fast, and convenient approach to code conversion problems

that are more complex than our hexadecimal-to-ASCII example. The required lookup
tables simply contain all the possible results organized by input value; that is, the first
entry is the code for input value zero and so on.

Seven-segment displays provide recognizable forms of the decimal digits and a
few letters and other characters. They are relatively inexpensive and easy to handle

with microprocessors. However, many people find seven-segment coded digits some-
what difficult to read. Their widespread use in calculators and watches has made them

more familiar.

7-3. ASCII TO DECIMAL

Purpose: Convert the contents of the variable CHAR at location 6000 from an ASCII
character to a decimal digit and store the result in the variable DIGIT at
location 6001. If the contents of CHAR are not the ASCII representation of

a decimal digit, set the contents of DIGIT to FF,6.

Sample Problems:

a Input CHAR - (6000) = 37 T
Output: DIGIT - (6001) = 07

b Input CHAR - (6000) = 55 'U' (an invalid code, since it is not
an ASCII decimal digit)

Output: DIGIT - (6001) = FF

Code Conversion 123

Flowchart 7-3:

Program 7-3:

C Start J

Data = CHAR

I

Result = FF16

Result =
Data - ASCII 0 DIGIT = Result

c
End

3

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

004000
004002
004006
00400A

00400C
004010

004012

004014

004018

00006001
00006000

00004000

72FF 10386000
04000030
6 508

0C000009
6 20 2

C141

1 1C 16 00 1

4E75

DIGIT
CHAR

PGM 7 3

EQU
EQU

ORG
MOVEQ

MOVE .B
SUB .B
BCS. S

CMP.B
BHI . S

EX&

MOVE . B
RTS

END

$6 00 1
$6000

PROGRAM
#-l,Dl
CHAR, DO
'0 ■ ,D0
DONE

#9, DO DONE

DO, Dl

Dl, DIGIT

PGM 7 3

ADDRESS OF DIGIT
ADDRESS OF CHAR

SET ERROR FLAG
GET CHARACTER
IS CHARACTER BELOW ASCII ZERO?
IF YES THEN NOT A DIGIT

IS CHARACTER ABOVE ASCII NINE?
IF YES THEN NOT A DIGIT

GET NUMBER VALUE OF CHARACTER

SAVE DIGIT OR ERROR FLAG

124 68000 Assembly Language Programming

This program handles ASCII-coded characters just like ordinary numbers. Since
ASCII assigns an ordered sequence of codes to the decimal digits, we can identify an
ASCII character as a digit by determining if it falls within the proper range of
numerical values. We could use the order of ASCII codes similarly to determine if a
character is in a particular group of letters or symbols, such as A through F. This
approach assumes detailed knowledge of a particular code and would not necessarily
be valid for other codes.

Subtracting ASCII 0 (30,6) from any ASCII decimal digit gives the decimal
value of that digit. An ASCII character is a decimal digit if its value lies between 30|6
and 39[b (including the endpoints). How would you determine if an ASCII character is a
valid hexadecimal digit? ASCII-to-decimal conversion is necessary in applications in
which decimal data is entered from an ASCII device such as a teletypewriter or terminal.

The program performs one comparison — to the lower limit — with an actual

subtraction (SUB '0\D0) since the subtraction is necessary for the ASCII-to-decimal
conversion. It performs the other comparison with an implied subtraction
(CMP.B#9,D0) to avoid destroying the possible decimal digit in data register DO.
Implied subtractions (CMP) are far more common than actual subtractions (SUB) in
programs, since the numerical value of the result of the comparison is often not of
interest.

The instruction EXG can exchange the contents of any 32-bit register with the
contents of any other 32-bit register. Long word exchanges can be made between any
two data registers, any two address registers, or between a data register and an
address register.

7-4. BINARY-CODED DECIMAL TO BINARY

Purpose: Convert four BCD digits in the variable STRING at location 6000 to a bin-
ary number in the variable NUMBER at location 6004. The most significant

BCD digit is in memory location 6000. There is one BCD digit in each byte
of STRING.

Sample Problems:

a. Input: STRING

Output: NUMBER

Input: STRING -

Output: NUMBER

(6000) = 02
(6001) = 09
(6002) = 07
(6003) = 01
(6004) = 0B9B

(6000) = 09
(6001) = 07
(6002) =00
(6003) = 02
(6004) = 25E6

16

= 2971 10

= 9702.

Program 7-4a:
00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
00006004

STRING
RESULT

EQU
EQU

$6000
$6004

ADDRESS OF FOUR DIGIT BCD STRING
ADDRESS OF RESULT

00004000

Code Conversion 125

004000 307C6000 PGM_7_4A MOVEA.W #STR ING, AO POINTER TO FIRST BCD DIGIT
004004 7003

MOVEQ
#4-1, DO NUMBER OF DIGITS(-l) TO PROCESS

004006 4281 CLR.L Dl
CLEAR FINAL RESULT - Dl n 04n n r u u ̂ u u o 4 2 8 2 CLR . L u z
CLEAR DIGIT REGISTER

00400A 6008 BRA.S NOMULT SKIP MULTIPLY FIRST TIME

00400C D241 LOOP ADD. W D1,D1
2X UU4UUC 36 0 1 MOVE . W 01,03

004010 E54B LSL.W #2,D3 8X = 2X - 4 004012 D243 ADD. W D3,D1 10X = 8X + 2X

004014 1418 NOMULT MOVE.B (A0)+,D2 NEXT BCD DIGIT, (D2(15-8] UNCHANGED) 004016 D242 ADD. W D2,D1 ADD NEXT DIGIT
004018 51C8FFF2 DBRA DO, LOOP CONTINUE PROCESSING IF STILL DIGITS

00401C 31C16004 MOVE . W Dl, RESULT STORE RESULT

004020 4E75 RTS

END PGM_7 4A

Flowchart 7-4a:

Pointer = STRING

Counter = 4-1 Result = O

Result = Result X2
+ Result x 8

Result = Result + (Pointer)

Pointer =
Pointer + 1

Counter =
Counter - 1

(RESULT) = Result

Program 7-4a multiplies each intermediate result by 10 using the formula lOx =
8x + 2x. Multiplying by 2 requires one logical shift left (LSD, and multiplying by 8
requires three such shifts.

126 68000 Assembly Language Programming

BCD entries are converted to binary in order to take advantage of the inherent
binary operators provided by the processor. In addition, a binary representation requires
less storage than the equivalent BCD form. However, in some cases, the program time
and space required for conversion may affect some of the advantages of binary storage
and arithmetic.

Program 7-4a uses a word length ADD to add the BCD digit to the accumulated
result in register Dl. Had we used ADD.B D2,D1, the program would not have worked
for all values. Consider the value 0257. Before adding the lowest digit, Dl would contain

0250l0 or 00FAl6. Adding 7 to the low byte of Dl yields FA 4- 07 = 01, and the high
byte is still 0. Since we cannot directly add a byte value to a word value, we chose to load

the value into a data register prior to the addition. Why don't we have to perform an
extend operation prior to the addition?

This program skips the first multiply, since we know the initial value of D2 is 0.

However, if we eliminated the branch instructions, we'd still get the same result.
There are often several ways to perform a function using assembly language

instructions. In this program, we used the ADD instruction to shift a value left one place
since this is the fastest means of performing this operation in the MC68000. Two ADD

instructions would also be faster than the LSL instruction but would require two addi-
tional bytes of storage.
We could also use one of the MC68000 multiply instructions. The multiply

instructions perform a multiplication operation on two 16-bit operands to produce a 32-
bit result in one of the data registers. At least one of the 16-bit operands must be in a
data register. The MC68000 allows for both signed and unsigned multiplication. If
signed multiplication (MULS) is used, operands are treated as signed values and the

result is signed. For unsigned multiplication (MULU), all values are unsigned. In pro-
gram 7-4b, we have modified program 7-4a to use the MULU instruction instead of the

ADD and shift (LSL) instructions:

Program 7-4b:

00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 STR ING EQU $6000 ADDRESS OF FOUR DIGIT BDC STRING
00006004 CODE EQU $6 004 ADDRESS OF RESULT

00004000 ORG PROGRAM

004000 307C6000 PGM_7_4B MOVE A . W ttSTRING, AO POINTER TO FIRST BCD DIGIT
004004 700 3

MOVEQ
14-1 , DO NUMBER OF DIGITS(-l) TO PROCESS 004006 428 1 CLR.L Dl CLEAR FINAL RESULT - Dl 004008 4282 CLR.L
D2

CLEAR DIGIT REGISTER
00400A 6 004 BRA.S NOMULT SKIP MULTIPLY FIRST TIME

00400C C2FC000A LOOP MULU . W #10, Dl Dl = Dl :: 10
0040 1 0 1418 NOMULT MOVE . B (A0)+,D2 NEXT BCD DIGI T(D2 [1 5-8] UNCHANGED)
004012 D242 ADD. W D2,D1 ADD NEXT DIGIT
004014 51C8FFF6 DBRA DO, LOOP CONTINUE PROCESSING IF STILL DIGITS

004018 31C16004 MOVE . W
Dl , CODE STORE RESULT

00401C 4E75 RTS

END PGM_7_4B

Code Conversion 127

7-5. BINARY NUMBER TO ASCII STRING

Purpose: Convert the 16-bit binary number in the variable NUMBER at memory
location 6000 into 16 ASCII characters (either ASCII 0 or ASCII 1). Store
the ASCII characters in the 16-character string variable STRING located at
memory location 6002.

Sample Problem:

Input: NUMBER- (6000) = 3 1 D2 = 001 1 0001 1 1 01 001 0
Output: STRING - (6002)

= 30 '0'

(6003)

= 30
'O'

_ 11
= ol

' 1 '

(6005)
= 31

' 1 '

(6006)

= 30

'O'
(6007)

= 30

'O'
\OKJKJOI

= 30
'O'

(6009)
= 31

' 1 '

(600A)

= 31

'V

loUUb)

= 31

•y

(600C)
= 30

'0'
= 31

' 1 '

(600E)

= 30

'O'
(600F)

= 30
'O'

(bUl U)
= 31

' 1 '

(601 1)

= 30
•0'

Program 7-5:

00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 NUMBER EQU $6 000 ADDRESS OF 16 BIT NUMBER
00006002 STRING EQU $6 002 ADDRESS OF EQUIVALENT ASCII
00004000 ORG PROGRAM

004000 207C00006012 PGM_7_5 MOVEA.L #STRING+16 . AO POINTER TO END OF STRINGC+1)
004006 700F

MOVEQ
#1 5, DO LOOP COUNT(-l)

004008 123C0030 MOVE .B #'0' Dl
00400C 34386000 MOVE . W NUMBER

,D2

GET NUMERIC DATA

004010 1101 LOOP MOVE .B Dl, -(AO) ASSUME CURRENT LSB IS ZERO
004012 E2 5A ROR . W #1,D2 TEST CURRENT LSB
004014 6404 BCC.S LOOPEND IF ZERO THEN TRY NEXT BIT

004016 06100001 ADD I .B n,(Ao) CHANGE ASCI I '0 ' TO ASCI I 1 1
00401A 51C8FFF4 LOOPEND DBRA DO, LOOP PROCESS ALL BITS

00401E 4E75 RTS

END
PGM_7_

5

The ASCII digits form a sequence so ASCII 1 = ASCII 0+1. The ADD instruc-
tion can be used to directly increment the contents of a memory location. As a result, no

explicit instructions are required to load the data from memory into a register or to store
the result back into memory. Nor are any registers disturbed.

Note that the string pointer, AO, starts at the end of the string + 1 (6002+ 1610)
and is decremented at the beginning of each step. When accessing data in this manner,

note that the end-of-the-string address is actually the address of the first byte not in the
string. For example, the byte at 6002 + 1610 is not in the string of ASCII digits. Finally,

note that 6002 + 16l0 is more easily identified with a 16-byte string than 6002 + 1510.

128 68000 Assembly Language Programming

Binary-to-ASCII conversion is necessary if numbers are to be printed in binary
on an ASCII device. Binary outputs are helpful in debugging and testing when each
bit has a separate meaning; typical examples are inputs from a set of panel switches or
outputs to a set of LEDs. If the programmer can only obtain the value in some other

number system (such as octal or hexadecimal), he or she must perform an error-prone
hand conversion to check the bits.

Flowchart 7-5:

Q Start ̂

Pointer = STRING + 16
Count = 1 5
Data = (NUMBER)

Pointer = Pointer - 1
(Pointer) = ASCII 0
Rotate Data

Right 1 bit

(Pointer) =
(Pointer) + 1

Count = Count -1

No
Count = -1 ?

Yes

Code Conversion 129

PROBLEMS

7-1. ASCII TO HEXADECIMAL

Purpose: Convert the contents of the variable A DIGIT at memory location 6000
from an ASCII character to a hexadecimal digit and store the result in the
variable H DIGIT at memory location 6001. Assume that A DIGIT con-

tains the ASCII representation of a hexadecimal digit (7 bits with MSB = 0).

Sample Problems:

a. Input: A DIGIT - (6000) = 43 'C
Output: H DIGIT - (6001) = 0C

b. Input: A DIGIT - (6000) = 36 '6'
Output: H DIGIT - (6001) = 06

7-2. SEVEN-SEGMENT TO DECIMAL

Purpose: Convert the contents of the variable CODE at memory location 6000 from a

seven-segment code to a decimal number and store the result in the variable
NUMBER at location 6001. If CODE does not contain a valid seven-seg-

ment code, set NUMBER to FF16. Use the seven-segment table given in
Figure 7-1 and try to match codes.

Sample Problems:

a. Input: CODE - (6000) = 4F
Output: NUMBER - (6001) = 03

b. Input: CODE - (6000) = 28
Output: NUMBER - (6001) = FF

7-3. DECIMAL TO ASCII

Purpose: Convert the contents of the variable DIGIT at memory location 6000 from a
decimal digit to an ASCII character and store the result in the variable
CHAR at memory location 6001. If the number in DIGIT is not a decimal

digit, set the contents of CHAR to an ASCII space (20,6).

Sample Problems:

a. Input: DIGIT - (6000) = 07
Output: CHAR - (6001) = 37 'T

b. Input: DIGIT - (6000) = 55
Output: CHAR - (6001) = 20 space

130 68000 Assembly Language Programming

7-4. BINARY TO BCD

Purpose: Convert the contents of the variable NUMBER at memory location 6000 to
four BCD digits in the variable STRING at location 6002 (most significant

digit in 6002). The 16-bit number in NUMBER is unsigned and less than
10,000.

Sample Problem:

Input: NUMBER- (6000)=1C52 (7250 decimal)
Output: STRING - (6002) = 07

(6003) = 02
(6004) = 05
(6005) = 00

7-5. ASCII STRING TO BINARY NUMBER

Purpose: Convert the eight ASCII characters in the variable STRING starting at loca-
tion 6000 to an 8-bit binary number in the variable NUMBER at location

6008 (the most significant bit-character is in location 6000). Clear the byte
variable ERROR at location 6009 if all the ASCII characters are either

ASCII 1 or ASCII 0; otherwise set ERROR to all ones (FF16).

Sample Problems:

Input: STRING (6000)

31

'V

(6001)

31

•v

(6002) 30
0'

(6003)

31

'V

(6004) 30 '0'
(6005)

30

0'

(6006)

31

r
(6007) 30

'0' (6008) D2
(6009) 0

Output: NUMBER

Input: Same as (a)
above
except

(6005) = 37
Output: ERROR - (6009) = FF

REFERENCES

Other BCD-to-binary conversion methods are discussed in M.L. Roginsky and J. A.

Tabb, "Microprocessor Algorithms Make BCD-Binary Conversions Super-fast/1
EDN, January 5, 1977, pp. 46-50, and in J.B. Peatman, Microcomputer-based Design.
New York: McGraw-Hill, 1977, pp. 400-06.

8

Arithmetic Problems

MULTIPLE-WORD AND DECIMAL ARITHMETIC

Much of the arithmetic in some microprocessor applications consists of

multiple-word binary or decimal manipulations. A decimal correction (decimal
adjust) or some other means for performing decimal arithmetic is frequently the only
arithmetic instruction provided besides basic addition and subtraction. When this is

the case, you must implement other arithmetic operations with sequences of instruc-
tion. The MC68000, however, provides both signed and unsigned multiply and divide

instructions for 16-bit binary arithmetic, as well as decimal addition and subtraction
instructions.

The MC68000 provides for both signed and unsigned binary arithmetic. Signed

numbers are represented in two's complement form. This means that the operations of
addition and subtraction are the same whether the numbers are signed or unsigned.
Different instructions are needed for signed and unsigned multiplication and division,
but not for addition and subtraction. Try some examples to convince yourself this is
true.

Multiple-precision binary arithmetic requires simple repetitions of the basic
instructions. The Extend bit transfers information between words. It is set when an

addition results in a carry or a subtraction results in a borrow. Add with Extend and
Subtract with Extend use this information from the previous arithmetic operation. You
must be careful to clear the Extend bit before operating on the first words. (Obviously
there is no carry into or borrow from the least significant bits.)

131

132 68000 Assembly Language Programming

Decimal arithmetic is a common enough task for microprocessors that most have
special instructions for this purpose. These instructions may either perform decimal
operations directly or correct the results of binary operations to the proper decimal form.

Decimal arithmetic is essential in such applications as point-of-sale terminals, check
processors, order entry systems, and banking terminals. The MC68000 provides
instructions for decimal addition and subtraction. Since the MC68000 performs decimal
arithmetic directly, there is no need for a decimal adjust instruction such as is found in
many other microprocessors.

You can implement decimal multiplication and division as series of additions and

subtractions, respectively. Extra storage must be reserved for results, since a multiplica-
tion produces a result twice as long as the operands. A division contracts the length of

the result. Multiplications and divisions are time-consuming when done in software
because of the repeated operations that are necessary.

PROGRAM EXAMPLES

8-1. 64-BIT BINARY ADDITION

Purpose: Add two four-word (64-bit) binary numbers. The first number is the 64-bit
variable NUM1 and occupies memory locations 6000 through 6007, the sec-

ond is the 64-bit variable NUM2 and occupies locations 6200 through 6207.
Place the sum in NUM1 at locations 6000 through 6007.

Sample Problem:

Input: NUM1

NUM2

Output: NUM1

(6000) = 6A4D
(6002) = ED05 6A4DED05A937641416isthe
(6004) = A937 first number
(6006) = 6414
(6200) = 56C8
(6202) = 46E6 56C846E676C84AEA
(6204) = 76C8 second number
(6206) = 4AEA
(6000) = C1 16
(6002) = 33EC C1 1 633EC1 FFFAEFE

16

is the

(6004) = 1FFF
(6006) = AEFE

16

Program 8-1a:
00006000 DATA EQU $6000
0 000400 0 PROGRAM EQU $1+000

00006 000 NUM1 EQU $6 000 ADDR . OF 1 : ST 64-BIT BINARY NUMBER
00006200 NUM2 EQU $6200 ADDR. OF 2 : ND 64 BIT BINARY NUMBER
00000008 BYTECOUNT EQU $8 NUMBER OF BYTES TO ADD

00004000 ORG PROGRAM

004000 207C00006008 PGM_8_1A MOVEA.L #NUM 1 +B YTECOUNT, AO ADDRESS BEYOND END OF FIRST NUMBER
004006 227C00006208 MOVEA.L KNUM2+B YTECOUNT, Al ADDRESS BEYOND END OF SECOND NUMBER
00400C 44FC000O- MOVE #0,CCR CLEAR EXTEND FLAGCAND OTHER FLAGS)
004010 7407 MOVEQ #B YTECOUNT-1 , D2 LOOPCOUNTER, ADJUSTED FOR DBRA

Arithmetic Problems 133

004012 1.020
00<40m 1221
004016 D101
004018 1080
00401A 51CAFFF6

00401E 4E75

LOOP MOVE . B
MOVE . B
ADDX.B
MOVE .B
DBRA
RTS

END

-(AO), DO
-(A1),D1
01,00
DO, (AO)
D2,LOOP

D0[0-7]:= D0[0-7] + Dl[0-7] + (EXT) STORE RESULT
CONTINUE

PGM

1A Flowchart 8-1

C Start)

Pointer1=NUM1 +8
Pointer2=NUM2+8

Extend = 0

Count = 8-1

Pointerl =
Pointerl - 1

Pointer2 =
Pointer 2 - 1

I

(Pointerl) = (Pointerl)
+ (Pointer2)
+ Extend

Count = Count - 1

Clearing and Setting Flags

The instruction MOVE TO CCR sets all the condition codes in the processor's
status register according to the contents of the source operand. Although the source

operand is always a 16-bit word, only the least significant byte is used to set the condi-
tion codes. Therefore MOVE #0,CCR clears all the conditions (Negative, Zero, Over-

flow, Carry and Extend). This instruction is used to clear the Extend flag in preparation
for the first ADDX instruction.

MOVE TO CCR is not the only instruction which can explicitly modify the con-
tents of condition codes. The immediate instructions ANDI, EORI, and ORI can also be

used to selectively clear, complement, and set individual condition codes. For example,

134 68000 Assembly Language Programming

by using the instruction ANDI #$EF,CCR we could clear only the Extend flag without
modifying the other condition codes. The format for the immediate operand when
modifying condition codes is:

7 6 5 4 3 2 1 0 ^ Bit No.

I
X N Z V

Carry

Overflow
Zero

Negative Extend

Add with Extend

The ADDX instruction, Add with Extend, adds the contents of the two registers.
If the Extend flag is set, then 1 is added to the sum. Besides performing the addition,
ADDX sets the Extend flag appropriately for future operations. Note that no other

instruction in this program's loop affects the state of the Extend flag.
The Extend flag is similar to the Carry flag found in most other microprocessors.

The MC68000 has both a Carry and Extend flag. As a general rule, the Carry flag is set if
a carry occurs out of the most significant bit of the result for addition or if a borrow
occurs during subtraction; otherwise it is cleared. The Extend flag is generally set to the
same state as the Carry flag, except during data movement, when the state of the Extend
flag is not affected.

Adding Memory Operands

A quicker and more elegant version of this addition program is shown in Program

8-16. This program uses the second form of the Add with Extend instruction, the
powerful MC68000 memory-to-memory form. This format requires the use of two
address registers which point to the two operands in memory. The address registers are
decremented according to the operand size prior to being used to fetch the operands. Note

that the ADD with Extend instruction may be used to operate on 8-, 16-, or 32-bit data.

Program 8-1 b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006 000 NUM1 EQU $6000 ADDR . OF 1 : ST 64-BIT BINARY NUMBER
00006200 NUM2 EQU $6 200 ADDR. OF 2 : ND 64-BIT BINARY NUMBER
00004000 ORG PROGRAM

004000 207C00006008 PGM 8 IB MOVE A . L #NUM1+
8, AO

ADDRESS BEYOND END OF 64-BIT NUMBER 004006 227C00006208 MOVE A . L MNUM2+
8,A1

ADDRESS BEYOND END OF SECOND NUMBER
00400C 44FC0000 MOVE

#0,CCR CLEAR EXTEND F LAG (AND OTHER FLAGS)

004010 D189 ADDX . L

-CA1), -(AO)

ADD LOWER LONG WORDS, RESULT IN NUM1 004012 D189 ADDX . L

-CA1), -(AO)

ADD HIGHER LONG WORDS, RES IN NUM1
004014 4E75 RTS

END PGM 8
IB

Arithmetic Problems 135

In addition to the Add with Extend (ADDX) instruction, the MC68000 also sup-
ports binary addition with the ADD instruction. ADD is similar to ADDX except that

the state of the Extend flag is not used in the addition operation. The ADD instruction
also requires at least one of its operands to be in a data register. How could we modify
Program 8-la to use the ADD instruction instead of ADDX?

Decimal Precision in Binary Representation

Storing data in a binary format as opposed to decimal requires less memory. For

example, ten bits correspond to approximately three decimal digits since 2 10 = 1024.
So you can calculate the approximate number of bits required to give a certain
accuracy in decimal digits from the formula:

Number of bits (10/3) X Number of decimal digits

Thus, twelve decimal digit accuracy requires:

12 X 10/3 = 40 bits

8-2. DECIMAL ADDITION

Purpose: Add two multiple-byte packed BCD numbers. The length of the numbers (in
bytes) is defined by the variable LENGTH at location 6000. The first number
(most significant bits first) is contained in the variable BCDNUM1 at location
6001. The second number is contained in the variable BCDNUM2 at location

6101. The sum replaces the number at BCDNUM1. Each byte of the BCD
numbers contains two decimal digits.

Sample Problem:

Input: LENGTH
BCDNUM1

BCDNUM2

Output: BCDNUM1

(6000)
(6001)
(6002)
(6003)
(6004)
(6101)
(6102)
(6103)
(6104)

04
36 70
19

85 12

66

34 59

Number of bytes in each number

36701985 is first number

12663459 is second number

(6001) = 49
(6002) = 36 49365444 is decimal sum
(6003) = 54
(6004) = 44

That is. 36701985
12663459
49365444

Program 8-2a:

00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 LENGTH EQU
00006001 BCDNUM1 EQU
00006101 BCDNUM2 EQU

$6000
$600 1 $6101

LENGTH OF BCD NUMBER IN BYTES
ADDRESS OF FIRST BCD NUMBER
ADDRESS OF SECOND BCD NUMBER

136 68000 Assembly Language Programming

00004000
001+000 4242
n n fi a a o 0 0 4 0 0 2 14386000
004006 3442
004008 41EA6001
00400C 43EA6 101

004010 5 342
004012 44FC0000

004016 C109
004018 5 1CAFFFC

00401C 4E75

ORG

PGM_8_2A CLR.W
MOVE . B
MOVE . W
LEA
LEA 5UBQ

MOVE

ABCD.B
DBRA

LOOP

RTS

END

PROGRAM
D2
LENGTH, D2
D2, A2 BCDNUM1 (A2) , AO
BCDNUM2 (A2) , Al

#1,D2
#0,CCR
-(A1),-(A0)
D2, LOOP

PGM 8 2A

A2[0-31] = BYTES IN BCD NUMBER
POINTS BEYOND END OF BCDNUM1
POINTS BEYOND END OF BCDNUM2

ADJUST LENGTH FOR LOOP TERMINATION
CLEAR EXTEND FLAG FOR ABCD

BCD ADDITION WITH EXTEND
CONTINUE

Flowchart 8-2:
C Start J

T
Count = LENGTH

Pointer1=BCDNUM1
+ Count

Pointer2=BCDNUM2
+ Count

Count = Count - 1

Extend = O

i

Pointer1=Pointer1-1
Pointer2=Pointer2-1

I

(Pointed) = (Pointed)
+ (Pointer2)
+ (Extend)

Count = Count - 1

Yes

Arithmetic Problems 137

The MC68000, unlike most microprocessors, implements decimal addition in a
single instruction ABCD, Add Decimal with Extend. Like the ADDX instruction,
ABCD performs addition using the state of the Extend flag. However, the addition is

performed using binary-coded decimal arithmetic. This eliminates the need for the typi-

cal decimal adjust instruction such as the DAA instruction on Motorola's 6809
microprocessor. The MC68000 also provides a decimal subtraction instruction, SBCD.

Program 8-2 uses the Load Effective Address, LEA, instruction to calculate the

address of the decimal number's last byte plus one. This instruction calculates an effec-
tive address in the normal way, but then simply places that address in the specified

address register rather than using it to transfer data. The effective address is available for
later use and need not be recalculated.

We should note that use of the register indirect with displacement mode of

addressing with the LEA instruction results in some restrictions being placed on Pro-
gram S-2a: since the displacement (BCDNUM1) that is part of the operand can only be

16-bits in length, the full addressing space of the processor cannot be utilized. We can
make Program 8-16 more general purpose so that it can utilize the full addressing space,
although this will require several additional instructions. Program 8-26 provides this
more general solution.

Program 8-2b:

00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 LENGTH EQU $6 000 LENGTH OF BCD NUMBER IN BYTES
00006001 BCDNUM1 EQU $600 1 ADDRESS OF FIRST BCD NUMBER
00006101 BCDNUM2 EQU $6101 ADDRESS OF SECOND BCD NUMBER

00004000 ORG PROGRAM

001+000 4242 PGM_8_2B CLR
D2

004002 14386000 MOVE . B LENGTH, D2
004006 207C00006001 MOVE A . L BCDNUM1 , AO POINTER TO START OF BCDNUM1
00400C 227C00006101 MOVE A . L #BCDNUM2, Al POINTER TO START OF BCDNUM2
004012 41F02000 LEA 0(A0,D2.W),A0 ADJUST TO POINT BEYOND END OF VALUE
004016 43F12000 LEA 0(A1 ,D2 . W), Al ADJUST TO POINT BEYOND END OF VALUE

00401A 5342 SUBQ. W

ttl,'D2

ADJUST LENGTH FOR LOOP TERMINATION
00401C 44FC0000 MOVE ftO, CCR CLEAR EXTEND FLAG FOR ABCD

004020 C109 LOOP ABCD . B -CA1),-(A0) BCD ADDITION WITH EXTEND
004022 5 1CAFFFC DBRA D2, LOOP CONTINUE
004026 4E75 RT5

END PGM_8_2B

The procedure used in both of these programs can add decimal (BCD) numbers of

any length (up to 131,072 digits!). Since each decimal digit requires four bits, twelve
digit precision requires

12 x 4 = 48 bits

as compared to 40 bits using binary addition. This is six bytes instead of five, a 20%
increase.

Note that if we replaced the ABCD instruction in Program 8-2o or 8-26 with an

ADDX instruction, these programs would provide a more general solution to the binary

addition problem presented in Program 8-1.

138 68000 Assembly Language Programming

8-3. 16-BIT BINARY MULTIPLICATION

Purpose: Multiply the 16-bit unsigned number in the variable NUM1 at location 6000
by the 16-bit unsigned binary number in the variable NUM2 at location 6002.
Place the 32-bit result in the long word variable RESULT at location 6004 with
the 16 most significant bits of the result in location 6004 and the 16 least sig-

nificant bits in location 6006.

Sample Problems:

a. Input:

Output:

b. Input:

Output:

NUM1
NUM2

RESULT

NUM1
NUM2

RESULT

(6000) = 0003
(6002) = 0005
(6004) = 0000
(6006) = OOOF
or in decimal, 3 x 5
(6000) = 706F
(6002) = 0161
(6004) = 009B
(6006) = 090F
or in decimal, 28783

15

x 353 = 10160399

Program 8-3a:
00006000
00004000

DATA
PROGRAM

EQU
EQj

$6000
$4000

00006000
006000 00000002
006002 00000002
006004 00000004

NUM1
NUM2
RESULT

ORG
DS.W
DS.W
DS.L

DATA
1
1
1

16-BIT MULTIPLICAND
16-BIT MULTIPLIER
32-BIT MULTIPLICATION RESULT

00004000 ORG

004000 30386000
004004 C0F86002
004008 21C06004

00400C 4E75

PGM_8_3A MOVE.W NUM1,D0
MULU NUM2,D0
MOVE.L DO, RESULT
RTS

END PGM 8 5A

MULTIPLICAND
UNSIGNED MULTIPLICATION
STORE 32-BIT MULTIPLICATION RESULTS

The MC68000 supports signed, as well as unsigned, binary multiplication or divi-
sion. To multiply two signed 16-bit binary numbers, you simply replace MULU with

MULS, the Signed Multiply instruction.

Besides its obvious uses in, for example, point-of-sale terminals, multiplica-
tion is also a key part of many mathematical algorithms. The speed at which a pro-

cessor can perform multiplication determines its usefulness in process control, adap-
tive control, signal detection, and signal analysis.

Multidimensional Arrays

Another common use of multiplication is in locating elements in multidimen-
sional arrays. For example, if we have an array of sensor readings organized by remote

station number and sensor number, we can refer to the reading from the seventh sensor
at station number 5 as R(5,7), where R is the name of the entire array. The usual
method of storing such an array is to start at address RBASE with R(0,0) and continue

Arithmetic Problems 139

with R (0, 1) , etc. If there are three stations (0, 1 , and 2) and four sensors at each station
(0, 1, 2, and 3), we keep the readings in the following memory locations:

Memory Location
Reading

RBASE R(O.O)
RBASE + 1 R(0,1)
RBASE + 2 R(0,2)
RBASE + 3 R(0,3)
RBASE + 4 R(1.0)
RBASE + 5 R(1,1)
RBASE + 6 R(1,2)
RBASE + 7 R(1.3)
RBASE + 8

R(2,0)

RBASE + 9 R(2,1)
RBASE +

10
R(2,2)

RBASE + 1 1 R(2,3)

In general, if we know the station number I and the sensor number J, the reading
R(I,J) is located at address

RBASE + (N * I) + J

where N is the number of sensors at each station. Thus, locating a particular reading in
order to update it, display it, or perform some mathemetical operations on it requires a
multiplication. For example, the operator might want an instrument to print the current
reading of sensor 03 at station 02. To find that reading, the processor must calculate the
address

RBASE + (4 x 2) + 3 = RBASE + 1 1

Even more multiplications are necessary if the array has more dimensions. For
example, we might organize the sensors by station number, position in the X direction,
and position in the Y direction. (Each station thus has sensors at regular positions on a

two-dimensional surface.) Now we can describe a reading R(2,3,l), which refers to the
reading of the sensor at station 02, X position 03, and Y position 01. We can add even
more dimensions, such as vertical position, type of sensor, or time of reading. Each
added dimension means that the processor must perform more multiplications to locate

elements in the essentially one-dimensional memory.

A Binary Multiplication Algorithm

It is interesting to look at a binary multiplication routine for two reasons: first, we
can compare the execution time of the routine with the MULU or MULS instruction;

and second, some other microprocessors don't have multiply instructions and under-
standing multiplication is important.

You can perform multiplication on a computer in the same way that you do long
multiplication by hand. Since the numbers are binary, you will only multiply by 0 or 1;
multiplying by zero obviously give zero as a result, while multiplying by one produces

the same number you started with (the multiplicand). So each step in binary multiplica-
tion can be reduced to the following operation: if the current bit in the multiplier is 1,

add the multiplicand to the partial product.

140 68000 Assembly Language Programming

The only remaining problem is to ensure that you line everything up correctly
each time. The following operations perform this task.

1. Shift the multiplier left one bit so that the bit to be examined is placed
in the Carry.

2. Shift the product left one bit so that the next addition is lined up correctly.

To keep things simple, we will multiply two 8-bit values to produce a 16-bit result.

Step 1 - Initialization

Product = 0
Counter = 8

Step 2 - Shift Product so as to line up properly

Product = 2 x Product (LSB = 0)

Step 3 - Shift Multiplier so bit goes to Carry

Multiplier = 2 x Multiplier

Step 4 - Add Multiplicand to Product if Carry is 1

If Carry = 1, Product = Product + Multiplicand

Step 5 - Decrement Counter and check for zero

Counter = Counter - 1
If Counter > 0 go to Step 2

Assuming the multiplier is 61 16 and the multiplicand is 6F16, the algorithm works
as follows.

Initialization:
Product OOOO

Multiplier 61
Multiplicand 6F

Counter 08

After first iteration of steps 2-5:
Product 0000

Multiplier C2
Multiplicand 6F

Counter 07
Carry from
Multiplier 0

0000000000000000,
011 00001 \
01 101 1 \\\

0000000000000000,
1 1000010^
01 101 1 \\\

After second iteration:

Product 006F
Multiplier

84 Multiplicand

6F Counter 06
Carry from
Multiplier 1

= 0000000001101111,

10000100'

0110111U

After third iteration:
Product 014D

Multiplier 08
Multiplicand

6F
Counter 05

Carry from
Multiplier 1

0000000101001 101.
00001000!
01 101 1 11!

Arithmetic Problems 141

After fourth iteration:

Product 029A
Multiplier 1 0

Multiplicand 6F
Counter 04

Carry from
Multiplier 0

000000101001 1010,
00010000!
01 101 1 11!

After fifth iteration:

Product 0534
Multiplier 20

Multiplicand
Counter

Carry from
Multiplier

6F 03

= 0000010100110100,

00100000'
01101111'

After sixth iteration:

Product 0A68
Multiplier 40

Multiplicand 6F
Counter 02

Carry from
Multiplier 0

After seventh iteration:

0000101001 101000,
01000000!
01 101 1 11!

Product 14D0
Multiplier 80

Multiplicand 6F
Counter 01

Carry from
Multiplier 0

000101001 1010000,

1 OOOOOOO'

01 101 1 1 1

After eighth iteration:

Product 2A0F
Multiplier 00

Multiplicand 6F
Counter 00

Carry from
Multiplier 1

= 0010101000001111,

00000000'
01101111'

Program 8-3b:

00006000
00004000

DATA EQU $6000
PROGRAM EQU $4000

00006000
006000 00000002
006002 00000002
006004 00000004

ORG
NUM1 DS
NUM2 DS
RESULT DS.L

DATA
1
1
1

16-BIT MULTIPLICAND
16-BIT MULTIPLIER
32-BIT MULTIPLICATION RESULT

00004000

004000 4280
004002 2200
004004 32386000
004008 34386002
00400C 760F

00400E D080
004010 D442
004012 6402

PGM 8

LOOP

ORG

3B CLR.L
MOVE . L
MOVE . W
MOVE .W MOVEQ

DO

D0,D1 NUM1,D1
NUM2,D2
#16-1, D3

ADD . L DO, DO
ADD . W D2,D2.
BCC.S STEP

CLEAR 32-BIT PRODUCT
UPPER WORD MUST BE CLEAR FOR ADD . L
16-BIT MULTIPLICAND
16-BIT MULTIPLIER
LOOP COUNT := 16 (-1 FOR DBRA)

SHIFT PRODUCT LEFT 1 BIT
SHIFT MULTIPLIER LEFT 1 BIT
IF MULT I PL I ER [15] WAS 1

004014 D081 ADD. L D1,D0 .THEN ADD MULTIPLICAND

142 68000 Assembly Language Programming

004016 5 1CBFFF6 STEP DBRA D3,LOOP ...ELSE CONTINUE
00401A 21C06004 MOVE.L DO, RESULT STORE RESULT

00401E <+E75 RTS

END PGM_8_3B

Flowchart 8-3b:

Product = O
Count =16-1

Multiplicand=(NUM1)
Multiplier = (NUM2)

Product=2xProduct
(Shift left 1 bit)
Multiplier = 2 x Multiplier
(Shift left 1 bit)

(RESULT) = Product

C End)

This program performs the same 16-bit multiplication operation as Program %-3a.
If you count clock cycles for the two versions, you will find the expected results: the

MULU version takes less than 109 cycles while the long version (Program 8-36) takes
58 cycles outside the loop, and 516 + 6n (n = number of 1 bits in multiplier) cycles
inside the loop.

Arithmetic Problems 143

8-4. 32-BIT BINARY DIVIDE

Purpose: Divide the 32-bit unsigned number in variable NUMl at location 6000 by the
16-bit unsigned binary number in variable NUM2 at location 6004. Place the
16-bit remainder in the variable REMAINDER at location 6006 and the 16-bit
quotient in the variable QUOTIENT at location 6008.

Sample Problem:

Input: NUM1 - (6000) = 0074
(6002) = CBB1 32-bit dividend

NUM2 (6004) = 0141 1 6-bit divisor

Output: REMAINDER — (6006) = 004C
QUOTIENT (6008) = 5D25

or in decimal, 7654321 321 = 23845 with
remainder of 76

Program 8-4:

00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 ORG DATA
006000 00000004 NUMl DS.L 1 32-BIT DIVIDEND
00600<+ 00000002 NUM2 DS.W 1 16-BIT DIVISOR
006006 00000002 REMAIND DS.W 1 16-BIT REMAINDER
006008 00000002 QUOTIENT DS.W 1 16-BIT QUOTIENT

00004000 ORG PROGRAM

004000 20386000 PGM_8_4 MOVE L NUMl, DO 32 BIT DIVIDEND
004004 80F86004 DIVU NUM2, DO UNSIGNED DIVIDE - NUM1/NUM2
004008 21C06006 MOVE L DO, REMAIND STORE RESULTS-REMAINDER £ QUOTIENT
00400C 4E75 RTS

END PGM 8 4

The MC68000 provides two instructions (DIVU and DIVS) which perform a

divide operation using a 32-bit binary dividend and a 16-bit binary divisor. The opera-
tion results in a 16-bit binary quotient as well as a 16-bit binary remainder. The DIVU

instruction should be used for unsigned arithmetic, while the DIVS instruction is used
with signed numbers. When performing a signed divide, the sign of the remainder will
be the same as the sign of the dividend. The sign of the quotient is positive if both
operands have the same sign and negative if they have different signs. Both instructions
place the remainder in the 16 most significant bits of the destination data register while
the quotient is placed in the 16 least significant bits of the destination data register.

Two special conditions can occur when executing either of the Divide instruction.

First, if the divisor equals zero, the processor will cause a zero divide trap. (A descrip-
tion of traps and of trap processing will be delayed until Chapter 15.) Secondly, the

microprocessor may detect an overflow condition. In this case, the Overflow (V) bit in
the status register will be set and the operands will be unaffected.

144 68000 Assembly Language Programming

PROBLEMS

8-1. MULTIPLE PRECISION BINARY SUBTRACTION

Purpose: Subtract one multiple-word number from another. The length in words of
both numbers is in the variable LENGTH at location 6000. The numbers

themselves are stored (most significant bits first) in the variables NUM1 and
NUM2 at locations 6002 and 6102, respectively. Subtract the number in
NUM2 from the one in NUM1. Store the difference in NUM1.

Sample Problem:

Input: LENGTH
NUM1

NUM2

Output: NUM 1

(6000)
(6002)
(6004)
(6006)
(6102)
(6104)
(6106)
(6002)
(6004)
(6006)

0003
2F5B
47C3

306C
14DF
85B8
03BC
1A7B
C20B
2CBO

That is: 2F5B47C3306C
- 14DF85B803BC
1A7BC20B2CB0

8-2. DECIMAL SUBTRACTION

Purpose: Subtract one multiple-byte packed decimal (BCD) number from another. The
length in bytes of both numbers is in the byte variable LENGTH at location

6000. The numbers themselves (most significant digits first) are in the varia-
bles NUM1 and NUM2 at locations 6001 and 6101, respectively. Subtract the

number contained in NUM2 from the one starting in NUM1. Store the
difference in NUM1.

Sample Problem:

LENGTH (6000)
04 NUM1 (6001) 36

(6002) 70
(6003)

19

(6004)
85 NUM2 (6101) 12

(6102) 66
(6103)

34
(6104)

59 NUM 1 (6001)
24 (6002)
03

(6003) 85
(6004)

26

That is: 36701985
- 12663459
24038526

Arithmetic Problems 145

8-3. 32-BIT BY 32-BIT MULTIPLY

Purpose: Multiply the 32-bit value in the variable NUM1 which begins in memory loca-
tion 6000 (high-order) by the 32-bit value in variable NUM2 at location 6004.

Do the multiply twice: first use the MULU instruction and place the results in
the 64-bit variable PRODI starting at location 6008; then use a shift and add
method as illustrated in Program 8-3/? and place the result in the 64-bit varia-

ble PROD2 starting at location 6010.

Sample Problem:

Input: NUM1 - (6000) = 0024
(6002) = 68AC

NUM2 - (6004) = 0328
(6006) = 1088

Output: PROD1 — (6008) = 0000
(600A) = 72EC
(600C) = BBC2
(600E) = 5B60

PROD2 - (6010) = 0000
(6012) = 72EC
(6014) = B8C2
(6016) = 5B60

REFERENCES

Other methods for implementing multiplication, division, and other arithmetic tasks are
discussed in:

Ali, Z. "Know the LSI Hardware Tradeoffs of Digital Signal Processors," Electronic
Design, June 21, 1979, pp. 66-71.

Geist, D. J. "MOS Processor Picks up Speed with Bipolar Multipliers, " Electronics, July
7, 1977, pp. 113-15.

Kolodzinski, A. and D. Wainland. "Multiplying with a Microcomputer, " Electronic
Design, January 18, 1978, pp. 78-83.

Mor, S. "An 8x8 Multiplier and 8-Bit Microprocessor Perform 16 x 16-Bit Multiplica-
tion,"£ZW, November 5, 1979, pp. 147-52.

Tao, T. F. et al. "Applications of Microprocessors in Control Problems," Proceedings of
the 1977 Joint Automatic Control Conference, San Francisco, Ca., June 22-24, 1977.

Waser, S. "State-of-the-Art in High-Speed Arithmetic Integrated Circuits," Computer
Design, July 1978, pp. 67-75.

Waser, S. and A. Peterson. "Medium-Speed Multipliers Trim Cost, Shrink Bandwidth
in Speech Transmission," Electronic Design, February 1, 1979, pp. 58-65.

Weissberger, A. J. and T. Toal. "Tough Mathematical Tasks are Child's Play for Num-
ber Cruncher," Electronics, February 17, 1977, pp. 102-07.

9

Tables and Lists

Tables and lists are two of the basic data structures used with all computers.
We have already seen tables used to perform code conversions and arithmetic. Tables
may also be used to identify or respond to commands and instructions, provide access

to files or records, define the meaning of keys or switches, and choose among alter-
nate programs. Lists are usually less structured than tables. Lists may record tasks

that the processor must perform, messages or data that the processor must record, or

conditions that have changed or should be monitored. Tables are a simple way of mak-
ing decisions or solving problems, since no computations or logical functions are necess-
ary. The task, then, is reduced to organizing the table so that the proper entry is easy to

find. Lists allow the execution of sequences of tasks, the preparation of sets of results,
and the construction of interrelated data (or data bases). Problems include how to add
elements to a list and remove elements from it.

PROGRAM EXAMPLES

9-1. ADD ENTRY TO LIST

Purpose: Add the contents of the word variable ITEM at memory location 6000 to a list
if it is not already present in the list. The list is comprised of word elements

and the starting address of the list is in the long-word variable LIST at

memory location 6002. The first word of the list contains the list's length in words.

147

148 68000 Assembly Language Programming

Sample Problems:

Input: ITEM
LIST

Output:

(6000)
(6002)
(5000)
(5002)
(5004)
(5006)
(5008)

(5000)

16B2
00005000
0004 5376
7618
138A
21 DC
0005

List's address
Length of list

Length of list

(500A) = 16B2
Input: ITEM - (6000) = 1 6B2

LIST - (6002) = 00005000
(5000) = 0003
(5002) = 5376
(5004) = 16B2
(5006) = 7431

Output: No change to list, since the item is already in
the list at location 5004.

Flowchart 9-1a:

Entry = (ITEM)
Pointer = (LIST)
CountLoc = Pointer
Count = (CountLoc)
Pointer = Pointer + 2

T

Count = Count - 1

LOOP

(Pointer) = Entry
(CountLoc) = (CountLoc) + 1

Tables and Lists 149

Program 9-1a:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000
00006002

ITEM EQU
LIST EQU

$6000
$600 2

SEARCH ITEM
POINTER TO START OF LIST

00004000 ORG PROGRAM

004000 30386000 PGM_9_1A MOVE.W ITEM, DO GET SEARCH ITEM
004004 20786002 MOVE A . L LIST, AO AO - POINTER TO LIST
004008 2248 MOVE A , L A0,A1 SAVE POINTER TO LIST COUNT
00400A 3218 MOVE . W (A0)+,D1 Dl.W - NUMBER OF ELEMENTS IN
00400C 5341 SUBQ.W H,D1 ADJUST FOR DBEQ

00400E B058 LOOP CMP.W (A0)+,D0 TEST NEXT ELEMENT FOR MATCH
004010 57C9FFFC

DBEQ

Dl,LOOP CONTINUE UNTIL MATCH OR LIST
004014 6 704 BEQ.S

DONE IF MATCH THEN DONE

004016 3 08 0 MOVE . W DO, (AO) ...ELSE ADD ELEMENT TO LIST
004018 525 1 ADDQ. W

H,(A1) INCREMENT LIST COUNT

00401A 4E75 DONE RTS

END PGM_9_1A

In this program, we use the autoincrement mode of addressing to access the list
indirectly via register AO. When we move the length of the list to register Dl, the
pointer in AO was also autoincremented so that it points to the first item in the list when
LOOP is begun. When we exit from the loop due to no match being found, the pointer

will have already been incremented to point to the location beyond the last item cur-

rently in the list; thus we don't have to adjust the pointer in order to add the new entry
to the end of the list. You should compare this program to Program 5-46 to clarify those
situations that require pointers to be adjusted and those that do not.

Clearly, the method of adding elements used in this program is very inefficient if
the list is long. We could improve the procedure by limiting the search to part of the list
or by ordering the list. We could limit the search by using the entry to get a starting point
in the list. This method is called hashing, and is much like selecting a starting page in a

dictionary or directory on the basis of the first letter in an entry.1 We could order the list
by numerical value. The search could end when the list values went beyond the entry
(larger or smaller, depending on the ordering technique used). A new entry would have
to be inserted properly, and all the other entries would have to be moved down in the
list.

The program could be restructured to use two tables. One table could provide a
starting point in the other table; for example, the search point could be based on the

most or least significant 4-bit digit in the entry.
The program does not work if the length of the list is zero. (What happens?) We

could avoid this problem by checking the length initially. The initialization procedure

and other program changes required are shown in Program 9-\b.

Program 9-1 b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000
00006002 I TEM

LIST
EQU
EQU

$6000
$6002

SEARCH ITEM
POINTER TO START OF LIST

00004000 ORG PROGRAM

150 68000 Assembly Language Programming

004000
004004
004008
00400A
00400C

30386000
20786002
2248
3218
670A

PGM_9_.1B MOVE . W
MOVEA.L
MOVEA.L
MOVE . W
BEQ. S

I TEM, DO
LIST, AO
AO, Al
(A0)+,D1
INSERT

GET SEARCH OBJECT
AO - POINTER TO LIST
SAVE POINTER TO LIST COUNT
Dl.W - NUMBER OF ELEMENTS IN LIST
IF LENGTH = 0 THEN INSERT ITEM

00400E 5 341 SUBQ. W #1,D1
ADJUST FOR DBEQ

004010
004012
004016

B058
57C9FFFC
6 7 04

LOOP CMP. W
DBEQ

BEQ. S

(A0)+,D0
Dl,LOOP
DONE

TEST NEXT ELEMENT FOR MATCH
CONTINUE UNTIL MATCH OR LIST END
IF MATCH THEN DONE

004018
00401A 3080

5251
INSERT MOVE . W

ADDQ. W
DO, (AO)
HI, CAD

ELSE ADD ELEMENT TO LIST
INCREMENT LIST COUNT

00401C 4E75
DONE

RTS

END PGM_9_1B

If the length of the list is zero, it means that there are currently no elements in the
list. Therefore, the element in ITEM cannot be in the list and must be inserted (as the
first element of the list).

9-2. CHECK AN ORDERED LIST

Purpose: Check the contents of the word variable ITEM at memory location 6000 to

see if it is in an ordered list. The list consists of 16-bit unsigned binary num-
bers in increasing order. The address of the first element in the list is in the

variable LIST at location 6004. The first entry in the list is the list's length in
words. If the contents of ITEM are in the list, place the index of its entry in

the variable INDEX at 6002; otherwise, set INDEX to FFFF16.

Sample Problems:

Input:
ITEM -

(6000)
= 5376

LIST -
(6004) = 00005000
(5000) = 0004 List's length
(5002) -

= 138A

(5004)
= 21 DC

(5006) ■

= 5376

(5008)
= 8613

Output: INDEX -
(6002) = 0004, since the search item is at

location 5006 = (5002+0004)
Input:

ITEM - (6000) =

= 46B2

LIST - (6004) ■

= 00005000

(5000) =

= 0002

(5002) =

= 138A

(5004) =
= 71 DC

Output: INDEX - (6002) =
= FFFF, since the search item is

not in the list

Flowchart 9-2a:

I

Entry =
(ITEM)

Pointer = (LIST)

Length = (Pointer)

Index =
Length

Index = Index - 2

(INDEX) = Index

152 68000 Assembly Language Programming

Program 9-2a:
00006000 DATA

EQll
$6 000

00004000 PROGRAM EQU $4000
UUUObOOO I TEM EQU $6 000
00006002 INDEX EOU $600 2
00006004 LIST EQU $6004
00004000 ORG PROGRAM

004000 30386000 PGM_9_2A MOVE . W I TEM, DO GET SEARCH OBJECT
004004 20786004 MOVE A . L LIST, AO GET START ADDRESS OF LIST
0 0 4 0 0 8 7 2 0 0

MOVEQ
0 , D 1 CLEAR THE ELEMENT COUNT

00400A 3210 MOVE . W (A0),D1 GET THE ELEMENT COUNT
0 04 0 0C 6 710 BEQ . S M I SS I NG IF LENGTH = 0, OBJECT IS NOT IN LIST

0 040 0E D2 4 1 ADD . W D 1 , D 1 EACH ELEMENT CONSISTS OF TWO BYTES
004010 5541 SUBQ. W #2,01 INDEX RANGE = 0 - (LENGTH-2 - 2) !
0040 1 2 B0701002 LOOP CMP. W 2(A0,D1 .W),D0 SEARCH FROM END OF LIST TO START
004016 6 708 BEQ.S DONE OBJECT IS IN LIST, Dl HOLDS INDEX
004018 6204 BHI . S MISSING LIST ELEM. SMALLER, OBJ NOT IN LIST
00401A 5 541 SUBQ. W «2,D1 INDEX FOR NEXT SMALLER ELEMENT
00401C 64F4 BCC LOOP INDEX >= 0 - CONTINUE

00401E 72FF MISSING
MOVEQ

$F F , D 1 "NOT FOUND'"-INDEX

004020 31C16002 DONE MOVE . W Dl , I NDEX SAVE INDEX

004024 4E75
RTS

END PGM 9 2A

The searching process of this program takes advantage of the fact that the ele-
ments are ordered. We begin the search with the last element in this list which will also

be the largest. Once we find an element smaller than the entry, the search is over, since
subsequent elements will be even smaller. You may want to try an example to convince
yourself that the procedure works.

As in the previous problem, any method of choosing a good starting point will
speed up the search. One such method starts in the middle of the list, determines which
half of the list the entry is in, then divides the half into halves, and so on. This method is
called a binary search since it divides the remaining part of the list into halves each

time.2,3
Program 9-2a works if the length is zero since we test for zero length when form-

ing the word index. Note the addressing mode used with the CMP.W instruction in the
loop. This is a good example of how to use the indexed addressing with displacement

mode. Address register AO points to the "base" of a data structure, which in this case is
an ordered list with the list's length being the first element in the list. The displacement
is used to address a substructure, in this case the first number in the list. Register Dl is

used as an index register to dynamically access the objects within the list. This address-
ing method can be illustrated as follows:

Tables and Lists 153

Remember that the displacement is interpreted as a two's complement number: it
is possible to have a negative displacement. The size of the displacement is eight bits,

and since the displacement is sign-extended, this allows for displacements in the range
-128 bytes to +127 bytes.

The effective address is calculated by adding the sign-extended displacement to
the 32-bit contents of the address register and the index register. The value in the index
register is treated as a signed number. If you define the index register size to be word, as

we have done in this program with Dl, the value in the index register is sign-extended
to 32 bits for the effective address calculation. The actual contents of the index register
are not, however, affected by the address calculation.

Because the index register may contain a negative number, the final effective
address may be before or after the base address in the address register.

Note that an unsigned comparison, BHI, is used in this program. In the sample
problems, a comparison using GT will not work correctly since the last entry in the list,
8613, has its sign bit set. Unsigned compares are particularly useful when dealing with
addresses, which are always unsigned.

The two branch instructions (BEQ.S and BHI.S) in this program can be replaced

by a single branch instruction which will speed up execution of the loop. Program 9-2b is
the resultant program:

Program 9-2b:
00006000 DATA EQU $6 000
00004000 PROGRAM EQU $4000

00006000 I TEM EQU $6 000
00006002 INDEX EQU $6 00 2
00006004 LIST EQU $6 004

00004000 ORG PROGRAM
0 040 00 30386000 PGM_9_2B MOVE . W ITEM, DO GET SEARCH OBJECT
004004 20786004 MOVE A . L LIST, AO GET START ADDRESS OF LIST
004008 7200

MOVEQ
»0,D1 CLEAR THE ELEMENT COUNT

00400A 3210 MOVE . W (A0),D1 GET THE ELEMENT COUNT 00400C 6710 BEQ. S MISSING IF LENGTH r 0, OBJECT IS NOT IN LIST
00400E D241 ADD. W D1,D1 EACH ELEMENT CONSISTS OF TWO BYTES
004010 5 54 1 SUBQ. W #2,D1 INDEX RANGE = 0 - (LENGTH" 2 - 2) !
004012 B0701002 LOOP CMP . W 2(A0,D1 .W),D0 SEARCH FROM END OF LIST TO START
004016 6404 BCC . S LPEXI T DONE IF FOUND OR ITEM > LIST ELEM.
004018 5541 SUBQ. W «2,D1 INDEX FOR NEXT SMALLER ELEMENT
00401A 64F6 BCC LOOP INDEX >= 0 - CONTINUE
00401C 6 702 LPEXI T BEQ. S DONE OBJECT IS IN LIST, Dl HOLDS INDEX
00401E 72FF MISSING

MOVEQ
«$FF,D1 "NOT FOUND"-INDEX

004020 31C16002 DONE MOVE . W
Dl, INDEX SAVE INDEX

004024 4E75 RTS

END PGM_9_2B

In this program, the first branch instruction in the loop transfers control to LPEXIT if

the entry is equal to or greater than the list element being compared. There is one dan-

gerous aspect that has been introduced in this program, however. Take a look at the

154 68000 Assembly Language Programming

BEQ instruction at LPEXIT. There are two different ways in which the program can
arrive at this instruction:

1. the BCC.S LPEXIT instruction in the loop can cause a branch to LPEXIT and
in this case the status flags are set according to the result of the CMP.W
instruction in the loop.

2. if all elements in the list have been tested without finding the entry item, then
the loop is exhausted and the instruction immediately following BCC LOOP is
executed. In this case, the status flags are set according to the results of the
SUBQ instruction in the loop.

Thus, the BEQ instruction at LPEXIT tests the status flags that have been set by
one of two possible instructions. You must be very careful to ensure that there are not
conflicting conditions which will give you unexpected results and errors that are very
difficult to find. The surest way to avoid errors is to make up a table to see what happens

for all possible situations. Such a table for Program 9-2b would look like this:

N z V c

After item < (list) ? 0 ? 1
CMP.W item = (list) 0 1 0 0

item > (list) ? 0 ? 0

After D1 > 0 ? ? ? 0
SUBQ D1 = -2 1 0 0 1

These should cause exit from
the loop Use BCC to exit.

This should cause loop to
terminate Use BCC to loop.

As you can see from this table, the Z flag will always be 0 when the loop is
exhausted. Thus, when the BEQ instruction at LPEXIT is executed following the BCC
LOOP instruction, the branch to DONE will not be taken.

It is possible to speed up this program a bit more. Since the fastest loop in this case

is the one that makes use of a CMP instruction with predecrement and the DBcc instruc-
tion, it may be worth the effort to write a program based on this construction. The

changes required are shown in Program 9-2c.

Program 9-2c:
00006000
00004000

DATA EQU
PROGRAM EQU

$6 0 0 0 $4000

00006000 I TEM EQU $6000
00006002 I NDEX EQU $60 02
00006004 LIST EQU $6004

0000 't U00 0 R G
PROGRAM

0 040 0 0 2 0 7 86 0 04 PGM_9_2C MOVE A . L LIST, AO GET START ADDRESS OF LIST
004004 3210 MOVE.W (A0),D1 GET THE ELEMENT COUNT
004006 6718 BEQ.S MISSING IF LENGTH = 0,OBUECT IS NOT IN LIST

004008 5341 SUBQ.W #1,D1 ADUUST FOR DBCC AND INDEX RANGE
00400A 3401 MOVE.W D1,D2 D2 IS THE LOOP COUNTER
00400C D241 ADD. W D1,D1 EACH ELEMENT CONSISTS OF TWO BYTES
00400E 5441 ADDQ. W

»2,D1 ADUUST FOR 1 : ST PREDECREMENT IN LOP
004010 41F01002 LEA 2(A0,D1 .W), AO POINTER BEYOND END OF LIST

004014 30386000 MOVE . W I TEM, DO GET SEARCH OBUECT

004018 B060 LOOP CMP.W -(AO), DO SEARCH FROM END OF LIST
00401A 54CAFFFC DBCC

D2,LOOP TEST NEXT IF ELEM>OBU AND ELEM LEFT
00401E 6 704 BEQ.S MATCHING OBUECT IS IN LIST, D2 HAS INDEX

Tables and Lists 155

0040 2 0 74FF MISSING MOVEQ tt$FF,D2 "NOT FOUND"-INDEX 004022 6002 BRA.S DONE

004024 D442 MATCHING ADD . W D2,D2 ADJUST INDEX TO WORD SIZE
004026 31C26002 DONE MOVE . W D2, INDEX SAVE IT

00402A 4E75 RTS

END PGM 9 2C

Flowchart 9-2c:

Q Start ̂

Pointer = (LIST)
Length = (Pointer)

Loop Count = Loop Count x 2

MATCHING

156 68000 Assembly Language Programming

Besides changing the loop in the program, we have made some subtle changes to
the initialization portion. First of all, note that we do not get the search object (entry)
until we have first checked for length equal zero. There is no need to get the entry until
we are sure that we have to perform a search.

The LEA instruction is used in this program to construct the address of the first

element in the data structure in the same way as in Programs 9-2a and 9-2b, but in this
case we form the starting address before we enter the loop.

Also note that Program 9-2c avoids the problem with the status flag that we dis-
cussed following Program 9-2/?. Since the DBcc instruction does not affect the Condition

codes, they are still set according to the result of the CMP.W instruction when the loop
is exhausted and we can feel free to test in any way we want.

If you compare the clock cycles required to execute the loop in Program 9-2c you
will see that it is more than twice as fast as the one in Program 9-2a. If it is possible that a
loop may be executed many times, it is often worth the extra effort to reduce the execu-

tion time of the loop.
The average execution time of this simple search technique, regardless of which of

the three programs you use, increases linearly with the length of the list. In comparison,
the average execution time for a binary search increases logarithmically. For example, if
the length of the list is doubled, the simple technique takes twice as long on the average
while the binary search method only requires one extra iteration.

9-3. REMOVE AN ELEMENT FROM A QUEUE

Purpose: The variable QUEUE at memory location 6000 contains the address for the
head of a queue. Save the address of the first element (head) of the queue in
the variable POINTER at memory location 6002. Update the queue to

remove the element. Each element in the queue is one word long and con-
tains the address of the next element in the queue. The last element in the

queue contains zero to indicate that there is no next element.

Queues are used to store data in the order in which it will be used, or tasks in the

order in which they will be executed. The queue is a first-in, first-out (FIFO) data struc-
ture; that is, elements are removed from the queue in the same order in which they were

entered. Operating systems place tasks in queues so that they will be executed in the
proper order. I/O drivers transfer data to or from queues to ensure that the data will be
transmitted or handled in the proper order. Buffers may be queued so that it becomes
easy to find the next available buffer in a storage pool. Queues may also be used to link
requests for storage, timing, or I/O to ensure that requests are satisfied in the correct
order.

In real applications, each element in the queue would typically contain a large
amount of information and/or storage space in addition to providing the address which
links each element to the next one.

Linked Lists

One way to implement a queue is to make use of a linked list. Note that there is a
difference between a data structure and the implementation of that data structure. For
example, a queue is a data structure, and there are many different ways that you can

Tables and Lists 157

implement a queue. However, the basic function of the queue (first-in, first-out) is
always the same regardless of the way in which you implement this data structure.

The basic principle of a linked list is that each entry in the list contains the address
to the next entry in the list, in addition to any data that may be found in a particular ele-

ment. This can be illustrated as follows:

Pointer to
start of list

Element Element Element
No 1 No 2 No 3

Pointer to Pointer to
(Last Element! Element #2 Element *3

Data space Data space Data space
for for

for Element Element Element
No 1 No 2 No 3

One advantage of this technique is that the elements in the list do not have to be
stored sequentially in memory, since each entry contains the address pointing to the
next entry. To change the order of two elements in a linked list, all you have to do is

move the pointers — the data associated with each element need not be moved. Thus,
to remove the first element in a queue we simply move a couple of pointers and the task

is done; we don't have to move a single bit of data, just addresses. Linked lists require
extra storage as compared to sequential lists, but elements are far easier to add, delete,
or insert.

Sample Problems:

Input:

Output:

QUEUE - (6000) -
= 00006020 Address of first

element in queue
(6020) = 00006060 First element in queue
(6060) = 000060A0
(60A0) = 00000000 Last element in queue

QUEUE - (6000) =
= 00006060 Address of new first

element in queue

POINTER - (6004) = 00006020 Address of element
removed from queue

F,rsl
Element Second

Elemeni Last Element
6060

' ^-6060

60A0
"* ̂ 60A0

0000

New First Element Last Element

158 68000 Assembly Language Programming

Empty queue

No element available
from queue

POINTER = (QUEUE)

Address = (Pointer)

I

Queue = (Address)

C End)
Program 9-3:

00006000 DATA EQU $6000
00001+00 0 PROGRAM EQU $4000

b Input: QUEUE - (6000) = OOOOOOOO
Output: QUEUE - (6000) = 0000

POINTER - (6004) = 0000

Flowchart 9-3:

Start ~J
c

00006000 QUEUE EQU $6000 ADDRESS OF QUEUE HEAD
00006004 POINTER EQU $6004 ADDRESS OF FORMER QUEUE HEAD

00004000 ORG PROGRAM

004000 21F860006004 PGM_9_3 MOVE.L QUEUE , PO I NTER SAVE OLD HEAD OF QUEUE
004006 6708 BEQ.S DONE IF QUEUE EMPTY THEN DONE

004008 20786004 MOVE.L POINTER, AO ...ELSE REMOVE FIRST ELEMENT
00400C 21D06000 MOVE.L (AO), QUEUE AND REPLACE WITH SECOND
004010 4E75 DONE RTS

END PGM 9 3

Doubly Linked Lists

Sometimes you may want to maintain links in both directions. Then each ele-
ment in the queue must contain the addresses of both the preceding and the following

elements.4-5 Such doubly linked lists allow you to retrace your steps easily (e.g., repeat-
ing the previous task if an error occurs in the current one) or access elements from

Tables and Lists 159

either end (e.g., allowing you to remove or change the last two elements without having
to go through the entire queue). The data structure may then be used in either a first-

in, first-out manner or in a last-in, first-out manner, depending on whether new ele-
ments are added to the head or to the tail.

Empty Queue

If there are no elements in the queue, the program clears POINTER at location
6004. A program that requests an element from the queue must check this memory
location to see if its request has been satisfied (i.e., if there was anything in the queue).
Can you suggest other ways to indicate to the requesting program whether the queue is
empty?

Another way of implementing a queue is as a list in sequential memory positions.
The MC68000 architecture is well suited to manipulation of such queues. You can use

any pair of address registers (AO — A6) and the postincrement or predecrement mode
of addressing to implement the queue. If the queue is to go from low to high memory,
then the postincrement addressing mode is used, and if the queue goes from high to low
memory, the predecrement mode would be used. For example, a queue going from low
memory to high memory could be implemented using address registers AO and Al as
shown in the following illustration:

Next Get
AO

Address

Next Put

Address

Low Memory

(free)

Next entry out

Last entry in

Next entry in (free)

High Memory

AO points to the first or oldest entry in the queue while Al points to the location
where the next or newest entry in the queue will be mads. If you use the postdecrement

mode of addressing when accessing this queue, then AO will always hold the next "get1'
address and register Al will always hold the next "put" address for the queue.

160 68000 Assembly Language Programming

Stack Operations

Another form of data structure similar to the queue is the stack: a stack is a last-in

first-out (LIFO) list. Most microprocessors provide special push and pull instructions to
manipulate stacks. In the MC68000, however, you can simply use the powerful MOVE
instructions with predecrement or postincrement addressing to manipulate stacks.

You can implement a stack using a single address register in the predecrement or
postincrement addressing mode. In fact, the processor itself uses address register A7 to

maintain special system and user stacks. We will discuss the processor's use of these
stacks further in Chapter 10.

Using Data Structures

The various indexed and indirect addressing modes allow us to use data struc-
tures in a very flexible way. If, for example, an address register contains the starting

address of a block of information, we can refer to elements in the block with constant
offsets.

How would we use such data structures? For example, we might want a piece of
test equipment to execute a series of tests as specified by the operator. Using entries
from a control panel, we will make up a queue of blocks of information, one for each test
that the operator will eventually want to run. Each block of information contains:

1. The starting address of the next block (or 0 if there is no next block).

2. The starting address of the test program.

3. The address of the input device (e.g., keyboard, card reader, or communica-
tions line) from which data will be read during the test.

4. The address of the output device (e.g., printer, CRT terminal, or communica-
tions line) to which the results will be sent as the test is run.

5. The number of times the test will be repeated.

6. The starting address of the data area to be used for storing temporary data.

7. A flag that indicates whether failing a test should preclude continuing to the
next test.

Clearly the block could contain even more information if there were more options
for the operator to specify while setting up the test sequence. Note that some elements

in the block contain data, others contain addresses, while still others may be 1-bit flags.
Consider what we mean by flexibility in this example. Some of the procedures that

the operator can easily implement are:

1. Run the same test with different sets of I/O devices. A trial run might use data
from a local keyboard and send the results to the CRT, while a production run
might use data from a remote communications line and produce a permanent
record on a printer.

2. Execute tests in any order, just by changing the order in the queue.

3. Place temporary data in an area where it can easily be displayed or retrieved by
a debugging program.

4. Make alternative decisions as to whether tests should be continued, errors re-
ported, or procedures repeated. Here again, trial or debugging runs may use

one option, while production runs use another.

Tables and Lists 161

5. Delete or insert tests merely by changing the links which connect a test to its
successor. The operator can thus correct errors or make changes without reen-

tering the entire list of tests.

For example, assume that the operator enters the sequence TEST 1, TEST 2,
TEST 4, and TEST 5, accidentally omitting TEST 3. The blocks are linked as follows:

Block 1 (for TEST 1) contains the starting address for block
2 (for TEST 2).

Block 2 (for TEST 2) contains the starting address for block
3 (for TEST 4).

Block 3 (for TEST 4) contains the starting address for block
4 (for TEST 5).

Block 4 (for TEST 5) contains a link address of zero to indicate
that it is the last block.

To insert TEST 3 between TEST 2 and TEST 4 merely involves the following
changes:

Block 2 (for TEST 2) must now contain the starting address
for block 5 (for TEST 3).

Block 5 (for TEST 3) must contain the starting address for

block 3 (for TEST 4).

No other changes are necessary and no blocks have to be moved. Note how much

simpler it is to insert or delete using linked lists than to use lists that are stored in con-
secutive memory locations. There is no problem of moving elements up or down to

remove or create empty spaces.

9-4. 8-BIT SORT

Purpose: Sort a list of unsigned binary 8-bit numbers into descending order. The
address of the start of the list is in the variable LIST at memory location 6000.

The first entry in the list is the number of remaining elements in the list —
that is, the length of the list beyond this first entry. Thus, the list has 255 or
fewer elements.

Sample Problem:

input: LIST

Output: LIST

(6000) = 00005000 Address of beginning of list
(5000)

= 06
Number of elements in list

(5001)
= 2A

First element in list

(5002) ■

= B5

(5003)
= 60

(5004)
= 3F

(5005)
= D1

(5006)
= 19

(6000) =
= 00005000

(5000) ■

= 06

(5001) =

= D1
Largest element in list

(5002) -

= B5

(5003) =

= 60

(5004)
= 3F

(5005) =

= 2A

(5006) ■

= 19
Smallest element in list

162 68000 Assembly Language Programming

Simple Sorting Algorithm

A simple sorting technique works as follows:

Step 1. Clear a flag named EXCHANGE.

Step 2. Examine each consecutive pair of numbers in the list. If any are out of
order, exchange them and set EXCHANGE.

Step 3. If EXCHANGE is set after the entire list has been examined, return to
Step 1.

EXCHANGE will be set if any consecutive pair of numbers is found out of order.
Therefore, if EXCHANGE is clear at the end of a pass through the entire list, the list is
in proper order.

This sorting method is referred to as a "bubble sort." It is an easy algorithm to
implement. However, it is slow; other sorting techniques should be considered when

sorting long lists where speed is important.6 8
The technique operates as follows in a simple case. Let us assume that we want to

sort a list into descending order; the list has four elements — 12, 03, 15, 08.

1st Iteration:

Step 1. EXCHANGE = 0
Step 2. Final order of the array is:

12

15
08
03

since the second pair (03, 15) is exchanged and
so is the third pair (03, 08).

EXCHANGE = 1

2nd Iteration:

Step 1. EXCHANGE = 0
Step 2. Final order of the array is:

15

12
08
03

since the first pair (12, 15) is exchanged.

EXCHANGE = 1

3rd Iteration:

Step 1. EXCHANGE = 0
Step 2. The elements are already in order, so no exchanges are necessary

and EXCHANGE remains 0.

This approach always requires one extra iteration to ensure that the elements are
in the proper order. No exchanges are performed in the last iteration, so it does not
really accomplish anything. Tracing through the examples shows that many of the
comparisons are wasted and even repetitive. Thus the method could be improved

Tables and Lists 163

greatly, particularly if the number of elements is in the thousands or millions, as it
commonly is in large data processing applications. New sorting techniques are an

important area of current research.9

Flowchart 9-4:

^ Start J

Start = (LIST)
Length = (Start)
Start = Start + 1
End = Start +

Length - 1 SORT

Exchange

= 0

Pointer = Start

NEXT

Temp 0 = (Pointer)

Temp 1 = (Pointer)
(Pointer - 1) = Temp 1

(Pointer) = Temp 0

i

Exchange =
Exchange + 1

Yes

164 68000 Assembly Language Programming

Program 9-4a:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

UUUUOUUU LIST EQU $ 6 0 0 0 AfM>QCC c T r\ CTADT r\c 1 TCT ADDRESS 10 5 1 AR 1 Or LISI

j ■) p r

DDnf 0 AM
1 r\ VJ \J 1\ M 1"

004000 20786000
PGM_

9_4A. MOVE A. L LIST, AO POINTER TO START OF LIST
n n u n n u u u ̂ u u ̂ 4240 C LR . W D 0
n n k n n t i n i p 1 U 1 o MOVE . B AU) + , DU i cMrru r\c i tct LtlNb In Ur L 1 b 1
n n u n n Q U U H U U O DrUUUrr LEA - 1 (. AU , D U . W J , A 1 On 1 KITCD Tn I ACT 1 TCT CI CMCMT POINIbR 10 LAb T LIbl ELtMbN!

00400C 4241 SORT CLR.W Dl COUNTER FOR EXCHANGES
00400E 2448 MOVE A . L AO, A2 POINTER TO START OF LIST

0040 1 0 101A NEXT MOVE.B (A2)+,D0 GET NEXT ELEMENT
004012 B012 CMP.B (A2),D0 COMPARE IT WITH FOLLOWING ELEMENT
004014 640A BCC.S 'NSWITCH

IF PREVIOUS ELEMENT >= THEN DO NEXT

004016 1212 MOVE .B (A2),D1 ...ELSE EXCHANGE ELEMENTS
004018 1541FFFF MOVE .B D1,-1(A2)
00401C 1480 MOVE .B D0,(A2)
0040 1E 5241 ADDQ. W «1,D1 INCREMENT EXCHANGE COUNT

004020 B3CA NSWI TCH CMPA.L A2, Al END OF LIST
004022 62EC BHI NEXT IF NOT THEN LOOK AT NEXT ELEMENT
004024 4A41 TST. W

Dl
EXCHANGE OCCURRED?

004026 66E4 BNE SORT YES, CONTINUE SORT
004028 4E7 5 RTS

END PGM_9_4A

The program must reduce the end pointer Al by 1 because the last element has no

successor. The final comparison is between the next to last element and the last ele-
ment. Before starting each sorting pass, we must be careful to reinitialize the pointer and

the Exchange flag.
Previous examples in this chapter used counters to control loops. In this example

we compare addresses. This avoids decrementing a counter on each step. It is interesting
to note what happens if there are fewer than two elements in the list. Although the
results are not as tragic as they would be if we used counters, the results are incorrect
nevertheless. Actually, checking for this case is quite simple. We simply insert BRA.S
NSWITCH before the statement labeled NEXT.

Two equal elements in the array must not be exchanged; if they are, the exchange
will occur on every pass and the program will never end.

There are many ways to code this bubble sort program using the MC68000

instruction set. The memory-to-memory compare instruction can be used to reduce the

program's size and improve loop processing. This variation, as well as others, are shown
in Program 9-46. What are the advantages and disadvantages of using the bit operate

instructions to set the program's exchange flag? What happens if you don't test for zero
elements in the list? Remember that DBRA tests for counter value = — 1.

Program 9-4b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000

00004000

004000 20786000
004004 4280

LIST EQU $6000

ORG PROGRAM

PGM_9_4B MOVE A . L LIST, AO
CLR.L DO

START OF LIST

POINTER TO LIST LENGTH
CLEAR ALL 32 BITS OF DO

Tables and Lists 165

004006 1018 MOVE . B (AO)+, DO LENGTH OF LIST
004008 6 7 24 BEQ. S DONE IF LENGTH = 0 THEN DONE
0 040 OA 43E80001 LEA . L 1 (AO) , Al POINTER TO SECOND ELEMENT
00400E 08810000 BCLR.B #0,D1 EXCHANGE FLAG := 0
004012 5340 SUBQ.W Hi, do ADJUST COUNTER FOR DBCC INSTRUCTION
0040 14 6 OOE BRA . S NSW I TCH CHECK FOR ONLY 1 ENTRY

004016 B308 NEXT CMPM.B (A0)+,(A1)+ COMPARE ADJACENT ENTRIES
0040 18 6 30A BL5. S NSWI TCH IF FIRST <= SECOND THEN NO SWITCH
0 040 1 A 14 2 0 MOVE . B -(AO) , D2 EXCHANGE
00401C 10E1 MOVE .B -(A1),(A0)+ ... ENTRIES
00401E 12C2 MOVE .B D2,(A1)+
004020 08C10000 BSET.B #0,D1 SET EXCHANGE FLAG

004024 51C8FFF0 NSWITCH DBRA DO , NEXT COMPARE ALL ENTRIES
004028 08010000 BTST.B #0,D1 EXCHANGE FLAG SET?
00402C 66D2 BNE PGM 9 4B IF YES THEN REPEAT TESTING

00402E 4E75 DONE RTS

END PGM_9_4B

There have been entire books written on sorting and searching, so a discussion of
sorting methods would be beyond our scope. However, there is one variation that
should be considered. At the end of every step, we know that the smallest element is at
the end of the list. Therefore the number of pairs we need to compare decreases by one
each step. (Try a few examples to convince yourself this is true. Do you see how the
method gets its name?) What changes to the program would take advantage of this?

9-5. USING AN ORDERED JUMP TABLE

Purpose: Use the contents of the variable INDEX at location 6000 as an index to a
jump table starting at TABLE (location 6002). Each entry in the jump table

contains a 16-bit address. The program should transfer control to the address
with the appropriate index; that is, if the index is 6, the program jumps to
address entry number 6 in the table. (Note that we start counting with entry
number 0, the zeroth element in the table.)

Sample Problem:

INDEX - (6000) = 0002
TABLE — (6002) = 4740 Zeroth element in jump table

(6004) = 47A6
(6006) = 47DO
(6008) = 4620
(600A) = 4854 Fourth element in jump table

Result: (PC) = 0047D0 since that is entry number 2 (starting from zero) in the jump table.
The next instruction to be executed will be the one located at that address

Flowchart 9-5: (~)

Index = (INDEX) X 2

~~ F

(PC) = (TABLE +
Index)

i

166 68000 Assembly Language Programming

The last box in the flowchart results in a transfer of control to the address obtained

from the table. No ending block is necessary. Such transfers do not bother the processor

at all, but you may want to add special notes to your flowchart and program documenta-

tion so that the sequence does not appear to be a "dead-end street11 to the reader.

Program 9-5a:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 INDEX EQU $6000 INDEX INTO TABLE
00006002 TABLE EQU $6002 START OF TABLE
00004000 ORG PROGRAM

004000 30786000 PGM_9_5A MOVEA.W INDEX, AO GET TABLE INDEX
004004 D0C8 ADDA . W AO, AO ADJUST INDEX FOR WORD OFFSET
004006 32686002 MOVEA.W TA3LE(A0),A1 GET ADDRESS FROM TABLE
00400A 4ED1 JMP (Al) TRANSFER TO ADDRESS

END PGM_9_5A

When you run this program, be sure to place some executable code (such as a
TRAP instruction) at each address to which control could be transferred. Otherwise the

processor will be executing random code and you will have no way to tell which branch
was taken.

Jump Tables

Jump tables are very useful in situations where the processor must select one of
several routines for execution. Such situations arise in decoding commands (entered,
for example, from a control keyboard), selecting test programs, choosing alternative

methods or units, or selecting an I/O configuration. For example, a four-position
switch on the front of an instrument or test system may select among the remote, self-
test, automatic, or manual modes of operation. The processor reads the switch and

selects the appropriate routine from a jump table. References 10 and 11 contain addi-
tional examples of the use of jump tables.
The jump table thus replaces a whole series of compare and jump operations. The

program is compact, efficient and easily changed or extended.
The index into the jump table must be multiplied by 2 to give the correct word

offset since each entry in the table is a 16-bit address occupying two bytes of memory.
This assumes that the addresses in the table are short absolute references. What else

does the program assume in regard to the length of the jump table?

If addresses in the table could reference anywhere in the processor's 16-megabyte
address space, then each entry would require at least three bytes. By using entries of five
bytes, this case could be handled by simply inserting an additional ADDA instruction
and modifying the MOVE.W TABLE(A0),A1 to a MOVE.L instruction. However, you

will encounter difficulties if you try to place the jump table in 9-5a at addresses greater
than 7FFF. Why?

Program 9-56 illustrates another method of implementing the jump table using
indexed addressing.

Tables and Lists 167

Program 9-5b:
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 INDEX EQU $6000 INDEX INTO JUMP TABLE
00006002 TABLE EQU $6002 START OF JUMP TABLE

00004000 ORG PROGRAM

004000 207C00006002 PGM_9_5B MOVE A . L #TABLE,A0 GET TABLE ADDRESS
004006 30386000 MOVE.W INDEX, DO GET TABLE INDEX
00400A E540 ASL.W #2, DO ADJUST FOR 4 BYTE ENTRY
00400C 22700000 MOVE A . L 0 (AO , DO . W) , A 1 GET ADDRESS FROM JUMP TABLE
004010 4ED1 JMP (Al)

END PGM 9 5B

In both of these programs, the instruction JMP (Al) is an indirect jump which
transfers the contents of register Al to the program counter. This instruction sometimes

causes confusion because of the "level of indirection." To clarify this, compare the
action of JMP (Al) with MOVEA (A1),A0. In the case of JMP (Al), the program
counter receives the value held in Al. In the MOVEA (A1),A0 instruction, AO receives
the value pointed to by Al.

This is an apparent inconsistency in the assembly language syntax. It can be
resolved by reading the instruction JMP (Al) as:

"Jump to the location pointed to by Al."

What would happen if we had replaced the last two instructions in Program 9-5a
with JMP TABLE(AO)?

How could you modify Program 9-56 to accept the address of the table in the
variable TABLE, instead of the beginning of the table itself?

PROBLEMS

9-1. REMOVE ENTRY FROM LIST

Purpose: Remove the value in the variable ITEM at memory location 6000 from a list if
the value is present. The address of the list is in the variable LIST at location

6002. The first entry in the list is the number (in words) of elements remain-
ing in the list. Move entries below the one removed up one position and

reduce the length of the list by 1.

Sample Problems:

a. Input: ITEM - (6000) = D010
LIST - (6002) = 00005000

(5000) = 0004
(5002) = C121
(5004) = A346
(5006) = 3A64
(5008) = 6C20

Entry to be removed
Address of list
Length of list
First element in list

Result: No change to list since the entry is not in the list

168 68000 Assembly Language Programming

Input: ITEM
LIST

Result

(6000) = D010
(6002) = 00005000
(5000) =

0004
(5002) C121
(5004) D010
(5006) 3A64
(5008) 6C20

(5000) 0003
(5002) C121
(5004) 3A64
(5006) 6C20

Entry to be removed
Address of list
Length of list
First element in list

Length of list reduced by 1

Other elements in list
moved up one position

9-2. ADD ENTRY TO ORDERED LIST

Purpose: Insert the value in the variable ITEM at location 6000 into an ordered list if it
is not already there. The address of the list is in the variable LIST at location

6002. The first entry in the list is the list's length in words. The list itself con-
sists of unsigned binary numbers in increasing order. Place the new entry in

the correct position in the list, adjust the elements below it down, and
increase the length of the list by 1.

Sample Problems:

Input: ITEM
LIST

Result:

Input:
ITEM
LIST

(6000) 7010 Entry to be added to list
(6002) 00005000 Address of list
(5000) 0004 Length of list
(5002) 0037 First element in list
(5004) 5322
(5006) A101
(5008) C203
(5000) 005 Length of list increased
(5002) 0037

by 1
(5004) 5322
(5006) 7010 New entry
(5008) A101 Other elements moved
(500A) C203 down one position
(6000) 7010 Entry to be added to list
(6002) 00005000 Address of list
(5000) 0004 Length of list
(5002) 0037 First element in list
(5004) 5322
(5006) 7010
(5008) C203

Result: No change in the list since entry is already in
the list.

9-3. ADD ELEMENT TO QUEUE

Purpose: Add the value in the variable ITEM at memory location 6000 to a queue. The
address of the first element in the queue is in the variable QUEUE at location
6002. Each element in the queue contains either the address of the next ele-

ment in the queue or zero if there is no next element. The new element is

placed at the end (tail) of the queue; the new element's address will be in the
element that was at the end of the queue. The new element will contain zero
to indicate that it is now the end of the queue.

Tables and Lists 169

Sample Problem:
Input: ITEM - (6000) -

= 000060A0

QUEUE - (6002) :
= 00006020

(6020) =
= 00006030

(6030) ■
= 0000

Result:
QUEUE - (6002) =

= 00006020
(6020) = 00006030

(6030) ■
= 000060A0

(60A0)
= 0000

Pointer to head of queue

Last element in queue

Old last element points
to new last element
New last element

How would you add an element to the queue if memory location 6006 contained

the address of the tail of the queue (the last element) ? Remember to update this end-of-
queue pointer.

9-4. 4-BYTE SORT

Purpose: Sort a list of 4-byte entries into descending order. The first three bytes in each
entry are an unsigned key with the first byte being the most significant. The
fourth byte is additional information and should not be used to determine the
sort order, but should be moved along with its key. The number of entries in
the list is defined by the word variable LENGTH at location 6000. The list
itself begins at location 6002 (LIST).

Sample Problem

Input LENGTH

LIST -

Result: LIST -

(6000)
= 0004

4 entries in list

(6002) s

= 41
Beginning of first entry key

(6003)
= 42

(6004) -

= 43
End of first entry key

(6005) =

= 07
First entry additional
information

(6006)
= 4A

Beginning of second entry
(6007)

= 4B

(6008)
= 4C

(6009)
= 13

(600A)
= 4A

Beginning of third entry
(600B)

= 4B

(600C)
= 41

(600D)
= 37

(600E)
= 44

Beginning of fourth entry
(600F)

= 4B

(6010)
= 41

(601 1)
= 3F

(6002)
= 4A

(6003)
= 4B

(6004)

= 4C

(6005)
= 13

End of first entry
(6006)

= 4A

(6007)
= 4B

(6008)
= 41

(6009)
= 37

End of second entry
(600A)

= 44

(600B)

= 4B

(600C)
= 41

(600D)
= 3F

End of third entry
(600E)

= 41

(600F)
= 42

(6010)
= 43

(601 1)
= 07

End of last entry

170 68000 Assemblv Language Programming

The data in the unsorted entries are 'ABC\$07; lJKL\$13; 'JKA',$37;
kDKA\$3F.

9-5. USING A JUMP TABLE WITH A KEY

Purpose: Use the value in the variable INDEX at memory location 6000 as a key to a
jump table (TABLE) starting at location 6002. Each entry in the jump table
contains a 16-bit identifier followed by a 32-bit address to which the program
should transfer control if the key is equal to that identifier.

Sample Problem:

Input: INDEX
TABLE

(6000)
(6002)
(6004)
(6008)
(600A)
(600E)
(6010)

4142
4348
00004900
4142
00004940
4558
00004A20

First key

First transfer address
Second entry

Third entry

Result (PC) — 004940 since that address corresponds to
key value 4142.

REFERENCES

1. J. Hemenway and E. Teja. "EDN Software Tutorial: Hash Coding," EDN, Septem-
ber 20, 1979, pp. 108-10.

2. D. Knuth. The Art of Computer Programming, Volume HI: Searching and Sorting.

Reading, Mass.: Addison-Wesley, 1978.

3. D. Knuth. " Algorithms, " Scientific American, April 1977, pp. 63-80.
4. K. J. Thurber and P. C. Patton. Data Structures and Computer Architecture. Lexington

Mass.: Lexington Books, 1977.

5. J. Hemenway and E. Teja. "Data Structures — Part 1," EDN, March 5, 1979, pp.
89-92; "Data Structures - Part 2, 11 EDN, May 5, 1979, pp. 113-16.

6. See Reference 2.

7. B. W. Kernighan and P. J. Plauger. The Elements of Programming Style. New York:
McGraw-Hill, 1978.

8. K. A. Schember and J. R. Rumsey. "Minimal Storage Sorting and Searching
Techniques for RAM Applications, " Computer, June 1977, pp. 92-100.

9. "Sorting 30 Times Faster with DPS," Datamation, February 1978, pp. 200-03.

10. L. A. Leventhal. "Cut Your Processor's Computation Time," Electronic Design,
August 16, 1977, pp. 82-89.

11. J. B. Peatman. Microcomputer-Based Design. New York: McGraw-Hill, 1977,
Chapter 7.

Advanced Topics

The following chapters discuss more advanced areas of assembly language programming.
Chapters 10 and 11 deal with subroutines, an important aspect of all levels of programming.
Chapter 12 describes some of the advanced features found on the MC68020. In Chapter 13, we
cover many basic principles of connecting the MC68000 to peripherals. Chapters 14 and 15
describe interrupts and exception processing; Chapter 14 provides an overview of all family
members, while Chapter 15 concentrates on the MC68000.

171

10

Parameter Passing Techniques

None of the examples that we have shown thus far is a typical program that would
stand by itself. Most real programs perform a series of tasks, many of which may be used
a number of times or be common to other programs.

SUBROUTINES

The standard method of producing programs which can be used in this manner is

to write subroutines that perform particular tasks. The resulting sequences of instruc-
tions can be written once, tested once, and then used repeatedly.
In order to be really useful, a subroutine must be general. For example, a

subroutine that can perform only a specialized task, such as looking for a particular letter
in an input string of fixed length, will not be very useful. If, on the other hand, the
subroutine can look for any letter, in strings of any length, it will be far more helpful.

In order to provide subroutines with this flexibility, it is necessary to provide them
with the ability to receive various kinds of information. We call data or addresses that we

provide the subroutine parameters. An important part of writing subroutines is provid-
ing for transferring the parameters to the subroutine. This process is called Parameter

Passing.

173

174 68000 Assembly Language Programming

GENERAL PARAMETER PASSING TECHNIQUES

There are three general approaches to passing parameters:

1. Place the parameters in registers.

2. Place the parameters immediately after the subroutine call in program
memory.

3. Transfer the parameters and results on the hardware stack.

The registers often provide a fast, convenient way of passing parameters and returning

results. The limitations of this method are that it cannot be expanded beyond the num-
ber of available registers; it often results in unforeseen side effects; and it lacks

generality.

The trade-off here is between fast execution time and a more general approach.
Such a trade-off is common in computer applications at all levels. General approaches
are easy to learn and consistent; they can be automated through the use of macros. On
the other hand, approaches that take advantage of the specific features of a particular
task require less time and memory. The choice of one approach over the other depends
on your application, but you should take the general approach (saving programming

time and simplifying documentation and maintenance) unless time or memory con-
straints force you to do otherwise.

Passing Parameters In Registers

The first and simplest method of passing parameters to a subroutine is via the
registers. After calling a subroutine, the calling program can load memory addresses,
counters, and other data into registers. For example, suppose a subroutine operates on
two data buffers of equal length. The subroutine might specify that the length of the two
data buffers be in the register DO while the two data buffer beginning addresses are in
the registers AO and Al. The calling program would then call the subroutine as follows:

MOVE.W tt B U F L , D (
M.OVEA.L BUF A, AO
MOVE A . L BUF B , A 1
J5R SUBR

LENGTH OF BUFFER IN DO
BUFFER A BEGINNING ADDRESS IN AO
BUFFER B BEGINNING ADDRESS IN Al
CALL SUBROUTINE

Using this method of parameter passing, the subroutine can simply assume that the

parameters are there. Results can also be returned in registers, or the addresses of loca-
tions for results can be passed as parameters via the registers. Of course, this technique

is limited by the number of registers available. Such MC68000 features as register
indirect addressing, indexed addressing, the ability to use any address register as a stack
pointer, and the LEA instruction provide far more powerful and more general ways of
passing parameters.

Passing Parameters In Program Memory

Parameters that are to be passed to a subroutine can also be placed directly after
the subroutine call. The subroutine must then modify the return address at the top of

Parameter Passing Techniques 175

the stack in addition to fetching the parameters. Using this technique, our example
would be modified as follows:

JSR
DC .W
DC .L
DC .L

SUBR
BUFL
BUFA
BUFB

BUFFER LENGTH
BUFFER A STARTING ADDRESS
BUFFER B STARTING ADDRESS

The subroutine saves prior contents of CPU registers, then loads parameters and adjusts
the return address as follows:

SUBR MOVEM.L DO /A0-A2 , -(A7)
MOVE A . L 16(A7),A2
MOVE.W (A2)+,D0
MOVE A . L (A2)+,A0
MOVE A . L (A2)+,A1
MOVE A . L A2, 16(A7)

SUBROUTINE USES D0,A0,A1,A2
RETURN ADDRESS POINTS TO BUFL
BUFL TO DO
BUFA TO AO
BUFB TO Al
ADJUST RETURN ADDRESS

The constant 16 is to adjust for the change in A7 when the four registers DO, AO,
Al, and A2 are saved on the stack.

This parameter passing technique has the advantage of being easy to read. It has,

however, the disadvantage of requiring parameters to be fixed when the program is writ-
ten. A modification which allows parameters to vary uses an address pointer following

the subroutine call. The pointer addresses an area of data memory where the parameters
are actually found. This may be illustrated as follows:

PL 1ST

JSR DC .L

DC .W
DC .L
DC .L

SUBR PLI ST

BUFL

BUFA BUFB

BEGINNING ADDRESS OF PARAMETERS

SUBR MOVEM.L D0/A0-A2,'
MOVE A . L 16(A7),A1
MOVE A . L (A1)+,A2
MOVE A . L Al , 16CA7)
MOVE.L (A2)+,D0
MOVE A . L (A2)+,A0
MOVE A . L (A2)+.A1

CA7) SUBROUTINE USES D0,A0,A1,A2
RETURN ADDRESS POINTS TO PLIST
GET ADDRESS OF PARAMETER LIST
... AND UPDATE RETURN ADDRESS
BUFL IN DO
BUFA IN AO
BUFB IN Al

Parameters held in a separate area of memory are frequently referred to as a

"parameter block." In the illustration above, we stored the beginning address for a
three word parameter block after the JSR. The address of the parameter block could also
be passed to the subroutine as follows:

MOVE.L #PLIST,-(A7) PUSH ADDRESS OF PARAMETER BLOCK JSR SUBR

The subroutine would fetch parameters as follows:

SUBR MOVEM.L D 0 / A 0 - A 2 , - (A 7) SUBROUTINE USES D0,A0,A1,A2
MOVE A . L 20(A7),A2 GET PARAMETER ADDRESS
MOVE.W (A2)+,D0 BUFL IN DO
MOVE A . L (A2)+,A0 BUFA IN AO
MOVE A . L (A2)+,A1 BUFB IN Al

No adjustment of the stack pointer is required when this method is used.
Results can be returned by storing them in the same parameter block, or

addresses for storing results can also be passed as parameters.

176 68000 Assembly Language Programming

Passing Parameters On The Stack

Another common method of passing parameters to a subroutine is to push the
parameters onto the stack. Using this parameter passing technique, the subroutine call
illustrated above would occur as follows:

MOVE.W #BUFL,-(A7) PUSH BUFFER LENGTH
MOVE A . L 8UFA,-(A7) PUSH TWO BUFFER STARTING ADDRESSES
MOVE A . L BUFB,-(A7) ... ONTO STACK
JSR SUBR

The subroutine must begin by loading parameters into CPU registers as follows:

SUBR MOVEM.L D 0 / A 0 / A 1 , - (A 7) SAVE PRIOR REGISTER CONTENTS
MOVE A . L 12(A7),A1 BUFFER B STARTING ADDRESS IN Al
MOVE A . L 16(A7),A0 BUFFER A STARTING ADDRESS IN AO
MOVE.W 20(A7),D0 BUFFER LENGTH IN DO

In this approach, all parameters are passed and results are returned on the stack.
The MC68000 stack grows downward (toward lower addresses). This occurs

because elements are pushed onto the stack using the predecrement address mode. The
use of the predecrement mode causes the stack pointer to always contain the address of
the last occupied location, rather than the next empty one as on some other
microprocessors, such as the 6800. This implies that you must initialize the stack pointer
to a value higher than the largest address in the stack area.

When passing parameters on the stack, the programmer must implement this
approach as follows:

1. Decrement the system stack pointer to make room for parameters on the
system stack, and store them using offsets from the stack pointer; or simply
push the parameters on the stack.

2. Access the parameters by means of offsets from the system stack pointer,
remembering that JSR places the return address at the top of the stack.

3. Store the results on the stack by means of offsets from the systems stack

pointer.
4. Clean up the stack before or after returning from the subroutine, so that the

parameters are removed and the results are handled appropriately.

TYPES OF PARAMETERS

Regardless of our approach to passing parameters, we can specify the parameters
in a variety of ways. For example, we can:

1. Place the actual values in the parameter list. This method is sometimes referred

to as call-by-value, since only the values of the parameters are of concern.
2. Place the addresses of the parameters in the parameter list. This method is

sometimes referred to as call-by-name, since we are concerned with the loca-
tions of the parameters as well as their values.

11

Subroutines

Most microprocessors have special instructions for transferring control to
subroutines and restoring control to the main program. We often refer to the special
instruction that transfers control to a subroutine as Call, Jump-to-Subroutine,
Jump-and-Mark Place, or Jump-and-Link. The special instruction that restores
control to the main program is usually called Return.

On the MC68000 microprocessor, the Jump-to-Subroutine (JSR) or Branch-to-
Subroutine (BSR) instructions save the old value of the program counter on the stack
before placing the starting address of the subroutine in the program counter; the

Return-from-Subroutine (RTS) instruction gets the old value from the stack and puts it
back in the program counter. The effect is to transfer program control, first to the
subroutine and then back to the main program. Clearly, the subroutine may itself
transfer control to a subroutine, and so on.

TYPES OF SUBROUTINES

Sometimes a subroutine must have special characteristics. A subroutine is
relocatable if it can be placed anywhere in memory. You can use such a subroutine
easily, regardless of other programs or the arrangement of the memory. A relocating
loader is necessary to place the program in memory properly; the loader will start the
program after other programs and will add the starting address or relocation constant

to all addresses in the program. Position independent code does not require a relocat-

ing loader — all program addresses are expressed relative to the program counter's
current value. Data addresses are held in registers at all times. We will discuss the
writing of position independent code later in this chapter.

A subroutine is reentrant if it can be interrupted and called by the interrupting
program and still give the correct results for both the interrupting and interrupted

177

178 68000 Assembly Language Programming

programs. Reentrancy is important for standard subroutines in an interrupt-based
system. Otherwise the interrupt service routines cannot use the standard subroutines
without causing errors. Microprocessor subroutines are easy to make reentrant since the
Call instruction uses the stack and use of the stack is automatically reentrant. The only
remaining requirement is that the subroutine use only the registers and the stack rather
than fixed memory locations for temporary storage.

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be
reentrant.

SUBROUTINE DOCUMENTATION

Most programs consist of a main program and several subroutines. This is
advantageous because you can use proven routines when available and you can debug
and test the other subroutines properly and remember their exact effects on registers
and memory locations.

Subroutine listings must provide enough information that users need not

examine the subroutine's internal structure. Among necessary specifications are:

• A description of the purpose of the subroutine

• A list of input and output parameters

• Registers and memory locations used

• A sample case, perhaps including a sample calling sequence

The subroutine will be easy to use if you follow these guidelines.

PROGRAM EXAMPLES

Examples in this chapter assume that the stack and stack pointer have already
been initialized. Instructions that load an address into the stack pointer or clear the
stack prior to use are not shown. If you wish to establish your own stack area,
remember to save any prior stack pointer and to restore it in order to produce a proper
return at the end of your program. Since the MC68000 allows any address register to
be used as a stack pointer, it is better to use a stack for your needs and not change the
system stack pointer (A7).

The MC68000 has no special instructions to load or save the current stack value.
Instead you use the MOVEA instruction to alter the stack register as shown in the
following program.

00006000
DATA

EQU S6 0 0 0
00004000 PROGRAM EQU $4000

00006000 PSTACK EQU DATA 00008000 STACK EQU $ 8 00 0

00004600 MAIN EQU $4600

00004000

004000 21CF6000

ORG PROGRAM

MOVEA. L A7, PSTACK SAVE PRIOR STACK

Subroutines 179

004001+ 2E7C0 000 800 0 MOVE A . L #STACK,A7 SET UP OUR STACK 00400A 4E884600 JSR MAIN
00400E 2E 7 86 000 MOVE A . L PSTACK,A7 RESTORE PRIOR STACK
004012 4E75 RTS

END

The program illustrated above saves the prior stack pointer, sets up the main pro-

gram's stack pointer, and then calls the main program. The stack base for the main pro-
gram is then 8000. When the main program has completed execution, it can execute an

RTS to transfer control to the setup routine, which restores the prior stack pointer and
then returns control to the prior program.

11-1. CONVERTING HEXADECIMAL TO ASCII

Purpose: Convert the contents of data register DO from a hexadecimal digit to an ASCII
character. Assume that the original contents of data register DO are less
than 16.

Sample Problems:

Input:
Result:

Input:
Result:

DO

DO
DO

DO

= oc
= 43

'C

06

36 '6'
The JSR instruction saves the program counter (the address of the instruction

following the JSR) on the system stack and then places the subroutine starting
address in the program counter. The procedure is:

Step 1. Decrement the stack pointer by 4.

Step 2. Save the program counter in the top word of the stack.

Step 3. Place the subroutine start address in the program counter.

For program 11-1, the following occurs as a result of executing the JSR instruc-
tion:

Before JSR
PC = 004604
A7 = 7FFC

After executing the JSR
PC = 00460E
A7 = 7FF8
(7FF8) = 00004608

The stack pointer is always adjusted by four since all addresses are stored on the

stack as 32-bit values, even if the return addresses can be referenced with short absolute
addressing. Since the processor has fetched the entire JSR instruction, the program
counter has been incremented to address the instruction following the JSR. This is the
address that is saved as a 32-bit value on the stack.

The JSR instruction is similar to the JMP instruction except that JSR

"remembers" where it came from. In this regard, the JSR instruction can call any-

180 68000 Assembly Language Programming

where in memory. Like the JMP and its related instruction BRA, JSR has a relationship
with the BSR instruction. BSR, like JSR, is used to call a subroutine and place the return
address on the stack. However, the addressing modes of BSR are similar to the BRA

instruction in that only instructions within an 8-bit or 16-bit displacement may be
referenced by BSR.

The RTS instruction reverses the process:

Place the value on the top of the stack in the program counter,

Increment the stack pointer by 4.

Step 1

Step 2

For 11-1 the RTS instruction then causes the following to occur:
Before RTS

PC = 00461 A
A7 = 7FF8

(7FF8) = 00004608

Flowchart 11-1:

Start Is

< Val <

10^>

^S,^ ?

No

Val =
Val + "A"

-"0"

-10

Yes

E

Val =

Val + "0"

c
End

The calling program gets the data from the variable HDIGIT at memory loca-
tion 6000, calls the conversion subroutine, and stores the result in the variable

ACHAR at memory location 6001.

Program 11-1:

00006000 DATA EQU $6000
0 0 0 046 00 PROGRAM EQU $4600

00006000 ORG DATA
006000 00000001 HDIGIT DS.B 1 HEX DIGIT TO E 5E CONVERTED
006001 00000001 ACHAR D5 . B 1 CONVERTED

ASC

I CHARACTER

0 00 046 0 0. ORG PROGRAM

Subroutines 181

0046 0 0 1 0 3 86 0 0 0 MAIN MOVE . B HD I G I T , D 0 GET DATA: RANGE IS 00 - OF 004604 4EB8460E JSR HEXDIGIT CONVERT TO ASCII CHARACTER
004608 11C06001 MOVE . B DO , ACHAR
00460C 4E75 RTS

:: SUBROUTINE HEXDIGIT

:: PURPOSE: HEXDIGIT CONVERTS A HEXADECIMAL DIGIT TO AN ASCII CHARACTER

:: INITIAL CONDITIONS: D0.B CONTAINS VALUE IN RANGE 00 - OF

:: FINAL CONDITIONS: D0.B CONTAINS AN ASCII CHARACTER IN THE
:: RANGE ' 0 * - 1 9 * OR 'A' - ' F '

:: REGISTERS CHANGED: DO ONLY

- SAMPLE CASE: INITIAL CONDITIONS: D0.B = 6
:: FINAL CONDITIONS: D0.B = 36 ('6')

00460E 0C00000A HEXDIGIT CMP.B #$0A,D0 DECIMAL DIGIT OR HEX LETTER?
004612 6D02 BLT.S ADDZ IF DIGIT GOTO ADDZ

0046 14 5E00 ADD . B # ' A ' - ' 0 ' - 5 0 A , D 0 OFFSET FOR LETTERS
0046 16 0600 00 30 ADDZ ADD . B IPO', DO CONVERT TO ASCII
00461A 4E75 RTS

END HEXDIGIT

After executing RTS
PC = 004608
A7 = 7FFC

The MC68000 always increments the stack pointer after pulling data from the

stack, so the procedure is the same as in the postincrement addressing mode. RTS bal-
ances the JSR or BSR. The action of the RTS instruction, however, is simply to take the

top four bytes in the stack and place them in the program counter. The programmer

must be certain that these four bytes contain a legitimate return address — the pro-
cessor does not examine them.

This subroutine has a single parameter and produces a single result. A data
register is the obvious place to put both the parameter and the result.

The calling program consists of three steps:

• Placing the data into the data register.

• Calling the subroutine.

• Storing the result.

The overall initialization program must also load the stack pointer with the
appropriate address.

This program is reentrant since it uses no data memory, and it is relocatable since
the address ADDZ is referenced relative to the program counter. Using BSR (Branch to
Subroutine) instead of JSR (Jump to Subroutine) would make the calling program
relocatable as well.

The JSR instruction results in the execution of four or five instructions, taking
either 44 or 48 clock cycles. A subroutine call may take a long time even though it
appears to be only a single instruction in the program. Calling a routine always involves
some overhead, since both the JSR and the BSR instructions take time. In fact, a JSR
takes 10 clock cycles longer than the corresponding JMP (with the same addressing
mode) because JSR must save the current program counter in the stack. RTS takes 16
clock cycles.

182 68000 Assembly Language Programming

1 1 -2. HEX WORD TO ASCII STRING

Purpose: Convert the value in the variable NUMBER at memory location 6000 to four

ASCII hex digits in the four-byte array STRING starting at memory location
6002. Perform the task using a subroutine with the hex value and the string
address as parameters.

Sample Problem:

Input:
Results:

NUMBER
STRING

(6000)
(6002)
(6003)
(6004)
(6005)

4CD0

34 '4'
43 'C

44 'D'

30 '0'
Program 1 1-2:

0 0 0 0 6 0 0 0
00004500 DATA PROGRAM

EQU EQU
$6 0 0 0
$4600

0 0 006000

OOoOOO 0 0 000002
0060 0 2 0 0000004

NUMBER STR [NG DS . W
DS.B

DATA
1 NUMBER TO BE CONVERTED TO ASCII HEX

CHARACTER STRING FOR ASCII HEX DIG!

00004 6 0C

>RG

PROGRAM

004600 2F3C00006002 MAIN
0 046 06 3F 3 86 0 00
00460A 4EB84610

MOVE.L $STRING,-(A7)
MOVE.W NUMBER, -(A7)
JSR BINHEX

PUSH ADDRESS OF STRING ON STACK
PUSH 16 BIT NUMBER TO BE CONVERTED
BINARY TO ASCI I/HEX

00460E 4E75 RTS

SUBROUTINE BINHEX

PURPOSE: CONVERT A 16 T VALUE TO 4 ASCII HEX DIGITS

NITIAL CONDITIONS

FINAL CONDITIONS:

REGISTER USAGE

SAMPLE CASE:

THE FIRST PARAMETER ON THE STACK IS THE
VALUE; THE SECOND PARAMETER IS THE
ADDRESS OF THE STRING TO BE BUILT

THE HEX STRING OCCUPIES 4 SUCCESSIVE
BYTES BEGINNING WITH THE ADDRESS PASSED
AS THE SECOND PARAMETER

NO REGISTERS ARE AFFECTED

INITIAL CONDITIONS: 4CD0 AT TOP OF STACK, THEN 00006002
FINAL CONDITIONS: THE STRING '4CD0' IN ASCII

OCCUPIES MEMORY 6002-5

004610 48E7E080
004614 7203
004616 342F0014
00461A 206F0016
00461E D1FC00000004

MOVEM.L D0-D2/A0, -(A7) MOVEQ #3,01
MOVE.W 16+4(A7),D2
MOVE A . L 16+6(A7),A0
ADDA . L #4. AO

SAVE REGISTERS USED IN BINHEX
LOOP COUNTER : = 4-1 GET VALUE
GET STRING ADDRESS
ADUUST POINTER PAST END OF STRING

004624 1002
004626 0200000F
00462A 4EB84646
00452E 1100
0 0 4630 E84A
004632 51C9FFF0

LOOP
MOVE .B
AND I . B

USR MOVE .B
LSR . W
DBRA

D2,D0
#$0F,D0
HEXDIGI T
DO, -(AO) #4,D2
Dl , LOOP

GET LOW NIBBLE
CONVERT TO ASCII CHARCTER
SAVE ASCI I DIGIT
SHIFT D2 TO GET NEXT NIBBLE
REPEAT FOR ALL 4 DIGITS

004636 4CDF0107
00463A 2F570006
00463E DFFC00000006

MOVEM.L
MOVE . L
ADDA .L

(A7)+,D0-D2/A0
(A7),6(A7)
#6, A7

RESTORE INITIAL REGISTER VALUES
MOVE RETURN ADDRESS DOWN
ADJUST STACK POINTER TO RETURN ADDR

Subroutines 183

00<+6<+4 4E75
r rs

00461+6 0C0 0 0 0 0A
00464A 6D02
00464C 5E00
00<46<+E 0 6 0 0 0 0 3 0

HEXDIGIT CMP.B
BLT. S
ADD . B

ADDZ ADD . B

#$0A,D0 ADDZ
ft " A » - • 0 ' -SOA, DO
tt ' 0 ' ,DO

DECIMAL DIGIT OR HEX LETTER ?
IF DIGIT GOTO ADDZ
OFFSET FOR LETTERS
CONVERT TO ASC I I

004652 4E75
RTS

END B I NHEX

This program demonstrates another method of passing parameters. Instead of
passing the two parameters in registers, the parameters are passed on the stack.
Therefore, upon entry to the subroutine, the stack would look like this:

The system stack pointer (A7) usually operates like any other register. However,
since all word and long word references must be aligned on a word boundary, the
MC68000 takes special precautions to ensure proper alignment. Thus, all data pushed

or pulled from the system stack is word-aligned — even byte data. In the case of byte
data, the data is stored in the high-order (most significant) byte of the word, the lower
order (least significant) byte is left unchanged.

Unlike our first subroutine example, BIN HEX modifies the contents of data
and address registers other than those which are used to pass subroutine results. In
some cases, the unexpected modification of registers by a subroutine may cause
unpredictable results in the calling program. It is good programming practice to define
which registers are being affected by the execution of the subroutine. This has been
done for subroutine BINHEX in its introductory description block.

A common practice used to prevent any inadvertent effects due to modification of
the registers is to save all registers used in a subroutine and to restore them upon
subroutine exit. The Move Multiple (MOVEM) instruction provides an efficient
means of saving or restoring registers. Whenever two or more index registers

(address or data register) are to be saved or restored, it is always more memory-effi-
cient to use MOVEM. In terms of execution performance, it is generally better to use

MOVEM when saving two or more index registers and when restoring three or more.
The order in which index registers are transferred via MOVEM is dependent upon the
effective address mode. If the effective address is the postincrement mode, the registers
are stored starting with data register 0 through data register 7, then address register 0 to
address register 7. If the effective address is the predecrement mode, the registers are

loaded in the reverse order starting with address register 7. Therefore, after the execu-
tion of the first MOVEM instruction in BINHEX, the system stack will be as follows:

Address Parameter
Hex Digit Parameter
Return Address

(32 bits)
(16 bits)
(32 bits) System Stack Pointer (A7)

Address Parameter
Hex Digit Parameter
Return Address AO
D2
D1
DO (3 2 bits)

(32 bits)
(16 bits)
(32 bits)
(32 bits)
(32 bits)
(32 bits)
System Stack Pointer (A7)

The parameters are not passed in registers; they must be retrieved from the

184 68000 Assembly Language Programming

system stack. We must take care in retrieving the parameters from the stack, because
other elements have been pushed onto the stack. The MOVEM instruction pushed 16

bytes onto the stack while JSR pushed the 4-byte return address (0000460E in our
example). The MOVE.W 16 + 4(A7),A0 is used to load AO with the 32-bit string
address. The order of these two instructions makes no difference since the system stack
register is not affected.

Both these MOVE instructions are examples of address register indirect with dis-
placement addressing. This addressing mode is similar to the program counter with dis-
placement mode used by the branch instruction, but it has two main differences. First,

an address register is used instead of the program counter. And second, only a 16-bit
displacement is allowed although it is still sign-extended. In program 11-2 the system
stack pointer contains $7FFC upon MAIN entry. Thus the address referenced in the
first MOVE is:

(A7) +16 + 4
= $7FE2 +16 + 4
= $7FF6 (the address of the digit value)

Prior to returning control back to program MAIN, the system stack must be

restored. First, the saved registers are pulled by MOVEM (A7) + ,D0-D2/A0. At this
point we could return to MAIN by using an RTS instruction since the return address is
on top of the system stack. However, this would leave the parameters still on the stack
and the calling program would have to adjust the stack. This adjustment would have to
be performed after each subroutine call to BINHEX. Instead, the system stack is
adjusted in BINHEX by the instruction sequence:

MOVE! (A7),6(A7)
ADDA 06.A7

Using the memory-to-memory move capability, the return address is stored at the
system stack entry previously occupied by the address parameter. The system stack is
then modified to point to this new return address entry. The same results could be

obtained faster by substituting the instruction LEA 6(A7),A7 for the ADDA instruc-
tion. A picture of the stack before and after the MOVE and ADDA instructions is:

Before:

(A7) - 7FF2 - 0000460E (return address)
7FF6 — 4CD0 (value parameter)
7FF8 - 00006002 (address parameter)

After:
7FF2 - 0000460E
7FF6 - 4CD0

(A7) — 7FF8 - 0000460E (return address)

If results were to be returned on the stack, a different adjustment would be made.

This subroutine is both reentrant and position-independent since it uses no fixed
memory addresses and only relative branches.

The BSR and JSR instructions allow the nesting of subroutines, since subsequent
subroutine calls will place their return addresses further down the stack. No addresses
are ever lost and the RTS instruction always returns control to the instruction just after
the most recent BSR and JSR.

Subroutines 185

11-3. 64 BIT ADDITION

Purpose: Add two 64-bit (4-word) values and return the results in data registers DO and
Dl. DO shall contain the most significant word of the result.

Sample Problem

Input: Value 1
Value 2

Result: DO
D1

$04201 47AEB529CB8
$3020EB8520473118
34410000
0B99CDD0

Program 1 1-3a:

00006000
00004600

00006000

DATA EQU
PROGRAM EQU

ORG

$6000
$4600

DATA

00004600

004600 4EB84616
004604 00000001
00460C 00000001
004614 4E75

MAIN

ORG

JSR DC.L
DC .L RTS

PROGRAM
ADD64
$1, $12345678
$1, $12345

SUBROUTINE ADD64

PURPOSE

INITIAL CONDITIONS

FINAL CONDITIONS:

REGISTER USAGE

SAMPLE CASE

64 BIT ADDITION
FIRST PARAMETER
SECOND PARAMETER

ADD TWO 64 BIT VALUES

THE TWO PARAMETER VALUES ARE PASSED
IMMEDIATELY FOLLOWING THE SUBROUTINE CALL

THE SUM OF THE TWO 64 BIT PARAMETERS
IS RETURNED IN D0.L AND DLL. THE EXTEND
CONDITION CODE = 1 IF OVERFLOW, ELSE = 0

NO REGISTERS ARE AFFECTED EXCEPT DO AND Dl

INITIAL CONDITIONS: 1ST PARAMETER = $112345678
2ND PARAMETER = $100012345

FINAL CONDITIONS D0.L = $00000002
DLL = $1 23 579BD
CC.X = 0

004616 48E73080 ADD64 MOVEM.L D2-D3/A0, -(A7)
00461A 206F000C MOVE A . L 12(A7),A0
00461E 4CD8000F MOVEM.L (A0)+,D0-D3

SAVE D2,D3 AND AO
AO - ADDRESS OF FIRST PARAMETER
D0-D1 = FIRST VALUE, D2-D3 = SECOND

004622 D283
004624 D182

ADD.L
ADDX.L D3,D1

D2,D0
ADD LEAST SIGNIFICANT WORD
ADD MOST SIGNIFICANT 16 BIT WITH EX

004626 4CDF010C
00462A 40E7
00462C 06AF00000010

0002
004634 4E77

MOVEM.L (A7)+,D2-D3/A0
MOVE.W SR,-(A7)
ADD I . L U6,2(A7)
RTR

RESTORE D2,D3 AND AO
SAVE EXTEND FLAG

ADJUST RETURN ADDRESS
RETURN AND RESTORE EXTEND FLAG

END ADD64

In Program 11 -3a the parameters for the subroutine ADD64 are passed
immediately following the subroutine call. Upon entry to ADD64, the address of this
parameter block may be found on top of the system stack, since it is the return address
for the JSR instruction. The MOVEA.L instruction loads address register AO with this

186 68000 Assembly Language Programming

parameter block address. The displacement of 12 in this instruction is necessary because

of the three 32-bit registers pushed onto the system stack.
The actual addition process is quite simple and was demonstrated in Chapter 8.

Prior to returning to the calling program, MAIN, the return address must be adjusted
since it points to the address following the JSR. An adjustment of 16 bytes is necessary

to jump around the two 8-byte parameters. This adjustment is performed via the ADDI
instruction on the return address without first having to move it into a register. The
system stack (before and after the ADDI instruction) is pictured as follows:

After the addition to adjust the stack pointer, the status register is pushed onto the
stack in order to preserve the condition codes. This allows the calling program to test for

overflow or carry as a result of the 64-bit addition. Such a test would normally be per-

formed by a "branch conditional" instruction following the JSR or the JSR parameter
list. In this instance the condition codes had to be saved since their state could have

been changed by the ADDI. To accomplish this the MC68000 provides a special return
instruction: RTR (return and restore condition codes). RTR pulls both the condition
codes and the return address from the stack. The supervisor portion of the status
register is not affected by this instruction. The RTR instruction can be extremely useful
when error conditions from subroutines are indicated by the condition codes.

Generally you may assume that a subroutine call changes the condition codes
unless it is specifically stated otherwise. If the main program needed the old condition
codes (for checking later), it could have saved them on the system stack using MOVE

SR, — (A7) before calling the subroutine. It would then be able to restore them after-
wards using MOVE (A7) + ,CCR.

This program lacks some generality since the values associated with the
parameters are passed following the call. For example, if the program were placed in

read-only memory the parameters could not be modified. To overcome this problem,
the addresses of the parameters could have been passed instead of their values.

Program 1 1-36 shows how we might modify the program to pass addresses instead
of values.

Program 1 1-3b:

00006000 DATA EQU $6000
00004600 PROGRAM EQU $4600

Before:
(A7) (7FF6) = Status Register (16 bits)

(7FF8) = 4604
After:
(A7) (7FF6) = Status Register

(7FF8) = 4614

00006000
ORG

DATA

006000 00000008
006008 00000008

VALUE 1
VALUE 2

D5 .L
DS .L F I RST 6 4-B I T VALUE

SECOND 64-BIT VALUE

00004600 ORG PROGRAM

004600 4EB8460E
004604 00006000
004608 00006008
00460C 4E75

MA I N
JSR DC .L
DC .L RTS

ADD64
VALUE1
VALUE 2

64 B IT ADDITION
ADDRESS OF FIRST PARAMETER
ADDRESS OF SECOND PARAMETER

Subroutines 187

SUBROUTINE ADD64

PURPOSE :

INITIAL CONDITIONS

FINAL CONDITIONS

REGISTER USAGE :

SAMPLE CASE:

ADD TWO 64 BIT VALUES

THE TWO PARAMETERVALUES ARE PASSED
IMMEDIATELY FOLLOWING THE SUBROUTINE CALL

THE SUM OF THE TWO 64 BIT PARAMETERS
IS RETURNED IN DO.L AND Dl.L. THE EXTEND
CONDITION CODE = 1 IF OVERFLOW, ELSE = 0

NO REGISTERS ARE AFFECTED EXCEPT DO AND Dl

INITIAL CONDITIONS 1ST PARAMETER = $00006000
2ND PARAMETER = $00006004

($6 000) = $0420147AEB529CB8
($6 004) r $3020EB85204731 18

FINAL CONDITIONS: DO.L
Dl.L
cc.x

$34410000
$0B99CDD0
0

00460E 48E730C0 ADD64 MOVEM.L D2-D3/A0-A1 , -(A7)
0 046 1 2 206F0010 MOVE A . L 16(A7), AO

0 046 16 2 2 5 8 MOVEA. L (A0)+, Al
0046 18 20290000 MOVE .L 0(A1),D0
0046 1C 22290004 MOVE . L 4(A1),D1

0 0 4620 2 2 5 8 MOVEA. L (A0)+, Al
004622 24290000 MOVE . L 0(A1), D2
004626 26290004 MOVE . L 4(A1),D3

00462A 2F4800 1 0 MOVEA. L AO, 16CA7)
00462E D283 ADD . L D3,D1
0046 30 Dl 82 ADDX . L D2,D0

004632 4CDF030C MOVEM.L (A7)+,D2-D3/A0-A1
0 046 36 4E75 R rs

AO - ADDRESS OF PARAMETER BLOCK

Al - FIRST PARAMETER ADDRESS
MOST SIGNIFICANT WORD OF FIRST VALUE
.. AND LEAST SIGNIFICANT

Al - SECOND PARAMETER ADDRESS
MOST SIGNIFICANT WORD OF SECOND VALUE
. . . AND LEAST S IGNIF ICANT

UPDATE RETURN ADDRESS
ADD LEAST SIGNIFICANT WORD
ADD MOST SIGNIFICANT WORD

END ADD64

The initial instructions in 1 1-36 are essentially the same as those found in 1 l-3a.
However, once the address of the parameter block is determined (MOVE.L
16(A7),A0)), another instruction must be performed to obtain the parameter values:

MOVEA. L (AO) + ,A1 Get address of parameter
MOVEL 0(A1).DO Get value
MOVE L 4(A1),D1 ...of parameter

The use of the predecrement mode in fetching the parameter addresses also aids

in updating the return address. After the two MOVE.L (AO) + , A 1 instructions, AO con-
tains the correct return address which is used to modify the return address on the system

stack: (MOVEA. L A0,16(A7)). This means of updating the return address eliminates
the ADDI instruction and therefore the need to push the condition codes onto the
system stack.

1 1 -4. FACTORIAL OF A NUMBER

Purpose: Determine the factorial of the number in the variable NUMB at memory loca-
tion 6000. Store the result in the variable FNUMB at memory location 6002.

Assume the number is less than nine but greater than zero.

188 68000 Assembly Language Programming

Sample Problems:

a Input: NUMB-(6000) = 0002

Result: FNUMB-(6002) = 0002

b Input: NUMB- (6000) = 0005

Result: FNUMB- (6002) = 0078(12010)

Flowchart:

f Factor J

SAVE NUMB on
stack

NUMB=NUMB- 1

^ Return ̂)

Yes

CALL FACTOR
NUMB=value of
top of stack

♦

NUMB=NUMB x
(value on top

of stack)

4-

Program 1 1-4a:

00006000
00004600

00006000

DATA PROGRAM EQU
ORG

$6 0 0 0
$4600

DATA
006000 00000002
006002 00000002

NUMB DS.W 1
F NUMB DS.W 1

NUMBER
FACTORIAL OF NUMBER

00004600 ORG PROGRAM

004600 30386000
004604 6106
004606 31C06002

MAIN MOVE.W NUMB, DO
BSR.S FACTOR
MOVE . W D0,F NUMB

GET NUMBER FIND FACTORIAL
STORE FACTORIAL

00460A 4E75
RTS

Subroutines 189

:: SUBROUTINE FACTOR
» PURPOSE: DETERMINE THE FACTORIAL OF A GIVEN NUMBER

5: INITIAL CONDITIONS: DO.W = NUMBER WHOSE FACTORIAL IS TO BE
" DETERMINED. DO.W > 0 AND < 9

- FINAL CONDITIONS: DO.W = FACTORIAL OF INPUT NUMBER

« REGISTER USAGE: NO REGISTERS EXCEPT DO AFFECTED
" SAMPLE CASE : INITIAL CONDITIONS

FINAL CONDITIONS
: DO.W = 5
: DO.W = 120

00460C
00460E
004610

3F00
5 340
6604

FACTOR MOVE . W
SUBQ. W
BNE.S

D0,-CA7)
#1,00
F_CONT

PUSH CURRENT NUMBER TO STACK
DECREMENT NUMBER
NOT END OF FACTORIAL PROCESS

004612
004614 301F 6 004

MOVE . W
BRA.S

(A7)+,D0
RETURN

FACTORIALS 1

004616
004618

61F4
CODF F_CONT BSR MULU

FACTOR
(A7)+,D0 FACTORIAL: = N » (N-l)

00461A 4E75 RETURN RTS

END FACTOR

This subroutine is reentrant since it does not use any fixed data storage area.
Instead, all temporary data is allocated space on the stack. In addition, this
subroutine is recursive because it invokes itself via the BSR FACTOR instruction.

Recursive subroutines are a special case of subroutine nesting. Like any other
subroutine call using a BSR or JSR instruction, the return address is placed on top of the
stack. In this case, the processor does not care if identical return addresses appear at the
top of the stack.

Subroutine FACTOR is a simple example of a recursive routine because it is easy
to see that FACTOR calls itself. However, a subroutine can still be recursive if a routine
it calls eventually invokes the calling subroutine. For example, FACTOR would still be
recursive if:

F CONT: BSR FACTOR
MULU (A7)+.DO

were replaced with:

F CONT: BSR MULTIPLY

where MULTIPLY was a subroutine like:

MULTIPLY: BSR FACTOR
MULU (A7) + ,DO
RTS

Like any subroutine which uses the stack for temporary storage, FACTOR must
ensure that no data is left on the stack prior to the execution of return. Both the

MOVE.W (A7) + ,D0 and MULU (A7) + ,D0 instructions ensure that the stack is pro-
perly restored.
In many instances, you may not be sure of the exact state of the stack prior to

return. This could be especially true if you practice good programming techniques and
use only one exit or return statement per program (as in subroutine FACTOR). More
important, the execution of a subroutine frequently will not save temporary data on

190 68000 Assembly Language Programming

the stack in an orderly manner. For these reasons, the MC68000 has implemented
the LINK and UNLK instructions.

Subroutine FACTOR has been rewritten in Program 11-4A using LINK and
UNLK. With the aid of the LINK instruction, we are able to dynamically reserve up
to 32,768 bytes of storage on the stack, as well as set up a pointer to the top of the
reserved area. In addition, the LINK instruction saves the current value of the

pointer.

Program 1 1-4b:

00006000
00004500

DATA EQU
PROGRAM EQU

$6 0 0 0
$4600

00006000 0 R G

006000 00000002
006002 00000002

NUMB DS.W
F NUMB DS.W

NUMBER
FACTORIAL OF NUMBER

00004600 ORG PROGRAM

004600 30386000
004604 6106
004606 31C06002

00460A 4E75

MOVE . W
BSR. S
MOVE . W

RTS

NUMB, DO
FACTOR
D0,F NUMB

GET NUMBER
FIND FACTORIAL
STORE FACTORIAL

SUBROUTINE FACTOR
PURPOSE : DETERMINE THE FACTORIAL OF A GIVEN NUMBER

NITIAL CONDITIONS: D0.W = NUMBER WHOSE FACTORIAL IS TO BE
DETERMINED. D0.W > 0 AND < 9

FINAL CONDITION:

REGISTER USAGE:

SAMPLE CASE:

D0.W = FACTORIAL OF INPUT NUMBER

NO REGISTERS EXCEPT DO AFFECTED

INITIAL CONDITIONS: D0.W = 5
FINAL CONDITIONS : D0.W = 120

00460C 4E50FFFE FACTOR LINK
AO, *t-2

ALLOCATE TEMPORARY STACK STORAGE
004610 3140FFFE MOVE . W D0,-2(A0) SAVE NUMBER
004614 5 340 SUBQ. W til , DO DECREMENT NUMBER
0046 16 6604 BNE . S

F_CONT
NOT END OF FACTORIAL PROCESS

004618 7 0 0 1
MOVEQ

#1,D0 FACTORIAL : = 1
0046 1A 6 0 06 BRA.S RETURN RETURN TO CALLING ROUTINE
0046 1C 6 1EE F_CONT BSR FACTOR CONTINUE FACTORIAL PROCESS
00461E C0E8FFFE MULU -2(A0),D0

FACTORIALS N :: (N-l)
004622 4E58 RETURN UNLK

AO

FREE TEMPORARY STORAGE

004624 4E75 RTS

END FACTOR

In Program 11-4Z>, the instruction LINK A0,_2 has the following effect:

sp

Return Address

Before

Return Address

Old value of AO

Temporary storage

AO

SP

After

Subroutines 191

The UNLK instruction reverses the results of the LINK instruction, thus restor-
ing the stack and address registers.
When using these two instructions, remember that the displacement for data

storage is a negative displacement, since the stack expands toward low address memory.
Offsets to the pointer register should also be negative, since the address register points
to the top of the temporary data area.

PROBLEMS

Write both a calling program for the sample problem and at least one properly
documented subroutine for each problem.

11-1. ASCII Hex to Binary

Purpose: Convert the least significant eight bits in data register DO from the ASCII

representation of a hexadecimal digit to the 4-bit binary representation of the
digit. Place the result back into DO.

Sample Problems:

a. Input: DO = 43 'C
Result: DO = OC

b. Input: DO = 36 '6'
Result: DO = 06

1 1 -2. ASCII Hex String to Binary Word

Purpose: Convert the four ASCII characters in the variable STRING starting in

memory location 6002 into a 16-bit binary value. Store the value in the varia-
ble VALUE at memory location 6000. Write a subroutine that takes the string

address from the stack and returns the value on the stack.

Sample Problem:

Input: STRING - (6002) = 42 'B'
(6003) = 32 T

(6004) = 46 'F'
(6005) = 30 '0' Result: VALUE - (6000) = B1F0

1 1-3. Test for Alphabetic Character

Purpose: If the ASCII character in the variable CHAR at memory location 6000 is an

alphabetic (upper- or lower-case), set the variable FLAG at memory location

6001 to FF, • otherwise set FLAG to 0. Write a subroutine that finds its
parameter in a register and returns its result using the condition code flags.

192 68000 Assembly Language Programming

Sample Problems:
a Input: CHAR

- (6000) 47
'G'

Results: FLAG - (6001)

FF b Input: CHAR
- (6000) 36

'6'
Results: FLAG - (6001)

00
c Input: CHAR

- (6000)

6A

T
Results:

FLAG - (6001)

FF

11-4. Scan to Next Nonalphabetic

Purpose: The variable STRING at memory location 6000 contains the address of an
ASCII string. Place the address of the first nonalphabetic character in this
string in the variable ADDRESS at memory location 6002. Write a subroutine
that takes the string address from a register and returns the result in the same

register.

Sample Problems:

Input: STRING - (6000)
= 6100

(6100) = 43 C
(6101)

= 61 'a'
(6102) = 74 T
(6103) = OD CR

Result: ADDRESS - (6002)
= 6103

Input: STRING - (6000)
= 6100

(6100)

= 32 '2'
(6101)

= 50 'P'
(6102) = 49 T

(6103) = OD CR
Result: ADDRESS - (6002)

= 6100

11-5. Check Even Parity

Purpose: The variable LENGTH at memory location 6001 contains the length in bytes
of a string variable STRING that begins at location 6002. If each byte in the
string has even parity, set the variable FLAG at location 6000 to 0; if one or

more bytes have odd parity, set FLAG to FF16. Write a subroutine that
obtains length and location from the stack and returns its result on the stack.

Sample Problems:

a. Input: LENGTH - (6001) 3
STRING - (6002)

47

(6003) AF
(6004)

18

Result: FLAG - (6000) 00
b. Input: LENGTH - (6001) 3

STRING - (6002)
47 (6003)
AF (6004)

19

Result: FLAG - (6000)

FF,

has odd parity

Subroutines 193

1 1 -6. Compare Two Strings

Purpose: Write a subroutine, and a main program that tests it, to compare two ASCII
strings. The first byte in each string is its length. Return the information in the
condition codes; i.e., the S flag will be set if the first string is lexically less than
(prior to) the second, the Z flag will be set if the strings are equal, no flags are
set if the second is prior to the first. Note that ABCD is lexically greater than
ABC.

12

Advanced MC68020 Addressing

And Instructions

The MC68000 processor line is upwardly compatible; that is, any program written for a

lower-end model, such as the MC68008, will run on an upper-end product, such as the
MC68020. In addition to supporting the instructions and addressing modes of lower-end
products, the MC68020 also supports several new instructions and addressing modes not

found on the lower-end processors. This chapter highlights many of these added features.

PROGRAM EXAMPLES

12-1. SCALED INDEXES

The MC68020 processor allows you to specify a scale factor when you use indexed
addressing. This addressing method is particularly useful when you need to access arrays. With

the processors MC68000 through MC68012, you might use code, as shown in Program 12-1 A.

Purpose: Move the contents of the 32-bit variable VAL1 into the long word array ARRAY
(subscripted from 0-99) at the element indicated by the word variable
SUBSCR.

Sample Problem:

Input: ARRAY[10] (6040) = 0
SUBSCR (6250) = 10
VAL1 (6252) = 179224

Output: ARRAY[10] (6040) = 179224

Program 12-1 A:

00006000 DATA EQU $6000
00004000 PR0GRAM1 EQU $4000 00005000 PR0GRAM2 EQU $5000

00006000 ORG DATA 006000 00000000 ARRAY DS.L 100 ARRAY
006250 .0000000A SUBSCR DC.W

10

SUBSCRIPT 006252 00179224 VAL1 DC.L $179224 NEW VALUE

00004000 ORG PR0GRAM1 004000 207C00006000 P6M_12_1 A M0VEA. L ARRAY, AO
004006 303900006250 M0VE.W SUBSCR, DO 00400C E540 ASL.U #2, DO
00400E 21B900006252 M0VE.L VAL1, (AO, DO.W) 004004 4E75 RTS

195

196 68000 Assembly Language Programming

With the MC68020's scaled indexing, you can eliminate the Shift instruction. Since you
are dealing with an array of long words, you can specify a scale of 4, as indicated by Program
12-lB.

Program 12-1 B:
00006000 DATA EQU $6000
00004000 PROG RAMI EQU $4000
00005000 PR0GRAM2 EQU $5000

00006000 ORG DATA 006000 00000000 ARRAY DS.L
100 ARRAY

006250 0000000A SUBSCR DC .W

10

SUBSCRIPT 006252 00179224 VAL1 DC.L $179224 NEW VALUE

00005000 ORG PR0GRAM2
005000 207C00006000 PGM_12_1B MOVEA. L ARRAY, AO
005006 303900006250 MOVE.W SUBSCR, DO
00500C 21B900006252 MOVE.L VAL1, (AO, D0.W*4)
005012 4E75 RTS

12-2. MEMORY INDIRECT ADDRESSING

Normal address register indirect addressing provides you with a means of pointing to
data. Memory indirect expands on that concept and allows a value in memory to point to data.

While the full syntax of the memory indirect addressing mode allows pre- or postindexing, two
displacements, and an address register all to contribute to the final data address, you more
commonly will use only one or two of these features at a time.

A common application for memory indirect addressing is for a function table. A function
table contains the addresses of various functions. Typically, a program requests one of the
functions through a user menu, message number, or token number. For example, you may
present the user with a menu of six entries and tell him or her to enter a number from l to 6. By
using memory indirect addressing you can directly call a function from the function table. This

process is shown in Program 12-2.

Purpose: Call the function listed in FUNC TBL as indicated by the variable SELECT

(valued 1 = 6). For simplicity, the functions will move a value into D5; FUNC 1
will load a 1, FUNC _ 2 will load a 2, and so on.

Sample Problem:

Input: FUNC TBL (6000) = 00005000
(6004) = 00005200
(6008) = 00005400
(600C) = 00005600
(6010) = 00005750
(6014) = 00005A00

SELECT (6018) =3
D5 =0

Output: D5 =3

Program 12-2:
00006000
00004000

DATA EQU $6000
PR0GRAM1 EQU $4000

Advanced MC68020 Addressing and Instructions 197

00006000
006000 FUNC TBL
006004
006008
00600C
006010
006014
006018 SELECT

00004000
004000 303900006018 PGM 12 2 MOVE.W SELECT, DO 004006 5340
004008 4EB005B100006000 JSR (CFUNC TBL, ZAO, D0.W*4]) 004010 4E75
004012 3A3C0001 FUNC 1
004016 4E75
004018 3A3C0002 FUNC_2 00401C 4E75
00401E 3A3C0003 FUNC 3
004022 4E75
004024 3A3C0004 FUNC 4
004028 4E75
00402A 3A3C0005 FUNC_5 00402E 4E75

ORG DATA
DC.L

FUNC_1
DC.L FUNC 2
DC.L FUNC 3 DC.L FUNC 4
DC.L FUNC 5
DC.L FUNC 6
DC.U 3
ORG PROGRAM
MOVE. W

SELECT,
SUBQ.W DO

JSR
(CFUNC_

RTS
MOVE. u #1, D5 RTS
MOVE. w #2, D5 RTS
MOVE. w #3, D5 RTS
MOVE. w #4, D5 RTS
MOVE. w #5, D5
RTS

If the user selected menu item 3, the program would convert this value to 2 (the subscript

entry into CMDTBL). The program then calls FUNC3 indirectly; using CMDTBL's address
plus the scaled index in DO, which loads D5 with a 3.

Note that the ZAO term appears in the effective address. This tells the assembler to omit
the address register contribution to the effective address. Also note that we omitted the outer
displacement; by default, the assembler knew to omit this term. These conventions are

assembler-dependent; consult your assembler documentation for specific details on how to
omit optional terms.

12-3. BIT FIELD INSTRUCTIONS

Bit fields represent a new data type for the MC68000 family. They allow you to group a
series of bits together as a single entity, without regard to byte alignment. This grouping allows

you to pack your data more tightly — a useful tool if you work with large data bases or data
communications.

MC68020 bit fields range from a single bit up to 32 bits in length. The processor
understands bit fields in terms of starting byte, offset from that byte, and field width. The
standard assembler syntax for this is

base _ byte{off set: width |

You may specify the base byte using almost any of the standard addressing modes. The
offset can be any value from 8000 0000 to 7FFF FFFF. When you use a data register for the
base byte, the offset is naturally limited to 32. Width can be a value from l to 32.

Since bit fields have no formal byte boundaries, the way that the starting address and
offset combine to form the starting bit is unlike the way that normal byte, word, and long words
align. Instead of counting from the least significant bit to the most significant bit, the offset
starts counting from the most significant bit.

198 68000 Assembly Language Programming

Bit field offset 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Byte offset 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 10

Address 1000 1001 1002
1003

As you can see, the bit specified by the notation 1000,25:3} corresponds to memory
address 1003, bits 4, 5, and 6.

At first inspection, this may seem like an awkward method to get to the start of a bit field.
However, since the point of bit fields is to construct a tightly packed record, you normally will
have several fields stored adjacently. The byte boundaries within the set of bit fields are

irrelevant; your only concern as far as byte boundaries go is the total size of the bit-field data.

Let's look at a common application for bit fields. Often in computer applications, you
need to insert a "time tag" along with some transaction data. For example, if you are writing a
program for an automatic teller machine, you might keep an audit of all transactions done

through the machine. Associated with each audit record may be the user's ID number, the teller
ID, the transaction performed, and the time and date.

You can choose to use a long word for the user ID and short words for the teller ID and
transaction type. These sizes should be sufficient regardless of the ultimate size of the data base
(allowing for expansion). The time and date information is different, however, in that these
entries are fixed in size; there will never be more than 60 seconds in a minute, and so on.

If you only need to store a few dozen records a day, you might go ahead and use bytes for
the hour, minute, second, month, day, and year. However, if you need to store a few thousand
records each day, the storage requirements for your audit trail may make the data base
unmanageably large. If you can somehow cut down on the size of the time/ date tag, you can
keep the data base size under control.

There are two common solutions to this problem. The first is to convert the time and date
data into an offset (in seconds) from some arbitrary point in the recent past. A long word can
contain the number of seconds for more than 100 years, so this is a viable alternative. However,
to convert between a count in seconds and a real time and date requires substantial CPU time.

The second alternative for storing the time/ date tag makes use of bit fields. Since each
element of the time/ date tag has a fixed maximum, you can compact the binary values of the
tag into a single long word entry.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Year
(since 1980)

If you were using any of the other MC68000-family processors, converting between these
bit fields and the expanded version of the time and date would require a series of masking and

shifting. With the MC68020's bit-field manipulation instructions, you can insert and extract
the time/ date information from the bit fields with a few simple instructions. Program 12-3A
packs a table of time/ date information into a long word; Program 12-3B unpacks a long word
of time/ date information back into tabular format.

Advanced MC68020 Addressing and Instructions 199

Purpose: Convert the time/ date information stored in the byte buffer TIM DAT into a
single long word TIMTAG.

Sample Problem:
Input: TIMDAT

Output: TIMTAG

(6000) = 13 hours
(6001) = 52 minutes
(6002) = 1 9 seconds
(6003) = 3 month
(6004) = 1 8 day
(6005) = 6 year (since 1980)

(6006) = 514A40C5

Program 12-3A:
00006000 DATA EQU $6000
00004000 PR0GRAM1 EQU $4000
00005000 PR0GRAM2 EQU $5000

00006000 ORG DATA
006000 0000000D TIMDAT DC.B

13 HOURS
006001 00000034 DC.B

52
MINUTES

006002 00000013 DC.B
19

SECONDS
006003 00000003 DC.B 3 MONTHS
006004 00000012 DC.B

18 DAYS
006005 00000006 DC.B 6 YEARS (SINCE 1980)
006006 00000000 TIMTAG DC.L 0 PACKED TIME TAG

00004000 ORG PR0GRAM1 004000 207C00006000 PGM_12_3A MOVE A . L TIMDAT/ AO ADDRESS OF UNPACKED TIME/DATE
004006 227C00006006 MOVEA.L TIMTAG/ A1 ADDRESS OF PACKED TIME/DATE
00400C 2018 MOVE.B (AO)*, DO PACK HOURS
00400E EFD10005 BF INS DO, (A1X0:

5> 004012 2018 MOVE . B (AO)*/ DO PACK MINUTES
004014 EFD10146 BFINS DO/ (A1X5:

6> 004018 2018 MOVE.B (A0)+/ DO PACK SECONDS
00401A EFD102C6 BFINS DO/ (A1X11 :6>
00401 E 2018 MOVE.B (A0)+/ DO PACK MONTHS
004020 EFD10444 BFINS DO/ (A1X17 :4>
004024 2018 MOVE.B (A0)+/ DO PACK DAYS
004026 EF010545 BFINS DO/ (A1X21 : 5> 00402A 2018 MOVE.B (A0)+/ DO PACK YEARS
00402C EFD10686 BFINS DO/ (A1X26

:6>
004030 4E75 RTS

Purpose: Convert the packed long word at TI MTAG into its time and date components and
store this information into the byte table at TIMDAT.

Sample Problem:
Input: TIMTAG (6006) = 514A40C5

Output: TIMDAT (6000)
= 13 hours

(6001) = 52 minutes

(6002) = 19 seconds
(6003) = 3 month

(6004)

= 18 day

(6005) = 6 year (since 1980)

200 68000 Assembly Language Programming

Program 12-3B:
00006000 DATA EQU $6000
00004000 PR06RAM1 EQU $4000
00005000 PR0GRAM2 EQU $5000

00006000 ORG DATA
006000 0000000D TIMDAT DC.B

13
HOURS

006001 00000034 DC.B
52

MINUTES
006002 00000013 DC.B 19 SECONDS
006003 00000003 DC.B 3 MONTHS
006004 00000012 DC.B

18
DAYS

006005 00000006 DC.B 6 YEARS (SINCE 1980)
006006 00000000 TIMTAG DC.L 0 PACKED TIME TAG

ORG PR0GRAM2
005000 207C00006000 PGM_12_3B MOVEA.L TIMDAT, AO ADDRESS OF UNPACKED TIME/DATE
005006 227C00006006 MOVEA.L TIMTAG, A1 ADDRESS OF PACKED TIME/DATE
00500E E9D10005 BFEXTU <A1 >{0:5>,

DO

EXTRACT HOURS
005012 10C0 MOVE.B

DO, (A0)+ 00501 4 E9D10146 BFEXTU <A1X5:6>,

DO

EXTRACT MINUTES
005018 10C0 MOVE.B

DO, (A0)+ 00501 A E9D102C6 BFEXTU (A1X11 :6>,
DO

EXTRACT SECONDS
00501 E 10C0 MOVE.B

DO, (A0)+ 005020 E9D10444 BFEXTU (A1X17:4>,
DO

EXTRACT MONTHS
005024 10C0 MOVE.B

DO, (A0)+ 005026 E9D10545 BFEXTU (A1)<21 :5>,
DO

EXTRACT DAYS
00502A 10C0 MOVE.B

DO, (A0)+ 00502C E9D10686 BFEXTU (A1 X26:6>,
DO

EXTRACT YEARS
005030 10C0 MOVE.B

DO, (A0)+ 005032 4E75 RTS

CONCLUSION

This chapter introduced some of the advanced features of the MC68020 processor. We
could not give examples of all of the new instructions and addressing modes. However, we hope
we have presented enough examples to show you where to begin.

13

Connecting to Peripherals

Thus far in our programming examples, we have highlighted the internal workings of the
processor. Our programs work on data stored in memory and return the result of the
computation to some other location in memory.

This type of programming is, of course, not truly representative of real-life computing
needs. A computer system, as you know, consists not only of the CPU but also of displays, disk

drives, keyboards, printers, and other "peripheral" devices. This chapter deals with the basics
of how the CPU and these peripherals interact.

TYPES OF PERIPHERALS

The term peripheral applies to a broad range of devices. These devices may be large or
small; they may be contained in the same cabinet as the CPU or they may be located in another
building. They may consist of a complex system of circuitry or they may consist of a single
chip. For our needs, consider a peripheral to be any part of the computer system other than the
CPU.

STORAGE DEVICES

The CPU has space for only a limited amount of storage in its registers. Storage devices
provide a means of holding data while you use the CPU registers for other data.

On-Line Memory

The storage device that you are probably most familiar with is the on-line memory in the form
of random access memory, or RAM. RAM offers short-term storage for our data and
programs. The word random tells you that you can access any part of memory without regard

to the location of the previous or next access. On-line memory on the MC68000 systems is
byte-addressable; that is, each byte has its own address and can be accessed individually.

There are many varieties of system memories (for example, static random access memory,

SRAM, and read-only memory, ROM). They all interface closely, both physically and electri-
cally, to the CPU. Like the CPU, the system memories consist of integrated circuits of the same

type as those that make up the CPU. The connection between the CPU and memory is the
system bus.

For the CPU to fetch and store data between itself and memory, it applies a low voltage to
the lines on the bus; memory, in turn, interprets the voltages as requests for fetches or storage of
data. The delay between the CPU request and the memory response is minimal; depending on
the system configuration, the CPU may need to wait only an instant for memory to respond, or,
in the optimal system, not at all.

201

202 68000 Assembly Language Programming

Off-Line Storage

In the ideal system, the on-line memory supplies all of the storage needs. In reality,
however, this is not the case. Even though the price of memory keeps dropping while the
storage capacity of individual chips keeps rising, some applications require more data than can
be economically or physically put into the system.

A second problem exists with relying solely on on-line memory: it requires constant
power in order to keep its internal circuitry from forgetting its contents. If power should for
some reason fail (for example, if you turn off the computer), the computer will forget what it
was doing.

To handle this situation, computer systems incorporate various off-line storage devices.
Such devices include hard disks, floppy disks, and magnetic tape. By using technologies

different from those employed by on-line memory, these devices can store data more densely

than on-line memory can. The trade-off, however, is that the CPU can't access individual bytes
stored on off-line memory as it can with on-line memory. It must read blocks of data (typically
256, 512, or 1024 bytes at a time) from the off-line storage device into on-line memory and then
search for the appropriate byte.

In addition to the time overhead required to read in blocks of data, these devices also

introduce a mechanical delay. While access to the on-line memory meant dealing only with
electrical signaling (very fast), off-line devices require certain mechanical actions to read or
write a block of data. For example, when your data is stored at the end of a magnetic tape, for
the CPU to access that data, the tape drive must unwind the tape before it can find the data.

To combat the problem of storing data for long periods, the off-line storage devices use

technologies to store the data that don't require constant electrical power. Because the
electrical and mechanical methods used by these devices differ from those making up the

circuitry of the CPU (and on-line memory), the CPU cannot directly access the data via the
system bus; it must work through some translator. This requirement adds access overhead as
well as circuit complexity.

COMMUNICATIONS DEVICES

Along with its storage requirements, the CPU must have some means for the user to enter

data and see the results of the CPU's computations. Devices that give the user this ability
include video terminals, keyboards, and printers, as well as some more exotic devices such as
mice, joysticks, plotters, and analog/ digital converters.

As we said earlier, the CPU and its on-line memory use specific voltages to communicate
with each other. To keep power consumption and heat to a minimum, these voltages are
typically very low. For the sake of speed, the transitions between a binary 1 and a binary 0
occur quickly, as shown in the following:

Timeframe TO T1 T2 T3 T4 T5 T6 T7

Voltage

Value 0 110 10 0

These voltage levels and signal speeds require that the CPU and memory reside close to
each other, within an enclosure that protects the signals from outside interference (such as

Connecting to Peripherals 203

radio and television signals, radiation from fluorescent light bulbs, and so on). Special wiring

on printed circuit boards ensures that the signal level doesn't drop as it would with the different
resistance and capacitance of ordinary wire.

Our input and output devices however, may reside some distance away from the actual

computer enclosure — in a different room, on a different floor, or even in a different city. If we
were to simply connect the system bus to the terminal or printer via a cable, by the time the
electrical signals reached the other end of the cable, they might look like this:

Timeframe TO T1 12 13 14 T5 T6 T7

Voltage

Value ? ? ? ? ? ? ? ?

It isn't practical to build a network of enclosed printed circuit boards between the
computer and its peripherals, so the next best thing to do is to use some signaling convention
that is less affected than these boards by radiation and other interference. As when you use

off-line storage devices, you must pay a price for this convenience. To prevent the intrinsic
capacitance of the wire and the outside radiation of the environment from ruining signals, you
must make the transitions between binary Is and Os much more pronounced.

To do this, you must slow down the transitions. The VMEbus (a common system bus used

within MC68000-based systems) transmits data at up to 10 million bits per second over each of
its 32 data lines (for a net of 320 million bits per second). Data traveling to a terminal typically

travels at speeds no greater than 9600 bits per second — and its cable has only one data line!

CPU SUPPORT PERIPHERALS

In addition to communicating with peripherals outside of the computer enclosure, the
CPU must also interface with circuitry that supports the functions of the CPU. Such support
peripherals include timers (for programming delays as well as maintaining the system time),

special-purpose processors (such as units that perform floating-point arithmetic), and memory
management units (which control memory accesses in multiuser systems).

These support chips generally work at the same voltages as do the CPU and on-line

memory. Problems arise in that while these support chips are "intelligent," they need direction
from the CPU as to how they should work.

CPU — PERIPHERAL INTERFACE

We have discussed several types of peripherals and the problems associated with connect-
ing the CPU with them. In summary, these are the problems:

• Peripherals may be slower than the CPU

• Peripherals may use different internal electrical technologies

• Peripherals may need instructions on how to do their work

• Peripherals may use different basic storage sizes (for example, blocks instead bytes).

Computer designers have overcome these interface problems by creating special circuits,

often known as "device controllers." Often, these circuits fit on a single integrated circuit chip.

20 4 68000 Assembly Language Programming

Device controllers form a two-sided interface that connects the CPU to the dissimilar peri-
pheral, as shown:

System
External

bus cable CPU Controller Peripheral

On one side of the interface, device controllers operate at the well-defined signal levels
found on the system bus, as do on-line memories and other CPU support chips. On the other
side of the device controller, the signal levels and protocols are appropriate for the particular
attached peripheral.

Device controllers typically have one or more registers. Depending on the function of the
controller and on the complexity of the peripheral it interfaces, there may be only a few
registers or there may be 100 or more. These registers differ from the address and data registers
found in the CPU in that they are generally highly specialized.

Often, a single bit within these registers may control or show the status of a particular

aspect of the peripheral. Such registers are called "control" registers and "status" registers,
respectively. So that the CPU can pass data between itself and the peripheral, the controller

usually has one or more "data" registers.
Since the device controller chips have the same electrical characteristics as does the CPU,

and since the registers are sized like memory (that is, in bytes, or in some cases, in words or long
words), the controller attaches directly to the system bus. To the CPU, the controller appears at
some specific address in memory, just as if it were standard RAM. This means that the CPU
can use regular MOVE instructions to read and write to the controller.

In most systems, the designers dedicate a certain portion of the address space to corre-
spond to device controllers. For example, addresses $00000000 to S007FFFFF may be RAM;

addresses $00800000 to $80000FFF may correspond to the various device controllers in the

system. This simplifies the system-control circuitry and lessens the chance that you will
inadvertently try to use device-controller addresses as normal address space.

Figure 13-1 shows the registers associated with a primitive parallel-printer controller and
how they relate to the CPU / printer interface. While this controller is oversimplified compared
to one you would find in a real application, it does help describe how a controller works.

The function of the data register may be obvious to you: through it the CPU passes
characters to the printer for printing. The control register passes commands from the CPU to
the printer. In our illustration case, we have two control bits: the data ready bit and the
interrupt enable bit. When the CPU sets the data ready bit, the printer knows that the data lines
contain valid data. (We will discuss the meaning of the interrupt enable bit later.) The status
register has just one bit that shows whether the printer is ready to print a character.

The scenario for printing a character is as follows:

1. The CPU checks the printer ready bit in the status register.

2. If the printer is ready (if the ready bit is "true"), the CPU loads the data register with a
character.

3. The CPU signals the printer by setting the data ready bit. In the meantime, the device
controller has already copied the data onto the data lines. When the CPU sets the data

ready bit, the controller raises a "true" signal on the data ready line.

Connecting to Peripherals 205

X X X X X X
IE

DR

X X X X X X IE
PR

Data Register

Control Register

Status Register

IE = Interrupt Enable
DR = Data Ready
PR = Printer Ready
X = Unused

Figure 13-1. Printer Controller Registers

4. The printer, sensing that the data ready line has become true, reads the data lines and
begins processing the character (doing whatever printers do in order to print a

character). So that the CPU doesn't try to send another character while the printer is
still thinking about the first, the printer sends a "false" signal on the printer ready line.

5. If the CPU wants to send another character, it repeats the procedure from step l .

The program performs the interface chores described in the preceding print example.

Program

Purpose: Print a string of characters starting at PRT_ STRING. The string ends in a
NULL character (ASCII code 0).

Sample Problem:

Input: PRT STRING (6000) = "Text 0" Output: (on the printer)

00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000
00800000 PTR DATA EQU $800000
00800001 PTR CTRL EQU $800001 00800002 PTR STAT EQU $800002
00000001 DATA RDY EQU 0
00000001 PTR RDY EQU 0
00000002 I NT_ENB EQU 1
00006000 ORG DATA 006000 5465787400 PTR_STRIN6 DC.B "Text\0" DATA TO PRINT
00004000 ORG PROGRAM

004000 207C00006000 PGM 13 1 MOVE A . L #PRT STRING/ AO GET ADDRESS OF STRING 004006 4A10 LOOP TST.B (AO) END OF STRING?
004008 67000022 BEQ DONE IF SO, THEN DONE 00400C 0C3900010000 TST_STAT CMP.B PTR_STAT, #PTR_RDY PRINTER READY TO PRINT

6000
004014 6600FFEA BNE TST STAT IF NOT, KEEP CHECKING 004018 130800800000 M0VE.B (A0T+, PTR DATA LOAD DATA REGISTER 00401E 13FC00010080 M0VE.B

#DATA_RDY,~PTR_CTRL
INFORM PRINTER

0000
004026 6003FFDE

BR LOOP AND CONTINUE ...
00402A 4E75 DONE RTS

206 68000 Assembly Language Programming

Accesses to all types of device controllers, whether they be printer interfaces, disk

interfaces, or floating-point units, work similarly to our example, in that the device controllers
all have status, control, and data registers. Particular devices vary from one another according
to their functions; most devices require more of each type of register than does the device in the

example and have many status- and control-bit definitions. In all cases, however, each register
has a specific address (defined by the system designers), which is accessed by the CPU through
MOVE instructions.

ALTERNATIVE PERIPHERAL

ACCESS METHODS

The program shows one means of accessing a device controller. As you'll note, we kept
testing the status register until the printer indicated that it was ready for another character. This

method of I/O is called ' polled I/O," because the CPU continually checks, or polls, the device
to see if it is ready.

As you might guess, if someone has left the printer off-line (or powered off or unplugged
from the system), the CPU will loop indefinitely, waiting for the printer to say that it is ready. If

you are in a single-user environment (that is, if your computer supports only one user at a time),

this may not seem too important; you'll realize right away that something is wrong because the
printer isn't printing.

However, if your system supports several simultaneous users, you will soon make enemies
among your fellow users because no one can work while your program is in this tight loop.
Moreover, your program may need to monitor the status of several devices at the same time,

particularly if you are using a real-time system. You may lose valuable information from
another device (say, a temperature sensor) because you are waiting on the printer.

To handle this problem, most processors (including the MC68000 and its associated

device controllers) support two alternate means of accessing peripherals; "interrupts" and
"direct memory access" (DMA).

Interrupts

As you know, a telephone has a ringing mechanism to alert you to incoming calls. If it were
not so, you would be forced to pick up the receiver continually to check whether anyone was on
the other end. This clearly would pose a great inconvenience!

This constant checking of the telephone is analogous to using polled I/O. While in theory
it works, in most cases it proves to be, at best, cumbersome. Fortunately, most CPUs and device
controllers (including the MC68000 and its associated controllers) have a mechanism similar to

the bell on a telephone, called the "interrupt".
A device that supports interrupts can be configured (through the control register) to send

a special signal to the CPU when it encounters certain conditions. In our printer example, the
printer ready state is one such condition. When the CPU receives this signal, it knows it should

Connecting to Peripherals 207

stop whatever it is doing because some device in the system wants its attention.

As you will recall from our discussions in Chapter 3, the MC68000 dedicates a 1024-byte

block of memory as the "vector table." Certain entries in this table are reserved for "interrupt
vectors." When a device sends the interrupt signal to the CPU, the CPU responds by sending an
"acknowledged" signal to the device. The device then loads a vector number onto the system
bus.

This vector number corresponds to an entry in the vector table. Prior to enabling the

device controller, your program must have loaded this vector with the address of an "interrupt
handler. " The CPU reads the vector number sent to it by the device, looks up the vector and its
corresponding handler address, and jumps to the interrupt handler subroutine.

The interrupt handler subroutine then performs some processing with the device. In the
example of the printer, the handler might load the controller data register with the next
character to print. When it has completed what it has to do, it executes a special Return from
Exception instruction (RTE), and the CPU can continue with the program that it was
executing prior to the interrupt.

Program:

Purpose: Print a null-terminated string of characters starting at PRT_STRING. The
interrupt vector for the printer is number 64 (address $100).

Sample problem:
Input:

PRT STRING = "Text\0" Output: (on the printer)

00006000 DATA EQU
$6000

00004000 PROGRAM EQU $4000
00800000 PTR DATA EQU $800000
00800001 PTR CTRL EQU $800001 00800002 PTR STAT EQU $800002
00000001 DATA RDY EQU 0
00000001 PTR RDY EQU 0
00000002 INT EN8 EQU 2
00000100 PTR_VEC EQU 64

00006000 ORG DATA
006000 00000000 NXT CHAR DS.L 1 POINTER TO NEXT CHAR
00600A 00000000 DONE FLAG DS.L 1 POINTER TO DONE FLAG 006008 5465787400 STRING DC .B "Text\0" STRING TO PRINT
00600D 00 COMPLETE DS.B 1 COMPLETION FLAG

00004000 ORG PROGRAM
004000 2F3C00006000 PGM_13_2 MOVE.L ^COMPLETE, -(SP) PUSH ADDRESS OF COMPLETION FLAG
004006 2F3C00006008 M0VE.L #STRING, -(SP) PUSH ADDRESS OF STRING
00400C 4EBD00004020

JSR
PRINT SETUP PRINT 004012 508F ADDQ . L #8, SP CLEAN STACK

004014 4A790000600D WAITF0R TST.B COMPLETE WAIT TILL PRINT COMPLETE
00401 A 6700FFF8 BE Q WAIT FOR
00401E 4E75 RTS

004020 23FC00004048 PRINT MOVE . L #PRT_XRPT, PRT_VEC SET UP VECTOR TABLE ENTRY
00000100

00402A 23EF00040000 MOVE.L 4(SP>, NXT_CHAR GET ADDRESS OF STRING
6000

004032 206F0008 M0VE.L 8(SP), AO GET ADDRESS OF DONE FLAG
004036 4210 CLR.B (AO) INITIALIZE DONE FLAG TO FALSE
004038 23C800006004 MOVE.L AO, DONE FLAG SAVE ADDRESS OF DONE FLAG

208 68000 Assembly Language Programming

00403E 08F900010080
0001

004046 4E75

004048 2F08 PRT_XRPT 00404A 207900006000
004050 13D800800000
004056 08F900000080

0001
00405E 23C800006000
004064 4A10
004066 66000012
00406A 08B900010080

0001
004072 207900006004
004078 4610
00407A 205F WRAPUP
00407C 4E73

BSET # I N T_E NB , PTR_CTRL
RTS

MOVE.L AO, -(SP)
MOVE.L NXT_CHAR, AO
MOVE.B (A0)+, PTR_DATA
BSET #DATA_RDY, PTR_CTRL

MOVE.L AO, NXT_CHAR TST.B (AO)
BNE WRAPUP
BCLR U I NT_ENB, PTR_CTRL
MOVE.L 0ONE_FLAG, AO
NOT . B (AO)
MOVE.L (SP)+, AO RTE

ENABLE INTERRUPTS

SAVE OFF AO
GET POINTER TO NEXT CHAR
MOVE CHAR TO DATA REGISTER
INFORM PRINTER ABOUT NEW DATA
SAVE NEW STRING POINTER
IS NEW CHAR A NULL?
IF NOT, THEN WRAPUP
IF NULL, THEN DISABLE INTERRUPTS
GET USER'S DONE FLAG
SET DONE FLAG TO -1 RESTORE AO

Direct Memory Access

Direct memory access, or DMA, gives us another alternative to polled I/O. While DMA

isn't a complete substitute for polled I/O or even interrupt-driven I/O, it does let you move
data without using the CPU for every transfer.

The CPU often uses DMA when it performs DMA disk reads and writes. As we stated
earlier in this chapter, disks store their data in blocks. Whether we use polled I/O or

interrupt-driven I/O, the CPU must explicitly move data into or out of the disk device data
register. DMA lets us tell the device to read a block or more of data from the disk and store it

starting at some particular address in on-line memory. While the device is handling this block
transfer, the CPU is free to execute other sections of your program or other programs in the
system.

A device controller that supports DMA must have a bit more intelligence than one that
does not. Internally, it must check its various status bits and maintain a memory pointer that
shows where to read or write the data. Typically, a program interfacing a DMA device must tell
the device:

1. The starting memory address where the data should go or come from,

2. The function you want it to perform (for example, a disk read from disk block # 100),
and

3. The number of bytes or words to transfer.

Once the device is set up, your program tells it to perform the function. For a read, the
device waits for the ready signal from the peripheral, receives a byte or word from the
peripheral, stores the data into memory, increments its memory pointer, and decrements its
transfer count. When the device has completed transferring the requested number of bytes, it
sets appropriate status bits in its status register (and usually sends an interrupt signal to the
CPU). While the device was handling the transfer, the CPU was executing some other piece of
related or unrelated code.

DMA relieves the CPU (and programmer) of the burden of repetitive data movement.

Also, while few devices move data faster than the CPU, if several high-speed devices are
present in the system, the CPU may not be able to keep up with all of them, and hence runs the
risk of losing data. DMA lessens, if not removes, the chance of this happening.

Connecting to Peripherals 209

CONCLUSION

We have only touched on the surface of the interesting task of interfacing peripherals with
the CPU. Pursuing the topic in further detail, however, is difficult because of the wide variety of
devices available.

For the purposes of learning assembly language, be comforted in knowing that even the

most primitive operating systems usually provide you with device handlers. By using subrou-
tine calls to the system, we can effectively move data in and out of the computer system without

regard to the particular status and control bits for a particular device.

14

Exception Processing

In the last chapter, we introduced the concept of interrupt-driven I/O and said that it fell
under the broad category of exception processing. Many seemingly unrelated topics fall into

the category of exception processing, including instruction executions, hardware configura-
tions, operating systems, and array boundary checking. The common factor in all of these

exceptions is in how the CPU responds when they occur.
In this chapter, we will discuss other types of exception processing and go into greater

detail about how the processor handles various exceptions. Toward the end of the chapter, we
will discuss a concept closely related to exception processing: virtual memory.

The various members of the MC68000 family differ from one another in the ways they
handle exception processing. Fortunately, all exception processing is handled at the supervisor

level; if you are writing user-level programs, you needn't worry about the differences in the
processors. In fact, if you are content with user-level programming, you may choose to skip
this chapter entirely; your programs will function quite well without your having to know the
details of exception processing, because the operating system takes care of it for you. However,

if you are writing operating-system programs, the information in this chapter is a necessity.

THE EXCEPTION VECTOR TABLE

In Chapter 13, we learned that an interrupting device controller sends a vector number to
the CPU. The CPU, in turn, transfers control to the address stored in the vector table slot

specified by the vector number. The vector table contains more than just interrupt-handler
addresses; it contains addresses of handler routines for all types of exceptions. Whenever the
CPU must handle an exception, it fetches the address of the appropriate handler from the
exception vector table.

There is nothing special about the vector table itself; it resides in regular memory, and you
must load its contents just as you would load any other data structure. If you are using the
MC68010, MC68012, or MC68020, you can even change the starting address of the table from
its default base of $00000000 to anywhere in memory, via the vector base register (VBR).

Table 14-1 shows the various assignments of the slots of the exception vector table. Some
slot locations have well-defined definitions, for example, the bus error exception. Other slots

are user-defined, for example, device interrupts. Still other slots are labeled as "reserved";
Motorola may use these in future MC68000 products.

Depending on what your system's configuration is, not all of the slots will be of use to you;
for example, the floating-point exception slots are relevant only if you have a computer with an
MC68020 central processor and an MC68881 floating-point coprocessor.

Under some advanced operating systems, users are prevented, through hardware and
software means, from accessing the exception vector table; clearly, randomly loading data into
the vector table can cause system failure or lost data. In these systems, the operating system
takes responsibility for initializing the vectors and handling the exception processing.

If your system limits your access to the exception vector table, you may not be able to try

211

212 68000 Assembly Language Programming

Table 14-1 . Exception Table Assignments

Vector Number Offset Assignment

0 000 Reset: Initial interrupt stack pointer
1

004
Reset: Initial program counter

2 008 Bus error
3 OOC Address error
4 010 lliegal instruction
5

014
Divide by zero

6 018 CHK, CHK2 instruction
7 01 C cpTRAPcc, TRAPcc, TRAPV instruction
8 020 Privilege violation
9 024

Trace
10 028 A-line emulator
11 02C F-line emulator
12 030 Reserved
13

034 Coprocessor protocol violation
14 038 Format error
15 03C Unitialized interrupt
16-23 040-05C Reserved

24 060 Spurious interrupt
25 064 Autovector (level 1)
26 068 Autovector (level 2)
27 06C Autovector (level 3)
28 070 Autovector (level 4)
29 074 Autovector (level 5)
30 078 Autovector (level 6)

31
07C Autovector (level 7)

32-47 080 -0BC TRAP #0-15 48 OCO FPCP Branch or set on unordered condition
49 0C4 FPCP Inexact result
50 0C8 FPCP Divide by zero
51 OCC FPCP Underflow
52 0D0 FPCP Operand error
53 0D4 FPCP Overflow

CppD Qmnali nn MAM
rrur oignanng inmi\j

55 ODC Reserved
56 0E0 PMMU configuration
57 0E4 PMMU illegal operation
58 0E8 PMMU access level
59-63 OEC-OFC Reserved
64-255 100-3FC User defined vectors

FPCP-floating point coprocessor PMMU = paged memory management unit

out everything we talk about in this chapter. Do check, however, in your system's manuals.
Usually, the system designers leave enough "hooks" in the system so that you can write your
own exception handlers.

Exception Processing 213

TYPES OF EXCEPTIONS

Exceptions fall into two broad categories: exceptions that originate from within the CPU
and those that come from outside the CPU. Interrupts are an example of the latter. The
external exceptions include

Interrupts

Bus errors

• System reset.

Exceptions may originate internally also, coming from the execution of certain instruc-
tions. Some instructions always produce exceptions. Other instructions may cause an excep-

tion if they are executed incorrectly. The internal exceptions include

• Odd addressing errors

• Illegal instructions (invalid op-codes)

• Illegal operations (such as divide by zero)

• Invalid use of a coprocessor

• Execution tracing

• Privilege violations.

When one exception occurs while another exception is still pending, the CPU arbitrates

according to the priorities, as shown in Table 14-2.

EXCEPTION PROCESSING SEQUENCES

All of the various exceptions cause the CPU to follow a basic pattern of execution on all of
the MC68000 processors. However, the specific details of a particular exception on a particular
processor vary enough that we will discuss each type of exception separately, noting when one
processor functions differently from another.

The general pattern followed by the CPU when starting exception processing is

1. Copy the status register to a temporary internal register.

2. Set the supervisor bit and clear the trace bit(s) in the status register (depending on
what the current machine mode is, they may already be in this state).

3. Fetch the appropriate exception handler address from the vector table. Depending on
what the exception type is, the CPU will either know intrinsically what vector location
to use, or, in the case of interrupts, it will ask the peripheral for the vector number.

4. Depending on the exception and processor type, push additional internal informa-
tion onto the stack.

5. Push the old version of the status register onto the supervisor stack.

6. Push the current program counter value onto the supervisor stack.

7. Begin execution in the exception handler program.

After the exception handler completes what it has to do, it may take one of two actions. If
the exception was the result of an error (hardware failure or serious programming error), the
exception handler may transfer control to the operating system, which will take further action

214 68000 Assembly Language Programming

Table 14-2. Exception Priorities

Group/ Priority Characteristics

0.0 Reset Aborts all processing (does not save old contents)

1 .0 Address error Suspends processing (saves old contents)

1 .1 Bus error

2.0 BKPT, CALLM, CHK,
CHK2, cp Mid instruction,
cp Protocol violation,
cpTRAPcc, Divide by
zero, RTE, RTM, TRAP,
TRAPV

Exception processing is part of instruction
execution

3.0 Illegal instruction, F-line,
A-line, privilege violation,
cp preinstruction

Exception processing begins before instruction is
executed

4.0 cp post instruction Exception processing begins when current
instruction or previous exception processing is
completed

4.1 Trace

4.2 Interrupt

(such as aborting your program and returning you to the monitor). If the exception was not due
to a fatal error, but rather part of normal processing (as in the case of an interrupt), the

exception handler executes a special instruction, RTE (Return from Exception). This instruc-
tion tells the CPU to

1 . Pull the old program counter address from the supervisor stack and return it to the
program counter register.

2. Pull the old status value from the supervisor stack and return it to the status register.

3. Pull any other stacked information back into the internal registers from which it was
copied.

4. Continue execution at the point where the program was interrupted.

STACK FRAMES

We said that the CPU pushes certain information onto the supervisor stack at the
beginning of the exception. Depending on which CPU and exception type are involved, the
amount of this information may vary from 3 words of data to as many as 90 words. The data

structure on the stack is called the "stack frame." The MC68000 and MC68008 use two
unnamed stack frames, while the MC68010, MC68012, and MC68020 use stack frames that are
named according to a format field included in the stacked data.

Exception Processing 215

Figures 14-1 through 14-9 show the various types of stack frames. For now, just take a
glance at these different stack frames. We will tell you which ones are used with which
exceptions later in this chapter.

INSTRUCTION TRAPS

Instruction traps occur when your program executes certain instructions. Your program
can request exception processing explicitly through the TRAP instruction. Often, the operating
system provides you with some standard functions, such as input and output services, timing
services, and intertask communications. Typically, these are implemented through TRAPs.

Certain other instructions cause exception processing when you attempt to execute those
instructions incorrectly. For example, if you attempt to divide by zero (which would result in an
undefined quotient), the CPU considers the action reason to perform exception processing.
Instructions that may cause exception processing (in some instances) include TRAPV, CHK,
CHK2, DIVS, DIVU, CALLM, and RTM. Your processor may not include all of these
instructions.

On the MC68000 and the MC68008, the processor builds a three-word stack frame, as
shown in Figure 14- 1 . On the MC68010 and the MC68012, the processor builds a four-word

stack frame (called "format $0"), as shown in Figure 14-3. On the MC68020, a TRAP
instruction causes a format $0 stack frame (Figure 14-3), while all other instruction exceptions
push a format $2 stack frame (Figure 14-5).

ILLEGAL/UNIMPLEMENTED

INSTRUCTIONS

As we pointed out, MC68000 instructions are one word long (plus any additional

operands). Since a word is 16 bits, this gives a potential of 216 (65536) instructions. The
processor, however, implements far fewer instructions than this — something on the order of
300 to 500 instructions (60 or so basic instructions, with variations due to addressing modes).
Clearly, this leaves many instruction combinations undefined.

The MC68000 makes a distinction between illegal and undefined instructions. By defini-
tion, all instruction codes that have the binary patterns 1010 and 1111 in their high bits are

defined as "unimplemented" instructions rather than illegal instructions. These instructions

SP- + 00
+ 02

f04

Status register

Program counter

Figure 14-1 . 68000 68008 Short Stack Frame

216 68000 Assembly Language Programming

(known as "A-line" and "F-line," respectively) allow you to create new instructions that are not
in the standard MC68000 instruction set; for example, floating-point instructions.

Whenever you execute an unimplemented instruction, the CPU vectors through the

A-line or F-line vector-table entry. For illegal instructions, the CPU vectors through the illegal
instruction vector. The MC68000 and MC68008 both create a three-word stack frame (Figure
14-1). The other processors create a four-word format $0 stack frame (Figure 14-3).

The exception handler can then perform whatever steps it needs to emulate or reject the
instruction. Since the stack contains the address of the faulting instruction, the emulation
routine knows where to look for the instruction code and operands. When it has completed its
emulation, it then modifies the stacked program counter so that it points to the next instruction
past the emulated instruction and returns control to the user program.

SP

15
+ 00
+ 02
+ 04
+ 06
+ 08

+ 0A
+ 0C

Access Type

Current Cycle Address (high-order)
Current Cycle Address (low-order)

Instruction Register
Status Register

PC (high-order word)
PC (low-order word)

0 = Write cycle aborted
1 = Read cycle aborted
0 = Instruction in progress
1 = Exception processing
Function Code (FC2, FC1, FC0)

Bit No

1 6-Bit Words-

Figure 14-2. 68000/68008 Bus and Address Error Stack Frame

15 0

SP- +00 Status register
+ 02

Program counter + 04

+ 06 0 0 0 0 Vector offset

Figure 14-3. Format $0 Stack Frame

Exception Processing 217

The MC68020 processor carries this process a step further. Since it can interface to a

coprocessor (such as the MC68881 floating-point processor), it considers all F-line instructions
as potential coprocessor instructions. After deciding that it cannot execute the instruction by
itself, it looks for any attached coprocessor that may execute the instruction. If the MC68020
finds a coprocessor, that coprocessor will execute the instruction; the CPU does not perform

the exception. If no coprocessor responds, the CPU traps through the F-line vector.

ADDRESS ERRORS

All instructions must lie on word (even-byte) boundaries. Also, on all processors except
the MC68020, word and long-word operands must also lie on even-byte boundaries. If your
program attempts one of these illegal memory accesses, the CPU traps through the address

error vector. The MC68000 and MC68008 create a seven-word stack frame (Figure 14-2), the
MC68010 and MC68012 build a format $8 stack frame (Figure 14-6), and the MC68020 builds
a format $A stack frame (Figure 14-8).

SP-

+ 00

+02

+04

+06

Status register

Program counter

0 0 0 1 Vector offset

Figure 14-4. Format $l Stack Frame

SP-

+ 00

+ 02

+ 04

+ 06

+08

+ 0A

Status register

Program counter

0 0 10 Vector offset

Instruction address

Figure 14-5. Format $2 Stack Frame

218 68000 Assembly Language Programming

TRACING

Recall from Chapter 3 that the MC68000 status register has a bit defined as the trace bit
(the MC68020 has trace two bits). When tracing is enabled (that is, when this bit is set), the
CPU executes an instruction. Then, before executing the next instruction, it traps through the

trace vector to an exception handler. When the CPU begins exception handling, it automati-
cally disables the trace bit so that the exception handler can run unhindered.
The MC68020 gives you a more selective form of tracing, since you can configure it (by the

right combination of trace bits) to trace after every instruction or else trace only after executing
a change of flow instruction, such as a branch, jump, or subroutine call.

The MC68000 and MC68008 use the three-word stack frame (Figure 14-1). The MC68010
and MC68012 use the format $0 stack frame (Figure 14-3). The MC68020 uses the format $2
stack frame (Figure 14-5).

With the proper exception handler, tracing can provide a means of debugging programs.
The exception handler can be written to accept commands from the keyboard, display registers

and data, and return back to your program. This isn't the only way to implement a debugger,
however; other methods involve insertion of instructions (for example, a TRAP) into your
program. Using this method, you can execute many instructions before entering the exception
handler.

BREAKPOINTS

In certain hardware-emulation schemes, it may be useful for you to notify external
hardware that the CPU has reached a certain point in a program. On the MC68000 and
MC68008, you can do this by inserting an illegal instruction into the program and installing
hardware that monitors the address bus lines, waiting for an access to the illegal instruction
vector address. The hardware can then take whatever action it sees fit.

The other processors, however, don't allow you to follow this procedure since they allow
you to redefine the vector table base address (through the vector base register, VBR). These

processors define a special instruction group called "breakpoint" instructions (codes $4848
through $484F). When the CPU attempts to execute these instructions, it traps through the

illegal instruction vector but also issues a special signal over the bus called a "breakpoint bus
cycle," which external hardware can look for.

The MC68020 offers additional flexibility with the breakpoint instructions. After it
attempts to execute the breakpoint instruction, it sends the breakpoint bus cycle. If external
hardware chooses, it may load a new instruction into the processor. If this happens, processing
continues without the exception occurring; if the hardware instead signals a bus error, the
MC68020 processes the exception.

Breakpoints represent a sophisticated use of the MC68000. In normal applications, you
will probably never use them.

FORMAT ERROR

The MC68020 has three instructions that perform error checking on stack-frame data.
These instructions are Call Module (CALLM), Return from Module (RTM), and Coprocessor

Exception Processing 219

Restore (cpRESTORE). These instructions, when executed, expect the stack frame to contain
certain descriptors and format numbers; if an error exists, the CPU will trap through the
format error exception vector using a format $0 stack frame (Figure 14-3).

INTERRUPTS

We have already discussed interrupts in some detail. What we will cover in the following
paragraphs is what the processor does when it receives an interrupt.

The CPU can run at any of eight levels, as defined by the interrupt mask in the status
register. I nterrupts are also prioritized; the interrupting device indicates its priority by raising a

signal on one or more of three interrupt-request lines.
If the value of the interrupt mask is less than the value on the interrupt-request lines, the

CPU begins service on the interrupt. If the value of the interrupt mask is greater than or equal
to the value on the interrupt request lines, the CPU ignores the request. A special case occurs

when the interrupt request lines are all set. This is called a "nonmaskable" interrupt, and the
CPU will service the interrupt regardless of the state of its interrupt mask.

Unlike other exception types where the vector number is determined by the particular
exception, with interrupts the requesting device specifies the vector number. It may do so in one
of two ways: explicitly, by giving the processor a vector number, or implicitly, by using

"autovectoring."
When the CPU is ready to service the interrupt, it sets its interrupt mask (in the status

register) to the value of the interrupt request lines. It then sends a special signal, called

"interrupt acknowledge," to all devices. The interrupting device may then load a vector number
onto the data bus. In some cases, you can program the device to provide a specific vector
number; in other cases, external circuitry associated with the device determines the vector
number.

In some simple computer systems, there may be only a few devices capable of interrupting
the CPU. In such cases, it may be undesirable to build external circuitry for providing the
vector number. To handle this case, the MC68000 processors provide autovectoring. After the
CPU acknowledges the device, the device may signal the CPU to use one of eight vectors
reserved in the vector table for autovectoring. The CPU then chooses one of these eight based
on the priority of the interrupt lines.

A special case arises when no device responds to the interrupt-acknowledge signal. In this

case, the CPU traps through the "spurious interrupt" vector. Another special case arises when a
device with a programmable vector interrupts the CPU, but the operating system has not yet
programmed its vector number. In this case, the device produces a special vector number and
the CPU traps through the uninitialized vector.

After obtaining a vector number, the CPU creates a stack frame on the supervisor stack.

The MC68000 and MC60008 create a three-word stack frame, as shown in Figure 14-1. The
MC68010 and M68012 create a format $0 stack frame, as shown in Figure 14-3. If it is
interrupted between main processor instructions, the MC68020 also creates a format $0 stack
frame; if it is interrupted while a coprocessor is executing an instruction, the CPU creates a

format $9 stack frame (Figure 14-7).
Recall, too, that the MC68020 has two supervisor bits: the S bit, present in all family

members, and the M bit, found only on this processor. If the M bit is set, the CPU builds the

stack frame on the master stack; it also builds a "throwaway" stack frame (format $l , Figure
14-4) on the interrupt stack.

220 68000 Assembly Language Programming

BUS ERRORS AND VIRTUAL MEMORY

Whenever the CPU reads or writes to memory, it expects memory to respond with a

"transfer acknowledged" signal. If, however, the memory referenced does not exist, it cannot
acknowledge the transfer. Typically, a system will make use of a programmable clock that starts
at the beginning of the memory cycle. If, after a certain time period, the addressed memory does

not respond, the clock will "time out" and generate a bus error signal to the CPU. In systems
that include a memory management unit (MMU), the MMU will verify that the addressed

SP-

+ 00

+02

+ 04

+ 06

+08

+ 0A

+ 0C

+ 0E

+ 10

+ 12

+ 14

+ 16

+ 18

+ 1A

Status register

Program counter

10 0 0 Vector offset

Status word

Fault address

Reserved

Data output buffer

Reserved

Data input buffer

Reserved

Instruction input buffer

Internal information (16 words)

+ 28

Figure 14-6. Format $8 Stack Frame

Exception Processing 221

memory exists. If it does not exist, the MMU will generate the bus error signal to
the CPU.

On the MC68000 and MC68008, upon receipt of the bus error signal, the processor will

build a seven-word stack frame on supervisor stack (Figure 14-2) and trap through the bus
error vector.

The MC68010, MC68012, and MC68020 implement "virtual memory." In a virtual
memory system, a program can access more memory than is physically present in the system;
the data may reside in memory or on disk. When external hardware signals the bus error, these
processors save additional data onto the stack frame. This data includes certain internal CPU
registers and other information that permit it to continue execution of an instruction after the
bus error has been corrected.

The MC68010 and MC68012 create a format $8 stack frame (Figure 14-6). The MC68020
creates one of two stack frames; either a format $A stack frame (Figure 14-8), if the bus error
occurred during an instruction fetch, or a format $B stack frame (Figure 14-9), if the bus error
occurred during instruction execution.

After trapping through the bus error vector, if the system does not implement virtual
memory, the operating system takes normal steps to notify the user of the error. However, if the
system permits virtual memory, the operating system determines whether the requested
memory resides on disk. If it does, the operating system can swap old data back out to disk and
read in new data. After the data has been brought into memory, the CPU can restore the
stacked data and pick up execution of the instruction where it left off.

Virtual memory is useful in large (many user) systems. It is also useful when dealing with a
large data set since it allows you to deal with the data base as though it was memory resident.
Also, since the disk I / O for swapping pages in and out of memory is hidden from your program

(it's handled by the operating system) if you get more memory for your computer at some later
point, your program remains unchanged.

SP-

+00

+ 02

+04

+ 06

+ 08

4 OA

+ 0C

+ 0E
+ 10

+ 12

Status register

Program counter

10 0 1 Vector offset

Instruction address

Internal information (4 words)

Figure 14-7. Format $9 Stack Frame

222 68000 Assembly Language Programming

+ 00

+ 02

+ 04

+ 06

+ 08

+ 0A

+ 0C

+ 0E

+ 10

+ 12

+ 14

+ 16

+ 18

+ 1A

+ 1C

+ 1E

Status register

Program counter

10 10 Vector offset

Internal information

Status word

Instruction pipe stage C

Instruction pipe stage B

Data cycle fault address

Internal information

Data output buffer

Internal information

Figure 14-8. Format SA Stack Frame

RESET

The reset exception is unique among the various exception types in that it does not bother

to save any information on the stack. In this context, "reset" refers to a hardware reset rather
than execution of the RESET instruction. Your system probably has a reset switch somewhere
on it, or else reset may be connected to the on off switch.

When an external reset occurs, current processing is aborted and the following happens:

1. In the status register, the supervisor bit is set, the master bit is cleared (MC68020
only), the trace bit(s) is cleared, and the interrupt mask is set to level 7.

2. The vector base register is set to $0000 (MC68010-MC68020 only).

3. The cache control register is cleared (MC68020 only).

4. The processor loads the supervisor stack pointer with the address at vector entry 0,
and the program counter with the address at vector entry 1.

5. The processors assert signals to the peripherals to reset themselves.

Exception Processing 223

SP-

+ 00

+ 02

+ 04

+ 06

+ 08

+ 0A

+ 0C

+ 0E

+ 10

+ 12

+ 14
+ 16

+ 18

+ 1A

+ 1C

+ 1E

+ 20

+ 22

+ 24

+ 26

+ 28

+ 2A

+ 2C

+ 2E

+ 30

Status register

Program counter

10 11 Vector offset

Internal information

Status word

Instruction pipe stage C

Instruction pipe stage B

Data cycle fault address

Internal information

Data output buffer

Internal information

Stage B address

Internal information

Data input buffer

Internal information (22 words)

+ 5A

Figure 14-9. Format $B Stack Frame

224 68000 Assembly Language Programming

6. The CPU begins execution at the new program counter. Typically, code is contained

in a read only memory (ROM) that "bootstraps" the system (that is, it reads the
operating system from disk into memory).

Note: The vector fetches for the stack pointer and program counter occur in what is called

"supervisor program space," while normal fetches occur in "supervisor data space." This
permits external hardware to break up memory. Normal vectors can reside in regular system
memory (RAM), while the reset vectors can be stored in a physically separate ROM.

15

Interrupts And Other Exceptions

The previous chapter presented an overview of exception processing for the MC68000
family. This chapter explores the same subject in greater detail, concentrating on the most

common family member, the MC68000 itself. While some of this material may seem redun-
dant, exceptions play such an important role in MC68000-based systems that we feel they merit

the level of detail included here.

Interrupts are inputs that the CPU examines as part of each instruction cycle.
These inputs allow the CPU to react to asynchronous events more efficiently than by
polling devices. Trie use of interrupts generally involves more hardware than does

ordinary (programmed) I/O, but interrupts provide a faster and more direct response.'
In the MC68000, interrupts are but one category of events described as exceptions.

Although this nomenclature is not used in other microprocessors, it is rather appropri-
ate with the MC68000 since the number and types of events that can initiate exception

processing extend well beyond the typical external interrupt requests. None-
theless, before proceeding to describe the complete exception processing system pro-

vided by MC68000, let us discuss some general characteristics and considerations of
interrupts since these are the most commonly encountered exceptions.

Why use interrupts? Interrupts allow events such as alarms, power failure, the
passage of a certain amount of time, and peripherals having data or being ready to
accept data to get the immediate attention of the CPU. The program does not have to
examine (poll) every potential source, nor need the programmer worry about the
system missing events.

An interrupt system is like the bell on a telephone — it rings when a call comes in

so that you don't have to pick up the receiver occasionally to see if someone is on the
line. The CPU can go about its normal business (and get a lot more done). When some-

thing happens, the interrupt alerts the CPU and forces it to service the input before

resuming normal operations. Of course, this simple description becomes more compli-
cated (just like a telephone switchboard) when there are many interrupts of varying

importance and when there are tasks that cannot be interrupted.

225

226 68000 Assembly Language Programming

CHARACTERISTICS OF INTERRUPT SYSTEMS

The implementation of interrupt systems varies greatly. Among the questions
that characterize a particular system are:

1. How many interrupt inputs are there?

2. How does the CPU respond to an interrupt?

3. How does the CPU determine the source of an interrupt if the number of
sources exceeds the number of inputs?

4. Can the CPU differentiate between important and unimportant interrupts?

5. How and when is the interrupt system enabled and disabled?

There are many different answers to these questions. The aim of all the imple-
mentations, however, is to have the CPU respond rapidly to interrupts and resume nor-

mal activity afterwards.
The number of interrupt inputs on the CPU chip determines the number of

different responses that the CPU can produce without any additional hardware or
software. Each input can produce a different internal response.

The ultimate response of the CPU to an interrupt must be to transfer control to
the correct interrupt service routine and to save the current value of the program

counter. The CPU must therefore execute the equivalent of a Jump-to-Subroutine or
Call instruction with the beginning of the interrupt service routine as its address. This

action will save the return address in the stack and transfer control to the interrupt ser-
vice routine. The amount of external hardware required to produce this response varies

greatly. Some CPUs internally generate the instruction and the address; others require
external hardware to form them. The CPU can generate a different instruction or
address only for each different input.

Polling and Vectoring

If the number of interrupting devices exceeds the number of inputs, the CPU will
need extra hardware or software to identify the source of the interrupt. In the
simplest case, the software can be a polling routine which checks the status of the
devices that may be interrupting. The only advantage of such a system over normal
polling is that the CPU knows that at least one device is active. The alternative solution

is for additional hardware to provide a unique data input (or "vector") for each
source. The two alternatives can be mixed; the vectors can identify groups of inputs
from which the CPU can identify a particular one by polling.

Priority

An interrupt system that can differentiate between important and unimportant

interrupts is called a "priority interrupt system." Internal hardware can provide as
many priority levels as there are inputs. External hardware can provide additional levels
through the use of a priority register and comparator. The external hardware does not
allow the interrupt to reach the CPU unless its priority is higher than the contents of the
priority register. A priority interrupt system may need a special way to handle low
priority interrupts that may be ignored for long periods of time.

Interrupts and Other Exceptions 227

Enabling and Disabling

Most interrupt systems can be enabled or disabled. In fact, most CPUs automat-
ically disable interrupts when a RESET is performed (so the startup routine can initialize

the interrupt system) and when they accept an interrupt (so that another interrupt will
not interrupt the same service routine). The programmer may wish to disable interrupts
while preparing or processing data, performing a timing loop, or executing a multibyte
operation.

An interrupt that cannot be disabled (sometimes called a "nonmaskable inter-

rupt") may be useful to warn of power failure, an event that obviously must take pre-
cedence over all other activities.

Disadvantages of Interrupts

The advantages of interrupts are obvious, but there are also disadvantages.
These include:

1. Interrupt systems may require a large amount of extra hardware.

2. Interrupts still require data transfers under program control through the CPU.
There is no speed advantage as there is with DMA.

3. Interrupts are random inputs, which make debugging and testing difficult.
Errors may occur sporadically, and therefore may be very hard to locate and

correct.2
4. Interrupts may involve a large amount of overhead if many registers must be

saved and the source must be determined by polling.

THE MC68000 EXCEPTION PROCESSING SYSTEM

The MC68000 provides extensive exception processing logic including a very
complete set of external interrupts as well as internally initiated exceptions upon
detection of various faults, traps, and so on.

OPERATING MODES

Before proceeding to describe the exception processing system, let us discuss
the operating modes of the MC68000, since these affect exception processing. As we
mentioned previously, the MC68000 can operate in either a supervisor mode or a user
mode. When the MC68000 is reset using the RESET input, it starts operating in the
supervisor mode. The processor operates in supervisor mode until one of the following
instructions is executed: Return from Exception (RTE), Move to status register
(MOVE word to SR), AND Immediate to status register (ANDI word to SR), and

Exclusive OR Immediate to status register (EORI word to SR). None of these instruc-
tions automatically causes the transition to the user mode of operation — rather, they

are capable of changing the state of the S-bit in the status register. If one of these
instructions resets the S-bit, the MC68000 will begin operating in the user mode.

228 68000 Assembly Language Programming

Once the MC68000 is operating in the user mode, the only thing that can cause

a transition back to the supervisor mode is an exception. All initial exception process-
ing is performed in supervisor mode regardless of the current setting of the S-bit of the

status register at the time of the exceptions. When the exception processing has been
completed, the Return from Exception (RTE) instruction allows return to the User
mode.

A number of instructions, designated as "privileged, 11 are reserved for the super-
visor mode. An attempt to execute one of these instructions in the user mode results in

a "privilege violation11 which is one type of exception. We will discuss these instructions
and the privilege violation response later in this chapter.

EXCEPTION TYPES

The response of the MC68000 to the various types of exceptions is similar. Before
we describe this response, let us look at the sources of exceptions since they go well
beyond those provided by other microprocessors.

Exceptions originate in a variety of ways which can be divided into two general
categories:

1. Internally generated exceptions that result from the execution of certain
instructions, or from internally detected errors.

2. Externally generated exceptions which include bus errors, reset, and inter-
rupt requests.

Internally Generated Exceptions

The internally generated exceptions to which the MC68000 responds can be
further subdivided into three categories: internally detected errors, instruction traps,
and the trace function.

The following are the internally detected errors which will cause the MC68000
to initiate exception processing:

1. Addressing errors. Any attempt by the MC68000 attempts to access word
data, long word data, or an instruction at an odd address is an address error,
since all such accesses must be on even address boundaries.

2. Privilege violations. Again, some instructions are reserved for use only in the
supervisor mode. Exception processing will be initiated if you attempt to
execute any of the following instructions when in the User mode: STOP,
RESET, RTE, MOVE to SR, AND (word) Immediate to SR, EOR (word)
Immediate to SR, OR (word) Immediate to SR, MOVE USP.

3. Illegal and unimplemented opcodes. If an instruction is fetched whose bit pat-
tern is not one of the defined instruction bit patterns for the MC68000, excep-
tion processing will be initiated. Two bit patterns are defined as unimple-

mented rather than illegal; if bits 15-12 are 1010 or 1111, these are treated as
unimplemented instruction opcodes. If these opcodes are fetched, special

exception processing is initiated which can allow you to simulate unimple-
mented instructions in your own software.

Instruction traps are exceptions which are caused by the execution of instruc-

Interrupts and Other Exceptions 229

tions in your program. There is a standard TRAP instruction which is similar to the

Z8000 System Call instruction. There are four other instructions - TRAPV, CHK,
DIVS, and DIVU — which will cause exception processing to be initiated if certain
conditions, such as arithmetic overflows or divide by zero, are detected.

The third type of internally generated exception occurs when the MC68000 is

operating with the trace function. If the T-bit in the Status register is set, exception
processing will be performed after each instruction. The Trace function is used for pro-

gram debugging since you can analyze, by stepping through the program, the results of

each instruction's execution.

Externally Generated Exceptions

There are three different types of externally generated exceptions:

1. Bus errors. When the BERR signal is asserted by external logic (and the pro-
cessor is not halted), exception processing is initiated.

2. Reset. When the RESET signal is asserted by external logic, exception pro-
cessing is initiated.

3. Interrupt request. This is the most familiar form of exception processing and
is initiated by external logic via the three interrupt request lines (IPLO, IPL1,
and IPL2).

Exception Priorities

The different types of exceptions have different priorities, and processing of an
exception depends on its priority. The following table lists the types of exceptions
according to their relative priorities, and also defines when processing of each type
begins.

Group Priority Exception Source Exception Processing Response

0 Highest

Reset
Bus Error
Address Error

Abort current cycle, then
process exception

1

Trace
Interrupt Request
Illegal/Unimplemented Opcode
Privilege Violation

Complete current instruction, then
process exception

2 Lowest
TRAP, TRAPV
CHK
Divide-by-zero

Instruction execution initiates
exception processing

The highest priority types of exceptions are Reset, Bus Error, and Address Error.
Any of these exceptions will cause immediate termination of the current instruction,

even within a bus cycle. The next group of exceptions — trace, interrupt requests,
illegal/unimplemented instructions, and privilege violations — allow completion of the
current instruction before initiating exception processing. Note that interrupt requests

230 68000 Assembly Language Programming

include an additional prioritization which we will discuss later. The lowest priority of

exceptions are those that are caused by trap-type instructions. These instructions can
initiate exception processing as part of their formal execution. All of the instruction trap
exceptions have equal priority since it is impossible for two instructions to be executed
at the same time.

Exception Vector Table

Central to the MC68000 exception processing sequence is a vector table that

occupies 1024 bytes (512 sixteen-bit words) of memory. This table occupies memory

addresses 000000|6 through 0003FF16. Figure 15-1 illustrates the exception vector
table. The table is organized as 256 four-byte vectors. Each vector is a 32-bit address
which will be loaded into the program counter as part of the exception processing
sequence.

As you can see, a number of the vector table entries serve the defined types of
exceptions which we have discussed. Other entries of the vector table are reserved for
use by Motorola and should not be used by your program if compatibility with future

Motorola software and hardware is desired. The first 64 exception vectors have pre-
defined uses; this leaves 192 vectors available to user defined external interrupt

requests — this should be more than enough for most applications. (Of course, in this

case, "user11 means the microcomputer designer, not the assembly language pro-
grammer.) However, the first 64 vector locations are not protected by the MC68000;

thus they can be used by external interrupts if a system requires it.

EXCEPTION PROCESSING SEQUENCES

The general sequence of events performed by the MC68000 in response to an
exception is the same regardless of the source of the exception. There are, however,
some differences. Let us begin by examining the response to internally generated
exceptions.

Internally Generated Exception Processing

If exception processing is initiated as a result of either the trace function, a
TRAP instruction, an illegal or unimplemented opcode, or a privilege violation, the
following steps occur:

1. The status register contents are copied into an internal register.

2. The S-bit in the status register is set, thus placing the MC68000 in the super-
visor mode of operation.

3. The T-bit in the status register is reset to disable tracing to allow for continuous
execution of the interrupt service routine when debugging using TRACE.

4. The program counter contents are pushed onto the supervisor stack.

5. The previously copied status register contents are pushed onto the supervisor
stack.

6. The new program counter contents are taken from the appropriate location in
the interrupt vector table.

Interrupts and Other Exceptions 231

Memory Addresses (Hex)
000000
000002
000004
000006
000008
00000A
00000C
OOOOOE
000010
000012
000014
000016
000018
00001 A
0000 1C
0000 1E 000020
000022
000024
000026
000028
00002A
00002C
00002E
000030
000032

00005C
00005E
000060
000062
000064
000066
000068
00006A
00006C
00006E
000070
000072
000074
OOOC76
000078
00007A
00007C
00007E
000080
000082

OOOOBC
OOOOBE
OOOOCO
0000C2

OOOOFC
OOOOFE
000100
000102

0003FC
0003FE

SSP (High)

PCO (High)

PC2 (High)

PC3 (High)

PC4 (High)

PCS (High)
PC5 (Low)
PC6 (High)
PC6 (Low)
PC7 (High)
PC7 (Low)
PC8 (Highl

PC9 (High)

PC 10 (High)

PC 11 (High)

PC 12 (High)

PC23 (High)
PC23 (Low)
PC24 (H.gh)
PC24 (Low)
PC25 (High)
PC25 (Low)
PC26 (High)
PC26 (Low)
PC27 (High)
PC27 (Low)
PC28 (High)
PC28 (Low)
PC29 (High)

PC30 (High)
PC30 (Low)
PC31 (High)
PC31 (Low)
PC32 (High)
PC32 (Low)

PC47 (High)
PC47 (Low)
PC48 (High)
PC48 (Low)

PC63 (High)

PC64 (High)

PC255 (High)

Reset - Initial SSP

Reset - Initial PC

Vector 2 - Bus Error

Vector 3 - Address Error

Vector 4 - Illegal Instruction

Vector 5 - Divide by 0

Vector 6 - CHK Instruction

Vector 7 - TRAPV Instruction

Vector 8 - Privilege Violation

Vector 9 - Trace

Vector 1 0 , o - Opcode 1010 Emulation

Vector 1 1 10 - Opcode 1111 Emulation Vector 1 210 ̂

1 Reserved by

| Motorola

Vector 2310

Vector 24,0 - Spurious Interrupt

Vector 2510 - Level 1 Interrupt v

Vector 26,o - Level 2 interrupt

Vector 27,o - Level 3 Interrupt

Vector 28,o - Level 4 Interrupt

Vector 29,o - Level 5 interrupt

Vector 30,0- Level 6 Interrupt

Vector 31,0- Level 7 Interrupt
Vector 32

\ Auto-Vector / Interrupts

;10

Vector 48,0

TRAP
Instruction
Vectors

Reserved by
Motorola

User Interrupt Vectors

Figure 15-1. Exception Vector Table

232 68000 Assembly Language Programming

7. Instruction execution then begins at the location indicated by the new contents

of the program counter; this will be the first instruction of the exception pro-
cessing program you have provided for that particular type of exception.

Bus and Address Error Exception Processing

The way in which the MC68000 responds to an exception caused by a bus error
or address error includes several steps in addition to those described in the preceding
paragraphs. First, either of these errors causes immediate termination of the bus
cycle in progress. The next steps are the following:

1. The contents of the status register are copied into an internal register.

2. The S-bit in the status register is set, placing the MC68000 in the supervisor
mode.

3. The T-bit in the status register is reset to disable trace operations.
4. The contents of the program counter are pushed onto the supervisor stack.

5. The previously copied contents of the status register are pushed onto the
supervisor stack.

6. The contents of the MC6800(Ts instruction register, which constitute the first
word of the instruction that was in progress when the bus error occurred, are
pushed onto the supervisor stack.

7. The 32-bit address that was being used for the bus cycle which was terminated
is also pushed onto the supervisor stack.

8. A word which provides information as the the type of cycle that was in
progress at the time of the error is pushed onto the supervisor stack.

9. The program counter contents are taken from the appropriate interrupt vec-
tor — either the bus error vector or address error vector of the exception vec-
tor table.

10. Instruction execution resumes at the location indicated by the new contents
of the program counter.

Figure 15-2 shows the order in which information is pushed onto the supervisor
stack as part of the exception processing for bus and address errors. The value saved
for the program counter is advanced two to ten bytes beyond the address of the first

word of the instruction where the error occurred according to the length of that instruc-
tion and its addressing information, if any.

If the error occurs during the fetch of the next instruction, the value saved for the
program counter is near the current instruction, even if the current instruction is a
jump, branch or return instruction. This feature, missing from most computers, will
make the detection of many errors easier.

As you can see in Figure 15-2, the five least significant bits of the last word
pushed onto the stack provide information as to the type of access that was in
progress when the bus error or address error occurred. The three least significant bits
are a copy of the function code outputs during the aborted bus cycle. Bit 3 indicates the
type of processing that was in progress when the error occurred. This bit is set for Group

0 or 1 exception processing and reset for Group 2 exception and normal instruction pro-
cessing (see the exception priority table shown earlier). Bit 4 indicates whether a read

Interrupts and Other Exceptions 233

I 0 = Write cycle aborted
< 1 = Read cycle aborted

(0 = Instruction in progress
I 1 = Exception processing
Function Code
(FC2, FC1 , FCO)

Bit No

Access Type — • I
Current Cycle Address (high-order)
Current Cycle Address (low-order)

Instruction Register
Status Register

PC (high-order word)
PC (low-order word)

16-Bit Words

Function
Code Type of Cycle

0 Unassigned
1 User Data
2 User Program
3 Unassigned
4 Unassigned
5 Supervisor Data
6 Supervisor Program
7 Interrupt Acknowledgment

Figure 15-2. System Stack After Bus Error or Address Error Exception

SSP after 4 3 2 10
Lower

Address

SSP before Higher exception . . r

(bit 4 set) or write (bit 4 reset) cycle was in progress when the error occurred. If an error
occurs during the exception processing of a preceding bus error, address error, or reset
operation, the MC68000 will enter the Halt state and remain there.

All of the information that is pushed onto the supervisor stack as part of the

bus and address error exception processing sequence is intended to aid you in analyz-
ing possible sources of the error. Either of these errors implies a serious system failure

and it is not likely that you will be able to return to normal program execution.

Reset Exception Processing

An external reset causes a special type of exception processing. After an exter-
nal RESET has been signalled the following steps occur:

1. The S-bit in the status register is set, placing the MC68000 in the supervisor
mode.

2. The T-bit in the status register is reset to disable the trace function.

234 68000 Assembly Language Programming

3. All three interrupt mask bits in the status register are set, thus specifying the
interrupt priority mask at level seven.

4. The supervisor stack pointer is loaded with the contents of the first four bytes

of memory (addresses 000000-000003).
5. The program counter is loaded from the next four bytes of memory (addresses

00004-00007).

6. Instruction execution commences at the address indicated by the new contents

of the program counter, which should reference your power-up/reset initializa-
tion program.

Interrupt Request Exception Processing

The last type of exception processing we will discuss is the sequence initiated

by the standard interrupt request. An external device requests an interrupt by encod-
ing an interrupt request level on the interrupt inputs. The MC68000 compares these

inputs to the interrupt mask bits in the status register. If the encoded priority level is less

than or equal to the one specified by the three-bit mask, the interrupt request will not be
recognized by the MC68000. If the encoded interrupt level is higher priority than the
level established by the interrupt mask (or if a level seven interrupt request is input)
then the interrupt will be processed. The MC68000 responds to the allowed interrupt
request as soon as it completes the instruction execution currently in progress. Upon
completion of the current instruction, the following steps occur:

1. The contents of the status register are saved internally.

2. The S-bit in the status register is set, placing the MC68000 in the supervisor
mode.

3. The T-bit in the status register is reset to disable the trace function.
4. The interrupt mask bits in the status register are changed to the level of the

interrupt request that is encoded on the interrupt inputs. This allows the cur-
rent interrupt to be processed without being interrupted by lower priority

events or events at the same level.

5. The MC68000 then performs an interrupt acknowledgement bus cycle. This
cycle serves two functions; first, the processor lets the requesting device know
that its interrupt request is being serviced, and second, the processor fetches an
exception vector byte from the requesting device. After the vector byte has

been read from the interupting device, the MC68000 proceeds with the follow-
ing exception processing steps.

6. The contents of the program counter are pushed onto the supervisor stack.

7. The contents of the previously saved status register are pushed onto the super-
visor stack.

8. The program counter is loaded with four bytes of data from the appropriate
location in the exception vector table as defined by the exception vector byte.

After the program counter has been loaded with the new value from the exception

vector table, instruction execution commences at the location indicated by the new con-
tents of the program counter; this will be the first instruction of your interrupt process-

ing routine for the particular device requesting the interrupt.

Interrupts and Other Exceptions 235

Autovector Interrupt Response

A variation on interrupt request processing is the autovector response. If you

refer back to Figure 15-1, you will see that seven vector locations are provided in the
exception vector table for autovectors, corresponding to the seven interrupt priority
levels. These vectors will be used if the device requesting an interrupt responds to the
interrupt acknowledge bus cycle by asserting the Valid Peripheral Address (VPA)
signal to the CPU instead of supplying a byte of vector data. The processor will then
use the autovector from the exception vector table which corresponds to the interrupt
level to obtain a new program counter value. This autovector response was provided
specifically to emulate the interrupt sequence expected by 6800 family peripheral

devices. Of course a non-6800 family device in the system could also exploit this
autovector capability should it be advantageous.

PROGRAM EXAMPLE

15-1. STARTUP

Purpose: Power up the computer and wait for a PIA interrupt to occur before starting
actual operation.

When power is applied to an MC68000 system, the processor is reset and starts its
initialization process. On RESET, the processor is placed in supervisor state and the
interrupt priority mask is set to inhibit all interrupts except level seven. The supervisor
stack pointer is loaded with the first two words of the reset exception vector at memory
location 0. The program counter is loaded with the next two words from low memory
and execution then starts at the instruction whose address is contained in the program
counter.

Flowchart:

c Start J

Enable startup
interrupt in the PIA

Initialize

appropriate interrupt vectors

Enable CPU
interrupts
and wait for interrupt

Continue Program

236 68000 Assembly Language Programming

Program 15-1 :
00004000 POWER : EQU $4000
00004600 SERVICE : EQU $4600
00005100 STACK :

EQU $5100 00006000 DATA : EQU $6 000
0 0 0 3FF40 P 1 ADDA : EQU $3FF40 DATA DIRECTION REGISTER A
0003FF40 P 1 ADA : EQU $ 3FF40 DATA REGISTER A
0 00 3FF44 PIACA: E Q U $ 3 F F 44 CONTROL REGISTER A
00000005 P1A EN : EQU

$05
PIA INTERRUPT ENABLE

00002000 IMSKO : EQU
$ 2 0 0 0 SUPERVI SOR/ INTERRUPT LEVEL 0

00000064 SVECTOR : EQU $64 ADDRESS OF INTERRUPT VECTOR

00000000 ORG 0

000000 00005100 DC .L STACK ADDRESS OF STACK
000004 00004000 DC .L PGM15_1 ADDRESS OF RESET PROGRAM

00004000 0 R G POWER
004000 1 3FC0005

00003FF44 PGM1 5_1 : MOVE . B #P I A_EN, PIACA ENABLE INTERRUPT FROM STARTUP PIA
004008 21FC00004600

0064 MOVE.L ^STARTUP
, SVECTOR

INITIALIZE PIA VECTOR
004010 4E722000 STOP # IMSKO ENABLE INTERRUPTS AND WAIT FOR i NTE

» STARTUP INTERRUPT SERVICE ROUTINE
00004600 ORG SERVICE

004600 4A390003FF40 STARTUP : TST.B P I ADA CLEAR STARTUP INTERRUPT
004606 4E73 RTE RETURN TO INTERRUPTED ROUTINE

END PGM1 5_1

If this program is stored in Read Only Memory (ROM) or Programmable ROM
(PROM), when a power on RESET occurs, the supervisor stack will be loaded with 5100
and the program counter with 4000, the address of the startup program. The status
register will have its supervisor and interrupt level bits set. Once these three registers

have been set up, program execution commences at location 4000 just as in the exam-
ples in previous chapters.
Unlike other exception vectors, the reset vector must be in ROM or PROM. The

same is true for the initial program to be executed. You must ensure that valid RAM
and ROM addresses are referenced by the stack pointer and program counter entries in
the reset vector.

All other exception vectors may be located in either RAM or ROM. The design of
your system determines which is best for you. In our example, the exception vectors are
in RAM. Therefore, they must be initialized with the addresses of the associated service
routines prior to the occurrance of any exception.

The instruction MOVE.L #STARTUP, SVECTOR initializes the exception vector
associated with the PIA. In our example, interrupts from the PIA are of low priority and

have been assigned a priority of level 1. Since the PIA (and also the ACIA) do not sup-

port vector numbers, their interrupts are handled by the MC68000's autovectoring. As
shown in Figure 15-1, the autovectors start at address 64. Address 64 is the location of
Level 1 autovector interrupts and this is the vector in which we store the address of our
service routine.

If you forget to initialize an exception vector, the processor will still use the con-
tents of the vector to determine the starting address of the exception handler. However,

this address will be invalid and the processor would continue execution at this invalid
address. You must initialize exception vectors, just as you initialize certain program
data before use.

In addition to setting up the exception vector, the program's only other action is

Interrupts and Other Exceptions 237

to enable the interrupt from the startup PIA. The program enables that interrupt by set-
ting bit 0 of the PIA control register and then enabling processor interrupts.

Finally, the program is ready to wait for the start-up interrupt. Instead of waiting
for the interrupt by executing an endless loop such as jump-to-self (LOOP: JMP
LOOP), the instruction STOP could be executed. STOP causes the processor to stop
executing instructions and wait for an interrupt or exception (TRACE or RESET). The

STOP instruction also allows you to change the processor's interrupt level, since the
data word following the STOP is loaded into the status register. In order to allow inter-

rupts, the interrupt level must be changed from level 7 (set during RESET) to level 0

(one level less than the startup PIA's level 1). Priority level 0 allows the processor to
recognize interrupts at any level. The data word must also have the bit corresponding to

the status register's Supervisor Mode (S) bit set.
The STOP instruction is one of the few MC68000 instructions which can only be

executed in supervisor mode. If executed in user mode, a privilege violation exception

will occur. (Generally, instructions which attempt to change the processor's interrupt
level, supervisor/user state, or user stack pointer are privileged instructions.)

When an interrupt is generated from the PIA, the exception process is initiated.
First, the contents of the full status register are saved on top of the supervisor stack
followed by the contents of the program counter. The program counter is pointing to the
next instruction to be executed, in this example the address of the instruction following
the STOP instruction. The processor is set to supervisor state and the priority interrupt
level is set to the level of the interrupt being processed. Next the processor fetches the
address of the interrupt handler from the associated interrupt vector. Since we are
expecting an autovector level 1 interrupt, the associated vector is located at address 64.

Upon entry to the interrupt service routine at location STARTUP, the priority
level will be 1 and the processor will be in supervisor mode. Since the priority level has
now changed, other interrupts of level 1 priority will be masked from interrupting the
processor. What would happen if the STOP instruction had set the priority level to 1?

The service routine clears the startup interrupt by reading the appropriate PIA
data register. This operation is necessary, even though no data transfer is required.
Otherwise the startup interrupt would remain active and would interrupt again as soon
as level 1 interrupts were reenabled.

The TST instruction is used to clear the interrupt since it does not modify any
registers except the condition code register. The exception process does not save any
data or address registers. If the exception service routine needs to use any registers,
they must be saved upon entry and restored upon exit from the routine.

RTE restores control to the interrupted program sequence at the instruction
following the STOP. As part of the restoration process, the supervisor/user state and

interrupt priority level are reset to their states prior to the interrupt by pulling the pre-
viously copied status register contents from the stack. Next, the previous value of the

program counter is pulled from the stack and loaded into the program counter. No other
registers except the program counter and status register are modified by RTE. Like
STOP, RTE is a privileged instruction and can only be executed in supervisor state.

This program assumes that there are no other level 1 interrupts being generated.
If other level 1 interrupts can occur, a polling routine would have to be added to the
interrupt handler and the main program would have to be modified. How would you do
this?

238 68000 Assembly Language Programming

15-2. A KEYBOARD INTERRUPT

Purpose: The main program clears the variable FLAG at memory location 6000 and
waits for a keyboard interrupt. The interrupt service routine sets FLAG to 1

and places the data from the keyboard in the variable KEY at memory loca-
tion 6001.

Sample Problem:

Keyboard data = 43
Result: FLAG - (6000) = 01 Flag indicating new

keyboard data
KEY - (6001) = 43 Keyboard data

Flowchart:

Main Program:

^ Start ̂

Flag = 0 Initialize PIA

Enable Keyboard
interrupt on PIA
Enable CPU
interrupts

Interrupt Service Routine:

FLAG = 1
KEY = Keyboard Data

Interrupts and Other Exceptions 239

Program 15-2a:
00004000 PROGRAM : EQU $4000
00004600 1 NT .2 5: EQU $46 00
00006000 DATA: EQU $6 000

000 3FF40 P I ADDA : EQU $3FF40 DATA DIRECTION REGISTER A
0003FF40 P I ADA : EQU $3FF40 DATA REGISTER A
0 0 0 3FF44 P IACA: EQU $3FF44 CONTROL REGISTER A
00000005 P I A EN : EQU

$05
PIA INTERRUPT ENABLE

00002000 1MSKO : EQU $2000 SUPERVI SOR/ INTERRUPT LEVEL 0

00006000 ORG DATA 006000
oooooooi-

FLAG : DS.B 1 DATA READY FLAG
006001 00000001 KEY : DS.B 1 INPUT KEY DATA

00004000 ORG PROGRAM

004000 42386000 PGM1 5_2A : CLR . B FLAG CLEAR DATA READY FLAG
004004 42390003FF44 CLR.B PIACA ADDRESS DATA DIRECTION REGISTER
00400A 42390003FF40 CLR.B PI ADDA MAKE ALL DATA LINES INPUTS
0 04010 1 3FC0 00 5

0003FF44 MOVE.B ttPIA EN, PIACA ENABLE INTERRUPT FROM KEYBOARD PIA
0 04018 46FC2000 MOVE HMSK0, SR ENABLE ALL INTERRUPTS
0040 1C 4A386000 WTRDY : TST.B FLAG IS THERE DATA FROM THE KEYBOARD
004020 67FA

BEQ

WTRDY NO, WAIT
004022 4E75 RTS

:: INTERRUPT SERV CE ROUTINE

00004600 ORG INT_25

004600 11FC00016000 MOVE . B #1, FLAG
SET DATA READY FLAG

004606 11F90003FF40
600 1 MOVE . B P I ADA, KEY SAVE KEYBOARD DATA

00460E 4E73 RTE
RETURN TO INTERRUPTED ROUTINE

END PGM15_2A

You must initialize the PIA completely before enabling interrupts. This
includes establishing the directions of ports and control lines and determining the
transitions to be recognized on input strobes.

The main program clears the Data Ready flag (FLAG) and then simply waits for

the interrupt service routine to set it. The main program and the service routine com-
municate through two fixed memory addresses:

The variable FLAG indicates whether new data has been received from the

keyboard.

The variable KEY is a single-location data buffer used to hold the value received
from the keyboard.

Note the similarity between the Data Ready flag in memory and the status bit in
the control register of the keyboard PIA. The program does not have to test bit 7 of the
PIA control register, because there is a direct hardware (interrupt) connection between
that bit and the CPU. Of course, we have also assumed that the keyboard is the only
source of interrupts.

Unlike our previous example, we don't use the privileged instruction STOP.
Instead, we monitor the variable FLAG to determine when an interrupt has occurred.
Remember, however, that the STOP instruction, besides waiting for an interrupt to

occur, also sets the desired interrupt priority level in the status register. In program 15-
2a, we use the MOVE to Status Register instruction (MOVE#IMSK0,SR) to set the
desired interrupt level. The data word ($2000 in this program) following the instruction
opcode word defines the new interrupt priority level. Note that this instruction also
defines the state of all condition codes in the status register. The MOVE to Status
Register instruction is a privileged instruction.

Sometimes you may want to temporarily accept interrupts of a lower level than are

240 68000 Assembly Language Programming

currently being permitted by the status register interrupt mask. If you do this, you would
probably want to save the current interrupt mask before enabling lower level interrupts.
You could then restore the previous mask after the lower level interrupts have been
processed. The MOVE from Status Register instruction can be used to save the current

interrupt mask (along with the rest of the status register contents) and it is not a pri-
vileged instruction.

Remember that upon entry to the interrupt service routine, the interrupt mask in
the status register has already been set automatically by the CPU to the level associated
with the interrupt being processed. This inhibits additional interrupts at this level or
lower. Only interrupts of a higher level can interrupt the CPU.

The RTE instruction at the end of the service routine transfers control back to the

main program. If you want to transfer control somewhere else (perhaps to an error
routine), you can change the program counter in the supervisor stack using the methods
outlined earlier. RTE also restores the interrupt priority mask to the level that existed
prior to the interrupt.

We do not use the registers to pass parameters and results. If we were to change
the register values, we could interfere with the execution of the main program. In
most applications, the main program is using the registers and random changes will
cause havoc. At the very least, changing the registers lacks generality, since
modifications to the main program surely could result in the use of registers that are
currently available.

The service routine does not have to explicitly reenable the interrupts. The reason
is that RTE automatically restores the old status register with the priority level in its
original state. In fact, you will have to change the priority level on the stack if you do not
want the interrupts to be reenabled to their prior levels.

You can save and restore other data (such as the contents of a memory location)
by using the stack. This method can be expanded indefinitely (as long as there is RAM
available for the stack), since nested service routines will not destroy the data saved by
earlier routines.

Filling a Buffer via Interrupts

An alternative approach would be for the interrupt service routine to set FLAG
only after receiving an entire line of text (such as a string of characters ending with a

carriage return). Here we use FLAG as an end-of-line flag and memory locations 6002
and 6003 as a buffer pointer, POINTER. We will assume that the buffer starts in
memory location 6004.

Program 15-2b:

00004000
00004600
00006000

PROGRAM
INT_25 :
DATA :

EQU
EQU EQU

S 't 0 0 0

$4600
$6 000

0003FF40
0 0 0 3FF40
000 3FF44
00000005
00002000
0OO00O0D

P I ADDA :
P I ADA :
P 1 ACA :
P 1 A_EN : IMSK0 :
CR :

EQU E C J
EQU
EQU
E Q u
EQU

$3FF40
$ 3FF40
$3FF44
$05

DATA DIRECTION REGISTER A
DATA REGISTER A
CONTROL REGISTER A
PIA INTERRUPT ENABLE
SUPERVI SOR/ 1 NTERRUPT LEVEL 0
CARRIAGE RETURN

$2000
$00

00006000
0000000 1

ORG
DS.B

DATA
006000 FLAG : END OF LINE FLAG

Interrupts and Other Exceptions 241

006001
006002
006004

00000001
00000002
00000050

00004000

POINTER :
BUFFER :

DS.B
DS.W
DS.B
ORG

1
1 80

PROGRAM

POINTER TO BUFFER END + 1
INPUT BUFFER

004000
004004
00400A
004010
004016

00401E
004022
004026

42386000
31FC60046002
42390003FF44
42390003FF40
13FC0005

0003FF44 46FC2000
4A386000
67FA

PGMl 5_2B

WTRDY :

CLR.B
MOVE.W
CLR.B
CLR.B

MOVE . B MOVE
TST.B

BEQ

FLAG
ttBUFFER, POINTER PIACA
P I ADDA

APIA EN, PIACA
tt IMSK0, SR FLAG
WTRDY

CLEAR DATA READY FLAG
INITIALIZE POINTER
ADDRESS DATA DIRECTION REGISTER
MAKE ALL DATA LINES INPUTS

ENABLE INTERRUPT FROM KEYBOARD PIA
ENABLE ALL INTERRUPTS
HAS A LINE BEEN RECEIVED FROM KEYBO
NO, WAIT

004028 4E75 RTS

» INTERRUPT 5ERV CE ROUTINE
00004600 ORG INT_2 5

0 046 0 0
004602
004606
00460C
004612
004614
00461A
00461E
004620

2F 0 8
30786002
10F90003FF40
0C28000DFFF
66 06
11FC00016000
31C86002
205F 4E73

DONE :

MOVE.L
MOVE . W
MOVE.B
CMPI .B
BNE.S
MOVE.B
MOVE . W
MOVE .L
RTE

END

AO, -CSP)
POINTER, AO
PIADA, (A0)+
#CR,-1(A0)
DONE

H , FLAG AO, POINTER CSP)+, AO

PGMl 5_2B

PUSH AO ON SUPERVISOR STACK
GET POINTER TO NEXT BUFFER ENTRY
SAVE KEY DATA IN BUFFER
IS KEY INPUT A CARRIAGE RETURN?
NO, RETURN SET END OF LINE FLAG
UPDATE BUFFER POINTER
RESTORE REGISTER AO
RETURN TO INTERRUPTED ROUTINE

This program fills a buffer starting at memory location 6004 until it receives a car-
riage return character (CR). POINTER holds the current buffer pointer. The interrupt

service routine increments that pointer (with autoincrementing) after each use.
In a real application, the CPU could perform other tasks between interrupts. It

could, for example, edit, move, or transmit a line from one buffer while the interrupt
service routine was filling another buffer. This is the double buffering approach. The

main program only has to ensure that the interrupt service routine doesn't run out of
buffers.

An alternative approach would be for FLAG to contain a counter rather than a
flag. The contents of that location would then indicate to the main program how many

bytes of data had been received. The main program would then know how many charac-
ters were in the buffer without counting them. It could even deal with the buffer

whenever a certain number of new data bytes were in it. The service routine would

simply increment the counter as well as the buffer pointer as part of each input opera-
tion.

Interrupt service routines are invoked randomly because of the nature of inter-

rupts. Therefore, you can't know which registers the interrupt program may have been
using. To prevent accidental modification of registers that may be in use by an inter-

rupted program, you should always save and restore the contents of all registers used
by the interrupt service routine. The MOVEM instruction, which we have previously
discussed, provides a simple means of saving and restoring registers.

15-3. A PRINTER INTERRUPT

Purpose: The main program clears a variable FLAG at memory location 6000 and waits
for a ready interrupt from a printer. This interrupt service routine sets FLAG
to 1 and sends the contents of the variable CHAR at memory location 6001 to
the printer.

242 68000 Assembly Language Programming

Sample Problem:

CHAR - (6001) = 51
Result: FLAG - (6000) = 01 Flag indicating last data item

has been sent

Printer receives a 5 1 1 6 (ASCII Q) when it is ready.

Flowchart:

Main Program:

c Start J

FLAG = 0
Initialize PIA
Data = (CHAR)

Enable printer
interrupt on PIA
Enable CPU
interrupts

c
End 3

Interrupt Service Routine:

f~ Start J

FLAG = 1
clear printer interrupt

Send data

to printer

c

I
End

J

Program 15-3a:

00004000
00004600

PROGRAM: EQU
INT_2 5: EQU

54000
$4600

Interrupts and Other Exceptions 243

00006000 E QU
S6 000

0003FF40
000000FF
0003FF40
0003FF44
00000005
00002000

P I ADDA : EQU
DLOUT: EQU
P I ADA : EQU
PIACA: EQU
PIA_EN: EQU
IMSK0: EQU

$3FF40

$FF $3FF40
$3FF44 $05
$2000

DATA DIRECTION REGISTER A
PIA DATA LINES AS OUTPUTS
DATA REGISTER A
CONTROL REGISTER A
PIA INTERRUPT ENABLE
SUPERVI SOR/ I NTERRUPT LEVEL 0

006000
006001

00006000
00000001
00000001

FLAG
CHAR

ORG
DS.B
DS.B

DATA 1
1

DATA ACCEPT FLAG
PRINTER OUTPUT DATA

004000
004004
00400A

00401A
00401E
004022

00004000

42386000
42390003FF44
13FC00FF

0003FF40
13FC0005

0003FF44
46FC2000
4A386000
67FA
4E75

CLR . B
CLR.B

MOVE . f

MOVE . f
MOVE
TST.B

BEQ

FLAG
P I ACA

CLEAR DATA ACCEPT FLAG
ADDRESS DATA DIRECTION REGISTER

ttDLOUT, P 1 ADDA MAKE ALL DATA LINES OUTPUTS

#P I A_EN, P I ACA # IMSK0, SR FLAG
WTACK

RTS

INTERRUPT SERVICE ROUTINE

ENABLE INTERRUPT FROM PRINTER PIA
ENABLE ALL INTERRUPTS
HAS DATA BEEN OUTPUTTED TO PRINTER' NO, WAIT

00004600

004600
004606
00460C

1 1FC000 16000
4A390003FF40
1 3F86001

0003FF40 4E73

MOVE
TST.f
MOVE . B RTE

#1, FLAG P I ADA

CHAR, P I ADA

PGM 1 5 3A

SET DATA ACCEPT FLAG
CLEAR PRINTER INTERRUPT

OUTPUT DATA TO PRINTER
RETURN TO INTERRUPTED ROUTINE

The only differences from the keyboard interrupt routines are the meaning of the
flag, the direction of the data transfer, and the need for the instruction TST.B PIADA to
clear bit 7 of the PIA control register. Remember that an input operation automatically
clears that bit, but an output operation does not.

Here a cleared FLAG indicates that the CPU has data available that has not yet

been sent to the printer. When the interrupt service routine sets the flag, the main pro-
gram knows the data has been sent. The flag acts as an acknowledgment from the printer

or a data accepted indicator.
Remember that you may find it necessary to place a read at the start of the main

program to clear stray interrupts. MOVE.B PIADA, DO or TST.B PIADA will do the job,
as long as you place it after the instruction that addresses the data register but before the
instruction that enables CPU interrupts.

Emptying a Buffer with Interrupts

As in the keyboard example, we could have the interrupt service routine set the

Data Accepted flag after it sends the printer an entire line of data ending with a car-
riage return. Here again we use FLAG as an end-of-line flag and memory locations 6002

and 6003 as a buffer pointer. We will assume that the buffer starts in memory location
6004.

Program 15-3b:
Main Program:

00004000 PROGRAM: EQU $4000
00004600 INT_25: EQU $4600
00006000 DATA: EQU $6000

244 68000 Assembly Language Programming

0003FF40 PI ADDA: EQU S3FF40 DATA DIRECTION REGISTER A
000000FF DLOUT : LQU

$FF
DATA LINES AS ALL OUTPUTS

0003FF40 P 1 ADA :
E Q 1 1

DATA REGISTER A
0003FF44 PIACA: EQU

$3FF44
CONTROL REGISTER A

00000005 P I A EN:
1 QU

t n c 5 U 5 PIA INTERRUPT ENABLE
00002000 IMSK0 : EQU $2000 SUPERVI SOR/ INTERRUPT LEVEL 0
0000000D CR : EQU $00 CARRIAGE RETURN

00006000 ORG DATA
006000 00000001 FLAG : DS.B 1 END OF LINE FLAG
006001 00000001 DS .B 1
006002 00000002 POINTER : DS.W 1 POINTER TO BUFFER END + 1
006004 00000050 BUFFER : DS.B 80 INPUT BUFFER

00004000 ORG PROGRAM
004000 42386000 PGM1 5_3B : CLR.E FLAG CLEAR END OF LINE FLAG
n n i± r\ n L U U 4 U U 4 ; lrlDUUHDU U i (j B U F F E R POINTER INITIALIZE POINTER
00400A 42390003FF44 CLR . E PIACA ADDRESS DATA DIRECTION REGISTER
n n u n l n U U H U 1 U i i p r r> n p p 1)r LU Ur r

0003FF40 MOVE . B ttDLOUT, P I ADDA MAKE ALL DATA LINES OUTPUTS
n n u n l Q U U 4 U 1 o 1)rLUUU5

0003FF44 MOVE . B #P I A EN, P I ACA ENABLE INTERRUPT FROM PRINTER PIA
004020 46FC2000 MOVE tt IMSK0, SR ENABLE ALL INTERRUPTS
004024 4A386000 WTEOL : TST.E FLAG HAS ALL OF LINE BEEN PRINTED?
004028 67FA

BEQ

WTEOL NO, WAIT
00402A 4E75 RTS

■• INTERRUPT SERVICE ROUTINE
00004600 ORG INT_25

004600 2F08 MOVE . L AO, -CSP) PUSH AO ON SUPERVISOR STACK
004602 4A390003FF40 TST.E PI ADA CLEAR PRINTER INTERRUPT
004608 30786002 MOVE . W POINTER, AO GET POINTER TO NEXT BUFFER ENTRY
00460C 13D80003FF40 MOVE . B C A 0) + , PI ADA SEND NEXT CHARACTER TO PRINTER
004612 OC28000DFFFF CMP I . B #CR,-1(A0) WAS LAST CHARACTER A CARRIAGE RETURN
0046 18 66 06 BNE.S DONE NO, RETURN 00461A 11FC00016000 MOVE . B #1, FLAG SET END OF LINE FLAG
004620 31C86002 DONE : MOVE . w AO, POINTER UPDATE BUFFER POINTER
004624 20 5F MOVE . L CSP)+, AO RESTORE REGISTER AO
004626 4E73 RTE

RETURN TO INTERRUPTED ROUTINE

END PGM1 5_3B

We could use double buffering to allow I/O and processing to occur independently
without ever halting the CPU to wait for the printer.

Fixed-Length Buffer

Still another approach uses FLAG as a buffer counter. For example, the follow-
ing program waits for 20 characters to be sent to the printer.

Program 15-3c:
00004000 PROGRAM: EQU $4000
00004600 INT 25: EQU $4600
00006000 DATA: EQU $6000

0003FF40 P I ADDA : EQU $3FF40 DATA DIRECTION REGISTER A
0OOO0OFF DLOUT : EQU

$FF DATA LINES AS ALL OUTPUTS
0003FF40 P I ADA : EQU $3FF40 DATA REGISTER A
0003FF44 P IACA : EQU $3FF44 CONTROL REGISTER A
00000005 PIA EN: EQU

$05 PIA INTERRUPT ENABLE
00002000 IMSK0 : EQU $2000 SUPERVI SOR/ INTERRUPT LEVEL 0
0000000D CR: EQU SOD CARRIAGE RETURN
00006000 ORG DATA

006000 00000001 FLAG: DS.B 1 BUFFER COUNTER
006001 00000001 DS.B 1
006002 00000002 POINTER : DS.W 1 POINTER TO BUFFER END + 1
006004 00000050 BUFFER : DS.B

80
INPUT BUFFER

00004000 ORG PROGRAM

0040 00 42386000 PGM1 5_3C : CLR.B FLAG
CLEAR BUFFER COUNTER

004004 31FC6004600Z MOVE . W ((BUFFER, POINTER INITIALIZE POINTER

Interrupts and Other Exceptions 245

0 040 OA 42390003FF44 A^HDPQQ n A T A H 1 DFT T I HN RFf, KTFR MUflxL J J 1 H L< 1 (\L^ 1 1 WIN f\u\jljll_r\
004010 13FC00FF

0003FF40 MOVE . B ttDLOUT, P I ADDA MAKE ALL DATA LINES OUTPUTS
004018 1 3FC0005

0003FF44 MOVE.B APIA EN,PIACA CMAQI C I MTCDDI IDT P 0 flM DDIMTFD P I A b In Ad L t 1 In 1 t KKUr 1 r KUrl rK 1 IN 1 Cl\ rlM
004020 46FC2000 MOVE tt IMSK0, SR ENABLE ALL INTERRUPTS
004024 0C3800146000 WTEOL: CMP.B tt 2 0 , FLAG HAVE 20 CHARACTERS BEEN SENT?
00402A 66F8 BNE WTEOL

NO, WAIT
00402C 4E75 RTS

» INTERRUPT SERVICE ROUTINE

00004600 ORG INT_25

004600 2F0 8 MOVE.L AO , - (SP) rUbn AU UIN iUrtKVJ 5UK j 1
004602 4A390003FF40 TST.B P I ADA CLEAR PRINTER INTERRUPT
004608 30786002 MOVE . W POINTER, AO GET POINTER TO NEXT BUFFER ENTRY
00460C 13D80005FF40 MOVE.B (AO) + , P I ADA SEND NEXT CHARACTER TO PRINTER
004612 0C28000DFFFF CMPI .B #CR,-(A0) WAS LAST CHARACTER A CARRIAGE RETURN
004618 66 04 BNE.S DONE NO, RETURN 0046 1A 52786000

ADDQ

tt 1 , FLAG INCREMENT BUFFER COUNTER
0046 IE 31C86002 DONE : MOVE.W AO, POINTER UPDATE BUFFER POINTER
004622 205F MOVE.L

AO, POINTER RESTORE REG I STOR AO
004624 4E73 RTE RETURN TO INTERRUPTED ROUTINE

END PGM15_3C

15-4. A REAL-TIME CLOCK INTERRUPT

Purpose: The computer waits for an interrupt from a real-time clock.

Real-Time Clock

A real-time clock simply provides a regular series of pulses. The interval be-
tween the pulses can be used as a time reference. Real-time clock interrupts can be

counted to give any multiple of the basic time interval. A real-time clock can be pro-
duced by dividing down the CPU clock, by using a timer like the 6840 device or the one

included in the 6846 multifunction support device, or by using external sources such as
the AC line frequency.

Note the tradeoffs involved in determining the frequency of the real-time clock.
A high frequency (say 10 kHz) allows the creation of a wide range of time intervals of

high accuracy. On the other hand, the overhead involved in counting real-time clock
interrupts may be considerable. The choice of frequency depends on the precision and
timing requirements of your application. The clock may, of course, consist partly of
hardware; a counter may count high frequency pulses and interrupt the processor
only occasionally. A program will have to read the counter to measure time to high
accuracy.

One problem is synchronizing operations with the real-time clock. Clearly,
there will be some effect on the precision of the timing interval if the CPU starts the
measurement randomly during a clock period, rather than exactly at the beginning.
Some ways to synchronize operations are:

1. Start the CPU and clock together. RESET or a startup interrupt can start the
clock as well as the CPU.

2. Allow the CPU to start and stop the clock under program control.

3. Use a high-frequency clock so that an error of less than one clock period will
be small.

246 68000 Assembly Language Programming

4. Line up the clock (by waiting for an edge or interrupt) before starting the
measurement.

A real-time clock interrupt should have very high priority, since the precision of
the timing intervals will be affected by any delay in servicing the interrupt. The usual

practice is to make the real-time clock the highest priority interrupt except for power
failure. The clock interrupt service routine is generally kept extremely short so that it
does not interfere with other CPU activities.

In the following programs we assume a clock has been connected to a PIA inter-
rupt. An interrupt will occur once each clock cycle.

15-4a. Wait for Real-Time Clock

Program 15-4a:

00004000 PROGRAM: LOU S4000
00004600 INT_26 : EQU $46 00 00006000 DATA : EQU $6 000
0003FF40 TP 1 ADA : EQU $3FF40 DATA REGISTER A FOR TIMER PIA
0003FF44 TP I ACA : EQU $3FF44 CONTROL REGISTER A FOR TIMER PIA
00000005 PIA EN : EQU

$05
PIA INTERRUPT ENABLE

00002000 IMSK0 : EQU $2000 SUPERVISOR/INTERRUPT LEVEL 0

00006000 ORG DATA
006000 00000001 COUNTER : DS.B 1 TIMER COUNTER

00004000 ORG PROGRAM
004000 42386000 PGM1 5_4A : C L R . B COUNTER CLEAR TIMER COUNTER
004004 13FC0005

0003FF44 MOVE . B HP I A E N , TP I AC A ENABLE INTERRUPT FROM TIMER PIA
00400C 46FC2000 MOVE tt IMSK0, 5R ENABLE ALL INTERRUPTS
0040 10 4A386000 TWA 1 T : TST. B COUNTER HAS TIMER COUNTER BEEN INCREMENTE
0040 14 6 7FA

BEQ

TWA IT NO, WAIT
0040 16 4E7 5 RT5

- TIMER I NTERRUPT SERVICE ROUTINE
00004600 ORG INT_26

004600 4A3 9 3 0 U 3FF40 TST.B TP I ADA CLEAR TIMER INTERRUPT
004606 52386000 ADDQ.B tt 1 , COUNTER INCREMENT TIMER COUNTER
00460A 4E73 RTE RETURN TO INTERRUPTED ROUTINE

The variable COUNTER at memory location 6000 contains the clock counter.

If bit 1 of the PIA control register is 0, the interrupt will occur on the high-to-low
(falling) edge of the clock. If that bit is 1, the interrupt will occur on the low-to-high (ris-

ing) edge of the clock.
The interrupt service routine must explicitly clear bit 7 of the PIA control register

since no data transfer is necessary.
You could still use the PIA data port as long as you did not accidentally clear the

status bit from the real-time clock before it was recognized. This would be no problem if
the port were used for output to a simple peripheral (such as a set of LEDs), since out-

put operations do not affect the status bits anyway.
Clearly, we can easily extend this routine to handle more counts and provide

greater precision by using more memory locations for the clock counter and a different
test in the main program.

Interrupts and Other Exceptions 247

15-4b. Wait for 10 Clock Interrupts

Program 15-4b:

00004000 PROGRAM: EQU $4000
00004600 INT_26 : EQU $4600 00006000 DATA : EQU $6000

0003FF40 TP I ADA : EQU $3FF40
0 0 0 3FF 44 TP 1 ACA : EQU $ 3FF44 00000005 P I A EN: EQU $05
00002000 I MSK 0 : EQU $ 2 0 0 0
00OOOOOA TDELAY : EQU 10

00006000 ORG DATA

006000 00000001 COUNTER : DS.B 1

00004000 ORG PROGRAM
n n l n n n 4i jOOUUU PGM15 4B CLR . B COUNTER
004004 13FC0005

0003FF44 MOVE . B HP I A EN, TP I ACA
00400C 46FC2000 MOVE # IMSK0, SR
0 04010 103C000A MOVE.B ttTDELAY, DO
004014 B0386000 TWA I T : CMP.B COUNTER, DO
004018 67FA

BEQ

TWA I T

00401A 4E75
RTS

» TIMER INTERRUPT SERVICE ROUTINE
00004600 ORG INT_26

004600 4A390003FF40 TST.B TP I ADA
004606 52386000 ADDQ.B tt 1 , COUNTER 00460A 4E73 RTE

DATA REGISTER A FOR TIMER PIA
CONTROL REGISTER A FOR TIMER PIA
PIA INTERRUPT ENABLE
SUPERVISOR/INTERRUPT LEVEL 0 TIMER DELAY

TIMER COUNTER

CLEAR TIMER COUNTER

ENABLE INTERRUPT FROM TIMER PIA ENABLE ALL INTERRUPTS
TIMER COUNT DELAY
HAS DESIRED DELAY BEEN ACHIEVED?
NO, WAIT

CLEAR TIMER INTERRUPT
INCREMENT TIMER COUNTER
RETURN TO INTERRUPTED ROUTINE

15-4c. Maintaining Real Time

A more realistic real-time clock interrupt routine could keep track of the
passage of time using several memory locations. For example, the following routine
uses addresses 6000 through 6003 to maintain clock time as follows:

6000 - hundredths of seconds
6001 - seconds

6002 - minutes
6003 - hours

We assume that a 100Hz input provides the regular source of interrupts.

Program 15-4c:

00004000 PROGRAM: EQU $4000
00004600 INT 26: EQU $4600 00006000 DATA: EQU $6000

0003FF40 TP I ADA : EQU $3FF40 DATA REGISTER A FOR TIMER PIA
0003FF44 TP I ACA: EQU

$3FF44 CONTROL REGISTER A FOR TIMER PIA
00000005 PIA EN: EQU $05 PIA INTERRUPT ENABLE
00002000 IMSK0 : EQU $2000 SUPERVISOR/INTERRUPT LEVEL 0
0000001E TDELAY: EQU

30

300 DELAY (DELAY MUST BE < 1 SECOND
00006000 ORG DATA

006000 00000001 HUNDSEC : DS.B 1 HUNDREDTHS OF SECONDS
006001 00000001 SECONDS : DS.B 1 SECONDS
006002 00000001 MINUTES : DS.B 1 MINUTES
006003 00000001 HOURS : DS.B 1 HOURS

00004000 ORG PROGRAM

248 68000 Assembly Language Programming

0 0 0 3F F 44 PGM1 5 4C MOVE . B APIA EN, TP I ACA ENABLE INTERRUPT FROM TIMER PIA
00*4008 46FC2000 MOVE tt IMSK0, SR ENABLE ALL INTERRUPTS
00400C 10 3 86000 MOVE . B HUNDSEC,D0 GET CURRENT HUNDREDTHS OF SECOND
004010 0600001E ADD I .B ttTDELAY, DO ADD DELAY TIME
00401'+ 0C000064 CMP I .B #100, DO MOD 100
004018 65000006 BCS TWA I T
00401C 04000064 SUBI .B #1 00, DO
004020 B0586000 TWAIT: CMP.B HUNDSEC, DO HAS DESIRED DELAY BEEN ACHIEVED?
004024 67FA

BEQ

TWA I T NO, WAIT
004026 4E75 RTS

:: TIMER
I NTERRUPT SERVICE ROUTINE

00004600 ORG I NT_26

004600 48E78000 MOVEM. L DO, -CSP) SAVE DO
004604 4A390003FF40 TST.B TP I ADA CLEAR TIMER INTERRUPT
00460A 52386000 ADDQ. B tt 1 , HUNDSEC UPDATE HUNDREDTHS OF SECONDS
0046 0E 10 3C0064 MOVE . B tt 1 0 0 , DO
0046 1 2 B0386000 CMP . B HUNDSEC , DO IS THERE A CARRY FROM HUNDREDTHS
0046 16 6628 BNE . S TDONE NO, DONE 0 0 4618 423ob000 HI 1 Mn Q F C YPC f 1 PAD Ml iMhD CrMHC CCTAMPiC Tt ILLAK nUINUK tU 1 no Ur btLUlNUb
00461C 52386001 ADDQ . B #1, SECONDS UPDATE SECONDS
004620 103C003C MOVE.B #60, DO
004624 B0386001 CMP.B SECONDS, DO IS THERE A CARRY TO MINUTES
004628 6616 BNE .S TDONE NO, DONE 00462A 42386001 CLR.B SECONDS YES, CLEAR SECONDS
004632 B0386002 CPM.B MINUTES, DO IS THERE A CARRY TO HOURS
004636 6608 BNE.S TDONE NO, DONE
004638 42386002 CLR.B MINUTES YES, MAKE MINUTES ZERO
00463C 52386003 ADDQ . B #1, HOURS UPDATE HOURS
00462E 52386002 ADDQ . B #1, MINUTES UPDATE MINUTES
004640 4CDF0001 TDONE : MOVEM. L CSP)+,D0 RESTORE DO
004644 4E73 RTE RETURN TO INTERRUPTED ROUTINE

END PGM15_4C

The main program produces a delay of 300 milliseconds. The longest delay that
can be handled by this routine is 990 milliseconds. How would you modify this program
to handle longer delays?

This approach is the same one you would take if you had to let something cook for
20 minutes. You must determine the current time by reading your watch (the counter),
calculate the target time by adding 20 (mod 60, so 20 minutes past 6:50 is 7:10), and wait
for your watch to reach the target time. Notice that if the delay is less than one hour, you
can ignore the hour hand and wait until the minute hand comes around to ten minutes

after the hour. This is the method the program uses. (If your watch doesn't have hands,
just wait until the minutes numbers display 10.)

Change the program so it produces a 20 minute delay (an obvious requirement for

a microprocessor-controlled microwave oven).
Of course, the program could perform other tasks and only check the elapsed time

occasionally. How would you produce a delay of seven seconds? of three minutes?
Many applications do not require long delays to be highly accurate; for example, the

operator of a microwave oven does not care if intervals in minutes are off by a few sec-
onds.

Sometimes you may want to keep time either as BCD digits or as ASCII charac-
ters. How would you revise the last interrupt service routine to handle these alterna-

tives?

Assuming that the clock PIA generates level 2 interrupts, its interrupts are then
handled by the level 2 autovector at address 68. If the MC68000 has its interrupt priority
mask set at level 0 and simultaneous interrupts are received from both the clock PIA

Interrupts and Other Exceptions 249

Flowchart 15-4c:

Clear clock interrupt
Hundredths =

Hundredths + 1

Hundredths = 0
Seconds =

Seconds + 1

Seconds = 0
Minutes =

Minutes + 1

No \ f

and the printer PIA in example 15-3, here is what happens. Since the printer PIA gener-
ates a level 1 interrupt, the clock PIA is serviced first. The interrupt from the printer

PIA would be inhibited until the priority mask was reset to zero. If the printer interrupt
occurs first and service of this interrupt has begun, this service would be interrupted by

the occurrence of a clock PIA interrupt. After the clock service routine has been com-
pleted, control would be returned to the printer service routine at the point where it was

interrupted.

250 68000 Assembly Language Programming

High-Frequency Clock

Even a high-frequency real-time clock can be handled without much processor
intervention. The usual method is to have the clock increment a set of counters which

then interrupt the processor at a much lower frequency. For example, the input fre-
quency could be 1 MHz; that input frequency would then be passed through 3 decimal

counters and the output of the last one would be tied to the PIA. The PIA would recive a
single clock pulse for every 1000 input pulses (that is, when the 3 decimal counters

overflow). The processor can determine the time to greater precision than 1 ms by read-
ing the counters, since they contain the less significant digits. As usual, some additional

hardware (counters and input ports) is necessary to reduce the burden on the CPU. This
is a typical tradeoff; the additional hardware is worthwhile only if the application
requires precise timing.

1 5-5. A TELETYPEWRITER INTERRUPT

15-5a. ACIA Interrupt Routine

Purpose: The main program clears a flag represented by the variable FLAG at memory

location 6000 and waits for an interrupt from a 6850 ACIA. The interrupt ser-
vice routine sets FLAG to 1 and places the data from the ACIA in the variable

CHAR at memory location 6001. The characters are 7 bits in length with odd
parity and 2 stop bits.

Program 15-5a:
00004000 PROGRAM: EQU S4000
00004600 INT 25: EQU $4600
00006000 DATA: EQU $60 00

0003FF01 AC IACR : EQU $3FF01 ACIA CONTROL REGISTER
0OOEFF05 AC I ADR : EQU $EFF03 AC I A DATA REGISTER
000000C5 AMODE : EQU

$C5
ACIA OPERATING MODE

00000003 MRESET : EQU $03 ACIA MASTER RESET
00002000 IMSK0 : EQU $2000 SUPERVI SOR/ INTERRUPT LEVEL 0
00006000 ORG DATA

006000 00000001 FLAG: DS.B 1 DATA ACCEPT FLAG
006001 00000001 CHAR : DS.B 1 CHARACTER FROM TT Y

00004000 ORG PROGRAM
004000 42386000 PGM1 5_5A : CLR.B FLAG CLEAR DATA ACCEPT FLAG
004004 13FC0003

0003FF01 MOVE . B ttMRSET, ACIACR MASTER RESET ACIA
00400C 13FC00C5

0003FF01 MOVE.B # AMODE , AC IACR ENABLE ACIA INTERRUPT/SET MODE
004014 46FC2000 MOVE tt IMSK0, SR ENABLE ALL INTERRUPTS
0040 1 8 4A386000 WAIT: TST.B FLAG

IS THERE DATA FROM ACIA? 00401C 67FA

BEQ

WAIT NO, WAIT
00401E 4E75 RTS

:: INTERRUPT SERV CE ROUTINE
00004600 0 R G

I NT_2 5

004600 11FC00016000 MOVE .B
#1, FLAG SET DATA ACCEPT FLAG

004606 1 1F9000EFF03
600 1 MOVE .B AC I ADR, CHAR SAVE TT Y CHARACTER INPUT

00460E 4E73 RTE
RETURN TO INTERRUPTED ROUTINE 00460E 4E73 RTE
RETURN TO INTERRUPTED ROUTINE END PGM1 5_5A

Since the 6850 ACIA has no RESET input, a master reset (setting control register

Interrupts and Other Exceptions 251

bits 0 and 1 to one simultaneously) is necessary before the ACIA is initialized.
We then initialize the bits in the ACIA control register as follows:

Bit 7 = 1 to enable the receiver interrupt
Bit 6 = 1 and Bit 5 = 0 to disable the transmitter

interrupt

Bit 4 = 0, Bit 3 = 0, and Bit 2 = 1 to select 7-bit
data with odd parity and two stop bits

Bit 1 = 0 and Bit 0 = 1 to select the divide by 16
clock mode (a 1760 Hz clock must be supplied for a
110 Baud data rate).

To determine if a particular 6850 ACIA is the source of an interrupt, the program
must examine the interrupt request bit (bit 7 of the status register)in each ACIA. To
differentiate between receiver and transmitter interrupts, the program must examine
the Receive Data Register Full bit (bit 0 of the status register). Either reading the

receive data register or writing into the transmit data register clears the ACIA's inter-
rupt request bit.

15-5b. PIA Start Bit Interrupt

Teletypewriter data can also be received with a PIA. In this case, the serial input
line from the teletypewriter is connected to both data bit 7 and control line 1 of the PIA.

Purpose: The main program clears a flag represented by the variable FLAG at memory
location 6000 and waits for a teletypewriter interrupt. The interrupt service
routine sets FLAG to 1 and places the data from the teletypewriter in the
variable CHAR at memory location 6001.

Program 15-5b:

00004000 PROGRAM: EQU $4000
00004600 I NT 25: EQU $46 00 00006000 DATA: EQU $6000 00004800 TTYRCV: EQU $4800
0003FF40 P I ADDA : EQU $3FF40 DATA DIRECTION REGISTER A
00000000 DATIN: EQU

$0
PIA DATA LINES AS INPUTS

0003FF40 P I ADA : EQU $3FF40 DATA REGISTER A
0003FF44 P I ACA : EQU $3FF44 CONTROL REGISTER A
00000005 PIA EN: EQU $05 PIA INTERRUPT ENABLE
00000004 PIA DIS: EQU

$04
PIA INTERRUPT DISABLE

00002000 IMSK0 : EQU $2000 SUPERVISOR/INTERRUPT LEVEL 0
00006000 ORG DATA 006000 00000001 FLAG: D5 . B 1 DATA ACCEPT FLAG

00600 1 00000001 CHAR : DS .B 1 CHARACTER INPUT FROM TT Y
00004000 ORG PROGRAM

004000 42386000 PGM1 5_5B : CLR.B FLAG CLEAR DATA ACCEPT FLAG
004004 42390003FF44 CLR.B P I ACA ADDRESS DATA DIRECTION REGISTER
00400A 1 3FC 0 0 0 0

0003FF40 MOVE . B ttDATIN, P I ADDA MAKE ALL DATA LINES INPUTS
004012 13FC0005

0003FF44 MOVE . B ttPIA EN, PIACA ENABLE INTERRUPT FROM TT Y PIA
00401A 46FC2000 MOVE tt IMSK0, 5R ENABLE ALL INTERRUPTS
00401E 4A386000 WAIT: T5T.B FLAG HAS START BIT BEEN RECEIVED?
004022 6 7FA

BEQ

WAI T NO, WAIT 004024 4EB84800 JSR TTYRCV YES, FETCH DATA FROM TT Y 004028 1 1C06 00 1 MOVE . B
DO, CHAR

SAVE TT Y INPUT CHARACTER

00402C 4E75 RTS

INTERRUPT SERVICE ROUTINE

252 68000 Assembly Language Programming

00004600 ORG INT_25
004600 1 1FC000 16 000 MOVE.B tt 1 , FLAG SET DATA ACCEPT FLAG
0046 06 4A390003FF40 T5T.B P I ADA CLEAR START BIT INTERRUPT
00460C 13FC0004

0003FF44 MOVE . B tt P I A_D I S , P I AC A DISABLE START BIT INTERRUPT
004614 4E73 R TE RETURN TO INTERRUPTED ROUTINE

END PGM15_5B

Subroutine TTYRCV called by Program 15-5/) is similar to the teletypewriter
receive routine shown in Chapter 13, example 9, except that we have assumed a version
that leaves the data in data register DO. The edge used to cause the interrupt is very

important here. The transition from the normal T (MARK) state to the '0' (SPACE)
state must cause the interrupt, since this transition signifies the start of the transmis-

sion. No 'CT to T transition will occur until a non-zero data bit is received.

The service routine must disable the PIA interrupt, since otherwise each T to 'O1
transition in the character will cause an interrupt. Note that reading the data bits will

clear any status flags set by the ignored transitions. Of course, the program must reena-
ble the PIA interrupt (by setting bit 0 of the control register) to allow receipt of the next
character, but this should be done after the current character has been read.

15-6. A Supervisor Call

Purpose: Allowing programs in the user state to access utility routines in the supervisor
state.

In the design of systems which include monitors or operating systems, it is good
programming practice to make utility routines out of frequently used sequences of

instructions. These routines may provide simple functions such as determining time-of-
day or they may provide much more complex functions such as memory management in

a multi-user system or logical input/output on a disk-based system. The two-state
architecture of the MC68000 prevents application programs in the user state from per-

forming certain privileged instructions which are reserved for operation in the super-
visor state. In future systems which may provide memory management, programs in the

user state may be restricted to using memory only within their own limited address
space.

In cases where user state programs must communicate with a monitor or operat-
ing system in the supervisor state, you can use the TRAP instructions. Execution of a

TRAP instruction causes a processor exception and exception processing is performed

in much the same manner as interrupt processing. Programs 15-6<7 and 15-6/7 show typi-
cal uses of the TRAP instruction.

Program 15-6a:
00004000 PROGRAM : ECU $4000
00004400 TTYIN: EQU $4400
00004500 PRINT: EQU $4500
00004600 TRAP 1 : EQU $4600
00005100 USTACK : EQU $5100 00006000 DATA: EQU $6000
00000084 ORU $84 000084 00004600 DC .L TRAP 1

00006000 ORG DATA
006000 00000050 BUFFER : DS.B

8 0

00004000 ORG PROGRAM

Interrupts and Other Exceptions 253

PROGRAM IN USER STATE

004000 3C7C6000 PGM1 56A : MOVE . W (♦BUFFER, A6
004004 4E41 TRAP

ttl
POINTER TO INPUT/OUTPUT BUFFER 004006 000 1 DC .W 1 MONITOR CALL

004008 4E41 TRAP
H 1

TO READ ONE TTY LINE
00400A 0002 DC .W 2 MONITOR CALL
00400C 4E75

00004600

:: TRAP
RTS

1 HANDLER

ORG TRAP 1

TO WRITE ONE PRINTER LINE

004600 48E7FFFE MOVEM. L D0-D7/A0-A6, -(SP)
004604 2A6F003E MOVE . L 60+2CSP), A5 SAVE ALL USER REGISTERS
004608 4BED0002 LEA.L 2(A5), A5 RETURN ADDRESS
00460C 2F4D003E MOVE . L A5,60+2(SP) ADDRESS OF INSTRUCTION AFTER TRAP
004610 0C6D000 1FFFE CMP. W m,-2CA5) UPDATE STACK VALUE
004616 66 06 BNE.S PR INTER READ MONITOR CALL?
004618 4EB84400 JSR TTY IN NO, PRINTER CALL 0046 1C 60 04

BRA. S DONE READ ONE LINE FROM TTY
00461E 4EB84500 PR INTER :

JSR
PR I NT

0046 22 4CTF 7FFF DONE : MOVEM . L (SP)+,D0-D7/A0-A6 OUTPUT ONE LINE TO PRINTER
004626 4E73 RTE

END PGM 1 5 6A
RESTORE USER REG-iSTERS
RETURN TO USER PROGRAM

Each of the processor's two states has its own stack pointer (address register A7).
When the MC68000 is reset, all references to address register A7 use the supervisor

stack pointer. The supervisor stack pointer is used until the s-bit in the status register is
cleared, and the user state is entered. While in the user state, A7 references the user
stack pointer.

Program 15-6a demonstrates a typical instruction sequence used to read and write

from a TTY device using a monitor such as Motorola's MAOBUG.™ The sequence
uses the TRAP #1 instruction to perform a call to supervisor function. In this example,
address register A6 is used as an input parameter to the function and it points to the
TTY input/output buffer. A second parameter to the function is contained in the word
immediately following the TRAP instruction. This parameter indicates whether an input
or output function is requested. A detailed description of parameter passing is contained
in Chapter 10.

As discussed in the beginning of this chapter, the exception processing of the
TRAP instruction causes the current processor program counter and status register to

be pushed on the supervisor stack. The trap number, 1 in this erample, is used to deter-
mine the appropriate TRAP vector much as the interrupt vector number is used to

calculate the address of the interrupt vector. Since the TRAP vectors start at address
$80, the vector for TRAP#1 is located at

$80 + 1 * 4 = $84

The long word address at location $84 contains the starting address of the TRAP# 1 pro-
cessing routine at location $4600. Again, like interrupt processing, initial exception pro-
cessing is performed in supervisor mode.

Since only the status register and program counter are saved as part of the excep-
tion process, the exception handler must save any register which it uses. These registers

must be restored prior to returning to the instruction following the exception. In the
event that control may not immediately be returned to the application program causing
the exception, you may also want to save the user stack register. The instruction MOVE
USP,An can be used to accomplish this operation. On completion of processing, a
MOVE An,USP is used to restore the user stack pointer. Both instructions are priv-

ileged instructions and necessary for systems with more than one task.

254 68000 Assembly Language Programming

Upon completion of exception processing by the exception handler, control must
be returned to the instruction following the instruction which caused the exception. This
is accomplished by using the RTE instruction which restores the previously saved status

register and program counter from the supervisor stack. Since RTE affects the super-
visor portion of the status register, it is a privileged instruction.

A variation of program \5-6a is shown in \5-6b. This variation uses two different
TRAP instructions and therefore two exception handlers. Normally, we think of using
the TRAP instructions while in user mode to communicate with functions in supervisor
mode. However, the TRAP instructions may be used while in supervisor mode.

Program 15-6b:

00004000 PROGRAM : EQU $4000
00004400 TTYIN: EQU $4400
00004500 PRINT: EQU $4500
00004600 TRAPHDLR : EQU $4600
00005100 USTACK : EQU $5100
00006000 DATA : EQU $6000
00000084 ORG $84 TRAP 1/2 VECTOR

000084 00004600 DC.L TRAP 1
000088 0000460A DC .L TRAP 2

00006000 ORG DATA

006000 00000050 BUFFER : DS.B
80

INPUT/OUTPUT BUFFER

00004000 ORG PROGRAM

:: PROGRAM IN USER STATE

004000 3E7C5100 PGM15_6B : MOVEA. W ♦tUSTACK, A7 INITIALIZE USER STACK
004004 3C7C6000 MOVE.k SBUFFER, A6 POINTER TO INPUT/OUTPUT BU
004008 4E41 TRAP

#1
MONITOR CALL TO READ ONE T

00400A 4E42 TRAP #2 MONITOR CALL TO PRINT ONE
00400C 4E75 RTS

:: TRAP 1 AND 2 HANDLERS

00004600 ORG TRAPHDLR

004600 48E7FFFE TRAP1 : MOVEM. L D0-D7/A0-A6,

-CSP)

SAVE ALL USER REGISTERS
004604 4EB84400 J 5 R TTYIN READ ONE LINE FROM TTY
004608 6008 BRA.S RETURN
00460A 48E7FFFE TRAP 2 : MOVEM. L DO-D7/A0-A6,

-Csp)

SAVE ALL USER REGISTERS
00460E 4EB84500 JSR

PR I NT OUTPUT ONE LINE TO PRINTER
004612 4CDF7FFF RETURN : MOVEM . L (SP)+, D0-D7/A0-A6

RESTORE USER REGISTERS
004616 4E73 RTE RETURN TO USER PROGRAM

END PGM15_6B

15-7. ENTERING USER MODE

Purpose: Establishing programs in user mode.

Program 15-7:

00004800
00005100
00005300
00000000
00004000

RESET:
STACK :
USTACK :
USER : USERPGM:

EQU
EQU
EQU
EQU
EQU

$4800
$5100 $5300 $0
$4000

USER STATE/PRIORITY LEVEL
USER PROGRAM

000000
0 0 0 0 04

0 0 0 0 0 0 0 0

00005100
00004800

DC .L
DC .L STACK PGM1 5 ADDRESS OF STACK

ADDRESS OF RESET PROGRAM

00004800

307C5300 MOVE. A W ttUSTACK , AO ADDRESS OF USER STACK

Interrupts and Other Exceptions 255

004804
004806
00480A

4E60
'+6FC0000
4EF84000

MOVE . L
MOVE.W
JMP

A0,USP
((USER, SR
USERPGM

INITIALIZE USER STACK
SET TO USER MODE
JUMP TO USER PROGRAM

END PGM 1 5

As mentioned previously, the MC68000 is initialized to operate in supervisor

mode. To enter user mode, the Supervisor flag (S-bit) in the status register must be
reset. This can be accomplished by any instruction which affects the Supervisor flag such
as MOVE to SR, ANDI to SR, EORI to SR or RTE. With the MOVE, ANDI or EORI
instructions, only the status register is affected and the instruction following the MOVE,
ANDI or EORI is executed next in the user mode. The RTE instruction allows you to
switch to user mode at a given address.

More general interrupt service routine that are part of a complete interrupt-
driven system must handle the following tasks:

1. Saving any needed data on the stack so that interrupted programs can
resume correctly. The MC68000 saves only the program counter and the
status register on the supervisor stack during its response to an interrupt.
Therefore, your interrupt service routines must save and restore any additional
registers they use.

2. Restoring data and registers before executing RTE and returning control to
interrupted programs.

3. Polling of all devices associated with a given interrupt when more than one
device can cause the interrupt. This is generally the case for devices which use
autovectoring.

4. Enabling and disabling interrupts appropriately. Remember that the CPU

automatically disables interrupts of the same or lower level as that of the inter-
rupt just accepted.

1. A, Osborne. An Introduction to Microcomputers: Volume 1 — Basic Concepts. Berkeley:
Osborne/McGraw-Hill, 1980, Chapter 5.

2. R. L. Baldridge. "Interrupts Add Power, Complexity to Microcomputer Software
Design, " EDN, August 5, 1977, pp. 67-73.

3. R. Morris. "6800 Routine Supervises Service Requests," EDN, October 5, 1979, pp.
73-81.

MORE GENERAL SERVICE ROUTINES*

REFERENCES

256 68000 Assembly Language Programming

4. I. P. Breikss. "Nonmaskable Interrupt Saves Processor Register Contents,"
Electronics, July 21, 1977, p. 104.

5. A. Osborne. An Introduction to Microcomputers: Volume 2 — Some Real
Microprocessors. Berkeley: Osborne/McGraw-Hill, 1980, pp. 9-71 through 9-77.

6. R. Grappel. "Technique Avoids Interrupt Dangers,'1 EDN, May 5, 1979, p. 88.

7. G. Horner. "Online Control of a Laboratory Instrument by a Timesharing Com-
puter, " Computer Design, February 1980, pp. 90-106.

8. For further discussion and some real-life examples of designing systems with inter-
rupt, see the following:

S. C. Baunach. "An Example of an M6800-based GPIB Interface," EDN, September
20, 1977, pp. 125-28.

L. E. Cannon and P. S. Kreager. "Using a Microprocessor: a Real-Life Application,
Part 2 — Software," Computer Design, October 1975, pp. 81-89.

D. Fullager et al. "Interfacing Data Converters and Microprocessors," Electronics,
December 8, 1976, pp. 81-9.

S. A. Hill. "Multiprocess Control Interface Makes Remote MP Command Possible,"
EDN, February 5, 1976, pp. 87-9.

Holderby. "Designing a Microprocessor-based Terminal for Factory Data Collec-
tion," Computer Design, March 1977, pp. 81-8.

A. Lange. "OPTACON Interface permits the Blind to 'Read' Digital Instruments,"
EDN, February 5, 1976, pp. 84-6.

J. D. Logan and P. S. Kreager. "Using a Microprocessor: a Real-Life Application,
Part 1 — Hardware," Computer Design, September 1975, pp. 69-77.

A. Moore and M. Eidson. "Printer Control," Application Note available from
Motorola Semiconductor Products, Phoenix, Ariz.

M. C. Mulder and P. P. Fasang. "A Microprocessor Controlled Substation Alarm
Logger," IECI '78 Proceedings — Industrial Applications of Microprocessors, March
20-22, 1978, pp. 2-6.

P. J. Zsombar-Murray et al. "Microprocessor Based Frequency Response Analyzer,"
IECI '78 Proceedings — Industrial Applications of Microprocessors, March 20-22,
1978, pp. 36-44.

The Proceedings of the IEEE's Industrial Electronics and Control Instrumentation
Group's Annual Meeting on "Industrial Applications of Microprocessors" contain
many interesting articles. Volumes (starting with 1975) are available from IEEE Service
Center, CP Department, 445 Hoes Lane, Piscataway, N. J. 08854.

IV

Software Development

The previous chapters have described how to write short assembly language pro-
grams. While this is an important topic, it is only a small part of software development.

Although writing assembly language programs is a major task for the beginner, it soon

becomes simple. By now you should be familiar with standard methods for program-
ming in assembly language on the MC68000 microprocessor. The next six chapters

will describe how to formulate tasks as programs and how to combine short programs
to form a working system.

THE STAGES OF SOFTWARE DEVELOPMENT

Software development consists of many stages. Figure IV-1 is a flowchart of the
software development process. Its stages are:

• Problem definition

• Program design
• Coding

• Debugging
• Testing

• Documentation

• Maintenance and redesign

Each of these stages is important in the construction of a working system. Coding,
the writing of programs in a form that the computer understands, is only one stage in a
long process.

257

258 68000 Assembly Language Programming

RELATIVE IMPORTANCE OF CODING

Coding is usually the easiest stage to define and perform. The rules for writing
computer programs are easy to learn. They vary somewhat from computer to computer,
but the basic techniques remain the same. Few software projects run into trouble

Software Development 259

because of coding; indeed, coding is not the most time-consuming part of software
development. Experts estimate that a programmer can write one to ten fully debugged
and documented statements per day. Clearly, the mere coding of one to ten statements

is hardly a full day's effort. On most software projects, coding occupies less than 25% of
the programmer's time.

MEASURING PROGRESS IN OTHER STAGES

Measuring progress in other stages is difficult. You can say that half of the pro-
gram has been written, but you can hardly say that half of the errors have been removed

or half of the problem has been defined. Timetables for such stages as program design,
debugging, and testing are difficult to produce. Many days or weeks of effort may result

in no clear progress. Furthermore, an incomplete job in one stage may result in tremen-
dous problems later. For example, poor problem definition or program design can make

debugging and testing very difficult. Time saved in one stage may be spent many times
over in later stages.

DEFINITION OF THE STAGES

Problem Definition

Problem definition is the formulation of the requirements that the task places
on the computer. For example, what is necessary to make a computer control a tool, run
a series of electrical tests, or handle communications between a central controller and a
remote instrument? Problem definition requires that you determine the forms and rates
of inputs and outputs, the amount and speed of processing that is needed, and the types
of possible errors and their handling. Problem definition takes a vague idea of building a

computer-controlled system and defines the tasks and requirements for the computer.

Program Design

Program design is the outline of the computer program that will meet the
requirements. In the design stage, the tasks are described in a way that can easily be
converted into a program. Among the useful techniques in this stage are flowcharting,

structured programming, modular programming, and top-down design.

Coding

Coding is the writing of the program in a form that the computer can either
directly understand or translate. The form may be machine language, assembly

language, or a high-level language.

Debugging

Debugging, also called program verification, is making the program perform

according to the design. In this stage, you use such tools as breakpoints, traces, simula-
tors, logic analyzers, and in-circuit emulators. The end of the debugging stage is hard to

define, since you never know when you have found the last error.

260 68000 Assembly Language Programming

Testing

Testing, also referred to as program validation, is ensuring that the program per-
forms the overall system tasks correctly. The designer uses simulators, exercisers, and

statistical techniques to measure the program's performance. This stage is like quality
control for hardware.

Documentation

Documentation is the description of the program in the proper form for users

and maintenance personnel. Documentation also allows the designer to develop a pro-
gram library so that subsequent tasks will be far simpler. Flowcharts, comments,

memory maps, and library forms are some of the tools used in documentation.

Maintenance and Redesign

Maintenance and redesign are the servicing, improvement, and extension of

the program. Clearly, the designer must be ready to handle field problems in computer-
based equipment. Special diagnostic modes or programs and other maintenance tools
may be required. Upgrading or extension of the program may be necessary to meet new
requirements or handle new tasks.

16

Problem Definition

Typical microprocessor tasks require a lot of definition. For example, what
must a program do to control a scale, a cash register, or a signal generator? Clearly,
we have a long way to go just to define the tasks involved.

INPUTS

How do we start the definition? The obvious place to begin is with the inputs. We

should begin by listing all the inputs that the computer may receive in this applica-
tion.

Examples of inputs are:

Data blocks from transmission lines

Status words from peripherals

Data from A/D converters

Then we may ask the following questions about each input:

1. What is its form; that is, what signals will the computer actually receive?

2. When is the input available and how does the processor know it is available?
Does the processor have to request the input with a strobe signal? Does the
input provide its own clock?

3. How long is it available?

4. How often does it change, and how does the processor know that it has
changed?

5. Does the input consist of a sequence or block of data? Is the order important?

6. What should be done if the data contains errors? These may include transmis-
sion errors, incorrect data, sequencing errors, extra data, etc.

7. Is the input related to other inputs or outputs?

261

262 68000 Assembly Language Programming

OUTPUTS

The next step to define is the output. We must list all the outputs that the com-
puter must produce. Examples of outputs include:

Data blocks to transmission lines

Control words to peripherals
Data to D/A converters

Then we may ask the following questions about each output:

1. What is its form; that is, what signals must the computer produce?

2. When must it be available, and how does the peripheral know it is available?

3. How long must it be available?

4. How often must it change, and how does the peripheral know that it has
changed?

5. Is there a sequence of outputs?

6. What should be done to avoid transmission errors or to sense and recover

from peripheral failures?

7. How is the output related to other inputs and outputs?

PROCESSING SECTION

Between the reading of input data and the sending of output results is the process-
ing section. Here we must determine exactly how the computer must process the input

data. The questions are:

1. What is the basic procedure (algorithm) for transforming input data into out-
put results?

2. What time constraints exist? These may include data rates.

3. What memory constraints exist? Do we have limits on the amount of program
memory or data memory, or on the size of buffers?

4. What standard programs or tables must be used? What are their require-
ments?

5. What special cases exist, and how should the program handle them?
6. How accurate must the results be?

7. How should the program handle processing errors or special conditions such
as overflow, underflow, or loss of significance?

ERROR HANDLING

An important factor in many applications is the handling of errors. Clearly, the

Problem Definition 263

designer must make provisions for recovering from common errors and for diagnosing
malfunctions. Among the questions that the designer must ask at the definition stage
are:

1. What errors could occur?

2. Which errors are most likely? If a person operates the system, human error is
the most common. Following human errors, communications or transmission

errors are more common than mechanical, electrical, mathematical, or pro-
cessor errors.

3. Which errors will not be immediately obvious to the system? A special prob-
lem is the occurrence of errors that the system or operator may not recognize

as incorrect.

4. How can the system recover from errors with a minimum loss of time and
data and yet be aware that an error has occurred?

5. Which errors or malfunctions cause the same system behavior? How can
these errors or malfunctions be distinguished for diagnostic purposes?

6. Which errors involve special system procedures? For example, do parity
errors require retransmission of data?

Another question is: How can the field technician systematically find the source of

malfunctions without being an expert? Built-in test programs, special diagnostics, or sig-
nature analysis can help.1

HUMAN FACTORS/OPERATOR INTERACTION

Many microprocessor-based systems involve human interaction. Human factors
must be considered throughout the development process for such systems. Among the
questions that the designer must ask are:

1. What input procedures are most natural for the human operator?

2. Can the operator easily determine how to begin, continue and end the input
operations?

3. How is the operator informed of procedural errors and equipment malfunc-
tions?

4. What errors is the operator most likely to make?

5. How does the operator know that data has been entered correctly?

6. Are displays in a form that the operator can easily read and understand?

7. Is the response of the system adequate for the operator?

8. Is the system easy for the operator to use?

9. Are there guiding features for an inexperienced operator?

10. Are there shortcuts and reasonable options for the experienced operator?

11. Can the operator always determine or reset the state of the system after
interruptions or distractions?

Building a system for people to use is difficult. The microprocessor can make the

264 68000 Assembly Language Programming

system more powerful, more flexible, and more responsive. However, the designer still
must add the human touches that can greatly increase the usefulness and attractive-

ness of the system and the productivity of the human operator.2
The processor, of course, has no intrinsic preference in situations involving

human characteristics or cultural choices. The processor does not prefer left-to-right
over right-to-left, forward over backward, increasing order over decreasing order, or
decimal numbers over other number systems. Nor does the processor recognize the

operator's preference for simplicity, consistency, compatibility with previous
experience, and "logical" order of operations. The processor never gets distracted, dis-

oriented, confused, or bored. The designer must allow for all these considerations in the
design and development of interactive systems.

EXAMPLES

DEFINING A SWITCH AND LIGHT SYSTEM

Figure 16-1 shows a simple system in which the input is from a single SPST
switch and the output is to a single LED display. In response to a switch closure, the
processor turns the display on for one second. This system should be easy to define.

Switch Input

Let us first examine the input and answer each of the questions previously pre-
sented:

1. The input is a single bit, which may be either l0' (switch closed) or T (switch
open).

2. The input is always available and need not be requested.

3. The input is available for at least several milliseconds after the closure.

4. The input will seldom change more than once every few seconds. The pro-
cessor has to handle only the bounce in the switch. The processor must moni-

tor the switch to determine when it is closed.

5. There is no sequence of inputs.

6. The obvious input errors are switch failure, failure in the input circuitry, and
the operator attempting to close the switch again before a sufficient amount of
time has elapsed. We will discusss the handling of these errors later.

7. The input does not depend on any other inputs or outputs.

Light Output

The next requirement in defining the system is to examine the output. The
answers to our questions are:

1. The output is a single bit, which is '01 to turn the display on, T to turn it off.
2. There are no time constraints on the output. The peripheral does not need to

be informed of the availability of data.

Problem Definition 265

CPU

The switch input is a 'V if the switch is open, '0' if the switch is closed.
The CPU applies the output to the cathode of the LED: a '0' lights the display.

Figure 16-1. The Switch and Light System

3. If the display is an LED, the data need be available for only a few milliseconds

at a pulse rate of about 100 times per second. The observer will see a con-
tinuously lit display.

4. The data must change (go off) after one second.

5. There is no sequence of outputs.

6. The possible output errors are display failure and failure in the output circui- try.

7. The output depends only on the switch input and time.

Processing

The processing section is extremely simple. As soon as the switch input

becomes a logic 40\ the CPU turns the light on (a logic '0') for one second. No time or
memory constraints exist.

Error Handling

Let us now look at the possible errors and malfunctions. These are:

• Another switch closure before one second has elapsed
• Switch failure

• Display failure

• Computer failure

Surely the first error is the most likely. The simplest solution is for the processor
to ignore switch closures until one second has elapsed. This brief unresponsive period

will hardly be noticeable to the human operator. Furthermore, ignoring the switch dur-
ing this period means that no debouncing circuitry or software is necessary, since the

system will not react to the bounce anyway.

266 68000 Assembly Language Programming

Clearly, the last three failures can produce unpredictable results. The display may
stay on, stay off, or change state randomly. Some possible ways to isolate the failures
would be:

• Lamp-test hardware to check the display; i.e., a button that turns the light on
independently of the processor

• A direct connection to the switch to check its operation

• A diagnostic program that exercises the input and output circuits

If both the display and switch are working, the computer is at fault. A field techni-
cian with proper equipment can determine the cause of the failure.

DEFINING A SWITCH-BASED MEMORY LOADER

Figure 16-2 shows a system that allows the user to enter data into any memory
location in a microcomputer. One input port, DPORT, reads data from eight toggle
switches. The other input port, CPORT, is used to read control information. There
are four momentary switches: High Address, Mid Address, Low Address and Data.
The output is the value of the last completed entry from the data switches; eight
LEDs are used for the display.

The system will also, of course, require resistors, buffers, and drivers.

Inputs

The characteristics of the switches are the same as in the previous example. To
simplify the debouncing procedure and force the operator to release the buttons, we
have the system respond only after a button is released; this is a common technique
that reduces wear on the switches as well, since the operator is less tempted to press a
button repeatedly. In this system there is a distinct sequence of inputs, as follows:

1 . The operator must set the data switches according to the eight most significant
bits of an address, then

2. press and release the High Address button. The high address bits will appear
on the lights, and the program will interpret the data as the high byte of the
address (bits A23-A16).

3. Then the operator must set the data switches with the value of the middle byte
of the address (bits A15-A8) and

4. press and release the Mid Address button. The middle address bits will appear
on the lights, and the program will consider the data to be the middle byte of
the address.

5. Then the operator must set the data switches with the value of the least sig-
nificant byte of the address bits (A7-A0) and

6. press and releast the Low Address button. The low address bits will appear on
the lights, and the program will consider the data to be the low byte of the
address.

7. Finally, the operator must set the desired data into the data switches and

8. press and release the Data button. The display will now show the data, and the
program stores the data in memory at the previously entered address.

Problem Definition 267

The operator may repeat the process to enter an entire program. Clearly, even in
this simplified situation, we will have many possible sequences to consider. How do we
cope with erroneous sequences and make the system easy to use?

Data
Bus

CPU

Input
Port

DPORT

Input
Port

CPORT

^ Data Switches

<ro

-o o
High Address (A23-A16)

-O O Mid Address

(A15-A8)

Low Address
(A7-A0)

■O O

+ 5 V

Output
Port

-wv — <»
-WV — o

-WW — <>

-W\r— <>

Figure 16-2. The Switch-Based Memory Loader

268 68000 Assembly Language Programming

Output

Output is no problem. After each input, the program sends to the displays the

complement (since the displays are active-low) of the input bits. The output data
remains the same until the next input operation.

Processing

The processing section remains quite simple. There are no time or memory con-
straints. The program can debounce the switches by waiting for a few milliseconds, and

must provide complemented data to the displays.

Error Handling

The most likely errors are operator mistakes. These include:

• Incorrect entries

• Incorrect order

• Incomplete entries; for example, forgetting the data

The system must be able to handle these problems in a reasonable way, since they
are certain to occur in actual operation.

The designer must also consider the effects of equipment failure. Just as before,
the possible difficulties are:

• Switch failure

• Display failure

• Computer failure

In this system, however, we must pay more attention to how these failures affect
the system. A computer failure will cause a complete system breakdown that will be easy
to detect. A display failure may not be immediately noticeable; here a Lamp Test feature
will allow the operator to check the operation. Note that we would like to test each LED
separately, in order to diagnose the case in which output lines are shorted together. In
addition, the operator may not immediately detect switch failure; however, the operator
should soon notice it and establish which switch is faulty by a process of elimination.

Operator Error Correction

Let us look at some of the possible operator errors. Typical errors will be:

• Erroneous data

• Wrong order of entries or switches

• Trying to go on to the next entry without completing the current one

The operator will presumably notice erroneous data as soon as it appears on the
displays. What is a viable recovery procedure? Some options are:

1. The operator must complete the entry procedure; i.e., enter Mid Address,
Low Address and Data if the error occurs in the High Address. Clearly, this

Problem Definition 269

procedure is wasteful and annoying.

2. The operator may restart the entry process by returning to the high address
entry steps. This solution is useful if the error was in the High Address, but

forces the operator to re-enter earlier data if the error was in the Mid Address,
Low Address or Data stage.

3. The operator may enter any part of the sequence at any time simply by setting

the Data switches with the desired data and pressing the corresponding but-
ton. This procedure allows the operator to make corrections at any point in the

sequence.

This type of procedure should always be preferred over one that does not allow
immediate error correction, has a variety of concluding steps, or enters data into the

system without allowing the operator a final check. Any added complication in hard-
ware or software will be justified in increased operator efficiency. You should always

prefer to let the microcomputer do the tedious work and recognize arbitrary sequences;
it never gets tired and never forgets the operating procedures.

A further helpful feature would be status lights that would define the meaning

of the display. Four status lights, marked "High Address, " "Mid Address, " "Low
Address,'1 and "Data," would let the operator know what had been entered without
having to remember which button was pressed. The processor would have to monitor

the sequence, but the added complication in software would simplify the operator's task.
Clearly, four separate sets of displays plus the ability to examine a memory location
would be even more helpful to the operator.

We should note that, although we have emphasized human interaction,
machine or system interaction has many of the same characteristics. The

microprocessor should do the work. If complicating the microprocessor's task makes
error recovery simple and the causes of failure obvious, the entire system will work
better and be easier to maintain. Note that you should not wait until after the software
has been completed to consider system use and maintenance; instead, you should
include these factors in the problem definition stage.

DEFINING A VERIFICATION TERMINAL

Figure 16-3 is a block diagram of a simple credit-verification terminal. One
input port derives data from a keyboard (see Figure 16-4); the other input port
accepts verification data from a transmission line. One output port sends data to a set

of displays (see Figure 16-5); another sends the credit card number to the central
computer. A third output port turns on one light whenever the terminal is ready to
accept an inquiry, and another light when the operator sends the information. The

"busy" light is turned off when the terminal receives a response. Clearly, the input
and output of data will be more complex than in the previous case, although the process-

ing is still simple.

Additional displays may be useful to emphasize the meaning of the response.

Many terminals use a green light for "Yes," a red light for "No," and a yellow light for
"Consult Store Manager." Note that these lights will still have to be clearly marked with
their meanings to allow for a color-blind operator.

270 68000 Assembly Language Programming

CPU

Keyboard
Input Port

I Keyboard Strobe

{ ? Keyboard Data

Display

Output Port(s)

b
XMIT

Output Port

=>

RCV
Input Port

Status Light
Output Port

Display

Peripheral Ready Strobe

To Central Computer

Data Strobe

From Central Computer

BUSY Display

READY Display

Figure 16-3. Block Diagram of a Verification Terminal

CLEAR

SEND

The digit keys allow digit entries
CLEAR deletes the entire entry
SEND transmits the entry to the central computer

Figure 16-4. Verification Terminal Keyboard

Problem Definition 271

READY BUSY

□ □

O O i~! O O /—' /""/ /""/ /—/ /— / /— / /_/ / / / / /__/ /__/ O O O i~i

The display consists of ten 7-segment displays, which may be multiplexed, controlled by a shift
register, or addressed separately. Two additional lights, READY and BUSY, are also present.

Figure 16-5. Verification Terminal Display

Inputs

Let us first look at the keyboard input. This is, of course, different from the
switch input, since the CPU must have some way of distinguishing new data. We will
assume that each key closure provides a unique hexadecimal code (we can code each
of the 12 keys into one digit) and a strobe. The program will have to recognize the

strobe and fetch the hexadecimal number that identifies the key. There is a time con-
straint, since the program cannot miss any data or strobes. The constraint is not serious,

since keyboard entries will be at least several milliseconds apart.

The transmission input similarly consists of a series of characters, each iden-
tified by a strobe (perhaps from a UART). The program will have to recognize each

strobe and fetch the character. The data being sent across the transmission lines is
usually organized into messages. A possible message format is:

• Introductory characters, or header
• Terminal destination address

• Coded yes or no

• Ending characters, or trailer

The terminal will check the header, read the destination address, and see if the
message is intended for it. If the message is for the terminal, the terminal accepts the
data. The address could be (and often is) hard-wired into the terminal so that the ter-

minal receives only messages intended for it. This approach simplifies the software at
the cost of some flexibility.

The output is also more complex than in the earlier examples. If the displays are
multiplexed, the processor must not only send the data to the display port but must
also direct the data to a particular display. We will need either a separate control port
or a counter and decoder to handle this. Note that hardware blanking controls can blank

leading zeros as long as the first digit in a multi-digit number is never zero. Software can

Outputs

272 68000 Assembly Language Programming

also handle this task. Time constraints include the pulse length and frequency required
to produce a continuous display for the operator.

The communications output will consist of a series of characters with a particu-
lar format. The program will also have to consider the time required between charac-

ters. A possible format for the output message is:

• Header

• Terminal address

• Credit card number
• Trailer

A central communication computer may poll the terminals, checking for data
ready to be sent.

Processing

The processing in this system involves many new tasks, such as:

• Identifying the control keys by number and performing the proper actions

• Adding the header, terminal address, and trailer to the outgoing message

• Recognizing the header and trailer in the returning message

• Checking the incoming terminal address

Note that none of the tasks involves any complex arithmetic or any serious time
or memory constraints.

Error Handling

The number of possible errors in this system is, of course, much larger than in
the earlier examples. Let us first consider the possible operator errors. These include:

• Entering the credit card number incorrectly

• Trying to send an incomplete credit card number

• Trying to send another number while the central computer is processing one

• Clearing nonexistent entries

Some of these errors can be handled easily by organizing the program correctly.
For example, the program should not accept the Send key until the credit card number
has been completely entered, and it should ignore any additional keyboard entries until
the response comes back from the central computer. Note that the operator will know
that the entry has not been sent, since the Busy light will not go on. The operator will
also know when the keyboard has been locked out (the program is ignoring keyboard
entries), since entries will not appear on the display and the Ready light will be off.

Correcting Keyboard Errors

Incorrect entries are an obvious problem. If the operator recognizes an error, he
or she can use the Clear key to make corrections. The operator would probably find it
more convenient to have two Clear keys, one that cleared the most recent key and one

Problem Definition 273

that cleared the entire entry. This would allow both for the situation in which the
operator recognizes the error immediately and for the situation in which the operator
recognizes the error late in the procedure. The operator should be able to correct errors
immediately and have to repeat as few keys as possible. The operator will, however,
make a certain number of errors without recognizing them. Most credit card numbers

include a self-checking digit; the terminal could check the number before permitting
it to be sent to the central computer. This step would save the central computer from
wasting processing time checking the number.

This requires, however, that the terminal have some way of informing the
operator of the error, perhaps by flashing one of the displays or by providing some other
special indicator that the operator is sure to notice.

Still another problem is how the operator knows that an entry has been lost or
processed incorrectly. Some terminals simply unlock after a maximum time delay. The
operator notes that the Busy light has gone off without an answer being received. The
operator is then expected to try the entry again. After one or two further attempts, the
operator should report the failure to supervisory personnel.

Many equipment failures are also possible. Besides the displays, keyboard, and
processor, there now exist the problems of communications errors or failures and
central computer failures.

Correcting Transmission Errors

The data transmission will probably have to include error checking and correct-
ing procedures. Some possibilities are:

1. Parity provides an error detection facility but no correction mechanism. The
receiver will need some way of requesting retransmission, and the sender will
have to save a copy of the data until proper reception is acknowledged. Parity
is, however, very simple to implement.

2. Short messages may use more elaborate schemes. For example, the yes/no

response to the terminal could be coded to provide error detection and correc-
tion capability.

3. An acknowledgement and a limited number of retries could trigger an indica-
tor that would inform the operator of a communications failure (inability to

transfer a message without errors) or central computer failure (no response
within a certain period of time). Such a scheme, along with the Lamp Test,
would allow simple failure diagnosis.

A communications or central computer failure indicator should also "unlock"
the terminal, that is, allow it to accept another entry. This is necessary if the terminal
will not accept entries while a verification is in progress. The terminal may also unlock

after a certain maximum time delay. Certain entries could be reserved for diag-
nostics; i.e., certain credit card numbers could be used to check the internal operation

of the terminal and test the displays.

274 68000 Assembly Language Programming

REVIEW

Problem definition is as important a part of software development as it is of any
other engineering task. Note that it does not require any programming or knowledge of

the computer; rather, it is based on an understanding of the system and sound engineer-
ing judgment. Microprocessors offer flexibility and local intelligence that the designer

can use to provide a wide range of features.
Problem definition is independent of any particular computer, computer

language, or development system. It should, however, provide guidelines as to what
type or speed of computer the application will require and what kind of hardware/
software tradeoffs the designer can make. The problem definition stage should not

even depend on whether a computer is used, although a knowledge of the capabilities

of the computer can help the designer in suggesting possible implementations of pro-
cedures.

REFERENCES

1. D. R. Ballard. "Designing Fail-Safe Microprocessor Systems," Electronics, January
4, 1979, pp. 139-43.

"A Designer's Guide to Signature Analysis," Hewlett-Packard Application Note
222, Hewlett-Packard, Inc, Palo Alto, CA, 1977.

Donn, E. S. and M. D. Lippman. "Efficient and Effective Microcomputer Testing
Requires Careful Preplanning," EDN, February 20, 1979, pp. 97-107 (includes self-
test examples for 6502).

Gordon, G. and H. Nadig. "Hexadecimal Signatures Identify Troublespots in
Microprocessor Systems," Electronics, March 3, 1977, pp. 89-96.

Neil, M. and R. Goodner. "Designing a Serviceman's Needs into Microprocessor-
Based Systems," Electronics, March 1, 1979, pp. 122-28.

Schweber, W. and L. Pearce. "Software Signature Analysis Identifies and Checks
PROMs," EDN, November 5, 1978, pp. 79-81.

Srini, V. P. "Fault Diagnosis of Microprocessor Systems," Computer, January 1977,
pp. 60-65.

2. For a brief discussion of human factors considerations, see G. Morris. "Make Your
Next Instrument Design Emphasize User Needs and Wants," EDN, October 20,
1978, pp. 100-05.

17

Program Design

Program design is the stage in which the problem definition is formulated as a
program. If the program is small and simple, this stage may involve little more than

the writing of a one-page flowchart. If the program is larger or more complex, the
designer should consider more elaborate methods.

We will discuss flowcharting, modular programming, structured programming,

and top-down design. We will try to indicate the reasoning behind these methods, and
their advantages and disadvantages. We will not, however, advocate any particular
method since there is no evidence that one method is always superior to all others. You
should remember that the goal is to produce a good working system, not to follow
religiously the tenets of one methodology or another.

BASIC PRINCIPLES

All the methodologies are based on common principles, many of which apply to
any kind of design. Among these principles are:

1. Proceed in small steps. Do not try to do too much at one time.

2. Divide large jobs into small, logically separate tasks. Make the sub-tasks
as independent of one another as possible, so that they can be tested sepa-

rately and so that changes can be made in one without affecting the others.

3. Keep the flow of control simple to make programs easy to follow and errors
easy to locate and correct.

4. Use pictorial or graphic design descriptions as much as possible. They are
easier to visualize than word descriptions. This is the great advantage of
flowcharts.

275

276 68000 Assembly Language Programming

5. Emphasize clarity and simplicity at first. You can improve performance (if
necessary) once the system is working.

6. Proceed in a thorough and systematic manner. Use checklists and standard
procedures.

7. Do not tempt fate. Either do not use methods that you are not sure of, or
use them very carefully. Watch for situations that might cause confusion,
and clarify them as soon as possible.

8. Keep in mind that the system must be debugged, tested and maintained.
Plan for these later stages.

9. Use simple and consistent terminology and methods. Repetitiveness is no
fault in program design, nor is complexity a virtue.

10. Have your design completely formulated before you start coding. Resist
the temptation to start writing down instructions: it makes no more sense
than making parts lists or laying out circuit boards before you know exactly
what will be in the system.

11. Be particularly careful of factors that may change. Make the implementa-
tion of likely changes as simple as possible.

12. Keep the overall task in mind. Build a total framework in which individual
pieces can be defined and tested. Do not leave the entire system integration
to the end.

13. If the data is complex or there are numerous relationships between data
items, you must organize your data just as carefully as you organize your
program. We will briefly discuss the design of data structures at the end of
this chapter.

FLOWCHARTING

Flowcharting is certainly the best known of all program design methods. Program-
ming textbooks describe how programmers first write complete flowcharts and then

start writing the actual program. In fact, few programmers have ever worked this way,
and flowcharting has often been more of a joke or a nuisance to programmers than a
design method. We will try to describe both the advantages and disadvantages of
flowcharts, and show the place of this technique in program design.

ADVANTAGES OF FLOWCHARTING

The basic advantage of the flowchart is that it is a pictorial representation. Peo-
ple find such representations much more meaningful than written descriptions. The

designer can visualize the whole system and see the relationships of the various parts.
Logical errors and inconsistencies often stand out instead of being hidden in a printed
page. At its best, the flowchart is a picture of the entire system.

Some specific advantages of flowcharts are:

1. Standard symbols exist (see Figure 17-1) so that flowcharting forms are
widely recognized.

Program Design 277

^ Input/o
utput Processing operation

(Arithmetic. Logic, Data Movement)

Decision Logic

\ 1 Subroutine

Connector point

►^Connector arrows

Terminal point (Beginning or Ending)

Figure 17-1. Standard Flowchart Symbols

2. Flowcharts can be understood by someone without a programming back-
ground.

3. Flowcharts can be used to divide the entire project into sub-tasks. The
flowchart can then be examined to measure overall progress.

4. Flowcharts show the sequence of operations and can therefore aid in locating
the source of errors.

5. Flowcharting is widely used in other areas besides programming.

6. There are many tools available to aid in flowcharting, including programmer's
templates and automated drawing packages.

DISADVANTAGES OF FLOWCHARTING

These advantages are all important. There is no question that flowcharting will
continue to be widely used. But we should note some disadvantages of flowcharting as
a program design method:

1. Flowcharts are difficult to design, draw, or change in all except the simplest
situations.

278 68000 Assembly Language Programming

2. There is no easy way to debug or test a flowchart.

3. Flowcharts tend to become cluttered. Designers find it difficult to balance be-
tween the amount of detail needed to make the flowchart useful and the

amount that makes the flowchart little better that a program listing.

4. Flowcharts show only the program organization. They do not show the
organization of the data or the structure of the input/output modules.

5. Flowcharts do not help with hardware or timing problems or give hints as to
where these problems might occur.

6. Flowcharts allow unstructured design. There are no rules governing the num-
bers of entries and exits, the number or type of interconnections, or the logic

that may be employed.

7. There is no obvious way to represent the simple repetition of a loop.

MAKING FLOWCHARTS USEFUL

The most useful flowcharts may ignore program variables and ask questions
directly. Of course, compromises are often necessary here. Two versions of the

flowchart are sometimes helpful — one general version in layman's language, which
will be useful to non-programmers, and one programmer's version in terms of the
program variables, which will be useful to other programmers.

A third type of flowchart, a data flowchart, may also be helpful. This flowchart

serves as a cross-reference for the other flowcharts, since it shows how the program han-
dles a particular type of data. Ordinary flowcharts show how the program proceeds, han-

dling different types of data at different points. Data flowcharts, on the other hand,
show how particular types of data move through the system, passing from one part of
the program to another. Such flowcharts are very useful in debugging and maintenance,
since errors most often show up as a particular type of data being handled incorrectly.

Thus flowcharting is a helpful technique that you should not try to extend too
far. Flowcharts are useful as program documentation, since they have standard

forms and are comprehensible to non-programmers. As a design tool, however,
flowcharts cannot provide much more than a starting outline; the programmer cannot
debug a detailed flowchart and the flowchart is often more difficult to design than the
program itself.

EXAMPLES

Flowcharting the Switch and Light System

This simple task, in which a single switch turns on a light for one second, is
easy to flowchart. In fact, such tasks are typical examples for flowcharting books,
although they form a small part of most systems. The data structure here is so simple
that it can be safely ignored.

Figure 17-2 is the flowchart. There is little difficulty in deciding on the amount of
detail required. The flowchart gives a straightforward picture of the procedure, which
anyone could understand.

Program Design 279

Turn light on

Figure 17-2. Flowchart of One-Second Response to a Switch

Flowcharting the Switch-Based Memory Loader

This system (see Figure 16-2) is considerably more complex than the previous
example, and involves many more decisions. The flowchart (see Figure 17-3) is more
difficult to draw and is not as straightforward as the previous example. In this exam-

ple, we face the problem that there is no way to debug or test the flowchart.

The flowchart in Figure 17-3 includes the improvements we suggested as part of
the problem definition. Clearly, this flowchart is beginning to get cluttered and lose its
advantages over a written description. Adding other features that define the meaning of
the entry with status lights and allow the operator to check entries after completion
would make the flowchart even more complex. Drawing the complete flowchart from
scratch could quickly become a formidable task. However, once the program has been
written, the flowchart is useful as documentation.

Flowcharting the Verification Terminal

In this application (see Figures 16-3 through 16-5) the flowchart will be even
more complex than in the switch-based memory loader case. Here, the best idea is to
flowchart sections separately so that the flowcharts remain manageable. However,

the presence of data structures (as in the multi-digit display and the messages) will make
the gap between flowchart and program much wider.

280 68000 Assembly Language Programming

IJZ

Store Data in Address

Wait
debounce time

Figure 17-3. Flowchart of a Switch-Based Memory Loader

Let us look at some of the sections. Figure 17-4 shows the keyboard entry pro-
cess for the digit keys. The program must fetch the data after each strobe and place the

digit into the display array if there is room for it. If there are already ten digits in the
array, the program simply ignores the entry.

The actual program will have to handle the displays at the same time. Note that

either software or hardware must de-activate the keyboard strobe after the processor
reads a digit.

Figure 17-5 adds the Send key. This key, of course, is optional. The terminal
could just send the data as soon as the operator enters a complete number. However,
that procedure would not give the operator a chance to check the entire entry. The
flowchart with the Send key is more complex because there are two alternatives.

Program Design 281

Clear Entry Array
Key Pointer = Start

of Entry Array

Key Counter = 0

(Key Pointer) = Key

i

Key Pointer =
Key Pointer + 1

Key Counter =
Key Counter + 1

Figure 17-4. Flowchart of Keyboard Entry Process

1. If the operator has not entered ten digits, the program must ignore the Send
key and place any other key into the entry.

2. If the operator has entered ten digits, the program must respond to the Send
key by transferring control to the Send routine; and ignore all other keys.

Note that the flowchart has become much more difficult to organize and to follow.
There is also no obvious way to check the flowchart.

Figure 17-6 shows the flowchart of the keyboard entry process with all the func-
tion keys. In this example, the flow of control is not simple. Clearly, some written

description is necessary. The organization and layout of complex flowcharts requires
careful planning. We have followed the process of adding features to the flowchart one

at a time, but this still results in a large amount of redrawing. Again we should remem-
ber that throughout the keyboard entry process, the program must also refresh the dis-

plays if they are multiplexed and not controlled by shift registers or other hardware.

282 68000 Assembly Language Programming

f~ Start J

Clear Display Array
Key Pointer = Start

of Display Array
Key Counter = 0

(Key Pointer) =
Key Pointer = Key Pointer +
Key Counter =

Key Counter + 1

Figure 17-5. Flowchart of Entry Process With Send Key

Figure 17-7 is the flowchart of a receive routine. We assume that the serial/
parallel conversion and error checking are done in hardware (e.g., by a UART). The
processor must:

1. Look for the header. (We assume that it is a single character.)

2. Read the destination address (we assume that it is three characters long) and
see if the message is meant for this terminal; i.e., if the three characters agree
with the terminal address.

3. Wait for the trailer character.

Program Design 283

Start

Clear Display Array
Key Pointer = Start
of Display Array
Key Counter = 0

Key = Keyboard
Input Data

Key Pointer =
Key Pointer + 1

Figure 17-6. Flowchart of Keyboard Entry Process With Function Keys

4. If the message is meant for the terminal, turn off the Busy light and go to Dis-
play Answer routine.

5. In the event of any errors, request retransmission by going to the appropriate
RTRANS routine.

This routine involves a large number of decisions, and the flowchart is neither
simple nor obvious.

284 68000 Assembly Language Programming

c
RTRAN

Figure 17-7. Flowchart of Receive Routine

Clearly, we have come a long way from the simple flowchart (Figure 17-2) of
the first example. A complete set of flowcharts for the transaction terminal would be
a major task. It would consist of several interrelated charts with complex logic, and
would require a large amount of effort. Such an effort would be just as difficult as writing
a preliminary program, and not as useful, since you could not check the flowcharts on
the computer.

Program Design 285

MODULAR PROGRAMMING

Once programs become large and complex, flowcharting is no longer a satisfactory
design tool. However, the problem definition and the flowchart can help you divide the

program into reasonable sub-tasks. The division of the entire program into sub-tasks

or modules is called "modular programming." Clearly, most of the programs we pre-
sented in earlier chapters would typically be modules in a large program. The problems

that the designer faces in modular programming are how to divide the program into
modules and how to put the modules together.

ADVANTAGES OF MODULAR PROGRAMMING

The advantages of modular programming are obvious:

1. A single module is easier to write, debug, and test than an entire program.

2. A module is likely to be useful in many places and in other programs, particu-
larly if it is reasonably general and performs a common task. You can build a

library of standard modules.

3. Modular programming allows the programmer to divide tasks and use pre-
viously written programs.

4. Changes can be incorporated into one module rather than into the entire

system.
5. Errors can often be isolated and then attributed to a single module.

6. Modular programming helps with project management, since it results in
obvious goals and milestones.

DISADVANTAGES OF MODULAR PROGRAMMING

The idea of modular programming is so simple that its disadvantages are often
ignored. These include:

1. Fitting the modules together can be a major problem, particularly if different
people write the modules.

2. Modules require very careful documentation, since they may affect other
parts of the program, such as data structures used by all the modules.

3. Testing and debugging modules separately is difficult, since other modules
may produce the data used by the module being debugged and still other
modules may use the results. You may have to write special programs (called

"drivers") just to produce sample data and test the programs. These drivers
require extra programming effort that adds nothing to the system.

4. Programs may be very difficult to modularize. If you modularize the program
poorly, integration will be very difficult, since almost all errors and changes
will involve several modules.

5. Modular programs often require extra time and memory, since the separate
modules may repeat functions.

286 68000 Assembly Language Programming

Therefore, while modular programming is certainly an improvement over trying
to write the entire program from scratch, it does have some disadvantages as well.

Important considerations include restricting the amount of information shared
by modules, limiting design decisions that are subject to change to a single module,

and restricting the access of one module to another.1

PRINCIPLES OF MODULARIZATION

An obvious problem is that there are no proven, systematic methods for

modularizing programs. We should mention the following principles:2

1. Modules that reference common data should be parts of the same overall
module.

2. Two modules in which the first uses or depends on the second, but not the
reverse, should be separate.

3. A module that is used by more than one other module should be part of a
different overall module than the others.

4. Two modules in which the first is used by many other modules and the second
is used by only a few other modules should be separate.

5. Two modules whose frequencies of usage are significantly different should be
part of different modules.

6. The structure or organization of related data should be hidden within a single
module.

If a program is difficult to modularize, you may need to redefine the tasks that

are involved. Too many special cases or too many variables that require special han-
dling are typical signs of inadequate problem definition.

EXAMPLES

Modularizing the Switch and Light System

This simple program can be divided into two modules:
Module 1 waits for the switch to be turned on and turns the light on in

response.

Module 2 provides the one-second delay.
Module 1 is likely to be specific to the system, since it will depend on how the

switch and light are attached. Module 2 will be generally useful, since many tasks
require delays. Clearly, it would be advantageous to have a standard delay module that
could provide delays of varying lengths. The module will require careful documentation
so that you will know how to specify the length of the delay, how to call the module, and
what registers and memory locations the module affects.

A general version of Module 1 would be far less useful, since it would have to deal
with different types and connections of switches and lights.

You would probably find it simpler to write a module for a particular configuration

of switches and lights rather than try to use a standard routine. Note the difference be-
tween this situation and Module 2.

Program Design 287

Modularizing the Switch-Based Memory Loader

The switch-based memory loader is difficult to modularize, since all the pro-
gramming tasks depend on the hardware configuration and the tasks are so simple

that modules hardly seem worthwhile. The flowchart in Figure 17-3 suggests that one
module might be the one that waits for the operator to press one of the four pushbut-
tons.

Some other modules might be:

• A delay module that provides the delay required to debounce the switches

• A switch and display module that reads the data from the switches and sends it
to the displays

• A Lamp Test module

Highly system-dependent modules such as the last two are unlikely to be generally use-
ful. This example is not one in which modular programming offers great advantages.

Modularizing the Verification Terminal

The verification terminal, on the other hand, lends itself very well to modular
programming. The entire system can easily be divided into three main modules:

• Keyboard and display module
• Data transmission module

• Data reception module

A general keyboard and display module could handle many keyboard- and dis-
play-based systems. The sub-modules would perform such tasks as:

• Recognizing a new keyboard entry and fetching the data

• Clearing the array in response to a Clear Key

• Entering digits into storage

• Looking for the terminator or Send key

• Displaying the digits

Although the key interpretations and the number of digits will vary, the basic
entry, data storage, and data display processes will be the same for many programs. Such
function keys as Clear would also be standard. Clearly, the designer must consider
which modules will be useful in other applications, and pay careful attention to those
modules.

The data transmission module could also be divided into such sub-modules as:

1. Adding the header character.

2. Transmitting characters as the output line can handle them.

3. Generating delay times between bits or characters.

4. Adding the trailer character.

5. Checking for transmission failures; i.e., no acknowledgement, or inability to
transmit without errors.

288 68000 Assembly Language Programming

The data reception module could include sub-modules which:

1. Look for the header character.

2. Check the message destination address against the terminal address.

3. Store and interpret the message.
4. Look for the trailer character.

5. Generate bit or character delays.

INFORMATION HIDING PRINCIPLE

Note here how important it is that each design decision (such as the bit rate,

message format, or error-checking procedure) be implemented in only one module. A
change in any of these decisions will then require changes only to that single module.
The other modules should be written so that they are totally unaware of the values
chosen or the methods used in the implementing module. An important concept here is

the "information-hiding principle,"3 whereby modules share only information that
is absolutely essential to getting the task done. Other information is hidden within a
single module.

Error handling is a typical situation in which information should be hidden.
When a module detects a lethal error, it should not try to recover; instead, it should
inform the calling module of the error status and allow that module to decide how to
proceed. The reason is that the lower level module often lacks sufficient information to
establish recovery procedures. For example, suppose that the lower level module is one
that accepts numeric input from a user. This module expects a string of numeric digits

terminated by a carriage return. Entry of a non-numeric character causes the module to
terminate abnormally. Since the module does not know the context (i.e. is the numeric

string an operand, a lone number, an I/O unit number, or the length of a file?), it can-
not decide how to handle an error. If the module always followed a single error recovery

procedure, it would lose its generality and only be usable in those situations where that
procedure was required.

REVIEW OF MODULAR PROGRAMMING

Modular programming can be very helpful if you abide by the following rules:

1. Use modules of 20 to 50 lines. Shorter modules are usually a waste of time,
while longer modules are seldom general and may be difficult to integrate.

2. Make modules reasonably general. Differentiate between common features
like ASCII code or asynchronous transmission formats, which will be the
same for many applications, and key identifications, number of displays, or

number of characters in a message, which are likely to be unique to a particu-
lar application. Make the changing of the latter parameters simple. Major

changes like different character codes should be handled by separate modules.

3. Take extra time on modules like delays, display handlers, keyboard handlers,
etc. that will be useful in other projects or in many different places in the
present program.

Program Design 289

Figure 17-8. Flowchart of an Unstructured Program

4. Make modules independent of each other. Restrict the flow of information
between modules and implement each design in a single module.

5. Do not modularize simple tasks that are already easy to implement.

STRUCTURED PROGRAMMING

How do you keep modules distinct and stop them from interacting? How do you
write a program that has a clear sequence of operations so that you can isolate and

correct errors? One answer is to use the methods known as "structured program-
ming," whereby each part of the program consists of elements from a limited set of

structures and each structure has a single entry and a single exit.

Figure 17-8 shows a flowchart of an unstructured program. If an error occurs in
Module B, we have five possible sources for that error. Not only must we check each
sequence, but we also have to make sure that corrections do not affect any sequences.
The usual result is that debugging becomes like wrestling an octopus. Every time you
think the situation is under control, there is another loose tentacle somewhere.

290 68000 Assembly Language Programming

BASIC STRUCTURES

The solution is to establish a clear sequence of operations so that you can isolate

errors. Such a sequence uses single-entry, single-exit structures. A program consists
of a sequence of structures; it may be a single statement or it may consist of structures
that are nested within each other to any level of complexity. The required structures are
listed below.

1. An ordinary sequence; that is, a linear structure in which programs are
executed consecutively. If the sequence is:

pi P2
P3

the computer executes PI first, P2 second, and P3 third. PI, P2, and P3 may
be single statements or complex programs.

2. A conditional structure in which the execution of a program depends on a
condition.

There are many possible conditional structures, but a common one is "if C

then PI else P2" where C is a condition and PI and P2 are programs. The
computer executes PI if C is true, and P2 if C is false. Figure 17-9 shows the
logic of this structure. Note that it has a single entry and a single exit; the
computer cannot enter or leave PI or P2 other than through the structure.

3. A loop structure in which a program is repeated until (or as long as) a con-
dition holds.

There are many possible loop structures. A common one (called a "do-
while" structure) is "while C do P," where C is a condition and P is a pro-

gram. The computer continually checks C and then executes P as long as C is
true.

Figure 17-9. Flowchart of the If-Then-Else Structure

Program Design 291

Figure 17-10. Flowchart of the Do-While Structure

Figure 17-11. Flowchart of the Do-Until Structure

An obvious alternative is "until C do P" in which the computer continually
checks C and then executes P as long as C is false. Figures 17-10 and 17-11
show the logic of these alternatives. Both have a single entry and a single exit.
The computer will not execute P at all if C is originally in the exit state; thus P
is not executed at least once automatically as it is in a FORTRAN DO loop.

Alternative structures like "do P while C" or "repeat P until C" produce the
FORTRAN implementation in which the computer checks the condition after

executing the program (remember Figures 5-1 and 5-2). This approach is
often more efficient, but we will use only the form in Figure 17-10 to simplify
the discussion. Most high-level structured languages allow all four alterna-

tives to provide flexibility. In most cases, the program P must eventually force
C into the exit state; if it does not, the computer will execute P endlessly (the

292 68000 Assembly Language Programming

so-called DO FOREVER structure) as it must if P is the overall control pro-
gram for an instrument, computer peripheral, test system, or electronic game.

4. A case structure. Although it is not a primitive structure like our first three,
the case structure is so common that it merits a special description. The case

structure is "case I of PO, PI, ... , Pn," where I is an index and PO, PI, ... , Pn
are programs. The computer executes program PO if I is 0, PI if I is 1, and so
on; it executes only one of the n programs. If I is greater than n (the number
of programs in the case statement) or after execution of one of the programs,
the computer then executes the next sequential statement as shown in Figure

17-12. Obviously, we could implement a case structure as a series of condi-
tional structures, much as we could implement a jump table as a series of con-

ditional branches. However, the alternative implementations are long, awk-
ward, and difficult to expand.

Program Design 293

FEATURES AND EXAMPLES OF STRUCTURES

Note the following features of structured programming:

1. Only the three basic structures, and possibly a small number of auxiliary
structures, are permitted. Variations of the conditional and loop structures
may be allowed.

2. Structures may be nested to any level of complexity since any structure can,
in turn, contain any of the structures.

3. Each structure has a single entry and a single exit.

Some examples of the conditional structure illustrated in Figure 17-9 are:

1. P2 included:

IF X > 0 THEN NPOS = NPOS + 1
ELSE NNEG = NNEG + 1

Both PI and P2 are single statements.

2. P2 omitted:

IF X = 0 THEN Y = 1/X

Here no action is taken if C (X • 0) is false. P2 and "else" can be omitted in this case.
Some examples of the loop structure illustrated in Figure 17-10 are:

1. Form the sum of integers from 1 to N.
i = o
SUM : 0
DO WHILE I < N

1 = 1 + 1
SUM = SUM + I END

The computer executes the loop as long as I < N. If N = 0, the program within the "do-
while" is not executed at all.

2. Count characters in an array SENTENCE until you find an ASCII period.

NCHAR = 0
DO WHILE SENTENCE(NCHAR) j. PERIOD

NCHAR - NCHAR + 1
END

The computer executes the loop as long as the character in SENTENCE is not an ASCII
period. The count is zero if the first character is a period.

ADVANTAGES OF STRUCTURED PROGRAMMING

The advantages of structured programming are:

1. The sequence of operations is simple to trace. This allows you to test and
debug programs easily.

2. The number of structures is limited and the terminology is standardized.

3. The structures can easily be made into modules.

4. Theoreticians have proved that the given set of structures is complete; that is,
all programs can be written in terms of the three structures.

294 68000 Assembly Language Programming

5. The structured version of a program is partly self-documenting and fairly easy
to read.

6. Structured programs are easy to describe with program outlines.

7. Structured programming has been shown in practice to increase programmer
productivity.

Structured programming basically forces much more discipline on the pro-
grammer than does modular programming. The result is more systematic and better

organized programs.

DISADVANTAGES OF STRUCTURED PROGRAMMING

The disadvantages of structured programming are:

1. Only a few high-level languages (e.g., PL/M, Pascal) will directly accept the
structures. The programmer therefore has to go through an extra translation

stage to convert the structures to assembly language code. The structured ver-
sion of the program, however, is often useful as documentation.

2. Structured programs often execute more slowly and use more memory than
unstructured programs.

3. Limiting the structures to the three basic forms makes some tasks very awk-
ward to perform. The completeness of the structures only means that all pro-

grams can be implemented with them; it does not mean that a given program
can be implemented efficiently or conveniently.

4. The standard structures are often quite confusing: e.g., nested "if-then-else11
structures may be very difficult to read, since there may be no clear indication

of where the inner structures end. A series of nested "do-while" loops can
also be difficult to read.

5. Structured programs consider only the sequence of program operations, not
the flow of data. Therefore, the structures may handle data awkwardly.

6. Few programmers are accustomed to structured programming. Many find the
standard structures awkward and restrictive.

WHEN TO USE STRUCTURED PROGRAMMING

We are neither advocating nor discouraging the use of structured programming.
It is one way of systematizing program design. In general, structured programming is
most useful in the following situations:

• Larger programs, perhaps exceeding 1000 instructions.

• Applications in which memory usage is not critical.

Low-volume applications where software development costs, particularly test-
ing and debugging, are important factors.

Applications involving string manipulation, process control, or other
algorithms rather than simple bit manipulations.

Program Design 295

In the future, we expect the cost of memory to decrease, the average size of
microprocessor programs to increase, and the cost of software development to
increase. Therefore, methods like structured programming, which decrease software
development costs for larger programs but use more memory, will become more
valuable.

Just because structured programming concepts are usually expressed in high-level
languages does not mean that structured programming is not applicable to assembly
language programming. On the contrary, the assembly language programmer, with the

total freedom of expression that assembly level programming allows, needs the struc-
turing concept provided by structured programming. Creating modules with single

entry and exit points, using simple control structures and keeping the complexity of

each module minimal increases the productivity of the assembly language pro-
grammer.

EXAMPLES

Structured Program for the Switch and Light System

The structured version of this example is:

SWITCH r OFF
DO WHILE SWITCH = OFF

READ SWITCH
END

LIGHT = ON
DELAY 1
LIGHT = OFF

ON and OFF must have the proper definitions for the switch and light. We assume
that DELAY is a module that provides a delay given by its parameter in seconds.

A statement in a structured program may actually be a subroutine. However, in
order to conform to the rules of structured programming, the subroutine cannot have
any exits other than the one that returns control to the main program.

Since "do-while" checks the condition before executing the loop, we set the
variable SWITCH to OFF before starting. The structured program is straightforward,
readable, and easy to check by hand. However, it would probably require somewhat
more memory than an unstructured program, which would not have to initialize
SWITCH and could combine the reading and checking procedures.

Structured Program for the Switch-Based Memory Loader

The switch-based memory loader is a more complex structured programming

problem. We may implement the flowchart of Figure 17-3 as follows (a * indicates a
comment, and we use "begin" and "end" around a conditionally executed program
that consists of more than one line):

-CLEAR ADDRESS INITIALLY SO ITS STARTING VALUE IS ZERO

HIADDRESS = 0
MIDADDRESS = 0
LOADDRESS = 0

-CONTINUOUSLY EXAMINE THE SWITCHES AND LOAD DATA INTO MEMORY

296 68000 Assembly Language Programming

» NOTE THAT "DO FOREVER" IS JUST "DO WHILE" WITH NO CONDITION

DO FOREVER

::TEST HIGH ADDRESS BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT
» AND WAIT FOR THE OPERATOR TO RELEASE IT. THEN ENTER HIGH
S! ADDRESS FROM THE SWITCHES AND SHOW IT ON THE LIGHTS

IF HIGHADDRBUTTON - 0 THEN
BEGIN

DO WHILE HIADDRBUTTON = 0
DELAY (DEBOUNCE TIME) END

HIADDRESS = SWITCHES
LIGHTS = SWITCHES

END
-TEST MID ADDRESS BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT
:: AND WAIT FOR THE OPERATOR TO RELEASE IT. THEN ENTER MID
:: ADDRESS FROM THE SWITCHES AND SHOW IT ON THE LIGHTS

IF MIDADDRBUTTON •= 0 THEN
BEGIN

DO WHILE MI DADDRBUTTON - 0
DELAY (DEBOUNCE TIME)
END

MIDADDRESS = SWITCHES
LIGHTS = SWITCHES

END
-TEST LOW ADDRESS BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT AND
:: WAIT FOR THE OPERATOR TO RELEASE IT. THEN ENTER LOW ADDRESS
- FROM THE SWITCHES AND SHOW IT ON THE LIGHTS

IF LOADDRBUTTON = 0 THEN
BEGIN

DO WHILE LOADDRBUTTON - 0
DELAY (DEBOUNCE TIME)
END

LOADDRESS - SWITCHES
LIGHTS = SWITCHES

END

-TEST DATA BUTTON. IF IT IS BEING PRESSED, DEBOUNCE IT AND WAIT
- FOR THE OPERATOR TO RELEASE IT. THEN ENTER DATA FROM THE
- SWITCHES, SHOW IT ON THE LIGHTS, AND STORE IT IN MEMORY AT
" (HIGH ADDRESS, MID ADDRESS, LOW ADDRESS)

IF DATABUTTON = 0 THEN
BEGIN

DO WHILE DATABUTTON = 0
DELAY (DEBOUNCE TIME)
END

DATA r SWITCHES
LIGHTS = SWITCHES
(HIADDRESS, MIDADRESS, LOADDRESS) = DATA END

-WAIT THE DEBOUNCING TIME BEFORE EXAMINING THE BUTTONS AGAIN.
- THIS DELAY DEBOUNCES THE RELEASE FOR SURE

DELAY (DEBOUNCE TIME)
END

-THE LAST END ABOVE TERMINATES THE
- DO FOREVER LOOP

Structured programs are not easy to write, but they can give a great deal of insight
into the overall program logic. You can check the logic of the structured program by
hand before writing any actual code.

Program Design 297

Structured Program for the Verification Terminal

Let us look at the keyboard entry for the transaction terminal. We will assume
that the display array is ENTRY, the keyboard strobe is KEYSTROBE, and the
keyboard data is KEYIN. The structured program without the function keys is:

NKEYS = 10

-CLEAR ENTRY TO START

DO WHILE NKEYS > 0
NKEYS r NKEYS - 1
ENTRY(NKEYS) = 0

END

-FETCH A COMPLETE ENTRY FROM KEYBOARD

DO WHILE NKEYS < 10
IF KEYSTROBE = ACTIVE THEN

BEGIN
KEYSTROBE = INACTIVE
ENTRY(NKEYS) = KEYIN
NKEYS = NKEYS + 1 END

END

Adding the SEND key means that the program must ignore extra digits after it
has a complete entry, and must ignore the SEND key until it has a complete entry.
The structured program is:

-CLEAR ENTRY TO START

DO WHILE NKEYS > 0
NKEYS = NKEYS - 1
ENTRY(NKEYS) = 0

END

-WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY

DO WHILE KEY p SEND OR NKEYS t 10
IF KEYSTROBE = ACTIVE THEN

BEGIN
KEYSTROBE = INACTIVE
KEY = KEYIN
IF NKEYS i- 10 AND KEY t SEND THEN

BEGIN
ENTRY(NKEYS) = KEY
NKEYS = NKEYS + 1

END
END

END

Note the following features of this structured program.

1. The second if-then is nested within the first one, since the keys are only

entered after a strobe is recognized. If the second if-then were on the same
level as the first, a single key could fill the entry, since its value would be

entered into the array during each iteration of the do-while loop.
2. KEY need not be defined initially, since NKEYS is set to zero as part of the

clearing of the entry.

Adding the CLEAR key allows the program to clear the entry originally by

298 68000 Assembly Language Programming

simulating the pressing of CLEAR; i.e., by setting NKEYS to 10 and KEY to CLEAR
before starting. The structured program must also only clear digits that have previously
been filled. The new structured program is:

SIMULATE COMPLETE CLEARING

NKEYS = 10
KEY = CLEAR

"WAIT FOR COMPLETE ENTRY AND SEND KEY

DO WHILE KEY = SEND OR NKEYS = 10

•CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK

IF KEY = CLEAR THEN
BEGIN

KEY = 0
DO WHILE NKEYS > 0

NKEYS = NKEYS - 1
ENTRY(NKEYS) = 0 END

END

:GET DIGIT IF ENTRY INCOMPLETE
IF KEYSTROBE = ACTIVE THEN

BEGIN
KEYSTROBE = INACTIVE
KEY = KEYIN
IF KEY < 10 AND NKEYS t 10 THEN

BEGIN
ENTRY(NKEYS) = KEY
NKEYS = NKEYS + 1

END
END

Note that the program resets KEY to zero after clearing the array, so that the operation
is not repeated.

We can similarly build a structured program for the receive routine. An initial
program could just look for the header and trailer characters. We will assume that RSTB
is the indicator that a character is ready. The structured program is:

CLEAR HEADER FLAG TO START

HFLAG = 0

WAIT FOR HEADER AND TRAILER

DO WHILE HFLAG = 0 OR CHAR * TRAILER

"GET CHARACTER IF READY. LOOK FOR HEADER
IF RSTB = ACTIVE THEN

BEGIN
RSTB = INACTIVE
CHAR = INPUT
IF CHAR r HEADER THEN HFLAG = 1 END

Now we can add the section that checks the message address against the three
digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits
are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1.

CLEAR HEADER FLAG, ADDRESS MATCH FLAG, ADDRESS COUNTER TO START

HFLAG "= 0 ADDRMATCH = 0
ADDRCTR = 0

Program Design 299

-WAIT FOR HEADER, DESTINATION ADDRESS, AND TRAILER
DO WHILE HFLAG = 0 OR CHAR = TRAILER OR ADDRCTR = 3

"GET CHARACTER IF READY

IF RSTB = ACTIVE THEN
BEGIN

RSTB = INACTIVE
CHAR = INPUT

END

-CHECK FOR TERMINAL ADDRESS AND HEADER

IF HFLAG = 1 AND ADDRCTR = 3 THEN
BEG IN

IF CHAR = TERMADDR(ADDRCTR) THEN ADDRMATCH = 1
ADDRCTR = ADDRCTR + 1

END
IF CHAR = HEADER THEN HFLAG = 1 END

The program must now wait for a header, a three-digit identification code, and a
trailer. You must be careful of what happens during the iteration when the program
finds the header, and of what happens if an erroneous identification code character is the
same as the trailer.

A further addition can store the message in MESSG. NMESS is the number of

characters in the message; if it is not zero at the end, the program knows that the ter-
minal has received a valid message. We have not tried to minimize the logic expres-

sions in this program.

•■CLEAR FLAGS, COUNTERS TO START
HFLAG = 0
ADDRMATCH = 0
ADDRCTR = 0
NMESS = 0

-WAIT FOR HEADER, DESTINATION ADDRESS, AND TRAILER
DO WHILE HFLAG = 0 OR CHAR = TRAILER OR ADDRCTR i 3

-GET CHARACTER IF READY

IF RSTB = ACTIVE THEN
BEGIN

RSTB - INACTIVE CHAR = INPUT END

•READ MESSAGE IF DESTINATION ADDRESS = TERMINAL ADDRESS

IF HFLAG = 1 AND ADDRCTR = 3 THEN
IF ADDRMATCH = 0 AND CHAR z TRAILER THEN

BEG I N
MESSGCNMESS) = CHAR NMESS = NMESS + 1

END

;CHECK FOR TERMINAL ADDRESS

IF HFLAG = 1 AND ADDRCTR / 3 THEN
BEGIN

IF CnAK = TERMADDR(ADDRCTR) THEN ADDRMATCH = 1
ADDRCTR = ADDRCTR + 1 END

:LGOK FOR HEADER

IF CHAR = HEADER THEN HFLAG = 1
END

300 68000 Assembly Language Programming

The program checks for the identification code only if it found a header during a
previous iteration. It accepts the message only if it has previously found a header and a
complete, matching destination address. The program must work properly during the
iterations when it finds the header, the trailer and the last digit of the destination
address. It must not try to match the header with the terminal address or place the trailer
or the final digit of the destination address in the message. You might try adding the

rest of the logic from the flowchart (Figure 17-7) to the structured program. Note that
the order of operations is often critical. You must be sure that the program does not
complete one phase and start the next one during the same iteration.

REVIEW OF STRUCTURED PROGRAMMING

Structured programming brings discipline to program design. It forces you to
limit the types of structures you use and the sequence of operations. It provides

single-entry, single-exit structures, which you can check for logical accuracy. Struc-
tured programming often makes the designer aware of inconsistencies or possible

combinations of inputs. Structured programming is not a cure-all, but it does bring
some order into a process that can be chaotic. The structured program should also aid
in debugging, testing, and documentation.

Structured programming is not simple. The programmer must not only define
the problem adequately, but must also work through the logic carefully. This is
tedious and difficult, but it results in a clearly written, working program.

Terminators

The particular structures we have presented are not ideal and are often awk-
ward. In addition, it can be difficult to determine where one structure ends and

another begins, particularly if they are nested. Theorists may provide better struc-
tures in the future, or designers may wish to add some of their own. A terminator for

each structure seems necessary, since indenting does not always clarify the situation.

"End" is a logical terminator for the "do-while" loop. There is no obvious terminator,
however, for the "if-then-else" statement; some theorists have suggested "endif or
"fi" ("if backwards), but these are both awkward and detract from the readability of
the program.

RULES FOR STRUCTURED PROGRAMMING

We suggest the following rules for applying structured programming:

1. Begin by writing a basic flowchart to help define the logic of the program.

2. Start with the "sequential," "if-then-else," and "do-while" structures.
They are known to be a complete set, i.e., any program can be written in
terms of these structures.

3. Indent each level a few spaces from the previous level, so that you will know
which statements belong where.

4. Use terminators for each structure: e.g., "end" for the "do-while" and
"endif 1 or "fi" for the "if-then-else." The terminators plus the indentation
should make the program reasonably clear.

Program Design 301

5. Emphasize simplicity and readability. Leave lots of spaces, use meaningful
names, and make expressions as clear as possible. Do not try to minimize the
logic at the cost of clarity.

6. Comment the program in an organized manner.

7. Check the logic. Try all the extreme cases or special conditions and a few
sample cases. Any logical errors you find at this level will not plague you later.

TOP-DOWN DESIGN

The remaining problem is how to check and integrate modules or structures.

Certainly we want to divide a large task into sub-tasks. But how do we check the sub-

tasks in isolation and put them together? The standard procedure, called "bottom-up
design," requires extra work in testing and debugging and leaves the entire integra-

tion task to the end. What we need is a method that allows testing and debugging in
the actual program environment and modularizes system integration.

This method is "top-down design." Here we start by writing the overall super-
visor program. We replace the undefined sub-programs by program "stubs," tempor-

ary programs that may either record the entry, provide the answer to a selected test
problem, or do nothing. We then test the supervisor program to see that its logic is
correct.

We proceed by expanding the stubs. Each stub will often contain sub-tasks,
which we will temporarily represent as stubs. This process of expansion, debugging,
and testing continues until all the stubs are replaced by working programs. Note that
testing and integration occur at each level, rather than all at the end. No special driver or
data generation programs are necessary. We get a clear idea of exactly where we are in

the design. Top-down design assumes modular programming, and is compatible with
structured programming as well.

DISADVANTAGES OF TOP-DOWN DESIGN

The disadvantages of top-down design are:

1. The overall design may not mesh well with system hardware.

2. It may not take good advantage of existing software.

3. Stubs may be difficult to write, particularly if they must work correctly in
several different places.

4. Top-down design may not result in generally useful modules.

5. Errors at the top level can have catastrophic effects, whereas errors in bottom-
up design are usually limited to a particular module.

In large programming projects, top-down design has been shown to greatly
improve programmer productivity. However, almost all of these projects have used

some bottom-up design in cases where the top-down method would have resulted in a
large amount of extra work.

302 68000 Assembly Language Programming

Top-down design is a useful tool that should not be followed to extremes. It pro-
vides the same discipline for system testing and integration that structured program-
ming provides for module design. The method, however, has more general

applicability, since it does not assume the use of programmed logic. However, top-
down design may not result in the most efficient implementation.

EXAMPLES

Top-Down Design of Switch and Light System

The first structured programming example actually demonstrates top-down
design as well. The program was:

SWITCH = OFF
DO WHILE SWITCH = OFF

READ SWITCH END
LIGHT = ON
DELAY 1
LIGHT = OFF

These statements are really stubs, since none of them is fully defined. For example,
what does READ SWITCH mean? If the switch were one bit of input port SPORT, it
really means:

SWITCH zz SPORT AND SMASK

where SMASK has a T bit in the appropriate position. The masking may, of course, be
implemented with a Bit Test instruction.
Similarly, DELAY 1 actually means (if the processor itself provides the delay):

REG = COUNT
DO WHILE REG t 0

REG = REG - 1
END

COUNT is the appropriate number to provide a one-second delay. The expanded ver-
sion of the program is:

SWITCH = 0
DO WHILE SWITCH = 0

SWITCH = SPORT AND MASK
END
LIGHT = ON
REF = COUNT
DO WHILE REG = 0

REG = REG - 1 END
LIGHT - NOT(LIGHT)

Certainly this program is more explicit, and could more easily be translated into
actual instructions or statements.

Top-Down Design of the Switch-Based Memory Loader

This example is more complex than the first example, so we must proceed
systematically. Here again, the structured program contains stubs.

Program Design 303

For example, if the HIGH ADDRESS button is one bit of input port CPORT, "if
HIADDRBUTTON = (T really means:

1. Input from CPORT

2. Logical AND with HAMASK

where HAMASK has a T in the appropriate bit position and 'O's elsewhere. Similarly
the condition "if DATABUTTON = (r really means:

1. Input from CPORT

2. Logical AND with DAMASK

So, the initial stubs could just assume that no buttons are being pressed:
HIADDRBUTTON = 1
M I DADDRBUTTON = 1
L0ADDR6UTT0N = 1
DATABUTTON - 1

A run of the supervisor program should show that it takes the implied "else" path
through the "if-then-else" structures, and never reads the switches. Similarly, if the
stub were:

HIADDRBUTTON = 0

the supervisor program should stay in the "do while HIADDRBUTTON = 0" loop wait-
ing for the button to be released. These simple runs check the overall logic.
Now we can expand each stub and see if the expansion produces a reasonable

overall result. Note how debugging and testing proceed in a straightforward and

modular manner. We expand the HIADDRBUTTON = 0 stub to:
READ CPORT
HIADDRBUTTON = (CPORT) AND HAMASK

The program should wait for the HIGH ADDRESS button to be released. The
program should then display the values of the switches on the lights. This run checks for
the proper response to the HIGH ADDRESS button.

We then expand the MID ADDRESS button module to:

READ CPORT
MI DADDRBUTTON = (CPORT) AND MAMASK

When the MID ADDRESS button is released, the program should display the
value of the switches on the lights. This run checks for the proper response to the MID
ADDRESS button.

We then expand the LOW ADDRESS button module to:

READ CPORT
LOADDRBUTTON = (CPORT) AND LAMASK

When the LOW ADDRESS button is released, the program should display the
values of the switches on the lights. This run checks for the proper response to the LOW
ADDRESS button.

Similarly, we can expand the DATA button module and check for the proper
response to that button. The entire program will then have been tested.

When all the stubs have been expanded, the coding, debugging, and testing
stages will all be complete. Of course, we must know exactly what results each stub

should produce. However, many logical errors will become obvious at each level with-
out any further expansion.

304 68000 Assembly Language Programming

Keyboard

~T~

ACK = 0

No

Transmit
Receive

Display

Figure 17-13. Initial Flowchart of Transaction Terminal

Top-Down Design of Verification Terminal

This example, of course, will have more levels of detail. We could start with the

following program (see Figure 17-13 for a flowchart):
KEYBOARD ACK = 0
DO WHILE ACK = 0

TRANSMI T
RECEIVE

END
D I SPLAY

Here, KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs

that will be expanded later. KEYBOARD, for example, could simply place a ten-digit
verified number into the appropriate buffer.

The next stage of expansion could produce the following program for
KEYBOARD (see Figure 17-14):

VER = 0
DO WHILE VER - 0

COMPLETE = 0
DO WHILE COMPLETE = 0 KEY 1 N

KE YDS END
VERIFY

END

Program Design 305

Figure 17-14. Flowchart for Expanded KEYBOARD Routine

Here VER = 0 means that an entry has not been verified; COMPLETE = 0 means
that the entry is incomplete. KEYIN and KEYDS are the keyboard input and display
routines respectively. VERIFY checks the entry. A stub for KEYIN would simply place
a random entry (from a random number table or generator) into the buffer and set
COMPLETE to 1.

We would continue by similarly expanding, debugging, and testing
TRANSMIT, RECEIVE, and DISPLAY. Note that you should expand each program
by one level so that you do not perform the integration of an entire program at any one
time. You must use your judgment in defining levels. Too small a step wastes time,

while too large a step gets you back to the problems of system integration that top-
down design is supposed to solve.

REVIEW OF TOP-DOWN DESIGN

Top-down design brings discipline to the testing and integration stages of pro-
gram design. It provides a systematic method for expanding a flowchart or problem

306 68000 Assembly Language Programming

definition to the level required to actually write a program. Together with structured
programming, it forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer
must have defined the problem carefully and must work systematically through each

level. Here again the methodology may seem tedious, but the payoff can be substan-
tial if you follow the rules.

We recommend the following approach to top-down design:

1. Start with a basic flowchart.

2. Make the stubs as complete and as separate as possible.

3. Define precisely all the possible outcomes from each stub and select a test set.

4. Check each level carefully and systematically.

5. Use the structures from structured programming.

6. Expand each stub by one level. Do not try to do too much in one step.

7. Watch carefully for common tasks and data structures.

8. Test and debug after each stub expansion. Do not try to do an entire level at a
time.

9. Be aware of what the hardware can do. Do not hesitate to stop and do a little

bottom-up design where that seems necessary.

DESIGNING DATA STRUCTURES

Beginning programmers seldom think about data structures. They generally

assume that the data will be stored somewhere in the computer's memory, much as
records are piled into a cabinet or books into a bookcase. Designing data structures

seems as far fetched as establishing a complete card catalog for one's books or records;
few people take organization to such lengths.

But the fact is that most computer-based systems involve a surprisingly large
amount of data processing. Numerical algorithms assume that the processor can easily
find the element in the next row or next column of an array. Editor programs assume
that the processor can easily find the next character, the previous line, a particular string
of characters, or the starting point of an entire paragraph or page. An operator interface
for a piece of test equipment may assume that the processor can easily find a particular
command or data entry and move it from one place to another. Imagine how difficult
the following tasks would be to implement if the data is simply scattered through
memory or organized in a long, linear array:

1 . The operator of a machine tool wants to insert two extra cutting steps between

steps 14 and 15 of a 40-step pattern.

2. The operator of a chemical processing plant wants to see the last ten values of
the temperature at the inlet to tank 05.

3. An accounting clerk wants to enter a new account into an alphabetical list.

The processor may spend most of its time finding the data, moving from one
data item to the next, and organizing the data.

Program Design 307

SELECTING DATA STRUCTURES

Obviously, we cannot provide a complete description of data structures here.4-5
Just as clearly, the design of data structures has great influence on the design of pro-

grams if the data is complex. We will briefly mention the following considerations in
selecting data structures:

1. How are the data items related? Closely related items should be accessible
from each other, since such accesses will be frequent.

2. What kind of operations will be performed on the data? Simple linear struc-
tures are adequate if the data is always handled in a single, fixed order.

However, more complex structures are essential if the tasks involve opera-
tions such as searching, editing, or sorting.

3. Can standard structures be used? Methods are readily available for handling
structures such as queues, stacks, and linked lists. Other arrangements will
require special programming.

4. What kind of access is necessary? Clearly we need more structure if we must
find elements that are identified by a number or a relative position, rather
than just the first or last entries. We must organize the data to make the
accesses as rapid as possible.

REVIEW OF PROBLEM DEFINITION AND

PROGRAM DESIGN

You should note that we have spent two entire chapters without mentioning any
specific microprocessor or assembly language, and without writing a single line of actual
code. However, you should now know a lot more about the examples than you would if
we had just asked you to write the programs at the start. Although we often think of the
writing of computer instructions as a key part of software development, it is actually
one of the easiest stages.

Once you have written a few programs, coding will become simple. You will
soon learn the instruction set, recognize which instructions are really useful, and
remember the common sequences that make up the largest part of most programs. You
will then find that many of the other stages of software development remain difficult
and have few clear rules.

We have suggested some ways to systematize the important early stages. In the

problem definition stage, you must define all the characteristics of the system — its
inputs, outputs, processing, time and memory constraints, and error handling. You
must particularly consider how the system will interact with the larger system of
which it is a part, and whether that larger system includes electrical equipment,
mechanical equipment, or a human operator. You must start at this stage to make
the system easy to use and maintain.

In the program design stage, several techniques can help you to systematically
specify and document the logic of your program. Modular programming forces you to

divide the total program into small, distinct modules. Structured programming pro-
vides a systematic way of defining the logic of those modules, while top-down design

308 68000 Assembly Language Programming

is a systematic method for integrating and testing them. Of course, no one can compel
you to follow all of these techniques; they are, in fact, guidelines more than anything
else. But they do provide a unified aproach to design, and you should consider them a
basis on which to develop your own approach.

REFERENCES

1. D. L. Parnas (see the references below) has been a leader in the area of modular

programming.

2. Collected by B. W. Unger (see reference below).

3. Formulated by D. L. Parnas.

4. K. J. Thurber. and P. C. Patton. Data Structures and Computer Architecture, Lex-
ington Books, Lexington, Mass., 1977.

5. K. S. Shankar. "Data Structures, Types, and Abstractions, 11 Computer, April 1980,
pp. 67-77.

The following references provide additional information on problem definition and pro-
gram design:

Chapin, N. Flowcharts, Auerbach, Princeton, N. J., 1971.

Dalton, W. F. "Design Microcomputer Software like Other Systems —
Systematically,11 Electronics, January 19, 1978, pp. 97-101.
Dijkstra, E. W. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N. J.,
1976.

Halstead, M. H. Elements of Software Science, American Elsevier, New York, 1977.

Hughes, J. K. and J. I. Michtom. A Structured Approach to Programming, Prentice-
Hall, Englewood Cliffs, N. J., 1977.

Morgan, D. E. and D. J. Taylor. "A Survey of Methods for Achieving Reliable Soft-
ware, " Computer, February 1977, pp. 44-52.

Myers, W. "The Need for Software Engineering, " Computer, February 1978, pp.
12-25.

Parnas, D. L. "On the Criteria to be Used in Decomposing Systems into Modules, "
Communications of the ACM, December 1972, pp. 1053-58.

Parnas, D. L. "A Technique for the Specification of Software Modules with Exam-
ples, " Communications of the ACM, May 1973, pp. 330-336.

Phister, M. Jr. Data Processing Technology and Economics, Santa Monica Publishing
Co., Santa Monica, Ca., 1976.

Schneider, V. "Prediction of Software Effort and Project Duration — Four New
Formulas," SIGPLAN Notices, June 1978, pp. 49-59.

Schneiderman, B. et al. "Experimental Investigations of the Utility of Detailed
Flowcharts in Programming, 11 Communications of the ACM, June 1977, pp. 373-
381.

Program Design 309

Tausworthe, R. C. Standardized Development of Computer Software. Prentice-Hall:
Englewood Cliffs, N. J., 1977 (Part 1); 1979 (Part 2).

Unger, B. W. "Programming Languages for Computer System Simulation,"
Simulation, April 1978, pp. 101-10.

Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall: Englewood
Cliffs, N. J., 1976.

Wirth, N. Systematic Programming: an Introduction. Prentice-Hall: Englewood Cliffs,
N. J., 1973.

Yourdon, E. U. Techniques of Program Structure and Design. Prentice-Hall:
Englewood Cliffs, N. J., 1975.

18

Documentation

Software development must yield more than just a working program. A soft-
ware product must also include the documentation that allows it to be used, main-

tained, and extended. Adequate documentation is helpful during program debugging

and testing, and essential in the later stages of the program's life cycle.

Although no program is ever completely self-documenting, some of the rules
that we mentioned earlier can help. These include:

• Clear, simple structure with as few transfers of control (jumps) as possible

• Use of meaningful names and labels

• Use of names instead of literal numbers for I/O devices, parameters, numerical
factors, subroutine addresses, branch destinations, etc.

• Emphasis on simplicity rather than on minor savings in memory usage, execu-
tion time, or typing

For example, the following program sends a character to a teletypewriter:

SELF-DOCUMENTING PROGRAMS

MOVEQ

MOVE .B MOVEQ

-1,D0

$6000, DO
#10, D2

SNDBIT
BCLR .B
BSR ROR . W
BCS.S

#7, 0(A0) DELAY9_1

#1,D0
SNDONE

BCLR . B BRA. 5 #7, O(AO)
NEXT

SNDONE
NEXT

BSET.B
DBRA

#7, 0CA0)
D 2 , SNDB I T

RTS

END

311

312 68000 Assembly Language Programming

CHOOSING USEFUL NAMES

Even without comments we can improve the program as follows:

PROGRAM
DATA

EQU
EQU

$4000
$ 6 0 0 0

PI ADA EQU SCO OFFSET DATA REGISTER A

TTYB I T
CHRBIT
STPB I T

EQU
EQU
EQU

$0 7
$08
$0 2

TTY CONNECTED TO BIT 7
NUMBER OF DATA BITS IN CHARACTER
NUMBER OF STOPBITS TO TRANSMIT

TTYOUT MOVEQ
MOVE . B MOVEQ

-1,D0

CHAR, DO
H+CHRBIT + STPBIT-1,D2

FORM STOP BITS
GET TTY OUTPUT DATA
BIT COUNT ADJUSTED FOR DBRA

SNDB I T
BCLR.B
BSR ROR . W
BCS.S

t(TTYBIT,PIADA(A0)
DELAY9 1
1*1, DO
SNDONE

SEND START BIT
WAIT 1 BIT TIME
CARRY = NEXT DATA BIT
IF DATA = 1 THEN SEND A ONE

BCLR.B
BRA.S ttTTYB IT, PIADA(AO)

NEXT
SEND 1 0 ' AS DATA B I T

SNDONE
NEXT

BSET.B
DBRA

ttTTYB I T , PIADACA0)
D2, SNDB I T

SEND ' 1 • AS DATA BIT
CONTINUE UNTIL ALL DATA BITS SENT

RTS
END

This program is undoubtedly easier to understand than the earlier version. Even

without further documentation, you could probably guess at the function of the pro-
gram and the meanings of most of the variables. Other documentation techniques can-

not substitute for self-documentation.
Some further notes on choosing names:

1. Use the obvious name when it is available, like TTY or CRT for output
devices, START or RESET for addresses, DELAY or SORT for subroutines,
COUNT or LENGTH for data.

2. Avoid acronyms like S16BA for SORT 16-BIT ARRAY. These seldom mean
anything to anybody.

3. Use full words or close to full words when possible, like DONE, PRINT,
SEND, etc.

4. Keep the names as distinct as possible. Avoid names that look alike, such as

TEMPI and TEMPI, or those that resemble operation codes or other built-in
names.

COMMENTS

Comments are a simple form in which to provide additional documentation.

However, few programs (even those used as examples in books) have effective com-
ments. You should consider the following guidelines for good comments:

1. Don't explain the internal effects of the instruction. Instead, explain the
purpose of the instruction in the program. Comments like

SUBQ.W til, DO DO : = DO - 1

Documentation 313

do not help the reader understand the program. A more useful comment is

SUBQ.W #1,D0 LINE NUMBER := LINE NUMBER - 1

Remember that the standard manuals contain descriptions of how the pro-
cessor executes its instructions. The comments should explain what tasks the

program is performing and what methods it is using.

2. Make the comments as clear as possible. Do not use abbreviations or

acronyms unless they are well known (like ASCII, PIA, or UART) or stan-

dard (like "num11 for number, "ms" for millisecond, etc.). Avoid comments like

SUBQ.W #1,D0 L N := L N - 1

or
SUBQ.W #1,00 DEC. LN BY 1

The extra typing required to enter meaningful comments is certainly worth-
while.

3. Comment every important or obscure point. Be particularly careful to mark
operations that may not have obvious functions, such as

MOVE A . L (AO), AO GET ADDRESS TC NEXT ELEMENT IN QUEUE

or
AND I . B tt$FE, PIADA(AO) TURN OFF LED INDICATOR

Clearly, I/O operations often require extensive comments. If you're not
exactly sure what an instruction does, or if you have to think about it, add a
clarifying comment. The comment will save you time later and will be helpful
in documentation.

4. Don't comment the obvious. A comment on each line makes it difficult to
find the important points. Standard instructions like

DBRA Dl,LOOP

need not be marked unless you're doing something special. One comment
will often suffice for several lines, as in

CLR.B PIACA(AO) INITIALIZE A SIDE
MOVE.B t»A_DATD I R, P I ADDA(A0)
MOVE.B t*A_CNTRL, P I ACA(AO)

or
MOVE.B (A0)+,D0 EXCHANGE MOST SIGNIFICANT AND
MOVE.B (AO), -(AO) .. LEAST SIGNIFICANT BYTES
MOVE.B D0,1(A0)

5. Place comments on the lines to which they refer or at the start of a
sequence.

6. Keep your comments up-to-date. If you change the program, change the
comments.

7. Use standard forms and terms in commenting. Don't worry about repetition.
Varied names for the same things are confusing, even if the variations are just
COUNT and COUNTER, START and EEGIN, DISPLAY and LEDS, or

PANEL and SWITCHES. You gain nothing from inconsistency. Minor varia-

314 68000 Assembly Language Programming

tions may be obvious to you now, but may not be clear later; others will get
confused immediately.

8. Make comments mingled with instructions brief. Leave a complete
explanation to header comments and other documentation. Otherwise the

program gets lost in the comments and you may have a hard time even find-
ing the actual instructions.

9. Keep improving your comments. If you come to one that you cannot read or
understand, take the time to change it. If you find that the listing is getting

crowded, add some blank lines. The comments won't improve themselves; in
fact, they will just become worse as you leave the task behind and forget
exactly what you did.

10. Use comments to place a heading in front of every major section, subsec-
tion, or subroutine. The heading should describe the functions of the code

that follows it; it should include information about the algorithm employed,
the inputs and outputs, and any incidental effects that may be produced.

11. If you modify a working program, use comments to describe the modifica-
tions that you made and identify the date and author of the revision. This

information should go both at the front of the program (so a user can easily
tell one version from another) and at the points where changes were actually
made.

Remember, comments are important. Good ones will save you time and effort.
Put some work into comments and try to make them effective.

EXAMPLES

18-1. COMMENTING A TELETYPEWRITER
OUTPUT ROUTINE

The basic program is: MOVEQ

MOVE . B MOVEQ

-1,00

$6000,00
#10,02

SNDBIT ROR . W
BCS.S

BCLR.B
BSR

#7, 0(A0) DELAY9_1

H,D0 SNDONE

BCLR.B BRA.S #7, 0(A0) NEXT

SNDONE
NEXT

BSET.B
DBRA #7, 0(A0)

02, SNDBIT
RTS

END

Documentation 315

Commenting the important points and adding names for numbers gives:

* TELETYPEWRITER OUTPUT
» THIS PROGRAM SENDS THE CHARACTER IN LOCATION CHAR
:: TO THE TELETYPE AT THE ADDRESS IN REGISTER AO

PR CiCQ AM E QU $ 4 0 0 0
DATA EQU $6000

p I ADA E QU $ 0 0 OFFSET FOR DATA REGISTER A OF PIA

TTYB I T EQU $ 0 7 TTY rnMNFfTFD TO RIT 7
CHRB I T EQU $08 NUMBER OF DATA BITS IN CHARACTER
STPB I T EQU $02 NUMBER OF STOPBITS TO TRANSMIT

ORG DATA

CHAR DS.B 1 TTY OUTPUT CHARACTER
ORG

PROGRAM

TTYOUT MOVEQ -1 , DO
FORM STOP BITS

MOVE . B CHAR, DO GET TTY OUTPUT DATA MOVEQ
#1+CHRBIT+STPBIT-1,D2 BIT COUNT ADJUSTED FOR DBRA

BCLR.B «TTYB I Tf PIADA(AO) SEND START BIT
SNDB I T BSR DELAY9 1 WAIT 1 BIT TIME

ROR . W ttl,D0 CARRY = NEXT DATA BIT
BCS . S SNDONE IF DATA = 1 THEN SEND A ONE

BCLR.B ttTTYB IT, PIADA(AO) SEND »0 ' AS DATA BIT BRA.S NEXT

SNDONE BSET. 3 ttTTYB I T, P IADA(A0) SEND ' 1 ' AS DATA B I T
NEXT DBRA D 2 , SNDB I T CONTINUE UNTIL ALL DATA BITS SENT

RTS
END

Changing the Program

Note how easily we could change this program so that it would transfer a whole
string of data, starting at the address in location CHRSTR and ending with an 03
character (ASCII ETX).

:: PROGRAM TTYOUT

:: TELETYPEWRITER OUTPUT

:; THIS PROGRAM SENDS A STRING TO A
:: TELETYPEWRITER

:: TO USE THIS PROGRAM:

'■• CHRSTR PUT ADDRESS OF STRING IN - THIS LOCATION
- AO PUT ADDRESS OF TELETYPEWRITER
55 DEVICE IN REGISTER AO

ETX END STRING WITH AN ASCII
» ETX CHARACTER

00004000 PROGRAM EQU $4000
00006000 DATA EQU $6000

00000000 P I ADA EQU $00 OFFSET FOR DATA REGISTER A OF PIA

00000007 TTYB I T EQU $07 TTY CONNECTED TO BIT 7
00000008 CHRB I T EQU

$0 8
NUMBER OF DATA BITS IN CHARACTER

00000002 STPBIT EQU
$02

NUMBER OF STOPBITS TO TRANSMIT
00000003 ENDMARK EQU

$0 3
ASCII ETX' MARKS END OF OUTPUT STRIN

00006000 ORG DATA

316 68000 Assembly Language Programming

006000 00000001 CHRSTR DS.8 1 TTY OUTPUT CHARACTERSTRING

00004000
0 R G

PROGRAM

004000 227C00006000 T T YOU T MOVE A . L # C HR S TR , A 1 GET ADDRESS OF OUTPUT STRING

n n u n n f, 7 0 F F OUTCHR
MOVEQ -1,00

FORM STOP BITS
004008 1019 MOVE . B (A1)+,D0 GET TTY OUTPUT DATA
00400A OC000003 CMPI .8 #ENDMARK, DO IS IT END OF STRING
n r» u n n f 6 7 2 4 BEQ . S DONE . . THEN DONE

004010 740A
MOVEQ

#1+CHRBIT+STPBIT-1 D2 BIT COUNT ADJUSTED FOR DBRA

004012 08A800070000 BCLR.B #TTYB IT, PIADA(AO) SEND START BIT
004018 6100BFE6 SNDB I T BSR DELAY9_1 WAIT 1 BIT TIME
n n u n l r E 2 5 8 ROR . W # 1 , DO CARRY = NEXT DATA BIT
00401E 6 508 BCS.S SNDONE IF DATA = 1 THEN SEND A ONE

004020 08A800070000 BCLR.B #TTYBIT,PIADA(A0) SEND '0 ' AS DATA BIT
004026 6 0 06 BRA. 5 NEXT

004028 08E800070000 5NDONE BSET.B #TTYBIT,PIADA(A0) SEND ' 1 1 AS DATA BIT
00402E 51CAFFE8 NEXT DBRA D2,SNDBIT CONTINUE UNTIL ALL DATA BITS

004032 60D2 BRA OUTCHR CONTINUE UNTIL ALL CHARACTERS

004034 4E75 DONE

Good comments will help you change a program to meet new requirements. For
example, try changing the last program so that it:

• Starts each message with ASCII STX (02) followed by a two-digit identification
code stored in memory location IDCODE.

• Adds no start or stop bits.

• Waits 1 ms between bits.

• Transmits 40 characters, starting with the one located at the address in DPTR.

• Ends each message with two consecutive ASCII ETXs (03).

18-2. COMMENTING A MULTIPLE-PRECISION ADDITION
ROUTINE

The basic program is:

ORG
MOVE . L
MOVE .L
MOVE MOVEQ

LOOP MOVE.B
MOVE .B
ADDX.B
MOVE .B
DBRA RTS

END

$4000
#$6008, AO
#$6208, Al

#0,CCR #7,D2 -(AO), DO
-CA1),D1

D1,D0
DO, (AO)
D2, LOOP

Important Points

First, comment the important points. These are typically initializations, data

fetches, and processing operations. Don't bother with standard sequences like updat-
ing pointers and counters. Remember that names are clearer than numbers, so use

them freely.

Documentation 317

The new version of the program is:

MULT I PREC I S 1 ON ADDITION

» THIS PROGRAM ADDS TWO NUMBERS STORED
» AT LOCATIONS NUM1 AND NUM2 AND
- STORES THE RESULT IN LOCATION NUM1

:: THE NUMBERS MUST BE EIGHT BYTES LONG
;: COR CHANGE BYTECOUNT)

PROGRAM EQU $4000

NUM1 EQU $6000
NUM2 EQU $6200
BYTECOUNT EQU $8

ORG PROGRAM

MOVE A . L ttNUMl+BYTECOUNT, AO ADDRESS BEYOND END OF FIRST NUMBER
MOVE A . L #NUM2+BYTECOUNT,Al ADDRESS BEYOND END OF SECOND NUMBER
MOVE #0,CCR
MOVEQ #BYTECOUNT-l , D2

LOOP MOVE.B
MOVE . B
ADDX . B
MOVE .B
DBRA

-(AO), DO
-(A1),D1
D1,D0
DO, (AO)
D2,LOOP

RTS

GET BYTES TO ADD, START WITH
LEAST SIGNIFICANT BYTES
ADD THEM WITH CARRY
STORE RESULT IN NUM1

Obscure Functions

Second, look for instructions that may not have obvious functions and explain
their purposes with comments. Here, the purpose of MOVE #0,CCR is to clear the
Extend flag (and other flags) before adding the least significant bytes.

MULTIPRECISION ADDITION

" THIS PROGRAM ADDS TWO NUMBERS STORED
" AT LOCATIONS NUM1 AND NUM2 AND
|| STORES THE RESULT IN LOCATION NUM1
" THE NUMBERS MUST BE EIGHT BYTES LONG
:: (OR CHANGE BYTECOUNT)

PROGRAM EQU $4000
NUM1
NUM2

EQU
EQU

BYTECOUNT EQU

$6000
$6 200
$8

ADDRESS OF FIRST BINARY NUMBER
ADDRESS OF SECOND BINARY NUMBER
NUMBER OF BYTES TO ADD

PROGRAM

MOVE A . L tINUMl+BYTECOUNT, AO
MOVE A . L #NUM2+BYTECOUNT,Al
MOVE «0,CCR
MOVEQ «B YTECOUNT-1 , D2

ADDRESS BEYOND END OF FIRST NUMBER
ADDRESS BEYOND END OF SECOND NUMBER
CLEAR EXTEND FLAG (AND OTHER FLAGS)
LOOP COUNTER ADJUSTED FOR DBRA

LOOP MOVE.B -(AO), DO
MOVE.B -(A1),D1
ADDX . B D1,D0
MOVE.B DO, (AO)
DBRA D2.LOOP

GET BYTES TO ADD, START WITH
LEAST SIGNIFICANT BYTES
ADD THEM WITH CARRY
STORE RESULT IN NUM1

RTS

318 68000 Assembly Language Programming

Questions for Commenting

Third, ask yourself whether the comments tell you what you would need to
know to use the program; for example:

1. Where is the program entered? Are there alternative entry points?

2. What parameters are necessary? How and in what form must they be supplied?

3. What operations does the program perform?

4. From where does it get the data?

5. Where does it store the results?

6. What special cases does it consider?

7. What does the program do about errors?

8. How does it exit?

Some questions may be irrelevant and some answers may be obvious. Make

sure, however, that you wouldn't have to dissect the program to answer the important
questions. Remember also that too much explanation may be an obstacle to using the
program. Are there any changes you would like to see in the listing? If so, make

them — you are the one who has to decide if the commenting is adequate and reasona-
ble.

FLOWCHARTS AS DOCUMENTATION

We have already described the use of flowcharts as a design tool in Chapter 17.
Flowcharts are also useful in documentation, particularly if:

• They are not cluttered or too detailed.

• Their decision points are explained and marked clearly.

• They include all branches.

• They correspond to the actual program listings.

Flowcharts are helpful if they give you an overall picture of the program. They
are not helpful if they are just as difficult to read as the program listing.

STRUCTURED PROGRAMS AS DOCUMENTATION

A structured program can serve as documentation for an assembly language pro-
gram if:

• You describe the purpose of each section in the comments.

• You make it clear which statements are included in each conditional or loop
structure by using indentation and ending markers.

• You make the total structure as simple as possible.

• You use a consistent, well-defined language.

The structured program can help you check the logic or improve it. Further-
more, since the structured program is machine-independent, it can also help you

implement the same task on another computer.

Documentation 319

MEMORY MAPS

A memory map is simply a list of all the memory assignments in a program.
The map allows you to determine the amount of memory needed, the locations of data
or subroutines, and the parts of memory not allocated. The map is a handy reference for
finding storage locations and entry points and for dividing memory between different
routines or programmers. The map will also give you easy access to data and subroutines

if you need them in later extensions or in maintenance. Sometimes a graphical map is
more helpful than a listing.

A typical map is:

Address

E000 - E1FF
E200 - E240
E241 - E250
E251 - E270
E271 - E3EF
0000 - 03FF

Address

1000
1001 - 1002
1003 - 1041
1042 - 1050
1051 - 106F
1070 - 10FF

Program Memory

Routine Purpose

RDKBD Interrupt Service Routine for Keyboard
BRKPT Breakpoint Routine Entered Via Software Interrupt
DELAY Generalized Delay Program
DSPLY Control Program for Operator Displays
SUPER Main Supervisor Program

Interrupt and Reset Vectors

Data Memory

Name Purpose

NKEYS Number of Keys Pressed by Operator
KBPTR Keyboard Buffer Pointer
KBUFFR Keyboard Buffer
DBUFFR Display Buffer
TEMP Miscellaneous Temporary Storage
STACK Hardware Stack

The map may also list additional entry points and include a specific description
of the unused parts of memory.

PARAMETER AND DEFINITION LISTS

Parameter and definition lists at the start of the main program and each
subroutine make understanding and changing the program far simpler. The following
rules can help.

1. Separate data locations, I/O units, parameters, definitions, and fixed
memory addresses.

2. Arrange lists alphabetically when possible, with a description of each entry.

3. Give each parameter that might change a name and include it in the lists.
Such parameters may include time constants, inputs or codes corresponding to
particular keys or functions, control or masking patterns, starting or ending
characters, thresholds, etc.

4. List fixed memory addresses separately. These may include reset and inter-
rupt service addresses, the starting address of the program memory areas,

stack areas, etc.

320 68000 Assembly Language Programming

5. Give each port used by an I/O device a name, even though devices may share
ports in the current system. The separation will make it easier for you to
expand or change the I/O section.

A typical list of definitions is:

:: MEMORY SYSTEM CONSTANTS

I R0_1LEV EQU $2 1000 LEVEL 1 INTERRUPT SERVICE ROUTINE
IRQ 2LEV EQU $2 10AB LEVEL 2 INTERRUPT SERVICE ROUTINE
IRQ 7LEV EQU $22000 LEVEL 7 INTERRUPT SERVICE ROUTINE
MEMORY EQU $0 STARTING ADDRESS FOR MEMORY
S5TKPNT EQU $F000 INITIAL SUPERVISOR STACK POINTER
USTKPNT EQU $E000 INITIAL USER STACK POINTER

:: I /0 UNITS
P I Al EQU $3FF40 BASE ADDRESS PIA 1
P I A2 EQU $3FF41 BASE ADDRESS PIA 2
AC IA1 ECU $3FF0 1 BASE ADDRESS ACIA 1
AC I A2 EQU $3FF21 BASE ADDRESS ACIA 2

:: I/O UNIT? OFFSETS

P I ADDA ECU

SO

OFFSET FOR DATA DIRECTION REGISTER
P I ADA EQU $0 OFFSET FOR DATA REGISTER A
P I ACA EQU

$4 OFFSET FOR CONTROL REGISTER A

:: DATA STORAGE

ORG P AM
NUMROWS DS.B 1 NUMBER OF ROWS ON INPUT KEYBOARD
NUMCOL DS . B 1 NUMBER OF COLUMNS ON INPUT KEYBOARD
INPUTBUF DS.L 1 ADDRESS TO INPUT BUFFER
OUTBUF DS.L 1 ADDRESS TO OUTPUT BUFFER
TEMP DS.L $10 TEMPORARY DATA BUFFER

PARAMETERS

BOUNCE1 EQU
OPEN EQU
D I SDL Y EQU

$2
SOF 50 1

BOUNCE TIME IN MS FOR KEYBOARD
INPUT PATTERN WHEN NO KEYS ARE CLOSED
PULSE LENGTH FOR DISPLAYS IN MS

DEFINITIONS

ALLHI EOU
STCON EQU 5FF $80 ALL ONES INPUT

OUTPUT FOR START OF CONVERSION PULSE.

Of course, the data storage entries may not always be in alphabetical order,
since the designer may order these differently for various reasons.

LIBRARY ROUTINES

Standard documentation of subroutines helps you build a library of programs
that are easy to use. If you describe each subroutine with a standard form, anyone can
see at a glance what the routines do and how to use them. You should organize the

forms carefully, defining them, for example, by processor, language, and type of pro-
gram. Remember, without proper documentation and organization, using the library

may be more difficult than writing programs from scratch. If you are going to use
subroutines from a library or other outside source, you must know all their effects in
order to debug your overall program.

Documentation 321

STANDARD PROGRAM LIBRARY FORMS

Among the information that you will need in the standard form is:

• Purpose of the program
• Processor used

• Language used

• Parameters required and how they are passed to the subroutine

• Results produced and how they are passed to the calling program

• Number of bytes of memory used

• Number of clock cycles required. This number may be an average or a typical
figure, or it may vary widely. Actual execution time will, of course, depend on
the processor clock rate and the memory cycle time.

• Registers affected

• Flags affected

• A typical example

• Error handling

• Special cases

• Documented program listing

If the program is complex, the standard library form should also include a
general flowchart or a structured outline of the program. As we have mentioned
before, a library program is most likely to be useful if it performs a single function in
a general manner.

TOTAL DOCUMENTATION

Complete documentation of microprocessor software will include all or most of
the elements that we have mentioned.

DOCUMENTATION PACKAGE

The total documentation package may involve:

• General flowcharts

• A written description of the program

• A list of all parameters and definitions
• A memory map

• A documented listing of the program

• A description of the test plan and test results

The documentation may also include:

• Program flowcharts
• Data flowcharts

• Structured programs

322 68000 Assembly Language Programming

Even this package is sufficient only for non-production software. Production soft-
ware also requires the following documents:

• Program Logic Manual

• User's Guide
• Maintenance Manual

Program Logic Manual

The program logic manual expands the written explanation provided wih the

software. It should explain the system's design goals, algorithms, and tradeoffs, assum-
ing a reader who is competent technically but lacks detailed knowledge of the program.

It should provide a step-by-step guide to the operations of the program and it should
explain the data structures and their manipulation.

User's Guide

The user's guide is the most important single piece of documentation. No mat-
ter how well designed the system may be, it will not be useful if no one can understand

its operations or take advantage of its features. The user's guide should explain system
features and their use, provide frequent examples that clarify the text, and give

tested step-by-step directions. The writing of user's guides requires care and objec-
tivity, since the writer must be able to take an outsider's point of view.

One problem in writing user's guides is the need to avoid overwhelming the
beginner or taxing the patience of the experienced user. Two separate versions can help
overcome this problem. A guide for the beginner can explain the most common
features of the program with the aid of simple examples and detailed discussions. A
guide for the experienced user can provide more extensive descriptions of features
and fewer examples. Remember that the beginner needs help getting started, whereas
the experienced user wants organized reference material.

Maintenance Manual

The maintenance manual is designed for the programmer who has to modify the
system. It should explain the procedures for any changes or expansion that have been
designed into the program.

IMPORTANCE OF DOCUMENTATION

Documentation should not be taken lightly or left to the last minute. Good docu-
mentation, combined with proper programming practices, is not only an important part

of the final product but can also make development simpler, faster, and more produc-
tive. The designer should make consistent and thorough documentation part of every

stage of software development.

19

Debugging

As we noted at the beginning of this section, debugging and testing are among the

most time-consuming stages of software development. Even though such methods as
modular programming, structured programming and top-down design can simplify
programs and reduce the frequency of errors, debugging and testing are still difficult
because they are so poorly defined. The selection of an adequate set of test data is
seldom a clear or scientific process. Finding errors sometimes seems like a game of pin

the tail on the donkey, except that the donkey is moving and the programmer must posi-
tion the tail by remote control. Few tasks are as frustrating as debugging programs.
This chapter will first describe the tools available to aid in debugging. It will

then discuss basic debugging procedures, describe the common types of errors, and
present some examples of program debugging. The next chapter will describe how to
select test data and test programs.

We will describe only the purposes of most debugging tools. There is little stan-
dardization in this area and we cannot discuss all the available products. The examples

show the uses, advantages, and limitations of some common tools.
Debugging tools have two major functions. One is to pin the error down to a short

section of the program ; the other is to provide more detailed information about what the
computer is doing than is provided by normal runs, and so make the source of the error
obvious. Current debugging tools do not find and correct errors by themselves; you
must know enough about what is happening to recognize and correct the error when the
debugging tools zero in on it and show its effects in detail.

323

324 68000 Assembly Language Programming

SIMPLE DEBUGGING TOOLS

The most common simple debugging tools are:

• A breakpoint facility

• A single-step facility
• A trace facility

• A register dump program

• A memory dump program

BREAKPOINT

A breakpoint is a place at which the program will automatically halt or wait so

that the user can examine the current status of the system. A program will not con-
tinue until the user orders its resumption. Breakpoints allow you either to check or

pass over an entire section of a program. To see if an initialization routine is correct, you

can place a breakpoint at the end of it and run the program. You can then check memory
locations and registers to see if the entire section is correct. However, note that if the
section is not correct, you must still pinpoint the error, either with earlier breakpoints or

with a single-step mode.
Breakpoints often use the exception processing system (see Chapter 15). You

can use any of the 16 trap vectors to act as a breakpoint. Any of the 7 interrupt levels can
also be used by external equipment to cause breakpoints. A breakpoint will usually
cause a special program to be executed; for example, it might automatically print the
contents of specified registers or wait for the user to enter a command.

Inserting Breakpoints

The simplest and best way to insert a breakpoint in a program is to replace the
first word of an instruction with a trap instruction. When the trap instruction is

executed, program control is transferred to a breakpoint routine specified via a trap vec-
tor, the processor is forced into supervisor mode, and the program counter and status

register contents are saved.

Don't forget that the value saved for the program counter points to the instruc-
tion after the one which caused the trap. If you want the actual breakpoint address dis-

played, or if you want the program to resume correctly after restoring the original
instruction, you will have to subtract two from the stored program counter value. The
simplest way to accomplish this would be to execute the instruction SUBQ.L

#2, — 2(A7). Note that this method assumes that the supervisor stack pointer still points
to the data saved at the time of the trap.

Figure 19-1 shows a simple breakpoint routine with its trap vector and a call to the
breakpoint routine. This routine causes an endless loop, and the only way to terminate
the loop is with a reset or an interrupt.

Setting and Clearing Breakpoints

Many monitors have facilities for automatically inserting (setting) and remov-

Debugging 325

-EXCEPTION VECTORS
ORG 0

DS . L BRK PT TRAP 0 = BREAKPO INT

!I IICCTD D D D A M '* UbtK rKUlj" An

ORG $4000
PGM14_2 MOVEA.L ttACIA,A0 ADDRESS OF ACIA

TRAP HO B R E AK PO NT HERE

:: BREAKPOINT HANDLER

ORG $10000
BRKPT BRA BRKPT WAIT IN PLACE

Figure 19-1. A Simple Breakpoint Routine

ing (clearing) breakpoints based on one of the TRAP instructions. Such breakpoints
do not affect the timing of the program until one of them is executed. However, you
obviously cannot replace instructions that are in ROM or PROM. Other monitors
implement breakpoints by actually checking the address lines or the program counter
in hardware or in software. This method allows the user to set breakpoints on
addresses in ROM or PROM, but it may affect system timing if the address must be
checked in software. A more powerful facility would allow the user to enter an address to
which the processor would transfer control. Another possibility would be a return
dependent on a switch as in the following example.

BRKPT BTST # 7 , P I ADR WAIT FOR SWITCH IN BIT 7 TO CLOSE
BNE BRKPT

RTE

Of course, other PIA data or control lines could also be used. Remember that
RTE automatically reenables interrupts. If a PIA interrupt is used, the service routine
must read the PIA data register to clear the interrupt status bit.

Precautions in Using Breakpoints

When you use breakpoints (whether manually or through monitor facilities),
remember the following precautions:

1. Only set breakpoints at addresses that contain operation codes. Replacing
data or parts of addresses with Trap instructions can result in chaos.

326 68000 Assembly Language Programming

2. Interpret the results carefully. Remember that the computer has not yet
executed the instruction that was replaced.

3. Check all conditions before resuming the program. You may have to change
the program counter, correct the contents of registers or memory locations,
clear breakpoints that are no longer necessary, and set new breakpoints.

Methods for resuming programs vary greatly, so consult your microcomputer's
user's guide. Be particularly careful never to resume a program in the middle of
an instruction (that is, at an address that does not contain an operation code)
or in the middle of an I/O or timing operation (e.g., sending data to a
teletypewriter) that cannot logically be resumed after a delay.

REGISTER DUMP

A register dump is a facility that lists the contents of all, or some selected

subset, of the processor's registers. A register dump routine is very often a part of a
breakpoint handling routine and the debug program that controls the trace facility.

A useful register dump program will let you specify which registers, and even
which portion of selected registers, to display. Since the MC68000 allows operations
on portions of registers (byte or word operations) it will often be useful to display, for
example, just the least significant byte of a register. Similarly, if you are only interested

in the contents of a few data registers, it would be most useful simply to display the con-
tents of those registers rather than the contents of all 16 data and address registers.

Figure 19-2 shows the results of a typical register dump program.
There are a couple of things we must keep in mind when we write a register

dump program. First, if we want the program counter contents to be displayed, it is
usually possible to find the PC contents somewhere on the stack. However, you have
to know how many exceptions and/or subroutine calls may have intervened before the
register dump program, since they may have stored additional items on the stack.

Secondly, stack pointer A7 may cause problems if you don't keep track of
whether the processor is in the user or supervisor state. Here are some rules to
remember:

• In the user state, the user stack pointer is in A7 and it is impossible to reach the
supervisor stack pointer.

• In the supervisor state, the supervisor stack pointer is in A7 and you can reach
the user stack pointer with the help of the MOVE USP,An instruction.

Thirdly, remember that a subroutine call stores just a program counter value on
the stack while an exception (trap, interrupt, and so on) stores the program counter
content and the status register contents.

Lastly, if you are in the user state and save the status register contents some-

where, don't attempt to restore the entire status register; that is a privileged instruc-
tion. It will be sufficient to restore the condition code part of the status register with a

MOVE to CCR instruction. Alternately, you can use the RTR instruction which auto-
matically restores the condition code portion of the status register.

Figure 19-3 shows a flowchart of the register dump program REGDUMP. In
this program, we assume that the subroutines PRT8HEX and PRT4HEX convert and

Debugging 327

D0 = 3FD 5 6 7 0 9 Dl = 1 0 0 0 0 2 0 2 = 2430 D 4 = 3 C A 0 = 0 0 0 1 k 0 0 0 Al=6 0 0 0 A 7 = 0 0 0 5 6 4 2 1

Figure 19-2. Results of a Typical MC68000 Register Dump

i

Save all registers
on stack

I

Data Pointer =
Stack Pointer

Count = 1 5
(Number

of registers)

Print (Data Pointer)
as 8 hex digits

Data Pointer =
Data Pointer + 2

Count = Count - 1

1

Adjust A7
contents and print

Print Status

Register contents
as 4 hex digits

t

Adjust Program
Counter contents

and print

♦

Restore all

registers from
stack

V

Figure 19-3. Flowchart of a Register Dump Program

328 68000 Assembly Language Programming

print 32 or 16 bits of register DO as hex digits on the system printer. We also assume that
the register dump routine is called by a BSR or JSR instruction and that the system is in
the user state.

::RhGIST£R DUMP PROGRAM

PROGRAM EQU
ORG

$4000
PROGRAM

REGDUMP MOVE . W
MOVEM.L

SR, -CA7)
D0-D7/A0 -A7, -CA7)

SAVE STATUS REGISTER
SAVE REST OF REGISTERS

MOVE A . L
MOVEQ A7, AO

#1 5-1, D4
AO IS LOCAL STACKPOINTER
15 REGISTERS TO PRINT-ADJUST FOR

LOOP MOVE . L
BSR
DBRA

K. AU) + , DU
PRT8HEX
Dk, LOOP

r c T di ic ucr\ d c c tctcd
AND PRINT IT

MOVE . L
ADD I .L
BSR

(A0)+, DO
#6 , DO
PRT8HEX

GET STACKPOINTER
ADJUST TO VALUE BEFORE CALL
PRINT IT

MOVE . W
BSR

(A0)+,D0
PRT4HEX

GET STATUS WORD
PRINT IT

MOVE .L
SUB I . L
BSR

(A0)+,D0
2 , DO
PRT8HEX

GET OLD PC
ADJUST IT TO VALUE BEFORE CALL
PRINT IT

MOVEM.L (A7)+, DO -D7/A0-A7 RESTORE REGISTERS

RTR RETURN AND RESTORE THE CONDITION CODES

Note that the last instruction is an RTR instruction. If you want to call the register
dump program via an exception, you must make some changes to this program.
Required changes are shown in the program SYSDUMP.

-REGISTER DUMP AFTER TRAP OR EXCEPTION

PROGRAM EQU

ORG

$t+000

PROGRAM

SYSDUMP MOVEM.L D0-D7/A0 -A6, -CA7) SAVE REGISTERS ON SUPERVISOR STACK

MOVE A . L
MOVEQ A7, AO

#1 5-1, D4
AO IS LOCAL STACKPOINTER
15 REGISTERS TO PRINT-ADJUST FOR DB

LOOP MOVE .L
BSR
DBRA

(A0)+,D0
PRT8HEX
Dk , LOOP

GET PUSHED REGISTER
AND PRINT IT

MOVE .L
MOVE .L
BSR

USP, Al
A1,D0
PRT8HEX

GET USER STACKPOINTER

PRINT IT

MOVE . W
BSR

(A0)+,D0
PRT4HEX

GET STATUS WORD
PRINT IT

MOVE .L
SUB I . L
BSR

(A0)+,D0
#2, DO
PRT8HEX

GET OLD PC
ADJUST IT TO VALUE BEFORE CALL
PRINT IT

MOVEM.L (A7)+, DO -D7/A0-A6 RESTORE REGISTERS

RTE RETURN AND RESTORE THE CONDITION CODES

Debugging 329

Make sure you understand the difference between the instructions RTE, RTR,
and RTS. Which of them is privileged and why?

SINGLE-STEP

A single-step facility allows you to execute a program one instruction or one
memory cycle at a time. After each step you might display some register or memory

contents. Usually, single-stepping is associated with some external circuitry which
monitors the output lines of the processor. The MC68000, however, provides internal

circuitry to accomplish single-stepping via its trace logic.

TRACE

The trace facility allows you to see intermediate results since you can deter-

mine the status of the processor's registers after each instruction is executed. A sim-
ple trace usually lets you step through your program instruction by instruction and

prints all the registers after each instruction is executed. A more useful trace facility
might allow you to execute several instructions before stopping and permit you to
specify how much information you want each time you stop. It might also allow you to
print the contents of memory locations you specify. This will result in a reduced volume
of information and means that you must decide what you need before instituting the
trace, but it should give you the information that is most useful.

Simple instruction tracing may provide you with very detailed information about
what happens inside the processor. This information should be sufficient to identify

such errors as jump and branch instructions with incorrect conditions and/or destina-
tions, omitted or incorrect addresses, incorrect operation codes, and improper data

values.

You must keep in mind, however, that a single-step trace slows the processor
far below its normal speed. Thus, you cannot check delay loops or I/O operations in

real time. Nor can a single-step trace help you find timing errors or errors in the inter-
rupt or DMA systems. In fact, the single-step mode typically operates at less than one

millionth of normal processor speed. To single-step through one second of real pro-
cessor time would require more than ten days. The single-step trace mode, therefore, is

useful only to check the logic of short sequences of instructions.

The MC68000 has a built-in trace facility not often found on microprocessors.
Bit 15 in the status register can be set to force the processor into the trace state. In this
state, an exception is forced after each instruction, thus allowing a debug program to
have control over program execution. In the trace mode, it essentially looks as though
we had inserted breakpoints (trap instructions) after every instruction.

The exception processing for the trace operation follows the same general pattern
as for the processing of a trap instruction. The contents of the program counter and
status register are saved, and control is transferred to the address stored in the trace

exception vector which is #9, at memory address 2416.
If you want to implement a very simple trace facility on your MC68000 system,

just place the address of the register dump program (SYSDUMP), described previously,

in address 24,6 (the trace exception vector location).

ORG $2<+ DC.L SYSDUMP

330 68000 Assembly Language Programming

Then set bit 15 in the status register, using one of the instructions that operate on

the status register, and start your program. You will get all of the processor's registers
(except the supervisor stack pointer) printed after each instruction is executed. Once
again, for a more detailed discussion of exception processing, refer to Chapter 15. Note
that the program counter printout resulting from SYSDUMP would have to be
modified. How would you modify it?

This trace routine will provide you with an enormous amount of information. If
you improve on it, or if you have a good trace program already, here is some advice to
keep in mind:

1. Decide what you need before executing the trace. Otherwise you will not
know what to do with the results.

2. Start by tracing only one or two variables and printing the results infre-
quently. This will give you less information to analyze at one time.

3. Use breakpoints to limit the extent of the trace. Turn tracing on or off at the
breakpoints.

4. Use whatever facility your computer has to mark the output. Otherwise you
will end up with pages of unidentified numbers and you will spend most of your
time just figuring out what they are.

5. Be careful when you specify that only a portion of a register is to be dis-
played (if your trace allows this option). Remember that phenomena like

sign-extensions can cause problems that you won't see if you don't display the
contents of the entire register.

MEMORY DUMP

A memory dump is a program that lists the contents of memory on an output
device (such as a printer). This is a more efficient way of examining data arrays or
entire programs than just looking at single locations. However, very large memory

dumps are not useful (except to supply scrap paper) because of the sheer mass of infor-
mation that they produce. They may also take a long time to execute on a slow printer.

Small dumps may, however, provide the programmer with a reasonable amount of
information that can be examined as a unit. Regular repetitions of data patterns or
offsets of entire arrays are easily spotted in a dump.

A general dump program is often rather difficult to write. Make sure that the end-
ing memory address is not smaller than the starting memory address. A larger starting

memory address might be treated as an error, or it may cause no output.
Since the speed of the memory dump depends on the speed of the output device,

the efficiency of the routine seldom matters. The following program will ignore cases
where the starting address is larger than the ending address, and will handle memory
blocks of any length.

:: THIS PROGRAM PRINTS A PIECE OF MEMORY CONTENTS ON THE
:: SYSTEM PRINTER.

00004000 PROGRAM EQU $4000
00006000 DATA EQU $6000

00006000 ORG DATA

Debugging 331

n n k n n n U UD U u U nnnnnnnu U Dull II 11 11 T START DS.L 1
n n (\ n n u U U D UU4 nnnnnnnu END DS.L

00004000 ORG PROGRAM

0 040 0 0 20786000 MEMDUMP MOVE A . L START, AO GET START ADDRESS
004004 22786004 MOVEA.L END, Al GET THE END ADDRESS

004008 B1C9 LOOP CMPA .L Al , AO IF END > START
00400A 6 208 BHI . S DONE . . THEN DONE
00400C 2018 MOVE . L (A0)+,D0 ..ELSE GET DATA, INCREMENT START
00400E 6 1 00 00 06 BSR PRT8HEX AND PRINT DATA
004012 60F4 BRA LOOP
004014 4E7 5 DONE RTS

A typical result of this memory dump program is shown in Figure 19-4. Note that
since we are printing long words, we may print a maximum of three bytes beyond the

specified ending address. To illustrate this, try START = 6000,END = 6004.
This memory dump routine correctly handles the case in which the starting and

ending locations are the same (try it!). You will have to interpret the results carefully if
the dump area includes the stack, since the dump subroutine itself uses the stack. The
PRT8HEX subroutine may also change memory and stack locations.

Obviously, these results may sometimes be hard to interpret. They don't tell you
which addresses are involved and the results are not output in a very satisfying format.

Figure 19-5 shows a better format that gives you the addresses involved and makes it
easier to distinguish between bytes, words, and long words.

If you are working a lot with ASCII strings, then it will be useful to get the

ASCII characters corresponding to the memory locations as shown in Figure 19-6.
This is a common and useful format. It will, for example, immediately show you if some
unprintable character is intermixed in the string. Thus, if we happen to get a byte with a

48415353
45204D41
444520 54
48495320
44554D50

Figure 19-4. Results of an Unformatted Memory Dump

005000 43 48 41 4C 4D 45 52 53 20 53 57 45 44 45 4E 20

Figure 19-5. Results of a Formatted Memory Dump

332 68000 Assembly Language Programming

005000 5*+ 48 45 2 0 4D 45 4D 4F 52 5 9 2 0 44 55 4D 5 0 2 0 THE . MEMORY . DUMP

Figure 19-6. Results of a Memory Dump with ASCII Characters

0 0 5 0 0 0 54 48 45 2 0 4D 45 4D 15 4F 5 2 59 20 44 55 4D 50 THE . MEM . OR Y . DUMP

Figure 19-7. Results of an ASCII Memory Dump with Unprintable Character

value 1516 between M and O in MEMORY the dump would appear as shown in Figure

19-7. A dump program which just shows you printable characters wouldn't have
revealed this extra character.

Try to rewrite the memory dump program so that it produces a memory dump that
shows you the address and the hexadecimal form as well as the ASCII characters con-

tained in memory.

MORE ADVANCED DEBUGGING TOOLS

The more advanced debugging tools that are most widely used are:

• Simulator programs to check program logic

• Logic analyzers to check signals and timing

Many variations of both these tools exist, and we will discuss only the standard
features.

Software Simulator

The simulator is the computer equivalent of a pencil-and-paper computer. It is a
computer program that goes through the operating cycle of a computer, keeping track
of the contents of all the registers, flags, and memory locations. We could, of course,
do this by hand, but it would require a large effort and close attention to the exact effects
of each instruction. The simulator program never gets tired or confused, never forgets
an instruction or register, and does not run out of paper.

Typical simulator features include:

• A breakpoint facility. Usually, breakpoints can be set to occur after a particular
number of cycles have been executed; when a memory location or one of a set

Debugging 333

of memory locations is referenced; when the contents of a location or one of a
set of locations is altered, or on other conditions.

• Register and memory dump facilities that display the contents of memory
locations, registers, and I/O ports.

• A trace facility that prints the contents of particular registers or memory loca-
tions whenever the program changes or uses them.

• A load facility that allows you to set initial register and/or memory location
contents, or change them during the simulation.

Some simulators can simulate input/output, interrupts, and even DMA. The
simulator has many advantages:

1. It can provide a complete description of the status of the computer, since the
simulator program is not restricted by microprocessor chip pinout limitations
or other characteristics of the underlying circuitry.

2. It can provide breakpoints, dumps, traces, and other facilities, without using

any of the simulated processor's memory space or control system. These
facilities will therefore not interfere with the user program.

3. Programs, starting points, and other conditions are easy to change.

4. All the facilities of a large computer, including peripherals and software, are
available to the microprocessor designer.

On the other hand, the simulator is limited by its software base and its separa-
tion from the real microcomputer. The major limitations are:

1. The simulator cannot cope with timing problems, since it operates at less than

real-time execution speed. The simulator is usually quite slow. Reproducing
one second of actual processor time may require hours of computer time.

2. The simulator cannot model the input/output section exactly since it cannot
represent external hardware or interfaces accurately.

The simulator represents the software side of debugging; it has the typical

advantages and limitations of a wholly software-based approach. The simulator can
provide insight into program logic and other software problems, but often cannot help
with timing, I/O, and hardware problems.

Logic Analyzer

The logic, or microprocessor, analyzer is the hardware solution to debugging.
Basically, the analyzer is a parallel digital version of the standard oscilloscope. The
analyzer displays information in binary, hexadecimal, or mnemonic form on a CRT, and
has a variety of triggering events, thresholds, and inputs. Most analyzers also have a
memory so that they can display the past contents of the microcomputer busses.

The standard procedure is to set a triggering event, such as the occurrence of a
particular address on the address bus or instruction on the data bus. For example, one
might trigger the analyzer if the microcomputer tries to store data in a particular address,
or execute an input or output instruction. One may then look at the sequence of events
that preceded the breakpoint. Common problems you can find in this way include
short noise spikes (or glitches), incorrect signal sequences, overlapping waveforms,

334 68000 Assembly Language Programming

• Number of input lines. At least 40 are necessary to monitor a 16-bit data bus
and a 24-bit address bus. Still more are necessary for control signals, clocks, and
other important inputs.

• Amount of memory. Each previous state that is saved will occupy several bytes
of memory.

• Maximum frequency. It must be several MHz to handle the fastest processors.

• Minimum signal width (important for catching glitches).

• Type and number of triggering events allowed. Important features are pre- and
post-trigger delays; these allow the user to display events occurring before or
after the trigger event.

• Methods of connecting to the microcomputer. This may require a rather
complex interface.

• Number of display channels.

• Binary, hexadecimal, or mnemonic displays.

• Display formats.

• Signal hold time requirements.

• Probe capacitance.

• Single or dual thresholds.

All of these factors are important in comparing different logic and microprocessor
analyzers, since these instruments are new and unstandardized. A tremendous variety

of products is already available and this variety will become even greater in the future.1
Logic analyzers, of course, are necessary only for systems with complex timing.

Simple applications with low-speed peripherals have few hardware problems that a
designer cannot handle with a standard oscilloscope.

DEBUGGING WITH CHECKLISTS

No one can hope to check an entire program by hand; however, certain trouble
spots can be checked. You can use systematic hand checking to find a large number of
errors without resorting to any debugging tools.

The question is where to place the effort. The answer is on points that can be

handled with either a yes-no answer or a simple arithmetic calculation. Do not do
complex arithmetic, follow all status flags, or try every conceivable case. Limit your

hand-checking to matters that can be settled easily. Leave the complex problems to be
solved with the aid of debugging tools. But proceed systematically; build your checklist,
and make sure that the program performs all basic operations correctly.

The first step is to compare the flowchart or other program documentation with
the actual code. Make sure that everything which appears in one also appears in the

other. A simple checklist will do the job. It is easy to omit an entire branch or a process-
ing section.

Next concentrate on the program loops. Make sure that all registers and memory
locations used inside the loops are initialized correctly. This is a common source of
errors; once again, a simple checklist will suffice.

Now look at each conditional branch. Select a sample case that should produce a
branch and one that should not; try both of them. Is the branch correct or reversed? If

Debugging 335

the branch involves checking whether a number is above or below a threshold, try the
equality case. Does the correct branch occur? Make sure that your choice is consistent
with the problem definition.

Look at the loops as a whole. Try the first and last iterations by hand; these are
often troublesome special cases. What happens if the number of iterations is zero; e.g.,
there is no data or the table has no elements? Does the program fall through correctly?
Programs will often perform one iteration unnecessarily, or, even worse, decrement
counters past zero before checking them. Check for other trivial cases where there is
nothing for the program to do.

Check off everything down to the last statement. Don't optimistically assume
that the first error is the only one in the program. Hand-checking will allow you to
get the maximum benefit from debugging runs, since you will get rid of many simple
errors ahead of time.

Hand-Checking Questions

Here is a quick review of the hand-checking questions:

1. Does the program include everything that was designed into it (and vice versa
for documentation purposes)?

2. Are all registers and memory locations initialized before they are used inside
loops?

3. Are all conditional branches logically correct?

4. Do all loops start and end properly?

5. Are equality cases handled correctly?

6. Are trivial cases handled correctly?

LOOKING FOR ERRORS

Of course, despite all these precautions (or if you skip over some of them), pro-

grams often still won't work. The designer is left with the problem of how to find the
remaining mistakes. The lists that follow may be of some help. We have attempted to
categorize the types of errors that you may encounter. However, you must remember
that a certain kind of error will not necessarily be limited to just one kind of program.
The groupings we have arrived at may make it faster for you to pinpoint the error.

But if you don't find the error within the category in which it seems most likely to
occur, look under all the other categories.

ERRORS LIKELY TO BE FOUND

IN CERTAIN PARTS OF A PROGRAM

The Initialization Section

• Failure to initialize variables such as counters, pointers, sums, indexes, and
so on. Do not assume that the registers, memory locations, or condition codes

336 68000 Assembly Language Programming

necessarily contain zero before they are used. Also make sure that you initialize
the correct part of a register. For example, if you are going to use register DO as
an 8-bit counter for a DBRA loop, it is necessary to clear the entire low-order
word of DO since this instruction always operates on the entire 16-bit word.

• Failure to follow through correctly in trivial cases. It is usually here where you
must decide what to do if there is nothing for the program to do (no data pre-

sent, no entries in a list, and so on). Do not assume that such cases will never
occur unless the program specifically eliminates them.

• Accidental initializations. Make sure that no jump or branch instructions
transfer control back to the initialization section.

Loops

• Updating counters, pointers, or indexes in the wrong place or not at all. Be
sure that there are no paths through a loop that either skip or repeat the updat-

ing function. Be especially careful when you deal with nested loops, and remem-
ber that counters for inner loops must be reinitialized each time they are

entered.

• Confusing postincrement and predecrement operations. Remember that post-
increment increments the address register after using its contents, while pre-
decrement decrements the address register before using its contents. Also

remember that it is the "size11 of the instruction that determines the amount of
the increment or decrement. A long word instruction increments or decrements
by 4, a word instruction by 2 and a byte instruction by 1. Did you correctly
specify the size?

• Confusing the use of the DBcc instruction. The condition specified is the con-
dition that makes the program exit the loop, rather than remaining in the loop

by taking the branch. Remember that if the condition is not met, the processor

will decrement the counter and test for counter contents exactly equal to — 1:

the test is not for less than zero. Also remember that if you don't compensate
for the —1 (rather than the zero) that is tested for, the loop will be executed
one more time than you had expected.

• Inverting the logic of a conditional jump such as using branch on carry set
when you meant branch on carry clear. Remember that compare and subtrac-

tion instructions perform the operations destination (second operand) — source
(first operand), and set the Carry and Zero flags as follows:

Zero flag (Z) = 1 if destination ^ source
Zero flag (C) = 0 if destination > source

Carry flag (C) = 1 if destination < source

Note that the Carry flag is cleared if destination = source.

• Changing condition codes before using them or failure to change them.
Remember that the MOVE instruction affects all the condition codes except the
Extend (X) flag. Operations using address registers as a destination do not
affect the condition codes with the exception of the CMPA instruction. Also

refer back to the precautions given with Program 9-2b concerning testing of
flags that may have been set as a result of more than one instruction.

Debugging 337

Subroutines and Macros

• Ignoring the effects of subroutines and macros. Subroutine calls and
references to macros typically result in the execution of many instructions.
These instructions will almost always change the condition code register (CCR)
and may change the contents of other registers and memory locations as well.
Be sure that you know all the effects of any subroutine or macro you use. Also
note the importance of documenting subroutines and macros so that users can
determine their effect without examining a long listing.

• Forgetting that the stack is used in subroutine linkages. The JSR and BSR
instructions save the return address in the hardware stack on top of any
parameter you may have placed there. The RTS instruction simply transfers
control to the address at the top of the current stack (user or supervisor). If you

have not carefully managed the stack, the processor could end up at a com-
pletely unexpected location.

• Using the wrong return instruction. RTS does not restore condition codes,
RTR does. Note that no subroutine calling instructions automatically store the
contents of the condition codes; you must explicitly accomplish this function.
Remember that RTR fetches the condition codes before it restores the program
counter; thus, the sequence

MOVE.W SR,-(A7)
BSR SUBR

will not work in conjunction with an RTR instruction. Instead, if you want to
save the contents of the condition codes, you must do it at the beginning of the
subroutine to which control is transferred.

• Failure to restore previously saved registers. This is a very common error. Be
sure that you restore the correct number of registers and to the correct loca-

tions. Use the MOVEM.L instruction and store on the stack. Remember that if

you are moving 16-bit words from memory to address registers, they will be
sign-extended to 32 bits, and this may result in problems.

• Using Link and Unlink instructions improperly. Don't change the
"link-register1' during execution of the subroutine. For example, if you use
LINK A6,#— 16 at the beginning of a subroutine, then A6 must have exactly
the same value when you execute the UNLK A6 instruction. Otherwise the
stack will go out of phase and the result will probably be disastrous to your

system. Also remember that the displacement is interpreted as a two's comple-
ment integer; if you have a stack that grows downward (as the system stack

does) you have to specify a negative displacement with the link instruction. The
displacement must also always be an even number since the stack is organized
on a word boundary.

General Processing Sections

• Reversing order of operands. Remember that MOVE D1,D2 moves the con-
tents of Dl to D2. (This is the opposite of the way the Z8000 and 8086 work.)

Also remember that SUB src,dst and CMP src,dst perform the operation

338 68000 Assembly Language Programming

dst - src. The DIV src,Dn instruction performs the operation Dn -f src (and
stores the result in Dn).

• Confusing addressing modes
— Data versus addresses (immediate and absolute). Remember that

MOVE.W #$2000,D0 loads register DO with the number 2000l6,
whereas MOVE.W $2000,D0 loads register DO with the contents of

memory locations 200016 and 2001 16.

— Address register direct and indirect. Remember that CLR.L AO loads
register AO with zeros, whereas CLR.L (AO) loads the memory word
pointed to by AO with zeros.

— Forgetting that addressing modes operate differently on jump instruc-
tions than on other instructions. Jump instructions (JMP or JSR) are

executed as if one level of indirection had been removed. For example,

JMP $1000 loads 100016 into the program counter, whereas MOVE
$1000, AO loads the contents of memory location 1000|6 into register DO.

• Ignoring the fact that certain instructions only operate in one size format

Examples: DBcc subtracts 1 from the low-order 16 bits of the specified
data register.

MOVEQ affects all 32 bits of the specified data register.

MOVE ea,-(A7) and MOVE (A7) + ,ea must always be
performed on a word boundary (even address).

MOVE to CCR is a word instruction but only the low-order
byte of the status register is affected.
DIVS and DIVU affect all 32 bits of the destination data

register but use only 16 bits of the source. The same is true of
MULS and MULU.

When an address register is used as a destination, the entire
register is affected regardless of what size you specify. If the

source operand is specified as a word, it is sign-extended to 32
bits in the address register.

• Forgetting that the MC68000 sign-extends your 16-bit addresses. This may
cause trouble if you work in the memory space between 32K and 64K

(addresses 8000|6 through FFFF16). Also be careful when you load immediate
values into an address register and when you use the absolute short addressing
mode. In both of these cases, strange results can be obtained if the size is word

and if the MSB of the word is a 1: the automatic sign-extension will propagate

l's through the most significant 16 bits of the long word address.
• Forgetting the details of sign extension of data. MOVEQ treats the operand as

a signed value and extends the sign. ADDQ and SUBQ work only with positive
numbers. MOVEM sign extends to 32 bits when moving words from memory
registers.

• Using the shift instructions improperly. Remember the difference between
arithmetic shifts, logical shifts, and rotates. They will all affect the condition
codes even if they are operating on data in a memory location. If you specify
that a shift count is to be found in a data register, remember that the count is
interpreted modulo 64.

Debugging 339

• Confusing 8, 16, and 32-bit quantities. Remember that the processor doesn't
keep track of whether the variable you stored in a register was an 8-, 16-, or 32-
bit value. You must specify the size in each instruction. Here are some size-
related points to keep in mind:

— A byte can hold two BCD numbers and the BCD instructions (ABCD,
SBCD) are byte-sized.

— A 16-bit word occupies two bytes and therefore "two addresses in
memory. " In other words, a 16-bit word stored in memory location
1000,6 occupies location 100 1 !6 also.

— A long word (32 bits) occupies 4 bytes; this may be a common source
of errors if you are used to 8-bit microprocessors.

• Ignoring the limitations of read-only memory. Obviously, instructions that
both read from and write to memory locations make little sense when applied to

an address occupied by a read-only memory (ROM) device. A sorting program
that has been given data located in ROM will run forever!

Using the wrong register. The MC68000 has a large number of data and
address registers. While this is one of the sources of the power and flexibility of
the processor, it demands that you very carefully keep track of what you put
where. Note the specifications for two data registers may differ by only one
character (e.g. Dl, D2). The same is true of address and data registers (e.g. Al,
Dl). Typing errors are easy to make and often difficult to find.

• Confusing BCD, binary, hexadecimal, and decimal numbers. In the BCD
representation, each decimal digit is coded separately into binary, using four
binary digits (0 or 1). In hexadecimal representation, four binary digits are
grouped together and represented with a hex digit (0 through F). For example,

the decimal number 54]0 is equal to 1 101 1 02 in binary, 3616 in hexadecimal, and
5416 in the standard BCD representation.

• Forgetting to transfer control past sections of the program that should not be
executed. Remember that the processor proceeds sequentially unless you tell it
to do otherwise. You may need some unconditional branches to avoid routines
that should not be executed.

• Confusing the stack and its pointers. The contents of the stack are always
addressed with one of the indirect modes and the stack pointer is addressed
using register direct mode.

• Confusing the bit positions in the bit operate instructions. Bits are numbered
from 31 down through zero. The least significant bit is zero, bit 7 is the most
significant bit (MSB) in a byte, bit 15 is the MSB in a word, and bit 31 is the
MSB in a long word.

String Manipulation Errors

• Counting the length of an array incorrectly. Remember that the addresses
100016 through 100416 include five (not four) memory locations. Thus, the
number of elements in an array is ending address — starting address + 1.

340 68000 Assembly Language Programming

• Confusing numbers and characters. Remember that the ASCII representation
of a digit is not the same as the binary or BCD representation. For example, the
ASCII representation of the number seven is 3716; 0716 is the ASCII BELL
character which rings the bell on a teletypewriter.

• Forgetting that word operations don't work on odd addresses. String opera-
tions are often byte-sized. Be careful if you are using word or long word opera-
tions to move strings or append characters to a string. For example, if register

A4 holds the address of the current position within a string and you want to

append the text "The End" to the string, the instruction sequence
MOVE.L #"THE ", (A4) +
MOVE.L* "END", (A4) +

will cause an address error exception if A4 points to an odd address before
execution of the first instruction.

Input/Output Errors

• Ignoring the physical limitations of I/O and interface chips. While we
address interface chips as if they were memory locations, they may not behave
like memory devices. Storing data in an input port seldom makes sense, nor
does loading data from an output port unless the port is latched and buffered.

Some I/O devices have two different registers (one read-only and one write-
only) at the same address. The 6850 ACIA control and status registers are an
example of this case. Be careful of instructions like shift, negate, and so on,

which read from and then write back to the "same" location; they will produce
strange errors with register combinations like those provided by the 6850.

• Using incorrect bits in status and control registers. The order of bits in these
kinds of registers may appear to be random. Are you sure you used the right
combination?

• Misusing the MOVEP instruction. Remember that MOVEP uses every other
address, all even addresses or all odd addresses.

• Forgetting to reset or initialize I/O devices. For example, the 6850 ACIA
requires a software reset sequence.

Assembler-Related Errors

The use of an assembler is the only practical way to convert source programs into
object code, but it can introduce a few annoying errors. In particular,

• Be careful of what your assembler may use as defaults. For example, the
standard MC68000 assembler will make the following assumptions:

— Default instruction size is word if no size is specified. Remember that
it is good programming style always to specify the size with every
instruction, even though it is obviously not necessary with instructions
where the size is word.

Debugging 341

— Unmarked numbers are assumed to be decimal. If you want hex-
adecimal numbers, ASCII characters, and so on, you must explicitly

specify such numbers.

— The default addressing modes are register direct and absolute. That is,
Al specifies address register Al, not the memory location pointed to by

Al. The value $1000 will specify memory location 100016, and #$1000
will specify the number 100016.

• Be careful with absolute short addresses. If you have used the ORG directive,
the assembler assumes that any reference to an absolute address can be

achieved using the short absolute addressing form of the instruction. The pro-
cessor will then sign-extend this address. You should note that this condition

may be remedied with later versions of assemblers.

• Remember that the assembler chooses the quick form of instructions where
possible, regardless of whether you have specified the quick version. Thus,

ADD #2, DO will cause the object code for the ADDQ instruction to be gener-
ated.

• Watch for simple typing errors. The register numbers are close to each other
on the keyboard and no assembler can detect a typing error if the erroneous
result is a legal instruction. Also, some assemblers get confused if you insert

extra spaces where it didn't expect them, or if you accidentally use meaningless
characters such as 1/2. In fact, the assembler may object to a minor error, but
accept a totally illogical entry that its developer never considered.

• Remember, the assembler can print a reassuring message like TOTAL
ERRORS 0 even when the program is wrong. All the message means is that
the assembler found no errors according to its interpretations of the rules of
the language. This does not exclude errors that produce legal instructions or

that are beyond the assembler's comprehension. Most of all, it does not
exclude logical errors that may be present in your program and does not
necessarily mean that the program does what you intended.

Exception Processing

Exception processing can, from the trouble-shooter's point of view, be divided
into two groups: interrupts, and all the other types of exceptions. This is because, in
general, interrupts are controlled by external devices and therefore appear to occur at
random occasions. Other kinds of exceptions, illegal instructions, address errors,
and so on, are often possible to pinpoint a specific instruction or sequence. If your

microcomputer doesn't have an exception processing software system, it will be most
useful to write one that at least tells you which exception caused a trap (address error,
bus error, and so on), and gives you the address where the trap occurred.

Some errors that may be found when you deal with exceptions of any kind are:

• Forgetting the general facts about exceptions. The processor is put in the
supervisor state, and some information (usually the program counter and
status register) is saved on the supervisor stack.

• Using the wrong return instruction. RTE and RTR are not the same, so you
cannot be clever and use your subroutines just as they are, as part of exception

342 68000 Assembly Language Programming

processing. RTE restores the entire status register while RTR restores just the
condition code portion of the status register. RTE is a privileged instruction.

• Causing multiple bus or addressing errors. If the processor recognizes an
address or bus error while it is processing a previous address or bus error, it will
halt. For example, assume that you have an odd value in the supervisor stack
pointer for some reason. You try to use the stack pointer with this odd address
value and thereby cause an address trap. But the trap handler also uses the
supervisor stack and this causes a new address error which will then halt the

processor.

Interrupt-Driven Programs

Interrupt-driven programs are particularly difficult to debug, since errors may
show up only when an interrupt occurs at a particular time. If, for example, the pro-

gram enables the interrupts a few instructions too early, an error will appear only if
an interrupt occurs while the processor is executing those few instructions. In fact,
you can usually assume that sporadic or randomly occuring errors are caused by the

interrupt system.2,3
Since the MC68000 has an interrupt priority mask in the status register, it may be

possible to mask off some of the interrupts and pinpoint the error. Sometimes a break-
point placed at the start of the interrupt routine may give you a hint as to the cause of the

problem, although this may be impossible in real-time systems. Another approach is to
save the return addresses every time you get an interrupt, and in this way you may
locate the section of the system that causes the problem.

Here are some typical errors in interrupt-driven programs:

• Incorrect value of the interrupt priority level. When the processor is reset, it
sets its interrupt priority mask to level 7. Upon acknowledging an interrupt, the
priority mask is set to the level of the interrupt being acknowledged. RTE will
restore the status register, and thus the interrupt priority level, as it was before
the interrupt occurred. Make sure that no path through a program fails to set
the interrupt priority level to its desired value.

• Allowing interrupts on a certain level before the system is ready to handle it.
System parameters such as condition codes, flags, pointers, and counters must
be initialized first. A checklist might give some help here.

• Forgetting to store and restore registers. Interrupts are much like subroutines.
Use the same precautions when storing and restoring registers or allocating
space on the stack.

• Forgetting that the interrupt leaves the old program counter and status
register contents on the stack whether you use them or not.

• Forgetting to clear the source of the interrupt before exiting from the service
routine. For example, if the interrupt comes from a PIA, the interrupt service

routine must read the PIA's data register in order to clear the interrupt flag. The
read operation is necessary even if the interrupt is from an output device or a

real-time clock; otherwise, the interrupt will remain active and will be recog-
nized again as soon as the processor reenables interrupts on this level.

Debugging 343

• Failing to disable certain interrupts during multiword transfers and other
critical sequences. For example, assume that you have a real-time clock with
six digits stored in six consecutive bytes of memory. If the clock contains

1 1 5959 and you are reading the digits from memory one at a time without disab-
ling the interrupt that updates the clock, here is what could happen. If a clock-

updating interrupt occurs after you have read the second digit, it will cause the
four last digits to be 0000 and you will think the time is 1 10000. Such an error
may be hard to find because it occurs so seldom and because some very special
coincidences are required to create the error. Another area where you must be
very cautious of interrupts is in delay routines.

• Failing to reenable the interrupt after executing a routine that requires inter-
rupts to be disabled.

• Ignoring the possibility that the interrupt routine may get reentered. An
interrupt routine might have to be reentered just like a subroutine (see
Chapter 11).

A list of possible errors can be endless and the purpose of the preceding list is to
give you some ideas as to where you might start looking for errors. Unfortunately, no
one has found the algorithm which describes how to be one hundred percent sure that
you have found all errors; you may be left with errors no matter how systematic you
are. Sometimes the following approach may be your best bet: turn off the computer,
have a beer, and let your brain rest. Perhaps let the problem sit overnight or have
someone with a fresh viewpoint look at it. Often, when you are explaining a problem
to someone else, you will see the answer yourself.

PROGRAM EXAMPLES

19-1. DEBUGGING A CODE CONVERSION PROGRAM

The purpose of this program is to convert a decimal number in memory location

DIGIT to a 7-segment code in memory location CODE. The program should blank the
display if DIGIT does not contain a decimal number. This appears to be a simple task

and we start off with the flowchart shown in Figure 19-8. Our first coding attempt looks
like this:

Initial Program: (from flowchart in Figure 19-8)

-BCD TO SEVEN SEGMENT DISPLAY CONVERSION

::INPUT--BCD NUMBER IN DIGIT
"OUTPUT--B I T PATTERN FOR SEVEN SEGMENT DISPLAY IN CODE

DATA EQU $8000
PROGRAM EQU $4200

ORG DATA

DIGIT DS.B 1
CODE DS.B 1

344 68000 Assembly Language Programming

SSEG DC.B
DC .B

BCD_7SEG MOVEA.W SSEG, AO
MOVE DIGIT, DO
CMP.B #9, DO
BCS.S DONE

EXT.W DO
MOVE.B 0(A0,D0),D1

MOVE. 3 DO, CODE

DONE RTS

GET BASE ADDRESS OF TABLE
GET DIGIT TO CONVERT
IF GREATER THEN 9 THEN DONE

ELSE MAKE LOOK LIKE A WORD
GET CODE FROM TABLE

$3F, $06, $5B, $t+F, $66
$6D, $7F, $07, $7F

i

Pointer = SSEG
Result = 0

Data = (DIG IT)

Result = (Pointer + Data)

EE:

CODE = Result

(End)

Figure 19-8. Flowchart of Decimal to Seven-Segment Conversion

Debugging 345

Using the Checklist

Let us use the checklist we described earlier in this chapter to evaluate this

program.

1. Every element of the design in the program? No! We forgot the section that
clears the display if the data was not a decimal digit.

2. Initialization? Okay.

3. Conditional branches correct? No! Branch on carry set (BCS) will not handle
the equality case correctly. (Try it!). BHI.S DONE is the correct instruction.

4. No loops.

5. Equality cases? Yes, they are now handled correctly.

6. Trivial cases? Yes, (DIGIT) = 0 is handled in the same way as other

digits. (Since zero is just another digit in this example, this isn't really a trivial case.)

We also forgot to specify the suffix for the second MOVE instruction. Our second
version of the program looks like this:

Second program:

DATA EQU $8000
PROGRAM EQU $4200

ORG DATA

DIGIT DS.B 1
CODE DS.B 1
SSEG DC.B $3F,$06,$5B,$4F,$66

DC.B $6D, $7F, $07, $7F

BCD 7SEG MOVEA.W SSEG, AO GET BASE ADDRESS OF TABLE

DONE

MOVEQ #0,D1
MOVE.B DIGIT, DO
CMP.B #9, DO
BHI.S

EXT. W

DONE
DO

MOVE.B 0(A0,D0 .W),D1

MOVE.B DO, CODE
RTS

GET DIGIT TO CONVERT
IF GREATER THEN 9

THEN DONE

ELSE MAKE LOOK LIKE A WORD
GET CODE FROM TABLE

The hand check did not uncover any errors in this version.

Assembling

The next step is to key in the program and assemble it.

Third Program:

00008000
00004200

DATA EQU $8000
PROGRAM EQU $4200

00008000 ORG DATA

346 68000 Assembly Language Programming

008000 00000001 DIGIT D5.B 1
008001 00000001 CODE D5.B 1
0 0 8 0 0 2 3F SSEG DC . B $ 3F , $ 06 , $ 5B , $ 4F , $ 6 6
0 0 8 0 0 7 6D DC.B $6D , $ 7F , $ 0 7 , $ 7F

00004200 ORG PROGRAM

004200 307900008002 BCD_75EG MOVEA.W SSEG, AO GET BASE ADDRESS OF TABLE
004206 7200 MOVEO #0,D1
004208 103900008000 MOVE . B DIGIT, DO GET DIGIT TO CONVERT
00420E 0C000009 CMP.B #9, DO IF GREATER THEN 9
004212 620C BHI.S DONE THEN DONE

004214 4880 EXT.W DO ELSE MAKE LOOK LIKE A WORD
004216 12300000 MOVE . B 0 (AO , DO . W) , D 1 GET CODE FROM TABLE

00421A 13C000008001 MOVE . B DO, CODE

004220 4E75 DONE RTS

END BCD 7 S EG

Single-Step

It is now time to single-step through this program (this can be done quickly

because it's a short program). If you have the ability to specify which registers to display
after each step, choose PC, DO, Dl, SR, and AO.

We chose the following test data for the trials:

O The smallest decimal digit
9 The lagest decimal digit

1 0 A boundary case
6B A randomly selected case

For the first trial, we place zero in memory location DIGIT. After executing the

first instruction, MOVE.W SSEG, AO we find the value 3F06l6 in register AO. That

doesn't sound familiar; we expected to have 8000l6 in AO. The first thing to check here
is whether we selected the correct addressing mode. In this case, the answer is no; we
confused the immediate and absolute addressing modes. Replace SSEG with #SSEG

and try again. This time, we find FFFF800016 in register AO. Again, not the expected

result. However, all of the F's must have come from sign-extension (provided that AO
contained zero when we first started). We have specified a word address to be loaded

into AO and the most significant bit in the word is 1. When this address is sign-extended,
it produces all ones (FFFF) in the most significant word of the register. The solution is
to specify the long word form of the MOVEA instruction. All of this trouble has showed
us that the correct first instruction is MOVEA. L #SSEG,A0. (Once again, this is a
weakness in the version of the assembler we are using and will probably be handled by
later assemblers.)

After correcting this problem, we continue single-stepping through the program.
Everything seems to work fine. The branch is not taken and we get 3F16 as we had
expected in register Dl. But when we check memory position CODE, we find the BCD

digit which we used as the input test data, zero. Something is wrong. To find the prob-
lem, ask the question: which instruction (s) affects memory location CODE. In this case

it is the last instruction: MOVE D0,CODE. What do we have in register DO? The BCD

Debugging 347

code. Where is the 7-segment code? In register Dl. Aha! It appears that we have a typ-
ing error. We change DO, CODE to Dl,CODE and make another try. This time we find

3F16 in memory location CODE. The program now looks like this:

Fourth Program:

00008000 DATA EQU $ 800 0
00004200 PROGRAM EQU $4200

00008000 ORG DATA

008000 0000000 1 DIGIT DS . B 1
008001 00000001 CODE DS . B 1
008002

3F
SSEG DC .B $3F, $06, $5B, $4F

,$66

n n 8 n n i U U 0 u u / 6 D DC . B $6D, $ 7F , $ 0 7, $ 7F

00004200 ORG PROGRAM

004200 207C00008 002 BCD_7SEG MOVE A . L # S SEG, AO GET BASE ADDRESS OF TABLE
004206 7 200

MOVEQ
#0,D1

004208 103900008 000 MOVE . B DIGIT, DO GET DIGIT TO CONVERT
00420E 0C000009 CMP . B # 9, DO IF GREATER THEN 9
004212 6 20C BHI . S DONE THEN DONE

004214 4880 EXT. W
DO

ELSE MAKE LOOK LIKE A WORD
004216 12300000 MOVE . B 0(A0,D0.W),D1 GET CODE FROM TABLE

00421A 1 3C1 00008 001 MOVE . B Dl , CODE

004220 4E75 DONE
RTS

END BCD 7 S EG

Run Test

This time we run the entire program with the second test value, 9. A check of

memory location CODE shows that it does not contain 7D16, which is the last value in
the 7-segment code table. The input test value 9 should cause the program to follow the
same path as for the value 0. To see what has happened, we make another single-step
pass through the program. Everything works fine until we reach the MOVE.B

0(A0,D0.W),D1 instruction. We expected 7D,6 to be loaded into Dl but this was not
the case. A memory dump of the table and its environment shows that the value we get

comes from the byte immediately following the 7-segment table. Did we miss an entry in
the table? We have nine bytes in the table. The values 0 through 9 require ...ten bytes! A

check shows that we forgot the last entry, 6F|6, for the digit 9. After adding this value to
the table the run test works with both 0 and 9.

The test result after the two last runs were

Digit Code
10 6F
6B 6F

The code has not been changed since we tested with the digit equal to 9. Both of
the values are invalid data so the error can probably be found in the neighborhood of the
branch. To what location does the branch transfer control? Aha!, directly to the RTS
instruction! We must execute the MOVE Dl,CODE instruction and store the cleared
results. The label DONE should be moved up one statement.

348 68000 Assembly Language Programming

Exhaustive Test

Since the program is simple, it can be tested for all the decimal digits. The results
are

Digit Code

0

3F
1 06
2

5B 3 4F
4

66 5
6D 6
7F 7
07 8 7F

9
6F

The result for number 6 is wrong; it should be 7D. Since everything else seems to
be correct, the error is almost surely in the table. Entry 6 in the table had been typed
incorrectly.

Final Program:

::BCD TO SEVEN SEGMENT DISPLAY CONVERSION

-1NPUT--BCD NUMBER 0-9 IN LOCATION DIGIT
-GUTPUT--B I T PATTERN FOR SEVEN SEGMENT DISPLAY
:: IN LOCATION CODE. DISPLAY CLEARED IF
;! DIGIT OUT OF RANGE

DATA EQU $8000
PROGRAM EQU $1+200

ORG DATA

DIGIT DS.B 1
CODE DS.B 1
SSEG DC.B $3F, $06, $5B, $4F, $66

DC.B $6D, $7D, $07, $7F, $6F

ORG PROGRAM

BCD 7 S EG MOVE A . L #SSEG,A0 MOVEQ

MOVE . B
CMP. B
BHI . S

#0,D1 DIGIT, DO
#9, DO DONE

GET BASE ADDRESS OF TABLE

GET DIGIT TO CONVERT
IF GREATER THEN 9

THEN DONE

F I N I

EXT. W
MOVE . B

MOVE . B

RTS

END

DO
0(A0,D0 .W),D1

Dl , CODE

BCD 7 S EG

ELSE MAKE LOOK LIKE A WORD
GET CODE FROM TABLE

Notice that we have also improved the comments.

Debugging 349

Summary of Errors Discovered

The errors that we found in this example are typical of the ones that MC68000
assembly language programmers should expect. They include:

1. Failing to initialize registers or memory locations.

2. Inverting the logic on conditional branches.

3. Misalignment of data when dealing with byte values (although the
assembler will usually tell you that something is wrong in this case).

4. Confusing the immediate and absolute addressing modes (i.e., data and
addresses).

5. Forgetting when sign-extension occurs and when it does not (especially
when dealing with addresses).

6. Failing to keep track of which register is used for what, or typing the wrong
digit for a register number.

7. Copying lists of numbers, characters, or instructions incorrectly.

8. Branching to the wrong place.

19-2. DEBUGGING A SORT PROGRAM

This program sorts a list of unsigned 16-bit numbers into decreasing order. The
address of the beginning of the list is in memory location LISTADDR and the first byte
in the list contains the length of the list.

Initial Program: (from flowchart in Figure 19-9)
00006000 DATA EQU $6000
00004000 PROGRAM EQU $4000

00006000 ORG DATA

006000 00000004 LISTADDR DS.L 1 ADDRESS OF START OF LIST

00004000 ORG PROGRAM

004000 22786 000 BUB_SORT MOVE A . L LISTADDR, Al GET START OF LIST
004004 7200 MOVEQ #0,D1
004006 1219 MOVE.B (A1)+,D1 GET LENGTH OF LIST

004008 5 341 SUBQ H,D1 N ENTRIES REQUIRES N-l COtAPfi

00400A 45E90002 LEA 2(A1),A2 GET ADDRESS TO SECOND ELEMEN
00400E 08820000 BCLR.B *J0,D2 CLEAR INTERCHANGE FLAG

004012 B549 NEXT CMPM.W (A1)+,(A2)+ IF (Al) <= (A2)
004014 6506 BCS.S NSWITCH THEN TEST NEXT PAIR IF ANY

004016 3611 MOVE.W (A1),D3 ELSE INTERCHANGE THE
004018 3292 MOVE.W (A2),(A1) ADJACENT ENTRIES
00401A 3483 MOVE.W D3,(A2)

00401C 51C9FFF4 NSWITCH DBRA Dl , NEXT
004020 08020000
004024 66EC

BTST.B tfO,D2
BNE NEXT

INTERCHANGE DURING THIS PASS
IF YES, START NEW PASS

004026 4E75 DONE RTS

END BUB SORT

ELSE DONE

350 68000 Assembly Language Programming

C Slart)

First = (LISTADDR)
Length = (First) First = First + 1

Exchange
Elements

Length =
Length - 1

Figure 19-9. Flowchart of a Sort Program

Debugging 351

Initial Hand Check

A hand check shows us that all of the blocks in the flowchart have been imple-
mented and the registers used in the loop have been initialized. We must examine two

conditional branches carefully. The branch in the inner loop BCS.S NSWITCH must
be taken if the second entry is less than or equal to the first entry. The operation

peformed is (A2) — (Al). If (A2)#(Al), the Carry flag will be set because of the bor-
row. The equality condition (A2) = (Al) will not set the Carry flag but will set the Zero

flag. The BCS instruction will not handle the equality case correctly; we must use BLS
instead.

The second condition branch is BNE NEXT which is supposed to force another
pass through the loop if an interchange occurred. We clear the interchange flag before
the inner loop so a set flag means interchange and BNE will work fine here.

The next thing to check is the loop. Let us test the first iteration by hand. We

assume that memory location LISTADDR contains 5000,6. The initialization section —
the first six instructions — causes the following result:

A1 = 5001
A2 = 5003
D1 = count
D2 bit#0 = 0

The effect of the loop instructions is as follows:

NEXT CMPM.W (A1)+,(A2)
BLS.S NSWITCH

(5 00 1) - (5 00 3) AND AUTO I NCREMENT

MOVE.W (A1),D3
MOVE.W (A2),(A1)
MOVE.W D3,(A2)

NSWITCH DBRA D 1 , NEXT

D3 := (5003)
(5003) :- (5005)
(5005) := (5003)

COUNT := COUNT - 1

There is something weird here. The contents of memory locations 5001 and 5003
were compared and then location 5005 somehow got involved in the interchange.

Clearly, we forgot that the CMPM instruction autoincremented both Al and A2. Let's
try this code for the loop:

NEXT CMPM.W (A1)+,(A2)+
BLS.S NSWITCH

IF (Al) >= (A2)
THEN TEST NEXT PAIR IF ANY

MOVE . W
MOVE .W
MOVE . W

-(A1),D3
-(A2),(A1)+
D3, (A2)+

ELSE INTERCHANGE THE
ADJACENT ENTRIES

NSWITCH DBRA D 1 , NEXT

A new check shows us that this code performs what we want.
Now let us check the last iteration. Suppose we have three elements:

(5000) = 03
(5001) = 2015
(5003) = 1B1 1
(5005) = OOOA

This is what happens. After the first iteration:
D1 = 02
A1 = 5003
A2 = 5005

35 2 68000 Assembly Language Programming

DBRA subtracts 1 from Dl and branches to NEXT.
After the second iteration:

D1 = 1
A1 = 5005
A2 = 5007

Now A2 points beyond the list and things should stop here. But when DBRA

subtracts 1 from Dl, the result becomes 0 and DBRA tests for — 1. The branch will be
taken and the loop executes one more time — one time too many. We must adjust Dl
by subtracting 1 from it before we enter the loop.

The next checkpoint in our list is the equality cases. We checked what happened
with two equal entries when we discussed the conditional branches, and that is the only
equality case that exists in this program.

Checking Trivial Cases

What happens in the trivial cases? First, which are the trivial cases — zero entries
in the list? Yes, but another trivial case is when there is only one entry in the list — it

doesn't make much sense to try to sort a single element. Remember that trivial cases are
not only zero entries, zero objects, and so on. What happens if we have one entry? The

answer is that the program tries to sort 64K of memory (if there is read-only memory in
this area, the program will run forever). A few instructions added to handle trivial cases
will save you from a lot of trouble and they can usually be positioned outside of the loop

so that they don't increase the execution time very much. The BLS.S DONE instruction
is the only one required in our program to handle the trivial cases. The program now
looks like this:

00006000
00004000

DATA
PROGRAM

EQU
EQU

$6 00 0
$4000

00006000 ORG
DATA

006000 00000004

00004000

LISTADDR DS.L

ORG

I

PROGRAM

ADDRESS OF START OF LIST

004000
004004
004006

22786000
7 2 0 0
1219

BUB_SORT MOVE A . L MOVEO

MOVE . B

L I STADDR, Al
#0,D1
(A1)+,D1

GET START OF LIST

GET LENGTH OF LIST

0 040 0 8
00400A

5 34 1
631E

SUBQ

BLS . S
#1,D1
DONE

N ENTRIES REQUIRES N-l COMPAR
IF 0 OR 1 ENTRY THEN DONE

00400C
0040 10
0 040 1 4

45E90002
08820000
5 34 1

LEA BCLR . B
SUBQ. W

2(A1), A2
#0,D2
#1,01

GET ADDRESS TO SECOND ELEMENT
CLEAR INTERCHANGE FLAG
ADJUST FOR DBCC

004016
0 040 1 8

B549
6 506

NEXT CMPM . W
BCS. S (A1)+,(A2)+

NSWI TCH
IF (Al) <= (A2)
THEN TEST NEXT PAIR IF ANY

00401A
00401C
00401E

3621
32E2
34C3

MOVE . W
MOVE . W
MOVE . W

-CA1),D3

-(A2),(A1)+
D3, (A2)+

ELSE INTERCHANGE THE
ADJACENT ENTRIES

004020 51C9FFF4 NSW I TCH DBRA Dl , NEXT
004024
004028

08020000
66EC

BTST.B
BNE

#0,D2
NEXT

INTERCHANGE DURING THIS PASS
IF YES, START NEW PASS

00402A 4E7 5 DONE
RTS

END BUB SORT

ELSE DONE

Debugging 353

Run Test with Breakpoints

Now it is time to check the program on a computer or on a simulator. A simple
set of test data is:

(6000) = 00005000 Address of array
(5000) = 02 Length of array
(5001) = 0100
(5003) = 0A00 Array to be stored

This set consists of two elements in the wrong order. The program should require
two passes. The first pass should exchange the elements, producing:

(5001) = 0A00
(5003) = 0100
D2b#0 = 1 Interchange flag

The second pass should just find the elements already in the proper (descending)
order and produce:

D2bit#0 = 0 Interchange flag

This program is too long for single-stepping, so we will use breakpoints
instead. Each breakpoint will halt the computer and print contents of key registers.
We will use four breakpoints and we position them as follows:

1. After SUBQ.W #1,D1 to check the initialization.

2. After CMPM.W (A1)+,(A2) + to check the comparison and the branch.

3. After MOVE.W D3,(A2)+ to check the interchange.

4. After BTST.B #0,D2 to check the completion of a pass through the list.

Assuming that our trace facility allows us to display just the contents of those
registers we select, we select registers PC, Dl, D2, Al, A2, and the condition codes of
the status register.

After the first breakpoint these are our results:

PC = 004016
CCR = 04
D1 = 0000
D2 bit#0 = 0

These are all correct, so the program is performing the initialization properly in
this case.

When we start up our program again, we get a trap. (At this point the less
intrepid travelers of the marvelous world of computer programming simply throw up

their hands in dismay and consternation and cry, "Damn this noise!,,) The trap handler
tells us that it is an address error and the instruction code that caused it was B549 (the

program counter is not reliable in this case). This instruction code is the CMPM.W

(Al) + ,A2+ instruction. The size is word. Al contains 5001, and A3 contains 5003 —
both odd values! The list length is a byte value and this causes Al and A3 to get odd
values. This is a serious problem and the solution is far from trivial.

One solution is to rewrite the program so that it reads byte by byte instead but that
is a lot of unnecessary work. A second alternative is to realign the entire list so that the
words are on even boundaries. A third and simpler (for us) alternative is to decide that
the first entry in the list (the length) should be a word. This alternative means that we
only have to change the suffix after the MOVE instruction that obtains the length. But

354 68000 Assembly Language Programming

be careful. This is a change in the "specifications'1 and it may not fit with other parts of
your system. However, in this case we assume that it is possible to make this change and
the third instruction of the program is changed to:

MOVE. W (AD + .D1

Note that this error would not have been discovered if the list had started in

memory location 4FFF. Why?
Notice also that our program does not have any comments at the beginning to tell

users how to specify the location and length of the list.
We must change the list to look like this before we can start our second trial:

(5000) = 0002
(5002) = 0100
(5004) = 0A00

This time the initialization gives us the same results, and after the second break-
point these are the results:

PC = 004018
CCR = 00
D1 = 0000
D2 bit *0 = 0
A1 = 005004
A2 = 005006

These are the correct results, and we proceed to the third breakpoint:

PC = 004020
CCR = 00
D1 = 00
D2 bit#0 = 0
A1 = 005004
A2 = 005006

A check of memory locations shows:

(5002) = 0A00
(5004) = 0100

Exactly what we expected. We proceed to the fourth breakpoint:

PC = 004028
CCR = 04
D1 = FFFF
D2 bit#0 = 0
A1 = 005004
A2 = 005006

Something is wrong. The bit that should indicate that an interchange occurred is

still 0. A quick look in the loop-de-loop shows that no instruction ever changes this bit.
The solution is to insert BSET #0,D2 after MOVE.W D3,(A2) + .

At this point in the debugging procedure, the easiest thing to do is simply to set
the interchange bit ourselves and proceed with the second pass. The next breakpoint we
reach is the one at address 4016 following the SUBQ.W #1,D1 instruction:

PC = 004016
SR = 00
D1 = FFFF
D2 bit#0 = 1
A1 = 005004
A2 = 005006

Debugging 355

There is still something wrong: the registers are not reinitialized. For this pass, we
must be sure that we branch all the way to the start of the program to reinitialize.

We change BNE NEXT to BNE BUB SORT and this time everything works
correctly.

Final Program:

00006000
00004000

DATA
PROGRAM

EQU
EQU

$6000
$ 4 0 0 0

00006000 ORG DATA

006000 •0 0000004 LISTADDR DS.L 1 ADDRESS OF START OF LIST

00004000 ORG PROGRAM

004000
0 040 04
004006

22786000
7 20 0
3219

BUB_SORT MOVEA.L MOVEQ

MOVE . W

L I S TADDR , A 1
0 , D 1
(A1)+,D1

GET START OF LIST

GET LENGTH OF LIST

004008
00400A

5 34 1
6 322

SUBQ

BLS. S H,D1 DONE
N ENTRIES REQUIRES N-l COMPARES
IF <= 0 THEN DONE

00400C
0 040 1 0
004014

45E90002
08820000
5 34 1

LEA
BCLR . B
SUBQ. W

2(A1), A2
#0,D2

n,Di

GET ADDRESS TO SECOND ELEMENT
CLEAR INTERCHANGE FLAG
ADJUST COUNTER FOR DBCC

004016
004018

B549
6 3 0A

NEXT CMPM . W
BLS . S

(A1)+,(A2)+
NSW I TCH

IF (Al) <= (A2)
THEN TEST NEXT PAIR IF ANY

00401A
00401C
00401E

36 2 1
32E2
34C3

MOVE . W
MOVE . W
MOVE . W

-(A1),D3

-CA2),(A1)+
D3, (A2)+

ELSE INTERCHANGE THE
ADJACENT ENTRIES

004020 08C20000 BSET. B #0,D2 SET INTERCHANGE FLAG

004024 51C9FFF0 N SW I TC H DBRA Dl , NEXT
004028
00402C

08020000
66D2

BTST. B
BNE

#0,D2
BUB_SORT

INTERCHANGE DURING THIS PASS ?
IF YES, START NEW PASS

00402E 4E7 5 DONE
RTS

ELSE DONE

END BUB SORT

This program still needs some comments at the start for documentation.

Other Test Cases

Clearly, we cannot test all possible cases for this program. Some other simple
test cases we could use for debugging are:

1. No elements in list

(6000) = 00005000
(5000) = OOOO

2. One element in list:

(6000) = 00005000
(5000) = 0001

356 68000 Assembly Language Programming

3. A "random case" with two equal elements:
(6000) = 00008200
(8200) = 0004 Number of elements in list
(8202) = 8345
(8204) = 0001 Array to be stored
(8206) = 0001
(8208) = 4657

Summary of Errors Discovered

With this program, we have become acquainted with some other errors which
you certainly will encounter in your career as an MC68000 programmer. They
included:

1. Specifying the wrong condition in conditional branches (again, but this is a
very common error).

2. Forgetting the effects of autoincrements/autodecrements or forgetting the
values of pointers.

3. Forgetting that DBcc tests for -1 or incorrectly calculating the length of an
array (length = end-start + 1).

4. Failure to handle trivial cases and equality cases or perhaps even missing
some of the trivial cases.

5. Trying to address words and long words at odd addresses. This is very easy to
do with poorly defined data structures that require a mixture of byte and word
instructions.

6. Forgetting to set and/or reset flags.

7. Forgetting to reinitialize the inner loops in nested structures.

REFERENCES

1. For more information about logic analyzers, see:

Brock, G. ''Logic-State Analyzers Seek Out Microprocessor-System Faults,11 EDN,
January 5, 1980, pp. 137-40.

Lorentzen, R. "Logic Analyzers Finish What Development Systems Start, 11
Electronic Design, March 29, 1980, pp. 81-85.

Marshall, J. "Digital Analysis Instruments, 11 EDN, January 20, 1980, pp. 141-43.

Ogdin, C.A. "Setting up a Microcomputer Design Laboratory,11 Mini-Micro Systems,
May 1979, pp. 87-94.

Spector, I.H., and Muething, R. "Logic Analyzer Deploys Its Full Strength,11
Electronic Design, March 29, 1980, pp. 177-214.

2. Weller, W.J. Assembly Level Programming for Small Computers. Lexington, Mass.:
Lexington Books, 1975, Chapter 23.

3. Baldridge, R.L. "Interrupts Add Power, Complexity to Microcomputer System
Design,11 EDN, August 5, 1977, pp. 67-73.

20

Testing

Program testing1 is closely related to program debugging. We must test the pro-
gram on the data that we used to debug it; for example,

• Trivial cases such as no data or a single statement

• Special cases that the program singles out for some reason

• Simple cases that exercise particular parts of the program

For the decimal to seven-segment conversion program in Chapter 19, these
cases cover all possible situations. The test data consists of:

• The numbers 0 through 9

• The boundary case 10

• The random case 6B16

The program does not distinguish any other cases. Here debugging and testing
are virtually the same.

In the sorting program, the problem is more difficult. The number of elements
could range from 0 to 255, and each of the elements could lie anywhere in that range.
The number of possible cases is therefore enormous. Furthermore, the program is
moderately complex. How do we select test data that will give us a degree of confidence
in that program? Here testing requires some design decisions. The testing problem is

particularly difficult if the program depends on sequences of real-time data. How do we
select the data, generate it, and present it to the microcomputer in a realistic manner?

357

358 68000 Assembly Language Programming

TESTING AIDS

Most of the tools mentioned earlier for debugging are helpful in testing also.

Logic or microprocessor analyzers can help check the hardware; simulators2 can help
check the software. Other tools can also be of assistance:

1. I/O simulations that can simulate many devices from a single input and a
single output device.

2. In-circuit emulators that allow you to attach the prototype to a development
system or control panel and test it.3

3. ROM simulators that can be changed like RAM but otherwise behave like
the ROM or PROM that will be used in the final system.

4. Real-time operating systems that can provide inputs or interrupts at specific
times (or perhaps randomly) and mark the occurrence of outputs. Real-time
breakpoints and traces may also be included.

5. Emulations (often on microprogrammable computers) that may provide

real-time execution speed and programmable I/O.4
6. Interfaces that allow another computer to control the I/O system and test the

microcomputer program.

7. Testing programs that check each branch in a program for logical errors.

8. Test generation programs that can generate random data or other distribu-
tions.

Formal testing theorems exist, but are only practical for verifying short pro-
grams. You must be careful that the test equipment does not invalidate the test by

modifying the environment. Often test equipment may buffer, latch, or condition
input and output signals. The actual system may not do this and may therefore
behave differently.

Furthermore, extra software in the test environment may use some of the
memory space or part of the interrupt system. It may also provide error recovery and
other features that will not exist in the final system. A software test bed must be just
as realistic as a hardware test bed since software failure can be just as critical as hardware
failure.

Emulations and simulations are, of course, never precise. They are usually
adequate for checking logic, but can seldom help test interfaces or timing. On the

other hand, real-time test equipment does not provide much of an overview of the pro-
gram logic and may affect the interfacing and timing.

SELECTING TEST DATA5

Few real programs can be checked for all cases. The designer must choose a
sample set that is in some sense representative.

Structured Testing

Testing should, of course, be part of the total development procedure. Top-down
design and structured programming provide for testing as part of the design. This is

Testing 359

called structured testing. Each module within a structured program should be checked

separately. Testing, as well as design, should be modular, structured, and top-down.

Special Cases

But that leaves the question of selecting test data for a module. The designer
must first list all special cases that a program recognizes. These may include:

• Trivial cases

• Equality cases

• Special situations

The test data should include all of these.

Forming Classes of Data

You must next identify each class of data that statements within the program
may distinguish. These may include:

• Positive or negative numbers

• Numbers above or below a particular threshold

• Data that does or does not include a particular sequence or character

• Data that is or is not present at a particular time

Be careful; each two-way decision doubles the number of classes since you must
test both paths. Thus three conditional branches will result in 2x2x2 = 8 classes if
the computer always executes each branch. Limiting the size of test sets is another
important reason to keep modules short and general.

Selecting Data from Classes

You must now separate the classes according to whether the program produces
a different result for each entry in the class (as in a table) or produces the same result

for each entry (such as a warning that a parameter is above a threshold). In the dis-
crete case, one may include each element if the total number is small or sample if the

number is large. The sample should include all boundary cases and at least one case
selected randomly. Random number tables are available in books, and random number

generators are part of most computer facilities.6
You must be careful of distinctions that may not be obvious. For example, the

MC68000 microprocessor will regard an 8-bit unsigned number greater than 127 as
negative; you must consider this when using the branch instructions that depend on the
Negative (Sign) flag.

360 68000 Assembly Language Programming

EXAMPLES

20-1. TESTING A SORT PROGRAM

The special cases here are obvious:

• No elements in the array

• One element, magnitude may be selected randomly

The other special case to be considered is one in which elements are equal.
There may be some problem here with signs and data length. Note that the array

itself must contain fewer than 256 elements.

We could check to see if the sign of the number of elements has any effect by
choosing half the test cases with elements between 128 and 255 and half with elements
between 2 and 127. We should choose the magnitudes of the elements randomly to

avoid unconscious bias which might favor small numbers, decimal (rather than hex-
adecimal) digits, or regular patterns.

20-2. TESTING AN ARITHMETIC PROGRAM

Here we will presume that a prior validity check has ensured that the number has

the right length and consists of valid digits. Since the program makes no other distinc-
tions, test data should be selected randomly. Here a random number table or random

number generator will prove ideal; the range of the random numbers is 0 to 255 for each
byte in each number.

RULES FOR TESTING

Sensible design simplifies testing. The following rules can help:

1. Eliminate trivial cases early without introducing unnecessary distinctions.

2. Avoid special cases, since they increase debugging and testing time.

3. Perform validity or error checks on the data before it is processed.

4. Avoid inadvertent distinctions, particularly in handling signed numbers or in
using instructions that are intended to handle signed numbers.

5. Check boundary cases by hand. Be sure to define what should happen in
these es.

6. Emphasize generality. Each distinction and separate routine leads to more
testing.

7. Use top-down design and modular programming to modularize testing.

Testing 361

CONCLUSIONS

Debugging and testing are the stepchildren of the software development pro-
cess. Most projects leave far too little time for them and most textbooks neglect them.

But designers and managers often find that these stages are the most expensive and

time-consuming. Progress may be difficult to measure or produce. Debugging and
testing microprocessor software is particularly difficult because the powerful hard-

ware and software tools that can be used on larger computers are seldom available for
microcomputers.

The designer should plan debugging and testing carefully. We recommend the
following guidelines:

1. Try to write programs that are easy to debug and test. Modular program-
ming, structured programming, and top-down design are useful techniques.

2. Prepare a debugging and testing plan as part of the problem definition.
Decide early what data you must generate and what equipment you will need.

3. Debug and test each module using top-down design.

4. Debug each module's logic systematically. Use checklists, breakpoints, and
the single-step mode. If the program logic is complex, consider using the soft-

ware simulator.

5. Check each module's timing systematically if this timing is a problem. An
oscilloscope can solve many problems if you plan the test properly. If the tim-

ing is complex, consider using a logic or microprocessor analyzer.

6. Be sure that the test data is representative. Watch for any classes of data
that the program may distinguish. Include all special and trivial cases.

7. If the program handles each element differently or the number of cases is
large, select the test data randomly.

8. Document all tests. If errors are found later, you will not have to repeat tests
you have already run.

REFERENCES

1. G. J. Myers. The Art of Software Testing, Wiley, New York, 1979.

R. C. Tausworthe. Standardized Development of Computer Software, Prentice-Hall,
Englewood Cliffs, N.J., Vol. 1, 1977, Chapter 9; Vol. 2, 1979, Chapters 14 and 15.

E. Yourdon. Techniques of Program Structure and Design, Prentice-Hall, Englewood
Cliffs, N.J., 1975, Chapter 7.

2. F. J. Langley. "Simulating Modular Microcomputers, " Simulation, May 1979, pp.
141-54.

L. A. Leventhal. "Design Tools for Multiprocessor Systems,1' Digital Design, Octo-
ber 1979, pp. 24-26.

F. f. Parke et al. "An Introduction to the N.mPc Design Environment, " Proceedings
of the 1979 Design Automation Conference, San Diego, Ca., pp. 513-19.

362 68000 Assembly Language Programming

3. R. Francis and R. Teitzel. "Realtime Analyzer Aids Hardware/Software Integra-
tion, " Computer Design, January 1980, pp. 140-50.

4. H. R. Burris. "Time-Scaled Emulations of the 8080 Microprocessor, " Proceedings of
the 1977 National Computer Conference, pp. 937-46.

5. R. A. DeMillo et al. "Hints on Test Data Selection: Help for the Practicing Pro-
grammer, " Computer, April, 1978, pp. 34-41.

W. F. Dalton. "Design Microcomputer Software, " Electronics, January 19, 1978,
pp. 97-101.

6. R. D. Grappel and J. Hemenway. "EDN Software Tutorial: Pseudorandom Genera-
tors;1 EDN, May 20, 1980, pp. 119-23.

T. G. Lewis. Distribution Sampling for Computer Simulation, Lexington Books, Lex-
ington, Mass., 1975.

R. A. Mueller et al. "A Random Number Generator for Microprocessors," Simula-
tion, April 1977, pp. 123-27.

V

MC68000 Instruction Set

Chapter 21 and Appendices A and B comprise a total reference for the MC68000 family.

DETAILED DESCRIPTIONS

Chapter 21 describes each instruction in detail. The descriptions are set in a template, as
follows:

Instruction

The first line gives the standard instruction mnemonic and a one-line definition of the
instruction.

Syntax

This section gives the standard assembly language syntax for the instruction. The order of

the operands in two-operand instructions is source, then destination. For example, in the
instruction

MOVE.L DO, D1

DO is the source and Dl is the destination. In many instances, you can use any addressing mode
for the operand(s). In these cases, we will use the term <ea> (for effective address) for the
operand, and you may select any of the modes given.

In a few cases, the instruction is restricted to only one or two addressing modes. In these
cases, we will give the addressing mode explicitly along with the syntax.

If the operation accepts can manipulate more than one size of data, we append an ".s" to
the mnemonic, and list possible values for the size. This may be ".B"(for byte), ". W"(for word),
or ".L" (for long). Not all sizes are available for all operands.

A few assemblers may not follow the syntax of "mnemonic src, dst" completely; consult
your assembler's manual for verification.

Instruction Format

This section gives the bit format of the instruction word.

Condition Codes

This section lists the state of the condition codes of the status register following execution
of the instruction.

363

364 68000 Assembly Language Programming

Description

This section gives a full description of the instruction, including basic usage, any quirks
associated with the instruction, and a few applications for the instruction.

Example

This section gives an example of the instruction: how it is assembled, the states of the
source and destination before and after execution, and other information that may be useful for
understanding the use of the instruction. While most instructions can use many different
addressing modes, the example will usually use the simplest mode; that is, register direct.

Appendices A and B give you a quick reference for the instruction mnemonics and

op-codes for each instruction. Appendix A lists the instructions in alphabetical order accord-
ing to mnemonic. Appendix B lists the instructions in numerical order according to op-code.

In describing the instructions, addressing modes, operands, and so on, we will use some
standard abbreviations to make the descriptions as concise as possible. You will recognize most
of the abbreviations from other discussions throughout the earlier portions of the book.

APPENDICES

ABBREVIATIONS

GENERAL ABBREVIATIONS

An
bd
CCR
Dn
dst
d8
d16
d32

Address register (n = 0 to 7)
Base displacement (8, 16, or 32 bits)
Condition code register
Data register (n = 0 to 7)
Destination
8-bit displacement
1 6-bit displacement
32-bit displacement
Effective address
Outer displacement (8, 1 6, or 32 bits)
Program counter
Source
Stack pointer
Status register

<ea>
od
PC
src
SP
SR

MC68000 Instruction Set 365

Rn Either data or address register (n = 0 to 7)
xxx. L 32-bit address
xxx. W 1 6-bit address

ADDRESSING MODES

Dn
An
(An)
(An) + "(An)

(d16,An)
(d8,An,Xn)
(bd.An.Xn)
([bd.An.Xn],od)
([bd,An],Xn.od)
xxx.L
xxx.L
#<data>
(d16,PC)
(d8.PC.Xn)
(bd.PCXn)
[(bd.PC.Xn).od]
[(bd.PC).Xn.od]

Data register direct
Address register direct
Address register indirect
Address register indirect with post-increment
Address register indirect with pre-decrement
Address register indirect with 1 6-bit displacement
Address register indirect with 8-bit displacement and index
Address register indirect with 16- or 32-bit displacement and index
Memory indirect preindexed
Memory indirect postindexed
Absolute short
Absolute long
Immediate
PC indirect with 1 6-bit displacement
PC indirect with 8-bit displacement and index
PC indirect with 16- or 32-bit displacement and index
PC memory indirect preindexed
PC memory indirect postindexed

INSTRUCTION ENCODING

The MC68000 instructions range from 1 to 11 words in length. The first word of the

instruction contains the op-code as well as information on where to find the operand(s), in the
form of t wo 3-bit fields (mode and register) per operand. A few instructions use a second word
as part of the op-code. Depending on what the effective address of the operand(s) is, additional
words may follow the instruction word(s).

Tables V-l , V-2, and V-3 summarize the effective address encoding. Look these over for a
bit and then we will show you an example of how an assembler encodes an assembly instruction
into its binary equivalent.

For our example, we will choose the instruction

MOVE.L D3, ($10, AO, DOW)

This tells the computer to move the long-word contents of D3 to the contents of the
address formed by adding $10, AO, and the word value in the index register DO.

The first step is to get the op-code for the MOVE instruction from Chapter 21 or the

366 68000 Assembly Language Programming

Table V-1 . Addressing Mode Fields

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

instruction op-code
mode

register

15 14 13 12

single effective address format

11 10 9 8 7 6 5 4 3 2 1 0
D/A

index
register

W/l

scale 0 displacement

extension word, brief format
D/A

index
register

w/l

scale 1 BS IS BD size 0 l/IS

base displacement (0, I, or 2 words)

outer displacement (0, 1, or 2 words)

extension word(s), full format (68020 only)

register Data or Address register (see Table V-2)

mode Addressing mode (see Table V-2)

op-code Instruction and possible mode/register
information for second operand

displacement signed 8-bit value

scale index scaling factor (68020 only)
00-1 X
01 =2X
10 =4X
1 1 =8X

index

register Data or address register (000-111)

D/A Index register type
0 Data register
1 Address register

l/IS Index/Indirect Select (68020 only-
see Table V-3)

BD size Base displacement size (68020 only)
00 Reserved
01 Null displacement
10 Word displacement
1 1 Long displacement

IS Index suppress (68020 only-
see Table V-3)

BS Base suppress (68020 only)
0 Evaluate and add base register
1 Suppress base register

W/L Index register size
0 sign-extended word
1 signed long word

MC68000 Instruction Set 367

appendices. This gives us

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Size

Destination Source
0 0

Register
Mode Mode

Register

Size field: 01 = byte 1 1 = word 10 = long

Now refer to Table V-2 to get the mode/ register fields for data register direct (000/011) and
address register indirect with index (110/000). Filling this data in gives:

15 14 13 12 1 1
10

9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 O 1 1

Table V- 2. Mode/ Register Encoding

Mode Register Addressing Operation

000
reg # Data register direct

001 reg n Address register direct

010 reg U Address register indirect

011 reg n Address register indirect with post-increment

100
reg n Address register indirect with pre-decrement

101 reg U Address register indirect with displacement

110
reg n Address register memory indirect with index*

1 1 1 000 Absolute short

111 001 Absolute long

111 010 Program counter indirect with displacement

111 011 Program counter memory indirect with index*
111 100 Immediate data

1 1 1 101-111 Reserved

*68020 only

368 68000 Assembly Language Programming

Table V- 3. IS = I S Addressing Mode Encoding (68020 Only)

IS l/IS Addressing Operation

0 000 Index, no memory indirect

0 001 Indirect pre-index with null outer displacement

0 010 Indirect pre-index with word outer displacement

0 011 Indirect pre-index with long outer displacement

0 100 Reserved

0 101 Indirect post-index with null outer displacement

0 110
Indirect post-index with word outer displacement

0 111 Indirect post-index with long outer displacement

1 000 No index, no memory indirect

1 001 No index, memory indirect with null outer displacement

1 010 No index, memory indirect with word outer displacement

1 011 No index, memory indirect with long outer displacement

1 100-111 Reserved

The source addressing mode (data register direct) is complete; the destination mode,
howver, will require more information to be complete. Picking the correct type of extension
word is straightforward and follows these rules:

1. For a simple displacement, immediate data, or absolute address, the extension
word(s) is the value.

2. For indexing with an 8-bit displacement, the extension word is the brief format.

3. For memory indirection and for indexing with 16- or 32-bit displacement, the
extension word is the full format. (This is only valid for the MC68020.)

Based on these rules, we generate the following instruction:

1 5 14
13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

MC68000 Instruction Set 369

All instruction encodes work similarly to this example.

ASSEMBLER MNEMONICS

AND OPTIMIZATIONS

In reviewing the list of instructions in the next chapter, you may become dismayed at the
number of slightly different instructions and corresponding mnemonics. For example, there
are four different binary add instructions, each differing only in the location or size of the
operands. These are Add (ADD), Add Address (ADDA), Add Immediate (ADD1), and Add
Quick (ADDQ).

Fortunately, most assemblers let you get away with the instruction ADD for all of these
variations; the assembler attempts to decide which version is appropriate based on the
operands involved. You should be aware, however, that each variation will decode into a

different instruction, and that the machine won't let you get away with illegal operations (for
example, a byte-sized ADDA instruction).

21

Descriptions of Individual

MC68000 Instructions

ABCD— Add Binary Coded Decimal
With Extend

Syntax:
ABCD Dn, Dm
ABCD -(An), -(Am)

Instruction Format:
15

14
13 12

11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Destination

Register*

1 0 0 0 0 R/M
Source

Register*
R/M field: 0 = data register to data register 1 = memory to memory
* If R/M = 0, specifies a data register

If R/M = 1, specifies an address register for the predecrement addressing mode

371

372 68000 Assembly Language Programming

Condition Codes:

N Undefined

Z Cleared if result is non-zero, unchanged if zero
V Undefined

C Set if carry generated, cleared if no carry

X Set if carry generated, cleared if no carry

Description:

This instruction adds the byte contents of the source operand, the value in the Extend (X)
bit, and the byte destination, and stores the sum in the destination. The addition uses

binary-coded decimal (BCD) arithmetic and affects only eight bits of data. Since the
instruction includes the value in the Extend bit in calculating the sum, using the instruc-

tion with the address register indirect addressing mode gives you a quick method of

implementing high-precision arithmetic.

Example:

If DO is $43, Dl is $28, and the Extend bit is set, then after

ABCD DO, D1

Dl contains $71 and the Extend bit is clear.

ADD— Add Binary

Syntax:
ADD.s
ADD.s

<ea>, Dn
Dn, <ea>

where for dst=Dn, <ea> is

Dn
An
(An)
(An)+
-(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od) xxx. L
xxx. L

where for src=Dn, <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx.L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1
Data

Op-Mode
Effective Address

Register Mode Register

Op-Mode field: Byte Word Long
000 001 010
100 101 110

Operation
(< ea >) + (< Dn >) — < Dn >
(< Dn >) + (< ea >) — ► < ea >

Descriptions of Individual MC68000 Instructions 373

Condition Codes:

N Set if result is negative, cleared otherwise

Z Set if result is zero, cleared otherwise

V Set if overflow is generated, cleared otherwise

C Set if carry is generated, cleared otherwise

X Set if carry is generated, cleared otherwise

Description:

This instruction adds the contents of the source operand to the contents of the destination

operand and stores the sum in the destination. Note that at least one of the operands must
be a data register.

Example:

If DO contains $100 and the word at the address given by the label SUM contains $5480,
then after the instruction

ADD.W SUM, DO

DO contains $5580.

ADDA — Add Address

Syntax:

ADDA.s <ea>, An

where <ea> is

X Dn X (d8,An,Xn) X #<data>
X An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An)
X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .W or .L.

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1
Address

Op-Mode
Effective Address

Register Mode Register

Op-Mode field: Word Long Operation
011 111 (<ea>) + (<An>) — <An>

Condition Codes:

N Unchanged

Z Unchanged

V Unchanged

C Unchanged

X Unchanged

374 68000 Assembly Language Programming

Description:

This instruction adds the source operand to the value in an address register. Note that

since it deals with addresses, the instruction permits only word and long-word operations.

Example:

If TABLE is a constant valued $00800000, and AO contains $2000, then after the
instruction

ADDA.L #TABLE, AO

AO contains the value $00802000.

ADDI— Add Immediate

Syntax:
ADDI.s #<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X(d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12

11
10

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01= word 10= long

Condition Codes:

N Set if result is negative, cleared otherwise

Z Set if result is zero, cleared otherwise

V Set if an overflow is generated, cleared otherwise

C Set if carry is generated, cleared otherwise

X Set if carry is generated, cleared otherwise

Description:

This instruction adds the immediate data given as the source operand to the specified
destination operand and stores the result in the destination. The number of bytes used for
the immediate data matches the size attribute of the mnemonic, regardless of the actual
size of the immediate data. That is, an ADD1.W will be followed by two bytes of operand
data, and an ADD1.L will be followed by four bytes of operand data.

Descriptions of Individual MC68000 Instructions 375

Example:

If DO contains $1400050 and SUM is a pointer to a long-word variable, then

ADDI.I #$804000, SUM

leaves the value S1C04050 in SUM.

ADDQ — Add Quick

Syntax:
ADDQ.S #<data>, <ea>

where <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

#<data>

(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .S = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 0 Size
Effective Address

Mode Register

Data field: Three bits of immediate data, 0, 1-7 representing a range of 8, 1 to 7 respectively.
Size field: 00 = byte 01= word 10 = long

Condition Codes:

N Set if result is negative, cleared otherwise

Z Set if result is zero, cleared otherwise

V Set if overflow is generated, cleared otherwise

C Set if carry is generated, cleared otherwise

X Set if carry is generated, cleared otherwise

Description:

This instruction adds the immediate data specified by the source to the data stored in the
destination operand and stores the sum in the destination operand. This instruction
differs from the ADDI instruction in that the immediate data is restricted to values 1-8.
When assembled, the immediate data is part of the instruction word rather than the
extension word(s).

Example:

If D4 contains the word value $1004, then after

D4 contains $1008.

ADDQ.W$4, D4

376 68000 Assembly Language Programming

ADDX — Add Binary With Extend

Syntax:
ADDX.s Dsrc, Ddst
ADDX.s -(Asrc), ~(Adst)

where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1
Destination

Register*

1 Size 0 0 R/M Source

Register*

Size field: 00 = byte 01 = word 10 = long
R/M field: 0 = data legister to data register 1 = memory to memory
*lf R/M = 0, specifies a data register

If R/M = 1, specifies an address register for the predecrement addressing mode.

Condition Codes:

N Undefined

Z Cleared if result is non zero, unchanged if zero
V Undefined

C Set if carry generated, cleared if no carry

X Set if carry generated, cleared if no carry

Description:

This instruction adds the contents of the source operand, the value in the Extend (X) bit,
and the destination, and stores the sum in the destination. Since the instruction includes

the value in the Extend bit in calculating the sum, you can use the instruction with the

address register addressing mode to obtain a quick method of implementing high-
precision arithmetic.

Example:

If the quad word (eight bytes) labeled Q0 contains $00140000 F000FFFF, and the quad
word labeled Ql contains $00000000 10000001, then after

MOVE A. L #Q0, AO
MOVEA.L #Q1,A1
MOVE.W #0, CCR
ADDX.L -(A1), -(AO)
ADDX.L -(A1), -(AO)

Q0 contains $00140001 00010000 and the Extend bit is clear.

AND — Logical AND

Syntax:
AND.s
AND.s

<ea>, Dn
Dn, <ea>

Descriptions of Individual MC68000 Instructions 377

where for dst=Dn, <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
<[bd,An],Xn,od)
xxx. L
xxx. L

and where for src=Dn, <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx.L
xxx. L

#<data>
(d16,PC)
(d8(PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .s = .B, .W, or .L.
Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0
Data

Op-Mode
Effective Address

Register Mode
Register

Op-Mode field: Byte
000 100

Word Long Operation
001 010 (<ea>)A(<Dn>)— ■ <Dn>
101 110 (<Dn>)A(<ea>)-— <ea>

Condition Codes:

N

Z

V

c

X

Set if high-order bit of result is set, cleared otherwise
Set if result is zero, cleared otherwise
Cleared

Cleared

Unaffected

Description:

This instruction performs a bitwise logical AND of the source and destination operands
and stores the result in the destination. At least one of the operands must be in a data
register.

Example:

If the word pointed to by FLAG _ WORD contains $2376 and DO contains $4A3C, then
after

AND.W DO, FLAG _ WORD

is evaluated as follows:

FLAG WORD = $2376 = 0010 0011 0111 0110
DO = $4A3C =0100 10100011 1100

FLAG _ WORD = $0234 = 0000 0010 0011 0100

leaving the value $0234 in FLAG WORD.

ANDl — AND Immediate

Syntax:
ANDl. #<data>, <ea>

378 68000 Assembly Language Programming

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X
An)

X ([bd,An,Xn],od) (d8,PC,Xn) X (An)+ X ([bd,An](Xn,od) (bd.PCXn)
X

"(An)
X xxx. L [(bd,PC,Xn),od]

X (d16,An) X xxx. L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01= word 10= long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction logically ANDs the immediate source the result in the destination.

Example:

If the constant long word MASK equals SFF007777 and DO contains $80238001, then
after

ANDI.L #MASK, DO

DO contains $80000001 and the N flag is set.

ANDI to CCR— AND Immediate Data
To the Condition Codes

Syntax:
ANDI #<data>, CCR

Instruction Format:

15 14 13 12
11

10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0

Byte Data

Descriptions of Individual MC68000 Instructions 379

Condition Codes:

N ANDed with bit 3 of immediate data

Z ANDed with bit 2 of immediate data

V ANDed with bit 1 of immediate data

C ANDed with bit 0 of immediate data

X ANDed with bit 4 of immediate data

Description:

This instruction logically ANDs the immediate byte data with the condition code register
and sets the flags appropriately. The instruction provides you with a means of selectively
clearing one or more bits of the CCR.

Example:

If CCR contains SOB (N, V, and C flags set) and the constant CLR_C contains $FE, then
after

ANDI #CLR_C, CCR

the CCR contains $0A (N and V flags set, the C bit has been cleared).

ANDI to SR— AND Immediate Data

To the Status Register

(Privileged Instruction)

Syntax:
ANDI #<data>, SR

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

Word Data

Condition Codes:

N ANDed with

Z ANDed with

V ANDed with

C ANDed with

X ANDed with

bit 3 of immediate data

bit 2 of immediate data

bit 1 of immediate data

bit 0 of immediate data

bit 4 of immediate data

Description:

This instruction logically ANDs the 16-bit immediate source data with the value from the
status register (SR) and stores the result in the status register. Execution of this instruction

380 68000 Assembly Language Programming

allows your program to clear individual bits in the register. Note that the instruction is
privileged; if you attempt to execute it from user mode, the processor will trap through the

privilege-violation vector.

Example:

If the status register contains the value $2004 (indicating supervisor mode and N flag set),
and the constant CLR_SUPER equals $DFFF, then

ANDI #CLR_SUPER, SR

leaves the value $0004 in the SR (clearing the supervisor bit and changing the processor
mode to user mode).

ASL and ASR — Arithmetic Shift Left

And Right

Syntax:
ASL.s Dn, Dm
ASLs #<data>, Dn
ASL <ea>
ASR.s Dn, Dm
ASR.s #<data>, Dn
ASR <ea>

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd.An.Xnlod) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx. L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd.PC).Xn.od]

and where .s — .B, .W, or .L.

Instruction Format:

(Register)
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Cou nt/Register
dr Size l/R 0 0

Register

(Memory)

1 1 1 0 0 0 0
dr

1 1
Effective Address

Mode
I Register

i/r: 0 = immediate shift count
1 = register shift count

dr: 0= right
1 = left

Size field: 00 = byte 01 = word 10 = long
Count/Register: if i/r = 0, specifies shift count

if i/r = 1, specifies data register

Descriptions of Individual MC68000 Instructions 381

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if high-order bit changes during shift operation, cleared otherwise
C Set according to last bit shifted out of operand

X Set according to last bit shifted out of operand

Description:

These instructions shift the contents of the destination operand a specified number of
times. The destination may be in a data register or in memory. When the destination is in a
data register, you can specify the number of bits to shift either through immediate data (a

value of 1-8) or through another data register (containing a Modulo 64 value of 0-63). If
the destination is a memory location, the size of the shift is restricted to one bit, and in

addition, the size of the operand must be word-sized.

The ASL instructions operate as follows:

Operand

Note that the processor fills in the operand with zeros from the right side (bit 0) and drops the
bits from the left side into the Carry (C) and Extend bits (X). For multiple bit shifts, these flags
reflect the state of the final bit shifted out. If the sign of the operand ever changes, the processor
sets the Overflow bit (V).

The ASR instruction operates as follows:

Operand

The processor replicates the state of the most significant bit. This means that a right-
shifted operand will never change from negative to positive as the result of a shift. The bits
falling out the right side of the operand end up in the Carry (C) and Extend (X) bits; for
multiple bit shifts, these flags reflect the state of the final bit shifted out.

The difference between arithmetic shifts (ASR and ASL) and logical shifts (LSR and

LSL) lies in the application for each. As the name implies, arithmetic shifts are useful in certain

quick arithmetic functions. For example, a left shift by 2 bits is equivalent to a multiplication

by 4; a right shift by 4 is equivalent to a division by 16. Because of their simplicity, the shifts

382 68000 Assembly Language Programming

operate faster than do the corresponding M U L or DI V instructions. To verify that the left shift

operation (a multiply) hasn't overflowed its operand, the processor sets the V bit accordingly.
To verify that the operand sign doesn't change on a right shift (a divide), the processor
replicates the most significant bit.

The logical shift instructions are useful in manipulating bit masks and status-bit fields; in
these applications, the sign or status of overflow is not important and can even lead to
erroneous results.

Examples:

If DO contains $0138 (312(10), then after

ASLW #3, DO

DO contains S09C0 (312(10) X 8 = 2496(10) = $09C0), and the C, X, and V bits are all
clear.

If the word at the address of VAL1 is — 120, then after

ASR.W VAL1

VAL1 contains —60.

Bcc — Branch

Syntax:

Bcc displacement

Instruction Format:

15 14 13 12 11 10 9
Condition 8-Bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00
32-Bit Displacement if 8-Bit Displacement = $FF

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests a condition and then branches if that condition is true. If a branch is

in order, the processor adds the two's complement displacement value to the program
counter (PC). The displacement value can be an 8-bit value or a 16-bit value; on the
MC68020, it can be a 32-bit value. The PC value used in evaluating the new address is the
address of the instruction plus 2. The instruction can specify any one of 14 different
conditions, as summarized in Table 21-1. The BRA instruction is a special case; the
processor does no checking on the condition codes.

Descriptions of Individual MC68000 Instructions 383

Table 22-1. Bcc Conditional Tests
IV/I npmnni pIppI Condition Condition Field Test

HI High 0010 C Z
LS Low or same 001 1 C v Z
cc Carry clear

0100 C
f* nrr\t cot 0101 c

NE Not equal 01 10 z
EQ

Equal
01 1 1 z

VC Overflow clear 1000 V
VS Overflow set 1001 V
PL Plus 1010 N
Ml Minus 101 1 N

GE Greater or equal
1 100

(N

V) v (N

V)

LT Less than 1 101

(N

V) v (N

V)

GT Greater than
1 110 (N V Z) v (N V Z)

LE Less or equal 1111 Z v (N V) v (N
V)

Normally, you specify the displacement as a label name. To calculate the numeric value of

the displacement, the assembler subtracts the label value from the current instruction's

address. You needn't provide a size for the instruction; the assembler will choose the appropri-
ate size based on the size of the displacement. The displacement can be in either direction,

jumping ahead of the current PC or behind it. You cannot, however, jump to the instruction
immediately following the Bcc instruction.

Some documentation lists the Bcc instructions separately from the BRA instruction.

Example:

If the Carry bit is set, then
BCS NO_CLR
CLR VAL

NO_CLR: ...

causes the processor to branch around the CLR instruction to the instruction at label
NO_CLR.

BCHG— Test a Bit and Change

Syntax:
BCHG.s Dn, <ea>
BCHG.s #<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn) X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn) X
-(An)

X xxx. L [(bd,PC,Xn),od] X (d16,An) X xxx. L [(bd,PC),Xn,odl

and where .s =.B or .L (.L only valid when <ea>— Dn).

384 68000 Assembly Language Programming

(Bit number in Dn)
15 14

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
Data

1 0 1
Effective Address

0 0 0
Register Mode Register

(Bit number is immediate)

0 0 1 0 0 0 0 1
Effective Address

0 0
Mode Register

Condition Codes:

N Unaffected

Z Set if bit tested is zero, cleared otherwise

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests a bit value, sets the Zero (Z) flag accordingly, and then changes it
(that is, if it was a 0, it becomes a l , or vice versa). The operand may be 32 bits in length and

reside in a data register, or it may reside in memory as an 8-bit value.

You may choose one of two ways to specify the bit number; either through a data register
or through immediate data. Bit numbers start with bit 0 as the least significant bit of the

operand. For data register-resident operands, valid bit numbers range from 0-3I ; for memory-
resident operands, valid bit numbers range from 0-7.

Example:

If the byte at label FLAGS contains $Fl (llll 0001), then after

BCHG.B *3, FLAGS

FLAGS contains the value $F9 (1 1 1 1 1001), and the Z flag is cleared.

BCLR — Test a Bit and Clear

Syntax:
BCLR.s Dn, <ea>
BCLR.s *<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) c<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ((bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (dl6.An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B or .L (.L only where <ea>=Dn).

Descriptions of Individual MC68000 Instructions 385

Instruction Format:

(Bit number in Dn)
15 14 13 12 1 1 10

9 8 7 6 5 4 3 2 1 0

0 0 0 0 Data 1 1 0 Effective Address
Register Mode Register

(Bit number immediate)

0 0 0 0 1 0 0 0 1 0 Effective
Address Mode Register

Condition Codes:

N Unaffected

Z Set if bit tested is zero, cleared otherwise

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests a bit value, sets the Zero flag (Z) accordingly, and then clears the bit.
The operand can be 32 bits in length and reside in a data register or it may reside in

memory as an 8-bit value.

You can choose one of two ways to specify the bit number: either through a data register
or through immediate data. Bit numbers start with bit 0 as the least significant bit of the

operand. For data register-resident operands, valid bit numbers range from 0-3 1; for memory-
resident operands, valid bit numbers range from 0-7.

Example:

If DO contains the value $12 (18(10), and Dl contains S104FF0EC (00010000 01001111
11110000 11101100), then after

BCLR.L D1.DO

D 1 contains the value $ 104BF0EC (00010000 0100101 1 111 10000 1 1 101 100), and the Z flag is
set.

BFCHG— Test Bit Field and Change

(MC68020 only)

Syntax:
BFCHG <ea>|offset:widthj

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

386 68000 Assembly Language Programming

X (An)

(An)+ -(An)

X (d16,An)

X ([bd,An,Xn],od)
X ([bd,An],Xn,od)
X xxx. L
X xxx. L

(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Instruction Format:
15 14

13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1
Effective Address

0 0 Mode Register

0 0 0 0 Do Offset Dw Width

Do: 0 = offset is immediate Dw: 0 = width is immediate
1 = offset is data register 1 = width is data register

Condition Codes

N

Z

V

c

X

Set if high-order bit of field is set, cleared otherwise
Set if bit field is zero, cleared otherwise

Always cleared

Always cleared
Unaffected

Description:

This instruction tests the contents of a bit field, sets the condition codes accordingly, and
then logically NOTs the bit field contents. The operand may be in a data register or in
memory. The field has an offset and a width, which you can specify either through
immediate data or through data registers. If you specify the offset as immediate data, it can

have values from 0-31 . If you specify the offset in a data register, it can have values from
1. The width is a value between 1 and 32.

231 through 231-

Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1.

Example:

You have defined a long status word at the label STATUS. Within that word, the field

comprising bit offsets 14-18 define a counter that you must negate before using. If the field
contains the value OHIO, then after

BFCHG STATUS} 14:5}

the field contains 10001 and the Negative (N) flag is set.

BFCLR— Test Bit Field and Clear

(MC68020 only)

Syntax:
BFCLR <ea>{offset:widthj

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

Descriptions of Individual MC68000 Instructions 387

X (An)
(An)+ -(An)

X (d16,An)

X ([bd,An,Xn],od)
X ([bd,An],Xn,od)
X xxx. L
X xxx. L

(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Instruction Format:
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1
Effective Address

0 0 Mode Register

0 0 0 0 Do Offset Dw Width

Do: 0 = offset is immediate Dw: 0 = width is immediate
1 = offset is data register 1 = width is data register

Condition Codes

N

Z

V

c

X

Set if high order bit of field is set, cleared otherwise

Set if bit field is zero, cleared otherwise

Always cleared

Always cleared
Unaffected

Description:

This instruction tests the contents of a bit field, sets the condition codes accordingly, and
then clears the bit field contents. The operand may be in a data register or in memory. The
field has an offset and a width, which you may specify either through immediate data or
through data registers. If you specify the offset as immediate data, it can have values from

0-31 . If you specify the offset in a data register, it can have values from — 231 through 23!— 1 .
The width is a value between 1 and 32.

Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1 . This is discussed in further detail in Chapter 12.

Example:

You have defined several words of bit field data starting at the label FIELD BASE.

Within those fields, the 6-bit field beginning at offset +45(10) bits from the beginning
contains the seconds count in the current time. If the current value is $23 (10111), and DO
contains the offset of 45, after the instruction

BFCLR FIELD BASE|D0:6|

the field contains $000000 and no flags are set.

BFEXTS — Extract Bit Field Signed

(MC688020only)

Syntax:

BFEXTS <ea>|offset:width!, Dn

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

388 68000 Assembly Language Programming

X (An)

(An)+
-(An)

X (d16,An)

Instruction Format:

X ([bd,An,Xn],od)
X ([bd,An],Xn,od)
X xxx. L
X xxx.L

X (d8,PC,Xn)
X (bd,PC,Xn)
X [bd,PC,Xn),od]
X [(bd,PC),Xn,od]

15 14 13 12 1 1
10

9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 Effective Address
Mode Register

0 Register

Do

Offset
Dw Width

Do: 0 = offset is immediate
1 = offset is data register

Dw: 0 = width is immediate
1 = width is data register

Condition Codes

N

Z

V

c

Set if high-order bit of field is set, cleared otherwise
Set if all bits are zero, cleared otherwise

Always cleared

Always cleared
Unaffected

Description:

This instruction copies the contents of a bit field to a data register sign, extending the value
to 32 bits. The operand may be in a data register or in memory. The field has an offset and
a width, which you can specify either through immediate data or through data registers. If

you specify the offset as immediate data, it can have values from 0-31. If you specify the

offset in a data register, it can have values from — 231 through 231— 1 . The width is a value
between 1 and 32.

Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1 . This is discussed in further detail in Chapter 12.

Example:

You have defined a set of bit fields starting at COUNTERS, and a 12-bit counter lies at
offset 108 bits from the start. If DO contains 108, D 1 contains 0, and the bit field contains

-340, then after

BFEXTS COUNTERS|D0:12|, D1

Dl contains —340 and the N flag is set.

BFEXTU — Extract Bit Field Unsigned

Syntax:

BFEXTU <ea>|offset:widthl, Dn

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)

Descriptions of Individual MC68000 Instructions 389

-(An) X xxx.L X [(bd,PC.Xn),od]
X (d16,An) X xxx.L X [(bd,PC),Xn,od]

Instruction Format:

15
14

13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 1
Effective Address

Mode Register

0 Register
Do

Offset
Dw

Width

Do: 0 = offset is immediate
1 = offset is data register

Dw: 0 = width is immediate
1 = width is data register

Condition Codes:

N Set if high-order bit of field is set, cleared otherwise
Z Set if all bits are zero, cleared otherwise

V Always cleared

C Always cleared
X Unaffected

Description:

This instruction copies the contents of a bit field to a data register, filling the unused bits of
the register with zeros. The operand may be in a data register or in memory. The field has
an offset and a width, which you can specify either through immediate data or through

data registers. If you specify the offset as immediate data, it can have values from 0-31 . If

you specify the offset in a data register, it can have values from — 231 through 231— 1 . The width is a value between 1 and 32.

The bit order for bit fields differs from that of individual bits in that for bit fields, the most

significant bit is bit number 1. This is discussed in further detail in Chapter 12.

Example:

You have loaded an encoded long word into DO. At offset 10, a bit field starts that is 3 bits

wide and represents the disk-drive status, currently valued at 101. After the instruction

BFEXTU D0{ 10:31, D1

Dl contains 101 and the N flag is set.

BFFFO — Find First One in Bit Field

Syntax:
BFFFO <ea>joffset:width|, Dn

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd.PCXn) -(An)

X xxx.L X [(bd,PC,Xn),od]
X (d16,An) X xxx.L X [(bd,PC),Xn,od]

39 0 68000 Assembly Language Programming

Instruction Format:

15 14 13 12 1 1
10 9 8 7 6 5 4 3 2 10

1 1 0 1 1 0 1 1 1
Effective Address

1 Mode
Register

0 Register
Do Offset Dw Width

Do: 0 = offset is immediate
1 = offset is data register

Dw: 0 = width is immediate
1 = width is data register

Condition Codes:

N Set if high-order bit of field is set, cleared otherwise
Z Set if all bits are zero, cleared otherwise

V Always cleared

C Always cleared
X Unaffected

Description:

This instruction searches the source bit field for the most significant bit that is set to 1 . The
processor places the bit offset (the original offset plus the offset to the first set bit) into the

given data register. If the processor can't find a bit set to 1, it places the sum of the offset
plus the width of the data register into the given data register. The instruction sets the
condition codes based on the contents of the bit field, regardless of the result of the
instruction.

The operand may be in a data register or in memory. The field has an offset and a width,
which you can specify either through immediate data or through data registers. If you specify

the offset as immediate data, it can have values from 0-31. If you specify the offset in a data

register, it can have values from — 231 through 231— 1. The width is a value between 1 and 32.
Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1 . This is discussed in further detail in Chapter 12.

Example:

You have defined a set of 24-bit fields that represent a bit map for allocated space on a
diskette (cne bit field per track; each bit represents a sector). You want to find the first used
sector on a track (that is, the first occurrence of a 1). If DO contains the track number,
currently 0, and BIT MAP is the address of the bit map, then if the first available sector
is sector 4,

BFFFO

places a 4 into Dl . No flags are set.

BIT_MAPjD0:24!, D1

BFINS — Bit Field Insert

Syntax:
BFINS Dn, <ea>|offset:width j

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

Descriptions of Individual MC68000 Instructions 391

X (An)
(An)+ -(An)

X (d16,An)

Instruction Format:

X ([bd,An,Xn],od)
X ([bd,An],Xn,od)
X xxx. L
X xxx. L

(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

15 14
13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 1
Effective Address

Mode Register

0 Register Do Offset
Dw

Width

Condition Codes

N

Z

V

c

X

Do: 0
1

Dw: 0
1

offset is immediate
offset is data register
width is immediate
width is data register

Set if high-order bit of field is set, cleared otherwise
Set if all bits are zero, cleared otherwise

Always cleared

Always cleared
Unaffected

Description:

This instruction inserts the bit field value in the specified source data register into the
destination bit field and sets the flags based on the new bit field value. The operand can be
in a data register or in memory. The field has an offset and a width, which you can specify
either through immediate data or through data registers. If you specify the offset as

immediate data, it can have values from 0-31. If you specify the offset in a data register, it

can have values from — 231 through 231— 1. The width is a value between 1 and 32.

The bit order for bit fields differs from that of individual bits in that for bit fields,

the most significant bit is bit number 1. This is discussed in further detail in Chapter 12.

Example:

If the first four bits of a communications message define the message type, and your
message buffer begins at BUFF, then if DO contains a 4, after

BFINS DO, BUFF j 0:4 (

the message class is set to 4 and no flags are set.

BFSET— Test Bit Field and Set

Syntax:

BFSET <ea>|offset:widthJ

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
-(An) X xxx.L [(bd,PC,Xn),od]

X (d16,An) X xxx.L [(bd,PC),Xn,od]

392 68000 Assembly Language Programming

Instruction Format:

15 14
13 12 1 1 10

9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 1
Efffective Address

1 1
Mode Register

0 0 0 0 Do Offset
Dw

Width

Condition Codes:

N Set if high-order bit of field is set. cleared otherwise
Z Set if all bits are zero, cleared otherwise

V Always cleared

C Always cleared
X Unaffected

Description:

This instruction tests the bit field data, sets the condition codes accordingly, and then sets
the contents of the bit field to all Is. The operand can be in a data register or in memory.
The field has an offset and a width, which you may specify either through immediate data
or through data registers. If you specify the offset as immediate data, it can have values

from 0-31. If you specify the offset in a data register, it can have values from — 2?1 through
231— I. The width is a value between 1 and 32.

Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1.

Example:

FLAGS is the base address of a set of bit fields. At offset 39 is a 12-bit counter containing

the value 34. which you want to initialize to —1. If you first load DO with 39. then after

BFSET FLAGS) D0:12 j

the bit field contains — 1 (1111 1111 1111) and no condition flags are set.

BFTST — Test Bit Field

Syntax:
BFTST <ea>{offset:width]

where <ea> is

X Dn X (d8,An,Xn) =<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd.An,Xn],od) X (d8,PC,Xn)
(An)- X ([bd,An],Xn,od) X (bd,PC,Xn)
-(An) X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

Descriptions of Individual MC68000 Instructions 393

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

1 1 1 0 1 0 0 0 1 1
Effective Address

Mode Register
0 0 0 0 Do

Offset
Dw Width

Do: 0 = offset is immediate
1 = offset is data register

Dw: 0 = width is immediate
1 = width is data register

Condition Codes:

N Set if high-order bit of field is set, cleared otherwise
Z Set if all bits are zero, cleared otherwise

V Always cleared

C Always cleared
X Unaffected

Description:

This instruction tests the contents of the specified bit field and sets the condition codes
accordingly. The operand can be in a data register or in memory. The field has an offset
and a width, which you may specify either through immediate data or through data
registers. If you specify the offset as immediate data, it can have values from 0 to 31 . If you

specify the offset in a data register, it can have values from — 231 to 231 — 1. The width is
a value between 1 and 32.

Note here that the bit order for bit fields differs from that of individual bits in that for bit

fields, the most significant bit is bit number 1 . This is discussed in further detail in Chapter 12.

Example:

The 3-bit-wide bit field at offset 13 from the label BASE contains an encoded status value;
the encoded value of 0 means that no status has been recorded. If its value is 101 , then after

BFTST BASE 1 13:3j

the N flag is set and the Z flag is cleared. The status value is unchanged.

BKPT — Breakpoint

Syntax:
BKPT #<data>

Instruction Format:

15 14 13 12

11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 1 Vector

394 68000 Assembly Language Programming

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description

This instruction signals external hardware that an illegal instruction has been executed.
The execution of Breakpoint causes slightly different reactions on different processors:

• MC68000 and MC68008 The processor considers this intruction to be just another
illegal instruction and traps through the illegal instruction vector.

• MC68010 and MC68012 The processor sends a special signal ("breakpoint cycle") out
its bus lines to inform external hardware of the execution of an illegal instruction. The
processor then traps through the illegal instruction vector.

• MC68020 The processor sends a special signal ("breakpoint cycle") out from its bus
lines to inform external hardware of the execution of an illegal instruction. The signal
includes the immediate data given in the instruction. The external hardware may then
provide the processor with a new instruction or it may force it to trap through the
illegal instruction vector.

On the MC68000 and MC68008, the illegal instruction vector will always be at physical
address S00000010. To catch the occurrence of an illegal instruction, the hardware simply
monitors address and control bus lines for access to this address. On the later processors, this

isn't possible, since they allow you to redefine the base address of the vector table through the
vector base register (VBR). This instruction provides a means of signaling the hardware
without relying on access to the illegal instruction vector.

Depending on your assembler and on the processor it is intended for, you may or may not
have this instruction implemented.

Example:

After the MC68020 instruction

the processor sends out a breakpoint cycle and then traps through vector number 4, the illegal
instruction vector.

BKPT

BSET — Test Bit and Set

Syntax:
BSET s
BSET.s

Dn, <ea>
-data, <ea>

where <ea> is

X Dn
An

X (An)

X (An)-

X (d8,An,Xn)
X (bd,An,Xn)
X ([bd,An,Xn],od)
X ([bd,An],Xn,od)

~<data>

(d16.PC)
(d8,PC,Xn)
(bd.PCXn)

Descriptions of Individual MC68000 Instructions 395

X -(An) X xxx.L
X (d16,An) X xxx.L

and where .s = .B or .L.

Instruction Format:

(Bit number in Dn)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Rpnistpr 1 1 1 Effective Address
Mode Register

Bit number is immediate)

0 0 0 0 1 0 0 0 1 1 Effective Address
Mode Register

[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Condition Codes:

N Unaffected

Z Set if tested bit is zero, cleared otherwise

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests the state of a single bit in the operand, sets the Zero flag accordingly,

and sets the bit's value to 1 . You can specify the bit number either through a data register or
through an immediate byte value. The operand can reside in a data register; in this case,

the operand size is the full 32-bit width of the register. Those operands residing in memory
can be byte-sized only.

You can use BSET to provide a "lock" mechanism for protecting common data in a
multitasking system. Since two or more tasks may share the common data, and since any task
may run at any time, one task could start manipulating the data before another has finished.
This could lead to a corrupt database.

A standard means for providing protection is to define a lock flag. When this flag is set to
true, the common data is in use; when false, your task can access the common data. Naturally,

the first thing you'll need to do upon gaining access to the common data is to set the lock flag.
The BSET flag is perfect for this since it tests and sets in the same instruction; it cannot be
interrupted in between the time that it tests the flag and the time it sets the flag. (Reference the
instruction BTST, which only tests the bit state.)

The instruction can be interrupted in the middle of its execution by a hardware bus request

signal (different from peripheral interrupt), which can occur in a system that contains more

than one CPU. If your system is such, you should use TAS or CAS instead of the BSET or
BCLR. These instructions are indivisible even by a bus request.

Example:

Bit number 3 of the byte in memory at the label LOCKS may constitute the lock for a

396 68000 Assembly Language Programming

common data. The following piece of code will test for the lock condition:

BSET.B #3, LOCKS
BNE WAIT

If the bit was set (indicating lock), it remains set and the Z flag is cleared; the program
branched to WAIT. If the bit was not set (indicating unlock), the instruction sets the bit
(indicating lock), sets the Z flag, and falls through the BNE instruction.

BSR — Branch to Subroutine

Syntax:
BSR < offset >

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 0 0 0 8-Bit Displacement

16-Bit Displacement if 8-Bit Displacement = $00
32-Bit Displacement if 8-Bit Displacement = $FF

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction branches to the subroutine indicated by the offset value. Normally, this
value is a program label that the assembler converts to an offset value. When this
instruction is executed, the processor pushes the address of the instruction that follows the
BSR instruction onto the stack. It then adds the value of the displacement to the PC (BSR
instruction address plus 2) and begins execution at the new PC. Since the displacement is
signed, the subroutine address may be ahead of or behind the current address.

This instruction differs from the JSR instruction in that the only addressing mode allowed
is PC relative. This limitation is an advantage in that the processor can execute the instruction

faster in this mode, and, in some cases, the instruction doesn't take up as much room as it would
in other addressing modes.

Example:

If SUB1 is a label of a subroutine, then
BSR SUB1

calls the subroutine SUB1.

Descriptions of Individual MC68000 Instructions 397

BTST — Test Bit

Syntax:
BTST s Dn, <ea>
BTST.s tfdata, <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (Bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+

X ((bd,An],Xn,od) X (bd,PC,Xn)
X

-(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B or .L.

Instruction Format:

(Bit number in Dn)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 Register 1 0 0 Effective Address
Mode Register

(Bit number is immediate)

0 0 0 0 1 0 0 0 0 0 Effective Address
Mode Register

Condition Codes:

N Unaffected

Z Set if tested bit is zero, cleared otherwise

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests the state of a single bit in the operand and sets the Zero flag

accordingly. The bit's value remains unchanged. You can specify the bit number either
through a data register or through an immediate byte value. The operand can reside in a

data register; in this case, the operand size is the full 32-bit width of the register. Those

operands residing in memory can be byte-sized only.

Example:

In your application, several factors of a calculation may determine whether or not to print

a value. As you test, if you find that you should print the value, you set a bit flag (bit 25) in

data register D7. At the end of the loop, you test to see if you should print the value. With

398 68000 Assembly Language Programming

the instructions

BTST.L #25, D7
BNE PRINT_SUM

if the bit is set, then the program branches to PRINT_SUM.

CALLM— Call Module (MC68020 Only)

Syntax:
CALLM #<data>, <ea>

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)
(An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd.PC.Xn) -(An)

X xxx. L X [(bd,PC,Xn),od]
(d16.An) X xxx. L X [(bd,PC),Xn,od]

Instruction Format:
15

14
13 12 11

10

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 1 1
Effective Address

Mode Register
0 0 0 0 0 0 0 0 Argument Count

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction (MC68020 only) creates and files a module stack frame on the stack,
loads the processor with the data provided by the module descriptor (in the effective
address), and begins execution at the new address (as provided in the module descriptor).
This instruction, when used in a system with the proper hardware configuration, provides
a finer degree of memory access than is provided with the user/ supervisor modes. The
RTM instruction performs the opposite of this instruction: it restores a processor state
from the stack frame.

By using several control lines, the processor can tell external hardware to use different
locations for memory than it would use for normal program reads and writes. In this special

memory, called "CPU space," certain locations define access-control hardware. When exe-
cuted, this instruction compares the requested access level with that in the CPU space

Descriptions of Individual MC68000 Instructions 399

descriptors. If permission is granted, the processor continues with the instruction; if hardware

says that permission is denied, the instruction traps through the format-error exception.
This instruction is used only in advanced systems that have the necessary hardware for

granting or denying access. In your applications, you are unlikely to encounter it.

CAS — Compare and Swap (MC68020 only)

Syntax:
CAS.s Dc, Du, <ea>

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1
Effective Address one Mode

Register
0 0 0 0 0 0 0 Ou 0 | 0 | 0 Dc

Size field: 01 = byte 10 = word 11 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if compare generates an overflow, cleared otherwise

C Set if compare generates a carry, cleared otherwise
X Unaffected

Description:

This instruction subtracts the value in the "compare" data register (labeled "Dc" in the
preceding syntax) from the destination operand (<ea>), and sets the condition codes
accordingly. If the Zero (Z) flag is set, the processor moves the value in the update register

(labeled "Du" in the syntax) to the destination operand.

In a standard test and change instruction (such as BSET), the processor could be
interrupted by a bus request in between the time it tests the operand (with a read cycle) and the
time it sets the operand (with a write cycle). In a multiprocessor environment, another
processor could potentially gain control of the bus in between cycles and change the value of
the operand, thus corrupting its value. The processor executes the CAS instruction using a

400 68000 Assembly Language Programming

special type of bus cycle called a "read-modify-write" cycle; that action prevents another
processor from interfering with the instruction while it does its compare and swap operation.

Example:

You have several CPUs in your system and have defined a queue in "global" memory (all
processors in the system have access to its data). The queue is first-in-first-out and uses
linked lists (see Chapter 9). Since any processor can manipulate the queue and its pointers,
you must provide some means of locking out other processors while your task inserts or
deletes from the queue.

One method of doing this is to provide a "lock" byte that you can manipulate with the TAS
instruction (which also uses a read-modify-write cycle). However, the CAS instruction is more
applicable here, as is shown by the code segment that follows. In this example, HEAD is a
memory value pointing to the first element in the queue, NEW NODE is the address of a new
queue element, and LINK is a constant defining the offset within a queue element that contains
a pointer to the next element.

MOVEA.L NEWNODE, AO
LEA HEAD, A2

LOOP MOVE.L DO, (LINK, AO)
MOVE.L AO, D1
CAS.L DO, D1,(A2)
BNE LOOP

In this example, there are several tentative pointers prior to the CAS instruction: AO and
Dl point to the new node, DO points to the current HEAD, and the LINK pointer in

NEW NODE points to the current HEAD. When the processor executes the CAS instruc-
tion, one of two conditions is true:

1. another processor may have changed the HEAD pointer

2. the HEAD pointer is the same

In the first case, the compare will fail, the swap won't take place, and the Z flag will be
cleared, forcing a branch to the top. In the second case, the compare passes, so the pointer to
NEW NODE takes the place of HEAD and the Z flag is set, allowing the program to pass
through the BNE instruction. While the swap takes place, the current processor has control of
the bus, so that no other processor can modify the value of HEAD.

To remove an element from the queue, you would work to the end of the queue and swap
the pointer to the last link with a local pointer, substituting the link with a NULL value.

CAS2 — Compare and Swap Two Values

Syntax:
CAS2.S Del :Dc2, Du1 :Du2, (Rn1):(Rn2)

where .s = .W or .L.

Descriptions of Individual MC68000 Instructions 401

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 Size 0 1 1 1 1 1 1 0 0
D/A Register 1 0 0 0 Du1 0 0 0

Del
D/A Register 2 0 0 0 Du2 0 0 0

Dc2

Size field • 01 : = byte
10 =

word
11 =

ong

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if compare generates an overflow, cleared otherwise

C Set if compare generates a carry, cleared otherwise
X Unaffected

Description:

This instruction subtracts the values in the compare data registers (labeled "Del" and
"Dc2" in the syntax) from the two destination operands (pointed to by the registers
labeled "Rn 1 " and "Rn2"), and sets the condition codes accordingly. If the Zero (Z) flag is
set, the processor moves the values in the update register (labeled "Du 1 " and "Du2" in the
syntax) to the destination operands. Note that in this unique case, data registers can
function as address registers.

In a standard test and change instruction (such as BSET), the processor could be
interrupted by a bus request in between the time it tests the operand with a read cycle and the
time it sets the operand with a write cycle. 1 n a multiprocessor environment, another processor
could potentially gain control of the bus in between cycles and change the value of the operand,
thus corrupting its value. The processor executes the CAS2 instruction using a special type of

bus cycle called a read-modify-write cycle; this prevents another processor from interfering
with the instruction while it does its compare and swap operation.

Example:

You have a multiprocessor system, in which you have defined a global first-in-first-out

queue. You've implemented the queue using doubly linked lists and have a "get" pointer
(indicating the next element to be removed) and a "put" pointer (indicating the last
element queued). Since multiple processors have access to the queue, you must provide a
means of protecting the get and put pointers while you manipulate them. You can do so by
using the CAS2 instruction, since it lets you adjust two values at once.

In this example, PUT contains the address of the latest element, GET contains the address
of the oldest element, and NEW contains the address of an element to add to the queue (after
PUT). FORWARD and BACKWARD are constants that define the offset in the element
structure where pointers ahead and behind are found.

402 68000 Assembly Language Programming

LEA
LEA
MOVEA.L
MOVE.L

LOOP MOVE.L
BEQ
MOVE.L
CLR.L
MOVE.L
LEA
CAS2.L
BNE
BRA

EMPTY MOVE.L
MOVE.L
CAS2.L
BNE

DONE

In this example, prior to the CAS2 instruction, the pointers in the NEW element have
been set up so that they point back to the current PUT and ahead to a null element. At the time
of the CAS2, DO points to the original PUT value, Dl points to a null element (value 0), D2

points to the NEW element, AO contains PUT's address, and Al contains a pointer to the
BACKWARD pointer of the NEW element. When the processor executes the CAS2 instruc-

tion, if the PUT value hasn't changed, the NEW element is added to the list.
Note the special case when the list contains no elements (PUT is null); you load NEW's

pointers with a null pointer and try to update GET and PUT

CHK — Check Register Against Boundaries

Syntax:
CHK.s <ea>, Dn

where <ea> is

X Dn X (d8,An,Xn) X
tf<data>

An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An)
X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx L X [(bd,PC),Xn,od]

and where .s = .W or .L (.L for MC68020 only).

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0
Data Size 0

Effective Address

Register Mode Register

Size field: 10= Long word (MC68020)
11 = Word

Condition Codes:

N Set if Dn<0, cleared if Dn> source, undefined otherwise
Z Undefined

PUT, AO
GET, A1
NEW, A2
A2, D2

(AO), DO EMPTY
DO, (FORWARD, A2)
D1
D1, (BACKWARD, A2)
(BACKWARD, A2), A1
D0:D1, D2:D0, (A0):(A1)
LOOP
DONE
DO, (FORWARD, A2)
DO, (BACKWARD, A2)
D0:D0, D2:D2, (A0):(A1)
LOOP

Descriptions of Individual MC68000 Instructions 403

V Undefined

C Undefined

X Unaffected

Description:

This instruction compares the contents of a data register to the contents of the source

operand. If the data register value is less than zero or greater than the source operand, the
processor traps through exception vector 6 (offset $18) in the vector table. Naturally, you
or the operating system should have defined a handler address at this vector. For a

complete discussion of the sequences that occur during exception processing, refer to
Chapter 14.

The long-word operand version of the instruction is valid only on the MC68020; the other
processors only support the 16-bit operand.

Example:

This instruction is useful for maintaining array subscripts since you can subscript against
an upper bounds before using it to fetch or store data. For example, you can define a byte
array called TABLE that contains 100 entries, subcripted 0 to 99. If the word at the label
TAB SIZ contains the value 99, and DO contains a potential subscript, then after

CHK.W TAB_SIZ, DO

if DO contains a legitimate value, the program will continue normal execution. If the value
is out of range, however, then the processor will trap through the CHK vector.

CHK2 — Check Register Against Bounds (MC68020 Only)

Syntax:
CHK2.S <ea>, Rn

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)

X
"(An) X xxx. L X [(bd,PC,Xn),od] x (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

Size 0 1 1
Effective Address

0 0 0 0 0 Mode Registe r

A/D Register 1 0 0 0 0 0 0 0 0 0 0 0

Size field: 00 = byte 01= word 10= long

404 68000 Assembly Language Programming

Condition Codes:

N Undefined

Z Set if Rn is equal to either boundary, cleared otherwise
V Undefined

C Set if Rn is out of bounds, cleared otherwise
X Unaffected

Description:

This instruction compares a value in a data or address register against signed upper and
lower boundaries. The bounds reside in memory; the lower boundary is at the address
specified in the instruction; the upper boundary is at that address plus the operand size
(that is, + 1 for byte, +2 for word, and +4 for long word).

If the comparison falls in the range specified, the processor continues normal execution. If
the comparison fails, then the processor begins exception processing using the CHK/CHK2
exception vector (vector number 6 at offset $18). (Refer to Chapter 14 for further information
on exception processing sequences.)

Refer to the CMP2 instruction for a bounds test that does not generate an exception for
out-of-bounds conditions.

Example:

In your application, you have defined an array of 100 elements with subscripts ranging

from — 50-49. If the two bytes at TAB RANGE contain —50 and 49, respectively, and DO
contains a 100, then

CHK2.B TAB RANGE, DO

causes a trap through the CHK/CHK2 exception vector.

CLR —Clear an Operand

Syntax:
CLR.s <ea>

where <ea> is

X Dn x (d8,An,Xn) #<data>
An x (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An) + x ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) x xxx. L [(bd,PC,Xn),od]
X (d16,An) x xxx. L [(bd,PC),Xn,od]

and where .s =

B,

. W, or .L.

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01= word 10= long

Descriptions of Individual MC68000 Instructions 405

Condition Codes:

N Cleared

Z Set

V Cleared

C Cleared

X Unaffected

Description:

This instruction moves a zero to the specified operand.

Example:

If DO contains the value S5400200F, then after

CLR.L DO

DO contains $00000000.

CMP — Compare

Syntax:
CMP.s <ea>, Dn

where <ea> is

X Dn X (d8,An,Xn) X #<data>
X An X (bd,An(Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1
Data

Op-Mode
Effective Address

Register Mode Register

Op-Mode field: Byte Word Long Operation
000 001 010 (<Dn>)-(<ea>)

Condition Codes:

N Set if Dn— source, cleared otherwise

Z Set if Dn — source, cleared otherwise

V Set if Dn — source operation generates an overflow, cleared otherwise

C Set if Dn — source operation requires a borrow, cleared otherwise
X Unaffected

Description:

This instruction subtracts the contents of the source operand from a data register and sets

406 68000 Assembly Language Programming

the condition codes appropriately. The result of the subtraction is thrown away. The order
of the operands is not necessarily the same as the order of the comparison performed by
the instruction; it compares the destination to the source, not vice versa.

Example:

If DO contains a $700 and Dl contains a $600, then

CMP.W DO, D1
BLT LABEL1

causes a branch to LABEL1 (Dl is less than DO).

CM PA — Compare Addresses

Syntax:
CMPA.s <ea> An

where <ea>
is

X Dn X (d8,An,Xn) X #<data>
X An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)-f

X ([bd,An],Xn,od) X (bd,PC,Xn)
X -(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .W or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1
Data

Op-Mode
Effective Address

Register
Mode

Register
Op-Mode field: Word Long Operation

011 111 (<An>-(<ea>)

Condition Codes:

N Set if An— source, cleared otherwise

Z Set if An— source, cleared otherwise

V Set if An— source operation generates an overflow, cleared otherwise

C Set if An— source operation requires a borrow, cleared otherwise
X Unaffected

Description:

This instruction subtracts the source operand from the given address register and sets the
condition codes accordingly. The result of the subtraction is thrown away. The order of
the operands is not necessarily the same as the order in which the instruction makes its
comparison; it compares the address register to the source operand, not vice versa.

Descriptions of Individual MC68000 Instructions 407

Example:

If you are working through a TABLE that is $ 100 bytes long, using AO as a pointer into the
table, then

CMPA.L #TABLE+$100, AO
BNE MORE

will cause a branch to the label MORE until the two values are equal.

CM PI —Compare Immediate

Syntax:
CMPI s #<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) s<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) X (bd.PCXn)
X

-(An)
X xxx L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if <ea> < data, cleared otherwise

Z Set if <ea> = data, cleared otherwise

V Set if <ea> — data operation generates an overflow, cleared otherwise

C Set if <ea> — data operation requires a borrow, cleared otherwise
X Unaffected

Description:

This instruction subtracts the immediate source data from the destination operand and
sets the condition codes accordingly. The result of the subtraction is thrown away. The
order of the operands is not necessarily the same as the order in which the instruction
performs the comparison; it compares the second operand to the first, not vice versa.

Example:

The value defined by the constant HIVAL defines the maximum value for the long
variable at the label COUNTS. If COUNTS has exceeded HIVAL, then after

408 68000 Assembly Language Programming

CMPI.L #HIVAL, COUNTS

the N, Z, V, and C flags are all clear.

CM PM —Compare Memory

Syntax:
CMPM.s (Asrc)+,(Adst)+

where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12

11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1
Destination

Register
1 Size 0 0 1 Source

Register

Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if (Adst) < (Asrc), cleared otherwise

Z Set if (Adst) = (Asrc), cleared otherwise

V Set if (Adst) — (Asrc) operation generates an overflow, cleared otherwise

C Set if (Adst) — (Asrc) operation requires a borrow, cleared otherwise
X Unaffected

Description:

This instruction subtracts the value pointed to by Asrc from the value pointed to by Adst
and sets the condition codes accordingly. The result of the subtraction is thrown away.
After performing the operation, both address registers are incremented according to the
size of the operation.

The order of the operands is not necessarily obvious for a comparison; it compares the
second operand to the first, not vice versa.

Example:

You need to compare two strings in memory for equality. If AO and Al both point to
strings, then

CMPM.B (A0)+,(A1) +

compares the byte pointed to by AO to the one pointed to by A l . If they are equal, the Z

flag is set; otherwise, the Z flag is cleared. You might follow this instruction with a condi-
tional branch (BCL) or a decrement/ test/ branch (DBC) instruction.

CMP2 — Compare Register Against Bounds
(MC68020 only)

Syntax:
CMP2.S <ea>, Rn

Descriptions of Individual MC68000 Instructions 409

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
<An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An)

X xxx. L X [(bd,PC)(Xn,od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B, .W, and .L .

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 Size 0 1 1
Effective Address

Mode
Register

A/D Register 0 0 0 0 0 0 0 0 0 0 0 0

Size field: 00 = byte 01= word 10 = long

Condition Codes:

N Undefined

Z Set if Rn is equal to either boundary, cleared
V Undefined

C Set if Rn is out of bounds, cleared otherwise

X Unaffected

Description:

This instruction compares a value in a data or address register against signed upper and
lower boundaries. The bounds reside in memory; the lower boundary is at the address
specified in the instruction; the upper boundary is at that address plus the operand size
(that is, +1 for a byte, +2 for a word, or +4 for a long word).

This instruction is analogous to the CHK2 instruction except that it does not cause an
exception if the register value is out of bounds.

Example:

Your application reads in a number of entries from the user. You must verify that each

entry is valid by comparing them to valid ranges. If DO contains a user-entered value and
REC RANGE points to a range for that value, then

CMP2 REC RANGE, DO

verifies that the entry is in range. If the value is in range, the C flag is clear; if it is out of
range, the C flag is set.

DBCC— Test, Decrement, and Branch

Syntax:

DBCC Dn, displacement

410 68000 Assembly Language Programming

Instruction Format:

15 14
13 12

11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Condition 1 1 0 0 1

Data

Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests the condition codes to see if they match a given condition. If they do
match, the instruction is complete and the program continues with the next instruction. If
that condition is not met, the processor decrements the given data register. If its new value

is — I , then the instruction is complete and the program continues to the next instruction. If
the value is something other than — l , the processor adds the 1 6-bit displacement value to
the program counter and begins execution at the new address. The conditions possible are
shown in Table 21 -2.

Normally, you will specify the displacement value in terms of a statement label. The
assembler then calculates the appropriate signed displacement (positive or negative) and
inserts it into the instruction extension word.

Note the difference between the BA and DB^ instructions: for Bcc, the branch is taken
when the condition is true: for DBCL. the branch will never be taken when the condition is true.
For a further discussion of this instruction, refer to Chapter 6.

Table 21-2. DBCC Conditional Tests

Mnemomcs(cc> Condition Condition Field

Test T True 0000 1
F False 0001 0

HI
High 0010 C Z LS
Low or same 001 1 C v Z

cc Carry cleai 0100 C
cs Carry set 0101 c
NE Not equal 01 10 z
EQ

Equal
01 1 1 z

VC Overflow clear 1000 V
VS Overflow set 1001 PL Plus 1010 N
Ml Minus 101 1 N
GE Greater or equal 1 100

(N

V) v (N

V)

LT Less than 1 101

(N

V) v (N V)

GT Greater than
1110 (N V Z) v (N V Z)

LE Less or equal 1111 Z v (N V) v (N

V)

Descriptions of Individual MC68000 Instructions 411

Example:

AO and A l contain pointers to text strings, and DO contains the maximum length of each
string minus l. The instructions

LOOP CMPM.B (A0)+. (A1) +
DBNE DO, LOOP

repetitively test the equality of each character of the strings. As long as they are equal and

DO is not equal to — 1, the processor will keep looping. When a difference is found (the NE
condition is true), or when DO has been decremented to — 1 , the test fails and the execution
proceeds sequentially.

DIVS/DIVSL — Signed Divide

Syntax:
DIVS.W <ea>, Dn
DIVS.L <ea>, Dq (MC68020 only)
DIVS.L <ea>, Dr:Dq (MC68020 only)
DIVSLL ;a>, Dr:Dq (MC68020 only)

where <ea> is

X Dn X (d8,An,Xn) X #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) X (bd.PC.Xn)
X -(An) X xxx L X [(bd,PC,Xn),od]
X (d16,An) X xxx L X [(bd.PC).Xn.od]

Instruction Format:

(Long)
15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1 Effective Address
Mode Register

0

Dq

1 Size 0 0 0 0 0 0 0 Dr

Size field: 0 = Long word dividend
1 = Quad word dividend

(Word)

1 0 0 Register 1 1 1 Effective Address 0
Mode Register

Condition Codes:

N Set if quotient is negative, cleared otherwise; undefined if overflow or divide

by zero.
Z Set if quotient is zero, cleared otherwise; undefined if overflow or divide by

zero.

V Set if division overflow, cleared otherwise

C Always cleared
X Unaffected

412 68000 Assembly Language Programming

Description:

These instructions divide the destination operand by the source and store the result in the

destination. The processor considers the sign of the source and destination when comput-
ing the answer. The word division instruction is available on all processors; the long

division instructions are available only on the MC68020.

The Dl VS.W instruction works as follows: the processor divides the 32-bit dividend (in the
destination register) by the 1 6-bit divisor. It then stores the 16-bit remainder of the division in
bits 16-31 of the destination register and stores the 1 6-bit quotient in bits 0-15 of the destination
register.

In the first long-word form (Dl VS.L<ea> ,Dq), the processor divides the 32-bit dividend
(from the destination register) by the 32-bit source operand. It then stores the 32-bit quotient in
the destination register, discarding the remainder.

In the second long- word form (Dl VS.L<ea> ,Dr:Dq), the processor operates on a 64-bit
dividend contained in a destination register pair: the first register (Dr) containing the most
significant long word, and the second (Dq) containing the least significant long word. It divides

this "quad word"' by the 32-bit source operand, storing the 32-bit remainder in the first register
(Dr) and the 32-bit quotient in the second (Dq).

In the third long-word form. (DIVSL.L <ea>.Dr:Dq). the processor divides a 32-bit
long word (from the Dq register) by the 32-bit source operand, storing the 32-bit remainder in
the first register (Dr) and the 32-bit quotient in the second (Dq). The original value in Dr is
discarded.

For the modes supporting register pairs, you can select any of the data registers; they

needn't be adjacent or in numerical order.
The division can cause two error conditions. A div ision by zero causes a trap through

vector number 5 (offset $ 14) in the exception table. If the quotient of the division is too big to fit
into the destination, the Overflow flag is set.

Example:

If DO contains 677. then after

the high word of DO contains 2 (the remainder) and the low word of DO contains 27 (the

DIVS.W

'•-25, DO

quotient).

DIVU/DIVUL — Unsigned Divide

Syntax:
DIVU.W
DIVU.L
DIVU.L
DIVULL

ea >, Dn
<ea>, Dq
<ea>, Dr:Dq

ea , Dr:Dq

(MC68020 only)
(MC68020 only)
(MC68020 only

where <ea> is

X Dn
An

X (An)

X (An)- X (An)
X (d16,An)

X (d8,An,Xn)
X (bd,An,Xn)
X ([bd,An,Xn],od)
X ([bd,An],Xn,od)
X xxx L
X xxx L

X data
X (d16,PC)
X (d8,PC,Xn)
X (bd.PC.Xn)
X [(bd.PC.Xn).od]
X [(bd,PC),Xn,od]

Descriptions of Individual MC68000 Instructions 413

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 1
Effective Address Mode

Register
0

Dq

0 Size 0 0 0 0 0 0 0

Dr
(Long)

1 0 0 0 Register 0 1 1
Effective Address

Mode
Register

Condition Codes:

N Set if quotient is negative, cleared otherwise; undefined if overflow or divide

by zero
Z Set if quotient is zero, cleared otherwise; undefined if overflow or divide by

zero

V Set if division overflow, cleared otherwise

C Always cleared
X Unaffected

Description:

These instructions divide the destination operand by the source and store the result in the
destination. The processor ignores the sign of the source and destination when computing

the answer. The word-division instruction is available on all processors; the long-division
instructions are available only on the MC68020.

The DI VU.W instruction works as follows: the processor divides the 32-bit dividend (in
the destination register) by the 16-bit divisor. It then stores the 16-bit remainder of the division
in bits 16-31 of the destination register and stores the 16-bit quotient in bits 0-15 of the
destination register.

In the first long-word form (DIVU.L <ea>,Dq), the processor divides the 32-bit
dividend (from the destination register) by the 32-bit source operand. It then stores the 32-bit
quotient in the destination register, discarding the remainder.

In the second long-word form (DI VU.L< ea>,Dr:Dq), the processor operates on a 64-bit
dividend contained in a destination register pair: the first register (Dr) containing the most
significant long word, and the second (Dq) containing the least significant long word. It divides

this "quad word" by the 32-bit source operand, storing the 32-bit remainder in the first register
(Dr) and the 32-bit quotient in the second (Dq).

In the third long-word form, (DIVUL.L <ea> ,Dr:Dq), the processor divides a 32-bit

long word (from the Dq register) by the 32-bit source operand, storing the 32-bit remainder in
the first register (Dr) and the 32-bit quotient in the second (Dq). The original value in Dr is
discarded.

For the modes supporting register pairs, you can select any of the data registers; they

needn't be adjacent or in numerical order.
The division can cause two error conditions. A division by zero causes a trap through

vector number 5 (offset $ 14) in the exception table. If the quotient of the division is too big to fit
into the destination, the Overflow flag is set.

414 6X000 Assembly Language Programming

Example:

If register DO contains 240122005, D4 contains 235, and the long word at the label
DIVISOR contains 3504, then after

DIVULL DIVISOR, D4D0

D4 contains 3397 (the remainder) and DO contains 68527 (the quotient).

EOR — Exclusive OR

Syntax:
EOR s Dn, ea

where <ea> is

Dn
An
(An)
(An)+
(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

•• data

(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where B, .W, or L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1
Data

Op-Mode
Effective Address

Register Mode
Register

Op-Mode field: Byte 100 Word
101

Long

110
Operation

(< ea >) © (< Dn >) — < ea >

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Cleared

C Cleared

X Unaffected

Description:

This instruction performs a bitwise Exclusive OR of the contents of a data register with
the contents of the destination operand and stores the results in the destination. EOR is
commonly used to calculate checksums in communications messages.

Example:

If DO contains $E3 and A3 points to a byte containing SAO, then

EOR.B DO, (A3)

Descriptions of Individual MC68000 Instructions 415

moves the value $43 into (A3). This is calculated as

DO = $E3 =11100011
(A3) = $A0 = 10100000

(A3) -$43 =01000011

EORI — Exclusive OR Immediate

Syntax:

EORI.s #<data>, <ea>

where <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

and where .s = .B, .W, or .L.

Instruction Format:

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01= word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction exclusively ORs the immediate data to the destination operand, storing
the result in the destination.

Example:

If DO contains $5522, then

EOR.W #$B31C, DO

moves the value SE63E into DO.

416 68000 Assembly Language Programming

EORI to CCR — Exclusive OR Immediate Data
To the Condition Codes

Syntax:
EORI #<data>, CCR

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 Byte Data

Condition Codes:

N Changed if bit 3 of immediate data is 1, otherwise unaffected

Z Changed if bit 2 of immediate data is 1, otherwise unaffected

V Changed if bit 1 of immediate data is 1, otherwise unaffected

C Changed if bit 0 of immediate data is 1, otherwise unaffected

X Changed if bit 4 of immediate data is 1, otherwise unaffected

Description:

This instruction exclusively ORs the immediate data with the condition code register. The

immediate data is limited to a single byte, and only bits 0-4 are defined.

Example:

If the Z flag is set and all others are clear, then

EORI #7, CCR

clears the Z flag and sets the V and C flags.

EORI to SR — Exclusive OR Immediate Data

To Status Register (Privileged)

Syntax:
EORI #<data>, SR

Instruction Format:

15 14 13 12 11 10
9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0
Word Data

Condition Codes:

N Changed if bit 3 of immediate data is 1, otherwise unaffected

Z Changed if bit 2 of immediate data is 1, otherwise unaffected

Descriptions of Individual MC68000 Instructions 417

V Changed if bit I of immediate data is I, otherwise unaffected
C Changed if bit 0 of immediate data is l, otherwise unaffected
X Changed if bit 4 of immediate data is I, otherwise unaffected

Description:

This instruction exclusively ORs the immediate data with the status register and stores the
result in the status register. The instruction is privileged and will cause an exception if it is
executed in user mode.

Example:

If, on the MC68000, the Z flag is set and all other flags are clear, the supervisor bit is set,
trace mode is off, and the interrupt mask is 0, then after

EORI #A000. SR

enables trace mode, changes from supervisor to user mode, and leaves the condition codes
unchanged.

EXG — Exchange Registers

Syntax:

EXG Rx, Ry

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 Register 1
Opcode Register

Opcode. 01000 = exchange data registers
01001 = exchange address registers
10001 = exchange data and address registers

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction exchanges the long-word values of two registers. You can swap two data
registers, two address registers, or a data register and address register.

Example:

If DO contains $10004030 and D3 contains SFFFF0000, then after

EXG DO, D3

DO contains SFFFF0000 and D3 contains $10004030.

418 68000 Assembly Language Programming

EXT/EXTB — Sign Extend

Syntax:
EXT.s Dn
EXTB.L Dn (MC68020 only)

where .s = .W or .L.

Instruction Format:

15 14
13 12

11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 Type 0 0 0
Data

Register

Type field. 010=Extend Word 011 =Extend Long 111 =Extend Byte Long - (MC68020)

Condition Codes:

N Set if result is negative, cleared otherwise

Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction sign extends the value in the data register. The word-sized version
(EXT.W) of the instruction extends the sign of a byte value into bits 8-15. The long-word
version (EXT.L) of the instruction extends the sign of a word value into bits 16-31. A
second long-word version (EXTB.L) extends the sign of a byte value into bits 8-31. This
latter instruction is valid only on the MC68020, while the former instructions are available
on all processors.

Example:

If DO contains a S000000FF, then after

EXT.W DO

DO contains a S0000FFFF.

ILLEGAL — Take Illegal Instruction Trap

Syntax:
ILLEGAL

Instruction Format:

15 14 13 12 11 10 9 876543210
0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0

Descriptions of Individual MC68000 Instructions 419

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction causes the processor to trap through the illegal instruction exception
vector (vector 4, offset $10). While many bit patterns are illegal instructions, Motorola
guarantees that this instruction will always be illegal in all future extensions of the
instruction set.

Example:
ILLEGAL

The processor traps through exception table vector number 4.

JMP — Jump

Syntax:
JMP <ea>

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,AnfXn],od) X (d8,PC,Xn)
(An)H- X ([bd,An],Xn,od) X (bd,PC,Xn)
-(An) X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx.L X [(bd.PQ.Xn.od]

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 Effective Address 1 0 0 Mode
Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction loads the program counter with the value specified by the effective
address and begins execution at the new address.

420 68000 Assembly Language Programming

Example:

If FUNC1 is the label of a segment of your program, then

JMP FUNC1

transfers control of the program to the instruction at FUNC1.

JSR — Jump to Subroutine

Syntax:
JSR <ea>

where <ea> is

Dn X (d8,An,Xn)
#<data>

An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,XnJ,od) X (d8,PC,Xn)

(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An)
X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0
Effective Address

Mode
Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction pushes the address of the instruction immediately following the JSR
instruction onto the current stack. The processor then loads the PC with the given
effective address and begins execution at the new address.

This instruction differs from the BSR in that it provides many more addressing modes for
the new PC address than does the BSR instruction, which supports only relative branches.

Example:

If FUNC„ l is the label of a subroutine, then

JSR FUNC_1

calls the subroutine starting at FUNC_ 1.

Descriptions of Individual MC68000 Instructions 421

LEA — Load Effective Address

Syntax:
LEA <ea>, An

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An)

X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

Instruction Format:

15
14

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0
Address

1 1 1
Effective Address

Register
Mode

Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction calculates the value of the effective address and loads that value into the

given address register. Since the calculation happens at execution time, this instruction

helps you write position-independent code.

Example:

If your program is loaded at run time so that the label TABLE l is located at $1200, then
the instruction

LEA (TABLE _1, PC), AO

uses PC relative addressing with a displacement to calculate the effective address of $ 1200;
the result is loaded into AO.

LINK — Link and Allocate Space

Syntax:
LINK An, #<data>

422 68000 Assembly Language Programming

Instruction Format:

(Word) 15 14
13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0
Register

(Long)
0 1 0 0 1 0 0 0 0 0 0 0 1

Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction pushes the contents of the specified address register onto the stack, loads
the new value of the stack pointer into the address register, and. finally, adds the signed

immediate data to the stack pointer. All MC68000 processors support 16-bit immediate
values. The MC68020 also supports 32-bit values. The UNLNK instruction performs the
reverse of the LINK instruction.

Note that since the stack grows downward, you should use negative numbers to allocate
fresh space on the stack. You should not modify the address register between the LINK and
UNLNK instruction. Finally, note that A7 serves as the stack pointer, so you should not use A7
as the frame pointer.

This instruction creates a "stack frame" in the stack memory. You can use the stack frame
area for anything you need: temporary storage, buffers, and so on. Typically, compilers (for

example, many C-language compilers) create a stack frame upon entry to functions and
subroutines. They use this stack frame for storing local variables; this way, the local data is
dynamically allocated and can be returned to free space (back to the stack) when the
subroutine terminates.

Example:

In the illustration that follows, procedure A calls procedure B. At this time, the return

address back to procedure B is on the top of the stack, as shown in Figure 2 1 - 1 a. The first
instruction of procedure B is

LINK A6, = <-10>

After executing this instruction, 10 bytes of the stack are allocated as procedure B's stack
frame. A6 points to the start of that frame: SP points to the end of the frame. At this time,
procedure B may use those 10 bytes of its frame for local variables, temporaries, and anything

else for which it might need dynamic storage. This state is shown in Figure 21-1 b.
At the end of procedure B, just before the RTS statement, procedure B executes a

UNLNK A6

This moves the contents of A6 into the stack pointer (thus deallocating procedure B's local
data). It then pulls the original value of A6 from the stack. At this point, the stack points to the

Descriptions of Individual MC68000 Instructions 423

return address to procedure A (as shown by Figure 21 -lc).
Note that procedure B could have called other procedures (or it could even call itself

recursively). The called procedures would LINK and allocate their own stack frames just as
procedure B did. Since A6 is saved on the stack, each LINK builds successive stack frames that
UNLNK can unwind in order.

We used A6 as our frame pointer; you may use any address register except A7. Good
programming practice, however, dictates that you be consistent in your stack frame pointer
selection.

LSL/LSR- Logical Shift

Syntax:
LSLs
LSLs
LSL
LSR.s
LSR.s
LSR

Dx, Dy
#<data>, Dy
<ea> Dx, Dy
#<data>, Dy
<ea>

where <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od) xxx. L
xxx. L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

SP

0

SP

A6

Return
Address

to Proc "A"

Stack Frame

Save Value
of A6

Return SP
Address

to Proc "A"

Return
Address

to Proc "A"

© 0

Figure 21-1. LINK Instruction Execution Sequence

424 68000 Assembly Language Programming

Instruction Format:

(Register)
15 14

13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
Count/
Register dr

S
ze i/r

0 1
Register

(Memory)

1 1 1 0 0 1 dr 1 1 Effective Address 0
Mode Register

i/r field: 0 = immediate shift count
1 = register shift count

d/r field: 0 = right 1 = left
Size field: 00 = byte 01 = word 10 = long
Count/Register field: if i/r = 0, specifies shift count

if i/r = 1 , specifies data register

Condition Codes:

N

Z

V

c

X

Set if high-order bit of result is set, cleared otherwise
Set if result is zero, cleared otherwise

Always cleared

Set according to last bit shifted out of operand, cleared for zero shift count

Set according to last bit shifted out of operand, cleared for zero shift count

Description:

These instructions shift the contents of the operand a specified number of times. The
destination can be in a data register or in memory. When the destination is in a data
register, you can specify the number of bits to shift either through immediate data (a value

of 1-8) or through another data register (a value from 0-63). If the destination is a memory
location, this shift is restricted to one bit, and in addition, the operand must be
word-sized.

The LSL instructions operate as shown:

Operand

Note that the processor fills zeros into the least significant bit (bit 0) and drops the bits
from the left side into the Carry (C) and Extend (X) flags. For multiple bit shifts, these bits
reflect the state of the final bit shifted out.

The LSR instruction operates as shown:

Descriptions of Individual MC68000 Instructions 425

Note that the processor fills zeros into the most significant bit and drops the bits from the
right side into the Carry (C) and Extend (X) flags. For multiple bit shifts, these bits reflect the
state of the final bit shifted out.

The difference between these instructions and their arithmetic shift counterparts (ASL
and ASR) lies in their applications. Logical shifts are useful in manipulating masks and bit
fields; in these shifts, the sign is not replicated. Arithmetic shifts are useful in integer arithmetic,
where the sign is important; in these shifts, the sign is replicated and the Overflow (V) flag has
meaning.

Examples:

If DO contains $8138, then

LSR.W #3, DO

stores a value of $1027 into DO and clears the C and X flags.

MOVE — Move Data

Syntax:

MOVE.s <ea1>, <ea2>

where <eal> is

X Dn X (d8,An,Xn) X #<data>
X An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X -(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where <ea2> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)
(An) X ([bd,An,Xn],od) (d8,PC,Xn)

X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx. L [(bd,PC,Xn),od]
X (d16,An) X xxx. L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 Size
Destination Source

Register Mode Mode Register

Size field: 01 = byte 10 = long 11 = word

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Always cleared

C Always cleared
X Unaffected

426 68000 Assembly Language Programming

Description:

This instruction moves the contents of the source operand to the destination operand. The
processor examines the data as it moves it and sets the condition codes accordingly. If the

source <ea> is an address register, you are limited to word and long-word movements.
Also, movements to data registers affect only as many bits as are indicated by the size; the
sign is not extended.

Example:

If DO contains $1234 and AO contains the address $200010, then

MOVE.W DO, (AO)+

moves $1234 to address $200010 and increments AO to $200012.

MOVE A — Move to Address Register

Syntax:
MOVEA.s <ea>. An

where <ea> is

X Dn
X An
X (An)
X (An)+
X -(An)
X (d16,An)

X (d8,An,Xn)
X (bd,An,Xn)
X ([bd,An,Xn],od)
X ([bd,An],Xn.od)
X xxx. L
X xxx. L

X #<data>
X (d16,PC)
X (d8,PC,Xn)
X (bd,PC,Xn)
X [(bd,PC,Xn),od]
X [(bd,PC),Xn,od]

and where .s = .W or .L.

Instruction Format:

0 0 Size Destination 0 0 1
Source

Register Mode Register
Size: 10 = long 1 1 = word

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction moves a word or long word from the effective address into an address
register. The instruction affects the entire address register; the processor sign extends

word-sized operands before loading them into the register.

This instruction differs from the general MOVE instruction only in its size and its effect on
the condition codes. Many assemblers will let you get away with using the MOVE mnemonic

Descriptions of Individual MC68000 Instructions 427

with "An" as the destination; the assemblers assume you mean MOVEA and fill in the correct
opcode.

Example:

The label TABLE contains the address of a database table. After

MOVEA. L STABLE, AO

AO points to TABLE.

MOVE From CCR — Move From Condition

Code Register

Syntax:
MOVE CCR, <ea>

where <ea> is

x Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Instruction Format:

15 14 13 12 11 10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1
Effective Address

Mode
Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction moves the contents of the condition codes into the specified effective

address. Note that although the instruction is sized as a word operation, only the lower
byte contains the condition-code information; the upper byte is all zeros.

Example:

If the N and Z flags are set and the V, C, and X flags are clear, and STATUS is a label to a
word in memory, then after

MOVE CCR, STATUS

STATUS contains $000C.

428 68000 Assembly Language Programming

MOVE to CCR — Move to the Condition Code Registers

Syntax:
MOVE <ea>, CCR

where <ea> is

X Dn X (d8,An,Xn) X #<data>

An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+

X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An)
X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1
Effective Address

Mode
Register

Condition Codes:

N Set same as bit 3 of source

Z Set same as bit 2 of source

V Set same as bit 1 of source

C Set same as bit 0 of source

X Set same as bit 4 of source

Description:

This instruction moves the source operand to the condition-code register. Although the
source operand is word-sized, only the five least significant bits of the CCR are affected;
the rest are ignored.

Example:

If NEW_CCR contains the word value $001 F, then after

MOVE NEW_CCR, CCR

all of the condition code flags are set to 1.

MOVE From SR — Move From the Status Register

Syntax:
MOVE SR, <ea>

where <ea> is

X Dn X (d8,An(Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

Descriptions of Individual MC68000 Instructions 429

Instruction Format:

15 14
13

12 11
10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1
Effective Address

Mode Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction copies the contents of the status register to the destination location. On
the MC68010, MC68012, and MC68020, this instruction is privileged and will cause an
exception if executed while in user mode.

Example:

If on the MC68000, the status register indicates that in supervisor mode, the interrupt

mask = 101, and the Z flag is set, then after

MOVE SR, DO

DO contains $2504.

MOVE to SR — Move to the Status Register

(Privileged)

Syntax:
MOVE <ea>, SR

where <ea> is

X Dn X (d8,An,Xn) X #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn) X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) X
-(An) X xxx. L X [(bd,PC,Xn),od] X (d16,An) X xxx. L X

[(bd,PC),Xn,od]

Instruction Format:
15 14 13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1
Effective Address

0 0 0
Mode Register

Condition Codes:

N Set same as bit 3 of source

Z Set same as bit 2 of source

430 68000 Assembly Language Programming

V Set same as bit 1 of source

C Set same as bit 0 of source

X Set same as bit 4 of source

Description:

This instruction moves the contents of the source-operand word to the status register. This
instruction is privileged and will cause an exception if your program attempts to execute it
from the user mode.

Example:

If on the MC68000, the constant NEW_SR is defined as $0001, then after

MOVE NEW_SR, SR

the status register indicates no trace, user mode, interrupt mask 0, and the Carry bit is set.

MOVE USP — Move to/From the User

Stack Pointer (Privileged)

Syntax:
MOVE USP, An
MOVE An, USP

Instruction Format:

15 14 13 12
1 1

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 d Register

d: 0 = move to USP
1 = move from USP

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

These instructions move the 32-bit contents of the user stack pointer (A7) to or from an

address register. This instruction is privileged; attempting to execute it from a user-mode
program will cause an exception.

Recall that the MC68000 processors have separate user and supervisor stacks (in fact, the

MC68020 has two supervisor stacks). One means of implementing a call to an operating-system
function is to load the parameters onto the stack and execute a TRAP instruction. Since the

processor is then in supervisor mode but the calling parameters are on the user-mode stack, this

instruction provides the supervisor with a means of accessing the user's data (from the user
stack).

Descriptions of Individual MC68000 Instructions 431

Example:

If the user stack contains the address $00002000, then after

MOVE USP, AO

AO contains $00002000.

MOVEC — Move To/From Control Register

(MC68010, MC68012, MC68020) (Privileged)

Syntax:
MOVEC Rc, Rn
MOVEC Rn, Rc

where Rc is

SFC source function code register
DFC destination function code register

USP user stack pointer
VBR vector base register
CAAR cache address register
MSP master stack pointer
ISP interrupt stack pointer

Instruction Format:

15 14 13 12 11
10

0 1 | 0 0 1 1 10 0 1 1 1 1 0 1 dr
A/D Register Control Register

dr field: 0 = control register to general register
1 = general register to control register

Control Register field: $000 = SFC
$001 = DFC
$002 = CACR (MC68020)
$800 = USP

$801 = VBR
$802 = CAAR (MC68020)
$803 = MSP (MC68020)
$804 = ISP (MC68020)

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction copies the contents of the specified control register (Rc) to a general

purpose register (Rn). This is a privileged instruction; attempting its execution from user
mode will bring about exception processing. Note that this instruction is available only on
the MC68010, MC68012, and MC68020, and that not all control registers are defined on

all of these processors. (Consult Chapter 3 for a description of the control registers
available on the various processors.)

432 68000 Assembly Language Programming

Example:

If the vector-base register contains $00800000, then after

MOVEC VBR, AO

AO contains $00800000.

MOVEM — Move Multiple

Syntax:
MOVEM.s #<data>, <ea>
MOVEM. s <ea>, #<data>

where <ea> is

Dn (d8,An,Xn) #<data>
An (bd,An,Xn) (d16,PC)
(An) ([bd,An,Xn],od) (d8,PC,Xn)
(An)+ ([bd,An],Xn,od) (bd,PC,Xn)
-(An) xxx.L [(bd,PC,Xn),od]
(d16,An) xxx.L [(bd,PC),Xn,od]

where .s = .W or .L.

Instruction Format:

15 14 13 12 1 1 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 d 1 0 0 1 Size Effective Address
Mode Register

Size field: 0 = word 1 = long
d: 0 = move to memory

1 = move to registers

Bit mask for memory and (An)+
Bit mask for —(An)
A7 A6 A5 A4 A3

A2
A,

AO
D7 D6

D5 D4
D3 D2 | D1

DO j

DO D1 D2 D3 D4 D5 D6
D7 AO

A1

A2
A3

A4 A5 | A6 A7

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

These instructions move the selected registers to or from consecutive memory locations.
You select which registers to use by setting bits in the immediate data mask word as shown.
The processor stores or fetches the data from least significant bit to most significant bit.
The bit definition of the mask word depends on the addressing mode used.

• If you specify the memory address with postincrement mode (for movement from
memory only), the least significant bit of the mask is DO.

• If you specify the memory address with predecrement mode (for movement to memory
only), the least significant bit of the mask is A7.

Descriptions of Individual MC68000 Instructions 433

• If you specify the memory address using any of the other modes (for movement in
either direction), the least significant bit of the mask is DO, as it was for postincrement.

Note that most assemblers provide shorthand notation for specifying which registers to

use. A common notation uses the hyphen (-) to indicate a range of registers; for example,
A 1 -A5 builds a mask for using A 1 , A2, A3, A4, and A5. The slash (/) indicates an OR of single
registers; for example, D0/D1/A0/ Al builds a mask for using DO, Dl, AO, and Al. These

notations are not standard, however, so you should consult your assembler's user manual for
specific details.

Example:

If A6 contains a $1000, then after

MOVEM.L D0/D1/A0/A1, ~(A6)

address $ 1004 holds the contents of DO, $ 1008 holds D 1 , $ 1 00C holds AO, $ 1 0 1 0 holds A 1 ,

and A6 contains $1010. Later in your program you can restore the values of those saved
registers with

MOVEM.L (A6)+, D0/D1/A0/A1

MOVEP — Move Peripheral Data

Syntax:
MOVEP.s Dn, (disp, An)
MOVEP.s (disp, An)

where .s = .W or .L.

Instruction Format:

15 14
13

12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0
Data

Register
Op-Mode 0 0 1 Address

Register
Op-Mode field: 100 = transfer word from memory to register

101 = transfer long from memory to register
110 = transfer word from register to memory
111 = transfer long from register to memory

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction moves data between a data register and alternate bytes of memory. This

instruction simplifies the movement of data between the processor and certain older 8-bit
devices, whose registers lie on alternate bytes of memory (all odd or all even). One operand

must be a data register, the other an address specified by address indirect with displace-
ment. The operation transfers the high-order byte of the register first and the low-order

byte of the register last.

434 68000 Assembly Language Programming

Example:

If DO contains $4304, AO has a value of $800000, which is the base address of a peripheral's
control registers. A word-count register (word-sized) lies at the bytes at offsets 4 and 6.
After

MOVEP.W DO, (4,A0)

the word count register contains $4304 ($800004 contains $43 and $800006 contains $04).

MOVEQ — Move Quick

Syntax:
MOVEQ #<data>, Dn

Instruction Format:

15 14
13

12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1
Data

Register
0 Data

Data field: Data is sign extended to a long operand and all 32 bits are
transferred to the data register.

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction moves a signed 8-bit immediate value into a data register. The processor
extends the sign of the value through all 32 bits of the register.

Example:

After the instruction,

MOVEQ #-1,DO

DO contains the long-word value — 1 ($FFFFFFFF) and the N flag is set.

MOVES — Move Address Space (Privileged)
(MC68010, MC68012, MC68020)

Syntax:
MOVES. s Rn, <ea>
MOVES. s <ea>, Rn

Descriptions of Individual MC68000 Instructions 435

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and .s= .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 Size Effective Address
Mode

Register
AID Register dr

0 0 0 0 0 0 0 0 0 0 0

dr field: 0 = EA to register
1 = register to EA

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction moves data between a register and memory. Unlike the normal MOVE
instruction, this instruction sends external hardware the contents of a function-code
register as well as the address of the operand. The instruction is privileged; if it is executed
in user mode, an exception results. Since the MC68000 and MC68008 do not have the

function-code registers, these processors do not implement this instruction.

As we discussed in Chapter 2, whenever the processor accesses memory, it sends the
memory controller some information about the requested access. The information may be for
an instruction or for data, and it may be for a user program or a supervisor program. Also, the

request may be in a special area called "CPU space." For reads from memory, the processor
uses the value in the source function code (SFC) register; for writes to memory, the processor
uses the value in the destination function code (DFC) register.

A memory management unit (MMU) "maps" program-supplied logical addresses into
physical addresses. This mapping simplifies programming in a multitasking environment since
each task thinks it starts at address $00000000 (for example). Prior to executing a particular

task, the operating system loads the MMU with data telling how to map the logical addresses
to physical addresses.

The operating system (in supervisor mode) has its own set of MMU mapping registers

separate from the user-mode registers. This keeps a user task from accidentally (or otherwise)

accessing vital operating system data and code. The MMU distinguishes between user and

436 68000 Assembly Language Programming

supervisor accesses by the data on the function-code lines.

In servicing user requests, the operating system must be able to get at the user's data. On
the MC68000 and MC68008, the system can copy part of the user's MMU to its own MMU and
thus access the data. With the MC68010, MC68012, and the MC68020, the method is simpler;

the system can load the function-code registers with the appropriate user-mode code. A
subsequent MOVES instruction thus instructs the MMU to map to user address space instead
of supervisor space.

Another encoding of the function codes implies CPU space. In this case, the MMU can
access yet another portion of memory. You can use CPU space in several ways, but primarily
you would use it for communicating with some peripheral devices.

Note that MOVES is the only instruction that uses the data in the function-code registers.

A user program can request system services (on some operating systems) by pushing
request parameters onto the user stack and then executing a TRAP. Since executing the
TRAP puts the processor into supervisor mode, which has its own stack pointer, the
supervisor routine must have some means of getting at the data on the user stack. The
following code (located in the service routine) will do this:

This code segment fetches the user's stack pointer and puts it into AO. The program then
loads the source function code register with 1. which signifies user data space access. The

MOVES instruction then loads DO with the long-word value from the user stack.

Example:

MOVE
MOVEC
MOVES. L

USP, AO
#1, SFC

(AO), DO

MULS — Signed Multiply

Syntax:
MULS.W
MULS.L
MULS.L

<ea>, Dn
<ea>, Dn
<ea>, Dh:DI

(MC68020 only)
(MC68020 cnly)

where <ea> is

x Dn
An
(An)

X
X
X
X
X
X

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od) xxx. L
xxx. L

X
X
X
X
X
X

3<data>

(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)

X
X
X
X

(An) +
-(An)

(d16,An)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Descriptions of Individual MC68000 Instructions 437

Instruction Format:

15 14 13 12 1 1
10

9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 1
Effective Address

Mode
Register

15 14
13 12 1 1 10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 0 0
Effective Address

Mode Register

0 Dl 1 Size 0 0 0 0 0 0 0
Dh

(Word)

(Long)

Size Field: 0 = 32-bit product
1 = 64-bit product

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if operation causes overflow of destination register, cleared otherwise
C Cleared

X Unaffected

Description:

These instructions multiply the two signed operands together, storing the signed result in
the destination. The first instruction (MULS.W) is available on all processors and

multiplies the 16-bit source and the low 16 bits of the destination data register together,
producing a 32-bit product in the data register.

The other two instruction forms are available only on the MC68020. The first long form

(with the single destination register) multiplies the 32-bit signed source with the 32-bit signed
destination and yields a 32-bit product in the destination register. The second form multiplies
the 32-bit signed source with the 32-bit signed destination from Dl and stores the 64-bit
product in the Dh:Dl register pair. The most significant long word is in Dh, with the least
significant long word in Dl.

For the first long-word format (long-word product), you should check the status of the
Overflow (V) flag after the operation to verify the legitimacy of the result. With the other two
formats, overflow will never occur.

Example:

If DO contains -2500 and Dl contains 19400, then after

MULS D1, DO

DO contains -48500000.

438 68000 Assembly Language Programming

MULU — Multiply Unsigned

Syntax:
MULU.W
MULU.L
MULU.L

where <ea> is

<ea>, Dn
<ea>, Dn
<ea>, Dh:DI

(MC68020 only)
(MC68020 only)

Dn
An
(An)
(An) +
-(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od) xxx. L
xxx. L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

Instruction Format:

(Word)
15 14 13 12 1 1

10
9 8 7 6 5 4 3 2 1 0

1 1 0 0 Registe r 0 1 1 Effective Address
Mode Register

(Long)

0 1 0 0 1 1 0 0 0 0 Effective Address
Mode

Register
0 Dl 0 Size 0 0 0 0 0 0 0

Dh
Size field: 0 = 32-bit product

1 = 64-bit product

Condition Codes

N

Z

V

c

X

Set if high-order bit of result is set, cleared otherwise
Set if result is zero, cleared otherwise

Set if operation causes overflow of the destination register, cleared otherwise
Cleared

Unaffected

Description:

These instructions multiply the two unsigned operands together, storing the unsigned
result in the destination. The first instruction (MULU.W) is available on all processors

and multiplies the 16-bit source and the low 16 bits of the destination data register
together, producing a 32-bit product in the data register.

The other two instruction forms are available only on the MC68020. The first long form

(with the single destination register) multiplies the 32-bit unsigned source with the 32-bit
unsigned destination and yields a 32-bit product in the destination register. The second form
multiplies the 32-bit unsigned source with the 32-bit unsigned destination from Dl and stores
the 64-bit product in the Dh:Dl register pair. The most significant long word is in Dh, with the
least significant long word in Dl.

For the first long-word format (long word product), you should check the status of the

Descriptions of Individual MC68000 Instructions 439

Overflow (V) flag after the operation to verify the legitimacy of the result. With the other two
formats, overflow will never occur.

Example:

If DO contains 32500 and Dl contains 49401, then after

MULS D1.DO

DO contains 1608782500.

NBCD — Negate Decimal With Extend

Syntax:
NBCD <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An) + X ([bd,An],Xn,od) (bd,PC,Xn)
X

-(An) X xxx. L f(bd,PC,Xn),od]
X (d16,An) X xxx. L [(bd,PC),Xn,od]

Instruction Format:

15 14
13

12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 1
Effective Address

Mode
Register

Condition Codes:

N Undefined

Z Set if result is zero, cleared otherwise
V Undefined

C Set if a borrow was required, cleared otherwise

X Set if a borrow was required, cleared otherwise

Description:

This instruction subtracts the destination and the Extend flag (X) from 0 and stores the

result back in the destination. The operation uses binary-coded decimal (BCD) arith-
metic. (For more information on BCD arithmetic, refer to Chapter 8.)

Example:

If A2 points to a byte in memory containing the value $27, and the Extend flag is set,
then after

NBCD (A2)

the byte contains 72 and the Carry (C) bit is set.

44 0 68000 Assembly Language Programming

N EG — Negate

Syntax:
NEG.s <ea>

where <ea> is

X Dn
An
(An)
(An) +
-(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od) xxx. L
xxx. L

and where .s = .B, .W, or .L.

Instruction Format:

#<data>
(d16,PC)
(d8,PC,Xn)
(bd.PCXn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 Size
Effective Address

Mode
Register

Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if operation generates an overflow, cleared otherwise

C Set if result is nonzero, cleared if result is zero

X Set if result is nonzero, cleared if result is zero

Description:

This instruction subtracts the operand from zero and replaces the difference into the

operand. Note that this operation forms the two's complement of the original operand value.

Example:

If the low-order byte in DO contains $3A, then after

NEG.B DO

DO contains $C6 and the N, C, and X bits are set.

NEGX — Negate With Extend

Syntax:

NEGX.s <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)

Descriptions of Individual MC68000 Instructions 441

X -(An) X xxx.L
X (d16,An) X xxx.L

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 Size Effective Address
Mode

Register

Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if the operation generates an overflow, cleared otherwise

C Set if a borrow is required, cleared otherwise

X Set if a borrow is required, cleared otherwise

Description:

This instruction subtracts the operand and the Extend flag(X) from zero and replaces the
difference into the operand. (Refer to Chapter 8 for a discussion of multiprecision
arithmetic.)

Example:

If the long word pointed to by AO contains $01023032 and the Extend bit is clear, then
after

NEGX.L (AO)

the value at AO is SFEFDCFCE, and the N, C, and X bits are set.

NOP — No Operation

Syntax:
NOP

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5

0 1 o 1 1 o 1 1

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

442 68000 Assembly Language Programming

C Unaffected

X Unaffected

Description:

This instruction performs no meaningful work except to consume a machine cycle. You
can use NOP in cases where you need a slight delay (for example, for hardware to catch up)
or in debugging to replace a questionable instruction.

NOT — Logical Complement

Syntax:
NOT.s <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 Size Effective Address

Mode Register

Size field: 00 = byte 01= word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction performs a bitwise complement of the operand. This entails the replace-
ment of each 1 in the operand with a 0 and each 0 with a I.

Example:

If the long word at VAL1 contains S1F004209, then after

NOT.L VAL1

VAL1 contains SE0FFBDF6 and the N flag is set.

Descriptions of Individual MC68000 Instructions 443

OR — Inclusive Logical OR

Syntax:

OR.s <ea>, Dn
OR.s Dn, <ea>

where for dst= Dn, <ea> is

X Dn X (d8,An,Xn) X #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X -(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx.L X [(bd,PC),Xn,od]

and where for src= Dn, <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Data Effective Address

1 0 0 0 Op-Mode
Register Mode Register

Op-Mode field: By*e Word Lon9 Operation
000 001 010 (<ea>)v(<Dn>)^ <Dn>
100 101 110 (<Dn>)v(<ea>)-~ <ea>

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Cleared

C Cleared

X Unaffected

Description:

This instruction performs a bitwise logical OR of the contents of the source operand with
the contents of the destination operand and stores the result in the destination. OR is a
common logical instruction and is most often used to set one or more bits to 1.

Example:

If D3 contains $1007 and D7 contains $0FF0, then after

OR.W D3, D7

44 4 68000 Assembly Language Programming

D7 contains S1FF7. This is calculated as

D3 = $1007 = 00010000000001 1 1
D7 = $0FF0 = 00001 1111111 0000
D7 = $1FF7 = 0001111111110111

ORI — Inclusive OR
Immediate

Syntax:
ORI.s #<data>,<ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

0 0 0 0 0 0 0 0 Size
Mode Register

Size field: 00 = byte 01= word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction is used to OR the immediate data to the destination operand; storing the
result is stored in the destination.

Example:

If the long word at the label FLAGS contains S8F77F010, then after

ORI #10000001, FLAGS

FLAGS contains S8F77F011 and the N flag is set.

Descriptions of Individual MC68000 Instructions 445

ORI to CCR — Inclusive OR Immediate
To Condition Codes

Syntax:

ORI #<data>,CCR

Instruction Format:

15 14
13 12 11 10

9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 o
0 0 0 0 0 0 0 0

Byte
Data

Condition Codes:

N Takes value of bit 3 of immediate data

Z Takes value of bit 3 of immediate data

V Takes value of bit 3 of immediate data

C Takes value of bit 3 of immediate data

X Takes value of bit 3 of immediate data

Description:

This instruction logically ORs the condition codes with the immediate data.

Example:

If the N flag is set and all others are clear, then after

ORI #$1F, CCR

all of the flags are set.

OR to SR — Inclusive OR Immediate

To Status Register (Privileged)

Syntax:

ORI #<data>,SR

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 o 0 0 1 I 0

o I

1 1 1 1 0 0
Word Data

Condition Codes:

N Takes value of bit 3 of immediate data

Z Takes value of bit 3 of immediate data

446 68000 Assembly Language Programming

V Takes value of bit 3 of immediate data

C Takes value of bit 3 of immediate data

X Takes value of bit 3 of immediate data

Description :

This instruction logically ORs the immediate data with the data in the status register (SR).

Note that this is a privileged instruction; your attempt to execute it from a user-mode
program will cause exception processing through the privilege violation vector.

Example:

If the supervisor bit is set, the Z flag is set, and the interrupt mask is 000, then after

ORI #$0700, SR

the status register contains $2704 (supervisor bit set, interrupt mask is 1 1 1 , and the Z flag is
set).

PACK — Pack BCD (MC68020 only)

Syntax:

PACK -(An), - (Ay), #<data>
PACK Dn, Dm, #<data>

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0
Destination

Register*

1 0 1 0 0 R/M
Source

Register*
16-Bit Extension:Adjustment

R/M field: 0 = data register to data register
1 = memory to memory

*lf R/M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode.

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction converts two bytes of data into a single byte of packed binary-coded
decimal data. The instruction adds the immediate word data to the two bytes and moves
bits 11-8 and 3-0 to bits 7-0 of the destination. Note that the source is two bytes long while
the destination is a single byte; as a result, when using the address register mode, the
processor decrements the source by two but decrements the result by one.

Descriptions of Individual MC68000 Instructions 447

With this instruction, you can convert a string of ASCII or EBCDIC data into a packed
decimal string for manipulation with the various BCD instructions. To unpack the BCD string
back into an ASCII string, use the UNPCK instruction.

Example:

If DO contains the word $3539 (which is ASCII for "59"), then after
PACK DO, D1,#0

Dl contains the byte $59.

PEA — Push Effective Address

Syntax:
PEA <ea>

where <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) X (d16,PC)

X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
(An)+ X ([bd,An],Xn,od) X (bd,PC,Xn) -(An)

X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

Instruction Format:

15 14 13 12 11
10

0 1 0 0 1 0 0 0 0

1 I

Effective Address
Mode

Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction calculates an absolute address based on the given effective address and

pushes that 32-bit value onto the stack. Note that the value put on the stack is an address,
not the value at that address.

This instruction is used to evaluate addresses that may be unknown at assembly time, as

would be the case with position-independent code (code that uses no absolute addresses). Refer
also to the instruction LEA.

Example:

Your assembler has determined that the label VAL1 is $ 126 bytes away from the extension
word following this PEA instruction:

44 8 68000 Assembly Language Programming

PEA (VAL1,PC)

At run time, this instruction is located at address $1000. The processor computes the
absolute address of VAL1 as $1126 and pushes this value (as $00001126) onto the stack.

RESET — Reset External Devices

(Privileged)

Syntax:
RESET

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tells the processor to raise its output signal RESET, notifying external
devices to reset themselves to their initial states. Nothing significant happens to the
processor, and it continues with the next instruction. This instruction is privileged; if you

attempt to execute it from a user-mode instruction, it will cause exception processing.

Example:
Following

RESET

all external devices reset their internal state.

ROL/ROR — Rotate

Syntax:
ROR.s
ROR.s
ROR
ROL.s
ROLs
ROL

Dn, Dm
#<data>, Dn
<ea>
TDn, Dm
#<data>, Dn
<ea>

Descriptions of Individual MC68000 Instructions 449

where <ea> is

Dn
An
(An)
(An)+ -(An)

(d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .s is .B, .W, or .L.

Instruction Format:

(Register)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 Count
Register dr Size i/r 1 1

Register

IMemory)

1 1 1 0 0 1 1
dr

1 1 Effective Address
Mode

Register Count/Register field: if i/r = 0, immdediate data
if i/r = 1 , data register

dr field: 0 = right 1 = left
Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Cleared

C Set if last bit rotated out of operand was set, cleared otherwise
X Unaffected

Description:

This instruction rotates the bits of the operand either left or right. When the operand is a

register, you can specify the number of bits to rotate through an immediate value (1-8) or
through another data register (value 0-63). For operands in memory, you are restricted to a
rotate of one bit; memory operands are restricted to 16-bit values, also.

For the ROL instruction, the processor shifts the bits to the left. As bits leave the

high-order bit, the processor moves them into both the low-order bit and the Carry bit. This is
illustrated as follows:

c
Operand

For the ROR instruction, the processor shifts the bits to the right. As bits leave the

low-order bit, the processor moves them into the high-order bit as well as the Carry bit. This is
illustrated on the next page.

450 68000 Assembly Language Programming

Operand

Example:

If the low-order byte of DO contains $A7, then after

ROL #3, DO

DO contains $3D and the C bit is set.

ROXL/ROXR — Rotate With Extend

Syntax:
ROXR.s
ROXR.s
ROXR
ROXLs
ROXLs
ROXL

Dn, Dm
#<data>, Dn
<ea>
Dn, Dm
#<data>, Dn
<ea>

where <ea> is

Dn
An

X (An)
X (An)+
X -(An)
X (d16,An)

(d8,An,Xn)
(bd,An,Xn)
([bd,An,Xn],od)
([bd,An],Xn,od)
xxx. L
xxx. L

#<data>
(d16,PC)
(d8,PC,Xn)
(bd,PC,Xn)
[(bd,PC,Xn),od]
[(bd,PC),Xn,od]

and where .s is .B, .W or .L.

Instruction Format:

(Register) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
Count/
Register dr S

ze

i/r
1 0 Register

(Memory)
15 14 13 12 11

10
9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 0
dr

1 1 Effective Address Mode

Register Count/Register field: if i/r is 0, immediate data
if i/r is 1 , data register

dr field: 0 = right 1 = left
Size field: 00 = byte 01 = word 10 = Long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise
V Cleared

Descriptions of Individual MC68000 Instructions 451

C Set if last bit rotated out of operand was set, cleared otherwise; set to the value
of X for a rotate of zero

X Set if last bit rotated out of operand was set, cleared otherwise; unaffected for
a rotate of zero

Description:

These instructions rotate the bits of the operand either left or right. When the operand is in

a register, you can specify the number of bits to rotate through an immediate value (l -8) or
through another data register (value 0-63). For operands in memory, you are restricted to a
rotate of one bit; memory operands are restricted to 16-bit values, also.

These instructions differ from the ROL and ROR instructions in that they include the
Extend (X) flag in the Rotate operation and can thus be used as part of multiprecision rotates
(involving operands longer than 32 bits).

The ROXR instruction shifts the bits of the operand to the right. As bits leave the least
significant bit, the processor moves them into both the Carry (C) and X flags. The processor
moves the previous contents of the X flag into the most significant bit of the operand. This is
illustrated as follows:

X
Operand

The ROXL instruction shifts the bits of the operand to the left. The processor moves the X
flag into the least significant bit of the operand and moves the bit shifted out of the most
significant bit into both the X and C flags. This is illustrated as follows:

Operand
X

Example:

You have a four-word datum in memory, pointed to by AO, which you want to rotate one
bit to the left. The following instructions will perform this function:

ANDI.B #OF, CCR ; clear extend flag
ROXLW (AO) ; rotate the 4 words
ROXLW (2,A0)
ROXLW (4,A0)
ROXLW (6,A0)
BCC NOWRAP ; rotate msb to Isb?
BSET.W #0, (AO) ; if so, then set Isb

NOWRAP:

452 68000 Assembly Language Programming

RTD — Return and Deallocate Parameters

(MC68010, MC68012, MC68020)

Syntax:
RTD #<data>

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i|o|o|i|i|ilo|o|o|o

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction pulls the long word from the stack and moves it into the program counter.

After this is done, the processor addresses the sign-extended 16-bit immediate data to the
stack pointer. This instruction provides a handy means of returning from a subroutine
that required arguments passed on the stack. Note that there is no JSR or BSR instruction
that automatically pushes parameters onto the stack prior to the call. You must do this
manually with the MOVE instruction.

This instruction is not available on the MC68000 and MC68008.

Example:

If a subroutine FUNC1 requires that its caller push four long words to the stack prior to
the JSR FUNC1 call, then at the end of FUNC1, after

RTD #$10

the function returns control to its caller and removes the four long words from the stack.

RTE — Return From Exception
(Privileged)

Syntax:
RTE

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1

Descriptions of Individual MC68000 Instructions 453

Condition Codes:

N Set according to stacked status word

Z Set according to stacked status word

V Set according to stacked status word

C Set according to stacked status word

X Set according to stacked status word

Description:

This instruction restores the state of the processor at the completion of an exception
handler routine by pulling the stack frame from the supervisor stack. As a minimum, the
status register and program counter are on the stack. Other data may also be present and
removed by this instruction: the contents of the stack as well as internal processor states
dictate how much data to remove. (Refer to Chapter 14 for details on stack frame
contents.)

Note that this instruction is privileged; if you attempt to execute it from a user-mode
program, the processor will trap through the privilege violation vector.

Example:

At the end of an interrupt exception handler on the MC68020, the instruction

RTE

pulls a format $0 stack frame from the supervisor stack, restoring the former status
register (SR) and program counter (PC).

RTM — Return from Module

Syntax:
RTM Rn

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0|0|0|0|011|1|0|1|1|0|0| D/aJ Register

Condition Codes:

N Set according to stacked status word

Z Set according to stacked status word

V Set according to stacked status word

C Set according to stacked status word

X Set according to stacked status word

Description:

This instruction loads a previously saved module state from the top of the stack. The
processor state (program counter, status word, and so on) come from the stacked data.

454 68000 Assembly Language Programming

This instruction is the complement of the CALLM instruction.

Since this instruction is uncommon and requires external hardware, we will not go into
further detail about it.

RTR — Return and Restore Condition Codes

Syntax:
RTR

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 1 I 0 I 0 I 1 I 1 I 1 I 0 I 0 I 1 I 1 I 1 I o I o I iTTl

Condition Codes:

N Set according to value from stack

Z Set according to value from stack

V Set according to value from stack

C Set according to value from stack

X Set according to value from stack

Description:

This instruction pulls a word from the stack and moves the five least significant bits into

the condition-code register. It then pulls the long word from the stack and moves it into
the program counter. Program execution continues at the new PC.

This instruction (not privileged) functions similarly to the RTE instruction (privileged),
except that RTR ignores the high byte of the stacked word while RTE restores the entire status
register.

The MC68000 processors don't have a special call subroutine instruction for automati-
cally saving the condition code registers. Subroutines that use the RTR instruction should

explicitly save the condition codes upon entry with the instruction MOVE CCR-(SP).

Example:

The function SUB1 promises not to disturb the condition codes. To achieve this, it will
execute:

SUB1: MOVE CCR, -(SP) ; save CCR

; — body of subroutine

RTR ; return and restore CCR

RTS — Return From Subroutine

Syntax:
RTS

Descriptions of Individual MC68000 Instructions 455

Instruction Format:

15 14 13 12
11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction pulls the long word from the stack and moves it into the program counter.

Program execution continues at the new program counter. This instruction is the com-
plement to the JSR and BSR instructions.

Example:

If the instruction at address $20000 was JSR SUB1, then at the end of SUB1 after
RTS

the value $20004 is pulled from the stack, and program execution continues at that
address.

SBCD — Subtract BCD With Extend

Syntax:
SBCD Dn, Dm
SBCD -(An), -(Am)

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 | , 0

Condition Codes:

N Undefined

Z Unchanged if result is zero, cleared otherwise
V Undefined

C Set if a borrow was generated, cleared otherwise

X Set if a borrow was generated, cleared otherwise

Description:

This instruction subtracts both the contents of the source operand and the value of the

Extend (X) flag from the contents of the destination operand. The subtraction is per-

456 68000 Assembly Language Programming

formed using binary-coded decimal (BCD) arithmetic. The operands must either both be
data registers or both be found in memory using address register indirect with predecre-

ment. The size of the operation is restricted to a single byte; however, since the X flag is
utilized, you can use several consecutive SBCD instructions to implement multiprecision
BCD arithmetic.

Example:

If D5 contains $57 (BCD value 57), D3 contains $43 (BCD value 43), and X is set, after

SBCD D3, D5

D5 contains $13.

Sec — Set According to Condition

Syntax:
See <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X

-(An)
X xxx. L [(bd,PC,Xn),od]

X (d16,An) X xxx. L [(bd,PC),Xn,od]

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Condition 1 1
Effective Address

Mode
Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests the state of the specified condition. If the condition is true, the
processor sets the byte at <ea> to all ones; if the condition is false, the processor sets the
byte to all zeros. The conditions are listed in Table 21-3.

Example:

If the Carry and Zero flags are set, then after

SLS LOW_VAL

the byte at LOW_VAL is true (all ones).

Descriptions of Individual MC68000 Instructions 457

Table 21 -3. CC Conditional Tests

Mnemonic(cc) Condition Condition Field Test

T True
0000 1

F False 0001 0
HI High 0010 C A Z
LS Low or same 001 1

C v Z
CC Carry clear 0100 C
CS Carry set 0101

C

NE Not equal 01 10 z
EQ

Equal 01 1 1 z
VC Overflow clear 1000 V
VS Overflow set 1001 V
PL Plus 1010 N

Ml Minus 1001 N

GE Greater or equal 1 100 (N A V) v (N A V)
LT Less than 1 101 (N A V) v (N A V)

GT Greater than 1 1 10 (N A V A Z) v (N A V A Z)
LE Less or equal 1111 Z v (N A V) v (N A V)

STOP — Load Status Register and Stop

(Privileged)

Syntax:
STOP #<data>

Instruction Format:

15 14 13 12 11 10 9

I 0 I 1 I 0 I 0 I 1 I 1 I 1

0

13

Condition Codes:

N Set according to immediate data

Z Set according to immediate data

V Set according to immediate data

C Set according to immediate data

X Set according to immediate data

Description:

This instruction loads the 16-bit immediate data into the status register and stops
instruction execution. The processor will not resume execution until it receives an
interrupt of high enough priority or else an external reset. Note that if the trace bit is set
when the instruction begins, the processor will process the exception rather than stop.

This is a privileged instruction; if you attempt to execute this instruction from a user-mode
program, exception processing will result.

Example:

After the instruction

STOP #$300

the processor stops execution. An interrupt at priority 4 or higher will restart the
processor.

458 68000 Assembly Language Programming

SUB — Subtract Binary

Syntax:
SUB.s <ea>, Dn
SUB.s Dn, <ea>

where for dst=Dn <ea> is

X Dn
X (d8,An,Xn) X #<data>

X An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An)
X xxx. L X [(bd,PC,Xn),od]

X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where for src^ Dn <ea> is

Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC(Xn)
X

-(An)
X xxx.L [(bd,PC,Xn),od]

X (d16,An) X xxx.L [(bd,PC),Xn,od]

and .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1
Data

Op-Mode
Effective Address

Register
Mode

Register

Op-Mode field: Byte Word Long Operation
000 001 010 (<ea>)-(<Dn>)— • <Dn>
100 101 110 (<Dn>)-(<ea>)— <ea>

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if an overflow is generated, cleared otherwise

C Set if a borrow is generated, cleared otherwise

X Set if a borrow is generated, cleared otherwise

Description:

This instruction subtracts the source operand from the destination operand and stores the
result in the destination. At least one of the operands must be a data register. Note that

when the source is an address register, you can only subtract word and long-word values;
in all other modes, you can subtract byte, word, and long word values.

Example:

If DO contains $2300 and the word at the label BALANCE contains $2500, then after

SUB.W DO, BALANCE

BALANCE contains $200.

Descriptions of Individual MC68000 Instructions 459

SUBA — Subtract Address

Syntax:
SUBA.s <ea>, An

where <ea> is

X Dn X (d8,An,Xn) X #<data>
X An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An) X xxx. L X [(bd,PC,Xn),od]
X (d16,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .W or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1
Data

Op-Mode
Effective Address

Register
Mode

Register

Op-Mode field: Word Long Operation
011 111 (<ea>)-(<An>)^ <An>

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction subtracts a word or long-word operand from the value in an address
register. The result in the address register is always 32 bits long; the processor sign extends

16-bit operands to 32 bits before performing the subtraction.

Example:

If AO contains $20000 and REC_SIZ is a constant defined as $220, then after

SUB.W REC_SIZ, AO

AO contains $1FDE0.

SUBI — Subtract Immediate

Syntax:

SUBI.s #<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

46 0 68000 Assembly Language Programming

X (An) X ([bd(An,Xn].od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Effective Address

0 0 0 0 0 1 0 0 Size
Mode Register

Size field: 00 = byte 01= word 10= long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if an overflow is generated, cleared otherwise

C Set if a borrow is required, cleared otherwise

X Set if a borrow is required, cleared otherwise

Description:

This instruction subtracts the immediate data from the destination operand and stores the
difference in the destination. The size of the operation matches the size of the immediate
data.

Example:

If AO points to a long word containing the value $12340000, then after

SUBI.L #1,(A0)

the word at AO contains S1233FFFF.

SUBQ— Subtract Quick

Syntax:
SUBQ.s #<data>, <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
X An X (bd,An,Xn) (d16,PC)
X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X -(An) X xxx.L [(bd,PC,Xn),od]
X (d16,An) X xxx.L [(bd,PC),Xn,od]

where .s = .B, .W, or .L.

Descriptions of Individual MC68000 Instructions 461

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Data 1 Size
Effective Address

Mode Register

Data field: Three bits of immediate data, 0, 1-7 representing a range of 8,
1 to 7 respectively.

Size field: 00 = byte 01 = word 10 = long

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Set if an overflow is generated, cleared otherwise

C Set if a borrow is required, cleared otherwise

X Set if a borrow is required, cleared otherwise

Description:

This instruction subtracts the immediate data from the destination operand. Unlike SU BI,

the value of the immediate data is 1-8 and is part of the instruction word rather than an
extension word. When the destination is an address register, the entire register is used,
regardless of the operation size.

Example:

If DO contains $400, then after

SUBQ.W #4, DO

DO contains $3FC.

SUBX — Subtract With Extend

Syntax:
SUBX.s Dn, Dm
SUBX.s -(An), -(Am)

where .s = .B, .W, or .L.

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1
Destination

Register*

1 Size 0 0
R/M

Source

Register*
Size field: 00 = byte 01 = word 10 = long
R/M field: 0 = data register to data register 1 = memory to memory
*lf R/M = 0, specifies a data register

If R/M = 1, specifies an address register for the predecrement addressing mode.

462 68000 Assembly Language Programming

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Unchanged if the result is zero, cleared otherwise

V Set if an overflow is generated, cleared otherwise

C Set if a borrow was generated, cleared otherwise

X Set if a borrow was generated, cleared otherwise

Description:

This instruction subtracts both the contents of the source operand and the value or the
Extend (X) flag from the contents of the destination operand. The operands must either
both be data registers or both be found in memory using address register indirect with

predecrement.
Example:

If DO contains $2000300, Dl contains $4000300, and the Extend bit is set, then after

SUBX DO, D1

Dl contains $1 FFFFFF.

SWAP — Swap Register Halves

Syntax:
SWAP Dn

Instruction Format:

15
14

13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0
Data

Register

Condition Codes:

N Set if bit 31 of result is set, cleared otherwise

Z Set if result is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction swaps the high- and low-order 16-bit values in the given data register.

Example:

If DO contains $12345678, then after
SWAP DO

DO contains $56781234.

Descriptions of Individual MC68000 Instructions 463

TAS — Indivisible Test and Set

Syntax:
TAS <ea>

where <ea> is

X Dn X (d8,An,Xn) #<data>
An X (bd,An,Xn) (d16,PC)

X (An) X ([bd,An,Xn],od) (d8,PC,Xn)
X (An)+ X ([bd,An],Xn,od) (bd,PC,Xn)
X

-(An) X xxx. L [(bd,PC,Xn)(od]
X (d16,An) X xxx. L [(bd,PC),Xn.od]

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1
Effective Address

Mode
Register

Condition Codes:

N Set if high-order bit of result is set, cleared otherwise
Z Set if result is zero, cleared otherwise

V Cleared

C Cleared

X Unaffected

Description:

This instruction tests the byte-sized operand, sets the N and Z flags appropriately, and
then sets the high-order bit (bit 7) of the operand to 1 . The processor uses a read-modify-
write bus cycle; this means that, in a multiprocessor system, no other processor can gain
control of the bus in between the time that your processor tests the operand and the time it
sets the operand. This instruction is useful for locking data commons and device accesses
in multiprocessor systems.

Example:

If the byte at the label LOCK contains $80, then after

TAS LOCK

LOCK still contains $80 and the N flag is set.

TRAP — Trap Through Exception Table

Syntax:
TRAP #<vector>

Instruction Format:

15 14
13 12 11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 Vector

46 4 68000 Assembly Language Programming

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction pushes the program counter (pointing at the instruction following TRAP)
followed by the status register. It then moves the long word from the exception table vector

requested by the immediate data. Table 14-1 shows the vector table entries associated
with the TRAP instruction.

Note that after the TRAP is executed, the processor is operating in supervisor mode.

Example:

After the following instruction,

TRAP #3

the processor begins execution at the address specified by trap vector 3 (exception vector
35, offset $8C in the vector table).

TRAPcc — Trap on Condition

(MC68020 only)

Syntax: TRAPcc

TRAP'' #<data>

Attribute size: word, long

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 Condition 1 1 1 1 1 Mode

Operand

Mode field: 010 = word operand 011 = Long word operand 100 = no operand

Condition Codes:

N Unaffected

Z Unaffected

Descriptions of Individual MC68000 Instructions 465

V Unaffected

C Unaffected

X Unaffected

Description:
This instruction tests the specified condition and if true, it traps through exception vector
7 (offset $1C). If the condition is false, the program continues execution normally. The

conditions possible are shown in Table 21-4.

The instruction may optionally specify a word or long word of immediate data; this data
has no significance to the processor, and can be used for any purpose. The exception handler
can access this data as an offset to the stacked program counter. (The stacked program counter
is the address of the next instruction, not the immediate data.)

This instruction is available only on the MC68020.

Example:

If the Carry bit is set, then after

TRAPCS

the processor begins exception processing.

Table 21 -4. Trapcc Conditional Tests

Mnemonic(cc) Condition Condition Field Test

HI High 0010 C A Z LS Low or same 001 1 C v Z
CC Carry clear 0100 C
CS Carry set 0101 C
NE Not equal 01 10 z
EQ

Equal
01 1 1 z

VC Overflow clear 1000 V
VS Overflow set 1001 V
PL Plus 1010 N
Ml Minus 101 1 N

GE Greater or equal 1 100

(N A

V) v (N a V)
LT Less than 1 101

(N A

V) v (N a V)
GT Greater than 1 110

(N A V A Z) v (N A V " I) LE Less or equal 1111 Z v (N a V) v (N A V)
F Never true

0001
0

T Always true 0000 1

466 68000 Assembly Language Programming

TRAPV — Trap on Overflow

Syntax:
TRAPV

Instruction Format:

15 14 13 12 11
10

9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1

° I

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction tests the state of the Overflow (V) flag and traps through exception table
vector 7 (offset $ 1 C) if the flag is set. If the V flag is clear, program execution continues
normally.

Example:

If the V flag is set, then after

TRAPV

the processor begins exception processing.

TST — Test an Operand

Syntax:
TST.s <ea>

where <ea> is
X Dn X (d8,An,Xn)

*<data>

An X (bd,An,Xn) X (d16,PC)
X (An) X ([bd,An,Xn],od) X (d8,PC,Xn)
x (Ar.)+ X ([bd,An],Xn,od) X (bd,PC,Xn)
X

-(An)
X xxx. L X [(bd,PC,Xn),od]

X (dl6,An) X xxx. L X [(bd,PC),Xn,od]

and where .s = .B, .W, or .L.

Instruction Format:

15 14 13 12
11

10
9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 Size Effective Address
0 Mode

Register
Size field: 00 = byte 01= word 10 = long

Descriptions of Individual MC68000 Instructions 467

Condition Codes:

N Set if high-order bit of operand is set, cleared otherwise
Z Set if operand is zero, cleared otherwise
V Cleared

C Cleared

X Unaffected

Description:

This instruction tests the operand and sets the Negative (N) and Zero (Z) bits accordingly.

The operand remains unchanged.

Example:

If the long word contained in DO is $00000000, then after

TST.L DO

the Z flag is set.

UNLK — Unlink and Deallocate Stack

Syntax:
UNLK An

Instruction Format:

15 14
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 1
Address

Register

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction loads the stack pointer with the long word stored in the given address
register. A long word at the new stack pointer is then pulled and stored in the same address

register. When executed, this instruction removes the frame created by the LINK instruc-
tion. Refer to that instruction for a more detailed discussion and example.

UNPK — Unpack BCD (MC68020 only)

Syntax:

UNPK -(An), -(Am), #<data>
UNPK Dn, Dm, #<data>

46 8 68000 Assembly Language Programming

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Destination

Register*

1 1 0 0 0
R/M Source

Register* R/M field: 0 = data register to data register
1 = memory to memory

*lf R/M = 0, specifies a data register
If R/M = 1, specifies an address register for the predecrement addressing mode.

Condition Codes:

N Unaffected

Z Unaffected

V Unaffected

C Unaffected

X Unaffected

Description:

This instruction unpacks a byte of data containing two BCD digits into two bytes of data.

It then adds the adjustment to the two-byte result. This instruction is unusual in that its
source is a single byte but its destination is a two-byte value.

UNPK allows you to convert a BCD value into separate bytes, and, with the adjustment,
into ASCII or EBCDIC notations. This instruction is the complement of the PACK instruction
and is implemented only on the MC68020.

Example:

If the byte pointed to by AO (after decrement) contains $45, then after

UNPK -(AO), -(A 1), #$30

Al points to a word containing $3435 (ASCII for "45").

VI

Appendices

The following pages summarize the MC68000 instruction set. Appendix A lists the

instructions and op-codes alphabetically. Appendix B lists the instructions numerically by
op-code.

469

A

Alphabetic Listing of Instructions

Mnemonic Description Opcode

ABCD Add decimaL with extend 1100
xxxl 0000 xxxx

ADO Add 1101 xxxx xxxx xxxx
ADDA Add address 1101 xxxx xxxx xxxx
ADDI Add immediate 0000 0110 xxxx xxxx
ADDQ Add quick 0101 xxxO xxxx xxxx ADDX Add extended 1101 xxxl xxOO xxxx
AND AND Logical 1100

xxxx xxxx xxxx
AND I AND imnediate 0000 0010 xxxx xxxx
ANDI AND immediate to CCR 0000 0010 0011 1100
AND I AND immediate to SR 0000 0010 0111 1100
ASL Arithmetic shift Left 1110 xxxl xxxO Oxxx
ASR Arithmetic shift right 1110 xxxO xxxO Oxxx

Bcc

Branch 0110 xxxx xxxx xxxx
BCHG Test bit and change 0000 xxxl 01 XX xxxx
BCLR Test bit and cLear 0000 0001 10xx xxxx BFCHG Test bit fieLd and change 1110 1010 11 xx xxxx 0000 xxxx xxxx xxxx
BFCLR Test bit field and clear 1110

1100 11xx xxxx 0000 xxxx xxxx xxxx
BFEXTS Extract signed bit field 1110 1011 11 xx xxxx Oxxx xxxx xxxx xxxx BFEXTU Extract unsigned bit field 1110

1001 11 xx xxxx Oxxx xxxx
xxxx

xxxx BFFFO Find first one in bit field 1110 1101 11 xx xxxx Oxxx xxxx xxxx xxxx BFINS Insert bit field 1110 1111 11 xx xxxx Oxxx xxxx xxxx xxxx
BFSET Set bit field

1110
1110 11xx xxxx 0000 xxxx xxxx xxxx

BFTST Test bit field 1110 1000 11 xx xxxx 0000 xxxx xxxx xxxx
BKPT Breakpoint 0100 1000 0100 1xxx

471

47 2 68000 Assembly Language Programming

Mnemonic Description Opcode

BSET Test bit and set 0000 xxxl 11 xx xxxx
BSR Branch to subroutine 0110 0001 xxxx xxxx DTCT Test bit 0000 xxxl OOxx xxxx
CALLM Call module 0000 0110 11xx xxxx
CAS Compare and swap one operand 0000 1xx0 11 xx xxxx 0000 OOOx xxOO Oxxx
CAS2 Compare and swap two operands 0000 1xx0 1111 1100 xxxx OOOx xxOO Oxxx xxxx OOOx xxOO Oxxx
Crt< Check against bounds 0100 xxxx xxxx xxxx
CHK2 Check against two bounds 0000 OxxO 11 xx xxxx xxxx 1000 0000 0000
CLR Clear operand 0100 0010 xxxx xxxx
OP Compare 1011 xxxx xxxx xxxx
CMP2 Compare against two bounds 0000 OxxO 11 xx xxxx xxxx 0000 0000 0000
CMPA Compare address 1011 xxxx xxxx xxxx
CMPI Compare immediate 0000 1100 xxxx xxxx
CMPM Compare memory 1011 xxxl xxOO 1xxx
DBcc Test, decrement and branch r\A rvi 44on #• 0101 xxxx 1100 1xxx
DIVS Signed divide 1000 xxxl 11 xx xxxx
DIVSL Long signed divide 0100 1100 Olxx xxxx Oxxx 1x00 0000 Oxxx
DIVU Unsigned divide 1000 xxxO 11 xx xxxx
DIVUL Long unsigned divide 0100 1100 Olxx xxxx Uxxx UxuU UUuu uxxx
EOR Exclusive OR 1011 xxxx xxxx xxxx
EORI Exclusive OR immediate 0000 1010 xxxx xxxx
EORI Exclusive OR immediate to CCR 0000 1010 0011 1100
EORI Exclusive OR immediate to SR 0000 1010 0111 1100
EXG Exchange registers 1100 xxxl xxxx xxxx
EXT Extend sign 0100 1000 xxOO Oxxx
EXTB Extend sign of byte to long 0100 1001 xxOO Oxxx
ILLEGAL Illegal instruction 0100 1010 1111 1100
JMP

Jump
0100 1110 11xx xxxx

JSR Jump to subroutine 0100 1110 10xx xxxx
LEA Load effective address 0100 xxxl 11 xx xxxx
LINK Link and allocate 0100 1x10 OlOx xxxx
LSL Logical shift left 1110 xxxl xxxx xxxx
LSR Logical shift right 1110 xxxO xxxx xxxx
MOVE Move data OOxx xxxx xxxx xxxx
MOVE Move from CCR 0100 0010 11xx xxxx
MOVE Move from SR 0100 0000 11 xx xxxx
MOVE Move to CCR 0100 0100 11xx xxxx
MOVE Move to SR 0100 0110 11 xx xxxx
MOVE Move user stack pointer 0100 1110 0110 xxxx
MOVEA Move address OOxx xxxO Oxxx xxxx
MOVEC Move control register 0100 1110 0111 101 x xxxx xxxx xxxx xxxx
MOVEM Move multiple registers 0100 1x00 1xxx xxxx
MOVEP Move peripheral 0000 xxxx xxOO 1xxx
MOVEQ Move quick 0111 xxxO xxxx xxxx
MOVES Move address space 0000 1110 xxxx xxxx xxxx xOOO 0000 0000
MULS Signed multiply 1100 xxxl 11 xx xxxx
MULSL Long signed multiply 0100 1100 OOxx xxxx Oxxx 1x00 0000 Oxxx
MULU Unsigned multiply 1100 xxxO 11 xx xxxx
MULUL Long unsigned multiply 0100 1100 OOxx xxxx Oxxx 0x00 0000 Oxxx
N3CD Negate decimal with extend 0100 1000 OOxx xxxx
NEG Negate 0100 0100 xxxx xxxx
NEGX Negate with extend 0100 0000 xxxx xxxx
NOP No operation 0100 1110 0111 0001
NOT Logical complement 0100 0110 xxxx xxxx
OR Inclusive OR 1000 xxxx xxxx xxxx
ORI Inclusive OR immediate 0000 0000 xxxx xxxx
ORI Inclusive OR immediate to CCR 0000 0000 0011 1100
ORI Inclusive OR immediate to SR 0000 0000 0111 1100

Alphabetic Listing of Instructions 473

Mnemonic Description Opcode

rftLK. raCK 10 OLD
PPA rUoll CI ICLLIVC aUJI Cm
ixuoC 1 ncbci CaICmIcii ucviv.tr:>

IVJlCllC IC 1 L
Pn+ate 1 »f t uith ovfpnH rvjlaic LCI I Willi CAICTIU

pop Rn+a+ia rinht ftUldic 1 i yi i l DORY nuiaic i lyni wiiri cxicriu
DTT>

K 1 U kciuiti au ucaiiuuaic
RTE Return from exception
DTM
k in Ketum Trofn rnuuuic
RTR Rptum and rpstorp CCR

RTS Return from subroutine
SBCD Subtract decimal with extend
Sec Set according to codes
STOP Load SR and stop processor
SUB

Subtract

SUBA Subtract address
SUBI Subtract imnediate

SUBQ Subtract quick
SUBX Subtract with extend

SWAP Swap register halves
TAS Test and set operand
TRAP Trap through vector table
TRAPcc Trap on condition
TRAPV Trap on overflow
TST Test operand
UNLK Unlink stack
UNPK Unpack BCD

1000 xxxl 0100 xxxx
0100 1000 01 xx xxxx
0100 1110 0111 0000
1110 xxxl xxxx xxxx
1110 xxxl xxxx xxxx
1110 xxxO xxxx xxxx
1110 xxxO xxxx xxxx
0100 1110 0111 0100
0100 1110 0111 0011
0000 0110 1100 xxxx
0100 1110 0111 0111
0100 1110 0111 0101
1000 xxxl 0000 xxxx
0101 xxxx 11 xx xxxx
0100 1110 0111 0010
1001 xxxx xxxx xxxx

1001 xxxx xxxx xxxx
0000 0100 xxxx xxxx
0101 xxxl xxxx xxxx
1001 xxxl xxOO xxxx
0100 1000 0100 Oxxx
0100 1010 11xx xxxx
0100 1110 0100 xxxx
0101 xxxx 1111 1xxx
0100 1110 0111 0110
0100 1010 xxxx xxxx
0100 1110 0101 1xxx
1000 xxxl 1000 xxxx

B

Numeric Listing of Instructions

Mnemonic Description Opcode

ORI Inclusive OR iirmediate to CCR 0000 0000 0011 1100
0RI Inclusive OR inmediate to SR 0000 0000 0111 1100
ORI Inclusive OR irrmediate 0000 0000 xxxx xxxx
BCLR Test bit and clear 0000 0001 10xx xxxx
ANDI AND irrmediate to CCR 0000 0010 0011 1100
ANDI AND irrmediate to SR 0000 0010 0111 1100
ANDI AND irrmediate 0000 0010 xxxx xxxx
SUBI Subtract irrmediate 0000 0100 xxxx xxxx
RTM Return from module 0000 0110 1100 xxxx
CALLM Call module 0000 0110 11 xx xxxx
ADDI Add irrmediate 0000 0110 xxxx xxxx
CMF2 Compare against two bounds 0000 OxxO 11xx xxxx xxxx 0000 0000 0000
CHK2 Check against two bounds 0000 OxxO 11xx xxxx xxxx 1000 0000 0000
EORI Exclusive OR inmediate to CCR 0000 1010 0011 1100
EORI Exclusive OR inmediate to SR 0000 1010 0111 1100
EORI Exclusive OR irrmediate 0000 1010 xxxx xxxx
CMPI Compare irrmediate 0000 1100 xxxx xxxx
MOVES Move address space 0000 1110 xxxx xxxx xxxx xOOO 0000 0000
CAS2 Compare and swap two operands 0000 1xx0 1111 1100 xxxx OOOx xxOO Oxxx xxxx OOOx xxOO Oxxx
CAS Compare and swap one operand 0000 1xx0 11xx xxxx 0000 OOOx xxOO Oxxx
BTST Test bit 0000 xxxl OOxx xxxx

475

47 6 68000 Assembly Language Programming

Mnemonic Description
Opcode

BCHG Test bit and change 0000 xxxl 01 xx xxxx
BSET Test bit and set 0000 xxxl 11xx xxxx
MOVEP Move peripheral 0000 xxxx xxOO 1xxx
MOVEA Move address OOxx xxxO Oxxx xxxx
MOVE Move data OOxx xxxx xxxx xxxx
MOVE Move from SR 0100 0000 11xx xxxx
INEGX Negate with extend 0100 0000 xxxx xxxx
MOVE Move from CCR 0100 0010 11 xx xxxx
CLR Clear operand 0100 0010 xxxx xxxx
MOVE Move to CCR 0100 0100 11 xx xxxx
NEG Negate 0100 0100 xxxx xxxx
MOVE Move to SR 0100 0110 11 xx xxxx
NOT Logical complement 0100 0110 xxxx xxxx
mCO Negate decimal with extend 0100 1000 OOxx xxxx
SWAP Swap register halves 0100 1000 0100 Oxxx
BKPT Breakpoint 0100 1000 0100 1xxx
PEA Push effective address 0100 1000 01 xx xxxx
EXT Extend sign 0100 1000 xxOO Oxxx
EXTB Extend sign of byte to long 0100 1001 xxOO Oxxx
ILLEGAL Illegal instruction 0100 1010 1111 1100
TAS Test and set operand 0100 1010 11 xx xxxx
TST Test operand 0100 1010 xxxx xxxx
MULUL Long unsigned multiply 0100 1100 OOxx xxxx Oxxx 0x00 0000 Oxxx
MULSL Long signed multiply 0100 1100 OOxx xxxx Oxxx 1x00 0000 Oxxx
DIVLL Long unsigned divide 0100 1100 Olxx xxxx Oxxx 0x00 0000 Oxx^
DIVSL Long signed divide 0100 1100 Olxx xxxx Oxxx 1x00 0000 Oxxx
TRAP Trap through vector table 0100 1110 0100 xxxx
UMX Unlink stack 0100 1110 0101 1xxx
MOVE Move user stack pointer 0100 1110 0110 xxxx
RESET Reset external devices 0100 1110 0111 0000
NOP No operation 0100 1110 0111 0001
STOP Load SR and stop processor 0100 1110 0111 0010
RTE Return from exception 0100 1110 0111 0011
RTD Return and deallocate 0100 1110 0111 0100
RTS Return from subroutine 0100 1110 0111 0101
TRAPV Trap on overflow 0100 1110 0111 0110
RTR Return and restore CCR 0100 1110 0111 0111
MOVEC Move control register 0100 1110 0111 101x xxxx xxxx xxxx xxxx
JSR Jump to subroutine 0100 1110 10xx xxxx
JMP Jurrp 0100 1110 11xx xxxx
MOVEM Move multiple registers 0100 1x00 1xxx xxxx
LINK Link and allocate 0100 1x10 010x xxxx
LSL Logical shift left 1110 xxxl xxxx xxxx
LEA Load effective address 0100 xxxl 11xx xxxx
CHK Check against bounds 0100 xxxx xxxx xxxx
ADDQ Add quick 0101 xxxO xxxx xxxx
SUBQ Subtract quick 0101 xxxl xxxx xxxx
DBcc Test, decrement and branch 0101 xxxx 1100 1xxx
TRAPcc Trap on condition 0101 xxxx 1111 1xxx
Sec Set according to codes 0101 xxxx 11 xx xxxx
BSR Branch to subroutine 0110 0001 xxxx xxxx
Bcc Branch 0110 xxxx xxxx xxxx
MOVEQ Move quick 0111 xxxO xxxx xxxx
DIVU Unsigned divide 1000 xxxO 11xx xxxx
SBCD Subtract decimal with extend 1000 xxxl 0000 xxxx
PACK Pack to BCD 1000 xxxl 0100 xxxx
UNPK Unpack BCD 1000 xxxl 1000 xxxx

Numeric Listing of Instructions 477

Mnemonic Description Opcode

DIVS Signed divide
1000 xxxl 11 XX xxxx

OR Inclusive OR 1UUU xxxx xxxx xxxx
SUBX Subtract with extend 1001 XXX 1

xxOO
xxxx

SUB Subtract
1001

xxxx xxxx xxxx
SUBA Subtract address IUU 1 xxxx xxxx xxxx
CMPM Compare memory 1 1 J I I xxxl xxOO 1xxx
PMDA LPlrA Compare address iin I xxxx xxxx xxxx

EOR Exclusive OR inn lul I xxxx xxxx xxxx
LOfnpare inn IU I I xxxx xxxx xxxx

Mi 1 1 1 PTUUJ Unsigned multiply 11m I IUU xxxO 11 vv I I XX xxxx
ABCD AHH Hprifml u/i'th pvt-pnH rVW Utb 1 IIKJ L W 1 LM CA l\J 1100 0000
MULS Signed multiply 1100 xxxl 11 XX xxxx
EXG Exchange registers

1100
XXX 1

AfX) 11m xxxx
ADOX ArH pytprvWH 1101

xxxl Ar>r> ArH 11(71 xxxx XXXX xxxx
nvvR Add address 11m I lul xxxx XXXX xxxx
DCTCT Br Ibl lest Dit neLu I I IU mm IUUU 11 vv I I XX xxxx

nrm UUUU xxxx xxxx
xxxx

drtA IU Extract unsigned bit field inn I I IU IUU I 11 vv I I XX xxxx Oxxx xxxx xxxx xxxx
DrLnu Test bit field and change mn I I IU ILTIU 11 vv I I XX xxxx mm UUUU xxxx xxxx

xxxx
RCPYTQ Extract signed bit field I I IU inn IU I I 11 vv I I XX xxxx

Oxxx xxxx
xxxx xxxx

BFCLR Test bit field and clear 1110 1100 11xx xxxx 0000 xxxx xxxx xxxx
BFFFO Find first one in bit field 1110 1101 11xx xxxx

Oxxx
xxxx xxxx xxxx

BFSET Set bit field 1110 1110 11xx xxxx 0000
xxxx

xxxx xxxx
BFINS Insert bit field 1110 1111 11 XX xxxx Oxxx xxxx xxxx xxxx
ASR Arithmetic shift right 1110 xxxO xxxO Oxxx
LSR Logical shift right 1110 xxxO xxxx xxxx
ROR Rotate right 1110 xxxO xxxx xxxx
RORX Rotate right with extend 1110 xxxO xxxx xxxx
ASL Arithmetic shift left

1110 xxxl xxxO
Oxxx ROL Rotate left 1110 xxxl xxxx xxxx

ROLX Rotate left with extend 1110 xxxl xxxx xxxx

Index

A

A-line instructions, 216
ABCD, 371
Absolute addressing, 39
ADD, 372
Add instructions

address, 373

binary, 372
binary coded decimal, 371
immediate, 374

quick, 375
with extend, 376

ADDA, 373
ADDI, 374
Addition, 62, 68, 77, 81, 132, 134, 135,

185

ADDQ, 375
Address errors, 217, 228

Address register direct addressing, 38
Address register indirect addressing, 40

with displacement, 42
with displacement and index, 44
with postincrement, 42

Address register indirect with
predecrement, 41

Address registers, 19, 21
Addressing modes, 36
ADDX, 376
Alternate function code registers, 26
ALU (arithmetic logic unit), 19
AND, 376
And instructions

immediate, 377
to the condition codes, 378
to the status register, 379

ANDI, 377
to CCR, 378
to SR, 379

Arithmetic shift, 380
Arrays, 75

multidimensional, 138
ASCII, 95

ASL, 380
ASR, 380
Assembler mnemonics, 369
Assemblers, 4

errors, 340
function, 9

types, 10 Assembly language
advantages, 6

applications, 8
format, 10

Autovectoring, 219, 235

B

Baudot, 95

Bcc, 382

BCD (binary coded decimal)
instructions, 34

BCHG, 383
BCLR, 384
BFCHG, 384
BFCLR, 386
BFEXTS, 387
BFEXTU, 388
BFFFO, 389
BFINS, 390
BFSET, 391
BFTST, 392

Binary digits, 4
Bit field instructions, 33, 197

extraction, 387, 388

insert, 390
scan, 389

test, 392

479

48 0 68000 Assembly Language Programming

Bit field instructions, continued
test and change, 385
test and set, 391
test clear, 386

Bit manipulation instructions, 32,
108

Bit test instructions

test, 397
test and change, 383
test and clear, 384
test and set, 394

Bits, 4
BKPT, 393
Boolean arithmetic instructions, 31
Branch, 382
Branch to subroutine, 396

Breakpoint Instruction, 393
Breakpoints, 218

debugging, 324
inserting, 324
precautions, 335
setting and clearing, 324

BSET, 394
BSR, 396
BTST, 397
Bubble sort, 162
Bus errors, 220, 229
Buses, 19, 201
Byte disassembly, 65

C

CAAR (cache address register), 28
Cache control, 27
CACR (cache control register), 28
Call module, 398

Call-by-name, 176
Call-by-value, 176
CALLM, 398

Carry bit, 23
CAS, 399
CAS2, 400
Case structure, 292
CCR (condition code register), 23
Check bounds, 402, 403
Checklist, 334
CHK,402
CHK2, 403

Clear, 404

CLR, 404
CMP, 405
CMP2, 408
CMPA, 406
CMPI,407
CMPM, 408

Coding, 259
Comments, 15, 54, 312
Communication devices, 202

Compare instructions
address, 406
binary, 405
bounds, 408

compare and swap, 399, 400
immediate, 407
memory, 408

Comparison, 66, 86

Complement, 442
Conditional assembly, 14
Constant definition, 12
Conversion

ASCII to decimal, 122
BCD to decimal, 124

binary to ASCII, 127

decimal to seven-segment, 119
hexadecimal to ASCII, 118, 179,

182

Coprocessor control instructions,
36

CPU (central processing unit), 19
CPU support peripherals, 203

CPU-peripheral interface, 203
Cross assemblers, 10

D

Data definition, 12
Data movement, 30, 59, 425

Data register direct addressing, 38
Data registers, 19, 21
Data space, 224
Data structures, 160, 306
DBcc, 409

DC (define constant data), 55, 122
Debugging, 259, 323
Decimal precision, 135
Device controllers, 203

Direct addressing, 37
Directives, 10, 12, 55

Divide, signed, 411
Divide, unsigned, 412
Division, 143
DIVS, 411
DIVSL, 411
DIVU, 412
D1VUL, 412

DMA (direct memory access), 206,
208

Do-until structure, 291
Do-while structure, 291
Documentation, 260, 311

importance of, 322
Documentation package, 321
DS (define storage), 56

E

EBCDIC, 95
Effective address, 36, 76, 365, 421,

447

END (end of program), 56
EOR, 414
EORl,415
EOR1 to CCR, 416
EOR1 to SR, 416

EQU (equate), 56
Errors

assembler, 340

exception processing, 341
handling, 262
initialization, 335

input/ output, 339
looping, 336
processing, 337
string manipulation, 339

Example format, 53
Exception initialization, 236
Exception priorities, 214, 229
Exception processing, 211, 232, 233, 234
Exception processing sequences, 213
Exception types, 213, 228
Exception vector table, 211, 230
Exceptions, 225
Exchange registers, 417

Index 481

Exclusive or instructions
binary, 41 4
immediate, 415
to the condition codes, 416
to the status register, 416

EXG, 417
Expressions, 55
EXT, 418
EXTB, 418
Extend bit, 23
External definition, 13

F

F-line instructions, 216
Factorials, 69, 187
File inclusion, 14

Flags, clearing and setting, 133
Flowcharting, 276

advantages, 276
as documentation, 318
disadvantages, 276
examples, 278

Format error, 218

H

Hashing, 149

High-level languages, 3
advantages, 6

applications, 7
disadvantages, 6

Human factors, 263

I

If-then-else structure, 290
ILLEGAL, 418

Illegal instructions, 215, 228, 418
Immediate addressing, 39

Implicit addressing, 37
Information hiding, 288

Inputs /Outputs in design, 261, 262
Instruction set, 30

alphabetic order, 471
encoding, 365
format, 363
numeric order, 475

Instruction traps, 215

48 2 68000 Assembly Language Programming

Integer arithmetic instructions, 31
Interrupt enabling and disabling, 227
Interrupt mask bits, 23
Interrupt system characteristics, 226
Interrupts, 206, 219, 225, 227, 229

J

JMP, 419
JSR, 420
Jump, 419
Jump table, 165
Jump to subroutine, 420

L

Labels, 11, 54
Library routines, 320

LIFO (last-in, first-out), 22
LINK, 421
Link and allocate space, 421
Linkers, 10

Listing control directives, 14
Lists

doubly-linked, 158
entry, 147
linked, 156
searching, 150

Load effective address, 421
Logic analyzer, 333
Logical and, 376
Loops, 75
LSL, 423
LSR, 423

M

Machine architecture, 19
Machine language, 4
Macro assemblers, 10
Macros, 13
Maintenance, 260
Maintenance manual, 322
Master bit, 26
Memory

access sizes, 28
arrangement, 28
byte ordering, 28

Memory dump, 330
Memory indirect addressing, 47, 196
Memory indirect post indexed, 47

Memory indirect preindexed, 48
Memory maps, 319
MMU (memory management unit), 220
Mnemonics, 4, 11, 54

Modes of operation, 227
Modular programming, 285

advantages, 285
disadvantages, 285

examples, 286

principles, 286
MOVE, 425

from CCR, 427
from SR, 428

to CCR, 428
to SR, 429

MOVEA, 426
MOVEC, 431
MOVEM, 432
MOVEP, 433

MOVEQ, 434
MOVES, 434
MOVE USP, 430
Move instructions

address space, 434
from condition codes, 427
from status register, 428

multiple registers, 432

peripheral data, 433

quick, 434 to address register, 426
to condition codes, 428
to status register, 429

to/ from control register, 431
to/ from user stack pointer, 430

MULS, 436

Multiplication, 138, 139

Multiply, signed, 436
Multiply, unsigned, 438
Multiprecision arithmetic, 131
Multiprocessor control instructions, 36
MULU, 438

N

NBCD, 439
NEG, 440

Negate, 440
Negate binary coded decimal, 439

Index 483

Negative bit, 23
NEGX, 440

No operation, 441
NOP, 441
Normalization, 90
NOT, 442
Notation, 54

O

Object code, 10
Off-line storage, 202
On-line memory, 201

One's complement, 61
Operands, 9, 12
Operator interaction, 263
OR, 443
OR to CCR, 445
OR to SR, 445
Or instructions

immediate, 444
to condition codes, 445

to status register, 445
ORG (origin), 56
OR1, 444
Overflow bit, 23

P

PACK, 446

Pack binary coded decimal, 446
Parameter lists, 173, 319

Parity, 106
PC (program counter), 22
PEA, 447
Peripherals, 19, 201
Polled I/O, 206, 226
Position independent code, 39, 177
Priorities, 23, 226

Privilege violations, 20, 228
Privileged instructions, 20, 228
Problem definition, 259, 261
Processing section, 262
Program control instructions, 34
Program counter indirect with

displacement, 45
Program counter indirect with

displacement and index, 46
Program counter memory indirect

postindexed, 49

Program counter memory indirect

preindexed, 50
Program design, 259
Program development, 15
Program format, 57
Program logic manual, 322
Program sections, 13
Program space, 224
Push effective address, 447

Q

Queues, 156
R

Radices, 4, 55

RAM (random access memory), 19, 201

Read-modify-write cycle, 400, 463
Real time clock, 245

Redesign, 260
Register dump, 326
Register indirect addressing, 40
Reset exception, 222, 229
Reset external devices, 448
RESET instruction, 448
Return and deallocate, 452
Return and restore condition codes, 454
Return from exception, 452
Return from module, 453
Return from subroutine, 454
ROL, 448

ROM (read only memory), 201
ROR, 448
Rotate, 448, 450
ROXL, 450
ROXR, 450
RTD, 452
RTE, 452
RTM, 453

RTR, 454
RTS, 454
Running the program, 57

S

SBCD, 455
Scaled indices, 195
Scaling, 44

Sec, 456
Self-documenting programs, 311

48 4 68000 Assembly Language Programming

Set according to condition codes, 456
Shift, 423
Shift and rotate instructions, 32, 64,

381,448,450

Sign extension, 21, 418
Single stepping, 329
Software development stages, 257
Software simulation, 332
Sorting, 161
Source code, 9
SRAM (static random access memory),

201

Stack frames, 214
Stack pointer, 25, 27
Stacks, 22, 160, 421
Standard documentation forms, 321
Status register, 23, 26
Status/ control registers, 19, 204
STOP, 457

Stop execution, 457
Storage devices, 201
Strings, 95

comparison, 109
length, 97
search, 102
substitution, 103

Structured programming, 289
advantages, 293
as documentation, 318

disadvantages, 294
examples, 293, 295
rules, 300

Structured testing, 358
SUB, 458
SUBA, 459
SUBI,459, 460
Subroutines, 173

recursive, 178
reentrant, 177
relocatable, 177

Subtraction instructions
address, 459
binary, 458
binary coded decimal, 455
immediate, 459

quick, 460
with extend, 461

SUBX, 461

Supervisor bit, 23
Supervisor mode, 20
SWAP, 462

Swap register halves, 462
System control instructions, 35

T

Table lookup, 121

Tables, 147
TAS, 463
Test, decrement and branch, 409

Test operand, 466
Test and set, 463

Testing, 260, 357
aids, 358
data, 358
rules, 360

structured methods, 358

Top down design, 301
disadvantages, 301
examples, 302

Totaling, 84
Trace bit, 23, 26

Tracing, 218, 329
TRAP, 463

Trap on condition, 464
Trap on overflow, 466
Trap through exception table, 463
TRAPcc, 464
TRAPV, 466
TST, 466

I

Unimplemented instructions, 215, 228
Unlink and deallocate stack, 467
UNLK, 467

Unpack binary coded decimal, 467
UNPK, 467
User mode, 20

User's guide, 322

V

Vector base register, 26
Vector table, 212, 230
Vectoring, 226
Virtual Memory, 220

Z

Zero bit, 23

Other related Osborne/ McGraw-Hill titles include:

68000 Microprocessor Handbook
Second Edition
by William Cramer and Gerry Kane
For serious programmers and hardware designers,
this is a complete handbook to the 68000 microproces-

sor family. In this revised, expanded edition, all of the
68000 chips, including the 68008, 68010, 68012, and
68020, are examined. You'll find in-depth coverage of addressing modes, signal conventions, instruction
sets, exception processing logic, as well as timing and
bus operations. If you're designing software for the
Macintosh™ Atari " ST, Commodore Amiga!" Tandy H
6000, AT&T UNIX™ PC, or other 68000 computers, this
handbook is an invaluable resource for all your pro-

gramming queries.
$14.95 p
0-07-881205-4, 176 pp., 73kx9'U

Mastering the Macintosh™ Toolbox by David B. Peatroy and
DATATECH Publications

With Mastering the Macintosh11' Toolbox, experienced programmers can access the storehouse
of programming routines found in the Mac's special Toolbox. These routines enable you to include the
unique features of the Apple " Macintosh™ computer in
a variety of software applications. You'll learn to use
Macintosh™ Pascal to call up Toolbox routines for pro- gramming graphics, icons, windows, menus, the
cursor, and the mouse. A compendium of powerful

programming tools, Mastering the Macintosh"" Toolbox lets you take full advantage of the
Macintosh computer.
$16.95 p
0-07-881203-8. 208 pp., 73/ex9'/<

80386/80286 Assembly Language
Programming
by William H. Murray and Chris Pappas

This comprehensive guide enables serious program-
mers to take full advantage of the unique design of the

80386 and 80286 microprocessors found in the IBM H PC
AT, COMPAQ" Desk Pro 286, TANDY 6000; and other
major computer systems. Instructions for programming
the 8087/80287/80387 coprocessor are also included.
The authors carefully detail the use of assembler
pseudo-ops; macros, procedures, and libraries; and
testing and debugging techniques. You'll also find
instructions for interacting with high-level languages
such as BASIC, Pascal, and FORTRAN. Many practical
programming examples show beginners how to

implement assembly language, while experienced pro-
grammers have an invaluable reference to the 80386

and 80286 instruction set.
$19.95p
0-07-881217-8. 400 pp.. 6%x9'/<

65816/65802 Assembly Language
Programming
Michael Fischer
This addition to the Osborne/McGraw-Hill ALP series
is a complete handbook to assembly language pro-

gramming with the 65816 and 65802 microprocessors.
Serious programmers will find complete coverage of
the 65816 and 65802 chip series. Assemblers, instruction
sets, arithmetic operations, loops, and code conversion
are presented. You'll also learn about sorting and searching, subroutines, I/O and interrupts, debugging
and testing. Michael Fischer, a columnist for Bay Area
Computer Currents and director of the San
Francisco Apple Core User Group, provides you
with concise, comprehensive information. 65816/
65802 Assembly Language Programming fulfills the
need for both a tutorial and a lasting reference.
$19.95p
0-07-881235-6. 450 pp., 63/sx9'/4

The 8086 Book
by Russell Rector and George Alexy

". . .is far superior to any other book about the
8086. " (Dr. Dobbs Journal)
Anyone using, designing, or simply interested in an
8086-based system will be delighted by this book's
scope and authority. As the 16-bit microprocessor
gains wider inclusion in small computers, this book
becomes invaluable as a reference tool which covers
the timing, architecture and design of the 8086, as well
as optimal programming techniques, interfacing,
special features and more. $18.95p

0-07-931029-X. 624 pp., 6'hx9'U

C Made Easy

by Herbert Schildt

With Osborne/McGraw-Hill's popular "Made Easy" format, you can learn C programming in no time. Start
with the fundamentals and work through the text at
your own speed. Schildt begins with general concepts,
then introduces functions, libraries, and disk input/

output, and finally advanced concepts affecting the
C programming environment and UNIX " operating system Each chapter covers commands that you can
learn to use immediately in the hands-on exercises
that follow. If you already know BASIC, you'll find
that Schildt's C equivalents will shorten your learning
time. C Made Easy is a step-by-step tutorial for
all beginning C programmers.
$18.95 p
0-07-881178-3, 350 pp., 73kx9' U

Advanced C
by Herbert Schildt
Herbert Schildt, author of C Made Easy, now
shows experienced C programmers how to develop
advanced skills. You'll find thorough coverage of important C programming topics including operating
system interfacing, compressed data formats, dynamic
allocation, linked lists, binary trees, and porting.
Schildt also discusses sorting and searching, stacks,
queues, encryption, simulations, debugging techniques,
and converting Pascal and BASIC programs for use with
C. A complete handbook, Advanced C is both a
teaching guide and a lasting resource.
$19.95 p
0-07-881208-9, 350 pp., 73/ex9'.U

The C Library
by Kris Jamsa
Design and implement more effective programs with
the wealth of programming tools that are offered in
The C Library. Experienced C programmers will find
over 125 carefully structured routines ranging from
macros to actual UNIX™ utilities. There are tools for
string manipulation, pointers, input/output, array
manipulation, recursion, sorting algorithms, and file
manipulation. In addition, Jamsa provides several C
routines that have previously been available only
through expensive software packages. Build your
skills by taking routines introduced in early chapters
and using them to develop advanced programs
covered later in the text. A complete resource,
The C Library belongs on the shelf of every C
programmer.
$18.95 p
0-07-881110-4, 220 pp., 73kx9'U

Using Turbo Pascal™ by Steve Wood
Maximize your advanced programming skills with
Using Turbo Pascal"* by Steve Wood. Wood, a programmer for Precision Logic Systems, thoroughly
covers Turbo Pascal, including version 3.0, for the
experienced programmer. The book discusses program
design and Pascal's syntax requirements, develops a
useful application of the program, and gives an over-

view of some of the advanced utilities and features
available with Turbo Pascal.
$19.95p
0-07-881148-1, 350 pp., 6'hx9'U

Advanced Turbo Pascal" : Programming
& Techniques
Herbert Schildt
For instruction and reference, Advanced Turbo
Pascal" is an invaluable resource. This highlevel
guide benefits experienced Turbo Pascal3 users who
want to build their programming skills. Every stand-

alone chapter presents a complete programming topic:
sorting and searching; stacks, queues, linked lists,
and binary trees; dynamic allocation using pointers;

and operating-system interfacing. You'll also examine statistics, encryption and compressed data formats,
random numbers and simulations, expression parsers,
converting C and BASIC to Pascal, efficiency, porting and debugging.
$18.95p

0-07-881220-8, 350pp., 73kx9'U

Turbo Pascal @ Library
Kris Jamsa and Steven Nameroff
This library of programming tools enables Turbo
Pascal ® users to write more effective programs that
take full advantage of Borland's best-selling compiler. In this varied collection there are utility routines for
Pascal macros as well as routines for string and array

manipulation, records, pointers, and pipes. You'll also find I/O routines and a discussion of sorting that
covers bubble, shell, and quick-sort algorithms. In
addition, the authors provide routines for the Turbo
Toolbox " and the new Turbo Graphix " package. Turbo
Pascal" Library complements two other Osborne
tutorials, Using Turbo Pascal^ and Advanced
Turbo Pascal f and provides programmers with
an excellent resource of practical tools. S18.95p

0-07-881238-0, 300 pp., 73kx9'U

A User Guide to the UNIX™ System
(2nd Edition)
by Dr. Rebecca Thomas and Jean Yates

Now the best-selling User Guide to the UNIX1" System has been revised and expanded to cover
applications of the UNIX™ operating system for Bell
Laboratories' New System V and Berkeley UNIX. Twelve extensive tutorials take you from initial log on to
advanced program control and input/output proce-

dures. You'll find special emphasis given to word processing and to the most commonly used UNIX
system commands. Error messages are fully explained,
and a System Administration appendix tells you how

to oversee the system's operation. Whether you're already familiar with UNIX or just getting acquainted,
this fully illustrated guide makes an excellent
reference tool.
$18.95 p
0-07-881109-0. 520 pp.. 7<hx9>U

Advanced Programmer's Guide to
UNIX™ System V by Rebecca Thomas, Ph.D., Lawrence R. Rogers,
and Jean L. Yates

C programmers who already know UNIX™ funda- mentals can use this guide to write more effective
programs with the software tools in UNIX System V.
Thomas and Yates, two renowned names in the com-

puter industry and the authors of A User Guide to
the UNIX1" System, lend their expertise to help you develop sophisticated skills. This book explains and
illustrates the use of the Bourne and C shells, text
editors, the C compiler, library archives, utilities, sub-

routines, and system calls. You'll also learn about the new interprocess communication features, which are
important in designing commercial applications
software.
$21.95p
0-07-881211-9. 560 pp.. 73lsx9'U

The Practical Guide to Local Area
Networks, Covers IBM & Compatible
Computers
Rowland Archer

You can gamble your company's money on a local area network. . .or you can read this book first.
Deciding which local area network is right or you
doesn't have to be a difficult process. With The

Practical Guide to Local Area Networks, you'll
be prepared to evaluate and select the LAN that's best for your business needs. LAN specialist Rowland
Archer guides you through the process of planning
your LAN installation, pointing out the advantages and
potential pitfalls every step of the way. Archer then
applies the criteria he has developed to five of the
most popular LANs available for the IBM H PC and
compatible computers: IBM* PC Network, 3Com Ethernet: Corvus Omninet; Orchid PCnet; and Novell
NetWare!" With Archer's advice and insights in The Practical Guide to Local Area Networks, you,
too, can become a LAN expert.
$21.95p
0-07-881190-2. 250 pp.. Q'hx&U

Micro-to-Mainframe Links
by Ronald F. Kopeck

Here's a book that sorts out all the complex issues involved in linking microcomputers to mainframes for
sophisticated, high-powered applications. With Micro-
to-Mainframe Links, data processing and communi-

cations professionals can fully understand the major
considerations behind PC-to-mainframe integration.
A concise, detailed text thoroughly explains the plan-

ning and evaluation process used in determining how
PC-to-mainframe linking fits into your office environ-

ment. Data transfer, security, and use of existing
networks are also discussed. You'll find out about link products and the real and hidden costs of linking, as

well as maintenance and service. And you'll learn about monitoring, the safe ways to begin the
PC-to-mainframe link by establishing and evaluating
tests and measurements. Kopeck, a widely-known
consultant and editor of Micro-to-Mainframe Link
News, draws on his extensive knowledge of this
field to bring you the most comprehensive coverage

possible. $18.95 p
0-07-881228-3. 300pp.. 73kx&U

Available at fine bookstores and computer stores everywhere.

For a complimentary catalog of all our current publications contact:

Osborne/ McGraw-Hill, 2600 Tenth Street, Berkeley, CA 94710

Phone inquiries may be made using our toll-free number. Call 800-227-0900 or

800-772-2531 (in California). TWX 910-366-7277.

Prices subject to change without notice.

The manuscript for this book was prepared and

submitted to Osborne McGraw-Hill in electronic

form. The Acquisitions Editor for this project was

Jon Erickson and the Project Editor was Lyn Cordell.

Text design uses Times Roman for text body and

Univers bold for display.

Cover art by Yashi Okita. Cover supplier is

Phoenix Color Corp. Cover Stock, 50 lb.

Glatfelter. Book printed and bound by R. R.

Donnelly & Sons Company, Crawfordsville,
Indiana.

68000

ASSEMBLY LANGUAGE

PROGRAMMING

This classic on assembly language programming for the 68000 microprocessor has been

revised to provide complete coverage of the entire 68000 family, including the 68010 and
68020 chips.

Every instruction you need to program in assembly language is thoroughly described. Fully

debugged, practical programming examples with solutions in both object code and source

code are used throughout the text to illustrate techniques.

68000 Assembly Language Programming, Second Edition offers detailed instructions
for using

■ Assembler conventions

■ Loops, character-coded data, code conversion

■ Parameter-passing techniques
■ Subroutines

■ I/O device programming and interfacing methods

■ Software design, documentation, debugging and testing

■ 68000, 68008, 68010, and 68020 instruction sets.

If you're designing software for the Macintosh,™ Commodore Amiga™ Atari " ST,™ Altos R

3068, Tandy® 6000, or other 68000-based computers, you'll find essential information
in this lasting reference.

Lance A. Leventhal is the author of the Osborne/McGraw-Hill assembly language programming

series that covers the 6800, 6809, 8080A/8085, Z80,R and Z8000 R microprocessors. Leventhal
is a partner in Emulative Systems Company, a San Diego-based consulting firm specializing
in microprocessor design and programming.

Doug Hawkins, vice president of Engineering for Phoenix Digital Corporation, holds a BSEE degree

from Michigan State University, and MSEE and MBA degrees from Arizona State University.

Gerry Kane is co-author of the 68000 Microprocessor Handbook, Second Edition, Osborne 4- & 8-Bit
Microprocessor Handbook, and Osborne 16-Bit Microprocessor Handbook.

William D. Cramer is co-author of the 68000 Microprocessor Handbook, Second Edition, and
MacTelecommunications.

■ f

Macintosh is a trade
Commodore Amiga i
Atari is a registere
Altos is a register
Tandy is a register]
Z80and Z8000,

d to Apple Computer, Inc
siness Machines, Inc

IS8N- nnfS^bi

