
al)

ee «(10Y32-BIT
~# ~*~ MICROPROCESSORS

| 68000/68010/68020
Software, Hardware, and,Design
Applications

i a4 : Hiden Mirmareu tut ia! | |!
iN i) 7) ET ee]

WUNNAVA V. SUBBARAO

>

Riotaran: AG

bar hte bhcheh cht atet! Ha

Wis Need
seep -

Mer ne ase Nit

"4 7 Mi Vie

ae it ie
TOU SVE he

nt Hoge Ua

ch Ny mi i ath
or tatne

rey it i a 2

SoHE
uate

as ’ nt Nat

Wraew Velen le

, 1 er ae \
Se ayean bal al tat Tat

elena

af a Ph Ne aye is
%

LECH
eau rir ue a teat

‘

aie
SP Aras :

: st Os 1 wer
sate

Meas CANOLA
shes Test ar buys th)

a
y Neth Shphl

DANTE Tn tay
ie) OAS Cae
yoy nk 4) ne)

ww panies

(rye ‘

FARIS Nt

wh erent ¥ xh oK) ae Re SVEOODOM
Phe eu PERL)

Nien
Aon) R

MW HITT REY Din Teog N
\ USOC) UD

a Mt

' if ! Re .

oS - Ae

HONE STEN NEL

Minlerore

“

leregeey te
i eae
Mat x

t ¢
a AOR
KOKO

se cnthenet ist ite Oras
“AT ae Arh Tat MeN Aa wren ey

neh We) ot BSt fee teaen ata

ni sh ts uses! thts
UALS GDR aN
nes ier

aut Preah !
Li Hast vibe y, Sian an

(meena

* HA na
MAM aache

OCOCaLN Ap Gee ee
ae Neer lye henge KASALANEABA ERA ARR hy

) MTele 54 eikarataveha
vere aN ACA wit

ry yey i “ 3
a Apa)

, yas Aa he Oh,
Mehta ROBR NPC

1 = WUT
Wl

aibiniewiwit eine
wah 4 ae ”

vas RANGERS SLO
MEUNURATEES ROM

ne a ARGU NG gaa
is Barty ee ;
HAGA Shs, S} * RUAN ICST MMTV Huth

Ni a naa sci

Sih

yee yere
red

Vue 1) y ei
y i es SEG.

GPE PURPKI DLC UDCOKDRDE NORD
evereNaveaatcrerepen ten

NURS SS i

RUINS, hetes SACS ACRC NNER Rie TING

4) 0)

aN Re actaNe Hie iy
Nt 4 4 nye Hy yay Me

NAC SRORACAEAARANANAS atin Yoke a ia ea
MURS site tt Nae

igiusesiy

Nn WnAn! Nt
iateeeys

soeah aveye)

Te Tulw tele) i)
Lea ye)

: chek NUTUSRRU IRN RHER aM i

UALNIN CY SONNE

eh Wi
athe

_

a SS IE IIIS SL I I I EI II I I OG EIEIO

—_—_——SSSSSSSSSSSSS EEE Se EE eS

16/32—Bit Microprocessors:
68000/68010/68020

Software, Hardware, and Design Applications

>

- > ’
* 7

re —-

‘ na

me SRN ~
KA

16/32—Bit Microprocessors:
68000/68010/68020

Software, Hardware, and Design Applications

WUNNAVA V. SUBBARAO

Florida International University

Merrill, an imprint of

Macmillan Publishing Company

New York

Collier Macmillan Canada, Inc.

Toronto

Maxwell Macmillan International Publishing Group

New York Oxford Singapore Sydney

© Copyright 1991 by Macmillan Publishing Company.
Merrill is an imprint of Macmillan Publishing Company.

Printed in the Republic of Singapore

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission
in writing from the publisher.

Distribution rights in this edition are controlled exclusively by Maxwell
Macmillan Publishing Singapore Pte. Ltd. and restricted to selected countries.
This book may be sold only in the country to which it has been sold or consigned

by Maxwell Macmillan Publishing Singapore Pte. Ltd. Re-export to any other
country is unauthorized and a violation of the rights of the copyright proprietor.

Macmillan Publishing Company
866 Third Avenue, New York, New York 10022

Collier Macmillan Canada, Inc.

Library of Congress Catalog Card Number: 90-60538

ISBN 0-675-21119-0 (Hardcover Edition)

ISBN 0-02-946331-9 (International Edition)

IE Printing: 12345 Year: 12345

ISBN 0-02-946b331-4

To the respectful memory of my professors

Dr. Earnest Anderson, Ph.D., P.E., North Dakota State University, Fargo, and

Dr. S. Jnanananda; Ph.D., D.Sc., Andhra University, Waltair, Andhra Pradesh, India,

for their perseverance, compassion, and interest in my education,

and

To the Department of Electrical and Computer Engineering, Florida International Uni-

versity, Miami, for providing me with an outstanding professional atmosphere in which

I could venture and complete this project

GES I thie Be a
Siege
joes ote

a or

Se ne on ha.

iran: f Sealy: |
[a ee

re V*

oat ane

Kae

ved

rag i : m4

oe
im

—
ete ai

_

wl

= ye
_

i

*
bh
hy OS

SSS

PREFACE

In recent years, the single most important development in the field of digital electronics

has been the microprocessor. Thanks to VLSI (very-large-scale integration), it has

grown from the simple 4-bit processing element of a quarter-century ago to the complex

32/64-bit processing unit of the present time.

The Intel and Motorola corporations have been leaders in the development of mi-

croprocessors and associated electronic circuits. Currently, the two frontrunning families

of microprocessors are the Intel 8086/186/286/386 family and the Motorola 68000/10/

20/30 family. The Intel processors are very popular in such personal computers as the

IBM PC and compatibles. The Motorola processors are equally popular in such personal

computers as Apple’s Macintosh, Commodore’s Amiga, and Atari’s ST. Most industrial

controllers and systems, such as image-processing systems, robotic systems, and com-

munication systems, are based on the Motorola 68000 family.

This book focuses on the Motorola family of microprocessors. It is written as a

college-level text for electrical engineering and technology students, computer engineer-

ing and technology students, and computer science students. It can also serve as a self-

teaching text for practicing engineering and technical personnel.

The book examines general software and hardware concepts of microprocessors,

as well as microprocessor-based system design and implementation schemes, with spe-

cific reference to the 68000 family of processors. Descriptions of the software and hard-

ware are sufficiently detailed to enable the reader to make use of the concepts in practi-

cal applications. Most of the software and hardware discussions are based on actual

working models.

The 68000 family consists of the 16-bit 68000 processor, the 8-bit 68008 proces-

sor, the 16-bit virtual memory 68010 processor, the enhanced virtual memory 68012

SS

vii

viii Preface

processor, the 32-bit cache memory 68020 processor, and the 32-bit enhanced cache

memory 68030 processor. All of the later versions are based on the original 68000.
Coverage of the text includes the architecture, software, hardware, and application de-

tails of the 68000 processor, with concepts extended to the other family members. As-

sembly programming techniques, parallel and serial I/O (input/output) interface tech-

niques and associated applications, interrupt and DMA (direct memory access) applica-

tions, and system implementation schemes have been given particular emphasis.

Chapter 1 presents the basic concepts of the 68000 family of microprocessors and

introduces the architecture of the 68000. The special features of the 68000 family are

also described. In Chapter 2 the memory organization schemes, data structures, and

addressing modes associated with the 68000 are covered, along with the instruction for-

mat and structure typical of the 68000 family. The instruction set of the 68000 is pre-

sented in Chapter 3, with particular emphasis on the general flow of the instruction

structure, the instruction timing, and the instruction groups.

Chapter 4 deals with software and programming techniques and applications of

the 68000 processor. Assembly programming methods and special software features

such as macros are examined in detail. The important aspect of exception processing is

covered in Chapter 5. In this chapter, exception processing resulting from interrupts

and error conditions is described.

Chapter 6 deals with the hardware structure of the 68000 processor and the inter-

facing techniques with the memory and I/O. Important hardware concepts, such as ad-

dress decoding, read and write bus cycle timing, and the VME and VERSA busing

schemes, are introduced. This provides a foundation for the discussion on the parallel

I/O interface to the 68000 and associated applications in Chapter 7. Important parallel

interface devices, such as the 6821 PIA and 68230 PI/T, are introduced in this chapter.

Data entry and display applications and position control using stepper motors are pre-

sented, along with hardware and software details. This leads to a description of the se-

rial I/O interface to the 68000 and associated applications in Chapter 8. Industry stan-

dard serial interface devices, such as the 6850 ACIA and 68901 MFP, are introduced.

RS-232 serial data communication and coded data transmission applications are pre-

sented, including hardware and software details.

Chapter 9 deals with the most important aspects of the interrupts and the DMA

(direct memory access) schemes associated with the 68000. Such practical applications

as the daisy chain of interrupts, interrupt-driven gain controllers, and interrupt-driven

data-acquisition systems with A/D and D/A are presented, again with hardware and soft-

ware details. General concepts of the DMA are presented through a practical application
using DMA-based high-speed data transfers.

Chapter 10 introduces the 68010 virtual memory processor. The general concepts

of virtual memory, virtual machines, and the operating system are discussed in detail.
The additional resources of the 68010 and 68012 processors are also covered. along
with memory-access fault correction schemes using virtual memory concepts.

In chapter 11 the 32-bit 68020 and 68030 cache memory processors are intro-
duced. The concepts of cache memory organization are discussed. Additional resources
of the 68020 and 68030 processors and related performance improvements are pre-

Preface ix

a

sented. An objective comparison between the 68000 and the 68020/30 is also included
to provide insight into the applications of these very powerful processors.

Finally, the book includes four appendices: Appendix A on number systems, Ap-
pendix B on the 68000 instruction set and condition uses, Appendix C on analog and
digital converter devices for pe oh and Appendix D on instruction timing for the
68000/10 processors.

The material is designed to be used in a two-semester course. For engineering and

technical students, Chapters 1, 2, 3, 4, 5, and 6 can be covered in the first semester. In

the second semester, Chapters 7, 8, 9, 10, and 11 can be covered. For computer science

and software-oriented students, Chapters 1, 2, 3, 4, 5, and 10 can be covered in one

semester. If instructors choose to introduce hardware before dealing with exceptions,

they can switch the order of presentation of Chapters 5 and 6.

Each chapter is organized into four or five main sections, each dealing with an

important topic. In most cases, each section has at least one example problem. The end-

of-chapter problems are especially designed to supplement the material covered in the

book. Most of these problems have been classroom tested. A comprehensive glossary is

included at the end of the book.

The book is an outgrowth of several courses on microprocessors and digital sys-

tems taught by the author at Florida International University to engineering, technology,

and computer science students. The author’s association with the Motorola Corporation

as a consulting professor, teaching their industrial seminars on the 68000 family of pro-

cessors and applications, also significantly contributed to the book’s development.

Nothing replaces a hands-on learning experience. Therefore, readers are encour-

aged to apply the software and hardware concepts introduced in this book to practical

problems using the microcomputer system of their choice.

Acknowledgments

Many people assisted me in the preparation of this book. Students in the Electrical En-

gineering and Computer Science departments at Florida International University were

extremely helpful. In particular, I would like to thank Jorge Salinger, Laura Ruiz, Mau-

racio Salinas, Fernando Gonzalez, and Mike Urucinitz of the Electrical Engineering De-

partment for their work in conducting hardware and software experiments to support the

discussions in this book.
Motorola Corporation has been very generous in donating 68000- and 68020-

based systems to the university. This allowed for the concepts presented in the text to be

tested on real systems. Special thanks to Ben Ledonne and Fritz Wilson of the university

support service at the Motorola Corporation in Phoenix for their support and encourage-

ment.

I would like to acknowledge the encouragement and guidance offered by our

chairperson, James Story, and the professional courtesy extended to me by our dean,

Gordon Hopkins, and associate dean, Manuel Cereijo, during the preparation of the

book. Many thanks also to Lie Lonie Boney and Lordis Barough for their assistance in

preparing the materials for presentation. | am especially grateful to my wife, Sunanda.

X Preface

and to my children, Madhavi and Manoj, for their immense patience and understanding

during the course of the project.

Perhaps no words can express my gratitude to my teachers. They have given me a

path objective, a career, and, above all, knowledge and self-esteem. Professor Earnest

Anderson and Professor Edwin Anderson of North Dakota State University in Fargo and

Professor D.L. Sastry, the late Professor S. Jnanananda, and Professor D.S. Sastry of

Andhra University in Waltair and Masulipatam in India have been instrumental in shap-

ing my present academic career. I remain ever grateful to them. I would also like to

thank the reviewers of this edition for their important ideas and suggestions: Antony

Alumkal, Austin Community College; Mike Bachelder, South Dakota School of Mines

and Technology; Gary Boyington, Chemeketa Community College; George Frueh, Lin-

coln Technical Institute; Frank Gergelyi, Metropolitan Technical Institute; Jerry Noe,

Tri Cities State Technical School; and John Skroder, Texas A&M University.

CONTENTS

INTRODUCTION xix

CHAPTER 1
The 68000 Family of Microprocessors and Architecture

1.0

1.1

oh

INTRODUCTION 2

The 68000 FAMILY OF MICROPROCESSORS 2

The 68000 Microprocessor 2

The 68008 Microprocessor

The 68010 Microprocessor

The 68012 Microprocessor

The 68020 Microprocessor

The 68030 Microprocessor

The 68881 Coprocessor 4

TYPICAL MICROCOMPUTER CONFIGURATION

OF THE 68000 FAMILY s)

General Interface Scheme 5)

Typical 68000-Based Systems 6

GENERAL ARCHITECTURE OF THE 68000 MICROPROCESSOR 7

Data Registers DO- D7 (Dn) fi

Address Registers AO—A6 (An) 8

Stack Pointers A7 (USP) and A7’ (SSP) 8

Program Counter (PC) 9

Status Register (SR) and Flag Structure 9

Other Resources 12

Supervisor and User Modes of Operation 3

bp W WwW WL

xi

xii Contents
Ne eS a ee oe ee ee eee

1.4

1.5

OTHER FEATURES OF THE 68000 FAMILY OF PROCESSORS

Prefetch Queue 15

The Instruction Pipeline 15

SUMMARY 15

PROBLEMS 16

ENDNOTES 18

CHAPTER 2
The 68000 Memory Organization Schemes, Data
Structures, and Addressing Modes

2.0
2.1

2.2

2.3

2.4

2.5

INTRODUCTION 20
MEMORY ORGANIZATION SCHEMES AND DATA STRUCTURES

Memory Organization and Selection Schemes 20

Data Structures and Representation ZA

Stack and Queue Organization and Structure for the 68000 24

INSTRUCTION FORMAT AND STRUCTURE 26

Instruction Format 27

Instruction Structure V

REGISTER DIRECT AND REGISTER INDIRECT

ADDRESSING MODES 28

Register Direct Addressing Modes 30

Register Indirect Addressing Modes 30

IMMEDIATE, QUICK, ABSOLUTE, RELATIVE,

AND IMPLICIT ADDRESSING MODES 34

Immediate Addressing Mode (Imm) 85

Quick Addressing Mode (Q) 35

Absolute Short and Long Addressing Modes (Abs.W, Abs.L) 36

PC Relative with Displacement Addressing Mode d(PC) 37

PC Relative with Index and Displacement Addressing Mode d(PC,Rn)

Implicit Addressing Mode 38

SUMMARY ae

PROBLEMS 4]

ENDNOTES 43

CHAPTER 3
The 68000 Instruction Set and Programming Considerations

3.0
3.1

3.2

INTRODUCTION 45

THE GENERAL INSTRUCTION SET 45

Interpretation of the Instructions 45

The Instruction Groups 50

DATA MOVEMENT AND ARITHMETIC INSTRUCTION GROUPS
Data Movement Instructions a2

Binary Integer Arithmetic Instructions a

BCD (Binary Coded Decimal) Instructions 62

19

20

37

44

D2

Contents Xiii

3.3, LOGICAL AND BIT-MANIPULATION INSTRUCTION GROUPS 64
Logic, Shift, and Rotate Instructions 65
Bit-Manipulation Instructions 70

3.4 PROGRAM AND SYSTEM CONTROL INSTRUCTION GROUPS 73
Program Control Instructions 73

System Control Instructions 76

3.5 INSTRUCTION TIMING CONSIDERATIONS 78
Read/Write Timing 78

Instruction Timing Computation 78

3.6 SUMMARY 81

PROBLEMS 82

ENDNOTES 86

CHAPTER 4
68000 Software Considerations and Assembly
Programming Applications 87

4.0 INTRODUCTION 88

4.1 ASSEMBLY LANGUAGE SOFTWARE AND PROGRAMMING

TECHNIQUES 88

Assembler, Cross Assembler, Linker, and Loader Utilities 88

Writing Assembly Programs and Software Development 90

Programming and Software Engineering Considerations 96

4.2 DATA MOVEMENT, DATA-COMPARISON SOFTWARE,

AND APPLICATIONS $6

Block Transfer Applications and Software Considerations 96

Data-Sequencing Applications and Software Considerations 29

4.3 DATA PROCESSING APPLICATIONS AND SOFTWARE
CONSIDERATIONS 101

Multiprecision Addition and Subtraction Operations 102

Multiplication and Division Operations 104

4.4 SPECIAL INSTRUCTION GROUPS AND APPLICATIONS 108

; Multiple-Decision Instructions 108

Address, Stack, and Multiple-Movement Instructions 110

4.5 MACROS IN SOFTWARE DEVELOPMENT 15

4.6 SUMMARY 117

PROBLEMS 118

ENDNOTES 120

CHAPTER 5
68000 Exception Processing Considerations -121

5.0 INTRODUCTION ie

5.1 GENERAL CONCEPTS OF EXCEPTION PROCESSING 122

The Exception Vector Table and Exception Vectors 122

Xiv Contents

Reset Exception Processing 123

General Scheme of Exception Processing 125

5.2 INTERRUPT EXCEPTIONS AND APPLICATIONS 128

Interrupt Mask Levels 128

Autovector and User Vector Methods 129

5.3 TRAP EXCEPTION PROCESSING AND APPLICATIONS {32

Using System Resources in the Supervisor Mode via Traps 133

Trap Software Routines and Applications 35

5.4 ERROR-RELATED EXCEPTIONS 135

Illegal Instruction, Unimplemented Instruction,

and Privilege-Violation Conditions 136

Uninitialized and Spurious Interrupt Exceptions 137

Zero-divide, CHK, and Trace Exception Conditions tS

Address and Bus Error Conditions 138

Double Bus Fault Condition 142

5.5 SUMMARY 142

PROBLEMS 143

ENDNOTES 147

CHAPTER 6
68000 Hardware Considerations and Design Applications

6.0 INTRODUCTION 148

6.1 68000 HARDWARE SIGNALS AND FUNCTIONS 149

Address, Data, and Asynchronous Buses for the 68000 150

Function Code Outputs i354

Other Buses and Signals $52

6.2 MEMORY AND I/O INTERFACE SCHEMES 156

Memory-Device Types and Memory Concepts 156

Address Decoding, Strobing, and Memory Selection ESI

Read and Write Timing Considerations BY

Timing Considerations of Asynchronous Inputs 160

6.3 MEMORY AND I/O SYSTEM DESIGN CONSIDERATIONS 162

The Memory Subsystem Design 162

Signal Buffering Considerations 164

6.4 CONTROL INTERFACE SCHEMES 166
Reset and Halt Interface 166

Timing Signals Associated with the 68000 168

Bus Error Considerations 169

6.5 68000-BASED BUSING SCHEMES 170
The VERSA Bus 170
The VME Bus 173

148

Contents XV

6.6 SUMMARY 176

PROBLEMS 176

ENDNOTES 179

CHAPTER 7
The 68000 Parallel Interface and Applications 180

7.0 INTRODUCTION 180
7.1 SYNCHRONOUS PARALLEL INTERFACE WITH THE 68000 181

6821 PIA (Peripheral Interface Adapter) Architecture 181

6821 PIA Synchronous Interface with the 68000 182

I/O Interface and Design Applications 183

7.2 THE 68230 PARALLEL INTERFACE AND TIMER (PI/T) 187
Registers and I/O Ports 187

Interfacing the 68230 PI/T 189

7.3. DATA ENTRY AND DISPLAY SYSTEMS 192
The Keyboard and Hex Display Interface 192

System Hardware and Software Considerations 192

Other Forms of Keyboard and Interface Schemes 197

7.4 ELECTROMECHANICAL APPLICATIONS 198
Rotational and Linear Stepper Motors 199

Stepper-Motor Interface Considerations 199

Position Control Systems 203

7.5 SUMMARY 204

PROBLEMS 205

ENDNOTES 208

CHAPTER 8
The 68000 Serial Interface and Applications 209

8.0 INTRODUCTION 209

8.1 SERIAL DATA COMMUNICATION CONCEPTS 210

8.2 6850 ACIA GENERAL ARCHITECTURE 212

’ Registers and I/O Ports 212

Modes of Operation and Status Conditions of the ACIA 213

8.3 THE 6850 ACIA INTERFACE WITH THE 68000

AND APPLICATIONS 216

68000/6850 Interface Considerations 216

RS-232 Interface Application 218

8.4 68901 MFP (MULTIFUNCTION PERIPHERAL)

GENERAL ARCHITECTURE 220

Internal Architecture of the MFP 221

Register Structure and Modes of Operation 221

XVi Contents

8.5 68901 MFP INTERFACE WITH THE 68000 AND APPLICATIONS 227)

68000/68901 and I/O Interface Considerations 227

Coded Data Communication System 228

8.6 SUMMARY 232

PROBLEMS 232

ENDNOTES 234

CHAPTER 9
The 68000 Interrupt and DMA Intertace and Applications 236

9.0 INTRODUCTION 236
9.1 INTERRUPT INTERFACE CONSIDERATIONS 238

Autovectored and User-Vectored Interrupt Logic 238

Interrupt Controllers 259

Interrupt Expansion and the Daisy-Chain Mechanism 240

9.2 INTERRUPT-DRIVEN SYSTEM APPLICATIONS 242

Interrupt-Driven Gain Controller 242

Dynamic Random Access Memory (DRAM) Interface 247

9.3 THE INTERRUPT-DRIVEN DATA-ACQUISITION

SYSTEM AND APPLICATIONS 2353

The A/D and D/A Interface 2S

A Typical Data-Acquisition System 258

9.4 DIRECT MEMORY ACCESS (DMA) CONSIDERATIONS 260

General Architecture of the DMA Controllers 260

The 68440 and 68450 DMA Controllers 263

Modes of Operation of the DMA Controllers 263

9.5 THE DMA INTERFACE AND APPLICATIONS 266

DMA Sequence of Operations 267

DMA Channel Initialization 269

DMA Software Considerations 270

9.6 SUMMARY PAO

PROBLEMS 274

ENDNOTES 276

CHAPTER 10
68010 and 68012 Architecture, Organization, and Applications 278

10.0 INTRODUCTION 278

10.1 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS Zio
Virtual Memory Schemes 219

Virtual Machine Schemes 279

10.2 ARCHITECTURE OF THE 68010 AND 68012 MICROPROCESSORS 284
Additional Register and Busing Resources 284

Additional Instructions and Modified Instructions 286

10.3

10.4

10.5

Contents XVii

MEMORY FAULT CORRECTION SCHEMES 290

The instruction Restart Method 290

The Instruction Continuation Method 290

The 68010/68012 Memory Fault Correction Methods 291

BUS ERROR EXCEPTION PROCESSING ASSOCIATED

WITH VIRTUAL MEMORY 293

Modified Bus Error (BERR) Exception Processing 295

Correction of Memory-Related Faults Using Virtual Memory Schemes 297

SUMMARY 301

PROBLEMS 302

ENDNOTES 305

CHAPTER 11
68020 and 68030 Architecture, Organization, and Applications 306

11.0

11.1

11.2

11.3

11.4

11.5

11.6

INTRODUCTION 306

GENERAL ARCHITECTURE OF THE 68020 307

Additional Resources and Modified Resources of the 68020 307

Address, Data, and Control Buses 309

Data Formats, Memory, and I/O Interface Schemes 310

ADDITIONAL ADDRESSING MODES AND INSTRUCTIONS

FOR THE 68020 313
Memory Indirection Addressing Modes and Scaling eh le)

Bit-Field Type of Instructions 314

Packed and Unpacked BCD Instructions 316

Other Instructions and Enhancements 320

CACHE MEMORY CONCEPTS AND ORGANIZATION 320

68020 Cache Memory Organization and Operation 320

Cache Control and Cache Address Registers 322

GENERAL ARCHITECTURE OF THE 68030 324

Instruction and Data Cache Memory Organization 324

Additional Software Resources of the 68030 Processor 326

Additional Hardware Resources of the 68030 Processor B2y.

FUNCTIONAL IMPROVEMENTS OF THE 68020

AND 68030 PROCESSORS 331

Memory Indirect Addressing Capability 331

32-Bit Extended Instructions 331

Cache Memory and the Concept of Tag Field 331

The 68020 and 68030 Additional Signal Groups S32

Software Considerations for the 68020 and 68030 Processors 332

SUMMARY 334

PROBLEMS 330

ENDNOTES 338

XVviii Contents

APPENDIX A:)
Number Systems: Binary and BCD Operations

APPENDIX B:
68000/10/12 Instruction Set and Condition Codes

APPENDIX C:
Analog and Digital Converter Devices for Interface

APPENDIX D:
Instruction Timing for the 68000/10 Processors

GLOSSARY

INDEX

339

343

401

421

431
441

INTRODUCTION

The Microprocessor Evolution

It is no exaggeration to say that the microprocessor device has revolutionized digital

electronics and the computer field. Most of the currently available digital, computer.

and electronic systems use some form of microprocessor. With processing capability ex-

ceeding several million instructions per second (MIPS), the microprocessor is continu-

ously finding new applications.

The earliest form of the microprocessor was a 4-bit device (4004). It was basically

used as a 4-bit ALU (arithmetic logic unit) almost a quarter-century ago. The real mi-

croprocessor era started in the early 1970s, when Intel Corporation introduced the 8080

microprocessor. This was an 8-bit microprocessor, and contained an ALU and bus inter-

face logic on board. It also had several 8-bit registers for storing operands and ad-

dresses. Although the unit required several power supplies and a power-sequencing

scheme, it found extensive applications. The success of the 8080 microprocessor led

other companies to get involved in the development of different forms of microproces-

sors.

Immediately after launching the 8080 processor, Intel began to improve its design.

which resulted in the 8085. The 8085 processor is code compatible with the earlier

8080, but can operate on a single 5-volt power supply. Almost simultaneously, Motor-

ola Corporation introduced the 8-bit 6800 microprocessor with nonmultiplexed data and

address buses. The 6800 processor also incorporates the concept of double accumulators

and has an index addressing scheme. The 6800 became an instant success. Several pe-

ripheral devices to interface with the 8085 and the 6800 processors were introduced into

the market by a number of vendors.

During the mid-1970s, Commodore and Rockwell International introduced the 8-

bit 6502 microprocessor, which also became an instant success. This machine is similar

xix

XX Introduction
a

to the 6800 processor, but includes additional addressing capabilities such as memory

indirect. The design of the Apple computer was based on the 6502 processor. At about

the same time, Zilog Corporation introduced the 8-bit Z80 microprocessor. The Z80 is

code compatible with the 8085 processor. It has additional resources with which to store

data internally, and it also has the index addressing mode of the 6800 and 6502 proces-

sors. The Z80 processor found extensive applications in the 8-bit field, even though it

entered the 8-bit market late.

Most of the processors we have mentioned were developed with NMOS technol-

ogy. However ultralow power requirements dictated a processor using CMOS technol-

ogy. RCA Corporation introduced the first CMOS 8-bit 1802 microprocessor for low-

power applications. Pacemakers and several other battery-powered devices use the 1802

type of processor. Most 8-bit processors have a 64-kilobyte address range.

Emerging applications soon demanded more processing power than 8-bit proces-

sors could provide. Intel corporation was again the leader in introducing the first 16-bit

8086 microprocessor in 1978. The internal architecture of the 8086 supports 16-bit op-

erations. The external address bus can access | megabyte of memory, which was con-

sidered a great advantage. The 8086 has a 16-bit data bus. The 8088 processor is a

scaled-down version of the 8086, with an 8-bit data bus. The IBM PC contributed to the

great success of the 8086/88 processors.

To follow the 8086 processor, Motorola Corporation introduced the much more

powerful and versatile 68000 microprocessor. It has a 16-bit data bus and an effective

24-bit address bus that can access 16 megabytes. The internal architecture of the 68000

is designed to support 8-bit, 16-bit, and 32-bit operations. There are several 32-bit data

registers, each of which can be used as an accumulator. The architecture, linear address

range, and versatile data-handling capability of the 68000 suited the needs of industry.

Systems such as Apple’s Macintosh further contributed to the popularity of the 68000

processor. During the same time frame, Zilog corporation introduced its 16-bit Z8000

processor, which is similar to the 68000 in terms of architecture.

Continuous demand by industry resulted in the development of even more power-
ful processors, such as the 68020 and 68030 in the 68000 family, and the 80386 in the
8086 family. The present trend of development will continue in the 1990s. In order to
obtain more dedicated throughput, RISC (reduced instruction set computer chip) devices
are becoming popular. But the demand for general-purpose processors will continue to
rise.

Also observed in the microprocessor application market is the popularity of single-
chip microcomputers and controllers, such as Intel’s 8051 and Motorola’s 68HC11.
These 8-bit devices are suitable for 8-bit I/O interface applications. Sixteen-bit micro-
controller devices are also becoming available.

All of the 8-, 16-, and 32-bit processors we have described are available in various
packages using different processing techniques.

SSS a SR

Lee Se SE SSS SSS SSE

16/32—Bit Microprocessors:
68000/68010/68020

Software, Hardware, and Design Applications

fet

Se rete miereeeasen St : “p ee a
: “rar -aiegodont I ator ot pencils

ae

To flow Oy fetoow. vacate Sanentine aadlsieh he
» fowatet and cer kc ee. | & hee = 16-Se deta and

7 Be~bit adiyrus “oe (hal) Gir Pee. ute 2 fhe cores!
> Beirees o supe! Oe one, ew TE ed cee . BGkn cach id ¥ta)-os to ge ® eee Te ale

iige. a verwhee Ses ho) Ome a a oe Be GW wore te meds & Serewd such x Mgnt Ses bee - , virions te er bielef SPU aE o) : pictaier: Turing he ve oor ee | Seep intnduced’ its 16 LON i. i PON wel 1s Liprites * Tw rote Mt aehilertu. : 7
LEE Ne ast ts = “Mell & he Seve vipmerd if | en eae pew

fal fereetk aw Mn —) = Ge MND) irely. wad wm Ge nos ws the ‘ pie ae 8 og :

7

7

:

iG feral re wih conmtinae in ihe TOOK iw onder t5
eo er etnctiOn sot cotnpuier hip! devices

» deve ad eit Accemee ei} enorttoud 1 ;

her x

Pad afer}

ew aorkat the popularity of cing’.
fies SOS) and Moterois"s 6HNCI f-.

aC applications, Sarehit mic,

aid Nas ewaond are VR WEIS Aware

CHAPTER

1

The 68000 Family of Microprocessors
and Architecture

Objectives

In this chapter we will study:

The 68000 family of microprocessors

Microcomputer configuration of the 68000 family

Architectural features of the 68000

Supervisor and user modes of operation

Special features, such as the queue and pipeline

2 Chapter 1 The 68000 Family of Microprocessors and Architecture

1.0 INTRODUCTION .

The 68000 microprocessor, introduced by Motorola Corporation in the late 1970s, is

one of the most powerful and widely used 16/32-bit processors. It is the first member of
the 68000 family of processors—a family that includes the 68008, 68010, 68012,

68020, and 68030 processor devices.

Microcomputer configurations based on these processors are similar. In addition,

they all have the same basic architecture as that of the 68000. The architecture consists

of internal registers and pointers and arithmetic logic and control units.

The 68000 operates in two distinct modes: the supervisor mode and the user

mode. These two modes of operation maintain a relative separation between the operat-

ing system programs and the user programs. '

All processors obtain data from the memory block, perform the appropriate oper-

ations, and store the resulting data back in the memory. Processors in the 68000 family

are structured to handle the byte (8-bit), word (16-bit), and long-word (32-bit) data el-

ements.”
An understanding of the architecture, modes of operation, and data-handling-

schemes is essential to the study of the 68000 microprocessor and associated designs. It
will also promote understanding of the other members of the 68000 family.

The material in this chapter will provide the necessary background to understand
the software and system features of the 68000 processor. The hardware concepts and
designs of the 68000 will be presented in later chapters.

1.1. THE 68000 FAMILY OF MICROPROCESSORS ee ee eee eee eee

As mentioned previously, all processors in the 68000 family support byte, word, and
long-word operations. We will now briefly introduce the important members of the
68000 family. Figure 1.1 illustrates the genealogy of these processors; they are devel-
oped using the VLSI (very-large-scale integration) MOS technology.°

The 68000 Microprocessor

The 68000 is the principal device of the 68000 family of microprocessors. The operating
frequency of the 68000L4 is 4 MHz; for the 68000L12, the operating frequency is 12
MHz. Several other frequency versions are also available. The 68000 has a 16-bit data
bus and an effective 24-bit address bus that supports 16 megabytes of address range.
This microprocessor is normally contained in a 64-pin DIP (dual-in-line package), but it
is also available in the 68-pin chip-carrier package.

The 68008 Microprocessor

The 68008 is the reduced-bus version of the 68000 processor. It has an 8-bit data bus
and an effective 20-bit address bus that supports 1 megabyte of address range. The
68008 is contained in a 48-pin DIP. It is very cost effective in applications involving the
standard 8-bit I/O (input/output) interface.

The 68000 Family of Microprocessors 3

GENEALOGY FLOATING
POINT

CO-PROCESSOR

68881

68020

68012

68030

VIRTUAL
MACHINE

68010

68000L12

68000L10

68000L8

PERFORMANCE/FUNCTIONALITY

68000L6 68008 REDUCED BUS
68000

68000L4

1979 1980 1981 1982 1983 1984

FIGURE 1.1 Genealogy of the 68000 family of microprocessors. (Courtesy of Motorola, Inc.)

The 68010 Microprocessor

The 68010 is the virtual memory microprocessor. It has all the resources of the 68000

microprocessor. In addition, it has extended internal resources to support the virtual

memory management schemes. Virtual memory refers to a memory that is not physi-

cally present as a part of the system main memory, but is present as a part of the backup

memory. This feature allows for error detection and possible error correction in memory

access faults.

The 68010 is pin compatible with the 68000 microprocessor. The 68000 processor

can be replaced with the 68010 in a system without any hardware changes. Additional

software can then be written to support the virtual memory schemes.

The 68012 Microprocessor

The 68012 is the enhanced virtual memory microprocessor. It is architecturally identical
to the 68010. It has an extended address bus that supports 2 gigabytes of address range,

as well as additional control lines to support the multiprocessing activity. It is contained

in an 84-pin grid-array package.

4 Chapter 1 The 68000 Family of Microprocessors and Architecture

The 68020 Microprocessor

The 68020 is the cache memory microprocessor. In addition to all the resources of the

68010 microprocessor, it has internal resources to support cache memory operation.

Cache memory is a fast-access memory that holds prefetched information; thus, it

speeds up the system operation. The 68020 is truly a 32-bit microprocessor. It has a

32-bit data bus and a 32-bit address bus that support 4 gigabytes of address range. It

also has additional control and interface lines to support the coprocessor interface. It is

contained in a 114-pin grid-array package. The 68020 is considered to be one of the best

32-bit microprocessors, and it is one of the most widely used.

The 68030 Microprocessor

The 68030 is the enhanced version of the 68020 microprocessor. In addition to all the

resources of the 68020, it has internal data cache memory and a memory management

unit. These additional resources effectively enhance the throughput of the 68030 proces-

sor as compared to the 68020.*

The 68881 Coprocessor

The architecture of the 68881 coprocessor is different from that of other members of the

68000 family. The 68881 is capable of performing floating-point arithmetic operations

to 80-bit precision. It can be interfaced to any member of the 68000 family of proces-

sors to increase the arithmetic processing power of the system.

The 68008 is the lowest member and the 68030 is the highest member of the

68000 family of processors. The gradation sequence is 68008 — 68000 — 68010 —>
68012 — 68020 — 68030. These processors are upward code compatible. The software
written for a lower level processor will work with a higher level processor. For exam-
ple, the code written on a 68008-based system will work on a 68000-based system with
a similar memory and I/O map. However, the reverse may not be true. Software written
for a higher level processor, using the additional resources of that processor, will not
work on a lower level processor. For example, the code written on a 68020-based sys-
tem using the special resources of the 68020 will not work on a 68000-based system,
which lacks those resources.”

The following example problem will review the concepts we have just discussed
with regard to the 68000 family.

—_—] ees

Example 1.1 The 68000 family of processors.
The 68008 and the 68000 processors support 32-bit internal operations. Their external
data buses are 8 and 16 bits wide. Conceptually compute the relative speed of these two
processors while transferring

1. byte-size data from memory into one of the internal registers of the processor;

2. word-size data from memory into one of the internal registers of the processor.

Typical Microcomputer Configuration of the 68000 Family 5

Solution

1. Byte (8-bit) transfers: The 68008 has an 8-bit data bus and transfers the byte-size

data in one unit of time. The 68000 has a 16-bit data bus, out of which only 8 bits

are used for byte transfers. Byte transfers, then, still take one unit of time.

2. Word (16-bit) transfers: The 68008 transfers a 16-bit word as two bytes. As such,

it takes two units of time. By contrast, the 68000 transfers the complete word in one

unit of time. Thus, for word transfers, the 68000 processor is twice as fast as the

68008 processor.

The memory and I/O (input/output) interface schemes are similar throughout the

68000 family of processors. This results in a well-structured microcomputer configura-

tion, which we will now introduce.

1.2 TYPICAL MICROCOMPUTER CONFIGURATION
OF THE 68000 FAMILY

Figure 1.2 illustrates the microcomputer configuration typical of the 68000 family.

These microprocessors are of the memory-mapped I/O type, in which the microproces-

sor communicates with an I/O device as if it were one of the memory locations. How-

ever, there are some special instructions in the 68000 family to efficiently deal with I/O

data.

General Interface Scheme

Each member of the family has appropriate control and interface buses to support the

synchronous and the asynchronous devices and systems, as shown in Figure 1.2. A bus

is a group of signal lines. In the synchronous type of interface, data transfers take place

upon certain clocking or timing events. The peripheral devices belonging to such earlier

8-bit processors as the 8085, 6800, and Z80 operate in this manner. In the asynchro-

nous type of interface, data transfers take place via handshaking. In this protocol, the

responding device provides an acknowledgment signal to the processor during data

transfers. Most of the peripherals belonging to the 68000 family and the static memory

follow this protocol.®
There are also special interfaces. The interrupt mechanism is the traditional

means by which to gain the attention of the processor by a slow I/O device. The DMA

(direct memory access) is the traditional means by which to effect high-speed data

transfers between the memory and I/O without the intervention of the microprocessor.

Each member of the 68000 family supports both of these features explicitly. The system

control interface consists of the reset, halt, and bus error detection functions. The other

interfaces of the processor consist of the clock distribution network, system power dis-

tribution network, and the address decoding network. Details of all these functions will

be discussed in later chapters.

6 Chapter 1 The 68000 Family of Microprocessors and Architecture

MC68000—BASIC SYSTEM DIAGRAM

MEMORY
RAM/ROM

OTHER CONTROL

SIGNALS LE

DATA BUS

MC68000 ADDRESS BUS sees

anorpsnpineeriae te
See ee

bhesrerineretarten

6800 ieee!
ieee!

CONTROL
LOGIC

6800 I/O
PERIPHERALS

FIGURE 1.2 Typical microcomputer configuration of the 68000 family of
microprocessors. (Courtesy of Motorola, Inc.)

Typical 68000-Based Systems

The Macintosh from Apple Computers, Inc., the Amiga from Commodore, Inc., the ST
from Atari, and the 9716 from Hewlett-Packard are some of the most popular micro-
computer systems based on the 68000 microprocessor. The MEX68KECB microcom-
puter module from Motorola is an excellent 68000-based educational computer for
learning the software and hardware features of the 68000 microprocessor and associated
system designs.

An existing microcomputer system with a lower level processor can be upgraded
to a higher performance processor with appropriate modifications. This is feasible be-
cause of the upward code compatibility.

The following example Praglem will review our discussion of the 68000-based
system configuration.

Eee

Example 1.2 68000-based systems.
The 68000-based microcomputer is used in a control- -system application. The processor
is required to interface with the 8-bit I/O peripherals belonging to the earlier 6800 and
Z80 type of processors. These devices respond to appropriate clocking events.

1. What is the preferred type of interface in the 68000? Why?

2. Suppose the 68000 system needs to be upgraded to the 68010. What additional hard-
ware and software resources are required to accomplish this task?

General Architecture of the 68000 Microprocessor 7

Solution

1. Interfacing the 6800 and Z80 peripherals: Synchronous interface is preferred,
since these devices are of the synchronous type.

2. Upgrading to the 68010: No additional hardware is required. However, to make full

use of the capabilities of the 68010, memory management units may be added.

Existing software will function on the upgraded system. However, to make full

use of the capabilities of the 68010, virtual memory software should be utilized.

The processing activity of a microprocessor depends on its architecture and how

its internal resources are organized. The 68000 processor is rich in internal resources

and has a 32-bit internal register architecture. We will now introduce these important

concepts.

1.3 GENERAL ARCHITECTURE OF THE
68000 MICROPROCESSOR

The architecture of the 68000 microprocessor serves as the prototype on which all the

other processors in the family are based. Figure 1.3 illustrates this internal architecture.

It includes the following features:

eight 32-bit data registers, DO—D7 (Dn)

seven 32-bit address registers, AO—A6 (An)

two 32-bit stack pointers:

user stack pointer, A7 (USP)

supervisory stack pointer, A7’ (SSP)

one 32-bit program counter (PC)

one 16-bit status register (SR)

In addition, the 68000 contains a 32-bit arithmetic logic unit (ALU), an instruction de-

coding unit, a control unit, a bus interface unit, and an execution unit. For the sake of

simplicity, these resources are not indicated in the figure. For the 32-bit registers and the

data structures, the byte corresponds to the lower 8 bits, the word corresponds to the

lower 16 bits, and the long word corresponds to all of the 32 bits. We will now provide

a functional description of the basic features.

Data Registers DO—D7 (Dn)

These eight data registers are for general-purpose data storage and processing. They

handle bytes (8 bits), words (16 bits), and long words (32 bits) of data. Each of these

registers can function as an accumulator. An accumulator is a special register that pro-

vides data operands to the ALU and stores the result from the ALU. In addition, any of

8 Chapter 1 The 68000 Family of Microprocessors and Architecture

31 16 15 8 7 0

EIGHT
DATA

REGISTERS

NINE
ADDRESS/STACK

REGISTERS

15 5] 0

SYSTEM : USER STATUS REGISTER
BLE BYTE

FIGURE 1.3 The internal architecture of the 68000. (Courtesy of Motorola, Inc.)

the data registers can be used for memory indexing, a process in which a number in the

data register is added to the base address to obtain the effective address of the data op-

erand. Operations on the data register operands affect the flag bits in the status register.

Address Registers AO—A6 (An)

These seven address registers function as address pointers. They store and operate on

word- and long-word address operands. By means of these address operands, memory

can be accessed. The address registers also can be used for general-purpose storage of

operands of word and long-word size, as well as for memory indexing. The address reg-

isters do not support the byte operands. Operations on the address register operands will

not affect the flag bits in the status register (except in compare-type operations).

Stack Pointers A7 (USP) and A7’ (SSP)

As previously mentioned, the 68000 microprocessor operates in two distinct modes

called the user mode and the supervisor mode. The former deals with user programs; the

latter, with system-level programs. In order to maintain a distinction between these

modes, the 68000 has two 32-bit stack pointers: the user stack pointer (USP or A7)

General Architecture of the 68000 Microprocessor

and the supervisor stack pointer (SSP or A7’). The 68000 can operate in only one of
the modes at any given time. Either the USP or the SSP controls the system stack, de-
pending on the mode of operation. The stack pointers can be initialized to locate the
stack anywhere within the available memory space of 16 megabytes for the 68000 mi-
croprocessor. They should be initialized at the even word boundaries.

Program Counter (PC)

This 32-bit register keeps track of program space and sequentially obtains the instruc-

tions and associated operands from program space. Program space is that section of

memory containing the program code.

Only the lower 24 bits of the program counter are brought out as the effective

address bus for the 68000. This provides an address range of 16 megabytes (27* = 16

megabytes) or 8 megawords (1 word = 2 bytes). The PC operates on an even word

boundary. It advances to the next sequential program location after fetching the current

instruction.’

Status Register (SR) and Flag Structure

Decision making in the 68000 is dependent upon the flag bits. These flag bits are con-

tained in the status register. Figure 1.4 illustrates the details of the 16-bit status register.

It is divided into two bytes—a lower byte, called the user byte or the condition code

register (CCR), and an upper byte, called the system byte.

User Byte This byte contains the following five flag bits:

C (Carry flag): Set to 1 for arithmetic or logical overflow.

V (Overflow flag): Set to 1 for overflow in twos-complement operations.

Z (Zero flag): Set to 1 if the result of the previous operation is zero.

N (Negative flag): Set to 1 if the most significant bit (MSB) of the

operand is | (signifying a negative number).

X (Extend flag): Similar to the carry flag, but not affected in the data

movement operations.

When these flags are not set to the 1 condition, they remain in the 0 or reset condition.

Certain instructions may not affect these flags. The details of these variations will be

discussed when the instruction set is considered in the next chapter.

System Byte This is the upper byte of the status register containing the following

status information relating to the supervisor mode of operation:®

12, 11, and JO (Interrupt mask bits): Set to the required interrupt mask level.

Interrupts above this level are recognized.

Can specify up to eight levels.

9

10 Chapter 1 The 68000 Family of Microprocessors and Architecture

MC68000 STATUS REGISTER

SYSTEM BYTE USER BYTE

15 1 10 8 org?

2

3 4 0

bf

TRACE MODE —|

SUPERVISORY

INTERRUPT
MASK

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

UNUSED BITS ARE ZERO

FIGURE 1.4 The 16-bit status or flag register for the 68000. (Courtesy of Motorola,
Inc.)

S (Supervisor bit): = 0 (system in user mode). S=0

S = | (system in supervisor mode).

T (Trace bit): T = 0 (system in run mode).

T = 1 (system in trace mode).

The trace condition is set and used for software debugging. The system level op-
eration is guided by the condition of the system byte. We will learn more about this byte
in subsequent sections of this chapter.

It is convenient to refer to numbers in the hex format, especially when dealing
with data and address operands. In the hex format, the decimal numbers 0—9 are repre-
sented similarly. The decimal numbers 10, 11, 12, 13, 14, and 15 are represented by the
alphabetical symbols A, B, C, D, E, and F. In this book the $ sign is used to represent
the hex digits. Each hex digit takes four bits; for example, $F corresponds to decimal 15
and binary | 1 1 1. The arithmetic operations in the hex format are performed to the
base 16. Appendix A provides information about the hex and other number systems.”

The following example problem will review our discussion of the architecture of
the 68000 processor.

General Architecture of the 68000 Microprocessor 11

Example 1.3 Architecture and flags of the 68000.
The initial values of the registers DO, D1, AO, Al, USP, SSP, and the SR are as shown

(in the hex format).

DMs /$00023456 Di =S AA, BBG DD

AO=$00654321 AL=$000A5CO07

SR = $0400

1. The word operand from DO is added to the corresponding word operand from D1,

with the result in D1 (ADD.W DO,D1 instruction). Show the contents of DO, D1,

and SR after the addition. Take into account that the ADD instruction affects the

flags.

2. The long words in AO and AI are added to each other, with the result in AO

(ADDA.L A1,A0 instruction). Show the contents of AO, Al, and SR after the addi-

tion. Use the same initial values.

Solution

1. Addition of the word operands in DO and D1: The word operands consist of the

lower four hex digits of the register contents. The hex addition is as follows:

Hex word inDO=$ 345 6

Hex word inDI = $ CCDD

Hex addition ie Os as 3

There is an overflow from the fourth hex digit, which will set the carry flag and the

extend flag. The word result $ 0 1 3 3 will be transferred to the lower word position

of the D1 register. The upper word of D1 and the register DO are not affected.

Expanding the result:

b15 bO

$0133= Dees 0001 OO11 OPth

MSB LSB

it can be seen that

the MSB = 0; as such, the N flag = 0

the result is nonzero; as such, the Z flag = 0

no twos-complement

overflow; as such, the V flag = 0

arithmetic overflow; © as such, the C flag = 1

the X flag = 1

12 Chapter 1 The 68000 Family of Microprocessors and Architecture

Thus, the user byte of the SR contains

ht AKNEZ, NAC

00010001=$11

and the system byte is not affected:

TS = —EBEp

00000100=$04

The final results are

DO=$00123456

D1 =$AABB0133

SR = $0411

2. Long-word addition of AO and A1: Following the same hex addition principles,

The long-word operand in AO = $00654321

The long-word operand in Al = $000A5CO7

The long-word result =$006F9F28

This long-word result gets transferred to register AO. Register Al is not affected.

The SR also is not affected, since the operation is on the address registers, and op-

erations on address registers do not affect flag bits.

The final results are

AO= $O006F9F28

Al = $000A5C07

SR = $0400

The processor examines the flag bits in the status register and controls the program

flow accordingly. We will study more about this program flow in later chapters on soft-
ware.

Other Resources

Other resources, such as the ALU, the instruction decoder, the execution unit, the bus
interface unit, and the control unit are also important. The 68000 uses these resources
very efficiently. They are internal to the processor and cannot be externally accessed.
Their functions are as follows:

General Architecture of the 68000 Microprocessor

The ALU This arithmetic logic unit performs the arithmetic and logical operations on
data operands. The size of these operands may be byte, word, or long word. The flag
bits in the user byte of the status register are affected as a result of ALU operations.

Instruction Decoder This unit decodes instructions and sets up internal conditions
for the execution unit.

Execution Unit This unit performs actual operations within the processor, such as
data movement.

Bus Interface Unit This unit drives the address bus with appropriate effective ad-
dress and handles data transfers on the data bus. It also generates and monitors the bus

control signals necessary for the successful data transfers.

Control Unit This unit generates appropriate control and timing signals within the

processor and coordinates all processor operations.

Supervisor and User Modes of Operation

All of the processor and system resources and all the instructions are available in the

supervisor mode, but some cannot be used in the user mode of programming. This con-

dition provides a safety mechanism in that the user cannot inadvertently modify or cor-

rupt the system-level programs and resources. The operating system software is in the

supervisor mode. These modes of operation are conceptually shown in Figure 1.5.

Supervisor Mode (S=1) This is the highest level or mode of operation. In this
mode, the 68000 processor services system-level tasks, such as reset functions, inter-

rupts, traps, tracing, and error conditions. This type of activity is known as exception

processing. On the power-up reset condition, the S bit in the system byte of the status

register is set to 1 and the 68000 enters the supervisor mode, upon which it executes the

reset routine. This routine is always a system-initialization program. SSP is the effec-

tive stack pointer in the supervisor mode.

FIGURE 1.5 Supervisor and MC68000—USER/SUPERVISOR MODES

user modes of operation in the Transition may occur only

68000. (Courtesy of Motorola, during exception processing

Inc.)

SUPERVISOR
STATE

TRANSITION MAY BE MADE BY:
RTE; MOVE, ANDI, EORI
TO STATUS WORD

13

14 Chapter 1 The 68000 Family of Microprocessors and Architecture

At the end of the reset exception routine, the processor may clear the S bit in the

system byte to 0. This puts the processor in the user mode.

User Mode (S=0) This is the lower level of operation. It is for this level that users

write their normal programs. As we already know, some resources and instructions are

not functional in this mode of operation. Any attempt to use these resources in the user

mode results in an error condition whereby control is transferred to the supervisor mode.

This error condition is known as a privilege violation. USP is the effective system stack

pointer in the user mode.

Figure 1.5 illustrates the intercommunication between the two modes of operation.

Exception conditions, such as reset, interrupts, errors, traps, and trace, will set the S bit

in the status register to 1 and move the processor into the supervisor mode. Traps are

special software instructions that can be used in the user mode in order to move to the

supervisor mode.

The processor moves from the supervisor mode into the user mode if the S bit in

the system byte is cleared to 0. This is accomplished by executing such software instruc-

tions as the RTE (return from exception), MOVE to SR (move data to status register),

and others. These instructions are privileged; they can only be used in the supervisor
mode.

The following example problem will review our discussion of the supervisor and
user modes of operation.

Example 1.4 Supervisor and user modes in the 68000.
The initial values of the USP, SSP, and SR are as follows:

USP

SR

$0000480C SSP = $000037A0

$2400 ll

1. Is the processor operating in the user mode or in the supervisor mode? Why?

2. Where is the system stack located?

Solution

1. Processor operating mode: The processor is operating in the supervisor mode, since
the S bit in the system byte is 1. Expanding the system byte of the SR:

$24=$00100100

ees I2 I1 10

it can be seen that the S bit is set to 1.

2. System stack: Because the processor is in the supervisor mode, SSP controls the
system stack. As such, the system stack is located at $000037A 0.
a SS ee eee

Summary 15 Sa ethical the dann ninceh pein Rd"! oN alah Rs Fd

1.4 OTHER FEATURES OF THE 68000
FAMILY OF PROCESSORS
Et a Bee i Se ee

The primary objectives in using the 16/32-bit processor are to obtain more processing
power and more speed. In the 68000 family, these objectives are achieved by means of
the prefetch-queue and the instruction-pipe architectures. !°

The Prefetch Queue

When the processor is internally busy with operations on data corresponding to the cur-
rent instruction, the external data and address buses are relatively free. The bus unit
within the microprocessor uses these buses to obtain the next instruction code from
memory. This is known as prefetching. The internal register bank where this code is
stored has memory in the form of FIFO (first in first out) and is known as the queue.
The prefetch-queue mechanism overlaps processor activity and thus enhances speed. All
members of the 68000 family have a two-word prefetch queue.

The Instruction Pipeline

The control unit within the processor sequentially arranges decoded instructions and as-

sociated operands in the form of a pipeline. The execution unit within the processor ob-

tains information from this pipe for its operation. The pipe is structured along FIFO

lines.

The internal pipeline can be formed by the control unit when the execution unit is

busy with the previous operation. Thus, there is an overlap of processor activity which

enhances the speed of operation. The 68020 and 68030 processors have a three-word

pipe.

1.5 SUMMARY

In this chapter we introduced the 68000 family and outlined the relative features of these

processors. Motorola entered the 16-bit market in the late 1970s with the 68000.

The 68000 microprocessor has an effective 24-bit address bus and a 16-bit data

bus; it supports a 16-megabyte address range. The 68000 is normally contained in a 64-

pin DIP package and is also available in a 68-pin grid-array package.

The 68008 is a reduced-bus version of the 68000 processor. It has an effective

20-bit address bus and an 8-bit data bus; it supports a 1-megabyte address range. It is

contained in a 48-pin DIP package.

The 68010 is a virtual memory microprocessor. It contains all the resources of the

68000 and is also pin compatible with the 68000. In addition, the 68010 processor has

extended internal resources to support virtual memory schemes. The 68012 processor is

an enhanced version of the 68010 processor with an effective 31-bit address bus that

supports 2 gigabytes of address range. The 68012 is contained in an 84-pin grid-array

package.

16 Chapter 1 The 68000 Family of Microprocessors and Architecture

The 68020 is a 32-bit processor with all the resources of the 68012. The address

and the data buses are extended to 32 bits. It supports a 4-gigabyte address range. In

addition, the 68020 processor has internal instruction cache memory and the resources

to support it. The cache memory holds most recently fetched instructions and supplies

them to the processor. This speeds up the system operation.

The 68030 is an enhanced version of the 68020 processor with all the resources

of the 68020. In addition, it has internal data cache memory and a memory manage-

ment unit, further enhancing the throughput of the 68030 as compared to the 68020 pro-

cessor.
The performance gradation sequence is 68008 — 68000 — 68010 — 68012 —

68020 — 68030. The 68008 is the lowest member of the family and the 68030 is the

highest. These processors are upward code compatible.

Processors in the 68000 family are provided with proper control and interface

buses to support synchronous and asynchronous devices. Moreover, the interrupt and

the DMA operations are fully supported.

The architecture of the 68000 microprocessor forms the basis for that of all the

other members of the family. It consists of eight 32-bit data registers, seven 32-bit ad-

dress registers, one 32-bit program counter, two 32-bit stack pointers, one 16-bit status

register, and a 32-bit ALU. The 68000 operates in two distinct modes: the supervisor

mode and the user mode. This feature serves to maintain separation between the operat-

ing system programs and the user programs.

Each member of the 68000 family has a two-word prefetch queue, which effec-

tively speeds up processor operation. In addition, there is a three-word pipeline in the

68020 and 68030 processors, speeding up processor operation still further.

PROBLEMS

1.1 What are the physical address spaces for

(a) the 68008 and 68000 processors;

(b) the 68010 and 68012 processors;

(c) the 68020 and 68030 processors.

Specify these address spaces in bytes and words.

1.2 Does software written on a 68000-based system work with a 68020-based system having

the same memory and I/O map? What happens if the memory and I/O maps are different?

1.3. Specify special conditions that would enable software written on a higher processor, such

as 68010, to function on a lower processor, such as 68008.

1.4 Compute the relative speed of the processors in question in the following situations:

(a) the 68008 and 68000 transferring long words from memory into the processor internal
registers; y

(b) the 68008 and 68000 transferring long words from the processor internal registers into
memory.

1.5 Compute the relative speed of the processors in question in the following situations:

Problems 17
rr a ae ee.

1.6

1.7

1.8

1.9

1.10

1.12

1.13

1.14

1.15

1.16

(a) the 68000 and 68010 transferring words from memory into the processor internal
registers;

(b) the 68000 and 68010 transferring words internally from one register into the other.

Is it possible for the processor to simultaneously address the devices connected to the

synchronous and asynchronous buses? Why or why not?

Describe two or more advantages and disadvantages of using synchronous and

asynchronous interfaces.

Suppose you are required to scale down a 68000-based system to that of a 68008. In order

to make the scaled-down version functional,

(a) what hardware modifications are necessary?

(b) what software modifications are necessary?

List three differences between the data and the address registers in the 68000 family of

processors.

Can the USP and the SSP be used simultaneously as stack pointers? Why or why not? Can

both the stack pointers be initialized at the same location to refer to the stack? Why or

why not?

The initial values of the registers in a 68000 register are

DO = $01020304 D1

AO = $00135798 Al

USP = $000040A0 SSP

SR = $0304

$A0BOCODO

5-0 O.A9 7 5 3 42

$O0000340A

State the contents of DO, D1, AO, Al, and the SR after each of the following operations:

(a) long word in DO added to long word in D1, with the result in D1;

(b) byte in DO added to byte in D1, with the result in DO;

(c) long word from A1 transferred into AO.

Using the initial conditions given in Problem 1.11, state the contents of the affected

registers after each of the following operations:

(a) long word from D1 transferred into Al;

(b) long word in AO added to long word in D1, with the result in D1;

(c) operation (b) repeated, with the result in AO.

With the initial conditions as stated in Problem 1.11,

(a) is the processor in the user mode or the supervisor mode? Why?

(b) can the processor use all the instructions, given your response to (a)? Why or why

not?

How do the user and the supervisor modes differ?

The user byte of the SR is $00 initially and the interrupt mask level is set at 6. The

processor is operating in the supervisor mode. The last addition operation has resulted in a

word operand $FE0O in data register D7. What are the contents of the status register?

Repeat Problem 1.15 under the following conditions:

(a) byte result $00 in D6 register;

(b) long-word result $0123456B in Al register.

18 Chapter 1 The 68000 Family of Microprocessors and Architecture

1.17 Specify what happens under the following conditions:

(a) byte operand addressed in AO;

(b) stack located at an odd boundary, such as $00003401;

(c) memory reference $2345678A made by the 68000.

ENDNOTES

10.

. Motorola, Inc. M68000 16/32 Bit Microprocessor Programmer's Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

. Motorola, Inc. MC68000, MC68008, MC68010/12 Data Books. Phoenix, AZ: Motorola:

Technical Operations, 1983.

. Motorola, Inc. The M68000 Family. BR 176, Rev. 2. Phoenix, AZ: Motorola Technical

Operations, 1986.

. Reinhort, J. Extra Functions—32-Bit Processors. Boston: Electronic Products, 1986.

. Motorola, Inc. MC68020 Benchmark Report. BR322. Phoenix, AZ: Motorola Technical

Operations, 1986.

. Motorola, Inc. The M68000 Family. BR176, Rev. 2. Phoenix, AZ: Motorola Technical

Operations, 1986.

. Subbarao, W. Microprocessors: Hardware, Software, and Design Applications. Englewood

Cliffs, NJ: Prentice-Hall, 1984.

. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

. Gibson, M., and Liu, C. Microcomputers for Scientists and Engineers. Englewood Cliffs,

NJ: Prentice-Hall, 1987.

Motorola, Inc. MTT20: 68020 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1987.

CHAPTER

2
The 68000 Memory Organization

Schemes, Data Structures, and
Addressing Modes

Objectives

In this chapter we will study:

Memory organization and selection schemes for the 68000

Data structures and representation for the 68000

Stack memory organization and structure for the 68000

Instruction format and structure for the 68000

Addressing modes for the 68000

20 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

2.0 INTRODUCTION .

Memory access is an integral part of any computer system operation. For the 68000,

memory is organized as blocks of even and odd bytes. Data are structured so that bytes

can be accessed individually, words can be accessed as two bytes, and long words can

be accessed as two words. This provides an efficient and reliable memory access for

data operands of varying size.

The stack memory is word-aligned. The program memory, where instructions and

associated operands reside, is similarly word-aligned. Thus, the complete 16-bit data

bus of the 68000 is utilized, optimizing the stack and instruction fetch operations.

The 68000 processor has 14 different addressing modes with which to access

memory. Depending upon the application, any of these addressing modes can be used.

An understanding of memory organization schemes and data structures is essential

to the study of the addressing modes. We must first learn about these addressing modes

to understand the instructions, software features, and programming techniques of the

68000, all of which will be introduced in the next chapter. Note that throughout the

book, the overbar is used to represent an active low signal. For example, LDS means

that the signal LDS is active when it is at the low logic level and is inactive when it is at

the high logic level.

2.1 MEMORY ORGANIZATION SCHEMES
AND DATA STRUCTURES

The 68000 microprocessor handles the byte, word, and long words of data. The memory

is organized as 16-bit words and supports the aforementioned data elements.

Memory Organization and Selection Schemes

Figure 2.1 illustrates the memory organization and selection schemes for the 68000. The
memory is structured as blocks of even and odd bytes. It can be accessed as bytes,
words, or long words with the help of two strobes: LDS and UDS. These are active low
signals.

LDS is called the lower data strobe. When it is active, the lower or the odd
memory byte is selected. UDS is called the upper data strobe. When it is active, the
upper or the even memory byte is selected. When both strobes are active, both bytes are
selected, providing a word access.

The odd byte is connected to the lower eight data bits, DO—D7, of the data bus.
The even byte is connected to the upper eight data bits, D8—D15, of the data bus.

The 23 address lines, Al—A23, of the address bus provide an effective address
range of eight megawords. The conventional AO address line is brought out in the 68000
as the LDS and the UDS strobes. When they are active individually, these two strobes
select either an odd byte or even byte. This provides an effective address range of 16
megabytes. An R/W signal from the processor is the read/write strobe. If this R/W
strobe is at a high logic level, the processor reads the data from the memory. By the

Memory Organization Schemes and Data Structures 21

FIGURE 2.1 (a) Memory

organization and (b) selection

schemes for the 68000.

MC68000

(a)

Lower or odd byte selected

Upper or even byte selected

Low Low Both bytes selected (word)

(b)

same token, if this signal is at a low logic level, the processor writes the data into the

memory. Details of these signals will be discussed when we deal with the hardware as-

pects of the 68000.

Data Structures and Representation

Bytes, Words, and Long Words Figure 2.2 illustrates how data are represented in

the memory. The bytes can be accessed at the even or at the odd address boundaries.

The word, consisting of two bytes, should be accessed only at the even address bound-

ary. Similarly, the long word, consisting of two words, should be accessed only at the

even address boundary. The word at the lower address corresponds to the higher word

element of the long word. Word or long-word access at an odd boundary results in an

error condition called the address error. This error condition transfers control to the

supervisor mode and the operating system programs. '*?

BCD (Binary Coded Decimal) The decimal numbers are represented in the BCD

(binary coded decimal) format. Each BCD digit is a 4-bit element. Two BCD digits are

contained in a byte. For a BCD string, the first BCD digit at the lowest address corre-

sponds to the MSD (most significant digit).

22 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

15 8 7 0

ADDRESS = N N+1

1 WORD = 16 BITS N+2 N+3

N+4 N+5

15 0

1 LONG WORD = 32 BITS N+6 N+7 LONG WORD 1 (L)

<«—_ BITS ———»
leet niame) 7) 6 5 45°32" 10

ADDRESS = N BYTE 0 BYTE 1 N+1

1 BIT

ADDRESS =N BCD 0 BED sinh BCD 2 ‘BCD 3 N+1

1 BCD DIGIT = 4 BITS N+2 BCD 4 BCD 5 BCD 6 BCD 7 N+3

*N IS AN EVEN NUMBER

FIGURE 2.2 Data representation in memory for the 68000.

The data structures for the 68010 and 68012 processors are similar to those for the
68000. For the 68008, which has only an 8-bit data bus, the memory is byte organized.
The LDS and the UDS are integrated into a single data strobe, DS. A word is accessed
as two sequential bytes for the 68008.°

The following example problem will review our discussion of data structures.

ee ee

Example 2.1 Data structures for the 68000.
Suppose that we are required to store the following:

Memory Organization Schemes and Data Structures 23

data bytes $7F and $4E at locations $0040E0 and $0040E1;
data word $CAD8 at location $0040E2;

long data word $2468A840 at the next location;

BCD data string 1234567 starting at the next location.

1. Indicate the contents of the memory for the 68000 processor.

2. What will be the contents of a long word read from location $0040E0?

3. Repeat (1) and (2) for the 68008 processor.

Solution

1. Memory contents: Figure 2.3(a) indicates the contents of the memory for the 68000

processor. The memory is word organized. The long word occupies two word posi-

tions, starting at $0040E4. In the long word $2468A840, the first digit, 2, is the

MSD and the last digit, 0, is the LSD.

FIGURE 2.3 (a) Data Even memory Odd memory Teer

structures for the 68000 address address type

microprocessor. Even byte Odd byte

$0040E2 Cc A D 8 Word

$0040E4 Long

word

$0040E8 $0040E9 BCD

$0040EA $0040EB

For the BCD data, the leading zero is introduced by the processor, since the

memory cannot be accessed at 4-bit boundaries.*

2. Long word from $0040E0: The long word from location $0040E0 will be

MSD Lop

$7F4ECAD8.

3. 68008 memory organization: Figure 2.3(b) shows the corresponding results for the

68008 processor. The memory is byte organized. A word occupies two byte

locations.

24 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

Memory Data ass: we ae ia
$0040E0 Byte

$0040E1

$0040E2 Word

$0040E3

Long $0040E4 a

$0040E5

$0040E6

$0040E7

$0040E8 BCD

$0040E9

$0040EA

$0040EB

The 68000 processor uses memory-mapped I/O in which the processor considers

memory and I/O to be similar to one another. The memory organization for the 68000

family is linear, allowing for access of any memory location without readjusting the ad-

dress mechanism. This simplifies the stack and queue operations, which will now be

introduced.

Stack and Queue Organization and Structure for the 68000

A stack is a LIFO (last-in-first-out) data structure in the memory. Some of the internal

registers of the processor are saved automatically on the stack whenever there is a

change in program flow due to subroutines or exceptions. The system stack pointer

(SP) controls the stack operation. The stack pointer is either SSP (A7’) or USP (A7),

depending upon the mode of operation. The program counter is saved on the active sys-

tem stack on subroutine calls and is restored from the stack on the returns. On the other

hand, both the program counter and the status register are saved on the supervisor stack

during the processing of exceptions, such as interrupts and traps. They are restored on

return. The system stack fills from high memory to low memory.°

Memory Organization Schemes and Data Structures 25

The stack is always word organized and word aligned. Byte data are put on the
stack in pairs, preserving the word alignment of the stack. Saving information on the

stack is known as pushing. Retrieving the information from the stack is known as pop-

ping or pulling. The stack pointer (SP) always points to the top of the stack, where the

last element has been pushed. The SP predecrements by two for pushing a new word

onto the stack. Similarly, the SP postincrements by two after pulling a word element
from the stack. For long-word pushing or pulling, the SP is predecremented or postin-

cremented by four.° The stack should always be accessed at even boundaries.

A queue is a FIFO (first-in-first-out) data structure in the memory. A queue may

be implemented to fill in from high memory to low memory, or vice versa. Queues may

be byte or word organized. They are very helpful in setting up memory tables and

strings. There can be several queues set up in the memory. The stack and queue are very

important data structures and are explicitly supported by the addressing modes of the

68000.
The following example problem on the stack and queue will promote better under-

standing of these structures.

Example 2.2 Stack and queue structures.
The initial values of the USP, SSP, AO, and AI are as follows:

USP = $0000480C SSP = $000037A0

AO = $0000BD04 Al =$0000BD1 8

The 68000 is executing a main user program in the user mode and the JSR Gump to

subroutine) instruction has been encountered. The next instruction to be executed in the

main program is at PC location $00024A08.

1. Indicate the contents of the stack.

2. The subroutine sets up a memory table in the form of a word-organized queue. AO

_points to the first element and A1 points to the last element in the queue. Conceptu-

alize the queue structure. How many words are contained in the queue?

Solution

1. Stack: Figure 2.4(a) shows the contents of the stack. USP is the system stack

pointer, since the processor is in the user mode. The USP gets predecremented by

four and the PC pointing to the next instruction in the main program gets pushed

onto the stack.

2. Queue: Figure 2.4(b) shows the conceptual queue structure. It contains

[($0000BD18 — $0000BD04) + 1] = $15 word elements.

oe —.

26 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes
bon IR Ali hatha acelin hen Adlets tached tomas. stil, oe ih NNR NS RN Se 2

FIGURE 2.4 (a) Contents of Memory address Word memory

the stack and (b) conceptual -

queue structure (for Example USP — 4 = $00004808 PC (high word)

2.2). PC (low word)

USP = $0000480C Initial top of stack

(a)

Memory address Word memory

First element

Second element

AO = $0000BD04

$0000BD06

Queue beginning

Al = $0000BD18 Queue ending

(b)

The RTS (return-from-subroutine) instruction restores the stored contents from

the stack. RTS is the last instruction in any subroutine. On executing the RTS instruc-

tion in the subroutine of Example 2.2, the contents of the stored PC ($00024A08) are

pulled from the stack and restored into the PC. This causes the main program to resume,

starting at $00024A08. This is the location of the next instruction to be executed in the

main program, while the subroutine is called. The SP is incremented to its original

value: $0000480C.
A subroutine called by another subroutine is said to be nested. Suppose the first

subroutine calls a second subroutine. The PC pointing to the next instruction to be exe-

cuted in the first subroutine is stored on the stack, on top of the earlier stored PC (cor-

responding to the main routine). The processor then executes the second subroutine. At

the end of the second subroutine, the RTS instruction is executed. This restores the PC

corresponding to the first subroutine from the stack. At the end of the first subroutine,

another RTS instruction is executed. This restores the PC corresponding to the main

program from the stack. Ultimately, the SP is incremented to its original value. The

available stack space determines how many of the subroutines can be nested. A similar

mechanism works for nesting exceptions such as interrupts.’

2.2 INSTRUCTION FORMAT AND STRUCTURE

A software program consists of a sequence of instructions. These instructions are stored

in program memory in the form of machine code. The program memory is that area in

memory addressed by the program counter. The program memory is word aligned for
the 68000.

Instruction Format and Structure 27

Instruction Format

For the 68000, instructions are from one to five words, as shown in Figure 2.5. The first
word, which is called the operation word (op. word) specifies the length of the instruc-
tion and the type of operation to be performed. The remaining words specify the appro-
priate source and destination operands. The processor obtains the source operand, per-
forms the specified operation, and puts the result at the destination. Instructions for the
68000 have a well-defined structure enabling programmers to clearly identify the source
and destination operands without ambiguity.

FIGURE 2.5 Instruction format b15 bO

foie GSO ee 8

Operation code and modes
Operation

Extension word, or

mond First word

immediate operand (if any) 1 or 2 words

Operands
(data or

effective

address of

data)

Source effective

address (if any) 1 or 2 words

Destination effective

address (if any) 1 or 2 words

Instruction Structure

An instruction may be of the single- or the double-operand type. For the single-operand

type, the specified operand is always the destination. For the double-operand type, the

first operand is the source operand and the second is the destination. We will define and

use three instructions for our discussion in this chapter. These instructions reference an

effective address <ea> and are as follows:

CLR <ea> Clear the contents of the specified address.

ADD <ea>,Dn Add the contents of the effective address to

the specified data register Dn (n = 1-7).

MOVE <ea>,<ea> Move the contents of the source effective

address to the destination effective address.

The CLR instruction is of the single-operand type; the other two are of the double-

operand type. Figure 2.6 illustrates typical instruction structures for the 68000 processor

with single and double operands. Most of the instructions are similarly structured. Also,

in most cases, the data size is explicitly specified to be byte, word, or long word, as

shown; thus, the same mnemonic statement may be used for different types of data.®

Clearly, the effective address is an integral part of the instruction. In that the

68000 has 14 distinct addressing modes to specify the effective address, it is a very

powerful and versatile processor. Some of these modes deal with the register reference,

some deal with the memory reference, and some deal with the control.

28 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

FIGURE 2.6 Instruction Instruction CLR.X <ea>
mnemonic

Ste ee (specifies res Ferpemevesecr 2 Destination-effective

operation) address

Attribute (specifies data size)

B = Byte; W = Word; L = Long word

MOVE.X <ea>, <ea>

Instruction = eee forma Destination-effective

mnemonic address

(specifies ;

i = ive
operation) Source-effect

address

Attribute (specifies data size)

B = Byte; W = Word; L = Long word

2.3 REGISTER DIRECT AND REGISTER
INDIRECT ADDRESSING MODES

Motorola Corporation introduced a notation scheme to refer to the registers and oper-

ands in dealing with the addressing modes and the instructions. We will follow this no-

tation, which is given in Figure 2.7.

Data register (n specifies the register number)

Address register (n specifies the register number)

Dn or An (n specifies the register number)

Program counter

Status register

Condition code register (user byte of the SR)

Supervisor stack pointer

User stack pointer

Active system stack pointer (either SSP or USP)

8-bit displacement value

16-bit displacement value

Operand size in bytes (N = 1, 2, or 4 for byte, word, or long-word operands)

Contents of the location addressed by An

Effective address of the operand

FIGURE 2.7 Motorola’s register and operand notation for the 68000 addressing modes
and instructions.

Register Direct and Register Indirect Addressing Modes 29

In the register direct addressing modes, either the data or the address registers hold

the data operands. On the other hand, in the register indirect addressing modes, one of

the address registers holds the base address of the data operand. The register-related ad-

dressing modes are indicated in Figure 2.8.

Addressing Mode Effective Address <ea>

REGISTER DIRECT

Data register direct <ea> = Dn; n =

Address register direct <ea> = An;n

|

—

|

ADDRESS REGISTER

INDIRECT (ARJ) (An) <ea> = (An)
ARI with

postincrement (An)+ <ea> = (An); An+N— An

predecrement —(An) An—N — An ; <ea> = (An)

displacement d(An) <ea> = (An + dl16)

index and displacement d(An,Rn) <ea> = (An + Rn + d8)

FIGURE 2.8 Register-related addressing modes for the 68000.

In our discussion we will use the three instructions introduced earlier:

CLR <ea>

ADD <ea>,Dn

MOVE <ea>,<ea>

We will also use the ‘initial values of the registers and operands as given in Figure 2.9

for example problems.

It is important to note that although register A7 can be used as an address register

in any of the addressing modes, extreme care should be exercised. Since A7 is the sys-

Memory

Address

$0034F E74
$0034F E76
$0034FE78

$0034FE7A
$0034FE7C

$00487D6E

FIGURE 2.9 Initial values for the registers and the data operands in memory.

30 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

tem stack pointer, it should remain word aligned. In the postincrement and predecre-

ment addressing modes, A7 increments or decrements by two, even if the size of the

operand is byte.

Register Direct Addressing Modes

The 68000 has two direct addressing modes: the data register direct and the address reg-

ister direct.

Data Register Direct Addressing Mode (Dn; n = 1-7) In this mode the speci-
fied data register contains the addressed operand. Examples are as follows:

CLR.L DO Clear the long word operand in the DO register.

(Single-operand type; DO is the destination.)

DO (before) S$I23 40678

DO (after) $00000000

CLR.W D1 Clear the word operand in the D1 register. The lower word in D1

gets cleared. The upper word in D1 is not affected.

(Single-operand type; D1 is the destination.)

D1 (before) $ABCDEFO0O0O
D1 (after) $ABCD0000

Address Register Direct Addressing Mode (An; n = 1-7) In this mode the
specified address register contains the addressed operand. For example,

MOVEA.L AO,A1 Move the long-word operand from AO into Al.

AO is the source operand and is not affected.

Al is the destination operand and is changed.

AO (before) $004876F2
Al (before) $0034FE78

AO (after) $00487 6 F 2 (no change)
Al (after) $0048 7 6 F 2 (changed)

The register direct addressing modes are very fast and efficient in conducting op-

erations on the data operands already present in the CPU internal registers.

Register Indirect Addressing Modes

The 68000 has five indirect addressing modes: the address register indirect (ARI), the
ARI with postincrement, the ARI with predecrement, the ARI with displacement, and
the ARI with index and displacement. All these addressing modes provide memory ref-
erence where the data operand is located.

Address Register Indirect ARI ((An); n = 1-7) In this mode, the specified ad-
dress register contains the address of the data operand. An example follows.

Register Direct and Register Indirect Addressing Modes

MOVE.B (A1),D0 Move the byte operand in memory, the address of which is

contained in Al, into DO.

Source <ea> = (Al) = $0034FE78.

Byte operand at $0034FE78 = $5E.

Destination <ea> = DO register

DO (before) $12340678
DO (after) $1234065E

Only the lower byte of DO is changed to SE. The other part of

DO is not affected. Al also is not affected.

ARI with Postincrement ((An)+; n = 1-7) In this mode, too, the specified ad-

dress register contains the address of the data operand. After the operand address is

used, the address register is incremented by one, two, or four, depending upon whether

the size of the operand is byte, word, or long word. This mode is very useful in setting

up and scanning the memory tables. An example follows.

MOVE.L (A1)+,D1 Move the long-word operand in memory, the address of

which is contained in Al, into the D1 register and postin-

crement Al by four.

Source <ea> = (Al) = $0034FE78.
Long word at $0034FE78 = $5EF69873.
Destination <ea> = D1 register.

D1 (before) $ABCDEF00
Al (before) $003 4FE78

D1 (after) SS EF69 873

Al (after) $003 4FET7C

ARI with Predecrement (—(An); n = 1-7) In this mode, the specified address reg-

ister contains the address of the data operand. It is predecremented by one, two, or four

to generate the effective address, depending upon whether the size of the operand is

byte, word, or long word. This mode is very useful in setting up and scanning memory

tables and in multiprecision arithmetic operations. An example follows.

MOVE.W —(A1),DO Predecrement Al by two (since the size of the operand is

word), to obtain the source effective address and move the

word from that address into DO.

Source <ea> = (A1l—2) = $0034FE76.

Word operand at $0034FE76 = $3CD4.

Destination <ea> = DO register.

DO (before) $12340678

Al (before) $O0034FE7 8

DO (after) $12343CD4

Al (after) $0034FE7 6

ARI with Displacement (d(An); n = 1-7) | In this mode, the specified address reg-

ister contains the base address. The instruction specifies-a sign-extended 16-bit displace-

31

32 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

ment as the extension word. The sign extension provides an effective displacement

range of +32768 (+32K) for positive words and —32768 (—32K) for negative words.

(Effective address computations use the sign extension for displacement and index val-

ues. Refer to Appendix A for sign-extension concepts).

The effective address is the sum of the base address and the displacement value.

The contents of the address register do not change. This mode is very useful in address-

ing different sections of memory, with different displacement values. An example fol-
lows.

MOVE.B 0003(A1),D1 Move the byte operand from the computed source <ea>

into the D1. register. Effective address computation by

the processor is as shown (displacement is 16-bit d16):

Contents of Al $0034FE7 8

+ displacement d16 $00000003
Source <ea> = $0034FE7B

Byte operand at $0034FE7B = $73.
Destination <ea> = D1 register.

D1 (before) $ABCDEF0O
A1 (before) $0034FE78
D1 (after) SA BCD EF 73

Al (after) $0034FE78

Only the lower byte of D1 is changed to $73. The other

part of D1 is not affected. Al also is not affected.

ARI with Index and Displacement (d(An,Rn); n = 1—7) In this mode, the spec-

ified address register (An) contains the base address. The other address, or data, register

(Rn) contains an index word (or long word), as specified. The instruction also specifies

an 8-bit sign-extended displacement as a part of the extension word. The index operand

can be a computed variable, which provides a dynamic addressing scheme.
The effective address is the sum of the base address, the index value, and the dis-

placement. The contents of the address and index registers do not change. This mode is
very useful in addressing different sections and blocks of memory with different index
and displacement values.” An example follows.

MOVE.W 04(A0,D0.W),D1 Move the word operand from the source <ea> into
D1. The <ea> computation by the processor is as
shown (displacement is 8-bit d8).

Contents of AO $004876F2
+ index word from DO $00000678

+ displacement d8 $00000004
Source <ea> = $00487D6E

Word operand at $00487D6E = $CD02.

DO (before) $, 14203 'AeOn6oRg

D1 (before) $ABCDEFOO

AO (before) $004876F2

Register Direct and Register Indirect Addressing Modes 33

DO (after) Sol 2°3°4h0 6.78

D1 (after) $-A.B.GD.C_D.0.2

AO (after) $004876F2

Only the lower word of D1 is changed.

Depending upon the application, any of the preceding addressing modes can be

used to specify either the source or the destination operands. In some instances, not all

the addressing modes are applicable. The instruction set specifies which modes are ap-

plicable and which are not.

Any type of data structure can be set up and handled using the preceding address-

ing modes. For example, the predecrement and postincrement addressing modes can be

used in conjunction with each other to set up a stack-type or queue-type activity. Within

the same instruction, the source and destination operands can be specified by different

addressing modes. .

The following example problem provides a review of the register-related address-

ing modes.

Example 2.3 Register addressing modes for the 68000.
According to the instruction structure and the addressing modes discussed so far, specify

what occurs in each of the following operations. Also, indicate the contents of the cor-

responding registers and the memory locations after each operation. The initial values in

each case are as shown in Figure 2.9.

1. MOVE.B D1,D0

Ta a ST

3. MOVE.W (A1)+,0A(A0,D0.W)

Solution

1. MOVE.B D1,D0: D1 is the source operand. DO is the destination operand. The

source and the destination operands are specified by the data register direct address-

-ing mode. The lower byte operand from D1 is moved to DO. Only the lower byte of

DO is changed.

DO (before) $12340678

DO (after) $12340600

2. CLR.L —(A1): The operand is specified by the ARI with predecrement addressing

mode. Al is predecremented by four (since the operand is long word) to obtain the

effective address, and the long word at the location is cleared.

Destination <ea> = (Al—4) = $0034FE74.

Al (before) $0034FE78

Al (after) $0034FE74

34 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes
SS

Memory address Memory contents

before after

$0034FE74 1AB2 0000

$0034FE76 3CD4 0000

$0034FE78 SEF6 SEF6

3. MOVE.W (A1)+,0A(A0,D0.W): The source operand is specified by the ARI with

postincrement mode of addressing. The destination operand is specified by the ARI

with index and displacement mode of addressing. The word from the source <ea> is

moved to the destination <ea>.

Source <ea> = (Al) = $0034FE78.

Destination <ea> computation:

Contents of AO $004876F2
+ index word from DO $00000678

+ displacement d8 $0000000A
Destination <ea> = $00487D74

Word at location $0034FE78 ($5EF6) is moved to location $00487D74.

Al (before) $0034FE78

Al (after) $0034FE7C

(postincremented by four)

Memory word at $00487D74 (before) not known

(after) $5EF6

The addressing modes discussed so far address the data or the address operands.

We will now introduce the other modes that deal with the program control, in addition

to addressing the operands.

2.4 IMMEDIATE, QUICK, ABSOLUTE, RELATIVE,
AND IMPLICIT ADDRESSING MODES

Figure 2.10 illustrates the aforementioned addressing modes. In the immediate and

quick addressing mode, the data is explicitly specified as part of the instruction. In the

absolute addressing mode, the address of the data or of the next instruction is explicitly

specified as part of the instruction. In the relative addressing mode, a displacement

where the data or the next instruction is located is explicitly specified as part of the in-

struction. In the implicit addressing mode, instructions make implicit reference to the

processor registers. We will now discuss the details of these addressing modes using the

three instructions (CLR <ea>; ADD <ea>,Dn; and MOVE <ea>,<ea>) introduced

earlier. The initial values of the registers and the operands given in Figure 2.11 will be

used for examples.

Immediate, Quick, Absolute, Relative, and implicit Addressing Modes 35

Addressing Mode Effective Address <ea>

Immediate addressing <ea> = next one or two

words of the in-

struction

#XXX or IMM

Quick addressing Instruction ends with Q Data contained as part of the

op.word

Absolute short addressing XXXX or ABS.W <ea> = next word of the

instruction

Absolute long addressing XXXXXXXX or ABS.L <ea> = next two words of

the instruction

PC relative with displace- d(PC) <ea> = (PC + d16)

ment

PC relative with index and d(PC,Rn) <ea> = (PC + Rn + d8)

displacement

FIGURE 2.10 Immediate, quick, absolute, relative, and implicit addressing modes for
the 68000.

Immediate Addressing Mode (Imm)

Data are explicitly specified and contained in the extension words of the instruction.

Data size can be a byte, a word, or a long word. For long-word data operands, two

word extensions are required. This addressing mode is very useful in initializing the reg-

isters and the memory. Only the source operand can be specified by this addressing

mode. We will use a # sign to signify the immediate operand. Examples are as follows:

Memory

Address

$0034FE74
$0034F E76
$0034FE78
$0034FE7A

$0034FE7C

$00487D6E

FIGURE 2.11 Initial values for the registers and the data operands in memory.

36 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

MOVE.B #$2A,D0 Move the immediate data byte $2A into the DO desti-

* nation register.

DO (before) $1234067 8
DO (after) $1234062A

MOVE.W #$BBBB,(A1) Move the immediate data word $BBBB into memory

addressed by (A1).

Destination <ea> = (Al) = $0034FE78.

Contents of $0034FE78 (before) $5EF6

(after) $BBBB

Quick Addressing Mode (. . . . Q)

This is a variation of the immediate addressing mode. Up to 8 bits of data can be spec-

ified as part of the operation word itself. Thus, this is a single-word instruction and op-

erates faster than the immediate addressing mode. However, the data range is limited to

8 bits in move operations and to 8 units in arithmetic operations. In this addressing

mode, all 32 bits of the destination are affected by the sign extension of the data oper-

and. In the sign extension, the most significant bit (MSB) of the data operand is repli-

cated to all the higher bits (see Appendix A). The instructions allowed in this mode are

explicitly specified in the instruction set and end with Q (ADDQ, MOVEQ, SUBQ, and

so forth). An example follows.

MOVEQ #$43,D0 Move the quick data $43 into the DO destination register.

Data operand = $43 = 9 1000011

MSB = 0
This MSB is replicated to all the higher bits in DO register.

DO (before) o 1 23.4 0.60 8

DO (after) $00000043

Absolute Short and Long Addressing Modes (Abs.W, Abs.L)

In the absolute short addressing mode, a 16-bit address of the data or of the next instruc-

tion is explicitly specified as an extension word within the instruction. In the absolute

long addressing mode, instead of the 16-bit address, a 32-bit address is specified as two

extension words within the instruction. The short addressing mode has a range of 64
kilobytes and the long addressing mode has a range of 16 megabytes. These addressing
modes are used to access the memory directly. They are also used in program control
applications to specify the location of the next instruction. Examples are as follows:

CLR.L $0034FE74 Clear the long-word operand starting at memory location

$0034FE74. This is the absolute long addressing mode,

since a 32-bit address of the operand is specified.

Destination <ea> = $0034FE74.
Long-word operand at $0034FE74
(before) 21 A.B23 CD 4

(after) $00 000000

Immediate, Quick, Absolute, Relative, and Implicit Addressing Modes 37

MOVE.B D0,$4000 Move the byte operand from DO into the memory location at

$4000. Destination of the 16-bit address is specified by the

absolute short addressing mode. The upper four digits of the

address are considered to be $0000.
Source operand = byte from DO = $78

Destination <ea> = $00004000
Byte operand at $00004000 (before) not known

(after) $78

PC Relative with Displacement Addressing Mode d(PC)

In this addressing mode, a signed displacement is specified as a part of the instruction.

This displacement is added to the contents of the PC (program counter) to obtain the

effective address of the operand.

The displacement can be 8 or 16 bits, depending upon the instruction. For an 8-bit

displacement, the displacement range is 256 bytes; for a 16-bit displacement, it is 64

kilobytes.

Program control instructions, such as BRANCH instructions, use this type of ad-

dressing mode. In the example that follows, we will introduce a new instruction, BRA

(branch always). This specifies where the next instruction to be executed is to be

found.

PC Instruction

$00002000 BRA 082A(PC) Branch to the specified effective address. The <ea>

calculation is as shown:

Contents of PC after the BRA

instruction* $00002002
+ sign-extended 16-bit

displacement $0000082A
<ea> = $0000282C

The program branches to $0000282C and fetches the

next instruction from that location.

*Recall that the PC advances to next word location after fetching the present op.word.

Thus, the PC will be at $00002002 after fetching the BRA instruction.

PC Relative with Index and Displacement Addressing Mode

d(PC,Rn)

In this addressing mode, in addition to the displacement, the instruction specifies an in-

dex register. The effective address is the sum of the contents of the PC, the index reg-

ister, and the displacement. The displacement is 8 bits. An example follows.

PC Instruction

$00487708 MOVE.W EC(PC,D0.W),D1 Move the word operand from the source

<ea> into Dl. The <ea> calculation is

as shown.

38 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

Contents of PC after the MOVE instruction* $0048770A
+ sign extended index word from DO $00000678

Indexed address = $00487D82
+ sign-extended displacementt = $FFFFFFEC

<ea> $00487D6E

Word operand from $00487D6E = $CD02
D1 (before) S$ABCDEF0O

D1 (after) $ABCDCD02

*PC advances to the next word location ($0048770A) after the MOVE instruction.

TSign extended to 32 bits. $EC is a negative number that corresponds to —$14 in twos-

complement notation. (Refer to Appendix A for twos-complement concepts.)

The PC relative addressing modes are used extensively in program control appli-

cations. In addition. these addressing modes are used in applications requiring program

code relocation. In such applications, the program code can be made to reside in any

part of memory, and the PC can be adjusted accordingly. Any memory reference will be

with respect to the adjusted PC as the base address and will be valid.

Implicit Addressing Mode

The 68000 has certain instructions that make implicit reference to the processor registers

(the PC, SR, SP, and so forth). This mode works in conjunction with the other address-

ing modes. Sometimes it is not considered to be a separate addressing mode. An exam-
ple follows.

MOVE.W #$0400,SR Move the immediate word operand $0400 into the SR

(status register).* The source operand is specified by the

immediate addressing mode. Destination <ea>, which is

the SR, is specified by the implicit reference.

SR (before) not known

SR (after) $0400

*This instruction dealing with the SR is privileged and can only be used in the supervi-
sor mode.

The following example problem provides a review of the addressing modes we
have discussed.

Example 2.4 Other addressing modes for the 68000.
Use the initial values given in Figure 2.11. Specify what occurs in each of the following
operations. Indicate the contents of the corresponding registers and memory locations
after each operation. Consider the same initial values for each of the operations.

Summary 39 5 tests a nesteeentlhetad areal tpttledidaststin dad clan scnidapaealaciied Ms fe: EES Alias

1. MOVE.L #$765432AC,$0034FE74
2. ADDQ.B #$04,D1
3. MOVE.W $007A(PC),SR (Contents of PC $0034FE00)

Solution

1. MOVE.L #$765432AC,$0034FE74: The source operand is specified by the imme-
diate addressing mode and the destination effective address is specified by the abso-
lute long addressing mode. The source operand is moved to the destination <ea>.

Source long word = $765432AC
Destination <ea> = $0034FE74

Long-word operand at $0034FE74 (before) = $1AB23CD4

(after) = $765432AC

2. ADDQ.B #$04,D1: The source operand is specified by the quick addressing mode
and the destination operand is specified by the data register direct addressing mode.
Add the immediate (quick) operand to the destination <ea>.

Source operand (byte) = $04.

Destination <ea> = DI register.

Source data $04 is added to the D1 register.

D1 (before) $ABCDEF0OO0
D1 (after) $ABCDEF04

3. Move.W $007A(PC),SR: With contents of PC = $0034FE00, the effective address

of the source operand is $0034FE7A. The contents at that address (= $9873) are

moved into SR.

SR (after) = $9873

In software applications using the 68000 microprocessor, all of the 14 addressing

modes can be used in conjunction with each other. Certain addressing modes, however,

may preclude some instructions. This information is available from the instruction set.

Care should be taken to ensure that an invalid addressing mode is not used to specify

operands. Similarly, word and long-word operands should not be accessed at the odd

address boundaries. To do so would result in error conditions.

2.5 SUMMARY

In this chapter we discussed the memory organization schemes, data structures, and ad-

dressing modes for the 68000 processor.

40 Chapter2 The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

The memory is organized as 16-bit words consisting of blocks of even and odd

bytes. The bytes can be accessed individually, the words can be accessed as two bytes,

and the long words can be accessed as two words. Words and long words should be

accessed only at the even address boundaries. To do otherwise would result in an error

condition. The 68000 processor follows memory-mapped I/O (input/output) in which the

processor communicates with an I/O device as if it were one of the memory locations.

The total address space for the 68000 processor can be considered as 16 megabytes or 8

megawords.

The important data structures of the 68000 are the stack and the queue. The stack

is a LIFO data structure in the memory. Some of the internal registers are saved on the

stack in the case of a change in program flow due to subroutines or exceptions. USP

controls the stack if the processor is in the user mode; SSP controls the stack if the pro-

cessor is in the supervisor mode. The stack fills from high memory to low memory on a

push-type stack operation. The stack is word sized and word aligned and should only be

accessed at even address boundaries.

The queue is a FIFO data structure in the memory and can be set up to fill in from

high memory to low memory or vice versa. The queue is very useful in setting up tables

and strings.

For the 68000, instructions are from one to five words. The first word, which is

the operation word (op.word), specifies the type of operation. The rest of the words con-

tain the appropriate extensions and operands. The structure of the instruction consists of

the instruction field and the source and destination fields. Instructions may be of the

single- or double-operand type. In the single-operand type, the specified operand is the

destination operand on which the given operation is performed. In the double-operand

type, the first operand is the source operand and the second is the destination operand.

After performing the operation, the final result is put in the destination.

The 68000 has 14 different addressing modes with which to access the source and

destination operands. In the register direct addressing modes, either a data register or an

address register contains the specified operand. In the register indirect addressing (ARI)

modes, one of the address registers contains the base address. There may be index and

displacement values specified as a part of the instruction. These may be added to the
base address to obtain the effective address of the operand.

In the immediate and quick addressing modes, the instruction contains the data
operand. In the absolute addressing modes, the instruction contains the address of the
operands. In the PC relative addressing modes, the PC contains the base address. There
may be index and displacement values specified as part of the instruction. These may be
added to the base address to obtain the effective address of the operand. The implicit
addressing mode makes an implicit reference to some of the internal registers of the pro-
cessor.

These addressing modes all can be used in conjunction with one another to specify
the source and destination operands. The source operand can be specified by one ad-
dressing mode and the destination operand by another. This flexibility allows the 68000
processor to access operands conveniently and efficiently.

Problems 41

PROBLEMS

2.1 Draw the conceptual memory organization schemes for the following processors:

(a) the 68008 microprocessor;

(b) the 68010 microprocessor.

The 68000 is accessing a word operand from the memory. The memory word is $234A.

Specify the following:

(a) contents of data bus DO—D7 and D8—D15;

(b) logic levels of the LDS, UDS, and R/W strobes.

What are the contents of the strobes LDS, UDS, and R/W and the data bus DO—D15 when

the 68000 is writing the long-word operand $AABBCCDD into memory location $004000.

Suppose the LDS and the UDS connections have been interchanged in Figure 2.1. What

would happen in the following situations:

(a) the 68000 is trying to read byte operand $45 from memory location $00001000;

(b) the 68000 is trying to write byte operand $54 into memory location $0000100B.

Long-word operands $124680AB and $78908762 are stored in sequential memory

locations beginning at $00002000. BCD data string 1200340045974 is stored beginning at

the next sequential location. Show how data are physically stored in the following systems:

(a) the 68000-based system;

(b) the 68008-based system;

(c) the 68010-based system.

Show how the following data elements are stored in memory for a 68000-based system:

(a) hex string $1234432156788765ABCDDCBA, starting from memory location

$00004000;
(b) the hex string given in (a), but in the form of a word-aligned queue starting from

$00004040 and filling in towards high memory address.

The system stack pointer has an initial value $000034A0. Show how the following data

elements are stored on the stack:

first element $0010

second element $0020

ninth element $0090

What are the contents of the stack pointer after the ninth element has been: stored?

Each subroutine call stores the program counter on the system stack. Each exception, such

as interrupt, stores the program counter and the status register on the stack.

(a) In a control system application, 128 bytes of stack space is allocated for the user mode

of operation. How many subroutines can be nested if the stack is not used for any

other storage?

(b) Repeat (a) if the DO and D1 registers are also to be stored on the stack each time a

subroutine call occurs. (Note: separate instructions are to be written to store any

registers other than the PC on the stack during subroutine calls.)

In a robotics system application using the 68000, 512 bytes of supervisor stack space is

allocated. Each robotics motor requires one interrupt service routine, which nests eight

subroutines.

42 Chapter 2

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

The 68000 Memory Organization Schemes, Data Structures, and Addressing Modes

(a) How much stack space is used up for each robotics motor application?

(b) How many of these robotics operations can be nested?

Following the instruction format of Figure 2.5, conceptualize how the following

instructions are stored in the memory for a 68000-based system:

(a) CLR.L <ea>; <ea> corresponds to a 32-bit address;

(b) ADD.W <ea>,D1; <ea> corresponds to a 32-bit address;

(c) MOVE.L <ea>,<ea>; each <ea> corresponds to a 32-bit address.

Given the instruction structure of Figure 2.6, write instructions to accomplish the

following tasks:

(a) clear a byte in the D7 register;

(b) move a long word from A6 into the D5 register;

(c) add the long-word contents from D6 to the long-word contents of D7, with the result

in D6.

Write a sequence of instructions to accomplish the following tasks:

(a) add the word contents from D5 to the long-word contents in D6 and put the result in

the D7 register;

(b) clear the long word in the D3 register and transfer the result to the A3 register.

Using the initial values as given in Figure 2.9, specify the results of the following

operations:

(a) ADD.L D1,D0

(b) ADD.W AO,D1

(c) MOVE.B —(A1),—(A1)

Clearly specify the source and destination addressing modes. Show the contents of the

affected registers, the SR, and the memory.

Repeat Problem 2.13 with the condition that the operations are done in sequence, affecting

the values accordingly.

Transfer the long-word contents from $0034FE76 into the D1 register using the following

addressing modes:

(a) ARI with displacement;

(b) ARI with index and displacement;

(c) absolute long.

Write the appropriate instruction in each case, using the same initial values given in Figure

2.9.

The PC is at location $0034FE00 after the appropriate op.word has been read, which

transfers the long-word contents from $0034FE76 into the D1 register. Write the

instructions needed to reach this condition using the following addressing modes:

(a) PC relative with displacement;

(b) PC relative with index and displacement;

(c) any other mode of your choice.

Use the initial values given in Figure 2.9.

Using the same initial values, specify the contents of the registers and the memory after

accomplishing each of the following operations:

(a) MOVE.L —(A1),(A0)+

(b) ADD.W —(A1),—(Al)
(c) CLR.B $0034FE75

Endnotes
Sa. SS ee ee eee

2.18 Repeat Problem 2.17, with the condition that the operations are done in sequence,
affecting the values accordingly.

2.19 With the initial values of Figure 2.9, which of the following operations are valid and
which generate error conditions? Why?

(a) ADD.W $0003(A1),D0

(b) MOVE.B $00(A1.D0.L),D1

(c) JSR $0305

2.20 Specify the results of the following operations, using the same initial values:

(a) ADD.L #$10101010,D0
(b) ADDQ.L #$03,(A1l)+

(c) MOVE.L #$00100100,(A1)+

Show the contents of the affected registers, the SR, and the memory.

2.21 Repeat Problem 2.20 with the condition that the operations are done in sequence, affecting

the values accordingly.

2.22 Specify whether the following are true or false:

(a) the immediate addressing mode cannnot be used to specify the destination operand.

(b) the quick addressing mode can be used to specify data elements of any size.

(c) the PC relative addressing mode cannot be used to specify odd memory locations.

(d) the implicit addressing mode cannot refer to external memory.

ENDNOTES

1. Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

. Motorola, Inc. M68000 16/32 Bit Microprocessor Programmer’s Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

. Motorola, Inc. MC68008 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

4. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

. Gaonkar, R. Microprocessor Architecture, Programming, and Applications with the

8085/8080A. Columbus, OH: Merrill, 1984.

. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

. Subbarao, W. Microprocessors: Hardware, Software, and Design Applications. Englewood

‘Cliffs, NJ: Prentice-Hall, 1984.

. Cohen, K. “Multiprocessor Architecture.” Electronics (May 1983).

9. Motorola, Inc. M68000 vs. IAPX86 Benchmark Performance. Phoenix, AZ: Motorola

Technical Operations, 1986.

i)

ies)

Nn

aN

oo

CHAPTER

3

The 68000 Instruction Set and
Programming Considerations

Objectives

In this chapter we will study:

The general instruction set of the 68000

The data movement group of instructions and applications

Binary and BCD arithmetic groups of instructions and applications

Logical and bit-manipulation groups of instructions and applications

Program and system control groups of instructions and applications

Instruction timing considerations and applications

:

The General Instruction Set 45

3.0 INTRODUCTION

The 68000 has a powerful instruction set, including 56 generic instruction types. Some

of these instruction types have several variations. In addition, the 14 addressing modes

discussed in the previous chapter can be used in conjunction with the instructions. This

provides the 68000 with tremendous software capability.’

The instructions are designed to follow a consistent structure. The same mnemonic

statement representing an instruction can be used with appropriate attributes to refer to

different operand sizes and addressing modes.

A clear understanding of how these instructions work, how they affect the status

bits in the status register, and which of the addressing modes can be used is essential to

the study of the software features and the programming techniques of the 68000 proces-
sor.

Wé will first introduce the general instruction set, categorize it into groups, and

then discuss the essential features of each of the groups with appropriate illustrations.

This approach will help us gain better insight into the instruction set. The material cov-

ered will provide the necessary background for writing programs using the 68000 pro-

cessor.

3.1 THE GENERAL INSTRUCTION SET

Figure 3.1 indicates the general instruction set for the 68000 microprocessor in tabular

form. In the first column the instruction mnemonic used in writing the assembly pro-

grams is given. The second column contains the physical description of the instruction.

The third column lists the actual operation, and the last columns describe how the flags

are affected in the case of each instruction. Figure 3.2 shows how the condition codes

are computed. In Appendix B, details of the instruction set are presented.” The reader

should refer to this appendix in studying the concepts covered in this chapter.

Interpretation of the Instructions

Consider the second instruction in the table in Figure 3.1. It is the ADD instruction with

which we are already familiar. The description indicates that it is a binary addition. The

data operands will be interpreted as binary numbers. The operation indicates that the

destination operand is added to the source operand, and the final result is put in the des-

tination. We see that all of the condition codes, known as flags or status bits, are af-

fected by this operation. Any of them can be used for decision making in a program-

ming sequence.

The syntax, attributes, and addressing modes for the ADD instruction are as fol-

lows (see also Appendix B):°

Assembler Syntax: ADD <ea>,Dn or ADD Dn,<ea>

Attributes (size): Byte, word, or long word.

46

cA
MP

CMPA
CMPI
CMPM
DIVS Signed Divide (Destination) /(Source) — Destination |— |

DIVU Unsigned Divide (Destination) / (Source) — Destination |

Exclusive OR Logical (Destination) ® (Source) — Destination |= |

Exclusive OR Immediate (Destination) ® Immediate Data — Destination | — |
Exclusive OR Immediate

to Condition Codes eos Cn en @

Exclusive OR Immediate

to Status Register (Source) ® SR—- SR

Exchange Register

Destination PC
Jump to Subroutine PC— —(SP); Destination —> PC

Load Effective Aadress
Link and Allocate

SL,LSR [Logical Shit
MOVE
MOVE t6 CCR

(Sourcel SR

Add Decimal with Extend (Destination) 19+ (Source)jq+X— Destination | * J UL * |
Add Binary (Destination) + (Source) —> Destination MER Me

[ADDA [Add Address (Destination) + (Source) Destination J] =| =] =| — |
[ADDI [Add immediate (Destination) + immediate Data—* Destination 1 * | * | * | * | * |

(Destination) + Immediate Data — Destination 15 eda ice ea

(Destination) + (Source) + X — Destination (Gal Re WS ti le
(Destination) A (Source) — Destination f—[*|* [0] 0)

[ANDI [AND Immediate (Destination) A Immediate Data Destination =| * | * | 0] 0 |
(Source) A CCR CCR CHER

[ANDI to SR__[AND Immediate to Status Register [(Sourcel ASR—*SR_
(Destination) Shifted by <count> — Destination rer a |

[Bcc [Branch Condiwonaly___|ifccthenPc+d—Pc SCS]

Pe erniver gee eenteratines. BCHG Test a Bit and Change ~(<bit number>) OF Destination >

<bit number> OF Destination

CSc So
ela]

BSETy tae Tebteet ana somvoerocrrvin we ARCHIE Spe Seal iene Ba
15!
Pe

HK

Test Condition, Decrement and Branch |If ~cc then Dn—1—Dn; if Dn# —1 then PC+d— PC

EORI to SR

m m iw) Q;oO}oO x< [e) @ oO D (a)

zy lo) (eo) OQ ie) ee)

m x ==

[= uv

(= n DD

EGE RODE ah Esp SSeunTECEL ONES
z= 7a | oe

>|m

2 a be m 3S n D

A logical AND * affected
V logical OR — unaffected
® logical exclusive OR 0 cleared
~ logical complement 1 set

U undefined

FIGURE 3.1 The 68000 instruction set table. (Courtesy of Motorola, Inc.)

= A Condition
Description Operation Codes

| XIN [ZT VIC]
Heee

(Source) — Registers

MOVEQ Immediate Data — Destination

MULS Signed Multiply (Destination) X(Source) — Destination

MULU Unsigned Multiply (Destination) X(Source) — Destination

NBCD Negate Decimal with Extend 0— (Destination) 19 — X — Destination

Zz

Co SLRS, Le ene SP 8
INoT Logical Complement
[oR [inclusive OR Logical_______|(Destination) v (Source) — Destination _———S—=S
for! [inclusive OR immediate | (Destination! v Immediate Data— Destination |

Inclusive OR Immediate
ORI to CCR to.Condition Codes (Source) v CCR—*CCR

Inclusive OR Immediate

P Push Effective Address
RESET __[Reset Extemal Device thn Heth

(Destination) Rotated by <count> — Destination BREGDE

Return from Exception isPle—sR(SP+—Pc Sd
[RTA |Return and Restore Condition Codes [(SPr+—cc.(sPle—PcS—~wd
ATS pete from Subroutine |_| ft iisPiei-PC | tt bt} i 2 tet eS s]=1-
[S8CD___| Subtract Decimal with Extend | [Destination g=(Sourcelig=X— Destination __[* |u| *[U] |

==]
oad Status Register and Stop

n

7) 4 je) v Le

ubtract Binary (Destination) — (Source) — Destination

ubtract Address (Destination) — (Source) — Destination

ubtract Immediate estination) — Immediate Data — Destination

n = ow wn

wn (se ios) > wn

1s) SUBI n

SUBQ Subtract Quick (Destination) — Immediate Data — Destination BERS

SUBX S i

SWAP Swap Register Halves Register [31:16] ++ Register [15:0] BBDe

TRAP _____|Trap
rap on Overflow

(Destination) Tested > CC
An— SP; (SP)+ — An

—f

cls = 53/0 oO 218 2 lo @

=] S| Qa Qa oO n 5] a oy o S E) a ie)

no] oO a o =) a

a
* |
ig
ef
|
i

ubtract with Extend (Destination) — (Source) — X — Destination BRERE

=|
=|
fee)
=
— |

{]=bit number * affected

A logical AND — unaffected
V logical OR 0 cleared

®@logical exclusive OR 1 set
~ logical complement U undefined

FIGURE 3.1 Continued.

47

(‘OU]
‘e}OsOJOW

jo ASaunod)
‘s0Ssse00/d

0
0
8
9

eu}
U! UO!}EyndWod

(Bel)
ap0D

UONIPUODD
«ZS

FYUNDIS

L
T
A
S
A
Y

F
H
L

O
L

O
N
I
G
U
O
O
O
V

LHS

¥
L
A
S
T

C
a
u
a
V
A
T
O

0

C
H
N
I
W
H
G
N
N
®

da L
O
g
d
i
v
V
N
N
—

dSn dAOW Us FAOW

OO

%
FAOW

Us

wot

FAOW

U
x
o
u
1
x
o
u

w
o
u
*
1
o
w
 L
a
s
a
a

The General Instruction Set

Source <ea>: All addressing modes permissible.

Destination <ea>: Modes An, d(PC), d(PC,Rn), and

immediate are not permissible. Other
modes can be used.

Clearly, from the preceding information, either the source or the destination oper-
and is a data register and the other operand can be an effective address <ea>. If <ea>
is the source, all addressing modes are permissible. If <ea> is the destination, some
addressing modes are not allowed. The instruction can operate on byte, word, and long-
word operands. :

Following the preceding guidelines, programmers can easily write valid instruc-
tions. For example,

ADD.L D7,D6 Add long word in D7 to the long word in
D6, with the result in D6.

ADD.B (AS5),D3 Add the byte from memory addressed by

the contents of AS to the byte in D3, with
the result in D3.

are valid forms of the ADD instruction. On the other hand,

ADD.W (AS),(A2) Add the memory words addressed by (A5)

and (A2), with the result in memory

addressed by (A2).

ADD.B D6,#$12 Add the byte in D6 to the immediate data

$12 and put the result at the immediate
data location.

are invalid forms of the ADD instruction. In the former case, a data register does not

appear as one of the operands. In the latter, the destination operand cannot be specified
by the immediate addressing mode.

Each instruction may have several variations, depending upon the operands. Con-

sider the first six instructions in the instruction set in Figure 3.1. They are the variations

of the ADD instruction as shown in Figure 3.3. The 68000 uses the same mnemonic

BCD signifies that the operands are of the BCD type.

Regular binary addition.

A signifies that the destination operand is an address register.

I signifies that the source operand is immediate data.

Q signifies that the source operand is-quick data.

X signifies that the extend flag (X) is included in the addition.

FIGURE 3.3 Variations of the ADD instruction in the 68000 instruction set.

50 Chapter3 The 68000 Instruction Set and Programming Considerations
a

(ADD in this case), with extensions such as A, I, Q, and X, to signify the different

variations. The ABCD instruction is specifically made more symbolic to represent the

BCD data, but it still belongs to the same ADD category.

The 68000 follows this consistent structure for all of its instructions. These in-

structions can be interpreted easily and appropriate forms written for programming and

the software applications.

The Instruction Groups

The 68000 instructions may be broadly classified into the following groups:

. data movement;

. binary integer arithmetic;

. BCD (binary coded decimal);

. logic, shift, and rotate;

. bit manipulation;

. program control;

. system control; and

ceNaA un hk WH NY = . special category for extended functions.

The data movement group deals with the physical movement of the source and

destination operands. The integer, BCD, logic, shift, and rotate groups deal with the

actual data processing operations. The program control group deals with the decision-

making, conditional, and unconditional branch and jump operations. The bit-

manipulation and the system control groups supplement the other operations mentioned

above. We will deal with the special category in subsequent chapters.

The following example problem provides a review of the general features of the

instruction set.

Example 3.1 The 68000 instruction set.
The syntax and attributes for the ADDA and ADDI are as follows, and permissible ad-

dressing modes for the effective addresses are as specified:

Syntax Attributes Addressing Modes

ADDA <ea>,An: word, long word All modes allowed for source

<ea>.

ADDI #data,<ea>: byte, word, long word An, d(PC), d(PC,Rn), and

immediate modes not allowed for

destination <ea>.

The General Instruction Set 51

1. Specify whether the following four forms are valid or not. Give the reason(s):

ADDA.L A6,A4 ADDA.B A1,A3
ADDI.W #$12AC,D7 ADDI.W #$100E,A3

2. Specify to which groups each of the instructions belongs.

Solution

1. ADDA.L A6,A4: This instruction is valid since it satisfies all of the guidelines

(single-word instruction).

ADDA.B A1,A3: This instruction is not valid since the byte attribute is not allowed.

ADDI.W #$12AC,D7: This instruction is valid since it satisfies all the guidelines

(two-word instruction).

ADDI.W #$100E,A3: This instruction is not valid since the destination <ea>

(= A3) is not valid.

2. Group: All of the instructions are of the addition type. As such, they belong to the

arithmetic group.

Any invalid instruction will generate an error condition known as an illegal in-

struction exception. We will discuss this exception in later chapters.

Figure 3.4 illustrates a standard convention introduced by Motorola to summarize

the addressing modes, especially while dealing with the instruction set. We will use this

convention in our discussion. The addressing modes are classified as data, memory,

control, and alterable types. In the data type, the <ea> refers to a data operand. In the

memory type, the memory reference is explicit as to where the data operand can be

Effective Address Modes Control ' Alterable

Dn x

An

(An)
(An)+

—(An)
d,,(An)

d,(An,Rx)

xxxx (Absolute short)

xxxxxx (Absolute long)

#xxx (Immediate)

mK PK PK PK PX PS PS OPS

mK MM KO OK OM mK KM PK OM OP OX OM

FIGURE 3.4 Effective address classification for the 68000. (Courtesy of Motorola, Inc.)

52 Chapter 3 The 68000 Instruction Set and Programming Considerations

found. In the control type, the addressing mode can be used for program control. In the

alterable type, the addressed operand may change.

A single addressing mode can be classified in more than one category.* Consider

the ARI mode (An), for example. It can be classified in all four categories. It can ad-

dress data, it can address memory, it can specify a jump or a branch address for pro-

gram control, and the operand addressed by this mode can be allowed to change. On the

other hand, the immediate (#xxx) addressing mode belongs only to the data-type cate-

gory. It cannot address memory, cannot specify a jump or branch address, and it is un-

alterable.

3.2 DATA MOVEMENT AND ARITHMETIC
INSTRUCTION GROUPS

Data movement is an integral part of a computer system operation. The 68000 has a

very powerful and efficient group of data movement instructions, as shown in Figure

3.5. The group consists of several forms of the MOVE, EXG, and SWAP instructions.

The privileged instructions. are indicated with an asterisk; these should be used only in

the supervisor mode.

The first column specifies the instruction in mnemonic form. The second column

specifies the operand size—a byte (8 bits), a word (16 bits), or a long word (32 bits).

The third and fourth columns specify the operation and the syntax (or notation). The last

column specifies the allowed addressing modes. We will now interpret these entries and

provide some typical illustrations from each of the groups.

Data Movement Instructions

Consider the general MOVE instruction from the table in Figure 3.5. It handles byte,

word, or long-word operands. Data movement is always from the source to the destina-

tion operand. The notation is MOVE <ea>,<ea>. All addressing modes are allowed

for the source <ea>. Only data-alterable addressing modes, however, are allowed for

the destination <ea>. Thus, any addressing mode that does not belong to both the data

and the alterable types is not allowed. Referring to Figure 3.4, it can be seen that, for

the MOVE instruction, the following addressing modes are not allowed for the destina-
tion effective address:

An: Not allowed, since it is not of the data type

#XXX (immediate): Not allowed, since it is not of the alterable type

MOVE instructions dealing with the status register (SR) and the USP are privileged as
indicated. The EXG (exchange) instruction exchanges the long-word contents of two of
the specified internal data or address registers. Similarly, the SWAP instruction ex-
changes (swaps) the lower and upper words in a data register.>

Data Movement and Arithmetic Instruction Groups 53

Operand

Instruction Size Operation Notation

(SOURCE) —

pave PAI, DESTINATION

SR > DATA
nok DESTINATION MOVE SR,{ea) ALTERABLE

MOVE to CC oa (SOURCE) — CCR MOVE (ea),CCR DATA

Allowable

Effective

Address

Modes

SOURCE— ALL

DEST— DATA

ALTERABLE

MOVE (ea),(ea)

*MOVE to SR (SOURCE) — SR MOVE (ea),SR DATA

USP — An or MOVE USP,An x ?

VE (SOURCE) —

IMMEDIATE DATA —

FIGURE 3.5 The.68000 data movement group of instructions. (Courtesy of Motorola

Inc.)

Figure 3.6 indicates the initial values of the registers and the memory. We will use

_ these values for the examples in this chapter. In the general MOVE instruction, there is

no overflow, and the C and V flags are reset to 0; the X flag is unaffected (see Appendix

B for details). An example follows.

MOVE.L D1,D3 Move long-word data from D1 into D3.

D1 (before) $12340678

D3 (before) $00000008

D3 (after) $12340678

Only the N and Z flags are affected.

The result (new data in D3) is a positive nonzero value. As

such, N = 0 and Z = 0.

X NZ V C (after) = 00000

54 Chapter 3 The 68000 Instruction Set and Programming Considerations

po =$12340678 Memory Address Word Data

$0034FE74 1AB2
DI = $ABCDEF00 $0034FE76 3CD4

$0034FE78 5SEF6
De ee $0034FE7A 9873

$0034FE7C 2408
$0034FE7E 0000 D3 =$00000008

AO=$004876F2

$00487D6E CD02
Al =| $ 0 (008 se PENS $00487D70 200B

A2=$00001000

A3 = $00001503

| System byte | Userbyte |

SR =$0400=0000 0100 00000000

e's III XNZVC

210

FIGURE 3.6 Initial values for the registers and the data operands in memory.

EXG AO,A1 Exchange the long-word contents of AO and Al. The flags are
not affected.

AO (before) $004876F2
Al (before) $0034FE78

AO (after) $0034FE78
Al (after) $004876F2
XN ZV C (after) = 00000

SWAP D1 Swap the lower and the upper words in D1.
D1 (before) $ABCDEFO0OO0O
D1 (after) $EFOOABCD
The N and Z flags are affected. C and V are reset to 0, and X is
unaffected. The MSB of the result is 1 ($E = 1110) and the
result is a nonzero value. As such, N = 1 and Z = O.
XN ZN C (after) = 01000

We will now present an example problem to review the data movement instruc-
tions and operations.

Data Movement and Arithmetic Instruction Groups 55 Ti a RAR AO i an cto a> ti alana aia al Ma he Bs

a ae 2S me en ee

Example 3.2 Data movement instructions.
In a control system application, the following software is run:

MOVE.W (A1),D1 ;move memory word addressed by (Al) into D1
SWAP Dt ;Swap the lower and the upper words in D1
EXG D1,D3 ;exchange long words in Di and D3
MOVE.LD3,D? ;move long word in D3 into D?

Using the initial values of Figure 3.6, show the contents of the affected registers and the
flags.

Solution

After the MOVE.W (A1),D1 instruction, D1 contains $ABCDSEF6. The upper word of

D1 is not affected. The data operand $5EF6 is moved to the lower word position of the

D1 register.

After the SWAP D1 instruction, D1 contains $5EF6ABCD.

After the EXG D1,D3 instruction, the long-word contents of the D1 and D3 registers are

exchanged. D1 = $00000008; D3 = $5EF6ABCD.

After the MOVE.L D3,D7 instruction, both D3 and D7 contain $5EF6ABCD. The re-

sult is positive (MSD = $5 = 0101 and the MSB = 0) and is nonzero. As such, N = 0

and Z = 0. The X flag is unaffected. The C and V flags are reset to zero, since there is

no overflow in the MOVE operation.

The final results are

D7=$5EF6ABCD

XNZVC=00000

Binary Integer Arithmetic Instructions

’ These instructions deal with numbers and arithmetic operations. The 68000 processor

distinguishes between signed and unsigned numbers. We will briefly discuss this con-

cept in preparation for the discussion that follows. (Refer to Appendix A for details con-

cerning binary and BCD numbers and arithmetic.)°

Consider a byte operand. In unsigned operations it represents a range of $00 to

$FF, which corresponds to decimal values 0 to 255 as shown in Figure 3.7(a). In signed

operations, when the MSB of the operand is 0, the operand is considered to be a posi-

tive number; when the MSB is 1, the operand is considered to be a negative number.

Thus, $00 to $7F are positive numbers (decimal values 0 to 127) and $80 to $FF are

negative numbers (decimal values —128 to —1 in the twos-complement form), as shown

in Figure 3.7(b).

56 Chapter 3 The 68000 Instruction Set and Programming Considerations
a ee eee ee

Hex : 0 TF FF

Decimal 0 127 255

Overflow beyond $00 or $FF
sets the C and X flags.

(a)

MSB = MSB = 0
Hex 80 eeeeeeeceeseeeeee FF 0 01 eoseeceeeseoseeee TF

Decimal -128 -1 O +1 +127

Overflow beyond $80 or $7F sets
the V flag.

(b)

FIGURE 3.7 (a) Unsigned and (b) signed number representation.

Figures 3.8 and 3.9 illustrate the four categories of binary integer arithmetic in-

structions. They are ADD, SUBTRACT, COMPARE, and MULTIPLY and DIVIDE.

All belong to the data processing group.

Add and Subtract Instructions There are five variations of the ADD and SUB
(subtract) instructions, as shown in Figure 3.8. Except in the case of the ADDA and

SUBA instructions, all five flags are affected. The C and X flags are set to | if there is

an overflow generated from the addition operation. Similarly, the C and X flags are set

to 1 if there is a borrow generated from the subtraction operation. The Z flag is set to 1

if the result of either of the operations is zero for the final operand. The N flag is set if

the MSB of the result is 1. (Refer to Figure 3.2 for computation of the condition codes

or flags.)

In the signed operations, the V flag is set to 1 when two positive numbers (MSB =

0 in each case) are added and a negative result (MSB = 1) is generated, or vice versa.

Similarly, the V flag is set to 1 when a positive number is subtracted from a negative

number and a positive result is generated, or vice versa. These conditions are known as

signed overflow. If the signed operations are not of interest, the V flag may be ignored.

An example follows using the initial values of Figure 3.6.

ADD.B #$6F,D0 Add immediate data byte $6F to byte in DO, with the result in

DO. The destination <ea> is data register direct, which be-

longs to the data-alterable type.

Addition = $6F + $78 = $E7 = 11100111
DO (before) $12340678
DO (after) $123406E7

Allowable

Effective

Address Operand

Instruction Size Notation

ADD Dn, (ea) 8,16,32

ADD (ea),Dn

(DESTINATION) + (SOURCE) —>
16,32 | DESTINATION AEC

(DESTINATION) + IMMEDIATE a
8,16,32 | ATA —> DESTINATION ADDI’ # (data), (ea) TERABLE

(DESTINATION) + IMMEDIATE BB oe |e cue AAG ADDQ # (data),(ea) | ALTERABLE

8,16,32 (DESTINATION) + (SOURCE) + | ADDX Dy, Dx

X — DESTINATION ADDX —(Ay), —(Ax)

Allowable

Effective

Operand Address

Instruction Size Operation Notation Modes

ALTERABLE
(DESTINATION) — (SOURCE) — | SUB Dn,(ea) MEMORY

SUB 8,16,32 | DESTINATION

Pa es oe

Soames
(DESTINATION) — (SOURCE) — te: am ae iene

X — DESTINATION

FIGURE 3.8 Binary arithmetic instructions for the 68000. (a) Add-type;

(b) subtract-type. (Courtesy of Motorola, Inc.)

Operation

(DESTINATION) + (SOURCE) >
DESTINATION

5

ea

57

: Allowable

Operand Effective

Instruction Size Operation Notation Address Modes

8,16,32 | (OPERAND2) — (OPERAND1) | CMP (ea),Dn

CMPA 16,32 (OPERAND2) — (OPERAND1) | CMPA (ea),An

(OPERAND) — IMMEDIATE DATA
CMPI 8,16,32 DATA CMPI #(data),(ea) ALTERABLE

CMPM 8,16,32 | (OPERAND2) — (OPERAND1) | CMPM (Ay) +,(Ax) + 1 | aaa *|

(DESTINATION) — 0
DATA

pa RY TESTED — TST (ea) ALTERABLE

(a)

Operand Effective

Instruction Size Operation Notation Address Modes

a
batman

=
(DESTINATION) + (SOURCE) — DIVU (ea),Dn

(b)

DESTINATION

FIGURE 3.9 (a) Compare-type instructions for the 68000; (b) multiply, divide, and

sign-related instructions. (Courtesy of Motorola, Inc.)

58

TST 8,16,32

Data Movement and Arithmetic Instruction Groups 59

X and C are 0, since there is no normal overflow. The MSB of

the result is 1 and the result is nonzero. As such, N = 1 and

Z = 0. The V flag is set since there is an overflow of the result

beyond $7F. It is as if two positive numbers are added ($6F

and $78) and a negative result ($E7) obtained in signed binary

operations.’

XN ZV C (after) = 01010

SUBA.W AO,A1 Subtract the word operand in AO from the word operand in

Al, with the result in Al. All 32 bits of the destination are

affected. The source word is sign extended to 32 bits.

Contents of Al $0034FE78

Sign-extended word from AO $000076F2

Result of subtraction in Al* $00348786

Al (before) $0034FE78

Al (after) $00348786

Flags are not affected, since the destination <ea> is an ad-

dress register.

*In subtraction operations, the source subtrahend is converted into the twos-complement

form and added to the destination minuend.

Compare Instructions There are five variations of the compare instruction, as indi-

cated in Figure 3.9(a). The source operand is subtracted from the destination operand.

The result is not stored, but is used to set or reset the flag bits in the condition code

register (user byte of the SR). The processor uses this information to make decisions and

control the program flow. The objective of the compare operation is to learn whether an

operand has reached a particular value. The source and the destination operands (also

called operand 1 and operand 2) are not affected in compare-type operations. Examples

follow using the initial values of Figure 3.6.

CMP.W D1,D0 Compare the word in D1 with the word in DO and set or reset

the flags accordingly. (The word in D1 is subtracted from the

word in DO. The result is not stored; DO and D1 are not af-

fected, but the flags change.)

Word operand in DO $0678

Word operand in D1 $EFOO
Result of the subtraction = $1778

(borrow generated)

DO (before) Se headed deo.)

D1 (before) $ABCDEFOO

DO (after) $12340678

D1 (after) $ABCDEFOO

X is not affected, but C is affected. Borrow is generated and

C = 1. Nonzero positive result (MSB = 0). As such, N = 0

and Z = 0. There is no signed overflow and V = 0.

XN ZV C (after) = 00001

60 Chapter 3 The 68000 Instruction Set and Programming Considerations

TST.B $0007(A1) Test the destination operand and set or reset the flags accord-

ingly. The tested operand is not affected.

The ARI with displacement addressing mode is used for the

destination <ea>.

Contents of Al $0034FE78

Sign-extended displacement $00000007

Destination <ea> =$0034FE7F

Byte operand from $0034FE7F = $00. X is not affected, C =
0, and V = 0 (since there is no overflow in the test operation).

The tested destination is positive (MSB = 0) and has a value

of zero. As such, N = 0 and Z = 1.

XN Z V C (after) = 00100

The TST (test) instruction is very useful in testing the operand and providing the

condition code information without modifying the tested operand.

Multiply, Divide, and Sign-related Instructions These instructions are presented
in Figure 3.9(b). The EXT instruction sign extends a byte to a word (EXT.W) or a word

to a long word (EXT.L). The objective of this instruction is to increase the size of the

operand without changing its arithmetic value. Some instructions (ADD, SUB, for ex-

ample) require that both operands be of the same size for computations. The EXT in-

struction is used in such instances. Notice that the operand should be contained in one of

the data registers Dn.

The NEG instruction negates the operand. It subtracts the destination operand

from $0 and puts the result back in the destination location. In effect, it performs a

twos-complement operation on the operand. The NEGX instruction includes the X flag

in the computation. Data-alterable addressing modes are allowed for NEG and NEGX

instructions. Examples follow using the initial values of Figure 3.6.

EXT.L D1 Sign extend the word operand in D1 to a long word. The word oper-

and in D1 = $ EF 00. The MSB = 1 (since MSD $E = 1 1 1 0)

and the operand is considered negative. This MSB is replicated to all

the higher bits in the D1 register.”

D1 (before) $ABCDEF0OO
D1 (after) $F FFFEFOO

D1 has the same numeric value as it did before, but the size of D1 is

increased to a long word. X is not affected, C = 0, and V = 0. The

resulting operand is negative (MSB = 1) and nonzero. As such, N =

1 and Z = 0.

XN ZV C (after) = 01000

NEG.B D2 Negate the byte operand in D2. Subtract the byte operand in D2 from

$00 and put the result back in D2.
Value to be subtracted from $0 0

Byte operand in D2 $04
Subtracted (negated) result = $ FC

(borrow generated)

Data Movement and Arithmetic Instruction Groups

D2 (before) $00000004

D2 (after) $O000000FC
All the flags are affected. Borrow is generated: C = 1 and X = 1.

The resulting operand ($FC) is negative (MSB = 1) and nonzero. As

such, N = 1 and Z = 0. Signed overflow is not generated and V =

0.
XN ZV C (after) = 11001

The MULS and MULU are the signed and the unsigned multiply instructions, re-

spectively. In the signed operations, the operands are considered to be signed binary

integers. On the other hand, in the unsigned operations, the operands are considered to

be unsigned binary integers. Similarly, the DIVS and DIVU are the signed and unsigned

division operations, respectively. In the multiply and divide operations, the destination

is always a data register Dn. In the multiply operations, the 16-bit source operand (S16)

and the lower 16 bits of the destination Dn (D16) are multiplied, and the 32-bit product

is transferred to the 32-bit destination Dn register (D32). Examples follow using the ini-

tial values of Figure 3.6.

MULU D2,D3 Multiply the word operands from D2 and D3, with the 32-bit re-

sult in D3. The operands are unsigned.

Multiplicand in D2 (before) $00000004

Multiplier in D3 (before) $00000008

D2 (after) $00000004

Product in D3 (after) $00000020

$4 X $8 = $20 = 32 decimal value. Only the N and Z flags are

affected. X is unaffected. C = 0 and V = 0. The result is posi-

tive (MSB = 0) and is nonzero. As such, N = 0 and Z = 0.

XN ZV C (after) = $00000

MULS #$2,D1 Multiply the signed 16-bit operand from D1 and the source oper-

and ($0002), with the 32-bit signed result in D1.

Multiplicand word in D1 (before) $ EFOO

Multiplier source operand $ 0002
Sign-extended product* = $FFFFDE00

*$EFOO < $0002 results in hex string $1DE00. Sign extending the MSB = | to the

higher bits results in the sign-extended product $FFFFDE0O.

In the division operations, the dividend is contained in a 32-bit destination data

register Dn. The divisor is the 16-bit source operand, specified by one of the data-type

addressing modes. The dividend is divided by the divisor. The 16-bit quotient and the

16-bit remainder are placed in the destination data register, as shown:

| Upper word | Lower word |

Remainder Quotient

61

62 Chapter3 The 68000 Instruction Set and Programming Considerations

An example follows.

DIVU D2,D3 Divide the 32-bit dividend in the D3 destination register by the 16-

bit divisor in the source D2 register. Place the results as shown in

the preceding diagram. The operands are unsigned.

32-bit dividend operand in D3 (before) = $00000008

16-bit divisor operand in D2 (before) = $ 0004

Upon dividing, the 16-bit quotient = $0002
the 16-bit remainder = $0000

D3 (after) $00000002

The N, Z, and V flags are affected. X is unaffected and C = 0.

The quotient is positive (MSB = 0) and nonzero. As such, N = 0

and Z = O. There is no division overflow and V = 0.

XN ZV C (after) = 00000

Note: If the divisor is zero, the zero divide exception occurs.

BCD (Binary Coded Decimal) Instructions

The three BCD instructions are presented in Figure 3.10. The operand size is byte. The

X flag is always involved in the computations. The ABCD (add BCD) and the $SBCD

(subtract BCD) instructions use only the data register direct (Dn) or the ARI with pre-

decrement (—(An)) addressing modes for both the source and the destination operands.

This provides an easy and reliable access to the operands in a low-to-high value se-

quence, which is required for BCD arithmetic. The NBCD (negate BCD) is similar to

the binary NEGX instruction. All the data-alterable addressing modes are allowed

for the NBCD instruction. Only the X, Z and C flags are affected for the BCD instruc-

tions.® An example follows using the initial values of Figure 3.6.

/

Operand Operand

Instruction Syntax Size Operation

ABCD Dn, Dn

—(An), —(An)
Source,, + Destination,;, + X — Destination

Destination,, — Source,;, — X — Destination

NBCD Pwerss 0 — Destination,, — X — — Destination

SBCD Dn, Dn

—(An), —(An)

FIGURE 3.10 BCD instructions.

ABCD D0,D3 Add the BCD byte operand in DO to the BCD byte operand in D3,

with the result in D3.

Source BCD byte in DO (before) 78

Destination BCD byte in D3 (before) 08

Result of the BCD addition = 86 oo

Data Movement and Arithmetic Instruction Groups 63

DO (before) 12340678

D3 (before) 00000008

DO (after) 12340678

D3 (after) 00000086

There is no overflow and the result is nonzero. As such,

XN ZV C (after) = 00000

In BCD operations, the operands are expected to be of the BCD type. Any other

data type generates an error condition known as the illegal instruction exception.

We will now present an example problem to review the binary and BCD arith-

metic operations.

Example 3.3 Binary and BCD operations using the 68000.
In a digital signal processing application, the following software is written as a subrou-

tine:

ADD.W #$0004,D0 ;add immediate data $4 to the word in DQ
MULS De,DO jMmUlTIpLy words in De and DU wath result in DU
SUBQ.L #$08,D0O ;subtract quick data & from long word in DO
DIVU D1,D0 ;divide long word in DO with word in D1
1a BS) ;return from subroutine

Consider the initial values

DO = $12340678; D1 = $00000006; D2 = $00000004

SR = $ 0405 = 0000 0100 0000 0101

X NZVC

1. What are the values of the affected registers and the SR at the end of the subroutine?

2. If [SUBQ.L #$08,DO] is changed to [SUBQ.L #$80,D0], will the software be func-

tional? Why or why not?

Solution

1. Results of the software: After the addition, the destination register DO =

$1234067C. Signed multiplication of words in D2 (= $0004) and DO (= $067C)

results in a 32-bit product in DO (= $000019F0), as shown:

Overflow generated

(see note) ib dks)

$ Multiplicand DOC

$ Multiplier 0004

Sign-extended 32-bit product = $000019F 0

Note: $C = 12 decimal; 4 x $C = 4 X 12 = 48, which is equal to $30. Digit $3 is

the hex overflow to the next hex position. The héx multiplication proceeds in this

fashion.

64 Chapter 3 The 68000 Instruction Set and Programming Considerations

After the subtraction, the destination register DO = $000019E8. Unsigned di-

vision of the dividend in DO (= $000019E8) by the divisor in D1 (= $0006) is as

shown, using the hex-to-decimal and decimal-to-hex conversions. ($E = 14.)

Dividend $000019E8 = (1 x 16°) + (9 x 167) + (14 X 16) + 8 = 6632

Divisor $0006 = 6. The decimal division results in

6632
ee = 1105 quotient, with 2 as a remainder

Converting the decimal quotient 1105 into hex, we obtain

Quotient 1105 = (4 x 167) + (5 x 16) + 1 = $451

Remainder 2 = $2.
The remainder and the quotient are put into the destination DO as the higher

and lower words, and DO = $00020451. The quotient ($0451) is positive and non-

zero and there is no division overflow. As such, the flag bits N = 0, Z = 0, and

V = 0. The X flag is unaffected and the C flag is reset to zero.

The RTS instruction causes the processor to return to the calling program. The

flag register is unaffected by the RTS and contains the information relating to the

instruction before the RTS.

The final results are

DO =$00020451

SR = $ 0400

SUBQ.L #$80,D0: The software will not be functional. The source operand #$80

is beyond the allowed value (= $08) for the SUBQ instruction. An error condition

will be generated.

Large numeric strings of data are also easily handled by the 68000 processor. The

numeric string of data resides in the memory. The processor obtains the appropriately

sized data from the numeric string in the memory, performs the required operations, and

stores the result in the memory. We will deal with these operations when we discuss

software designs; they are known as the multiprecision arithmetic operations.

3.3 LOGICAL AND BIT-MANIPULATION INSTRUCTION GROUPS

The Jogical instructions perform the logic, shift, and rotate operations. The bit-

manipulation instructions deal with the individual bits of the operands. These two
groups provide the 68000 with additional data processing and control capability.

Logical and Bit-Manipulation Instruction Groups

Logic, Shift, and Rotate Instructions

The basic logic instructions are presented in Figure 3.11. They are the AND, OR, EOR

(exclusive OR), and the NOT instructions. They operate on the byte, word, and long-

word operands. Consider the two forms of the AND instruction:

AND Dn, <ea>

AND <ea>,Dn

Either the source or the destination operand has to be in one of the data registers. If the

source operand is in a data register, the destination <ea> is of the memory-alterable

type. If the destination operand is in a data register, the source <ea> is of the data

type. In the other variation of the AND instruction:

ANDI # <data>,<ea>

the source operand is the immediate data and the destination <ea> is of the data-

alterable type. In all of these cases, the processor performs the AND operation between

the corresponding bits of the source and the destination operands, with the result in the

destination. If the destination <ea> is the SR, then it is a privileged instruction. The

logic instructions affect only the N and Z flags. The N flag is set to 1 if the MSB of the

result is 1 (negative number). The Z flag is set to 1 if the result is 0. There is no over-

flow in the logical operations; as such, the C and the V flags are always reset to 0. The

X flag is not affected. However, if the operand is either the SR (status register) or the

CCR (condition code register), all five flag bits are affected. The OR and the EOR in-

structions follow the same structure as the AND, but they perform the OR and the ex-

clusive OR operations between the corresponding bits of the source and the destination

operands, with the result in the destination. The NOT instruction performs logical inver-

sion (ones-complement form) of the operand. The operand is specified by the data-

alterable type addressing modes.

The shift and rotate instructions are presented in Figure 3.12. They are the ASL

and ASR (arithmetic shift left and right), LSL and LSR (logical shift left and right),

ROL and ROR (rotate left and right), and ROXL and ROXR (rotate left and right

through the X flag). Consider the three forms of the ASL instruction:

ASL Dx,Dy ASL #<data>,Dy ASL <ea>

The first two forms operate on byte, word, or long-word data operands. The destination

operand is in one of the data registers. The destination operand is shifted left the number

of times specified by the source operand. The shifted-out MSB goes into the C and X

flag bits and 0 is shifted into the LSB for each shift operation. When the source operand

is a data register, it can specify a shift number up to 64 (modulo 64). However, a shift

count of 32 is sufficient to completely shift zeros into the register. When the source op-

erand is a data element, the shift count is limited to 8. When an operand is shifted left

65

(o
u|

“e
jo
s0
}O
W

JO

As
ey
No
D)

‘s
uo
yO
NA
su
t

jo

dn
os
6

91
60
]

00
08
9

eU
L

L
L

SY
ND
IS

a
e

e
S

e

|

t
o
n

i
i
t

o
n

e
y

|

w
o
r

d
O

A
d

A
O

ZE
9O

L‘
'S

I
G
N
V

°
A
T
A
V
Y
A
L
T
V

V
L
V
G

..

a
e

»
NO
IL
LV
NI
LL
SH
G<
—

ZE
‘O
1‘
g

A
Y
O
W
A
W
N

(
N
O
L
L
V
N
L
L
S
A
@

\V

(
A
O
w
N
O
S
)

A
T
A
V
U
A
L
T
V

Sa
po
yp

s
s
a
s
p
p
y

Uu
Ol
ID
IO
N

u
o
y
v
i
a
d
Q

az
1¢

U
O

IN
AJ
SU
T

pu
vi
ad
gQ

Y
A
L
S
I
O
d
a

S
O
L
V
L
S
«

Y
O

A
O

A
O

H
I
G
V
a
a
L
T
V

VL
IV
G

N
O
I
L
V
N
I
L
S
A
d
0
<
—

(
N
O
L
L
V
N
I
L
S
A
@
)

Ra
)‘

(e
ye

(v
9)
‘(
eI
ep
)

TH
O

/\

VI
VO

AL
VI
GA
WI

Vi
vd

ud
‘{
82
)

YO

—
-
-
-
-
-
-
-
-
-
—
-
-
-
-
-
}
~
~
~
~
-
~
-
_
_
-
_

NO
LL
VN
IL
SA
G

A
Y
O
W
A
N

(e
)‘
uq

YO

<—

(N
OL
LV
NI
LS
A)

/\

(A
Ou
NO
s)

A
T
A
V
A
A
L
T
V

(8
2)

L
O
N

(e
2)
*(
ei
ep
)

TH
OU

N
O
L
L
V
N
I
L
S
A
d
<
—

(
N
O
L
L
V
N
I
L
S
A
)

YA

L
S
I
O
d
a

S
O
.
L
V
I
S

ad
o

A
O
D

A
O

A
T
a
V
a
s
a
L
I
V

VL
IV
G

A
I
A
V
U
A
L
T
V

:
e3

)
Ul

V
L
V
d

(e
2)
‘u
q

YO
d

Y
A
L
S
I
O
N
d
a

SO
.L

VI
LI

S«

N
O
I
L
V
N
I
L
S
A
G
<
—

(
N
O
L
L
V
N
I
L
S
A
G
)

©

V
L
V
C

A
L
V
I
G
H
I
N
W
I

N
O
L
L
V
N
I
L
S
A
G

<—

(N
OI
LV
NI
LS
AG
@)

©

(
A
o
u
n
o
s
)

N
O
I
L
V
N
I
L
S
A
G
<
—

Bo
)

‘(
ey
e (°

2)
'(
re
P)

IN
V

|

(o
nt

yN
LL
Sa
d)

V
VL
VG

AL
VI
GA
WW
I

aayraf{q

eIqoMony

66

ATaVad LTV
AYOWAWN

ATAVaaLTV
AYOWAWN

ATadVasaLTv
AYOWHN

ATaVaaLiTv

AYOWAWN

SHqGOW

Ssaadaqyv

HALLOdxs sd ATAVMOTIV

(‘oul
‘ejosojoW

Jo ASaynod)
“suoNonssu!

aye}O1
pue

YWIYS
00089

SUL
SLE

AYNDIS

<eo> PxOud Aq ‘xd POU <e9> pst Aq ‘xd PST < 82> psy Aq ‘xd PSV NOILV.LON

bx]

CNVuadO

i GNVuadO fi

Le

CGNVuadO

:

[|

GNVaddO

A
N
V
a
d
d
O

[o || aNnvuado | aurea Li

N
O
L
L
V
Y
a
d
O

TE
“OL “8 ZE

“91
‘8

TE
“OT

‘8 Ze “OI ‘8
AZIS

CNVaddO

NOILONULSNI

67

68 Chapter 3 The 68000 Instruction Set and Programming Considerations

once, it amounts to multiplying the operand by 2. Thus, shifting left by 8 positions

amounts to multiplying by 256: 2® = 256.
For the third form of the ASL instruction, the operand is in memory and is speci-

fied by the memory-alterable addressing modes. The operand size is a word and is

shifted once to the left.
The ASR instruction is similar to the ASL, but shifts the operand in the right di-

rection. The MSB is shifted back into itself to preserve the sign bit of the operand. The

shifted-out LSB goes into the C and X bits.

In the arithmetic shift operations, the value and the sign bit of the operand can

change. Furthermore, overflow can occur. As such, all five flags are affected.

The LSL and the LSR instructions are similar to the ASL and the ASR instruc-

tions. However, in case of the LSR instruction, 0 is shifted into the MSB of the operand

and the LSB is shifted out for each shift. This amounts to dividing the operand by 2.

In case of the ROL instruction, the destination operand is rotated left the number

of times specified by the source operand. The MSB goes into the C flag and into the

LSB position, as shown in Figure 3.12. The ROR instruction is similar to the ROL, but

rotates the operand in the right direction. The ROXL and the ROXR instructions are

similar to the ROL and ROR instructions, but the former pair rotate the operands
through the X flag.

In the logical shift operations (LSL and LSR), and in the rotate operations through

the X flag (ROXL and ROXR), the signed overflow concept is not required. As such,

the V flag is reset to 0 and the other four flags are affected. In the normal rotate opera-

tions (ROL and ROR), the X flag is not affected and the V flag is reset to 0. Only the

other three flags are affected.

The following example problem provides a review of the logical operations.

Example 3.4 Logical operations.
The initial values of the registers and the operands are as follows:

DO = $12340678 D2 = $00000004

Al = $0034FE78 XNZVC=00000

Use the same initial conditions each time. Show the results of the following operations:
1. ANDI.B #$F0,D0 2. ORI.B #$F0,D0 3. EORI.B #$F0,D0
4. NOT.B DO 5. ASL.B #$2,D0 6. ASR.B #$2,D0
7. ROL.B #$2,D0 8. ROXR.B #$2,D0 9. ORI.B #$1F,CCR

Solution

Destination byte operand in DO = $78 = 01111000
Source operand = $FO = 11110000

Logical and Bit-Manipulation Instruction Groups 69

1. ANDI.B #$F0,D0: If both the source and destination bits are 1, the result bit is 1:

Result 01110000

Nonzero result and MSB = 0 X NANG. = 00000

2. ORI.B #$F0,D0: If any of the source or destination bits is 1, the result bit is 1:

11111000

01000
Result

Nonzero result and MSB = 1 XNZVC

3. EORI.B #$F0,D0: If either the source or the destination bit is 1, but not both, the

result bit is 1:

Result = 10001000

Nonzero result and MSB = 1 XNZVC= 01000

4. NOT.B D0: The operand bits are inverted:

Result = 10000111

Nonzero result and MSB = 1 XNZVC= 01000

5. ASL.B #$2,D0: The operand is shifted left twice:

Result = 11100000

Nonzero result and MSB = 1 XNZVC= 11011

Last MSB shifted out = 1: (C and X = 1)

Sign (MSB) changed at least once: (V =1)

6. ASR.B #$2,D0: The operand is shifted right twice:

Result =00011110

Nonzero result and MSB = 0 XNZVC= 00000

Last LSB shifted out = 0: (C and X = 0)

Sign (MSB) did not change: (V = 0)

7. ROL.B #$2,D0: The operand is rotated left twice:

Result = 11100001

Nonzero result and MSB = 1 XNZVC= 01001

Last MSB rotated = 1: (C = 1)

70 Chapter 3 The 68000 Instruction Set and Programming Considerations

8. ROXR.B #$2,D0: The operand is rotated right twice through X:

Result = 00011110

Nonzero result and MSB = 0 XNZVC= 00000

Last LSB rotated = 0: (C and X = 0)

Note: In each of the preceding cases, the result is put back in the byte position in the

DO destination register.

9. ORI.B #$1F,CCR: The OR immediate operand $1F = 00011111 with the CCR:

Result = OO0O011111

All five flags are set XNZVC Ee Ps

The AND operation forces a 0 value to the selected bits in an operand. This is

called masking. The OR operation forces a 1 value to the selected bits in an operand.

The EXOR operation selectively inverts and checks the bits in an operand.

Shift and rotate operations are suitable in data processing and logical data manip-

ulation applications. In all cases, the operand is a complete data element. In several in-

stances, bit-level data manipulation is required.”

The MC68000 has bit-manipulation instructions with which to handle bit-level op-

erations more efficiently. We will now discuss these instructions.

Bit-Manipulation Instructions

The bit-manipulation group of instructions are presented in Figure 3.13. They are the

BCHG (bit change), BCLR (bit clear), BSET (bit set), and BTST (bit test) instructions.

In each case, the source operand specifies the bit number in a destination operand.'°

With all four instructions, the specified bit is first tested and the Z flag is set or

reset accordingly (Z = 1 if the tested bit is 0, and vice versa). This helps the program-

mer to identify the bit condition before any further bit manipulation. Only the Z flag bit

is affected in this group.

The BCHG instruction changes the logic value of the tested bit from 0 to 1, or

vice versa. The BCLR instruction clears the specified bit. The BSET instruction sets the

specified bit. The BTST instruction tests only the specified bit.

If the destination is a data register, then any of the 32 bits can be manipulated

(modulo 32), as specified by the source operand. On the other hand, if the destination is

a memory location, then the bit operations are restricted to 8 bits (or a byte). The des-

tination <ea> can be specified by the data-alterable addressing modes. The source op-

erand can either be a data register or an immediate data element. The word-sized oper-

ands are not supported in this group of instructions. In control and I/O type of applica-

tions, bit-manipulation operations are very common.

The following example will help to clarify the bit-manipulation instructions.

Logical and Bit-Manipulation Instruction Groups 71

Allowable
Operand Effective

Instruction Size* Operation Notation Address Modes

~(bit number OF

Destination) > Z

BCHG Dn (ea)
~(bit number OF

Destination)

— bit number OF DATA

Destination BCHG # (data),(ea) ALTERABLE

~(bit number OF

Destination)

— Z: 1 — bit number DATA

OF Destination BSET # (datay,(ea) ALTERABLE

BSET Dn, (ea)

BTST (Dn),(ea) DATA
—(bitnumber OF Gay |=—-{.-—-—-_-_-_ > SS (EXCLUDING

Destination) > Z BTST # (data),(ea) IMMEDIATE)

~(bit number OF

Destination) > Z BCLR Dn, (ea)
0 — bit number OF DATA

8,32 Destination BCLR # (data) ,(ea) ALTERABLE

*1. For memory operation, the data size is byte.
2. For data register operation, the data size is long word.

FIGURE 3.13 The 68000 bit-manipulation instructions. (Courtesy of Motorola, Inc.)

Example 3.5 Bit manipulations.

The initial conditions of the registers and the operands are as follows:

DO =$12340678 DI=$ABCDEFOO

XNZVC=00000

It is required to test bit 0, set bit 4, clear bit 6, and change bit 31 of the operand con-

tained in the DO register, in the sequence stated.

1. Write a series of bit-manipulation instructions to perform this task.

2. What are the contents of the DO register and the flags after the task has been com-

pleted?

3. If bit-manipulation instructions are not available, what alternate software approach

may be used to accomplish the task?

72 Chapter 3 The 68000 Instruction Set and Programming Considerations

Solution

1. Bit-manipulation instructions: Figure 3.14(a) shows the binary (bit) representation

in the DO register. Figure 3.14(b) shows a series of four bit-manipulation instructions

to accomplish the task. In all of these operations only the Z flag is affected as indi-

cated. The BTST instruction tests bit 0 of the DO register, which is a zero. As such,

the Z flag is set to 1. The BSET instruction tests bit 2, which is a zero, sets the Z

flag to 1, and finally sets the tested bit to 1. The BCLR instruction tests bit 6, which

is a one, resets the Z flag to 0 (since the tested bit is 1), and finally clears the tested

bit to 0.

The BCHG instruction tests bit 31, which is a zero; sets the Z flag to 1; and

inverts the tested bit to 1. Thus, at the end of the instruction sequence, the DO reg-
ister contains:

b31—b28 = 1001 = $9

b27—b8 (no change) = $23406

b7—b0 = 00110100 = $34

2. Contents of DO and the flags: The final results are

DO = $92340634

XNZVC=00100

DO=$ 1 2 3 4 0 6 4) 8

scO A Online ne ethic. co “farts a hates. oMicvheRrCmrcLin, Scatic Caneec ae meets Otis) 000

b b b b b bbb bbb Ob
31 30 29 28 7, 6. 544 oon, Leo

(a)

Instruction DO (b7... b0)

b7 b6 b5 b4 b3 b2 bl bO XNZVC

Oye Leal fa 410 00 00000

BTST.L #$00,D0 bO tested and is a0 1

BSET.L #$2,D0 b2 tested and set to 1 1

BCLR.L #$6,D0 b6 tested and cleared to 0 0

BCHG.L #$1F,D0O b31 tested and inverted to 1 1

(b)

FIGURE 3.14 (a) Binary representation for the data in DO and (b) sequence of
instructions (for Example 3.5).

Program and System Control Instruction Groups 73

3. Alternate software: Logic and compare instructions must be used, involving an ad-

ditional sequence of instructions.

In addition to data movement, arithmetic, logical, and bit-manipulation instruc-

tions, program and system control instructions are required for implementing software

programs using the 68000. We will now discuss these instructions.

3.4 PROGRAM AND SYSTEM CONTROL INSTRUCTION GROUPS

In programming applications, it is often necessary to change the program flow condi-

tionally or unconditionally. It is also occasionally required to stop the processor until an

external event such as an interrupt occurs. In addition, it may be necessary to reset the

system I/O resources under software control. The 68000 processor has appropriate pro-

gram and system control instructions to support these actions."

Program Conirol Instructions

The general program and system control instructions are presented in Figure 3.15.

These instructions, all of which support program flow, are classified into three types as

follows:

1. branch type: Bcc: Branch on condition

BRA: Unconditional branch

BSR: Branch to subroutine

2. jump type: JMP: Unconditional jump

JSR: Jump to subroutine

3. return type: RTE: Return from exception

RTR: Return and restore

RTS: Return from subroutine

Branch-Type Instructions These instructions refer to an effective address <ea>,

where the next instruction is available. The <ea> is specified by the program counter

relative addressing mode (d(PC)). The displacement is specified as a part of the instruc-

tion. If the displacement is 8 bits (d8), it is a short branch operation with a 256-byte

range (—128 to +127). If the displacement is 16 bits (d16), it is a long branch operation

with a 64-kilobyte range (—32 to +32 kilobytes). The displacement is added to the con-

tents of the program counter (PC) to obtain the effective address. (Recall that the PC is

incremented by two after fetching the op.word; this value should be used in the compu-

tation of the <ea> in all branch operations.)

Conditional branch instructions (Bec) may or may not perform a desired func-

tion, depending on the current value of the processor’s condition codes (or flags).

Branching occurs if the specified condition is met, causing a change in the program

74 Chapter 3 The 68000 Instruction Set and Programming Considerations

Allowable

Effective

Operand Address

Instruction Size Operation Notation Modes

Bee Measham: Bergen Bec(label) PC REL
a else proceed

Pie freer maa

PC — —(SP); DESTINATION — PC

[ise Shes leas a Rn dae

(Sr) PEO Nae We CEE + — PC

*Privileged

IMMEDIATE DATA — SR;

STOP PROGRAM EXECUTION

Operand

Instruction Size Operation

TRAP PC——(SSP); SR—(SSP); TRAP peed a

(VECTOR)—PC

TRAPV pr svete If V then TRAP; eee

else proceed

FIGURE 3.15 Program control instructions for the 68000. (Courtesy of Motorola, Inc.)

flow. Otherwise, the program flow remains unchanged, and the program continues with
the next sequential instructioh. The different forms of the Bcc instruction are indicated
in Figure 3.16.

The BRA instruction causes an unconditional branch to the specified effective ad-
dress. The BSR instruction stores the PC on the stack and branches to the specified sub-

Program and System Control Instruction Groups 75

FIGURE 3.16 Conditional
branch instructions for the carry clear
68000. (Courtesy of Motorola, carry set
Inc.) equal

greater or equal

greater than

high

less or equal NaIZZNQOQI

low or same

less than

minus

<|+ ap IS ZI <

not equal

plus

overflow clear

overflow set <<IZIN'ZZ0

routine. The branch instructions generate relocatable code, since they belong to the PC

relative addressing mode. Three examples of branch-type instructions follow.

PC Instruction

$001000 BRA $0200(PC) Unconditional branch to the <ea>. The <ea> computa-

tion is as follows:

PC value* $001002

16-bit signed displacement = $ 0200
<ea> = $001202

*PC advances by two after fetching the op.word for the

BRA instruction, thus pointing to $001002.

The <ea> is loaded into the PC.

PC (before) $0 "10072

PC (after) $001202

The processor branches to $001202 and executes the pro-

gram starting at that location. This is a long branch, since

the displacement is 16 bits.

II

PC Instruction

$001316 BSR $FO(PC) Branch to the subroutine at the <ea>. The <ea> computa-

tion is as follows:

Incremented PC value =$001318

8-bit signed displacement = $FFFFFO

(twos-complement form)*
<ea> = $001308

76 Chapter 3 The 68000 Instruction Set and Programming Considerations

The original PC value (= $001318) is stored on the stack

and the <ea> (= $001308) is loaded into the PC. The pro-
cessor branches to the subroutine at $001308. This is a short

branch, since the displacement is 8 bits.

*$FO in twos-complement form is a negative number

(= —$10). The displacement is a negative value.

PC Instruction

$001362 BNE $06(PC) Branch, if not equal to zero, to the <ea>. This is a condi-

tional branch instruction. If the operand from the previous

operation is not equal to 0, the program branches to <ea>;

otherwise it proceeds to the next sequential instruction. .

<ea> = PC value + displacement

= $001364 + $06 = $00136A

Some assemblers support explicit extensions to distinguish between short and long

branches and jumps. We will discuss these features in the next chapter when we deal

with assemblers and assembly programming techniques.

Jump-Type Instructions The JMP (jump) and the JSR (jump to subroutine) instruc-

tions are similar to the BRA and BSR instructions. However, in the case of the JMP and

JSR, the <ea> can be specified by any one of the control addressing modes as well as

by the PC relative modes.

Return-Type Instructions The RTE (return from exception) is the last instruction to

be used in an exception service routine. It restores the registers (PC, SR) that were

stored on the stack when the exception occurred, and returns to the program that was

being executed at the time of the exception. RTE is a privileged instruction. RTR (re-

turn and restore) is similar to RTE, but RTR restores only the user byte (or the CCR)

from the stack rather than the complete SR.

The RTS (return from subroutine) is the last instruction to be used in any subrou-

tine service routines. It restores the PC that was stored on the stack when the subroutine

call was made and returns to the calling program.

System Control Instructions

These instructions control and coordinate system operation. The RESET instruction gen-

erates a reset pulse on the reset pin of the processor. In system control applications, this

pulse is used to reset the I/O and the peripheral devices. The STOP instruction initializes

the status register with the specified data element and stops the processor operation. The

processor resumes its operation when a hardware interrupt or reset occurs. The RESET

and the STOP instructions are privileged.

The NOP (no operation) instruction does not perform any task; rather, it advances

the PC to the next instruction location. Software engineers and programmers use NOP

instructions to fill sections of the program memory for short delays and for later replace-

ment by active instructions.

Program and System Control Instruction Groups 77

The ILLEGAL instruction corresponds to an op.word $4AFC. It causes an illegal
instruction error exception. This exception simulates the illegal error condition in the
development of the operating system software.

The following example problem provides a review of the program and system con-
trol group of instructions.

Example 3.6 Program and system control instructions.
Figure 3.17 illustrates 68000-based software in an industrial application. The system is

in the supervisor mode and the SR contains $2400 initially (all the flags are zero).

1. What does the main program accomplish?

2. What does the subroutine accomplish?

Solution

1. Main program: It initializes DO with a data word $0008 and calls a subroutine at

$00001030. After the program returns from the subroutine, it generates a reset pulse

and stops the processor. When an external event such as an interrupt occurs, the pro-

gram advances to the JMP instruction, which makes the program jump back to

$00001000 (start).

2. Subroutine: This is a delay loop. It decrements the word in DO by 1. If DO is not

decremented to 0, the BNE instruction causes the program to branch back to

$00001030, which is the beginning of the delay loop. The loop is terminated when

the DO register is decremented to 0, and the program advances to the RTS instruc-

tion. The RTS causes the processor to return to the main program. For the values

indicated, the delay loop runs seven times and exits the eighth time.

Main program

PG Instruction Comment

$00001000 MOVE.W #$00064,D0 ;Move data word #$0006 into DO
$00001004 JSR $000010350 ;Jump to subroutine at $00001030
$0000100A RESET ;Generate, reset) pulse
$0000100C STOP #$2500 ;load $2500 into SR and Stop
$00001010 JMP $00001000 ;Jump to $00001000 (start)

Subroutine
$00001030 NOP ;No operation
$00001032 SUBOQ.W #$01,D0 ;subtract 1 from DO (decrement DQ)
$00001034 BNE $FA(PC) ;1f not zero, branch to (ea)***

$00001036 RTS ;creturn from subroutine

(ea) = Signed displacement + advanced PC
= $FFFFFFFA + $00001036 = $00001030

FIGURE 3.17 Main program and subroutine (for Example 3.6).

of (nee PP WA att Ao wer OS ye el Ct ett pee ee

78 Chapter 3 The 68000 Instruction Set and Programming Considerations

In the software of Figure 3.17, we used absolute numbers and hex values to spec-

ify displacements and the jump and branch operations. This enabled us to show the de-

tails of the program flow at the machine level. This approach can become tedious and

inefficient, however, especially if the software contains many loops and conditions. As-

sembly language programming, in which numbers are represented by symbols, is a bet-

ter alternative in developing the software. We will learn more about these programming

techniques in the following chapter.

In addition to the instruction groups discussed, the 68000 has a special group of

instructions to support multiple register transfers, linking and unlinking of the stack,

multiple decision schemes and software interrupts (traps). These complex instructions

will be discussed in later chapters, after assembly programming concepts are introduced.

The instruction execution time is another important parameter. It specifies the ac-

tual time of execution of an instruction including calculation of the <ea> and obtaining

the operands. We will now present these concepts.

3.5 INSTRUCTION TIMING CONSIDERATIONS

The 68000 is activated by a clock signal (4- to 12-MHz range). Instruction time refers

to the time required to execute an instruction without any wait states. The fundamental

unit of time is the processor clock cycle time (T). When the 68000 reads the op. word

from the program memory, or reads the operands from memory or I/O, it is referred to

as the read bus cycle. Similarly, when the processor writes the operands into the mem-

ory or I/O, it is referred to as the write bus cycle. The bus cycle in general may be a
read or a write bus cycle.

Read/Write Timing

A typical bus cycle takes four clock cycles (or four T-states). The op.word fetch is al-

ways a read operation and takes one read bus cycle. Depending upon the instruction, the
processor may perform further read operations (to obtain operands) and write operations
(to write operands). In case of the 68000 and 68010/12 processors, each bus cycle in-
volves a 16-bit data transfer. In case of the 68008, each bus cycle involves an 8-bit data
transfer (due to an 8-bit data bus). The instruction timing is specified in terms of the

total number of T-states and the associated read/write bus cycles.

Instruction Timing Computation

Consider the T(R/W) values shown in Figure 3.18 for the 68000. In case of the
MOVE.W D1,D2 instruction; only the op.word needs to be fetched from the external
memory, which involves one read operation. The source and the destination operands
are within the processor; hence, the instruction does not need any further read or write
bus cycles. Thus, the T(R/W) values are 4(1/0). In case of the MOVE.L (A1),(A2) in-

Instruction Timing Considerations 79

Instruction T(R/W) Comment

MOVE.W D1,De 4(1/0) ;Move word in Dil into De
MOVE.L (Al1),(Ace) e0(a/e2) ;Move long word from memory addressed

by (AL) into memory addressed by

. (A2)
MOVE.B —(A3),DL 10(c2/0) ;Move byte from memory addressed by

predecremented (AJ) into Db

FIGURE 3.18 1(R/W) values and instruction timing for the 68000.

struction, the processor has to perform the op.word fetch and two more read operations

of the memory to obtain the long-word source operand at the location addressed by the

contents of Al. In addition, the processor has to perform two write operations to write

the long word at the destination location addressed by the contents of A2. Thus, there

are three read and two write bus cycles, corresponding to 20 T-states. The T(R/W) val-

ues are 20(3/2).

In case of the MOVE.B —(A3),D6 instruction, the processor has to perform the

op.word fetch and one more read operation of the memory to obtain the byte operand

from the source <ea>. The source <ea> is the predecremented A3 and involves ad-

dress computation. The 68000 usually takes two additional T-states to perform the
<ea> computation. There is no memory write cycle involved, since the destination op-

erand D6 is within the processor. Thus, the T(R/W) values, including the computation

time for the <ea>, are 10(2/0). If the computation time overlaps some other processor

activity in the instruction, the additional T-states are not required. (See Appendices B

and D for the T(R/W) values for 68000 instructions.)

We will now present an example problem to review instruction timing.

Example 3.7 Instruction timing.
The software of Figure 3.17 is repeated with the T(R/W) values indicated in Figure

3.19.

1. Explain the T(R/W) values for the JSR, RESET, BNE, and RTS instructions. (Ob-

tain information from Appendices B and D.)

2. If the 68000 is operating at an 8-MHz clock, compute the execution time for the de-

lay subroutine.

Solution

1. JSR $00001030: The processor fetches the op.word and performs two more read op-

erations to obtain the address operand $00001030. It stores the PC in the main rou-

tine on the stack, which takes two write operations, before going to the subroutine.

Thus, the T(R/W) values involve three read and two write bus cycles and 20 T-

states. The T(R/W) values = 20(3/2).

(
D
/
7
)
9
T

(O
/2
)

OT

(D
/T
)¥

(
O
/
T
)

(
O
/
E
)
2
T

(o
/2
)9

(O
/T
)

2E
T

(2
/E
)O
e2

(O
/2
)9

(M
/Y
)L

(O
/T
)

9
u
s
y
e
z

jo
u

(O
/2
)O
T

=
u
e
y
e
z

y
o
u
e
r
q

(M
/a
)

Lx

S
u
T
A
N
O
T
Q
G
N
S

wo
rz
y

ua
nq
zo
er
!:

*
(
@
3
)

O
F

Y
O
u
e
T
q

’
O
z
T
e
z

j
o
u

G
T
!

(
O
d

}
U
e
U
e
T
S
e
p
)
O
d

w
o
r
Z

T
O
V
I
A
q
Q
n
S
!

u
o
t
j
z
e
i
r
e
d
o

o
n
:

(3
3e
3S
)

o
O
0
T
O
O
0
0
$

03

du
ne
:

do
ys

pu
e

ys

O4
UT

OO
Se
g¢

pe
oT
t:

e
s
t
T
n
d

jZ
ae
se
r

3
o
4
e
t
d
u
e
y
!
:

D
E
O
T
O
O
O
O
S

F
e

S
u
U
T
A
Z
N
O
I
T
G
n
S

o
f

d
u
n
e
:

O
d

O
F
U
T

P
O
O
O
S
#

P
A
O
M

e
R
e
P

sa
AO
Hi
:

j
u
a
m
u
o
y

SLa

(Dd)

was

and

Od’tos#

m°Ogns

dON

O0
oo

0T
oO

oO
oO

$s

d
W
e

O
0
S
e
s
#

d
O
w
s

L
a
S
d
d

O
E
D
T
O
O
O
O
$
S

u
s
e

O
d
’
?
o
0
0
$
#

M
°
a
A
O
W

uo
NI
NA
IS
Uu
T

(Le
9
|
d
w
e
x
3
)

0
0
0
8
9

9
u
}

J
O
}

u
o
l
e
y
n
d
w
o
o

9
U
W
I
}
-
U
O
l
]
N
D
8
x
S

p
u
e

S
U
W
N
}
-
U
O
l
N
O
N
d
}
S
u
|

6
L
°
E

S
3
Y
N
D
I
S

J
E
O
T
O
O
O
O
S

7
Z
E
O
T
O
O
O
O
$

c
E
O
T
O
O
O
O
$
S

O
e
E
g
T
O
o
O
o
o
s

au
yn
o4
sq
ns

o
t
o
t
o
o
o
o
$
s

o
0
0
T
o
O
o
o
n
$
s

w
O
o
t
o
o
o
o
s

7
O
0
T
O
O
O
O
$

oo
ot

To
oo

o$
s

Od

wpisoid

ulpy

80

Summary 81
a ee ee ee 0 een ee

RESET: The processor needs to fetch only the op.word, involving only one read bus

cycle. However, the reset pulse is held active for 128 T-states, resulting in T(R/W)

values = 132(1/0).

BNE FA(PC): The processor fetches the op.word, computes the <ea>, and fetches

the new op.word at the branched location, if the branch is taken. This involves two

read bus cycles and address computation, resulting in T(R/W) values = 10(2/0). If

the branch is not taken, the computed <ea> has to be recomputed to the original

value. Thus, only one op.word fetch and two computations are involved, resulting in

T(R/W) values = 8(1/0).

RTS: The processor fetches the op.word, performs two more read operations to ob-

tain the stored PC from the stack, and fetches the new op.word from the new PC

location. This involves four read bus cycles, resulting in T(R/W) values = 16(4/0).

2. Execution time: The delay timing loop between the NOP and the BNE instruction

runs seven times (refer to Example 3.6) until DO is decremented to 0. The loop exists

the eighth time. The computation of the execution time is as follows:

T-states per loop (between NOP and BNE) = 18

T-states per seven loops =7X 18 = 126

T-states for the eighth and the last loop = 32

(BNE has only eight T-states and RTS has

to be included)

Total # T-states in the delay subroutine = 176

At an 8 MHz clock, each T-state = 1/8 MHz = 0.125 microsecond.

Delay routine execution time = # T-states x time/state

= 176 Xx 0.125

= 22 microseconds

The 68008 timing computation is similar, except that the read and write bus cycles

transfer a byte of data instead of a word as in the 68000. This makes the 68008 instruc-

tion fetch and execution times (for word and long-word operands) twice as long as in the

case of the 68000.

3.6 SUMMARY

In this chapter we examined the instruction set of the 68000. It has 56 generic instruc-

tions, some of which have several variations. These instructions follow a consistent

structure. The same mnemonic representing an instruction can be used with appropriate

attributes and extensions to refer to different operand sizes and addressing modes.

82 Chapter3 The 68000 Instruction Set and Programming Considerations

Some of the instructions for the 68000 are of the single-operand type. In such

cases, the specified operand is the destination operand on which the given operation is

performed. Other instructions are of the double-operand type in which the first operand

is the source operand and the second is the destination operand. The final result is put in

the destination.
The 68000 instruction set is subdivided into several groups: data movement, bi-

nary and BCD arithmetic, logical and bit-manipulation, program and system control,

and special category.

Data movement instructions deal with the physical movement of the data oper-

ands. The binary arithmetic instructions deal with the binary arithmetic and data pro-

cessing. The BCD instructions deal with decimal numbers. The binary operations are

faster than the BCD operations. In the multiprecision arithmetic type of operations, the

extend (X) flag bit is used to carry the result from the previous operation to the current

operation.

The logical instructions deal with logical data manipulation and assist data pro-

cessing operations. The bit-manipulation instructions deal with bit-level data manipula-

tions, which are very useful in I/O applications in which a single bit must be tested or

changed.

The program control instructions deal with conditional and unconditional control

of the program flow. These instructions are particularly useful in controlling loops, call-

ing subroutines, branching to specified locations on condition, and branching or jumping

to specified locations unconditionally. For conditional transfers, the instruction checks

the corresponding flag bits and makes the decision for a transfer.

The system control instructions deal with system functions, such as stopping the

processor, resetting the peripherals, and so forth. These instructions are used at the op-

erating system level to control and synchronize system operation. In order to enhance

efficiency of the operating system activity, certain instructions dealing with the status

register and the stack pointers are classified as privileged instructions. These should only

be used in the supervisor mode. To do otherwise results in an error condition causing

the processor to go into the supervisor mode.

Instruction timing is a very important parameter. The read or the write bus cycle

takes four clock cycles (T-states) without any wait states. The op.word fetch is always a

read bus cycle. An instruction may consist of several read and write bus cycles. The

execution time of a program is the compounded execution time of the instructions and
the program loops.

Assembly language programming, which will be covered in the next chapter, is a

better way to develop software than using absolute numbers and hex values.

Neen nnn nner nnnneenen nner nnnnnceee SS

PROBLEMS
SS SSS

Note: All the problems in this section can be reworked using the 68008 processor to compare its
performance with that of the 68000.

Problems 83
a a ae a ies oe

3.1

3.2

3.3

3.4

SiS

3.6

Sed

3.8

ef

3.10

3.11

Which of the following instructions are valid and which are not valid? Give the reason.

(a) MOVEA.L A1,A3

(b) MOVE.W (A1),DO

(c) MOVE.B —(D2),D3

How many words are each of the following instructions? Give the reason.

(a) MOVE.L #$1234098A,D6
(b) EXG A2,D4

(c) SWAP D3

Write mnemonic instructions for the following:

(a) move byte in DO into memory addressed by A2;

(b) move byte in memory addressed by A2 into D3;

(c) move long word in memory addressed by A3 into D3;

(d) move long word in D3 into memory addressed by A2.

Consolidate (a) and (b) of Problem 3.3 into one instruction, if possible. Is this more

efficient? Why or why not?

Consolidate (c) and (d) of Problem 3.3 into one instruction, if possible. Is this more

efficient? Why or why not?

Which of the following forms are allowed and which are not allowed for the ADD and

SUB instructions? Give the reason.

(a) ADDQ.L #$0F,D4

(b) SUBI.L #$0034567C,A7

(c) ADDX.B —(A3),—(Al)

(d) SUB.B OA(PC),D2

How many words are each of the following instructions? Give the reason.

(a) ADDX.L —(A2),—(A3)

(b) ADD.L $123C(A1,D1.W),DO

Using the information from Figure 3.4, classify each of the following addressing modes:

(a) immediate addressing mode;

(b) quick addressing mode;

(c) d(PC,Rn);

(d) An.

Which of the following instructions is likely to generate an error? Why?

(a) SUB.W $1235,D0
(b) MOVE.W #$2400,SR

Indicate the results of the affected registers and memory after each of the following

operations using the initial values of Figure 3.6:

(a) MOVE.L (A1),(A0)+

(b) ADDQ.W #$07,D0

(c) ADD.W —(A1),—(Al)

(d) SUB.W (A1)+,(Al)+

Repeat Problem 3.10 on condition that the instructions are used in sequence.

84 Chapter 3 The 68000 Instruction Set and Programming Considerations

3.12 The following program is run in sequence:

3.13

3.14

3.15

3.16

3.17

3.18

ADDX.W DO,D1

SWAP Di

EXT.L DO

ADDX.L D1,DO

Using the initial values of Figure 3.6, indicate the contents of the affected registers at each

step of the sequence.

What are the contents of the affected registers and memory after each of the following

operations? Use the initial values of Figure 3.6.

(a) CMP.L DO,D1

(b) CMPA.W AO,A1

(c) TST.L —(Al)

In the following program, use the initial values of Figure 3.6:

NEG.W De

MOVEA.W De,Ae

CMPA.W Ac,Al

What are the values of the affected registers, including the status register?

What are the results of the following operations? Use the initial conditions of Figure 3.6.

Show the contents of the affected registers and the memory locations.

(a) MULU D2,D1

(b) MULS D1,D2

(c) DIVU D2,D1

(d) DIVS D1,D2

Write a sequence of instructions to add long words addressed by (A1) and (A2), with the
result in a location addressed by (A3). Use any addressing modes.

Write a sequence of instructions to compute the average of word operands contained in the
DO—DS5 registers. (Hint: you may want to sign extend to long words before the actual
addition!)

In a control system application as shown in the following diagram, 16-bit X and Y words
are entering the 68000-based system. Registers AO and Al point to X and Y words. X is
larger than Y and is a positive number. It is required to compute a control word Z, given
by

Z = 0.25({K — Y]*)
and output to a location addressed by A2. Write the sequence of instructions as a
subroutine.

Inputs) ———— | X The Output
from 68000-based Z to

SENSOLS ee system transducers

Problems 85

3.19 Using the initial values of Figure 3.6, compute the results of the following operations and

indicate the contents of the affected registers:

(a) AND.B D2,D1

(b) AND.L D1,D0

(c) EOR.W #$AA55,D1

(d) NOT.L (Al)

3.20 Repeat Problem 3.19 on condition that the instructions are executed in sequence.

3.21 Compute the results of the following operations using the initial values of Figure 3.6 and

assuming the operations are executed one at a time.

(a) ROL.W D2,D0

(b) ROR.L #$4,D0
(c) ASL.W #$2,D2

(d) LSE.L D2;D1

3.22 Repeat Problem 3.21 on condition that the instructions are executed in sequence.

3.23 Compute the results of the following operations using the initial values of Figure 3.6 and

assuming the operations are executed in sequence:

(a) BCHG.L #$1E,D0

(b) BTST.B #$3,(A1)

(c) BCLR.L D2,D1

(d) BSET.B #$4,—(Al)

3.24 Write a-series of instructions to invert the long-word contents of memory contained

between $0034FE74 and $0034FE7C. (Hint: you may want to use conditional branches.)

3.25 Compute the effective address in each of the branch operations listed below. The PC value

at the branch instruction is $00001040. In each case, specify the condition to be satisfied

for the branch to occur.

(a) $00001040 BEQ $4A(PC)

(b) $00001040 BNE $FA(PC)

(c) $00001040° BLE $FFOO(PC)

(d) $00001040 BGT $08(PC)

3.26 Write a program to clear the memory words between the locations $00002000 and

$00002080.

3.27 There are 128 word X and Y binary strings in memory. AO and AI point to the end of the

strings (the least significant words in each case), as shown:

X word Y word

Word 127 Word 127

(AO) — Word 0 (Al) — Word 0

Write a subroutine to add these strings and store the result in memory addressed by A2.

3.28 Repeat Problem 3.27, performing subtraction instead of addition.

3.29 Repeat Problem 3.27 with BCD data.

3.30 Repeat Problem 3.28 with BCD data.

86 Chapter 3 The 68000 Instruction Set and Programming Considerations
ag ee

3.31 Show the T(R/W) values for each of the instructions in the following software subroutine:

PC Instruction

$00002000 CLR bee DE

Oe CLR.L (Al)

04 ADD.L DO,(Al)

Ob ADDQ.L #$02,D0

08 CMPI.L #$00000400,D0

OE BNE $F4(PC)
10 NOP
42 RTS

3.32 Analyze the software of Problem 3.31. What is being accomplished? How many times is

the loop executed before the return instruction?

Indicate the contents of DO and memory addressed by Al when the program returns

to the calling program.

3.33 The 68000 processor operates on an 8-MHz clock. Compute the time of execution of the

software in Problem 3.31.

3.34 The 68000 processor operates on an 8-MHz clock. Write a subroutine that will provide a

0.1-second delay time.

ENDNOTES

1. Triebel, W., and Singh, A. 16-Bit Microprocessors: Architecture, Software and Interfacing

Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1985.

2. Motorola, Inc. M68000 16/32-Bit Microprocessor Programmer's Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

3. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

4. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,
1987.

5. Triebel, W., and Singh, A. /6-Bit Microprocessors: Architecture, Software and Interfacing

Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1985.

6. Tocci, R., and Laskowski, L. Microprocessors and Microcomputers. Englewood Cliffs, NJ:

Prentice-Hall, 1979.

7. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

8. Motorola, Inc. MC68000, MC68008, MC68010/12 Data Books. Phoenix, AZ: Motorola

Technical Operations, 1983.

9. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

10. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

11. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,
1987.

_ CHAPTER

4

68000 Software Considerations and

Assembly Programming Applications

Objectives

In this chapter we will study:

Assembly-level programming techniques for the 68000

Concepts of software design and implementation

Practical program development and applications

Concepts of macros and programs with macros

Special instruction groups and applications

88 Chapter 4 68000 Software Considerations and Assembly Programming Applications

4.0 INTRODUCTION

The required software for the 68000 microprocessor can be easily developed using as-

semblers and cross assemblers. Assembly language programs use the instruction mne-

monics of the processor. Assemblers and cross assemblers are software utilities that

convert assembly language programs into the appropriate form of machine code, con-

sisting of binary 1s and Os. Programs written in assembly language are usually more

efficient with respect to code content and execution time than programs written in such

higher level languages as BASIC, FORTRAN, PASCAL, and C; however, the higher

level languages do provide programming ease. Industrial and I/O application programs

are often written in assembly language. Assembly language programming requires a

complete understanding of processor architecture, addressing modes, and the instruction

set.!
Software usually refers to programming techniques that take into consideration

system hardware resources and optimization of code content and execution time. Pro-

gramming refers to code development to accomplish a given task. The terms software

and programming are used interchangeably in most industrial circles; however, for pur-

poses of this text, we will maintain the distinction between these terms.

Study of assembly language techniques and software considerations will provide

the knowledge and background necessary to develop assembly language programs and

software on 68000-based systems.

Most of the programs in this chapter are suitable for any 68000-based hardware;
thus, our discussions are independent of specific hardware.

4.1 ASSEMBLY LANGUAGE SOFTWARE
AND PROGRAMMING TECHNIQUES

It is impractical and tedious to use actual addresses and instruction codes in developing

assembly programs. Symbols and labels can be used in place of the actual addresses if
assembler utilities are available.”

Assembler, Cross Assembler, Linker, and Loader Utilities

Figure 4.1 illustrates a software system configuration using a host computer, an emula-
tor, and a 68000-based target system. The software development is done on the host
system and the code is downloaded to the target system for the actual operation.

In Figure 4.2 the various steps involved in the software development process are
indicated. The assembly-level program is developed with the help of an editor or word-
processor utility, and is known as the source program. The source program file usu-
ally has an extension (.src); for example, TEST.SRC is the source file in Figure 4.2.
After correcting any typing errors, the source program is run through the assembler or
the cross-assembler utility.

Assembly Language Software and Programming Techniques 89

FIGURE 4.1 Typical system
configuration for software Host system

development.

oe aatie
68000 target

Motorola Dev system

system, VAX,

Macintosh,

IBM PC, or others

with assembler Emulator or other
or cross interface (such
assembler as RS 232)

Assemblers and Cross Assemblers These are the software utilities that convert a
program in assembly language into the corresponding machine code. The machine-code

program is also known as the object code. The corresponding file is TEST.OBJ. If the

host computer has the same processor as the target system, the assembler utility is used.

On the other hand, if the computer has a processor different from that of the target sys-

tem, the cross-assembler utility is used. The assembler and the cross-assembler utilities

are similar to each other in function. They also generate a list file (TEST.LST) contain-

FIGURE 4.2 Typical software Process Typical file name

development process.

Source program
development with TEST.SRC

editor

Assembler or

cross assembler

Machine code TEST.OBJ
generation ;

List file TEST.LST
generation E

TEST.ABS

Formatted absolute file
for downloading into

target system

Loader

90 Chapter 4 68000 Software Considerations and Assembly Programming Applications

ing the machine code, the instruction mnemonics, symbols, labels, and the translated

addresses and numbers. This file is very useful in debugging the programs.*

Linkers and Loaders The linker utility provides absolute addresses for the machine-

code programs in the real operating memory environment of the target system. It also

links several machine-code programs, if necessary, and provides an absolute file

(TEST.ABS).
The loader utility provides the required format for the absolute file to be down-

loaded into the target system. For the 68000 family of processors, this is usually the

Motorola-S format. Another common format is the INTEL-Hex format.

Writing Assembly Programs and Software Development

Most currently available assembler and cross-assembler utilities are of the two-pass

type. In the first pass, symbols and labels in the assembly source program are converted

into the corresponding numbers and displacement values. In the second pass, these num-

bers or values are substituted for the existing symbols and labels, and the machine-code

file is generated. Present-day assembler and cross-assembler utilities are able to identify

syntax, instruction, and operand errors at the time of assembly and display them. These

errors then can be corrected and the assembly process repeated.

In developing the source program, assembler directives can be used. These direc-

tives are a set of commands associated with the assemblers and cross assemblers. We

will introduce those directives typical of most assemblers or cross assemblers. For infor-

mation on additional directives, appropriate manuals may be consulted.*

Figure 4.3 illustrates the assembly source program (TEST.SRC). In Figure 4.4 the

assembled program listing (TEST.LST) is presented. In the discussion numbers in

square brackets [] refer to the bracketed numbers in the figures, which correspond to

important assembler directives or events.

[1] Comment directive: Usually a delimiter such as a semicolon (;) is used as an as-

sembler comment directive to introduce the comments. The comments are provided to

explain the program flow. The assembler will not generate any machine code for a com-

ment, but will include the comment statements in the list file.

example: ;test.src &\&\8? (at line 1)

The preceding comment statement is listed in the assembled program listing, but it

is not assembled to machine code.

[2] LLEN and OPT directives: These are the line length and the option directives,

which specify the printer line length and any specific options. In our example, the line
length is set at 108 columns. Option A generates an absolute file after the linker opera-
tion.

[3] ORG directive: This is the origin directive. It specifies the starting address of the
assembled program.

Assembly Language Software and Programming Techniques

;this is a source program to show
;the format of a typical assembly
; language program.

Zcese.Sre B\b\d7

;declaration of length, option
sand origin

LLEN 108 ; [2]
OPT A
ORG $1000 ;[3]

;declaration of symbols and values

VALUE1L EQU $0006 ; [4]
VALUEe EQU $0001
PORT EQU $A000
;move valuel into DO and jump to
;delay subroutine
START MOVE.W #VALUE1,DO (5)

BSR DELAY ; [6]
;output message to port until $
“Character sandaback, to .stabe

MOVEA.L #MSGE,AQ0
DSPLY MOVE.B (AOQ)+,D1

CMPI.B #'$!',D1
BEQ START
MOVE.B Din, PORE
JMP DSPLY

;delay subroutine. Loops until DO
;is decremented to 0.
DELAY NOP

SUBQ.W #VALUEC,DO
BNE DELAY
REL

;message to be output

MSGE DC 'ABCDE --$! [7]

DBUF DS 126 [8]

END

FIGURE 4.3 Assembly language source program (TEST.SRC) for 68000-based

systems.

example: ORG $1000 (at line 6)

The first instruction of the assembled program will start at PC location $1000, as

can be seen from the assembled listing.

[4] EQU directive and symbols: This is the equate directive. It provides constant or

computed values to the symbols.

example: VALUE1 EQU $0004 (at line 8)

91

;this is a source program to show
;the format of a typical assembly
; language program.

,

LINE ADDR

WeEeESt «SEC “A\GNGiT.
;declaration of length, option
;and origin

LLEN 104
OPT A
ORG $1000

;declaration of symbols and values
VALUE1 EQU $0004
VALUEC EQU $0001
PORT EQU $A000

;move valuel into DO and jump to
;delay subroutine

0008 START MOVE.W #VALUE1,DO
4E?L BSR DELAY

;Output: message to port until §$
;character and back to start

MOVEA.L #MSGE,AO
00001008 MOVE.B (AQ)+,D1
00001010 0024 CNPT BR 7S" Da
00001014 BEQ START
OoOoo1OLL oo00 MOVE.B D1,PORT
0000101C 1005 JMP DSPLY

;delay subroutine. Loops until DO
;is decremented to QO.

oo000006
oo0000001
ooo0A000

6) Bs Al ou Ds bo ns

00001000
00001004

00001004 oo00

00001020
000010c2
00001024
000010c6

NOP
SUBQ.W #VALUEC,DO
BNE DELAY
RTS

;message to be output

MSGE °° DC 00001026
o00010eC
00001030
0000103e DBUF DS 124
0000113e END

4544
ceDeD

"ABCDE -—-$!

ASSEMBLER ERRORS =

SYMBOL TABLE

0000103e
000010c6
00001000

DELAY
NARG
VALUE1L

000010c0
oogo0000
ooo00006

DSPLY
PORT
VALUE2

00001005
ooooa000
ooo000g01

FIGURE 4.4 Assembled program listing (TEST.LST) corresponding to the source
program in Figure 4.3.

92

Assembly Language Software and Programming Techniques 93
ee ee ere nee ee he a ee

VALUE] is a symbol for which the numerical value is $0008. The assembler re-

places the symbol VALUE1 with $0008 in the assembly process by means of the

EQU directive. The other symbols are VALUE2 and PORT, the numerical values
of which are $0001 and $A000, respectively.

[5] Label: This is a symbolic representation of the address of a program statement.

Other program statements can refer to this label as the source program is being written.

The assembler configures the appropriate numerical value for the label.

example: START MOVE.W #VALUE1,D0 (at line 13)

START is a label, referring to the program location of $00001000, as shown in the

assembled listing.

Assembly listing (Figure 4.4): The actual program starts at line 13 and reads:

13 00001000 303c 0006 START MOVE.W #VALUE1,D0

The interpretation of the preceding line is as follows:

13 => Line number generated by the assembler for listing

convenience.

00001000 => Hex address of the first instruction, according to the

earlier ORG statement.

303C 0008 => Op.code (303C) and the operand (0008) for the

MOVE.W #VALUEI,DO instruction. The assem-

bler has substituted 0008 for the symbol VALUE1.

[6] Branch operations: In branch operations, the assembler configures the required dis-

placement to branch to the location specified by the label.

example: BSR DELAY (at line 14)

The op.code is 611A for the preceding instruction, which contains the displacement

(1A) to branch to the location $00001020. This location corresponds to the label

DELAY.

[7] DC directive: This is the define constant directive. It is used to define the byte

(DC.B), the word (DC.W), the long-word (DC.L), or the ASCII character constants.

The ASCII characters are enclosed in single quotation marks (*’).

example: MSGE DC 'ABCDE -—-$'! (at line 31)

Sequential locations starting at $00001028 are filled with the ASCII values: $41 for

A, $42 for B, and so on. MSGE is a label corresponding to the address $00001028.

94 Chapter 4 68000 Software Considerations and Assembly Programming Applications

[8] DS directive: This is the define storage directive. It is used to define storage

space in memory. It can be specified as bytes (DS.B or DB), words (DS.W or DS),

or long words (DS.L).

example: DBUF DS 124 (at line 32)

Storage space of 128 words (256 bytes) is defined as DBUF, starting at location

$00001032.

[9] END directive: This directive signifies the end of the assembly process. Statements

beyond the END directive are not recognized by the assembler.

Other Delimiters and Directives To distinguish among operand types, certain de-
limiters are used. These delimiters depend on the assembler or the cross assembler.

Some of the standard ones are as follows:

$ => hex data or operand

=> immediate data or operand

; => comment beginning

Symbol Table Assemblers and cross assemblers also generate a symbol table as

shown below the program listing in Figure 4.4. It provides a quick reference for the

symbols and labels used in the program.

The following example problem provides a review of the assembly process of

68000 programs.

Example 4.1 Assembler usage for the 68000.
Refer to the source, assembled, and listed programs of Figures 4.3 and 4.4.

1. Are the statements

PORT DSPLY

symbols or labels? Why? What are their hex values?

2. Where does the program branch after executing the instruction

BEQ START (at line 20)

What is the offset value calculated by the assembler? How is the effective address
value computed?

3. What are the contents of the AO register after executing the instruction

MOVEA.L #MSGE,AO (at line 17)

What are the details of the op.code and the operands?

Assembly Language Software and Programming Techniques 95

Solution

1. Symbols and labels: PORT is a symbol, since it is declared by the EQU directive. It

has a hex value $A000.
DSPLY is a label, since it is introduced in the program to identify the corre-

sponding program location. It has a hex value of OOOO1O0E.

PORT = $A000

DSPLY = $0000100E

2. BEQ START: If the branch condition is satisfied, the program branches to location

$00001000, which corresponds to the label START. The offset or the displacement

calculated by the assembler is EA, which is a part of the op.code 67EA.

Offset = $EA

Effective address calculation:

PC value after reading the op.code => $0000101 6
+

Sign-extended displacement EA => $FFFFFFEA

(in twos-complement form)
Effective address for branch => $00001000

(corresponding to label START)

3. Contents of AO after the MOVEA.L #MSGE,AO instruction: MSGE is a label

and #MSGE corresponds to the address location $00001028. As such, AO is loaded

with the value $00001028.

AO = $00001028

Op.code and operand details: Line 17 shows

00001008 eO?7c 0000 1026 MOVEA.L #MSGE,AQO

where

00001008 => Program location of the instruction

207C => Op.code of the instruction

0000 1028 => Operand value moved into AO

ee ae ee ee ee

Since the preceding example was used primarily to review the assembly process,

we did not focus on analyzing the program. This analysis would prove useful to the

reader to enhance understanding of software development.

96 Chapter 4 68000 Software Considerations and Assembly Programming Applications

Programming and Software Engineering Considerations

From a programmer’s point of view, the program in Figure 4.4 is a 33-line program,

including comments and declarations. Programmers may not be concerned about mem-

ory appropriations and code content. On the other hand, software engineers would make

sure that appropriate memory was allocated for the buffer. For example, they would ex-

amine lines 32 and 33 of the listed program to ensure that the 128 words of memory

space was allocated. This may be done in the following way:

Ending address of the DBUF (line 33) => $00001132

Beginning address of the DBUF (at line 32) => $00001032

Size of the buffer in bytes => $00000100

$0100 bytes = 256 bytes = 128 words

which is the requested memory space for the buffer.

Similarly, software engineers also would be concerned about whether the entire

program was on the even boundaries and whether the entire code content was correct.

Although there are some traditional distinctions between programmers and software en-

gineers, these distinctions are rapidly vanishing as technologies continue to advance.

4.2 DATA MOVEMENT, DATA-COMPARISON
SOFTWARE, AND APPLICATIONS

The majority of operations in any computer system deal with data movement between

two or more locations. For example, in a file-management system, data from one sec-

tion of memory may be moved into another section. Data rearrangement involves exten-

sive data-comparison procedures, which we will now examine.

Block Transfer Applications and Software Considerations

The basis for any data movement operation is the block transfer. It usually involves

two pointers: the first refers to the starting address of the source block and the second to

the starting address of the destination block. In addition, there is a loop counter, which

keeps track of the number of data elements being transferred.

Figure 4.5 shows a typical block movement sequence written as a subroutine. DO

is chosen as the loop counter and is initialized to $100 at line 10. Al is the source

pointer and A2 is the destination pointer. They are initialized to $00004000 and

$00006000 at lines 11 and 12. The program loop between lines 16 and 18 transfers suc-

cessive long words from the source block to destination block, until DO is decremented

to zero. In this case, the number of long words transferred are $100 or 256. At the end

of the successful block transfer, the software returns to the calling program by means of

the RTS instruction at line 19.

Data Movement, Data-Comparison Software, and Applications

LINE ADDR

;block data move &4/&/8&?

OPT A
ORG $1000

sinitialize Al, Ae with source
;and destination addresses and
;D0 with number of words to be
; transferred

00001000 303c 0100 INIT MOVE.W #$0100,D0
00001004 eerc ooo0 4000 MOVEA.L #$00004000,A1
OOOOLO0A 2e4rc Oooo 6000 MOVEA.L #$00006000,Ace

;move data from (Al) to (Ac)
s;until DO is decremented to 0

00001010 24D9 LOOP MOVE.L (A1)+,(Ac)+
0000101e 5340 SUBQ.W #$01,D0
00001014 G&FA BNE LOOP
00001016 4E?s RTS

;returns to the calling program.
00001016 END

ASSEMBLER ERRORS =

SYMBOL TABLE

INIT O0001000 LOOP 00001010 NARG oo0go0000

FIGURE 4.5 Typical 68000-based block movement sequence.

In the example problem that follows, we will consider software and timing in the

block movement sequence.

Example 4.2 Block movement sequence.
Consider the sequence of Figure 4.5.

1. Specify the final values of the Al, A2, and D0 registers after the loop has been com-

pleted and the RTS instruction is being executed.

2. The system operates on an 8-MHz clock. Compute the loop execution time T(loop)

to transfer $100 long words.

3. Modify any of the required instructions to transfer $0400 long words. What is the

new execution time of the loop?

98 Chapter 4 68000 Software Considerations and Assembly Programming Applications

Solution

1. Final values: The data movement loop between lines 16 and 18 is run $100 times

(until DO is decremented to $0000). Each time the loop is executed, Al and A2 are

postincremented by four (because of the long-word data transfers). At the end of the

loop, Al and A2 are incremented by $0400 from their initial values.

The final values are

DO = $00000000

Al = $00004400

A2 = $00006400

2. Loop execution time: Using the T(R/W) values (refer to Chapter 3) for lines 16

through 18, we obtain

Line Addr T(R/W)

1B LOOP MOVE.L (A1L)+,(Ae)+ C0(3/c)

1? SUBQ.W #$01,D0 4(1/0)

16 BNE LOOP 10(c2/0)

(branch)

The total number of T-states is 34, as indicated. This loop is run 256 ($100) times.

The clock period at an 8-MHz clock is 0.125 microsecond. Thus, the total loop ex-
ecution time is as follows:

T(loop) = 34 x 256 Xx 0.125 = 1088 microseconds

3. Modified software: The loop counter DO needs to be changed to $0400 to transfer

$0400 or 1024 long words. Therefore, we modify the instruction at line 10 to

MOVE.W #$0400,D0

to accomplish the task.

Four times as many long words are transferred; hence, the loop time increases
proportionately:

T(loop) = 4 x 1088 = 4352 microseconds

By appropriately initializing the pointer and the counter registers, it is possible to
move any amount of data. However, care should be taken not to address unavailable
memory locations or odd memory locations for word and long-word transfers.

Data Movement, Data-Comparison Software, and Applications

Data-Sequencing Applications and Software Considerations

In industrial and commercial applications, it is often required to arrange data either in

ascending or descending order. This is accomplished by comparing the data elements

and appropriately positioning them. The 68000 predecrement and postincrement ad-

dressing modes are particularly useful in such applications. Figure 4.6 illustrates data-

sequencing software as a subroutine. We will now analyze and interpret the results.

LINE ADDR

1 ;SEQ.SRC 9/24/86

C ;
S| ;sequences string of words
4 ;such that largest word is
5 ;in the lowest location.
6 TA and Ade pormtsto.tre
? ;beginning and end of the
fa} Se eng
o OPT A

10 ORG $1000
11 ;save original value of AO in Ae

12 00001000 24464 MOVEA.L AQ,Ac
13 ;compare successive words. If the
14 ;second word is larger, branch to
15 ;EXCHG routine to swap them
16 00001002 eO4aA BGAGN MOVEA.L Ac,AO
1? 00001004 B144 NXTPR CMPM.W (AQ)+,(AQ)+
14 00001006 &20C BHE ss EXCHG
19 00001008 91FC OOOO OOOe SUBA.L #$0c,AQ
20 OO00O100EF B3ICc4é CMPA.L AQ,Al
21 00001010 &6Fe BNE.S NXTPR
e2 O000101¢e 4EPS RTS
es ;exchange the two words by swapping

24 00001014 eoeo EXCHG MOVE.L -(AQ),DO
25 00001016 4440 SWAP.W DO
26 00001014 2o0éo MOVE.L DO,(AQ)

2? O000101A FOE BRA.S BGAGN

24 O000101C END

ASSEMBLER ERRORS = Oo

SYMBOL TABLE

BGAGN O0001002 EXCHG 0O0001014 NARG ooooo000

NXTPR 00001004

FIGURE 4.6 Data-sequencing and sorting software for a typical 68000-based system.

(Courtesy of Motorola, Inc.)

AO contains the starting address of the string where the highest valued data ele-

ment should be put. The next highest memory locations contain the sequentially de-

creasing values of the string. Al contains the ending address of the string. At line 12,

the original value of the AO register is stored in A2 for later reference. At line 16, the

100 Chapter 4 68000 Software Considerations and Assembly Programming Applications

stored value of AO is restored. At line 17, two successive words of the string are com-

pared to each other. At line 18, the subroutine branches to the EXCHG routine if the

second word is larger than the first. If the words are in proper order, the program pro-

ceeds.

At line 19, AO is decremented by two. This adjusts AO for comparison of the next

two sequential locations. At line 20, AO is compared with Al to check whether it is the

end of the string. If it is not the end of the string, the program branches back to line 17

(label NXTPR) to start the next comparison. If it is the end of the string, the program

returns to the calling program by means of the RTS instruction at line 22.

The EXCHG software module is contained between lines 24 and 27. It obtains

two sequential words as a long word into DO, swaps them, and puts them back in mem-

ory. This has the effect of exchanging the words. When this happens, the program

branches back to the very beginning (line 16, labeled BGAGN). This will restart the

data comparison process. When the routine returns to the calling program, the data

string is completely adjusted so that the highest valued element is in the lowest memory

location.

The following example problem considers software and timing in the data-

sequencing subroutine.

Example 4.3 Data-sequencing software.

For the software of Figure 4.6, the initial values of the AO and Al registers and the

memory contents are as indicated in Figure 4.7.

FIGURE 4.7 Initial conditions
(for Example 4.3). (Beginning of the string) AO = $00004000

(End of the string) Al = $00004006

Memory contents at $00004000=> 1234

4002 5678

4004 ABCD

4006 OE71

4008 4321

1. Following the software of Figure 4.6, specify the data comparisons and rearrange-

ment of data.

2. What are the final values of the AO and Al registers?

3. How many data comparisons must be made to obtain the final string? Is this number
data dependent?

Solution

1. Data comparisons and memory contents: Figure 4.8 shows how the data compar-
isons are made and the final arrangement of the data string in memory. During the
[1]st comparison, data elements 1234 and 5678 are compared and swapped. During

Data Processing Applications and Software Considerations 101

Memory Memory Memory Memory
Address Contents Contents Contents

1234~ —5678 4y—> 678 —ABCD
[1] [2] [[5]

SONS — a ya 13) “ABCD —~5678—F6]

ABCD ABCD— 1234 (7] 12347

OA OB 1 ile al 0) ea

4321 4321 4321 4321

(a) Initial (b) First (c) Second (d) Final

contents rearrangement rearrangement rearrangement

FIGURE 4.8 Data comparisons and rearrangement of the data string (for Example 4.3).

the [2]nd comparison, the rearranged data elements (5678 and 1234) check in proper

sequence and the program proceeds to the [3]rd comparison. During the [3]rd com-

parison, data elements 1234 and ABCD are compared and swapped. The program

then restarts from the beginning. During the [4]th comparison, data elements 5678

and ABCD are compared and swapped. The program then restarts from the begin-

ning. During the [5]th comparison, the rearranged data elements (ABCD and 5678)

check in proper sequence and the program proceeds to the [6]th comparison. The

final rearranged string results after the [7]th comparison, as shown in Figure 4.8(d).

2. Final values of AO and Al: The process terminates when the contents of AO are

compared and found to be equal to those of Al (= $00004006).

AO = $00004006

Al = $00004006

3. Number of data comparisons: As shown in Figure 4.8, seven data comparisons are

made. These comparisons are data dependent.

#data comparisons = 7

There are some important software considerations in the preceding example. The

number of comparisons, the number of times the loop gets executed, and the loop exe-

cution times are totally data dependent and do not have fixed values. When a fixed time

of execution is required, this type of software should be avoided.

4.3 DATA PROCESSING APPLICATIONS

AND SOFTWARE CONSIDERATIONS

Data processing involves extensive arithmetic operations on the data elements. The

68000 microprocessor has very powerful instructions to handle binary and BCD types of

data.°

102 Chapter 4 68000 Software Considerations and Assembly Programming Applications

Multiprecision Addition and Subtraction Operations

Instructions employing the extended carry X (such as ADDX, SUBX) can be used to

conduct multiprecision operations on binary data strings. For BCD operations, the X

carry bit is always involved. In multiprecision operations, the least significant data ele-

ments are operated upon first (generating X carry). The next higher data elements are

then operated upon, taking into consideration the previously generated X carry bit. The

process continues until all data elements in the data string are operated upon.

Figure 4.9 illustrates a multiprecision binary addition program used in a data pro-

cessing application. The source and the destination data strings are addressed by the Al

and A2 registers, respectively. The D1 and D2 registers are used as working registers.

From line 12 to line 14, the X carry bit and the D1 and D2 registers are cleared

and initialized to zero. From line 17 to line 19, the two data strings addressed by Al and

A2 are sequentially added, along with the X bit, using the predecrement addressing

mode. A3 contains the ending address of the destination string.

LINE ADDR

OonrnnwWwve

sadd..sre, 9/25/66

;performs multiprecision addition
;on two binary strings in memory.
;Al—-e refers to the LSD. of stringh.

7Ac-e Tebers “to the -LSsD”ofr stringe.
;Ad refersrto) theyend/ofiustrainge:

;D1 and De are the working registers.
OPT A
ORG $1400

;Clear X bit, D1 and De registers
00001400 Oe3c OOEF ANDI.B #S$EF,CCR
00001404 4261 CLR.L Di
00001406 42642 GLROL De

;start multiprecision addition
FOL StEingi andes tringe

00001408 Ds4q AGAIN ADDX.W —(Al),-(A2)
0000140A BSCB CMPA.L A3,A2
o000140C b2FA BHI.S AGAIN

;Jet" Xebait an tor Dewand
Pie ate along and thi String ia.
;and return to the calling program.

00001405
00001410
00001412
00001414
00001416

DS41
3502
4EPh
4E?S

ASSEMBLER ERRORS =

AGAIN OOO01 408 NARG

ADDX.W D1,D2
MOVE.W D2,-(A2)
NOP
RTS
END

SYMBOL TABLE

oo000000

FIGURE 4.9 Multiprecision binary addition program for a 68000-based system.

Data Processing Applications and Software Considerations 103

When A2 is decremented below A3, the loop is terminated. At lines 23 and 24,

the X bit is effectively moved into D2 and is put with the destination string. At line 26,

the routine returns to the calling program. It should be observed that addition proceeds

from a high memory address (where the least significant data elements are present) to-

ward a low memory address (where the most significant data elements are present).

The following example problem addresses software concerns in multiprecision ad-
dition.

Example 4.4 Multiprecision addition.
The initial values of registers Al, A2, and A3 and the memory contents are indicated in

Figure 4.10. Using the multiprecision addition software of Figure 4.9,

Al = $00004006 A2 = $00005006 A3 = $00005000

Source Memory Destination Memory

Address Contents(hex) Address Contents(hex)

$00004000 1234 $00005000 F878

4002 5678 5002 C800

4004 ABCD<=LSW 5004 A101 <=LSW

(source) (destination)

4006 OE71 5006 0200

FIGURE 4.10 Initial conditions for the program in Figure 4.9.

1. compute the result of the addition and indicate the contents of the destination string;

2. state the final values of the Al and A2 registers when RTS is being executed;

3. state what would happen if the ADDX.W —(A1),—(A2) at line 17 was nePlaees by

ADDX.L —(A1),—(A2).

Solution

1. Results of the addition: Al and A2 are decremented by two to $00004004 and

$00005004. They refer to the least significant words (LSWs) of the two strings. The

addition proceeds from the LSWs toward the most significant words (MSWs), as fol-

lows:

MSW Next LSW

LSW

Contents of —(A1) 1234 5678 = ABCD added to
Contents of —(A2) F878. C800 A101 added to
X carry bit J I ws Whiiig ob onl,

OAAD 1579 4CCE

104 Chapter 4 68000 Software Considerations and Assembly Programming Applications

The final addition result is 0001 OAAD 1E79 4CCE, which is put into memory

sequentially as shown. The final X bit is put at memory location $00004FFE.

The final contents are

Location Contents

$00004F FE 0001

$00005000 0OAAD

$00005002 1E79

$00005004 4CCE

2. Final values of Al and A2: Al and A2 are decremented up to $00004000 and

$00005000 due to the ADDX.W —(A1),—(A2) instruction (line 17). A2 is further

decremented to $00004FFE due to the MOVE.W D2,-—(A2) instruction (line 24).

Thus, the final values are

Al = $00004000

A2 = $00004FFE

3. Replacement by the ADDX.L —(A1),—(A2) instruction: Long-word additions

would be performed. Instead of three word additions, four word additions would be

performed. Al and A2 would be decremented to final values of $00003FFE and

$00004FFC; however, this task might not be intended.

There are some important software considerations in the preceding example. Even

if long-word operations are more efficient than word operations, they cannot be done

correctly if the operation involves an odd number of words. Similarly, if an odd number

of bytes needs to be added, the corresponding instructions should be byte oriented rather

than word or long-word oriented.

If the ADDX.W —(A1),—(A2) instruction at line 17 is replaced by the SUBX.W

—(A1), —(A2) instruction, the same software will perform multiprecision subtraction

operations.

The X bit should always be cleared initially when dealing with operations of the

multiprecision type.

Multiplication and Division Operations

The 68000 microprocessor has signed and unsigned multiply and divide (MULS,

MULU, DIVS, DIVU) instructions. The destination is always a data register Dn. Mul-

tiplication of two 16-bit unsigned operands results in a 32-bit unsigned result in the des-

tination data register. The unsigned operands can be up to 65535 (2'° — 1) and the re-

sult can be up to 4,294,836,225 which is slightly less than 2°7. In signed multiplication,

the multiplier and the multiplicand operands can be positive or negative and can range

between —2'° and +2'° — 1 (or between —32768 and +32767). The largest positive or
negative result can be up to plus or minus 2°°. The negative result is expressed in twos-

complement notation. Since there is no possibility of obtaining any result beyond the

Data Processing Applications and Software Considerations 105

32-bit size, the carry and the overflow flags are always cleared to zero in multiplication

operations. The N and Z flags are affected, based upon the result.

Division of a 32-bit destination operand (dividend) by a 16-bit source operand (di-

visor) results in a 16-bit remainder and a 16-bit quotient. The remainder and quotient

occupy the upper and the lower 16-bit word positions of the 32-bit destination data reg-

ister, respectively. The distinction between signed and unsigned division operations is

similar to the distinction between signed and unsigned multiplication previously dis-

cussed. With division operations, it is possible to generate a quotient larger than the

allowed 16 bits. In this circumstance, the overflow flag V will be set to indicate the

overflow condition. Similarly, if division by 0 is performed, a zero-divide TRAP error

will result.

In Figure 4.11, multiplication and division software is presented as a subroutine in

a digital signal processing application. P, Q, and R are unsigned words contained in

LINE ADDR

;multiply.sre 9/25/68

;P,Q,R unsigned words contained in
;ascending memory addressed by AQ.
;W=P*Q in DO register. Divide W by
sR, if R dssnonzero .value.
-U=WRoin, Di register.
;De-is'a working register:

OPT A
ORG $1400

;clear data registers

00001400 CLR.L DO
0000140e CRE D1
00001404 CLR.L De

;move P into DO and multiply by Q
7cOmoe te We Pt Omnis Dlieme gis tei

00001406 START MOVE.W (AQ)+,D0

00001404 MULU (AQ)+,D0

0000140A MOVE.L DO,D1i
scheck for nonzero value of R and
;perform division to get U=W/R in D1

o0000140C MOVE.W (AQ),De

00001405 CMPI.W #$00,De

o0000141¢e BEQ.S FINISH

00001414 DIVU De,D1

00001416 FINISH RTS

00001414 END

2D 2 AIO Un SS We

ASSEMBLER ERRORS =

SYMBOL TABLE

FINISH 00001416 NARG oooogggg0g START 00001406

FIGURE 4.11 Multiplication and division software for a typical 68000-based system

(Example 4.5).

106 Chapter 4 68000 Software Considerations and Assembly Programming Applications

memory in an ascending order, as specified by the AO register. The product W = P x Q

and the division result U = W/R are to be generated. These results are to be put in the

DO and D1 registers.

In order to accomplish the intended task, all the working data registers are cleared

to an all-zero condition from line 12 to line 14. At lines 17 and 18, the P and Q words

are sequentially read from the memory using the postincrement mode and are multiplied

together to generate a 32-bit result in the DO register. At line 19, the result is also

moved into the D1 register.

From line 22 to line 25, word R is moved from memory into the D2 register and is

checked for a nonzero value. In the case of a zero value, the division operation is

skipped; otherwise, it is performed, with the division result in the D1 register. In any

event, the software returns to the calling program by means of the RTS instruction at

line 26.

The following example problem addresses software concerns in multiplication and

division operations.

Example 4.5 Multiplication and division.
Given P = $FFFF, Q = $0002, and R = $0004 in sequential memory locations, using

the software of Figure 4.11,

1. compute the values of W and U and indicate the contents of the DO, DI, and D2

registers and the state of the XNZVC flags when RTS is being executed;

2. repeat (1) if the MULU and DIVU unsigned instructions are replaced by the MULS

and DIVS signed instructions; —

3. explain how the calling program obtains the results.

Solution

1. Values of W, U, DO, and D1: Unsigned multiplication is performed as follows:

P value from memory into DO register $FFFF
Q value from memory $0002
Multiplication W = P xX Q $0001FFFE => into DO
Unsigned division is performed as follows:

W value from DO into the D1 register $0001 FFFE

R value from memory into the D2 register $0004

Division U = W/R: quotient $7FFF => D1 low word

remainder $0010 => D1 high word
Result of unsigned multiplication:

W in DO = $0001FFFE

Result of unsigned division:

U in D1 = $00107FFF

Data Processing Applications and Software Considerations

Nonzero positive quotient result in DO with no overflow. As such,

XNZVC = — 0000

2. Signed multiplication and division results: Signed multiplication and division are
performed as follows:

Multiplication

P value from memory into the DO register $FFFF (equal to —1)
Q value from memory $0002 (equal to +2)
Signed multiplication W = P x Q $FFFFFFFE (equal to —2)
(sign extended to 32 bits and into DO
in twos-complement form)

Division

W value from the DO register into D1 $FFFFFFFE (equal to —2)
R value from memory into the D2 register $0004 (equal to +4)
Division U = W/R: quotient $0000 (equal to 0)

D1 low word

remainder $FFFE (equal to —2)
D1 high word

Result of signed multiplication:

Result of signed division:

W in DO = $FFFFFFFE

U in D1 = $FFFE0000

Zero quotient result with no overflow. As such,

XNZVC = — 0100

. Results to the calling program: The multiplication and division results are

communicated to the calling program through the contents of the DO, D1, and D2

registers. A zero value in the D2 register implies that the division has not been
performed.

One of the operands (P in our case) is moved into the data register DO. This is

necessary since multiplication and division instructions require that the destination oper-
and be a data register. Also, the value of the R variable is checked before performing

the division to avoid a division-by-zero error.

107

108 Chapter 4 68000 Software Considerations and Assembly Programming Applications

4.4 SPECIAL INSTRUCTION GROUPS AND APPLICATIONS

The instruction set of the 68000 family of processors also includes multiple-decision in-

structions (DBcc). There are several instructions related to stack and address operands,

such as LINK, UNLK, PEA, and LEA. There are also instructions to move multiple

registers (MOVEM) and move peripheral data (MOVEP). In all of these cases, a single

instruction performs multiple operations. This provides programming convenience and

improves memory utilization.°’

Multiple-Decision Instructions

Figure 4.12 illustrates the sequence of multiple-decision instructions (DBcc). These in-

structions are used to control loops. Upon entering the DBcc instruction loop, the spec-

ified condition is checked. If the condition is true, the program exits the loop and pro-

ceeds to the next instruction in the sequence. If the condition is false, then the specified

data register is decremented and is checked to see whether it is less than zero (= —1). If

it is less than zero, the program exits the loop and proceeds to the next instruction in the

sequence. Otherwise, the program branches to the specified location. Operands decre-

mented in Dn are of word size.

PC POINTS

ENTER DBcc TO NEXT EXIT DBcc
INSTRUCTION

WHILE COUNT 2 0 AND TEST # 0DO
{TEST}

COUNT: = COUNT -1
END OF WHILE LOOP

FIGURE 4.12 DBcc instruction sequence. (Courtesy of Motorola, Inc.)

Figure 4.13 consists of a ‘string-compare program using the DBcc instruction
scheme. At line 13, the Z flag is set to a 1 condition. This corresponds to a false
condition for the DBNE instruction (decrement and branch if not equal to zero). At
line 14, two string operands addressed by (AO)+ and (Al)+ are compared. At line 15,
the DBNE instruction checks whether or not the BNE condition is true (BNE true
leaves Z flag = 0). BNE true implies that the two operands are different. If BNE is
true, the program exits the DBNE loop and proceeds to the next instruction (NOP at
line 16). |

Special Instruction Groups and Applications 109 —___Biening A onimimntion vidmassA bne Tose BIbANUG Uluce "Ear = UI

LINE ADDR

;string.sre 10/21/64

;two strings addressed
;by AO and Al are compared
;for sameness, using DBcc.
;D1 contains number of long
;words to be compared.

OovnrunnwWvue OPT A
ORG $1000

, LetiahvEltagi tomisand
;start comparing strings

00001000 o003c 0004 SH CONSE #$04,CCR
00001004 B3&4 AGAIN CMPM.L (AQ)+,(A1)+
00001006 S&C FFFC DBNE D1, AGAIN
OO00100A 4E?1 NOP
O000100C 4E?S RTS
00001005 END

ASSEMBLER ERRORS =

SYMBOL TABLE

AGAIN Q0001004 NARG QOO00000G START d0001000

FIGURE 4.13 String-compare software for a 68000-based system using the DBcc

instruction.

If BNE is false (Z = 1), the DBNE instruction decrements data register D1 and

checks whether it has become negative (D1 < 0). If it is negative, the program proceeds

to the next instruction (NOP at line 16). Otherwise, the program branches back to the

‘AGAIN’ loop (line 14).

The following example problem provides a review of the concepts we have just

discussed concerning DBcc usage.

Example 4.6 DBcc usage.
The initial contents of the AO, Al, and D1 registers are as follows:

AO = $00004000 Al = $00005000 D1 = $000000FF

Memory between $4000 and $6000 is loaded with words $AAAA. The program in Fig-

ure 4.13 is run.

1. Specify when the DBNE loop is terminated. What are the contents of the D1, AO,

and Al registers when the loop is terminated?

110 Chapter 4 68000 Software Considerations and Assembly Programming Applications

2. Memory between $4000 and $4FFE is loaded with words $0000; between $5000 and

$6000 it is loaded with words $AAAA. Repeat (1) using the same initial values for

D1, AO, and Al.

Solution

1. DBNE loop termination: Memory between $4000 and $6000 contains word patterns

$AAAA. As such, the comparison of memory addressed by AO and AI renders the

BNE condition false (since the data strings are the same). The program loops be-

tween lines 14 and 15 until the D1 word is decremented below zero (to —1). At that

point the DBNE loop is terminated.
D1 is decremented by $FF + $01 = $100 = 256 times to get to —1. Thus, the

loop is run $100 times. Due to the long-word access and the postincrement address-

ing modes, the AO and A1 registers are incremented by 4 x $100 = $400, to $4400

and $5400, respectively. The final contents of the registers are

D1 = $0000FFFF (in twos-complement form for —1)

AO = $00004400

Al = $00005400

2. DBNE termination with modified pattern: The first comparison itself renders the

BNE condition true (since the compared data patterns are different). The DBNE loop

is terminated at the first comparison. However, the AO and Al registers are postin-

cremented to $4004 and $5004, respectively. The final contents of the registers are

D1 = $000000FF

AO = $00004004

Al = $00005004

Any other data register, or any other branching condition (DBEQ, DBGE, and so

forth) can be used in the DBcc instruction. However, it is important to note that the

appropriate flag bits must always be preconditioned to render the DBcc condition false
at the start of the loop.

Address, Stack, and Multiple-Movement Instructions

The LEA (load effective address) instruction moves a 32-bit address operand into an

address register An. The PEA (push effective address) instruction stacks a specified 32-

bit address operand. Both of these useful instructions do not affect the flags.

The LINK (link) instruction creates a work area on the stack and defines one of

the address registers as a frame pointer (FP). This pointer is used to address the work

area on the stack. The UNLK (unlink) instruction effectively removes the work space

from the stack. The LINK and UNLK instructions are very useful in linking and unlink-

Special Instruction Groups and Applications

ing the stack area in a multitasking environment in which several tasks are run by the
processor, as scheduled by the operating system.

The MOVEM (move multiple registers) instruction moves data between the spec-
ified data (Dn) and address (An) registers and the memory, or vice versa. For register-
to-memory transfers, control-alterable and predecrement addressing modes are allowed.
For memory-to-register transfers, control-alterable and postincrement addressing modes

are allowed. The data transfers take place in the sequence indicated below. For exam-

ple, in the predecrement addressing mode, the first data transfer involves the A7 register

and the last data transfer involves the DO register.

Last First

CEN addressing modes

FS) EN CE mode

The MOVEP instruction moves data between a specified data register and alternate

even or odd bytes of memory, or vice versa. This instruction is very useful when deal-

ing with 8-bit peripherals attached to the 68000 microprocessor. The memory can be

addressed by the ARI with displacement addressing mode in the MOVEP instructions.®

Figure 4.14 illustrates a typical multitasking type of software. At line 6, the actual

address corresponding to TABLE is loaded into the Al register. At line 7, the PC rela-

tive addressing mode is used, and the offset corresponding to TABLE is loaded into the

A2 register. At line 8, the contents of A2 are pushed to the stack.

The MOVEM instruction at line 9 moves the sequential word contents of memory

addressed by A1 into the D1, D2, D3, and D4 data registers. The MOVEM instruction

always follows a scanning order (DO—D7, AO—A7), regardless of the order in which

they are specified. The first register to be moved (in or out) is DO, then D1, and so on

until A7. Thus, the specified registers are first matched with the set sequence, and then

the data movement operation is conducted.

The LINK Al, #—$0C instruction at line 13 performs several sequential opera-

tions as follows:

1. Stack Al: Stack contents of Al. SP decrements by four.

2. SP --> Al: Move contents of stack pointer (SP) into Al. This effectively links the

stack to Al. Al is now referred to as the frame pointer.

3. (SP—$0C) --> SP: Displace the SP by the specified amount of displacement (—$0C).

This amounts to creating $0C (12 bytes) of work space on the stack.

The MOVEM.W D1-—D4, —$8(A1) instruction at line 14 puts word operands

from the D1, D2, D3, and D4 registers in the newly created work area on the stack.

This amounts to passing parameters D1, D2, D3, and D4 to the other routines via the

stack work area.

111

112 Chapter 4 68000 Software Considerations and Assembly Programming Applications

LINE ADDR

Topecial she 41/8/66
;deals with special instructions

OPT A
ORG $1000

;taskl which initializes pointers
00001000 4E?1TASK1I LEA TABLE, Al
00001006 LEA TABLE(PC),Ae
o000100A PEA (Re)
o000100C MOVEM.W (A1L),D1-D4

;link with Al as frame pointer
;and pass parameters to linked
;stack area

00001010 FFF4S LINK A1l,#-$0C
00001014 OO1LE MOVEM.W D1-D4,-$8(A1)
O000101A 102eC JSR TASKe
000010ce0 UNLK Al
000010ee RTS
00001024 AACB TABLE DC.W $1254,$AACB
00001024 OOLE DC.W $00c6,$001E

;taske here takes the passed on
;parameters and performs.

o0000102c Bee TASKe MOVEP.L -—$4(A1),DS
00001030 RTS
0000103e END

ONDonrunnwWwue

ASSEMBLER ERRORS =

SYMBOL TABLE

NARG OOOO0000 TABLE 00001024 TASK1 00001000 TASKe 0000102c

FIGURE 4.14 Linking and unlinking the stack for multitasking applications.

At line 15 the program jumps to subroutine TASK2, starting at line 22. The
MOVEP.L —$8(A1),D5 instruction at line 22 moves four alternate even bytes from the
work area of the stack into the D5 register. The RTS instruction at line 23 returns the
program to the calling TASK1 program, which resumes at line 16.

The UNLK AI instruction at line 16 performs the following sequential operations:

1. Al --> SP: Restore stack pointer SP from frame pointer A1.

2. Unstack A1: Restore original value of Al. SP increments by four.

The preceding operations effectively unlink the stack and restore the original val-
ues of the frame and stack pointers. The RTS instruction at line 17 effectively returns
this routine to the main calling program.

We will now review the special instructions by means of an example problem.

Special Instruction Groups and Applications 113

Example 4.7 Address, stack, and multiple-movement operations.
CPU registers Dn and An are initialized to $00000000. The stack pointer SP is initial-

ized to $000022FE. Using the software of Figure 4.14,

1. specify the contents of the Al, A2, and D1-—D4 registers after the LEA and

MOVEM instructions are executed through line 9;

2. show the contents of the stack during the execution of the preceding instructions;

3. indicate the contents of the D5 register when TASK2 (line 22) is executed.

Solution

1. Register contents: The LEA TABLE,A1 instruction loads Al with $00001024,

which is the absolute address of TABLE. The LEA TABLE(PC),A2 instruction

loads A2 with $0000001C, which is the offset of TABLE from the current PC value.

The current PC value corresponds to $00001008 (op.word location + 2).

The MOVEM.W (A1),D1—D4 instruction loads the sequential words from

TABLE into the data registers D1, D2, D3, and D4. The contents of the registers are

Al =$00001024

A2=$0000001C

D1 =$00001234

D2 = $0000AACB

D3 = $00000026

D4=$O0D000001E

2. Stack contents: Figure 4.15 indicates the contents of the stack. The stack pointer

decrements by two or four for word or long-word entries. The long-word contents of

A2 are stored at $000022FA. The original value of Al, which is to be used as a

frame pointer, is stored next at $000022F6. The current contents of the SP

($000022F6) are transferred to Al. Thus, A1 is initialized to act as a frame pointer.

Furthermore, the SP is initialized to a new value equal to $000022EA ($000022F6 —

_ displacement $0C). This effectively provides a 12-byte work area on the stack.

Word contents from D1, D2, D3, and D4 are stored between locations

$000022EE and $000022F4 in the work area by virtue of the MOVEM.W D1—D4,

—$8(A1) instruction. Notice that the frame pointer Al is used to access the stack

work area. The return address $00001020 from the JSR instruction is stored in the

new stack area at location $000022E6.

When the UNLK instruction is performed, the SP and A1 registers are restored

to their starting values of $000022FA and $00001024, respectively. The work area is

effectively unlinked (removed) from the stack.

3. Contents of D5: The MOVEP.L —$8(A1),DS5 instruction moves four alternate bytes

(long-word equivalent) from the effective address (EA) into the D5 register. The EA

114 Chapter 4 68000 Software Considerations and Assembly Programming Applications

FIGURE 4.15 Stack
configuration for linking and
unlinking operations (Example

4.7).

=> Word memory <

: Even Odd Contents of stack Operation | byte byte

Rehan address after
22E6

New stack aoe JSR (line 16) stored

area 22E8

Existing data SP new value => $000022EA

22EC

($0C or 12 bytes 22EE D1 word stored

of work space
created on stack) 22F0 D2 word stored

22F2 D3 word stored

22F4 D4 word stored

yeh hee LR Al original value

ine Sernaars stored via LINK

initialized 22F8

Co eee a ee Contents of A2 stored

ee iy a sain via PE (A2) at line 8
r lin

22FC

Top of stack for
Original SP_ => $000022FE previous data

$00002300

is $000022EE. The four alternate bytes are on the even byte boundary and corre-

spond to $12, $AA, $00, and $00. These are loaded into the DS register with $12 in

the most significant byte position. The contents of D5 are

D5 = $12AA0000

There are some important software considerations in the preceding example prob-

lem. It should be ensured that the work area created (12 bytes) is sufficient for passing

on the parameters between tasks. Also, the linking process should maintain the even

boundaries for both the frame and stack pointers. While unlinking the stack, the frame

pointer should be at the initialrzed value. Address register indirect (ARI) with displace-

ment is a very convenient mode for accessing the stack work area without modifying the

contents of the frame pointer. It is possible to use any address register as the frame

pointer.

Macros in Software Development

FIGURE 4.16 Defining and
using MACRO functions. ;Macro.sre 11/11/84

(Courtesy of J. Salinger, FIU.) ;
OPT A

ORG $1400

;defining macro EXMP

EXMP MACRO X,Y,Z

ADDQ.\0 #$X,Z

NOP

M4

ENDM
;ENDM above defines end of macro
;using the macro EXMP

MOVE.B #$FF,DO

EXMP.B &,<MOVE.B #$01,D1>,De

NOP
END

4.5 MACROS IN SOFTWARE DEVELOPMENT

MACRO is an assembler utility. MACRO-function generation is essentially a preproces-

sor step in the assembly process which may result in a sequence of processor instruc-

tions. Proper parameters are passed in a MACRO-function call.

Figure 4.16 specifies the source code of a software routine containing a user-

defined MACRO function EXMP with parameters X, Y, and Z. Source code following

the MACRO declaration uses the processor instructions and the X, Y, and Z parameters.

The ENDM assembler directive concludes the MACRO function.

The actual routine, written at the end of the program block, uses the MACRO

function. The correspondence is as follows:

EXMP.B 8,<MOVE.B tee rey
| | |

parameter =>\0 Xx Y Zi

When the source code is assembled, the assembler substitutes the actual instruction code

for the MACRO function. The parameters are integrated into the code, as well. The as-

sembled program is presented in Figure 4.17. It can be seen that the actual code has

been substituted for the MACRO function.

Each time a MACRO function is used, the corresponding code is substituted.

Although it takes up more program space, the MACRO program executes faster than

the subroutines, since no stack activity is involved when the MACRO is used. Also,

programmers can define several MACRO functions and develop software around

them.

In the example problem that follows, we will review what we have learned about

the MACRO.

116 Chapter 4 68000 Software Considerations and Assembly Programming Applications

LINE ADDR

;macro.sre 11/11/66

OPT A
ORG $1400

;defining macro EXMP
EXMP MACRO X,Y,Z

ADDQ.\0 #$X,Z
NOP
Y
ENDM

;ENDM above defines end of macro
;using the macro EXMP

00001400 103cC OOFF MOVE.B #$FF,DO
00001404 EXMP.B 6,<MOVE.B

#$01,D1>,De
00001404 soo¢e ADDQ.B #$64,De
00001406 4E?1 NOP
00001406 123c oo0o1 MOVE.B #$01,D1
0000140C 4E?1 NOP
0000140£ END

ASSEMBLER ERRORS =

FIGURE 4.17 Assembled version of MACRO-based software from Figure 4.16.

Example 4.8 MACRO usage.
Refer to Figures 4.16 and 4.17.

1. Specify where MACROS should be declared and written.

2. Specify how the MACRO function EXMP is assembled and coded.

3. Can a MACRO function be used several times in a software routine? Explain.

Solution

1. MACRO declaration: Most assemblers require that MACROS should be declared
and written at the very beginning of the program. This ensures that the assembler is
aware of them.

2. MACRO coding: The qualifier \0 corresponds to either byte, word, or long word.
In our particular case, it corresponds to byte. The X parameter corresponds to 8.
The Z parameter corresponds to the D2 register. The Y parameter corresponds to
the MOVE.B #$01,D1 instruction. When the code is assembled, the MACRO
function EXMP is replaced by the actual sequence of instructions given in Figure
4.17.

Summary 117

3. MACRO usage: A MACRO function can be used several times in the program in

which it is defined. The parameters may or may not be the same. Each time the

MACRO function is used, the entire code is substituted.

Several MACROS can be defined and used in the same program. A program writ-

ten with MACROS is easy to read and follow. Most software engineers now use

MACRO functions extensively. It is necessary to be aware, however, of the amount of

program space available when using MACRO functions. MACRO directives are depen-

dent upon the assembler. Even though most of them are similar, an assembler manual

should be consulted for details on MACRO directives.

4.6 SUMMARY

In this chapter, we introduced the assembly programming techniques with which to write

68000 assembly programs. Assemblers for the 68000 family of processors are available

from several vendors. Most of the assemblers have similar directives. If the host com-

puter has a different processor from the one for which the code is written, a cross as-

sembler is used. Programs written in assembly language usually execute faster than pro-

grams written in such higher level languages as BASIC, FORTRAN, PASCAL, and C.

Assembler directives help in program development. In assembly language pro-

gramming, symbols and labels are used in place of numbers and addresses. This greatly

increases the readability of the programs. Symbols are usually specified at the beginning

of the program to declare constants, address values, and variables. Labels are used

within the body of the program.

Assembly-level programmers should be aware of different forms of instructions

and addressing modes. They should be also familiar with the register resources and flag

structure of the processor.
Most programming applications deal with some type of data movement, associated

data processing, and decision making. The decision-making capability of the processor

is used in program control applications. The software and the programming applications

we considered in this chapter focused on program control.

Software engineers are programmers who are not only concerned with program-

ming per se, but also with hardware resources, code integrity, execution timing, and

optimization of the operating system.

Instructions such as DBcc, LINK, UNLK, MOVEM, and MOVEP are complex,

each performing several operations. Use of these instructions makes for shorter, more

efficient programs.

A MACRO is an assembler utility. A MACRO-function generation is a preproces-

sor step in the assembly process that may result in a sequence of processor instructions.

When a MACRO function is used, the corresponding program code is substituted. The

execution of a MACRO function does not involve any stacking operations; hence, it is

faster than the execution of a subroutine. A MACRO function, however, uses more

code memory.

118 Chapter 4 68000 Software Considerations and Assembly Programming Applications

PROBLEMS

4.1

4.10

State the difference (if any) between

(a) assemblers and cross assemblers;

(b) linkers and loaders.

Briefly outline the assembly process. What will happen if the program is written with

instructions not known to the assembler?

Analyze the software in Figures 4.3 and 4.4. Does the assembled program contain the

proper machine code for the listed instructions? Explain.

Write a program that will display the following message on the terminal:

MICROCOMPUTERS ARE GOOD TOOLS ;;

Assume there is a DISPLAY subroutine available. ASCII code for the character should be

put into the DO register and the DISPLAY subroutine called in order to display the
character.

Write an assembly program using 68000 mnemonics and the assembler directives discussed

to accomplish the following objectives:

(a) start the program at location $1200;

(b) clear the memory words between $2000 and $2400.

Rewrite the software of Figure 4.5 to move $200 long words of data from the location
starting at $6000 to the destination starting at $4000. Start the program at $00001000.

Write a routine to move $2000 words from the location starting at $6000 to the destination
starting at $5000. The memory contents are as follows:

Location Contents

$00006000 $0000

6002 $0001

6004 $0002

After the program is run, what is contained between $5000 and $5010?

Rewrite the software in Figure 4.5 using byte transfers instead of long-word transfers.

(a) Do byte transfers have a specific advantage over word or long-word transfers?
Explain.

(b) What are the disadvantages of byte transfers compared to word or long-word transfers?

Rewrite the software in Figure 4.6 so that the smallest data element is at the lowest
address. The data elements are given in Figure 4.7.

A 68000-based system operates on an 8-MHz clock. It is required to generate software
delays in a digital control system application.

(a) Write a delay routine to generate a 1-millisecond delay.
(b) Using the software of (a), generate a 10-millisecond delay.
(c) Using the software of (b), generate a 1-second delay.

Problems 119

4.11 If the system was upgraded to a 68000 processor at a 16-MHz clock,

(a) Explain how the delay routines of Problem 4.10 are affected;
(b) modify the software to obtain 1-millisecond, 10-millisecond, and 1-second delays.

4.12 Write 68000-based software as a subroutine to transfer the memory block between $3000
and $3200 to another block between $3200 and $3000 as shown, without modifying the
data.

Address Block1 Block2

$3000 $1234 $029A to be put here

$3200 $029A $1234 to be put here

4.13 Repeat Example 4.4 in the chapter given the following memory contents:

Source Address Contents Destination Address Contents

$00004000 $5786 $00005000 $F88A

4002 $AAAA 5002 SECEG

4004 $0202 5004 $1569

4006 $0987 5006 $347E

4.14 Using the memory contents indicated in Problem 4.13, write 68000-based software to add

the 4-word source string to the destination string, with the final results stored at the

destination.

4.15 Using the memory contents indicated in Problem 4.13, write 68000-based software to

subtract the source string from the destination string, with the final result in the

destination.

4.16 Write 68000-based software as a subroutine to multiply two words stored at locations

$4000 and $4002, with the result stored at location $00004004. The initial contents of

memory at $4000 and $4002 are $0003 and $8888, respectively. Use unsigned
multiplication. What is the final result of the multiplication?

4.17 Repeat Problem 4.16 using signed multiplication.

4.18 Write software to perform unsigned division of X variable by Y variable. X and Y are

stored at $5000 and $5004, respectively. The division result should be contained in the D2

register.

If X = AABBCCO0 and Y = 0008, indicate the contents of D2 after the division.

4.19 Repeat Problem 4.18 using signed division.

4.20 Rewrite the software in Figure 4.13 using DBEQ in place of DBNE to perform the same

task.

4.21 What will happen if the flags are not conditioned before DBcc conditions are used?

Can two or more DBcc conditions.be nested? Explain. What precautions should be

taken in nesting DBcc, if it is possible.

120 Chapter 4 68000 Software Considerations and Assembly Programming Applications

4.22 Rewrite the software in Figure 4.14 replacing the LINK and UNLK instructions with

equivalent instructions to accomplish the same task.

Which software— with LINK and UNLK or without— is more memory efficient?

Why?

4.23 The LINK Al, #-—$0C instruction at line 13 of Figure 4.14 is replaced by LINK Al,

#—$10.

(a) Describe the corresponding modification for the UNLK A1 instruction.

(b) Indicate the contents of the stack while the software is being executed.

(c) State the values of the Al, A2, and A7 registers after the LINK instruction is

executed.

(d) State the contents of the Al, A2, and A7 registers after the modified UNLK

instruction is executed.

4.24 Why are MACRO functions useful? Is there any limit to how many MACRO functions can

be used? Explain.

4.25 Write a single MACRO function called CLEARD to clear all 32 bits of all the data

registers.

4.26 Write a single MACRO function called CLEARA to clear all 32 bits of the AO—A6

address registers. (Note: Address registers cannot be directly cleared!)

4.27 A MACRO function called INIT uses ten 68000 instructions and occupies 32 words of

program memory space. In a control system software application, the INIT function is

used eight times with different parameters passed. When the software is assembled, how

much program space is occupied by all the MACRO functions? Explain.

ENDNOTES

1. Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

2. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

3. Scanlon, L.J. The 68000: Principles and Programming. Indianapolis: Howard W. Sams,

1981.

4. Kane, G.; Hawkins, D.; and Leventhal, L. 68000 Assembly Language Programming. New

York: McGraw-Hill, 1981. '

5. Motorola, Inc. MC68000 16/32-Bit Microprocessor Programmer’s Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

6. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1987.

7. Andrews, M. Self-Guided Tour through the 68000. Englewood Cliffs, NJ: Prentice-Hall,

1984.

8 . Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

CHAPTER

5

68000 Exception Processing
Considerations

Objectives

In this chapter we will study:

General concepts of exception processing

The exception table and vectors

Reset exception processing

Interrupt exceptions and applications

Trap exceptions and applications

Error exceptions and applications

121

122 Chapter5 68000 Exception Processing Considerations

5.0 INTRODUCTION

An exception is a deviation from the normal processing sequence. The 68000 processor

operates in the supervisor mode to handle exceptions. The supervisor mode is entered

into automatically whenever the 68000 senses and services an exception routine request.

An exception may be caused by an external hardware condition, an internal instruction,

or an error condition.
Reset and interrupts are two exceptions caused by the system hardware. Internally

generated exceptions include instructions, such as TRAPs and CHK, as well as error

conditions, such as address error, bus error, privilege violation error, illegal instruction

error, and zero-divide error. Other conditions, such as the TRACE mode of operation,

also cause exceptions. The processor follows a specific sequence of operations in han-

dling these exceptions.

Study of the exception processing concepts presented in this chapter will provide

the necessary background to handle exception conditions in the 68000 family of proces-

sors. It will also help explain the user and supervisor modes of operation. The concepts

apply to all 68000- and 68008-based systems; hence, no specific mention is made of the

68008. Exception processing for the 68010 and 68020 processors is similar to that for

the 68000 processor. Due to additional resources and virtual memory schemes, how-

ever, exception processing for the 68010 and 68020 includes extra features. These fea-

tures will be discussed in later chapters.

5.1 GENERAL CONCEPTS OF EXCEPTION PROCESSING

Exception processing is a privileged mode of operation in which the 68000 microproces-

sor operates in the supervisor mode. In this mode, the S bit in the status register is set to

1 and the SSP (supervisor stack pointer) controls the stack. Figure 5.1 indicates the

68000 exceptions with their established priority scheme and the relative timing for rec-

ognizing and starting the exception processing. Group 0 exceptions have the highest pri-

ority; Group | exceptions, the next highest; and Group 2 exceptions, the lowest priority.

Within Group 0, the reset exception has the highest priority.

The Exception Vector Table and Exception Vectors

Exception vectors refer to memory locations from which the processor fetches the ad-

dress of a routine to handle the exception. All exception vectors correspond to a long

word. There are up to 256 such vectors, occupying | kilobyte of memory between

$000000 and $0003FF. This dedicated memory is called the vector table.'

The vector table for the 68000 is presented in Figure 5.2. The two reset vectors, 0

and 1, are in the supervisor program space; all other vectors are in the supervisor data
space.

General Concepts of Exception Processing 123

Priority

Group Exception Particulars of Occurrence

Reset Hardware-activated input for system master

0 control
(Highest
priority) Address error Error in addressing operands

Bus error Hardware memory access error

Trace Single-step operation mode

Interrupt Hardware inputs to processor to obtain pro-

cessor attention

Illegal instruction Nonexistent instructions or op.codes used

Privilege violation Privileged instructions used in user mode

TRAP Software initiated

TRAPV Software initiated on overflow

CHK Data register beyond specified limits

Zero divide Division by zero encountered

Group 0: Current activity suspended at the end of the clock cycle. Exception processing starts within two
clock cycles.

Group 1: Current activity suspended at the end of the bus cycle or the instruction cycle (for trace and

interrupts). Exception processing starts before the next instruction.

Group 2: Current activity suspended within the instruction cycle. Exception processing starts as an
instruction.

FIGURE 5.1. Exception grouping and priority scheme for the 68000 and the relative

timing for exception processing.

Reset Exception Processing

Figure 5.3 illustrates the reset exception processing sequence. Reset is a hardware-

activated input to the processor. The reset exception initializes the system; hence, the

processor does not copy or store any information before starting reset exception process-

ing, as it does for other exceptions. On power-up reset, the processor goes into the su-

pervisor mode, turns the trace condition off, and sets the interrupt mask level at 7 (high-

est). This is a cold start of the system. Reset input can also be activated by a pushbut-

ton while the processor is running. In this case, the processor suspends current activity

at the end of the clock cycle and reinitializes the system. This is referred to as a warm

start. A cold start requires. system stabilization and requires more time than a warm

start.
In either case, the processor fetches the contents of vector 0 at location $000000

from the vector table and loads them into the supervisor stack pointer (SSP). It fetches

the contents of vector | at location $000004 from the vector table and loads them into

the program counter (PC). The processor then executes the reset exception routine be-

124 Chapter5 68000 Exception Processing Considerations

ginning at the location addressed by the PC. These two reset vectors are contained in the

system ROM to retain their values when the power is shut off.

If a bus error condition occurs while fetching vectors 0 or 1, the processor encoun-

ters a double bus fault condition and goes into a halt state. The hardware has to be de-

FIGURE 5.2 Exception vector

table for the 68000. (Courtesy of

Motorola, Inc.)
Number(s) | Dec | Hex | Space Assignment

po | 0 | co | se [Reset initia SSP
ptf 4 | coe [sp Reset: tnt PC
[Peers ia Ma RET io veal
Se beonisl decoy Address Error

Pp 4 fe | ow | so |iteget instruction |
6 | 2 | om | so [Zero Divide
tenciel dabarias rcs | Eres CHK Instruction

| 7 | a | orc | so | TRAPV instruction
|e | 2 | om | so [Privilege Violation |
a Ee ns Pe Eee ee ee ee
0 | 4 | cae | SD Line 1010 Emulator |
pt | a | cae | so [Line 1111 Emulator |
| 2 | | 0 | SD | (Unassigned, Reserved) |
13 |_| om | sd (Unassigned, Reserved) |
pe | 6 | cae | so Formateror
58 || oa | 80 | Uninitaized Interrupt Vector _|

| SD_| (Unassigned, Reserved)
i cal sew oT
[so [Soares more |
[sO [tevet +more Aovestor _
[80 [teva nerupeAstovecor |
[so [Lewe 9 mierape Avon |

a [80 [Lever ert Avovecor |
[80 [ves nropr Astor
a [80 [tev 6 erupt Avovctr |
Sige 80: of
res, 4}

Giving 1. kik
ere |

nekry
| so |

i ee al

pers
yoAsi@8s
easihzeints
Lente leans
neha beuks

Level 7 Interrupt Autovector

TRAP Instruction Vectors

(Unassigned, Reserved)

ace User Interrupt Vectors

General Concepts of Exception Processing 125

S + 1 (SUPERVISOR)

V1) MASK LEVEL C start) INT. MASK LEVEL « 7 START VECTOR TABLE
VECT. ADDR. VECT. NO.

$000000 | SSP MS WORD | ¢00

FETCH
VECTOR
NO. 00

YES
SSP LS WORD

$000004 | PC MS WORD $01

PC LS WORD Hh CONTENTS OF
VECTOR NO. 0
> STACK PTR

$0003FC | PC MS WORD | gr
YES

PC LS WORD

PC MS WORD $0003FE $FF
DOUBLE

PC LS WORD
CONTENTS OF
VECTOR NO. 1

PEC
LL

END

FIGURE 5.3 The 68000 reset exception sequence. (Courtesy of Motorola, Inc.)

bugged before the processor can be restarted. Hardware details relating to the reset, halt,

and error conditions will be discussed in subsequent chapters.

General Scheme of Exception Processing

As previously mentioned, exception processing is carried out in the supervisor mode.

When an exception (other than the reset) occurs and is recognized, the processor sus-

pends current execution as indicated in Figure 5.1. It makes a copy of the current status

register (SR) to retain the original contents. If the processor is already in the supervisor

mode due to an earlier exception, it continues in that mode to service the current excep-

tion. However, if the processor is in the user mode, it moves into the supervisor mode

to service the current exception. For exception processing, the stack used is the super-

visor stack.°
The general exception sequence is presented in Figure 5.4. After setting the S bit

to 1 for the supervisor mode, the trace condition is turned off (T = 0). For interrupts,

the interrupt mask level is set to the new value. The processor stacks the current PC and

the copied SR. For address and bus error exceptions, additional processor information is
stacked. The processor then fetches the appropriate exception-vectored address from the

126 Chapter5 68000 Exception Processing Considerations

FIGURE 5.4 The 68000
general exception sequence.

(Courtesy of Motorola, Inc.)

“START

COPY STATUS STACK PROGRAM
REGISTER TO COUNTER AND
A TEMPORARY COPIED STATUS
REGISTER WITH- REGISTER
IN PROCESSOR

FETCH CONTENTS
OF VECTOR AD-
DRESS AND PUT

IN PC

S 1, T & 0; IF
INTERRUPT EX-
CEPTION, SET
MASK BITS TO
INTERRUPT

LEVEL

OBTAIN
VECTOR
NUMBER

vector table and loads it into the PC. It then begins exception processing starting at the

new address.*

The last instruction of an exception routine (other than a reset routine) is RTE (re-

turn from exception). When the RTE instruction is encountered, the processor restores

the stored PC, SR, and any other information relating to the suspended process from the

stack. It then resumes the execution of the suspended process.

We will now review the reset and general exception sequences with the help of an

example problem.

’ Example 5.1 Reset and general exception sequences.
For a particular 68000-based system, the contents of the vector table are as shown:

Vector Hex Hex Word Assignment

Number Address Contents Type

0 000000 0000 SSP on reset

O0A00

l “000004 0000 PC on reset

8400

2 000008 0000 PC on bus error

8800

General Concepts of Exception Processing 127

1. Where are the SSP and the top of the stack initialized on power-up?
2. Where does the reset routine start? Why?

3. Are the contents of the stack memory of any particular value at the power-up reset
condition? Why?

4. What are the primary differences between the reset and the general exception se-
quences?

Solution

1. Initialization of the SSP and top of the stack: Long-word contents corresponding
to vector 0 at location $000000 are $00000A00. These are fetched by the processor
and loaded into the SSP, which refers to the top of the stack. Thus, the top of the
Stack is initialized at

SSP = $00000A00

2. Reset routine: Long-word contents corresponding to vector 1 at location $000004

are $00008400. These are fetched by the processor and loaded into the PC. Thus, the

reset routine starts at

PC = $00008400

3. Initial contents of the stack: For the reset operation, the initial contents of the stack

on power-up are of no consequence. This is because the reset routine initializes the

system; it does not depend on any stacked contents.

4. Differences between reset and general exception sequences: The following are the

primary differences:

Reset Exception General Exception

Processor registers are not stacked. PC and copied SR are at least stacked.

Two reset vectors to initialize SSP and Only one vector, the contents of which

PC. are loaded into PC.

No RTE at the end of the reset RTE at the end of the routine returns

routine, and no return address. the processor to the suspended

program.

At the end of a successful reset routine, the system is properly initialized and is

ready to perform other operations and handle exception conditions. We will now study

the details of the other general exceptions.

128 Chapter 5 68000 Exception Processing Considerations

5.2 INTERRUPT EXCEPTIONS AND APPLICATIONS

Interrupts are hardware signals from the I/O devices and systems to obtain the attention

of the processor. These signals are encoded and applied as IPL2, IPL1, and IPLO inputs

to the processor. Figure 5.5 illustrates the 68000 interrupt structure. A level 7 interrupt

(IPL2 IPLi IPLO = 0 0 0) has the highest priority and a level | interrupt (IPL2 IPL1

IPLO = 1 1 0) has the lowest. A level 0 interrupt signifies that no interrupt is pending.”

systems with

I/O devices and |

interface logic
Priority | MC68000 structure for |

encoder interrupts

System byte of SR

Interrupt 7 ic PPsls Papse[e To
Interrupt 1

Interrupt mask

yee Address bus

.. FCO Function codes

VPA Valid peripheral
when address
DTACK Data acknowledge

FIGURE 5.5 The 68000 interrupt structure and interface.

Interrupt Mask Levels

The 12, I1, and IO bits of the system byte in the status register specify the interrupt

mask level. A higher level interrupt than the mask level can interrupt the processor and

be recognized. Any interrupt lower than or equal to the mask level will not be recog-

nized; it is effectively masked out. The interrupt mask level is automatically adjusted to

the interrupt level that is being recognized and serviced.

Interrupts 1 through 6 are maskable. Interrupt 7 is a nonmaskable interrupt

(NMI). Even if the mask level is at 7, if an interrupt 7 occurs and satisfies the timing

requirements, the processor must recognize and service it. When an interrupt is recog-

nized, the processor generates an interrupt acknowledge cycle by activating the appro-

priate address lines (Al—A23) and the function code outputs FC2, FC1 and FCO.

An external decoder decodes this cycle and provides the corresponding interrupt

acknowledge signals (LACK 1—IACK7) to the interrupting devices. Hardware and timing

details of these signals will be discussed in subsequent chapters.

Interrupt Exceptions and Applications 129

Interrupt processing is similar to general exception processing. On recognizing the

interrupt, the processor suspends current activity at the end of the instruction and makes

a copy of the status register. The processor sets the S bit to 1 and moves into the super-

visor mode. It then sets the interrupt mask level to a new value corresponding to the

interrupt being recognized. The processor stores the current PC and the copied SR on

the supervisor stack. The stored PC points to the next instruction to be executed in the

suspended routine. The processor then fetches the appropriate interrupt-vectored address

from the vector table and begins the interrupt exception processing starting at that vec-

tored address.

Autovector and User Vector Methods

There are two methods, known as the autovector method and the user vector method, to

obtain the interrupt vectors and service the interrupting device. In response to the IACK

signal from the processor, the interrupting I/O device generates the VPA signal for the

autovector method, or the DTACK signal for the user vector method.

In the autovector method, the processor obtains the address for the interrupt ser-

vice routine directly from the vector table. Vector 25 corresponds to a level | interrupt

and vector 31 corresponds to a level 7 interrupt. The processor reads the contents of the

appropriate vector location and loads them into the PC. It begins the interrupt exception

routine starting at that address.

In the user vector method, an interrupting device provides an 8-bit user vector

number Vn (vector numbers 64 through 255) on the data bus DO—D7. The processor

reads this vector number and configures the vector location by multiplying the vector

number by 4. The processor reads the contents of this location and loads them into the

PC. It then begins the interrupt exception routine starting at that address.

A higher level interrupt can always interrupt a lower level interrupt. The processor

suspends the lower level interrupt, services the higher level interrupt, and then resumes

the suspended interrupt processing. Interrupts are nested and serviced in this manner.°

The following example problem provides a review of interrupt exception process-

ing.

Example 5.2 Interrupt exception processing.

Figure 5.6 illustrates an interrupt-driven 68000-based system and the exception vector

table contents. The processor is executing a user program as follows:

PC Mnemonic

$001200 MOVE.W DO,D3
$001e02 CLR.W DO
$001204 #$NOP
$001206 $JMP (AZ)

The internal register values are

SSP = $00000A00 USP = $0000C400 SR = $0200

130 Chapter5 68000 Exception Processing Considerations

FIGURE 5.6 (a) Interrupt-driven I/O systems Electronics MC68000

68000-based system and (b)

contents of the vector table ene
an

(Example 5.2). Hi det pth

and

Electronics

rags oo

ae Wile
IACK signals

Address

control and data

(a)

0000
Reset SSP 000000 0A00

0000

‘es

0000

0000

Interrupt 5

(auto)

0000

(b)

1. Interrupt 5 from the printer occurs as the processor is executing the CLR.W DO in-

struction. Will it be recognized? What are the levels of the IPL2, IPL1, and IPLO

signals for interrupt 5?

2. Indicate the contents of the SR and the stack after interrupt 5 is recognized and is

ready to be serviced. Where does the interrupt 5 exception routine start if it is
autovectored?

3. When interrupt 5 is being serviced and the PC is pointing to the next instruction at
$00008A4C, interrupt 7 occurs. Indicate the contents of the SR and the stack after

Interrupt Exceptions and Applications 131
ee ee ee ene

the interrupt is recognized and is ready to be serviced. Assume the user byte remains

at the same value.

4. Assume interrupt 7 provides user vector Vn = 64 = $40. Where does the interrupt 7

exception routine start?

Solution

Figure 5.7 shows the contents of the status register and the supervisor stack.

FIGURE 5.7 (a) Status register

contents and variations and (b) fe ‘ - ae oss : |

supervisor stack and contents st TAS none

ssierncear ear [oleloleoPoTTolel|e]Pofofele] 5 5 2) at user mode

ofofrfofofsfofrfofofofofo]rfofo} icmpes interrupt 5

fof Popo} rts] fofofofofofifofo
(a)

System byte User byte

= $2704 after
interrupt 7.

SSP Memory word

$0009F4 SR as interrupt 7 occurs

$0009F6 ay
PC as interrupt 7 occurs

$0009F8 ye

$0009FA SR as interrupt 5 occurs

$0009FC ~
PC as interrupt 5 occurs

$0009FE ¥4

$000A00 Top of the initalized stack

(b)

1. Interrupt 5: Initially, the SR contains $0200. This implies that the processor is in

the user mode (S bit = 0) and the interrupt mask level is at 2 (2 Il 10 = 0 1 0).

Interrupt 5 is higher than the mask level; thus, it is recognized.

IPL2, IPL1, and IPLO inputs to the processor are active low. To signify inter-

rupt 5, their logic levels are

IPL2 IPL1 IPLO = 010

132 Chapter5 68000 Exception Processing Considerations

2. SR and stack after interrupt 5: The processor completes the CLR.W DO instruc-

tion, which sets the Z flag to 1 and the other flags to zero, before attending to inter-

rupt 5. Thus, the user byte of the SR becomes $04. The system byte remains at $02.

The processor internally copies these contents of the SR (= $0204) and moves into

the supervisor mode by setting the S bit to 1. It then changes the interrupt mask level

to 5. Thus, the SR becomes $2504 after interrupt 5, as indicated in Figure 5.7(a).

The PC points to the next instruction (NOP) at location $00001204. The pro-

cessor stores this PC value and the copied SR on the supervisor stack, as indicated in

Figure 5.7(b).

The autovector number for interrupt 5 is 29, corresponding to vector location

$000074, as indicated in Figure 5.6(b). The contents of this location (= $00008A00)

are loaded into the PC. Thus, the interrupt 5 exception routine starts at

PC location = $00008A00

3. Interrupt 7: Interrupt 7 is nonmaskable; thus, it is recognized. The processor sus-

pends the interrupt 5 routine, makes a copy of the SR, and changes the system byte

to $27 (S bit = 1; mask level = 7). The SR after interrupt 7 is $2704, as indicated in

Figure 5.7(a).

The processor stacks the current PC value (= $00008A4C) and the copied SR

(= $2504), as indicated in Figure 5.7(b).

4. User vector for interrupt 7: User vector number Vn = 64 = $40 for interrupt 7

corresponds to vector location $0100 (= 4 x $40), as indicated in Figure 5.6(b).

The contents of this location (= $00009A44) are loaded into the PC. Thus, the in-

terrupt 7 exception routine starts at

PC location = $00009A44

As previously discussed, the last instruction at the end of an exception routine is

RTE. When RTE is encountered at the end of the interrupt 7 exception routine, the pro-

cessor restores the stored SR and PC (= $2504 and $00008A4C, respectively), which

correspond to the suspended interrupt 5 processing, from the stack. The processor then

resumes the suspended interrupt 5 processing.

Similarly, when RTE is encountered at the end of the interrupt 5 exception rou-

tine, the processor restores the earlier stored SR and PC (= $0204 and $00001204, re-

spectively), which correspond to the suspended user program, from the stack. The pro-

cessor then resumes the suspended user program.

5.3 TRAP EXCEPTION PROCESSING AND APPLICATIONS

Traps are exceptions caused by instructions. There are 16 TRAP instructions: TRAP

#0 through TRAP #15, corresponding to the vector numbers 32 through 47 of the vec-
tor table.

Trap Exception Processing and Applications 133

Using System Resources in the Supervisor Mode via Traps

Most system resources are under the control of the operating system. In the 68000 fam-

ily of processors, operating system resources can only be handled in the supervisor

mode. TRAP instructions are similar to software interrupts; they can be used within a

program to move into the supervisor mode and use the system resources.

Similarly, traps can be used to move into the supervisor mode to use privileged

instructions. Essentially, traps provide a convenient means of intercommunication be-

tween the user and supervisor modes.’

Trap Software Routines and Applications

Trap exception processing is similar to interrupt processing. When a TRAP instruction

is encountered, the processor concludes the current instruction, copies the SR internally,

and moves into the supervisor mode by setting the S bit to 1. The T (trace) bit is turned

off. The processor then stores the current PC and the copied SR on the supervisor stack.

The stored PC points to the next instruction after the TRAP instruction in the program.

The processor then fetches the appropriate TRAP-vectored address from the vector

table, loads it into the PC, and begins the TRAP exception processing starting at that

address. RTE is the last instruction in any TRAP exception routine. When the RTE in-

struction is encountered, the processor restores the stored PC and SR and resumes the

original program.

The TRAPY instruction generates an exception (vector 7) if an overflow condition

is detected in the previous operation. The TRAPV instruction is similar to the TRAP

instruction, except that TRAPV does not require an operand field and will generate an

exception only if the overflow (V) flag is set.

The user stack pointer (USP) is considered a system resource and can only be ini-

tialized in the supervisor mode. Figure 5.8 consists of an operating system routine writ-

LINE ADDR

;TRAP.sre 12/31/86
;TRAP type exception routine
;which initializes the USP
swith the contents of the
jhe Leguster

OPT A
ORG $1200

;load contents of Adc into USP

sand return

00001200 MOVE.L Ac,USP

o0001e0e NOP

00001204 RTE

00001206 END

FIGURE 5.8 Operating system exception routine to initialize the USP (Example 5.3).

134 Chapter5 68000 Exception Processing Considerations

ten as an exception routine that initializes the USP. This routine starts at $00001200.

The MOVE.L A2,USP instruction at line 11 initializes the USP with the contents of the

A2 register. The RTE instruction at line 13 returns control back to the calling program.

The user can call this program via a TRAP instruction. The user must load the

starting address of the exception routine at the vector table location corresponding to the

TRAP being used. The user must also pass the parameter value for the USP (through

the A2 register) while calling the TRAP routine.

The following example problem focuses on the software details of TRAP instruc-

tion use.

Example 5.3. Using TRAP exceptions.
Figure 5.8 shows an operating system exception routine starting at $00001200. The rou-

tine initializes the USP.

1. In order to call the routine, the TRAP #1 instruction must be used. Develop an ap-

propriate software routine that uses TRAP #1 and initializes the USP at $00002000.

2. Is there any priority scheme associated with TRAP instructions? Explain.

Solution

1. Software using TRAP #1: The TRAP #1 vector number is 33, which corresponds

to vector address location $0084 in the vector table of Figure 5.2. The user can load

the starting address of the USP initialization routine (= $00001200) into the vector

location and use the TRAP #1 instruction to call the routine.

A software routine to accomplish the task in question is presented in Figure

5.9. Between lines 14 and 16, $00001200 is loaded into vector location $0084. At

lines 20 and 21, an initialization value of $00002000 is loaded into the A2 register

(to be passed on as the USP parameter for the TRAP #1 routine), and the TRAP #1

routine is called. The TRAP #1 exception routine (Figure 5.8) loads the passed-on

value ($00002000) into the USP and returns to the original calling program. The
JMP (A3) instruction at line 23 causes an indirect jump to the user I/O routine, the
address of which is contained in the A3 register.

2. Priority for TRAP instructions: There is no priority scheme for TRAP instructions.
This is because the TRAPs are software instructions which are executed in the se-
quence of their occurrence in the program.

Error-Related Exceptions 135

LINE ADDR

PWORAR Los He wle/30/66
;TRAPL routine initializes
;user stack pointer
;A0 = $00000000 refers to
;the beginning of vector table.
;TRAP1 routine starts at $00001200.
;A3 contains the address of user I/0
;routines.

,

OPT A
ORG $001100

;load TRAP1L address into
;vector location $00000084.

00001100 20?c ooo0 o000 MOVEA.L #$00000000,A0
00001106 eerc Oooo 1200 MOVEA.L #$00001200,A1
O0000110C 2149 0084 MOVE.L A1,$0064(A0)

Jcall RAPD TOuUt Ne tO san dst ia laze
;the user stack pointer at $00002000.
;pass this stack parameter through Ad.

00001110 24?7c OOOO MOVEA.L #$00002000,Ae
00001116 4E41 TRAP #1

;jJump to user I/O routines through (A3)
00001116 4ED3 JMP (Ad)
0000111A END

Novdsrnnwve

FIGURE 5.9 TRAP1 routine initialization and use by the calling programs (Example
5:3).

In general, any TRAP #n (n = O—15) can be used in the preceding example as

long as the starting address of the exception routine is loaded into the appropriate vec-

tored address location. Each time a TRAP routine is called, the current PC and the cop-

ied SR are stored on the supervisor stack. The user should ensure that sufficient super-

visor stack space is available if several TRAP #n instructions are to be nested.

5.4 ERROR-RELATED EXCEPTIONS

The 68000 processor handles error conditions as exceptions in the supervisor mode. Op-

erating system routines are written in the supervisor mode. for the 68000 family of pro-

cessors. Error-handling routines to help the user can be written by the operating system

designer. ;
Upon detecting an error condition, the processor suspends current execution, cop-

ies the SR, and moves into the supervisor mode. It turns off the trace and stacks the

copied SR and the current PC (which points to the next instruction in the suspended

routine). In certain error conditions (bus and address errors, for example), additional

136 Chapter5 68000 Exception Processing Considerations

processor information is saved on the stack. The processor then goes to the correspond-

ing vector location in the vector table, fetches the address of the exception routine, and

executes it in response to the detected error condition.

Illegal Instruction, Unimplemented Instruction, and Privilege-
Violation Conditions

Illegal Instruction The first word of an instruction is always an op.word. When the

fetched op.word does not correspond to any of the defined op.words, an illegal instruc-

tion error condition occurs. Three bit patterns always force an illegal instruction error

condition for the 68000 family of processors: $4AFA, $4AFB, and $4AFC. The ‘first

two patterns are reserved for Motorola; the third is for general use. This exception re-

turns control to the operating system in case of any illegal op.codes, thus preventing

unpredictable operation. The vector number for the illegal instruction is 4.

Exception processing for illegal instructions is similar to that for traps. After the

instruction op.code has been fetched and decoding attempted, the processor recognizes

that the execution of an illegal instruction is being attempted. It then starts the exception

processing.

Unimplemented Instruction Op.word patterns with bits 15 through 12 equaling

1010 or 1111 ($A or $F) are distinguished as unimplemented instructions. When these

codes are discovered by the processor, unimplemented exception processing results.

Higher level processors, such as the 68020, use these op.codes for coprocessor support

and emulations. The vector numbers for the two conditions mentioned are 10 and 11.

Privilege Violation In order to provide system security, some instructions for the
68000 dealing with the status register, stack pointer, and system operation are privi-

leged. Examples are the following:

AND immediate to SR (for status register violation);

EOR immediate to SR (for status register violation);

MOVE to SR (for status register violation);

OR immediate to SR (for status register violation);

MOVE USP (for stack pointer violation);

RTE (return-from-exception instruction);

RESET (reset instruction);

STOP (stop-the-processor instruction).

These instructions may be used only in the supervisor mode. An attempt to use any of
them in the user mode results in a privilege-violation exception.>*’

Exception processing for a privilege violation is similar to that for an illegal in-
struction. Control is returned to the operating system in case of any privilege violation,
thus protecting system resources and routines from being modified by the user. The vec-
tor number for the privilege-violation condition is 8.

Error-Related Exceptions 137

Uninitialized and Spurious Interrupt Exceptions

Uninitialized Interrupt In the case of the user vector method for interrupt process-

ing, if the 68000 family I/O device is not initialized, it provides default vector number

15 during the interrupt acknowledge cycle. The processor recognizes this as an uninitial-

ized interrupt condition and initializes exception processing.

Spurious Interrupt A spurious interrupt condition results from a bus error during the

interrupt acknowledge cycle. The processor recognizes this condition and initiates spu-

rious interrupt exception processing. The vector number for a spurious interrupt is 24.

Exception processing for uninitialized and spurious interrupts is similar to trap ex-

ception processing. These two exceptions return control to the operating system in case

of an interrupt vector error, thus preventing any ambiguous interrupt processing.

Zero-Divide, CHK, and Trace Exception Conditions

Zero-Divide Exception A zero-divide exception occurs when division by zero is at-

tempted during the execution of a divide instruction. This exception prevents the

processor from going into an indefinite loop. The vector number for a zero-divide

exception is 5.

CHK Exception A CHK exception occurs when the data register associated with the
CHK instruction is out of bounds. This exception returns control to the operating system

if boundaries are crossed in case of a multitasking operation. The vector number for the

CHK exception is 6.

Trace Exception A trace exception occurs when the T (trace) bit in the system byte

of the status register is set. When the T bit is set at the beginning of program execution,

the processor executes one instruction at a time and goes to trace exception. In trace

exception routines, the results of the instruction just executed are displayed. Essentially,

the processor goes into a single-step mode for software debugging. The vector number

for the trace exception is 9.

The zero-divide, CHK, and trace exceptions occur during program execution.

They prevent the processor from getting hung up on errors. Appropriate exception rou-

tines that provide proper feedback to the user should be written by the operating system

designer so that exception conditions can be handled efficiently.

We will now present an example problem to review the error conditions and ex-

ceptions studied thus far.

ig te
ere ee

Example 5.4 Error conditions and exceptions.

A 68000-based system is operating in the user mode. In each of the following situations,

state whether an error or exception condition will be generated. Indicate the exception

vectors, as appropriate.

138 Chapter 5 68000 Exception Processing Considerations

1. The processor tries to execute an op.code corresponding to the CLR.W A4 instruc-

tion.

2. The processor tries to execute MOVE.W D6,SR.

3. The processor tries to execute the following sequence:

CLR.L DO

DIVU DO,De

Solution

1. CLR.W A4 instruction: This is an illegal instruction, since the address register di-

rect addressing is not defined in the CLR instruction. The processor recognizes this

as an illegal instruction error condition and initiates the exception processing se-

quence. The vector number for the illegal instruction is 4.

2. MOVE.W D6,SR instruction in user mode: Moving information into the status

register while in the user mode results in a privilege-violation error condition. The

processor recognizes this and initiates the privilege-violation exception sequence.

The vector number for the privilege violation is 8.

3. CLR.L DO and DIVU D0,D2 instructions in sequence: The CLR.L DO instruction

clears the DO register. The DIVU DO,D2 instruction attempts a division-by-zero op-

eration, since DO has been cleared earlier to the zero condition. The processor rec-

ognizes this and initiates the zero-divide exception sequence. The vector number for

a zero-divide exception is 5.

In response to the zero-divide error in the preceding example, an exception routine

will display a message:

division by zero attempted

Suppose this routine starts at address $00001400. This starting address should be loaded

as a long word at location $014 (corresponding to vector number 5) during system ini-

tialization. When the zero-divide error condition occurs, the exception routine will be
executed.

Address and Bus Error Conditions

Address Error An address error occurs when the 68000 processor attempts to access
a word or long-word operand or an instruction at an odd address. When the processor
discovers an address error, it aborts the current bus cycle, copies the SR, and goes into
the supervisor mode. It stores the copied SR, the PC (pointing to the possible next in-
struction), and some additional information on the supervisor stack, as shown in Figure
5.10. The supervisor stack frame for a bus error is similar.°*°’

Error-Related Exceptions 139

+ b4 b3 b2 «Obl

SSP > Special status word (see below) AT

Access address High word

Access address Low word

Instruction register Op. word

Status register

Program counter High word

Program counter Low word

R/W => Read/write: write = 0 and read = 1

I/N > Instruction/not: Instruction = 0 and not = 1

FC2 FC1 FCO => Function codes

FIGURE 5.10 Supervisor stack frame for address and bus errors for the 68000.

The stored instruction register points to the instruction in which the address error

was detected. The fault access address refers to the actual physical address where the

address error occurred. The special status word refers to the actual internal conditions

of the processor at the occurrence of the address error. This information is useful in the

software debugging process.

An address error exception prevents the 68000 processor from any word misalign-

ment in accessing instructions or operands. The vector number for the address error is 3.

Bus Error A bus error occurs when the processor attempts to access nonexistent

memory or I/O and the interface logic activates BERR (bus error) input to the processor,

as shown in Figure 5.11. Time-out circuitry in the interface logic generates the BERR

68000 processor : Memory or I/O
Memory interface

logic

DTACK Acknowledge

BERR Time out

Chip

selects
Address/control

Data Data

FIGURE 5.11 Memory or I/O interface, generating DTACK or BERR to the 68000.

140 Chapter 5 68000 Exception Processing Considerations

input to the processor instead of the normal DTACK if the memory or I/O fail to re-

spond within a given time.
Bus error exception processing is similar to address error processing. A bus error

exception prevents the processor from indefinitely waiting for nonexistent memory or

I/O to respond. The vector number for the bus error is 2.

The following example problem will enhance our understanding of address and

bus errors.

Example 5.5 Address and bus errors.
For the 68000-based system of Figure 5.11, memory and I/O are physically contained

between $000000 and $OFFFFF. The initial values of the registers are

SSP = $00000A00 USP = $00002000 SR = $0600

The program of Figure 5.12 is run.

LINE ADDR

1 ;berr.sre 1/5/89

;demonstrates bus and
;address errors

OPT A
ORG $1000

00001000 20?c OOFF AAOO STRT MOVEA.L #$00FFAA00,A0
00001006 eerc Oooo OCCc3 MOVEA.L #$00000CC3,A1
o000100c Dogo ADD.L (AQ),DO
OOOO0100E S980 SUBQ.L #04,D0
00001010 &OEE BRA.S STRT
0000101¢2 END

a

|
4
5

&
in

6
gq

O

O

1
1

ASSEMBLER ERRORS =

SYMBOL TABLE

NARG Oooooggog0 STRT 00001000

FIGURE 5.12 Software with bus and address errors (Example 5.5).

1. The conditions given will result in an error exception sequence when the program is
run. What type of error is involved? Explain.

2. Indicate the stack format for the error exception in (1).

3. The ADD.L (A0),DO instruction at line 8 (Figure 5.12) is replaced with the ADD.L
(A1),D0 instruction, and the program is rerun. Will there be an error condition now?
How does the stack look for this error?

Error-Related Exceptions 141

Solution

1. Error condition: There is a bus error condition. It occurs during the execution of the

ADD.L (A0),D0 instruction at line 8, while trying to access the source operand. The

effective address of the source operand [S00FFAA00 (contents of AO)] is beyond the

available memory and I/O range, and is nonexistent. The interface logic therefore

generates the BERR signal, and the processor initiates the bus error exception se-

quence.

2. Stack format: On detecting the bus error condition, the processor moves into the

supervisor mode. The supervisor stack is used for storing the processor registers and

the operands.

Figure 5.13 illustrates the supervisor stack format and the contents for the bus

error exception: the PC corresponds to the next instruction (SUBQ.L #04,D0). SR is

the copied status register at the time of the exception. Stored op.word $D090 corre-

sponds to the instruction where the bus error occurred. The fault access address

($OOFFAAO00) is the actual physical address where the bus error fault condition oc-

curred.

FIGURE 5.13 Supervisor stack SSP Memory word stored operand details
contents for the bus error $0009F2 ; condition (Example 5.5). Special status word (see below)

$0009F4 Fault access address (high word)

$0009F6 Fault access address (low word)

$0009F8 Instuction op.word

$0009FA Copied status register

$0009FC Program counter (high word)

$0009FE Program counter (low word)

$000A00 Top of stack (contains previous operand)

Special status word $0019 corresponds to

[oN bole erence cer oy earch mnCmO POPE S| niss ba b3. se b25 bl b0

: R/W I/N FC2 FCl FCO
0 SP ene @ Meet A « Gteehte MPM) 1 1 0 0 1

The stored special status word signifies that the fault occurred while reading a

data operand from user data space.

3. ADD.L (A1),D0 instruction: There is an address error condition. It occurs while

trying to access the source operand. The effective address of the source operand

[$00000CC3 (contents of A1)] is within the physical memory, but is odd. The pro-

cessor recognizes this long-word access at an odd address as an address error and

initiates the address error exception sequence.

142 Chapter5 68000 Exception Processing Considerations

The supervisor stack format for the address error is similar to that for the bus

error.

When the stack frame for the bus and address errors in the preceding example is

examined, the fault conditions can be analyzed and corrected. In 68010/12 processors,

additional information is stored on the stack for possible virtual memory implementa-

tion, which we will study later, in conjunction with those processors. In 68020/30 pro-

cessors, word and long-word data operands can be accessed at an odd address without

generating an address error condition.

Double Bus Fault Condition

This is a catastrophic failure in which the processor comes to a complete halt. The dou-

ble bus fault occurs when

a bus error occurs while accessing the reset vectors;

a bus error occurs during the exception processing sequence of an earlier bus or

address error; or

there are nested combinations of bus error and illegal instruction exception

processing operations.

The processor also activates the HALT output line, which halts any peripherals con-

nected to the halt line. This prevents a system runaway condition. Software and hard-

ware must be debugged and the system reinitialized to recover from a double bus fault
condition.?**7

5.5 SUMMARY

An exception condition is a deviation from the normal condition. The 68000 processor
handles the exception in the supervisor mode.

External hardware conditions, such as reset and interrupts, cause exceptions. So
do instructions, such as TRAPs and CHK, under certain conditions. Error conditions,
such as privilege violations, illegal instructions, unimplemented instructions, zero-
divide operations, bus errors, and address errors, also cause exceptions.

Appropriate software routines written as part of the operating system in the super-
visor mode handle exceptions. On the occurrence of any type of exception, the proces-
sor moves into the supervisor mode.

One kilo byte of memory between $000000 and $0003FF of a 68000-based system
corresponds to the exception vector table. This table contains the starting addresses of
the exceptions. On the occurrence of an exception, the processor fetches the starting ad-
dress of the corresponding exception routine from this table.

Problems 143
ee eure: | wens Vow. & niy EPs.

The reset exception has the highest priority; it initializes the system resources and
conditions. Stacking of the registers is not done during reset exception processing. Vec-
tor 0 corresponds to the supervisor stack pointer and vector 1 corresponds to the pro-
gram counter for the reset exception.

Hardware interrupts from the external I/O and peripherals are meant to obtain the
attention of the processor. The interrupts follow a priority scheme involving the three

interrupt mask bits of the status register. Interrupt 7 is at the highest priority level and is

a nonmaskable interrupt (NMI). Interrupts 6 through 1 are at successively lower priority

levels and are maskable. They can be masked by setting the interrupt mask level in the

system byte of the status register to a higher level. Interrupt 0 implies that there is no

pending hardware interrupt.

TRAP instructions are similar to software interrupts; they are used to move from

the user mode into the supervisor mode. This allows users to employ system-level re-

sources. :

A privilege-violation error condition occurs when an attempt is made to use priv-

ileged instructions in the user mode. If an instruction code that does not correspond to

any of the permissible codes is used, an illegal instruction error condition occurs. When

an attempt is made to access nonexistent memory or I/O, the external logic activates

BERR (bus error) input to the processor. The processor recognizes this and goes into

bus error exception processing. When a word or long-word access attempt is made at an

odd address, an address error condition occurs.

The processor does not stack any information for reset exception processing. For

all other exceptions, the copied SR and the PC (pointing to the next instruction at the

time of the exception) are stored on the supervisor stack. In the case of address and bus

error conditions, additional information is also stored. This corresponds to the fault ad-

dress, the instruction that caused the fault condition, the special status word, and so

forth.
In the case of nested errors, a double bus fault condition causes the processor to

go into a complete halt state. During the halt state, the address and data buses are

tristated, and the control signals negated. The system must be debugged and reinitialized

in order to recover from a double bus fault condition.

PROBLEMS

5.1 How soon does exception processing begin for the following conditions:

(a) reset from pushbutton;

(b) illegal instruction;

(c) zero-divide.

5.2 How many total exception vectors are in the vector table? How many different exceptions

are serviced?

5.3 Explain why the reset exception takes two vectors, whereas all other exceptions take only

one.

144 Chapter5 68000 Exception Processing Considerations

5.4

5.5

5.6

Set

What is the primary difference between a cold start and a warm start? Are there any

differences in terms of the exception processing with cold and warm starts?

For a 68000-based system, suppose it is necessary to initialize the supervisor stack at

$00002000. The reset routine should start at $00001600. Indicate the contents of vector

table locations $000 through $008.

Write a reset routine under the conditions of Problem 5.5 to reinitialize the SSP at

$00003000, the USP at $00002400, and to set the interrupt mask level at 4. In addition,

an interrupt 6 exception routine starting at address $00004200 is to be loaded into the

appropriate autovectored location. The last instruction in the routine should be a STOP

#$2200 instruction.

Consider the interrupt-driven system of Figure 5.14.

(a) The processor is executing a user program and the PC is pointing to the next

instruction at $00001244. At that instant, interrupt 4 from a printer occurs. Will it be

recognized? Explain.

Indicate the contents of the stack, if the interrupt is recognized.

(b) Interrupt 4 is user vectored with a vector number 72. Interrupt 4 service routine’s

starting address is $00001620. What is the vector location address and what are the

contents of that location?

(c) What are the contents of the status register soon after the recognition of interrupt 4?

FIGURE 5.14 An interrupt- Memory and I/O Interface logic and 68000

driven 68000 system (for Dynanie RAM rs

controller Problem 5.7).

5.8

5.9

Initial values: SSP = $000030000; USP = $000020E0; SR = $0000

Suppose the system of Figure 5.14 is servicing interrupt 4 from the printer. The user byte

of the status register is $04. Interrupt 7 from the dynamic memory controller occurs as the

processor is executing the MOVE instruction in the following program segment:

PC value Instruction

$000016A0 MOVE.L #$002211CC,De

ROL.W #2,De

(a) Will the interrupt be recognized? Why or why not?
(b) If the interrupt is recognized, what are the contents of the supervisor stack?
(c) Interrupt 7 is autovectored. Where does the processor go to obtain the interrupt 7

exception routine starting address?

In a particular application, the SSP and USP are initialized at $000A00 and $0009E0,
respectively.

Problems 145
Sa ee

(a) How much minimum stack space is required to store the appropriate registers in the
event of an interrupt?

(b) How many interrupts can be nested without running out of supervisor stack space?

5.10 Specify the advantages and disadvantages of the autovector and user vector methods. How
many total user vectors are there?

5.11 In a particular 68000-based system, the starting addresses of the autovectored interrupts are
as follows:

interrupt 1: $00001040
interrupt 2: $00001080

interrupt 3: $000010C0
interrupt 4: $00001100

interrupt 5: $00001140

interrupt 6: $00001180
interrupt 7: $000011C0

Indicate the contents of the exception vector table containing the preceding information.

Clearly identify the vector numbers and vector locations.

5.12 What are the vector numbers and vector locations for the uninitialized and spurious

interrupt exceptions?

What are the primary differences between these two interrupt conditions?

5.13 What are the vector numbers and vector locations for TRAP #3, TRAP #5, TRAP #9,

and TRAP #14.

Is TRAP #15 higher, lower, or at the same priority level as TRAP #0? Explain.

5.14 Suppose it is necessary to run the operating system routine shown in Figure 5.8 as TRAP

#4, which begins at a starting address of $0000140C.

What modifications should be made in this software routine so that it will be

executed when the user calls TRAP #4?

5.15 Modify the software of Figures 5.8 and 5.9 so that the USP is initialized at $00004000

when TRAP #4 (starting at $0000140C) is called by the user routine.

5.16 Write a TRAP #6 routine (for a 68000 system) starting at $000016E0 to reset the system

peripherals, go into a stop condition, and load SR with $2400. Indicate the contents of the

appropriate vector locations.

5.17 Write a TRAP #7 routine starting at $00001700 to input a character from an I/O location

at $0000F800 into the DO register and echo the character to an output terminal at

$0000F802. Indicate the contents of the appropriate vector locations.

5.18 List the errors that cause exceptions in a 68000-based system in the order of their priority,

from highest to lowest. Which errors are software related and which are hardware related?

5.19 A 68000-based system is in the user mode. In the following cases specify any error or

exception conditions:

(a) MOVE.B Al,A2
(b) CLRA.W A3
(c) DC.W $FFOO
(d) ANDI.W #$FFO0,SR

146 Chapter5 68000 Exception Processing Considerations

5.20 With reference to Problem 5.19, specify the vector numbers and vector locations in case of

5.21

§.22

5.23

5.24

5.25

error conditions.

A system is in the user mode. Identify any error or exception conditions when the software

that follows is executed. Initially, DO = $00000004; D1 = $0000FFCC.

LOOP MOVE.L D1,De

DIVU DO,De

DBEQ DO, LOOP

NOP

STOP #$0700

Where does the processor go in case of an error condition?

A 68000-based system memory and I/O are between $000000 and $00FFFF. The initial
values of the registers are

AO = $000FFEEA Al = $0000CDEF A2 = $00000CCC SR = $0404

Specify whether any error conditions occur in each of the following:

(a) MOVEM.L DO-D7, (AO)

(b) MOVEP.L (Al), D2
(c) CLR.L = $07(A2)

A 68000-based system memory and I/O are between $000000 and $00FFFF. The initial

values of the registers are

AO = $000FFEEA A1 = $0000CDEF A2 = $00000CCC SR = $0404

USP = $00002000 SSP = $00000A00 DO = $00000003

Specify whether there is an error condition in any of the cases that follow. If so, specify

the error, the exception vector number, and the vector location. Also indicate the contents

of the stack using the initial values as stated.

(a) ADD.B_ (A0),D2

(b) SWAP Al

(c) CLR.L $04(A2,D0.W)

Identify four different instances of a double bus fault condition in a 68000-based system.

Refer to the supervisor stack contents given in Figure 5.15.

(a) The processor is executing an interrupt 6 routine. When RTE is executed as the last

instruction of this routine, where does the processor go? Explain.

(b) Another RTE is executed at the end of the resumed routine of (a). Where does the

processor go? Explain.

(c) The routine that was suspended when interrupt 6 occurred must have been of a certain
type. State the type and explain.

Endnotes 147 a Ft Tet a: ROP eT tes ENON NE

FIGURE 5.15 Supervisor stack

contents (for Problems 5.25, SSP = $0000096C=> | 2300 | Current top of stack
5.26, and 5.27). 0000

1600
0004
0000

Top of stack at initialization

5.26 In Figure 5.15, the SSP pointing to the top of the stack at initialization must have been

what initial value? Why?

5.27 Due to a memory read error, the entry $213C in the stack in Figure 5.15 has been read as

$213B. Where will the processor go to execute the next instruction? Explain.

ENDNOTES

1. Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

. Scanlon, L.J. The 68000: Principles and Programming. Indianapolis: Howard W. Sams,

1981.

. Motorola, Inc. MC68000 16/32-Bit Microprocessor Programmer's Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1987.

. Andrews, M. Self-Guided Tour through the 68000. Englewood Cliffs, NJ: Prentice-Hall,

1984.

. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

i)

1s)

£

Nn

Oo

~—

CHAPTER

6

68000 Hardware Considerations
and Design Applications

Objectives

In this chapter we will study:

Hardware signals and buses of the 68000

Memory and I/O interface schemes and design

Control interface schemes

System-level busing schemes, such as the VERSA and the VME

6.0 INTRODUCTION

In chapters | through 5, our focus was on the general architectural features and software
aspects of the 68000 microprocessor. In this chapter, we will explore the hardware as-
pects of a 68000-based system.

Generally speaking, all microprocessors have an address bus for addressing in-
structions and operands, a data bus for data and operand transfers, and a control bus for
control and timing signals. A bus is a collection of signals with similar properties. The
68000 processor has additional busing features for asynchronous and synchronous data
transfers, interrupt and DMA (direct memory access) transfer operations, and system
control.

The material in this chapter will provide the necessary background to understand
the essential hardware features of the 68000. In addition, it will provide insight into the

68000 Hardware Signals and Functions 149

system control and error detection schemes associated with the 68000 family. These

processors follow memory-mapped I/O schemes, in which the processor communicates

with an I/O device as if it were one of the memory locations. The word memory will be

used to refer to both memory and I/O in our discussions, unless otherwise specified.

6.1 68000 HARDWARE SIGNALS AND FUNCTIONS

Figure 6.1 indicates the pin configuration of the 68000, and Figure 6.2 is a system rep-

resentation. The 68000 is contained in a 64-pin DIP package or a 68-pin grid-array

package. It is fabricated with either NMOS or CMOS technology. For the corresponding

signal properties, appropriate data books should be referenced.'

Data D4 1 D5 _ Data

D3 ») D6

D2 si D7

D1 4 D8

DO 5 D9
Address strobe AS 6 D10

Upper data strobe UDS i) > Dil
Lower data strobe LDS 8 D12

Read/write R/W 9 D13
Data acknowledge DTACK D14

Bus grant BG D15
Bus grant acknowledge BGACK V,, Ground

Bus request BR A23_ address
Power Vp A22
Clock CLK A21

Vien Power Ground Vss
A20 address Halt HALT

Reset RESET Al9

Valid memory address VMA A18
Enable clock 118 Al7

Valid peripheral address VPA Al6
Bus error BERR Al5

Interrupt priority inputs IPL2 Al4
IPL1 Al3
IPLO Al2

Function code outputs FC2 All
FC1 A10
FCO A9

Address Al A8
A2 A7
A3 A6
A4 AS

—P _ Input

<—+——_ Output
<«—>_ Bidirectional
Overbars indicate low-active signals.

FIGURE 6.1 The 68000 pin configuration.

150 Chapter 6 68000 Hardware Considerations and Design Applications

Memory or I/O 68000 processor Memory or I/O

Address FUNCTION CONTROL:

SYNCHRONOUS
CONTROL:

Enable
Valid peripheral address
Valid Memiory address

Data

_ ASYNCHRONOUS

CONTROL:

Address strobe

Lower data strobe

Upper data strobe
Read/write

Data acknowledge SYSTEM CONTROL:

Reset

Halt

Bus error

INTERRUPT

CONTROL: J

8 Level encoded

inputs \

BUS ARBITRATION
CONTROL FOR DMA:

Bus request

Bus grant

Bus grant acknowledge

Clock

Power (2) ————

Ground (2) -—-->

FIGURE 6.2 System representation of the 68000.

Address, Data, and Asynchronous Buses for the 68000

The address bus is a 23-bit (Al—A23) unidirectional tristate bus, capable of addressing

8 megawords (or 16 megabytes) of data or operands. It provides the address of the op-

erands during the read and write bus cycles. During a read bus cycle, the processor

reads the instructions or source operands from the memory. During a write bus cycle,

the processor writes data into the memory. During the interrupt acknowledge cycle, ad-

dress lines Al, A2, and A3 provide information about the level of interrupt being ser-

viced. Address lines A4 through A23 are set to a high logic level.

The data bus is a 16-bit (DO—D15) bidirectional tristate bus, capable of transfer-

ring byte- or word-sized operands between the processor and the memory (or I/O).

The asynchronous bus is used to control asynchronous data transfers of varying

response times between the processor and the memory or I/O units. For the 68000 pro-

cessor, the asynchronous bus consists of five control signals:

68000 Hardware Signals and Functions 151

. AS (address strobe output);

. R/W (read/write output);

. LDS (lower data strobe output);

. UDS (upper data strobe output); and

. DTACK (data acknowledge input). a & & YO =

An AS signal signifies that the address information on the address lines is valid.

An R/W signal at a high level signifies a read bus cycle; at a low level, it signifies a

write bus cycle.

When LDS is low, data on lines DO through D7 are selected. This data element is

known as the lower byte (or the odd byte). When UDS is low, data on lines D8
through D15 are selected. This data element is known as the upper byte (or the even

byte). When both LDS and UDS are low, data on lines DO through D15 are selected.

Figure 6.3 illustrates the data-selection scheme.*

Data not selected

Lower byte (DO-D7) selected

Upper byte (D8—D15) selected

Word (both bytes: DO—D15) selected

FIGURE 6.3 LDS and UDS signals selecting lower or upper data bytes or word of

memory (or I/O).

The 68000 processor activates the AS, R/W, LDS, and/or UDS signals along with

the address information for a read or a write bus cycle. The addressed memory (or the

I/O system) activates an acknowledge signal DTACK to the processor, while providing

the data to the processor (read cycle), or accepting the data from the processor (write

cycle). The processor does not terminate the bus cycle and insert wait states until

- DTACK has been generated. Thus, depending upon the speed of response of the mem-

ory or the I/O system, data transfers between the processor and these systems vary in the

time they take. Consequently, we have an asynchronous data-transfer mechanism in the

68000 family of processors.“

Function Code Outputs

The function code outputs FC2, FC1, and FCO provide status information about the pro-

cessor, as indicated in Figure 6.4. These outputs from the processor can be used to dis-

tinguish between the user and supervisor modes of operation and between program and

data space within each mode. When the processor accesses the reset vectors (vectors 0

and 1) or the program code, it is in the program space. Any other operand access is in

152 Chapter 6 68000 Hardware Considerations and Design Applications

Reserved for Motorola User

Data space User

Program space User

Reserved User

Reserved for Motorola Supervisor

Data space Supervisor

Program space Supervisor

Interrupt acknowledge Supervisor

0

0

0

0

l

1

1

1 PrOoOorRHFoo KHororord

FIGURE 6.4 Function code outputs; associated states and modes.

the data space. External logic can be used to decode these function code conditions

and prevent supervisor memory from being accessed when the processor is in the user
5 mode.

Other Buses and Signals

The synchronous bus in a microprocessor is used to control synchronous or timed data

transfers between the processor and the memory or I/O. In the 68000, this bus is used to

interfere with the earlier 6800 family of synchronous peripherals. In a synchronous op-

eration, data transfers take place within a fixed time frame, as opposed to variable tim-

ing in the case of asynchronous operation. The synchronous bus for the 68000 consists

of three signals used for 6800 peripheral control:

1. E (enable clock) output;

2. VMA (valid memory address) output; and

3. VPA (valid peripheral address) input.

The E clock is one-tenth the frequency of the 68000 clock input and is used to synchro-

nize the 6800 family or similar synchronous peripherals used with the 68000. A VMA

signal indicates to the 6800 family devices that there is a valid memory address on the

address lines and that the device should be synchronized to the enable clock. VPA indi-

cates to the processor that the addressed device is a synchronous device. Also, during an

interrupt acknowledge cycle, VPA is used by the interrupting device to indicate an

autovectoring mechanism to the processor.

The arbitration bus is used for direct memory access (DMA) data transfers. In

such transfers, the processor releases the address, data, and control buses, and external

logic controls them for direct data transfers. DMA transfers are faster than memory
transfers requiring processor intervention, since no time is needed for instruction fetch

cycles. The arbitration bus for the 68000 consists of three arbitration signals:

68000 Hardware Signals and Functions 153
eR a em Se Pk eet Od Te Re EE ke

1. BR (bus request input);

2. BG (bus grant output); and

3. BGACK (bus grant acknowledge input).

The external logic requests the bus release by activating the BR line. The processor re-

sponds to this request by activating its BG output. The requesting device then acknowl-

edges the response by activating the BGACK and subsequently takes possession of the

buses. The DMA transfers take place until the external logic releases the buses and
BGACK.

The interrupt control bus is used by the external devices to request the attention

of the processor. The processor recognizes these requests and services them in a level-

priority scheme. The interrupt control bus for the 68000 consists of encoded IPL2,

IPL1, and IPLO inputs (IPL stands for interrupt priority level).

The system control bus is used for system initialization and error control. For the

68000, it consists of the RESET and HALT bidirectional signals and the BERR (bus

error) input signal.

The clock input signal advances the processor through the sequential states of op-

eration. For the 68000, each read or write bus cycle (without wait states) consists of

four clock cycles. Any wait states are integral multiples of clock cycles.

The 68000 operates on a 5-volt power supply. Two pins are allocated for the Vcc

input and two for the ground connection. Some of the signals we mentioned may go into

a tristate or high-Z condition under special conditions. Figure 6.5 is a summary of the

68000 signals.

We will now review the hardware aspects of the 68000 by means of an example

problem.

Example 6.1 68000 signals and definitions.
The 68000 microprocessor employs a memory-mapped I/O approach, in which memory

and I/O appear to be similar.

1. With 23 address lines and LDS and UDS signals, how many total memory and I/O

bytes can be addressed? Explain.

2. Can the processor use the synchronous bus for I/O transfers and the asynchronous

bus for memory transfers simultaneously?

3. What will be the values of the FC2, FC1, and FCO outputs while the processor is

fetching interrupt autovector 6. Why?

Solution

1. Memory and I/O bytes: With 23 address lines, 8 megawords (2°? = 8,388,608) of
memory and I/O together can be addressed. LDS and UDS signals further select an

odd or even byte within the word.

Total memory and I/O addressing = 8 megawords = 16 megabytes

T
H
A
X
T

A
L
I
A
O
e
d

LI
N

Y
Y
A
L
N
I

|

w
o
t

[
|

u
n
a
n
t

|

y
o
v
o
a

H
O
C
H
Y
T
I
M
O
N
S
O
V

L
N
V
a
Y
D

s
n
d

S
H
A

|

o
n

|

m
o
t

|

a
n
a
i
n
o

|

s
a
r
‘
s
a
n
_

S
H
a
O
U
L
S

V
L
V
G

Y
A
M
O
T

G
N
V

W
A
d
d
n

SV

a
v
i
s

in
di
ng
yj
in
du
y

J
M
O
W
a
U
p

I
U
D

[D
US
I¢

aa
yo
y

154

(-ouy
‘ejosojow

Jo A
s
a
n
o
)

“00089
eu} Joy Arewuns

jeubiS
¢"9-3YHNDIS

(t) GNNOYD

(Z) L
A
d
N
I

Y
A
M
O
d

COA
SHA

p
o
n

H
O
I
H

L
N
d
L
N
O

“194
‘004

S
H
A

L
e

=
)

M
O
T

L
A
d
L
N
O

V
I
N
A

S
S
H
u
d
d
V

A
Y
O
W
A
W

C
I
T
V
A

L

IVH

ON

ON

DMO

LAdLNO/LAdNI

ASHa

Lasad

GON

Ba

on

Gh

MOT

LAdNI

add

dowd

snd

L
A
d
L
N
O

AdGOO

N
O
I
L
O
N
N
A

S
S
H
U
d
C
V

‘TVeadHdIadd

A
r
I
V
A

155

156 Chapter 6 68000 Hardware Considerations and Design Applications

2. Simultaneous usage of buses: Synchronous and asynchronous buses cannot be used

simultaneously. Address and data buses are required for each type of data transfer.

The data transfers must be done one at a time.

3. FC2, FC1, and FCO values: Interrupt servicing activity takes place in the supervisor

mode. Interrupt vectors are in the supervisor data space (refer to Chapter 5 and Fig-

ure 6.4).

FC2 FC1 FCO = 101

For the 68008 processor, there are 20 address lines (AO—A19) and 8 data lines

(DO—D7). This processor can address a total of 1 megabyte of memory and I/O. There

is only one data strobe DS in place of the LDS and UDS signals. VMA and BGACK

signals are dropped, and the IPLO and IPL2 interrupt signals are integrated for the 48-

pin dip package (for the 52-pin, they are left intact). All other hardware features of the

68008 are similar to those of the 68000 processor.

6.2 MEMORY AND I/O INTERFACE SCHEMES

Memory is an integral part of any computer system. The decoded address bus provides

selection signals, called chip select (CS) signals to the memory system. Additional se-

lection signals, called chip enable (CE) signals, are used for further selection of mem-

ory systems. Data transfers take place between the processor and the selected memory
on the data bus. The 68000 processor uses the asynchronous bus to control these trans-
fers. The I/O interface is similar to the memory interface.

Memory-Device Types and Memory Concepts

Memory devices can be classified as random access or sequential access. The random-
access read/write memory (RAM) and the read-only memory (ROM) systems are ba-
sically random access, in which access time to all memory locations is the same. RAM
and ROM devices are used for the main operating memory of the computer system. The
RAM system is suitable for information storage and retrieval; however, it is a volatile
system and loses information if the power is turned off.

The industry uses either static or dynamic RAM devices. The static RAM device
consists of an array of flip-flops contained in a matrix. Each flip-flop acts as a memory
cell. Static memory devices are available in 8K-by-8 and 32K-by-8 configurations as of
this writing. A 32K-by-8 RAM device has 256K (262,144) flip-flops in it.

The dynamic RAM (DRAM) stores information in the form of a charge on the
gate of a single MOS transistor. The dynamic memory cell needs to be refreshed peri-
odically so that charge information will not be lost due to decay. The DRAMs are
denser than the static RAM devices (usually by a factor of four). One-megabit DRAM
devices are common as of this writing. The DRAM interface is more complex than the
static RAM interface. Moreover, the failure rate of DRAM-based systems is greater than
that of static RAM-based systems. In the DRAM systems, however, error detection and

Memory and I/O Interface Schemes 157
Se NE, ee Ee oT Oe TORS EN ROE ndar CU manana rae iy

correction schemes are employed to increase the reliability of the memory system. The
access time of the MOS RAM (static and dynamic) is approximately 100 to 200 nano-
seconds.

If simple interface and high reliability are required, static RAM systems are pre-

ferred. For high-density applications, DRAM systems with the error correction mecha-

nism are generally preferred.

ROM devices are nonvolatile and retain information even if power to the device
should be disconnected. For mask-programmable ROMs, the code and data contents
are programmed at the factory and cannot be changed. The erasable and programma-

ble ROMs (EPROMs) can be programmed with the help of EPROM programmer sys-

tems. The EPROMs are nonvolatile in the system operation. However, they can be

erased using ultraviolet light or high-voltage pulses and reprogrammed with a new code

and data using EPROM programmer systems. EPROM devices in denominations of 64K

by 8 and 256K by 8 are common, with access times of approximately 100 to 200 nano-
seconds.

NMOS and CMOS RAMs (static and dynamic) are widely used. For fast-access

memories, bipolar static RAMs are preferable. The ROMs and EPROMs are basically of

the MOS type. With ultralow-power CMOS RAMs and a battery backup, it is possible

to obtain a nonvolatile memory system.

Sequential memory systems are nonvolatile and are suitable for backup applica-

tions. They have a larger memory capacity, but also longer access times (up to several

milliseconds).

In this chapter we will concentrate on the commonly used memory system imple-

mentation with static RAM and ROM/EPROM devices.

Address Decoding, Strobing, and Memory Selection

The 68000 system memory is word organized, consisting of even and odd bytes, as il-

lustrated in Figure 6.6. Higher order address bits are decoded and the CS signals are

generated. Each CS signal selects a range of memory. Within the range, the same CS

signal activates both the even and the odd memory units. UDS and LDS signals inde-

pendently activate the CE inputs of the even and the odd byte sections of the memory.

R/W drives the memory units for read or write selection. The low-order address lines

are directly connected to the memory devices in order to select the actual location within

a selected memory device.

The lower (or odd) memory byte is connected to data lines DO—D7. The upper (or

even) byte is connected to data lines D8—D15. An AS (address strobe) signal enables

the decoder logic and initiates the memory bus cycle. The AS, LDS, UDS, and the con-

trol signals occur in a fixed sequence.

Read and Write Timing Considerations

Read Bus Cycle Figure 6.7 illustrates read bus-cycle timing for word operation.

Each clock cycle is divided into two S-states. SO is the starting state of a bus cycle.

During SO, all the strobe signals are at their inactive level. The address and data buses

158 Chapter 6 68000 Hardware Considerations and Design Applications

68000 processor

DTACK

AS
A23

UDS

LDS

DO-D15

Memory and I/O
controler DECODE AND

CONTROL
LOGIC

ENABLE

[>| Decoder inputs

Chip select
signals

[— > Address bus
to other —

units

Address

Read/write
UPPER
(EVEN) (ODD) to other

MEMORY MEMORY units

cs

data

CS

CE

Data bus to

other units CX1 (processor clock)

CS > Chip select; CE => Chip enable

FIGURE 6.6 Memory configuration in the 68000.

FIGURE 6.7 The 68000 read

bus-cycle timing for word DTACK EXPECTED
operation. (Courtesy of Motorola
Inc.)

DATA LATCHED

SO! S1! S2! $3! $4! 851 $6 1:87

Memory and I/O Interface Schemes 159

are in their tristate condition. During S1, the processor puts address information on the
address bus and sets R/W to a high level to signify a read bus cycle. During S2, the
strobes (AS, LDS, and UDS) are activated.

One clock cycle (states $3 and $4) is allowed for the external logic to respond. At

the end of S4, the processor expects DTACK. One clock cycle after the occurrence of

DTACK, the processor accepts data on lines DO—D15 and internally latches it (at the

end of S6, in this case). During S7, the processor deactivates all of the strobe signals

and address lines. The memory system recognizes this event and deactivates DTACK.

This concludes the read bus cycle, whereupon the processor is ready for the next bus

cycle.

The read bus cycle for byte operation is similar. The processor activates LDS for a

low (or odd) byte or UDS for a high (or even) byte, but not both. Without any wait

states, the read bus cycle for a word or byte operation takes four clock cycles.°

Write Bus Cycle Figure 6.8 illustrates write bus-cycle timing for word operation,
which is similar to read bus-cycle timing. During state S2, the processor activates the

address strobe AS and sets R/W to a low level to signify a write cycle. During S3, the

processor puts data on the data bus. During S4, the processor activates the LDS and

UDS signals. When the memory accepts this data, it is expected to activate DTACK by

the end of state S4. If DTACK occurs by the end of S4, the processor waits one more

clock cycle (until the end of S6) and deactivates the strobe signals and the address and

data lines. This completes the write bus cycle. For byte operations, the processor acti-

vates only LDS or UDS, for odd or even bytes.

FIGURE 6.8 The 68000 write

bus-cycle timing for word

operation. (Courtesy of

Motorola, Inc.)

Q E ie) © wv

UDS,LDS

DO-D15

Read-Modify/Write Bus Cycles The read-modify/write operation is required by in-

structions such as TAS (test and set). In TAS instruction, the operand is read from

a location into the processor. It is tested, modified, and written back at the same loca-

tion.’

160 Chapter 6 68000 Hardware Considerations and Design Applications

The read-modify/write bus timing is illustrated in Figure 6.9. The address content
during the operand read and write cycles remains the same. Data content may change,

however.

CLOCK

' 1 ' '
' ' ' 1

' ' '

' ' 1 '
' ' '

' '
[5 ' 1 '
1 ' '

i) ' '

Read Read Write
instruction operand modified

word word operand

FIGURE 6.9 The 68000 read-modify/write bus-cycle timing for word operation.
(Courtesy of Motorola, Inc.)

4
1
'

'

'
)
1
1
'
1
1
'
1
'
'

Wait States Clearly, DTACK is expected by the end of the S4 state for read and
write bus cycles. If DTACK does not occur by the end of S4, the processor inserts a full
clock cycle as a wait state, at the end of which DTACK is checked for.

The processor inserts wait states until either DTACK or a BERR (bus error) signal
occurs. If BERR occurs, the processor aborts the bus cycle and goes into bus error ex-
ception processing, as discussed in previous chapters.

Timing Considerations of Asynchronous Inputs

DTACK is considered an asynchronous control input to the processor. The processor
samples such asynchronous signals on the falling edge of the clock. On the next rising
edge, the processor internally validates the sampled signal. On the next falling edge, the
sampled signal is acted upon by the processor. Thus, there is an inherent clock-cycle
delay to act upon a sampled asynchronous signal. From the read bus cycle of Figure
6.7, it can be observed that DTACK has been sampled at the end of S4 (a falling edge),
internally validated at the end of S5 (a rising edge), and externally acted upon by the
processor at the end of S6 (a falling edge). This clock-cycle delay is intended to elimi-

Memory and I/O Interface Schemes 161

nate uncertainties in bus operation. The other asynchronous inputs to the 68000 proces-
sor are BERR, BR, BGACK, HALT, RESET, and VPA, as indicated in Figure 6.10.

The following example problem provides a review of read and write bus cycles
and timing.

FIGURE 6.10 The 68000 Signal acted upon
sampling of external
asynchronous inputs. (Courtesy

Signal valid
EXTERNAL SIGNALS:

of Motorola, Inc.) Signal'sampled DTACK

BERR

BR CLK
‘HALT
RESET

it VPA

EXTERNAL RGACE
SIGNAL a

—P1 tr Asynchronous
input setup time

Example 6.2 68000 read and write bus-cycle timing.
The 68000 in the system of Figure 6.6 is operating at a 10-MHz clock frequency. Tim-

ings for the read and write cycles are indicated in Figures 6.7 and 6.8.

1. For the given conditions, what is the read access time?

2. Suppose the processor is reading a byte $4D from location $000FFE. What are the

contents of the address bus and data bus and the logic levels of the control signals

during the active read bus cycle?

3. If three wait states are inserted for writing a word at location $001000, how many
clock cycles is the effective write cycle? When are the wait states inserted?

Solution

1. Read access time: The read access time is defined as the time lapse from when the

address has become stable to when the data have become valid. From Figure 6.7, it

can be observed that this corresponds to the time between the end of S1 and the end

of S6; that is, five states, or 2.5 clock cycles. At a 10-MHz clock, each clock cycle

is 100 nanoseconds. Thus,

read access time = 2.5 clock cycles = 250 nanoseconds

2. Active read-cycle operation: Location $000FFE-is an even address. The even (or

upper) byte is selected by the UDS. Reading data $4D from $OO0FFE results in

162 Chapter 6 68000 Hardware Considerations and Design Applications

Address bus (A23-A1) = $000FFE; _ AS is low

Data bus (D7—D0) = tristate; LDS is high(not selected)

Data bus (D15—D8) = $4D; UDS is low(selected)

R/W (read operation) = high; DTACK is low(acknowledged)

3. Wait states during the write operation: The wait states are inserted after state S4.

Each wait state corresponds to one clock cycle. The write bus cycle without wait

states takes four clock cycles. Thus,

write bus cycle with three wait states corresponds to seven clock cycles.

Wait-state insertion for the read bus cycle is similar to that for the write bus cycle

for all members of the 68000 family of processors. It should be remembered that the

68008 processor is a reduced-bus version of the 68000, with a data bus only 8 bits wide.

6.3 MEMORY AND I/O SYSTEM DESIGN CONSIDERATIONS

Any microcomputer system includes RAM (read/write random access memory), ROM
(read-only random access memory), and I/O (input/output) systems. RAM and I/O can
be selected only during read or write operations. ROM can be selected only during read
operations. CS and CE signals are generated in accordance with these constraints.

The Memory Subsystem Design

Figure 6.11 illustrates the details of a 64-kilobyte (64K-by-8) memory system. EO out-
put of the first decoder enables the second decoder. YO output of the second decoder
drives the chip select (CS) inputs of the even and odd memory units. These units consist
of 32K-by-8 memory devices. UDS and LDS further drive the chip enable (CE) inputs
and select the even or odd unit, providing a 64K-by-8 configuration. If both units are
selected, the system becomes a 32-kiloword (32K-by-16) memory system.

The 8-state shift register is the memory controller that provides the DTACK signal
to the processor. Initially, all the Q outputs are at a high level (logic 1). The shift reg-
ister is enabled by the corresponding chip select signal (YO in this case), and starts shift-
ing a logic 0 from QO to Q7 at each CXO clock transition. Depending upon the response
time of the memory system, proper Q output is routed as the effective DTACK input to
the processor through the DTACK logic. The shift register returns to the all-1 condition
when the enable signal (YO in this case) is removed.

For the 68000 family of processors, the first kilobyte of memory corresponds to
the vector table. The first eight locations correspond to the reset vectors, which should
be in the ROM space. In most of the 68000-based systems, these eight locations are
physical ROM locations. In some systems, additional logic is used to shift the memory

68000
processor

ENABLE
ANG
DECODER

(1]

Data bus

Memory and I/O System Design Considerations 163

Address decoding Memory Vee
devices

E0 ENABLE
ei 4/16

DECODER
[2]

D8 ..D15
Upper data bus

Al..AI5
Address bus

YO —>

GRD
ODD

MEMORY
(32K x 8)

LDS —>| CE2
R/W —>| R/W

DO..D7 Doe. DT
Lower data bus Al..A15 AO..A14

Address bus

8-STATE SHIFT REGISTER (as memory controller)

ENABLE YO
CLK CXx0

(twice processor
clock CX1)

Q7 Q6'Q5 Q4 Q3 Q2 Qi QO

<m QI!
DTACK |}<— DTACK signals
LOGIC :

<g— other sources

FIGURE 6.11 Memory system and DTACK generation for the 68000.

164 Chapter 6 68000 Hardware Considerations and Design Applications

reference of these eight locations to a ROM device elsewhere in the memory map. The

other part of the vector table can be contained in the RAM space. On system power-up,

the reset routine initializes the vector table with proper values.

Signal Buffering Considerations

Due to electronic loading constraints, signal buffering is used to increase the drive capa-

bility of the signals. Transceivers are used to accomplish the buffering, as indicated in

Figure 6.12. A transceiver is a logic device that can transmit a signal in either direc-

tion, depending upon the direction control. The address and the unidirectional control

signals are buffered by transceiver bank [1] to go from the processor to the memory or

I/O (X to Y). The data bus is buffered by transceiver bank [2], which is controlled by

the R/W signal. For read operations (when the R/W signal is at a high level), data flows

from the memory or I/O to the processor (Y to X), and vice versa.® In this conceptual

framework, the memory or I/O system can be expanded to any size.

The following example problem provides a review of memory system design.

FIGURE 6.12 Signal buffering The 68000 from
in a 68000-based system. memory system Transceiver Memory units

of Figure 6.3 bank [1] from Figure 6.3

R/W drives
DIR inputs

of

transceiver

bank [2]

Transceiver

bank [2]

DIR = 0: Transmission from X to Y

1: Transmission from Y to X

Memory and I/O System Design Considerations

Example 6.3 Memory system design.
Refer to the memory system of Figure 6.11.

1. Specify the memory or I/O ranges that can be selected by the EO through E15 signals
from the first decoder and the YO through Y15 signals from the second decoder.

2. The Y14 and Y15 signals are ANDed to generate an I/O chip select. What is the

corresponding I/O range?

3. How much delay is there from the time the memory units are selected (YO becoming

active low) until DTACK occurs for the conditions indicated?

4. If the transceiver IC is 8 bits wide, how many such ICs are required for transceiver

banks [1] and [2] in the system of Figure 6.12?

Solution

1. Memory or I/O ranges: The first 4/16 decoder divides the available 16-megabyte

address space into 16 equal ranges of 1 megabyte each. Thus, each E output goes

low for a 1-megabyte range and selects memory as follows:

EO selects range $000000..$0FFFFF

EI selects range $100000..$1FFFFF

E15 selects range $F00000..$FFFFFF

The second 4/16 decoder is activated by the EO output of the first decoder. The sec-

ond decoder further divides this 1-megabyte range into 16 equal ranges of 64 kilo-

bytes each. Thus, each Y output from the second decoder goes low for a 64-kilobyte

range and selects’: memory as follows:

Y0 selects range $000000..$00FFFF

Y1 selects range $010000..$01FFFF

Y15 selects range $0F0000..$0FFFFF

2. I/O chip select: From the preceding solution, it can be seen that the Y14 and Y15

ranges are

Y14 = $0E0000 through $0EFFFF = Y15 = $0F0000 through $OFFFFF

ANDing these two 64-kilobyte ranges would yield a 128-kilobyte I/O chip select

range between $0E0000 and SOFFFFF.

3. Delay for DTACK occurrence: The QI output of the shift register goes to active

zero two CXO clock activations after the YO signal goes active low and selects the

165

166 Chapter 6 68000 Hardware Considerations and Design Applications

memory. CX0 is twice the frequency of the CX1 processor clock, and two CX0 ac-

tivations correspond to one CX1 activation. Q1 is routed as the DTACK input to the

processor. Thus, DTACK occurs one processor clock after the selection.

4. 8-bit transceiver ICs for buffering: Transceiver bank [1] buffers 27 signals and re-

quires 4 ICs. Transceiver bank [2] buffers 16 signals and requires 2 ICs.

In our discussion thus far, we have emphasized static RAMs, which are composed

of flip-flop arrays. Dynamic RAMs, which involve charge storage on a capacitive ele-

ment and periodic refresh of the charge, are becoming increasingly popular. Dynamic

RAM devices are two to four times denser than static RAMs. However, they require

complex memory controllers and use interrupts for refresh by the processor. We will

discuss dynamic RAM implementation schemes along with the interrupts in subsequent

chapters.

As of this writing, 64-kilobyte static memory devices and 256-kilobyte dynamic

memory devices are becoming available. Some of these devices have an additional se-

lection control input called the output enable (OE), which is similar to the CS and CE

inputs. The I/O interface is essentially similar to the memory interface. Data books may

be consulted for design details.”

6.4 CONTROL INTERFACE SCHEMES

In addition to the memory and I/O interface, processors have a control interface. The

primary hardware signals that control and direct the 68000 microprocessor are RESET,

HALT, and BERR (bus ertor). The DMA and interrupt signals (to be discussed later)

also control the processor. In this section, we will first consider the reset and halt inter-

face and follow with a discussion of timing signals and the bus error.

Reset and Halt Interface

Figure 6.13 illustrates the reset and halt interface with the 68000 processor. For the val-

ues shown, the MC3456 monostable produces a 100-millisecond pulse on the power-up
reset. This activates both the RESET and HALT inputs to the 68000. On power-up, pro-
cessors usually require more time to come to a stable state due to electronic and switch-
ing transients. The 68000 requires at least a 128-clock-cycle time equivalent to come to
a stable state on the power-up condition. The 100-millisecond reset and halt pulses are
more than adequate for any 68000 family member. For a reset condition to occur, both
the RESET and HALT inputs should be activated to a low level.

The processor goes into the supervisor mode on reset. Reset exception processing,
which is always the system’ initialization routine, starts as soon as the RESET and
HALT are negated (go to high-level). The same sequence of operations occurs for the
manual reset. The 74LSO0 cross-coupled gates debounce the reset switch, providing
clean RESET and HALT activation to the processor. Manual activation should last for at

Control Interface Schemes 167

MC6800 — RESET AND HALT

.l uf

alia TS
PWR ON TO RESET ON MC3456 RESET OTHER DEVICES

74L305

) > do
74LS32

N.O. a
O ee

= N.C. Fe
O

BD. K

MANUAL

150Q

Single-step +V O of

FIGURE 6.13 Reset and halt interface for the 68000. (Courtesy of Motorola, Inc.)

least ten clock cycles. (Refer to Chapter 5 for software details on reset exception pro-

cessing.)

Of particular interest is the bidirectional property of the RESET line. The proces-

sor can execute a software reset instruction in the supervisor mode. The reset line then

acts as an output, resetting the other peripherals connected to the 68000. When the pro-

cessor drives the RESET line as an output, it goes active low for 124 clock cycles.

When the bidirectional HALT line is used-as an input in conjunction with the

RESET input and is activated by external circuits, the 68000 goes into a system reset

condition. On the other hand, if the HALT input is activated individually, the processor

is halted after the completion of the current bus cycle. In the halt state, address and data

lines are put in their high-impedance state, and the control lines are negated; however,

the DMA control lines are available for bus arbitration. The halt condition of the pro-

cessor is used for hardware troubleshooting and single-step operation. The processor re-

sumes the halted operation soon after the negation of the HALT input line.

When a double bus fault condition (Chapter 5) is detected, the processor uses the

HALT line as an output and drives it low; this, in turn, halts any devices connected

to it.

MC68000

MTI-065

168 Chapter 6 68000 Hardware Considerations and Design Applications

Timing Signals Associated with the 68000

The timing signals associated with the 68000 processor are indicated in Figure 6.14. A

32-MHz clock signal is derived from a crystal oscillator circuit. The 8-bit binary counter

(divide-by-256) circuit provides the binary signals:

CXO0 (divide by 2) at 16 MHz

CX1 (divide by 4) at 8 MHz

CX7 (divide by 256) at 1/8 MHz

68000 Address decode
processor and DTACK logic Memory or I/O

Address a ee
data and Chip selects

control address bus,

data bus, and

LDS

UDS DE yg)

DTACK signals

ENABLE
16-STATE SHIFT

REGISTER as bus 8-BIT
error controller Clk COUNTER

BIS 2BA4 mes tredteee) Biles 0) 32-MHz

system clock

pag ee Bl

BERR BERR logic Time out signals
from other memory and I/o

CLK CX1 (processor clock)

E E clock (for synchronous bus control)

FIGURE 6.14 Bus error and timing signals for the 68000.

The CXO signal is used for DTACK timing generation (refer to Figure 6.11). The CX1
signal runs the processor at 8 MHz. Signals CX2 through CX7 can be used by any other
V/O or memory systems. In the case we are now considering, CX7 is used to drive the
bus error control logic. The system clock can be changed to any value that suits the
requirements.

The 68000 processor provides an E (enable) clock as an output. The E clock is
one-tenth the frequency of processor clock CX1 and is used to drive the 6800 or other
synchronous peripherals.

Control Interface Schemes 169

Bus Error Considerations

Of very special importance in all 68000-based systems is the bus error (BERR) signal. It

informs the processor that a bus error has occurred. It originates from a bus error con-

troller, as indicated in Figure 6.14. The bus error controller is usually a watchdog

timer; that is, a counter circuit reset to zero at the start of each bus cycle, which counts

up at each clock transition. When it reaches its set maximum count, it generates a pulse

signifying the time that has lapsed since the start of the last bus cycle.

The 16-state shift register acts as the bus error controller and provides the BERR

signal to the processor. All the B outputs are at a high level initially. The controller is

driven by the ANDed output of UDS and LDS signals from the processor. When a new

bus cycle starts, either UDS or LDS, or both, go to a low-active state (logic 0). Thus,

the controller is enabled during each bus cycle and shifts a logic 0 from BO to B15 at

each CX7 clock transition. Depending upon the maximum allowed response time of the

addressed devices, proper B output is routed as the effective BERR input to the proces-

sor through the BERR logic.

If the DTACK is given out by the addressed device within the time permitted, the

bus cycle is normally terminated and the strobes (LDS and/or UDS) go to the inactive

logic 1 level. This restores the shift register to the all-1 condition, and the BERR acti-

vation does not occur. Otherwise, logic 0 propagates through the shift register and ulti-

mately reaches the processor as BERR (through its selected B output). The processor

then goes into the bus error condition. Software details of bus error exception processing

are discussed in Chapter 5.

On occasion, a particular bus cycle may be faulty and must be rerun. External

logic indicates this rerun condition to the 68000 processor by simultaneously activating

the BERR and HALT inputs. On the occurrence of the rerun condition, the processor

aborts the current bus cycle and goes into a halt state. After the BERR and HALT inputs

are negated (return to a high level), the processor reruns the aborted bus cycle with the

same address and data values. This helps the processor to correct any immediate errors

due to hardware transients on the lines.

The following example problem provides a review of the control interface to the

68000.

Example 6.4 Control interface to the 68000.

The system clock is 32 MHz for the 68000-based systems illustrated in Figures 6.13 and

6.14.

1. What is the frequency of the enable output clock E?

2. What is the minimum amount of time the manual reset should last?

3. The B1 output of the bus error controller is routed as the BERR input to the proces-

sor. How much time would elapse before the BERR input goes to active low after

the strobes have been activated.

170 Chapter 6 68000 Hardware Considerations and Design Applications

Solution

1. Frequency of the E clock: For the conditions given, the processor clock CX1 = 8

MHz. The E clock is one-tenth the frequency of the CX1 clock. Thus,

E clock = CX1/10 = 800 KHz

2. Manual reset timing T: The manual reset should last for at least ten CX1 processor

clock periods. Thus,

T(reset) = 10 x 1/8 MHz = 1.25 microseconds

3. BERR timing: For the conditions indicated in Figure 6.14, the CX7 clock drives the

bus error controller shift register. The shift register is enabled during a bus cycle,

when either LDS or UDS, or both, go low active. It takes two CX7 clockings after

the enable to shift a logic 0 to B1 output. B1, in turn, activates the BERR input to

the processor if DIACK does not occur.

Since the CX7 clock at 1/8 MHz corresponds to 8 microseconds, two CX7

clock periods correspond to 16 microseconds. Thus, BERR occurs (in the absence of

DTACK) 16 microseconds after the strobe activations.

In the preceding example, a delay of up to 120 microseconds can be obtained by

routing B15 as the BERR input to the processor. If more delay is required, additional

counter or shift register circuits can be incorporated into the system.

6.5 68000-BASED BUSING SCHEMES

In order to support system expansion for the 68000 family of microprocessors, Motorola

introduced two busing schemes: the VERSA bus and the VME bus. Both of these

widely used busing schemes support 8-, 16-, and 32-bit data transfers and the associated

protocols. '°!?

The VERSA Bus

Figure 6.15 illustrates a typical VERSA busing scheme. The hardware interface consists

of two edge connectors:

Pl: primary connector— 140-pin interface; and

P2: secondary connector— 120-pin interface.

Primary Interface P1_ The primary interface Pl supports 24 address lines, 16 data

lines, and the associated control lines as indicated. The address, data, and control lines

of the Pl interface are those of the 68000 processor.

68000-BASED VERSA MODULE

—_—— Si? 5"

P1 EDGE
CONNECTOR

(8.5" LONG)

(140 pins on P1)

68000-Based Busing Schemes 171

Pl PRIMARY INTERFACE

24 ADDRESS LINES
16 DATA LINES
5 ASYNCHRONOUS BUS CONTROLS
LEVEL 7 PRIORITY INTERRUPT INTERFACE
LEVEL 5 ARBITRATION
POWER
FAULT DETECTION AND CONTROL
REDUNDANT AND EXTRA PINS

P2 SECONDARY INTERFACE

P2 EDGE
CONNECTOR 50 I/O INTERFACE

! 32-BIT EXPANSION
eon SERIAL COMMUNICATIONS

(120 pins on P2) POWER AND GROUND
EXTRA PINS

FIGURE 6.15 VERSA bus P1 and P2 particulars for 68000-based systems.

The asynchronous bus interface consists of the strobes (AS, LDS, UDS, and

R/W) and the DTACK. The seven-level priority interrupt interface is the standard 68000

interrupt interface. It consists of the interrupt request signals 1RQ1 through 1RQ7 and

the associated interrupt acknowledge signal IACK.

Several of the VERSA modules can be bused together on a VERSA bus back-

plane. One or more processor modules may be used. All the signals are TTL compati-

ble. Each module presents one unit TTL load on the corresponding input signal line.

The bus drivers on each module are of the open collector type and support up to 16-unit

TTL loads.

When several VERSA modules are bused together, there should be a bus arbitra-

tion scheme. The VERSA bus supports such a scheme using the five bus arbitration re-

quest signals BRO—BR4 from the requesting modules to a master controller module.

The master controller responds to the requesting modules by sending a bus clear signal

(BCLR), if the bus is granted.

The P1 interface supports 5, +12, and +15 DC voltages and an ample number of

signal grounds. In addition, there are the numerous fault detection and control lines, in-

172 Chapter 6 68000 Hardware Considerations and Design Applications

cluding BERR and HALT. The PI! interface is generally sufficient if extended capabili-

ties are not required.

Secondary Interface P2 In order to expand the system to full 32-bit address and
32-bit data, a secondary interface through the edge connector P2 is used, as illustrated in

Figure 6.15. This interface also supports 50 I/O lines and serial communications to other

systems. Although the VERSA busing scheme is gradually being replaced by the VME

busing scheme, there are still many VERSA schemes in the industry that are being ex-

panded on an ongoing basis.

CONTROLLER 1 1/0

LOCAL MEMORY
AND I/O

|
Peete as |

iron comme a lh a
es ee se |
ee DMA 1 1/O

VMX
BUS

aT]
ss CONTROLLER 2 l/O

LOCAL MEMORY

CPU? I/O

DMA 2 1/0

GLOBAL
MEMORY
AND I/O

> Z 1o) — ie)

il
FIGURE 6.16 VME busing scheme and structure. (Courtesy of Motorola, Inc.)

68000-Based Busing Schemes 173

The VME Bus

Redefinition of VERSA bus with emphasis on international standards has resulted in the

VME bus. The VME bus interfaces with the VME modules as shown in Figure 6.16. It

is an optimized busing architecture with primary P1 and secondary P2 interfaces through

the respective edge connectors. Up to 16 modules can be interfaced on the backplane

VME bus. These edge connectors are 96 pins each with functional groups as shown in

Figure 6.17.

As illustrated in Figures 6.16 and 6.17, the VME busing architecture consists of

three buses. The VME backplane bus, contained in the P1 interface connector, supports

all of the global resources needed for the VME modules. The VMS serial communica-

tions bus (which is also part of the Pl interface) supports the serial communication be-

tween two or more VME modules. Similar to the VERSA busing scheme, the P1 inter-

face in the VME scheme can handle up to 16-bit data transfers and a seven-level priority

interrupt interface.

The VMX bus, which is part of the P2 interface, is a high-speed parallel bus and

is local to six adjacent modules. This helps to expand the local subsystem. In most 16-

bit applications, the Pl interface would be sufficient. However, if the system needs to

be expanded to 32 bits, or if additional I/O or VMX capabilities are required, a P2 in-

terface should also be used.

System expansion is very easy with the VERSA or VME busing schemes. It is

sufficient to obtain card cages with the VERSA or VME backplanes and populate them

with the respective VERSA or VME modules. The photos of Figure 6.18 are of typical

VERSA and VME card cages and modules.

Detailed specifications are available for both busing schemes. These should be

consulted for further information, such as bus arbitration methods.

We will now review the system-level busing schemes by means of an example

problem.

Example 6.5 VERSA and VME busing schemes.

State which of the two busing schemes, the VERSA or the VME, is preferable in the

following circumstances:

1. an A/D and D/A interface is required;

2. multiprocessing with local I/O and memory resources is required;

3. diagnostics are required.

Give reasons for each of your choices.

Solution

1. A/D and D/A interface: The A/D (analog-to-digital converter) is an I/O device that

converts an analog input signal into a corresponding digital word and interfaces with

174 Chapter 6 68000 Hardware Considerations and Design Applications

—$——— 6.3" +

P1 PRIMARY INTERFACE

24 ADDRESS LINES
16 DATA LINES

Pl EDGE ASYNCHRONOUS BUS CONTROL

CONNECTOR ADDRESS MODIFIERS

96 PINS LEVEL 7 PRIORITY INTERRUPTS

3.93" LONG LEVEL 4 BUS ARBITRATION

mpi! VMS BUS
(96-pin interface) POWER

UTILITIES

P2 SECONDARY INTERFACE

P2 EDGE 32-BIT EXPANSION
CONNECTOR (16 DATA, 8 ADDRESS, 8 AUXILIARY)

96 PINS 50 USER I/O OR VMX BUS
5.25" LONG POWER

(96-pin interface)

FIGURE 6.17 VME bus P1 and P2 interface particulars.

the microprocessor. The D/A (digital-to-analog converter) is another I/O device that

accepts a digital word from the microprocessor and converts it into a corresponding

analog voltage.

Both the VERSA and VME schemes are useful with Pl and P2 interfaces. The

VME scheme, however, shares the 50 connections in P2 between I/O and VMX. If

both the 50-pin I/O interface and the VMX capability are réquired at the same time,

the VME is limited. In such situations, the VERSA bus is preferable.

2. Multiprocessing with local resources: Clearly, the VME busing scheme is prefera-

ble with Pl and P2 interfaces because of well-defined VMX capability for local re-
source expansion.

3. Diagnostics: The VERSA busing scheme is preferable because of its well-defined

fault detection and control on the PI interface, itself.

The VME is one of the most popular busing schemes in the industry. Even though

it was developed for the 68000 family of processors, it supports other processor fami-

68000-Based Busing Schemes 175

Intelligent

Peripherial controller

FIGURE 6.18 VERSA and VME card cages and modules. (Courtesy Motorola, Inc.)

176 Chapter6 68000 Hardware Considerations and Design Applications

lies, such as the 8086/80286/80386. Products that are compatible with the VME bus are

available from several vendors.

Other industry standard busing schemes include the Multibus-11 from Intel Corpo-

ration and the NU bus from Texas Instruments. The system-level properties of these

buses are similar to those of the VME and VERSA buses. The 68000 family of proces-

sors can interface with both of these buses with equal ease.

6.6 SUMMARY

In this chapter we described the hardware signals of the 68000 processor and their prop-

erties. We also introduced the hardware interface schemes for the 68000.
Memory and I/O interface schemes are very important. The read/write random ac-

cess memory (RAM) is particularly suitable for the storage and retrieval of programs

and data. The static RAMs store information in flip-flop arrays. Static RAMs are the

systems of choice in high-reliability applications. Dynamic RAM (DRAM) devices store

information on a single MOS transistor memory cell and are denser than static RAMs.

DRAM-based systems are preferable in applications requiring high density.

ROMs and EPROMs are of the read-only type and are nonvolatile. They are par-

ticularly well suited for storing permanent programs and data elements.

We also studied details of the asynchronous memory and I/O interface, as well as

read and write bus-cycle timings. A bus cycle is normally terminated when the ad-

dressed memory or I/O responds to the processor with DTACK. The processor intro-

duces wait states until either DIACK or BERR occurs. The occurrence of BERR signi-

fies a bus error. The processor responds by going into exception processing.

On considering the important system control interface schemes relating to

RESET, HALT, and BERR, we saw that simultaneous activation of both RESET and

HALT results in a system reset condition. Activation of HALT alone results in a proces-

sor halt condition. Simultaneous activation of both HALT and BERR results in a bus-

cycle rerun condition. Activation of BERR alone results in a bus error condition. The

processor uses the reset pin as an output when executing the RESET instruction. Simi-

larly, the processor uses the halt pin as an output when there is a double bus fault con-

dition.

We ended the chapter with a discussion of the VERSA and VME busing schemes

and interfaces. The VERSA scheme is more flexible, while the VME scheme is more

efficient and universal. Other industry standard buses, such as the Multibus-11 from In-

tel and the NU bus from Texas Instruments, are similar to the VME and VERSA buses.

PROBLEMS

6.1 In byte-organized memory, can the LDS and UDS signals be gated together to form a

single chip select? Why or why not?

6.2 Specify the conditions of the address and the data buses in the following circumstances:

Problems 177
a a

(a) AS is inactive, R/W is low;
(b) AS and UDS are active, LDS is inactive, R/W is high;

(c) an external HALT signal is received by the processor.

6.3 What are the primary differences between the RAM, ROM, and backup memory, such as
a disk?

(a) Can the EPROM be used where the system stack is to be located? Why or why not?

(b) Can the normal RAM be used where the reset vectors are located? Why or why not?

(c) Is it possible to use battery backup RAM in place of a disk-type backup memory?

Why or why not?

6.4 In the memory system of Figure 6.6, the LDS and UDS signals have been interchanged.

Specify the effect on

(a) the memory read operation of the byte, word, and long-word operands;

(b) the memory write operation.

6.5 Under the conditions given in Problem 6.4, specify how the following operands will be

written into the memory:

(a) MOVE.L D0,$1000 DO = $3456789A

(b) MOVEP.L D0,$2000 DO = $A9876543

6.6 Refer to the memory system with the timing waveform given in Figures 6.7 and 6.8.

(a) What are the read and write access times if the processor clock CX1 is 4 MHz?

(b) Repeat (a) with 8- and 12-MHz CX1 frequencies.

(c) Repeat (a) and (b) on the condition of four wait states.

6.7 The 68000 processor performs read-modify/write (RMW) operations while executing

instructions such as TAS. Draw the RMW waveform while the processor is performing

TAS at

(a) location $7000;

(b) location $700A.

6.8 For the memory system of Figure 6.11, what are the chip select (CS) ranges for

(a) the EO through E15 outputs from the first decoder;

(b) the YO through Y15 outputs from the second decoder.

6.9 Design the hardware to generate chip selects to access 4K blocks of memory words as

shown.

ADDRESS ns
68000 DECODER CSO $0000 - $1 FEE

MICROPROCESSOR AND CS1 $2000 - $3 FFE
GATING :

CS15

6.10 In a memory system interface to the 68000 microprocessor, the slow memory has a

response time of 250 nanoseconds and the fast memory has a response time of 62.5

178 Chapter 6 68000 Hardware Considerations and Design Applications
pe se ee

nanoseconds. The processor CX1 clock is 8 MHz. A 16-MHz CX0 clock signal is also

available.

Design a memory controller interface to generate DTACK to the processor.

6.11 Repeat Problem 6.10 to interface memory and I/O with the following requirements:

(a) a response time of 750 nanoseconds;

(b) a response time of 15 microseconds.

6.12 Obtaining the information from data sheets, design the system shown in Figure 6.11 with

real parts.

6.13 Redesign the memory system of Problem 6.12 with high-density parts, such as the

64K-by-8 and 128K-by-8 devices. The RAM should occupy the memory map starting at

location $2000. .

6.14 Using the 64K-by-8 RAM and EPROM/ROM devices, design a memory system for the

68000 microprocessor with the following memory map (word organized):

$000000 to $007FFE RAM or EPROM

$008000 to $00BFFE RAM

$00C000 to $00FFFE EPROM/ROM

$010000 to $01 FFFE I/O space

6.15 It is necessary to protect the supervisor memory from being accessed in the user mode.

Describe a scheme to accomplish this while generating chip select logic. (Hint: The

function code signal FC2 has to be used in the logic.)

6.16 Specify the relative advantages and disadvantages of using the address, data, and control

buffering of Figure 6.12.

6.17 Write software to test the memory in the $020000-to-$021FFE range.

6.18 Design a hardware or software method to test the I/O interface connected to the 68000

microprocessor, occupying a range between $010000 and $01FFFE. (Hint: In the 68000,

V/O and memory look similar.)

6.19 Draw the waveforms of the CX0 through CX7 signals in Figure 6.14, given that the

system clock is 32 MHz.

6.20 Specify all possible valid conditions of the combination of RESET, HALT, and BERR

inputs to the processor. (Note: some combinations may be invalid.)

6.21 What would happen if the RESET input stayed active low all the time? Is there a possible
remedy?

6.22 State two distinct conditions in which the 68000 uses its

(a) RESET output;

(b) HALT output.

6.23 For an 8-MHz 68000 system, what is the minimum time required for the power-up RESET
condition? Why? Describe what happens in the following situations:

(a) the RESET input stays active for only half the time;

(b) the RESET stays active for twice the time.

6.24 With regard to the VERSA and VME busing schemes,

(a) which occupies more physical space?

(b) which is more flexible?

Endnotes 179
a

(c) which is more cost effective?

(d) which is more efficient?

6.25 Is it possible to interface VERSA modules onto the VME bus? If so, indicate how this can

be accomplished.

6.26 Show how the interrupt levels can be increased on

(a) the VERSA busing scheme;

(b) the VME busing scheme.

6.27 Obtaining the information from appropriate data sheets, show how a system can be

expanded using VERSA modules.

6.28 Repeat Problem 6.27 using VME modules.

ENDNOTES

1. Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

2. Motorola, Inc. MC68008 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

3. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1987.

4. Stranes, T. “Design Philosophy Behind the M68000.” Byte (Apr., May, Jun. 1983).

5. Miller, M.A. “68000 Program Applications and Bus Cycle Timing.” Chap. 4 in The 68000

Microprocessor: Architecture, Programming, and Applications. Columbus, OH: Merrill,

1988.

6. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

7. Motorola, Inc. MC68000 16/32-Bit Microprocessor Programmer’s Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

8. Texas Instruments, Inc. TTL and CMOS Data Books. Houston, TX: Texas Instruments,

1988.

9. Toshiba America, Inc. MOS Memory Products Data Book. Tustin, CA: Toshiba, 1988.

10. Balph, T., and Black, J. “Applications of VERSAbus Modules.” Electronic Design (Mar.

1982).

11. Motorola, Inc. The VME Bus Specification. Temple, AZ: Motorola Microsystems, 1987.

CHAPTER

7

The 68000 Parallel
Interface and Applications

Objectives

In this chapter we will study:

Architecture of the 6821 PIA and 68230 PI/T devices

Interfacing the PIA and PI/T

V/O applications using the 68000/6821 PIA

Data entry and display applications

Electromechanical applications

7.0 INTRODUCTION
a ri ty ee ee ee ee

Any microprocessor communicates with the external I/O (input/output) through either a
parallel or a serial interface. In this chapter, we will concentrate on the parallel inter-
face. There are several devices that support either a synchronous or asynchronous paral-
lel interface with the 68000 family of processors. The most widely used are the 6821
PIA for the synchronous interface and the 68230 PI/T for the asynchronous interface. !*

Study of the material in this chapter will provide the foundation for using the par-
allel interface in practical applications.

180

Synchronous Parallel Interface with the 68000 181

7.1. SYNCHRONOUS PARALLEL INTERFACE WITH THE 68000

The earlier 6800 family of peripheral devices are of the synchronous type. These de-

vices can be interfaced easily with the 68000 family of processors by means of the syn-

chronous bus (E, VMA, VPA signals).°

6821 PIA (Peripheral Interface Adapter) Architecture

The 6821 PIA is one of the most widely used 8-bit parallel interface devices. It is con-

tained in a 40-pin NMOS DIP device. The structure of the PIA is indicated in Figure

7.1. It consists of two 8-bit parallel ports A and B and associated control signals CA1,

CA2, CB1, and CB2. Each port consists of three internal registers:

1. ORA and ORB (output registers A and B);

2. DDRA and DDRB (data direction registers A and B); and

3. CRA and CRB (control registers A and B).

68000 and logic 6821 PIA-1 and logic 1/O system

Interrupt IRQA, IRQB

logic

LDS CHIP ENABLE

AS,VMA,
and decoded CHIP SELECTS

address

A2,Al

ORA/DDRA PA7 ..« Port A

A
o CRA CA1 Port A

CA2 controls

ORB/DDRB PB7..PBO Port B

Port B

controls

R/W
RESET RESET

ENABLE CLOCK

FIGURE 7.1 The 6821 PIA architecture and interface to the 68000.

182 Chapter 7 The 68000 Parallel Interface and Applications

The DDR and OR in each port occupy the same address. The control register determines

the individual access.

Output and Data Direction Registers The output registers (ORA and ORB) inter-
face with the external I/O devices and systems and are capable of driving a unit TTL

load. Each bit of these ports is individually programmable to be either an input or an

output. The data direction registers (DDRA and DDRB) determine the direction of the

output register bit. If there is a 0 in the DDR bit position, the corresponding bit is an

input. If there is a 1 in the DDR bit position, the corresponding bit is an output. For

example, if $07 (b7 b6 b5S b4 b3 b2 bl bO = 00000111) is written into DDRA, then

PA7 through PA3 are configured as inputs and PA2 through PAO are configured as out-

puts.

Control Registers CRA and CRB Control register CRA determines the nature of

the control lines CA1 and CA2. Figure 7.2 illustrates the typical structure of CRA. De-

pending upon the application, an appropriate control word can be written into CRA to

configure CAl, CA2, and IRQA (interrupt request port A). The CRB format is similar

to that of CRA; it configures CB1, CB2, and IRQB (interrupt request port B) lines. Bit

2 is very important in CRA and CRB. When it is 0, the data direction register is se-

lected. When it is 1, the output register is selected.

FIGURE 7.2 PIA control b7 b0
ister for port A (CRA). es Cea

Set i Set tt 0 DDRA IROA disabled
CAl CA2 1 ORA IRQA enabled

0 CA2 input
1 CA2 output rE

00 Handshake mode 0 Low transition
0 1 Pulse mode on CAI] recognized
10 CA2 low active

1 1 CA2 high active 1 High transition
on CA] recognized

6821 PIA Synchronous Interface with the 68000

The PIA is an 8-bit device and occupies either the lower 8 bits or the upper 8 bits of the
data bus. To the Hausen vin it resembles four memory locations (ORA/DDRA, CRA,
ORB/DDRB, and CRB).*

Figure 7.1 illustrates the synchronous interface of the 6821 PIA-1 with the 68000
microprocessor. The decoded address bus, along with the AS and VMA signals, gener-
ates the chip selects for the PIA. PIA is connected to the lower data bus DO—D7; ac-
cordingly, LDS is used to enable PIA-1. The A2 and Al address lines drive the PIA
register select inputs RS! and RSO and select either ORA/DDRA, CRA, ORB/DDRB,
or CRB (for 00, 01, 10, 11 conditions on RS1 and RSO).

Synchronous Parallel Interface with the 68000 183

Interface logic senses the chip select signals and generates the VPA signal to the

processor. VPA signifies a successful bus cycle and data transfer. The E clock initiates

the data transfers and concludes the bus cycle.

Interface with any synchronous peripherals is similar to the PIA interface.

/O Interface and Design Applications

One of the most important requirements of a digital system is the capacity for generating

timing waveforms to accomplish various tasks at different intervals. With a microcom-

puter, such waveforms can be easily generated with great flexibility.

The following example problem deals with the initialization of the PIA in wave-

form generation.

Example 7.1 6821 PIA-1 I/O application: waveform generation.
In an industrial application, it is necessary to generate an 8-bit binary word, the value of

which changes as $01, $02, $04, . . ., $08, and another 8-bit binary word, the value of

which changes in increments of three ($00, $03, $06, . . .). Using the 68000/PIA-1

interface of Figure 7.1, develop:

1. the necessary hardware

2. the software to accomplish this task. The base address of PIA is at $020021.

Solution

1. Hardware: The hardware of Figure 7.1 is self-contained. To obtain two 8-bit binary

words, both ports must be configured as outputs. Output drivers may be used to in-

crease drive capability.

2. Software: Figure 7.3 indicates the 68000 operating assembly listings to accomplish

the given task. Between lines 5 and 10, all the PIA registers are declared. Lines 11

and 12 initialize the DO and D1 registers to $00000000 and $01. These registers will

be used in the rest of the software.

Between lines 15 and 18, all the pins of port A and port B are configured as

outputs by writing $FF into the corresponding data direction registers (DDRs). At

lines 21 and 22, $04 is written into CRA and CRB, which changes b2 in these con-

trol registers to 1 and provides access to the output registers instead of the DDRs.

At lines 23 and 24, the byte contents of DO and D1 are output to ports A and

B, respectively. At line 25, the delay routine is called. At lines 26 and 27, DO is

incremented by $03 and D1 is rotated one position left. These operations provide the

next binary words to be output to ports A and B.-At line 28, the BRA instruction

loops the program back to line 23.

The delay routine between lines 31 and 34 produces a software delay, the value

of which depends on the initial contents of D3. This delay is the amount of time

during which the output port values remain the same.

184 Chapter 7 The 68000 Parallel Interface and Applications

LINE ADDR

ke O00 & SI em tn Ww me

PEPE uo NWue

= cr

1?

16

19
cO

Oo00ec00eL
oo0e00eL
o00e00e3
o00e00eS
O00e00es
oo0e00e?
00001200
o0001e0e

00001206

00001c0E

O0001e16

OOO001eLE

4260
1236

13FC
O00e3
Se
O0e?
hake
O0e1
L4AFC
oo0eS

"PIA Gtr ve/T4/a4
;initialize

OPT
ORG

DDRA EQU

ORA EQU
CRA EQU

DDRB EQU
ORB EQU
CRB EQU

STARTMCLIR FE
MOVE.B

;get access

PIA
A
$1200
$0°00e1
$02e00e1
$0200e3
$0c00eS
$0200eS
$0200e?
DO
O1,D1
to DDRA & DDRB

,560 Up POrFts A & Bas Outputs
MOVE.B

MOVE.B

MOVE.B

MOVE.B

;get access
;and output

#$00,CRA

#$00,CRB

#$FF,DDRA

#$FF,DDRB

to ORA & ORB
data

C1 OO001eeb 13FC
0023

C2 OO0012eE 135FC
OOe?

e3 00001236 13Cc0
°4 0000123C 13C1
CS 00001242 61084
°6 00001244 S&40
er 00001246 £319 ROL.B
°6 00001248 &OEC BRA.S
C9 O0000124A 4E?1 NOP
30 ;delay subroutine
31 0000124C 363C DELAY MOVE.W #$0100,D3
de BDOO0L2SO 5345 AGAIN SUBQ.W #$01,D3
43 OO001PSe GEFC BNE.S AGAIN
34 00001254 4kE?7S RTS
34 00001256 END

MOVE.B #$04,CRA

MOVE.B #$04,CRB

MOVE.B
MOVE.B
BSR
ADDQ.W

DO,ORA
D1,ORB
DELAY
#$03,D0
#$01,D1
LOOP

ASSEMBLER ERRORS =

SYMBOL TABLE

AGAIN 00001250 CRA
DDRB O00e00eSs
ORB o00e00eS

o00e00e3 CRB
DELAY 0000124c
START 00001200

OOOe00er? DDRA OO0200e1
LOOP 00001236 ORA QO00200e21

FIGURE 7.3 The 68000 listings for timing-signal generation with PIA.

Synchronous Parallel Interface with the 68000 185

It is possible to interface another PIA to the upper part of data bus. The control

registers can be appropriately configured in a manner similar to that described in Exam-

ple 7.1 to effectively use the control signals. We will deal with interfacing the second

PIA in another example which follows.

Example 7.2. Interfacing a second PIA.
In the control system application described in Example 7.1, it is now necessary to inter-

face a second PIA, PIA-2, onto the upper part of the data bus.

1. Describe how this can be accomplished.

2. What is the memory map of PIA-2 given the conditions described?

3. It is required that a low-to-high transition be recognized on CAI to enable the inter-

rupt and generate a positive pulse on CA2 for PIA-2. Explain the sequence of events

that will accomplish this task.

Solution

1. PIA-2 interface: The PIA-2 interface is similar to the PIA-1 interface of Figure 7.1,

with the following modifications:

PIA-2 68000

Connect DO—D7 data lines to D8—D15 data lines

CHIP ENABLE to UDS

Other control, address, and same as PIA-1

chip selects

2. Memory map of PIA-2: PIA-2 occupies the upper (or even) byte locations com-

pared to PIA-1. Thus, the base address of PIA-2 is at $020020.

The memory map of PIA-2 is as follows:

ORA/DDRA at $020020

CRA at $020022

ORB/DDRB at $020024

CRB at $020026

3. Control word in CRA of PIA-2 for CA1 and CA2 control: Using the CRA format

of Figure 7.2, it can be seen that writing a control word

b7 b6 b5 b4 b3 b2 bl bO.

0.0. O'1 1 1 1 =$2F

into CRA of PIA-2 defines CA2 as a pulse output, recognizes the CA1 low-to-high

transition from the I/O, and activates the IRQA interrupt line to the 68000.

St

csa

y

ve

£7
 Ic

0d

61
 81

LI

oI
SI

vi
€1 cl IT

co}
trTHOMr OO

Ladd 9dd

Sdd

vdd

dd

cdd

Idd Odd

vH €H cH TH aK

LV
d

9V
d

oV
d

vV
d

V
d

cV
d
1V
d

OV
d

97

ysa

'

Lé

es
a Y

1807
J0vjJIOIU]

oyeyspuey

8c csa y Wog WOog

(‘oul ‘ejO1O}OWy JO ASeyNOD) ‘esnjooy!yose pue wesBeIp uld 1 /id O€Z29 PUL HZ AYNDIS
ve ce he Ee

67

O€

I€

ce

€£

oqaUdvVNG

Ould

MOVId

MOVIL

Isa

00d

TOd

NIL/ZOd

=
LANOL/€dd

Ipod

/SOd

/99d

/LOd

y

Jo
xa

[d
n[

ny
]

uo
rj

ou
n,

ul

g
pu
re

d

10
g

d1807T] Bpoyy pue

S19] [OUOD oyeyspuey

o180T jomuod VNWG
/dni1ajuy

110g

sng veg [eurojuy

SI9}SISOY
10199,

Jdn119}UT pue s0ejIojJUy sng ejeqd

2
cd

7d

€d

7d

Id

od

M/
Y

M
O
V
L
G

so

SO
Y

 I
RE
RS
S

R
N

I
8r

Ly

or

Sr

br

eV

ag

Iv

Or

6€

BE

The 68230 Parallel Interface and Timer (PI/T) 187

Consider port A of PIA-2 to be configured as input. In response to the CA1

transition and corresponding interrupt, the 68000 will access and read port A of PIA-

2. Whenever the I/O port is accessed, a CA2 positive pulse, equal to the duration of

one E clock, will be generated. The I/O device recognizes this pulse on CA2 and

moves to the next I/O operation.>
The I/O device generates a low-to-high transition on CAI when the next I/O

data are available on port A. I/O operation becomes repetitive. The pulse-mode op-

eration is equally valid when the port is configured as an output and the processor is

writing data to the I/O device.

7.2 THE 68230 PARALLEL INTERFACE AND TIMER (PI/T)

Figure 7.4 illustrates the pin configuration and general architecture of the 68230 PI/T

device. It is contained in a 48-pin DIP package and is fabricated with HMOS technol-

ogy. The 68230 PI/T consists of two bidirectional 8-bit ports A and B and a multipur-

pose 8-bit port C. The bits are individually programmable to be either inputs or outputs

for ail three ports. In addition, there is a 4-bit H port for handshake operations. The H1

and H2 lines are associated with port A. The H3 and H4 lines are associated with port

B. Port C can be configured to handle the interrupts and the DMA functions.

Registers and I/O Ports

The 68230 PI/T consists of 23 active 8-bit registers as shown in Figure 7.5. Information

written into the appropriate registers by the 68000 processor controls the 68230 opera-

tion. Some of the PI/T registers are read-only and contain the status information of the

I/O operations. The 68000 processor reads this information and performs the appropriate

I/O functions as defined by the software. The 68230 PI/T device is very complex; how-

ever, we will present some of the basic features. For further detail, data sheets should be

consulted.

Port Control Registers (PGCR, PACR, PBCR) The modes of operation of ports

A and B and port H (handshake) are controlled by the control words written into the port

general control register (PGCR) and the port A/B control registers (PACR/PBCR).

These control registers are illustrated in Figure 7.6.

Data Direction Registers (PADDR, PBDDR, PCDDR) The direction of each bit

in the port is determined by the contents of these registers. If there is a 1 in a bit posi-

tion, the corresponding port bit is an output; if there is a 0, the corresponding port bit is

an input. For example,

11110000

written into PADDR configures the lower four bits of port A as inputs and the upper

four bits as outputs.

188 Chapter 7 The 68000 Parallel Interface and Applications

Port General Control Reg. Controls port modes

Port Service Request Reg. Controls service routines

Port A Data Direction Reg. Controls direction PA

Port B Data Direction Reg. Controls direction PB

Port C Data Direction Reg. Controls direction PC

Port Interrupt Vector Reg. Contains interrupt vector

Port A Control Reg. Controls H1/H2

Port B Control Reg. Controls H3/H4

Port A Data Reg. Contains I/O data PA

Port B Data Reg. Contains I/O data PB

Port A Alternate Data Reg. Contains instant PA

Port B Alternate Data Reg. Contains instant PB

Port C Data Reg. Contains I/O data PC

Port Status Reg. Contains status Hl —-H4

— Not used

2S Not used

Timer Control Reg. Controls timer modes

Timer Interrupt Vector Reg. Contains timer vector

Counter Preload Reg. High

Counter Preload Reg. Med. Contains 24-bit preloaded number

Counter Preload Reg. Low

Counter Reg. High

Counter Reg. Med. Acts as a 24-bit counter

Counter Reg. Low

Timer Status Reg. Contains status of counters

Not used

Not used

Not used

Not used

Not used

*Relative address increment with respect to the base address.

FIGURE 7.5 The 68230 PI/T register structure.

Data Registers (PADR, PBDR, PCDR) These registers contain the latched I/O
data. Input data is latched during a read operation and output data is latched during a
write operation. When the alternate data registers are used, however, I/O data is not
latched, and is instantaneous. °

Other Registers (PSRR, PSR, PIVR, TIVR) The PSRR controls the service re-
quests of the interrupts, DMA, and the signal lines HI—H4. The PSR contains the status

The 68230 Parallel Interface and Timer (PI/T) 189

FIGURE 7.6 (a) The PGCR

control register and (b) the
PACR control format.

bid .b6: wib5 b4 b3 b2 bl b0

| Mode | Sense

0 : Low active 00: Mode 0 => (Ports and bits
Unidirectional individually 1 : High active
8 bits programmable)

0 : Disable H34/H12
0 1: Mode 1 => (Ports A and B are : Enable H34/H12

Unidirectional together input
16 bits; or output)

—_

10: Mode 2 => (Each port input for
Bidirectional read and output for
8 bits; write)

1 1 : Mode 3 => (Ports A and B together
Bidirectional input for read and
16 bits output for write)

(a)

b7 GMD D4 aS b2 bl b0

H2 H1 Hl

0 0: Submode 0 OXX : H2 input

PACR

Specifies

Double-buffered input 100: H2 output H1 status
negated

0 1 : Submode 1 0: H1 interrupt and
Double-buffered output 101: H2 output DMA request

asserted disabled

1X: Bit I/O 1 : Enabled
1 10: H2 handshake

mode 0 : H2 interrupt disabled
1 : H2 interrupt enabled

110:H2 pulse
mode

(b)

of the handshake port H. The PIVR and TIVR contain the 8-bit address for the interrupt

vectors to be used by the processor. The other counter/timer-related registers are for tim-

ing applications.

Interfacing the 68230 PI/T

Figure 7.7 diagrams the required connections between the 68000 and the 68230. The

68230 PI/T is driven by the 68000 processor clock. The decoded address bus, gated

190 Chapter 7 The 68000 Parallel Interface and Applications

to

1/0

68000 processor Interface logic 68230 PI/T systems

PAO-—PA7

PBO-PB7

_A6
LDS H1

LS 27 (NOR) LS 04 H2

All vgA5 RSL. RSS

5 ADDRESS LINES FOR REG SELECT

DOR D7 DOL. D7

8 LOWER DATA BUS LINES

__R/W R/W
RESET RESET

aim PC3/TOUT IPLO. INTERRUPT /T
TPO) cep PC5/PIRQ
IPL1, IPL2 PC6/PIACK
FCO. . FC2 PC7/TIAC
Al..A3

POO:PCLEPeZ

OTHER 1/0 | PC
FUNCTIONS

DATA ACK
LOGIC

DTACKS from other units

1 active low for $010000 . . $01 FFFF.

FIGURE 7.7 Interfacing the 68230 PI/T and the 68000.

with LDS, generates the chip select CS signal to the 68230. The lower address lines

AS-—A\| drive the register select input lines RSS—RS1 to select one of the 23 active reg-

isters from the register bank.®

The PI/T data lines D7~D0 are connected to the lower byte of the data bus D7—

DO, since the 68230 is selected via LDS. The R/W and RESET signals from the proces-

sor directly drive the corresponding inputs of the PI/T. The multifunction port signals

PC3, PCS, PC6, and PC7 are interfaced with the 68000 through the interrupt control

The 68230 Parallel Interface and Timer (PI/T) 191

logic as indicated. PCO, PC1, PC2, and PC4 are available for any other I/O interface.

Ports A, B, and H are used for the I/O interface.

We will now review the concepts introduced thus far with the help of an example

problem.

Example 7.3 The 68230 PI/T interface.
Consider the interface diagrammed in Figure 7.7.

1. What is the address range for the 68230?

2. Where are PGCR, PADDR, and PBDDR located?

3. Suppose it is necessary to program port A as an 8-bit output port and port B as out-

put on lines PB7—PB2 and input on lines PBI and PBO. Configure the appropriate

registers.

Solution

1. Address range: The Y1 output of the address decoder network is active low for the

address range $010000 to $01FFFF. (Refer to Section 6.3 of Chapter 6.) It is further

gated with the A6 and LDS signals. The CS signal is generated when Y1, LDS, and

A6 are all at a low level. There is a redundant memory map for the 68230 on the odd

address boundary as shown:

Primary ——— $010001 to $01003F

$010081 to $0100BF

$010101 to $01013F
Redundant —— :

2. Locations of PGCR, PADDR, and PBDDR: Following the given address range

and Figure 7.5, all the registers are sequentially mapped at odd byte locations as

shown (primary):

PGCR located at 010001

PADDR located at 010005

PBDDR located at 010007

Redundant locations are also possible.

3. A and B ports (refer to Figure 7.6): Both ports are used in the unidirectional 8-bit

mode (mode 0). As such, PGCR, PADDR, and PBDDR should be initialized as in-

dicated in the diagram that follows. The H port is not used, and PACR and PBCR

need not be initialized.

192 Chapter 7 The 68000 Parallel Interface and Applications

b7 b6 bS5S b4 b3 b2 b!I ObO

ote voce [PoPoPoP [ep]
Port A output

as a
Port B: PBO and PB1

inputs; others output

raooe | tf {i fifi} folo |

In the preceding example, because of the selection of the 68230 due to the LDS

signal, the registers are mapped at consecutive odd byte locations. By changing LDS to

UDS and connecting the data bus of the 68230 to the upper byte of the 68000 data bus

(D8—D15), the 68230 can be easily mapped at consecutive even bytes. To make full use

of the 16-bit data bus of the 68000, one PI/T device is interfaced with the lower byte

and a second PI/T is interfaced with the upper byte of the data bus.

7.3. DATA ENTRY AND DISPLAY SYSTEMS

In any computer system, data entry and data display are of utmost importance. A simple

data entry mechanism may be a switch or a keyboard. A complex data entry mechanism

may involve sophisticated sensors. In either case, the processor reads an input port and

interprets and validates the entered data.

Similarly, a simple data display may. be a light-emitting diode (LED). Complex

data display may involve sophisticated graphics on a terminal. In either case, the pro-

cessor sends the processed data to an output display port.

The Keyboard and Hex Display Interface

As illustrated in Figure 7.8, the keyboard/display interface to the 68000 through the

68230 PI/T combines data entry and display concepts. The keyboard encoder (74C922)

activates one of the X columns and scans the Y rows to detect if any key has been

pressed. When a key is pressed, the 74C922 encodes the X and Y data to corresponding
binary data on its ABCD outputs. In addition, a data-valid signal is generated on its DV
output whenever a valid key is pressed.

System Hardware and Software Considerations

Hardware The encoded ABCD signals and the DV signal from the encoder are inter-
faced to port B. Two 7-segment display devices are interfaced to port A. These devices
(7300 series) have internal decoders and drivers and display the pressed key in hex for-
mat. For this application, port A is configured as an output port and port B as an input
port.

Data Entry and Display Systems 193

FIGURE 7.8 Keyboard/display 68230 PI/T
interface with the 68000 through and 68000 the 68230 PI/T. (Courtesy of HEX 74C922 keyboard (see Figure 7.7 for

keyboard encoder hardware details) Aldo Aden and Ignacio Martinez:
FIU.)

7300 displays
with internal

drivers

MSD

All capacitors are in microfarads.

Software Figure 7.9 is the system flowchart. The assembled listings for the keyboard/

display interface are indicated in Figure 7.10.

Between lines 15 and 21 in the listings, the initializations are accomplished. The

68230 is configured to operate in mode 0 by loading 00 into the PGCR. Port B is con-

figured as input and port A as output by loading 00 and FF into the respective data di-

rection registers PBDDR and PADDR.

The main routine between lines 23 and 36 calls the keycode subroutine to obtain

valid key code. It then sends the valid key code to port A to be displayed. The main

routine also calls the check subroutine to check whether any new key has been pressed.

This is necessary to ensure that the same key is not being recognized all the time. When

a second key is pressed, the main routine shifts the old key code to the MSD position,

FIGURE 7.9 Flowchart for the

keyboard/display 1/O interface to

the 68230 PIT/68000 system.

194

INITIALIZE: PORT A MICRO AND PI/T
OUTPUT; PORT B INPUT OPERATIONS

READ PORT B READ KEYBOARD

DATA VALID ?

DISPLAY IN LSD POSITION KEY CODE TO PORT A

READ KEYBOARD AGAIN

; NO

READ PORT B

DATA VALID STILL HIGH?

READ KEYBOARD AGAIN READ PORT B

DATA VALID ACTIVE
AGAIN?

PREVIOUS CODE TO MSD
PRESENT CODE TO LSD

DISPLAY BOTH DIGITS

SHIFT PREVIOUS CODE
4 POSITIONS LEFT

BOTH KEY CODES
PORTA

DATA VALID
STILL HIGH

D\ bossa al vert beeey/

Data Entry and Display Systems 195

LINE ADDR
1; KEYBOARD/DISPLAY INTERFACE
c; ADEN/MARTINEZ/SUBBARAO 7/86 F.I.U
4; READS AND DISPLAYS VALID KEY CODE

LLEN 106
OP A
ORG $1000

64230 PI/T REGISTERS DEFINED
00010001 PGCR EQU $010001 ;GENERAL CONTROL REG
00010005 PADDR EQU $010005 ;PA DATA DIR REG
OO01000? PBDDR EQU $01000? ;PB DATA DIR REG
00010011 PADR EQU $010011 ;PA DATA REG
00010013 PBDR EQU $010013 ;PB DATA REG
Oo00ge000 STKP EQU $002C000 ;STACK POINTER VALUE
INITIALIZE REGISTERS AND PI/T PORTS

00001000 13FC O000 0001 INIT MOVE.B #$00,PGCR;MODEO
oo001

00001006 13FcC Ooo0 OOOL MOVE.B #$00,PBDDR; PB INPUT
ooo?

00001010 13FC OOFF 0001 MOVE.B #$FF,PADDR;PA OUTPUT
o0o0s

00001018 ebec 0001 OOL1 MOVEA.L #PADR,A3;A3 REFERS PADR
OOOOLOLE eérc 0001 0014 MOVEA.L #PBDR,A4;A4 REFERS PBDR
000010e4 ekrc Oooo 2000 MOVEA.L #STKP,A?r;STACK DEFINED

;KEY PROCESSING AND DISPLAY MAIN ROUTINE:
O00010eA 42640 MAIN CLR.L DO;CLEAR DO
o00010eC 4241 CLR.L Di ;CLEAR Dl
O00010cE 6116 AGAIN BSR.S KEY CODE
00001030 16640 MOVE.B DO,(Ad) ; TO DISPLAY
O000103e 4Eri NOP
00001034 1200 MOVE.B DO,D1 ;SAVE OLD KEY
00001036 61c0 BSR.S CHECK ; SAME KEY CHECK
00001036 610C BSR.S KEYCODE ;GET KEY CODE
0000103A £909 LSL.B #4,D1 ;OLD KEY TO MSD
0000103c DOOo1 ADD.B D1,DO ; TWO KEY CODE
OOOOL03E 1660 MOVE.B DO,(A3) ;DOUBLE DISPLAY
00001040 6116 BSR.S CHECK ; SAME KEY CHECK
00001042 &0Eb BRA.S MAIN ;LOOP BACK
00001044 4Eri NOP

>KEY CODE ROUTINE:READS PB: OBTAINS KEY CODE AS LOW NIBBLE IN DO
00001046 1014 KEYCODE MOVE.B (A4),DO;READ KEY
00001048 O&600 0004 BIst #4,D0 ;DATA VALID ?
O000104C 6GrFéd BEQ.S KEY CODE
0000104E O200 OOOF AND.B #$0F,DO
OO001056 4EPS Ris
;CHECK ROUTINE:CHECKS IF SAME KEY AND LOOPS UNTIL NEW KEY

- 00001056 1014 CHECK MOVE.B (A4),DO;READ KEY
OO0010SA 0400 0004 BIST #4,D0
OOOOLOSE 66FS BNE CHECK
OOO01064 4EPs RTS
00001066 END

FIGURE 7.10 The 68230/68000-based keyboard/display system listings.

196 Chapter 7 The 68000 Parallel Interface and Applications

puts the new code in the LSD position, and displays it (lines 31 to 33). The program

then goes back into the main loop.

The keycode routine between lines 38 and 42 reads port B and loops until the

data-valid signal is high (signifying that a key has been activated). It then puts the valid

key code in the lower nibble of the DO register and returns to the main routine.

The check routine between lines 44 and 47 checks whether the same data-valid

signal is present, signifying that the same key has been kept pressed.

The following example problem provides a review of the keyboard/display inter-

face with the 68000/68230 system.

Example 7.4 Keyboard/display interface with 68000/68230 system.
Consider the hardware and software of Figures 7.8, 7.9, and 7.10.

1. What happens when the same key is kept pressed continuously?

2. The keys are pressed in sequence as follows:

12345

Indicate how the keys are displayed.

Solution

1. Same key: It will be displayed in the LSD position. The program goes into an indef-
inite check loop and will not recognize any other key. This concept is known as key
lockout.

2. Key display: After two key entries, the MSD is cleared to the 0 condition. The dis-
play is as follows:

MSD LSD

after Ist key 0

after 2nd key 1

after 3rd key 0

after 4th key 3

after 5th key 0

—_

an bk wo NR =

The preceding example sheds light on ‘the initialization of the appropriate regis-
ters of the 68230 PI/T. In I/O applications, it is usually necessary to analyze the exis-
ting software and predict the results, as we have done in the second part of the prob-
lem.

Data Entry and Display Systems

The keyboard and segment displays may be replaced by other data entry and dis-
play mechanisms. The concepts we have discussed remain valid. Modifications, such as
software switch debouncing, can be accomplished by checking the key code for same-
ness with a delay in between.

Other Forms of Keyboard and Interface Schemes

The hex keyboard we have examined is of limited scope. The computer and other key-
boards have up to 128 key positions. A 128-position keyboard can be wired as a 16-by-8
XY matrix; however, the key positions can be conveniently located. Figure 7.11 shows
a conceptual 128-position keyboard interface with the 68000 through the 68230 PI/T
port B.

FIGURE 7.11 Conceptual 8/1
128-key position keyboard 16 X 8 key matrix multiplexer
interface to the 68000.

Port B or the 68230 PI/T

68000 processor

The processor activates one line of the 16-column input lines (XO— X15) through a

4/16 decoder connected to lines PBO through PB3 of the PI/T. It then senses one line of

the eight-row output lines (YO— Y7) through an 8/1 multiplexer driven by the lines PB4

through PB6 of the PI/T. The Z output of the multiplexer is connected to the PB7 line.

When a key is pressed, the Z output goes active for a unique combination of the digital

word on lines PBO through PB6. This essentially generates a 7-bit binary code for the

128-position keyboard.

In the case described, only port B of the PI/T is used. PBO through PB6 must be

configured as outputs and PB7 as input. The software generates a sequential 7-bit word

on lines PB6 through PBO. When a key is pressed, the PB7 input is activated. The pro-

cessor senses this condition and matches the 7-bit code on lines PB6 through PBO to the

197

198 Chapter 7 The 68000 Parallel Interface and Applications

FIGURE 7.12 Typical stepper

motors. (Courtesy of Airpax,

Inc.)

pressed key. Additional software can process this binary information to generate other

key codes, such as ASCII. The concept can be extended to any size key matrix.

In order to display one of the 128 keys, more sophisticated display units, such as

the terminal or alphanumeric type, are required.

7.4 ELECTROMECHANICAL APPLICATIONS

Many industrial applications depend on position control, which can be accomplished

with the help of stepper motors. Stepper motors can be controlled by microprocessors

for flexibility and accuracy. In this section, we will describe a 68000-driven electrome-

chanical position control system using the stepper motor. ’**

Electromechanical Applications 199

Rotational and Linear Stepper Motors

In Figure 7.12, we see some typical stepper motors. They are available in the range of

0.9 to 7.5 degrees per step. Each stepper motor has four windings: WO, W1, W2, and

W3. When the code on these windings changes in a given sequence, the stepper rotates

one step either clockwise or counterclockwise, as indicated in Figure 7.13. Linear step-

pers have an internal gear mechanism to convert rotational motion into linear motion.

Counter-

clockwise

First CCW code

Standby

Clockwise 0: Activates the stepper coil.
1: Deactivates the stepper coil.

FIGURE 7.13 W code word for stepper-motor windings.

Stepper-Motor Interface Considerations

Hardware Figure 7.14 shows interface of a 7.5-degree resolution stepper motor with

the 68000/68230 PI/T system. The four windings (WO-—W3) are connected to port A of

the 68230 PI/T through optoisolators and high-current drivers, as shown. Optoiso-

lators prevent the inductive transients from the motor windings from feeding back into

the microcomputer module. The sensor inputs on port B provide an S control word for

the stepper movement. The format of the S control word is as follows:

toa el bal ost

|<—— Number of steps of rotation

b7 = 0 Clockwise

1 Counterclockwise

200 Chapter 7 The 68000 Parallel Interface and Applications

68000/68230 Interface Stepper motor
microcomputer y electronics

SN7406

driver 220

Motor

windings

electronics Sensor inputs

Vico = 5 volts

Vpp = 12 volts

FIGURE 7.14 Typical interface of the stepper motor and the 68000/68230 PI/T system.
(Courtesy of J. Wongchang, J. Launez, and F. Chorlett, FIU).

If the stepper code does not change, the stepper will not rotate and stays in the
same position. When the code is changed, there is some delay before the stepper re-
sponds. A delay of 10 to 100 milliseconds is typical.

Software The operating listings for the preceding stepper-motor system are given in
Figure 7.15. Between lines 5 and 21, the required PI/T registers are declared and initial-
ized. The 68230 PI/T is set up for mode 0 operation, with handshake lines disabled.
Port A is configured as an output port and port B as an input port. The D2 and D3
registers are loaded with the first stepper code words for the clockwise and counter-
clockwise routines, as depicted in Figure 7.13.

Electromechanical Applications 201

LINE ADDR
1;stepper 2/89
re OPT A
3 ORG $1200
4;declare £8230 registers

00010001 PGCR EQU $010001
00010005 PADDR EQU $010005
00010007 PBDDR EQU $01000?
00010011 PADR EQU $010011
00010013 PBDR EQU $010013
0001001D PACR EQU $01001D
0001001F PBCR EQU $01001F
;initialize Port A output & Port B input
00001200 13FcC OO000 0001 INIT MOVE.B #$00,PGCR

oo01
00001208 13Fc 0000 OO01 MOVE.

OO1D
00001210 13Fc o000 0001 MOVE.

OOF

B #$00,PACR

B

00001218 13FC 0000 OOO1 MOVE.B #$00,PBDDR

B

#$00,PBCR

oo00?
O0001ee0 13FC OOFF 0001 MOVE.

0005
;initialize stepper codes
OO001ee8 143cC 00353 MOVE. #$34,De ;cw code
O0001eec 1635C OOGE MOVE. #$66,D3 ;ccw code
00001230 183C OOFF MOVE. #$FF,D4

;read X from PB and rotate stepper accordingly
00001234 1039 0001 0013 READ MOVE.B’ PBDR,DO
O00001e3A 6708 BEQ. NULL ;null routine
00001e3c £306 LSL.. #1,D0
O0001e5E 640C BCG. CW ;clocKkwise routine
00001240 651A BCS". CCW ;counterclockwise
00001242 &OFO BRA. READ
00001244 13C4 0011 NULL MOVE.B D4,PADR
0000124A 6b0E6 BRA.S READ
00001e24C 135Ce 0011 Cw MOVE.B Dce,PADR
OO001eSe 6116 BSR.S DLY ;delay routine
00001254 Ecela ROR.B #1,De
00001e56 ssoo SUBQ.B #c,DO
00001254 66Fe BNE.S CW
00001e5A 60D8 BRA.S READ
o0001eSC 13C3 0011 CCW MOVE.B D3i,PADR
O0001ebe 6108 BoR.5 DLY j;delay routine
000012¢64 E31B ROL.B #1,D3
O00001e66 5500 SUBQ.B #c,D0
00001264 b6Fe BNE.S CCW
O000012e6A 60C84 BRA.S READ
O0001ebC eAac 61A8 DLY MOVE.L #c5000,DS
OoO001er?e 4EPi AGAIN NOP
O0001e?74 0445 ooo1 SUBI.L #01,DS
OOOO17?A GEFE BNE.S AGAIN
Oo001ercC 4EPS RIS

#$FF,PADDR

FIGURE 7.15 The 68000 assembly listings for the stepper-motor interface.

202 Chapter 7 The 68000 Parallel Interface and Applications

The READ module between lines 23 and 28 reads the S control word, checks it,

and branches to the appropriate routines. The NULL module at lines 29 and 30 outputs

the null code to the stepper and branches back to the READ module.

The CW module between lines 31 and 36 outputs the clockwise code to the step-

per, calls the DLY subroutine for the stepper-response delay, and generates the next

clockwise sequential code (ROR.B #1,D2 instruction). It then goes into the CW loop

until the DO register (which contains information about bits b6 through bO of the S con-

trol word) is decremented to zero. In effect, this amounts to rotating the stepper in the

clockwise direction, as specified by the S control word. Finally, the CW module

branches back to the READ module.

The CCW module between lines 37 and 42 is similar to the CW module. It ro-

tates the stepper in the counterclockwise direction as specified by the S control word. It

also branches back to the READ module.

The DLY module between lines 43 and 47 generates the delay required for the

stepper motor to respond.

We will now review the stepper-motor interface by means of an example problem.

Example 7.5 The stepper-motor interface.
Consider the stepper-motor interface described in Figures 7.13, 7.14, and 7.15.

1. Explain in detail how the CCW module works.

2. Assume an 8-MHz processor clock. Compute the approximate delay value for the
DLY routine.

3. The S control word is $0F = 00001 111. How many times will the stepper rotate
and in which direction?

Solution

1. The CCW module: This module is contained between lines 37 and 42 of Figure

7.15. The software details are as follows:

CCW MOVE.B D3, PADR ; Output counterclockwise

code to stepper.

BSRzS DLY ; call the delay routine.

ROL.B #1,D3 ; generate next CCW code in

the upward sequence.

SUBQ.B #2,D0 ; "Subtract 4e* trom=Duky Du

contains left shifted S

control word.

BNE.S CCW > branch. back torceGWeunei |

DO is decremented to

zero.

BRA.S READ ; Dranch back to READ

module.

Electromechanical Applications

2. DLY routine timing Td: The T(R/W) values for the instructions in the DLY routine
are as follows (refer to Section 3.5 of Chapter 3):

T(R/W)

DLY MOVE.L #25000,DS 12(3/0)

AGAIN NOP 4(1/0)

SUB ee UADIS 16(3/0) T = 30

BNE.S - AGAIN 10(2/0) branch taken

8(1/0) branch not taken

The AGAIN loop is run 25,000 times. Each time it takes 30 T-states, as shown. At 8

MHz, each T-state corresponds to 125 nanoseconds. Thus, the approximate delay

time is as follows:

Td = 25,000 x 30 Xx 125 nanoseconds = 93.75 milliseconds

3. Stepper rotation: For the S control word:

$OF =O0001111

The rotation is clockwise, since b7 = 0. The stepper rotates 15 times.

In the preceding example, we have introduced the very practical modular software

approach. It involves writing independent software modules with local parameters and
using them in conjunction with each other to generate system-level software activity.

Position Control Systems

Several stepper motors can be connected to a microcomputer, with each stepper control-

ling one axis. For example, an XY plotter system could have three steppers: X, Y, and

Z. The X and Y steppers would control the X- and Y-axis motions and the Z stepper

would control the Z-axis pen motion. Such a system is illustrated in Figure 7.16. Port A

of PI/T-1 drives the X and Y steppers. Ports B and C of PI/T-1 accept the control words

from the X and Y steppers. Port A of PI/T-2 drives the Z stepper and port B of PI/T-2

accepts the control word from the Z stepper.

The software involves reading each control word and moving the correspond-

ing stepper accordingly. Software for each stepper is similar to that presented in Fig-

ure 7.15. Care should be taken to avoid control of one stepper affecting control of an-

other. '
A robotic system is a more complex position control system in which as many as

ten stepper motors control individual movements. A parallel printer interface involves

controlling three or more stepper motors. The system interface and the software, how-

ever, are similar to those we have described.”

203

204 Chapter 7 The 68000 Parallel Interface and Applications

FIGURE 7.16 X-, Y-, and 68000 processor 68230 PIT1

Z-position control system using
three stepper motors and a
microcomputer interface.

X stepper

Y control word

68230 PIT2

Port A

PA3 .. PAO Z stepper

Port B

PBI ae BO Z control word

PIT1 on odd-byte boundary
PIT2 on even-byte boundary

7.5 SUMMARY

In this chapter we introduced the parallel I/O interface with the 68000 processor. Two of

the most popular and widely used devices are the 6821 PIA and the 68230 PI/T.

The 6821 PIA (peripheral interface adapter) is a synchronous 8-bit parallel inter-

face device, belonging to the earlier 6800 microprocessor. It has two individually pro-

grammable 8-bit I/O ports, A and B, along with the associated control signals. The PIA

contains six internal registers and occupies four bytes of memory space. The processor

communicates with the external I/O with the help of these registers.

The 68230 PI/T (parallel interface and timer) is an asynchronous parallel interface

device belonging to the 68000 family of processors. It has three individually program-

mable 8-bit I/O ports, A, B, and C. In addition, it has a 4-bit handshake control, port H.

The PI/T contains 23 active 8-bit internal registers and occupies 23 bytes of memory

space. The PI/T communicates with the external I/O with the help of these registers.

The 68000 family of processors uses memory-mapped I/O in which the I/O inter-

face is similar to the memory interface. The PIA/68000 interface uses the synchronous

bus. In the case of the PI/T, the asynchronous bus is used.

In the waveform-generation I/O application (Example 7.1), we described the inter-

face of the 68000 and 6821 PIA and the PIA initialization schemes. Waveform genera-

tion can be extended to generate any required timing sequence for digital words.

In our discussion of data entry and display systems, we described the interface of

external I/O units, such as keyboards and segment displays, to the 68000/68230 PI/T

systems. Keys can be electrically wired as an XY matrix. The processor generates a dig-
ital word and drives the interface logic for the matrix-type keyboard. The processor then
senses the key closure through the interface logic and generates the appropriate key code
for the closed key using software routines.

Problems

The stepper-motor interface to the 68000/68230 PI/T system emphasizes electro-

mechanical position control applications. Any complex position control system can be

easily implemented by means of stepper motors and microcomputer control. A three-

stepper system can control XY plotters and a pen-motion mechanism. A robotic system

is a more complex position control system in which up to ten stepper motors control

individual movements.

PROBLEMS

7.1 Using the 68000/6821 PIA interface, develop a waveform-generator system in which

(a) port A resembles an 8-bit up counter and port B an 8-bit down counter;

(b) modification of the software results in a 16-bit shift register type system.

7.2 Describe the details of the 68000/6821 PIA interface with PIA-1 base address at $020021

and PIA-2 base address at $020020.

7.3 For the I/O system of Figure 7.7, specify the address locations of all of the 68230 PI/T

registers

(a) in the primary address range;

(b) in the redundant address range.

7.4 Redesign the I/O system of Figure 7.7 so that the 68230 is contained between $010001

and $010003F, without any redundancy.

7.5 Configure and write proper words into the appropriate PI/T registers so that

(a) PA7 through PA3 are outputs and PA2 through PAO are inputs,

(b) PB7 through PBO are bidirectional, and

(c) handshake lines are not used.

7.6 Configure and write proper words into the appropriate PI/T registers so that

(a) ports PA and PB are 16-bit bidirectional,

(b) port H is low active, and

(c) the H interrupts are disabled.

7.7 Redesign the I/O system of Figure 7.7 interfacing two 68230 PI/T devices. The memory

map indicates PI/T-1 base address at $010000 on an even byte boundary; PI/T-2 base

address at $010001 on an odd byte boundary.

7.8 Given the conditions of Problem 7.7, describe the: memory map of both 68230 devices in

detail.

7.9 State whether the system of Figure 7.7 will function properly under the following

conditions:

(a) LDS and UDS are interchanged.

(b) LDS is inactive all the time.

Briefly explain your answers.

7.10 Design an I/O system with two 68230 PI/T devices and conceptualize how to accomplish

the following tasks:

(a) Drive 32 individual relay coils by the 68230 ports,

(b) Drive 16 individual relay coils and read in a 16-bit I/O control word.

206 Chapter 7 The 68000 Parallel Interface and Applications

7.11 Repeat Problem 7.10, with the system driving all 32 relay coils, but also accepting 32-bit

control information on the same ports. (Hint: External multiplexers may be required.)

7.12 With information from the data sheets, fully explain the operation of the keyboard and the

74C922 interface with the 68000/68230 system.

7.13 Redesign the keyboard/display interface system to allow for an extended display to 4 hex

digits. Port C may be used to drive the extra display digits.

Write the software to achieve the display shift. (The old digit is to be shifted to the

MSD position and the newest digit is to be displayed in the LSD position.)

7.14 Analyzing the software of Figure 7.10,

(a) specify the condition of the display at the time of power-up;

(b) at the beginning of the program;

(c) when the program is running in the loop and the system reset is activated.

7.15 The following keys have been activated in sequence:

1324576809

Using the software of Figure 7.10, show how they are displayed in pairs.

7.16 Modify the software of Figure 7.10 so that

(a) before any key is pressed, 00 will be displayed;

(b) before any key is pressed, a flashing FF will be displayed.

7.17 With reference to the software of Figure 7.10, what will be displayed if two keys are
pressed simultaneously? What is this condition called?

7.18 Design the hardware and software for the ASCII keyboard interface indicated below. You
may use the system video monitor to display the typed characters.

68230 68000 VIDEO
PI/T MICRO DISPLAY

7.19 For the system of Problem 7.18, develop software that will result in key lockout.

ASCII
KEYBOARD

7.20 Repeat Problem 7.19 so that key rollover will occur (that is, keys will be identified in the
order of the scanning sequence of the keyboard).

7.21 With reference to Example 7.5, design a stepper-motor controller system in which the
stepper completes the clockwise rotation of 360 degrees, reverses to perform the
counterclockwise rotation, and so on.

(a) In intervals of 100 milliseconds per step.

(b) In intervals of one second per step.

7.22 Redesign the stepper-control system of Example 7.5 so that each time the stepper is
activated it goes through

(a) a 30-degree rotation;

(b) a 60-degree rotation.

Problems 207

7.23 Design a solar tracking system according to Figure 7.17. Stepper 1, containing optical
sensors, rotates between 0 and 180 degrees in 24 steps and identifies the maximum

intensity position. Stepper 2, containing the solar plates, then rotates to the maximum

intensity position. The solar stepper position should be changed once every ten minutes.

Also develop the software for this system.

FIGURE 7.17 For problems a
7.23 and 7.24 “i * +e

* ‘ *

* \ *

(e) ‘ } =
180 <— « @ +—»> 0

Sensor Solar

stepper stepper

7.24 Repeat Problem 7.23 so that the solar stepper position

(a) is updated every minute;

(b) is updated continuously.

(Hint: The sensor stepper has to scan all 24 positions before moving the solar stepper.)

7.25 A conveyor-belt system is illustrated in Figure 7.18. The S input controls both steppers, as

shown in the accompanying table. Consider 7.5-degree steppers. Slow movement

corresponds to 24 steps per minute. Fast movement corresponds to 96 steps per minute.

Design the system with hardware and software.

7.26 In the preceding problem, the S3 input is a safety input. Design a safety system in which

power will shut down and an alarm will sound if S3 is active high for more than a minute

on a continuous basis.

FIGURE 7.18 For problems
7.25 and 7.26 $3 S2 S1 SO PB3 PB2 PBI PBO

i ‘ INPUTS (PORT B)

STEPPER-1 PAO. . PA3

STEPPER-2

ete eoe 68000/68230 SYSTEM

STEPPER-1 STEPPER-2 SO

S CONTROL
TABLE

nN N

eRe COrFK COO [el i RE

208 Chapter 7 The 68000 Parallel Interface and Applications

ENDNOTES

. Motorola, Inc. “Data Sheets on 6821 PIA.” In Microcomputer Components Data Book.

Phoenix, AZ: Motorola Technical Operations, 1986.

2. Motorola, Inc. 68230 PI/T Data Book. Phoenix, AZ: Motorola Technical Operations, 1986.

[on Nn - WwW

ao ~

\O

. Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

. Miller, M.A. “Parallel Interfacing the 68000.” Chap. 5 in The 68000 Microprocessor:

Architecture, Programming, and Applications. Columbus, OH: Merrill, 1988.

. Subbarao, W. Microprocessors: Hardware, Software, and Design Applications. Englewood

Cliffs, NJ: Prentice-Hall, 1984.

. Andrews, M. Self-Guided Tour through the 68000. Englewood Cliffs, NJ: Prentice-Hall,

1984.

. Airpax, Inc. Data Book on Stepper Motors. Cheshire, CT: Airpax, 1988.

. Fu, K.; Gonzalez, R; and Lee, C. “Introduction.” Chap. 1 in Robotics: Control, Sensing,

Vision, and Intelligence. New York: McGraw-Hill, 1987.

. Scherer, V., and Peterson, W. The MC68230 PI/T Provides an Effective Interface. App.

Note #854. Austin, TX: Motorola Microprocessor Group, 1982.

CHAPTER

8

The 68000 Serial
Interface and Applications

Objectives

In this chapter we will study:

Principles of serial data communication

Architecture of the 6850 ACIA and interface with the 68000

Implementation of the RS-232 serial interface

Architecture of the 68901 MFP and interface with the 68000

System applications using the serial interface.

8.0 INTRODUCTION

Slower I/O systems, such as keyboards, terminals, modems, and other electromechani-

cal units, usually communicate with fast processors through a Wiel) interface. This re-

duces the number of external connections to the processor interface.

Of the several serial interface and communication devices, the 6850 asynchronous

communications interface adapter (ACIA) and the 68901 multifunction peripheral

(MFP) are widely used with 68000-based systems. The 6850 ACIA belongs to the ear-

lier 6800 family and has standard RS-232 interface properties. The 68901 MFP is a

68000-family serial interface device and has additional ports and interrupt processing

logic associated with it.

209

210 Chapter 8 The 68000 Serial Interface and Applications

Study of the material in this chapter will provide background knowledge of serial

data communication concepts. It will also help the reader develop practical applications

using the serial interface.

8.1 SERIAL DATA COMMUNICATION CONCEPTS

The information sending station is called the transmitter and the information receiving

station is called the receiver. In serial communications, data travels between the trans-

mitter and the receiver serially on a single line, one bit at a time. The American Stan-

dard Code for Information Interchange (ASCII), as shown in Figure 8.1, is the most

widely used 7-bit code for serial data communications.

6 is

110 Lh a)

@
A
B
C
D
E

F
G
H
I
J NX «<M ES< | CH uNZXOD

mht OQ th } > © oo <1 oy

FIGURE 8.1 ASCII codes used in microcomputer systems.

Figure 8.2 illustrates a typical asynchronous serial data frame. The start bit sig-
nifies the beginning of the serial data frame. The next seven bits (b6—b0) represent the
ASCII-coded data element. The next bit is the parity bit, which is used for error check-
ing. If even parity is used, the total number of Is in the data frame should be an even
number, including the parity bit. If odd parity is used, the total number of Is in the data
frame should be an odd number. If the parity does not check out at the receiving end,
the data frame is in error and will be rejected. The last bits are the stop bits, signifying
the end of the data frame. There may be one or two stop bits per serial frame.

Serial Data Communication Concepts 211

FIGURE 8.2 Typical serial data b6 dS. -b4. b3 4 b2.. bly bO
frame using ASCII code. Ohne BERR Sidedl eth densa tc Sli phel

| kKi== 7-bit data element ——>| | |

Start Parity Stop
bit bit bits

Direction of data transmission

The rate of data transmission is specified in bits per second and is known as the

baud rate. The transmitter and the receiver are adjusted to the same baud rate. The re-

ceiver recovers the data element from the received serial data frame.

The following example problem will further clarify basic serial data communica-

tion concepts.

Example 8.1 Serial data communications.
Refer to Figures 8.1 and 8.2.

1. Specify what ASCII character is being transmitted.

2. What is the type of parity, even or odd?

3. If the data transmission rate is 300 baud, how many ASCII characters can be trans-

mitted per second on a continuous basis?

Solution

1. ASCII character: The data element contained in b6—b0 is

1011001 = $59

which corresponds to ASCII character Y.

2. Parity: Including the start and parity bits, the total number of Is in the data frame is

equal to 4, which is an even number. Thus, the data frame has even parity.

3. Characters per second: Each serial frame, composed of the start, data, parity, and

stop bits, is 11 bits long and represents one character. At 300 baud, the number of

frames per second = 300/11 = 27.2. Thus, 27 characters per second can be

transmitted.

A baud rate of 300 is relatively slow, but is standard for such electromechanical

equipment as keyboards and terminals. With electronic high-speed serial devices, such

as modems, higher rates of up to 9600 baud are quite: common. Other codes, such as the

212 Chapter8 The 68000 Serial Interface and Applications

8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC), are also very

popular. In any event, the basic concepts of the serial data communication remain the

same.

8.2 6850 ACIA GENERAL ARCHITECTURE

The ACIA is a 24-pin DIP device fabricated with NMOS technology. It is one of the

industry standard serial communication devices. In Figure 8.3, the pin configuration and

internal architecture of the 6850 ACIA are diagrammed.*””

Registers and I/O Ports

As shown in Figure 8.3(b), the ACIA consists of four registers:

the control register (CR);

the status register (SR);

the transmit data register (TDR); and

the receive data register (RDR).

The control register (CR) is a write-only register and is written by the processor

to configure the ACIA mode of operation.

The status register (SR) is a read-only register and is at the same address space as

the CR. It contains the status of the events associated with the ACIA. The processor

reads and interprets the status information and performs the appropriate operations.

The transmit data register (TDR) is a write-only register. The processor writes

the 8-bit word to be transmitted into this TDR. The parity and control units in the ACIA
insert proper parity, start, and stop bits to the data element and generate a complete se-
rial frame. The transmit control logic in the ACIA shifts this frame serially on the trans-
mit data (TXD) line.

The receive data register (RDR) is a read-only register and is at the same
address space as the TDR. It receives the serial data on the receive data (RXD) input
line and converts it into an 8-bit parallel word. The parity and control units within the
ACIA check and separate the parity, start, and stop bits. The processor reads this 8-bit
data in the RDR when it is ready. Any parity error information is sent to the status
register.

The ready-to-send (RTS) and clear-to-send (CTS) lines are handshake signals
between the ACIA and the I/O units. The data carrier detect (DCD) signal is an input
to the ACIA and signifies that the transmission carrier is in progress. The register select
(RS) line is used to select between the CR/SR and the TDR/RDR pairs.

The receive clock (RXCLK) and the transmit clock (TXCLK) are the shift clock
inputs. They are conditioned by the internal clock generator logic for appropriate receive
and transmit baud rates.

6850 ACIA General Architecture 213

GROUND 1 CLEAR TO SEND
RECEIVE DATA 2 DATA CARRIER DETECT
RECEIVE CLOCK 3
TRANSMIT CLOCK 4
READY TO SEND 5
TRANSMIT DATA 6
INT REQUEST 7 DATA
CHIP SELECT 2 8 BUS
CHIP SELECT 0 9
CHIP SELECT 1 10

REGISTER SELECT ll ENABLE
POWER 12 READ/WRITE

Processor I/O interface

interface

DATA BUS CONTROL REGISTER RTS

DO.. D7 (8) CTS

DCD

8 RXD STATUS REGISTER
ze TXD

TDR TRANSMIT DATA REG 8

Chip selects Timing

CS0,CS1 RECEIVE DATA REG TXCLK

CS2 (3)

RXCLK

Selectcontral PARITY GEN PARITY CHK Dee

RS Vop

R/W
E CLOCK GEN INTERRUPT Ve,

CONTROL UNIT BUFFERS

(b)

FIGURE 8.3 (a) The 6850 ACIA pin diagram and (b) architecture.

Modes of Operation and Status Conditions of the ACIA

The contents of the control register, as shown in Figure 8.4(a), control the modes of

operation of the 6850. The ACIA can activate the interrupt line IRQ, on occurrence of

such events as filling of the RDR, emptying of the TDR, and activation of the CTS. The

interrupts can be enabled or disabled by bit 7. RTS output can be configured to be active

214 Chapter 8 The 68000 Serial Interface and Applications

RTS DATA CLOCK AND RESET
CONTROL FORMATTING FUNCTIONS

fe [«[«[~[»[elulw
0 = IRQ DISABLED

L = IRQ ENABLED 0 0 DIVIDE BY 1

0 1 DIVIDE BY 16
1 0 DIVIDE BY 64

0 0 RTS LOW; IRQ DISABLED 1 1 MASTER RESET
0 1 RTS LOW; IRQ ENABLED
1 0 RTS HIGH; IRQ DISABLED
iil RTS HIGH; IRQ ENABLED WORD SIZE PARITY STOPBITS

0
0
0
0
1
1
1
1 KR OOK nRo°o =—=OoOY oY OY} oS

ie) iw) oO

ee ee wD

0 = NO INTERRUPT
1 = INTERRUPT OCCURRENCE

0 = RDR EMPTY
1 = RDR FULL

0 =TDR FULL
1 = TDR EMPTY

DATA CARRIER PRESENT
DATA CARRIER ABSENT —

0
1

LOW-ACTIVE CTS
HIGH-ACTIVE CTS

PARITY, OVERRUN, FRAME ERROR

0 = NOERROR

1 = CORRESPONDING ERROR Wool

(b)

FIGURE 8.4 (a) The 6850 ACIA control register (CR) format and (b) status register
format.

6850 ACIA General Architecture 215

high or low, and the associated interrupt activation can be enabled or disabled by bits 6

and 5. Data formatting can be accomplished by bits 4, 3, and 2. The reset and the clock

functions are controlled by bits 1 and 0.

The status register illustrated in Figure 8.4(b) contains status information on the

6850 signals and events. If the interrupt has occurred, b7 is set. Bits 6, 5, and 4 are set

for parity, overrun, and frame errors, respectively. A parity error occurs when an even

parity is detected instead of an expected odd parity, or vice versa. An overrun error

occurs when new data is shifted into the RDR, destroying the old data before it is read

by the processor. A frame error occurs when the stop bits are not detected as expected

at the end of the frame.

Bit 3 specifies the activity on the CTS line. Bit 2 is set if the data carrier is absent.

Bit 1 is set if the TDR is empty. Bit 0 is set if the RDR is full. The processor reads

these status conditions and responds accordingly. Reading or writing into the corre-

sponding registers clears the flag conditions in the SR.

The following example problem will clarify the internal architecture of the ACIA.

Example 8.2 6850 ACIA architecture.
In a data transmission application, 6850 is at address space $010041 for CR/SR and at

$010043 for TDR/RDR.

1. Specify the conditions under which each of the registers are addressed.

2. Control word $45 is written into the control register CR. Specify the data format be-

ing transmitted or received.

Solution

1. Register map (refer to Figure 8.3): Register select input RS is used to select the

CR/SR pair (when RS = 0) or the TDR/RDR pair (when RS = 1). The R/W signal

further selects the individual registers as indicated:

Addressed Location RS R/W _ Register Selected

010041 0 0 CR (Write only)

l SR (Read only)

010043 1 0 TDR (Write cnly)

1 RDR (Read only)

2. Control word $45 [refer to Figure 8.4]:

b7 b6 b5 b4 b3 b2 bl b0

7-bit odd-parity

high active word; 2 stop bits

216 Chapter 8 The 68000 Serial Interface and Applications

The data transmission and receiving is configured for a 7-bit odd-parity word with

two stop bits. RXCLK and TXCLK are divided by 16 for the proper baud rate. RTS

is active high and the interrupt is disabled.

The contents of the control register and the associated modes of operation can be

changed under program control. Thus, it is possible to transmit and receive data in a

variety of formats and at different baud rates.

8.3 THE 6850 ACIA INTERFACE WITH
THE 68000 AND APPLICATIONS

The 6850 ACIA belongs to the earlier 6800 family and requires a synchronous bus in-

terface to the processor. The 68000/6850 ACIA interface is similar to the 68000/6821

PIA interface described in Chapter 7.

68000/6850 Interface Considerations

In serial data communications, the intelligent unit is known as the DTE (data terminal

equipment.) The I/O unit that is communicating with the DTE is known as the DCE

(data communication equipment). Figure 8.5 illustrates the DTE/DCE interface. The

68000/6850 system is the DTE. The I/O system (a terminal or printer, for example) is

the DCE. The DTE and the DCE communicate on a standard RS-232 serial link.®

Data terminal Data communication

equipment (DTE) equipment (DCE)

68000 6850 EL, - Digital
procssor ACIA to network

serial RS-232 (printer

inter- - LEV)
face AND

device

RS-232

to

TTL

converters

FIGURE 8.5 The DTE/DCE interface in serial data communications.

In Figure 8.6, the system of Figure 8.5 is detailed. The ACIA requires a synchro-
nous clocking signal for data ‘transfers. This signal is provided 1 by the E clock of the
68000 processor. The address decoder provides an active low Y1 select signal for the
address range $010000 to $O1FFFF (refer to Section 6.3 of Chapter 6). It is further
gated by the VMA (valid memory address) signal from the processor and generates the

The 6850 ACIA Interface with the 68000 and Applications 217

aries ag ene chs | RS-232 link } to DCE

MC1488

— Sane r rocessor p Address 6850 ACIA Ve TXD
decoder* O Pen

a) to RXD
input of DCE

1 aK Vee RTS (into 1489)

O
— erate to DTR

input of DCE
- (into 1489)

MC1489
E RS-232/TTL
ale converter

from

interrupt | from CTS
logic output of DCE

(from 1488)

® <a from TXD

output of DCE

(from 1488)

40 Ground on RS-232 connector

Data bus

4800 MC14411 baud/frequency generator

Hz 1.8432-MHz
2 71 crystal

Interrupt ao
logic 20

*Refer to Section 6.3.

**MC1489 is an RS-232/TTL converter

FIGURE 8.6 The 68000/6850 DTE, RS-232, and DCE functional interface.

CSO chip select for the ACIA. The A6 address line activates the CS1 chip select. The

LDS signal activates the CS2 chip select. The Al address line drives the register select

(RS) input. The other control connections are as shown. The ACIA can be put on the

upper byte of the data bus by using the UDS signal in place of the LDS.’

For the connections shown in Figure 8.6, the 6850 occupies the following memory

map, at the odd byte boundary: $010041 for CR/SR. (control register/status register);

$010043 for TDR/RDR (transmit register/receive register).

218 Chapter 8 The 68000 Serial Interface and Applications

The MC14411 baud/frequency generator IC accepts a 1.8432-MHz crystal input

and generates several clock rates. For our illustration, we have chosen a 4800-Hz signal

for the activation of the TXCLK and RXCLK inputs.

For better noise immunity, RS-232 lines are driven by enhanced logic voltage

swings. Noise immunity is achieved by the MC1488-type TTL—to—RS-232 converter

and driver device. This device is powered by higher voltages (Vpp = +12 volts; Veg =

—12 volts). It converts TTL levels to RS-232 levels. RS-232 levels follow negative

logic convention. Negative voltage in excess of —3 volts is regarded as logic 1; positive

voltage in excess of +3 volts is regarded as logic 0. Thus, there is a minimum 6-volt

swing on the RS-232 lines. This provides sufficient noise immunity for the RS-232 in-

terface.

On the receiving end, signals coming from the RS-232 lines are converted to TT

levels by the MC1489-type RS-232—to—TTL converter. The double logic inversion

caused by the MC1488 and 1489 converters does not cause any system logic mismatch

and is totally transparent to the user.

RS-232 Interface Application

For most of the standard RS-232 interface applications, approximately four connections

are used, as shown in Figure 8.6. The TXD and RXD lines are the serial transmit and

receive data lines. The RTS output of the ACIA is gated as the DTR (data-terminal-

ready) signal to the RS-232 interface. The CTS (clear-to-send) signal from the RS-232

is gated as the CTS input to the ACIA. The DCD (data-carrier-detect) input to the 6850

is connected to ground and is always activated.

When the DTE (68000/6850) is in the receive mode, it expects the DCE to acti-

vate the CTS line, signifying that the serial data are coming on the RXD line. The pro-
cessor polls the SR of the ACIA for any error conditions and for CTS activity. If there
are no errors, and if the CTS is active, the processor polls to see if the RDR is full. A
full RDR implies that the incoming serial data have already been converted into the par-
allel byte form and are available in the RDR. The processor reads the RDR and accepts
the incoming data.

During the transmit mode, the processor polls to see whether the TDR is empty. If
it is empty, the processor writes the data byte (to be transmitted serially) into the TDR.
During this write operation, the RTS line is activated and is communicated to the DCE
as the DTR. The DCE checks for the DTR active condition and goes into its routine to
accept the transmitted data.

We will now present an example problem dealing with the hardware and software
aspects of the RS-232 interface and serial data communications.

See

Example 8.3 RS-232 data communications.
Design (1) operating hardware and (2) software based on Figure 8.6. The system will
receive ASCII characters on RXD from the DCE at 300 baud with a start bit, seven data
bits, odd parity, and two stop bits.

Echo the same character to the DCE on the TXD line. The DTE and DCE follow
the standard RS-232 interface format discussed earlier.

The 6850 ACIA Interface with the 68000 and Applications 219 EE Mg eA aa te Sere Saaie

LINE ADDR

(Rees 2 ok Cai biec/ale
SEE U

OPT A
ORG $1000

;DECLARE 6850 ACIA REGISTERS
00010041 ACCR EQU $010041 ;CONTROL REG
00010041 ACSR EQU $010041 ;STATUS REG
00010041 ACTDR EQU $010041 ;TRANSMIT REG
00010043 ACRDR EQU $0100435 ;RECEIVE REG
;Master reset and initialize the 6850 ACIA
00001000 13Fc 0003 O001 MOVE.B #$03,ACCR ;MASTER RESET

0041
1e 00001008 13FC 0045 OOO01 MOVE.B #$45,ACCR ;INITIALIZE

0041
14;checks parity, overrun, frame, DCD errors and CTS activity
14 00001010 1039 0001 0041 INPT MOVE.B ACSR,DO
1S 00001016 Oe00 OOPC ANDI.B #$?°C,DO ; ANY ERRORS ?
16 OO00101A BbEF4 BNE Omer Nien (lie SO) LOOP
1?;no errors: proceed to check if the RDR is full
16 0000101C 1039 0001 0041 RECV MOVE.B ACSR,DQ
19 000010ee O200 0001 ANDI.B #$01,D0
f0 O00010e6 &rF4 BEQ.S RECV
21 00001026 1239 0001 0043 MOVE.B ACRDR,D1;RDR INTO D1
ee;transmit the received character, if the TDR is empty

23 O00010eF 1039 0001 0041 TNSM MOVE.B ACSR,DO
°4 00001034 0200 O00e ANDI.B #$02,D0 ;1S TDR EMPTY?
°S 0000103586 &rF4 BEO.. INoM
f6 O0000103A 13Cc1 0001 0041 MOVE.B D1,ACTDR
ec? 00001040 4E?i NOP
276 00001042 &0CC BRA.S INPT
29 :
pals

3h
je 00001044

Wonwnruwn We

ASSEMBLER ERRORS

FIGURE 8.7 The 68000 software listings for the DTE/DCE interface.

Solution

1. Hardware: The hardware of Figure 8.6 is self-contained. The internal control regis-

ter of the 6850 should be configured to obtain a baud rate of 300 from the 4800-Hz

external RXCLK and TXCLK inputs. This can be achieved by selecting the divide-

by-16 option.

2. Software: The actual 68000 software listings to accomplish the task are given in Fig-

ure 8.7. It is necessary to reset the 6850 at the outset to eliminate any residual con-

ditions from previous operations.

Between lines 10 and 12, the control register is configured for master reset. It

is reinitialized with $45 for the communication format as shown:

220 Chapter 8 The 68000 Serial Interface and Applications

7-bit odd-parity

high active word; 2 stop bits

Between lines 13 and 17, the software polls the status register of the 6850 until

the CTS input goes active and the error-free condition is detected. It then proceeds to

the RECV module.

In the RECV module between lines 18 and 22, the software reads the received

data byte when the RDR becomes full. The 6850 strips the start, parity, and stop bits

from the incoming serial data on the RXD line, converts the serial data into a parallel

data element, and places it in the RDR.

The character echo is accomplished by transmitting the received character back

to the DCE by means of the TNSM module. Between lines 23 and 27, the software

polls the status register until the TDR is empty. When the TDR is empty, the soft-

ware writes the received data byte into it to be transmitted back (echoed) to the DCE

unit. The 6850 adds the start, parity, and stop bits to the data in the TDR, generates

a data frame, and serializes it on the TXD line. The BRA.S INPT instruction at line

28 loops the program back to line 14 for the next character.

The software we have just described can be very easily converted to terminal input

and output software. The NOP instruction at line 27 can be changed to an RTS instruc-

tion and the current software can be called as a subroutine by a main program.

For example, the JSR INPT instruction in a main program enters the software at

line 14, reads an input character from the terminal, and echoes it to the terminal. It then

returns to the main program with the value of the input character in the D1 register.

The DCE system should have RS-232—compatible software in it. In the system of

Figure 8.6, the RTS output of the 6850 ACIA goes high when the TDR is loaded with

new data. This manifests as low on the DTR line. The DCE system should poll this
condition and accept the data accordingly.

8.4 68901 MFP (MULTIFUNCTION PERIPHERAL)
GENERAL ARCHITECTURE

In addition to serial communication, need often arises for attendant control, timing, I/O,

and interrupt functions. The 68901 MFP of the 68000 family is a multifunction device

that is becoming an industry standard for integrated serial, parallel, timing, and interrupt

applications. In this section, we will examine the architecture of the MFP. The MFP

data book should be used as an additional reference.®

68901 MFP (Multifunction Peripheral) General Architecture 221

Internal Architecture of the MFP

Figure 8.8 illustrates the pin configuration and internal architecture of the 68901 MFP.
The device is contained in a 48-pin DIP and is fabricated with HMOS technology. It
includes the following features:

four timers for timing applications;

one USART for serial data communications;

one GPIP for 8-bit parallel I/O and external interrupt inputs; and

control logic for the coordination of the various functions.

The A, B, C, and D timers accept external clock inputs from the XTL1 and XTL2

lines and provide timed pulses on the TAO, TBO, TCO, and TDO lines. In addition,

the A and B timers can accept external timing inputs on the TAI and TBI lines and mea-

sure their time duration.

The USART (universal synchronous/asynchronous receiver and transmitter)

provides serial output on the SO line. It accepts serial input on the SI line. The receive

and transmit clocks are accepted on the RC and TC inputs and are used for the respec-

tive data-shifting operations within the USART.

The GPIP (general purpose I/O and interrupt port) has 8-bit parallel I/O capa-

bility on the 10—17 lines. These lines can also be configured as eight external interrupts,

allowing the MFP to function as an interrupt controller. The associated interrupt control

logic interfaces with the processor on the IRQ and the IACK lines. The IEO and IEI

(interrupt enable output and input) signals are used for daisy chaining the priority inter-

rupts.
The 68901 MFP communicates with the processor on an 8-bit data bus DO—D7.

There are twenty-four 8-bit registers in the 68901, which are selected by the five register

select inputs, RS1—RS5. The select and control logic consists of the cs (chip select),

DS (data strobe), and R/W (read/write) inputs and the DTACK (data acknowledge) out-

put.
The RESET input provides the 68901 reset operation. The CLK input advances

the internal states of the MFP.

In this section we will discuss some details of the registers dealing with the GPIP,

USART, and timers, emphasizing the utility of the MFP in serial communication appli-

cations. We will deal with the interrupt-related registers in Chapter 9.

Register Structure and Modes of Operation

Figure 8.9 is a tabular representation of the MFP’s internal register structure. Contents

written into the appropriate registers determine the mode of operation of the MFP. Sim-

ilarly, some of the status registers contain status information about events occurring in

the MFP. The processor reads this status nto aOry interprets it, and performs appro-

priate operations as determined by the software.”

222 Chapter8 The 68000 Serial Interface and Applications

READ//WRITE R/W 1 cs CHIP SELECT
REG SELECTS RS1 2 DS DATA STROBE

RS2 3 DTACK DATA ACK
RS3 4 IACK INT ACK
RS4 5 D7 DATA BUS
RS6 6 D6

SERIAL TRANSMIT CLK TC rf D5
INTERFACE SERIAL OUT SO 8 D4

SERIAL IN SI 9 D3
RECEIVE CLK RC D2

POWER Vie D1
NC DO

TIMER TIMER A OUT TAO Ve GROUND
OUTPUTS TIMER B OUT TBO CLK CLOCK

TIMER C OUT TCO TEL INT ENABLE IN
TIMER D OUT TDO IEO INT ENABLE OUT

CRYSTAL } XTLI IRQ INT REQUEST
INPUTS } >in RR RCVR RDY (DMA)
TIMER } TIMER A IN TAI TR TRMTRRDY (DMA)
INPUTS } TIMER BIN TBI 17 GPIP/INTERRUPT

RESET 16 PORT
10 15
Il 14
2 B

(a)

Vec TAO

v Sooeecu id coe vA
RESET TIMERS TBO
‘s TBI
CS"
R/W SELECT
DS otek CONTROL Bi tae. Teo

TIMERS TDO

DO-D7 DATA AND REG
RS1-RS5 BUFFERS

TC
Gtx RC
IRQ USART AND RR
IEO INTERRUPT DMA TR
IEI CONTROL SO

IACK SI

per GENERAL-PURPOSE INTERFACE XTLI,
GPIP XTL2

(b)

FIGURE 8.8 (a) Pin diagram of the 68901 multifunction peripheral (MFP) and
(b) architecture.

68901 MFP (Multifunction Peripheral) General Architecture

General-purpose I/O register

Active edge register

Data direction register

Interrupt enable register A

Interrupt enable register B

Interrupt pending register A

Interrupt pending register B

Interrupt in-service register A

Interrupt in-service register B

Interrupt mask register A

Interrupt mask register B

Vector register

Timer A control register

Timer B control register

Function

1/O and interrupt interface

Specifies edges

Specifies GPIP direction

Interrupt enable/disable

Interrupt enable/disable

Pending interrupts

Pending interrupts

Interrupt service specify

Interrupt service specify

Masks interrupts

Masks interrupts

Interrupt vector number

Specifies timer A

Specifies timer B

223

Timers C and D control register

Timer A data register

Timer B data register

Timer C data register

Timer D data register

Synchronous character register

USART control register

Receiver status register

Transmitter status register

USART data register

Specifies timers C and D

Timer A count number

Timer B count number

Timer C count number

Timer D count number

Specifies synchronous character

Specifies USART

Receiver status

Transmitter status

Receiver/transmitter data NNNNNNNNK RR RE Re RP Rr oooococo°oceo

*Relative increment with respect to the base address.

TReceive register in read mode; transmit register in write mode.

FIGURE 8.9 The 68901 MFP internal register structure.

GPIP (General-Purpose 1I/O and Interrupt) Port The following three registers de-

termine the mode of operation of the GPIP port:

GPIP (general-purpose I/O register): at displacement $01;

AER (active edge register): at displacement $03; and

DDR (data direction register): at displacement $05.

Zero in a bit position of the DDR makes the corresponding GPIP line an input, and vice

versa. Zero in a bit position of the AER causes an interrupt to be generated on the fall-

ing edge of the corresponding GPIP input line, and vice versa. These interrupts can be

masked out by the interrupt mask registers, whereupon.the GPIP inputs become normal

inputs.

224 Chapter 8 The 68000 Serial Interface and Applications

Timers A, B, C, and D The timer data registers TADR, TBDR, TCDR, and TDDR

at displacement addresses $1F, $21, $23, and $25 can be loaded with 8-bit numbers.

These registers act as down counters and produce pulses on the TAO, TBO, TCO, and

TDO outputs when they are decremented to zero from the preloaded condition. The

timer control registers TACR, TBCR, and TCDCR at displacement addresses $19, $1B,

and $1D determine the mode of operation of the timer registers. Figure 8.10 illustrates

the format of the TCDCR, which controls timers C and D. A delay mode implies that

the timer registers are decremented after the prescaling of the input clock. The format

of the TACR and TBCR registers is similar to that of the TCDCR, but the TACR and

TBCR individually control the A and B timers.

FIGURE 8.10 Timer C and D

control register (TCDCR) format. TCDCR at $1D eS RT) Ie cto

| < Timer C control => | <= Timer D control=> |

CC2 CCl CCO ‘Timer C operation mode
DC2 DCI DCO ‘Timer D operation mode

0 0 0 Timer stopped

0 0 1 Delay mode: divide- -by-4 prescale
0 1 0 10
0 1 1 16
1 0 0 50
1 0 1 64
1 1 0 100
1] 1 200

USART Operation and Control The USART can be configured to operate in a
synchronous or an asynchronous mode, with different word formats and baud rates. The
UDR (USART data register) at displacement address $2F acts as a receive data register
during receive operations and as a transmit data register during transmit operations. The
UCR (USART control register) at displacement address $29 controls the USART modes
as shown in Figure 8.11.

The RSR (receive status register) and TSR (transmit status register) at displace-
ment addresses $2B and $2D contain the receiver and transmitter status information as
shown in Figure 8.12. In our discussion, we will focus on asynchronous serial commu-
nications, since they are more widely used. The MFP is also capable of synchronous
communications. These involve synchronous protocols and are more complex than asyn-
chronous communications.

We will now present an example problem to enhance our understanding of the
MFP architecture and register formats.

68901 MFP (Multifunction Peripheral) General Architecture 225

FIGURE 8.11 USART control
register (UCR) format.

bb? b6 bs b4 bs) b2) bi b0

vena [cag] osm [so] [oO] 0

b7

b6

b5

b4

b3

b2

bl

b0

BF

OE

PE

FE
B*

CIP*

SS*

RE

I>
I>
I>
I>
i
i=
I>
I>

| Clock|Word length] Start/Stop| Parity |
clock 0 odd

1 1/16 clock even

00 8 bits 0 disable
01 7 bits 1 enable

10 6 bits
11 5 bits 00 O start O stop S

01 1 4 1 us A

10 Boel ee A
{ii lomyr aah Ge) eae AN

(S: synchronous format

A: asynchronous format)

receive buffer full

overrun error

parity error

frame error

break condition (all 0 data with no stop bits)

character in progress

synchronous strip enable

receiver enable (processor writes this bit)

*These bits have different meaning in synchronous communications.

bO TE*

*The processor writes these bits.

(b)

transmit buffer empty

underrun error

auto turnaround (receiver enabled after transmit)

end of transmission after which transmitter disabled

break character to be transmitted next

00 > SO high Z

01 > SO low

10 > SO high

11 > loop back (transmitter and receiver are inter-

nally connected)

[SO output control]

1=> transmitter enable

FIGURE 8.12 (a) USART receive status register (RSR) and (b) transmit status register

(TSR) structure.

226 Chapter 8 The 68000 Serial Interface and Applications

Example 8.4 68901 registers and architecture.
In a particular data communication application, the MFP is initialized with the following

hex values in the registers:

TCDR TDDR TCDCR UCR

RSR TSR DDR GPIP

Using the information presented on the 68901 MFP,

1. specify how the GPIP is configured;

2. specify how the USART is configured;

3. specify how timers C and D are configured.

Solution (Refer to Figures 8.9 through 8.12.)

1. GPIP: $FF = 1 11111 1 1 is written into the DDR. It defines each bit of GPIP
port (I7—10) as an output. The GPIP register contents $07 = 00000111 are
output to the port making

17-10 >00000111

2. USART: $94 = 100101 0 0 is written into the UCR. As such, the USART is
configured for an 8-bit odd-parity word with one start and 1.5 stop bits. The shift
clock is 1/16 of the respective RC (receive) and TC (transmit) clock inputs.

RSR contains $01 = 00000001

and

TSR contains $05 00000101

By writing | into b0O of RSR and TSR, both the receiver and the transmitter are en-
abled. The SO (serial output) is held at high level (b2 of TSR = 1) during inactive
transmission.

68901 MFP Interface with the 68000 and Applications 227
a a a eee

3. Timers C and D:

TCDR and TDDR contain $04 = 00000100

and

TCDCR contains $11 =00010001

Both timers are configured for a delayed and prescaled mode. Divide-by-4 prescaling

has been selected (b4 and b0 = 1 in TCDCR). Further divide-by-4 action has been

selected (b2 = 1 in TCDR and TDDR). This provides divide-by-16 action for both

timer outputs TCO and TDO with reference to the crystal clock input.

The unused registers of the MFP do not effect the other operations: The reset con-

dition of the MFP leaves most of these registers in a default state, which leaves the MFP

in an inactive condition with disabled interrupts.

8.5 68901 MFP INTERFACE WITH
THE 68000 AND APPLICATIONS

The 68901 MFP is a 68000-compatible I/O device. The multifunction capabilities of the

68901 make the I/O interface and applications very efficient and powerful.

68000/68901 and I/O Interface Considerations

Figure 8.13 illustrates the interface details of the 68901 with the 68000 processor and

the I/O systems. The address decoders (refer to Section 6.3 of Chapter 6) generate the

required chip select to the MFP. The system reset signal drives the MFP to reset the

MFP and set default yaiues in the registers. The R/W signal is interfaced directly for

read/write operations. '°
The MFP is mapped on the lower data byte D7— D0 to facilitate direct transfers of

the interrupt vector numbers from the MFP to the processor. The LDS signal drives the

DS (data strobe) input for the lower byte data transfers. The AS—A1 address lines drive

the register select lines RS5—RS1 to address one of the internal 24 registers of the MFP.

The DTACK is fed back to the processor through the interface logic. The clock input is

the same as that for the processor. Another MFP can be mapped on upper byte of the

data bus by using the UDS signal in place of the LDS. Both MFP devices together oc-

cupy the 16-bit data bus for effective word transfers.

The SO and SI (serial out and serial in) lines are interfaced to the serial I/O unit.

The 2.4576-MHz crystal activates the MFP for proper timing of the timers and the

USART. The TCO and the TDO timer outputs are fed back as the RC and the TC clock

inputs. The GPIP I/O port drives an LED display. For the conditions of Figure 8.13, the

base address of the MFP is $040000. The GPIP is located at $040001, and so on.

228 Chapter 8 The 68000 Serial Interface and Applications

68000 Interface 68901 1/0
processor logic MFP systems

8-MHz clk

decoders

Serial

1/O
system

A23..A16

See
x vs otc or

J ch ail OLR ravi eT R/W

RESET 1

from reset logic vo

D7.. DO L7

ia 7406
ogic open

FC2’.. FCO ion cae collector
nae) driver(s) LO

logic

FIGURE 8.13 The 68901 MFP interface with the 68000 and with I/O systems (Example
8.5).

Coded Data Communication System

In order to maintain security, data may be coded during data communications. The
68000/68901 system of Figure 8.13 is well suited for such an application. The data are
transmitted on the SO line to the I/O system in a coded form and are echoed back on the
SI line of the MFP. The microprocessor reads and further codes the data, and displays
the data on the GPIP port LED bank. The coding used for the data communication is the
data inversion. The coding used for the display is to advance to the next ASCII value.
The characters to be transmitted are in a memory buffer. AO refers to the starting. ad-
dress and Al refers to the ending address of the buffer.

Figure 8.14 indicates the 68000-based software for this coded data communication
system. Between lines 6 and 16, the MFP registers that are relevant to this application
are defined. Between lines 17 and 32, the MFP is initialized as follows (refer to Exam-
ple 8.4 for details):

68901 MFP Interface with the 68000 and Applications 229

LINE ADDR

L;MFP.SRC CODED DATA COMMUNICATION
ep yeaelhl Feyans

4 OPT A
5 ORG $1000
&;DEFINE 68901 MFP REGISTERS

00040000 BASE EQU $040000 ;BASE REG
00040001 GPIP EQU BASE+$01 ;GPIP PORT
00040005 DDR EQU BASE+$0S ;DATA DIR REG
0004001D TCDCR EQU BASE+$1D ;TIMER C/D CONTROL
O000400e3 TCDR EQU BASE+$e3 ;TIMER C DATA REG
000400eS DDR EQU BASE+$eS ;TIMER D DATA REG
00040029 UCR EQU BASE+$29 ;USART CONTROL REG
OO0400eB- RSR EQU BASE+$eB ;RCVR STATUS REG
OO0400eD TSR EQU BASE+$eD ;TNSMT STATUS REG
HO0400eF UDR EQU BASE+$ceF ;USART DATA REG

; INITIALIZE GPIP AS OUTPUT
; INITIALIZE TIMERS C&D IN DIVIDE BY 16 MODE

"bo001000 153FC OOFF O004 INIT1I MOVE.B #$FF,DDR ;GPIP OUT
0005

00001006 13Fc OOOO OO04 MOVE.B #$00,GPIP

0001
00001010 13FC O0O0e OOD04 MOVE.B #$02,TCDR

0023
00001018 13FC O00¢e OOD04 MOVE.B

0025
24 00001020 13FC 0011 0004 MOVE.B #$11,TCDCR

OOLD
2S;USART FURTHER CONFIGURED FOR FURTHER DIVIDE BY 16

2b 31 STAR, 2G. DATA, ODDSPARITY & I i/e STOP BITS

ene
28 00001028 13FC 0094 0004 INITe MOVE.B #$94,UCR ;FORMAT

0029
29 00001030 13FC 0001 0004 MOVE.B #$01,RSR ;ENABLE

002B RCVR

#$02,TDDR

FIGURE 8.14 Coded data communication software for the 68901/68000-based system

(Example 8.5).

GPIP is configured as an 8-bit parallel output port;

USART is configured for 9600 baud, 8 data bits with | start and 1; stop bits,

and odd parity;

Timers TC and TD are in a divide-by-16 mode.

Between lines 33 and 40, the transmit character routine is performed. The charac-

ter from the memory buffer referenced by the AO register is read into D0. It is coded by

logical inversion and transmitted on the SO output. This is accomplished by checking

bit 7 of the TSR for logical 1 (signifying that the USART transmit buffer register UDR

is empty) and then writing the data byte in D0 into the UDR, if it is empty.

230 Chapter 8 The 68000 Serial Interface and Applications

30 00001038 13Fc 0005 0004 MOVE.B #$05,TSR ;ENABLE

oo0eD TSMTR

31 00001040 4E?rl NOP

Je 00001042 4E?1 NOP
33;READ IT FROM CHARACTER BUFFER SEQUENTIALLY, CODE IT

34;AND TRANSMIT. AO BEGINNING AND Al END OF BUFFER

3S 00001044 1016 START MOVE.B (AO)+,D0 ;IN DO

36 00001046 OAOO OOFF EORI.B #$FF,DO ;INVERT

3? OOO0OL04A 08359 OOUr? OO04 TRSMT BIST.B #$7,TSR

O002D
38 00001052 &?FE BEQ.S TRSMT.

39 00001054 13cC0O 0004 OOeF MOVE.B DO,UDR TOORCER

40 QOOOLOSA 4EPi NOP ;PORT

41;RECEIVE CODED CHARACTER FROM SERIAL PORT INTO D1
4¢ 000010S5cC 0839 OOO? O0O04 RCEVE BTIST.B #$7,RSR

O0c6

43 00001064 6&?F6 BEQ.S RCEVE

44 00001066 12359 0004 OOcF MOVE.B UDR,D1 ICHRC ER EN LO “Da
45 O000106C OAO1 OOFF EORI-B °#SFF,Di- [INVERT ET
46;CODE AGAIN AND SEND IT TO GPIP LED DISPLAY
CST ae ;

46 00001070 0601 O001 DSPLY ADDI.B #$01,D1 ;NEXT
49 00001074 13C1 0004 O001 MOVE.B D1,GPIP
SO;SHORT DELAY AND CHECK END OF BUFFER

S51, GOO010?7A 3435C OFOO MOVE.W #$0FO00,De
Se GU0ULDVE S342 LOOP SUBQ.W #$01,D2
S53 00001080 &&FC BNE.S LOOP

S54 00001082 B3Cc& CMPALL” "AO ,RD ;END OF BUFFER
SS 00001084 b&&BE BNE.S START NO LOS ARE
S5& OO001086 LOFE BRA.S WAIT;WAIT LOOP
S? OO001088 GE?th NOP
Sia)

SIGS

60 OOOOLOBA END

ASSEMBLER ERRORS =

FIGURE 8.14 Continued.

Between lines 41 and 49, the receive character routine is performed. The echoed
character from the serial I/O on the SI input is read into D1 after checking that the re-
ceive buffer is full. It is decoded by logical inversion. It is further coded to be the next
ASCII character by adding 1| to it. Finally, it is output to the LED display on the GPIP
output port.

Between lines 50 and 53, a delay routine is incorporated. At lines 54 and 33, thic
program checks for the end of the buffer. If the end of the buffer is not indicated, the
program loops back to start. At line 56, the program goes into an indefinite wait loop.

The following example problem provides a review of the 68000/68901 interface
and the coded data communication.

68901 MFP Interface with the 68000 and Applications 231

Se ee ig Sk 2 ee ee

Example 8.5 68000/68901 coded data communication.
Consider the hardware and software of Figures 8.13 and 8.14.

1. What are the baud rates for data transmission and receiving?

2. Show how character A will be transmitted on the SO line.

3. Show how character A will be displayed on the LED array.

4. When does the WAIT loop at line 56 end? Why is it used?

Solution

1. Baud rates: The TCDR, TDDR, and the TCDCR are effectively configured for a

divide-by-16 mode for the crystal input clock. Thus, TCO and TDO timer outputs

(connected as RC and TC inputs) are at

2.4576 MHz/16 = 153.6 KHz

The UCR (USART control register) is configured for a divide-by-16 mode to obtain

effective shift baud rates, given by

Receive baud rate = RC/16 = 9600 baud

Transmit baud rate = TC/16 = 9600 baud

2. Transmission of character A:

ASCII code for character A = 0100000125 $41

LO LT Ll. SBE Inverted code for character A

The 68901 adds the start, odd-parity, and 1; stop bits to the preceding inverted data.

The transmitted data on SO will be as shown:

0 1 0 1 | 1 1 1 0 1 1 1

: Start: < 8-bit inverted data Oude olali2ee
> bit ; -t par- = stop :

: ity : bits :

3. Display on the LED array: The received character in the inverted form is inverted

back to the original character A. It is then coded to be the next ASCII character B.
The ASCII code for B is $42; thus, the LED array displays

$42 >01000010

O LED off; 1 LED on.

4. WAIT loop: The WAIT loop can be terminated only by an external interrupt or reset

condition. In situations requiring external excitation, the software wait loops are

used.

232 Chapter 8 The 68000 Serial Interface and Applications

The coding in the preceding example is simple. However, it can be made as complex as

required. The 1: stop-bit concept implies that the second stop bit is only half the pe-

riod of the shift clock. However, the shift clock is 1/16 the frequency of the TC and the

RC clock inputs. As such, the half stop bit can be accurately sampled by the RC and TC

clocks. The half stop bit is intended to make the data frame more efficient.

8.6 SUMMARY

In this chapter we introduced some important serial data communication concepts. For

interfacing slower peripherals and systems to a fast processor, serial communication is

preferable to parallel communication. The standard asynchronous serial data frame

consists of a stop bit, a data element, a parity bit, and one or two stop bits. The parity

bit is for error checking. With serial interface, the number of external connections to

the processor interface are reduced. This results in a cost efficient, less complex

interface.

One of the industry standard serial communication devices for RS-232 serial com-

munications is the 6850 ACIA (asynchronous communication interface adapter) of the

earlier 6800 family. It consists of four internal registers: the control register, the status

register, the transmit register, and the receive register. It accepts an 8-bit parallel word

from the processor, converts it into RS-232 format, and serializes the data frame for

‘transmission on the serial data link. Similarly, it accepts the serial data from the data

link, checks the parity, removes the extra bits in the serial frame, converts it into an

8-bit parallel word, and supplies it to the processor.

We described interfacing the 68000 using the 6850 ACIA. We also described the

industry standard RS-232 serial interface using the 6850 ACIA, including the details of
a hardware and software application.

The 68901 MFP (multifunction peripheral) is a very useful device belonging to the
68000 family. We described its internal architecture and the particulars of the 68000/
68901 MFP interface. The MFP device has integrated capabilities for serial data com-
munications, timing, parallel I/O, interrupts, and DMA. It is particularly useful as a se-
rial communication device.

The coded data communication example we presented was meant to provide a
practical application of the MFP device and also illustrate the concept of data security in
transmission and receiving. It should be noted, however, that there are more efficient
data security methods than the one we considered.

SS SS a

PROBLEMS
————————E———EEE__

8.1 Configure the control register of the ACIA to

(a) transmit an 8-bit odd-parity word with one stop bit;

(b) transmit a 7-bit even-parity word with two stop bits.

Problems 233

Consider an active low RTS in both cases. Use the divide-by-64 option at a 300 baud rate.

Interrupts are disabled.

8.2 Repeat Problem 8.1 assuming that the data are to be received rather than transmitted.

8.3 The following message has been transmitted using the divide-by-16 option at 1200 baud

with a 7-bit odd-parity format with one start bit and two stop bits:

6850 IS ACIA

(a) Specify the word frame for each of the characters using ASCII code.

(b) Specify the contents of the control register.

8.4 Repeat Problem 8.3 when an 8-bit frame with two stop bits and no parity is used.

8.5 Can the TX and RX baud rates be different? Explain.

(a) If they can be different, how can this be accomplished?

(b) What additional hardware would be required to achieve different baud rates for TX

and RX?

8.6 Redesign the RS-232 interface of Figures 8.6 and 8.7 for data communications at

(a) 110 baud;

(b) 4800 baud.

8.7 For the 6850 ACIA/RS-232 interface, design the necessary hardware and software

(a) to receive 256 characters of data as a block at 600 baud and store the data in a buffer,

with a 7-bit even-parity character format;

(b) to transmit the data at 300 baud after the entire block has been received.

8.8 Design a 6850-based coded data transmission system that will

(a) receive an ASCII character and also transmit the next highest ASCII character;

(b) receive an ASCII character and also transmit the next lowest ASCII character.

8.9 Repeat Problem 8.8 so that the higher and lower ASCII characters are transmitted for each

received character as shown:

Received characters: B K M

Transmitted characters: AC JL LN

8.10 Can the 68901 MFP perform several functions simultaneously in real time? Can it operate

at a frequency different from that of the processor? Explain your answers.

8.11 Using Example 8.4, with the crystal at 2.84596 MHz,

(a) what are the TCO and TDO frequencies?

(b) if the TCO and TDO are used as the RC and TC clock inputs, what are the effective

shift rates of the receive and transmit shift registers of the 68901?

8.12 Reconfigure the 68901 MFP so that the GPIP has the lower nibble as the input and the

upper nibble as the output. Specify the control words to be written into the appropriate

registers.

(a) When outputting data on the GPIP, how do the pins configured as inputs behave?

(b) When entering the data, what is read on the pins configured as outputs?

234 Chapter8 The 68000 Serial Interface and Applications
ee ee Ee Se eee

8.13 Reconfigure timers C and D for

(a) delayed divide-by-64 prescale activity for both;

(b) delayed divide-by-200 prescale activity for both with additional divide-by-4 action in

the 68901.

8.14 Can the C and D timers of the 68901 MFP count external events? Why or why not?

8.15 In the system of Figure 8.13, specify the redundant locations for the 68901 MFP registers.

8.16 Redesign the system of Figure 8.13 to allow for two MFP devices occupying the lower

and upper memory bytes. Indicate all of the hardware details.

8.17 Redesign the software of Figure 8.14 so that reverse coding is done while transmitting a

received character. For example

Received character code A => 01000001 = $41
Nile

; vin
Transmitted character code => 10000010 => $82

8.18 Redesign the system of Figure 8.13 so that

(a) the receive and the transmit baud rates are 1200;

(b) the receive baud rate is 1200, but the transmit baud rate is 600.

8.19 Repeat Problem 8.17 so that there is reverse coding and also code inversion. For example,

Received character code A => 01000001 => $41

Reverse code => 1000001 0 == $32

Inverted reverse

code for transmission = 01111101 = 37D

ENDNOTES

1. Harman, T., and Lawson, B. The Motorola MC68000 Microprocessor. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

2. Gaonkar, R. Microprocessor Architecture, Programming, and Applications with the

8085/8080A. Columbus, OH: Merrill, 1984.

3. Gibson, M., and Liu, C. Microcomputers for Scientists and Engineers. Englewood Cliffs,

NJ: Prentice-Hall, 1987.

4. Motorola, Inc. Data Sheets on M6850 ACIA. Phoenix, AZ: Motorola Technical Operations,

1986.

5. Subbarao, W. Microprocessors: Hardware, Software, and Design Applications. Englewood

Cliffs, NJ: Prentice-Hall, 1984.

6. Triebel, W., and Singh, A. “8086 Microprocessors.” Chap. 12 in /6-Bit Microprocessors:

Architecture, Software and Interfacing Techniques. Englewood Cliffs, NJ: Prentice-Hall,

1985.

10.

Endnotes 235

. Melear, C. Asynchronous Communications for MC6850. App. Note #817. Austin, TX:

Motorola Microprocessor Group, 1981.

. Motorola, Inc. MC68901 MFP Data Book. Phoenix, AZ: Motorola Technical Operations,

1984.

. Brown, G. Serial I/O, Timer, and Interface Capabilities of the 68901. App. Note #896.

Austin, TX: Motorola Microprocessor Group, 1984.

Motorola, Inc. MC68000 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

CHAPTER

9

The 68000 Interrupt and DMA
Interface and Applications

Objectives

In this chapter we will study:

Interrupt interfae schemes associated with the 68000

Interrupt expansion schemes and daisy chaining

Interrupt-driven system applications

The DMA interface and controllers

DMA system interface design

9.0 INTRODUCTION

An interrupt is the traditional way in which the attention of the processor is obtained by
an external device or a peripheral. By contrast, DMA (direct memory access) is the tra-
ditional way of obtaining control of the processor buses and is used by I/O systems for
high-speed data transfers.

Interrupts are handled in the supervisor mode. The terms IRQ and INT are used
interchangeably in this chapter to refer to the interrupt request. Study of the material to
be presented will help the reader understand the interrupt and DMA structure of the
68000 family of processors so as to implement interrupt-based I/O systems and DMA-
based data transfers.

(‘oul
‘ejo10}0Wy

JO ASeyNOD)
‘00089

ey}
U
M

Payelsosse
9160)

JdnwuajU!
10}98A

JeSN
pue

JOJOBAOINY
"6

A
Y
N
D
I
S

Ldn aaa Ni

CHeaOLOFA-OLNV
7

“O/I

AXVINIIID

INO

WIL,

sng

LdNaaa.Lni

ZOS TPL
CaYOLOAA

SOS"IDL

NOVI

8VIS TPL

'O/I

YATIOULNOOD

lod
A
O
V
L
G

03

SEIS TbL

‘ON
YOLOAA

aTaVNA

0
0
0
8
9
0
N

237

238 Chapter9 The 68000 Interrupt and DMA Interface and Applications

The reader is advised to review the concepts in Chapter 5 related to exception vec-

tors and interrupts (Sections 5.1 and 5.2) before proceeding further.

9.1 INTERRUPT INTERFACE CONSIDERATIONS

Autovectored and User-vectored Interrupt Logic

Figure 9.1 (p. 237) illustrates the autovectored and user-vectored interrupt logic associ-

ated with the 68000 processor. The I/O-2 device generates interrupt request INT3,

which is encoded onto the IPL2, IPL1, and IPLO inputs of the processor by the 74LS148

encoder. In response to INT3, the processor generates an [ACK3 interrupt acknowledge

signal, which is gated as VPA input to the processor for autovectoring. During the in-

terrupt acknowledge cycle, the FC2, FC1, and FCO outputs of the processor remain at

the 111 condition; the A3, A2, and Al address lines contain the interrupt number that is

being acknowledged. In this case, A3, A2, and Al will be at 011.

The I/O-1 device generates interrupt request INT5. The processor generates the

corresponding IACKS interrupt acknowledge signal, which is routed to the interrupt

controller of the I/O-1 device. In response to IACKS, the controller provides the inter-

rupt vector number on the data bus and activates the DTACK input to the processor for

user vectoring. In either case, the processor goes to the appropriate vector location

as outlined in Chapter 5, and executes the interrupt service routine in the supervisor

mode. !

GPIP interrupt I7 highest $0F

$0E GPIP interrupt [6

$0D Timer A

$0C Receive buffer full

$0B Receive error
$0A Transmit buffer empty

$09 Transmit error

$08 Timer B

$07 GPIP interrupt I5
$06 GPIP interrupt 14
$05 Timer C

$04 Timer D

$03 GPIP interrupt [3
$02 GPIP interrupt 12

$01 GPIP interrupt [1

$00 GPIP interrupt [0 lowest

FIGURE 9.2 The 68901 MFP interrupt channels and priority structure. (Courtesy of
Motorola, Inc.)

Interrupt Interface Considerations

Interrupt Controllers

An interrupt controller is a device that can prioritize interrupts, provide vector num-
bers to the processor, and keep track of the occurrence of the interrupts. The 68901
MFP introduced in the previous chapter is such an interrupt controller belonging to the
68000 family. The MFP handles 16 interrupt channels (8 from the internal sources and 8
from the external GPIP lines IO—I7 used as interrupt inputs). In Figure 9.2 the priority
structure of these interrupt channels is indicated. (Refer to Chapter 8 for 68901 MFP
details.) The MFP controls these interrupts using

the interrupt enable registers A and B (IERA and IERB);

the interrupt mask registers A and B (IMRA and IMRB);

the interrupt pending registers A and B (IPRA and IPRB);

the interrupt in-service registers A and B (ISRA and ISRB); and

the interrupt vector register (VR).”

Figure 9.3 illustrates the format of the IERA and IERB. These two registers en-
able or disable the interrupts. If the bit is set (= 1), the corresponding interrupt is
enabled. If the bit is reset (= 0), the corresponding interrupt is disabled. When the in-

terrupt is enabled, its occurrence will be recognized by the MFP, and the IRQ will be

asserted to the processor. All the other interrupt-related registers have bit maps similar

to that of the IERA/IERB.

Interrupts are masked for a channel by clearing the appropriate bit to 0 in the mask

registers IMRA/IMRB. When an interrupt is enabled but masked, it will be recognized

by the MFP, but the IRQ will not be asserted to the processor. Instead, the correspond-

ing bit in the interrupt pending registers IPRA/IPRB will be set. The processor can poll

these registers to determine if an interrupt has occurred.

b7 b6 b5 b4 b3 b2 bl b0

TERA at GPIP GPIP TIMER | R. BUFF RCV T. BUFF | TMIT TIMER
dis $07 di 6 A empty error empty error B

; b7 b6 bS b4 b3 b2 bl bO

IERB at GPIP GPIP TIMER TIMER GPIP GPIP GPIP GPIP

dis $09 5 4 c D 3 2 1 0

i 7a Wiha tat

ery User-written [> Sait ed MFP-supplied [>

dis => displacement address of the MFP registers.

FIGURE 9.3 Structure of the interrupt enable registers, IERA and IERB, and the vector

register, VR.

239

240 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

When a bit in the ISRA/ISRB is set, it implies that the corresponding interrupt

vector number has been given to the processor and that the interrupt routine is in

progress.
For external GPIP interrupt inputs, the active edge register (AER) of the MFP is

used to specify the edge activation. A zero in a bit position makes the corresponding

interrupt active on a high-to-low transition, and vice versa.

The interrupt vector number is contained in the vector register (VR), as indicated

in Figure 9.3. The upper four bits are written by the user during initialization. The lower

four bits are written by the MFP according to the priority scheme of Figure 9.2.

Interrupt Expansion and the Daisy-Chain Mechanism

In 68000-based systems, the MFP interrupt controllers are assigned to one of the seven

possible interrupt levels of the processor. Each MFP supports up to 16 interrupts (8 in-

ternal and 8 external). However, in systems that are I/O-based to a large extent, there

may be a requirement to increase the number of interrupt inputs. This can be accom-

plished by daisy chaining the interrupt controllers, as shown in Figure 9.4. The control-

ler closest to the processor (MFP 1, in this case) has the highest priority. It is always

enabled by keeping its interrupt enable input, IEI, grounded.

Interrupts from Interrupts from
I/O system 1 I/O system 2

17 10 I7 10

IEO

68901 MFP 1 68901 MFP 2

IACK INT IACK

IACK

Interrupt
logic and
interface

to the 68000

(For the sake of simplicity, DTACK, data bus, and other connections are not indicated.)

FIGURE 9.4 Interrupt expansion using the daisy-chain mechanism.

When the processor recognizes the interrupt request on the common INT line, it
sends the acknowledge signal IACK to the controllers. Suppose the interrupt request has
come from MFP 1. MFP 1 accepts the IACK signal, puts the corresponding vector num-
ber on the data bus, and activates the DTACK to the processor. At the same time, it

Interrupt Interface Considerations

negates its interrupt enable output, IEO. This, in turn, disables the next controller by

deactivating its interrupt enable input, IEI.
On the other hand, if we assume that MFP 2 has generated the INT, MFP | acti-

vates its IEO output and enables the MFP 2 controller during the interrupt acknowledge

cycle. MFP 2, in turn, supplies the vector number to the processor in response to the

IACK signal. This enable and disable process continues until the end of the chain.

In the preceding case, it can be seen that a single INT line can be expanded to

handle 32 interrupts (16 from each controller). The number of entries in the vector table

and the electronic loading on the lines determine the practical upper limit for the number

of controllers on the daisy chain.?

The following example problem provides a review of the interrupt interface to the

68000 and the daisy-chain mechanism.

Example 9.1 68000 interrupt interface and daisy chain.
Assume that the IRQ outputs from the daisy-chained controllers of Figure 9.4 activate

the IRQS input to the 68000 system. (IRQ and INT refer to the same thing.)

1. Interrupt I7 from I/O system 2 and interrupt 16 from I/O system 1 occur simulta-

neously and activate the IRQS line to the processor interface logic. Which interrupt

will be recognized? Assume the interrupts are enabled and are not masked.

2. Suppose it is required to disable all the other interrupts except the GPIP interrupts for

both controllers. In addition, GPIP interrupts I4—IO should be masked out. What

words should be written into the interrupt enable and mask registers?

3. If the upper four bits of the vector register for MFP | are loaded with $4, what vec-

tor number is supplied to the processor by MFP | for GPIP interrupt 16?

Solution

1. Interrupt recognition: MFP | is of higher priority than MFP 2 in the daisy chain.

Thus, interrupt 16 from MFP 1 will be recognized.

2. Disabling and masking of interrupts: Refer to the bit map of the IERA/IERB (Fig-

ure 9.3).

0 in the bit position disables the interrupt,

1 in the bit position enables the interrupt.

The mask registers IMRA/IMRB have a similar bit map.

O in the bit position masks the interrupt;

1 in the bit position does not mask the interrupt.

241

242 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

To enable all the GPIP interrupts, disable the others, and additionally mask the 14—

I0 interrupts, the bit patterns should be written as follows:

b7 b6 b5 b4 b3 b2 b1 DO register

1100 0 0 0 O into IERA

1 into IERB

0 0 into IMRA

0 0 into IMRB

= 1

1

1 o=_= = JS eos

1

0

0 coo =

3. Vector number for 16: Refer to Figure 9.2. The channel priority number for [6 is

1110 = $E. This will be loaded into the lower four bits of its vector register by MFP

1. The upper four bits are written by the user to be $4 = 0100. Thus, the vector for

the I6 interrupt corresponds to

01001110 = $4E

9.2 INTERRUPT-DRIVEN SYSTEM APPLICATIONS

As we already know, the interrupt is a convenient means by which to obtain the atten-

tion of the processor. We will now emphasize this concept by describing practical appli-

cations involving the interrupt-driven gain controllers, DRAM systems, and data-

acquisition systems.

Interrupt-Driven Gain Controller

Figure 9.5 illustrates a digital gain-controller system. The 68901 MFP discussed earlier

is used as an interrupt controller. The GPIP drives a summing amplifier-type D/A

(digital-to-analog) converter. The D/A converter, in turn, drives a power amplifier and a
DC motor.*

The internal B timer of the MFP is used to generate a timed interrupt to the pro-

cessor. The IRQ output from the MFP drives level | of the interrupt (IRQ1) of the

68000 processor through the encoder device. Each time the timer is decremented to zero
from a preloaded value, an interrupt is generated by the timer. The 68901 routes that
interrupt to the processor as IRQ].

When the processor recognizes this interrupt, it generates a higher gain digital
word on the GPIP output, up to the maximum allowed. The processor increases the gain
from a minimum to a maximum value and restarts the gain process. This has the effect
of increasing the motor speed to a maximum at regular time intervals, reducing the
speed to a minimum, and then starting the process again. In industry, such systems are
used to control conveyer belts.

We will now discuss the design details by means of an example problem.

Interrupt-Driven System Applications 243

68000 processor 68901 MFP

ADDRESS

DATACANID ISAK Gael on | sre >
CONTROL GPIP port

Interrupt

encoder

(Ls 148)

Decoder

(Ls 138) Summing

D/A

VO =- {IO + 2(I1) + 4(12) + 8(13)}

8

I values => logic0=0 V

logic 1=3 V

FC2, FC1, FCO

A3, A2, Al
AS

TIMER B

DTACK 20 K (pot)

(LM 380) Cx LPF

microfarads | section

FIGURE 9.5 The 68000-based interrupt-driven gain controller system (Example 9.2).

Example 9.2. Interrupt-driven gain controller

For the system of Figure 9.5, the MFP occupies the memory map starting at base ad-

dress $040000 (GPIP at $040001. . .). Develop (1) the operating hardware and (2) the

software so that the motor speed increases to the next value up in 20-second intervals.

Solution

1. Hardware: The hardware of Figure 9.5 is self-contained. If increased drive capabil-

ity is required, additional power amplifier stages can be incorporated. The XTL1

clock input for the MFP is driven by a 2.456-KHz oscillator. The low-pass filter

(LPF) effectively removes any switching transients from the D/A converter.

2. Software: The software initializes the appropriate MFP interrupt and timer-related

registers (refer to Sections 8.4, 8.5, and 9.1). It increases the digital gain word to the

next value up on each timer interrupt occurrence. This digital word is then output to

244 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

the GPIP port. (The word is converted to an analog voltage and drives the motor at

the appropriate speed.)
Figure 9.6 details the MFP initialization process. The unused registers are

loaded with the inactive words on system reset. The flowchart and the 68000 pro-

gram listings for the interrupt-driven gain controller are presented in Figures 9.7 and

9.8, respectively.

REGISTER/ADD

GPIP $40001

DDR $40005

IERA $40007

IMRA $40013

VR $40017

TBCR $4001B

TBDR $40021

FIGURE 9.6

| 07 | v6 | os | v4 | 63 | v2 | or | v0 |

(ACTS AS GENERAL PURPOSE I/O)

(0-=>INPUT; 1 => OUTPUT)

.

(0 >> INT DISABLED;1 > ENABLED) TIMER B

(0 => INT MASKED; 1 = UNMASKED) TIMER B

Pe ee Pe
(INTERRUPT VECTOR NUMBER)

Teepe to for
($00 => STOP TIMER; $07 => DIVIDE BY 200)

entrs| glee Seles oclisey beduela tartenda
(TIMER PRELOAD VALUE 245 => $F5)

1/O
BYTE

=> $FF

> $01

> $01

> $40

=> $00/$07

=> $F5

Initialization of the MFP interrupt-related registers (Example 9.2).

Between lines 6 to 23 in the listings, all the MFP registers used in the software
are declared and initialized. Timer B has an internal priority of 8 (refer to Section
9.1), which presents an effective device interrupt vector of $40 + $08 = $48 to the
processor. This refers to a vector address of

4 x $48 = $120

Interrupt-Driven System Applications 245

FIGURE 9.7 Flowchart for the Events Line numbers
interrupt-driven gain controller (see Figure 9.8)
using the 68901 MFP with the :
68000. Define 68901 registers 6 to 14

Initialize 68901 MFP: 18 to 22
GPIP is output; timer

B interrupt enabled;
speed word in DO reg.

Initialize timer B interrupt vector 23 to 26

Set timer B for 20 27 to 29

seconds and start it

s Wait for interrupt 30 to 31

Interrupt
occurred?

Disable timer B: 32 to 39
increment gain word and

output to GPIP;

reinitialize and enable
timer B;

return from interrupt.

At line 25, the interrupt service routine address of $2000 is loaded into this vector

address location of $120.
At lines 28 and 29, the timer data and control registers (TBDR and TBCR) are

loaded with $F5 and $07. This enables timer B with a prescale factor of 200. Timer

B counts down and generates an interrupt when it is decremented to zero from the

preset value of $F5 (= 245). With a 2.45-KHz XTLI clock, this generates a 20-
second delay between successive interrupts as shown:

Delay = (prescale factor) X (preset value) x (XTL1 period)

= (200) x (245) x (1/2.45 KHz) = 20 seconds

At lines 30 and 31, the system goes into a wait loop and waits for the above interrupt

to occur.

246 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

LINE ADDR
;int controller
FLU eS Oe

OPT A
ORG $1000

;68901 register declarations
00040000 BASE EQU $040000
00040001 GPIP EQU BASE+$01
00040005 DDR EQU BASE+$05
0004000? IERA EQU BASE+$0?
00040013 IMRA EQU BASE+$14
0004001? VR EQU BASE+$1?
O004001B TBCR EQU BASE+$1B
000400e1 TBDR EQU BASE+$el1

winitialize MEPs. GPIP-is. output
;Timer B interrupt enabled
;initialize DO with speed word

00001000 0004 START MOVE.B #$FF,DDR

00001008 MOVE.B #$00,D0 ;MINIMUM SPEED
0000100C oo0o4 MOVE.B DO,GPIP
00001012 0004 BSET.B #0,IERA

O000101A 0004 BSET.B #0,IMRA

000010ee 0004 MOVE.B #$40,VR

;interrupt address $2000 into $120
000010eA e000 MOVE.L #$2000,$1c0

00001032 NOP

;set Timer B for 20 seconds
000010354 MOVE.B #$FS5,TBDR

0000103C MOVE.B #$0?,TBCR ;start timer

00001044 WAIT BRA.S WAIT 7Wadt..£oOr
OOO01L046 BRA.S WAIT ;interrupt loop

ORG $2000 ;interrupt routine
o0002000 MOVE.B #$00,TBCR ;disable timer

oo00e008& ADDQ.B #$01,D0 .;next gain word
Ooo00c00A MOVE.B DO,GPIP ;Output to GPIP
00002010 MOVE.B #$FS,TBDR ;20 sec timer

00002018 MOVE.B #$0?,TBCR ;start timer

o000ce0c0 NOP
oo000ec0ee2 RTE

FIGURE 9.8 Software listings for the interrupt-driven gain controller using the 68901
MFP (Example 9.2).

Interrupt-Driven System Applications 247

When the timer B interrupt is generated once every 20 seconds, the processor

goes to the interrupt service routine between lines 32 and 39 (starting address

$2000). The interrupt service routine stops timer B by loading $00 into the TBCR. It
increments and outputs the digital gain word in the DO register to the GPIP. It re-

loads the timer B data register with $F5 and restarts it. The last RTE instruction re-

turns the processor to the wait loop.

The timer B interrupt is communicated to the processor as a level | interrupt. The

processor interrupt mask level in the system byte should be initialized to zero for recog-

nizing a level | interrupt. With few modifications to the preceding software, it is possi-

ble to obtain a different result, as we will see in the following example.

Example 9.3 Modified interrupt-driven gain controller.
Modify the software in Figure 9.8 so that the gain will not be increased if it is already at

the allowed maximum.

Solution

The maximum allowed gain word is $FF in the DO register. The DO register should only

be incremented if its byte content is less than $FF. The interrupt routine between lines

33 to 39 should be modified as shown:

MOVE.B #$00,TBCR ;disable timer B
CMP.B #$FF,DO0 ;compare DO with $FF

BEQ.S FINAL ;if equal branch to final inst
ADDQ.B #$01,D0 ;i1£ not increment DO by 1h

FINAL MOVE.B DO,GPIP ;Output new gain word to GPIP
MOVE.B #$FS,TBDR ;set timer to 20 seconds
MOVE.B #$0?,TBCR ;start timer B

NOP
RTE ;creturn (to wait loop)

It should be noted that when the system reaches the maximum gain condition, it

stays at that condition.

Dynamic Random Access Memory (DRAM) Interface

Because of their higher density, DRAMs are fast replacing the static RAMs in large

memory systems. DRAMs store binary information in the form of charge on MOS tran-

sistor cells. These cells have to be refreshed (rewritten) periodically, so that the charge

will not decay and the information will not be lost. The typical refresh time for a mem-

248 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

INT7 IRQ XTLI
2.4596-MHz

Interru ange ici XTL2 crystal

lo a Address, data,

‘ 68000 and control

system buses
68901 MFP

68000 8-state

processor shift register

Serial in GRD

CX0 (16 MHz) OR gates

Address

data and

control

CSDRAM

DTACK

AH Even CAS
rs Odd CAS

Als See ig AOVCASTYS ort
All ts ia LO RAS

A20 ay
10-input R/W DO..DI15

CX1 multiplexer Array of
(8 MHz)

sixteen
i 1-megabyte

R/W RAM devices
LDS (MCMS511000
UDS type)

DO..DI15
3/8 decoder

A21..A23 Select 2D gene oe
- Zl = CSDRAM

¥ AS ee Enable r4 ($200000-to-
For interface ; $3FFFFF range
details refer Tal

Chapters 6 and 8

FIGURE 9.9 Interrupt-driven DRAM interface to the 68000.

Interrupt-Driven System Applications

ory cell is 2 milliseconds. This refresh activity can be easily controlled with the help of

interrupts and software techniques.>"°
A 1-megabyte DRAM device (such as the Motorola MCMS511000) is organized as

512 rows by 2,048 columns. During the first half of the bus cycle, the row address is

presented to the DRAM and the RAS (row address strobe) is activated. All 512 cells on

that row present their information internally to sense amplifiers. During the second half

of the bus cycle, the column address is presented and the CAS (column address strobe)

is activated. One out of the 2,048 columns is selected, and the appropriate data bit is

thus addressed. For refreshing, it is sufficient that the row address be supplied and RAS

activated.

Twenty address lines are required to access one out of a million locations. Exter-

nally, ten row address lines (Al—A10) and ten column address lines (Al1—A20) are

multiplexed to drive the ten address lines of the DRAM (pins AO—A9). Internally, these

twenty effective address lines are adjusted in groups of nine and eleven (to address one

out of 512 rows and one out of 2,048 columns).

Figure 9.9 illustrates a 1-megaword DRAM system interface with a 68000 proces-

sor, occupying the range between $200000 and $3FFFFF. The 68901 is used as an

interrupt controller to generate a nonmaskable interrupt (level 7), once every 2 millisec-

onds. The processor recognizes this interrupt and executes 512 sequential NOP instruc-

tions contained in system ROM or EPROM. For the system shown, RAS is generated
while the address lines Al—A9 from the 68000 change in sequence. This has the effect

of refreshing the 512 rows (of all the 16 DRAM devices) in sequence. The DRAM is

selected only when the CSDRAM and CAS signals are generated. This happens only

when the locations in the DRAM are addressed.

If the DRAM is not refreshed within 2-millisecond intervals, the information may

be lost. The highest priority interrupt is used (in this case, interrupt level 7) so that the

processor will not mask it and will respond to the refresh operation.

In Figure 9.10, the DRAM refresh software listings are given. During the system

initialization (reset routine), the DRAM module is called as a subroutine to initialize the

interrupt controller (in this case, the 68901 MFP). (Refer to Chapter 8 for a description

of the MFP/68000 interface.) Timer A, with an internal interrupt priority of $D, is used

in this application to generate a 2-millisecond delay.

Between lines 6 and 11, the MFP registers required for this application are de-

clared. At line 14 the vector register of the MFP is loaded with $40. When timer A

generates an interrupt, the corresponding vector number is

$40 + priority of timer A = $40 + $D = $4D

The corresponding exception vector location is

4 x vector number = 4 x $4D = $134

At line 15, this vector location is loaded with the starting address of the interrupt service

routine (INTR module).

249

250 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

LINE ADDR

sram.src 3/6/89
;DRAM software refresh

OPT A
ORG $1300

;64901 register declarations

00040000 BASE EQU $040000

0004000? IERA EQU BASE+$0?

00040013 IMRA EQU BASE+$13

0004001? VR EQU BASE+$1?

00040019 TACR EQU BASE+$19
Oo004001F TADR EQU BASE+$1F
OOOO4E?1 NOP EQU $4E?L

sinitialize 68901 for refresh

00001300 13FC DRAM MOVE.B #$40,VR
oo1?

00001308 21Fc MOVE.L #INTR,$134
01354

;enable timer A interrupt
O0000131e OaF BSET.B #5,IERA

ooo?
0000131A O&F4 BSET.B #5,IMRA

0013
;timer A for 2 milliseconds

20 O00013ee 13FC MOVE.B #$341,TADR
OOF

21 O00013eA 145FC MOVE.B #$06,TACR
0019

ee OOO01IS3S2 GEL NOP
23 00001334 4GE?S RTS
C4 ;interrupt routine corresponds
2S ;to Sle locations of NOP codes
C6 000013556 GE?h INTR DCB.W S12,NOP
er OOOOL?Sb 4EPS RTE
2&6 00001738 END

ASSEMBLER ERRORS

FIGURE 9.10 Listings for the DRAM refresh software.

Between lines 17 and 22, the timer A interrupt is enabled and the timer A data and

control registers are conditioned to generate an interrupt every 2 milliseconds. At line

25, the subroutine returns to the calling program.

The interrupt routine INTR starts at line 26. The NOP codes are sequentially ar-

ranged by means of the DCB.W 512,NOP assembler statement. When interrupt 7 oc-

curs, these 512 NOPs are executed and the program returns to the interrupted program

by means of the RTE instruction at line 27.

The following example problem provides a review of the interrupt controller and

the DRAM implementation.

Interrupt-Driven System Applications 251

Example 9.4 Interrupt-driven DRAM implementation.
Consider the DRAM system and software of Figures 9.9 and 9.10.

1. Specify the relative timing of the RAS, MUX, CAS, and DTACK signal generation.

2. Specify how timer A is configured to generate an interrupt once every 2 millisec-
onds.

3. What percentage of processor time is taken for refresh?

Solution

1. RAS, MUX, and CAS: AS is generated each time a bus cycle is initiated. RAS is

generated one CXO (16 MHz) clock period after the AS signal. RAS latches the row

address on the DRAM pins. ;

MUX is generated two CXO clock periods after the AS signal. This presents

the column address to the DRAM pins.

CAS is generated three CXO clock periods after the AS if the CSDRAM signal

is activated. CAS latches the column address on the DRAM pins; the DRAM is se-

lected only after CAS.

DTACK is generated four CXO clock periods after the AS signal. This is a

proper timing sequence for data transfers.

2. Timer A interrupt: Bit 5 of the interrupt enable and interrupt mask registers TERA

and IMRA) is set to 1, enabling the timer A interrupt. When the timer counts down

to zero from the preloaded number, an interrupt is generated. Timer A is decre-

mented by the XTLI clock. The timing calculation is as follows:

TACR loaded with 6 = 100 prescale factor

TADR loaded with $31 = 49

XTLI crystal clock = 2.4596 MHz

Thus,

100 x 49
2.4596 x 10° = 2 milliseconds Timer A countdown period =

3. Percentage of processor time for refresh: Refresh time corresponds to executing

512 NOP instructions. Each NOP instruction takes four CX1 processor clock peri-

ods. The timing calculation is as follows:

CX1 8-MHz processor clock = 125 nanoseconds cycle time

NOP execution time = 4 X 125 = 500 nanoseconds

= 0.5 microseconds

512 NOP execution time = 512 X 0.5 = 256 microseconds

252 Chapter9 The 68000 Interrupt and DMA Interface and Applications

These 512 NOPs have to be executed once every 2-millisecond refresh interval.

Thus,

256 microseconds
5 aillisetonids x 100 = 12.8 percent Percentage refresh time =

ADC 0816 68230 DAC 0800 SIGNAL
A/D CONVERTER ¥ PI/T D/A CONVERTER CONDITION

5 «V+ (10 V)
io) Qa

VINO
VINI V+

5K

5K
B1 (MSB) Se ay

VA 5-10K 9Q
peer ?, U4.)
hive _cenrite' dare!
| wate | IOUT
Decale ocr A
per Vay By us
| ete
ee ees ed

(MSB) Bl

VA
LOW-PASS

R FILTER
2K (LPF)

0.01

(LSB) B8

Input
select i VIN 15 IN15

tttt
CLK

640

KHz

NOTES:

68000 processor
and interrupt
logic

1. All C in microfarads.
2. VIN range of 0-5 volts

INT2 PC5/IRQ for B1 .. B8 range of
IACK2 lanes sham PC6/IACK 00000000 to 1111111 1.

3. LPF cutoff frequency is
50 kiloradians (approximately
8 KHz).

(Refer to Sections

5.2 and 9.1)

FIGURE 9.11 Interrupt-driven A/D and D/A interface to the 68000. (Courtesy of Laura
Ruiz and José Zarut, FIU)

The Interrupt-Driven Data-Acquisition System and Applications 253

Software refresh eliminates the need for additional hardware. In the preceding

case, 12.8 percent of the processor time is devoted exclusively for refreshing

1-megaword of memory. Interrupt stacking and unstacking takes a few more clock cy-

cles. In small-to-medium systems, such an arrangement is acceptable. However, for

larger systems with more memory, hardware refresh is used with the help of memory

management units.

9.3. THE INTERRUPT-DRIVEN DATA-ACQUISITION
SYSTEM AND APPLICATIONS

The usefulness of any microprocessor-based system is greatly enhanced when it is inter-

faced with the analog word. This can be accomplished easily with the help of A/D

(analog-to-digital) and D/A (digital-to-analog) converters. The processor-to-A/D inter-

face can be interrupt driven to make efficient use of the processor time.’

The A/D and D/A Interface

Figure 9.11 illustrates a typical A/D and D/A interface to the 68000 microprocessor

through the 68230 PI/T (refer to Chapter 7 for PI/T details). ADC 0816 is an 8-bit 16-

channel A/D converter device. By means of the select word DCBA, any one of the 16

input channels (VINO—VINI5) can be selected. DCBA = 0000 selects VINO, and

DCBA = 1111! selects VINIS.

All of these analog voltages are signal conditioned and filtered before being ap-

plied to the A/D converter. Figure 9.12 illustrates a typical signal-conditioning system.

FIGURE 9.12 Analog R2 (5 K-50 K POT)

signal conditioning for VIN
inputs to the A/D converter.

All C values in microfarads

Al: Noninverting amplifier

VX0 = (1 + R2/R1) VSO

R3 and C compose a low-pass filter
with a radian cutoff frequency of
wo = 1/(R3 X C) radians sec.

A2: Voltage follower with unity gain.

Its output is

VINO = [1/1 + jw/wo)] [VX0]

where w is the radian frequency of VSO input
and j is the imaginary operator.

For low frequencies less than wo, VINO = VX0.

254 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

The signal input VSO is buffered by high-input impedance noninverting amplifier Al.

The Al amplifier has an effective voltage gain of 1 + (R2/R1). VSO input should be in

the range of 0 to 5 volts for this system. The R3-C network provides low-pass filter

action to remove switching transients. The A2 amplifier is a voltage follower, the output

(VINO) of which is applied as inputO (INO) to the A/D converter of Figure 9.11.

The A/D converter digitizes the applied analog input voltage VIN and produces a

corresponding 8-bit digital word on its B1—B8 outputs. A 640-KHz clock drives the

A/D converter. The converter is interfaced to port B of the 68230 PI/T. The H3 and H4

handshake lines control the A/D. A pulse from the microcomputer on the H4 line to the

START input of the A/D converter starts the conversion of the selected VIN input.

Reg and

address Code Function configured

b79 BG" bS 4 * b3) U2? bT HO

PGCR: Mode 0: 8-bit unidirectional.

general 2C H3 and H4 enabled.
control H1 and H2 disabled. H3 and

reg
$010001

H4 active high signals.

PSRR: Interrupt handshake:
service PCS is IRQ; PC6 is IACK.
request ; H3 has highest interrupt

reg SveRq sel - | Prior. Cont priority among H signals.
PC4 norm H3 has high

$010003 ics
priority

Fora eee bt Buf nf |G [i |p ee fe port A

data

dir reg

$010005

wm | LL ef ofofofofo]o] a ie port B

port A

data

dir reg

$010007

PIVR: a: [ORY ea om 9] ee] oe FA Interrupt vector: FA.
port in I Add. = 4 X FA = 3E8.
vector 68000 goes to location of 3E8

shignee to obtain add. of int. routine.

PBCR: 3A Port B submode 0:
port B H4 is output in pulsed
cont protocol. H3 is input.

6 ae H3 interrupt enabled.

FIGURE 9.13 The 68230 PI/T register initialization for the data-acquisition system.

The Interrupt-Driven Data-Acquisition System and Applications 255

When the conversion is complete, the A/D converter generates a pulse on its EOC (end

of conversion). It is connected to the H3 handshake input of the 68230 which in turn,

generates an interrupt to the processor on its PC5/IRQ line. In this application, IRQ

drives a level 2 interrupt (INT2).

The DAC 0800 D/A converter is interfaced to port A of the 68230 PI/T as indi-

cated. This 8-bit D/A converts the processed digital word on its B1—B8 inputs (sent by

the processor on its port A) into a corresponding analog voltage VA. VA is filtered us-

ing the low-pass filter (LPF) amplifier to remove any step and switching transients and

to provide a reconstructed analog voltage VO. The LPF has a cutoff frequency of 8

KHz, which is sufficient in most audio, control, and instrumentation systems.*

FIGURE 9.14 Flowchart for the Line numbers

68000-based data-acquisition Events (see Figure 9.15)

system (Example 9.5).
Define 68230 registers 12 to 30

Define 256-byte memory It
block for data storage 31 spate

Initialize 68230 registers:
Port B output;
Port A input; a2 1223

H3 input and H4 output

a Wait loop for interrupt 56 to 57

YES

Read A/D converter and store 62 ied

data sequentially

All data stored? 66 to 67

YES

Output to D/A in reverse
order with delay 70 to 79

256 Chapter9 The 68000 Interrupt and DMA Interface and Applications

LINE ADDR
LLEN 104
OPT FA

ADC/DAC SYSTEM INTERFACE

MOTOROLA 66000
c/?/b?

Laura Ruiz
7 ee eae Se Sea

ORG $900
00010001 EQU $010001 Port General

Control Register
Port Service
Request Register
Port’ "A Para
Direction Register
Port B Data
Direction Register
POLrt Interrupt
Vector Register
Port A Control
Register
POrt 5 CONncEol
Register
Port A Data
Register
PoLw & Data
Register

00010003 EQU $010003

00010005 EQU $010005

o001000? EQU $01000?

00010008 EQU $01000B

0001000D EQU $01000D

o0001000F EQU $01000F

o0010041 EQU $010011

00010013 EQU $010014

*

CER UT pe
MOVEA.L #$2100,Ae

oo000900
oo0009oe2

4260
°4?C 0000 2100 ;memory block

;to store data

;ctr to store 2S6&

; bytes in memory

000009046 163C OOFF MOVE.B #$FF,D4

Initializing registers

oo0o0090Cc

o0000914

ooo00g0gg1C

goo00 o0o01

OOFF OOOo1

OOec OOO1

MOVE.B #$00,PBDDR ;port

MOVE.B #$FF,PADDR ;port

MOVE.B #$2C,PGCR ;mode

Bz anput

A: output

00,H34

FIGURE 9.15 Software for the 68000-based data-acquisition system (Example 9.5).
(Courtesy of Laura Ruiz, FIU).

o00009e4

oo00009eC
oo000093e

000009354

00000940

OO00094E

O000094E
00000950

oo00c000

o000c004
o000e00E
o000e010
oo00e01e
o000c014
o000c014

oogGeO1A

o000e0e0
o000c0e4
o000e0c8

oo00ec0cA
oo000e0cE
oo00e03e
o0000e034
o000e036

AE ae
OOOF
1039
14C0
53543
4A03
6704
4E?3

15E¢e
Oot
163C
0404
‘GEFA

O603
ocos
&BEEL
bO0Ee

The Interrupt-Driven Data-Acquisition System and Applications 257

;enabled high
MOVE.B #$FA,PIVR ;vector int

MOVEA.L #$3E8,Al;vector add(FA*4)
MOVE.L #$00002000, (Al) ;interrupt

;routine address

MOVE.B #$1C,PSRR ;PIRQ,PIACK

;enable H3 at highest priority

WAIT MOVE.B #$3A,PBCR

,

.
,

ASSEMBLER ERRORS =

FIGURE 9.15 Continued.

MOVE.B PBDR,DO; H4 first pulse.
Wait for interrupt from ADC when
conversion is ready

;00 submode
and pulsed input handshake
mode. H3 enabled.

BRA WAIT
BRA WAIT
Interrupt routine :
QuUEDUL COMport i

read port B;

ORG $2000
MOVE.B #$38,PBCR; H3 disabled

MOVE.B PBDR,DO =;
MOVE.B DO, (Ace)+
SUBQ #1,D3
ES PABRDE
BEQ FINAL]
RTE ;return from interrupt

read input
;store in memory
;decrement ctr
;check if done

MOVE.B —(Ac),PADR;data to port A

MOVE.B #$40,D4
SUBI.B #1,D4
BNE DELAY

;delay

ADDI.B #1,D3
CMPI.B #$FF,D3
BNE FINAL
BRA BACK
END

;increment ctr
;check if done
;send more data
;if 256 data sent,
;start back ADC

258 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

A Typical Data-Acquisition System

With appropriate software, the A/D and D/A system of Figures 9.11 and 9.12 can be

integrated into a useful data-acquisition and instrumentation system. For the 68000-

based system under consideration, the 68230 PI/T resides at the address map between

$010001 and $01003F. Port A is configured as an 8-bit output port to drive the D/A

converter. Port B is configured as an 8-bit input port to accept the A/D data.

The handshake signals H3 and H4 are configured for pulse handshake on port B.

A pulse will be generated on H4 whenever port B is accessed. This pulse starts the A/D

conversion. When the A/D conversion is complete, H3 input will be activated by the

A/D converter. This interrupts the processor, which, in turn, reads the digitized data on

port B. This interrupt handshake between the 68230 PI/T and the 68000 is accomplished

by configuring the PC5 (port C, pin 5) as an IRQ to the processor and the PC6 (port C,

pin 6) as the IACK to the 68230 (refer to Figure 9.11).

The user vector method is employed in this application to provide the interrupt

vector to the processor. The DCBA switches are set to 0000 to select VINO as the ana-

log input. Figure 9.13 (p. 254) illustrates the 68230 initialization required for this appli-

cation.
The flowchart and operating listings for a 68000-based computer using the preced-

ing data-acquisition system are given in Figures 9.14 (p. 255) and 9.15 (pp. 256-257).

The software configures the 68230 PI/T ports and the CPU registers. The interrupt rou-

tine reads the A/D data (from port B), stores up to 256 data bytes, and outputs the stored

data in the reverse order to the D/A (on port A). Finally, the software loops back for the

next digitization.

We will now analyze the software and the system response with the help of an

example problem.

Example 9.5 Data-acquisition system.
Consider the data-acquisition system hardware and software of Figures 9.11 through
Oo).

1. Analyze the software. Where is the A/D data stored?

2. Where does the interrupt service routine start?

3. VINO is as shown in the following diagram. Plot reconstructed VO output to scale.

Time

The Interrupt-Driven Data-Acquisition System and Applications 259

Solution

1. Software analysis: Between lines 12 and 28, all the PI/T registers used in this appli-

cation are defined. Between lines 31 and 36, registers DO, A2, and D3 are initialized

with $00000000, $2100, and $FF, respectively.

Between lines 38 and 43, the PI/T registers are initialized according to Figure

9.13. At lines 44 and 48, $00002000 is stored at vector location 3E8 and port C is

configured for interrupt activity (PC5 is an IRQ and PC6 is an IACK). Accessing

port B (at line 49) generates the first H4 pulse to start the A/D process. Between

lines 53 and 56, the processor enables the H3 interrupt and goes into a wait loop—

waiting for the interrupt to occur at the end of the conversion.

On occurrence of the H3-activated interrupt, the processor fetches the interrupt

routine address ($00002000) from the vector location $3E8 and starts the interrupt

exception routine (line 62). At line 62, the H3 interrupt is disabled so that the pro-

cessor will not be reinterrupted by the A/D while it is servicing the interrupt that

already has been recognized.

At lines 63 and 64, the processor reads the A/D byte from port B and stores it

in the memory in an ascending order. If 256 bytes of the A/D data are stored, the

program branches to the final module (lines 65 to 67). Otherwise, the program re-

turns to the wait loop by means of the RTE instruction at line 68.

The final module is contained between lines 70 and 79. It outputs 256 bytes of

the stored A/D data in the memory to the D/A converter through port A in a descend-

ing order. The delay loop (lines 72 to 74) provides delay between successive D/A

samples. After all 256 samples are output, the program branches back to line 68 and

the RTE instruction at line 68 returns the program to the wait loop.

2. Interrupt service routine: This routine starts at location $00002000 (line 62).

3. VO waveform: The digitized and stored data (256 bytes) are output to the D/A con-

verter in the reverse order, with delay between the samples (lines 70 to 79 of the

software). Thus, the reconstructed VO analog signal looks backward, as dia-

grammed, when compared to the corresponding VINO input.

OV
Time

Interrupt-driven data-acquisition systems are extremely useful in industrial appli-

cations. Data processing may be more involved than a signal reversal, and data storage

260 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

well over 256 bytes. The general hardware and software concepts of the data-acquisition

and the A/D and D/A interface schemes remain the same, however.

We will now present another example problem in which the importance of D/A

conversions and associated waveform generation are emphasized.

Example 9.6 Waveform generation using D/A.
With reference to Example 9.5, suppose it is necessary to generate a triangular wave-

form at the output of the D/A converter (connected to port A PADR). Assume all the

initialization conditions of Example 9.5.

1. Develop the operating software.

2. How is the frequency of the waveform changed?

Solution

1. Operating software: The flowchart and the 68000-based program listings to accom-

plish the task are given in Figure 9.16. The DO register is used as the count register.

It is incremented and output to port A (with a delay) if the count is between $00 and

$FF. This provides a positive-going ramp at the output of the D/A. If the DO register

equals $FF while it is being incremented, it is then decremented and is output to port

A (with a delay). This provides a negative-going ramp at the output of the D/A. The

positive- and negative-going ramps generated in sequence provide the required trian-

gular waveform.

2. Changing the frequency: The frequency can be changed by changing the delay

counter parameter in the instruction MOVE.W #$40,D4. If the number $40 is in-

creased, the frequency proportionally decreases.

In the preceding example, the maximum frequency will be obtained if the delay

routine is deleted.

9.4 DIRECT MEMORY ACCESS (DMA) CONSIDERATIONS

DMA techniques help accomplish high-speed data transfers between memory and mem-

ory, memory and I/O, and vice versa. The DMA operations are performed with the help

of DMA controller devices. These controllers obtain the address, data, and the control

buses from the processor and implement the DMA transfers. During the DMA transfers,

the processor is logically disconnected from the buses.

General Architecture of the DMA Controllers

Figure 9.17 illustrates a typical DMA system organization. The I/O device requests the
controller for DMA operation. The DMA controller, in turn, requests the processor, ob-

FIGURE 9.16 (a) Flowchart
and (b) 68000 assembly

program listings for the

triangular waveform generation

(Example 9.6).

Direct Memory Access (DMA) Considerations 261

Events

Initialize DO register = 00

Increment DO and output to PADR

DO = $FF?

- Decrement DO and output to PADR

(a)

; all the initialization conditions of previous example

; are used in this software

; initialize DO to $00

MOVE .B #$00,D0

UP ADDQ.B #$01,D0 ;increment DO

BSER..S DELAY

MOVE .B DO,PADR Poutpuc, DO to pork A

CMP. #SFF,DO

BEQ.S DOWN ;if DO = SFF branch to DOWN

BRA.S UP

DOWN SUBQ.B #$01,D0 ;DECREMENT DO

BSR. Ss DELAY

MOVE .B DO,PADR Foutput. DO Eo port A

CMP .B #$500,D0

BEQ.B UP fit DO = S00 branche to UP

BRA.S DOWN

DELAY MOVE.W #$40,D4 ;delay counter initialize

LOOP DBNE D4, LOOP ;delay loop

RTE

(b)

262 Chapter9 The 68000 Interrupt and DMA Interface and Applications

I/O
systems

DMA

controller

68000
family

n “a o &

uo
)

as
)

<

bus

Data

bus

Control

bus

General concept and architecture for the DMA system. FIGURE 9.17

tains the buses, and performs the DMA data transfers between memory and memory,

memory and I/O, and vice versa.”’!°

Figure 9.18 illustrates the typical DMA bus request timing for the 68000 family of

processors. To request the buses, the DMA controller activates the BR (bus request) sig-

nal to the processor. The processor recognizes this request and activates the BG (bus

CLOCK

$7 S6 $5 S4 $3 S2 Sl SO S7 S6 S5 S4 S3 $2 S1 SO

FIGURE 9.18 DMA bus request, bus grant, and acknowledge timing. (Courtesy of
Motorola Inc.)

Direct Memory Access (DMA) Considerations

grant) signal to the controller. The controller, in turn, sends the BGACK (bus grant ac-

knowledge) signal to the processor and takes control of the buses. The DMA controller

is the bus master until the BGACK is deactivated. The controller drives the address and

control buses and performs the DMA operations. The processor regains control of the

buses after the BGACK is deactivated.

The 68440 and 68450 DMA Controllers

The 68440 and 68450 are industry standard DMA controller devices belonging to the

68000 family. The 68440 has two DMA channels, while the 68450 has four DMA chan-

nels. These devices are pin compatible with one another and are contained in a 64-pin

DIP or a 68-pin grid-array package. They are fabricated with HMOS technology. The

devices are similar with respect to internal architecture. Both have signals similar to

those of the 68000 processor.

Figure 9.19 illustrates the signal organization for the 68440/450 devices. The

higher order address bus (A8—A23) is multiplexed with the 16-bit data bus (DO—D15).

These buses are demultiplexed by external logic and are connected to the 68000 system

bus. There are two modes of operation for DMA controllers: the CPU mode and the

DMA mode.
In the CPU mode of operation, the processor is the bus master. The DMA con-

troller resembles an external device. The control signals R/W, LDS, UDS, and AS be-

have as inputs to the DMA controller. The DTACK signal behaves as an output. The

processor effectively writes or reads information from the DMA controller.

In the DMA mode of operation, the processor releases the control of the buses,

and the DMA controller becomes the bus master. The aforementioned signals behave in

a manner opposite to that described. The controller generates all the 68000-compatible

signals appropriate for data transfers.

The multiplexer control signals control the demultiplex logic for the data and ad-

dress buses to appropriately interface the 68000 system bus. The DMA controller com-

municates with the I/O systems via the device control signals REQ, ACK, PCL, DTC,

and DONE.

The DMA controller communicates with the processor via the bus arbitration sig-

nals BR, BG, and BGACK, and via the interrupt signals IRQ and IACK.

Figure 9.20 illustrates the internal register structure of the 68440/68450-type

DMA controllers. Each channel consists of 17 registers. In addition, each device has a

general control register, GCR. Some of these registers are initialized by the processor to

set up the DMA operation. Others present the status information to the processor. We

will discuss the details of these registers in the following section.

Modes of Operation of the DMA Controllers.

When the controller is serving as the bus master, it is in the DMA mode of operation,

performing the data transfers. This DMA mode allows for two distinct modes: the

single-address mode and the dual-address mode.

263

264 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

TO 68000 BUS

FUNCTION). <a FC2, FCI, FCO DEVICE CONTROL

CONTROL Request
Acknowledge

Lower address <>] Al..A7 Peripheral

bus
control
Data transfer

Multiplexed <>} A8/D0.. A23/D15 complete

upper address
Done

and data bus
(to bus through
demux logic)

BUS ARBITRATION
[to 68000]

ASYNCHRONOUS <.____ >
BUS CONTROL

Bus request

Bus grant

Bus grant

Chip select
acknowledge

(from decoded

address bus)

BUS ERRORS INTERRUPT CONTROL

Int.request
Int.acknowledge

MULTIPLEX CONTROL

NOTES:

n=O; 1 Tor

68440 dual DMA

Bus own

Upper add. strobe
Data bus enable

Data direction

High byte n=0,1, 2, 3 for
68450 quad DMA

Clock 68440/68450 pin-
compatible in the
64-pin DIP or GRID
package

FIGURE 9.19 Signal configuration for the 68440/450 DMA controller devices.

In the single-address mode, the data transfers are between the I/O and memory.

The controller changes the memory address for successive transfers, but the I/O address

remains the same. The I/O device is activated by the ACK signal from the controller.

The data transfer takes only one bus cycle.

In the dual-address mode, the transfers are between memory and memory. In this

mode, the controller contains the source and the destination addresses in the MAR and

DAR registers. Any external peripheral device has sequential address space similar to

that of memory. The controller generates the source address and reads the source oper-

Direct Memory Access (DMA) Considerations 265

OFFSET

$FF

$04

$05

$06

$07

$2D

$00

$01

$25

$27

$29

$31

$39

$0A ;

SIA

$0C

$14

$1C

Notes:

GCR

Channel 0

Channel 1

Channel 2

Channel 3

FIGURE 9.20

FUNCTION

Sets mode of operation

Sets device control

Sets operation control

Sets sequence control

Sets channel control

Sets channel priority

Contains channel status

Contains channel errors

Contains interrupt vector

Contains error interrupt vector

Contains memory function codes

Contains device function codes

Contains base function codes

Contains memory transfer count

Contains base transfer count

Contains memory address

Contains device address

‘Contains base address

always at $FF
between $00 and $3F

between $40 and $7F

#BITS

16

32

32

32

between $80 and $BF for 68450 only
between $CO and $FF for 68450 only

REGISTER

general control register

device control register

operation control register

sequence control register

channel control register

channel priority register

channel status register

channel error register

normal interrupt vector register

error interrupt vector register

memory function code register

device function code register

base function code register

memory transfer counter

base transfer counter

memory address register

device address register

base address register

Internal register architecture for the 68440/450.

GCR

DCR

OCR

SCR

CHCR

CPR

CSR

CER

NIVR

EIVR

MFCR

DFCR

BFCR

MTCR

BTCR

MAR

DAR

BAR

and into an internal temporary register, TEMP, during the first bus cycle. It generates

the destination address and writes the operand (in the temporary register) into the desti-

nation location. Thus, it takes two bus cycles for word or byte transfers.

The DMA controllers are complex devices; data books should be consulted for

further details.

We will now present an example problem to review DMA concepts, controllers,

and architecture.

266 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

Example 9.7_ DMA concepts and controller architecture.

Review the material covered in Section 9.4 to answer the questions that follow.

1.

2.

ae

How many total registers are there for the 68440 and the 68450 devices? Explain.

Can all the channels operate simultaneously? Why or why not?

Specify the relative address locations of MAR and BAR for channel 2, in the case of

the 68450 controller.

At what point does the DMA controller gain control of the buses? Under what con-

ditions?

Solution

1. Number of registers: Each channel has 17 registers. In addition, each device has the

common GCR and a temporary register, TEMP, to hold data in the dual-address

mode. Thus,

the 68440 DDMA has 2 x 17 + GCR + TEMP = 36 registers

the 68450 QDMA has 4 x 17 + GCR + TEMP = 70 registers

. All channels: Only one channel becomes operational at any given time. This is be-

cause of the bus activity. Each channel can be individually initialized, however.

MAR and BAR (refer to Figure 9.20): For channel 2, the relative base address is

$80. As such,

the MAR is at $80 + $0C = $8C

the BAR is at $80 + $1C = $9C

(Note: To obtain the effective addresses, the chip select base address should be

added.)

. Control of the buses: After receiving the BGACK from the DMA controller, the

processor concludes the current bus cycle. The address, data, and control buses (spe-

cifically, R/W, LDS, UDS, and AS) go into a high-impedance state. At that point,

the DMA controller gains control of the buses.

9.5 THE DMA INTERFACE AND APPLICATIONS

Figure 9.21 illustrates a typical 68000/DMA/I-O interface. This is in the single-address

mode. The I/O system is activated by the ACK signal from the DMA controller. DMA

channel 0 is used in this application.

The DMA interface and Applications 267

68000 68440/450 Sroteaiiet eee Vania 2 X Ls 373- DMA
type latches controller

A8 .. A23 <

Address
a TITTC
control type transceivers

MEMORY K._ > DIR
ENA

Alpe VAT,
EE IIE ES EI

R/W, LDS, UDS, AS, DTACK

Sena Se

Address

decoder

REQUEST
ENABLE

Intemupt KS CINT
interface LOGIC

Oe Tae

a SA SUG tore as >

[INT6 AND

ACKNOWLEDGE]

INO 16-BIT DATA

IN15

Peripheral I/O system

Notes: 1. UAS from controller latches the address lines A8 .. A23.

2. DDIR from controller determines the direction of data

(bus to controller or controller to bus).

3. DBEN from controller enables data transceivers.

FIGURE 9.21 The 68000/DMA/I/O peripheral interface (Example 9.8).

DMA Sequence of Operations

The peripheral I/O system activates the REQ input to the DMA controller and initiates

the DMA operation. The controller, in turn, activates the bus request (BR) signal to the

processor. The processor responds back to the controller by activating the BG output.

The processor also completes the current bus cycle. The controller accepts the BR and

sends the BGACK acknowledge signal to the processor. This signal is held low active

by the controller until the DMA data transfers have been completed. When BGACK is

268 Chapter9 The 68000 Interrupt and DMA Interface and Applications

low, the data, address, and control buses of the 68000 remain in a high-impedance state

(refer to Chapter 6, Section 6.1). The DMA controller takes control of these buses, be-

comes the bus master, and begins the data transfers.

Figure 9.22 specifies the typical sequence of events during single-address mode

transfers from the I/O units to the system memory. Other types of DMA transfers follow

a similar sequence of events.

PROCESSOR DMA CONTROLLER PERIPHERAL

Ls Initializes DMA
controller in

response to external
signal, such as an

interrupt.
as Initiates REQO

to DMA controller

3. Arbitrates and obtains
system bus:

~<— BR to processor;
—— BG from processor;
<—_ BGACK to processor.

4. Goes into high-impedance
state for address and data

buses and negates control signals.

Sere Sige ey
D. Assumes bus ownership:

Activates UAS, DBEN

DDIR signals.
Activates ACK to peripheral
during each read bus cycle.

pe
Peripheral puts data

on the data bus.
Activates memory _

address, LDS,UDS,R/W
signals. Data written

into memory.

6. Increments MAR.

Decrements MTCR.

a Repeats steps 5 and 6

until MTCR = 0.

8. DMA completed.

BGACK deactivated.
BUS control released.

enn W err t xP Wi
9. Regains bus control

and continues the processing.

FIGURE 9.22 Sequence of DMA operations in the single-address mode.

The DMA Interface and Applications 269

DMA Channel Initialization

The DMA controller must be initialized in accordance with the system application be-

fore any DMA activity takes place. For single-address transfers, the processor writes the

starting address of the memory, the size and number of data operands to be transferred,

the direction of transfer, and other such information into the appropriate registers of the

DMA controller. For dual-address-mode transfers, the source and destination operand

addresses are written into two separate registers.

After the first initialization, further reinitialization of the controller can be done

internally by the controller, itself, if it is operated in the reload condition.

We will now present an example problem to review the DMA sequence of opera-

tions and initialization schemes.

Example 9.8 DMA sequence and initialization.
Suppose a 1-kiloword transfer of data to memory from a peripheral I/O port is required,

using the DMA system of Figure 9.21. The DMA controller occupies the memory map

between $012000 and $0120FF.
DMA channel 0 in the single-address mode is used. Memory for DMA transfers

starts at $00002000.

1. Using the 68440 DMA controller, illustrate the initialization of the DMA internal

registers.

2. If the 68440 is replaced by a 68450 controller, will there be any change in the ini-

tialization? Why or why not?

3. Interrupt 7 (a nonmaskable interrupt) is being serviced when the DMA request comes

to the processor from the controller. Will it be recognized? If so, specify the se-

quence of events.

Solution

1. Initialization: Figure 9.23 illustrates the required initialization of the 68440 channel

0 registers (refer to Section 9.4 for the register map). The device control register

(DCR) is initialized for a burst mode of transfer for word-sized operands. In addi-

tion, the I/O is activated by ACK. The rest of the register initialization is self-

explanatory.

2. 68450 Initialization: For channels 0 and 1, the initialization sequence remains the

same for the 68440 and 68450 devices, since these devices have the same memory

map.

3. Interrupt and DMA: As soon as the DMA request comes, the processor must re-

spond, even if it is servicing an interrupt level 7. It issues the bus grant signal and

270 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

FIGURE 9.23 Initialization of Register Contents

the DMA registers (Channel 0). niiveribé al bSelkitad acbiountbidiinbiee ABO

DCR at 28 rh Bae Ll cdl el nh ca
ACK Word :

| Burse mode | implicit Wee PCL is status

OCR at $90 soins of ii aid salt vfs idef Qt
| Dir. | Chain Internal
memory eases disabled rate set

CHCR at :
80 =r Used ec os Ee ls esd

Rtart Continue, reload, interrupt disabled
enable

GCR at Loaded with $00 for default 50 percent duty cycle

$0120FF operation

MTCR at > :
$O01211A Loaded with $0400 for 1-kilo word transfers

MAR at Loaded with $00002000, the beginning address
$01200C of the memory for the DMA transfers

The other registers are not explicitly used, and the

default conditions on reset are acceptable.

concludes the current bus cycle. It releases the control of the buses to the DMA con-
troller on the occurrence of the BGACK signal.

Only one DMA channel can be serviced at a given time. Two such channels can
be serviced (one at a time), if a 68440 controller is used. For four such channels, the
68450 controller should be used. The initialization scheme for each channel is similar to
the scheme we have described. The DMA channels are prioritized by the controller.

DMA Software Considerations

In DMA applications, the software basically initializes the DMA controller. When the
peripheral is ready for DMA operation, it usually interrupts the processor. The processor
recognizes this interrupt and ‘initializes the DMA controller. Thereafter, the DMA re-
quest can occur at any time. The DMA request should not be allowed prior to, or dur-
ing, the initialization of the DMA controller.

We will now introduce the software for DMA operations with the help of an ex-
ample problem.

The DMA Interface and Applications 271

Example 9.9 Software for DMA operations.
In the DMA system of Figure 9.21, interrupt 6 is activated by the peripheral I/O to ini-

tialize DMA channel 0. One-kiloword transfers, as specified in Example 9.8, are re-

quired.

LINE ADDR
1 ;DMA INITIALIZATIONS
= SUVS latte Wg AT Sule
=| OPT A
4 ORG $1000
5 ;68440/450 registers defined
& 00012000 BASE EQU $012000
? 00012004 DCR EQU $012004
& 00012005 OCR EQU $012005
4 0001200? CHCR EQU $01200?

10 O001c00A MTCR EQU $01200A
11 0001200C MAR EQU $01200C
1e¢ 0001c00F GCR EQU $01200F
13 00001200 INTE EQU $00001200

14 o0000074 VECTOR EQU $0078
15 ;

16 ;initialize interrupt & vector address

4? 00001000 21FC 0000 1200 STRT MOVE.L #INTL,VECTOR
0078

18 00001008 GO06 4EP1 BRA TASK
19 O0001L00C 4Eri NOP
20 O000100F &£O0FO0 BRA SER

roa ;processor performing a task

ec 00001010 4Ert TASK NOP

23 0000101e 544e ADDQ.L #$0ce,De

24 00001014 GOFA BRA TASK

25 ;Int #6 routine to initialize DMA

cb ORG $000012c00

2? o0001e00 13Fc 0000 0001 MOVE.B #$00,GCR

cOOF
26 00001e08 13FC 0090 0001 MOVE.B #$90,0CR

coos
29 00001210 13FC 0060 0001 MOVE.B #%$40,CHCR

coo?
30 000012818 33FC 0400 0001 MOVE.W #$0400,MTCR

COOA
31 O0001e2e0 e3Fc o000 eoo0 MOVE.L #$00002C000,MAR

0001 cooc
Je O0001eeA 4Erh NOP

gooo0ieeC 4E?3 RTE

0001228

ASSEMBLER ERRORS

FIGURE 9.24 DMA initialization software for the 68000/68440-450 system (Example

9.9).

272 Chapter9 The 68000 Interrupt and DMA Interface and Applications

1. Develop 68000-based operating software to initialize the DMA controller.

2. Compute the actual time of the DMA transfers, using the software developed. Con-

sider the system (processor and controller) to be operational at 8 MHz.

Solution

1. DMA initialization software: In Figure 9.24, the operating software using the

68000 is given. Between lines 6 and 14, the relevant channel 0 registers of the con-

troller (a 68440/450 device) are defined. At line 17, the interrupt 6 vectored address

of $00001200 is loaded into the exception table at location $0078. This is the inter-
rupt 6 autovector location.

Between lines 18 and 24, the processor goes into a TASK routine. A task can

be any processing activity the processor is involved in. For simplicity, we have cho-

sen a three-instruction loop. The processor responds to the interrupt, if the interrupt

is enabled, and appropriately initializes the DMA channel.

Between lines 25 and 33, the interrupt 6 service routine is contained. This rou-

tine initializes the DMA registers as specified in Example 9.8. After the initializa-

tion, when the DMA request occurs, the processor gives up the buses to the DMA

controller to transfer the data, as outlined previously.

2. Time for DMA transfers: After the DMA channel has been set up, the transfer time

is that of the 1-kiloword transfers. The DMA is set up for single-address transfers

from the I/O peripheral to the system memory.

Each word transfer takes one bus cycle, which corresponds to four clock cy-

cles. Thus, the timing is as follows:

Clock cycle time at 8 MHz = 0.125 microseconds

Bus cycle time = 4 X 0.125 = 0.5 microseconds

1-kiloword DMA time = 1,024 x 0.5 = 512 microseconds.

Examples 9.8 and 9.9 involve the single-address mode of DMA operation. The
dual-address mode of DMA operation is similar to the single-address mode; for the dual-
address mode, however, each byte or word transfer takes two bus cycles for 68000-
based systems.

9.6 SUMMARY

In this chapter we considered interrupt and DMA applications related to the 68000 mi-
croprocessor.

The external interrupts are properly encoded and applied to the IPL2, IPLI, and
IPLO inputs of the 68000 processor. A level 0 interrupt signifies that there is no pending
interrupt. Interrupt levels 1 through 7 are set on priority, with level 2 higher than level
1, and so on. Level 7 is a nonmaskable interrupt (NMI).

Summary 273 ee Ee re ete A ee ene

These interrupts can be autovectored or device (user) vectored. In autovectoring,

the processor goes to a fixed vector location. The autovectoring scheme is simple and is

preferable when a fixed number of interrupt vectors is satisfactory for the application.

The device-vectoring scheme is more involved, but it provides the scope for interrupt

expansion. In device vectoring, the interrupting device supplies the corresponding vec-
tor number.

In order to increase the effective number of interrupts, a daisy-chain mechanism

with a device-vectoring scheme is used. In the daisy chain, the device closest to the

processor has the highest priority; the device farthest away has the lowest priority.

Interrupt processing is done in the supervisor mode. After stacking the program

counter and the copied status register, the 68000 processor obtains the interrupt-vectored

address from the appropriate vector location and executes the corresponding interrupt

service routine.

We described the following interrupt-driven systems: the gain-controller system,

the data-acquisition system, and the dynamic memory system. The discussions helped to

provide insight into practical interrupt applications. The gain-controller application is

widely used in industry; for example, in setting up proper motor speeds. In the data-

acquisition system application, A/D and D/A interfaces to the processor are involved.

The dynamic memory system application deals with interrupt-driven timing in memory

system designs.

Whenever there is a requirement for high-speed data transfers, DMA (direct mem-

ory access) methods are used. In such methods, an external DMA controller obtains the

control of the processor buses and implements data transfers without the intervention of

the processor.
The industry standard 68440 and 68450 DMA controllers belonging to the 68000

family were introduced in this chapter. The 68440 is a dual-channel DMA controller.

The 68450 is a quad-channel DMA controller. The devices are compatible with one an-

other.
When there is a requirement for DMA-type data transfers, the DMA controller ar-

bitrates and wins the system buses from the processor. The processor goes into a high-

impedance condition for data and address buses and certain control signals. It goes into

the inactive condition for other control signals. The DMA controller generates the re-

quired signals for data transfers and acts as the bus master.

DMA transfers can be between memory and I/O or between memory and memory.

In the former case, they are single-address transfers. The DMA controller activates the

peripheral at a single fixed address and the memory at a sequential address in the same

bus cycle. Thus, the single-address mode is the fastest, and is well suited for DMA

transfers between memory and I/O ports.

When data transfers are from memory to memory, they are dual-address transfers.

The DMA controller reads the source operand (byte or word) into an internal temporary

register during one bus cycle, and writes it into the destination location during the next

bus cycle. Dual-address transfers take two bus cycles for byte or word transfers in

68000-based systems.

In all DMA applications, the DMA controller must be properly initialized by the

processor before the actual operation. Otherwise, unpredictable results may occur.

274 Chapter9 The 68000 Interrupt and DMA Interface and Applications

PROBLEMS

9.1

9.8

Assume that interrupt 5 is being serviced.

(a) Another level 5 interrupt occurs. Will it be recognized? Why or why not?

(b) Interrupt 7 occurs under the conditions of (a). Will it be recognized? Why or why not?

(c) Interrupt 7 is being serviced. Another level 7 interrupt occurs. Will it be recognized?

Why or why not?

In ah 8-MHz 68000 system, IRQ6 and IRQ4 occur at the same time.

(a) Which will be recognized? In order to be recognized, specify the required duration of

the interrupt.

(b) The IRQ6 routine takes 32 microseconds; the IRQ4 routine takes 64 microseconds. If

they occur at the same time, specify the required duration of each in order to be

recognized.

There are two methods of servicing interrupts: the autovector method and the user-vector

method. Outline the advantages and disadvantages of each of these methods. Also specify

applications particularly well suited to one or another of the methods.

Is the user stack involved in servicing interrupts? Explain.

(a) If subroutines are used in interrupt service routines, which stack is used? Why?

(b) Which stack is used when an interrupt occurs during a user subroutine execution?

Assume IRQ6 is being serviced. IRQ7 occurs while the processor is fetching the op.code
for the instruction

MOVE.L #$734512A6,D1

(a) How many T-states have to elapse before IRQ7 is serviced? Explain.
(b) Considering that the SSP is at $00003ABA at the time of the occurrence of IRQ6, and

the USP is at $00004000, indicate the contents of the appropriate stack when IRQ7
has been recognized.

The daisy chain is an accepted means of interrupt expansion. Outline the advantages and
the disadvantages of the daisy-chain mechanism.

(a) In which applications is the daisy chain not the method of choice?
(b) In which applications is the daisy chain particularly useful?

In the daisy-chained system of Figure 9.4, suppose it is necessary for I/O system 2 to have
higher priority. How should the system be redesigned?

For the system of Figure 9.4,

(a) how many external devices can be interfaced? Why?
(b) including the internal interrupt sources of the 68901 MFP, how many total interrupt

requests can be handled? Why?

Note: Problems 9.9, 9.10, 9.13, 9.14, 9.16, 9.18, and 9.22 can be used as the basis for special
projects involving hardware and software implementation.

9.9 Refer to Figures 9.5 and 9.8. Redesign the hardware and the software so that

(a) the motor speed gradually increases to a maximum and stays there;

Problems 275
eee | ee ee ee eee eee eee eee

(b) the motor speed varies between a maximum and a minimum on the occurrence of each

timer interrupt.

9.10 In a servo belt system, it is required to increase the motor speed to a maximum, have it

remain stable for 10 units of time, and then gradually reduce it to minimum. The system is

repetitive. Consider one unit of time as the occurrence of the timer interrupt.

Design the hardware and the software needed to implement this system.

9.11 How many steps of gain variation are possible in the system of Figure 9.5 considering all

the possible software features?

9.12 For the DRAM system of Figure 9.9, specify what could happen if a lower level interrupt,

such as level 1, were used for the refresh operation.

9.13 Suppose the DRAM system of Figure 9.9 has to be expanded to accommodate an

additional 1 megabyte of DRAM starting at $400000. Specify the hardware details.

9.14 Given the conditions of Problem 9.13, suppose it is necessary to modify the software of

Figure 9.10 to refresh the 2 megawords of total DRAM. Redesign the software and

implement it.

9.15 What is the maximum amount of DRAM that can be software refreshed using no more

than 30 percent of processor time?

9.16 Redesign the data-acquisition system described in Section 9.3 so that

(a) the buffer to store the A/D data is 4 kilobytes;

(b) the stored data is output to D/A with an attenuation of two units.

9.17 Additional signal shaping and processing are possible with data-acquisition system

software. Redesign the software of Problem 9.16 so that the digital attenuation is 2 on

even samples and 4 on odd samples.

9.18 The data-acquisition system can be easily converted into a digital voltmeter as shown in

the following diagram. Digits 3 and 4 should display a voltage between 0.0 V and 9.9 V.

Digit 2 should display + or —. Digit | should display a flashing 1 if there is an overload

condition.

4—digit multiplexed display

68000/68230
system

A/D system VIN

Design and implement the system.

276 Chapter 9 The 68000 Interrupt and DMA Interface and Applications

9.19 Specify the complete address map for all four channels of the 68450 DMA controller.

Why is there only one GCR for all four channels?

9.20 Draw the timing diagrams for the asynchronous bus signals when the DMA controller is in

the following modes:

(a) the CPU mode, in which the controller resembles an I/O device to the processor;

(b) the DMA mode, in which the controller is the bus master and controls the data

transfers.

9.21 With reference to the data books on 68440/450 controllers,

(a) discuss the bus arbitration scheme involving BR, BG, and BGACK for single-operand

transfers and block transfers (assume 1-kiloword transfers);

(b) describe the handshake between the DMA controller and the peripheral device.

9.22 Redesign the system of Figure 9.21 using all-CMOS logic for minimum power operation.

9.23 Specify a sequence of operations similar to that of Figure 9.22 for

(a) dual-address transfers;

(b) port-to-port transfers.

9.24 Repeat Example 9.9 for the following transfers:

(a) 1 kiloword from memory to I/O;

(b) 10 kilowords from memory to I/O.

9.25 Repeat Problem 9.24 for memory-to-memory transfers with the DMA controller in the

dual-address mode.

9.26 Compute the DMA timing assuming the conditions of Problem 9.24. Repeat the

computation for the conditions of Problem 9.25.

See ee ee 2a ie

ENDNOTES
ee ee ee ie erie Sa

1. Davis, R. Prioritized Individually Vectored Interrupts. App. Note #819. Austin, TX:
Motorola Microprocessor Group, 1981.

2. Motorola, Inc. MC6890] MFP Data Book. Phoenix, AZ: Motorola Technical Operations,
1984.

3. Motorola, Inc. MTT8: 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,
1987.

4. Andrews, M. Self-Guided Tour through the 68000. Englewood Cliffs, NJ: Prentice-Hall,
1984.

5. Motorola, Inc. MCM511000 Data Sheets. Phoenix, AZ: Motorola Semiconductor Group,
1988.

6. Wilcox, A. 68000 Microcomputer Systems. Englewood Cliffs, NJ: Prentice-Hall, 1987.

7. Miller, M.A. “Parallel Interfacing the 68000.” Chap. 5 in The 68000 Microprocessor:
Architecture, Programming, and Applications. Columbus, OH: Merrill, 1988.

Endnotes 277

8. Subbarao, W. Microprocessor Hardware, Software, and Design Applications. Englewood

Cliffs, NJ: Prentice-Hall, 1984.

9. Motorola, Inc. M68440/68450 DMA Controller Data Books. Phoenix, AZ: Motorola

Technical Operations, 1987.

10. Clements, A. Microprocessor Systems Design: 68000 Family of Processors. Boston:

PWS-KENT, 1988.

CHAPTER

10

68010 and 68012 Architecture,
Organization, and Applications

Objectives

In this chapter we will study:

Virtual memory and virtual machine schemes

The additional resources of the 68010 and 68012

Virtual memory implementation schemes

Exception processing associated with virtual memory

10.0 INTRODUCTION

The 68010 virtual memory microprocessor has more internal resources than the 68000
microprocessor. The additional resources are needed to implement designs based on vir-
tual memory. Externally, the 68010 is pin compatible with the 68000 and can access 16
megabytes of logical memory.!

The 68012 extended virtual memory microprocessor is similar to the 68010 in-
ternally, but has an extended address bus (Al—A29 and A31) that can address 2 gi-
gabytes of logical memory.”

When there is a large logical memory space, but only limited physical memory
space (due to hardware limitations), a virtual memory scheme is used. Such a scheme
allows for effective implementation of a computer system in the logical address space
while operating in the actual hardware physical memory space.

Virtual Memory and Virtual Machine Concepts 279

Study of the material in this chapter will help the reader understand the virtual
memory concepts that are fundamental to the implementation of virtual memory system
designs using the 68010 and 68012 microprocessors.

10.1. VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

For most microcomputer systems, only a fraction of the memory and I/O resources of

the processor are available. Virtual memory and virtual machine concepts allow the sys-

tem to operate as if full system resources were available, even when only a fraction of

them are physically represented. This enhances the scope of software and hardware de-

velopment of the microcomputer systems.°

Virtual Memory Schemes

Virtual memory gives the computer user the impression that the entire memory space is

available for use. It is memory that is not present in the real-time physically accessible

memory, although it is in the logical memory space of the processor and is contained in

backup memory, such as disk. When the processor tries to access this memory, a

memory-access fault occurs. The processor attempts to correct this fault by moving the

contents from the virtual memory into the physical memory. The processor may move

some of the physical memory contents into backup memory in order to create space for

the virtual memory contents to be brought in. Figure 10.1 illustrates a virtual memory

scheme.

Virtual Machine Schemes

The extension of virtual memory concepts to cover other nonexistent hardware re-

sources, such as the I/O, leads to virtual machine schemes. There may be several local

operating systems under a governing operating system. Each of these local operating

systems can access the I/O resources belonging to the others through the governing op-

Data transfers

Microprocessors i ee ee ee

68010/68012) present in the system
Memory error

Data transfer
between physical

and backup memory

Memory

transfer

requests

Memory management

unit

FIGURE 10.1 Virtual memory concepts in computer systems.

Backup memory (contains

virtual memory) Memory control

280 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

Governing operating
system (GOS)

eee w eee eee

Local operating system A Local operating system B | ---++++++>

Real or emulated

I/O under the

control of the GOS

All the I/O resources may be real or emulated (virtual).

FIGURE 10.2 Virtual machine scheme concepts.

erating system, as shown in Figure 10.2. These I/O resources may be real, or they may

be emulated by the governing operating system.*

During emulation, the governing operating system mimics the corresponding I/O

properties. However, the local operating system addressing these resources considers

them to be part of its own system. Hence, the concept of the virtual machine: The local

operating system looks like a user to the governing system, and like a governing oper-

ating system to the user.

We will now present an example problem to review what we have learned about

virtual memory and the virtual machine.

Example 10.1 Virtual memory and virtual machine concepts.
In a database management system using the 68010 processor, the memory map for phys-

ical memory and I/O is as follows:

System ROM/EPROM/RAM = $000000 to $00FFFF (64 kilobytes)

System/User RAM => $010000 to $04FFFF (256 kilobytes)

System I/O => $100000 to $1003FF (1,024 bytes)

Assume that appropriate virtual memory management software and hardware have been
implemented.

1. The MOVE.W_ (A\1),D1 instruction is executed with Al = $0COO0E. Conceptual-
ize the sequence of events. How is the virtual memory scheme implemented, if im-
plementation is possible?

Virtual Memory and Virtual Machine Concepts 281

2. Now suppose Al = $012345AE. Can the scheme be implemented?

3. Suppose it is necessary to implement an additional I/O system between $1A2300 and

$1A23FF. Conceptualize the implementation scheme for this virtual machine.

Solution

1. Virtual memory implementation: The 68010 processor has a 16-megabyte logical

space between $000000 and $FFFFFF. Currently, the 68010 is accessing memory at

SOCOOOE. It is outside the physical memory, but is contained in the logical memory

space. Therefore, the virtual memory scheme is possible.

In Figure 10.3, the conceptual events in the virtual memory implementation

scheme are indicated. When the memory-access fault is detected, the fault correction

software and the memory management hardware will move the virtual memory sec-

tion (in which the current reference is made) into the real physical memory. The

memory reference pointer (Al, in this case) will be readjusted to correspond to the

remapped memory. Thus, the referenced memory will be made available to the pro-

cessor for the data movement operations.

After the fault has been corrected, the processor resumes its earlier activity.

The fault correction software is really bus error exception processing software (de-

tails to be discussed later).

2. Memory access at $012345AE for 68010- and 68012-based systems: The virtual

memory scheme cannot be implemented for the 68010, since the location

$012345AE is beyond its logical space. However, in the case of the 68012 proces-

sor, the location is in the logical space and the virtual memory scheme can be imple-

mented.

3. Virtual machine (I/O between $1A2300 and $1A23FF): When a reference is made

to this nonexistent I/O, the processor will implement the virtual memory schemes as

FIGURE 10.3 Virtual memory ——_ Memory

concepts (Example 10.1). access fault
peel P) detected (BUS ERROR) Logical memory space

Readjusted
memory
reference Physical memory

and
I/O space

68010/68012
microprocessors

Fault correct

software and

memory

management

Virtual memory

(in backup

memory)

Remap virtual memory
into physical memory

282 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

we have outlined, with additional emphasis on the emulation of the I/O device prop-

erties and associated operating systems.

In the preceding problem, mention was made of the virtual memory section from

the backup memory being moved into the physical memory area. The functional details

of this important virtual memory implementation concept are shown in the flowchart of

Figure 10.4. A part of the physical memory is assigned as a memory buffer. This buffer

is used for all the virtual memory transfers. A 64-kilobyte area between $040000 and

$04FFFF is chosen as the memory buffer for our particular case.

When a virtual memory reference is made, the virtual memory implementation

software checks whether the memory buffer area has been filled by an earlier virtual

memory reference. If it has, the software moves the contents of the buffer into the cor-

responding backup memory. The software also readjusts any previously adjusted mem-

ory pointers to their original values.

When the buffer becomes available, the software moves the memory block con-

taining the virtual memory reference from the backup memory into the buffer area.

Also, the original pointer values are stored and adjusted to refer to the buffered area.

After these adjustments, any related virtual memory reference will be accessed from the

buffer area.

FIGURE 10.4 Virtual memory

implementation flowchart. Define memory buffer area

($040000-$04FFFF is buffer)

Virtual memory reference

Move buffer contents

to backup memory and
readjust the pointers

to original values

Move virtual memory section
from backup into buffer area

and adjust memory pointers
for the buffer reference

Proceed with the memory
operations and software

Virtual Memory and Virtual Machine Concepts

FIGURE 10.5 A/D converter

virtual machine emulation Move $01 to START location Start conversion

and jump to A/D subroutine
flowchart.

Reset start location to $00.
Delay loop to emulate A/D. A/D conversion emulation
Move data element n to A/D (for ramp-type input)
location n. Increment n for

next operation.

Move $01 to EOC location. p
; A/D conversion complete

Return from subroutine.

The flowchart for an A/D converter type of virtual machine emulation scheme is

given in Figure 10.5. All the hardware signals are emulated by memory locations. A

start pulse to the A/D converter starts the actual conversion process (refer to Chapter 9

on A/D conversions). This is accomplished by writing a 1 to a memory location

(START) which mimics the A/D start input and the calling of an A/D subroutine.

The subroutine resets the start location and generates a delay corresponding to the

actual conversion time of the A/D device. It then writes a data element, n (the initial

value of n would be $00), into the memory array designated to hold the A/D data. Fi-

nally, the software writes $01 into the EOC (end-of-conversion) location which mimics

the end-of-conversion pulse and returns the program to the calling routine.

It can be seen that the virtual machine emulation is software intensive and mimics

hardware operations by writing into appropriate memory locations.

We will now present an example problem to review the actual implementation

schemes of virtual memory and virtual machines.

Example 10.2 Virtual memory/machine implementation schemes.
The memory buffer for a virtual memory implementation scheme is between $040000

and $04FFFF (64 kilobytes), as shown in Figure 10.4. A 64-kilobyte block ($0000 to

$FFFF) containing the virtual memory reference address will be moved from the backup
memory into the buffer each time virtual memory implementation takes place. (Refer to

Example 10.1 for the memory map of the 68010-based system.)

1. The MOVE.W_ (A1),D1 instruction is executed with Al = $OCOOOE. Specify the

actual memory block moved from the backup memory into the buffer memory.

2. What adjusted value will be in the memory pointer Al?

3. For an 8-bit A/D conversion emulation as a virtual machine, how many bytes of A/D

data array are required for emulating a linear ramp signal?

4. Answer the preceding question for emulating a triangular wave.

283

284 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

Solution

1. Memory block moved into the virtual memory buffer: Memory pointer A1 refers

to an address $0COO0E which is not in the physical memory of the system, but which

is in the logical memory space contained in the backup memory. Therefore, virtual

memory implementation is possible. The memory block containing the virtual mem-

ory reference $0COO0E is between $0C0000 and $0CFFFF. Thus, memory block

$0C0000 to $OCFFFF is moved into the buffer between $040000 and $04FFFF.

2. Adjusted memory pointer Al: The original Al pointer contents (S$OCOOOE) are

stored in memory (possibly in the supervisor stack), and the pointer is adjusted to

hold $04000E. The pointer refers to the corresponding location in the memory buffer

after the memory movement.

3. Linear ramp A/D emulation: The 8-bit linear ramp data are between $00 and $FF
in increments of 1. This requires a 256-byte memory array. In addition, two byte

locations are required to emulate the START and EOC signals, for a total of 258

locations. Thus, a 258-byte array is required.

4. Triangular wave A/D emulation: A triangular wave takes positive-going and

negative-going ramps, for a total of 512 byte-sized data elements. Considering the

START and EOC locations, the required memory array is 514 bytes.

The preceding concepts regarding virtual memory and virtual machine schemes

apply to all processors having the proper resources. In the next few sections, we will

describe these resources with reference to the 68010 and 68012 processors.

10.2 ARCHITECTURE OF THE 68010
AND 68012 MICROPROCESSORS

Figure 10.6 illustrates the general architecture and busing features of the 68010 and

68012 microprocessors. They contain all the resources of the 68000 microprocessor,

with additional registers to handle the virtual memory and virtual machine schemes.

Additional Register and Busing Resources

Internally, the 68010 and 68012 processors have a 32-bit vector base register (VBR). In

addition, they have two 3-bit registers: the SFC (source function code) register and the

DFC (destination function code) register. These registers help to implement the virtual

memory management schemes.

VBR (Vector Base Register) This register contains a 32-bit base address, which is

meant to relocate the exception vector table. This allows for a multioperating system in

a multiuser environment. Each local operating system may have a different value written

into the VBR. This leads to different exception tables for different local operating sys-

Architecture of the 68010 and 68012 Microprocessors 285

ADDRESS
BUS (23)

8 DATA DATA
REGISTERS <= BUS KI6)

ASYNCHRONOUS
BUS (5)

7 ADDRESS
REGISTERS

SYNCHRONOUS
BUS (3)

2 STACK <ai> SYSTEM
POINTERS CONTROL (3)

DMA
PR Ee Pe atin needs op aetonioe ae cnc acorns [oR OGRAMGOUNTERA RITE. G3)

— CT CONTE SYSTEM BYTE USER BYTE CONTROL (3)

cel CONTROL (3)

Same resources as the 68000 processor

Additional resources for the 68010/12
for virtual memory/virtual machine:

RMC

vlads (68012 only)
Source function code SFC

Destination Function code DFC

FIGURE 10.6 Architecture and additional resources for 68010/68012-type

microprocessors.

tems. The default VBR value (on system reset) is $00000000, which matches that of the

68000 exception table. This table corresponds to the governing operating system. The

VBR can be accessed only in the supervisor mode (using the MOVEC instruction).

SFC and DFC (Source and Destination Function Code Registers) These reg-

isters contain information about the function codes (FC2, FC1, and FCO). They can be

accessed in the supervisor mode using the MOVEC ‘instruction. This provides easy ac-

286 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

Cycle Type

Reserved

User data

User program

Reserved

Reserved

Supervisor data

Supervisor program

CPU space

0 0

0 I

1 0

l l

0 0

0 l

1 0

1 1

FIGURE 10.7 The 68010/68012 function code table.

cess to the program or data space for virtual memory and virtual machine schemes. In

Figure 10.7 the function code table for the 68010 and 68012 is given. The FC2 FC1

FCO = 1 | 1 condition is designated as the CPU space, which is further classified as

follows:

FC2 FC! FCO= 111 and A4—-A23=1...1

is the interrupt acknowledge cycle;

FC2 FC1 FCO = 111 and Al-A23=0...0

is the breakpoint cycle (details to be discussed later).

Busing The 68010 is pin compatible with the 68000 processor. Thus, the 68010 pro-
cessor is contained in a 64-pin DIP or 68-pin grid-array package, as is the 68000. The
68012, however, has seven more address lines (A24—A29 and A31) to address 2 gi-
gabytes of memory. An additional control line, RMC (read modify write control), is
included for multiprocessor interfacing. To minimize noise, the 68012 has two addi-
tional ground pins. It is contained in a standard 84-pin grid-array package. It is not hard-
ware compatible with the 68000/68010 processors; thus, hardware must be specially de-
signed for the 68012.

The Breakpoint (BKPT) Concept for the 68010 and 68012. When the BKPT #n
(n = O—7) instruction is executed, it results in illegal instruction exception processing.
The function codes and the address bus can further be decoded to generate a hardware
breakpoint condition for system debugging.

Additional Instructions and Modified Instructions

The table of Figure 10.8 indicates additional instructions (new) and instructions that
have been modified for the 68010 and 68012 virtual memory processors. The MOVEC,
RTD, and the MOVES are new instructions and support the virtual memory implemen-

Architecture of the 68010 and 68012 Microprocessors 287

Move control MOVEC_ Rn,Rc Move long word between Rn (An or Dn) Privileged

register MOVEC Rc,Rn and Re (SFC,DFC,VBR,USP) and new

Return and RTD #n Return from subroutine and deallocate Normal

deallocate #n bytes from stack (n is even) and new

stack

Move alternate

address space

MOVES (ea),Rn Move between effective address and Rn

(SFC and DFC are preconditioned)

Privileged

and new

MOVES _Rn,(ea)

MOVE. SR,<ea) Move from status register to effective Modified

address to be

privileged

FIGURE 10.8 Additional and modified instructions for the 68010/68012.

Move status

register

tation. The MOVE SR,<ea> instruction has been modified to be a privileged instruc-

tion. This facilitates the coexistence of the multiuser and local operating systems under a

governing operating system. Local operating systems of users are prevented from ac-

cessing the status register. An attempt at such access causes an exception and takes the

processor to the governing operating system (S bit = 1 in system bytes). The governing

operating system controls the local operating systems, which are really in the user

mode.

Loop Mode The 68010 and 68012 processors go into a loop mode of operation in
executing a three-instruction loop involving the DBcc (decrement and branch on condi-

tion). The processor keeps the three instructions in the internal instruction queue and

executes them until the loop condition is satisfied. This circumvents the external mem-

ory access bus cycles and greatly speeds up the loop operation. Data sheets for the

68010 and 68012 specify those instructions that are eligible for the loop mode of oper-

ation.*”°
The VBR is usually relocated for each local operating system. The stack is some-

times deallocated (for the governing operating system to input or retrieve information).

Similarly, the SFC and DFC registers are reconditioned to address any memory space.

These capabilities are unique to the 68010 and 68012. The rest of the software of these

processors is similar to that of the 68000 processor.
We will now present an example problem to review the additional resources of the

68010 and 68012 processors and associated software considerations.

Example 10.3 68010/12 additional resources and software.

In Figure 10.9, an initialization routine for the 68010 and 68012 processors is given.

Assume that the TRAP #14 call, passing parameter 228 in the D7 register, returns the

control to the governing operating system.

288 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

LINE ADDR

;M68010.SRC 64010/1e :FIU 11/25/68 1
c CHIP 66010
3 ORT A
4 ORG $1000
S;MOVE VECTOR TABLE TO NEW ADDRESS
& 00001000 4E?t START NOP
? 0000100e 20rc oo00 oooo MOVEA.L #$0,A0 ; AO=0
6 00001006 eerc Oooo 2000 MOVEA.L #$2000,A1L ;A1=$2000
9 O0O00100E 103C OOFF MOVE.B #$FF,DQ ; DO=FF

10 0000101e eeDdd AGAIN MOVE.L (AO)+,(A1L)+
11 00001014 51C8& FFFC DBRA DO, AGAIN
12;INITIALIZE VBR AND TRAP #1 VECTOR AT $84
13 00001016 e4rc OOOO 2000 REINT MOVEA.L #$2000,Ae
14 OOOOLOLE 4E?B A&O1 MOVEC Ac,VBR ; VBR=$2000
15 000010ee 2eSrec O000 3000 MOVE.L #$3000,$0084(Ac)

0084
16 OO0010CA 4EBS& 10356 4E?Pt JSR FCODE
1? 00001030 1E3C OOE4 MOVE.B #2e26,D?r ;TO SYSTEM
16 00001054 4E4E TRAP #14
19 00001036 ebec OO00 Oooo MOVEA.L #$0,A3
20 CH0TLOsC reo? MOVEQ #$0?,D1L
C1 OOOOLOSE 4E?B 1000 MOVEC DL,SFC .;SFC=L11
fe O0001042 GESS 2000 MOVES.W (A3),De
fj 00001046 4E?4 0008 RTD #56
°4 OOO0LO4A 4E?1 NOP
eS:

f&6 O000104C END

ASSEMBLER ERRORS

SYMBOL TABLE

AGAIN 00001012 FCODE 00001036 NARG ooggo0o000
REINT 00001018 START 00001000

FIGURE 10.9 Initialization software for 68010/12 processors (Example 10.3).

1. What tasks are being accomplished in the software? Specify any special features of
68010/12 software.

2. Where is the TRAP #1 routine configured to start after this initialization program
has been run?

3. For running the program, what mode should the processor be in? Why?

4. If the initial value of the corresponding stack pointer is $0700, diagram the stack
frame and its contents.

Solution

1. Software: Between lines 6 and 11, 256 long words of the original vector table (start-
ing at $000000) are copied to memory starting at $2000. Of particular importance is
the AGAIN loop. The 68010 and 68012 processors keep this instruction sequence in
the internal queue for fast execution.

Architecture of the 68010 and 68012 Microprocessors

Between lines 13 and 15, the vector base register is initialized to $2000. It

relocates the vector table at $00002000. The default vector table remains at

$00000000.
The vector location $2084 (corresponding to the TRAP #1 vector at the offset

of $84 in the relocated vector table) is loaded with $3000. The JSR instruction at line

16 takes the program to the FCODE module.

The FCODE module is contained between lines 19 and 24. The SFC is loaded

with $07, which corresponds to FC2 FC1 FCO = 1 1 1, and refers to the CPU space

(see Figure 10.7). The MOVES.W_ (A3),D2 instruction forces FC2 FC1 FCO =

1 1 1 and address lines Al—A23 to the 0. . . 0 condition during the source operand

fetch. This emulates a break condition externally. The RTD instruction returns the

program to the REINT module, deallocating the stack by eight words.

Finally, control is given to the governing operating system by means of the

TRAP #14 call at lines 17 and 18.

2. TRAP #1 routine: The vector offset for TRAP #1 is $84. With the VBR at $2000,

the reinitialized TRAP #1 vector location is at $2084, into which $00003000 is

loaded. Thus, the TRAP #1 routine would start at $00003000.

3. Mode of operation: The processor must be in the supervisor mode, since MOVEC

and MOVES are privileged instructions and can only be used in the supervisor

mode.’

4. The stack frame and contents: The processor is in the supervisor mode. The corre-

sponding supervisor stack frame is as follows:

STACK

SSP MEMORY

Low

address $06FC OO 0 20)
PC stored at JSR

$06FE ier O30 O instruction

$0700 Old TOP

the specified ovine 8 bytes of stack
offset ($8 in $0704 deallocated

this case)

the stack $0706

$0708 New TOP

SSP after RTD #8 is at

$00000708

The deallocated space on the stack is usually used by the governing operating sys-

tem for passing the parameters between local operating systems. The concept of emula-

tion is also demonstrated in the software. While accessing the source operand with the

MOVES.W_ (A3),D2 instruction, a breakpoint condition has been created (or emu-

289

290 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

lated). Detailed discussions on system emulations are beyond the scope of this book;

however, references at the end of the chapter may be consulted for further study.

10.3 MEMORY FAULT CORRECTION SCHEMES

Memory-access faults (or memory faults) are corrected using virtual memory schemes.

There are two methods by which to implement these schemes: the instruction restart

method and the instruction continuation method, both widely used in the computer

industry. The 68010 and 68012 processors follow memory-mapped I/O concepts. The

memory fault correction schemes are equally applicable for the I/O units of these pro-

cessors.

The Instruction Restart Method

Each instruction is organized as a sequence of microcoded modules. Figure 10.10 illus-

trates a microinstruction scheme for a typical instruction:

MOVE.W —(An),—(Am)

The instruction op.word is prefetched (during the previous microinstruction mod-

ule A) and stored in the instruction queue. The microinstruction modules A, B, and C

must be sequentially executed for successful execution of the instruction. The memory-

access fault can occur during the A, B, or C module.

In the instruction restart method, if a memory fault occurs in any micromodule, it

is corrected (if possible) using virtual memory concepts. Then the complete instruction

is repeated. For this to happen, the processor should have the internal resources with

which to copy all the original values of the registers. Although this puts a tremendous

resource burden on the processor, the instruction restart method is considered to be su-

perior to the instruction continuation method. The instruction is finally executed as a
complete unit.

The Instruction Continuation Method

The microinstruction sequence for this method is similar to the sequence of Figure
10.10. The memory fault can occur during the A, B, or C module.

In the instruction continuation method, the memory fault is corrected (if possible)
using virtual memory concepts. The instruction execution then continues from the cor-
responding microinstruction module where the fault was detected and corrected. In this
method, it is not necessary to copy the register values, but any interdependence of the
destination address and source address (as in the case of MOVE.L —(An),—(An)) may
result in inaccurate results. This method is easy to implement, however, and is suffi-
ciently accurate for most applications.

Memory Fault Correction Schemes 291 rr rr ir 9 oer et

microinstruction sequence and MOVE.W — (AN), — (AM)
OP.word for the current instruction

i has be fetched. micromodules for 68010/12 as been prefetched

processorsiue ifter he Aare’ Ge = — — ee ee eae ee

Calculate (An — 2) source EA.

Prefetch next instruction.

FIGURE 10.10 Typical

Microinstruction
sequence of the

current A
instruction

Read operand from (An — 2).

Store (An — 2) in An. B

Compute destination EA = (Am — 2).

Write operand value at EA = (Am — 2).

Store (Am — 2) value in Am. C

Set condition codes in SR, if

applicable.

Results of the

current ‘ z An decremented to (An — 2).
instruction

Am decremented to (Am — 2).

Word from (An — 2) moved to (Am — 2).

The 68010/68012 Memory Fault Correction Methods

The 68010 and 68012 microprocessors use the instruction continuation method. To the

extent possible, Motorola Corporation designed the instruction micromodules to be

functionally independent so as to minimize the fault interaction. These processors use

virtual memory schemes to correct memory-access faults. A memory-access fault cannot

be corrected if it is not within the logical memory space of the processors.

We will now further address the memory fault correction schemes with the help of

an example problem.

Example 10.4 Memory fault correction schemes.
Suppose the 68010 or 68012 processor must execute the following instruction:

MOVE.L_ —(A1),—(A3)

1. Conceptualize the microinstruction sequence.

2. Outline the sequence of events if a memory-access fault occurs while accessing the

upper word of the source operand.

3. Outline the sequence of events if a memory-access fault occurs while addressing the

lower word location of the destination operand.

292 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

Solution

1. Microinstruction sequence: The sequence is illustrated in Figure 10.11. It consists

of five microinstruction modules: A, B, C, D, and E.

2. Memory-access fault in source operand: Referring to Figure 10.11, the memory-

access fault occurs during micromodule B. The processor already has completed

module A. If possible, the processor corrects the memory-access fault during module

B. The microinstruction sequence continues from B to complete the rest of the in-

struction.

3. Memory-access fault at destination: The access fault occurs during micromodule

E. The A, B, C, and D modules already have been executed. If possible, the proces-

sor corrects the fault during module E, which is the last module. The execution then

continues to the next instruction.

FIGURE 10.11 Microinstruction
sequence for the

MOVE.L -—(A1),—(A3)
instruction (Example 10.4).

MOVE.L — (A1), — (A3)

-Microinstruction

sequence

Results of the

current

instruction

OP.word for the current instruction

has been prefetched.

Compute (Al — 4) source EA for upper word
and prefetch next instruction.

Read upper source word from (A1 — 4).

Compute (Al — 4 + 2) EA for lower word.

Read the lower word from (Al — 4 + 2).

Store (Al — 4) in Al.

Compute destination EA = (A3 — 4).

Write upper destination word at (A3 — 4).
Compute EA for lower word = (A3 — 4 + 2).

Write lower word at (A3 — 4 + 2).

Store (A3 — 4) in A3.

Set condition codes in SR, if applicable.

Al decremented by 4.
A3 decremented by 4.

Long word from (A1 — 4) moved to (A3 — 4).

Bus Error Exception Processing Associated with Virtual Memory 293

In most cases, the op.word for the next instruction is prefetched during the first

module of the current instruction. If a fault occurs in prefetching the next op.word, the

current instruction is completed first. The memory fault correction for the prefetched

op.word begins after the completion of the current instruction.

10.4 BUS ERROR EXCEPTION PROCESSING
ASSOCIATED WITH VIRTUAL MEMORY

As previously stated, the 68010 and 68012 processors can correct memory-access faults

using a virtual memory scheme, if the faults occur within the logical space of the pro-

cessors. The scheme is implemented as a modified bus error exception. The processor

must store more information on the stack for the modified bus error exception to be able

to correct memory-related faults. If the memory-access fault occurs beyond the logical

memory space, the processor reverts to normal bus error exception processing. These

exceptions are handled in the supervisor mode..

Modified Bus Error (BERR) Exception Processing

In Figure 10.12, the exception vector table for the 68010 and 68012 processors is given.

It is similar to that of the 68000, with a few additions; for example, the format error

(vector 14 at offset $038).

Figure 10.13 illustrates the 68010 and 68012 supervisor stack frame for the bus

and address error conditions. The processors may stack up to 29 words for memory-

related bus error or address error faults. At relative location $06 from the top of the

stack, the format and the vector offset entries are of particular importance. If the 4-bit

format is 1000, it refers to a long stack frame with 29 words. If the 4-bit format is 0000,

it refers to a short stack of 4 words, as shown. Virtual memory schemes are not imple-

mented if the shorter frame is used. The 12-bit vector offset is the relative offset of the

exception in the vector table. This value is $008 for the bus error, $024 for the trace,

and so on. The stack used is the supervisor stack.

In all types of exceptions, the program counter and the copied status register are

automatically stacked. At the conclusion of the exception processing routine, the RTE

(return from exception) is executed. The RTE instruction examines the format code

(0000 or 1000) and accordingly unstacks either 4 or 29 words into the appropriate reg-

isters. Even though the address error stack frame appears to be similar to the bus error

stack frame, virtual memory schemes are not implemented for the address error. The

address error deals with misaligned access of word or long-word operands at the odd

address boundary for the 68000, 68010, and 68012 processors.

Of particular importance is the special status word at stack relative location $08.

Detailed in Figure 10.14, the special status word reflects the conditions of the bus activ-

ity at the time of the exception. This information is useful in developing appropriate

error correction routines using virtual memory principles.

Appropriate software dealing with the normal bus error exception or the modified

bus error exception should be written as a part of the ‘governing operating system.

294 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

sr [Reet rai ssh?
[se [rota rc? |

ee
<n
<r
so

Vector

Number(s) | Dec | Hex |

| 0 | 00 |
| 004 |

8 | ulgpoted
etna ttle al
Ps | = [om
Pe | ™ [oe [0 [orinusion
7 [| oe [80 | eaPy atucton
2 | | om | 80 [eran vataon
eons lain bo Sadibisls APES dst od po noite
[0 [0 | ae [0 [tine 01 ert
SO A
[et [@ | oo | 50 [Wunaona evened)
Pst [| om | 80 |turetioe,Ratoved)
eC Oe
(35 [| osc 80 | Urine morpt Vor

liecin| vcehoitbe jt & Wiad OR cA
P| [om | 80 spvioie mene® |
ee
ee
[ar [see [se [80 Ya rr Avec
ae [oe [oe [50 [rit tor
ee

ee
so [TRAP raweton Veco

| ees Pee
Ce
alana
am

i Camera AA for homage 9
User Interrupt Vectors

NOTES:

1. Vector numbers 12, 13, 16 through 23, and 48 through 63 are reserved for future enhancements by Motorola. No user peripheral devices
should be assigned these numbers.

. Reset vector (0) requires four words, unlike the other vectors which only require two words, and is located in the supervisor program space.
. The spurious interrupt vector is taken when there is a bus error indication during interrupt processing. Refer to Paragraph 4.4.4.
. TRAP #n uses vector number 32 +n.

. MC68010/MC68012 only. See Return from Exception Section.

This vector is unassigned, reserved on the MC68000 and MC68008.

6. SP denotes supervisor program space, and SD denotes supervisor data space.

oOhW ND

FIGURE 10.12 Exception vector table for the 68010/12 processors. (Courtesy of
Motorola, Inc.)

Bus Error Exception Processing Associated with Virtual Memory 295

Status word
FIGURE 10.13 Stack frame for

bus and address errors in SSP + $00

68010/12 processors. $02 Program counter high 4-word
short

aw [__Pornmconerin +d;
sw [mr [ween | f
$08 Special status word

$OA Fault address high

$0C Fault address low

Reserved

$10 Data output buffer long stack

Ba [reel ave
$14 Data input buffer

i, | | ee Damage
os
$1A 16 Words of additional information

: for error correction

*Format 0000 for short stack and 1000 for long stack.

bi Sarbl4: —bl3s) Di2es bills eblOpsibWayebSidt by. sinb6 a05b5: exb4iibnb3) srib2em bi bO

Pee [= Dor Poe Poo Por ew] = [== [= [= Pre] rerprco
RR => Rerun; 0 for processor and | for software rerun

IF => Instruction fetch DF => Data fetch

RM => Read, modify, write cycle HB => High byte
BY => Byte/word transfer for 1/0 RW => Read/write for 1/0
2 => Reserved FC2, FC1, FCO => Functicn codes

FIGURE 10.14 Special status word for 68010/68012 processors.

We will now present an example problem to review what we have learned about

the modified bus error and associated stack frame.

Example 10.5 68010/12 exceptions and supervisor stack frame.
Figure 10.15 indicates the contents of the stack after a certain type of exception has oc-

curred. The top of the stack is at $0600.

296 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

FIGURE 10.15 Supervisor SSP
stack frame and contents for the
68010/12-based system

0600
(Example 10.5). ;

$0602

$0604

$0606

$0608

$060A

$060C

$060E

$0610

$0638

SUPERVISOR STACK

Other words of the

29-word frame

Previous stack contents

[1] FORMAT/VECTOR
(2] SPECIAL STATUS WORD
[3] FAULT ADDRESS
[4] RESERVED WORD

CONTENTS

$2300 SR

$0000
PC

$1042

$8008 [1]

$1105 [2]

$0081
=) (3st

$2048

$0000 [4]

1. What type of exception has occurred? Can a virtual memory scheme be imple-
mented?

2. What are the conditions at the time of this exception, as indicated in the special sta-
tus word?

3. What is the fault address?

Solution

1. Type of exception: The format/vector offset word at stack location $0606 is $8008.
This is interpreted as follows:

long stack ‘a

frame

$8008 CEES

Ls vector offset

corresponding to

bus error

A bus error exception has occurred, with a long stack frame. Virtual memory imple-
mentation is possible.

2. Conditions: Examining the special status word $1105 at stack location $0608 and
comparing it with the special status word format of Figure 10.14, we observe

Bus Error Exception Processing Associated with Virtual Memory 297

S115
data fetch <——_! | L, supervisor

condition data space

with processor — word

rerun read

At the time of the exception (bus error), the processor is attempting to read a word

from the supervisor data space.

3. Fault address: The stack contents at $060A and $060C contain the fault address.

Fault address = $00812048

The governing operating system software uses the stack information in attempting

to correct memory-related faults. It should be remembered that the governing operating

system is the original or default operating system. It is functional in the supervisor

mode. All the local operating systems are functional in the user mode.

Correction of Memory-related Faults
Using Virtual Memory Schemes

The most important application of the virtual memory implementation scheme is to cor-

rect memory-access faults. If the memory reference is made to memory that is physi-

cally nonexistent, but logically existent, the processor can implement the virtual mem-

ory scheme upon receiving the BERR (bus error) signal. The processor moves the

required memory block from the backup memory into the main memory and readjusts

the memory pointer reference. It then reruns the bus cycle where the fault occurred and

continues with the rest of the instruction and the program.

Virtual memory software is written as part of the modified bus error exception

processing. If the memory reference is beyond the logical address space and a bus error

occurs, a normal bus error exception will be executed, as we have already mentioned.

In Figure 10.16 the operating listings of a 68010-based system are given. In this

software a memory-access fault is simulated and is being corrected. This is written as

' part of the governing operating system in the supervisor mode. The system has the fol-

lowing memory map:

System ROM/EPROM/RAM => $000000 to $OOFFFF (64 kilobytes)

System/User RAM => $010000 to $04FFFF (256 kilobytes)

RAM buffer > $040000 to $04FFFF (64 kilobytes)

System I/O > $100000 to $1003FF (1,024 bytes)

The governing and local operating system programs are contained in the system ROM/

EPROM/RAM. The RAM buffer is used for virtual memory implementation and data

transfers. 4

298 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

LINE ADDR

1 ;virtual memory and memory
2 ;fault correction, fiu 3/84
E CHIP 66010
4 OPT A
& ORG $1400
b ;VBR reconfigured at $2000
? 00001400 41F4& eo0o LEA $00002000,A0
6 00001404 4E?B 6801 MOVEC AO,VBR
9 00001406 eirc 0000 1420 MOVE.L #CORRECT,$06(AQ)

0004
10 ;fault generation
11 00001410 4?F9 0061 2044 LEA $00812048,A3
1e 00001416 3013 MOVE.W (A3),DO
13 00001418 4E?1 NOP
14 ;return to system

15 0000141A 1E3C OOE4 MOVE.B #ce26,D?
16 OO00141E 4E4E TRAP #14
1?;modified bus error routine if in
14;logical space. Else normal bus error
19 00001420 4554 FFFO CORRECT LINK A4,#-$10
CO 00001424 eEec OOOE MOVE.L $0E(A4),D?
e1 00001428 OCé? OOFF FFFC ChPiG FePrrREre, Dic
ee 000014eE 6204 BHI.S NORMAL
eji;trap #2 routine does memory management
24;block transfer between backup and main
eS;memory and adjust memory reference.
°6 000014350 4E4e2 TRAP #e
er H0U0L432 4GErl NOP
°6 00001434 4ESC UNLK AG
29 00001436 4E?73 RTE
30;to normal bus error

J1 00001436 eA?é 00064 NORMAL MOVEA.L $0008,AS
de 0000143C 4ESC UNLK AG
33 0000143E 4EDS JMP (AS)
34 00001440 END

ASSEMBLER ERRORS =

SYMBOL TABLE

- CORRECT 000014e0 NARG goo00g000 NORMAL 00001436

FIGURE 10.16 Bus error/memory-access fault correction software for the 68010
(Example 10.6).

At lines 7 and 8, the VBR is initialized to $2000. This is the base address for
the new vector table. At line 9, the modified bus error exception routine address
(CORRECT) is loaded into new bus error vectored location $2008.

This system does not have physical memory beyond $04FFFF (refer to Section
10.1). Hence, the instructions

LEA $00812048,A3 and MOVE (A3),D0

Bus Error Exception Processing Associated with Virtual Memory 299

at lines 11 and 12 simulate a bus error condition. Location $812048 is beyond the phys-

ical memory, but is contained in the logical memory. While executing the instruction

MOVE.W_ (A3),D0

the processor receives a BERR signal when the source operand is addressed. The pro-

cessor then stacks the internal register and control information on the stack (see Figure

10.15).

The processor goes to the modified bus error routine (CORRECT) between lines

19 and 29. The fault address is stored at an offset $0A with reference to the current SSP

(supervisor stack pointer). The A4 register is configured as the frame pointer by the

LINK instruction. At lines 20 and 21, the logical address limit is checked against the

fault address. If the fault address is beyond the logical address, the program goes to

the normal bus error exception routine (NORMAL) at line 31.

The modified bus error routine is executed via the TRAP #2 routine. This is the

memory fault correct software. It transfers 64 kilobytes from the RAM buffer into the

backup memory to create space for the new virtual memory data to be brought in. It

then transfers a 64-kilobyte block (+32K) around the fault address from the backup

memory into the RAM buffer. In this instance, this block would be $80A048 to

$81A047. It adjusts the memory reference as shown:

to physical
from processor

memory
Memory management unit

$042048
$812048 Adjusted physical address

Logical address of the RAM buffer

A detailed listing of the TRAP #2 routine is very complex; hence, we have cho-

sen not to include it given the constraints of the text.

At line 28, the stack is unlinked. The following RTE instruction returns the pro-

cessor to the condition that existed at the time of the bus error. The processor then re-

runs the bus cycle that generated the bus error. It obtains the source operand from a

virtual location $00812048 (which is now a physical location $00042048 in the RAM

buffer) and successfully completes the faulted instruction

MOVE.W_ (A3),D0

If the bus error is a normal bus error, the NORMAL module between lines 31 and

33 will be executed. After unlinking the stack, the program jumps to the address con-

tained at vector location $08. This corresponds to the bus error vector in the default vec-

tor table, and the governing operating system executes the normal bus error exception

routine.

At the end of the memory-access fault correction, control is returned to the gov-

erning operating system by means of the TRAP #14 function at lines 15 and 16.

300 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

We will now present an example problem to gain further insight into the memory

fault correction schemes.

Example 10.6 Memory fault correction concepts and software.
Refer to the software of Figure 10.16.

1.

uF

Describe how the virtual memory concepts are implemented and how the memory-

access fault is corrected.

What is the difference between the default vector table and the modified (or relo-

cated) vector table?

Why are the LINK and UNLK required?

Solution

1. Memory fault correction: The memory-access fault address has been stacked at an

offset $0A. A 64-kilobyte block around that address has been moved from the

backup memory into the RAM buffer and the memory reference has been readjusted.

The addressed operand in the virtual address ($812048) will be found at the real
physical address ($042048).

Fault Address = $812048

Corrected Address = $042048

. Default and modified vector tables: The default table is the table at power-up reset
(VBR = 0). It refers to the original (or governing) operating system exception vec-

tors.

The modified vector table is set up separately and is accessed with a finite

value in VBR to facilitate local operating system or user-defined exception process-

ing. In our example, VBR = $2000. All the default vectors are copied to the new

vector table (refer to Section 10.1). But the bus error vector address is changed, and

the bus error exception routine is different in the modified table. Initially, the proces-

sor goes to the default table; after adjusting VBR, it goes to the modified table.

. LINK and UNLK: These instructions are required to access to the stack without de-
stroying the stack pointer.

There are memory correction schemes that are more involved than those presented
here. However, virtual memory implementation schemes remain the same. Because of
the difference in the stack frames of the 68000 and 68010 processors, there may be
some inconsistencies if a 68000-based system is upgraded to a 68010. Some of the gov-
erning operating system exception routines may have to be rewritten to maintain full
functional compatibility.

Summary 301

10.5 SUMMARY

In this chapter we introduced the concepts of virtual memory and the virtual machine.

We also examined the specific features of the 68010 and 68012 microprocessors with

which these schemes are implemented.

The full addressing capability of any processor refers to the logical address space.

In many instances, all the available logical address space is not filled with the memory

or I/O. Only a part of the available address space, called the physical space, is filled

with real and existing devices. With the help of virtual memory schemes, it is possible

to realize the entire logical memory space with only a limited amount of physical mem-

ory present in the system.

Virtual memory refers to a memory reference contained in the logical space of the

processor, but not contained in the physical memory around the processor. If the virtual

memory reference is contained in a backup memory, such as a disk, the backup memory

block can be moved into the physical memory buffer under the control of the operating

system software. Moreover, the memory reference pointers are adjusted to refer to the

contents in the buffer area.

At times, the hardware I/O resources may not be physically available, but soft-

ware to operate them needs to be developed. Hardware resources can be emulated using

virtual memory implementation principles. This embodies the concept of the virtual ma-

chine; that is, that nonexistent I/O resources can be emulated under software control.

The emulated virtual machine resources are under the control of the governing operating

system.
The 68010 and 68012 processors have extra registers with which to handle virtual

memory and virtual machine schemes. They are the VBR (vector base register) and the

SFC and DFC (source function code and destination function code registers). The stack

format for the 68010 and 68012 processors is different from that of the 68000. The

68010/12 format allows for 29 words for the bus and address error exceptions.

The 68010 processor is pin compatible with the 68000 and can address 16 mega-

bytes of logical memory. The 68012 processor has seven more address lines, and can

access 2 gigabytes of logical memory. Both the 68010 and 68012 are fully software

compatible with the 68000.

Memory-access faults can be corrected using virtual memory schemes, if the

memory access is in the logical memory space. A bus error signal will be generated

when a reference to the nonexistent physical memory is made. In response to this signal,

the 68010 and 68012 processors go into bus error exception processing. Using virtual

memory concepts, a block of memory is moved from the backup memory into the phys-

ical memory. The memory reference is adjusted and the memory-access fault is cor-

rected.

There are two methods for memory-access fault correction: the restart method, and

the continuation method. In the restart method, the complete instruction where the fault

occurred is repeated after the fault correction. In the continuation method, the instruc-

tion is continued from the microstep within the instruction after the memory-access fault

correction.

302 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

The restart method requires that all the microcoded operations of an instruction

and associated operands be stored. This requires tremendous register resources, as well

as other resources. The restart method, however, executes the instruction as a unit.

The continuation method is considered sufficiently accurate for most applications

and does not require that all the microcoded operations of an instruction be stored. The

continuation method executes the instruction in parts rather than as a single unit, how-

ever. The 68010 and 68012 processors use the continuation method.

PROBLEMS

10.1

10.7

Redefine the virtual memory and virtual machine concepts in your own terms.

(a) Give an example of virtual memory.

(b) Give an example of the virtual machine.

Explain why the virtual memory scheme cannot be implemented in the 68000

microprocessor.

If external resources are added, can the 68000 be changed to a 68010 processor?

Explain.

Can virtual memory schemes be implemented for

(a) an address error?

(b) a zero-divide error?

State your reasons in each case

Can virtual machine concepts be extended to replace real machines?

(a) If so, can the real machines be dispensed with?

(b) If not, what is the real usefulness of the virtual machine concept?

Refer to the system we considered in Examples 10.1 and 10.2. The following instruction

is executed:

ADDX.L —(A1),—(A2)

Al = $080004 and A2 = $08345C.

(a) Which memory block gets moved from the backup memory into the buffer area?
Why?

(b) Where are the Al and A2 register values stored? Why?

(c) What are the adjusted values of the Al and A2 registers?

A printer I/O system is emulated using virtual machine concepts. The printer has a print

buffer of 2,048 bytes and six different control signals, such as ready to send, clear to

send, paper out, and the like. In addition, the printer has a 256-byte character buffer.

(a) To emulate the printer as a virtual machine, how much memory is required?
(b) If the printer were to send an interrupt, how would this be accomplished?

The 68000 and 68010 are pin compatible with one another.

(a) Will software written for the 68000 run completely using the 68010? Are there any

Problems 303

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

instances in which a marked difference between the two processors will be

evidenced?

(b) Repeat (a) if the software is intended for the 68010 and the device is then replaced

by 68000.

In a multiuser environment, reconfigure

(a) the vector table for user | starting at $2000;

(b) the vector table for user 2 starting at $4000.

Initialize locations so that the TRAP #2 routine for user 1 starts at $1600 and for user 2

at $1800.

If the RTD instruction is not available (as is the case with the 68000),

(a) write a sequence of instructions to accomplish the task illustrated in Figure 10.9;

(b) compute the time of execution for (a) and compare this with the RTD instruction

execution time.

If possible, rewrite the software of Figure 10.9

(a) to emulate an interrupt acknowledge cycle;

(b) to emulate the user I/O cycle.

Obtaining the timing information from the data sheets of the 68010,

(a) formulate the T(R/W) values for the software of Figure 10.9.

(b) compute the time of execution for (a).

In the 68010 and 68012 processors, explain how different vector tables are used for

different users. For example,

User 1 Vector table starting at $2000

User 2 Vector table starting at $4000

Where is the default vector table for both users?

Indicate the micromodules for the following instructions:

(a) MOVE.L (A1)+,—(A3)

(b) MOVE.L —(A1), (A3)+

Repeat problem 10.13 for the following:

(a) ADDI.B #$43,$14(A1,D1.W)

(b) EOR.W_ D2,(Al)+

Suppose a memory-access fault occurs while accessing the source operand in the

instructions that follow. Outline the sequence of events with appropriate micromodules.

(a) ADDX.L —(A1),—(A1)

(b) ADD.L (Al)+,D2

Compare the micromodules and specify which takes more modules and time. Explain

your answer.

Can the faults occurring in the following sequence of instructions be corrected by the

68010? State all of your reasons.

(a) MOVEA.L #$12345678,A1

ROL.W (Al)

(b) JMP $12345

304 Chapter 10 68010 and 68012 Architecture, Organization, and Applications

10.17 Why is the restart method considered superior to the continuation method in the field of

virtual memory? Give atleast three reasons.

What additional resources are required to implement the restart method?

10.18 Are the stack structures for the 68000 and 68010 completely compatible with one

another? Why or why not?

(a) If there is any incompatibility, does it create any hardware or software problems in

interchanging the 68000 and 68010?

(b) Can the incompatibility, if it exists, be corrected by external hardware? Give your

reasons.

10.19 Given the following software:

PC Tiserucrt.ron

$090C MOVE.W DO,$1004

NOP

an error condition has resulted in accessing the data space at $1003.

(a) What type of error must it have been?

(b) Indicate the contents of the stack when the 68010 recognizes the error and is ready to

respond with appropriate exception processing.

10.20 Repeat Problem 10.19 for the following:

PC Instruction

$1000 ADDQ.W #$03,$12345676

NOP

$1005 CLR.B AG

10.21 Specify two exception conditions in which the format code will be

(a) $0000;

(b) $1000.

10.22 Rewrite the software of Figure 10.16 so that the physical memory buffer is located
between

(a) $15000 and $18000;

(b) $40000 and $44000.

10.23 Rewrite the software of Figure 10.16 to make it more efficient

(a) in terms of execution time;

(b) in terms of the program memory space.

10.24 In Example 10.6, suppose the fault-causing instruction is changed to

ADD.L D7,(A5)+

AS = $887766AA.

Endnotes 305

(a) Specify the sequence of events.

(b) Can the error be corrected by virtual memory schemes? If so, show how it can be

done. If not, specify your reasons and validate them with practical examples.

ENDNOTES

1. Motorola, Inc. 680/10 Data Book. Phoenix, AZ: Motorola Technical Operations, 1983.

Ww N

-

Nn

—

. Motorola, Inc. 680/0/68012 Data Book. Phoenix, AZ: Motorola Technical Operations, 1985.

. MacGregor, D., and Mothersole, D. “Virtual Memory and the 68010.” JEEE Micro

3(10):24—39.

. Motorola, Inc. MTT8 68000 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1987.

. Motorola, Inc. M68000 16/32-Bit Microprocessor Programmer’s Reference Manual, Fifth

Edition. Englewood Cliffs, NJ: Prentice-Hall, 1987.

. MacGregor, D., and Moyer, B. ‘‘Built-in Tight Loop Mode Raises Microprocessor

Performance (68010).” Electronic Design 31, no. 22 (1983).

. Miller, M.A. “The 68000 Family of Microprocessors.” Chap. 10 in The 68000

Microprocessor: Architecture, Programming, and Applications. Columbus, OH: Merrill,

1988.

CHAPTER

11

68020 and 68030 Architecture,
Organization, and Applications

Objectives

In this chapter we will study:

The general architecture of the 68020 and 68030 processors

The additional resources of the 68020 and 68030

Cache memory organization concepts

Functional improvements of the 68020 and 68030

11.0 INTRODUCTION

The 68020 is a 32-bit microprocessor with individual 32-bit address and data buses. It
has a 4-gigabyte logical address space. In addition to all the internal resources of the
68010 and 68012 processors, it has a chip instruction cache memory. These additional
features increase the overall throughput of a 68020-based system as compared to the ear-
lier members of the 68000 family.!

The 68030 is an extension of the 68020 processor. Additional features of the
68030 include the data cache memory and a paged memory management unit (PMMU,
or simply MMU) on the chip itself, further enhancing the throughput of 68030-based
systems.

Study of the material in this chapter will provide a comprehensive introduction to
the 68020 and 68030 processors, cache memory, and memory management operations.

306

General Architecture of the 68020 307

FIGURE 11.1 General

architecture of the 68020.

(Courtesy of Motorola, Inc.) DATA

REGISTERS

USER
MODEL

ADDRESS
REGISTERS

USER STACK POINTER

PROGRAM COUNTER PC

STATUS SYSTEM | USER | SR

INTERRUPT STACK POINTER ISP (A7’)
MASTER STACK POINTER MSP (A7")

VECTOR BASE REGISTER VBR ADDITIONAL
SUPERVISOR

[__ __ ALTERNATE FUNCTION — SFC RESSREES
[4 © CODE REGS TERSae DFC

CACHE CONTROL REGISTER CACR
CACHE ADDRESS REGISTER CAAR

11.1 GENERAL ARCHITECTURE OF THE 68020

The 68020 is contained in a 114-pin grid-array package and is fabricated with VLSI

MOS technology. Figure 11.1 illustrates the internal architecture of the 68020. It con-

tains all the resources of the 68000, 68010, and 68012, along with some additional re-

sources and modified resources to facilitate cache memory implementation.

Additional Resources and Modified Resources of the 68020

There are three stack pointers in the 68020: the user stack pointer USP (A7) in the user

mode, the interrupt stack pointer ISP (A7’) in the supervisor mode, and the master stack

pointer MSP (A7") in the supervisor mode. The USP handles the user stack operations.

The ISP handles the interrupt exceptions and the MSP handles the rest of the exceptions.

Selection of the stack pointer to be used is made with the help of the S and M bits in the

system byte of the status register.

The cache control and the cache address registers (CACR and CAAR) are used to

control the cache memory operations. The vector base register (VBR) and the alternate

308 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

FIGURE 11.2 System byte of b1IS b14 b13 bl2 bil bIO b9 b8
he 68020 status register. - | Pal] s [uo [e Jn To

ie eiestnterile mask level

(similar to 68000)

0 O No trace

0 1 Trace on change of flow 0 x USP (A7)
1 O Trace on instruction execution 1 0 ISP (A7’')

1 1 Reserved 1 1 MSP (A7")

source and destination function cna registers (SFC and DFC) are used in much the

same way as in the 68010 processor.*

The user byte of the status register is similar to that of the 68000 processor. “The

system byte is modified, however, as shown in Figure 11.2. The T1 and TO bits deter-

mine the trace mode of operation. The S and M bits select the stack pointer. The inter-

rupt mask bits 12, I1, and IO are similar to those of 68000.

FCO-FC2 Function codes CDIS
Cache control

A0-A31 Address bus Interrupt priority J[PLO-IPL2

Interrupt
IPEND control at DO-D31 Data bus MC68020 AVEC

Microprocessor

SIZO BR
Transfer size SIZ1 BG Bus

administration

BGACK control

ECS

OCS RESET

RMC HALT Be
— exception

AS BEAR control

Asynchronous DS

bus —

control R/W Crk

DBEN

DSACKO Viea(8)

DSACK1 GND (8)

FIGURE 11.3 Functional pin structure of the 68020. (Courtesy of Motorola, Inc.)

General Architecture of the 68020 309

Address, Data, and Control Buses

Figure 11.3 indicates the functional pin structure of the 68020 and Figure 11.4 describes

the signals. The address and data buses are extended to 32 bits each. Eight-bit byte,

16-bit word, or 32-bit long-word data operands can be transferred in a single bus cycle.

The function code outputs FC2, FC1, and FCO specify the type of address space and the

processor condition. The SIZ1 and SIZO outputs indicate the number of bytes to be fur-

ther transferred at the beginning of each bus cycle.

The external cycle start (ECS) output indicates that a bus cycle is beginning. The

operand cycle start (OCS) output is asserted during the first bus cycle of an operand

transfer. The read-modify/write cycle (RMC) output is similar to that of the 68012 pro-

cessor; it indicates that the current bus cycle is an indivisible read-modify/write bus cy-

cle.

The address strobe (AS) and the data strobe (DS) outputs indicate the validity of

the address and the data on the respective buses. The read/write (R/W) output indicates

the read or write bus cycle. The data buffer enable (DBEN) output is similar to the DS

signal, but is used to enable the external data buffers. The DTACK input of the 68000 is

Signal Name | Mnemonic |

Address Bus

Data Bus

Function Codes

Size

Read-Modify-Write Cycle

External Cycle Start

Operand Cycle Start

Address Strebe

Data Strobe

Read/Write

Data Buffer Enable

Data Transfer and Size Acknowledge

Cache Disable

Interrupt Priority Level

Autovector

Interrupt Pending

Bus Request

Bus Grant

Bus Grant Acknowledge

Reset

Halt

Bus Error

Clock

Power Supply

Ground

32-bit address bus used to address any of 4,294,967,296 bytes.

32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle.

3-bit function code used to identify the address space of each bus cycle.

Indicates the number of bytes remaining to be transferred for this cycle. These

signals, together with AO and A1, define the active sections of the data bus.

Provides an indicator that the current bus cycle is part of an indivisible read-modify-

write operation

Provides an indication that a bus cycle is beginning.

Identical operation to that of ECS except that OCS is asserted only during the first

bus cycle of an operand transfer.

Indicates that a valid address is on the bus.

Indicates that valid data is to be placed on the data bus by an external device or has

been placed on the data bus by the MC68020.

Defines the bus transfer as an MPU read or write.

Provides an enable signal for external data buffers.

Bus response signals that indicate the requested data transfer operation is com-

pleted. In addition, these two lines indicate the size of the external bus port on a

cycle-by-cycle basis.

Dynamically disables the on-chip cache to assist emulator support.

Provides an encoded interrupt level to the processor.

Requests an autovector during an interrupt acknowledge cycle.

ndicates that an interrupt is pending.

ndicates that an external device requires bus mastership.

ndicates that an external device may assume bus mastership.

Indicates that an external device has assumed bus mastership.

System reset.

ndicates that the processor should suspend bus activity.

ndicates an invalid or illegal bus operation is being attempted.

Clock input to the processor.

+5 +5% volt power supply.

Ground connection,

FIGURE 11.4 The 68020 signal description. (Courtesy of Motorola, Inc.)

310 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

split into DSACKO and DSACK1. These two inputs are encoded to specify byte, word,

or long-word transfers on the- data bus.*

The cache disable (CDIS) input disables the internal cache memory. The interrupt

priority inputs ([PL2, IPL1, and IPLO) are similar to those of the 68000 processor. The

autovector (AVEC) input signifies an autovectored interrupt condition. The interrupt

pending (IPEND) input signifies a pending interrupt. The bus arbitration signals (the bus

request (BR) input, the bus grant (BG) output, and the bus grant acknowledge

(BGACK) input) are similar to those of the 68000 processor and are used for the DMA

type of transfers. The system control signals (RESET, HALT, and BERR) are also sim-

ilar to those of the 68000 processor. The device operates on 5 volts Vpp.

Data Formats, Memory, and I/O Interface Schemes

The 68020 is designed to facilitate byte, word, or long-word data transfers on even or

odd address boundaries. However, the op.word (instruction word) fetches must be on

even word boundaries to maintain code compatibility with the earlier 68000 family

members. If op.word fetches are not on even word boundaries, an address error will

occur.

68020 processor Logic

CS chip selects

Byte 3 (LSB)

Notes 1. DSACKx signals*need pull-up resistors to Vp,
2. MSB > most significant byte; LSB > least Kot ee byte.

FIGURE 11.5 Memory and I/O general interface scheme for the 68020.

General Architecture of the 68020 311

Figure 11.5 illustrates a typical memory interface scheme and associated data for-

mats. The 68020 uses memory-mapped I/O concepts similar to those of the other mem-

bers of the family; thus, the memory and I/O interface schemes are similar. An 8-bit

byte port (b7—b0) is connected to data lines D31—D24. A 16-bit word port (b15—b0) is

connected to data lines D31—D16. A 32-bit long-word port (b31—b0) is connected to

data lines D31—D0. The Al and AO address lines and the SIZ1 and SIZO size outputs

are decoded to provide the byte enable signals BEO, BE1, BE2, and BE3. These signals

enable the transfer of appropriate bytes.‘

Figure 11.6 indicates the DSACK and SIZ signal responses for different data

sizes. Depending upon the address and the alignment, there can be one, two, three, or

four byte transfers in a single bus cycle.

We will now present an example problem to review basic concepts relating to the

68020 processor.

Data Bus

DSACK1 DSACKO Activity SIZ1 SIZO Data Size

3 bytes more not selected

2 bytes more

1 byte more

byte selected

word selected

long word selected 4 bytes more

(a) (b)

FIGURE 11.6 Data bus activity and selection as functions of (a) DSACK and (b) SIZ

signals.

Example 11.1 68020 architecture and data formats.
A 68020-based system has the following memory and I/O map:

Main memory (32-bit wide) > $00000000 to $00FFFFFF

System I/O (16-bit wide) > $01000000 to $0100FFFF

(8-bit wide) > $01010000 to $010103FF

1. What are the conditions of the system byte at power-up reset? What is the default

value of VBR on reset?

2. The processor is executing the following instruction:

MOVE.L D0,(A1)

with DO = $012A46AB; Al = $00004000. Indicate the data transfers on the bus,

along with the DSACKx and SIZx signals. .

312 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

3. The processor is executing the following instruction:

MOVE.L D0,(A2)

with DO = $012A46AB; A2 = $01000401. Indicate the data transfers on the bus,

along with the DSACKx and SIZx signals.

Solution

1. System byte and VBR on reset: In order to be compatible with the other members

of the 68000 family, the system byte is set up for trace off, stack pointer ISP, and

interrupt mask level 7. Similarly, the VBR is set up for the all-zero condition. The

system byte and the VBR are as shown:

BIS. .bl4 7) bis? b12 Ss bil bl Osebo b8

System mes[m]m] s | u]o]e|n | 0 |
0 0 1 0 0 1 1

VBR > $ 00000000

2. MOVE.L D0,(A1): The destination effective address (Al) = $00004000 is evenly

divisible by 4; as such, it is long-word aligned. All 32 bits of data from DO are trans-

ferred to the destination in a single bus cycle, as shown:

MSB LSB
OPO -—OP!I OP2 OP3

o> [orpee[ee[ar
Dai- "D5 hse D7-

Data bus D246 D8 DO

‘ : DSACKI DSACKO SIZi SIZO

3. MOVE.L D0,(A2): The 16-bit port is connected between data lines D31 and D16.
The destination effective address (A2) = $01000401 is at an odd byte boundary and
is misaligned. However, the long-word data operand is transferred in three bus cy-
cles. During the first bus cycle, the most significant byte (MSB) operand OPO is
transferred to location $01000401. During the second bus cycle, byte operands OPI
and OP2 are transferred as a word to location $01000402. During the third bus cycle,
the LSB operand OP3 is transferred to location $01000404. The sequence of opera-
tions is as shown:

Additional Addressing Modes and Instructions for the 68020 313

MSB LSB

OPO OP1 OP2 OP3

o> [a
D31- D23-
D24 D16

:
DSACK1 DSACKO SIZ1 SIZO

$01000400 Lee $01000401 l 0 0 0

$01000402 $01000403 0 1 1 1

$01000404 $01000405 1 0 0 1

The DSACK and SIZ signals specify the actual bus activity. During the first

bus cycle, 4 bytes were meant to be transferred, but only one could be transferred.

During the second bus cycle, 3 bytes were still meant to be transferred, but only two

could be transferred (as a word). During the third bus cycle, the last and remaining

byte is transferred.

With the help of the DSACK and SIZ signals, it is possible to execute aligned or

misaligned data transfers with equai ease. Misaligned transfers take more bus cycles,

however.

To further familiarize the reader with the configuration of the 68020 processor, the

internal block diagram and layout structure are presented in Figures 11.7 and 11.8.

11.2 ADDITIONAL ADDRESSING MODES
AND INSTRUCTIONS FOR THE 68020

The table of Figure 11.9 (p. 316) indicates the addressing modes of the 68020. In addi-

tion to all the addressing modes of the 68000, it has memory indirect and program

counter indirect addressing modes. The associated base and outer displacements (bd and

od) can be up to 32 signed bits.”

Memory Indirection Addressing Modes and Scaling

Whenever an index register (Dn or An) is used, its contents are multiplied by a scale

factor. In computing the effective address, the scale factor can be |, 2, 4, or 8. The

scaling enables addressing at relative displacements of the byte, word, long word, or

quad word (8 bytes). The term memory indirect addressing is used in reference to a

memory location, the contents of which form the base address of the operand. The ef-

fective address of the operand is obtained by properly adding the scaled index register

314 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

SEQUENCER

INSTRUCTION
DECODE

INSTRUCTION
PIPE

MICROROM

NANOROM

CONTROL

ADDRESS
SECTION SECTION

EXECUTION UNIT

ADDRESS BUS
PADS CONTROLLER

FIGURE 11.7 Internal block diagram of the 68020. (Courtesy of Motorola, Inc.)

contents and the base and outer displacements to the indirect address. This addressing

scheme uses a memory location as a memory pointer.

Figure 11.10 (p. 317) indicates the results that follow from using the new address-

ing modes. When scaling is used, the physical value of the index register is not

changed. In memory indirect postindexing, the contents of the memory indirect ad-

dress are obtained first. The index and the outer displacements are further added to ob-

tain the effective address of the operand. In memory indirect preindexing, the memory

indirect address is obtained after indexing. The outer displacement is further added to

obtain the EA of the operand.

In the program counter indirect and program counter memory indirect addressing

modes, the program counter is used instead of an address register. These modes are suit-

able for relocatable code generation.

Bit-Field Type of Instructions

The bit-field instructions for the 68020 are given in Figure 11.11 (p. 318). These instruc-

tions address and manipulate a bit field of variable width (1 to 32 bits), starting from a

given offset of the effective address. The syntax of the single operand instruction is

Additional Addressing Modes and Instructions for the 68020 315

eTTiiiti
———

Leanne ease

| ENEGUTION HET

FIGURE 11.8 The 68020 internal structure and layout. (Courtesy of Motorola, Inc.)

BFxxx (ea) {offset : width}

If the instruction is of the double-operand type, the other operand is a data register Dn.

The offset and width fields can be specified as immediate operands or as Dn operands.

For all bit-field instructions, the bit field is first tested and the N and Z flags are adjusted

accordingly. The specified bit-field operation is then carried out. In Figure 11.12 (p.

319) some typical bit-field instruction operations are given in order of complexity.

The bit-field instructions are very helpful in handling bit fields of variable lengths

and at any effective address location. In the absence of these instructions, a series of

instructions must be written to accomplish the tasks of this type.

316 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

Register Direct

Data Register Direct

Address Register Direct

Register Indirect

Address Register Indirect

Address Register Indirect with Postincrement

Address Register Indirect with Predecrement

Address Register Indirect with Displacement

Register Indirect with Index

Address Register Indirect with Index (8-Bit Displacement) (dg,An,Xn)

Address Register Indirect with Index (Base Displacement) (bd,An, Xn)

Memory Indirect

Memory Indirect Post-Indexed ({bd,An},Xn,od)

Memory Indirect Pre-Indexed ({bd, An, Xn],od)

Program Counter Indirect with Displacement (d46,PC)

Program Counter Indirect with Index

PC Indirect with Index (8-Bit Displacement) (dg,PC,Xn)

PC Indirect with Index (Base Displacement) (bd, PC, Xn)

Program Counter Memory Indirect

PC Memory Indirect Post-Indexed ({bd,PC],Xn,od)

PC Memory Indirect Pre-Indexed ({bd,PC, XnJ,od)

Absolute

Absolute Short xxx. W

Absolute Long : Xxx. Lb

NOTES:

Dn = Data Register, DO-D7

An = Address Register, AO-A7

dg, d1g = A twos-complement, or sign-extended displacement; added as part of the effective address calculation; size is 8 or 16 bits

(d1g and dg are 16- and 8-bit displacements); when omitted, assemblers use a value of zero.

Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE, where SIZE is .W or .L (indicates index

register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement; when present, size can be 16 or 32 bits.

od = Outer displacement, added as part of effective address calculation after any memory indirection; use is optional with a size

of 16 or 32 bits.

PC = Program Counter

<data> = Immediate value of 8, 16, or 32 bits

() = Effective address

{ | = Use as indirect address to long word address.

FIGURE 11.9 Addressing modes of the 68020. (Courtesy of Motorola, Inc.)

Packed and Unpacked BCD Instructions

The PACK instruction is used to reduce a word-sized two-digit BCD operand into a
packed 8-bit two-digit BCD operand. The UNPK instruction increases a byte-sized
two-digit BCD operand into an unpacked 16-bit two-digit BCD operand. Examples fol-
low.

PACK D2,D3,#$0000: The specified immediate data (0000) word is added to the
source operand in the D2 register. The upper 4 bits of each byte are discarded and the
lower 4 bits of each byte are packed into the destination register D3.

Additional Addressing Modes and Instructions for the 68020 317

INITIAL CONDITIONS

AO = $0000ABCD; DO = $00000004; $00004800
Al = $00000008; D1 = $00000200; 4802

A2 = $00003000; D2 = $0000FOFO; 4804

A3 = $00004000; D3 = $012A46AB; 4806

4808

480A

1. ARI with base displacement, index, and scaling:

MOVE.L (08, A3, DI.W * 4),D4 EA calculation:

: : : A3.L — $00004000 +

bd ARI index _ scale D1.W*4 $00000800 +

bd $00000008
(ARI > Address register indirect) EA = $00004808

Long-word contents corresponding to

EA are moved into D4 register D4 = $88880000

2. Memory indirect postindexed:

MOVE.L ([{$1800,A2], DI.W * 8, $15E0),D4 EA calculation:

Oey : : A2.L — $00003000 +

bd ARI index scale od bd $0000 1800

memory indirect address = $00004800

contents of above memory indirect address | $00002222 +

D1.W*8 $00001000 +

od $0000 15E0

EA = $00004802

Long-word contents corresponding to

_ EA are moved into D4 register e D4 = $22224444

3. Memory indirect preindexed:

MOVE.L ({$0800,A2, DI.W * 8], $25E4),D4 EA calculation:

es er : : A2.L — $00003000 +

bd ARI index scale od D1.W*8 $00001000 +

bd $00000800

memory indirect address = $00004800

contents of above memory indirect address $00002222 +

od $000025E4

EA = $00004806

Long-word contents corresponding to

EA are moved into D4 register 2 D4 = $66668888

FIGURE 11.10 The 68020 scaling and memory indirect addressing modes.

318 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

BFCHG Test bit field and change from | to 0, or vice versa.

BFCLR Test bit field and clear.

BFEXTS Extract signed bit field from source and place into destination.

BFEXTU Extract unsigned bit field from source and place into destination.

BFFFO Find first one in the bit field.

BFINS Insert bit field at specified address.

BFSET Test bit field and set condition codes.

BFTST Test bit field and set or reset N and Z flags.

Flag conditions: N set if the MSB of the bit field is 1.

Z set if the bit field is all-zero.

V cleared; C cleared; X unaffected.

FIGURE 11.11 Bit-field instructions for the 68020.

Initially D2 =~" “Sees kas thal veoneaee>

+ dataelement= §$ Rh) okie ke

discard upper 4 bits of each byte 4

and pack lower 4 bits of each byte (3 3

pS
Binal. D3:-valtice=4$ eX ake kh Exeaxe Ta 5

The source and destination operands can also be specified by the predecrement ARI ad-

dressing mode (PACK —(An),—(Am),#data).

UNPK D3,D4,#$3030: The source operand in the D3 register is unpacked from 8 bits
to 16 bits, with the upper 4 bits of each byte set to zero. The specified data ($3030) is
added to the unpacked operand. The resulting 16-bit operand is placed in the destination
register D4.

Initially D3 =" Se Rk KO

Yen
unpacked operand Co ees

+ dataelement= $ ag es

Final D4*value’= "3°" x x" x “x 3 °7 83. 3

The source and destination operands can also be specified by the predecrement ARI ad-
dressing mode (UNPK —(An),—(Am),#data).

In the preceding example, with a data element of $3030, the UNPK instruction has con-
verted a normal BCD value into a corresponding ASCII value (BCD 7 > ASCII 37;
BCD 5 => ASCII 35). This illustrates the usefulness of PACK and UNPK instructions
in code conversions.

bits
displacement 7 b6 b5 b4 b3 b2 bl b0

byte address 4007 = 8 1 0 1 1 1 1 0 0 $BC
base byte address 4008 > 0 1 1 0 1 0 0 0 | $D1

byte address 4009 +8 0 0 0 1 0 1 0 1 $15

1. BFTST 4008{2: 6}:

Tests bit field with base address 4008, offset 2 and width 6 bits. Tests bits b5—bO of byte at loca-
tion 4008. N = 0 (MSB bS is 0); Z = 0 (bit field is nonzero).

2. BFCLR 4008{2: 6}:

Performs BFTST operation as above first and returns the N and Z values (0 and 0). Then clears
bits b5—b0 of byte at 4008. (If BFSET is used, then the corresponding bits are set after returning
the N and Z values).

3. BFCHG 4008{2: 6}:
After performing the BFTST operation as above and returning the N and Z values (0 and 0), tog-
gles (1 to 0 and 0 to 1) bits bS5—b0 of byte 4008.

4. BFEXTU 4008{—8:16},D1:

Extracts bit field with base address 4008, offset —8, and width 16 bits. In this case, it extracts

(moves) b7—b0 bits of byte at 4008 into b7—b0 bit positions of the D1 register. It further moves

bits b7—b0 ot byte at 4007 into bit positions b15—b8 of the D1 register. The rest of the bits of the

DI register are loaded with zeros, since the instruction is unsigned.

DI =$0000BCD1

N 1 (MSB of the bit field (b7 of byte at 4007) = 1)

Z = 0 (nonzero bit-field value)

ll

If BFEXTS (signed extract instruction) is used, the MSB bit of the bit field is sign extended to the

higher bits of the destination register. Thus, BFEXTS 4008{—8: 16} yields

D!1=$FFFFBCDI1

N =1

Z°=0

5. BFINS D1,4008{12: 4}: (DL =$FFFFBCD 1)

Inserts into bit field with base address 4008, offset 12 the last 4 bits of the D1 register. In this

case, 0 0 0 1 bits are inserted in bit positions b3—b0 of byte at 4009. N = 0 and Z = 0, since a

positive nonzero value is inserted.

6. BFFFO 4008{8:8},D2:

Finds first one in the specified bit field at base address 4008 with offset 8 and field width 8 bits.

Returns the effective offset value to the D2 register. In this case, the first one is found at b4 of

byte at 4009. This corresponds to an effective offset of 11 = $B.

D2=$0000000B

N 1 (1 found in the specified bit field as MSB)

Z 0 (nonzero effective bit field)
wy

Il

Il

FIGURE 11.12 Bit-field instruction applications.

320 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

Other Instructions and Enhancements

In the 68020, the divide and multiply instructions are extended to cover 32-bit operands.

The TRAP instructions are further extended to operate on condition (TRAPcc). The

CAS (compare and swap) instructions are of the read-modify/write type and enhance

system throughput. There are also a set of coprocessor instructions (cpxxx) to control

the coprocessor operation. Figure 11.13 summarizes the 68020 instruction set.

The 68020 processor has an internal 4-word pipe that holds the prefetched instruc-

tions and operands. The pipe is filled whenever there is a two-word vacancy. In the case

of a change in program flow, the pipe contents are invalidated and the pipe is refilled.°

11.3 CACHE MEMORY CONCEPTS AND ORGANIZATION

Cache memory is a fast-access, high-speed memory designed to hold the most fre-

quently used information. The processor copies the required information from the main

memory into the cache memory. The cache memory is usually of limited size. As often

as is necessary, the cached information is updated.

68020 Cache Memory Organization and Operation

The 68020 processor has a 256-byte instruction cache memory on the chip, itself. It is

organized as 64 long words, as shown in Figure 11.14. Two internal registers, the

CACR (cache control register) and the CAAR (cache address register), determine the

operation of the cache memory. The cache memory can be disabled or enabled. When

enabled, the processor fills in the cache memory with the most recently fetched instruc-

tions and uses them.

When the processor wants to fetch an instruction, it checks the cache memory to

determine whether the instruction is in the cache. If it is in the cache, we have what is

known as a hit condition. If it is not in the cache, we have what is known as a miss

condition.

For a hit condition, the processor fetches the instruction from the cache and exe-

cutes it. The typical instruction access time from cache corresponds to two clock cycles.

For a miss condition, the processor fetches the instruction from the external memory and

executes it. The typical instruction access time from external memory corresponds to

three clock cycles. Cache memory is always updated with the most recent instructions

fetched from the external memory. Figure 11.15 indicates timing under cache hit and

cache miss conditions.

When the processor is obtaining instructions from the cache memory and execut-

ing them, the external bus is free. The bus interface unit accesses data operands during

this time window. In addition, the prefetch mechanism of the 68000 family is opera-

tional, even with the cache memory. All of these parallel operations enhance the overall

throughput of the 68020 processor.

[winemonic | ___ Description | Mnemonic |
Add Decimal with Extend

Add

Add Address

Add Immediate

Add Quick

Add with Extend

Logical AND

Logical AND Immediate

Arithmetic Shift Left and Right

Branch Conditionally

Test Bit ard Change

Test Bit and Clear

Test Bit Field and Change

Test Bit Field and Clear

Signed Bit Field Extract

Unsigned Bit Field Extract

Bit Field Find First One

Bit Field Insert

Test Bit Field and Set

Test Bit Field

Branch

Test Bit and Set

Branch to Subroutine

Test Bit

Call Module

Compare and Swap Operands

Compare and Swap Dual Operands

Check Register Against Bound

Check Register Against Upper and
Lower Bounds

Clear

Compare

Compare Address

Compare Immediate

Compare Memory to Memory

Compare Register Against Upper and

Lowe; Bounds

Description

Negate Decimal with Extend

Negate

Negate with Extend

No Operation

Logical Complement

Reset External Devices

Rotate Left and Right

BFEXTS

BFEXTU

BFFFO

BFINS

BFSET

BFTST

BRA

BSET

BSR

BTST

Return and Deallocate

Return from Exception

Return from Module

Return and Restore Conditon Codes

Return from Subroutine

Subtract Decimal with Extend

Set Conditionally

Stop

Subtract

Subtract Address

Subtract Immediate

Subtract Quick

Subtract with Extend

Swap Register Words

Test Operand and Set

Trap

Trap Conditionally

Trap on Overflow

Test Operand

Test Condition, Decrement and Branch

DIVS,DIVSL]} Signed Divide

DIVU, DIVUL} Unsigned Divide

Logical Exclusive OR

Logical Exclusive OR Immediate

Exchange Registers

Branch Conditionally

Test Coprocessor Condition,

Decrement, and Branch

Coprocessor General Instruction

Restore Internal State of Coprocessor

cpDBcc

cpGEN

cpRES TORE

Sign Extend cpSAVE Save Internal State of Coprocessor

JMP Jump cpScc Set Conditionally

Jump to Subroutine cpTRAPcc Trap Conditionally

LEA Load Effective Address

Link and Allocate

Logical Shift Left and Right
LINK

ESL, ESR

MOVE Move

MOVEA Move Address

MOVE CCR | Move Condition Code Register

MOVE SR Move Status Register

MOVE USP | Move User Stack Pointer

MOVEC Move Control Register

MOVEM Move Multiple Registers

MOVEP Move Peripheral

MOVEQ Move Quick

MOVES Move Alternate Address Space

FIGURE 11.13 Instruction set summary for the 68020. (Courtesy of Motorola, Inc.)

321

322 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

68020 processor

System
external memory

(3-cycle access)
interface

unit

256-byte

cache

memory

(2-cycle

access)

Execution

unit

CDIS (cache disable)

FIGURE 11.14 The 68020 cache memory organization and operation.

Cache Control and Cache Address Registers

The cache memory operation is controlled by the cache control (CACR) and cache ad-

dress (CAAR) registers. These are illustrated in Figure 11.16. Using the CACR, the

cache memory can be disabled or enabled, the cache entry can be cleared or frozen, or

the cache memory can be completely cleared. These operations are required during ini-

tialization or when the processor is changing tasks.

The 6-bit index field of the CAAR specifies one of the 64 long words of the cache

memory. The 24-bit tag, filed along with FC2 function code bit, specifies the address

PROC
CLK

DATA ACCESS INSTRUCTION ACCESS DATA ACCESS

EXT
BUS.

INT
BUS

MISS REPLACEMENT HIT

CACHE ACCESS ' CACHE

ACCESS

| 3 CLKS FOR

MISS

FIGURE 11.15 Cache hit and cache miss timing of the 68020. (Courtesy of Motorola,
Inc.)

Cache Memory Concepts and Organization 323

FIGURE 11.16 (a) Cache b31 b4 b3 b2 «bi
control register (CACR) and

(b) cache address register

(CAAR) formats of the 68020.
C > Clear cache (1 clears all cache entries)

CE > Clear entry (1 clears the CAAR specified entry)
F => Freeze cache (1 freezes cache entry and update)

E => Enable cache (1 enables the cache memory)

(a)

b31 b8 b7 b2. bi b0

24-bit address tag field 6-bit index 2-bit
specifies the address tag of field specifies field

the instruction corresponding 1 out of 64 specifies
to A31 .. A8 address lines long words upper or

in cache lower
memory word

(b)

tag field of the instruction. FC2 is required to distinguish between supervisor and user

space. In addition, there is a V bit associated with each of the address tag fields in the

cache memory address area. If the V bit is 1, the corresponding cached instruction is

valid.

At power-up reset, the CACR is cleared to the all-zero condition and the cache is

disabled. The cache needs to be properly initialized as a part of the system reset routine.

The cache registers CACR and CAAR can be accessed only in the supervisor mode (us-

ing the MOVEC instruction).

Sometimes it is necessary to hardware disable the cache memory for debugging

purposes. This is accomplished by activating the CDIS signal to a low level, as shown

in Figure 11.14.

We will now present an example problem to review what we have learned about

cache memory.

Example 11.2 68020 cache memory and performance.

Consider a 68020-based system.

1. Why is the cache memory disabled on power-up reset?

2. How much additional tag address and other space is required for each long-word

cache entry?

3. Assume the following code is being executed while the cache memory is disabled:

MOVE.L (A2)+,D2
ADD.L. D2, DO
NOP bi
MOVE.L DO, (A3)+

324 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

With 32-bit aligned access, how many total read and write bus cycles take place on

the external bus, including the instruction prefetches?

4. Answer the preceding question, assuming the cache is enabled and the code is in the

cache memory.

Solution

1. Cache disable on reset: The information contained in the cache memory at the time

of power-up reset does not correspond to any valid code. The cache memory should

be disabled to prevent the processor from running invalid code from it.

2. Additional cache space: Each long-word cache entry has a 25-bit effective tag ad-

dress field (A31—A8 and FC2 values). Each long-word entry also has an associated

V bit. Thus, 26 bits of additional cache space is required for each long-word entry.

3. Bus cycles when cache is disabled: Each of the instructions is-a single op.word in-

struction. To prefetch four op.words, two read bus cycles are required on the 32-bit

aligned access. In addition, the instruction MOVE.L (A2)+,D2 requires a read cy-

cle to obtain the source operand and the instruction MOVE.L D0,(A3)+ requires a

write bus cycle to write the destination operand. Thus, the total number of bus cycles

required is four.

4. Bus cycles when cache is enabled: When the instructions are already in the cache

and the cache memory is enabled, the instruction fetches will be from the cache. The

external bus activity is only for the source and the destination operands. Thus, the

total number of bus cycles required is two.

In the preceding example, the benefits of the cache memory and aligned access are

apparent. The external bus cycles are greatly reduced, enhancing the throughput. How-

ever, depending upon the alignment, the port size, and the cache memory condition,

actual bus activity varies.

11.4 GENERAL ARCHITECTURE OF THE 68030

The 68030 is an enhanced 32-bit microprocessor contained in a 128-pin grid-array pack-

age. It is fabricated with VLSI HMOS technology. It has all the resources of the 68020

processor. In addition, it contains the data cache and the memory management units on

the chip.’

Instruction and Data Cache Memory Organization

The 68030 processor contains a 256-byte instruction cache memory and a separate 256-

byte data cache memory on the chip. The instruction cache is similar to that of the

68020 processor, but is organized as a bank of 16 rows of 4 long words. There are 16

address tag fields for the 16 rows, consisting of FC2 output and address lines A31—A8.

31 LG: si5 iste 0

Data registers

31 16 15 0

A3 Address register

31 Lome lS 0

GassSRo DEERE adi To Sesuinaah mln wn gitaerae™
SAME pointer

as =

68020 Do ee a ae Program counter

* ee Interrupt
‘Ses allied edioniiod Latinas Shei. 4 Calais
31 16, 35 0

4 Master stack
ed ET Pee

15 Say 0

ea oo ee CCR SR Status register

Sil 0

Dees Trametes tgs Bee ceccencrar ek is Cate) Ve Ve gM coals
31 1, ai compare? 16 ©

Ler aniee” teas tare “Vek! pitibec ne Secon} male. ty SFC Alternate function
5 WO) Ib 8) te Mu en I Ss) DEC code register

31 0
Cache control

a ee Pdetdter

Cache address
i -Mie Si hoatile OF anna OSS Tenn icAaR ieee

ee Se nn eae fag et control

31 0

pointer

zt : Supervisor

pointer

al : TTO Transparent RA] pecegeons
nt g TTI Transparent
ee ee eee Dana

is) 0

CT) Musk MMU status

FIGURE 11.17 General architecture of the 68030. (Courtesy of Motorola, Inc.)

MMU

control

326 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

Selection of one of the 16 rows of the cache bank is accomplished by address lines A7—

A4. Selection of one of the long words of a row is accomplished by the A3 and A2

address lines. The Al address line is used to select the upper or lower word within a

long word. Each long word is associated with a V bit. The operation of the 68030 in-

struction cache is similar to that of the 68020 processor.

Data cache organization in the 68030 is similar to instruction cache organization.

In the address tag field, however, the FC1 and FCO function code bits are also included.

The processor reads the cached data in the case of a hit condition. When there is a hit

condition for writing data, the processor writes the data in the cache memory and also in

the external memory. This is necessary to eliminate any stale data in the external data

memory.

Additional Software Resources of the 68030 Processor

Figure 11.17 specifies the register architecture of the 68030 processor. In addition to the

68020 resources, it has extra registers related to the memory management unit

(MMU). These registers can be handled only in the supervisor mode. The logical ad-

dress space for the 68030 is 4 gigabytes. The physical address space depends upon the

available hardware and is much less than the logical space. In virtual memory imple-

mentation, the MMU translates a logical address into an existing physical address. As-

sociated with the MMU, there is also an address translation cache (ATC) memory on

board for the 68030. The ATC has 22 entries consisting of the most recently used ad-

dress translations.

Whenever there is a requirement for an address translation from a logical address

to a physical address, the ATC is checked for a hit. For a hit condition, the cached

translation address is used to locate the instruction or the data operand. For a miss con-

dition, 68030 goes to the external memory to locate the address translation tables and

obtains the required information.

Figure 11.18 summarizes the functions of the MMU registers and Figure 11.19

summarizes the additional 68030 instructions to support the MMU functions. These

MMU instructions are privileged. In Figure 11.20, the relative performance of the

68020 and 68030 processors is indicated.

TC > Translation control: Controls the translation process.

CRP => CPU root pointer: Locates the root pointer in memory for user-level operat-

ing systems.

SRP > Supervisor root pointer: Locates the root pointer in memory for the govern-

ing operating system.

TTO and > Transparent translation registers 0 and 1: The entries here will be trans-

TTI parent to the AJC and will not be cached.

MMUSR=> MMU status register: Contains the status of the MMU operations.

FIGURE 11.18 68030 MMU register functions.

General Architecture of the 68030 327

PMOVE 5} Move to and from MMU registers. (Moves contents between the MMU

registers and the EA.)

PLOAD = Load page descriptor into the ATC from the EA.

PTEST > Test translation. (Tests the ATC and updates the MMU status register.)

PFLUSH >} Flush selected ATC entries as specified by the EA.

PFLUSHA => Flush all ATC entries.

FIGURE 11.19 MMU-related instructions for the 68030.

FIGURE 11.20 Relative

performance of the 68020 and

68030 processors.

Additional Hardware Resources of the 68030 Processor

In Figures 11.21 and 11.22 the 68030 functional signal groups and associated signal de-

scriptions are given. There are additional cache control signals to assist instruction and

data cache management.

The synchronous termination input (STERM) is of particular importance. It

controls synchronous transfers between the processor and the external memory and I/O.

Synchronous transfers take only two clock cycles, as compared to three clock cycles for

normal asynchronous transfers. The processor terminates the bus cycle upon receiving

STERM. If STERM is not received, the processor assumes the normal asynchronous

operation and looks .for the DSACK signals. In synchronous operation, only 32-bit

aligned transfers are allowed. The other hardware resources of the 68030 function in

basically the same manner as in the 68020 processor.

We will now present an example problem to review what we have learned about

the 68030.

ag ——

Example 11.3 The 68030 microprocessor.

With regard to the 68030 microprocessor,

1. why is it useful to have a data cache?

2. why is it useful to have the MMU on board?

3. what are the disadvantages of the data cache and MMU?

Solution

1. Data cache: In the case of a cache hit for read operations, only two clock cycle data

transfers are required, as compared to three clock’ cycle data transfers for external

328 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

IPLO
FUNCTION CODES << FOO-RE

IPLi

ADDRESS BUS <(__A0-A3i__ | ~—- MC68030 IPL2 INTERRUPT
[PEND

DATA BUS << DoD AVEC

SIZO BR
|<

TRANSFER SIZE { SIZ1 BUS ARBITRATION
CONTROL

Ocs BGACK

ECS

R/W RESET
a —— BUS EXCEPTION
eee BA CONTROL

ASYNCHRONOUS AS BERR

BUS CONTROL = DS
DBEN STERM SYNCRONOUS
————— BUS CONTROL
DSACKO

DSACKi BIS EMULATOR
MMUDIS SUPPORT

CIN
CIOUT CLKIN

CACHE CONTROL CBREO Wee

CBACK ; GND

FIGURE 11.21 Functional signal groups of the 68030. (Courtesy of Motorola, Inc.)

memory access. This increases the throughput by 33.3 percent for read operations.

For write operations, since data are also written into the external memory,

there is no speed advantage. However, the updated data may be used for other read

operations, ultimately resulting in a speed advantage.

2. MMU on board: The MMU and the associated ATC provide internal 2-cycle ac-

cess, aS compared to external 3-cycle access. This, in turn, affords a speed advan-

tage of 33.3 percent.

Disadvantages of on-board cache and MMU: Each of the units takes silicon real

estate and complicates semiconductor processing. Thus, the cost of the unit is in-

creased. Also, the integrated functionality makes debugging and testing difficult.

=

Figure 11.23 illustrates the internal structure of the very powerful 68030 proces-

sor. As of this writing, considerable system development is still taking place. The con-

cepts we have presented are elementary; for more detailed information, additional refer-
ences should be consulted.®”

General Architecture of the 68030 329

Function

3-bit function code used to identify the address space of each bus cycle.

32-bit address bus used to address any of 4,294,967,296 bytes.

32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle.

Indicates the number of bytes remaining to be transferred for this cycle.
These signals, together with AO and A1, define the active sections of the

Identical operation to that of ECS except that OCS is asserted only during
the first bus cycle of an operand transfer.

Provides an indication that a bus cycle is beginning.

Signal Name Mnemonic

Function Codes FCO-FC2

Address Bus A0-A31

Data Bus DO-D31

Size SIZ0/SIZ1

| data bus.

Operand Cycle Start OCS

External Cycle Start ECS

Read/Write R/W

Read-Modify-Write Cycle

Address Strobe

Data Buffer Enable

AS S

Data Strobe DS

Data Transfer and Size Acknowledge

Defines the bus transfer as an MPU read or write.
—___—__—____

Provides an indicator that the current bus cycle is part of an indivisible
read-modify-write operation.

—_———_+,

Indicates that a valid address is on the bus.

Indicates that valid data is to be placed on the data bus by an external

device or has been placed on the data bus by the MC68030.

=

Cache Inhibit In

Cache Inhibit Out

Cache Burst Request

Cache Burst Acknowledge

Interrupt Priority Level

Interrupt Pending

Bus Request

DBEN Provides an enable signal for external data buffers.
+ ————

DSACKO/DSACK1 | Bus response signals that indicate the requested data transfer operation

is completed. In addition, these two lines indicate the size of the external

bus port on a cycle-by-cycle basis.

Cll Prevents data from being loaded into the MC68030 instruction and data
caches.

CIOUT Reflects the Cl bit in ATC entries or a transparent translation register;

indicates that external caches should ignore these accesses.

CBREQ Indicates a miss in either the instruction or data cache for cachable ac-

cesses.

CBACK Wieticace that accessed device can operate in burst mode.

IPLO-IPL2 Provides an encoded interrupt level to the processor.

IPEND Indicates that an interrupt is pending.

AVEC Requests an autovector during an interrupt acknowledge cycle.

BR Indicates that an external device requires bus mastership.

Bus Grant BG Indicates that an external device may assume bus mastership.

Indicates that an external device has assumed bus mastership.

System reset.

Indicates that the processor should suspend bus activity.

Indicates an invalid or illegal bus operation is being attempted.

Bus Grant Acknowledge BGACK

Reset RESET

Halt oti rer

Bus Error BERR

Synchronous Termination STERM at Bus response signal that indicates a port size of 32 bits and that data may

be latched on the next falling clock edge.

Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator support.

MMU Disable

Microsequencer Status

MMUDIS

STATUS

Dynamically disables the translation mechanism of the MMU.

Status indications for debug purposes.

REFILL Indicates when the instruction pipe is beginning to refill Pipe Refill

Clock

Power Supply

CLK Clock input to the processor.

pioveg +5 volt + 5% power supply.
5

Ground GND Ground connection.

FIGURE 11.22 Signal descriptions for the 68030. (Courtesy of Motorola, Inc.)

(‘
dU

“e

jO
10

JO
W

JO

AS
@L
NO
D)

‘
O
E
Y

Ey
}

JO

Ou
Nj

on
uj

s
je

wa
U]

EZ

LL

A
M
N
D
I
S

STVNOIS

TOULNOO

SN

YATIOULNOD

Sd

ONIN

Usdin

ONIGNdAd

ALM

YATIOULNOD Sn

D
L
V

sng

SUaLSIOda

i,

ssdudqdv

LL

N
W
N

N
O
L
L
O
E
S

Y
a
.
L
N
N
O
D

W
v
a
d
o
d
d

s
d
v
d

wa

Td

L
I
N
N

aZ
IS

s
s
a
u
d
q
q
v

s
s
a
u
d
q
d
v

T
V
O
I
D
O
T

T
V
O
I
S
A
H
d

s
n
a

ssaudqdqv
NOLLONULSNI

AHOVO

NOLLONULSNI

OIDOT
sng JTOULNOD

Viva

WNUALNI

(ime:

S
2
2
5

w
D

PO
LS

T
O
U
L
N
O
D

JOULNOD GNV YFONANOISOUIN

adA} uononsysuy

330

Functional Improvements in the 68020 and 68030 Processors

11.5 FUNCTIONAL IMPROVEMENTS IN THE
68020 AND 68030 PROCESSORS

Even though the 68020 and 68030 are based on the prototype architecture of the 68000

processor, they far exceed the functional capabilities of the 68000. This is primarily due

to their memory indirect addressing capability, extended instructions for 32-bit operand

manipulations (such as multiply and divide), cache memory and virtual memory imple-

mentation capabilities, and their enhanced 32-bit data and address buses.

For routine 16/32 bit applications, the 68000 processor with 16-megabyte address

space is usually sufficient and is widely used. For applications requiring fast operations,

large memory space (up to 4-gigabyte), and cache memory implementation schemes, the

68020 and 68030 processors are preferred. If a data cache and memory management are

also required, the 68030 is the processor of choice.

Memory Indirect Addressing Capability

The 68020 and 68030 processors have the additional memory indirect addressing mode

as we discussed earlier in the chapter. This addressing mode uses any memory location

as a memory pointer register, which provides unlimited pointer resources in addition to

the internal registers. The 68000 processor does not have the memory indirect address-

ing scheme; therefore, it must use one of the seven address registers (AO—A6) for any

register indirect addressing scheme.

32-Bit Extended Instructions

For the 68020 and 68030 processors, some instructions, such as the multiply (MULU,

MULS) and divide (DIVU, DIVS), are extended to handle 32-bit operands, producing a

64-bit result. For the 68000 processor, these instructions operate on 16-bit operands and

produce 32-bit results. To obtain a 64-bit effective result with the 68000 processor, a

software routine must be written and executed.

Cache Memory and the Concept of Tag Field

Both the 68020 and 68030 processors have an instruction cache on board, organized as

64 long words as discussed earlier. The 68030 processor has an additional data cache on

board. The upper 24-bit address reference (A31—A8) for the instruction cache memory

is called the address tag. The next 6-bit address reference (A7—A2) is called the ad-

dress index, which selects one out of the 64 cache locations on board.

Each cache location has a tag field, in which tag information is stored, and an

instruction field, in which information corresponding to the tag field is stored. If a

memory reference is made, the stored tag is checked against the current tag for a hit. In

the event of a hit, the information from the cache is read by the processor. In the event

of a miss, the processor goes to the external memory, obtains the instruction, copies it

into the cache memory, and executes it.

331

332 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

The 68000 and 68010 processors do not have cache memory capability; hence, the

tag field concept does not apply to them.

The 68020 and 68030 Additional Signal Groups

The 68020 and 68030 processors have all the signal groups of the 68000 processor. In

the 68020 and 68030, the data bus is extended to 32 bits compared to the 16-bit data bus

of the 68000. The address bus is extended to 32 bits compared to the 24-bit effective

address bus of the 68000. The control bus of the 68020 and 68030 processors is ex-

tended to include two data acknowledge signals (DSACKO and DSACK1), size signals

(SIZO and SIZ1), and bus interface signals (OCS, ECS, and RMC).

In addition, the 68020 processor has a cache disable (CDIS) input signal. The

68030 has four cache-related signals to handle the data and instruction cache on board.

All of these additional resources increase the throughput of the 68020/30-based system.

Software Considerations for the 68020 and 68030 Processors

The assembly language programming techniques for the 68020 and 68030 processors are

similar to those for the 68000. Due to additional and enhanced instructions, the effi-

ciency of the software routines for the 68020 and 68030 processors can be increased. In

case of loop-type operations, for example, instructions are copied into the cache mem-

ory, which further reduces the execution time of the program.

The following example problem deals with the software capabilities of the 68020

and 68030.

Example 11.4 68020/30-processor software.
Suppose a 68020/30-based system is used in a control system application with a soft-

ware routine as shown in Figure 11.24.

1. Assuming the cache is disabled, analyze the software and specify the contents of the

affected registers after the MULU and DIVU instructions.

2. Assume that the NOP instruction is replaced by the DBRA D3,AGAIN instruction.

Consider the cache to be enabled. How many times is the AGAIN loop run? How
many times is the code obtained from the cache memory?

3. Can the same software function on a 68000-based system?

Solution

1. Software and contents of the registers: The software initializes

AO => $00004000; DO => $22224444; D1 > $00000000

D2 > $00000000; D3 > $$0000200; D4 > $00000200

Functional Improvements in the 68020 and 68030 Processors 333 ee ee Td

;66020/30 based software

CHIP 646020
OPT A
ORG $00002000

;initialize registers
;AD is memory pointer for memory
;indirect addressing mode
;DO is the data register for multiply and divide

START MOVEA.L #$00004000,A0
MOVE.L #$22224444,D0
CLReL D1 ;clear D1
CEREL De ;clear De
MOVE.L #$00000e00,D3
MOVE.L D3,D4

;perform long word multiplication and division
;multiplication is unsigned
;division is unsigned
s;all numbers are hex decimal

?

AGAIN MULU.L #$00000020,D1,D0
DIVU.L #$00000100,D2,D0
MOVE.L DO, ({0,A0,D3.W*4],0)
NOP
JMP START

FIGURE 11.24 68020/30-based software for the control system application (Example

11.4).

The MULU.L #$00000020,D1,D0 instruction multiplies the 32-bit contents of the

DO register with the 32-bit multiplier $20, and puts the 64-bit result in the DI and

DO pair as shown.

DO (before) $22224444

x multiplier $00000020

result $0000000444488880

The upper 8-digit (32-bit) result is put in the D1 register and the lower 8-digit result

is put in the DO register. Thus, after the multiplication;

DI>$00000004
D0>$44488880

The DIVU.L #$00000100,D2,DO0 instruction divides the 64-bit operand contained

in the D2 and DO registers by the dividend $00000100. The 32-bit quotient is put in

the DO register and the 32-bit remainder is put in the D2 register, as shown.

334 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

D2 and DO.(before) $0000000044488880

divided by dividend $ 00000100
quotient $00444888

remainder $00000080

Thus, after the division,

DI>$00444888

D2>$00000080

2. DBRA_ D3,AGAIN instruction: When the NOP is replaced by the DBRA instruc-

tion, the software goes into the AGAIN loop until the D3 register is decremented to

—1 (from its initial value of $200). The code is obtained first from the external mem-

ory and is copied into the cache. Subsequently, the code is obtained from the cache.

Thus, the AGAIN loop is run $201 times and the code is obtained from the cache

$200 times.

3. 68000-based system: The code will not function on the 68000 system, since the 32-

bit multiply and divide instructions and the memory indirect addressing modes of the

software are not defined for the 68000 processor.

11.6 SUMMARY

In this chapter we introduced the 68020 and 68030 32-bit microprocessors with on-

board cache memory. Both these processors are extensions of the earlier members of the

68000 family. Both have all the resources of the 68010 and 68012 processors. In addi-

tion, they have 32-bit address and 32-bit data buses. Both processors also have addi-

tional control lines to handle the coprocessor interface.

The 68020 and 68030 have a 4-gigabyte logical address space. They can trans-

fer up to 32 bits of information in one bus cycle. The data bus can be dynamically sized

to hold byte, word, or long-word data. This is accomplished by having two data

acknowledge signals (DSACKO and DSACK1) and two additional SIZ control sig-
nals.

The 68020 has an on-chip 256-byte instruction cache memory organized as 64

long words. The cache memory also contains 64 address tag fields consisting of address
lines A31—A8. Whenever a program memory reference is made, the processor examines
the address tag entries for a hit condition. In the event of a hit, the processor fetches the
instructions from the internal cache. This enhances the overall throughput of the system.
In the event of a miss, the processor obtains the instruction code from the external mem-
ory for execution and also copies it into the internal cache for subsequent use. A typical
cache bus cycle corresponds to two clock cycles, compared to three clock cycles for the
external bus cycle for the 68020 and 68030 processors. By contrast, the 68000 takes
four clock cycles for a single bus cycle without any wait states.

Problems

For the 68020 and 68030 processors, instructions such as multiply and divide are

extended to operate on 32-bit operands and provide a 64-bit result. These processors use

an addressing scheme known as memory indirect addressing. In this scheme, any valid

memory location can serve as a memory pointer. This greatly enhances the addressing

capabilities of the 68020 and 68030. There are several variations of the memory indirect

addressing scheme.

In our discussion of the bit-field instructions for the 68020 and 68030 processors,

we explained how they are used to address bit fields of varying size and operate on them.

The 68030 processor is a further enhancement of the 68020 processor. The 68030

has an additional 256-byte data cache memory. To prevent the problem of stale data,

whenever new data are written into the cache memory they are also written into the ex-

ternal memory. A speed advantage is realized when the data cache is used for obtaining

source operands. The 68030 also has an on-chip memory management unit for imple-

menting address translations and virtual memory schemes. This further increases the

throughput.

The 68020 and 68030 are not pin compatible with one another. Separate hardware

must be designed for each. However, they do have similar microcomputer configura-

tions.

PROBLEMS

11.1 Indicate the contents of the system byte of the 68020 processor

(a) during power-up system reset;

(b) when the processor is servicing interrupt 5 in the supervisor mode;

(c) under the conditions of (b), when a bus error condition occurs.

11.2 Which stack pointer is used in the 68020

(a) when the processor is executing a reset system routine?

(b) when the processor is executing user programs?

11.3 State the conditions of the system byte

(a) when an interrupt 7 routine is being executed and there is a trace on each instruction;

(b) when a bus error routine is being executed with a trace on change of flow.

11.4 What is the functional difference between the ECS and OCS signals? Where are they

used?

11.5 What should be the condition of the CDIS signal

(a) if the 68020 internal cache is to be disabled continuously?

(b) if the 68020 internal cache is to be disabled for instruction fetches above a certain

address?

11.6 The 68020 has the memory map given in Figure 11.25.

Specify the conditions of the DSACKx and SIZx signals and the data bus activity when

the following instructions are executed individually:

(a) MOVE.L (Al1),D1: Al = SOOOOFFFF; long word is $1234AABB

(b) ADD.L (Al),DI: Al = $0000FFFF; long word is $1234AABB

336 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

(c) ADD.L D1,D2: | Dl = $1234AABB; D2 = $FFFFFFFF

(d) MOVE.L D2,(A4): D2 = $FFFFFFFF; A4 = $01010001

main memory (32-bit wide) $00000000 to $OOFFFFFF

system I/O (16-bit wide) $01000000 to $0100FFFF

(8-bit wide) $01010000 to $010103FF

FIGURE 11.25 Memory and I/O map (for Problem 11.6).

11.7 Repeat Problem 11.6, assuming that the instructions are executed in sequence, as a

program.

11.8 If the VBR is loaded with $00003000 as a part of a reset routine, specify where the

autovectors are located for interrupts 6 and 2.

11.9 Consider the initial conditions given in Figure 11.26.

Indicate the effective address and the data operand in each of the following individual

operations:

(a) MOVE.W_ (08,A3,D1.L*8),D4

(b) MOVEP.L (08,A3,D1.L*4),D5

AO = $0000ABCD; DO = $00000004; $00004800

Al = $00000008; D1 = $00000200; 4802

A2 = $00003000; D2 = $0000FOFO; 4804

A3 = $00004000; D3 = $012A46AB; 4806

$0000A000
A002

FIGURE 11.26 Initial conditions (for Problem 11.9).

11.10 Use the initial conditions of Figure 11.26. Indicate the results of the following operations:

(a) ADD.L ({$1800,A3],D1.W,$0400),D2

(b) ADD.L ({($1800,A3,D0.W*8],$0A00),DO

11.11 Write appropriate instructions to move long-word contents from location $00008000 to

the D6 register using each of the following addressing modes and proper displacement

values:

(a) EA > (bd,A0,D0.W*8)

(b) EA => ([$6000,A3],D2.W,od)

11.12 Repeat Problem 11.11 using all possible addressing modes. Use A3 as the ARI register

and D1 as the index register.

Problems 337
a=. —. =< =.) Se

11.13 Consider the bit-field memory values given in Figure 11.27.

Specify the operation for each of the following, including the results of the operation and

the contents of the XNZVC flags:

(a) BFTST 4008{6:8}

(b) BFCLR 4008{8 : 6}

(c) BFSET 4008{8:6}

displacement

—16

= 8

base address 4008 => 0

+8

+16

FIGURE 11.27 Bit-field memory map (for Problem 11.13).

11.14

11.15

11.16

11.17

11.18

11.19

11.20

Using the bit map of Figure 11.27, specify the operation for each of the following,

including the results of the operation and the contents of the XNZVC flags:

(a) BFCHG 4009{7:7}

(b) BFEXTU 4008{—16:22},D1

(c) BFEXTS 4008{—16:22},D1

Repeat Problem 11.14 for the following:

(a) BFINS D4,4007{12:12}; D4 = $047689AB

(b) BFFFO 4006{5:12},D5

Perform the following PACK and UNPK operations. Initially, D3 = $ x x x x 4 8 4 3;

D4=$xxxxxx2l.

(a) PACK D3,D5,#$0000

(b) PACK D3,D5,#$1010

(c) UNPK D4,D5,#$3030

D3 = $xxxx4843;D4=$xxxxx x21. Write a sequence of instructions, using

PACK and UNPK, to pack the number in D3, convert it into an ASCII code, and place it

in the DS register.

Suppose it is required to clear an instruction cache entry at address $0010004C for the

68020 processor. What are the contents of the CACR and CAAR registers?

What would happen if the CAAR and CACR were addressed in the user mode? Why?

The following interrupt routine is being run by the 68020 processor. A4 = $0000A000.

Assume a 32-bit memory port.

Loop MOVEP.L ($0400,A4),D4

ADD.L #$00000c00,D4

BFIST (A4){O:17}

BNE LoQop

RTE

338 Chapter 11 68020 and 68030 Architecture, Organization, and Applications

Consider the cache memory is disabled. Indicate the total number of bus cycles,

including instruction prefetches, required to execute the preceding program.

11.21 Repeat Problem 11.20, assuming the cache memory is enabled.

11.22 Explain the concept of stale data. How does stale data affect system performance?

11.23 Suppose the program of Problem 11.20 is run on a 68030-based system with the

instruction and the data cache units disabled. Compute the total number of bus cycles

under the following conditions:

(a) asynchronous memory interface;

(b) synchronous memory interface.

11.24 Repeat Problem 11.23, assuming the instruction and data cache units are enabled.

11.25 List three areas in which the 68030 processor can outperform the 68020 processor.

11.26 In the software of Figure 11.24, what is the effective address of the operand in the

MOVE.L D0,((0,A0,D3.W*4].0) operation?

11.27 What are the contents of the affected registers in Example 11.4 if the MULU and DIVU

instructions are replaced by the MULS and DIVS instructions when the AGAIN loop is

run the first time?

ENDNOTES

omy

N

\o*)

aN

Nn

lo.

~

oo

. Motorola, Inc. MC68020 32-Bit Microprocessor User's Manual. Phoenix, AZ: Motorola

Technical Operations, 1987.

. Motorola, Inc. MTT20 68020 Course Notes. Phoenix, AZ: Motorola Technical Operations,

1988.

. Motorola, Inc. MC68020 Technical Summary. Austin, TX: Motorola Microprocessor Group,

1984.

. Miller, M.A. “MC68020 32-Bit Processor.” Chap. 11 in The 68000 Microprocessor:

Architecture, Programming, and Applications. Columbus, OH: Merrill, 1988.

. MacGregor, D.; Mothersole, D.; and Moyer, B. “The Motorola 68020.” JEEE Micro

4(4):101—118.

. Beims, B. Multiprocessing Capabilities of the 68020 32-Bit Microprocessor. App. Note

#AR 220. Austin, TX: Motorola Microprocessor Group, 1984.

. Motorola, Inc. MC68030 32-Bit Microprocessor User’s Manual. Phoenix, AZ: Motorola

Technical Operations, 1988.

. Motorola, Inc. MC68030 Technical Summary. Austin, TX: Motorola Microprocessor Group,
1986.

. Motorola, Inc. Performance Report: 68020 and 68030 32-Bit Microprocessors. App. Note
#BR 705/D. Phoenix, AZ: Motorola Technical Operations, 1988.

APPENDIX

A

Number Systems: Binary
and BCD Operations

The digital field deals with the binary number system in which any number is expressed

to the base 2 as a string of binary ones and zeros. The most popular number system is

the decimal system, in which any number is expressed to the base 10. The binary num-

bers can be further expressed in the form of hex codes.

BINARY AND HEX NUMBER SYSTEMS

A binary number is expressed as a collection of 1s and Os. Each digit to the left is mul-

tiplied by the corresponding power of two. The addition of these values results in the

appropriate value for the number string.

MSB: Most Significant Bit LSB: Least Significant Bit

Conversion from Binary to Decimal and Hex Decimal Systems

bit position 7. opeuyanjad 3 Gc2 ait. .0

(MSB) 0 0 1 1 1 0 1 1 (SB)
binary value = sy Pe a - re 2

Gs ul) we wchGme tury Unseas emeoe decimal

Expressing larger binary strings can be very tedious. Four binary bits are grouped

together to form a hex (or hexadecimal) code or a» BCD (binary coded decimal) as

339

340 Appendix A Chapter Number Systems: Binary and BCD Operations

TABLE A.1_ Decimal, Binary, Hex, and BCD Number Systems

Binary Number
Decimal a ee ee Hex Number BCD Number

Number b, b, b, Do Code Code

0 0 0 0 0 0 0

1 0 0 0 l 1 1

2 0 0 1 0 2 2

3 0 0 1 1 3 3

4 0 1 0 0 4 4

5 0 1 0 1 5 5

6 0 1 l 0 6 6

7 0 1 1 1 7 7

8 1 0 0 0 8 8

9 1 0 0 1 9 9

10 1 0 1 0 A x

11 i 0 if 1 B xX

12 1 1 0 0 G Xx

13 1 1 0 1 D XxX

14 1 1 1 0 E xX

15 1 I 1 1 F Xx

X => invalid code.

shown in Table A.1. The hex code goes from 0 to F for decimal numbers 0 to 15. The
BCD code is valid for decimal numbers 0 to 9, as shown.

Binary number

0:0 A ylolyOr! di;
perc

is equivalent to hex decimal value 3B, as shown. We will use a dollar sign ($) to rep-
resent the hex numbers.

Conversion from Decimal to Hex Decimal and Binary Systems By succes-
sively dividing the decimal number by the descending powers of 16, it is possible to
obtain the hex decimal number as shown.

16:59 $3 (quotient)
48

11 > $B (remainder)

Decimal value 59 is equal to.$3B. Converting $3B to the binary number is relatively
easy and is given by

3b ye OY Oe Veo

Binary and Hex Number Systems 341

Binary and Hex Decimal Arithmetic Operations The binary and hex addition

and subtraction operations are similar to decimal operations involving carry and borrow

concepts. In the binary arithmetic operations, the following identities are used:

0+0=0; 0+ 1=1; 14+0=1; 1+ 1 = 0 with carry;

Oe 0 = 1022 Ue 1 with borrow; tS OHS 1) = 0;

In hex decimal arithmetic, when the sum of addition exceeds a value of 16, carry to the

next higher hex digit results. Similarly, borrow from the next higher hex digit results in

the case of subtraction. The value of borrow to the lower digit equals 16.

Examples

Addition of $FB and $3A using the hex and binary arithmetic:

SFR a> tlio

$°3-A-=>~-Q-0-1-1-1-0-1-0
Saeed ar Oe OF Od

carry carry

Subtraction of $3A from $2B using the hex and binary arithmetic:

$.2.B >. 00010 TOF

Ss A> 0011 £01 0

ie | Liteiel O04

borrow borrow

Multiplication of $3A by $03 using the hex and binary arithmetic:

Sa A> 0011 1090

a, OOT 1

$AE OO0O1LL1010
COs tT LOLG

ODOT ELC

Binary multiplication involves successive left-shift and addition operations, as

shown. Hex multiplication is similar to decimal multiplication and is simpler than binary

multiplication. The hex division operation is similar to decimal division and is left to the

reader to practice.

| nai me 7
= ay are -siranniing <Cucmid ad gi ACE roar At opr aaa

~

+1010100 Sete e aan
Gdetdna’ Te he Bremen WE Br decimal numbers Om 1S, Te

: BOD wine 1 watid fry dere ao Relies
Binary escendes

: ovat sate j — 3

y ae eS

) OQUIFEiCH! to feta che sos AOU Wit $y aeaee

Sen Te OTS t Es il Evy
0} :

Ceorversion fum Dein ial rere nal end Binary Syatems Bs Carts :
wl ive he Soom) Torte tron teeodiog power 4f 16, ub faastbite ia

en” idee ORB HH AR ST Wvikzanoes siviovei aoheuigalon ymanift
(aie ancl) volume ai bne aoves sqpingn lem pals ow palienize #t nelteviqision xoH work 23 OS tal wt bas aeizivib Iemiach AY 14 Hania witiergo Noleivib xad ‘sdT Aoneiiquium :

+ sh Ps Soiowiq Of token :
- ~~ wh i <j

i / PIG. Waray WW to ihe Ditiery qumber is tebalively

’
iF (a 1-4 t : d

-

SS, ra

| APPENDIX

68000/10/12 Instruction Set
and Condition Codes

Reprinted by permission of Motorola, Inc.
343

‘p
ue
se
do

9u
}

Ss
!

uo
}O
ns
js
u)

ay
}

Y
I
M

pe
}e
o0
o]

y
e
p

o
y
e
i
p
o
w
w
)

“‘
pu
es
ed
o

uo
}}

~O
NA
}S
U!

BY
}

JO

UO
!}
ED
0]

AI
OW
Aa
W

ay
}

0}

sj
ul
od

49
}s
16
01

p
u
e
s
o
d
o

84
}

}e
U}

Se
ye
oI
pU
ul

Yo
Iy
M

J0
}e
Ie
do

yO
aI
pu
l

49
}s
16
e,

ay
}

‘y
EW
ID
Ep
P

U;

p
a
w
o
y

-4
8d

8q

0}

a1
e

S
u
O
!
}
e
1
0
d
0

‘|
BW
IO
8p

pa
po
od

Ay
eu
lq

s}

p
u
e
s
e
d
o

ey
}

UO
!}
B9
0|

P8
9U
G1
9j
91

BY
}

JO

S}
ua
}U
OD

au
}

P
u
e
s
e
d
o

ay
}

j0

}1
q

aj
Gu
ls

e
sj
oa
ja
s

<
B
}
E
P

>

#

JO

Xx
x#

+
(
<
1
9
}
s
!
6
a
1

s
s
o
i
p
p
e

>
)

(<
49
}s
!6
91

ss
ou
pp
e

>)

—
(<
19
}s
!6
01

ss
ou
pp
e

>)

OL

<
p
u
e
s
e
d
o
>

(
<
p
u
e
i
e
d
o

>)

<
p
u
e
s
s
d
o
>
j
o
<
j
I
q
>

*
S
U
3
I
S
I
T
V
N
O

G
N
V

S
a
7
3
I
z
g
n
s

SS
OI
PP
E

GA
I}
OO
jj
a

py
ye
a

AU
S

40
}9
9A

U
O
}
}
d
9
O
x
e

JO

UO
!}
E9
0|

$}
U8
}U
09

UO
!}
eU
N}
SE
ep

$}
U8
}U
09

ad
un
os

j
u
a
W
s
d
e
|
d
s
I
P

s
s
o
u
p
p
e

UO
!J
ON
I}
SU
!

BY
}

W
O

ey
ep

e
y
e
i
p
e
w
w
 @
P
O
d

UO
!}
IP
UO
D

Al
le
9

P
O
D

UO
!}
!I
PU
OD

MO
jj
J8
AO

@P
Od
D

UO
!}
IP
UO
D

OJ
az

8
P
O
d

UO
!}
!P
Uu
0d

sA
I}
eB
ou

(S
ep
oo

uO
}}
/p
uo
o

Wo
4d
))

p
u
e
s
e
d
o

pu
a}
xe

(Z
¥

0}

JU
a|
eA
IN
b~
a)

Je
}U
IO
d

yo
R}
s

e8
al
jo
e

y
Je
}u
JO
d

yO
R}
s

Je
Ss
N

49
@}
UI
Od

yO
R}
s

JO
SI
AJ
ed
Ns

(1
81
81
58
1

sn
je
}s

jo

8}
4q

Je
ps
o

4a
Mo
})

S
8
P
O
d

UO
!}
IP
UO
D

49
}s
|6
91

sn
ye
ys

4@
ju
N0
9

W
e
i
b
o
d

49
}s
|6
01

ss
eu
pp
e

10

ey
ep

Au
e

4a
}s
!6
e1

ey
ep

49
}s
!1
60
1

ss
oi
pp
e

—
ee

—
10
}9
98
/A

—
uo
l}
eu
lj
se
q

—
90
un
0s

—
p

-
2]
eQ

a
}
e
!
p
o
w
w

|

XZN>O0O

=
ds

=
d
s
n

r
g

d
s
s

G
x

Y
O
O

=
a

YS

ai
d

Od

*S
ON
VY
3S
dO
0

‘Y
ES

U
O
!
}
O
N
I
Y
S

“U
l

84
}

40

S|
!B
}@
p

4
}

U!

U
O
N
d
O
S
e
p

UO
I}
eJ
ed
o

ay
}

JO
y

pa
sn

as
e

sU
O!
}U
IJ
ap

Bu
ym
oj
jo
}

e
y

S
N
O
I
L
I
N
I
S
A
G

N
O
I
L
d
I
Y
D
S
3
0

N
O
I
L
V
Y
3
d
O

¢'
a

‘e
po
w

ss
ei
pp
e

eA
!}
9e
jj
o

Bu
is
se
ip

“P
e

[0
1}
U0
9

&
Pe
la
p|
su
od

s|

}!

‘e
z/
s

pe
ye
jo
os
se

ue

yn
oY
yI
M

sp
ue
se
do

Al
ow
ew

0}

10
j8
1

0}

pe
sn

eq

Ke
w

ap
ow

ss
ei
pp
e

@A
I}
OO
JJ
O

UB

4
j0
1)
U0
D

“e
po
W

Ss
ei
pp
e

SA
I}

-0
04
j9

B
u
l
s
s
a
u
p
p
e

9|
qe
sa
}j
e

ue

p
a
s
a
p
i
s
u
o
o

S!

}{

‘s
pu
es
ed
o

(9
)q
ee
}}
1m
)

8/
Ge
19
}/
e

0}

19
j8
1

0}

pa
sn

eq

Ae
wW

a
p
o
w

s
s
e
p
p
e

BA
I}
OO
JJ
O

US

4]

ai
qe
le
yy

‘e
ap
ow

SS
@1
Pp
e

OA
!}
99
j;
8

Bu
ls
se
up
pe

A
i
o
w
e
w

e
pe
se
pi
su
oo

S!

}!

‘s
pu
es
ed
o

A
s
o
w
e
w

0}

48
48
)

0}

pe
sn

eq

A
e
w

S
p
O
W

S
s
e
’
p
p
e

sA
I}
O@
jj
o

Ue

4|

M
O
w
e
w

‘@
PO
W

SS
ei
pp
e

8A
!}
09
jj
9

Bu
js
se
ip
pe

ey
ep

e
pe
se
pi
su
od

s|

}!

‘
s
p
u
e
s
e
d
o

ey
ep

0}

18
40
1

0}

pe
sn

aq

A
e
w

8
P
O
W

S
S
e
J
p
p
e

8A
!}
9E
)j
0

Ue

4|

ej
eg

*S
UO
!}
UI
JO
P

UO
}J
ON
I}
SU
!

OY
}

U!

Pa
sn

eq

||
IM

SU
OI
}E
dI
JI
Ss
e]
9

Bu
l

mo
jj
oy

6
4
1

‘p
es
n

oq

A
e
w

Ao
y}

y
o
i
y
m

ul

S
h
e
m

ey
}

A
q

pe
z|
10
6e
}e
9

oq

A
e
w

s
e
p
o
w

s
s
e
u
p
p
e

8A
I}
00
}9

S
3
a
I
¥
O
D
3
L
V
O

O
N
I
S
S
S
Y
a
a
Y

2
g

*9
9U
91
8j
01

As
ee

10
)

ed
d}

pj
og

e6
:e
|

Ul

}8
s

Bu
lp
ee
y

s
}
u
O
W
e
U
W

ay
}

Y
I
M

Je
pl
o

je
ol
je
qe
ud
ye

ul

p
e
B
u
e
w
e

as
e

Ao
y)

“J
es

uo
sj
on
sy
s

“U
l

OO
OB
9N

94
}

Ul

UO
}}
ON
Iy
sU
!

YO
RE

jn
og
e

UO
!}
EW
OJ
U!

pe
l!
eJ
ep

sU
!e
jU
CD

xi
pu
ed
de

si
y,

N
O
I
L
O
N
G
O
U
L
N
I

}'
a

S
T
I
V
L
I
G

L
A
S

N
O
I
L
O
N
Y
L
S
N
I

Reprinted by permission of Motorola, Inc.
344

a
p
o
w

B
u
l
s
s
e
s
p
p
e

J
u
a
s
w
e
l
o
e
p
e
i
d

9y}
10;

19}s!601
s
s
o
s
p
p
e

ue

saljloeds
‘| =

W
/
Y

I

ja}s!6a1
eyep

e& saijioeds
‘
O
=
W
/
Y

JI

10381691
BOuNOS

OU}
SaljIoeds

—
plaly

A
Y

se}s!IBey

A
i
o
w
e
a
w

0}
A
I
o
w
e
w

s!
uolyesEedoO

B
y
,

—

1

49}s1601
eyep

0}
19}s/60)

eyep
si UO!}EJOdO

BYU
—

O

r
e
p
o
w

B
u
l
s
s
e
u
p
p
e

p
u
e
i
a
d
o

ay}

saljineds
—

pPlels
W/Y

e
p
o
w

B
u
l
s
s
e
i
p
p
e

j
u
a
w
e
s
0
e
p
e
i
d

ou}
10}

19}s15e1
ssesppe

ue
saijjoeds

“| =
W/Y

JI

JeysiBes
eyep

e
s
a
y
i
o
e
d
s

‘
O
=
W
/
Y

JI

u9}si6es
UOI}eUIISEep

BY}
SeIjI9edS

—
pIel)

xy
Je}s!/6oy

:Spjel4
uoTONIySU}

Ay
Xd

4981604
40)s1B0y

0
L

z
1
7

v
S

9
Z

8
6

OL
L
E
E

er
post

s
J
B
W
I
O
4

U
O
}
}
O
N
I
Y
S
U
|

*suoiyesedo
uolsioesd-9jd!}/NW

JO U
O
}
}
@
|
d
W
O
D

UOdN

$}jNseJ
049Z

10} $}S9}
|NJSSedONS

SMOj|e
S
I
U

“UO!|}EJEdO

Ue

JO
We}s

OY}
G1OJeq

B
u
l
w
w
e
B
o
l
d

eIA
Jas

S! }1G
BPOD

UO!}!|PUod
Z
 94}

A||BWJON

3
L
O
N
 “yiq

Auseo
94}

Se
O
W
E
S

94}
18S

“@SIMIOUJO
Pelee|D

‘poeyeioueB
s
e
m

(
j
e
w
o
a
p
)

AuJeOd
e

4} 18S

“‘peulyjepuy
‘“asimiay}oO

peBueyounN
‘OJez-UOU

S! }/NSeJ
Ay}

4! Pelee|D
‘peuljapun

ZN>O%X

|
b

e
a
e
 N
X

OD)
Ai

aez

*SOPOD
UO}}!PU0D

*AjuO
uo}yesedo

9}Aq
&

S|
UO!}eJEdO

SIMUL

“uo}JONJ}SU!
EY}

U!
Peljjoeds

s1e}s!6es
ssesppe

04}
Buysn

e
p
o
w

Bu;

-sselppe
j
u
e
W
a
J
o
e
p
e
l
d

94}

y}IM
p
e
s
s
e
l
p
p
e

ase
S
p
u
e
s
e
d
o

ay)

:
A
I
O
W
e
W

0} A
I
O
W
e
Y
W

‘Z

*UO!}ONJ}SU!
BY}

U!
Palj!oeds

$19}s|Bas
e}ep

oy}
Ul

poule}UOD
ese

s
p
u
B
s
e
d
o

ey)

:J0}s!/601
eyep

0}
J0}s1Be1

eyeEq
“| ‘

s
A
e
M

}U9J98jJIP
OM}

Ul
p
e
s
s
o
u
p
p
e

eq

A
e
w

s
p
u
e
s
e
d
o

ay)

‘O!JewWYyVe
jeEWIOep

p
e
p
o
o

AyeUIG

Buisn
p
e
w
J
o
j
e
d

s! uol}|ppe
ey]

“UO!}B90)
UO!}EUI}SEp

84}
U! }/NSeJ

BY}
810}s

puke
‘FIG

pue}xe
9
}

y
i
m

Buoje

p
u
e
s
e
d
o

uo}}eUl}Sep

94}
0}

p
u
e
s
e
d
o

BdJNOs

ey)
P
p
Y

t
u
o
d
y
o
s
e
g

(814g) =9z1S
:seINquy

(xy) -— (Ay) -
Goav

:xByukg
xa‘Ad

GOav
§
 Jeiquessy

uolyeuljseg
—

xX + O

l
u
o
j
j
e
u
y
j
s
e
g
+
O
l
e
o
s
n
o
g

:uojyesedO

pue}x3
4
M

jewj9eq

Ppy
q
o
a
v

qgdoav

‘uolyesado
asje/ueU}/j!

84}
9}euU/WI9}

pue
SUO!}e1ed0

a}e1edas
0}

pasn
S|

U
d
J
O
D
!
W
A
S

-

‘uol}esodo

OU
SWUOJJed

UO!}ONJ}SU!
Oy}

‘JUeSge
Ss!

aSNe|O
,,eS|9,,

[EUO!}JdO
4
}

Pue

esje}
S|

UO!)

-IPUOD
AY}

4] P
e
u
O
j
J
e
d

a
e

,,aS|e,,
BY}

J9}ye
SUO!}eJEdO

ay}
‘JUeseJd

Ss} ESNe|d
,,9SI9,,

jeuol}do
ay}

puke
asje}

S! UO!}IPUOD
94}

}| ‘
P
E
W
U
O
e
d

a
e

,,UBY},,
94}

19}e
suo!}esedo

uy}

‘gnaj
J] ‘Pe}SE}

S| UOI}IPUOD
e
y

*
<
S
U
O
!
}
e
1
8
d
O
 >
 asje

<
s
u
o
l
j
e
i
a
d
o
 >
 uay}

<
U
O
!
}
I
P
U
O
D
 >

4)

s}dnijejul
10}

B
u
l
y
e
m

‘ayeys
p
e
d
d
o
j
s

ey}

49}U8
 =9§O1S

O
d

—(U0}98A)

(
d
S
S
)
—
H
S

‘
d
S
S
—
2
-
d
S
S

‘
(
d
S
S
)
—
O
d

‘
d
S
S
—
p
—
-
d
S
S

(
d
S
S
)
—
P
I
O
M

JeS}HONMeWIOS
‘
d
S
S
—
Z
—
d
S
S

©}
JuajeaiInba

=
 dvVHL

4
e
u
r
O

S9POdD
UO!}IPUOD

9y}

jas
0}

pesn
ase

s}jnseJ
ey}

‘0 0}
p
e
x
e
d
w
o
d

s} p
u
e
s
e
d
o

ay}

p
e
}
s
e
}

<
 pueiado

>

UO!IYOd
JAMO]

BU}
JO

31g
JePsO

YByY
0}

jenbe
s
p
e
w

a
e

u
o
l
j
o
d

seddn

ey}
jo

s}iq
|e

‘pepue}xe
uBis

s} p
u
e
s
e
d
o

ey}

pepua}xe-uBis
<
p
u
e
i
e
d
o

>

p
e
j
u
e
w
e
j
d
w
o
o

A\je016o0)
si p

u
e
u
e
d
o

ou}

<
p
u
e
i
e
d
o
 >
 ~ :Aueun

p
u
e
i
e
d
o

yyBi

ayy
Aq

p
o
l
i
o
e
d
s

suol}isod

JO JequINU
ey}

Aq
peyej}O.

JO
Pey}Ys

S| pue!edo
39)

EY}
p
u
e
s
e
d
o

1
4
6

uey}

Jeyee16
s} puesedo

9
]

3! ON}
‘}Se}

jeUOI}E}OI
<

p
u
e
i
e
d
o

14611
ueyy

sso}
s} puesedo

39]
3! Ons}

‘}Se}
;eUO!}e}Ol

P
e
H
O

Ajeaisnjoxe

Ajje0!60)
ase

s
p
u
e
s
e
d
o

94}

PeHYo
Ajjeo!6o)

ese
s
p
u
e
s
e
d
o

94}

P
e
q
n
y

Ajjeo!6o0)
ase

s
p
u
e
s
e
d
o

94}

p
u
e
i
e
d
o

p
u
o
d
e
s

ey}

Aq
papiaip

s}
p
u
e
i
e
d
o

3s11j
84}

peijdiyjnw
aie

s
p
u
e
s
e
d
o

ay}

pueiedo
3je|

ey}
W
o
y

pe}oes}qQNns
s| puesedo

yYyBys
ey}

p
e
p
p
e

aie

s
p
u
e
i
e
d
o

oy}

p
e
B
u
e
y
o
x
e

a
e

s
p
u
e
s
e
d
o

OM}

94}

p
u
e
s
e
d
o

}Yyby)
ey}

0}
p
e
a
o
w

s!
p
u
e
s
e
d
o

39)

84}

A
q

peyeyos

Aq
p
a
y
s

e_<>28@V ft+ ‘Bu Moj|o} 84} JO BUD

s|

<do>

eleym

<pueiedo>

<do><pueiedo>

ueijM

ale

Suo}}e1edo

9sey)

—Aueulg

‘Jay}O
pue

‘Aueun
‘Aveulg

Oyu!
p
e
d
n
o
6

aie
suojj}esedO

:
S
N
O
I
L
W
H
S
d
O

345
Reprinted by permission of Motorola, Inc.

“U
O!
JO
UI
IS
IP

S1
4}

eY
eW

A
y
e
o
|
y
e
w
o
j
n
e

s
i
a
j
q
w
e
s
s
e

Js
oW

“e
}e
p

9y
e!
|P
ew
WW
!

s!

90
JN
OS

ay
}

U
B
M

pa
sn

ai

e
O
d
a
y

Pu
e

id
ay

‘1
9}
s!
5e
1

ss
ei
pp
e

ue

s!

uo
ly

eu
l}

Se
p

ey
}

U
E
Y
M

pa
sn

s!

Y
Q
Q
V

‘z

“p
ee
js
u!

e
p
o
w

UG

UO
}}

eU
I}

Se
p

94
}

ES
N

Js
nW

jn
q

‘e
po

w
<
e
e
>

uU
Ol
}e
UI
}s
ep

ay
}

Bu
is
n

Aq

pe
ly
jo
ed
s

oq

jo
uU
eO

}!

UA
Y}

‘J
9}
Ss
!1
6e
1

EY
Ep

e
S|

UO
IJ

EU
I}

SE
P

OU
}

J]

“|

:S
e}

ON

[u
x'

ou
@e

)
|

[
_
u
v
s
e
q
u
n
u

be
r

[
o
n

|

ux
'u
v'
8p
)

o
e
m

|

|
_
v
v
u
e
q
u
n
u

be
r

|

o
o

|

uv
i-

pa
nt
o

Sa
g

x
t

|

_v
yv

eq
un

u
be

r
|

ii
o

|

+
)

|

<
e
i
e
p
>
e

|

uy
se
qu
nu

Be
r

[
o
r
o

[
w
w

|

rb
00
)

e
s
e
t

wy

|

[

ex
x)

|

e
a

a
e

|

[|

p
o
w

pp
v

|

|

ep
ow

|

ep
ow

up
py

|

‘U
MO

YS

SB

Pe
mo

l|
e

as
e

Se
po

w
Bu
ls
se
sp
pe

A
i
o
w
e
w

3\
qQ

eJ
9}

/e

Aj
uO

Ua
y}

‘p
ue
se
do

UO
l}

eU
I}

Se
p

ke
SI

Pa
!j
io
ed
s

UO
}}

e9
0|

OU

}
J}

'G

:UMOUS SB peMo|je

ase

sopow

Bulsseippe

je

ay)

‘puesedo

9dJnos

e
U|
paljioeds

UO!}e90)

OU}

4)
“e

‘epow

Bulssesppe

seujwiejeg

—

pjal4

ssesppy

eA1}9e4j3

<
e
e
>
—
<
e
e
>
+
<
u
g
>

O
l

t
O

O01
<
u
g
>
—
<
u
g
>
+
<
e
e
>

O10
100

£000
uoj}e1edO

B
u
o
7

p
i
o
m

e
A
g

—
pi

al
s

ep
ow

-d
o

*s19}s16e1
eyep

yyBle
ay}

yo
Aue

saljloeds
—

pial)
so}s16oy

:Spje}4
Uoons}sU)

epow-d
vd

9
Z

8
6

OL

40)s|60y
eapow

SSOJPPY
9AI}08}j3

tL
ras

€L
vl

SL

y
e
W
0
4

UO}ONISU]

‘10}8|601
SSeuppe

Ue
S| UOJ}EUIJSEP

94}
UOYM

Pe}9e4Je
JOU

aJe
SEePOD

UO!}IPUOD
OUL

“yiq
A
u
e
o

84}

Se
A
W
S

9
}

JES

"@S|IMJOYJO
Pasea|D

‘poyesoueB
s|

A
u
e
d

e
4! 18S

“@SIMJOUJO
Palea|D

“pa}es9UEB
Ss! MO|jJJOAO

Ue
j! J

S

"@SIMJOYJO
PAsea|D

“O19Z
S|} }|NSEJ

By}
4! 38S

"@SIMJOYJO
Peleea|D

‘aAlyeBau
SI }/NSeJ

Oy}
41 e

S

B
e
a

R
I
E
S

le
e
e
,

ae
S
p
O
D

UO!}!|PUuoD

ZN>O%X

‘ez|S
puesodo

04}
Se

[JOM
SB

UO!}JEUI}SEP
84}

S| YO|UM
pUe

BdINOs
OY}

S| p
u
e
d
o

“A
ju
o

Bu
o7

pu
e

p
u
o
m
»

(ux‘uy'‘8p)

[vse

YOIYM
SeyedIPU!

UO}JONIJSU;
4
}

JO
ePOW

ey]
“BuO

JO
‘psoM

‘a}Aq
aq

0}
Paljloeds

aq
Aew

uojyesedo
ay}

JO ezIs
eYy

“UO1}E90)
UO}}EUI}SEP

OY}
U! }jNSe/

EY}
e10}s

pue
‘uoiippe

Aveuiq
Buisn

p
u
e
s
e
d
o

uojyeul}sep

ey}
0}

p
u
e
J
e
d
O

BdJNOS

8y}
p
p
y

:
u
O
N
d
D
S
e
g

[on er _[10 _] ‘1 | 010 |

[100]

‘e1[000] [| pow |

[
_
_
s
e
r
s
i
B
e
u

~
~

|
 opow =

|

ePOW Uppy

q
q
v

Pe
q
q
v

a
q
a
q
v

PPYy

(u
07

‘p

io
m

‘e
14
g)
=e
zI
S

:s
eI

Nq
uH

Y

<
e
o
>
‘
u
g

g
a
v

:xequds u
g
'
<
e
e
>

g
a
y

J
e
j
q
u
e
s
s
y

uol|yeuljseq
—uOo}}eUul]seg

+e01N0S
 :uo;eIedO qqv

Reprinted by permission of Motorola, Inc. 346

AW
Xd

39s
1Bay

40s
16ay

(0)
L

@
€

v
S

9
Z

]
6

oL
PB

Chie
ws Clie

¥;
St

1
y
B
W
I
O
4

U
O
}
J
O
N
I
}
S
U
|

“suolyesodo

uoisioeid-9|di}jnwW
Jo UOe|dwWoo

UOdN
s}jNseJ

O18Z JO} S}S9}
|NJSSEDONS

SMO}|E
SIU] "UO!

-e1ado
ue

Jo Ue}s
Ou} a10j9q

BuluWesBoid
BIA J8S SI }1q BPOD

UO!}|PU0
Z OU} A\jeULuON

A
L
O
N

“ig
Auseo

04}
Se

B
W
e
S

94}
18S

“aSIMIOU}JO
palee|D

‘peyei9ueB
s!

A
l
e
d

e

4}! 8
S

“@SIMIOUJO
P
a
l
e
E
|
D

‘
p
a
y
e
i
a
u
E
B

S|
M
O
|
J
J
B
A
O

UP

}! JOS

‘asimseyjyo
p
e
B
u
e
y
o
U
N

*0J8Z-UOU
S| }/NSe1

BY}
3! Pesee|D

“aSIMJOU}O
Pesea|D

“eAl}eHou
S|

}/NS@J
94}

4}! 18S

ZN>OX

E
X

r
N
 a
o

v
e
s
 x

O°
A

shel
:S@POD

UOI}IPu0D

“Buo|
10

‘
p
o
m

‘a}{q
aq

0}
paljloeds

eq
A
e
w

uoijesedo

ay}
JO

9ZIs
O
y
)

“uoljonJ}SU!
BU}

Ul
palyloeds

siejsi6e1
ssaippe

ou}
Buisn

e
p
o
w

Bul

-ssouppe
jueweJs9epeld

84}
Y
I
M

pessaippe

ose
S
p
u
e
s
e
d
o

Ou}

:AlowewW
0} A

I
O
W
e
W

‘Z

“UO!JONAJSU!
BY}

Ul Pelj!oeds

sie}siBes
eyep

ul
peusyejuod

ase
s
p
u
e
s
e
d
o

94}
uejsi6es

eyep
0}

19}s!/6e.
eyeq

“|

1SAPM
}U819}

-jIp Om)
Ul pesseippe

oq Aew
spuesedo

e4{
*UO}}290)

UO!JEUN}SEP
OU} U! 1/NSeA

9
}

810}S

PUR
19

pue}xe
ey}

y
i
m

Buoye

puesedo
uo}}eUl}SEp

OU}
O}

puesedo
e0unos

ey}
p
p
y

:
u
o
l
d
j
9
s
e
q

(Buo7
‘
p
r
o
m

‘e}A4g)=eZIS

=
 :
s
e
I
N
q
u
Y

(xv) —
(Av)

-
x
a
a
v

x
e
y
u
h
s

x
a
‘
A
g

x
a
q
v

4
e
i
q
u
e
s
s
y

uoljeunseg
—xX

+ uo}yeUul}seg
+e0JN0g

—:uojyB1edO

pepueyx3
ppv

x
a
q
v

xqdqv

a
n
 S
s

a
e

uyuequinu
‘Ber

ObL
(ux‘uy‘8p)

a
Zap

[
u
y
s
e
q
u
r
u
-
s
e

[oro
[|

ow)
e
e
s
.

t
e

e
e
n

[
 vyvequnu fer |

too

|

v
y

‘UMOUS
SB

peMo||e

ale
s
e
p
o
w

Bulsseippe
iy

‘puesedo
soinos

ay}
salj!oeds

—
PIel}

s
s
o
i
p
p
y

9A1}904})3

‘uolyesedo
B
u
o
j
—

Lb

‘sjiq
ze

[1
Guisn

10}s!5e1
ssosppe

84}
UO

p
e
U
o
y
J
e
d

S| uolyesedo
0y}y

pue
pueiedo

Buoj
& 0} papue}xe-uBis

s| puesedo
edinos

EYL
uo|}yesedo

pPiOM—
{LO

suo|yesedo
ey}

JO
ezIs

oy}
Seljloeds

—

pjaly
e
P
O
W
-
d
O

‘uojyeuljsep

ay}
shemje

si
sly,

‘ssejysi6be1
sseuppe

yyBle
84}

40
Aue

saiyioeds
—

plat)
10}s!60y

:spje}4
uo}onsysUl

uy
c
)

-d

e
e

eae mene
Z

8

6

OL
LE

a

eb
oh

GL

yBWIO4
UO}}ONI}SU}

19)s|\60y

SSOJPPY
9A1}99j}3

"pajoajje
JON

=SEPOD
UO}puoD

‘ezis
uo|yesedo

ey}
JO Sse|pseBe

pasn
s| 19}s/6e1

sseuppe
UO!eU!ISsep

aJ}}Ue
ey]

“GUO|

10 p1OM
2q 0} palj}oeds

eq Aew!
UO!}e19d0

94} JO ezIS OY!
“10}S!501

Ssasppe
OU}

UI }/NSOL

ay}
a10}s

puke
‘18}S/6e:

ssesppe
UO!eUI}Sep

4
}

0} PuBJedo

BoINos
EY}

Ppy
:
U
o
d
Y
O
S
e
Q

(6u07
‘piom)=ezIg

=
 -:seINquRY

u
y
‘
<
e
e
>

vadVv
sxejuds

Jejquessy

uoljeul}seq
—uo}}eUI}seq

+e0JNOS
:uo}Je1edO

sseippy
PPV

vaqav
v
a
q
v

347
Reprinted by permission of Motorola, Inc.

7U
MO
YS

SB

pe
Mo
l|
e

a
e

s
e
p
o
w

Bu
ls

se
ip

pe

ej
ep

Aj
uo

ue

y}

pu
es
ed
o

eo
un
os

e

S|!

pa
lj
jo
ad
s

U0
!}

29
0}

aU

}
4]

‘e
po

w
Bu

ls
se

up
pe

se

ul
wj

e}
eq

—

pj
el
j

ss
es
pp
y

9e
al
}0
e4
)5

ee

—
(
<
e
a
>
)
y
(
<
u
g
>
)

Ol
t

OL

OO
F

ug

—
(
<
u
g
>
)
v
(
<
e
e
>
)

01
0

10
0

00
0

uo
j}

B1
ed

O
Bu

o}

p
i
o
m

e
A
g

—
Pl
a!
)

eP
OW
-d
o

*s
19
}s
|6
e)

ey
ep

yy
Bi
e

ay
}

yo

Au
e

sa
ij
il
oa
ds

—
py
al
j

s
e
s
1
B
o
y

‘S
Pj
ej
4

Uo
on
Ns
ys
uj
;

40
18
16
04

e
p
o
w

S
p
e
n
d
o

ug

SS
@I

PP
Y

8A
}}

99
})

3
40
}s
|B
oy

s
9

Z
8

Bi

OE

TEE

Bt

ve

OS
L

0
‘

rd

£
v

et

J
B
W
I
O
Y

U
O
!
}
O
N
I
Y
S
U
]

“P
pa
j}
oe
jj
e

JO
N

*‘
pa
le
aj
o

S
A
e
M
I
V

*p
os
ea
|o

sA
em

iV
y

*O
SI

MJ
OY

JO

P9
lB

9|
D

“0
19

Z
S|

}/
NS
@J

AU
}

J!

JE
S

“O
SI

MJ
OY

JO

PS
1L

9/
D

JO
S

SI

}/
NS

e1

OY
}

JO

Ji
g

jU
BD

I}
/U

B\
s

js
oW

94
}

3!

18
S

r
r

nx
.

2$
@P
OD

UO
!}
Ip
u0
D

ZN>O%x

‘p
ue
se
do

ue

se

pe
sn

eq

jo
u

Ae
w

J9
}s
/6
e1

ss
eu
pp
e

ue

Jo

S}
ua
}U
09

ey
!

“B
uO
|

JO

‘p
om

‘8
}h

q
8q

0}

pa
lj

io
ed

s
oq

Ae
wW

Uo
l}
e1
8d
O

9
}

JO

eZ
IS

O
Y

“‘
UO
!}
ED
O]

UO
!}

EU
I}

SE
p

ay
}

Ul

}/
NS

eJ

84
}

81
0}

S
pU
e

pu
eJ

Ed
O

UO
}}

eU
I}

SE
ep

oy
}

0}

pU
BJ
ed
O

9d
JN

OS

By
}

G
N
Y

:U
O}
}d
UD
Se
g

(Buo7 ‘pio ‘8}4g)=azIS :seINquHY

<ee>‘ug

GNV

mxequhs

uqg‘<ee>

GNY

Jeiquwessy

su0}}e10dO

u
o
l
}
e
U
u
l
}
s
e
g

—

U
O
l
}
e
U
u
l
}
s
e
q

y
s
d
J
N
O
S

129}607 GNV

G
N
V

G
N
V

‘a
po

w
BH

ul
ss

ei
pp

e
j
u
s
w
a
J
o
e
p
e
l
d

au
}

10
)

10
}s
/6
e1

ss
ou
pp
e

ue

sa
lj

io
ad

s
‘|

=

W/
d

41

‘4
0}
81
60
1

ey
ep

e

sa
ij

io
ad

s
‘Q

o=

WH
Y

41

‘4
03
81
60
1

80
uN
OS

ay
}

Sa
ly
lo
ad
s

—
pj

al
y

Ay

19
0}

s/
6e

y
“
M
O
w
e
W

0}

A
i
o
w
a
w

si

uo
l}

ei
ed

o
8
y
J
—
}

‘4
03
81
60
1

ey
ep

0}

10
}s
!6
e1

ey
ep

s}

UO
}}
eE
Io
do

ay
;

—
O

:e
@p
ow

ss
ei
pp
e

p
u
e
s
e
d
o

au
}

sa
ij

lo
ad

s
—

p
i
e

W/
Y

‘u
oi
ye
se
do

B
u
o
|
—
o

1

“‘
uo

ly
es

ed
o

p
l
O
M
—
|
1
0

‘u
ol
}e
se
do

3
8
1
A
q
—
o
0

su
o!
}e
19
dO

aU
}

JO

OZ
IS

OY
}

Sa
lj
IO
ed
s

—
pa
l}

ez
IS

‘“

ep
ow

Bu
ls
se
up
pe

j
u
e
w
e
s
0
e
p
e
i
d

ey
}

10
4

19
}s

!6
e1

ss
eu
pp
e

ue

sa
lj
io
ed
s

‘|

=
W
/
y

JI

‘4
91
81
60
1

ey
ep

e

sa
ij

io
ad

s
‘
O
=
W
/
Y

|
49

}8
!6

a1

uo
l}

eU
uI

}s
Ep

ay
}

Sa
lj
io
ad
s

—
pj

al
y

xy

Je
}s

/B
oy

2S
Pj
e}
4

UO
NO
NI
ys
U]

Xx
dq

dd
qv

pe
pu
e}
x3

pp
y

x
q
q
v

Reprinted by permission of Motorola, Inc. 348

“S
PJ

OM

9}

e
1
I
P
S
W
W

OM
}

}X
OU

AU
}

S!

B}
eE
P

Oy
}

Ud
y}

‘O
|

=A
aZ
IS

4)

‘P
JO
M

9}

e
/
P
S
W
W
!

S1
!1

}U
B

BY
}

SI

eJ
eP

Oy

}
U
S
}

‘L
O

=a
ZI
S

4}

“‘
PJ

OM

O
}
E
I
P
S
W
U
!

BY
}

JO

9}
Aq

19
PJ
O

MO
]

By
}

S!

BJ
EP

By
}

U
S
}

‘
O
Q

=9
ZI
S

}|

(
u
O
N
O
N
s
y
s
U
!

84
}

Bu
jm

oj
jo

}
A
j
a
y
e
i
p
e
w
u
!

ey
eg

)
—

pl
a!

)
a
y
e
l
p
o
w
w
y

t
e
a

g
c

‘U
MO
YU
S

SB

pa
eM

oj
je

ai

e
s
a
p
o
w

Hu
ls

sa
ip

pe

9|
qe

se
}/

e
ey
ep

Aj
UC

‘p
ue
se
do

UO
!}

eU
I}

SE
p

94
}

Sa
lj

I9
ed

sS

—
pj

al
}

SS
oI
pp
Yy

9A
I}

99
4}

5

“u
ol

jy
es

ad
o

B
u
o
j
—
o
1

‘u
ol
jy
es
od
o

p
s
o
m
—
1
.
0

‘u
oi

ye
so

do

8
}
A
q
—
0
0

:U
01

}2
18

dO

8
}

JO

OZ
IS

BY
}

SA
Ij

IO
9d

S
—

pP
Ia
lj

az
IS

‘S
Pj
el
4

UO
NO
NI
yS
U|

(
P
A
O

SN
O}

Ae
Jd

SE

PN
|9

u}
)

e}
eq

B
u
0
7

eB
ye
Q

A
g

B}
eq

P
s
o
m

49}s|60y eapow

SSOJPPY

9A1}90}43

Ss 9 Z 8 6 OL
PE
S

C
e
c
e

SF
E

*S
e

s
}
B
W
I
O
Y

U
O
!
}
O
N
I
}
S
U
]

“P9}99jje JON

‘p
al

es
|o

s
h
e
m
i
y

‘p
ai
ea
|o

s
A
e
m
i
y

“@
SI

MJ
OY

IO

PE
Je

a|
D

“O
18

Z
SI

}/
NS
OJ

BY
}

4!

19
S

“O
SI
MJ
OU
JO

PA
le
9I
D

‘J
OS

S|

}/
NS
OJ

94
}

JO

}I
G

JU
BD
Ij
!U
BI
s

ys
OW

Oy
}

Jj!

}9
S

ZN>OX oe oe a ee

:S@poOD UO!}!pUu0D

‘@
ZI
S

UO
!}
EJ
Ed
O

BY
}

S
E
Y
O
}
e
W

ej
ep

a
}
e
i
p
o
w
w
!

9y
}

4O

az
Is

ay
y

“‘
Bu
O|

10

‘p
1o
m

‘9
}4
q

8q

0}

pa
ij
lo
ed
s

aq

A
e
w

uo
l}
es
ed
0

ay
}

JO

aZ
I/

S
A
Y
]

“U
O!

}E
D0

|
UO

!}
EU

I}
SE

p
ey
}

Ul

}/
NS

O1

94
}

81
J0
}S

PU
ES

P
U
B
I
O
d
O

UO
!}
eE
UI
}S
Ee
p

94
}

O}

By
ep

o
J
e
/
p
o
w
W
!

94
}

G
N
Y

:
u
o
N
d
o
S
s
e
g

(6
u0
7

‘p
io
m

‘e
}4

g)
=e

zI
S

:s
eI

Nq
uA

Y

<ee>‘<ejep># IGNV :xeyuAS

1e
jq
uw
es
sy

UO
!}

}B
UI

}S
eg

—
U
O
!
}
e
U
I
}
S
E
q
y
e
j
y
e
q

s
j
e
|
p
o
w
w
)

 :
uo
}E
1e
dO

oy
e/
pe
ww
|

O
N
Y

I
G
N
V

IG
NV

"U
ON

OU
NS

IP

S1Y
y}

eY
eW

Aj
]e

0
“}
yW
O}
Ne

Si
aj

qu
ia

ss
e

JS
OW

“e
}e

p
a}
e!
Pa
WW
!

S|

8d
JN
OS

84
}

U
S
M

Pe
sn

SI!

IG
NY

‘Z

"p
es

js
u!

sp
ow

uq

UO
!}
eU
!}
Ss
ep

ey
}

es
N

}s
nW

yn

g
‘e
po
w

<
e
s
>

UO
!}

eU
I}

Se
p

ey
}

Bu
is
n

Aq

pe
lj
io
ed
s

aq

jo
uu
eo
d

}!

ue
y)

‘J
e}
s/
Be
1

ey
ep

e
S|

UO
IJ

EU
IJ

SE
p

OU
}

J)

“1

:S
@}
ON

u
y
u
e
q
u
n
u

‘B
e:

u
y
u
e
q
u
n
u

‘B
es

ia Md

[o
or

[
1
0

=

E
r
a

[e
on

|

|

u
y
'
S
t
p
y

u
y
u
e
q
u
i
n
u

“B
es

{U
MO
YS

SB

pe
mo
jj
e

es
e

se
po
w

Bu
ls
se
ip
pe

M
o
w
e
w

aj
qe

se
yj

e
Aj

u
us

y}

pu
es
ed
o

uo
lj

Je
Ul

}s
ep

e

s!

pe
lj
}o
ed
s

UO
!}
e9
0)

OU
}

4]

(u
x'
do
d‘
8p
)

|
_
_
a
'
8
t
p
)

|

e
e

|

h
i
e

a
e
s

[_
uy
se
qu
ne

Ge
r]

(ux
uy®

p)
u
y
u
e
q
u
i
n
u

‘B
es

E
x
)

[1
01

|

w
v
)

—_
]

[0
10

|

[
=

|

0
0
0

|

[s
po
n

_|

7

P
O
W

“I
PP
Y

uq
ue

qu
in

u
‘b

e,

u
y
u
e
q
u
n
u

‘B
es

l
e

a
m
l
)

pe
er
ae
|

S
p
o
W

“U
PP

Y

18
9}
60
7

G
N
V

349 Reprinted by permission of Motorola, Inc.

(sia
91) BEG

PIOM

"@
S|
MJ
OY
y}
O

Pe
Bu

eY
yo

UN

‘o
Je

z
Ss}

pu
es
ed
o

9}
eI
Pe
WW
!

JO

p
IG

J!

Pa

le
a|

D
“a

si
nu

ey
jo

pe
Bu
ey
ou
n

‘o
1e

z
Ss}

pu
es
ed
o

a}
ye

|p
ew

W!

JO

O
IG

J!

pa

le
al

D
“e

SI
MJ

ay
}O

pe

Bu
eY

yo
uN

‘o

Je
z

Ss}

pu
ei
ed
o

e}
ei
pe
ww
!

JO

|
HG

J!

pe

le
e|

D
“e

s|
Ms

ay
}0

pe

Bu
ey

ou
N

‘o
1e

z
s!

pu
ei
ed
o

oy
eI
Pe
wU
!

Jo

Z
HI
G

J]

Pa
le

aI
O

“e
sI

Mu
ay

jO

pe
Bu

eY
yo

uN

“o
Je

z
si

pu
es
ed
o

a}
eI
Pe
WW

JO

¢€

JI
G

}1

Pa
le

a|
D

€

v
S

9

Z
8

6

ol

th

ra
s

el

vl

St

WB
WI
O4

UO
}O
NY
SU
]

ZN>O%xX

a

n
e

a
e

ee

wl
]

Ze
]

N
T

IN
XK

*S
OP
OD

UO
!}
IP
UO
D

‘payooyye

ai
e

19
}s
16
e1

sn
ye
ys

ey
}

30

Si
ig

|[
y

se
}s
IG
e1

sn
}e
ys

ey
}

U!

1]
NS
e1

ay
}

eu
0}

s
pu
e

19
}s
i6
e1

sn
jy

ej
}s

ay
}

JO

$}
Ua

}U
OD

9y
}

Y
M

PU
BI
Ed
O

o}
e/

pe
wW

!
ey
}

G
N
Y

:U
uO

!}
dU

DS
se

g

YS
0} I

G
N
V

(piom) =ezIS :seINquY :xeyuAS

Jejquessy

yS‘'<ejep># IGNV
‘dVHL es|o

YS

—

US

V
89INOS

UB}

9}e}s JosiMedns jj :uoyjesedo

YS
0}

lIGNV

(uojonsysuj peBeyjaud)

10}s|/6ey

snjeis

ey)

0}

e}e/peww)

GNY

(s
ug

8)

B1
eq

eV
Ag

“a
si
MJ
ay
jo

pa
bu

ey
ou

N
‘o
Je
z

Ss}

pu
es

od
o

a}
e|
pa
wU

JO

F

31
g

}|

pe
le

ei
D

“e
SI
MJ
OY
JO

pe
Bu

eY
yo

UN

‘o
1e

z
S|

pu
es
ed
o

o}
e|

po
wW

!
JO

C

11
g

}!

Po
se

e|
D

‘e
SI
NJ
aY
yJ
O

pe
Bu
eY
oU
N

‘o
1e

z
S|

pu
es

ed
o

ey
e|
Po
WW

JO

|

JI
G

4}!

pe
le

a}

‘a
s|
mj
ay
jo

pa
Bu

ey
ou

n
‘o

19
z

Ss}

pu
es

ed
o

o}
e!
pe
ww

JO

Z
11
g

}|

pe
le

e|
D

‘a
s|
mi
ay
jo

pe
Bu

ey
ou

n
‘o

18
z

S|

pu
es
ed
o

oy
e!

po
wW

!
JO

¢

11
g

J
pe

le
a]

4
€

v
S

9
i
z

8
6

OL

te

b
E

C
C
S

}
B
W
I
O
4

U
O
}
}
O
N
I
}
S
U
]

ZN>O%x<

(eo ee eet nl Ea
Da a GZ IN x

:S$@POD,

UO}}IPUOD

*1
0}
S1
69
1

sn
ye
ys

ay
}

JO

8}
Aq

JA
ap
sO
-M
Oj

By
}

U!

1I
NS
@J

By
}

84
0}
s

PU
B

SE
PO

d
UO
!}
IP
UO
D

OY
}

YI
M

PU
BI

Sd
O

S}
eI
PE
WW
!

OY
}

G
N

:u
aN

d"
OS

eg

Y
O
O

0}
I
G
N
V

(e
¥4

g)
=9

8Z
Ig

=

:s
e;

Nq
uA

ty

YOO'<eyep># IONV :xejukg

Jejquiessy

H
O
O

-—.YOO

Vv 89uN0S
~=_ :uoHjBsedO

Y
d

0}
IGNV

S@
PO
D

UO
}}

IP
UO

D
0}

ey
e|
PE
WW
]

ON
Y

Reprinted by permission of Motorola, Inc.
350

“Ppa}IYS
Oq

0}
SI }JUa}UOD

e
s
o
Y
M

J9}s!/Bei
eyep

e& saljloeds
—

pel)
10}s/50y

*‘JuNOO
ylys

JaysiBau
s
a
i
i
o
e
d
s

‘4 =4/!
4]

"JUNOS
WIYS

a
y
e
I
p
e
w
U
!

satj!oads
‘OQ =4/!

}|
— Plats
4/!

‘uojyesedo
B
u
o
j
—
o
L

“uol}e19dO
P
I
O
M
—
1
L
O

‘uoiye1ado
3
1
A
q
—
0
0

1U01}2J9dO
OU}

JO
9ZIS

BY}
SAaIJIDadS

—
Pal}

9ZIS

H9l
W
I
Y
S
—
L

yy6u
Wlus—oO

“WIYS
OY}
JO
UO!}OOIIP
BY}
SaljI9edg
— pja!j
4p

PIO!)
S14}
Ut

peljioeds
19}s1Be1

eyep
ay}

Ul
p
a
u
l
e
}
U
O
d

Ss! (pg O
|
N
P
O
W
)

JUNOD

1
4
S

OY}
‘| =4/!

41

*Ajaniyoedsed
7 0}

| ‘g yo
eBues

e
Juaseidal

J-|
‘0 SENJEA

OyY
“Piel}

S}y}
U!

Palsoeds
Ss} JUNOD

WIYS
OU}

‘O=4/!
JI

:p9}e90|
S| JUNOD

as9YM
J9}S/HeJ

10
yUNOD

JIYS
Sal}IoOedsS

—
pal)

10}S!/Gay/}UNDD

(Sis1US
10}8150y)

Spje}4
UONONIySU]

pa
PEE

= Pl ee b
P

yunoo

0
t

Z

€

v
S

9

Z
8

6

oL
bb

(a3
eb

vb
Gt

(
s
y
l
u
s

10}S1Bay)

y
e
W
I
O

UO}JONIYSU|

*018Z
JO

JUNOD

YlUS
& 10)

pe}Da}jeUN
‘PUeJEdO

94}
JO JNO

paysIYsS
31g JSe|

84}
0} Bulpsod0e

jag
=X

018Z
JO

JUNOD

WIUS
e

10}
pesee|D

‘puesedo
ay}

JO
}NO

paijsiUs
Iq

}Se|
94}

0}
Bujpsoo0e

Jes
=O

*@SIMJOUJO
Pasea|D

“UO!}

-esado
}!)ys

ey}
Buysnp

e
w
;

Aue

ye
p
a
B
u
e
y
o

s!
jg

jUBdIJJUBjs
J
S
O
W

94}

4}! 19S

‘@SIMJOUJO
PAle9|D

*0J9Z
SI }/NSO1

94}
JI 38S

“ASIMIOUIO
PAJEO|D

“JOS
SI }|NSOJ

BY}
JO

Hq
J
U
B
D
I
U
B
I
s

ySOW

9
}

}! J9S

ZN>

G
e
y
 he

a

e
d

x

XO
Z
N

‘S@POD
UO}}!|PU0D

YySV
“1SV

ulus SHewuNYy

YySV
“1SV

Ex

|

o
|

‘USV

pueiedo
e
i

"Yq sepso
YB1y ey} OU!

peyeo!jde.
s! (GSW)

11g UB!s 84}
‘s}iq

pue}xe
ay}

pue
Aled

984} YIOQ
0} OB

Hq
J8pJO

MO|
OY}

JO }NO
PayiUS

S}ig
‘JUNOD WIYS

E84}
S!
PezjIYs
SUO!}!SOd
Jo
JequNU
ay}
YB}
pey!Ys
Ss}
pueJedo
ay}
‘YS
404

zs

“1ISV

ylus ey} Buynp ind00 seBueyo

uBis

Aue

4!
SeyeoIpUs

}1q

MO|JJOAO

EYL

“}1G

JEP1O

MO]

EY}

OU!

PEY!ys

ee

seolez

‘s}1q

pua}xe

ay}

pue

A1ed

a4}

Y3Oq

0}
06
}1q
Jepso

YBIY

eu}

JO
NO

paysIYs

S}1g

UNOS

UIYS

94}

S!

PayYy!Ys

SUO!}!SOd

jo

JequUNU

ay}

349)

Pey!ys

Ss}!

puesedo

ey}

“Sy

JO4

*PJOM © 0} PO}O{J}SE1 S| eZIS puUBIEdO Ou} PUe ‘AjUO }1q BUO Peyiys eq Aew AIoweWwW

JO

}U9}U0D

BY,

“BuO

JO

‘piom

‘a}Aq

aq

0}

paljjoeds

aq

Aew

uolesedo

9y}

40

OzIS

eUL
‘(v9 O|Npow s} yUNOD yIYsS)

UO!}ONI}SU!
BY}

Ul Palj!Oeds
10}S/69J

eyep
e UJ PauUje}UOD

S| JUNOD
YIUS

EY}
-10}S|BoY

*Z ‘(9-1 ‘eBues yiys) UONONsySU! BY} U! Pelj!oeds SI }UNOD YIYS OY} :e}e/pPoLUWy “1

‘S
AB
M

JU
BJ
OS
JI
P

OM
}

Ul

PA
!j

!D
ed

s
oq

A
e
W

Je
}s

i6
a,

e

yo

Bu
s}
jy
;y
S

OY
}

JO
y

JU
NO
DD

Wl
ys

Sy
,

‘p
ue

Je
dO

Oy

}
JO

}N

O
pa
yi
Ys
S

JI
G

}s
e]

GY

}
SE
eA
le
de

JI
G

A
e

BY
]

‘p
el

j|
oe

ds

(y

40

7)

Uo
}O

eJ
1p

ey

}
UJ

P
U
B
I
e
d
O

EY
}

JO

S}
Iq

ey
}

WI
YS

A
j
p
e
o
e
w
W
Y
W
Y

:u
ON
dy
Os
Se
q

(B
u0
7

‘
p
o
m

‘8
}A

g)
=e

ZI
S

_
:
s
e
;
N
q
u
Y

Y

JO

7

‘U
O}
}O
@J
IP

S|

P

B
I
O
U
M
 <
e
e
>

p
s
y

Aq
‘

<
e
y
e
p
>
#

p
s
v

sx
eq

uh
s

Ka
‘x

a
ps
v

se
iq

ue
ss

y

uo
jy

eu
l}

se
g

—
<
j
u
N
0
D

>
A
q

pa
yl

ys

u
o
y
e
u
l
j
s
e
g

 :
uo

jj
es

ed
O

WI
US

D
e
w
y

Y
S
V

“I
SV

Yy

SV

“I
1S
V

351
Reprinted by permission of Motorola, Inc.

“Uo!}UIJEp

UO!}JONIJSU]

YOURIG

PJOM

&
SEDJO}

YOIYM

‘JeSjjJO

O1EZ

&
UI
}/NSeJ

PinOM

}
esNeo

-0q

‘peyeioueB

aq

yoUUeD

UO}}ONIYSU!

BUI

MO}/O}

Aja}e|PEWW!

94}

0}
YOURIg

WOUS

Y

:®}0N
‘00$ 0} Jenbe s) juswWeoR|dsIp }19-g 94}

j!
AJUO

pesp

‘s}iq

g
UeY}

JUQWaOR|dsIp

JeBJE]

©
SMO]|Y

—

Plea!)

JUBWEDRIdSIG

11g-91

*JOW

S!
UO!}}PUOD

OU}

J!
Paynoexa

8q 0} UOIJONI}SU! }XOU 84} PUB UO!}ONIYSU! YOURIG By} UBEeMjeq (Se}Aq Ul) BOUR}SIP
aalyejas ey} BujAjjoeds ieBeyu; yUoweldwoo som, — pel} juaweoridsig 19-8

‘UO!}AIJOSOP

U!
POSSNOSIP

SUO!}IPUOD

UBB}INO}

JO

BUM

—

PIA}

UOI}!PUOD

‘Spjel4 UO}ONIysU|

00$ = jUeWede|dsIq 119-8 }| JUeWeoR|dsIq 119-91

ju
aw
ec
e|
ds
iq

11
8-
8

[

_
v
o
m
p
u
o
c
g

T
o
T

t
f
t

o
l

8 6

[sie
e
l
t
 e
y

Cape

Ren
a
e

e
w

S
e
n
e
r

e
t

v
r
s
!

}
8
U
O
4

UO}}ONIYSU|

“Ppej9jjJe
JON

-SepOD
UO!IPUuod

38S
M
O
}
J
s
A
O

lenbe
Jo

ssa

JBBjD
M
O
{
j
B
A
O

yBiy

snid
uey}

9
}
e
0
1
6

yenbe
jou

yenba
Jo

s98ye0s6

s
n
u
i
w

yenbe

uey)
sso}

yes
Aueo

awWes
JO

MO}
yeajo

A
u
e
o

> .
Iz
+

I> .
A A N Zz N N 2)

N
+

"
tSUOI}IPUOD

BuImoj|oj
ay}

Ajloads

A
e
w

,,99,,
‘pasn

s!
(uoIONs}SuU!

9y}
Buimoj|o}

Ajayeipawuw!
psom)

J
U
s
W
a
d
e
|
C
S
I
P

}1q-9}

@4}
U
U
}

‘OJ8Z
SI

PJOM
UO!}ONI}SU!

BY}
U!

J
U
B
W
a
D
e
|
C
S
I
P

}1G-g
OU}

J] (OM)
SNjd

UO!}ED0}

UO!}ONIJSU!
pepus}xa-uBIs

8y}
S$! O

d

ay}

UI
aNjeA

By]
“Se}Aq

U!
BOURYSIP

BAI}E}A1
94}

$}UNO09
Yyo!UM

JeBej}U!
J
U
a
W
a
j
d
W
o
O
d

s
o
m
)

e
Ss! JUsWaODRIdsSIP

e
y
)

“jUaWEOdE|dSIP

+
(Od)

UO!}e90]
Je

SENuUI}UOD
UO!}NDEexe

W
e
H
o
l
d

‘jaw
Ss! UO!}IPUOD

Paljioads
ay}

J|
:
u
o
W
d
y
O
S
e
q

(piom
‘814g)=azIS

—_:seINquIYy

<jeqe|
>

90g
:xeyuks

Jojquiessy

'
O
d
—
P

+ Od

uay}
(2NJ}

UO!}!PUOd)
}]

:uONJeIedO

9
9
g

Ayjeuonipuog
youesg

9
9
g

a
s

=

[row
_| (ux‘uy‘8p)

:UMOUS
SB

pemMo}||e
aie

S
e
p
o
w

Bulssesppe

9jqese}e
K
i
o
w
a
w

A
U
D

“pejsius
eq

0}
puesedo

9y}
saljioeds

—
piel

ssouppy
9A1}0904;3

ya
l

yw
iu
s—
L w
5
u

Wi
us
—o

"Y
IY
S

4}

JO

UO
NO
eL
IP

EY
y

Se
ly

ID
9e

dg

—
Pj

el
)

Jp

(sy!ysg AioweW) Spje}4 UO}ONIySU]

OL
LL

rat
eb

vb
st

Y¥SV “ISV

YW
IY

S
S
H
e
W
U
Y

(sylusg Aiowey;) yeWWOY UO}ONI}sSU]

Y
S
V

“I
SV

Reprinted by permission of Motorola, Inc. 352

“yaquunu
jig ay} Selyloads

—
Piel) JOQWNN

HE

“
y
u
o

@}Aq

ase
Ssayjo

{je
‘AjuO

B
u
0
7
 »

u
y
u
e
q
u
i
n
u

‘Bes

[
a
v
s
e
q
u
n
u

66 [101
|

win
[
a
y
z
e
q
u
n
u
e
r

|
 oon [

w
w

P
u
v
v
e
q
u
n
u

ter |
 0

f
+

Pevzequna ter | oo
|

A
s

i
a
l
o
r
s

lt c
o

C
T

[
—
s
e
i
t
e
u

|
 eon |

 eon p
v

‘uMOYS
SB

pemol|e
ase

Sepow
BHulssesp

-pe ajqeseye
eyep

AjuQ
“UO}}e90]

UO!}EUNSEP
OU}

seljloeds
—

pel}
SSeuppYy

9AI}99443

(ones
JOQUINN

11g) SPIel4
UORONYSU]

J
O
Q
U
N
N

WE

49)s1/6ay

Sse/ppy
8A1}99}13

c
m

2
)

C
u
m
n
e
e
s

7
 Oo

2
B
A
p
R
e
C
:

geOL)

NitracL
Fe cl

wa
St

‘(eyep
e
y
e
l
p
e
w
w
!

se
paljloeds

‘o1}e}S
J
O
Q
W
N
N

1g)

yewWsOY
UO}}ONIYSU|

“
A
l
u

24Aq

ase
SJOYjO

|e
:AjUO

B
u
o
l
.

e
B
u
e
y
d

pue

tig
&
s
e
L

353

:
u
M
O
U
S

SB

pemo|je
ase

S
e
p
o
w

H
u
l
s
s
e
i
p
p
e

giqeioyje
eyep

AjUG
“UO!}EDO]

UO!JEUIJSEP
Ol}

saljloeds
—

Pjel}
S
S
E
I
P
P
Y

8A!}90jj3

“yOqUUNU
}IG

OY}
S! }UB}UOD

BSOYUM
Je}s\6e1

eyep
aU}

SE1jIDedS
—

PIS}
Je}s

G
a
y

(
o
n
m
e
u
h
g

J
e
q
U
N
N

Hg)
SPIel4

UORONsysSU|

30381604

ug

‘

Sseippy

2A!}90}3

Pete

d

|

se1s16eu

Bonn

9

Z

8

6

0

0
t

z
€

v
S

t
tL

Zt
eb

vl
GL

:(4aysiBer
e

Aq
p
e
y
j
o
e
d
s

o
}
w
e
u
k
g

JequINN

ig)
y
e
W
u
O
Y

UOHONI}SU]

‘peyoajje
ION

X

“‘payoejje
JON

O

‘pajoaye
ION

A

“ASIMIOUJO
PAsJE9|D

‘019Z
S!

P9}S9}
1
G

OUI

JLIES
=
 Z

“‘paeyoejje
ION

N

B
a
r
a
 E
S

12)
A

Z

N

x

:sepOD
UOT}I|pUu0D

“uo}y

-oni}SuU!
ay}

U! palj!oeds
10}S!Be,

eyep
e U! Peuse}UOd

S| JequUNU
31g 84}

—
19}s160y

*Z

“UO]IONIJSU!
BY}

JO PJOM
PUOdES

k& U! pelj}!Oeds
S} JOqUINU

Yq
BY}

—
e
y
e
l
p
e
w
w

‘|

“SKEM
JUGIO}JIP

OM}
Ul

Paljloeds
eq

A
B
W

UO!)

-e1ado
Siu}

JO} J
e
q
u
N
U

31g EYL
“Hq

JUBDIJ!UBIs
}See]

BY}
0} S19JO1

0402
319

‘seseo
|e

Ul

“UOI}90}
BU}

0} YORG
US}}11M

S! 8}Aq
OY}

PUR
‘g O

|
N
P
O
W

“
e
q
u
N
U

}1q OU}
Buisn

pewi0)

-10d
S| UO!}e1Ed0

}1q EU}
‘UO!}B90|

JEU}
W
O

P
R
O

S! 8}Aq
B

“UOJJEUIJSEP
OU}

S| UOL}EIO|

Aiousow
e
 3) -10}S/6e,

eyep
e U! S}ig

[Je UO
UOIJE|NdjuewW

31g
B
u
i
m
o
j
e

ze

O
|
N
p
o
w

s} Bur

JEQUINU
71g AY}

UEY}
‘UO!}EUI}SEpP

Oy}
S| 10}s/He1

eyep
e 4] “UO!}EUI}SOP

OU}
U! p

e
B
u
e
y
o

SI JIG
peljloeds

Oy}
JO

9}e}S
OY}

‘}SO}
94}

J9}}W
“@POD

UO!}!PUOD
Z

OU}
UI

P9}99|}O1
SI}

11q payloads
oy}

JO 9}e}S
OY}

u
e

Pe}se}

S! PUBJEdO
UO!JEUI}SEP

OY}
U! HG

V

suojydyoseg

(6uo7
‘a}A4g)=ezIS

=
 :seINquUAY

<
e
o
>
‘
<
e
j
e
p
>
#

S
H
O
"
E

sxequhs

<
e
e
>
‘
'
u
g
d

S
H
O
E

J
e
i
q
u
e
s
s
y

uoljyeulseg
jo

<Jequinu
j1q>

—(uoIyeUI}seq
JO

<
J
e
q
u
u
n
u

}1q >
)
 ~

'7—(uolyeuljseg
jo

<sequinu
}iq>)~

 :uoneiedo

eBueysd
pue

tig
&
s
e
,

S
H
O
E

Reprinted by permission of Motorola, Inc.

S
H
O
E

“J
OQ
UI
NU

JI
G

4}

SA
Ij
lO
ad
g

—
pl
e)

JE
QU
NN

1g

*A
ju
O

8}
Aq

O1
8

SJ
0Y
}O

{|
e

‘A
jU
C

B
u
O
]
,

[
w
y
s
e
q
u
n
e

te

|

on

|

wx
uw
@)

|

[
e
v
s
e
q
u
n
u

66
,

|

vo
r

|

w
v
)

—]

uy
ae

qu
na

Be
]

a

[
u
w

o
w

e
t

tT
)

C
a
O

Spo “UPPY

‘U
MO

US

SB

pe
mM
ol
|e

os
e

s
e
p
o
w

Bu
ls
se
ip

“P
e

e1
qe
se
y/
e

e}
ep

A
U
G

“U
O!

}2
90

)
UO

!J
EU

I}
SE

p
94

}
Se
lj
ID
ed
s

—

pj
al

y
s
S
e
u
p
p
Y

aA
I}

99
4)

3

(
O
B
I
S

JO
QW
IN
N

11
g)

SP
je

}4

UO
}O
NI
ys
U|

2
6

S
E

E
K
E
R

Ja
ys
i6
ay

S
p
o
w

A

S
S
O
I
P
P
Y

8A
}}
90
4)
3

S

9
Z

8

6

OL

0
‘

4
£

v
T
a

i
e

-
(e
}e
p

e
y
e
i
p
a
w
w
i

se

pa
ij
io
ed
s

‘0
1,

21
5

J
e
q
U
I
N
N

31
g)

J
e
W
U
O
Y

UO
NO
NA
ys
SU
]

Aj
uo

a}

Aq

ai
e

si
ay
jo

{j
e

‘A
ju
O

B
u
0
7
,

[
w
y
s
e
q
u
n
e

te

[o
n

|

wxu
ven

[
e
v
s
e
q
u
n
u

66

[s
o

|

ov
at
)

|

[
u
y
s
e
q
u
i
n
a

66
[

o
o
r
]

ww
i-

|

[
e
y
s
e
a
u
n
u
6
6
r

[
0

|

+w
w

|

[
w
y
s
e
q
u
n
u

te

[0
10

|

e
e
t

wa
ve
qu
na

ar

4B
9/

D
pu

e
yg

&

s
e
l

‘U
MO
YS

SB

pe
mM

oj
|e

as
e

S
e
p
o
w

Bu
ls
se
ip

“P
e

9/
Qe
19
}/
e

B}
ep

Aj
UG

“U
O}
}e
90
)

UO
!}
eU
I}
SE
p

EY
}

Se
lj
i0
9d
s

—
pj
al
)

s
s
o
u
p
p
y

8A
I}

90
4)

3
‘J
OQ
WI
NU

FI
G

OY
}

S|

}U
s}

UO
D

a
s
O
Y
M

J9
}s
|B
e/

ey
ep

ey

}
Sa
lj
IO
ed
S

—
pj
al
j

10
}s

/6
oy

‘(
oj
we
uc
g

J
O
q
U
N
N

31
g)

Sp
je
y4

U
O
P
O
N
I
y
s
U
]

40
)s
/6
ey

ug

Sesipey

ennceys

Bar

saga

9

ie

8

6

OL

tL

bk

Ca
pa

la
in

cw

tas

h
c

yh

OSL

i(
19

}8
|6

e1

@
ul

pa
lj
io
ed
s

‘
o
1
w
e
u
d
g

J
e
q
u
i
n
y

1g
)

}
B
W
I
O
Y

UO
!}

ON
I}

SU
}

"p
ej
oe
jj
e

ON

‘p
ej
09
4j
e

JO
N

"p
ej
oe
yj
e

JO
N

"@
S|
MJ
OY
JO

PI
1e
9/
D

“0
48
Z

S|
P9
}S
e}

}1q

EU
}

$1
19
S

‘p
aj
09
4j
e

JO
N

Se
al

o
t

C
e

ee

a
e

re
]

A
Z

N
x

*S
OP
OD

UO
}}

!p
PU

uo
D

ZN>OX<

“UuOl}

“O
NJ
}S
U!

84
}

U!

Pa
lj
!D
ed
s

10
}s
/6
e1

ey
ep

e
Ul

pa
ul

e}
UO

D
S|

Ja
qu
in
u

ji
g

ay
}

—
Je
}s
iB
ay

“z

“U
O!
JO
NA
YS
U!

BY
}

JO

PI
OM

PU
OD
AS

B®

U!

pa
lj
lo
ed
s

Ss
}

J
e
q
u
N
U

}I
q

ey
}

—
s
}
e
I
P
e
w
W
y

“1

:S
AB
M

}U
9J
9j
jI
P

OM
}

Ul

pe
lj

!9
ed

s
eq

A
e
w

uo
lj
}e
18
do

$1
4}

10
4

Ja
qu
un
u

}1
q

OU
Y

“J
Iq

JU
BD
IJ
IU
BI
S

}S
eQ

]
OU
}

0}

$J
aj
al

04
82

31

‘S
es
eo
d

|/
e

Uj

“U
O}
}E
90
|

9Y
}

0}

Y
O
R

U9
}}
14
M

8}
Aq

Ay
}

pu
e

‘g

O
|
N
D
O
W

‘e
qu
uN
uU

Hq

ay
}

Bu
ls

n
p
e
w
o
j
s
e
d

uo
l}
es
ed
o

Iq

eu
}

‘U
O!
}e
90
)

Je
u}

WO

1j

P
e
d

Si

8}
Aq

e

‘u
Ol
}e
LI
}S
Ep

84
}

S|

UO
}}
29
0)

A
I
O
W
e
W

ke

4]

“1
9}
S/
5a
1

ey
ep

e

U!

S}
ig

jj
e

UO

U
O
H
e
;
n
d
j
u
e
W

jg

Bu
lm
o}
|e

Z€

O[
NP
ow
W

s}

Bu
yy
eq
uu
nu

j1
q

ey
}

U
a
}

‘u
o!
}e
UI
}S
Ep

ay
}

S|

Je
}S
/G
eu

Ey
eE
p

e
j|

‘U
OI
}e
UN
SE
p

94
}

U!

P
E
e
a
l
9

SI

31
g

pa
lj

!9
ad

s
OU

}
‘}
se
}

OY
}

J9
}}

y
“@

PO
D

UO
I}
IP
UO
D

Z
OY

}
U!

Pe
}D
a|
Ja
I

SI

Hq

pa
ls

!o
ed

s
a4
}

jo

a}
e}
s

94
}

pu
e

pe
}s
e}

S|

pu
es

ed
o

UO
!}
eE
UI
}S
EP

au
}

U!

JI
G

Y
i
u
o
n
d
i
o
s
e
g

(B
u0
7

‘e
}4
g)
=a
zI
s

:
s
e
y
n
q
u
y
y

<
e
e
>
‘
<
e
j
e
p
>
#
y
1
9
0
4
g

7x
ey
uA
sS

<
e
e
>
‘
'
u
g

y
1
0
g

J
e
i
q
u
w
e
s
s
y

uo
j}
}e
ul
}s
eg

JO

<s
eq
ui
nu

ji
q>

—
Q

‘Z
-—
(u
ol
jy
eu
l}
se
g

JO

<
J
a
q
u
u
n
u

j
i
q
>
)
~

:u
oj
ye
se
do

se
9]
D

pu
e

yg

e
ys
l

d1
04
d

yw
10
¢g

Reprinted by permission of Motorola, Inc.
354

“UO!}HULJEP

UOIJONIJSU!

YOURIG

POM

B
SODJO}

YO|YM

“JOSJjO

O49Z

B
UJ
}/NSOJ

P|NOM

}!
esNneoaq

peyesoueB

oq

yOuUeD

UO!}ONI}SU!

Bulmojjoy

Ajeyeipeww!

94}

0}

YOUeIG

WOYS

Y

-:810N

‘00$

0}

JeNbe

s|
juswWede\dsIp

119-8

Ou}

j1
AJUO

peasy

‘s}iq-g

UeY}

JUsWEede|dsIp

JeBIe)

e
SMO||Y

—

PIA!)

juawaoerjdsig

g-91

*Ppa}NDEXxe

9q

O}

UO!}ONJJSU!

}XOU

84}

PUB

UO!}ONJ}SU!

YOUeIG

BY}

UBEMjOq

(sa}Aq

ul)

BOURISIP

SAI}e/81

94}

BulAjloeds

seBajuU!

JUBWA|dWOD

OM]

—

Pals

juoweoersdsig

19-8

tSpjel4

uo}onsj}su|

0
0
$
 =
 jueWede|dsIq

119-8
}] JUeWeoR|dsIG

18-91

j
u
e
w
a
c
e
d
s
i
q

118-8

0
b

rd
£

v
S

9
Z

8
6

OL
bE

C
l
e
a

BE
SE

2}BWIO4
UG}}ONI}SU|

“payoajje
JON

-SePpOD
UO}}}pPUu0y

‘pasn
si (uo}}ONJ}SsU!

94}
Bulmoj|o}

Ayeyeipawiw!
p
o
m
)

UewWedeR|dSIP

319-91
84}

U
U
}

‘0J9Z

S! P
I
O
M

UO!}ONIISU!

OY}
U! J

U
o
W

-208|dSIP
10-g

OY}
4] O

M
}

SNId

UO!}EDO]
UO}JONIYSU!

OY}
S| O

d

OY}

U! ENjeA
OUL

*seyAq

Ul
BOURISIP

eA}}E]e1
EY}

S}JUNOD
Yo!YM

“seBe}Uu!
j
u
a
w
e
j
d
w
o
o

som}
e

s}
j
u
e
w
e
o
e
d

“SIP
eu,

“
J
U
O
W
e
d
e
|
d
s
I
P

+(Od)

UO}}E00|
Je

SENU}JUOD
UO!}Ndexe

w
e
i
b
o
i
g

:uojydyoseq

(psom
‘a}4g)=azIS

=
 :seINquIY

<
j
e
q
e
i
>
V
v
H
g

:xeyuhs

J
o
j
q
u
e
s
s
y

Od
—

P+Od
:uoyyesedo

sKkemiy
y
o
u
e
s
g

v
u
d

v
u
d

“sjulodyeesg
a
e
m
y
j
O
s

g S

e
p
o
o
u
e

(
Z
—
0

=
anjea)

eyep
e
y
e
i
p
o
w
w
|

=
1

d
4
a

:Spjel4
uoNonsysU|

p
u
r
e
e

|
 o]
 oO] o

e

on) 0: [is h
e
m

m
y
 ob] o

y
e

|
e

0
L

4
€

v
S

9
Z

8
6

OL
a

l
l

I
ce

yewWO4
UOTONIySU|

‘payoeyje
JON

:S@POD
UO! !PUdD

“aj0A0
snq

abpajmouyoe
julodyeesg

4
}

UNI

JOU
SBOP

N
g

UO!)

-daoxe
uoljonsysu!

je6e}|!
Ue

SAaSNed
UO!JONJ}SU!

SIU}
‘BOOB9OW

PUB
OODBSOW

eu}
404

“
U
O
N
O
N
S
U
!

L
d

OU}
U!

Pjely
24}

Bulpooap

hq sjurodyeaig
asemijos

yuas94)1p
}yB1e

ysinBuljsip
ued

10}!UOW
B
n
g
e
p

e
‘Buisseooid

uoljdeoxa
Buying

‘uoljdeoxe
uojonsysu!

jebal|!
ue

sexe}
s
k
e
m
j
e

J
0
S
S
8
0
0
J
d

8
}

‘
W
d
A

40
‘
Y
H
3
G

‘
M
O
W
L
G

U
M

p
e
y
e
u
!
W
e
}

Ss! ejoA0
snq

e
B
p
a
|
m
o
u
x
o
e

julodyeeiq

ay}
J
O
U
S
U
M

“seul|
SSeuppe

|e
UO

sosez
pue

(yBiy
UeAIP

$apoo
UOI}OUN,

{Je) a
j
o

Ssnq
eBpejmouyoe

jUlOdyeesg
e& UNJ

0}
Z
L
O
B
9
O
W
/
O
L
O
8
9
0
N

ay}
esneo

j|IIM
uO!}ONASU!

Siy}
JO

UONNSeXZ
‘voHVe}UeWe|dW!

ey}
UO

UEP

-uadap
aq

|jIM
uolyeJedo

ay)
pue

‘ssOJe/NWe
sveMpseY

OUW!}-/ee1
PUB

S1O}!UOW
Bngep

Jo}
uolouNy

yuJodyeeiq
wesGoud

ay}
Yoddns

o}
pasn

s!
UO!JONJYSU!

SIUL
:uojdu9seq

.
pezisuy)

-se;Nnquuy

<eyep>#
1dya

:xeyukg
J
e
j
q
u
e
s
s
y

uoljonsysu!
jebaj|!

se
des,

‘gjoho
snq

e
B
p
a
j
m
o
u
y
o
e

yulodyeelq

8
y
N
d
e
x
3

suo}}e1edQ

yujodyeesg
i
d

i
d
a

355
Reprinted by permission of Motorola, Inc.

“O
QU
IN
U

JIG

a4
}

SA
lj

l9
ed

g
—

pl
at

y
JO
QU
IN
N

11
g

*A
JU
O

@}
Aq

al
e

SJ
OU

jO

je

‘A
jU

O
B
u
O
7
y

woe) [uysequne 60: | (wxuvp)

(ou'3tp)

[oysequnu

Gor
|

(wy8ip)

es

ee
Ee

a

Se
[u
ys
eq
ui
nu

60

|

[u
ys
eq
un
u

to
r

|

1U
MO
YU
S

SB

pe
mo

|j
e

ae

se
po

w
Bu
is
se
ip
pe

aj
qe
se
ye

S
e
p

Aj
UO

“U
O!
}E
D0
|

UO
!}

EU
I}

SE
P

94
}

Se
lj

!9
ed

s
—

Pe
l}

SS
es
PP
Y

9A
I}
00
E}
)5

(0
18

1S

JO
QU
IN
N

31
g)

SP

ie
ly

UO
NR
ON
ys
U|

n
s

f
o
f

|

o
}
o
t
o
f
o
j
o
l
f
o
|

4a}s/6ey

e
t

c
o
e

C
o

t
e

G
o
m
i

e
e

e
e

R
G

e
o

Te
t

Re
et

me
ee

P
g
.

St

-
i(
ey
ep

a
y
e
i
p
o
w
w

se

pa
ij
io
ed
s

‘o
1}

e}
S5

s
e
q
u
I
N
N

yg
)

J
e
W
O
Y

UO
!J
ON
IY
SU
|

"Ajuo a}Aq ase Ss9UjO |e ‘AjUO BU07 »

[uysequnu

Ger
|
on

|
_wxvv®r)

|

[vysequnu

te
|
101

|

uve)

_|

Puyuequnu

ser
|
oor

|

Tuysequnu

te
|
0

|

+0

_|

| oro | nay |_ 000

[
_
_
s
e
r
s
i
e
u

|

op
ow

F

wy
se
qu
nu

80
,

|

|

wa
ze
qu
na

Be
r

|

SpoW “PPV

Je

pu
e

Hg

e
Is
e

/U
MO
YS

SB

pe
mo

||
e

ai
e

s
o
p
o
w

Bu
ls
se
sp
pe

a1
qe
sa
}/
e

ey
ep

Aj
UO

‘U
O!
}E
D0
|

UO
!}

BU
I}

SE
p

ay
}

Se
lj
IO
ed
S

—
pj
el
)

ss
ou

pp
Yy

2A
I}
00
4)
5

“J
OQ
UW
IN
U

1G

BY
}

S|

}J
UB
}U
OD

B
S
O
Y
M

Je
}s
|B
el

By
Ep

aU

}
Sa

lj
Io

ad
s

—
pj
el
)

10
}s

|B
oy

(
o
j
W
e
U
A
G

J
O
Q
U
N
N

1g
)

SP
pj
el
4

UO
}J
ON
Iy
sS
U]

SS
OJ

PP
Y

21
19
04
53

t
a
k
a

e
c
m
e
c
m
c
e

M
e
a

e
A

0
t

4
€

v
S

ee
s

4
e
s

2

:(
40
}S
s|
6e
1

e
ul

n
a
d

e
e
c
t

p
o
i
s

Wg
)

y
e
u
O
Y

i
o
n
s

49)s|B0y
epow

“payoeyje JON

‘pajoasje

JON

"pa}08J)8

JON

‘@S|MJBY}O

PAJBEID

“018Z

S!
Pa}S9}

11g
EY}

j!
19S

"paj0a4je

JON

S
e
a
y

©

SZ
e
r
g

*S
OP

OD

UO
}}
|P
Uu
0D

ZN>OXx<

“UOl}

-O
NJ
}S
U!

BY
}

Ul

Pa
lj
lo
ed
s

J0
}S
16
e1

ey
ep

e

Ul

p
e
u
j
e
}
U
O
D

S|

J
e
q
u
n
u

}i
q

ey
}

—

Je
}s

/B
ey

“Z
z

“U
O!

JO
NI

YS
U!

BY
}

JO

P
I
O
M

P
U
O
D
S
S

&
U!

Pa
lj
io
ed
s

Ss
}

Je
qu
IN
U

}I
q

ey
}

—

Sj
}e

Ip
ew

Wy

“1

2S
AB
M

}U
8I

E4

“J
IP

OM
}

U!

Pa
ly
io
ed
s

aq

Ae
wW

UO
!}
eE
JE
dO

Si
y}

JO
J

J
o
q
u
N
U

}I
q

E
U

“y
g

JU
eD
I}
IU
BI
s

}s
ee

]
8U
}

0}

S1
8J
81

01
0Z

}1
G

“U
OJ
}E
90
]

BY
}

0}

Y
O
R

US
}}
11
M

9}
Aq

By
}

Pu
ke

‘g

O
/
N
p
O
W

‘
e
q
u
u
n
u

ji
g

ey
}

Bu
is

n
p
e
w
o
j
e
d

uo
lj

es
ed

o
31

g
84
}

‘U
O|
}e
90
]

ye
y}

W
O
)

Pe
dd

S|

8}
Aq

&

‘U
OI

}e
EU

I}
Sa

p
84
}

S|

UO
!}
E9
0)

A
I
O
W
e
W

e

}|

‘J
0}
s/
6e
1

ey
ep

e
U!

S}
Iq

|j
e

UO

U
O
!
J
E
;
n
d
j
u
e
W

31
g

Bu
Im

ol
je

‘Z

E
O
|
N
p
o
w

s}

B
u
e
q
u
i
n
u

j1
q

oy
}

VE
Y}

‘U
O!

}e
U!

}S
ep

Oy
}

S|

19
}S
/B
eJ

J
E
D

e
}|

‘U
O!

}e
UI

}S
ep

84
}

Ul

JO
S

SI

HI
G

pa
lj
!o
ed
s

ay
}

‘}
se

}
OY
}

J9
}j
y

“@
PO

D
UO
!}
!P
UO
D

Z

94
}

U!

Pe
}D
a}
je
.

SI

11
q

pe
lj
io
ed
s

au
}

JO

9}
e}
s

84
}

pu
ke

‘p
ej
se
}

s|

p
u
e
e
d
o

UO
}}

eU
I}

se
p

oy
}

UI

Ji
g

yY

:
u
O
;
;
d
D
S
s
e
q

(6
u0
7

‘a
}A
g)
=e
zI
S

 :
se
In
qu
yy

<
e
e
>
‘
<
e
j
e
p
>
#

1
9
S
a

=x
Be
yu
AS

<
e
e
>
‘
u
g

1
4
S
g

Js
e|
qw
es
sy

uo
jj

eu
lj

se
g

JO

<J
oq
ui
nu

}i
q>

—|
1

‘Z
—(
uo
l}
ye
ul
js
eg

jo

<
s
o
q
u
i
n
u

ji
q>
)~

:
u
o
y
e
s
e
d
o

ye
S

pu
e

Hg

B
ys
e)

1
A
S
¢

1
A
s
q

Reprinted by permission of Motorola, Inc. 356

‘UMOYS
SB

paMoj|e
ae

SepOwW

Buisseippe
eyep

AjuO
“uo!}e90}

UO!}EUI}SEp
ay}

SaljIoedS
—

pPlalj
SSeIPPYW

9A1199})3

“JeqUUNU
JIG au}

SI JUa}UOD
BsOyM

Je}S/5e1
e
E
P

ay}
SaljIOads

—
plelj

10)s!159y
(
o
l
W
e
U
A
G

J
O
Q
U
I
N
N

Hg)

SP]el4
UOHONIySuU]

saysi6ey
a
p
o
w

ug

SSOJPPY
8AI}90}43

L
49}s!60y

Ss
9

Z
8

6
j
i

D
e
e

fe. —<¥
Oo

S
c
e
r
e

F
i
e
r

:uaysi6e
e

ul
palyioeds

‘
o
l
w
e
u
A
g

JequUINN

}1g)
}
e
W
O
Y

UO!JONI}SU|

"pa}0ajje
JON

"pajoasje
JON

‘pajoesje
JON

“@SIMJOY}O
PAILA/D

‘018Z
S! PA}S9}

1G
AU} J! 18S

‘pa}09}J2
JON

co
)

A
N

xX

2S
@P

OD

UO
}}
IP
UO
D

ZN>OXx

“uol}OnJ}su!

ay}
ul

p
a
y
l
o
a
d
s

Jsaj}si6es
eyep

e
ul

p
e
u
l
e
y
U
O
d

SI
JequinU

}1Iq
ey,

—

Jays!6ay
°Z

“UOI}ONIJSU!
BY}

JO
P
I
O
M

PUOdDaS

e

U!

paljioeds
s!

JequiNu
}1q

84}
—

s
y
e
l
p
e
w
i
|

“| :
s
A
O
M

JUSJBjJIP
O
M
}

UI
Paljioads

eq
A
B
W

U
O
!
}
E
J
E
d
O

SI4}
JOj

J
e
q
U
U
N
U

1
g

E
Y
]

“314
j
u
e
o
l
j
u
B
i
s

}se9]
94}

0}
Bulssejy01

0102
Y
I
M

‘g O[|NPOW

a
q
u
u
N
u

j
G

ey}

Buisn
p
e
w
o
j
i
e
d

u
o
l
j
e
s
e
d
o

}Iq
ay}

p
u
e

‘uo!}e00]

yey}
W
O
I
y

Peal

Si
O}Aq

&
‘UO!}EUI}SEP

84}
S|

UO!}E90}
A
i
o
w
e
w

®
4| 40}s1/6e1

eyep
&

ul S}Iq
|e

UO
u
o
l
y
e
i
n
d
i
u
e
w

jig
Buimojyje

‘Ze O
j
n
p
o
w

s! B
u
y
e
q
u
u
n
u

Jig
aU}

UAL}
‘UOI}EUI}SEP

aU}
S| J9}S|BeJ

y
e
p

e
4] “@POD

UOJ}!PUOD
Z
 Ol}

U!
P9}99/}94

S|

11g
paljloeds

ay}
JO 9}e}s

84}
Puke

‘pa}se}
S| p

u
e
s
e
d
o

uoj}eUl}Sep

94}
U! 31g

y

‘
U
o
}
d
y
O
S
e
q

(Buo7
‘a}Ag)=9eZIS

=
 -:seINquAY

<
e
o
a
>
‘
<
e
j
y
e
p
>
#
1
s
S
i
g

:xeyuAS

<
e
e
>
‘
u
g
i
S
i
g

J
e
j
q
w
e
s
s
y

‘7 —
(
u
o
j
e
u
l
}
s
a
g

oO
<
s
e
q
u
u
n
u

jig >) ~
:uo1je18edO

wa
8 yseL

i
s
l
a

1
s
i
q

“UO!}IUIJEP
UO!JONIYSU!

youesg
P
J
O
M

&

S8DJO}
YOIYM

‘JOS}JO
O18Z

&
U!

}/NSe1
P
|
N
O
M

3! e
s
n
e
d
e
q

p
e
y
e
s
o
u
e
b

aq
J
O
U
R
S

UO!H}ONIySU!
BuIMoO}|o}

Ajaye!lpewwW!
ey}

0}
YOURIG

SUI}NOJGNS
Y
O
Y
S

Y

:@}0N

“00$
0}

Jenbe
s!

yusWedeR|dsIp
}1G-g

OU}

}| Ajuo
p
a
s

‘s}iq
g ueUy

JUsWedeR|dSIP
198B1e|

& SMO||Y
—

PII}
j
u
o
w
e
o
e
|
d
s
i
g

1g-91

7

“paynoexe

@q
0}

UO!}ONI}SU!
}XOU

BY}
P
U

UO!}ONJ}su!
YOUeIG

ay}
U
B
E
M
j
E
q

(se}Aq

ul) aouR}sIP

aalyejes
ey}

B
u
l
A
y
o
a
d
s

seBeju!
y
u
o
w
a
j
d
w
o
o

s
o
m
,

—

Pal}
j
u
a
w
e
o
e
l
d
s
i
g

3g-8

ISPjel4
UONONsysU}

0
0
$
 =
 juewededsig

119-8
j| JUeWedR/dsIG

H8-OL

juoweoceidsig 19-8

Pee

Or
RR

LS

R-II

RI

SR

pl)

A

|
POP

5p

IR,

Pc”,

”

1}BWI04

UO!}ONI}SUj

‘pajoejje
JON

:S@POD
UO|NpUod

‘pasn
si

(uoljonsysu!
ey}

Bulmojjo}
Ajeye;pewuw|

pPsom)
j
u
s
w
e
o
e
|
d
s
i
p

114-9}
@Y}

U
U
}

‘018Z
S|} PIOM

UO!}ONISU!
BY}

Ul JUBWAEdR|dSIP
}1G-g OU}

4] O
M
}

SNid

UO!)

-290]
UO!JONIJSU!

OU}
S! O

d

OY}

U! E
N
A

OY)

“SO}Aq
OY}

U! SEOUR}SIP
BA!}2/9/

OY}
S}UNOD

Yolym
JaBe}uU!

J
U
E
W
A
|
d
W
O
D

SOM}

B U! JUBWEdeR|dsIp
By)

J
U
s
W
e
d
e
|
d
s
I
p

+ (Od)

UO!VeD0|

ye
sanuljU0d

u
a
}

UOI}NDexe
W
e
I
B
O
1
g

‘yOR}S
W
a
}
S
K
s

84}
OJUO

p
a
y
s
n
d

s!
UO!}ONI}S

-Ul Y
S
G

84}

Bulmoj|oy
Ajo}e!PpewWW

UO!}ONIYSU!
BY}

JO SSesPpe
PJOM

H
u
o

ay,

:
u
o
j
d
y
o
s
e
g

(pion
‘0}Ag)=OEZIS

_-SEINqUIY

<
|
e
q
e
|
>

H
S
a

:xeqyuAsS

J
e
j
q
u
e
s
s
y

O
d
—
P
+
O
d

(
d
S
)
—
O
d

‘
d
S
—
y
-
d
S

-uonesedo

eulyNoiqns
of yoUuBIg

u
s
d

u
s
d

357
Reprinted by permission of Motorola, Inc.

‘
U
M
O
Y
S

SB

pe
mo
jj
e

ai
e

S
e
p
o
w

BH
ul
ss
ei
pp
e

e7
ep

A
|
U
O

‘p
so
m

p
u
e
s
e
d
o

p
u
n
o
g

s
e
d
d
n

84
}

Sa
lj
Io
ed
s

—

pj
al
j

s
s
e
p
p
y

98
Al
}0
94
)3

*
P
E
4
9
9
Y
9

S|

}U
S}
UO
D

Bs
OY
yM

J9
}s
!5
aJ

e}
eE
p

ay
}

Sa
lj
lo
ed
s

—

pj
al
j

Je
ls
iB
ey

‘J
eq
uu
nu

}1
q

ay
}

sa
lj
io
ed
s

—
pj
al
j

we
qu
in

Nn

u
g

*
S
P
j
9
1
4

U
O
!
O
N
I
y
S
s
U
]

ug

49
}s

|B
oy

S

9
Z

8

6
OL

LL

“Kiuo a}Aq ase ssayjo |e ‘AjUO Buoy
Lae | I Raont

a

e
e

e
s

C
S
S

B
e

e
e
e

49
}s
15
0y

SS
@I
PP
Yy

8A
!}

99
})

3

Zi

e
l
e

cor

JB
WU
O4

UO
}J
ON
Iy
sU
]

:UMOUS SB PeMol|e ale Sepow

Busseuppe

eyep

AjUO

‘Uo!}e90)

UO!JeUI}SEp

ay}

SeljIoOeds

—

pjal)

Ssouppy

eAIINes)3

(01781

JOQUINN

31g)

SPIel4

UONONySUY

e
e

ca
ch

Pag

ieq
una

ter

|

00
0

|

v
a
]

eu
ye

pu
n

O
[
s
e
t
e

op
en

|

op
m

»9
p¥

|

‘p
eu
je
pu
n

Z

N

"@
SI
NJ
9Y
}O

PE
UI

Je
pU

N
“e
dI
NO
S

<u
Q

}!

pe
le
a|
o

‘9

>
U
q

4!

}e
S

Fi
e

P
O

oe

y
ie)

OOS
ate

wees
B
i
t
e

e
a

L
E
S

e
e

*
S
O
P
O
D

U
O
!
}
|
P
U
u
o
D

40
}s

1B
oy

a
p
o
w

0
t

td

€
v

S
s

9
Z

8
6

OL

E
L
C

EE

=P

EPe
SE

“J
OJ
OB
A

UO
I}
GE
OX
S

UO
NO
NI
JS
UI

Y
H
O

84
}

SO
Ud
Ia
ja
)

0}

Pa
ye
sa
UE
B

(e
ye
p

e
y
e
i
p
e
w
u
!

se

p
a
y
l
o
a
d
s

‘o
1}

e}
S

J
O
q
U
I
N
N

}1
g)

J
e
W
I
O
Y

UO
NO
NI
YS
U|

S!

Je
aq
uI
NU

40
}9
8A

a
y

“B
uI
ss
ed
01
d

U
O
I
}
d
e
o
x
a

sa
jz

el
}I

UI

J
O
S
s
e
d
0
i
d

ay
)

Ua
y}

‘p
un
oq

J
e
d
d
n

ay
}

ve
y)

19
}e
01
6

Jo

o1
az

U
e
}

Ss
sa
j

SI

an
je

A
J0
}S
16
01

ay
}

}|

ya
Ba
}u
l

J
u
a
w
a
j
d
w
o
o

“h
iu

o
9}
Aq

es
e

Si
ey
jo

|e

‘A
ju
O

BU
C]

,
SO
M}

B
SI

p
u
n
o
g

Ja
dd
n

e
y
)

‘p
un
og

se
dd
n

ay
}

0}

pe
se
dw
oo
d

pu
e

p
e
u
l
w
e
x
e

si

uo
lj

on
s}

s
-U
!

84
}

U!

pa
lj
io
ed
s

19
}s
16
a1

ey
ep

94
}

UJ

PI
OM

Je
Ps
O

MO
]

AU
}

JO

JU
aJ
UO
D

BY
,

:U
ON

}d
UD

Se
q

(
P
O
M
)

=
e
Z
I
S

:
s
e
;
N
q
u
Y
Y

ug
‘

<
e
e
>

H
H
O

:x
ey

uA
S

J
e
j
q
u
e
s
s
y

‘
d
V

U8
U}

89
IN
OS

<U
g

JO
Q>
uU
q

4}

‘:
Uu
oN
e1
ed
D

y

H

9

sp
un
og

js
uj
eB
y

J1
0}
s]
Be
y

yo
eu
D

y

H

a

1
S
1
q
g

Wa

8
se
l

l
s

1
g

Reprinted by permission of Motorola, Inc.
358

UOHJOUIJSIP
S14}

OyeW
Ajjeo!yewWO}Ne

suajqwesse
jsoW *sesedwiod

A
i
o
w
e
w

0}
A
i
o
w
e
w

JO}
pesn
Ss!
WdIND
“eveP
9}e!pewiw)
Ss}
eouNOs
9u}

UeYM
PeSN

S! |dWO
19}s!6e1

sseuppe
ue

Ss! UOI}eEUI}JSEep
By}

UBYM
Pesn

Ss! VWdIND

*Ajuo Buo07 puke Pio»

[ar
[
e
x
o

[
a
v
a
e
q
u
n
a

ter [
o
n
]

wxuvee) [evsequnu Ger | (wy 9tp)

Eso |

Feysequnu te: [oor | wir [oyzequne ter | uo | +o) Puysequna6e [oof ow) Puyzequnate [100 | ww ‘| Fequequnu te, [00 | vo _| [_wiseu [eon | Pon ev |

POW “Uppy

sU
MO

YS

SB

pe
mo

ll
e

as
e

se
po
w

Bu
ls

se
pp

e
ji
y

pu
es

ed
o

ao
sn

os

au
}

sa
lj
lI
oa
ds

—
pj

al
)

SS
es
pp
y

9A
1}
90
4)
3

(
<
e
a
>
)
-
u
g

01
0

=6©
+10

0
=©
00
0

uo
j}

}e
1e

dO

B
u
o
7

p
i
o
m

e
g

—
pi

el
}

ep
ow

-d
o

40
}S
8|
5a
1

By
ep

uO
IJ

eU
IJ

Se
p

aU
}

Sa
lj

io
ed

s
—

pj
el

j
Jo

ys
/B

oy

“
S
P
j
9
l
4

U
O
!
}
O
N
I
}
S
U
]

—
—

e
e
e

J9
}s
!6
ey

9
Z

8
6

OL

ot
t

ce
e

ek

eb

Ge
t

*
J
E
W
I
O
Z

U
O
!
O
N
I
}
S
U
j

“p
ej
oe
}j
e

JO
N

“@
SI
MJ
OY
}O

pa
se
a|
D

‘p
e}
es
ou
eB

s!

MO
1I

0g

&
}!

18
S

‘@
SI
MJ
OY
JO

Pa
se

a|
D

‘p
ey
es
ou
aB

Ss!

MO
|J

J@
AO

Ue

JI

18
S

“@
SI
MJ
OY
JO

Pa
se
a|
D

‘O
JO

Z
SI

}/
NS
eJ

OU
}

4!

18
S

“@
SI
MJ
OY
JO

Pa
se

a/
D

‘a
Al
ye
Bo
u

S!

}j
NS
eJ

aU
}

j!

38
S

ZN>O%x

2
)

A

Z

N

x

:$@POD
UO}}I|PUDD

“Buo| 10 ‘psom ‘a}Aq aq Aew uol}esado au}

JO

ezIs

ey

‘peBueYO

jou

s|
19}s/6e1

Byep

Oy}

‘})NSe/

ay}

0}

Bulpsoo0e

sapod

UOl}IPUOD

8y}

Jas

pue

Ja}s!6a1

eyep

paijloads

ay}

WO)

puBJadoO

BdINOS

9y}

JORI}GQNS

:uo)}duoSeq

(B
uo
7

‘p
io
n

‘e
}4

g)
=e

ZI
S

=

:s
ey

Nq
uy

Y

u
g
’
<
e
e
>

d
W
o

:x
ey

ud
s

J
e
j
q
u
i
e
s
s
y

a01NO0S — uO!}eUI}seq :uol}esedO

e
s
e
d
w
o
d

d
O

d
O
 0}

0N

[—wxos@]
=
 [wysequna

ter |
[_exuy er]

Tuysequnu se [| sor [
w
v
 8ip)

Foysequnu 8e |
 oon [|
w
=

[

uysequiny
Ber |

[uysequnu
Bor |

{UMOUS
SB

pamol|e
a
e

S
e
p
o
w

Buissosppe

ejqesoye
eyeEp

AJUO
“UO!}eED0}

UO!}EUI}SEP
ay}

SaljIOedS
—

Pjalj
S
S
O
I
P
P
Y

9A1}90}/9

‘uo|yesedo
B
u
o
|
—
o
L

“uolyes9do
p
s
i
o
M
—
1
O

‘uojyesedo
8
}
A
q
—
0
0

*uo|}e1EdO
OY}

JO
EZIS

84}
SaIjIOedS

—
Pjelj

eZIS
sspjel4

M
O
l
I
O
n
N
S
y

40}s|6ey

SSe1ppy 9A!199)3

0

L

z

€

v

S

9

iz

8

6

ol

LE

ras

€L

vL

GL

yBWIO4 UO}}ONIySU}

“pe}oajje JON ‘pasesjo SAeMIV

‘paieajo

SAeMIV

‘yes
S
A
E
M
I
V

‘paseajo
S
A
e
M
I
V

Ou
eA

20x Soa New
ix

1$EPOD
UO}JIPUOD

ZN>OXx

“Buol 10 ‘pom ‘a}Aq 98q 0} pelj!oeds

eq

Aew

uol}eiedo

ay}

JO

ezIs

eu,

‘O1eZ

|Je

0}

Polea]O

S|

UOJ}eEUI}Sep

EU,

:UOo};dOSeG

(Buo7 ‘pion ‘8}Ag)=eZIS = :seINqUyY

<ee>H19

:xeyuhsS

Jejquessy

uoneulseqg
—
Q

:uojesedo

Y
1
9

pusiedo ue 1886/9

YT

359 Inc. Reprinted by permission of Motorola,

/U
MO
YS

SB

Pa
mo

j|
e

as
e

s
a
p
o
w

Bu
ls
se
ip
pe

a|
qe
sa
ye

ey
ep

A
j
u

‘p
ue
ie
do

uo
lj
eu
Ns
ep

ay
}

sa
ij
io
ed
s

—
pi
al

SS
OI
PP
Y

9A
I}
9A
\j
3

‘u
ol

!y
es

ed
o

B
u
o
j
—
o
1

“u
o!
}e
19
dO

P
l
O
M
—
1
.
O

‘u
o}

}e
18

d0

a
}
A
q
—
0

‘U
O!
}B
19
dO

BY
}

JO

OZ
IS

By
}

Sa
lj

IO
ad

S
—

pl
al

j
Ez
IS

‘S
Pp
je
l4

U
O

ON
AY
SU
]

e
e
e

as

&

e
y

S
e
e

e
y

er

S
a

er
ed

po
m

49}81Bey
e
p
o
w

:

SS@IPPY
2AI}90)j3

s
9

Z
8

6
ob

HIE

Ta
sc
h

ta
h

asi

J
B
W
O
4

UO
}J
ON
IY
sU
|

‘p
a}
oe
jj
e

JO
N

‘@
S|
NU
8U
O

Pa
le
e|
D

‘p
a}
es
eu
eB
b

s!

M
o
g

e
4!

38
S

"@
SI

MJ
OY

}J
O

Pa
le
a|
D

‘p
ay
es
ou
eB

s}

MO
|J
JO
AO

Ue

4!

9
S

“@
SI

MJ
OY

}O

Pe
se

9|
D

‘0
J8

Z
SI

}j
NS
O1

Oy
}

JI

e
S

“@
SI

NJ
OU

JO

Pe
le
a|
D

‘e
A!

}e
BH

eu

SI

}j
ns
eZ

ey
}

JI

Ja
s

Cla

nt
e
e

a
e

se
nd

*S
@p
OD

UO
}}

|p
uo

yd

ZN>OX

“@
ZI
S

UO
J}
e1
8d
O

BY
}

SO
Yy
o}
eW

ey
ep

o}
ei
po
w

-l
W!

84
}

JO

ez
1S

B
Y
)

B
u
d
]

10

‘
p
o
m

‘e
}h

q
eq

0}

pa
lj
io
ed
s

oq

Ae
wW

UO
!}

eE
Je

d0

aU
}

JO

ez
IS

e
y
,

‘
p
e
B
u
e
y
o

jo
u

s|

UO
}}

e9
0)

UO

!}
eU

!}
Se

p
ey

}
‘}
jN
Se
1

a4
}

0}

BU
IP
IO
DD
e

se
po
d

UO
I}
IP

“
0
9

84
}

8
S

Pu
e

P
u
e
J
e
d
o

UO
}!

}e
UI

}S
Ep

64

}
W
O
J

B}
ep

S
}
e
I
p
e
w
!

By
}

JO
eI

}G
NS

:
u
O
;
d
\
O
S
e
g

(6
u0
7

‘p
io

n
‘0
}4
g)
=e
zI
S

 :
se
;N
qu
yY

<
e
e
>
‘
<
e
l
e
p
>
#

I
d
W
d

:x
ey
uA
S

J
e
j
q
u
e
s
s
y

ey
eg

ey

e/
pe

ww
)—

uo
}j

eu
ly

js
eg

-:

uo
jj

es
ed

oO

e
}
e
|
p
e
w
u

e
i
e
d
w
o
y

Id
IN
O

Id
IN
D

‘U
MO

US

SB

pe
mo
l|
e

a
e

s
e
p
o
w

Bu
ls

se
ip

pe

||

‘p
ue
se
do

ad
in

os

ay
}

Sa
lj
io
ed
s

—
pl

at
y

ss
ou
pp
y

9A
I}
90
4)
5

‘u
oj

jy
es

ed
o

B
u
o
j
—

11
4

"
S
q

Z€

|e

Bu
ys

n
19
}s
!6
01

ss
as
pp
e

ey
}

uO

pe
wo
Oj
ie
d

s}

uo
!}

e1
9d

0
Oy
}

pu
e

pu
es

ed
o

Bu
g]

&

0}

pe
pu
s}
xe
-u
Bi
s

si

pu
ei
ed
o

90
jn
os

ey
)

“U
uo

!}
e1

8d
O

P
I
O
M
—
1
1
0

:U
01
}2
J8
d0

8
}

JO

eZ
IS

ay
}

Sa
lj

Io
ed

s
—

pj
al

y
ep
ow
-d
oO

‘4
0}

8/
60

1
ey
ep

uO
!}
eU
I}
Se
p

aU
}

Sa
Ij
Io
ed
s

—
pj
al
j

Jo
}s

IB
oy

:S

Pj
el

4
UO
}o
NI
sS
U]

uy

L

Snecma

1

tae

6

OL

LL

Zt

€L

vL

SL

yB
WI

04

UO
}O
NI
YS
U}

49
}s
|6
ey

SS
OI
PP
Y

9A
!}
90
})
3

|

s
v
o
n
a
o

|

9 Z 8
v

Ss

"p
a}
oe
jj
e

ON

‘O
SI
MJ
OY
JO

pa
se

a|
D

‘p
a}
es
ou
eB

s|

M
O
1
O
g

e
4!

}e
S

‘@
SI
MJ
OY
JO

Pa
le

a|
D

‘p
a}
es
ue
B

S|

MO
jJ
JO
AO

Uk

41

}e
S

"@
SI
MJ
OY
}O

Pa
le

9]
D

‘0
19
Z

S|

}/
NS
@J

84
}

JI

Je
s

‘@
SI
MJ
OY
}O

pa
le

a|
D

‘a
al
}y
eB
Ha
u

s}

}/
nS
eJ

ey
}

4!

3e
S

Ob
A

Ze
al

Sek

*S
OP
OD

UO
}}

|P
uo

d

ZN>O%x<

‘Q
UO

P
S|

UO
!}

eJ
ad

O
OY
}

e1
0j
Aq

Se
aI
}!
}U
eN
b

}I
G-

zE

0}

pe
pu
s}
xe

UB
is

as

e
sp
ue
ie
do

eo
in
os

4}
6u

e|

p
i
o

“B
uo
]

JO

p
o
m

aq

0}

pa
is

io
ed

s
eq

Ae
w

uo
lj
es
ed
o

au
}

JO

ez
is

ey

)
‘P
eB
ue
yo

jo
u

s|

19
}s

/6
e

ss
eu
pp
e

ay
}

‘}
/N
ns
e1

ey
}

0}

Bu
l|
ps
oo
0e

Ss
ep

od

UO
!}
IP
UO
D

By
}

}@
S

pu
ke

J9
}s
/6
01

ss
eu
pp
e

uo
}}

eU
I}

Se
p

ey
}

W
o
y

pu
es
ed
o

eo
1N
OS

ay
}

JO
BI
IG
QN
S

:u
OR
du
Ds
eg

(B
uo
7

‘p
io
m)
=e
zI
S

=

-:
se
;N
qu
HY

u
y
'
<
e
e
>

Y
d
W
O

=x
ey
uk
S

J
e
j
q
u
e
s
s
y

89
1N

OS

—
U
O
}
e
U
N
S
E
g

:
U
u
o
e
l
e
d
O

s
s
e
i
p
p
y

e
i
e
d
w
o
g

Vd
IN
OD

V
d
W
O

Reprinted by permission of Motorola, Inc.
So ive) o

‘epow
Bulsseippe

juawas0Ul}sod
@y}

104
18381601

s
s
e
u
p
p
e

ue

saijioeds
(90unN0s

ay}
SAemje)

—

pjals
A
y

190}Ss150y

‘uolyesedo
B
u
o
j
—
o
L

uol}e19doO
PlomM—1.0
‘uol!yesedo
9
}
A
q
—
0
0

1U01}219dO
AU}
JO
OZIS
By}
SaljIOedS
— PI>al}
azIS

‘epow
Buissoippe
juowaou!}Ssod

@Y}
10)

19}S!6e1
sseuppe

ue
saljioads

(uO!}eUI}sep
ay)

SAemje)
—

Pal)
xv

Je}SsIB0y

:Spjel4 UONONsySU|

=

S
E
S

e
a
e

_

n
t

P
e
t
e

f
e
l
:

|

LL
(a

eb
vk

SL

:}BW04 UO}}ONIYSU|

"pa}oejje JON

*@SIMJOU}O

Pele9a|D

‘pe}esousB

s|

MO1I0g

B
j!
18S

"@SIMJOUJO

Palea|D

"poe}esouSB

S|
MO|JJOAO

UF

}!
JAS

*@S|MJOUJO

Pales|D

“019Z

SI
}|/NSOJ

OY}

JI
18S

*@SIMIJOUJO

Palea|D

“aAljeHou

si}
}jNSe/

BU)

41
38S

ZN>OX<
Dua

A
w
a
z

ie

ON
ek

:S@pOD
UO}}}pu0D

“Buo|
10

‘
p
o
m

‘a}Aq
eq

0}
peljioeds

eq
A
e
w

uoljesedo
ay}

JO
ezis

ay,
‘UO!}ONJ}JSsU!

84}
U!

PaljIoeds
sJ9}siBe1

sseippe

ey}
Buisn

‘
e
p
o
w

B
u
j
s
s
e
s
p
p
e

j
u
e
W
a
J
0
U
!
}
s
O
d

94}

Y
I
M

p
e
s
s
e
u
p
p
e

S
A
e
m
j
e

oie

S
p
u
e
i
e
d
o

ey,
‘
p
e
B
u
e
y
d

jou

Ss! UO}}e90|
UO!}eUI}SEP

Oy}
‘s}/NSeJ

94}
0}

Bulpsoo0e
S
e
p
o
d

UO}}IpP

-UO9
8y}

Jes
Pue

‘pueJedo
UO}}eUI}SEp

ay}
WO1)

p
u
e
J
O
d
O

BdJNOS

ey}
JOBI}GNS

:uO}YdjyOSseGq

(Buo7
‘pom

‘e}4g)=ezIS
 :seINquY

+(x)‘
+ (Av)

WdiNO
xequAs

J
e
j
q
u
e
s
s
y

@0JNOS
—uOl}eEUI}seq

 :ud}}e1edO

I
N
 d
 I
N
 9

K
i
o
w
e
w

e
i
e
d
w
o
g

I
N
 a
l
 I
N
 9

“SPJOM
9} e

/
P
E
W
U
|

OM}

}XEU
BY}

S! B}eEP
94}

U
S
}

‘O| =eZIS
}|

“‘PIOM
9
}
e
I
P
S
W
W
]

O11}Ue
OY}

SI BJEP
OY}

UBY}
‘1O=eEZIS

}|

“*PJOM
B
J
e
|
P
E
W
W
!

BY}
JO 2}Aq

JOPJO
MO}

OU}
S| BJEP

BY}
U
S
}

‘OD =AEZIS

3}

(uo}JONAySU!
4
}

BuyMoOj}O}

Ajoye!pewwW!
eyeg)

—
Pel)

e
J
e
;
p
o
w
w
)

P
S
S

a
e

a

e
e

ees

<eyep>#

ee|peww) e:edwo5

361
Reprinted by permission of Motorola, Inc.

*doo}

uyew

ey}

JO

ssedAq

ejyejdwoo

e
Bujsneo

‘youesq

jou

{Jim

UO}}ONISU!

99gq

84}

‘SINDDO

JUNOD

OJ08Z

B
}!
‘BSBD

S14}

U]
}UNOD

UO|}NDexe

doo]

ay}

|eEnbe

pjnoys

X@PU!

|01}U09

84}

‘UO!}ONIySU!

99gq

Bul}!e1}

84}

0}

AjJOeu1p

Bujyouesq

Aq

doo)

e

Buls8}Ue

UeYM

“JeAeMOH

“SUO!}eJEdO

}1q

paljioeds

Ajjeo}WeUAp

pue

sepow

Bul

-SSOIPPe

PEexepul

JO}

|NJasN

S!
JUNOD

S|y

“‘Pes!sep

SUOI}NDexe

doo]

jo
sequinu

®y}

UBY}

SSE]

BUD

oq

YSNW

}UNOD

xepu!

}01}U09

9y}

‘BujUUIBeq

9}

}e

PeseyUE

S|
99g

YUM

pe}eUsWJE}

G1N}ONI}s

doo]

e
4]
“UOI}ONI}SU!

99gq

Bul|jes}

OU}

0}

Bulyouedg

Aq

40

Buluu6eq

ey)

ye

:doo)

e
Bussejue

yo

Shem

o|Seq

OM)

Ole

B19]

“¢

*d
oo

j
&

JO

uO
l}

eU
!W

I9
}

10
4

pe
si

nb
ed

Ss
}

UO
l}

}P
UO

D
OU

U
e
Y
M

eS
N

JO
}

4
g
Q

JO
}

Y
Y
G

}d
e0
0e

su
aj

qu
ie

ss
e

s
o
w

‘z

yo
us
sg

pu
s

‘j
ue
Ww
es
De
q

‘U
O}

}|
pU
0D

}s
eL

2
2
g
d

2
9
g
d

*,
SN
ul
w

jj
}U

N
Y
o
u
r
s

Pu
ke

ju
aw
aJ
0e
p,
,

Se

pa
ye
}s

9q

ue
d

|
W

‘e
jd
we
xe

10
4

‘s
eB
en
Bb
ue
|

je
no

j-
yB

iy

JO

S}
9N
J}
SU
OD

do
o]

T
I
L
N
N

24
}

Aq

pe
ul
je
p

ye
u}

Oy
!)

S}

UO
I}
IP
UO
D

Bu
yy
eU
jW
Ie
}

ay
)

“|

:S
e}

ON

‘(
S9
}A
q

Ul
)

yo
uR
sG

84
}

JO

Bo
UR
IS
IP

ay
}

Se
Is
IO
9d
S

—
pa
l)

ju
Ue

Wa
dR

|d
sI

g
‘J
0}
UN
OD

94
}

S!

YO
!I

YM

49
38
/6
0)

eY
eE

p
ay

}
Sa
ij
Io
ed
s

—
pl

ot
}

se
}s

iB
ey

‘
U
O
!
J
d
O
S
E
p

UJ

Pa
sS
sN
os
Ip

SU
O}
}!
PU
0D

UG
E}
XI
S

BY
}

JO

B
U
G

—
PI

al
j

UO
I}
IP
UO
D

‘S
Pj
el
4

Uo
}o

On
sy

sS
Uj

[w
ee

r
To
T

ol
o[
+

[+
]

vm
mo
o

[+
r]

ol
i

fo
,

0

L
z
@

1
3

v

S
e
e

P
o
o

6.

Ol

Ki
p.

ek
)

se
h.

¥E

9

ob

J
B
W
O
4

UO
H}
ON
IY
SU
]

"p
ay
oa
sj
e

JO
N

:S
se
po
d

UO
;I

pU
OD

8S

MO
{j

JO
AO

12
98
/9

MO
{J
JO
AO

en
s}

sA
em
je

ue
y)

s
9
)
e
0
6

sn
id

ye
nb
e

10

s
9
}
e
0
6

ye
nb

e
jo
u

9n
d}

Je
Ae
U

s
n
u
j
w

ye
nb
e

ue
y)

ss

o}

ye
s

Au
se
o

se
ej
o

Au
se
o

A°N + A°N

Z
+
9

@W
RS

JO

MO
}

‘S
UO
!}
/P
UO
D

Bu
lm
oj
jo
y

ay
}

Aj
lo
ed
s

A
e
w

,.
99
,,

“O
M}

SN
jd

UO

!}
e9

0]

UO
!}
ON
I}
SU
!

}U
GI
IN
D

BY
}

S!

O
d

84
}

Ul

BN
je
A

By
]

“J
UE
We
dE
|d
SI
p

}1
q-
9}

Pe
pu
a}
xe
-u
Bi
s

oy
}

sn
id

D
g

eu
}

JO

ON
IB
A

Ju
aI
IN
D

ay
}

Aq

pe
ye

o!
pu

!
UO
!}
e9
0|

BY
}

Je

Se
NU

I}
UO

D
UO
!;
ND
ex
~e

‘|

—
0}

;e
nb
a

}O
U

SI

}/
NS
O1

BY
}

4]

“U
O!
NJ
ON
IY
SU
!

}X
OU

84
}

Y}
IM

SE
NU

I}
UO

D
UO
!}
NO
ex
e

pu
e

p
e
y
s
n
e
y
x
e

s!

48
}U
NO
S

94
}

‘|

—
S!

}/
NS
e1

ey
}

4]

“e
UO

Aq

p
e
y
U
o
W
e
J
D
e
p

a
e

10
}s
/6
e1

ey
eE
p

J9
}U
NO
D

au
}

JO

SH
G

9}

J9
p4
10

MO
j

84
}

‘A
NJ
}

JO
U

S}

UO
}}
!P
UO
D

U
O
!
J
E
U
;
W
a
}

AU
}

4]

‘
P
e
W
O
J
J
E
d

SI

UO
I}
es
ed
O

Ou

‘O
s

4!

pu
e

‘j
ew

us
eq

se
y

do
o;

ay

}
10
}

UO
!}
!P
UO
D

UO
!}

eU
!W

I9
}

OU
}

4!

B
U
I
W
E
}
A
P

0}

UO
}}
|P
UO
S

OY
}

$}
S9

}
}S

41
}

UO
}}
JO
NA
YS
U!

BY
)

“
j
U
S
W
E
d
e
|
d
S
I
P

e
pu
ke

‘(
19
}s
/5
e)

y
e
p
)

sa
}U

NO
D

B
‘U
O!
}I
PU
OD

&
:
s
i
s
j
a
W
e
I
e
d

Be
Jy
}

JO

SA
I}
!W
II
d

Bu
ld

oo
|

©
s!

UO
!}
ON
Jy
SU
I

SI
yj

:
u
o
j
y
d
u
o
s
e
g

(P
IO
M)
=e
zI
S

 :
se
IN
qu
RY

<j
eq

e|

>‘
ug

9
9
g
q

:x
eB

yu
hS

s
e
|
q
u
e
s
s
y

(Od -—-P + Od UOeUy L — # UG JI ‘UG—| —UQ) UEaY} esje} UOIIPUOD 4; suojBedO

yo
ue
sg

pu
e

‘j
ue

we
lI

eq

‘U
O}
}}
pu
oD

js
eL

9
9
g
d

2
9
g
d

Reprinted by permission of Motorola, Inc.
362

‘jaBoju!
peuBls

19-91
@ UeYy

J96Je]
S| JUA!JOND

Ay}
}! SINDDO

MO|JJeAQ
:®JON

[(ux'oa’8p) |
|

a'9tp)
|

a
r
g

L000
<
—
 a
 [
u
x

|

|

w
v
'
e
t
p
)
 |

<
e
y
e
p
>
#

[seisibeu
|

ePOW PPV

‘UMOUS
SB

peMoj|e
ase

S
E
P
O
W

Buisseippe
eyep

AjuQ
‘puesedo

edinos
ey}

salj!9edS
—

PIel}
SSEAPPY

OA!I00}}3

“puesedo
uojjeul}sep

94}
Selj;0eds

skemje
plalj

SIUL
‘S10}S!/6eJ

‘eyep
yyBIe

ey}
yO

Aue
seljjoeds

—
plots

10}s/Bey
:Spjel4

UOWoONs}sSU|

SAIC

P
O
W

“PPV

SAIC
epiAig

peubls
SAIC

30}s8|60y
e
p
o
w

ug

Seneca
eG Pec

peed ee ae
0

t
4

€
v

S
9

Z
8

6
OL

LE
ch

ct
FY

St

s
y
B
W
U
O
4

U
O
I
J
I
N
I
P
S
U
|

“"pa}99jje
O
N

‘pasee|o
S
A
E
M
I
Y

“
@
S
I
N
J
O
U
O

POJE9|D

‘P2}99}EP
S!

MO|JJBAO
UOISIAIP

J! 18S

‘o1ez
A
q

@PIAIP
10

MO|JJOAO
}! P

E
U
I
J
E
P
U
N

“OS!MJOY}O

PSJe9|D
“019Z

S| qua}yONb
au}

J! 38S

*018z
Aq

eplAIp

JO
MOJJJOAO

}} P
E
U
I
J
E
P
U
N

“@S|MJEY}O
PSle9|D

‘aniyeBou
st

}Ua!}OND
Ou}

4138S

ZN >OX

a

eet

eee

|

jen

Ne

M2

oN

AX

:9@PO0D

UO}}|PU0D

-pejoejjeun
ese

s
p
u
e
s
e
d
o

ay}

yng
pebBe})

s} UOl}|PUOd
oY}

‘peyoejep
s!

MO|JJOAO
J] “UO!JONIJSU!

OY}
JO UO!JE|dWOd

a1OJeq
JOS

PUB
PE}9E}EP

9q
A
e

M
O
W
J
O
A
O

“Z

-desj
e
s
e
s
n
e
o

0102

A
q

UOISIAIG

“}

suo}yesedo
ey}

B
u
l
n
p

e
s
e

A
e
w

suo}}!}pPuod
yeloeds

O
M
L

“PUSPIAIP
OU}

JO

UBIS
8
}

SB

O
W
E
S

OU}

S! JOBPU/EWA
OU}

JO UBIs
94}

JEU}
OJON

“UO!JEUI}Sep
eu}

40 (syIq

g|
JuedI}1UB)s

}sowW)
P
o
m

Jeddn

ey}
U! S! J

e
p
u
y
e
w
e
s

au)

pue
UOIJEUI}SEP

9
}

JO (S}1q

QL
JueDI)!UBIS

ysBe])
P
O
M

1OMO|

BU}
U! S|

juaijonb
au}

yey}
YyONs

‘s}1q-ZE
S!
N
S
E

ay,
‘PsOM

ke S|
puesedoO

BdJNOS
a4}

PUB
PJOM

Guo;
&

s|
p
u
e
s
e
d
o

uo}}eUIIsep

EYL

‘ojawiuye
peuBbjs

Buisn
p
e
w
o
j
i
a
d

s| uo}}e1edo
ey,

“UO}}eUI}SEP

ay}
Ul }INSe1

ey}
e10}S

PUe
edINOS

94}
Aq PURIEdO

UO!}EUISeP
OY}

SPIAIG
s
u
o
}
d
y
9
s
e
q

(pIOM)
=eZIS

:seINqunY

bgLu91—9L/ze
uqg‘'<ee>Said

:xe}uks sejquiessy

uolyeuljsag
—eounosjuO}yeuljseq

:uojyesedO

epjaig
peubis

SAIG

363
Reprinted by permission of Motorola, Inc.

ue
6e

aj
u!

pa

uB
is

un

j1
g-

91

&
Ue

Y}

Ja
6s

e|

SI

}U
AI

}O
ND

BU

}
41

SI

ND
DO

MO
IJ
J9
AC

‘O
JO

N

T
a
y
s
e
q
u
n
u

66
,

on

|

ux
uv
n

s-
UM
OY
US

S
B

p
e
M
O
j
j
e

ai
e

S
B
p
O
w
W

Bu
ls
se
ip
pe

ey
ep

Aj

uD

‘p
ue

ie
do

9o
un
os

ey
}

Se
lj

lo
ed

s
—

pj
el

}
ss
ou
pp
y

9A
1}
99
4)
3

‘
p
u
e
i
e
d
o

uo
lj
eu
lj
}s
ep

au
}

Sa
ij

io
ed

s

s
A
e
m
j
e

pj
al

j
SI

U,

“S
i9
}s
|6
e1

ey
ep

yy
Bl
e

ay
}

yo

A
u
e

sa
ij

io
ad

s
—

py
ja
lj

sa
}s
1B
oy

NA
IC

ep
iA
ig

pe
ub
su
n

Spjel4 uoyonsysul

NA
IC

4e
ys
1B
ey

e
p
o
w

SS
eI

pP
y

AN
19
04
43

t ae
40}s|/6ey

S

9

Z

g

6

oL

tL

(A
s

eb

vl

SL

:}
BW
O0
4

UO
}}
ON
IY
SU
|

“‘pe}0e1je JON

‘posee|o
shem|v¥ *9SIMJOYJO PAJL9|D "P98}99}EP S! MO|JJBAO UOISIAIP J! 8S ‘o10z Aq

@P
IA

IP

JO

MO
JJ

JO
AO

J!

P
O
U
I
J
E
P
U
F

“A
aS

|M
JO

UJ
O

Pa
le

e|
D

‘O
1E
Z

S|

JU
BI

}O
ND

aU

}
41

1e
S

"0
19

8Z
z

A
q

ep
lA
Ip

JO

MO
|J
JO
AO

J!

P
E
U
I
J
E
P
U
F

“e
S|
MJ
AY
}O

Pa
el
es
/D

“e
Al
}e
Be
u

s}

jU
s!

}O
Nb

9y
}

J!

JE
S

Flap
Dent”

Sem.
al

*SOpOD
UO}I|PUuCD

=z N 3s>Ox*

“‘
pa
yo
ej
je
un

ai
e

sp
ue
sa
do

ay
}

}N
q

pa
bb
el
j

si

uo
l}
!P
uo
d

ay
}

‘p
a}

oa
ja

p
si
!

MO
|J

JB
AO

J]

‘U

OI
JO

NI
YS

U!

BY
}

JO

UO
I}

9/
|G

WO
D

aJ
0j
aq

Ja
s

PU
B

Pa
j}

de
}a

p
aq

A
C
W

MO
|J
IB
AO

“Z

-d
ei

j
&

s
a
s
n
e
o

O1
ez

Aq

UO
IS

IA
IG

“|

re
si
ie

A
B
W

SU
O!
}I
PU
DD

fe
lO
ed
s

O
M
L

“P
US
PI
AI
P

84
}

4O

uB
is

ay

}
Se

a
W
e
s

9u
}

S!

Ja
pU
;e
WA
as

au
}

JO

UB
IS

au

}
JE
U}

SI
ON

“U
O!
}E
UI
}S
Ep

aU
}

JO

(S
tI
q

QL

JU
ed
Ij
1U
BI
S

JS
OW

)
P
l
O
M

Ja
dd

n
au
}

U!

S|

J
e
p
U
l
e
W
a
!

oy
}

PU
B

UO
!}

eU
I}

Sa
pP

aU

}
FO

(S
}I
q

QL

JU
eD
IJ
IU
BI
S

}S
ea

|)

PI
OM

JO
MO
}

BU
}

U!

S}

}U
BI
}O
ND

ay
}

}e
U}

YO
Ns

‘s
}I

q-
zE

Ss
!

}/
Ns
eJ

8y
uL

‘P
JO

M
&

S|

P
u
e
I
a
d
O

Bd
sN
OS

9y
}

pu
e

PJ
OM

Hu
o]

e

s!

pu
BJ

ed
oO

UO

!}
eE

UI
}s

ep

su
l

‘o
ly
aw
y}
ue

pe
ub

is
un

Bu

ls
n

p
e
w
o
j
i
e
d

si

uo
ly
es
ed
o

ay
y

“u
O!

}e
UN

Se
p

8
}

Ul

}/
NS
eJ

84
}

@1
0}

S
PU
B

Bd
IJ
NO
S

8U
}

Aq

pU
BJ

Ed
O

UO
!}
eU
N}
Se
p

ay
}

ap
IA

ig

:u
o;

Wd
UO

Se
g

(P
io

M)
=e

ZI
S

:s
e;
Nq
uR
Y

bg
L1

91

—9
L/

Zz
e

u
g
‘
<
e
e
>
n
a
i
a

zx
ey

uA
g

s
e
j
q
u
e
s
s
y

U
O
!
}
B
U
I
}
S
e
q

—
s
d
I
N
O
S
/
U
O
!
}
e
U
I
}
S
e
q

-:
Uu
o}
eI
ed
O

epiaig
peuBysun

NA
IC

NA

IG

Reprinted by permission of Motorola, Inc. 364

“S
PJ
OM

O}
e/
PE
WW
!

OM
}

}X
OU

SI

B}
EP

OY
}

UA
Y}

‘O

|
=A
ZI
S

}|

“P
JO
M

9}
eI

pa
ww

!
94
/}
U9

OY
}

S!

B}
EP

OY
}

UY
}

‘1
Q=

eZ
IS

}|

"P
JO
M

9}
E/

PS
WW

!
BY
}

JO

a}
Aq

19

P1
O

MO
]

84
}

S|

BE
EP

By

}
UB

U)

‘Q
Q

=e
ZI

S
4]

(U
ON
ON
I}
SU
!

BY
}

Bu
im

oj
|o

y
Aj

oy
ei

po
ww

!
e}
eq
g)

—
pl

e!
)

ey
ei

po
ww

}

[
a
y
s
e
q
u
n
u

er

[o
n

|

wxc
uv@

p)

L

:U
MO
YU
S

SB

pa
mo

lj
e

ai
e

s
a
p
o
w

Bu
ls
se
ip
pe

ai
qe

sa
yj

e
ey
ep

Aj
UO

‘p

ue
se

do

uo
l}

eU
I}

se
p

ay
}

Sa
lj

io
ad

s
—

pj
al

y
s
s
e
i
p
p
y

9e
AI
}0
04
)5

‘u
ol

jy
es

ad
o

B
u
o
j
—
o
1

‘u
ol

ye
ia

do

p
l
o
m
—
L
O

‘u
ol
}e
1e
do

3
}
A
q
—
0
0

sU
0}

}e
18

dO

98
}

JO

OZ
IS

BU

}
Sa
lj
Io
Oa
ds

—
pj

al
j

az
IS

2S

pj
el

4
Uo
No
NI
yS
uU
|

(
P
4
O
M

SN
OI
Aa
ig

Bu
rp

nj
ou

!
‘s
ti
g

ZE
)

e1
eq

B
u
0
7

(s
ti
g

g)

e1
eq

a1
Ag

(s
t1

@
QL
)

22
12

P1
OM

SS
au

pp
y

2A
1}
9a
}4
5

D
O
U

U
C

k
G

e
G

e
G
.
”

e
s

Of

ee
l

e
e

Ch
ee

P
h
e
n

Sl
:

1
J
B
U
O
4

UO
}}
ON
IY
SU
|

“P
pa
}o
e}
je

JO
N

‘pareajo sAemiv

‘
p
a
r
e
j
a

S
A
B
M
I
V

“@
SI
MI
JB
Y}
O

PA
lB

a|
D

“O
J9

Z
SI

}/
NS
8/

OY
}

41

8
S

@
S
|
M
J
O
U
}
O

P9
JB

9/
D

“J
OS

SI

}/
NS
OJ

BY
}

JO

JI
G

JU
BD

IJ
IU

BI
S

JS
OW

9y
}

4!

9
S

o
o
l

|

s
e
e
d

ce
)

A
Z

N
x

:S
@P
OD

UO
}}

|P
UO

D

ZN>OX

‘8
Z1

S
UO
!}
eE
1e
dO

BY
}

Se
Yy
d}
eW
w

e}
ep

a}
ei
pe

ww
W)

ey
)

‘B
uO

10

‘p
om

‘a
}h
q

@q

0}

pa
lj

io
ad

s
aq

Ae
w

uo
l}
eJ
ad
O

OY
}

JO

aZ
IS

BY
)

‘U
O!
}E
D0
|

UO
!}

EU
I}

SE
p

ay
}

U!

}j
\N

Se
L

QU
}

84
0}

S
pu

e
pu
eJ
Ed
O

UO
}}

eU
I}

SE
p

ay
}

0}

E}
EP

o}
e|
Pe
WW
!

aU
}

YO

aA
IS
N|
OX
xy

:u
O!
}d
OS
eq

(B
uo
7

‘p
io
m

‘e
}h

g)
=e

zI
S

 :
se

Nq
UI

Y

<
e
e
>
‘
'
<
e
j
e
p
>
#

I
H
O
R

:x
ey

uA
s

Jejquessy

UO
!}

BU
I}

SO
G

—
U
O
}
}
e
U
I
}
S
e
q

®
ej

eq

aj
el
po
wi
w;

 :
uo
}e
se
dO

a,eI|PewW) YO eAlsnjoxy

ld
¥O
4

l¥
O4

‘UOIJOUNISIP
SIy}

eYeW
A
j
j
e
o
|
}
e
W
O

N
e
 sJojquiasse

JSOW
“eyep

o}eIPawW!
s!

801JNOS
8Y} UBYM

PASN
SI [YOR

‘peMmoyye
jou

ale
SuOI}eJEdO

J9}s/6e1
eyep

0} A
I
O
W
E
W

:e,ON

(ux'dd‘8p)

[
t
o
a
t
e
 |

[
u
v
s
e
q
u
n
u

ter |
 vor |

wv @te) (ux'uy‘8p)

(O
d

iN

=pOn
70PY
a

:UMOUS
SB

pemo}|e
ee

Sepow
Bulssaippe

9iqele}e

eyep
AjUM
‘pueiedo
uoljeUl}sep
ey}
seljloeds
— pjelj
ssesppy
9A!}004;5

<
b
a
>
—

<
x
Q
g
>
e

<
e
a
>

OL
L

OL

OO
F

uo
jj

e1
ed

O
Bu
o7

p
i
o
m

e
h
g

— Pl
a}

;
e
p
o
w
-
d
o

‘si9}si6e1
eyep

yUuBle
ey}

Jo Aue
saljioeds

—
pyjolj

so}sIBoy

:Spje}4 uo}}ONsysU}

ug

a

-d

ee kanes

ee

Ole

2)

abe

Goei0h

tL ras eb vL SL

:(W0} PJOM) }BWUOY UO]ONISU}

“‘
pe

yo
ej

je

JO
N

‘p
as

ea
jo

s
A
e
m
I
V

‘p
al

ea
jo

sA

em
iy

V
"@

SI
MJ

OU
JO

P
1
9
]

“0
19
Z

SI

}/
NS
EJ

BY
)

JI

JE
S

*@
SI

MJ
OY

}O

PO
JE

9/
D

“J
OS

S|

}/
NS
ei

OY
}

JO

JI
G

J
U
B
O
I
U
B
I
s

ys
oW

ay

}
4!

}e
S

coe

ay

1
a,

*S
OP
OD

UO
}}
|P
uo
D

ZN>OX*

PI
O!

)
S
S
O
I
P
P
E

9A
1}
O9
jj
9

94
}

UL
;

Pa
lj
!o
ed
s

Ss
}

p
u
e
s
o
d
O

UO
}}

eE
UI

}S
ep

e
y
,

‘p
ue
se
do

8@
91

NO
S

94
}

Se

Si
a}
si
6e
1

e}
ep

0}

Pe
}d
Is
}s
e1

Si

UO
!}
eE
1e
dO

Si
u,

‘B
UO
|

10

‘p
io

m
‘a
}A
q

8q

0}

pa
lj

lo
ed

s
oq

A
e
W

Ud
l}
e1
Ed
O

Oy
}

JO

OZ
IS

B
Y
]

“U
O}
}E
DO
]

UO
!}
Je
EU
I}
SE
P

OU
}

U!

Ij
NS

el

84
}

81
0}

s
pu

ke

p
u
e
s
e
d
o

UO
!}

eE
UI

}S
Ep

94

}
0}

p
u
e
s
e
d
O

Bd
IN
OS

8y
}

Y
O

SA
IS

NI
OX

A
:
u
o
|
d
y
o
s
e
g

(B
u0
7

‘p
io
m

‘9
}4
g)
=e
zI
S

 :
se
IN
qu
HY

<
e
e
>
‘
u
g

H
O
9

:x
ey

uA
s

Je
jq

ue
ss

y

uo
}j
eU
ul
js
eg

—u
Oo
l}
eU
l]
se
q

@®
90

1N
0S

=

:u
oj
JB
ie
dO

1@
0}

60
7

Y
O

-e
al
sn
jo
xg

dO
04

y¥
Os

365 Reprinted by permission of Motorola, Inc.

(s
ia

Ot
)

By
8G

PI
OM

0

L
c
A

.

v
S
s

9

Z
8

6

OL

Lb

ra
s

€L

vL

SL

B
U
O
Y

U
O
N
O
N
S
U
]

“@
SI

MJ
O4

}O

pe
Bu

eY
oU

N
“e
UO

s!

pu
eJ
ad
o

a}
eI
pe
wW
U!

jo

¥
JI

G
4!

pe

Bu
eY

D
“@

SI
MJ

aY
yJ

O
pe
Bu
eY
yo
UN

“e
uO

si

pu
es
ed
o

ey
ei

pe
wU

W!

Jo

OQ

HI
G

4!

pe
Bu
eY
D

"@
S|

MJ
9Y

}O

pe
Bu

eY
yo

UN

“a
UO

Ss!

p
u
e
d
o

a}
eI
pe
lw
W

jo

|

Hq

4}!

pe
Bu

eY
D

“a
S|

MJ
9Y

}O

pa
Bu

eY
yo

uN

“a
u

s!

pu
es
ed
o

a}
eI
pe
lW
!

jo

Z
11

q
4!

pe

Bu
eY

D
“a

s|
mi

ay
j0

pe

Bu
ey

ou
N

‘a
uU

O
s!

pu
es
ed
o

sj
eI
pe
wU

jo

€
Hq

4!

pe

Bu
eY

D

ae
a

e
l

ee
*S
OP
OD

UO
}}
PU
CD

ZN>OXx

"pajoasje

ese

10}S/5e1

snje}s

Oy}

JO

Sjiq

jy

-410}S16a1

sn}e}s

ay}

Ul
}/NSeJ

84}

eJ0}s

puke

J9}s!Be1

Snje}s

94}

JO

S}Us}UOD

94}

YIM

PUBIOdO

s}eIPeWW!

ey}

YO

SAISN|OXy

:uopdoseg

(POM) =EZIS :seINquYYy

us
‘

<e
ye

p>

IN
OS

:x

ey
uh

s
s
e
j
q
u
e
s
s
y

‘
d
V
u
l

9sie

H
Y
S
—
H
S

@ e0NNOS
UeY}

9}e}s
JOS|AJedns

3;
:uoje1edO

(u
oj
jo
ns
ys
u;

pe
Be
}}
Al
1q
)

y
s

O
}

1
0
3
8
/
B
e
y

S
n
}
e
}
S

OY
}

0}

E
}
e
/
p
e
w
)

Y
O

eA
IS
NI
OX
y

y
s

O
}

ly¥O3 W034

(s
ti
g

9)

B1
eq

e1
4g

0
‘

4
€

v
i]

9

Z
8

6
OL

4
)

a)

2

|

ye
wu
04

‘e
s|

MJ
ey

jO

p
e
B
u
e
Y
y
o
u
N

‘e
uo

s|

p
u
e
s
e
d
o

a
y
e
i
p
a
w
w

jo

¥
31

g
4)

p
e
B
u
e
u
D

“e
s|

Mi
ey

jO

p
e
B
u
e
y
o
u
n

“e
uO

s|

p
u
e
s
e
d
o

9
}
e
/
p
e
w
u
!

jo

¢
11

g
4)

p
e
b
u
e
y
D

“@
S|
MJ
OY
JO

p
e
B
u
e
Y
y
o
U
N

‘e
uU
O

s|

p
u
e
s
e
d
o

a
}
e
|
p
a
w
w

jo

|
31
g

4!

p
e
B
u
e
U
D

"
e
s
|
M
J
e
U
O

p
e
B
u
e
Y
y
o
U
N

‘
e
u

s|

pu
es

ed
o

a
}
e
!
p
e
w
w
!

jo

Zz

31
g

4)

p
e
b
u
e
u
D

‘a
s|
ms
ey
jO

p
e
B
u
e
y
o
u
n

‘e
uo

s}

p
u
e
s
e
d
o

a
}
e
;
p
o
w
w

jo

€

JI

4}!

p
e
B
u
e
Y
D

te)

uo
jj
on
s}
su
}

ZN>OXx

E
R

E
A

E
N

r
y

e
e

A

Zz N x

*S
OP

OD
,

UO
}}
|P
Uu
0D

‘4
08
/6
01

SN
}e
}S

OY
}

JO

8}
Aq

19
ps

0-
MO

|
OU

}
U!

1|

/N
Se

1
By

}
81
0}
S

PU
B

SE
PO
d

UO
!}

!P
UO

D
EY

}
YI
IM

PU
BJ

Ee
dO

s}
eI
pe
WW
!

84
}

YO

eA
IS

Nj
OX

y
:u

oj
dy

os
eg

(8
}4
g)

=
ez
IS

Y
O
O
'
<
e
1
e
p

>#

[H
OS

Y
O
9

—
Y
O
O

©
89
1N
0S

:s
e;
Nq
un
y

=x
By
uA
S

J
e
j
q
u
e
s
s
y

7u
0}

}8
10

dO

‘
J

9
9

0
}

@P
OD

UO
}I
PU
OD

0}

e,
e/
pe
wW
]

YO

eA
ls

Nj
ox

y
H

9
9

O
}

ld
¥O
4

ld
¥O
sa

Reprinted by permission of Motorola, Inc.
366

“papue}xe-uBIs
eq

0}
S| }Ua}U09

B
s
O
U
M

Je}s!6e1

y
e
p

OY}

Salj!OedS
—

ple!)
19}S/50y

-Buo|
0}

19}s16e1
e}ep

JO
P
O
M

JEpsO

MO}
P
U
a
}
x
e
-
U
B
I
S
—
1
L
L
O

*p10M
0}

10}S!/6e1
eyep

JO
8}Aq

Jepso
MO]

P
u
s
}
x
e
-
U
B
}
S
—
O
L
O

:uo0l}es9dO
UO|SUE}Xxe-UBIS

ay}
JO eZIS

BY}
Se1j!9edS

—
Pj9!}

B
P
O
W
-
d
O

2Spje4
UO}ONIySUj

[
e
p
o
w
d
o

[
o
l
o
l
+
l
[
o
{
[
o
l
|
t
|

o
|

Z

8

6

OL
be

(45
€L

vb
GL

y
e
u
,

UO}ON}SU}

Twomistea [
o
o
]
 o]

0
L

4
£

v
S

“P2}90jje
JON

‘paieajo
s
A
e
m
i
y

‘paiea|o
s
A
e
M
I
V

"@SIMJOUJO
Pase9|D

“O19Z
S} }/NSOJ

OU}
4! JES

"@SIMJOYIO
Palea[O

“aAlyeBou
S! 1/NSEJ

94}
J! }eS

quite
a
 Zee)

Niewe.X

*S@pOD
UO}}|pu0D

x< ZN>O0O

T=) tJ] 61-9)

eyep
ay)

JO
[91:1¢]

siiq
0}

paidoo
si 19}s!6e

eyep
peyeuBisep

ay}
40

[St]
11q

‘Buo;
1

uo1yesado

ay} j| -40)S!/6e1
eyep

yeu)
40 [9:91] $}1q 0} paldod

sj 10}s/6e1
eyep

poyeuBbisep

ay)
Jo

[2] 11q
‘puom

S|
UO!}eJedo

ey}
}| ‘Pa}9a}es

ezIs
ayy

UO
B
u
|
p
u
e
d
a
p

‘
p
o
m

Buo|

e

0} P1OM
B W

O
)

10

‘PsOM
B
 0} 8}Aq

& W
O
)

J9}S16ai

eVep
e JO 31g UBIS

a4}
pua}xgZ

:
u
o
N
d
y
o
s
e
g

(Buo7
‘psiom)=ezIS

:seINquy

ug
LX3

:xByUAS
s
e
j
q
u
e
s
s
y

uolyeuljseg
—
p
a
p
u
e
}
x
e
-
u
B
i
s

uoj}eUI}Seq
:uoj}e1edO

pue
xy

uBis
1X4

1X4

‘190}8!16e1
Ssesppe

oy}
Seljloeds

s
A
e
m
j
e

ples

sly}
‘sie}s|6e1

Ssouppe
pue

eyep
u
s
e
m
j
e
q

s! eBueYyoxe
oy}

4] “epOwW
ay}

UO
Bu!

-pusdep
19}s!6es

ssouppe
ue

Jo
19}s/601

eyep
e JeYII0

Seljloeds
—

pjel)
A
y

190}s/Bey

10}s|6e)
ssouppe

pue
J0}s|Ge1

eyeEP—
LOOOL

‘s10}s|6e1
s
s
e
s
p
p
e
—
L
O
O
L
O

*s1e}s1601
e
}
E
P
—
O
O
O
L
O

‘
6
u
i
B
u
e
y
o
x
e

Jeyjyoum

seayioeds
—

pjaly
e
p
o
w
-
d
o

‘190}s1|601
eyeEp

ay}
Seljloeds

SAemMe
Pel)

sly}
‘sio}siBe1

Ssouppe
pue

eyep
u
s
e
m
j
e
q

S| e
B
U
e
Y
O
X
e

9y}

3] “epPOW
ey}

UO
Bu!

-puedep
1e}si6e2

sseuppe
ue

Jo
19}s/Be,

eyep
&

JeUyIE
SaljIoeds

—
platy

xy
se}s!6ey

*SP/e]4
U
O
}
O
N
I
Y
s
U
]

A
y

XY
r
)

-d

S
l
y

S
I
O

E
S
 tte |

0

L
@

€
v

s
9

Z
8

6
OL

My
ce

CL)
OWE

SE

J
B
U
W
I
O
4

U
O
I
J
I
N
I
}
S
U
}

“*Pej}0ejje
JON

-SEPOD
UO}}PUuoD

‘30181601
ssesppe

ue
pue

Jejsi6ei
eyep

e
e
B
u
e
y
o
x
y

‘¢
*s19}s|601

sseuppe
e
B
u
e
y
o
x
y

‘Zz
‘suojsi6e1

eyep
e
B
u
e
y
o
x
g

|}
‘
S
E
P
O
W

9e14}

UJ S
H
I
O
M

B
B
U
B
Y
O
X
A

“UO!}EIEd0

(1G

Z¢) Buoj
e s

A
e
m
j
e

s} e@BueYyoXe

Siu)
“s19e}s16e1

OM}
JO SjUe}UOD

EY)
eHUeYoXyA

:
U
u
o
}
d
y
D
S
e
G
 (6u07)=ezIS :seINquNY

Ay'xa 9X3

Ky'x¥ 9X3 :xBqUAS

Ka‘xa

5X4

Jeiquessy

Ay-xy

=
:uojyesedg

$10)s|Bey
e
B
u
e
y
o
x
g

X
A

O
X

367
Reprinted by permission of Motorola, Inc.

[
a
y
s
e
a
u
n
u

Ge
:

|

on

—[

—ux
uvi

n
P
1
0

_|

C
e
e

T
i
h
s

yh

M
O
S
M

as

Co
G

de
in

e
OL

»

to
h.

th
cn

ie
k

be
v:

|

<S
L

J
B
W
O
Y

UO
T}
ON
Iy
SU
]

“U
MO
US

SB

Pe
Mm

oj
|e

as
e

s
e
p
o
w

Bu
ls
se
ip
pe

10
4}
U0
9

Aj
UQ

“U
O!

}O
NJ

YS
U!

}X
@U

BY
}

JO

Ss
es
pp
e

ey
}

Se
lj

I9
ed

s
—

pl
e!
)

ss
eu
pp
y

8A
1}
00
}4
3

:S
pj
e}
4

uo
}o
nN
sy
sU
}

‘P
2}
99
8j
je

JO
N

-
S
O
P
O
D

UO
;}
]p
Uu
0D

4938/6504

]

“@
UW

E1
J

YD
B}

S
U
O
!
}
G
B
O
X
S

PJ
OM
-p

&
9
}
9
|
d
W
O
D

0}

Y
S

P
u
e

D
q

94
}

A
q

Pe
mo
jj
o}

yO
R]
S

W
e
}
s
k
s

BY
}

0}

B
P
O
D

JE
WI
OJ

PU
B

}A
SJ
jO

10
}D
GA

U
O
I
}
d
9
O
X
S

OY
}

8
3
1
M

SI
I)

[[
IM

Z
L
O
/
O
L
O
8
S
O
W

P
U
L

0
t

4
€

v
S

9
Z

8
6

OL

4

>)

4

|S

ye
UU

O4

UO
}}
ON
IY
SU
]

:
‘J
@S

UO
IJ
ON
IJ
SU
!

BY
}

JO

UO
/S
US
}x
e

O1
NY
Nj

10
}

Pe
AJ
as
e,

es
e

SU
JE
}}
ed

JI
G

UO
IJ
ON
IY
S

"p
ey
de
jj
e

JO
N

:S
se
po
Od

U
O
;
}
I
p
u
O
D

-u
!

je
69
j]
!

18
43
0

||
\y

“U
ON
}d
eo
xe

U
O
H
J
O
N
I
S
U

|e
Be
i|
!

Ue

S
e
s
n
e
o

W
a
}
}
e
d

q

Si
yj

:
u
o
j
;
d
y
o
s
e
g

“
s
e
p
o
w

Bu
is
se
ip
pe

jo
1j
u0
9

8y
}

Aq

pa
lj
io
ed
s

si

ss
ou
pp
e

au
l

"u
ol

On
s}

sU
l

pe
zi

su
n

=

:s
ey
In
qu
ny

ay
}

Aq

pa
lj
io
ed
s

ss
ei
pp
e

9A
!}
99
jj
9

84
}

1e

Se
nu

Ij
UO

D
UO

!}
NO

ex
e

w
e
i
6
o
l
g

:
u
o
j
d
u
o
s
e
g

q
v
o
3
T
1

=x
By

uk
s

pe
zi
su
n

:
s
e
y
n
q
u
y
y

J
e
|
q
u
e
s
s
y

<
e
e
>

G
w
e

:x
ey
uA
S

O
d

—
S
s
e
i
p
p
y

JO
}D

eA

UO
!}
ON
Iy
sU
]

je
Be
I)
|

Je
jq
ue
ss
y

‘(
dS

S)
—U

S
‘
d
S
S
—
Z
-
d
S
S

‘(
dS
S)
—O
d

‘d
SS
—¥
-—
dS
S

O
d
-
—
s
s
e
l
p
p
y

uo
}}
eu
l}
se
q

:
u
o
j
e
s
e
d
Q

og

(
d
S
S
)
—
I
8
S
H
O

10
39
8,

‘
d
S
S
—
Z
—
-
d
S
S

:
u
o
j
e
s
e
d
o

d
r

pr
e

dW
wr

W
5
3
7

e
e
e

W9
Ss

3T
tI

I

Reprinted by permission of Motorola, Inc.
368

Paysequnu
[
o
n

[| _oxev@n)
Puysequnu 6or[sor

|
w
v
)

Tio
i
u
e
h
a
P
a
i
p

he se8l ti cowyinos |

f
a
 bara Boll soasoo then Tense

Poyzequne te |
o
o
 | o

w
t

feo wr snooe iss eet —]oreigew
S
|

[
v
e
i
s
i
f
o
u

|
 _epow |

 Pon wwov

:
U
M
O
U
S

SB

paMoy|e
ase

SapowW
B
u
l
s
s
e
s
p
p
e

jo1jU0d

AjUC
“10}s8!/694

SseJppe
ey}

OU!
papeo|

oq
0}

sseippe
9y}

Seljjoeds
—

pjal}
SSeIPPY

OA!}9094}5
“SSOJPPe

BAI}

-084J9
9U}

U
M

pepeo]
eq

0} S! YO!YyM
J0}S/6eJ

sseippe
a4}

SaljloedS
—

piel)
10}s/5ay

‘Spje}4
uoWonsysU]

amare
ce

RmereL
y
B
U
0
4

p
a
n
e
s

49)s1Boy

sseJppy
c
u
o
n

‘pa}994J2
JON

:S@POD
UOIWPUoD

‘uoljonsjsu!
sly}

Aq peyoesje
ase

10}s/601
ssesppe

ay}
40 S}Iq

Ze
IIv ‘48}s1Be1

sseuppe
paljioeds

ey}
OU!

pepeo|
s| Sseuppe

9AI}Oe}j0
OY)

:UOIdI9Seq

(Buo7)=ezIS
=
 :seynquny

u
y
'
<
e
e
>

W531
:xeyuhs

Jejquessy

u
y
—
<
e
e
>

:uojesed9

SSOJPPY
GAl}90}j3

Peo?)
Val

Val

Toysequnu
66 |

[

eysequinu
Ber |

:UMOYUS
SB

PeMoj|e
aie

SopOW
BHulsseippe

j01}U09
AjUG

“UO}JONJYSU!
}XOU

BY}
JO S

S
e
p
p
e

9y}

Selj!9edS
—

PIel)
SSAIPpYy

8AI}004)3
:SPjej4

UO}ONIysSU}

40\8|6ey

0

L
r
d

€

v

S

9

Z
8

6

OL
tL

r4a5
et

LAS
Gt

y
B
W
0
4

UO}}ONIySU|

"Ppa}99jje
JON

:SePOD
UO]}|pUod

“UOIJONIJSU|
EY}

U! Paljfoeds
sseippe

@y} Je SENUI}UOD
UEY}

UO!}NDexe
WesBOlg

"49e}S
We}SAS

EY} OJUO
Peysnd

s} UO}}ONIYS
-U! YSP

EY}
Bul Mo||O} Ajeye|pewW)

UO!}ONIySU!
ey}

JO Sseuppe
Psom

Bug]
ey,

:UO;dyOSeg

pezisun =:seinquny

<ee>

usr

sxeyuks

Jejquessy

Od

—ssoippy

uoljeuljseq

“dS)—Od

‘dS—v-—dS

 <:uojesedO

eujynoiqns
0} d

u
n
e

usr
usr

369
Reprinted by permission of Motorola, Inc.

‘H
Q

se
ps
o

YB
iy

9y
}

OJ
U!

pe
yi
ys

ev
e

se
oi
ez

*S
UQ

PU
E}
Xe

OY
}

P
U

A1
ed

4}

YI
OQ

0}

06

}1
q

Je
PI
0

MO
}

EY
}

JO

3N
O

pa
Is
IY
s

s}
ig

“J
UN
OD

UI
US

OU
}

SI

Pe
ls
!Y
s

SU
O!
}!
IS
Od

yo

Je
qu
nU

ey
)

WY
BL

pe
y!
ys

S|

pu
BJ
ed
o

ey
}

‘Y
Sq

40
4

ik
e

$1

‘W
Q

JE
Ps
O

MO
}

OY
}

OU
!

Pe
z!
US

as
e

Se
Ol

Ez
Z

‘S
H

pu
e}

xe

oy
}

Pu
e

Au
d

ey
}

Y}
OQ

0}

06

}1
g

Je
ps

O
YB
IY

ey
)

JO

JN
O

pa
ys
!Y
s

st
ig

“U

NC
D

WI
YS

OY

}
S}

Pe
y!
Ys

SU
O!
}!
sO
d

jo

Je
QU
NU

ey
}

‘J
8)

Pe
yI
Ys

S|

pu
es
ed
o

ey
}

IS
]

10
4

“*
PJ

OM

&
O}

P9
}9
1J
}S
O1

S}

8Z
IS

p
u
e
s
E
d
o

94
}

Pu
ke

‘A

jU
O

}I
1q

aU
O

p
a
y
i
y
s

eq

A
e
w

A
i
o
w
e
w

JO

}U
9}
U0
9

B
y
]

“B
uO
}

40

‘
p
o
m

‘a
}A
q

aq

0}

pa
lj
!o
ed
s

eq

A
e
w

Uo
!}
eJ
ed
0

ay
}

jO

OZ
IS

U
L

‘(
v9

O|
NP
ow
W

jU
NO
D

y1
Ys

)
UO
!)

-O
NJ
}S
U!

OY
}

Ul

Pe
lj
i0
ed
s

19
}S
/6
01

ey
ep

e
U!

Pa
U!
e}
UO
D

Ss
!

JU
NO
D

jJ
IU
S

84
}

—
Je
}S
IB
eY

‘z

‘(
8-

}
eB
ue
s

W1
48
)

Uo
HJ
ON
sj
sS
U!

ey
}

U!

Pa
lj
!o
ed
s

Ss
}

J
U
N
O

YI
YS

Oy
}

—
e
,
e
I
P
e
W
]

“|

2S
AB
M

}U
8J
Oj
}I
P

OM
}

U!

Pa
lj
!o
ed
s

eq

Ae
wW

J9
0}
s/
6e
1

@
JO

Bu
iy
ji
ys

uy
}

J0
j

yU
NO
D

I1
Ys

EY
]

“P
UB

JE
dO

ey

}
JO

}N

O
Pe
is
!Y
sS

11
g

}s
e]

AU
)

Se
Al
EN
e!

ug

Au
se

o
e
y

‘p
ai
yl
oe
ds

(y
j

10

7)

Uo
}}
9e
s1
p

4
}

U!

PU
BJ
ed
o

9Y
}

JO

S}
1q

9y

}
WI
YS

:
u
o
N
d
y
o
s
e
g

(6
u0
7

‘
p
i
o

‘e
ih
g)
=e
zI
S

:s
eI
Nq
uy
Y

¥

JO

7

‘U
OI
}D
eu
IP

S|

Pp

B
B
y
M
 <
e
a
>

ps
y

Ag
‘

<
e
y
e
p
>
#

ps
7

:x
ey

uh
s

Aa
‘x
g

pS
]

se
jq
ui
es
sy

uo
jy

eu
l}

se
q

—
<
}
U
N
O
D
>
A
q

pa
yl
ys

UO
!e
UI
}s
eq

 :
uo
jj
e1
ed
O

wl
us

18
9/
60
7

Y¥
S7
1‘
1S
1

Y¥
S1

°1
S1

*s
|/
29

@U
I]
NO
IG
NS

pa
}s
eU

10
)

yO
e}

Ss

By
}

UO

Se
al
e

Je
ja

we
se

d
pu

ke

e}
ep

|2

00
]

JO

}s
}|

pe
xu

l|

e
UJ

e}
U/

eW

0}

pe
sn

aq

UB
D

Y
I
N

PU
E

YN
IT
_

:@
10
N

“1
8}

UJ
Od

YO

R}
S

9y
}

0}

P
a
p
p
e

aq

0}

s!

yo
!Y
ym

J9
69

}u
)

J
U
e
W
a
;
d
W
O
D

so
m}

ey
}

Sa
lj
lo
ed
g

—
Pi
el
j

J
U
Q
W
E
d
R
I
d
s
I
G

“"
pa
yo
ns
js
uo
o

8q

0}

S!

UI
]

84
}

YO
IU

M
Yy
Bn
oi
U)

J9
}s
!6
es

ss
es
pp
e

ey
}

sa
lj

lo
od

s
—

py
ja
l)

se
}s

!6
ey

*S

pj
ej

4
U
O
O
N
I
y
S
U
]

j
u
e
w
e
d
e
|
d
s
i
g

Pi
on

,

e
e
e

e
e

O
e

u
e

e
e

C
l
e
e

a
t
e

|
0

L
€

v
S

8
o
e

Ce
e

Oh

on

(h
e

ce

om
er
aa

yL
Eu
ey

3y
BW
U0
4

UO
}O

NI
yS

U|

‘P
a}
09
jJ
e

JO
N

:S
eP
OD

UO
}p
Uo
D

“B
al
e

YO
R}
S

a}
ed
0)
/e

0}

pa
lj

yi
oa

ds

sj

j
u
a
W
a
D
e
d
s
i
p

aa
yy
eB
au

y

49
e}

s
ay

}
UO

p
o
m

Bu
o|

au
O

sa
jd

no
v0

4J
9}
s1
\6
e

Ss
es
pp
e

au
}

Jo

JU
a}
UO
D

O
y

‘4
9\
UI
Od

49
e}

S
Oy
}

0}

p
e
p
p
e

s!

p
u
e
s
e
d
o

j
u
s
w
a
d
e
|
d
s
I
p

pa
pu

a}
xa

-u
Bi

Is

}1
q-
9|

aU
}

‘A
yy

eu
l4

‘4

a\
UI

Od

4O
e}
s

pa
ye
pd
n

ay
}

Wo
l)

p
a
p
e
;

s!

19
}S
16
e1

ss
ou
pp
e

au
}

‘y
sn
d

au
)

sa
yy

‘y
oR
}S

84
}

0}
U0

p
a
y
s
n
d

s|

J9
}s

/6
a1

ss

ei
pp

e
pa
lj
io
ad
s

ay
}

jo

}U
9}
U0
D

JU
aU

IN
D

ey
]

:
u
O
N
d
y
O
S
e
g

Pe
zi
su
n=
ez
lg

-:
se

yn
qu

ny

<j
ue
we
oe
|d
si
p>

‘U
y

YNI
T~—

s
:x
eq
us

4
e
/
Q
U
W
e
s
s
Y
y

d
S
-
—
P
+
d
S

‘U
y-

—d
s

‘(
dS

)—
uV

‘
d
S
—
p
-
d
S

:u
oj

es
ed

o

ey
B9
0}
|'
y

pu
e

yu
]

N
I
T

N
I

Reprinted by permission of Motorola, Inc.
370

[ux’oa’8p)
[

(
o
"
9
t
p
)
 ulus

189]607

[
 u
y
s
e
q
u
i
n
u

‘Be: |

‘Boi
a
 t

[
t
o
r

‘uMOUS
SB

pamojje
aie

S
e
p
o
w

H
u
s
s
a
p
p
e

ajqesoy/e

K
i
o
w
e
w
s

KjuQ

“‘peylys
eq

0}
p
u
e
s
e
d
o

oy}

Saljineds
—

Piel}
S
S
O
I
P
P
Y

9A!}99}13

“HEI
W
I
U
S
—
L
 "yy6
Wius—oO

‘IYS
AU}

JO UO!}OEIIP
BY}

SE1j!I99dS
—

Pla}
4p

(syius
A
i
o
w
e
y
)

Spjef4

Y
O
R
O
N
y
S
U
]

Joysi6ay
+

|

t

SL
O
e

e
e

e
e
 Poe

G
e

O
e

Zone Bilin

Cum
O8

S
L
E

C
h
e

OL
Rb

U
s
y
l
y
s

A
i
o
w
e
y
)

y
e
u
o
y

UO!}ONAYSU|

“payjlus
aq

0}
S| }Ua}UOD

B
s
O
Y
M

Ja}s/Ge1

eyep
e

salj!OadS
—

PIPL)
Jas

160y

‘yuNod
WIYys

190}sIBe1
selsloeds

‘| =4/!
$1

"JUNOD
IIY4S

ByeIPEWUW!
Salj!9edS

‘0 =4/!
HI

—
PIels

4/!
‘uolyesado

Buoj—olL

"uol1}eJ9dO
pPsOM—1L0

u
o
l
y
e
s
a
d
o

8
}
A
q
—
0
0

:
U
0
1
}
e
9
d
O

OY}

JO
EZIS

ay}
SAljIOedS

—

PIA}
OZIS

Hel
W
I
U
S
—
L

yu6u
yius—o

YIUS
8U}

JO
UO}DEUIP

84}
SeIjI0edS

—
Pal}

JP

“Plaly
S14}

Ut

paijloeds
19}s!6e1

eyep
94}

U!
P
a
u
l
e
z
U
O
D

S|
(yg

O|NpoOw)
yUNOD

YIYSs
OY}

‘LE =4/I
JI

*hjeajoedsed
2 0}

| ‘g yo
e
B
u
e

e
jueseidal

J-|
‘9 SON|EA

OY]
“Pals

SIU}
Ul

Palyloeds
s! JUNOD

YIYS
OU}

‘0 =4/!
JI

—
play

s9ys1BayAuNnoD

(siywus
19}s|6ey)

plely
UONONAySy|

39\s!60y

b
a
r
e

Fy i
a
 ao

6

oL
tL

ra’
i

vk
Gt

(
s
y
l
u
s

4
9
}
S
/
6
e
y
Y
)

y
e
W
I
O
Y

U
O
I
J
O
N
A
Y
S
U
]

0
L

4
€

v
Ss

9
Z

8

“0102
JO JUNOD

W1US
& 10) pe}De}seUF

‘PpUEJEdo
EY}

JO JNO
PaysIYs

1g
}Se/ OY} 0} Bulpodoe

a
S

018Z
JO

JUNOD

WIUS
&

JO}
pasee|Q

p
u
B
J
E
d
O

94}
JO

}NO
payjsYs

1g
}SE|

OY}
O}

Bujpsoooe
jes

‘
‘peieajo

sAemMIy

*@SIMIOYJO
PAlB9/D

‘019Z
SI }/NSE/

EY}
41 18S

“@SIMIOYJO
PaleE|D

‘aA!}eGou
S! }/NSE1

BU}
41 JES

Seah
ore

N
X

:sepoD
UO}IpUuoD

H
S
1

"
7
 S
1

ulus
1291607

Y
S

"
7
 S
I

ZN>O X

371
Reprinted by permission of Motorola, Inc.

[
u
y
s
e
q
u
n
u

Be [on
|

_wxuve)
F
a
y
s
e
q
u
n
u

Ge |
 101 |

 __ wv 8lp)
LO

(ux'od'8P)

|

o
a
'
S
t
p
)
 |

o
e

oy

:UMOYUS
SB

PeMoO||e
a1e

S
e
p
o
w

BHulssesppe

e/qesey/e

eyep
AjUO

‘UO!}E90]
UO!}eUI}SEP

EY}
SAIjIO9dS

—
Pjal}

SSOIPPYy
9AI}09jj9

UO!}EUI}Seq

‘uoiyesedo
B
u
o
j
—
o
l
L

‘uol}esedo
P
l
O
M
—
|
1

‘uolyesado
a
}
A
q
—
1
0

:
P
E
A
O
W

eq

0}
puBsadoO

aU}
JO

aZIS
By}

SAIjIOedS
—

PIalj
OZIS

<spjel4
UoO}JONI}SUj

49}s|Boy
4e}s|6ey

e01N0S
uo}}eUI}Seg

0
‘

@
£

v
Ss

9
Z

8
6

OL
1

eo
ek

vt
SL

3
j
B
W
I
0
4

U
O
!
}
I
N
I
j
s
U
)

“pe}oejje
JON

‘paieajo
S
A
B
M
I
V

‘paseajo
s
A
e
M
I
Y

*@S|MJOUJO
PAJe9|D

“O19Z
SI }/NSOJ

9Y}
41 38S

"@SIMIOUJO
Pasee|D

‘aA!}e6eu
SI! }/NSO1

OU}
JI }8S

ZN>O%x

-s19}siBe1
eyep

UO
SUO!}e19dO0

Ue}I89
10}

pasn
aq

Osje
UBD

O
A
A
O
W

‘Z
UOIJOUIJSIP

S}4}
eYeW

Ajjeo!}eWO}Ne

sia|quwasse
S
O
W

49}s/6ei
ssesppe

ue
SI UO!}eUI}Sep

ey}
UBYM

Pesn
S| WAZAOW

‘|
:S®ION

S
o
n
y

r
o

R
e
a

[
8
 |
 0 |

e
t
c
h
e
e
l
 S|

Sul,
saceZ

e\N
Rey

X
“PeMO}|e

JOU
S| }9eJ1P

10}s/6e1
ssesppe

‘UO!}E1edO
eZ/S

0}Aq
104»

:SepOD
UO}}|pu0D

e
e

T
e

[vysequnu te
[
o
n

|

x
v
)

|

c
e

e
e

t
e

e
T

M
o
n
a
e

(
o
r

e
y

‘Buo| 10 ‘p1oMm ‘e4q 2q 0} paljioeds eq Kew uo}jesedo
e
l

e
a

e
e
e

|
 uysequnube

|

i
o

|

+
0

|

ay}
JO ezIs

ey,
‘AjBuipsoooe

Jas
SEPOd

UO}}!PUOD
e4}

PUB
‘peAowW

Ss! }! Se
peulwexe

L
i
c

a
e

a
e

|
 vysequnu

te: |

o
r
o

|

u
v
)

_—is

S!
eJEP

OY]
“UOI}EO0|

UO!J}EUI}SEP
Oy}

0}
eOINDS

94}
JO

}Ua}UOD
a4}

BAOW
:
U
O
}
d
D
S
e
q

0
0
k
}

[ecequinu Ber [000
[
a

(6u07 ‘piom ‘a1kg)=ezIS_
:se;nquIaY

[__sowibeu
|

epow |

epo appv

[
_
_
s
e
s
i
s
e
u

|

epow |

epOW ppv _

<
e
a
>
‘
<
e
a
>

J
A
O
W

:xeyuhS

Jejquessy
:UMOUS

SB
PEMoj|e

ee
SEPOW

Buisseippe
||y

‘puesedo
eounos

ey}
selyiIoeds

—
Pel}

SSeIPPY
9AI}994j3

901NOS
uolyeuljseq—soun0s

=
 :uo}jeedO

7
 A
O

I
N

uoj;euj}Seq
0} BINDS

WO)
B}Bq

EAC!
3
 A
O
W

3
 A
O

I
N

UO}eBUIJSeq
0} EDINOS

Wo)
BEG

EAC!
3
 A
O

I
N

Reprinted by permission of Motorola, Inc. 372

“suoljyesado

ajyAq
a
e

Y
O
O

O}
I
N
O
S

PUe
‘INO

‘
I
G
N
V

‘UOl}eJedo
p
i
o
M

e
S|

Y
O
O

WO1}
J
S
A
O
W

-®10N

P
u
y
i
e
q
u
n
e

ter [o
n
]

Poysequnu
60s |

(ux‘uy'8p)

[
e
v
a
l

[11 |

P
o
y
z
e
q
u
n
a
t
e
r

[oor
|

owi=
|

Puvsequnu te |
 n
o
 | +
o

Puysequnu te, |
 oo |

ov)
B
I
G

C
U
S

Oak
o
e

Leavequne te: |
 o
o
 | v
o

[
—
i
s
i
d
e
u

|
 _evow |

 epow wopv |

:uMOUS
SB

peMmo||e
ose

SepOW
Bulssesppe

ajqesaye
eyep

AJUO
“UO!}ED0|

UO!JEUI}SEp
ay}

SeljI9edsg
—

Plel}
SSeIPPY

8A!}994)9
:Spje}4

UO}JONI}sSU|

0

L
z

€

v
S

9

f
e

8

6

OL
LL

ray
eb

vl
SL

y
e
W
0
4

UO}JONIySU|

"pejoejje
JON

:S@POD
UOJpUcD

*g90J08Z
{|e

S|
8}Aq

J
e
d
d
n

s
y

"S@POO
UO!}IPUOD

OY}
SUIE}UOD

8}Aq
J
E
P

MO]
4
}

A/UO

3Nq
‘P4OM

Be S| pueisedo
eounos

O
Y
]

“UO!I}EDO|

UO!}EU!}SEP
94}

0}
P
E
A
O
W

S| 4J9@}S|6e
Snye}s

84}
JO }UB}UOD

B
Y
)

:
U
O
}
d
O
S
e
q

(piIOM)=9ZIS
 sseINquHY

<
e
a
>
‘
'
Y
9
O

S
A
O
W

:x@yukS

J
e
j
q
u
e
s
s
y

uolyeuljseog
—

Y
O
O

:uojyesedo

30}S|Bey
epoD

uo}}|pu0D
@4}

Woly
BAO!

Y
O
O

Wod}

S
A
O
W

YOO
W
o
}

SAOWN

P
o
y
s
e
q
u
n
y

te] on]
L
e
v
s
e
a
u
n
w

ter |
 101 |

T
u
y
s
e
q
u
n
u

ter |
 oon |

ow=

F
a
v
s
e
q
u
n
u

ter |
 u
o

|

r
w

[
u
v
e
q
u
n
u

ter |
 o
o

|

ow)

=
a

(Scena
e
m

(ux‘uy‘8p)

(uy‘9tp)

:UMOYS
SB

pemojje
aie

SepowW
B
u
l
s
s
e
u
p
p
e

II'v
‘puesedo

9dJNOs
40

UOI}EDO|
BY}

SaI}IDedS
—

Pal}
S
S
A
I
P
P
Y

9AI}99j)3

8
9
1
N
O
S

‘Ja}s\6e1
Ssaippe

UO!yeUI}SEp
ay}

Saljloads
—

pjalj
19}s/Bey

uol}eUl}seq

‘uoijesado
B
u
o
J
—
o
L

-yo)s|601
SSosppe

Oy}
OJU!

Ppepeo|
a
e

s}q

ZE
Ie

pue
p
u
e
s
e
d
o

Bug}

&
0}

pepue}xe-uBis
s} p

u
e
s
e
d
o

aounos

e
y

“UO!}EIedO

P
I
O
M
—
|
L
1

:PeAOW
OQ

0}
P
U
B
I
A
d
O

AY}

JO
9ZIS

BY}
SAI}IOedS

—
PIel}

EZIS

‘SPlel4
U
O
}
O
N
I
S
U
|

49)s|60y

403s}6ey

uojyeul}seg

0
t

z
£

v
S

9
Z

g
6

ol
Lie

ice
Cee

ser
‘SP

s
}
B
W
I
O
Y

U
O
I
J
I
N
I
Y
S
U
|

aounos

“Pa}oajje
JON

-SEPOD
UO}yIPUoD

“QUOP
S$! UO!}B1edO

ey}
es0JOq

Seaj}]]}UeND
jIq

ZE
0}

Pepua}xe
UBIS

aie
s
p
u
e
s
a
d
o

80Jnos

aZIs
P
I
O
N

“BUO]

JO
P1OM

aq
0}

palj!oads
eq

A
e
w

UO!}eJ98d0

Ay}
JO

8Z/S
OU

18}S/6e1
SSaJppe

UO!}EUI}SEP
OY}

O} BD41NOS
OU}

JO JUSJUOD
BY}

S
A
O
W

t
u
o
n
d
j
o
s
e
g

(Buo7
‘piom)=eZIg

=
 :seINqURY

u
y
'
<
e
e
>

W
I
A
O
W

:xequAs J
e
j
q
u
e
s
s
y

u
o
l
y
e
u
l
j
s
e
q
=
—
9
0
i
n
0
s

=
 :uo}JB1edO

sselppy
eAOW

V
A
A
O
W

V
A
A
O
W
N

373
Inc. Reprinted by permission of Motorola,

*O
}

U9
}}

II
M

S}

}!

B1
OJ

Oq

P
e
s

S|

UO
I}
EU
I]
SE
ep

A
I
O
W
E
W

Vy

:e
}0
N

(u
x‘
uy
'8
p)

[

uy
ue
qu
nu

er

|
(u

y
96
)

| ou

e
o
n

=
)

a
e

|

uv
se
qu
in
u

‘d
en

|

ti
o

[
+
t

|

o
r
o

S
a

| 000
|

e
p
o
m

|

[a
ys

eq
un

u
G0

:
|

|

ux
'o
u’
@p
)

|

a
'
t
p
)

|

Fw
yz
eq
ui
nu

Ge
r

|

Tc
an
eq
un
e

or

/U
MO

US

SB

Pe
Mo
||
e

os
e

Se
po
w

Bu
ls
se
sp
pe

ai
qe
se
ye

ey
ep

Aj
UO

“U

O!
}e

90
)

UO
!}

EU
I}

Se
p

ay
}

Se
lJ
]D
ed
S

—
pl

e!
)

SS
EI
PP
Y

OA
!}

90
4j

3
Sp

je
}4

UO

ON
Iy

sU
|

o
Mm

a
et

om
oF

WBWU04
UO}}ONI}SU|

*P
8}

09
1j

e
JO

N
-S
OP
OD

UO
}}
|p
uo
D

*PJOM ® S| ezIS pueiedo

UL

“UO!I}EDO}

UO!I}EUIJSOP

OU}

O}

PeAOW

S|
198}s/6e1

sN}e}s

ey}

JO

}Ua}UOD

BY]

:UONdOSeGg

(PioM)=ezIS
_:seINquAY

<ee>'‘'ys
S
A
O
W

:xeyuksS

J
e
\
q
u
e
s
s
y

u
o
l
e
u
l
j
s
e
g
—
Y
S

:
u
o
j
e
l
e
d
g

10
}8

|6
ey

sn
jy
e}
s

ey
)

wo
s)

EA
C!

ys

w
o
]

SA
OI
N

us

wo
ld

 S
A
O
W

*suoljyesodo

8}
4Q

8J
2

YO
O

0}

1H
OF

PU
R

‘I
YO

‘I
GN
W

‘U
OI
}e
Je
do

PO
M

e
SI

YO
O

O}

JA
OW

:@
1O
N

[

wys
equ

nu
te

;
|

on

|
_w

xw
v®

n
[

eys
equ

nu
te

,
|

10
1

|

uv
e)

|

F

uys
equ

nu
66

|

oo
r

|
w
w

[

eys
equ

nu
te
,

|

wo

| +
)

F

u
y
s
e
q
u
i
n
u

86
;

|

01
0

e
S

o
e
s

[

a
e
q
u
n
a

te
r

|

oo
o

|

[
e
i
s
i
é
e
u

|

op

_

|

:U
MO
YS

SB

pe
mo

jj
e

ai
e

Se
PO
W

Bu
ls

se
sp

pe

ey
ep

A
j
u

‘p
ue
se
do

eo
sn
os

ay
}

4O

UO
!}
eD
0)

AY
}

Se
ly

Io
9e

ds

—
pl

e!
)

ss
ei
pp
Y

9A
!}
90
4)
9

Sp
je

}4

UO
}J
ON
Iy
SU
}

oL

RE

re
t

Se
b

Sip
s

s
J
B
W
I
O
4

U
O
}
}
O
N
I
}
S
U
]

‘p
ue
se
do

80
jN
0s

ay
}

JO

F
HI
G

Se

ew
es

24
}

Je
s

‘p
ue
se
do

89
0J

NO
s

ay
}

JO

0
HI

G
Se

W
e
s

9u
}

JE
S

‘p
ue
se
do

99
01

no
s

ay
}

JO

|
HI

G
Se

eW
eS

Ou

}
JE
S

‘p
ue

se
do

99
JN
Os

8u
}

JO

Z
}1

q
Se

e
e
s

Oy
}

39
S

“p
ue

se
do

98

01
NO

s
ay
}

JO
-€

}1

q
Se

Ow
es

24

}
38
S

Sioa Ae pr Zh INauiX

*SOPOD

UO}|pucd

ZN>Ox

*‘
pe
so
ub
)

s|

9}
Aq

se
dd
n

eu

‘s
ep
oo

UO
}}
|P
UO
D

84
}

8}
ep
dn

0}

pe
sn

st

a}
Aq

J
a
p
s

MO
]

By
}

Aj
UO

yN
q

‘p
so
m

ke

S!

pu
es

ed
O

Bo
iN

oO
sS

SY
]

"S
8P

OD

UO
}}
|P
UO
D

OY
}

0}

P
e
A
O
W

Ss
!

PU
eI
ed
O

ed
JN
OS

OY
}

JO

}U
G}
UO
D

EY
)

:
U
O
;
J
d
D
S
e
g

(P
IO
M)

=e
ZI
S

=

:
s
e
I
N
q
u
R
Y

Yy
O9
0'
<e
e8
>

3
A
O
W

:x
ey
uk
S

J
e
j
q
u
e
s
s
y

Y
O
O
-
9
8
9
I
N
0
S

=

:u
oj
}B
1e
dO

40
}8
|B
ey

Ep
OD

UO
}}

|P
UD

D
EY
}

0}

E
A

Y
d

0}
S
A
O
W

Y
d

0}
S
A
O
W

Reprinted by permission of Motorola, Inc.
374

[

e
y
s
e
q
u
n
e

te

|

on

|

wx
uv
n

[

eys
equ

nu
66

|

10
1

|

ww'
ste

y
|

a

[oy
seq

uin
u

or

|

c
a
e
l

PF

ey
se

qu
ne

te
r

|

uo

|
+

‘|

[

ys
eq

un
u

Be
r

|

01
0

| w
w
)

o
S

e
e

[e
gn

eq
un

u
te
r

[o
oo

|
v
a

|
[
s
i
d
e
y

|

ep
ow

|

—

wo
o

vo
y

:U
MO

YS

SB

pa
mo

j|
e

as
e

Se
po
w

Hu
ls
se
ip
pe

ey
ep

A\
UO

“P
ue
sl
ed
o

Bd
JN
Os

a4
}

JO

UO
!}

e9
0)

BY

}
Sa
lj
IO
9d
S

—
pj
el
y

ss
eu
pp
y

2A
1}
00
})
9

SP
pj
e}
4

UO
}O

NY
SU

|

0

L
4

€

v

S
s

9

H
e

8

6

OL

Lb

rg

eb

vk

GL

JB
WU

OY

UO
}O

NI
YS

U|

‘p
ue

se
do

a0
1n
os

24
}

0}

Bu
lp
io
o0
e

ja
g

~=
:s
ep
OD

UO
}}
Ip
u0
D

"p
e}
de
jj
e

av
e

J0
}s

/6
e1

sn

je
}s

ay

}
JO

S}
Iq

|/

e
pu

e
ps
om

e

S|

pu
eJ
ed
o

Bo
in
os

ey
|

“4
0}
s/
60
1

sn
je
}s

ey
}

0)

pe
Aa
ow

s}

pu
es
ed
o

ed
JN
OS

ay
}

JO

JU
a}
UO
D

ay

:u
ON
dy
OS
eq

(P
i0
M)
=e
ZI
S

 :
se
IN
qu
AY

y
s
'
<
e
e
>

3
J
A
O
W

:x
ej

uA
sS

Je

jq
ue

ss
y

‘d
VU
L

es
je

Y
S
—
2
8
9
I
N
0
S

Ue
Y}

8
7
2
}

JO
S|
AJ
Od
Ns

3
:U

uo
}}

e1
ed

O

(u
oj
yo
ns
j3
su
)

pe
be

}!
Aj

J4
)

41
6)

8|
Be

y
s
n
e
s

ey
)

0}

e
A
O
W

YS
0}

SAOWN
YS

0}
A
A
O
W

“S
8P
09

U
O
I
}
I
P
U
O
D

a4
}

Aj
UO

SS
OD

0B

0}

UO
!J
ON
IJ
SU
!

Y
O
O

W
O
’

J
A
O
W

2
}

BS
N

:e
}0
N

[
u
y
s
e
q
u
n
u

|

on
]

[
w
v
u
e
q
u
n
a

te
r

[o
r

|

_

wt
p)

|

wyz
equ

na
6e

[o
or

|

ww
i=

J
[e
yz
eq
un
a

te

[|

wo

|

+w
w

|
[e
yz
eq
un
a

te

|

oo

|
ww
)

J
[e
au
eq
un
a

te

[0
0

| v
a
]

"U
MO
YS

SE

pa
Mm
o|
|e

ae

S
e
p
o
w

Bu
ls
se
sp
pe

&
a|

qe
sa

yj
e

ey
ep

Aj
UO

‘U
O!
}E
d0
|

UO
!}

EU
N}

SE
p

ay
}

Sa
ij

!0
ed

S
—

Pj
el

y
Ss
eu
pp
Yy

aA
I}
Oe
s)
3

Sp
je
j4

UO
}O

Ny
sS

U|

10
)s
/6
0y

0
t

4
€

v
S

9
es

8

6
OF

S
E
D

UR
N

Se

J
B
U
U
I
O
F

U
O
}
J
I
N
I
}
S
U
j

*P
8}
98
jJ

JO
N

-S
OP
OD

UO
}|
pu
oD

“
P
O
M

®

SI

8Z
IS

p
u
e
s
e
d
o

BY

“U
O!
JB
90
|

UO
!}
EU
IY
SE
p

4
}

0}

P
a
A
o
W

S|

19
}s
/6
50
1

SN
}e
}s

84
}

JO

JU
e}
UO
D

oY
)

:U
uO
|d
yO
Se
q

(p
s0
M)

=e
zI

S
_:
se
IN
qu
yY

2
<b
8>
'Y
S

3A
OW

=x
Bq

uA
g

s
0
/
Q
U
W
w
e
s
s
Y
y

‘d
VY
L

as
|a

uo
}y
eU
!}
se
q

—Y
S

ue
y}

87
8\
s

JO
S|
AJ
ed
Ns

4)

:
u
o
;
e
1
e
d
O

(u
oj

jo
ns

ys
u|

pe
Be
sj
Aj
sd
)

10
)8
|B
ey

sn
ye
is

ey
)

wo
ld
)

E
A
C
!

YS

Wo
ld
} SA

OI
N

YS

wo
 JA
OW

375 Reprinted by permission of Motorola, Inc.

‘u
o|
}d
e9
xe

UO
!}
ON
J}
sS
U!

|e
Ba

l|
!

UE

es
Ne

d
sa
po
d

Ja
Y}
O

II
'V

‘(
YG

A)

10
38

!5
0y

es

eg

10
}9
eA

10
8

‘(
dS

N)

48
,U

JO
q

YO
RI
S

19
8M

00
8

"1
93
81
60
1

(
9
4
)

eP
pO

D
U
O
J
O
U
N
Y

UO
IJ
eE
UI
}S
eE
q

10
0

"1
03
81
68
1

(9
4S
)

P
O
D

UO
}}
OU
NY

e
O
u
N
0
S

00
0

10
)8

|B
ey

j
o
1
U
0
D

xe
H

"4
93
/6
01

|0
1}
U0
9

94
}

Se
lj
}o
ed
S

—
pl
e!
)

18
}s
!6
ey

JO
1}
U0
D

ue
qu
un
u

49
38
/6
8)

84
}

sa
lj
io
ed
g

—
pj
al
j

19
}s
1B
ay

*1
0}
8|
60
1

s
s
o
i
p
p
e
—
|

‘4
0\
s|
6e
1

ey
ep
—o
O

1
8
3
8
/
6
1

je
se
ue
B

yo

ad
A}

ey
}

se
ly
i9
ed
s

—

pl
at

)
gi
v

"1
9}
8|
60
1

|0
1}
U0
9

0}

10
}s
}6
e1

j
e
s
o
u
e
B
—
1

"1
9}
8|
60
1

je
19
Ue
6

0}

10
}S
|6
01

j
o
1
1
U
0
D
—
0

4O
JS
UB
I}

OY
}

JO

UO
JJ
OS
II
P

OY
}

SO
lj
Io
ed
s

—
p
e
l

up

7S
pj
e}
4

U
P
O
N

YS
U}

[e
is
io
ou

[o
n]

Tr

fo
Te
l+
]o
|

bb

ra
y

eb

vb

GL

y
B
W
0
4

U
O
}
O
N
S
U
y

49
)8
/6
0y

jO
1j

U0
D

j
e
n

e
e

B
e

e
e

al
0

‘
z

£
v

s
e
r
r
y

Z
8

6
ob

“P
8}
D8
jJ
E

JO
N

+

:S
EP
OD

UO
}N
Ip
uo
Dd

"S
01

8Z

SB

PB
S1

SJ
B

S}
1q

P
e
}
U
a
W
e
|
d
W
I
U
N

‘s
}!

q
Jo
ma
;

Y}
IM

p
e
}
U
e
W
e
;
d
w
!

eq

A
e
w

Je
}s
!6
e)

10
43

U0
9

84
}

yB
no
y)

Ue
Ae

Je
ys
Ue
J}

}I
G-
ze

B
S
A
e
M
e

S|

SI
U]

“J
0}

S!
Be

1
jo

]U
0D

pe
ii
oe
ds

84
}

0}

40
}s
!6
e1

je
s9
Ue
B

p
a
y
l
o
a
d
s

ay
}

jo

sj
ue
}U
0D

ey
}

Ad
oo

Jo

Je
\s
iB
ol

je
so

ue
B

Pe
1j

!9
ed

s
OY
}

0}

(O
Y)

J0
}s
/6
e1

j0
1}
U0
9

pe
lj
io
ed
s

98
4}

JO

s}
Ue
}U
OD

ay
}

A
d
o
g

:u
oj
yd
us
se
g

(B
u0

7)
=e

zI
g

:s
ey
nq
un
y

2y‘Uy
O
F
A
O
W

:xBqUAS
UY'9H

O
J
A
O
W

Jeiquessy

‘dAVHL ase oY —Uy JO UY —dy UEu}

a}e}s JOSIAJedNs 4, :uoje1edO

(u
oj
on
sy
su
y

pe
Be
}|
Aj
Jd
)

40
38

/B
ey

jo
1,
U0
D

e
A
O
W

J
A
A
O
W

JA
AO
IW
N

‘P
91
J8
}S
Ue
s}

Eq

0}

SI

Je
}U
IO
d

OB
IS

JO
SN

GY
}

YO
IU
M

W
O

JO

0}

Ja
}S
/6
e1

ss
ei
pp
e

ey
}

se
lj

lo
ed

g
—

pj
el

)
se

}s
IB

oy

‘1
0}
8|
60
1

ss
es
pp
e

ay
}

0}

GS
N

eu
}

Je
ys
ue
s]
—}

“d
SN

8u
}

0}

49
}s
!6
e1

ss
eu
pp
e

ey
}

1e
}s
ue
1]
—E

“J
OJ

SU
BI

}
JO

UO
!J
OO
JI
P

OY
}

Se
IJ

IO
ed

S
—

pj
el

)
IP

Sp
je

j4

uO
No
ON
As
SU
y

8

6

oL

ub

ra
y

€L

vL

SL

y
B
W
0
4

UO
}O
NI
ys
SU
]

[w
et

[»
[T
o]
+]
+]

0]

0
‘

£
v

S
9

Z

“P
E}
DO
jj
E

JO
N

=

-S
OP
OD

UO
}{
|p
uo
d

40
}8
/6
0)

ss
ou
pp
e

pe
lj

io
ed

s
OY
}

W
O
J

JO

0}

pa
ss
aj
su
es
}

J
e

Je
}U

IO
d

yO
R}
s

Je
SN

9y
}

JO

S}
UG
}U
OD

oY

:
U
O
W
d
O
S
e
g

(
6
u
0
>
)
=
e
z
I
S

:
s
e
;
n
q
u
y
y

d
S
n
‘
u
y

e
a
o
w

=x
By

uk
S

U
y
‘
d
S
N

3
A
O
W

$=

J
e
I
q
u
e
s
s
y

‘
d
V

e
s
e

d
S
n
—
u
y

10

U
y
—
d
s
n

ue
y}

8}
B}
S

JO
S!
AJ
Ed
Ns

3]

+

:
u
o
R
B
I
e
d
O

(
u
o
j
o
n
s
s
u
;

pe
Gb

e)
|A

j1
q)

JO
}U
JO
g

OB
IS

J
E
S

CA
C!

ds
n S
A
O
W

d
s
n

SA
OI
WN

Reprinted by permission of Motorola, Inc.
376

‘pesjnbes
e
B
e
w

19}s16e,

yse|
oy}

UeY}
194yB)y

Sseuppe
oUO

}e puesedo
ue

sesseoor
siy|

“spuesedo
AIOWeW

10} $1ND90
@|9AD

SNq
peel

B1}xXO UY
:@}ON

0
t

4
£

v
S

9
Z

8
6

ob
tk

ch
ch

wb
Sb

S|
e
o
U
e
p
u
o
d
s
e
j
o
D

ySewW
ay}

‘sesseippe
epow

jUueWeJDEepesd
ay}

40}
SIUM

0
‘

z
£

v
S
s

9
Z

8
6

ae
a

S
n

S
S

ST

S|
edUepUodselJ0D

YSEW
ey}

‘seSsouppe
epoW

jUSWEIDUI}sOd
ey}

40}
pue

SOPOW
[0J}UOD

JO}
Y
O

‘sNY|
‘peejysues}

eq
0} 19}S/6e1

yse]
BY}

0}
spUOdseI09

vq
yBly

eu}
‘peueysues

eq
0}

Je}S16e1
ysJ1}

OY}
0}

S
p
U
O
d
s
e
0
D

}Iq
4ep10

MO|
OU

"Pe1ejSues}
eq

0} G1e
SJe}s!/Be1

YO!YM
SEIjIOedS

—
pla!)

YSeW
IS!7

Je}s!/Bey

[
e
i

r
e
e
]

a
v
o
u
t

[
o
n

v
y

[
1
0

a
8

|
[sequin tor |

 os |
vein) —_|

[
c
e
c
a
l

a

O
s

pe
l
e
c

eld B
e

m
a
e

e
e

|

e
e

oe |
 ue

a

L
a
l

I
r
e

e
r

ee e
e

e
e
,

e
e

T
e
a

i
i

a

ee al l
b

[
—
m
s
i
t
e
u

|
 crow |

 vow epv |

[| __weifeu

|
evow |

enon pv _|
SUMOUS

SB
pemojje

ese
e
p
o
w

Bulssesppe

juewWas9U}

-
s
O
d

94}
10

s
e
p
o
w

B
u
l
s
s
e
s
p
p
e

joljU09
Ajuo

‘sueysues}
10}S/6e1

0}
AiowewW

4104

[
x
n
]

=

[
e
y
e
q
u
n
u

tes [
o
n

xcuven)
P
o
n
t
}

[uytoquinu ter [ior
|

vip)
|

o
e

e
d

a

e
e

a
e

E
r

HVOEY

Pe fh
S
E
N
S

e
e
s

Sie

M
e

=

r
y

|

T
O
s

PS F
e
l

|
 e
e
e

|

[
 uvsequnu des |

 oro
|
)

B
a
r
a

S
s

LL
|

arbooy
|

B
S
S

S
e

e
e
e

e
e

e
a
e

e
e

e
e

a

R
S
E
N
S

e
y

:UMOUS
SB

pemMo||e
ase

e
p
o
W

Bulssasppe

jUsWaJDepeid
ay}

JO
s
e
p
o
w

Bulssesppe
sjqeie}je

josjUOD
Ajuo

‘siajysues}
A
J
o
W
e
W

0}
J9}s!Be1

104
“‘peaow

eq
0}

ae
sia}siBos

ey}
UDIUM

WOdj
JO

0}
sseJppe

A
J
O
W
e
W

ey}
sejioeds

—
pjalj

SSeIPpy
9AI}904j3

‘s0ysues}
B
u
o
j
—
 1

*49jSUBI]
P
I
O
M
—
O

:peiseysues}
Bujeq

si9}si6e1
ey}

JO ezIs
ay)

SeljI9edsS
—

piel}
ZS

490}S|601
0}
i
o
w
e
w
—
|

‘
M
o
w
e
w

0} 190}s/6e1—9

UOJSUBI}
OY}

JO
UO!JOOIIP

BY}
SEIjIOedS

—
Pel)

JP

‘Spje}4 uojonsysuj

$J0}s/6ey
edninyw

e
a
o
w

W
S
A
A
O
W

W
S
A
A
O
W

ySeW
3817

10)s/]Boy

0
Ls

4
£

v
Ob

uk
6h

C
S

1JBWIOY
UO}JONISU|

“PE}OEjje
JON

-SEPOD
UO}}}PUoD

*(p 10
Z) yyGua]

p
u
e
s
e
d
o

oy}

Snid
pepeo]

P
s
o
m

jse]
84}

JO SSeJppe
4
}

U/e}UOD

0}
payepdn

si 19}s!601
sseuppe

pe}UsWesSU!
O
Y

‘Bulssouppe

@
P
O
W

[01}U0D

ely} JO}
Se

B
W
e
S

Oy}

S! BuIPeO|
Jo JepsO

ay!
‘Sessoippe

JeyB!y
YBnoiy}

dn
pue

sseippe
palsjoeds

eu}
ye

Bulyeys
p
a
p
e

aie
siajsiHei

ey)
“pemojse

s!
UO!}

-esado
10}S1691

0} A
i
o
w
e
w

e Aju0
‘apoOW

JUEW9J9U!}SOd
94}

S! SSEIPPE
9A!}99jj9

OU}
3}

*Pp2J0}S
PJOM

jSe|
8y}

JO
SSouppe

a4}
Ule}UOD

0}
payepdn

s| J9}s1591
sseuppe

pejusWel0EpP
OY]

“0 493s|69)

e}ep
0}

2
10}s|601

eyep
W
o
y

UsY}
‘O J0}s!6e1

sseuppe
0}

2
19}S!1501

sseuppe
Wooly

*

s!
Bulso}s

$0
JepsO

OY]
‘Sesseuppe

J8MO|
YBNoJY}

U
M
O
P

pue

(y JO
Z) YyyHua|

p
u
e
s
e
d
o

ay}
Snulw

ssesppe
paljioeds

ey}
3e Bulye}s

posojs
ave

sid}siHe
ay)

‘peMmojje
S! UO!)

-eiado
A
i
o
w
e
w

0} J9}s!6e,
& Aju0

‘
a
p
o
w

J
U
s
W
a
J
0
E
p
e
l
d

94}
S! SSOIPPE

GAI}99jjO
OU}

|

-1 10)81601
Sseuppe

0} Q 40}s}6e1
sseuppe

W
o
}

UEY}

‘7 J0}s|6eJ
eyep

0}
C J9}s|Bei

eyeEp
WOJ}

S|
JeysUeJ}

JO
JepPIO

EYL
“Sesseippe

seYy6)y
YBnoy)

dn
pue

ssaippe
peljjoeds

oy}
ye

G
u
l
e
s

pejejsues
ove

sieysiGe1
ey}

‘sepow
|01}U0D

94}
JO U

O

U! S| SSEIpPpe
OAI}OOjJO

OY)
4] “

P
O
W

JUeWAJOUI}SOd

ey}
JO

‘epow
jUeWeJOepeid

OU} ‘SePOW
[01}U0D

EY}
:sepOW

SSeIpPpe
JO S

W
I
)

BedY}

SMO||2
W
I
A
O
W

10}S|601
peyejoosse

eu}
O}U!

pepeo|

p
i
o
m

6uo}

Buijjnses
ey}

pue
(ssojs}6e1

eyep
Bulpnjoul)

syiq
Ze

0}
pepue}xe-uBIs

s!

pJOM
Y
e
e

‘S19}S/601
94}

0} JOJSUBJ}
PIOM

B JO BSED
SY}

U| ‘PJOM
JOPJO

MO}
84}

YSN[JO

Perous
eq

UBD
PJOM

BuO]
611}Ue

OY}
JEUI0

‘pessejsUBJ}
S! 10}S}6e1

YOes
yo Y

O
N
W

M
O
Y

$]09/8S
UO}JONAJSU!

OU]
“*Pjel} Y

S
e
W

OU}

U! JOS
S} 10}S!6e2

yeYY
0} B

u
l
p
u
o
d
s
e
s
0
d

31g eyy

}| pe1eysued}
S| 10}S/6e1

y
“Sseuppe

9Al}OajJ9
94)

Aq palj!9eds
UO}}E90|

O43
ye Bulpe}s

$UO!}ED0|
L
O
W
E
W

BA!}NO@SUOD

W
O
4

JO 0} PelsEjSUBJ}

A
e

S19}S!Be1

payOejeg
:
u
o
;
d
y
O
S
e
g

(Buo7
‘piom)=ezIS

=
 :seINquRY

ys}|
1
0
}
s
|
6
e
1
‘
<
e
9
 >
 W
I
A
O
W

:xeyuhs

<ee>‘}s||
1938/60)

W
A
A
O
W

J
e
i
q
u
e
s
s
y

siejsi6ey
—

e
o
u
n
0
S

uojyeujjsog
—

siejsiBey
 :uojjesedo

$10}s/Bey edijinw eAow

W
S
A
A
O
W

WSAAOWN

377
Reprinted by permission of Motorola, Inc.

‘ssauppe pueiedo oy}

Buyejnojeo

ul

pasn

si

yoIuMm

jUsWEDRIdSIP

OY}

SeIJIDedSs

—

pel}

JUBWSOR\|dSIG

‘apow

Bulsseippe

juswaoejdsip

snjd

jooulpul

19}s!601

ssouppe

ey}

Ul
pesn

si
Yo!yM

Ja}s16e1

Sseuppe

ay}

Saljioeds

—

pjoalj

sa}siBey

sseuppy

“Kiowew

0}

18}s16e1

wo

Buo}

saysuesj3—

1
4

‘MiOWewW

0}

18}816a)

WOsy

PJOM

JOJSUBI}—OLL

49}S81!6e1

0}

Aowew

wos

Guo}

sejsues}—LOL

40181601

0}

AIoWeW

WOJj

PJOM

JE}SUeIJ—OOL

su0}}e18dO

Uy}

JO

8ZIS

Puke

UO!}OIIP

BY}

SOIyINedS

—

Pla!)

sPOW-doO

*peisejsuel}

aq

0}

SI
eyep

oy}

‘yorum

WOJj

JO

0}

10}Ss|6a1

yep

OU}

Saljloads

—

pjalj

soysIBay

eyeg

sSpjel4

Uo}JONI}sU]

queweoedsig

4a
}s
16
0

a
l
e
s

A
S
I
A

a
a
e
i
d

o
p

o
m
a
r

l
a

L
t

B
e
g

ra
y

ssauppy

€L vb

0
9

Z
8

6
ob

ott

p
e
u
0
4

o
n
n
s
u

"pa}99jje
JON

:SePOD
UO!IpUdD

2}eQq
jeseydiieg

S
A
O
W

d
S
A
O
W

d
S
A
O
W
N

a eget 7 as ae 0 Z 8 Gt

(do} }e sseuppe moj) Aowew u! UO!}ezZ}UeBIO a}Ag

ae en ee ie

St OL £2 v2

40}s|6e1 uy uolyezjueBI0 ayAg

“SSOJPPe PpO Ue WOdJ/O} 18}SUBI} PION ‘:ejdwWwexy

g
o

A

a

E
S

=
<

e
S

ah

ST
EP

en

Oe

|
0

fs

8
St

(do} }e sseuppe moj) AIowew u! UO!}ezjUeBIO a}Ag

e
e

e
e

ve
m St OL £2 ve

49}s1602
ul

uol}ezIUeBIO
a}Ag

“sSouppe
UaAe

UB
WOdj/0}

Ja}SUe1}
B
u
O
7

:ajdwexy

‘a}Aq

JayjO
Aland

S
a
s
s
e
d
d
e

||1}S
UO!}ONI}SU!

BU}
‘SNq

}1G-ZE
10

-g UB
U
G

“SNq

e}ep
au}

jo sjeY

J@PsO
MO]

94}
UO

E
P
e
W

a
e

sidjsued}

OU}
|/e ‘PPO

S| SSeuppe
Oy}

j! ‘sng
e}yep

ay}
JO 4) ey

Japso
yBiy

ay}
UO

apeWw
aie

SJajsuUes}
BY}

|/e ‘USAB
S| SSouppe

Oy}
J] “SNq

eyep
}1G-91

e

UO
SjeJoUdiied

319-9 Y
I
M

410M

0} pauBlsep
Ss! UO!}ONJ}SsU!

SIU)
“epOW

Bulsseuppe
yuew

-80e8/dSIP
314-91

SNid
}OesIpU!

J8)S1601
ssouppe

ay}
Buisn

paljioeds
si ssouppe

A
i
o
w
a
w

ay]
“}Se|

pese}Sues}
S|

9}Aq
JOpJO

MO}
BY}

PUe
}SJ11j

P
o
e
J
s
U
e
I
}

Ss!
19}s16e)

eyep
8U}

$0 8}Aq
Japso

YBiy
ey,

‘omy
Aq BuljUawWaJOU!

puke
paljioads

UO!}e90|
9y}

Je Bulpeys

‘
K
I
O
W
A
W

JO Se}Aq

a}eUJE}/e
Puke

J9}S!He1
eyeEp

e U
B
a
M
j
e
q

PeiJejsuUeI}
S| J

E
G

:
u
o
N
d
u
D
s
e
g

(B
u0

7
‘p

io
m)

=e
zI

S
=

:s
eI
Nq
Un
Y

xa
(A
y'
P)

d
a
A
O
W

:x
ey
uh
s

(A
y'

P)
'x

Q
d
3
A
O
W

=

Je
]q

uw
es

sy

u
o
l
j
e
u
l
s
e
g

—
8ouno0sg

=
 :uoy,B18dO

8}eqQ |eieydieg eAOW

d3AOWN d3AOW

Reprinted by permission of Motorola, Inc. 378

suUMOYs

se

pamojje

aie

sepow

Bulssesppe

Aiowaw

2/qQeJ9}/e

Aju

‘“eoeds

sseippe

9}eUI9}/e

8U}
UIUJM

UO!}EOO]
UOI}EUI}SEP

JO
BOINOS

OY}
SEIjIOEdS

—
Plo!)

SSOIPPY
8A!}09}j3

-uolyesedo.
B
u
o
j
—
O
L

‘uolyesedo
P
i
O
m
M
—
1
0

‘uolyesado
a
}
A
Q
—
0
0

:U01}B19dO
OY}

JO OZIS
94}

SAIjIOedS
—

PIS}
8ZI1S

:Spje}4
UO}JONIYSU|

[
o
T
o
T
o
f
o
f
~
o
l
o
f
o
J
f
o
f
o
f
o
f
o
]
#
»
]

«
s
e
u

lav |

S
9

Z
g

6

sselppy 2AN}9e}3

‘lil

ek

en

CL

y
B
W
0
4

UO}ONISU}

"paj0e}je
JON

:SOPOD
UO}}|PU0D

ya}s!6e1

ssojppe
jeu}

O}U!
pepeo|

ueY}
puUe

s}Iq
Ze

0}
pepue}xe-uBIs

s}
puesedo

9d1noS

ay}
‘19}s16es

ssesppe
ue

Ss!
UO!}eEUI]Sep

ey}
3]

Je}s!He1
eyEp

yey}
JO

S}1q
J9PJO-MO}

B
u
i
p
u
o
d
s
e
0
9

8
}

seoejdes

p
u
e
s
e
d
o

aounos

ay}
‘19}s/6a1

eyep
e

S| U
O
J
}
E
U
I
S
E
P

84}

4]

“490}s|Bo1

e
s
q
u
e

paljjoeds
94}

0}
10}s|Be1

(04S)
e
p
O
d

UO}}OUN)

BdINOS
BU}

A
q

peijjoeds.

a
o
e
d
s

S
S
O
J
P
P
e

OY}

UJY}IM
UO!}ED0|

&
WOsy

p
u
e
s
E
d
O

Bud|

10
‘piom

‘a}{q
94}

B
A
O
W

“IC “19}S!16e1

(94q)
epoo

uo}jouN;
UO!eU!}Sep

ay}
Aq peljioeds

adeds
SSoIpPPe

OY}
U!Y}|M

UO!JEO|
&

0} 1918161
jesoueB

p
a
t
j
o
e
d
s

ey}

W
o
)

p
u
e
l
e
d
o

Bud]

10
‘piom

‘a}Aq
ay}

G
A
O
W

:uoH}dy9Sseq

(Buo7
‘pion

‘914g)=eZzIS
=
 :-seINqURY

u
y
'
<
e
8
>

S
J
A
O
W

:xeyuhs

<
e
e
>
‘
U
y

S
S
A
O
W

Jeiquessy

‘
d
V

e
s
e

uy —[94S]
894N0S

Jo [94g]
Vo!

eUul}seq —Uy
UEyy

ayejs
s
0
s
i
s
e
d
n
s

4}
+
 :u
o
j
e
s
e
d
Q

(uonjonsjsuy
peBey!Alid)

eoeds
sseippy

eAow
S
3
A
O
W
N

S
S
A
O
W

‘puesado
Buo|

&
0}

papue}xe
uBls

ale
Yo!YyM

eyep
40

S}I1q
g

—
Pal}

E
Q

‘papeo|
oq

0}
Je}s!6e1

eyep
oy}

Saljloeds
—

play
49)Ss!1504

‘SPje}4
UO}}ONI}SU},

f
a
t
t
t
o
e
i
2

|
v
 f
o
 21

z

€L
vk

GL

yBWI04
UO}}ONASU]

[
e
o

itenet anil to
rinstoeriton

0

L
4

€
v

S

9
é

8

6

OL
L t ‘p2}D9j}jF

JON
‘pouealo

S
A
e
M
I
Y

‘paieajo
s
A
e
m
i
y

‘QSIMJOUJO
POIE9|D

“O19Z
SI }/NSE1

OU}
$! JES

“@SIMIOUJO
Palea[O

“sAl}eGHou
S|

}/NSO
9Y}

J! 18S

Sie
An

nz
w
x

:$@POD
UO}}|PUoD

< ZN>O

‘1911601
eyeEp

OU}
0}

paieysues}
Be

S}Iq
ZE

j/e pue
puesedo

Buo|
& 0} pepus)xe-uB|s

s| B}ep
O
Y

“POM

UO!JeJEdO
OY}

UIYIIM
Pll}

J1G-g
Ue

U! peUlejUoD
s} eJep

eY|
“10)S/6e1

eJep
e O} EJeP

oje/powW!
BACW

-uoNdYOSeq

(Buo7)=ezIg
=
 :seyNquny

uq'<ejep>#
O
J
A
O
W

:xeyukg J
e
j
q
u
e
s
s
y

u
o
l
e
u
l
s
e
g

—
eyeq

e
y
e
l
p
e
w
w
;

:
u
o
e
s
e
d
O
Q

YOIND
e
A
C
W

O
S
A
O
W

O
A
J
A
O
W

379
Reprinted by permission of Motorola, Inc.

ae ee

a |

o
e

t
t

e
t
e

|

L
l

E
i

C
o

See ee ee

|

sesiseu

|

pom

|

epom

ppv

|

uy
ue

qu
nu

66

|

on

| —w
xu

vn
)

—]

F

o
y
s
e
q
u
e
u
6
e
r

|

so
s

|

wv
8t
e)

[w
yu
eq
un
u

Ge
,

| oo
r

|

ww
=

|
Fu

ys
eq

un
u

te

|
wo

+

|
F

uys
equ

nu
Be
s

[
w
w

aa wee fT cate

|__ oro __| ae

|__000

|

ep
ow

|

ep
ow

sp
y

|

[waseauna er |

1U
MO
YU
S

SB

pe
Mo

l|
e

oe

SO
pO

W
Bu

ls
se

up
pe

ey
ep

Aj
UQ

‘p
ue
sa
do

ao
un
os

ay
}

sa
lj
lo
ed
s

—
pl

e!
)

ss
eu
pp
y

eA
l}

0e
4)

9
“u
o}
}B
UI
}S
Ep

ey
}

Se
lj
lo
ed
s

sA
em
ie

pi
al
)

S!
y)

“s
19
}s
!6
01

ey
ep

a4
}

Jo

aU
O

Sa
lj
Io
ad
s

—
pj
el
)

19
0}
S/
Be
y

40
}s
16
ey

0 t z £ v

Ss
po
w

SS
OJ
PP
Y

9A
1}
98
})
3

S
9

Z
8

"@SIMJOYJO POJEO|D “MO}JJOAO 41 }8S

“@SIMJOUJO

PeleE|D

‘019Z

S|
}/NSeJ

BY}

4!
1ES

“@SIMJOUJO

Pelea|D

“eAlyeBou

Ss}
}jNSe1

au}

J!
eS

:Spjo}4 UO}ONAysSU}

uq

49)s1Bey <

6

oL

(Ye 4 ee oY Feo GL

s}BUNO4 UO}}INI}SU]

‘pejoeyje JON

‘paseajo

sAemiV

ZN>OXx

ey at a's as at

re)

A

Zz

N

xX

*SOPOD UO}}|PU0D

‘yaisiBei
eyep

UO!}EUI}SEp
ay}

U!
PeAesS

aie
JONPOId

aU}
4O

S}iq
ZE

||'v
‘Pesnun

s! P
o
m

J
a
d
d
n

ay}
‘psom
18psO
MO|
BU}
WOJj
UEye}
S|
P
U
B
J
a
d
O

J9}s!5e)
y

‘
p
U
e
J
e
d
O

P
O
M

Buoj
si
1)NSe1
ay}
p
u
e

s
p
u
e
I
e
d
O

p
i
O
M

YjOg
a
e

puUed|di}jnW
p
u
e

Jaljdijjnw
o
u
l

‘olewyY We peuBis Buisn pawsojied
S|

uo}}e1edo
aul

“}jNse1
peuBls

e
BuipjaiA

s
p
u
e
s
e
d
o

pauBbis
om}

Ajdiyinw
:
u
o
n
d
y
o
s
e
g

c
E
—
9
L

X OL

(P1OM) = 98ZIS_ :seINquY :xBeyuds

Jejquessy

ud’ <
e
e
>
S
I
n
W

uolyeulseg
—uOo!}eUI}seq,e01JNOS

:uo}BIedO

STNIN

Ai
dn
in
w

pe
uB

bl
s

STNIN

*S
8D

IA
BP

94

JN
}N

}
UO

J
e
a
d
d
e

jo
u

A
B
W

UO
!}

-e

ju
aW

a|
dW

!
SI

U]

“U
Y

JO

BN
|e
A

p
a
j
U
s
W
A
I
D
E
P

Bu
}

JO

p
a
}
u
s
W
a
J
O
U
!

au
}

S|

P9
JO
}S

ON
|e

A
aU
}

‘S
UO

I}
E}

UB
WA

|d
LU

!
O
Z
O
S
I
O
W

P
U

O
L
O
S
9
O
W

24
}

U
O

A
L
O
N

Reprinted by permission of Motorola, Inc.

‘p
eu

lj
ap

un

s|

A
i
o
w
e
W

U!

pe
s0
}s

eN
je

A
aU
,

‘U
O!

}e
E1

ed
O

pe
ul
je
pu
N

ue

S!

pu
e

UO
!}

eU
I}

se
p

Pu
e

Bd
JN
OS

Yj
}O

g
JO
}

19
}s

|B
e

ss
es
pp
e

sw
We
s

ou
}

Ss!

UY

e1
0U
M

(uy) —
‘uy

x
'
S
3
A
O
W

JO

+ (uy)‘Uy
x S
S
A
O
W

*<ee> 0} 10}S1/Be) jesoUeB Woly—] 1018/6501 jesoUeB 0} <ee> WOl—O
J8JSUBI] BY} JO UOIJO@IIP BY} SeljIOedS — pjelj up

“yequinu

J9}s!6es

ay}

seljloeds

—

pjelj

1e}s|Bey

10}S1691

ssouppe—

1 10}s|601 eyep—o
49381691 jes0ueB yo adA} Oy} SaljIoedS — pels C/V

[a
ys
eq
un
u

te
:

|
on

[|

_w
xu
vn
)

|
uy
se
qu
nu

te
r

|

io
r

|
ov
en

_|

T

u
y
s
e
q
w
n
u

60

|

oo
t

|

F
u
y
s
e
q
u
n
y

66
,

|

11
0

|

F uysequnu 80, |

(uononsysu; peBejAlid)

eoeds

sseippy

sao;

380

Tayequn ter] on
|

wut
Fuysequnu se, | sor |

vie) |
Fuysequnu te, | oor |

wwi- |

P
u
y
u
e
q
u
n
6
e

|
 no |

+
o

o
v
s
e
a
u
n
u

Ber | 010 |

c
s

n
e
e

[ugsequna6er_|
000
<
—
-

POW
“IPPY

!UMOUS
SB

peMojje
ae

Sepow
Bulsselp

-pe aiqeseye
eyep

AjUD
‘puesedo

UO}}eEUI}SEp
ay}

SaljIoeds
—

pla!
SSeuppY

eAI}994)5
Spje}4

UO}ONIysSU]

40}8|Bey

O
°

bh
Z

©. G
e
l

's> rode

ztytons
ce Owoltoecy:

ocr yerch Aceleresy
:JBUWO4

UO}ONI}SU]

*suol!}esedo
uolsjoeld

9jdijjnw

JO U
O
}
}
9
|
d
W
O
d

U
O
d
N

s}jnseJ

01aZ
J0j S}S9}

|N}JSSEDONS
SMO||e

S
Y
]

“UO!}e1EdO

Ue

JO
Ye}s

9u}
G10J9q

B
u
;
w
w
e
i
B
o
l
d

BIA
Jes

S! }1q
B
P
O
D

UO}}!PUOD

Z
 OY}

A
j
j
E
W
I
O
N

S
.
L
O
N
 “iq

Auseo
ey}

Se
OWES

Oy}
18S

“@SIMIOUIO
Pesee|D

‘peyesoueB
sem

(jeWIDap)
M
O
O

B
 J! }8S

“‘peuljepuy
“aSIMJaujO

peBueYoUN
‘o18z-UOU

SI }/NSeJ
EY}

4! pelee|D
‘pauljepun

reap a
n
e
s
.

pan |

|

9
A

Zz
N

x

:$@pPOD
UO}}|pu0D

ZN>O%X

“hjuo
uolyesedo

9}Aq
& S|} Siy)

“Jes

S| Iq
pua}Xe

2
}

J) JUeWA|dWOD
s
e
u

OY}
‘JEEJO

S| }1q
PUA}XS

AY}
j! UOI}EUI}SEP

oy}

JO JUaWe|dWOO
sue}

ey} SeONposd
UO!}ONJJSU!

SIY{
“UOI}E90]

UOI|JEUI}SEP
OY)

U| Peres
$1} }/NSeJ

eUy
‘
O
;
e
W
Y
I
e

;eWIOep

Bulsn
pewojJed

s! UO}}eJedO
ay]

“018Z
W
J
)

P9}9EJ}

-qns
aJe

Iq
pua}xe

ay}
pue

UO!}eUI]Sep
ay}

se
pessesppe

p
u
e
e
d
o

ey)
:uo)dyOSeq

(e}4g)=ezIS
:se;nqunY

<
e
e
>

G
O
G
N

:xequds Jojquessy

u
o
l
e
u
l
j
s
e
g

—
xX

—
O
l
u
o
i
e
u
j
j
s
e
g

—
9

:uojjesedQ

pue}xy
y
m

jewjoeg

e
e
b
e
n

GOdNn
GOdNn

Tayequm te]
on

|
oxen)

|
Puvsequnw te | ior |

uve)
|

Payseunu te | oor |
ow

|
Puyequnu se [

u
o

|
+

F
u
y
s
e
q
w
n
u
t
e

|
 o
o
 |

ow)

TS a
e

ae a
e

Puqvequne te | ooo | v
o

[
_
s
e
i
s
i
f
o
u

|
 open |

 oPow amp |

:UMOUS
SB

pEeMoj|e
ase

SepOW
Buisseuppe

eyep
AjuE

‘puesedo
eoinos

oy}
SeljIoeds

—
pial)

SSeuppY
8AI}990})3

“uol}eul}Sep
au}

seljioeds
s
h
e
m
e

pjal}
Siys

*s19}s!6e1
eyep

ayy
JO aUO

Salj!DedS
—

Plats
1a}s/Hey

*
S
p
j
e
l
4

U
O
}
J
O
N
I
Y
S
U
]

49)s|Bey
e
p
o
w

ug
;

SSOJPPY
9A}}90})3

40}s/60y

o
O

b
k

2
€
°
F

S
L
O

L
e

8
6

Ob
p
t
l
p
r
t
i
n
c
l
a
.
r
l
-
s
i

s
}
B
U
W
I
O
4

U
O
!
J
O
N
I
}
S
U
|

“"peyoejje
JON

‘pesesjo
s
A
e
M
I
Y

"@SIMJOUJO
POJBE|D

“MOJJIOAO
f! JOS

*@SIMIJOUJO
PAle9|D

“OJ9Z
S| }|NSE1

OY}
4}! 8

S

*@SIMJOUJO
palea|D

‘eAlyeBou
Ss! 1INSeJ

94}
4! 18S

E
S
F
S
a
r
a
r
a
r
s

ce)
A

z
N

x

:S$@POD
UO}}|PuoD

ZN>OX

‘10181501
Byep

UO!}EUI}SEP
9
}

Ul PeAeS
ae

JONPOId
9u}

JO
S}Iq

ZE
|v

‘pesnun
si

p10M
Jeddn

8y}
‘psOM

Japs
MO}

94}
W
O
)

UBye}

S| PUBIEdO
J9}s1601

y“pueJedo
PioM Guo]

& s!
1)NSe1
94}
pue
SpueJedo
pJOM
Yj}Og
ae
pUedI|dI}jnwW
pue
Jeljdijnw
ey,

‘
o
l
e
w
y
y
e

p
e
u
B
i
s
u
n

Bu
is

n
p
e
w
o
j
i
e
d

s}

uo
l}
es
9d
o

oy
,

"}
jN
Se
1

p
e
u
B
i
s
u
n

e
Bu
ip
ja
iA

s
p
u
e
s
e
d
o

p
e
u
B
i
s
u
n

om
}

Aj
di

jj
ny

w
:
u
o
y
d
y
o
s
e
g

(
P
O
M
)

=
e
Z
I
S

:
s
e
I
N
q
u
y

ze-91L X 9b
ug‘<ee>sinw

:xequhs
Jejquwessy

uo
ly

eu
l}

se
g

—U
O}
}e
UI
}S
eq
,e
01
NO
S

:u
o}
eZ
ed
O

Aidninw peubisun

N
I
N
N

N
I
N
N

381
Reprinted by permission of Motorola, Inc.

F

o
y
s
e
q
u
m
t
e
r

|

o
n

[
a
w

__
|

Fu
ys

eq
un

u
se

r
|

wo

| +o

p
p
e
n
s
e
u
e
r
s

f
u
e

t
e

e
e

e
e
t

e
e

[—
ev
0n

|

#9
00

29

0¥

:UMOUS SB pemol|e ase Sepow Bulsseip

-pe

9jqesojye

eyep

AjUG

‘puesedo

uO!}eUI}sEp

aU}

SaljIoeds

—

pjaly

SSeuppYy

9AI}9E4)9

‘uolyes9do Buoj—oL

‘uol}es9do

PlOM—1L0

‘uolyesedo

9}Aq—00

“u0!1}eJ0dO

9}

JO

9ZIS

BY}

SAljIOedS

—

Pjelj

EZIS

ISpjel4

UO}onNsysuU|

OL
tb

ray
el

vl
St

y
e
W
O
4

UONONysSU|

0
‘

4
£

v
S

9
Z

8
6

*suol}esedo
uols!oesd-9}d1};NW

JO UO1}a|dWODd
UOdN

$}jNsaJ
019Z

10} S}S9}
|NJSSBDONS

SMOj|e
S|y]

“UO!}eIEdO
Ue

JO
Y
e
s

9y}

GIOjeq
B
u
l
w
w
e
s
G
o
l
d

eIA
JES

SI }1Gq B
P
O

UO!}IPUOD

Z 94}
Aj/EWION

3
L
O
N

“y1q
Auseo

04}
SW

O
W
E
S

94}
}9S

“@SIMJOU}O
Pale9/D

"payesoueb
si M

O
1
0
Q

®
j! JOS

"@SIMIBU}O
Pelea|D

“‘pa}yeidueB
Ss! MO|JJOAO

UP
j! 8

S

“asimsaujO
p
e
B
u
e
y
o
u
N

‘O1eZ-UOU
SI

}jNSe/
By}

J! Pelea|D

*@SIMJOUJO
Palea|D

“eai}yeBau
si} }jNSeJ

ay}
41 }eS

C
A

Z
N

|X
:S@POD

UO}}I|PUOD

ZN>Ox

*Buoj
10

‘piom
‘a}Aq

aq
0}

paljioads
oq

A
e
w

uol}e1edo

8
}

JO
OZIS

O
Y
J

“UO!}EDO]

UO!}EUI}SOP
OY}

U!
PeJO}S

S!
}/NSe1

BY
“O18Z

W
O
}

Pa}oeI}

-qns
9Je

}Iq
Pue}xe

Ou}
PUe

UO!}eEUI]Sep
ey}

Se
p
e
s
s
e
i
p
p
e

pueJedoO
ay,

:uO}WdUOSeg

(Buo7
‘
p
o
m

‘8}4g)=2eZIS

=
 :se;NquyYy

<
e
e
>

X
I
N

:xeyuhs J
e
j
q
u
e
s
s
y

u
o
n
e
u
n
s
e
g
—
X
—
u
o
l
}
e
U
I
]
s
e
g
—
Q

:
u
o
e
1
e
d
O

pue}x3
yam

eye6en
X
S
A
N

X
S
A
N

(ux‘uy'8p)

C
u
v
s
e
q
u
n
u

Ge: [o
n
]

uysequnu
te:
|

[

uyequnu
or
|

uysequnu
or

F wysequnu 86. |

Cae

:UMOYUS SB PEMO||e ie Sepow Bulsseip
“pe a1qes9}/e e}ep AjUC ‘puesedo UO!}eUN}SEp 94} SelsIOedg — pla!) sseupply eAI}OES)Z

‘uojyesodo
B
u
o
j
—
o
L

‘uolyesedo
psiomM—10

"uol|}esedo
8
}
A
q
—
0
0

“uol}e1edO
Oy}

JO
aZIS

ay}
SaIjIOedS

—

Pal}
eZIS

:Spjej4
Uo}ONI3SU]

0
t

z
€

v
S

9
Z

8
6

oL

b
e
c
k

Pe

Fh

PS
E

}
B
W
I
0
4

U
O
}
}
I
N
I
}
S
U
|

‘yWq Auseo au} se owes 9} 18S

“@
SI
MI
AU
JO

JO
S

°0
J8
Z

SI

}/
NS
E

Au
}

4}!

pa
se

e|
D

*@
SI
MJ
OY
JO

Pe
se

e|
D

‘p
e}

es
eU

EB

S!

MO
IJ

IO
AO

UP

j!

18
S

"@
S|

IM
JO

YJ
O

PE
se

E|
D

*O
J9
Z

SI!

}/
NS
E1

84
}

}1

38
S

"@
S|
MI
BU
JO

pa
le

a|
D

“a
al

je
Bo

u
SI

}/
NS
eJ

BU
)

J!

18
S

O
R
A
L

N
a
e

:S@POd
U
O
H
I
P
U
o
d

ZN>OXx

“‘
Bu

o]

J0

‘
p
o
m

‘a
}A
q

aq

0}

pa
lj

io
ed

s
eq

A
e
w

uo
jl
je
se
do

oy
}

jO

9Z
IS

B
Y
]

“U
O!

}e
ED

0|

UO
!}
eE
UI
}S
ep

9y
}

U!
]

Pa
JO
}S

Ss
!

}j
NS

OJ

a
y
]

“0
19
Z

WO
l}

P
a
}
O
e
J
}
Q
N
S

S|

UO
!}

eU
I}

Se
p

ey
}

Se

p
e
s
s
o
i
p
p
e

p
u
B
J
e
d
O

a
y
)

:
u
O
W
W
d
O
S
e
g

(Buo7 ‘pio ‘ei4g)=ezIS = _-:seINquY

<
e
e
>

5
3
N

:xeyUuAS

J
o
/
Q
u
e
s
s
y

uo
lj
ye
ul
js
eg

—
uo

ln
eu

ij
se

g
—

Q
-:

uo
le

le
do

e}eben

J
A
N

J
A
N

Reprinted by permission of Motorola, Inc. 382

(ux'da‘8P)

B
C

P
a
t
e
)
 |

eysequnu
0s |

wy tp)

e
s

e
e
 e
e

[
o
w
 |

e
e

e
e
 e
e

[
o
w

a

a

ae
[ee

ae [aarequne

Bor 10)8/60y

c
v
i
e
q
u
n
u

ter |
 010 |

[UMOUS
SB

pemMol|e
aie

s
a
p
o
w

Bulssesp

-pe
ajqesayje

eyep
A
j
U
G

‘puesedo

uOl}eUI}Sep
94}

SaljIOedS
—

pjal}
S
S
a
I
p
p
Y

9A1}90}43

‘uol}esodo
Buoj—olL

‘uolyesedo
p
J
O
M
—
1
L
0

“uolyesado
3
}
A
q
—
0
0

*uol}es9dO
Au}

JO
OZIS

BY}
SalyIOedS

—
PIalj

ezIS
‘SPjel4

U
O
N
o
N
I
y
s
U

0

t
@

[

v
S

9

V
E

8

6

OL
tb

a

et
vt

GL

yeWI04
UO}ONySU}

“"P2}98}j;e
JON

‘paleajo
sAemMIV

‘poseajo
s
k
e
m
i
y

*@SIMJOYJO
PAJBa|D

“019Z
S!

}/NSEJ
BY}

4! }ES

*@SIMJOUJO
pesee|D

“aAlyeBou
si} }j/NSe1

8U}
4! 18S

foe [
e
e
e

e
a
e

|

re)
A

iz
N

x
*SOPOD UO}}|PU0D

ZN>OX

*Buo|
10

‘piom
‘a}Aq

aq
0}

peljloeds
eq

A
e
w

UO!}eJedO

Oy}
JO OZIS

BY
“UO|}BOO|

UO!}eUI}SEp
94}

U! Pe10}S

S! }|NS@J
ay}

pue
UEeye}

S| pueJEdoO
UO!}eUI}SEeP

AY}
JO S

}
U
e
W
E
e
/
d
W
O
D

SeuO

BY)
:ud)ydy9Seq

(6u07
‘
p
o
m

‘9}4g)=eZIS

=
 :se;NqUYY

<
e
e
>

I
O
N

:xeyuhs

J
e
j
q
u
e
s
s
y

uoljyeuljseg
—

uolyeuljseg
~

 :uo}B1edO

y
u
e
w
e
j
d
w
o
s

je2|607

L
O
N

L
O
N

p
e
e

Tie eae atte bite) 0

 pet tl
 eal ahtintasl O

s
 m
s
 a
n
e

OL
Eby»

She
b
-
 Shs

etioaeSt

*JBWUOY UO]JONIYSU]

“P8}08jje
JON

+
 :SePOD

U
O
}
p
u
o
D

*deis8ao
uo!}ONI}SU}

S}UeAeId

pue
‘peysi|dwoooe

aq
0} euljedid

ey}
Jo UOI}eZI/UOIYOUAS

SMOJ|e
SIU]

P
E
}
O
|
d
W
O
d

ele

$e|9A0
snq

Bulpued
jJe |1}UN

UOJJNDexe
eJe;dWODd

JOU
SeOP

UO}}ONIISU!
G
O
N

SUL

“UO!}

-ONJISU!
G
O
N

24}

Buymojjo}
UO}JONIYSU!

OY}
Y}IM

SONUJJUOD
UOJ}NDEXy

“peyoejjeuN
Ss}

‘ya}UN09
WesBOJd

OU}
UBY}

JEU}O
‘e}e}S

JOSSeD0/d
EU

*SINDDO
UO}}EJEd0

O
N

:
U
O
;
d
O
S
e
g

pe
zi
su
n

-
s
e
y
n
q
u
n
y

d
O
N

sx
ey
uh
s

J
e
j
q
u
e
s
s
y

Q
U
O
N

 :u0;BsedO

uoje1ed¢ ON

d
O
N

d
O
N

383
Reprinted by permission of Motorola, Inc.

‘U
OH

JO
UI

}S
IP

SI

Y}

ey
eW

Aj
je
o!
ye
W

-o
]N

e
sJ
ej
qu
ie
ss
e

}S
OW

“e
}e

P
s}
eI
pe
wi
w!

Ss}

eo
JN
OS

ey
}

US
YM

Pe

ES
N

Ss!

|Y
O'

Z
“*
pe
ej
su
l

ep
ow

ug

UO
l}
eU
I]
se
p

ay
}

es
n

}s
nw

W
jn
g

‘s
po

w
<
e
e
>

UO
!}

eU
I}

SE
p

eu
}

Bu
ls
n

Aq

pa
ly
io
ed
s

eq

Jo
uU

eD

}}

We
y}

‘1

e}
s/

60
1

BJ
EP

&

S|

UO
IJ
EU
I}
SE
P

OY
}

}|

"|

:S
IO
N

i
e

e
s

T
a

e
e

uyuequnu ‘Bes

‘UMOYUS SB pemoj|e aie Sepow Bulssaip

-pe

ajqese}je

Aiowew

AjuO

usy}

pueJedO

UO}}eUI}SEp

e
S|

Paljioeds

UO!}eED0|

Bu}

}|

1221]607
H
O

eAisnjou|

Y
O

y
O

ee eee ee eae

[eisiteu

|
vow

|
Pon
196 :UMOUS SB PeMol|e aie SepOW Bulssesppe eyep Ajuo uey} puesedo BdJnos e S| paijioeds UOs}e0| OU} }|

—
Play

ssesppy

aAN004)3

a as ae
a TR ae ee eed a ee | a a

aaa ee

1(xxx) M (Xxx)
pow JPPY

<ea > —(<ea>)a(<uqg>) OLL +tOL OOF

<ug>-+—(<ug>)a(<ea>)

010

~=6©t00

=—000

uoj}e1ed9 Buo7 piom eAg

—
Pp
ia
ly

eP
OW

-d
O

*su9}siBeu eyep yyBla ay} yo Aue saijioads — pjalj se}siBay

ISpjej4 Uo}}ONI3SUj]

S 9 4 8 6 OL

49)8160y

SSeIPPY

8A!}98})3

tL Gb

cpm
st

:yBU04
UO}}ONIYSU|

“p
e}
0e
)j
e

JO
N

‘poieajo sSAeMIV “‘peiee|o shemly

"@SIMJOYJO
PAlea|D

°O19Z
SI }|/NSO/

94}
J! 18S “@SIMJOYJO POJed/D “JOS SI }/NSOJ OU} JO JIG JUBDIIUBIS jSOW Oy} JI JES

P
V
E

e
S
 B
e
d

0
]

A
Z
z

N
x

*S
OP

OD

UO
}I

pP
Uu

od

ZN>O-x

‘puesedo

ue

se

pasn

aq

jou

Aew

J9}si6e1

sseippe

ue

jo

sjua}u09

ay,

“Buoj

JO

‘piom

‘a}Aq

8q 0} paljloeds aq Aew uol}esadO Oy} JO OZIS BY] “UO!}EDO] UOI}eEUI}SEp Oy} U! }jNSeJ

8Y}

8J0}s

pue

pUBIAdO

UO!}eUI}SEep

ay}

O}

PUBJEdO

BdINOS

84}

YO

SAISNjoU|

:uo;dyOSeg

(Buo7 ‘piom ‘e}4g)=9zIS :seINquYY

<eea>‘ug

HO

:xeyuAS

uqg'<ee>

YO

Jejquwessy

uo}jeuljsog — uoleUuljseg A edINOS = :uo}}B1edO

}29)607 YO eAIsnjoU}

u
O

y
O

Reprinted by permission of Motorola, Inc. Tt © ©

(sua
8) eyeq

a14g

0
‘

4
€

v
Ss

9
Z

8
6

OL
ttk

ck
Tek

jel
PSL

s
J
B
W
I
O
Y

U
O
J
}
O
N
I
}
S
U
]

‘aSIMJay}O
peBueYoUN

‘eUO
Ss! pueJedo

a}eIpeWW!
JO y 31

}! 18S
“asimiayjO

peBueyouN
“euO

S| puesedo
9}ye!|PEWU!

40 O 3G
J! 38S

‘asimiauj}O
peBueyoun

“euO
Ss} puesedo

e}ye!pPewU!
JO

| 3G
41 18S

‘@SIMJau}O
peBueYyouN

“eUO
Ss} puesedo

a}eIPeWW!
40 Z 3

4}! 38S

‘aSIMJaUu}O
paBueYoUN

‘euUO
Ss! puesedoO

eyeIPEWIW!
JO € 31

}! 19S

fe]
A

z
N

xX

*S@POD
UO}}|PUoD

ZN>OXx

‘49}s1Be1
snye}s

au}
JO 9}Aq

JOPsO-MO|
OU}

UI! }/NSEA
QU} 810}]S

pue
SEPOD

UO}}/PU0D
8U} Y}IM

PUBJEdO
B}e!|PEWW!

AU}
HO

SAISNjOU|
:uo;dyOsSeq

(9
}A

g)
=9

Z1
S

 :
se
;N
qu
nY

H
9
9
0
'
<
e
e
p
>
#

IH
O

:x
ey

ud
s

J
e
j
q
u
e
s
s
y

H
O
O

—
H
O
D

A
e
D
I
N
0
S

=
 :uo}}BsedO

S
O
P
O
D

UO}}|PUOD

OF
eyVe|poeww)

YO
eAlsNjouUl

Y990
9}

d
O

Y
9
9

0} d

O

“S
PJ
OM

9
}
e
I
P
S
W
W
!

OM
}

}X
9U

BU
}

S!

B
J
P

By
}

UB
L}

‘O
L

=e
ZI

S
}|

*P
JO
M

9}
eI
PS
OW
W!

91
1}
UB

BY
}

SI

eE
JE

P
9y
}

U
B
}

‘1
Q=
SZ
IS

4]

“*PJOM 9}eIPEWLW! BY} JO 9}Aq JaPJO MO| BU} SI B}JeEp By} UBL} ‘CO = aZIS }|

(uoIJONIySU!

BY}

Bulmojjo}

Ajayeipaww)

eyeg)

—

pjaly

eyeipaww)

385

P
o

o
h

a

Ta
ys

eq
un

a
te

r
[
o
n
]

wx
uv

n
—]

P
=

n
t
)

[v
se

qu
in

u
te

s
|

so
n

|
wv

to
y

ch

a
S

NE
S

R
N
S

SG

T
T

O
T
E

a

e
e

a

O
T

[
0

[
a

t
o
r

|
[
u
g
u
e
q
u
n
u

te
r

|

00
0]

[
m
s
i
t
e
o
u

[o
pe
n

|

ep
ow

e
v
}

 [
_s

wi
si

fo
u

|

po
n

_|

:U
MO

US

SB

pa
Mo
|j
e

ai
e

s
a
p
o
w

Bu
ls

sa
ip

-p
e

aj
qe
sa
yj
e

ey
ep

Aj

UG

‘p
ue

se
do

UO
I}
eU
I}
SE
p

94
}

Sa
lj

ID
ed

s
—

pj
al

j
S
S
o
s
p
p
Y

9A
1}
99
4j
)9

‘u
ol
ye
so
do

B
u
o
j
—
o
1

‘u
ol
}e
s9
do

P
I
O
M
—
|
1
0

‘u
oi

jy
es

od
o

9
}
A
q
—
0
0

“u
O0
!}
e1
9d
O

By
}

JO

OZ
IS

BY
}

Sa
Ij

IO
ed

S
—

Pj
al

j
az

IS

‘S
pj

el
4

UO
No
NI
yS
Uy

eByeg Bu07

ByeQ

e}Ag

Byeg

PloMm

Lk et

€L

PL

St

B
W
O
4

UO
ON
I}
SU
}

“p
ay
oe
jj
e

JO
N

‘p
os
ea
jo

s
A
e
m
i
y

‘p
as
ea
jo

s
A
e
m
i
y

“O
SI

MI
JO

YI
O

PO
sJ
e9
|D

*Q
48

Z
S|

}/
NS

91

Oy
}

4!

JE
S

*@
S|

MJ
OY

IO

PO
JB
9|
D

“J
OS

S!

1|
NS
OJ

94
}

JO

JI
G

JU
eO
II
UB
IS

Js
oW

Ou
}

4!

J9
S

S
e

c
s

0
)

A
Z
z

N
x

:$
@p

OD

UO
}}

IP
UC

D

ZN>OX<

"O
ZI
S

UO
!J
EI
Od
O

OY
}

SE
YO

}E
W

e}
ep

e}

eI
pa

wi
w!

Oy

}
JO

ez
Is

ay

)
‘B
uO

JO

‘p
io
M

‘a
}A
q

8q

0}

pa
lj
Jo
ed
s

aq

Ae
wW

uo

!y
es

ed
o

ay
}

JO

9Z
/S

BY

)
“U

O!
}E

90
]

UO
!J

eU
I}

SE
p

ay
}

U!

}i
Ns
eJ

84
}

81
0}

s
pu

e
pu
eJ
ad
o

UO
}}

EU
I}

SE
P

OU
}

O}

BJ
ep

ey
e|

PE
WW

!
BY

}
YO

eA

IS
N|

OU
|

:
u
O
d
U
O
S
e
g

(B
uo
7

‘
p
i
o

‘9
}4
g)
=e
z1
S

 :
se

;N
qu

AY
y

<
b
a
>
‘
<
e
j
e
p
>
#

|H
O

:x
ej

uA
S

J
e
j
q
u
e
s
s
y

UO
}}

eU
I}

SE
G

—
UO

!}
eE

UI
}S

eq

A
B}
eQ

S
y
e
|
p
o
w
w
;

-:
uo

}e
1e

dO

ee
}p
ew
u)

Y
e
)

OA
IS
Nj
OU
|

d
O

Reprinted by permission of Motorola, Inc.

d
O

:UMOYUS
SB

pemol|e
ele

Sepow
Bussesppe

jo1}U09
Ajup

*yOe1S
OY}

OJUO
Peysnd

eq
0} sseippe

ey}
Selj!9eds

—
piel)

SSeuppYy
eA!}904j)3

:Spjej4
UOONysSU}

C
e
o

s
a
 wee

WOR (OLL
TLL

ihe
CEE

o
e

i

1yBWIOY
UO}}ONIYSU|

“PE}Ejje
JON

-SEPOD
UO})|pucD

"yOR}S
84}

OJUO
peysnd

s| ssesppe
piom

Buo}
vy “49e}S

ey} OJUO
peysnd

puke peyndwod
s| sseippe

9A/}99jj9
ey]

-uOo}d9Sseq

(6u07)=ezIS
:se;nquny

<
e
e
>

W
a
d

sxBjyus
Jejquiessy

(4S)—V4a
‘
d
S
—
?
—
-
d
S

‘uojeledo

ssesppy
6A}}90}j3

YSNd
V
a
d

V
a
d

(Si1@
91) BVeQ

PIOM

e
h

e
b
e
n

S
o
o
)

2
8

6
OL

etermcle= eine biopesE

y
e
w
0
4

UOHONYSU]

*a
@S
IM
Je
y}
O

pe
Bu

eY
yo

UN

‘e
UO

Ss!

pu
BJ
ed
oO

aJ
eI

pa
wW

W!

JO
Y

}I
GI
IE
S

=X

‘a
si
ms
au
jo

pe
Bu

ey
ou

A
“e

uO

Ss}

pu
Bl
ed
o

e
j
e
I
p
o
w
w

j
o
g
g
s
1
e
S

O
‘“

as
im

sa
uj

O
pe

bu
ey

ou
N

‘e
Uu
O

s!

pu
eB

le
do

eJ

eI
po

wW
!

JO
],

YG
SI

IE
S

A ‘a
si

ms
ay

j}
O

pe
Bu

ey
ou

N
‘e

uo

s}

pu
es
ed
o

a}
eI
po
wU
!

jo

ZY
IG
JI
IE
S

=Z

‘a
si

mi
ey

jy
o

pe
Bu

ey
ou

N
‘e
uo

s}

pu
ei
ed
o

ay
el
po
ww
!

jo

€ 11
g

j1
30

S
=ON

DieqeNiran Zee Ney

*S@POD UO}}!|PuoD

“p
ay

oa
sy

e
al
e

19
38
/1
60
1

sn
jy
e}
s

ey
}

JO

S}
Iq

||
\y

48
}S
!B
e1

sn
}e

}s

OY
}

Ul

}/
NS
eJ

BU
}

e1
0}

s
pu

ke

19
}s

!6
o1

SN
}E
}S

BY
}

JO

S}
UB
}U
OD

OY
}

Y
M

PU
eJ
ed
O

sB
}e

EI
PO

WW
!

ey
}

HO

eA
IS
Nj
oU
)

:d
oy
dy
OS
eg

(piom)=2zIS :se;NquNY

us‘

<elep>#

IHO

=xeyuds

Jejquiessy

‘dVUL
esle HS—HS A 901NOS UAY}

aye}s

JosiAsedns

j|

:uojeiedo

(uoponsysu; peBel}ayid)

40}s/Bey SN}e}S EY} 0} E}e|PewU] YO eAISNjoU]

YS
0}

l¥O
YS

0}
d
O

Reprinted by permission of Motorola, Inc. 386

“P8jO9}j;e
JON

"018Z
JO

JUNODD

9}e}01
&

JO}
pase9|D

‘puesedo
9y}

JO
JNO

paze}O!
1g

YSe]
BY}

0}
B
u
l
p
s
o
d
o
e

yas

‘paieajo
S
A
e
M
I
V

*@SIMJOU}O
PAse9|D

“019Z
SI

}/NSOJ
OU}

J! 19S

*@SIMIJOUJO
PElB9|D

“}9S
SI

}/NSO/
BY}

JO
JIq

JUBOIWIUBIS
J
s
O
W

OU}

4! 18S

|
 “aloo B

O
P

= |

 = |

xe)
A

Z
N

x

*S@pOD
UOH|puoyd

iad
per oan
T
S

“‘Pasn
JO

p
a
l
j
i
P
O
W

JOU
SI

}1G
P
U
S
}
x
e

S
Y
]

“}IG
JepsO

yBiy
oju!

yDeq
pue

}1q A
i
d

84}
Y}0q

0} OB }1q JepsJO
MO]

AU} JO NO
palsIYys

S}1g
“}UNDD

8}e}01
8
}

S!
Pe}e}O1

SUOI}ISOd
jo J

a
q
u
N
U

ay}
‘}4yBIJ

peyej}O!
s!

p
u
e
J
e
d
O

94}

‘
H
O
H

104

S
E

e
e

eee

;
"PESN

JO
Palj!pOwW

JOU
SI

}1Gq
PUS}Xe

E
Y
]

“31

J8P1O
MO}

8
}

O}U!

Y
O
R

PUe

Ig
AuJe9

84}
Y
O

0} 06
1g

JepsO
YBiY

94}
JO JNO

payejOI
S}!1g

"jUNOD

Q}2}0J
8
}

S|
Pe}e}O1

SUOI}ISOd
jo

J
a
q
u
N
U

94}
‘jJ9|

Pe}e}O1
S|

p
U
e
s
O
d
O

94}

“
O
H

404

ZN>O xX

“*PIOM
& O}

Pe}d14}SeJ
SI ezIS

p
u
e
s
o
d
o

Ou}

pue
AjUO

}IG
aUO

Aq
pe}e}o2

og
A
e
w

A
i
o
w
e
w

JO
}U9}U09

e
Y
|

“
B
u
O

JO

‘piom
‘a}Aq

8q
0}

palsioeds
aq

A
e
W

UO!}eJedO

Ol}
JO EZIS

O
Y
L

*u0l}
H
e
e
r

ey
nrc

eo
mere

on
er

OD
rE

che
Clr

irr
nGl

-OnJ}SU!
ay}

U! Peljioeds
10}s!6e1

e}ep
& U! PeU!e}UOD

S! JUNOS
9}e}01

OY}
—

4190}sS|Bay
‘Z

J
B
W
I
O
Y

UOIJONIYSU]

-(g-
‘eBues

932301)
UOI}ONI}SU!

BY}
U!

Pe!j}oeds
Ss} }UNOD

9}e}01
B4}

—
a
}
e
/
p
e
w
u
|

“|

‘
S
A
M

}USJO}JIP
OM}

Ul POljloeds
eq

‘payoeyjye
JON

:SePOD
U
O
}
p
U
u
o
D

A
e
w

19381601

© JO UO!}E}OJ
BY}

JO}
JUNOD

9}2}OJ
BY]

“UO!}E}OJ
OY}

U! PApPNjou!
yOu

S! 31g

pue}xe
a
u
t

‘pelj|oeds

(y JO
4) UO!}De1)P

84}
U| P

U
B
I
A
d
O

OU}

JO S}1q
84}

8}e}0y
t
u
o
j
d
y
9
s
e
g

“UO!JONIJSU!
JXSU

BY}
Y}IM

S
O
N
U
I
J
U
O
D

U
O
!
}
N
I
S
X
S

pue
payoajyeun

s|
“Wa}uUNOO

Wesbold
ay}

U
e
}

JAaYy}O
‘a}e}S

1OSSeD0Jd
U
L

“jeSaJ

(Bu07
‘piom
‘e}4g)=ezIS
 :seINquAY
8q
0}
S8DIAap
jeusE}x~a
|je
Buisneo
‘syoo}9
~Z|
10}
p
e
y
a
s
s
e

Ss}
aul|
}aSe/
ey)
:
u
O
W
d
O
S
e
g

H
40

7] ‘UO!}O0JIP
S| Pp B184yM

pezisun
:seyInquuy

<
e
e
>

P
O
H

Ka‘ <eyep>#
POY

xeyuhs
13S3Y

:xequhs
Ka'xqg

P
O
W

«= se
j
Q
u
w
e
s
s
y

s
e
j
q
u
e
s
s
y

uolyeuljseg
—

<
j
U
N
0
o
>

Aq
payejoY

uo}}eul}seq
 :uojyBsedO

‘
d
V
H
L

esle 8ul] 13S3yY Yessy Usy}

aje}s JOs|AJedns 4) :uojyesedo

Y

O
u

(
p
u
e
y
x
g

y
N
o
Y
y
M
)

9
3
8
3
0
4

F
a
 O
u

)

10¥Y
104

.3S3Y
Le ialapil pee Nea ony

13s3u

387
Reprinted by permission of Motorola, Inc.

*019Z JO JUNOD 9}e}0)

B
10}

pajoajyeur

‘puesedo

9y}

JO

jNO

pajzej}OI

}1q

Yse|

94}

0}

BuIpPsoo_e

jes

*OJOZ

JO

JUNOD

9}k}0J

&
JO}

31q

Pus}xe

OY
}

JO

BN
|B
A

8
}

O}

JA
S

‘P
UB

JO
dO

OY

}
JO

JN
O

pa
}e
}O
J

}1
q

}S
e|

OY
}

0}

Bu
lp
so
d0
e

ya
s

“‘
pe
se
aj
o

s
A
e
m
i
V

*@
SI

NJ
OY

JO

PO
JE
9|
D

‘0
10
Z

S|

}/
NS
eJ

9
}

J!

}e
S

“O
S|

IM
JO

YI
O

PO
le
d/
D

“J
ES

S!

}/
NS
EJ

BY
}

JO

JI
q

JU
BD
IJ
JU
BI
S

Js
oW

Oy
)

41

e
S

pomsljoonpiy | +] = |

ce)

A

Zz

N

x

:S
@P
0D

UO
o}
Ip
Uo
D op ee

‘Yq
Jeps0

yB1y
eu}

O}U!
peze}OJ

S| }1q PUs}xe
OY}

JO ON|eA
SNOIAeId 8U}

‘S}iq
pue}xe
pue
AJe9
ey}
UJOQ
0}
06
}1q
Jep10
MO}
BY}
JO
JNO
pe}e}OI
S}Ig
"}JUNCD

8}2}0J
8
}

SI Peqj!YS

SUOI}ISOd
jo JeqUUNU

98u} ‘}YyBL
pezeyo!

S| puesedo
ey)

‘YXOH
104

o
e

a

e
e
e

"HQ
19P1O

MO]
BY}

O}U!
P2}E}OI

SI }1q
PUS}Xe

OY}
JO

EN|eA
SNO}AeIG

84}
‘s}iq

pue}xe
pue

A
l
e
d

84}

Yy}Og
0} 06

j1q Jeps0
Y
B
y

ey}

JO JNO
peze}OJ

S}J1gq
‘}UNDD

Q}2}01
8
}

S|
Pe}e}O1

SUOI}ISOd
Jo JequINU

eu}
‘}j9]

Pe}e}O1
S|

P
U
B
I
O
d
O

9y}

‘
T
X
O
H

JO4

ZN>O Xx

*dXOW

Lo |

“T
XO
U

*PJOM
&

O}
P9}o[J}S9J

S| eZIS
puesJedo

ay}
Puke

AjUO
}Iq

GUO
pe}e}O/

eq
A
e
w

A
i
o
w
o
w

JO
U
9
}
U
0
0

B
y
]

B
u
O
]

JO

‘
p
o
m

‘a}Aq

8q
0}

paljioeds
oq

A
e
w

uolyesedo

94}
JO ezjs

O
U
L

"UOIJONIJSU!
OY}

ul peljloeds
19}s{60,

eyep
e u! p

e
u
y
e
z
U
O
d

S| (7g O
;
N
P
O
W
)

JUNOD

9}e}0J
BY}

—

Je}S!Bey

‘Zz

*(g-,
‘eBues

072303)
UO!}ONI}SU!

BY}
Ul

PelJ[DedS
S! JUNOD

E}e}01
84}

—
9}e!pewUs|

"|

2SAEM
}UBJO}JIP

OM}
Ul

Paljyioeds
eq

A
e
w

10}$/60J
© JO UOI}E}OJ

OY}
JO}

JUNOD
9}B}0

OU
"UO!}E}OJ

OY}
U! PepN|oU!

Ss (xX) 11g
Pus}

-x®
BU

‘Ppels|oeds
UO!}DEJIP

OY}
UI PUBIEdO

UO}}EUI}SEP
OU}

JO S}1q
84}

8}e}0y
:uO}JdyOSeg

(Bu07
‘pion

‘0}4g)=0EZIS
=
 :s
e
I
N
q
U
Y

<ee>
PXOU

Ka‘ <eyep
>#

PXOU
zxejuAg

Ka‘xq
PXOH

+
 4eiquessy

u
o
l
j
e
u
l
j
s
e
g

—
<
}
U
N
O
D
>

A
q

x

Y
I
M

p
e
}
e
}
O
Y

UOo!}eUI}Sseq
1
u
0
}
}
8
1
0
d
O

pueyxg
Y
M

038}0y4

yuxXOu" 1XO¥

yuxXOu"
1
X
O
¥

[uvvequna ter [o
n
 [w
e
a
v
e

Puysequnu ter [von
|

vie) |
[ovsequna Ber [oon

|
ow

[
e
y
s
e
q
u
n
a
é
e
r
[

no [
+
o

Puysequna ter [o
o

| o
w

e
s

S
e

a
e

o
e

e
e

[ereiteu
[
p
e
n

| 2900 “ppv
‘UMOUS

SB
peMo||e

a
e

SepowW

Bulsseippe
ejqeeyje

A
s
o
w
e
w

AjUO

"pe}e}OJ
8q

0}
P
u
B
s
e
d
o

ay}

SaljioedS
—

piel)
SSeJPpYy

9A!}004j)9

9
]

8
}
8
}
0
J
—
]

*yyBu
9
}
e
}
0
J
—
9

:8}2}01
BY}

JO
UO!}DOJIP

BY}
SElj!oeds

—
Pal}

IP
(e7e}0y4

AiowWey,)
Splel4

Uo}ONIysSU]

Reprinted by permission of Motorola, Inc.

Ol
EL

©
 ZEs

Sek
mvt

ot

(aye}OY
AIOWSY;\))

J
e
W
I
O
S

UOT}ONIYSU|

*pe}e}O/
eq

0}
S|

}U9}UOD
e
s
O
Y
M

Je}siBal

eyeEp
e

Saljloeds
—

piel}
1e}s|Boy

‘yUNOD
87e}01

19}S1Be1
seljioeds

“| =4/!
§]

*JUNOD
9}e}0J

B
J
e
I
p
e
w
w
!

saijloeds
‘9 =4/!

JI

—
Plot

4/!
‘uojyesedo

B
u
o
|
—
o
}

‘uolye18d0
P
i
O
M
—
|
1
O

‘uoiyesado
8
}
A
q
—
0
0

1U01}218dO
OY}

JO
AZIS

By}
SEljIDedS

—

PIeal}
eZIS

We]
8
y
e
}
O
1
—
}

"yyBl1
832}01—9

:8}2}01
84}

JO
UOIJOSJIP

E4}
Salj!9edS

—
Pjelj

IP
PIO!)

S}U}
Ut

p
e
j
i
o
e
d
s

10}s)6e

eyep
ey}

ul
P
a
u
!
e
U
O
D

Ss! (v9 O
/
N
P
O
W
)

JUNOD

93e}01
BY}

“| =4/!
4}

®
Juaseidea,

/-|
‘0 SEN|eA

O
U

“PIA!}
S14}

Ul
PA!j!9eds

S| }UNODD
8}e}01

OY}
‘0 =4/!

J]
—

Piel
103s16ey/e}e}0y

(eyejoY
19)s!1Bey)

spjej4
UOpONIysU]}

a
e
s

ebaiep a S
e
i
n
e
n

moh |
 +
 |] |

jeyeyoy

C
C

C
M

h
n

C
O
M
O

N
r

@omror

c
o
m

Oke

HE
web

Ck
¥b° F

b

(eye}OY
10}8|/Gey)

y
e
W
O
Y

UOJONIYSU]

(pueyx3
y
y
y
 M)
 28,04

yOu 104d

‘4
9}
UO
d

4O
e}
S

Oy
}

0}

pa
pp
e

pu
ke

pa
pu
a}
xe

-u
B!
s

8q

0}

Ss}

Yo
!Y
M

Je
Ba
jU
!

U
s
W
e
;
d
W
o
o

so
m}

ay
y

sa
lj
lo
ed
s

—
pj
al
y

ju
aw
eo
ej
ds
iq

:P
je
}4

Uo
HJ
On
sy
sU
;

e
e
e

te

e
e
n

2
O
S

LS

e
e

O
s

P
C
a

C
y

S
G

O
e

e
m
g

OP

tl
G
a
c
y

Ct
e

VE
,”

Mo
b

WB
UW
U0
4

UO
}}
ON
Iy
SU
|

*P
9}
09
jJ
e

JO
N

:S
eP
OD

U
O
N
p
u
o
D

‘4
91
UJ
Od

4O
e}
S

4
}

0}

p
e
p
p
e

pu
re

si
iq

ze

0}

pe
pu
e}
xe
-u
bj
s

si

(s
}i
q

91
)

en
je
a

ju
ow

-2
98
|/
dS
IP

ay
}

‘4
9e
}s

94
}

WO
JJ

pe
el

Ss
!

Ja
}U
N0
0

We
sB
ol
d

84
}

1
8
}
;

\¥

"}
SO
|

S|

aN
ye
A

Ja
}U
NO
D

w
e
i
B
o
j
d

sn
oi
ae
id

a
y

‘y
oe
r}
s

ey
}

Wo
Ol
j

pa
ji

nd

s|

48
}u
UN
09

W
e
i
B
o
i
d

o
y
)

:u
0}
}d
jJ
9S
se
q pe
zi
su
y,

:
s
e
I
n
q
u
y

<
j
u
a
w
e
o
e
s
d
s
i
p

>
#

G
L
Y

m
e
u
s

J
e
j
q
u
e
s
s
y

dS

—
P+

+d
S

‘O
d

—
(4
S)

:u
oj
ye
se
do

S1
0}
OW
BI
EY

0}
89
0]
|2
0q

pu
ke

WI
N}
eY

g
l
u

g
l
y

(u
x'

dd
'8

p)

uy
ue
qu
in
u

“B
el

(u
x‘
uy
‘8
p)

(u
y‘
9t
p)

u
y
u
e
q
u
n
u

‘B
es

u
y
u
e
q
u
n
u

‘B
es

u
y
u
e
q
u
i
n
u

‘B
a,

u
y
u
e
q
u
n
u

‘B
ea
s

<
e
y
e
p
>
¥
#

40
)8
/B
ey

p
o
w

“U
Pp

Y

“U
MO
US

SB

pe
Mo
|j
e

a
e

S
e
p
o
w

Bu
is

se
ip

pe

ej
qe

se
yy

je

M
o
w
a
u

4|
UQ

‘p
ez
e}
01

aq

0}

pu
es
ed
o

eu
}

sa
lj

io
ad

s
—

Pi
el
}

SS
as
pp
Y

eA
I}
00
4)
5 W
8
]

8
}
e
J
O
I
—
]

"W
46
1

8}
2}
01
—9

*9
JE
JO
1

BY
}

JO

UO
!}
D9
JI
P

BY
}

SA
Ij
ID
ed
S

—
pj
al
s

up

:(
2}
2}
0y

A
I
O
W
E
W
)

Sp
je
l4

UO
Ro
ON
Iy
sS
U|

OL

LL

ra
e

eb

vl

SL

a

:(
07
8}
0Y

A
I
o
W
e
y
)

y
e
W
O
Y

U
O
H
O
N
y
S
U
|

*P
87
2}
01

8q

0}

S|

}U
B}
U0
9

B
s
O
Y
M

J9
}s
/6
e1

ey
ep

e
Sa
lj
lo
ad
s

—
pl
at
)

Je
ls
iB
ey

‘J
UN
OD

97
e}
0)

J0
}S
!6
e1

Sa
lj
io
ed
s

‘|

=4
/!

4)

‘J
UN
OD

9}
k}
0)

B
J
e
I
P
o
W
W
!

Sa
lj
io
ed
s

‘9

=4
/!

}|

—
Pl
ea
ts

a/
!

“u
ol
ye
se
do

B
u
o
j
—
o

1

‘u
o|
}e
18
do

P
i
o
m
M
—

1.
0

“‘
uo
}}
e1
98
d0

9
}
A
q
—
2
0

:U
01
}@
19
d0

84
}

JO

OZ
IS
s

84
}

Sa
lj
lI
oe
ds

—
pl
at
}

az
is

"W
9]

O}
e}
O1
—1
.

‘W
Yy
By

8}
2}
01
—¢
9

*9
}8
}O
1

OY
}

JO

UO
!}
D9
II
P

BY
}

Sa
IJ
]O
ad
g

—
pl
at
y

up

“P
I@
!}

S1
4}

Ul

p
a
l
j
o
e
d
s

10
}s
/6
01

ey
ep

ay
}

ul

pe
ul
ej
uo
d

si

(p
g

O
|
N
p
o
w
)

yU
NO
D

97
e}
01

94
}

‘|

=4
/!

4]

“
A
J
@
A
}
O
e
d
s
e

J
0}

|
‘g

Jo

eB
ue
l

®
ju
as
ei
da
s

J-
|

‘Q
O

Se
Nj
eA

a
y
!

‘p
jo
al
j

Ss
}y
}

UI

Pa
lj
!9
ed
s

S|

JU
NO
D

a}
e}
01

OY
}

‘Q
O

=4
/!

3}

:
—

P1
9}

18
)8
/B
ey
/a
ye
}0
y

:(
0}
8}
0y

19
}s
/6
ey
)

sp
je
}4

uo
No
nA
ys
U|

/2
}8
}0
y

~
—

P
o
l
s
]

e
s

|
»

|

0
‘

z
€

v
S

9
Z

8
6

ol

KE
S

Ch

ee
u

Fi
s

Ge

:(
0}
2}
0y

10
}s
/6
0y
)

y
e
w
0
4

U
O
O
N
A
S
U
|

19
)8
|6
ey

yu
XO
u

1
X
O
¥

pu
es
xy

Y
M

e,
B;
0y
4

yd
XO
uY

1
X
O
¥

389 Reprinted by permission of Motorola, Inc.

p
e
e

o
e

fe b

e
 |

6
OL

LL
45

€t
vb

Gt

W
e
W
O
4

UO}}ONIYSU|

E
e
S
C
A
S
L

E
S
S
E

p
e
e

fal
0

‘
4

£
v

S
9

Z
8

“yOR}S
OY}

UO
PJOM

OY}
JO }US}UOD

94}
0} BuIps0D0e

J
S

=
 :SEPOD

UO}IPUCd
|

‘pa}oejjeun
s| J9}s!6e

snjeys

@y}
JO UOIJIOd

JOSIAJedNs
e
y

“}SO|
G12

18}UN0D
w
e
i
B
o
i
d

pue

s
e
p
o
d

UO}}IPUOD

SNO}AeJd.

Y
L

“YO}S

OY}
W
O
’

palind
a
e

48}UN0d

w
e
i
6
o
i
d

pue

s
e
p
o
o

uol}/puod

ey)
:
u
o
j
d
y
o
s
e
q

pezisun
=
 :
s
e
n
q
u
N
Y

H
1
H

:xequhs
sejquessy

f

d
S
—
v
¥
+
d
S

‘Od-—(ds)

'
d
S
—
Z
+
d
S

‘
Y
O
O
—
(
d
S
)

:
w
o
e
s
e
d
o

SEPOD
UOJ}|puoyD

e10}SeYy
pue

WIN}eY

= B
R

d
l
”

‘uo!}deoxe
J
O
E

JEWIO)

e
Sexe}

J
O
S
s
e
d
0
/
d

94}
—

sJoyjO
A
U
Y

“yoR}S
BU}

JO
do}

By}
WO1J

P
A
A
O
W
A

a1e
S
P
I
O
M

Gz

‘yewIOy
B
u
0
7

O
L
O
8
9
O
W
—
0
0
0
L

“ewwesy
YOR}S

ay}
W
o
y

pepeo|

ase
Jo}UNOD

WesBold
pue

J9}s|5a1
snjye}s

OY)
“y9e}S

ay}
JO do}

ey}
W
O
’

PeAOWE!

aq
0}

e1e
SPIOM

INO}
AJUO

“yeWIO4
W
O
U
S
—
0
0
0
0

“pa10}SOJ
Oq

O}
UOIJEWUOJU!

JO JUNOWE
OY}

SEUIJEP
PJAlj

HG-p
SIUL

—
PIelj

J
e
U
O
S

Spje}4
UO}ONIySU]

Po [
w
o
s
]

vL
is

fa
|

3

1@S}J0
10}00A

i
a

0

‘
4

€
v

S
9

Z
8

6
OL

s(awsesy
H
O
R
S

Ul!) P
I
O
M

J
O
S
}
H
O
/
P
E
W
I
O
Z

0

t
4

£
v

S
9

Z
8

6

OL
tL

ras
eb

vl
SL

B
U
U
O
4

UOT}ONIYSU|

“yoR}S
BY}

UO
P1OM

AY}
JO }U9}JUOD

BY}
0}

Bulpsoode
Jeg

+
 :SepOD

UOJ}pUudD

“pes0}SeJ
aq

JSNW
UOIJEWUOJU!

YONW
MOY

SU/WE}EP
0}

Peu|Wwexe

S| PJOM
JASJJO/JEWIOJ

OY}
U! Pjal}

JEWIOY
YOR}S

OYJ
“JOSSED0Id

84} OFU!
PEpeO|

S! 49e}S

ay}
Jo do}

Uo
ewes}

YOR}S
UO!}deoxe

a4}
U] UO|JEWOJU!

@}e}S
JOSSeD0Id

O
Y

suoj}d9Sseq

Ppezisun
=
:
s
e
I
N
q
u
y

3
1

:xByuhs
Jejquiessy

‘dVuYl
asle

((dS)
0}

Buipsoo0e
yoRr}s

a}eoo|/eep
puke

a}e}s
910}Se1

‘dS—t
+ dS

‘Od—(dS)
:dS—Z@+dS

‘YS—(dS))
Yeu}

ajej}s
J
o
s
i
s
e
d
n
s

j,
:
u
o
j
B
s
e
d
O

(uojonaysu}-
peBetAlsd)

‘
u
o
n
d
e
s
x
y

w
o
)

wINjeYy
41d

did

Reprinted by permission of Motorola, Inc. 390

‘epow
Bulsseuppe

}
u
e
w
e
J
o
e
p
e
i
d

ay}
JO}

10}s!601
sseuppe

ue
seljloeds

‘| =
W/y

JI
10181601

eyep
e

seijjoeds
‘
Q
O
=
W
/
Y

JI

10}$16e1
8d1NOS

ay}
SeljIOedSs

—
pjal}

xw/xq
19}sIBoy

“
K
i
o
w
e
w

0}
A
u
o
w
e
w

s|} uojyesedo
e
y
j
—
}

10}S|691
eyep

0} 10}s!601
eyep

sj UO}}e9dO0
S
Y
L
—
O

‘
e
p
o
w

B
u
l
s
s
e
i
p
p
e

p
u
e
i
e
d
o

ay}

salj!oeds
—

Piel}
W/Y

‘
e
p
o
w
 Bulssoippe

j
u
g
w
e
l
0
e
p
e
l
d

94}
JO}

10}s|6e1
ssouppe

ue
saljioeds ‘| = W/Y

JI
108/60)

eyep
e
saljioeds ‘QO=W/Y

JI
‘s91S1601

UOI}EUI}SEp
9y}

SelsjIOedSs
—

pla!)
Ay/Ag

19}S!6ey
:Spje}4

UO}ONsysU|

xviKQ
Ayikg

49}s|/60y
40}8|6ey

0
‘

z
£

v
S

9
es

8
6

OL
otk

ct
eb

WBWIO4
UO}ONI}SU}

*suojyesedo
uols}oeld-9)d1};NW

JO U
O
!
}
e
|
d
W
O
d

U
O
d
N

$}jNseJ

018Z
JO} S}Sse}

|
N
J
S
S
e
D
O
N
S

SMOjle

S|Y)
“UO!}esEdO

Ue

JO L1e}Ss
Oy}

1
0
j
0
q

B
u
j
w
w
e
s
B
o
l
d

eJA
JAS

S! 11g
EPOD

UO}}|PUOD
Z OU}

A|;EWION

3
L
O
N
 ‘yWq Auseo

ey}
Se

OWES
OY}

}8S
“@SIMJOUIO

Pelea|D
‘peyes9UeB

S| (jeEWOapP)
MO1I0g

B }! }8S “‘peuyjepun
“as|mJay}O

peBueyouN
“O1ez-UOU

S| }/NSeJ
BU)

j! Palea/D
“‘peuljepuy

<
M

t
e
 c
e
e

ce)
A

Zz
N

x ZN>OXK

1$@pO0D
UO}}|PUu0D

*Ajuo
uoljyesedo

@}Aq
e

Si
UO!}eJ9dO

SIYyL

“uol}ONs}SU}
BY}

Ul
paljioeds

sie}s/6es
ssesppe

oy}
Buysn

e
p
o
w

Bu;

-SSeippe
}
U
e
W
a
J
0
e
p
e
l
d

ey}

U}IM
passeippe

ele
s
p
u
e
s
e
d
o

ay)

:
A
I
O
W
e
W

0} AIOWEYW
‘Z

"UO|}ONI}SU!
B
Y

Ul
Palj!oeds

$10}816eJ
eyep

ey}
U|

peuje}UOO
J
e

SpuesedoO

ey)
:10}s/6e

e}ep
0}

10)S/Ba1
ByeEQ

“|

“Shem
JUGJ9jJIP

OM}
U!

p
e
s
s
o
u
p
p
e

eq

A
e
w

s
p
u
e
s
e
d
o

oy)

‘
O
W
J
e
W
Y
W
e

jeWISEp

Buy

-SN
P
a
W
O
J
J
e
E
d

S| U
O
J
}
O
I
I
G
N
S

BY]

“UO!}EDO]
UO!}EUI}SEP

94}
U! }/NSe1

84}
810}s

Puke
31g

pue}xe
ey}

Y
I
M

p
u
e
e
d
o

UO}}eUI}SEp

OY}
W041)

P
u
B
J
E
d
O

BdINOS

84}
}9e1}GNS

suoydjsoseg

(8}4g)=0ez1IS
:seINquNy

(Ay)
—‘(xv)

-
Goas

:xeyukg
Ka‘xa

GOgs
=
 Je|quessy

uolyeuljseg
—

X
—

Oleosnos
—

Oluojyeuljseq
 :uojyesedO

pueyxy
Y
r
M

jewjdeq

yOBAGNS

qgoas
g
o
d
s

Sld

t

S
b
b

—
 68

vt St

yBWIO4 UO}}ONI}Su]

"PpE}09jJe
JON

:SEPOD
UO}IpUD

"}SO] S| 40}UN0D

weiBoid

snolaeid

oyL

“yorls

ey}

Woy

pelind

s}

seyUN00

WesGoid

ey),

:uojdyoseg
pezisun Sly

dS—v¥+dS

‘Od

-—(ds)

eulynosqns
w
o
’

WN\eY

:se;nquNY

:xeyuksS
J
e
j
q
u
e
s
s
y
 1u0}}818dO

S
1
u

391
Reprinted by permission of Motorola, Inc.

“10}S1601
SN}e}S

94}
OJU!

Pepeo|
oq

0} ByeEp
ay}

SeI}1DedS
—

Plat}
a}e|poww|

:Spje}4
UO}JONAysU]

ByeQ
eyelpoww)

0
‘

z
£

v
S

9
Z

8
6

ol
Mb

ee.
OL

eh,
USL

2
}
B
W
I
O
4

U
O
I
N
I
Y
S
U
]

‘puesedo
ayeipaww

ey}
0} Bulpio00e

Jas
+=:sepOd

UO}IPUDD

“‘Bulsseooid

uoijdeoxe
jeses

eyeljul
sAemje

jjIM
Jase:

jeuse}xQ
‘UO!}E/OIA

eGajiAld
e

asned

[JIM
UOIJONIJSUI

OU}
JO UOI}NDEXe

‘JjO S} }1G-S
84}

0} B
u
l
p
u
o
d
s
e
0
9

Byep

a
y
e
i
p
e
w
W
|

ayy

JO }1q
8
}

4] "JOOYJe
OU

Sey
yseNbai

y
d
n
e
z
U
!

Ay}

‘aSIMUaU}O
‘sIND9DO

uol}deoxe
ydn1J98}

-ul ue
‘eyep

a
y
e
i
p
e
w
w
!

ay}

Aq Jas
|eAg|

AjsOINd
a4}

URYY
seyBiy

A
y
o
u
d

e yjyim
p
e
y
e
s
s
e

$i
jsanbei

jdnueju!
ue

4) “UOI}NDeXxe
SujHeq

UO!}ONI}SU!
O
L
S

94}
U
B
Y
M

UO
SI 9}e}S

8024}
BU}

JI N
D
D
O

|JIM
UO|}deoxe

eDeJ}
Y

“SINDD0

UOI}de0Xxe
Jesed

JO
“ydnd8}UI

‘908J}

e@
U
S
Y
M

S
A
W
N
S
e
s

SUO!}ONI}SU!
JO

UO!}N9exQ
“‘sUO!}ONIySU!

Bul;noexe
pue

Bulyoje}

sdojs
J0sse00id

84}
PUB

UO!}ONJ}SU!
}xOU

OY}
O}

JUIOd
0}

p
e
d
u
e
A
p
e

S| J9}UN0D
w
e
s
6

-oid
ay}

{49}S/6e1
snyejs

911}Ua
94}

OJU!
P
e
A
o
w

Ss! P
u
e
s
e
d
o

a}e/PawWW!

94]
:uojydyoseq

pe
zi

su
n

:
s
e
N
q
u
n
y

<e
je
p>

dO
ls

:x
By
UA
S

i
e
j
q
u
e
s
s
y

‘
d
V
Y
L

e
s
e

(dOLS
‘HS—kBed

a}e!peww))
Uay}

ayels
s
o
s
i
j
e
d
n
s

jj
:
u
o
n
e
s
e
d
Q

d
O
l
s

(uojjonsjsuy
peBeijalid)

dojs
pue

10}s|6ey
s
n
e
s

peoy

d
O
l
s

*UO!}ONAJSU!
H
A
N

&
Y
I
M

UO!}ONIYS

-U!
9
9

94}
Bulmojjoy

Aq
peyesoueB

oq
A
e
w

}jnsed
OJ8Z

pue
BUO

O
I
J
O
W
Y
J
e

Uy

“|
:@.0N

[
e
x
o

[ostey
|

[_<ewp>e |
 [
0
0

(O
d

[
9
0
0

29
0%

|

[_oxevtel |

(uy‘9tp)
pow {PPV

/UMOUS
SB

peMol|e
ase

SapOW
Bulsseuppe

siqese}e
eyep

A|UO
‘pel0}s

aq 0} S| a}4q es]e}/ans}
84} YOIYM

UI UO!}ED0}
BU} Selj19eds

—
PIel) SSeIPPY

9A!}904)3
‘UO!}d|JOSEP

UI PESSNOS|P
SUOI}|PUDD

UGE}XIS
JO BUG

—
PIA!)

UOI}!PUOD
:Spjej4

UO}onNsysU|

p
e
 T
e
]

s
o
m
m
e
s

f
f

o
 f
s
 |
e
]

f
t

C
T
:

O
N

a
e

a

OO) i
1}eWUO4

UO}JONI}SU|

Reprinted by permission of Motorola, Inc.

40)s/6oy

‘payoayje
JON

:SepOD
UOWIPUCD

8S
MO|jJ@AO

jenbe
Jo

sso}

JBO}D
MO}JJOAO

yBiy

e
n
s

s
A
e
m
e

uey}
sejees6

snid
jenbe

10
sayees6

yenbe
jou

ens}
JOAOU

s
n
u
j
w

yenbe

uey)
sso}

yes
A
u
e
o

e
w
e
s

10
MO|

seejo
A
e
s

=i
NIZ

A A t N Zz N + +

lOONOZZI

‘SUOI}IPUOD
B
u
m
o
j
|
o
}

ay}

Aj!oeds
A
B
W

,,99,,
(SeoseZ

|/2) J
S
T
W
4

O}

}8S
S| 8}Aq

JEU}
aSIMJAU}O

‘(SOUO
| |e) F

N
Y
L

O} JAS

S! SSeIPpe
9A1}99438

94}
Aq

paljioeds

a}hq
ey}

‘andj
S$! UO!}!PUOD

OY}
4!

{pe}se}
S|

ePOD
UO!}IPUOD

paljloeds
ey)

:
u
O
N
d
O
S
e
g

(a1Ag)=eZzIS
:
s
e
I
N
q
u
R
Y

<eae>
99S

2xeyuhS J
e
j
q
u
e
s
s
y

f
u
o
n
e
u
l
j
s
e
g

—SoO es|e
uoljyeuljseg

—S}
Uau}

ANIL
UOI}IPUOD

4]
sUuo}e1edO

9
9
S

UO!}|pUuoD
0} Bulpuodoy

16S
9
9
S

392

“U
O!

JO
UI

}S
IP

S1
4}

O
H
e
W

Aj
je

or
ye

wo
yn

e
si

ej
qw

es
se

js

ow

‘e
ye

p
ey
el
pa
ww

s!

eo
Jn
os

ey
}

Ue
yM

pe

sn

ae

O
N
S

pu
e

|g
ns

‘4
90
}s
!6
e1

ss
ou
pp
e

ue

S|

UO
!}

eU
I}

Se
p

oy
}

UA
YM

pa
sn

SI

Y
E
N
S

‘Zz

“‘
pe
e}
SU
!

ep
OW

UG

UO
!}

eU
I}

Se
p

ey
}

ES
N

js
nW

yn
g

‘e
po
w

<
e
e
>

UO
}}

eU
I}

se
p

ay
}

Bu
is
n

Aq

pa
tj

jo
ed

s
oq

Jo
uu
ed

}!

Ua
U}

‘s
0}
S/
6e
1

ey
eE

p
e

S|

UO
I}
EU
IJ
SE
p

Oy
)

4)

“1

a
n
s

(ara [yaequina Bar|

c
e
e

a
t
e

se
qu
in
u

‘B
e,

:S
@}
0N

/UMOUS SB peMo||e ose SEPOW Bulsseippe

Aiowew

9jqeseye

AjuO

ua}

‘puesedo

UO!}eUI}SEP

&
S!
Pelj!oeds

UO}}eD0}

BU}

4]

Aueulg
y
o
e
q
n
s

a
n
s

"
p
e
m
o
j
j
e

jou

S|
joesIp

19}s160)
s
s
e
s
p
p
e

‘uoljeJedo,
ezIs

8
}
A
q

J
O
4
»

393

:umoUs
Sse

pemolle

ase
sopow

Bulsseppe
|je U

e
}

‘puesedo

eoinos
e
 si paljloeds

UO!}E90|
9U}

4]
‘epow

Bulsseippe
seulwse}eqg

—
pjalj

SSeuppyy
9A!}904)3

<
e
a
>
-
—

<
u
g
>
-
—

<
e
e
>

Ol
L

+O
L

OO
L

<
u
q
>
-

<
e
e
>
—
-

<
u
g
>

01
0

©6
10

0
§=6

—00
0

u
o
j
e
s
e
d
Q

Bu
o7

p
i
o
m

e
g

— pla!) epow-do

*s19}S1B01
eyep

yUBle
oy}

Jo
Aue

saijioads
—

plat
Jo}s1Boy

Spjej4
UOIONAysU|

a
e

a
i
s
e
.

m
a
e
e
k
a
k

Lb ras €b vl

yeuW04

crm

‘apew
s! 19}s!6e1

ssouppe
ue

W
O

UOI}OeI}QNS
e

4! pa}oejje
JOU

ae
S
A
P
O

UO!}IPUOD
B
Y

yiq Ase 8y} Se OWeS 84} JES

‘@S|IMIBU}O
Palea|D

‘pa}yesouab
Ss} MO1I0g

B® }! 19S

"@S|MJOUJO
Palea|D

‘pe}es9ueB
Ss! MO|JJOAO

UR
}! J9S "@S|MJ9UIO

PAle9|D
“OJOZ
SI
}|NSOJ
BU}
JI
JOS

"@SIMJOUJO
Palea|D

“aAl}eBau
Ss! }jNSseJ

aU}
41 3eaS

Ce be
A Zz N x

co)

ZN>OX

*S
O
P
OD

UO
}}

|p
Uu

od

‘e
ZI

S
pu

es
ed

o
Ou

}
Se

[J
OM

SB

UO
!}

EU
I}

SE
p

94
}

S!

YO
IU
M

pu
e

99
Jn
os

ey
}

Ss!

pu
es

ed
o

Yo
Iy
M

sS
e}
eo
IP
U!

UO
!J
ON
IJ
SU
!

eu
}

JO

ep
OW

sy
,

“B
uO
|

10

‘pIoM ‘8}hq eq 0} paljioeds aq AewW uol}e1Ed0 Oy} JO 9ZIS BY! ‘UO!}EUI}SEp 94} U! };NSeJ

QU} 810}S pue pUeJedoO UO!}eEUI}Sep 94} WOJy PuBJEdO BdINOS EY} }ORI}QNS :uO}\dyOSeg

(B
u0
7

‘
p
i
o

‘e
}A

g)
=e

Zz
1S

:s
eI
Nq
uI
Y

<
e
e
>
‘
u
g

g
n
s

>xeByuhsS u
g
‘
<
e
e
>

g
n
s

J
e
j
q
u
e
s
s
y

uojyeuljseqg — eouN0S — UO!}eEUN}Sseq :uoeIedO

Reprinted by permission of Motorola, Inc.

g
q

N
s

As
eu

lg

yo
eq
QN
S

g

N
s

“S
PJ
OM

9}

eI
PO

WL
U!

O
M
}

JX
9U

OY

}
S|

BJ
EP

OY
}

U
U
}

‘O
L

=O
EZ

IS

4]

“PJOM O}e!|PSWW O11}US OY} S! B}eP Oy} UE} ‘1Q0=eEZIS })

“*
PJ

OM

9
}
e
|
P
O
W
W
!

94
}

JO

8}
Aq

Je
P1

O
MO
|

OY
}

S|

BJ
ep

Oy

}
U9

Y)

‘
(
0
0

=2
E2
IS

}}

(u
oj
on
sy
su
y

oy
}

Bu
jm

oj
jo

}
Aj

oy
e;

pe
wu

)
ey
eq
)

—
pP

je
ly

ey

e/
pe

wu
U|

[uysequnu Ber | vor | vIn)

[uyzequnu te: | oor _| uysequna te: | 110 |

uvsequnu

de:
|
oro

| [wanequina Ger | 000 _|

[U
MO
YS

SB

pe
mo
jj
e

a
e

s
o
p
o
w

Bu
js

se
ip

pe

ej
qe
se
ye

ey
ep

Aj
uO

M
‘p
ue
Bi
ed
o

UO
!}

eU
I}

SE
p

EY
}

Se
lj
]D
ed
S

— Pj
el
}

SS
eu
Pp
Yy

9A
I}
00
})
9

‘u
o}

ye
se

do

B
u
o
j
—
o
L

“u
oj
}e
se
do

P
O
M
—

10

‘u
oj
ye
se
do

8
}
A
q
—
0
0

"u
ol
ye
se
do

ey
}

jO

Ez
Is

EY
}

Se
Ij
]D
ed
S

—
pe

l}

EZ
IS

*S
pj
e}
4

UO
}o
ON
sy
SU
}

C
M

m
a
 c
e
C
e
e

p
a

tS

9 S
h

Ver hel
OL”

EN
cP

er
HE

OE
y
e
W
0
4

UO}ONYSU}

‘yWq Aueo
ey}

se
oWeS

OY}
18S

“@S|MJEUJO
PeleE/D

‘peyeseUEB
Ss} M

O
O

Be J! Jes
.

"@SIMJOUJO
Pese9[D

pe}es0UEBH
S| MOj{JJOAO

UF
j! JOS

“@S|MJOUJO
PEleE|D

‘019Z
S| }|/NSE1

OY}
}! 10S

“@S|MIOUJO
PeleE|D

‘enlyeBou
Ss} }jNSeJ

ey}
4! 18S

O
M
A
N

Z
IN

eX

*SOPOD
UO}}|PUCD

ZN>OX

‘ez/S
UOI}eJEdO

EY}
SEYd}eW

e}eEp
B
}
e
/
p
e
w
W

ey}
JO eZIS

ey,
BuO}

JO
‘psom

‘a}Aq
@q

0}
peljioeds

eq
Aew

uolj}esedo
OY}

JO ezIS
EY)

“UOI}E90]
UO!}EUI}SEp

OY}
U! }/NSOJ

QU}
eJ0}s

pue
pueledo

UO!JeUI]SEp
oy}

W
O
)

eJeEp
eyeI|PeWUW!

ey}
JORBI}GQNS

-
U
O
)
d
I
S
e
q

(6uo7
‘pio

‘e}4g)=0zIS
 :seINquNY

<
e
e
>
‘
<
e
j
e
p
>
#

Ians
xejuts sejquiessy

uojjeunseg
—

e}eq
e}eIpeww

—
uO!VeUI}seq

:uojB1edO

eye;peww) ;9eqQNS

lans
lans

ayaequinu Ber | [wysequinu Bos | aysequinu Gor |

F

aysequnu
80s |

[wysequnu
Ber |

[ugzequnu
6
 |

‘uMOUs SB pemol|e

aie

sepow

Bulsseuppe

jjy

‘puesedo

sounos

aU}

saljiI9edsS

—

pjelj

SSeuppy

9AI}909j)5

*suoiyesedo

Buo7—

1
LL

‘sig

ze

|/@

Buisn

10}s|6e)

sseuppe

ey}

UO

pewJOojied

s}
UO!l}eE1edO0

94}

pue

puesedo

Guo

e&
0}

pepua}xe-uBis

s}

puesodo

sounos

ey]

“UO!}e18d0

PIOM—1LLO

1u01}e1ed0

ey}

JO

aZIs

ay}

SeljIOedS

—

play

aPOW-dO

‘uoljyeul}sep

ou}

sAemje

Ss!
Siu,

“s19}s|6e1

sseuppe

jyBlIe

ay)

yo

Aue

saljioods

—

pjalj

se}s1Bey

Spje}4
UO}}ONI}SUj

i
 geree<o wef oxmetin wr aa a

s

Cidh
Daal?

o
r
b
s

(lie wOlMigibemch,

ROE)
DianSh

yBWUO4
UO}}ONIYSU|

Tuysequinu
60, |

493s|Boy

SS
@s

Pp
Y

2A
!1

00
})

3

‘p9}09jje
JON

:SePOD
UO}pUuoD

“QUOP
S| UO!}e1edO

9
}

B10j0q

saijijuenb
31g ze

0}
pepue}xe

uBis
ase

Spuesedo
eoinos

azis
psoM

BuO]
JO

pioMm
aq

0} paljloeds
aq Aew

uo}}e198d0
Oy}

$0 ezIs
ey!

10}S/601
Sseuppe

Oy}
U! }/NSeJ

84} 910}S
pue

10}s|Bei
ssesppe

uoljeul}sep
ey}

Wo1y
puesedo

BdJNOS
ey}

JORBIIGQNS
:
u
O
N
d
O
S
e
g

(6u07
‘piom)=ezIg

=
 _-:seINquY

u
y
'
<
e
e
>

v
a
n
s

:xeyuhs

J
e
j
q
w
e
s
s
y

uojjeuljseg
—

98ouNOS
—

UO!}eUI}Seqg

:
u
o
}
e
I
e
d
O

sseippy
joe13qQNS

v
a
n
s

V
a
n
s

Reprinted by permission of Motorola, Inc. 394

‘uolyesedo
B
u
o
j
—
o
l
L

"uolyesedo
PslOM—1.0

‘uolyesedo
3
}
A
q
—
0
0

1U01}218d0
By}

JO
OZIS

BY}
SAIjIOedS

—

Plal}
aZIS

‘
e
p
o
w

Bulsseippe

juewWeJoepeid
94}

104
J8}s|Ge1

ssesppe
ue

salj!oeds
‘| =

W/Y
JI

40}S81Ba1
eyep

e
s
a
i
i
o
e
d
s

‘
O
=
W
/
H

JI

39}8!5e1
UOJJEUIJSEP

ey}
Saljloeds

—

platy
A
w
/
A
G

49}s16ey

‘
S
p
j
e
l
4

U
O
J
J
O
N
I
Y
S
U
]

xviKG
AvikG

"

39)s160y
49)s1Bey

0
LS

4
€

v
S
s

9
z

8

6
OL

Mb
rae

et
vl

Gt

s
}
B
W
I
O
4

U
O
}
J
O
N
I
}
S
U
|

“suoiyesedo
u0}s!9eJd-9)d1};nW

JO uol}a|dwWOd
UodN

s}jnseJ
018Z

10) S}S9}
|NJssedONs

SMO}|e
SIU

“UO!}eJedO
Ue

JO e
s

ey}
e10J9q

B
u
l
w
w
e
s
B
o
d

eA

39S
S| 114 @POD

UO!}IPUOD
Z OU}

A||BWION

3
L
O
N
 ‘yWq Auseo

oy}
Se

O
W
S

24}
18S

“@SINUGU}O
palee|D

‘peyesoueB
s} Aused

©
 3! 18S

“@SIMIOYJO
Pelee|D

‘peyesoueB
S| MOjJJOAO

UF
}! 19S

“asiMJaujO
pabueYyoUN

°O18Z-UOU
SI }/NSeJ

AY}
}! Pesee1D

“@S|MJOYJO
PEJeE|D

“eAlyeBHou
S| }/NSe/

OY}
J! 18S

G
I

e
t

i
e

re)
A

Z
z

N
x

1S@POD
UO}}I|PUCD

ZN>OX
“Buo|

10
‘piom

‘a}Aq
eq

0}
palyioeds

eq
A
e
w

p
u
e
s
e
d
o

ou}

JO
82/5

OU)

“uo!}ONI}SU!

au}
U!

peljjoeds
siejsiBes

sseuppe
ey}

Buysn
e
p
o
w

Bulssosppe

j
u
s
W
a
J
0
e
p
e
l
d

94}

UyIM
p
a
s
s
e
u
p
p
e

pue

A
i
o
w
e
u

uJ
peuye}u0o

a
e

s
p
u
e
s
e
d
o

eyL

“
K
i
o
w
e
w

0}
Kiowey~

‘Zz

“UOI}JONIJSU!
94}

U! Paljioeds

$19}s|601
eyep

uJ
peujeyuOD

o
e

S
p
u
e
s
o
d
o

oyL
9}s|6e1

eyep
0}

J9}s!6e1
e}eQ

‘|

:sAOM
1U8I9j)1P

OM}
U!

Pesselp

-pe
aq

A
e
w

s
p
u
e
i
e
d
o

ey

‘U0s}290}
UO!}EUI}SEP

OU}
U! }/NSOJ

OY}
810}S

PUR
}1q PUS}XE

ey}
u
M

Buoje
p
u
e
s
e
d
o

uo}}eUI}sep

ey}
W
O

p
U
B
J
E
d
O

BdINOS

84}
J9RIIGNS

tuojyydyoseg

(Buo7
‘piom

‘e}4g)=eZIS
 :seINqURY

(
A
y
)

—
 (
x
)

-— XANS

:xeyuks
Ka‘xa

Xans
4eiquessy

uojyeuljseg
—

X

—
8
d
1
N
O
S

—
UO}}eUI}Seq

suojyesedO

puesxy
Y
M

y9BIIGNS
X
a
n
s

XaNns

-Ajuo
Buo|

pue
PslOMs

ayseaune
G0 |

[aysequnu |
[wysequnu

Be |

Pysequne tor
[wysequinu

er |
u
y
u
e
q
u
i
n
u

‘Bes

u
g
u
e
q
u
n
u

‘Bes

‘UMOUS
SB

paMo|je
a
e

S
e
p
O
W

Buissasppe
9/qe19}/e

AjUO
‘UO!}E90|

UO!}BUI}SEP
OU}

S981j!99dS
—

PIalj
SS@IPPYy

9AI}99j43

:
‘uo}}yesedo

B
u
o
j
—
o
L

‘uo}yesedo
P
j
O
M
—

{LO

‘uolyesedo
8
}
A
q
—
0
0

[U01}BJ8dO
OY}

JO
EZIS

BY}
SAIjIDedS

—

Pal}
8ZIS

*Ajealyoedsel

2
0
}

| ‘g yo
e
B
u
e
s

e
B
u
l
j
u
s
s
e
s
d
e
s

7-|
‘9 ‘eyeEp

a
y
e
!
P
e
w
W
!

JO
S}1q

B
B
J
Y
 J
 —

PIO}
b
e
d

‘SPje}4
UO}JONIySU|

4

SS

s
J
B
W
I
O
4

U
O
]
}
O
N
I
}
S
U
j

‘apew
S| Ja}S|6e1

ssouppe
Ue

W
O
}

UO!}OBI}GNS

&
 4}! PO}09jJe

JOU
91e

SEPOD
UOI}!PUOS

9yL

‘iq
Auseo

ay}
Se

B
W
R
S

9
}

18S

*@SIMIBYJO
P
a
l
e
a
|
O

‘
p
a
y
e
s
a
u
a
B

S|
M
O
1
I
O

B
j! e

S

"@SIMJOUJO
Pasea|D

“‘peyesaueB
S!

MO|JJOAO
UP

}! 8
S

"@SIMJOUJO
POJE9|D

‘O019Z
SI

J!NSO@1
BU}

4}! J9S

*@SIMIOUJO
P
a
l
e
a
|
D

“aA!yeBau

S|
}/NSeJ

Au}
4! 38S

E
L
S
E
S

V
A
T

ae
INT

ex
:$@POD

UO}}|PU0D

ZN>OXx<

‘aZIS
UO!}e18dO

9
}

JO

SSe|pieBHa
‘pasn

si 10}s!16e1
Sseippe

Ud!)

-BUI}SEP
911}U9

94}
‘sua}s!Bei

ssouppe
WOl}

Buj}ORs}qQNs
U
Y

P2}9ejje
JOU

a
e

SEPOd

UO!}I|PUOD
ay}

puke
sJ9}s/He1

ssesppe
94}

UO
pemoO\|e

O
s
e

ase
S
U
O
|
}
e
e
d
O

BuO)
pue

P
J
M

“Buo|
40

‘psom
‘9}Aq

eq
0} paljloeds

aq
A
e

U0}}e198d0
OY}

JO EZIS
BY]

“g-|
W
O
}

S|

aBues
eyep

ey
‘puesedo

UO!JeUIJSEpP
Oy}

W
O

eyEp
a}e!pewiW!

ay}
JORI}GNS

:uoYdj9Sseq

(Bu07
‘piom

‘e}4g)=eZIS
=
 :se;INqURY

<
e
e
>
‘
<
e
j
e
p
>
#

O
G
N
S

:xeyuAsS

s
e
j
q
u
e
s
s
y

uolyeuljseg
—

eyeq
a}elpoewuw)

—
uOo!}eUI}Seg

:uo}Je1edO

4OIND
WeAGNS

O
a
N
s

OagNSs

395
Reprinted by permission of Motorola, Inc.

‘d
em

s
0}

18
}s
/6
01

ey
ep

ay

}
se

lj
io

ad
s

—

pj
ea
ls

1e
}s

|/
60

y
*S

Pj
e]

4
U
O
O
N
y
s
U
]

ol

tL

ra
y

el

vL

15

ye
WW
O4

UO
}I
NI
YS
U]

i
e

E
e

C
E

i
)

‘
@

£
v

Ss

9
Z

8
6

*‘pejyoejje JON

‘p
es

es
jo

s
A
e
M
i
V

‘paseslo sAemIV

“O
S|

MJ
OY

JO

PS
IB
O|
D

°0
18

Z
S!

IN
SO
J

1I
G-

ZE

OY
)

J!

JE
S

*@
S|

MI
BU

}O

PS
sE

9/
D

“J
OS

S!

}/
NS
OJ

11
G-

ZE

OY
}

JO

JI
G

JU
BD
Iy
JU
Bj
S

yS
OW

OY
}

4!

J8
S

SMINP aa N | xX

*S@POD UO})|PuoD

ZN>OXxX<

“4
0}

8/
60

1
ey

ep

e
jo

Se
Aj
ey

}1
q-
91

ey
}

e
B
u
e
Y
y
o
x
y

-
u
o
W
d
j
9
S
s
e
g

(PioM)=eZIS _:se;NqunY Ud d¥VMS :xejudg Jejquiessy

[o
:S
1]

s9
}s

16
0y

—

[9
L:

LE
]

4e
Is
!I
Be
Y

=

:u
oj

pe
se

do

seajey J03s|6ey dems

dVMS dVMS

Reprinted by permission of Motorola, Inc.

‘apow
Bulsseippe

jueswesoepesd
ou}

104
10}s/6o1

sseippe
ue

seljioeds
‘| =

W
/
y

JI

10}s1601
eyep

e
seljioeds

‘QO=W/¥Y
JI

9
}
s
|
6
0
1

G
o
n
o
s

au}
Seljloeds

—
pel)

xv/xq
49}s!6ey

‘
A
i
o
w
e
w

0}
A
i
o
w
e
w

s}
uojjesedo

ay, —
|
]

-10}S1601
eyep

0}
10}s1/60)

eyep
s} UO!}eEedO

oy —
O

r
e
p
o
w

B
u
i
s
s
e
i
p
p
e

p
u
e
i
e
d
o

oy}

s
e
j
i
o
e
d
s

—

ples
W/Y

Xans

puesxy yam yOBIGNS

X
a
n
s

396

“‘pepeo|
eq

0}
18]}UN09

W
e
s
B
o
i
d

M
e
u

BY}

SUJE}UOD
10}90A

des}
YO!YUM

SA1}108dS
—

PIdl}
10}00/A

:Spje}4
vo}onsysU}

T
o
j
o

[t+ f

v
]

+ J

 on
b
t
o
l
o
t

0
.

Z

8

6

OL
tL

ras
eb

vl
St

y
e
W
O
4

UO}ONIYsSU|
0

z
£

v
[
n
e
n

T
o
 Tol]

t
S

9

"peyoesje
JON

:
S
e
p
o
d

U
O
}
j
p
u
o
d

‘aiqeijeae

ese
(G1-0)

SIOJ}DEA
UONONISU]

dVHL
UEE}XIS

“UO!J}ONJJSU!
94}

JO
S}1q

NO}
4eps0

mo|
eu}

Aq palsioeds
10}90A

UOI}deOxe
UO}}ONISU!

dYH1
84}

89UG19jO1
O}

peyesoueb

S|
JeqUINU

10}90A
eyL

“Bulssed0jd
UOI}deoxXe

se}eI}!U!
JOSSeD0Jd

O
L

suo}du9seq

pezisun
=
 :se;nquny

<
J
O
J
O
O
A
>
#

d
V
H
L

:xeyuhs

J
e
j
q
u
e
s
s
y

Od —
s
s
e
p
p
y

10399,
‘(dSS)—YS

‘dSS~—zZ—-dSS
‘(dSS)—Od

‘
d
S
S
—
v
—
¥

—
d
S
S

“(gSS)—10S}JO
1OPVEANEWIOY

‘
d
S
S
—
Z
-
d
S
S

-uoesedo dV¥L hs dvul

‘uaye}
S
A
e
M
|
e

S!
U
O
I
}
d
9
0
x
e

J
O
A

SNq
a
y
l

“
A
}
H
e
z
U
!

way}shs

ainsua
0}

aj9A0

snq
9}11M-Aj|pOW-peal

Sy_L
ey}

JO UO!}JOd
peal

a4}
UO

payiqiyu!
s! Ayja1

J
O
E

SNG

=
 -A
L
O
N

(ux‘uy‘8p)
Pavsequna-ter

[or
S
e
e
n

a
e

Fuvsequnu so | oo
|

ow
Poysequnu te | no

[
+
o

Fevsequnu te: | oo |
ow

|
p
u
p
a
e

accent)

e
e

40)3)60y

=
(ux‘od‘8p)

e
p
o
w

p
o
w

JPPY

!UMOYUS
SB

PeMmoj|e
oe

SaPOW
Busseippe

9jqese}e

e}ep
AjUE

‘puesedo
pe}sa}

04}
JO UO!}EDO|

BY}
SAlj!0edS

—
Pal}

SSeIPpY
9AI}90}j3

:Spjal4
UO}onNs}sU|

40ys1Bey

i

a
a

a
ae.

a

ae,

a
e

e
e
;

a
e
)

ee, |

|

}BWIO4
UONONIYSU|

“peyoajje
JON

‘pasea|o
S
A
E
M
I
Y

‘peiea|o
s
A
e
M
I
V

"@SIMJOUJO
POJe9|D

°018Z
S
E
M

P
U
B
I
O
C
O

84}

}! 18S

‘@SINIAUJO
Palea|D

‘JES
S
E
M

P
U
L
I
A
d
O

94}

JO
HIG

JUBDIIUBIs
J
S
O
W

O44}
j! 38S

G
a
t

n
e
s
e
o
e
s

2
)

A
z

N
x

*S@POD
UO}}{PU0D

ZN>O%x

“SJOSSE00Id
JBJOAES

JO
U
O
!
}
E
Z
!
U
O
I
Y
O
U
A
S

MO}|e
0}

(BjOAD
A
I
O
W
e
U

a
1
U
M
-
A
j
|
p
o
w
-
p
e
a
l

e Buisn)

aiqisiAipu
S| UO}}e19dO

By]
“JES

S| P
U
B
E
d
O

94}

JO }1q JEp10

uBiy
ous

“AjBuypsoooe
yas

ase
Z

PUB
N

PUL
Ps}sa}

S!
pUBIEdO

OU}
JO

AN|eA
JUSIUNS

8
]

‘Piel}
Ssesppe

eA!}O94Je
ey}

Aq pesseippe
puesedo

9}Aq
9y}

Jes
puke

jse|
:uo}WdyOSeQ

(e\Ag)=ezIS
:se;NquAY

<
e
e
>

S
V
L

:xequds Jejquessy

UOIJEUI}SEG
JO J H

G
Q
—
|

‘sepoD

UOIJIPUOD
—

paj}se|
UO}}eEUI}seq

 :uos}E1edQ

puesedo
ue

36S pue
}se)

S
V
L

S
V
L

397
Reprinted by permission of Motorola, Inc.

[wysequnu
Ber | [wvsequinu

er
|

[

vysequinu
Ber
|

|
 u
y
u
e
q
u
i
n
u

‘
B
e
:
 |

‘Bo:
LLO

Fuysequinu ‘or |

t
U
M
O
Y
S

SB

pamojle
aie

S
o
p
o
w

B
u
i
s
s
o
s
p
p
e

ajqeseyje
eyep

AjUM
‘puesado

u
o
}
e
U
I
s
e
p

ay}
saljioeds

—
ple)

S
S
e
u
p
p
y

9AI}094j9

*uo|yesado
B
u
o
j
—
o
L

‘uol}esado
P
I
O
M
—
1
L
0
O

‘uolyesodo
3
}
A
q
—
0
0

1uo0!}yesadO
BU}
JO
BZIS
BY}
SAIjIOedS
—

PIdal}
aZIS

1Spjel4
UONONIjsU]

S
9

Z
8

6
oL

tL
ras

el
vk

SL

y
e
W
0
4

UONONISU]

“P2}09jje JON

‘paseajo
sAemiVV

‘peseajo
s
A
e
m
i
y

*@SIMJOUJO
Pelea|D

‘018Z
S!} P

U
B
I
E
d
O

94}

J}! 18S

“@SIMIBU}O
Pasea|D

‘eaiyeGou
si p

u
e
s
e
d
o

au}

j! 18S

[

s
a
j
e
o
n
i
a
s
:

Jee. |
 =
 |

to)
A

Z
N

x

:$@POD
UO}}IPUOD

ZN>O%x

“Buo|
10

‘piom
‘a}Aq

aq
0}

paljioeds

aq
A
e
w

uol}e19do

ay}
JO 8ZIS

BU]
“}SO}

OU}
JO S}/NS@J

0}
BuIps099Ne

Jas
B1e

SEPOD
UO!)

-IPUOD
OU}

‘“JOA@MOY
‘peAes

ase
S}|/NSOJ

O
N

“OJ8Z

Y
I
M

P
U
B
I
E
d
O

Oy}

B
s
e
E
d
W
O
D

s
u
o
j
d
y
o
s
e
g

(Buo7
‘
p
i
o

‘e}Ag)=ezIS

=
 :s
e
I
N
q
u
A
Y

<
e
e
>

I
S
L

:xeyuhs Jejquessy

S
O
P
O
D

UOI}IPUDD

—
pa}se,

UO!}eUI]Seq
 :uo}}BIEdO

pueiedo ue yse)

1st
Isl

0
‘

4
£

v
S
B

Z
8

6
|

a

2
|

8

}
B
W
I
O
Y

U
O
}
J
O
N
I
Y
S
U
|

‘peyoeyje
JON

:SPOD
UOLIpPUod

‘gouenbeas
U! UO!}ONI}SU!

}X8U
OU}

YIM
SenuI}

-UOD
UOI]NDEXe

PUB
PEWWJOJJed

S| UOI}EIEdO
OU

‘1B9{D
S{ UO!}!]PUOD

MOJJJBAO
OY}

J] 10}
-08A

UOI}AEOXE
A
d
W
H
L

8U}

8OUSJEjo/
0} payesoUaB

S| JequUNU
J0}98A

ey,
‘Bulssedoid

uoljdeoxe
se}zeI}/U)

JOSSED0Jd
OU}

‘JOS
S|

UOI}]PUDD
MOjJJ@AO

94}
4]

:
U
O
N
d
D
S
e
q

pezisun
=
 :seInquyy

AdVWHL
:xequkg

Jejquessy

d
V
H
L

UeU}

Aj]
«suoRBsedO

MOjJJOAQ UO des,

AdVual
A
d
V
u
l

Reprinted by permission of Motorola, Inc. 398

“@UOp

aq
0}

s! Buyyuljun
ey}

YoIyM
YBnoly}

49}s!6e2
ssesppe

84}
Salj!I9edsS

—
PIels

40}s|60y

Spje]4
UO}ONIySU]

ol
bb

ray
et

vi
SL

B
U
O
Y

UO}}ONIYSU]

e
e

0
t

r
d

€
v

S
9

Z
8

6 ‘Ppe}OaJJe
JON

:SEPOD
UO}IPUCD

"yoeR}S
OY}

JO do}
ay}

W
O
}

palind
prom

Huo]
ey}

YIM
pepeo|

UEy}
S| 19}s!5a1

ssolp

-pe
ey]

Je}s{6e1
sseuppe

paljloods
ay}

W
o
y

papeo|
s}

Je}UJOd
yOe}S

OY)
:UOWdyOSeg

Pp
ez
is
un

:
s
e
I
N
q
u
y

uy
M
I
N
N

xxeyuks J
e
j
q
u
e
s
s
y

dS—Z+dS
‘Uy—(dS)

‘dS—Uy
:uoyjesedO

M
I
N
A

tos
W
I
N
N

399
Reprinted by permission of Motorola, Inc.

a
e

e
e

a
a

'
.

I

- ir on

a
e

e
s

‘

a
e

w
e

G
a
t

.:

"

re

_
g
t
i

0
ea
e

e
h
i
t

w
a

s
i
e

Po
it
er
eq
O

D
e
c
e
n
t

-e
et
ud
hi
ia

ort! Miw
betoecd

nar? 4) etsins
d
e
o

ba
bs

ar

s!

yo
rt
io
g

Ao
ai

e
od

T
se

lr
gh

ew
ed

Ce
ts

et
le

po
t

=

-a
eh
eO

sa
if
ib
eo
D

i

aa
bi
et
®

ae
tt
os
vt
ie
nt

S
A

t
i
n

w
t

t
r
i
t
e
:

u
s

m
i
e
s

n
o
r
t
o
n

se
lt
in
eg
s

—
7
a
m

f
e
r
r
t

ae
“
t
e
 a
e
n
 G
r
e
n

ae
—

—
y
s

b
e
 a
c
e
r

W
x

S
e

n
e

c
n

@
3

a

a
s

e
c

a
m
g

aw awh
.

4
7

e
o

B
O

b
e

4g y
e
e
,

7
P
e
n
,

S
a
p

-
m
e
d

o
o

n
a
e

a
t

m
bette

i
a
n

r
w
 h
a

m
e
e
t
i
n
g

c
u
e

>
wt

Lerety
el

Gn
M
g

T
y

P
e
e

nscnatt
(
PSs

W
i
s
e
s
 Og
)

G
u
p
t
a

O
h

w
e

&
O
O

O
h
e
e
~

e
c

ot.
0
-
r
a
,

@

4
e
r
n
a
y

@
a

w
i
g

age

a
w
h
)

Vowe
PT

o
k
i
e

|

Ale!

w
a
r
e
n

m
A
,

:
:

A
d

a2

: AN id od OD) B.A

Analog and Digital Converter
Devices for Interface

The material in this appendix is reprinted with permission of National Semiconductor.

401

ADC0816, ADC0817

402

National
Semiconductor

Analog-to-Digital Converters

ADC0816, ADC0817 8-Bit,.P Compatible A/D Converters
with 16-Channel Multiplexer
General Description
The ADC0816, ADC0817 data acquisition component is a

monolithic CMOS device with an 8-bit analog-to-digital
converter, 16-channel multiplexer and microprocessor

compatible control logic. The 8-bit A/D converter uses suc-

cessive approximation as the conversion technique. The
converter features a high impedance chopper stabilized

comparator, a 256R voltage divider with analog switch tree

and a successive approximation register. The 16-channel

multiplexer can directly access any one of 16-single-
ended analog signals, and provides the logic for addi-
tional channel expansion. Signal conditioning of any
analog input signal is eased by direct access to the

multiplexer output, and to the input of the 8-bit A/D

converter.

The device eliminates the need for external zero and full-

scale adjustments. Easy interfacing to microprocessors

is provided by the latched and decoded multiplexer ad-

dress inputs and latched TTL TRI-STATE® outputs.

The design of the ADC0816, ADC0817 has been optimized
by incorporating the most desirable aspects of several

A/D conversion techniques. The ADC0816, ADC0817 of-

fers high speed, high accuracy, minimal temperature

dependence, excellent long-term accuracy and repeatabil-

ity, and consumes minimal power. These features make

this device ideally suited to applications from process and

machine control to consumer and automotive applica-

tions. For similar performance in an 8-channel, 28-pin,

Block Diagram
COMPARATOR IN

MULTIPLEXER
OUT

16 CHANNELS
MULTIPLEXING

ANALOG
SWITCHES

16 ANALOG INPUTS

4-BIT ADDRESS
ADDRESS
LATCH
AND

DECODER ADDRESS LATCH ENABLE

EXPANSION CONTROL

|
Vcc GND REF(+)

8-bit A/D converter, see the ADCO808, ADCO809 data

sheet.

Features
® Resolution — 8-bits

® Total unadjusted error — + 1/2_LSB and +1LSB

® No missing codes

® Conversion time — 100 us

B Single supply — 5 Voc

® Operates ratiometrically or with 5 Voc or analog span

adjusted voltage reference

16-channel multiplexer with latched control logic

Easy interface to all microprocessors, or operates

“stand alone”

@ Outputs meet TL voltage level specifications

B® OV to 5V analog input voltage range with single 5V

supply

No zero or full-scale adjust required

Standard hermetic or molded 40-pin DIP package

Temperature range —40°C to +85°C or —55°C to

+125°C

Low power consumption — 15 mW

Latched TRI-STATE® output

Direct access to “comparator in” and “multiplexer out”

for signal conditioning

START CLOCK

TAI:
STATE”
OUTPUT
LATCH

| BUFFER

END OF CONVERSION
(INTERRUPT)

8-BIT OUTPUTS

OUTPUT
O ENABLE

Absolute Maximum Ratings (notes 1 and 2) Operating Ratings (Notes 1 and 2)
Supply Voltage (Voc) (Note 3) 6.5V Temperature Range (Note 1) TMIN 5 TAS TMAX
Voltage at Any Pin -0.3V to(Vec +0.3V) ADC0816CJ ~ 55°C <Tas +125°C

Except Control inputs ADC0816CCJ, ADCO816CCN, - 40°C sTas +85°C

Voltage at Control Inputs -0.3V to 15V ADC0817CCN
(START, OE, CLOCK, ALE, EXPANSION CONTROL, Range of Voc (Note 1) 4.5Vpc to6.0 Voc

ADD A, ADD B, ADD C, ADD 0) Voltage at Any Pin OV to Voc
Storage Temperature Range — 65°C to + 150°C Except Control Inputs

Package Dissipation at Ta = 25°C 875 mW Voltage at Control Inputs OV to 15V

Lead Temperature (Soldering, 10 seconds) 300°C (START, OE, CLOCK, ALE, EXPANSION CONTROL,
ADD A, ADO B, ADD C, ADD D)

Lis00av ‘9L8000V Electrical Characteristics

Converter Specifications: Vec=5 Voc= VREF(+) Vrer(-)= GND, Vin= VCOMPARATOR IN» MINS TAS Tmax and

foik = 640 kHz unless otherwise stated.

Parameter

ADC0816

Total Unadjusted Error 25°C

(Note 5) Twin to Tuax

ADC0817

Total Unadjusted Error 0°C to 70°C
(Note 5) Twin to Tax

Input Resistance From Ref(+) to Ref(-—) 1.0

Analog Input Voltage Range (Note 4) V(+) or V(—) GND-0.10 Voec+0.10

VReri+) Voltage, Top of Ladder Measured at Ref(+) Vect+0.1

oo -) Voltage, Center of Ladder Voec/2-0.1 Voc/2+0.1

Vreri-) Voltage, Bottom of Ladder Measured at Ref(—) -0.1

Comparator Input Current f, = 640 kHz, (Note 6) -2

Electrical Characteristics

Digital Levels and OC Specifications: ADC0816CJ 4.5V <Vo¢<5.5V, — 55°C <T,ys + 125°C unless otherwise noted.

ADCO0816CCJ, ADC0816CCN, ADC0817CCN 4.75V <Vo¢ s5.25V, - 40°C < Tas + 85°C unless otherwise noted.

Parameter Conditions | min | typ | Max | Units

ANALOG MULTIPLEXER

Analog Multiplexer ON (Any Selected Channel)

Resistance Ty = 25°C, Ry = 10k
Ta = 85°C

Ta= 125°C

ARon 3 ON Resistance Between Any | (Any Selected Channe?)

2 Channels Ry = 10k

lorF(+) OFF Channel Leakage Current 4 a she Vin = 5V,

a= 25"
Tin tO Twax

lorF(-) OFF Channel Leakage Current we reat Vin=0,
A =

Tin to Tmax

CONTROL INPUTS

Logical 1" Input Voltage

Logical "0" Input Voltage

Logical "1" Input Current Vin = 15V

(The Control Inputs)

Logical 0" Input Current Vin=0

(The Control Inputs)

Supply Current fork = 640 kHz

403

ADC0816, ADC0817

404

Electrical Characteristics (continued)

Digital Levels and DC Specifications: ADC0816CJ 4.5V <V>o<5.5V, — 55°C <T,a< + 125°C unless otherwise noted.

ADC0816CCJ, ADCO816CCN, ADC0817CCN 4.75V sVo¢ s5.25V, — 40°C <T,< + 85°C unless otherwise noted.

DATA OUTPUTS AND EOC (INTERRUPT)

Vouri1) Logical ‘1 Output Voltage lo= — 360 pA

Voutio) Logical 0" Output Voltage lo= 1.6 mA

Voutio) Logical 0” Output Voltage EOC | I5=1.2mA

lout TRI-STATE Output Current Vo=Vec
Vo = 0

Electrical Characteristics

Timing Specifications: Voc = Vrer(+)=5V, Vrer-)= GND, t,= t= 20 ns and T, = 25°C unless otherwise noted.

100 200 Minimum Start Pulse Width (Figure 5)

Minimum ALE Pulse Width (Figure 5) ns

Minimum Address Set-Up Time | (Figure 5) ns

ns

Minimum Address Hold Time | (Figure 5) 5 ns

Analog MUX Delay Time Rg = 02 (Figure 5) : us

From ALE

ty tuo OE Control to Q Logic State C, = 50 pF, R, = 10k (Figure 8) ns

tin, tou OE Control to Hi-Z C.= 10 pF, Ry = 10k (Figure 8) ns

Conversion Time f, = 640 kHz, (Figure 5) (Note 7) us

Clock Frequency kHz

EOC Delay Time (Figure 5) 8424s | Clock

Periods

Input Capacitance At Control Inputs pF

TRI-STATE Output At TRI-STATE Outputs, (Note 7) pF

Capacitance

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.

Note 3: A zener diode exists, internally, from Voc to GND and has a typical breakdown voltage ot 7 Voce:

Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop
greater than the Vcc supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog Vix, does not exceed the supply
voltage by more than 100 mV, the output code will be correct. To achieve an absolute 0 Voc to 5 Vp¢ input voltage range will therefore require a minimum sup-
ply voltage of 4.900 Vpc over temperature variations, initial tolerance and loading.

Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if
an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5V to 4.5V full-scale) the reference voltages
can be adjusted to achieve this. See igure 13.

Note 6: Comparator input current is a bias current Into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and
has little temperature dependence (Figure 6). See paragraph 4.0.

Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Functional Description

Multiplexer: The device contains a 16-channel single-
ended analog signal multiplexer. A particular input chan-
nel is selected by using the address decoder. Table |

shows the input states for the address line and the expan-
sion control line to select any channel. The address is

latched into the decoder on the low-to-high transition of
the address latch enable signal.

TABLE |

SELECTED EXPANSION waiSecuowe [Sey sy a] coer
INO Ec L

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

IN9

IN10

1N11

IN12

IN13

IN14

IN15

All Channels OFF

=x

Mit wart Ss et ec Se OST Re fe ee UF oe MITEL £6 © ee ES ae fae Catt — CAL 2 fect Se ee ee weet Ee - Bee. Cc Le = ws fT Ete ak O20 ok aE i ae De a oe ee ee

X= don't care

Additional single-ended analog signals can be multi-

plexed to the A/D converter by disabling all the multiplexer
inputs using the expansion control. The additional exter-

nal signals are connected to the comparator input and the

device ground. Additional signal conditioning (i.e.,

prescaling, sample and hold, instrumentation amplifica-

tion, etc.) may also be added between the analog input

signal and the comparator input.

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its

8-bit analog-to-digital converter. The converter is designed

to give fast, accurate, and repeatable conversions over a

wide range of temperatures. The converter is partitioned

into 3 major sections: the 256R ladder network, the suc-

cessive approximation register, and the comparator. The

converter’s digital outputs are positive true.

The 256R ladder network approach (Figure 1) was chosen

over the conventional R/2R ladder because of its inherent

monotonicity, which guarantees no missing digital codes.

Monotonicity is particularly important in closed loop feed-
back control systems. A non-monotonic relationship can

cause oscillations that will be catastrophic for the

system. Additionally, the 256R network does not cause

load variations on the reference voltage.

The bottom resistor and the top resistor of the ladder

network in Figure 71 are not the same value as the

remainder of the network. The difference in these

resistors causes the output characteristic to be sym-

metrical with the zero and full-scale points of the transfer
curve. The first output transition occurs when the analog

signal has reached + 1/2 LSB and succeeding output

transitions occur every 1 LSB later up to full-scale.

CONTROLS FROMS.A.R.

TO
COMPARATOR
INPUT

FIGURE 1. Resistor Ladder and Switch Tree

Lisooav ‘91800aVv

405

ADC0816, ADC0817

406

Functional Description (continued)

The successive approximation register (SAR) performs 8
Iterations to approximate the Input voltage. For any SAR
type converter, n-iterations are required for an n-bit

converter. Figure 2 shows a typical example of a 3-bit
converter. In the ADC0816, ADC0817, the approximation
technique is extended to 8 bits using the 256R network.

The A/D converter's successive approximation register

(SAR) Is reset on the positive edge of the start conversion
(SC) pulse. The conversion is begun on the falling edge of
the start conversion pulse. A conversion in process will be
Interrupted by receipt of a new start conversion pulse.

Continuous conversion may be accomplished by tying the
end-of-conversion (EOC) output to the SC input. If used in
this mode, an external start conversion pulse should be
applied after power up. End-of-conversion will go low be-

tween 0 and 8 clock pulses after the rising edge of start

conversion.

> FULL-SCALE
110 IDEAL CURVE —=-- ERROR = 1/2 LSB

NONLINEARITY = 1/2 LSB
ee

A/D OUTPUT CODE

o

000
0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Vin AS FRACTION OF FULL-SCALE

FIGURE 2. 3-Bit A/D Transfer Curve

+1/2 LSB TOTAL UNADJUSTED ERROR

QUANTIZING
ERROR

INPUT _OV Mikes Ss SS

—1/2 LSB TOTAL UNADJUSTED aero

FIGURE 4. Typical Error Curve

The most Important section of the A/D converter Is the

comparator. Itis this section which is responsible for the

ultimate accuracy of the entire converter. It is alsc the

comparator drift which has the greatest Influence on the

repeatability of the device. A chopper-stabilizea com-

parator provides the most effective method of satisfying

all the converter requirements.

The chopper-stabilized comparator converts the DC input

signal into an AC signal. This signal is then fed through a

high gain AC amplifier and has the DC level restored. This

technique limits the drift component of the amplifier since

the drift is a DC component which Is not passed by the AC

amplifier. This makes the entire A/D converter extremely

insensitive to temperature, long term drift and input offset ‘

errors.

Figure 4 shows a typical error curve for the ADC0816 as
measured using the procedures outlined in AN-179.

INFINITE RESOLUTION
PERFECT CONVERTER

110 +1/2 LSB IDEAL 3-BIT CONVERTER
w TOTAL | |
S 101 | UNADJUSTED.

RROR
5 100 se -1 LSB
E ABSOLUTE
ae) ot ACCURACY

$ ow -1/2 LSB
QUANTIZATION

001 ERROR

000
0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Vin AS FRACTION OF FULL-SCALE

FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

REFERENCE LINE

Connection Diagram

Dual-in-Line Package

IN2

Nt

ind

EXPANSION CONTROL

ADDA

Add B

aooc

AodD

ALE

Zis00av ‘918000V

ADC081G ES,
aocosi7 27) MSB

2-2
3
24

MULTIPLEXER
OUT

START
vec 2-81.88

COMPARATOR IN REF(-)

REF(+) CLOCK

GND OUTPUT
ENABLE

2-7

TOP VIEW

Timing Diagram

ea

CLOCK |

50%

—=— WALE—="

STABLE ADDRESS ro

ADORESS 50% Pj 50%

il Sal
tH

ANALOG F - agar = Ne STABLE

12
tse

MULTIPLEXER
our

‘D sgl

OuTPuT
EWABLE

Eoc

'c

TRISTATE
OUTPUTS <= ee EE OO COO OC ee eo see

FIGURE 5

407

Typical Performance Characteristics

TYPICAL ty (uA) TYPICAL Rony (k®2) ADC0816, ADC0817

Vin (V)

FIGURE 6. Comparator I\y vs Vin- FIGURE 7. Multiplexer Roy v8 Vin

(Voc = Vaer = 5V) (Voc = Vrer = 5V)

TRI-STATE® Test Circuits and Timing Diagrams

tan tH ti, C. = 10 pF tH1, C= 50 pF

Voc —| ty t

Y MY 90% OUTPUT Heh 90%
ENABLE 50%

10% 10%
OUTPUT
ENABLE tds —

leat

QUTPUT

tow tHo ton, C.= 10 pF tho C.= 50 pF

Voc Vec alt;
O ©

OUTPUT 90%
ENABLE 50%

10%
OUTPUT
ENABLE

OUTPUT

FIGURE 8

408

Applications Information

OPERATION

1.0 Ratlometric Conversion

The ADC0816, ADC0817 is designed as a complete Data
Acquisition System (DAS) for ratiometric conversion
systems. In ratiometric systems, the physical variable

being measured Is expressed as a percentage of full-scale
which is not necessarily related to an absolute standard.

The voltage Input to the ADC0816 is expressed by the
equation

Vins Dx
Vis — Vz Dwax — Duin a

Vin = Input voltage into the ADC0816

Vig = Full-scale voltage

Vz = Zero voltage

Dy = Data point being measured

Dyax = Maximum data limit

Dyin = Minimum data limit

A good example of a ratiometric transducer is a poten-

tiometer used as a position sensor. The position of the

wiper is directly proportional to the output voltage which

is a ratio of the full-scale voltage across it. Since the data

is represented as a proportion of full-scale, reference

requirements are greatly reduced, eliminating a large

source of error and cost for many applications. A major

advantage of the ADC0816, ADC0817 is that the input

voltage range is equal to the supply range so the

transducers can be connected directly across the supply

and their outputs connected directly into the multiplexer

inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain

gauges, thermistor bridges, pressure transducers, etc.,

are suitable for measuring proportional relationships;

however, many types of measurements must be referred

to an absolute standard such as voltage or current. This

means a system reference must be used which relates

the full-scale voltage to the standard volt. For example, if

Voc = Vrer = 5.12V, then the full-scale range is divided in-
to 256 standard steps. The smallest standard step is 1
LSB which is then 20 mV.

2.0 Resistor Ladder Limitations

The voltages from the resistor ladder are compared to the

selected input 8 times in a conversion. These voltages are

coupled to the comparator via an analog switch tree which

is referenced to the supply. The voltages at the top, center

and bottom of the ladder must be controlled to maintain
proper operation.

The top of the ladder, Ref(+), should not be more positive

than the supply, and the bottom of the ladder, Ref(—),

should not be more negative than ground. The center of

the ladder voltage must also be near the center of the

supply because the analog switch tree changes from

N-channel switches to P-channel switches. These limita-

tions are automatically satisfied in ratiometric systems

and can be easily met in ground referenced systems.

Figure 10 shows a ground referenced system with a

separate supply and reference. In this system, the supply

must be trimmed to match the reference voltage. For in-

stance, if a 5.12V reference is used, the supply should be

adjusted to the same voltage within 0.1V.

DIGITAL
OUTPUT
PROPORTIONAL
TO ANALOG

VIN

4.78V <Vcoc = VRer s5.25V

* Ratiometric transducers

ADCOB16, 17

FIGURE 9. Ratiometric Conversion System

LL800av ‘918000V

409

ADC0816, ADC0817

410

Applications Information (continued)

The ADC0816 needs less than a milliamp of supply current

so developing the supply from the reference is readily
accomplished. In Figure 11 a ground referenced system is
shown which generates the supply from the reference. The
buffer shown can be an op amp of sufficient drive to

supply the milliamp of supply current and the desired bus
drive, or if a capacitive bus is driven by the outputs a large

capacitor will supply the transient supply current as seen

in Figure 12. The LM301 is overcompensated to insure

stability when loaded by the 10 uF output capacitor.

Vec
SUPPLY

The top and bottom ladder voltages cannot exceed Voc
and ground, respectively, but they can be symmetrically
less than Vcc and greater than ground. The center of the
ladder voltage should always be near the center of the

supply. The sensitivity of the converter can be Increased,
(i.e., size of the LSB steps decreased) by using a sym-

metrical reference system. In Figure 13, a2.5V reference
is symmetrically centered about Voc/2 since the same

current flows in identical resistors. This system with a
2.5V reference allows the LSB to be half the size of the

LSB in a 5V reference system.

DIGITAL
OUTPUT
REFERENCED
TO
GROUND

QouT= pe
VREF

4.75V sVcoc=VrReEF s5.25V

ADC0816, 17

FIGURE 10. Ground Referenced
Conversion System Using Trimmed Supply

VREF(+)

DIGITAL OUTPUT
REFERENCED TO
GROUND

Q =
wal Weal

4.75V sVoc = Vrer 5 5.25V
ADC0816, 17

FIGURE 11. Ground Referenced Conversion System with
Reference Generating Vcc Supply

Applications Information (continued)

REFERENCE

10-15 Voc
e

LZis0dav ‘91s00av

DIGITAL OUTPUT
PROPORTIONAL TO
ANALOG INPUT
1.25V < Vin < 3.75V

Ra=Rp

* Ratiometric transducers

FIGURE 13. Symmetrically Centered Reference

3.0 Converter Equations

The transition between adjacent codes N and N+1 is

given by:

N 1 (2)
Vin=t(V —vV +V +V - In =) (VREF(+) REF(—)) 256 * 512 TUE REF(-)

The center of an output code N is given by:

| N
Vin =) (Vreri+)— Vrer(-)) *Vrue(+Vrer(-) (9) 256

The output code N for an arbitrary input are the integers

within the range:

Vin Vere) ——S x 256 + AbsoluteAccuracy (4)
Vrer(+) — VREr(-)

N=

where: Vj, = Voltage at comparator input

Vrer(+) = Voltage at Ref(+)

Vrer-)= Voltage at Ref(—)
Vrue = Total unadjusted error voltage (typically

VREF(+) ~ §12)

411

National
Semiconductor

Digital-to-Analog Converters

DAC0800 8-Bit Digital-to-Analog Converter

General Description
The DACO8 is a monolithic 8-bit high-speed current-

output digital-to-analog converter (DAC) featuring

typical settling times of 100 ns. When used as a

multiplying DAC, monotonic performance over a 40 to

1 reference current range is possible. The DACO8 also

features high compliance complementary current outputs

to allow differential output voltages of 20 Vp-p with

simple resistor loads as shown in Figure 7. The reference-

to-full-scale current matching of better than +1 LSB

eliminates the need for full scale trims in most applica-

tions while the nonlinearities of better than +0.1% over

temperature minimizes system error accumulations.

The noise immune inputs of the DACO8 ‘will accept

TTL levels with the logic threshold pin, VLC, pin 1
grounded. Simple adjustments of the VLc potential
allow direct interface to all logic families. The perfor-

mance and characteristics of the device are essentially

unchanged over the full +4.5V to +18V power supply

range; power dissipation is only 33 mW with +5V

supplies and is independent of the logic input states.

Typical Applications

DIGITAL INPUTS

MSB LSB
Bi B2 B3 84 BS B6 B7 BB

FIGURE 1. +20 Vp-p Output Digital-to-Analog Converter

Ordering Information

TEMPERATURE
RANGE

-§5 C<TA<+125°C

o’C<TaA<+70°C

-55°C <Ta<+ 125°C | DACO800LD

0°C< Tp <+70°C

OC <Ta <+70°C

NON LINEARITY

+0.1% FS

+0.1% FS

+0.19% FS

+0.19% FS

+0.39% FS

DAC0802LD

*Note. Devices may be ordered by using either order number.

412

D PACKAGE (D16C) J PACKAGE (J16A)

LMDACO8AD

LMDACO8D

The DACO800L, DACO802L, DACO809LC, DACO801LC

and DACO802LC are a direct replacement for the

DACO8, DACO8A, DACO8C, DACO8E and DACO8H,

respectively.

Features

Fast settling output current

Full scale error

Nonlinearity over temperature

Full scale current drift

High output compliance

Complementary current outputs

Interface directly with TTL, CMOS, PMOS and

others

2 quadrant wide range multiplying capability

Wide power supply range +4.5V to +18V

Low power consumption 33 mW at +5V

Low cost

100 ns

+1 LSB

+0.1%

+10 ppm/°C

—10V to +18V

Connection Diagram

Dual-in-Line Package

THRESHOLD
CONTROL, Vic

Vout TO 20 Vp-p

TOP VIEW

ORDER NUMBERS*

N PACKAGE (N16A)

DACOB802LCJ | LMDACO8HJ | DACOB02LCN | LMDACO8HN

DACO800LCJ | LMDACO8EJ | DACO800LCN

DACO801LCJ | LMDACO8CJ | DACO801LCN

LMDACO8EN

LMDACO8CN

o0s0oVvd

DAC0800

Absolute Maximum Ratings Operating Conditions
Supply Voltage 118V or 36V MIN MAX UNITS
Power Dissipation (Note 1) 500 mw Temperature (Tq) Reference Input Differential Voltage (V14 to V15) V~ to vt DACO0802LA, LMDACO8A —55 +125 te} eek Input Common-Mode Range (V14, V15) V~ to vt DACO800L, LMDACO8 -55 +125 fo} pep at tae Current “egies ® es DACOB800LC, LMDACOBE, 0 +70 °c Bnaicy Camraneouas Figure 24 DAC0801LC, LMDACOSC, 0 +70 a Sete See gate htiore DACO802LC, LMDACO8H 0 +70 c

Lead Temperature (Soldering, 10 seconds) 300°C

Electrical Characteristics (Vs = +15V, [REF = 2 mA, Ty IN < TA < Tmax unless otherwise specified.
Output characteristics refer to both out and lout.)

DACO802L/ DACO800L/

PARAMETER CONDITIONS DACO0802LC DACO800LC Pi UNITS

[min [typ | MAX [MIN] TvP | MAX | MIN] TYP | MAX |
Resolution 8 8 8

Monotonicity

Nonlinearity

To +1/2 LSB, All Bits Switched
“ON” or “OFF”, Ta = 25°C

DACO800L

DACO800LC

Ta=25°C

Settling Time

tPLH. tPHL Propagation Delay

Each Bit

All Bits Switched

Full Scale Tempco

Full Scale Current Change

< 1/2 LSB, Rout > 20 M& Typ

VREF = 10.000V, R14 = 5,000 kQ
R15 = 5.000 k2, Ta = 25°C

Output Voltage Compliance

1.984] 1.992 Full Scale Current

Full Scale Symmetry lFs4 —!FS2

Zero Scale Current

V7 = —5V

V~ = -8V to —18V

Output Current Range

Logic Input Levels

ViL Logic “0”

ViH Logic "1"

Vic=0Vv

Vic = 0V

—10V < Vin < +0.8V

2V < VIN < +18V

Vv" = =15V

Logic Input Current

Ne Logic “0”

tH Logic “1”

Vis Logic Input Swing

Logic Threshold Range Vs = +15V VTHR

Reference Bias Current 5

di/dt Reference Input Slew Rate (Figure 24)

4.5V <v*< 18V
-4.5V <V~ < 18V
IREF=1mMA

0.0001} 0.01 0.0001

0.0001} 0.01 0.0001

PSSIFS+ Power Supply Sensitivity

PSSIFs_—

Power Supply Current Vs =45V, IREF=1mMA

Vs = 5V, —15V, IREF=2mA

Vs = +15V, IREF = 2mA

+5V, IREF=1mA

5V, —15V, IREF = 2mA

+15V, IREF=2mA

Note 1: The maximum junction temperature of the DACO800, DACO801 and DACO802 is 100°C. For operating at elevated temperatures, devices
in the dual-in-line J or D package must be derated based on a thermal resistance of 100°C/\WV, junction to ambient, 175° C/W for the molded dual-

in-line N package.

Power Dissipation

413

Block Diagram

Equivalent Circuit

se
81 82
? 2)

§ 6

Nee Meee
eee

Eitis date

83 84
&

9 5
:

u

*Vrer O

| re Se

FIGURE 2

414

Q Es Cs Is | CC (Csi a

00800 VG

DAC0800

Typical Performance Characteristics
Full Scale Current Reference Input
vs Reference Current LSB Propagation Delay vs les Frequency Response

ALL BITS HIGH

uit FOR Ei

aria
BI aeihemmallll

0.0102 0.050.1002 05 1 2 5 10
Iner — REFERENCE CURRENT (mA) ‘ps — OUTPUT FULL SCALE CURRENT (mA) FREQUENCY (MHz)

Curve 1: Co = 15 pF, Vin =2V; FIGURE 3 FIGURE 4 on eT ay HPP
Curve 2: Cc = 15 pF, Vin = 50 mVp-p

centered at 200 mV.

Curve 3: Cc =0 pF, Vin = 100 mVp-p
at OV and applied through 50 2 con-

nected to pin 14. 2V applied to R14,

FIGURE 5

igs — OUTPUT CURRENT (mA)
RELATIVE OUTPUT (dB)

Pg — PROPAGATION DELAY (ns)

Reference Amp Logic Input Current

Common-Mode Range vs Input Voltage VTH — Vic vs Temperature

2.6
Ta = Twin TO Trax 24 ca es Saal

ALL BITS “ON” 22 ky ;
te} 18
ie Ee ee 1.6

‘vs _ 14
1.2
1

08
0.6
04
02

8 ER SS | ea a 0

uth = ab -8 2 € 8 0 46 -12-10-8-6-4-202 4 6 81012141618

Vrw - Vic {V)

i

2
F

4, — LOGIC INPUT CURRENT (WA)

V15 — REFEREWCE COMMON-MODE VOLTAGE (V) Vj - LOGIC INPUT VOLTAGE (V) Ta - TEMPERATURE (C)

Note. Positive common-mode range is
always (V+) — 1.5V. FIGURE 7 FIGURE 8

FIGURE 6

Output Current vs Output
Voltage (Output Voltage Output Voltage Compliance .

Compliance) vs Temperature Bit Transfer Characteristics

Fs FP sae 2) Oe a a
SAA ANY ERED SRREe

BNNSSVSNVNEE
ISHADED AREA INDICATE: B
PERMISSIBLE OUTPUT
VOLTAGE RANGE FOR ga
-V = -15V, IRE S2 mA.

| FOR OTHER -V OR Ipe¢,
SEE FIGURE 9

SSL! , WCCO
-144-10 -6 -2 2 6 0 4 18 -60 0 50 100 150 -12-10-8-6-4-20 24 6 6 101214 1618

Vo - OUTPUT VOLTAGE (V) Ta — TEMPERATURE (°C) V, — LOGIC INPUT VOLTAGE (Vv)

co Co
is, me ote tH

ea a
marge

Ig — OUTPUT CURRENT (mA) ig — OUTPUT CURRENT (mA) Voc - OUTPUT VOLTAGE (V)

Note. B1—B8 have identical transfer

FIGURE 9 FIGURE 10 characteristics, Bits are fully switched
with less than 1/2 LSB error, at less than
+100 mV from actual threshold. These

switching points are guaranteed to lie

between 0.8 and 2V over the operating -

temperature range (Vic = OV).

FIGURE 11

415

Typical Performance Characteristics (continued)

Power Supply Current

Power Supply Current vs *V Power Supply Current vs ~V vs Temperature

ALL BITS MAY BE HIGH OR LOW EF

peeeeee
Pt eee
BaCRaSe

' 1

aa |- WITH Ipeg = 2mA Eg
Scanian

i 1- WITH Ipeg = 1 mA

ee Cog Ne SE EE Mall CER

Lf Lewin igee na | Bimmer
1+, I-, POWER SUPPLY CURRENT (mA)

POWER SUPPLY CURRENT (mA)

1+, 1-, POWER SUPPLY CURRENT (mA)
0

4 6 8 10 12 14 16 18 20 0 -2 -4 -6 -8 -10 -12-14-16-18 -20

Voc — POSITIVE POWER SUPPLY (V) V — NEGATIVE POWER SUPPLY (V) Tp — TEMPERATURE (C)

FIGURE 12 FIGURE 13 FIGURE 14

Typical Applications (continued)
DIGITAL INPUTS “Vance 255

SB les ay Tyr 5 tenes

81 62 83 B4 BS 86 B7 BB REF 256

lo+ lo. = Ig for all

logic states

For fixed reference, TTL operation,

typical values are:

VreF = 10.000V
Rrer = 5.000k
R15 ~ Reer
Cc = 0.01 uF
Vic = OV (Ground)

FIGURE 15. Basic Positive Reference Operation

AREF

255 +#£Note. Rrer sets Ips; R15 is

“ 356 ‘for bias current cancellation

FIGURE 16. Recommended Full Scale Adjustment Circuit FIGURE 17. Basic Negative Reference Operation

DIGITAL INPUTS

Incr =2mAO

—

Full Scale

Full Scale—LSB

Half Scale+LSB

Half Scale

Half Scale—LSB

Zero Scale+LSB

Zero Scale

FIGURE 18. Basic Unipolar Negative Operation

416

00800 VG

DAC0800

Typical Applications (continued)

“taer=2ma O
od

Pos. Full Scale 1 1 1 1 1 1

Pos. Full Scale—LSB

Zero Scale+LSB

Zero Scale—LSB

Neg. Full Scale+LSB

1 1

(oy Me)

Zero Scale 08.0

1 1

OO)

Neg. Full Scale Oo €6060°0

1

0.6.60

(Om a9
1 1

OO

0 0 +10.000

FIGURE 19. Basic Bipolar Output Operation

Pos. Full Scale

Pos. Full Scale—LSB

(+) Zero Scale

(—) Zero Scale

Neg. Full ScaletLSB

Neg. Full Scale

255
IFS = Sen (REF

For complementary output (operation as negative logic DAC), con-

nect inverting input of op amp to Ig (pin 2), connect IQ (pin 4)
to ground.

FIGURE 21. Positive Low Impedance Output Operation

255 \
256 REF

For complementary output (operation as a negative logic DAC) con-
nect non-inverting input of op amp to Ig (pin 2); connect Io

(pin 4) to ground.

FIGURE 22. Negative Low Impedance Output Operation
py

417

Typical Applications (continued)
Vin = Vic? 14

15V CMOS, HTL, HNIL pmos
Vin" 7.6V Vyy = OV

= 1N4148
15V

TTL, OTL
Vint 14

12V TO 18V

14148

Vic

N Za me a2

|

=

< = 5

2 = 2

SV CMOS 1ov cmos
Vin = 28V VrH = 5V

| wv

|
| 6.2k

14148 |

1N4148 | 36k ON uF

|
|

Note. Do not exceed negative logic input range of DAC.

FIGURE 23. Interfacing with Various Logic Families

"Vrer
0

(a) IREF > peak negative swing of I)jy

"VneF

OPTIONAL RESISTOR
AREF ; FOR OFFSET INPUTS

O
NO CAP

Typical values: Ryyy = 5k, +Vipy = 10V oi

FIGURE 24. Pulsed Reference Operation

(OPTIONAL)
Vina

HIGH INPUT
IMPEDANCE

(b) +V REF must be above peak positive swing of Viny

FIGURE 25. Accommodating Bipolar References

FOR TUAN "ON", Vy = 2.7V
FOR TURN “OFF”, VU =0.7V

HPS5082-2800
SCHOTTKY DIODES

DACOS
RIS (D.U.T.)

15V -15V

CAPACITANCE

0.1 uF

FIGURE 26. Settling Time Measurement

418

00800 VG

DAC0800

Typical Applications (continued) ee
CONVERSION

CLOCK

SAR

GND
Q0 O71 O2 G3 O4 O85 O6 OF

6-BIT DIGITAL
worRD

Note. For 1 us conversion time with 8-bit resolution and 7-bit
accuracy, an LM361 comparator replaces the LM319 and the

reference current is doubled by reducing R1, R2 and R3 to

2.5 kQ and R4 to2 MQ.

FIGURE 27. A Complete 2 us Conversion Time, 8-Bit A/D Converter

419

:
emia ” — _*

ee

CAT . Peemnacriay Heme Sermene : : a:
‘ 2 a

e
- . _

_

} a

| :

_

_

D — hmmm

ae a ees Se pau See ae anil

| APPENDIX

Instruction Timing
for the 68000/10 Processors

421

MC68000 INSTRUCTION EXECUTION TIMES

D.1 INTRODUCTION

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) periods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait

states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (r/w) where r is the number of read cycles and w is the number of write.
cycles included in the clock period number. Recalling that either a read or write cycle re-
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required

for some internal function of the processor.

NOTE

The number of periods includes instruction fetch and all applicable operand

fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TIMING

Table D-1 lists the number of clock periods required to compute an instruction’s effective
address. It includes fetching of any extension words, the address computation, and

fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesis as (r/w). Note there are no write cycles involved in processing the effective

address.

Table D-1. Effective Address Calculation Times

Addressing Mode
Register

Dn Data Register Direct 0(0/0) 0(0/0)

Memory

(An) Address Register Indirect 4(1/0) 8(2/0)
Address Register Indirect with Postincrement

— (An) Address Register Indirect with Predecrement 6(1/0) 10(2/0)

Address Register Indirect with Index 10(2/0) 14(3/0)

(xxx).L Absolute Long 12(3/0) 16(4/0)
Program Counter with Displacement

digiPC, Xn)* Program Counter with Index 10(2/0) 14(3/0)
#<data>

*The size of the index register (Xn) does not affect execution time.

422 Reprinted by permission of Motorola, Inc.

D.3 MOVE INSTRUCTION EXECUTION TIMES

Tables D-2 and D-3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w).

Table D-2. Move Byte and Word Instruction Execution Times

4(1/0)
4(1/0)

(An) 8(2/0)

re i a
Dn

An

8(2/0)
10(2/0)
12(3/0)

dg(An, Xn) * 14(3/0)
(xxx). W 12(3/0)

(xxx). 16(4/0)

d16(RC) 12(3/0)

dg(PC, Xn)* 14(3/0)

#<data> 8(2/0)

4(1/0)
4(1/0)
8(2/0)

8(2/0)
10(2/0)
12(3/0)

14(3/0)
12(3/0)
16(4/0)

12(3/0)
14(3/0)

8(2/0)

8(1/1)
8(1/1)

12(2/1)

12(2/1)
14(2/1)
16(3/1)

18(3/1)
16(3/1)
20(4/1)

16(3/1)
18(3/1)
12(2/1)

8(1/1)
8(1/1)

12(2/1)

12(2/1)
14(2/1)
16(3/1)

18(3/1)
16(3/1)

20(4/1)

16(3/1)
18(3/1)
12(2/1)

*The size of the index register (Xn) does not affect execution time.

Destination

8(1/1)

8(1/1)
12(2/1)

12(2/1)
14(2/1)

16(3/1)

18(3/1)

16(3/1)
20(4/1)

16(3/1)
18(3/1)
12(2/1)

12(2/1)

12(2/1)
16(3/1)

16(3/1)
18(3/1)
20(4/1)

22(4/1)

20(4/1)
24(5/1)

20(4/1)
22(4/1)
16(3/1)

14(2/1)

14(2/1)

18(3/1)

18(3/1)

20(3/1)

22(4/1)

24(4/1)
22(4/1)
26(5/1)

22(4/1)
24(4/1)
18(3/1)

Table D-3. Move Long Instruction Execution Times

Destination

12(2/1)
12(2/1)
16(3/1)
16(3/1)
18(3/1)
20(4/1)
24/1)
2014/1)
24(5/1)
2014/1)
2214/1)
16(3/1)

16(3/ 1)

16(3/1)

20(4/1)

20(4/1)

22(4/1)

24(5/1)

26(5/1)

24(5/1)

28(6/1)

24(5/1)

26(5/1)

20(4/1)

JE SE So. SE Se a ee ee ae ee

4(1/0)
4(1/0)

12(3/0)

12(3/0)
14(3/0)
16(4/0)

dg(An,Xn)* 18(4/0)

(00x). W 16(4/0)

(xxx). L 20(5/0)

d(PC) 16(4/0)

d(PC,Xn)* 18(4/0)

#<data> 12(3/0)

4(1/0)
4(1/0)

12(3/0)

12(3/0)
14(3/0)
16(4/0)

18(4/0)
16(4/0)
20(5/0)

16(4/0)
18(4/0)
12(3/0)

12(1/2)
12(1/2)

20(3/2)

20(3/2)
22(3/2)
24(4/2)

26(4/2)
24(4/2)

28(5/2)

24(4/2)
26(4/2)

20(3/2)

12(1/2)
12(1/2)
20(3/2)

20(3/2)
22(3/2)
24(4/2)

26(4/2)
24(4/2)
28(5/2)

24(4/2)
26(4/2)
20(3/2)

*The size of the index register (Xn) does not affect execution time.

Reprinted by permission of Motorola, Inc.

12(1/2)
12(1/2)
20(3/2)

20(3/2)
22(3/2)
24(4/2)
2614/2)
24(4/2)
22(5/2)
24(4/2)
26(4/2)
20(3/2)

16(2/2)
16(2/2)

24(4/2)

24(4/2)

26(4/2)

2B(5/2)

30(5/2)
28(5/2)

32(6/2)

28(5/2)
30(5/2)

24(4/2)

18(2/2)

18(2/2)
26(4/2)

26(4/2)

28(4/2)
30(5/2)

32(5/2)
30(5/2)
3A(6/2)

30(5/2)
32(5/2)

26(4/2)

16(2/2)
16(2/2)
24(4/2)

24(4/2)
26(4/2)
28(5/2)

30(5/2)
28(5/2)

32(6/2)

28(5/2)
30(5/2)
24(4/2)

20(3/2)
20(3/2)
28(5/2)

28(5/2)
30(5/2)
32(6/2)

34(6/2)

32(6/2)
36(7/2)

32(5/2)
34(6/2)
28(5/2)

423

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-4 indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read

and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad-

dress calculation where indicated.

In Table D-4 the headings have the following meanings: An = address register operand,
Dn =data register operand, ea=an operand specified by an effective address, and

M=memory effective address operand.

Table D-4. Standard Instruction Execution Times

[instruction | Size | op<ea>, Ant_[op<ea>, Dn__[op Dn, <M>
Byte, 41770) am

6(1/0) + * * 6(1/0) + * * 12(1/2) +
1 ais Byte, Word | = 4(1/0) + 8(1/1) +

Ce
A seolranea ae aon AiON tenme | — J

hong | _ cho Oe Reeth CL eae [Oe aPC
Wc spall fala al meoteiriy nace. Abnl an CIRO td ae licipneeetts
at ea ay ser geetoacica idols A ieelian satel

eve, word | id atone | ani
ome ee ee aes

OCS Sh Ir nauigsh aalesctiaa! aclel pollen glee =
EL ieost (Re aa seen) ine 1) Oe eee a

aye, woe | <i aoe | ane
tong OI eT

+ add effective address calculation time

t word or long only

* indicates maximum basic value added to word effective address time.

** The base time of six clock periods is increased to eight if the effective address mode is

register direct or immediate (effective address time should also be added).

*** Only available effective address mode is data register direct.

DIVS, DIVU — The divide algorithm used by the MC68000 provides less than 10% difference

between the best and worst case timings.

‘MULS, MULU — The multioly algorithm requires 38+ 2n clocks where n is defined as:

MULU: n= the number of ones in the <ea>

MULS: n=concatanate the <ea> with a zero as the LSB; n is the resultant number of

10 or 01 patterns in the 17-bit source; i.e., worst case happens when the

source is $5555.

424 Reprinted by permission of Motorola, Inc.

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-5 includes the time to fetch immediate

operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of

clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: #=immediate operand,
Dn = data register operand, An=address register operand, and M=memory operand.
SR = status register.

Table D-5. Immediate Instruction Execution Times

mes ao f «|r s
reo —*d| 200g

abe 4(1/0) 8(1/0) 8(1/1) +
8(1/0) 8(1/0) 12(1/2) +

; 8(2/0 et abe | 1202/1 rr E
wear [| _*| 20+

: a iW om sare =an a2/ 8(2/0+
ago [= | 12/0

one a12/0) 207i
wea [YC

2 a WO CZATE
ear | *i| 20ers

sue azo |= (| ers
EC SIE
4(1/0) 8(1/0)* 81/1) +

SUBO
8(1/0) 8(1/0) 12(1/2) +

"+ add effective address calculation time
* word only

Reprinted by permission of Motorola, Inc. 425

D.6 SINGLE OPERAND INSTRUCTION EXECUTION TIMES

Table D-6 indicates the number of clock periods for the single operand instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to

those of the effective address calculation where indicated.

Table D-6. Single Operand Instruction Execution Times

[Size dT ~SsCRegister—| Memory

sa

oe

a

a
TAS
re

+ add effective address calculation time

D.7 SHIFT/ROTATE INSTRUCTION EXECUTION TIMES

Table D-7 indicates the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D-7. Shift/Rotate Instruction Execution Times

| _instruction [Size | Register =| |= Memory —sd
ASR, ASL 6 + 2ni1/0) B17) +

Sens fo S|
LSR, LSL 6 + ani1/0) BI1/1) +

ic rs ey
ROR, ROL 6 + 2n(1/0) 8(1/1)+

Ta ee ae ey
ROXR, ROXL 6 + 2ni1/0) Bil N+

ae ee ae as
+ add effective address calculation time for word operands

n is the shift count

426
Reprinted by permission of Motorola, Inc.

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Table D-8 indicates the number of clock periods required for the bit manipulation instruc-
tions. The number of bus read and write cycles is shown in parenthesis as (r/w). The

number of clock periods and the number of read and write cycles must be added respec-
tively to those of the effective address calculation where indicated.

Table D-8. Bit Manipulation Instruction Execution Times

+ eeol perigee ae
rae a ee ay oes

eed. |Lazeigis tebe
— penis | - | ame

oor | = | ware [= |
idoeeey rafal af ETL ee ST

[tong Peon | ep ee |
rpeseiarpatierbane | une eet Pe tlaae |

= A
+ add effective address calculation time

* indicates maximum value; data addressing mode only

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table D-9 indicates the number of clock periods required for the conditional instructions.
The number of bus read and write cycles is indicated in parenthesis as (r/w). The number
of clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D-9. Conditional Instruction Execution Times

sano Valea eal
ni a

fim cS aa]
Iemma ical

18(2/2)

18(2/2)

mor Tico 12(2/0)

14(3/0)

+ add effective address calculation time

* indicates maximum base value

427 Reprinted by permission of Motorola, Inc.

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Table D-10 indicates the number of clock periods required for the jump, jump-to-
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).

Table D-10. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

[instruction [Swe [(An) | (Anl+ (An) | dyg(An) iglAnXnh] trod. W | _trood._[4y@(PCT_[agiPCXnl
es | ger r41370)
sk | Set 2212/2
SR ORE ed Sn 1212/0)

pawemel eee z012/2) Pek) a
MOVEM (3+ n/0) (3+ n/0) (4+1/0) | (4+n/0) | (4+n/0)} (5+n/0) | (4+n/0) | (4+n/0)

(3+2n/0) | (3+2n/0) (4+ 2n/0) |(44+2n/0) | (4+2n/0) | (5+ 2n/0) | (4+2n/0) | (4+2n/0)

MOVEM (2/n) (2/n) (3/n) (3/n) (3/n) (4/n)

(2/2n) (2/2n) (3/2n) (3/2n) (3/2n) (4/2n)

n is the number of registers to move

* is the size of the index register (Xn) does not affect the instruction’s execution time

D.11 MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D-11 indicates the number of clock periods for the multi-precision instructions. The
number of clock periods includes the time to fetch both operands, peform the operations,
store the results, and read the next instructions. The number of read and write cycles is
shown in parenthesis as (r/w).

In Table D-11, the headings have the following meanings: Dn = data register operand and
M=memory operand.

Table D-11. Multi-Precision Instruction Execution Times

[instruction [Sie | op Dn Dn |
a 4(1/0) 18(3/1)

8(1/0) 30(5/2)

cmpm— LsBvle. Word [=] 1206/0
ee a E07

ae 4(1/0) 18(3/1)
8(1/0) 30(5/2)

ABCD 6(1/0) 18(3/1)
SBCD 6(1/0) 18(3/1)

428 Reprinted by permission of Motorola, Inc.

D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Tables D-12 and D-13 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in paren-

thesis as (r/w). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where indicated.

Table D-12. Miscellaneous Instruction Execution Times

[instruction | Size _]
fanbitoccr | aye | aoa | — _|

a
[CHK (No Tras) | - | oor | - |
feoritoccr | aye | aoa. | — |
feoRitosa | Word | 20a | — _|

Co Sal
ees

ORI to CCR 20(3/0)
ORI to SR 20(3/0)
MOVE from SR eS RCT AE C2 TUTE
MOVE tw cor | | —tarvror | 2rv70r+
Tmoverosa | __— | tivo] r2ivvore |
a Ce CT
cme

a
he eel ea Pe
MOVE Toms alae eager fete =
COT ee ae eT
INORNY Can Te Neod.am Mh nab ORD oF ome.
a ane Oa ee
ie lh ue oe 01S OTs aetna
Sees eee eee
Gi ee cde keel A ea
ice eeee Roe ae eee ee
[tit anette Pees and 117 Ss RES
Freee Se oe | RET MP gar Oe [ORE
EA a RE
+ add effective address calculation time

Table D-13. Move Peripheral Instruction Execution Times

[instruction | __Size__ | Register—Memory_| Memory — Register |
16(2/2) 16(4/0)

i 24(2/4) 24(6/0)

Reprinted by permission of Motorola, Inc. 429

D.13 EXCEPTION PROCESSING EXECUTION TIMES

Table D-14 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the

first two instruction words of the handler routine. The number of bus read and write

cycles is shown in parenthesis as (r/w).

430

Privilege Violation

+ add effective address calculation time

*The interrupt acknowledge cycle is assumed

to take four clock periods.

**Indicates the time from when RESET and

HALT are first sampled as negated to when

instruction execution starts

Table D-14. Exception Processing Execution Times

Reprinted by permission of Motorola, Inc.

GLOSSARY

Access Memory All RAM location can be accessed in the same amount of time. Also known as

Read/Write Memory (R/WM).

accumulator A special purpose register that holds one of the data elements going into the ALU

and the result from the ALU.

ACIA Asynchronous Communications Interface Adapter. A serial communication device be-

longing to the 6800 family. It has standard RS-232 properties.

A/D Analog-to-digital converter. An electronic circuit that converts an analog input voltage into

a digital equivalent word.

address bus_ A collection of address signals.

address error An error condition that results when the processor attempts to access instructions

or word or long-word operands at an odd address.

ALU Arithmetic Logic Unit. It performs the arithmetic and logical operations of the operands.

architecture The arrangement of the processor’s internal resources.

arithmetic operations Operations that deal with operands as numbers. They change the number

values of the operands.

arithmetic shift A shift operation in which the sign of the operand is maintained.

AS Address strobe output signifying that the contents of the address bus are valid and stable.

ASCII American Standard Code for Information Interchange. A 7-bit code that represents al-

phanumeric characters. ASCII code is widely used in data communications.

assembler directives Commands associated with the assembler to guide the assembly process.

assemblers Programmed utilities that convert programs written in assembly language, using the

mnemonic instructions of the processor, into the corresponding machine code.

asynchronous events Events that occur at irregular intervals; that is, not in time with a clock

signal.

autovectors Dedicated vector locations for interrupts in the exception table.

431

432 Glossary

base address The reference address that forms the basis for effective address calculation.

base displacement The displacement added to an address register or program counter before in-

dexing.

baud rate The rate of serial data transfer given in bits per second (bps).

BCD Binary Coded Decimal. In BCD format, each decimal digit is represented by four binary

bits.

BERR Active low bus error input to the processor. Asserting a BERR causes a bus error excep-

tion routine to be run by the processor.

bidirectional A term used to refer to a signal line that can be input or output.

binary A system of number representation using logic | and 0.

binary integers Numbers that are regarded as integer values in the binary convention.

bit field Designated portion of memory that holds bits of data.

bit-field width The number of bits in the field.

bit manipulation Data manipulation at the bit level. Bit-manipulation instructions are very use-

ful in I/O applications in which a single bit needs to be tested or changed.

break condition A condition that results when an all-zero data frame is encountered without the

stop bits. In communications, a break condition is used for special events.

buffer An electrical circuit used as a go-between when the circuits on either side have different

voltage or current requirements. It is also used for holding and/or isolation applications.

bus A collection of signals with common properties.

bus arbitration Exchange of information between two or more units, such as a processor and

DMA controller, to gain control of the bus.

bus error A condition that results when the processor attempts to access nonexistent memory or

lO.

bus master The device or unit that has control over the system buses.

byte An 8-bit binary data structure; the fundamental unit in data structures.

cache memory High-speed fast-access memory, designed to hold frequently used instructions

and operands.

CAS Column Address Strobe. A signal used to latch the column address into a dynamic RAM

device. It also acts as a chip select.

CHK A 68000 instruction that checks the boundaries of a specified data register.

cold start Starting from a power-up condition in which complete initialization of the system is
required. Enough time must be allotted for the system electronics to stabilize.

comment directive An assembler directive for introducing comments to clarify the program.
The assembler will not convert a comment into machine code.

compiler A programming utility that converts programs written in higher level languages, such
as PASCAL, into the corresponding machine code of the processor.

condition codes (flags): Codes containing information concerning the operation of a program on
an instruction-by-instruction basis.

CRA and CRB Control registers A and B of the PIA. These registers must be configured for
any I/O handshake application.

cross assembler An assembler utility that uses one computer to develop software designed to be
used on a different computer.

crystal oscillator An electronic circuit in which a crystal produces oscillations. It is frequently
used for timing generation. —

CTS Clear to Send. A control signal from the DCE to the DTE indicating that the data transfer
is about to take place.

Glossary 433

cutoff frequency The value at which the system response will be at approximately 70 percent of

its maximum value. Also known as corner frequency.

D/A _ Digital-to-analog converter. An electronic circuit that converts a digital word into a corre-

sponding analog voltage.

daisy chain A cascading mechanism to increase the number of effective inputs onto a single

input line.

data bus_ A collection of data signals.

data movement instructions Instructions used to move byte, word, and long-word data be-

tween data registers, address registers, and memory. Usually these instructions do not affect the

value of the operand moved.

DCD Data Carrier Detect. A control signal to the DTE from the RS-232 interface, indicating

that the carrier signal is in progress.

DC directive Define constant assembler directive. It defines constant values, including charac-

ters. These values will be put into the memory.

DCE Data Communication Equipment. The unit that interfaces with an intelligent system (usu-

ally a DTE) for data transfers.

DDRA and DDRB Data direction registers A and B of the PIA. The contents of these registers

determine whether the port bits are input or output.

debounce An electronic circuit that removes oscillations due to mechanical vibrations when a

mechanical switch closes or opens.

delimiters Special characters used by the assembler to specify certain types of operations.

destination operand The location at which the results of an operation should be placed.

DFC Destination Function Code. A 3-bit register in 68010 and 68012 processors that contains

destination function code information.

displacement A value added to the base address to obtain an effective address.

DMA Direct Memory Access. A mechanism by which data transfers take place between mem-

ory and I/O without processor intervention. DMA is used for high-speed data transfers.

double bus fault A catastrophic failure condition in which the processor comes to a complete

halt. This condition results from nested error conditions involving bus errors, reset vector

fetches, address errors, or privilege violation errors.

DRAM _ Dynamic Random Access Memory. DRAM devices store information in the form of dy-

namic charge. They are about four times denser than static RAMs.

DS directive Define storage assembler directive. It defines the memory area for general-purpose

or stack storage.

DTACK Data acknowledge signal from the selected memory or I/O signifying that the data

transfer during the bus cycle has successfully taken place.

DTE Data Terminal Equipment. An intelligent system that commands other units interfaced

with it (usually DCE) for data transfers.

DTR Data Terminal Ready. A control signal to the DCE from the RS-232 interface indicating

that the DTE is ready for data transfer.

EBCDIC_ Enhanced Binary Coded Decimal Interchange Code. An 8-bit code standardized by

IBM for information exchange.

effective address Actual physical address where the source or destination operands are located.

emulation The mimicking of certain properties and conditions by the operating system that do

not actually exist in the operating system conditions.

END directive End assembler directive. It tells the assembler to terminate the assembly process.

434 Glossary

EQU directive Equate assembler directive. It equates the defined symbol with the value speci-

fied on the right-hand side.

even memory byte The byte located at an even address, such as $000000, $000002.

exception A special condition, such as an interrupt, error, or reset, that moves the 68000 family

of processors into a higher level of operation and control.

exception vector A number from 0 to 255 used to point to a group of memory locations that

contain the address of the routine that will handle the exception.

FIFO First In First Out. A data structure in memory in which the first element stored will be the

first one retrieved.

frame Start and end of a character or message.

frame error An error condition that results when the stop bits of a data frame are missing.

frame pointer One of the address registers containing the stack address information. It is used

to access information from the work area of the stack.

function control outputs Outputs from the processor that specify its status during the current

bus cycle.

giga One billion units (10°).

governing operating system The actual operating system that controls the local operating sys-

tems and users. The governing operating system is truly operational in the supervisor mode and

corresponds to the default vector table.

handshake A method of exchanging control information during data transfer between devices or

stations.

hardware A term referring to the physical electronics, the associated circuitry, and the elec-

tronic packaging associated with microcomputer systems.

hex A system of number representation to the base 16. Each hex digit takes four binary bits.

Representation of numbers 0—9 is similar to the decimal system. Decimal numbers 10—15 are

represented by alphabet letters A, B, C, D, E, and F.

host system The computer system containing the utilities. It is used for program development

and storage.

IC _ Integrated Circuit. It refers to semiconductor circuitry on a single wafer and packaged to-

gether.

illegal instruction error An error condition that results when the processor attempts to use in-

struction codes that are not legal and valid.

index A parameter value in one of the registers that is added to the base address to obtain the
effective address.

index register The register holding the index value. In the 68000, it can be a data or an address
register.

inductive transients Voltage spikes across inductive windings that occur when there is a sudden
change in current.

initialization The part of a program that sets the register and memory contents to their starting
values.

input/output (I/O) devices Peripheral devices, such as keyboards, displays, and disk drives,
used to input or take data from a computer. All external data enters through the input section;
all output data exits through the output section.

instruction time The time it takes to execute a given instruction without any wait states.

Glossary 435
eo ee ee

interrupt A hardware signal from the I/O device to the processor to obtain the attention of the
processor.

interrupt mask level Mask level in the system byte of the status register. Only interrupts above

this level are recognized.

1/O-mapped I/O A technique whereby the I/O devices are grouped in a separate address range

and serviced by I/O instructions.

labels Symbolic representations of addresses in assembly language programming. The assembler

replaces labels with corresponding numbers when the assembly process takes place.

LDS Lower Data Strobe. When active (low), it validates the lower data byte connected to the

DO—D7 lines of the data bus. The lower data byte is also known as the odd byte.

LED Light Emitting Diode. It is usually used as an optical display or source.

LIFO Last In First Out. A data structure in memory in which the last element stored will be the

first element retrieved.

linker A programming utility of the host system used to link several machine code files and

generate the final machine code program.

LINK An operation used to allocate stack space and implement linked lists. One of the address

registers holds stack-access information. Work area is created on the stack in the linking pro-

cess.

list file A file that contains the machine code, the mnemonics, and the actual program location

addresses.

loader A programming utility of the host system used to format a machine code file to be trans-

ferred to the target system.

local operating system An intermittent operating system between the user and the governing

operating system. It looks like a user to the governing operating system, and like a governing

operating system to the user.

logical address space The complete address space that can be directly addressed by the address

bus of the processor.

logical memory space The memory space that can be addressed by the processor in real time

with its address bus..

long word For the 68000, 32-bit binary data consisting of four 8-bit bytes or two 16-bit words.

long-word aligned address An address evenly divisible by 4.

loop A repetitive process in which the same series of instructions is executed over and over until

the loop terminates.

LPF Low-Pass Filter. It attenuates the high frequencies above the cutoff frequency, but allows

low-frequency signals to pass through without attenuation. An LPF is used to remove switching

‘transients in the digital world.

LSB Least Significant Bit. The binary bit in the lowest position of a binary string. It has a value

of | or 0.

LSD Least Significant Digit. The lowest valued digit in a hex decimal or a BCD string.

machine code A string of binary 1s and Os residing in memory, representing the operation to be

performed. Also known as object code.

macros User-defined functions that consist of processor instructions. Software can be developed

using these functions.

mask A method of preventing information from being recognized. In the context of interrupt

handling, a mask prevents the processor from detecting an interrupt request.

memory The area in which the processor’s data are stored externally. Semiconductor memory

436 Glossary

consists of integrated circuit devices with a large array of flip-flops. Backup memory consists of

disks, bubble memory, and the like.
memory indexing Providing an extra number to be added to the base address, resulting in an

effective address of the memory or I/O location.

memory-mapped I/O A technique whereby all instructions dealing with memory also apply to

input and output ports. A memory-mapped I/O device is treated as a memory location in the

memory map.

MFP MiultiFunction Peripheral. The 68901 MFP is an interface device that supports multifunc-

tions, such as serial and parallel I/O, timing, interrupts, and DMA.

microcomputer An integrated system consisting of a microprocessor, memory, I/O, and other

support circuitry. :

microprocessor An integrated circuit device consisting of internal registers, flip-flops, an ALU,

data paths, and other circuitry.

MMU Memory Management Unit. A hardware unit that performs functions such as address

translation and data buffering. It operates under the control of the processor.

mnemonic A symbolic representation of an operation. An assembly program is written using

mnemonics.

modems_ Electronic equipment that modulates and demodulates information for serial communi-

cations. Remote computers and systems communicate via modems and telephone lines through

an RS-232 interface.

monostable An electronic circuit that produces a fixed-width pulse when it is triggered.

MOS technology Mctal Oxide Semiconductor technology. The current processing technology.

with which high-density integrated circuit devices are fabricated.

MSB_ Most Significant Bit. For a binary string with n digits, it has a value of 2"~'.

MSD Most Significant Digit. The highest valued digit in a hex decimal or a BCD string.

multiprecision operations Operations on strings of data requiring continuity from one operation

to the next.

multiprocessing An activity in which more than one processor is operational.

nest Operations within similar operations, subroutines within subroutines, exceptions within ex-
ceptions, and so forth.

NMI Nonmaskable Interrupt. An interrupt condition that cannot be masked out by the mask
level. It has to be recognized. For NMI, processor must respond.

object code Sce machine code.

odd memory byte The byte located at an odd address, such as $000001, $000003.
operand The data clement or the address of the data element. This term is frequently used in the

microcomputer field to refer to any data or address elements other than the program code.
operating system The system-level programs that control the operation of the computer and as-

sociated I/O. These programs usually cannot be altered by the user.
optoisolators A combination of LED and photodetector. Optoisolators eliminate any electrical

noise from being coupled.

op.word The word containing the machine code, with reference to the operation to be per-
formed.

ORA and ORB Output registers A and B of the PIA. These registers communicate with the
external I/O units.

ORG directive Origin assembler directive. It provides information to the assembler about the
starting address of the program.

Glossary 437
Sen

ne eee

outer displacement The final displacement value that is added to obtain the effective address,

EA.

overrun error An error condition that results when a new frame of information is overwritten

on the old frame that has not yet been used.

parallel data transfer A mode of transfer in which all signals are connected simultaneously.

parity error An error condition that results when an even-parity word is detected instead of an

expected odd-parity word, or vice versa.

PIA Peripheral Interface Adapter. The 6821 PIA is an 8-bit parallel I/O device belonging to the

6800 family.

pipe First-in-first-out register structure.

PI/T Parallel Interface/Timer. The 68230 PI/T is a multiport parallel interface device belonging

to the 68000 family.

PMMU Paged Memory Management Unit. Similar to MMU, except the memory translations

and transfers are based on a memory page of 256 bytes to 32 kilobytes.

pointers Counter and register combinations, the contents of which address a location. Pointer

contents change in a predetermined manner.

popping or pulling Retrieving the stored data from the stack.

postincrement One of the 68000 addressing modes, in which the address register is incremented

after addressing the operand.

predecrement One of the 68000 addressing modes, in which the address register is decremented

before addressing the operand.

prefetch The process of obtaining the next instruction during the execution of the current in-

struction; typical of the 68000 family of processors.

privilege violation error An error condition that results when the processor attempts to use

privileged instructions while in the user mode.

pushing Storing data on the stack.

queue An arrangement of operands in FIFO sequence.

RAM _ Random Access Memory. All RAM locations can be accessed in the same amount of

time. Also known as Read/Write Memory (R/WM).

RAS. Row Address Strobe. A signal used to latch the row address into the DRAM device. When

RAS is activated, the corresponding row of the DRAM is refreshed.

read bus cycle A bus cycle during which the processor reads data from memory. or I/O.

read-modify/write An operation in which the processor reads data content from a given loca-

“tion, modifies it, and writes it back at the same location.

receiver The electronic circuit that receives, decodes, and restores information sent to it by the

transmitter.

register An array of flip-flops and gates.

relocation A process by which the program code is made to reside at different locations, yet

remain operational.

reset input A hardware signal to the processor, forcing system initialization.

reset vectors Locations in the vector table containing the values to be loaded into the supervisor

stack pointer and the program counter on reset condition. —

response time The time taken by the addressed device to provide data during the read cycle or

to accept data during the write cycle.

ROM _ Read-Only Memory. Also a random access memory, but one that cannot be written into

during normal operation.

438 Glossary

RS-232 interface An industry standard asynchronous interface for serial data communications.

RTE Return from interrupt instruction of the 68000 processor. An RTE is always the last in-

struction in an exception routine.

RTS Ready to Send. A control signal from the DTE signifying that the DTE is ready for data

transfers.
R/W_ Read/write strobe signifying a read operation when it is at a high logic level and a write

operation when it is at a low level.

serial data transfer A mode of transfer in which data are transmitted and received one bit at a

time on a single signal line.

SFC Source Function Code. A 3-bit register within the 68010 and 68012 processors that con-

tains the source function code information. ;

sign extension Replication of the most significant bit of an operand to all higher order bits in the

data string. This helps to preserve the numeric value of the operand and also the sign, if the

operand is only a part of the complete string.

software The actual programming sequence, program code, and the associated resources. This

term is frequently used in connection with writing the programs and using the system resident

programs.
source operand A term used to refer to the data or the address of the data element on which the

operations are to be performed.

source program The version of the program written in assembly language, with comments in-

cluded. Programs written in higher languages are also known as source programs. The source

program cannot be executed by a computer without first being assembled into an object, or ma-

chine language, program.

special status word An additional word included in the long stack that defines the type of op-

eration in process at the time of occurrence of a bus or address error condition.

spurious interrupt error An error condition that results from the occurrence of a bus error

while the processor is fetching the interrupt vectors during the interrupt acknowledge cycle.

stack LIFO data structure in memory in which the processor registers are stored whenever there

is a change in program flow due to subroutines and exceptions.

stepper motors Magnetically coupled motors that advance one step at a time when the code on

the windings changes in sequence. Stepper motors may be thought of as digital motors.

strings A collection of data elements arranged in sequential order.

subroutines Subprograms called by other programs to perform certain dedicated operations and

provide results.

supervisor mode The mode of the 68000 family of processors in which to handle exception

conditions. Operating system programs are handled in this mode.

symbol table A table generated at the end of the assembly process that shows all the symbols

used in the program and their corresponding values.

symbols Alphabetical or alphanumeric representations of numbers used in assembly language

programming to enhance a program’s readability.

synchronous events Events that occur in time with a clock cycle in a definite sequence.

target system The actual hardware system on which the assembled code will run.

terminals A loosely used term to specify keyboard and CRT display in data communications.

throughput The overall performance of a unit; a measure of how efficient and effective the unit
is.

trace A procedure by which to obtain information about the processor’s internal condition.

Glossary 439
SSS SS = EE SS SS ee eee eee ee ae ee

transmitter An electronic circuit that codes, conditions, and transmits information to the receiv-

ing end.

TRAPs Software instructions similar to interrupts that cause the 68000 processor to move into

the supervisor mode.

tristate A high-impedance state in which the devices are virtually disconnected from the bus.

UDS Upper Data Strobe. When active (low), it validates the upper data byte connected to the

D8—D15 lines of the data bus. The upper data byte is also known as the even byte.

unidirectional A signal line that can function as an input or an output, but not both.

unimplemented instructions 68000 instructions that have not yet been defined. These may re-

fer to coprocessor-type instructions or new instructions that may be defined in the future.

uninitialized interrupt condition A condition that occurs if the vector number for a user in-

terrupt is not initialized. The user device provides a default vector number (#15) for the unini-

tialized interrupt error.

unlink A process whereby the work area is removed from the stack and the frame pointer de-

coupled from the stack.

USART Universal Synchronous and Asynchronous Receiver and Transmitter. An electronic unit

used for synchronous or asynchronous serial data communications, depending upon the mode of

operation.

user mode A lower level of processor operation that deals with user programs. Some instruc-

tions and resources are not permitted in this mode.

user vector A vector number supplied by the user for a given interrupt in response to an inter-

rupt acknowledge condition.

VBR Vector base register. A 32-bit register within the 68010, 68012, 68020, and 68030 proces-

sors that contains the base address for the relocated vector table.

vector location A location in the vector table containing the starting address of the correspond-

ing exception routine.
vector number The number corresponding to the memory location holding the starting address

of the exception routine selected to be run.

vector table Dedicated memory between $000000 and $0003FF. It holds the starting addresses

of all the exception routines.

virtual machine A term used to refer to nonexistent hardware resources, the properties of which

are mimicked by the operating system.

virtual memory Physically nonexistent memory, but logically addressable memory, possibly

contained in the backup memory.

VMA_ Valid memory address signal from the 68000 that validates the address bus during syn-

chronous data transfers.

VPA Valid peripheral address signal from the memory or I/O to inform the 68000 that it has

addressed a 6800 peripheral, and that the data transfer should be synchronized with the E clock.

wait state The equivalent of a clock period. It is introduced by the 68000 processor during a bus

cycle, while waiting for the DTACK to occur.

warm start System reinitialization via a pushbutton type of reset activation. No extra time is

necessary for stabilization of the system electronics.

word aligned Always in increments of words.

word extensions Additional words in an instruction containing additional information about the

instruction, data, or the address of the data.

440 Glossary

word organized The condition in which all 16 bits of the data bus are physically active, provid-

ing for 16-bit data transfer activity.
word-aligned address An address evenly divisible by 2.

word A 16-bit data structure, consisting of two 8-bit bytes.

write bus cycle A bus cycle during which the processor writes data into memory or I/O.

zero-divide error An error condition that results when division by zero is attempted during the

execution of DIVIDE instructions.

6821 PIA, 181-183

6850 ACIA, 209

applications with, 216—220

architecture of, 212—216

68000 microprocessor family, 2—5

architecture of, 7-14

configuration of, 5—7

instruction pipeline for, 15

prefetch queue for, 15

68008 microprocessor, 2

address and data lines in, 156

68010 and 68012 microprocessors, 3, 278

architecture of, 284—290

and bus error exception processing, 293-300

and memory-access faults, 290—293

68020 microprocessor, 4, 306

addressing modes for, 313—320

architecture of, 307-313

cache memory for, 320—324

improvements in, 331—334

68030 microprocessor, 4, 306

architecture of, 324—330

improvements in, 331—334

68230 parallel interface and timer (PI/T), 186-192 .

in data-acquisition system, 253-254, 258-259

keyboard and display interface for, 192—196

68440 and 68450 DMA controllers, 263-266

68881 coprocessor, 4—5

68901 multifunction peripheral (MFP), 209

applications of, 227-232

architecture of, 220-227

in gain controller, 243-247

as interrupt controller, 239-240

ABCD instruction, 49, 347

Absolute addressing modes, 36—37, 316

Absolute files, 90

Accumulator, 7

ACK signal, 263—264, 266, 269

Active edge register

for 68901 MFP, 223

for interrupts, 240

ADC0816 and ADC0817 A/D converters, 456—465

A/D converters. See Analog-to-digital converters

ADDA (Add Address) instruction, 49—51, 57, 350

Add Decimal with Extend instruction, 49, 347

ADD Extended instruction, 49, 351—352

ADDI (Add Immediate) instruction, 49-51, 57

ADD instruction, 45, 49-51, 56—57, 59, 348-349

Addition, 49-51, 57

with addresses, 350

BCD, 62-63, 347

441

442 Index

Addition, continued

binary, 45, 56—57, 59, 341, 348-349

execution time of, 478—479, 482

with extend, 351—352

multiprecision, 102—104

of words, 11—12

ADDQ (Add Quick) instruction, 49, 57

Address bus, 20—21, 148-150, 154

for 68008 microprocessor, 156

for 68020 microprocessor, 309-310

for 68901 MFP, 227

for DRAM refreshing, 249, 251

errors and exceptions with, 21, 123, 138-141,

484

for interrupts, 238

for virtual memory, 278

Addresses and address registers, 7—8

addition with, 49-51, 57, 350

comparisons with, 58, 376

decoding of, 157

effective. See Effective addresses

loading of, 110—115, 395

moving data to, 402, 415-416

subtraction with, 56—57, 59, 444

tags for, 331

Addressing modes, 50—52, 344

for 68020 microprocessor, 313—320, 331

for 68030 microprocessor, 331

absolute, 36—37, 316

address register indirect, 30—34, 317

immediate, 35, 49, 479

implicit, 38

memory, 51—52, 344

memory indirect, 313-314, 316-317, 331

PC relative, 37-38

quick, 36, 49

register direct, 28-30, 316

register indirect, 28-34, 316

Address translation cache, 326

ADDxX< instruction, 49, 57, 351—352

AER (active edge register)

for 68901 MFP, 223

for interrupts, 240

Alterable addressing mode, 52, 344

ALU (arithmetic logic unit), 7, 13

Analog-to-digital converters

applications for, 463-465

busing schemes for, 173-174

connection and timing diagrams of, 461—462

in data-acquisition system, 253-260

description of, 456

electrical characteristics of, 457-458

functional description of, 459-460

for virtual machine emulation, 283-284

ANDI (AND Immediate) instruction, 66, 68—69,

355

AND Immediate to Condition Codes instruction,

356

AND Immediate to Status Register instruction, 357

AND instruction, 65—66, 70, 353-354

And instructions

execution times of, 478—479, 483

immediate, 66, 68—69, 355-357

logical, 65-66, 70, 353-354

ANDI to CCR instruction, 356

ANDI to SR instruction, 357

AND Logical instruction, 65-66, 70, 353—354

Arbitration bus, 152, 263

ARI (address register indirect) addressing modes,

30-34, 317

Arithmetic instructions, 55—64

See also specific instructions

Arithmetic logic unit, 7, 13

AS (address strobe) signal, 151, 157—159, 171

for 6821 PIA, 182

for 68020 microprocessor, 309

for DMA, 263

for DRAM refreshing, 251

ASCII (American Standard Code for Information

Interchange), 210—211

ASL instruction, 65, 67—69, 358—360

ASR instruction, 65, 67—69, 358—360

Assemblers, 88—90

Assembly language software, 88—96

Asynchronous bus, 150, 160—162, 171

Asynchronous interfaces, 5

ATC (address translation cache), 326

Autovectored interrupts, 129-132, 237-238, 310

AVEC (interrupt autovector) signal, 310

Backplane bus, 173

Backup memory for memory-access faults, 279,

282

BAR (base address register), 266

Baud rate, 211, 218

Bcc instructions, 73—76, 81, 361

BCD. See Binary coded decimal instructions and

operations

BCHG instruction, 70-72, 362-363

BCLR instruction, 70—72, 364-365

BCLR (bus clear) signal, 171

BERR (bus error) signal, 139-140, 153, 155,

169-170

for 68010 and 68012 microprocessors, 293—300

for 68020 microprocessor, 310

and asynchronous input, 161

in control interface, 166

and wait states, 160

BEx (byte enable) signals, 311

BFCHG instruction, 318—319

BFCLR instruction, 318-319

BFEXTS instruction, 318—319

BFEXTU instruction, 318-319

BFFFO instruction, 318—319

BFINS instruction, 318—319

BFSET instruction, 318-319

BFTST instruction, 318-319

BGACK (bus grant acknowledge) signal, 153-156

for 68020 microprocessor, 310

and asynchronous input, 161

with DMA, 263, 267-268, 270

BG (bus grant) signal, 153-154

for 68020 microprocessor, 310

with DMA, 262—263, 267

Binary coded decimal instructions and operations,

21-22, 24

for 68020 microprocessor, 316—319

addition with, 49, 62-63, 347

multiprecision, 102

negation with, 62, 419

subtraction with, 62-64, 439

Binary number system, 45, 55S—62, 339-341

Bits and bit-manipulation instructions, 73

_for 68020 microprocessor, 314-316, 318-319

execution times of, 481

rotation of, 65, 67—70, 431-434, 480

setting of, 70-72, 368-369

shifting of, 65, 67-70, 358-360, 397-399, 480

testing of, 70-72, 362-365, 368-369,

371-372

BKPT instruction, 286, 366

Block transfers, 96-98, 283-284

Bounds, checking of, 373

BRA (Branch Always) instruction, 74—75, 367

Branch Conditionally instructions, 73-76, 81, 361

Branching instructions, 73—76

with assemblers, 93

Index 443

conditional, 81, 108—110, 287, 361, 380—381

execution times of, 481

to subroutines, 370

unconditional, 367

Branch to Subroutine instruction, 74—75, 370

Breakpoint instruction, 286, 366

BR (bus request) signal, 153-154, 171

for 68020 microprocessor, 310

and asynchronous input, 161

with DMA, 262, 267

BSET instruction, 70—72, 368-369

BSR instruction, 74—75, 370

BTST instruction, 70—72, 371—372

Buffers

signal, 164-166

virtual memory, 282—284

Buses, 5—6, 148-156

for 68010 and 68012 microprocessors, 284—286

for 68020 microprocessor, 309—310

address. See Address bus

arbitration signals for, 152, 263

data. See Data bus

with DMA, 262-263

errors and exceptions with, 123, 139-142,

169—170, 293-300, 484

interface unit for, 7, 13

schemes for, 170—176

Bytes, 2, 4-5, 21-23

CAAR (cache address register), 307, 320, 322—324

Cache memory, 4, 306

for 68020 microprocessor, 320—324

for 68030 microprocessor, 324, 326-328

and tag fields, 331—332

CACR (cache control register), 307, 320, 322—324

Carry flag, 9-10

CAS (column address strobe) signal, 249, 251

CAS (compare and swap) instruction, 320

CAx control signals, 181-182, 185, 187

CBx control signals, 181-182

CCR (condition code register), 9

CDIS (cache disable) signal, 310, 323, 332

CE (chip enable) signals, 156-157, 162

C (Carry) flag, 9- 10

Changing of bits, 70-72, 362-363

CHK (Check Register Against Bounds) instruction,

373

and exceptions, 122-123, 137

execution time of, 483-484

444 index

Clearing

of bits, 70-72, 171, 364-365

of operands, 374, 480

Clear Operand instruction, 374, 480

CLK (Clock) signals, 153, 155

for 6850 ACIA, 212, 216, 218

for 68901 MFP, 221, 225, 226-227

and execution times, 70, 476

frequency of, 168—170

with synchronous interfaces, 5

CLR instruction, 374, 480

CMOS RAMs, 157

CMPA instruction, 58, 376

CMPI instruction, 58, 377—378

CMP instruction, 58-59, 375

CMPM instruction, 58, 379

Coded data communication systems, 228-232

Cold starts, 123

Comment directives, 90, 94

Compare Address instruction, 58, 376

Compare Immediate instruction, 58, 377—378

Compare instruction, 58-59, 375

Compare Memory instruction, 58, 379

Comparison instructions, 58-60, 376—379

execution times of, 478-479, 482

Compatibility of microprocessors, 4

Complement, logical, 65, 68-69, 423, 480

Condition codes and condition code register

branching on, 45, 48, 73-76, 81, 361,

380-381

moving data to and from, 403-404

OR operation with, 388, 427

setting of bytes by, 440

Configuration, pin, 149

Configurations, 5—7

Constants, defining of, 93

Control, program, instructions for, 59, 73-76

Control addressing mode, 52, 344

Control bus, 5—6, 148-151, 153, 309—310

Control interface schemes, 166—170

Controllers

DMA, 260-266

interrupt, 239-240

Control registers

for 6821 PIA, 181-182, 185, 187

for 6850 ACIA, 212-215, 217, 219—220°

moving of data with, 409

Control unit, 7, 13, 15

Conversio of number systems, 339-341

Coprocessors, 4—5, 320-321

CPU mode for DMA controller, 263

CR (control register)

for 6821 PIA, 181—182, 185, 187

for 6850 ACIA, 212-215, 217, 219-220

Cross assemblers, 88—90

CSDRAM signal, 249

CS (chip select) signals, 156-157, 162, 190, 217,

221

CTS (clear-to-send) line, 212—215, 218, 220

CXx signals, 168

DAC0800 D/A converter, 255, 466-473

D/A converters. See Digital-to-analog converters

Daisy chaining of interrupts, 240-242

DAR (device address register), 264—265

Data

addressing mode with, 51, 344

cache memory for, 324, 326-328

coded communication systems for, 228-232

entry and display of, 192—198

format of, for 68020 microprocessor,

310-313

registers for, 7—8, 188

sorting of, 99-101

structures for, 21—24

Data-acquisition system, 253—260

Data bus, 148-151, 154

for 68008 microprocessor, 156

for 68020 microprocessor, 309—310

for 68901 MFP, 221, 227

Data direction registers

for 6821 PIA, 181—182

for 68230 PI/T, 187—188

for 68901 MFP, 223

Data frames, serial, 210—211

Data movement, 5—6, 52—55

block, 96-98, 283-284

byte vs. word, 4—5

interface schemes for, 156-166

synchronous, 152

See also DMA (direct memory access)

Data processing applications, 101—107

Data register direct addressing mode, 30

DBcc instructions, 108—110, 287, 380-381

DBEN (data buffer enable) signal, 309

DC (define constant) directive, 93

DCD (data carrier detect) signal, 212-213, 218

DCE (data communication equipment), 216

Index 445

DDR (data direction registers)

for 6821 PIA, 181-182

for 68230 PI/T, 187-188

for 68901 MFP, 223

Debugging

breakpoints for, 286, 366

trace condition for, 10, 122—123, 137, 308

Decimal numbers, conversion of, 339—340

Decisions. See Branching instructions; Comparison

instructions

Delimiters, 94

Device address register, 264—265

DFC (destination function code) register

for 68010 and 68012 microprocessors, 284—287

for 68020 microprocessor, 308

Diagnostics, busing schemes for, 174

Digital gain controller, 242—247

Digital-to-analog converters

applications for, 471-473

block diagram of, 468

busing schemes for, 173-174

in data-acquisition system, 253-260

description of, 466

electrical characteristics of, 467

in gain controller, 242

performance characteristics of, 469-470

Directives, assembler, 90—95

Displacement, addressing modes with, 31-32,

37-38

Display systems, 192-196

Division, 58, 61-62, 104-107, 341

for 68020 microprocessor, 320, 331—334

for 68030 microprocessor, 331—334

execution times of, 478

signed, 382—383

_unsigned, 384—385
DIVS instruction, 58, 104, 331, 382-383

DIVU instruction, 58, 62, 104—105, 331-334,

384-385

DMA (direct memory access), 5, 236

applications for, 266-272

arbitration bus for, 152

controllers for, 260—266

DMA mode (DMA controller), 263

Dollar sign ($) for hex format, 10, 94, 340

DONE signal, 263

Double bus fault conditions, 124, 142, 167

Double-operand instructions, 27

DRAM (dynamic RAM), 156-157, 166, 247-253

DSACKx signals

for 68020 microprocessor, 310-311, 313, 327,

332

for 68030 microprocessor, 327, 332

DS (define storage) directive, 94

DS (data strobe) signal, 22

for 68008 microprocessor, 156

for 68020 microprocessor, 309

for 68901 MFP, 221, 227

DTACK (data acknowledge) signal, 129, 151, 154,

158-159

for 68020 microprocessor, 309-310

for 68901 MFP, 221, 227

for asynchronous bus, 171

for bus error exceptions, 140

and chip enable input, 162-163, 165-166

CXO signal for, 168-169

for DMA, 263

for DRAM refreshing, 251

with interrupts, 238, 240

and wait states, 160

DTC signal, 263

DTE (data terminal equipment), 216

DTR (data-terminal-ready) signal, 218, 220

Dual address DMA mode, 263-266

Dynamic RAMs, 156-157, 166, 247-253

EBCDIC (Extended Binary Coded Decimal

Interchange Code), 212

ECS (external cycle start) signal, 309, 332

Effective addresses, 27, 51

loading of, 110—115, 395

modes for, 344

pushing of, 110, 429 -

timing for, 476

Electromechanical systems, 198-204

Emulation

for 68010 and 68012 microprocessors, 289—290

of virtual machines, 280, 283

END directive, 94

ENDM directive, 115

EORI instruction, 66, 68—69, 387

EOR instruction, 65—66, 70, 386

EORI to CCR instruction, 388

EORI to SR instruction, 389
EPROMs (erasable and programmable ROM), 157

EQU directive, 91—93

Errors and exceptions, 13, 135-138

address, 21, 123, 138-141, 484

446 Index

Errors and exceptions, continued

bus, 123, 139-142, 169-170, 293-300, 484

execution times of processing, 484

frame, 215

illegal instruction, 51, 136

and interrupts, 122-123, 125, 128-132, 137

overrun, 215

parity, 215

privilege violations, 14, 123, 136

returning from, 74, 76, 126—127, 132-133,

293, 436 ;

traps for, 132—135, 451-452

E (enable clock) signal, 152, 155, 168—170

for 6850 ACIA, 216

for synchronous parallel interface, 181, 183

Even byte, accessing of, 151

Even parity, 210-211

Exception processing. See Errors and exceptions

Exchange Registers instruction, 52-55, 390, 483

Exclusive OR Immediate instruction, 66, 68-69,

387

Exclusive OR Immediate to Condition Code

instruction, 388

Exclusive OR Immediate to Status Register

instruction, 389

Exclusive OR Logical instruction, 65—66, 70, 387

execution times of, 478-479, 483

Execution times, 77-81, 476—484

Execution unit, 7, 13, 15

EXG (Exchange Registers) instruction, 52—55,

390, 483

Extend bit and flag, 9-10, 58, 60, 391

addition with, 49, 347, 351-352

negation with, 58, 62, 419, 421

rotation with, 65, 67-68, 70, 433-434

subtraction with, 57, 62—64, 439, 447-448

Extended address bus, 278

Extended instructions, 331

External devices, resetting of, 430

EXT instruction, 58, 60, 391

Fault access address, 139

FCx (function code) signals, 128, 151-152,

155-156

for 68010 and 68012 microprocessors, 284-286

for 68020 microprocessor, 309

for cache memory, 322—323, 326

with interrupts, 238

FIFO (first-in-first-out) structures, 25

Flag structure, 9-11

See also Condition codes and condition code

register

FP (frame pointer), 110

Frame errors, 215

Function code registers, 308

Gain controller, interrupt-driven, 242—247

General exception sequences, 125-127

GPIP (general-purpose I/O and interrupt port),

221-223, 226-229, 240-242

HALT signal, 153-155, 161, 166-167, 169

for 68020 microprocessor, 310

with double bus fault conditions, 124, 142, 167

Handshaking signals, 5

for 6850 ACIA, 212-213

for data-acquisition system, 258

Hardware, 148

busing schemes, 170—176

control interface schemes, 166-170

memory and I/O, 156-166

signals used by, 149-156

Hexadecimal number system, 10, 94, 340-341

Hex display interface, 192—197

Hit conditions for cache memory, 320, 326, 331

Host systems, 88

IACKx (interrupt acknowledge) signals, 128-130

for 68901 MFP, 221

for data-acquisition system, 258-259

for DMA, 263

with interrupts, 238, 240-241

TEI (interrupt enable input) signal, 221

IEO (interrupt enable output) signal, 241, 221

JERx (interrupt enable registers), 239

ILLEGAL instruction, 77, 392

exception handling of, 51, 123, 136

execution times of, 484

Immediate addressing mode, 35-36, 49, 479

Implicit addressing mode, 38

IMRx (interrupt mask registers), 239, 241

Inclusive OR Immediate instruction, 66, 68—70,
426

Inclusive OR Immediate to Condition Codes

instruction, 427

Inclusive OR Immediate to Status Register
instruction, 428

Inclusive OR Logical instruction, 65-66, 424—425

Indexing

addressing with, 32—33, 37-38, 331

memory, 8

memory indirect, 314—317

Indirect memory addressing, 313-314

Initialization of DMA channels, 268—272

Instructions

for 68010 and 68012 microprocessors, 286-287

for 68020 microprocessor, 314—321

arithmetic, 55—64

bit-manipulation, 70-73, 314-316

cache memory for, 320, 324, 326-328

data movement, 52-55

decoding unit for, 7, 13

exception handling of, 136

format and structure of, 26—28

general, 45—52

logical, 65—70

with memory-access fault methods, 290-291

pipeline for, 15

program control, 73-76

table of, 46-47, 344-454

timing of, 77-81, 476-484

See also specific instructions

Interfaces

68230 PI/T, 187-192

buses for, 5—7, 13

control, 166—170

for data movement, 156-166

DMA. See DMA (direct memory access)

keyboard, 192-198 —
for linear stepper motors, 198-204

serial. See Serial interface

synchronous, 181-187

for Z-80 systems, 6—7

Interrupts, 236-238

with 6850 ACIA, 213-215

with 68901 MFP, 223

autovectored vs. user-vectored, 129-132,

237-238, 310

control bus for, 153

controllers for, 239-240

daisy chaining of, 240—242

for data-acquisition systems, 253-260

and DMA, 263, 268-272

for DRAM refreshing, 247-253

and exception processing, 122-123, 125,

128—132, 137

execution times for, 484

Index 447

gain controller driven by, 243-247
for I/O, 5

masks for, 10, 128, 239, 241, 308

stack pointer for, 253, 307

INT line, 236-238, 241, 255

VO

for 68020 microprocessor, 310—313

for 68230 PI/T, 186-189

design considerations for, 162—166

interface schemes for, 156—166

memory-mapped, 5—6, 23-24

See also DMA (direct memory access);

Interfaces; Serial interface

IPEND (interrupt pending) signal, 310

IPLx (interrupt priority) signals, 128, 130,

153-154, 238

for 68008 microprocessor, 156

for 68020 microprocessor, 310

IPRx (interrupt pending registers), 239

IRQ signal, 236-237, 239, 241-242

with 6850 ACIA, 213-214

with 68901 MFP, 221

with data-acquisition system, 255, 258—259

with DMA, 263
ISRx (interrupt in-service registers), 239-240

JMP (Jump) instruction, 74, 76, 393, 482

JSR (Jump to Subroutine) instruction, 74, 76, 79,

394, 482

Keyboard interfaces, 192-198

Key lockout, 196

Labels, 93, 95

LDS (lower data strobe) signal, 20—22, 151, 154,

157-159

for 6821 PIA, 182

for 6850 ACIA, 217

for 68008 microprocessor, 156

for 68230 PI/T, 190-192

for 68901 MFP, 227

for asynchronous bus, 171

and bus errors, 169

and chip enable inputs, 162

for DMA, 263

LEA instruction, 110, 395, 482

Least significant byte, 339

LIFO (last-in-first-out) structures, 23

Linear ramp A/D emulation, 283-284

448 Index

Linear stepper motor interface, 198-204 —

Line length option, 90

Linkers, 90

LINK (Link and Allocate) instruction, 110-114,

299-300, 396, 483

List files, 89-90

Listings, assembly, 93

See also Software listings

LLEN directive, 90

Load Effective Address instruction, 110, 395, 482

Loaders, 90

Load Status Register and Stop instruction, 441

Logical Complement instruction, 65, 68-69, 423,

480

Logical instructions, 65-70

AND, 353-357

complement, 423, 480

exclusive OR, 386-389

execution times of, 478-479, 483

inclusive OR, 424-428

shift, 397-399
Long-words, 2, 21-22, 24

Loop counters, 96

Loop mode, 287

Lower byte, accessing of, 151

LSB (least significant byte), 339

LSL instruction, 65, 67-68, 397-399

LSR instruction, 65, 67—68, 397—399

Macros, 115-117

Manual resets, 166-167, 170

MAR (memory address register), 264—266

Masking

with AND instruction, 70

interrupt, 10, 128, 239, 241, 308

Mask-programmable ROM, 157

Master stack pointer, 307

Math coprocessors, 4—5, 320-321

MC1488 converter, 218

MC1489 converter, 218

MC14411 baud/frequency generator, 218

Memory, 149

for 68020 microprocessor, 310—313

addressable, amount of, 153-156

cache, 4, 306, 320-324, 326-328, 331-332

comparisons with, 58, 379 ,

design considerations for, 162—166

indexing of, 8

interface schemes for, 156-166

management unit for, 326-328

mapping of, 5—6, 23

organization of, 20—22

program, 26

selection of, 20-22, 157

shifting of, 360, 398

types of, 156-157

virtual, 3, 278-284, 290-293, 297-300

See also DMA (direct memory access)

Memory-access faults, 279, 281-282, 290-293,

297-300

Memory addressing mode, 51-52, 344

Memory indirect addressing mode

for 68020 microprocessor, 313-314, 316-317,

eRil

for 68030 microprocessors, 331

Miss conditions for cache memory, 320

MMU (memory management unit), 326-328

Modes

for 6850 ACIA, 213-215

for 68000 microprocessor, 2, 13-14

addressing. See Addressing modes

DMA controller, 263—266

loop, 287

single-step, 137

supervisor. See Supervisor mode

trace, 10, 122—123, 137, 308, 484

Modified bus error exception processing, 293-297

Most significant byte, 339

Motors, interface for, 198-204

Move Address Space instruction, 415-416

MOVEA (Move Address) instruction, 402

MOVEC (Move Control Register) instruction, 409

Move Data from Source to Destination instruction,

400-401

MOVE from CCR (Condition Code Register)

instruction, 403

MOVE from SR (Status Register)instruction,

405-406

MOVE instruction, 400-401

Move instructions, 52—55, 110-115, 400—401

for 68010 and 68012 microprocessors, 286-287

with addresses, 402, 415-416

with condition code register, 403-404

with control registers, 409

execution times of, 477, 479, 482—483

with multiple registers, 111, 113, 410-411

with peripheral data, 111-112, 412-413
quick, 414

Index 449
——————————————————EEE—————E——————————— ee eee eee eee

Move instructions, continued

with status register, 405—407

with user stack pointer, 408

MOVEM (Move Multiple Registers) instruction,

111, 113, 410-411

MOVEP (Move Peripheral Data) instruction,

111-112, 412-413

MOVEQ (Move Quick) instruction, 414

MOVES instruction, 415-416

MOVE to CCR (Condition Code Register)

instruction, 404

MOVE to SR (Status Register) instruction, 407

MOVE USP (User Stack Pointer) instruction, 408

MSB (most significant byte), 339

MSD (most significant digit), 21

MULS instruction, 58, 61, 104, 107, 417

Multibus-11 bus, 176

Multiple-decision instructions, 108-110

Multiple-movement instructions, 110-115

Multiple registers, moving of data with, 111, 113,

410-411

Multiplication, 58, 61, 104-107

for 68020 microprocessor, 320, 331-334
for 68030 microprocessor, 331—334

of binary numbers, 341

execution times of, 478

signed, 417

unsigned, 418

Multiprecision arithmetic operations, 64, 102—104

Multiprocessing, busing schemes for, 174

Multitasking software, 111-112

Multiuser environment, VBR for, 284—285

MULU instruction, 58, 61, 104-105, 418

MUxX signal, 251

NBCD (Negate Decimal with Extend) instruction,

62, 419

Negate with Extend instruction, 58, 421

Negation and negation instructions

BCD, 62, 419

binary, 58, 60-61, 420

execution times of, 480

with extend, 58, 421

Negative flag, 9-10

NEG (Negate) instruction, 58, 60-61, 420

NEGxX< instruction, 58, 421

Nesting of subroutines, 26

N (Negative) flag, 9-10

NMI (nonmaskable interrupts), 128

NMOS RAMs, 157

NOP (No Operation) instruction, 74, 76, 422, 483

NOT instruction, 65, 68—69, 423

NU bus, 176

Number sign (#) with immediate data, 94
Number systems, 339-341

Object code, 89

OCS (operand cycle start) signal, 309, 332

Odd byte, accessing of, 151

Odd parity, 210-211

OE (output enable) signal, 166

Operands, 27

clearing of, 374, 480

for instruction set, 345

setting of, 450

testing of, 159, 450, 453

timing of effective addresses for, 476

Operation words, 27

OPT directive, 90

Optoisolators, 199

ORG (origin) directive, 90-91

ORI instruction, 66, 68—70, 426

OR instructions

exclusive, 65—66, 68—70, 386—389

execution times of, 478—479, 483

inclusive, 66, 68—70, 424-428

ORI to CCR instruction, 427

ORI to SR instruction, 428

Output registers, 181—182

Overflow

signed, 56

trapping on, 74, 133, 452

Overflow flag, 9-10

Overrun errors, 215

PACK instruction, 316-319

PACR register, 187-188

PADDR register, 187—188, 191

PADR register, 188

Parallel interface, 180

68230 PI/T, 187-192

data entry and display systems, 192-198

electromechanical applications, 198—204

synchronous, 181-187

Parity bits, 210-211

Parity errors, 215

PBER register, 187—188

PBDDR register, 187-188, 191

450 Index

PBDR register, 188

PC (program counter), 7-9

addressing modes with, 37-38, 314, 316

PCDDR register, 187—188

PCDR register, 188

PC indirect addressing modes, 316

PCL signal, 263

PC relative with displacement addressing mode, 37

PC relative with index and displacement addressing

mode, 37—38

PEA instruction, 110, 429

Peripheral interface adapters, 181—187

PGCR register, 187—188, 191

Pin configuration, 149

Pipeline, instruction, 15

PIVR register, 188-189

Pointers

address, 8

for block transfers, 96

memory buffer, 282—284

See also Stacks and stack pointers

Ports

for 6850 ACIA, 212-213

for 68230 PI/T, 191-192

for 68901 MFP, 221-227

control registers for, 187—188

Position control systems, 203—204

Postincrement, addressing mode with, 31

Postindexing, memory indirect, 314—317

Power-up resets, 123, 323-324

Predecrement, addressing mode with, 31

Prefetch queue, 15

Preindexing, memory indirect, 314, 317

Priorities

exception, 123

interrupt, 239

Privileged instructions

for 68010 and 68012 microprocessors, 287, 289

for exception processing, 122

violations in, 14, 123, 136

Processor clock cycle time, 78

Program control instructions, 59, 73—76

Program counter, 7-9

addressing modes with, 37—38, 314, 316

Program memory, 26

PSR register, 188-189

PSRR register, 188-189

Pulling from stacks, 25

Push Effective Address instruction, 25, 110, 429, 482

Queues

organization of, 23-26

prefetch, 15

Quick addressing mode, 35—36, 49

RAM (random-access read/write memory),

156-157

dynamic, 166, 247—253

RAS (row address strobe) signal, 249, 251

RC line, 221

RDR (receive data register), 212—215, 217-218

Read bus cycles, 78, 157-158, 161-162

Read-modify/write bus cycles, 159-162

Read-only memory, 156-157, 162

Read/write, timing, 78

Receive clock, 212, 216, 218

Receive data register, 212-215, 217-218

Receive status register, 224

Refreshing of DRAMs, 247-253

Register direct addressing mode, 28-30, 316

Register indirect addressing mode, 28-34, 316

Registers, 7-11

for 6850 ACIA, 212-213

for 68010 and 68012 microprocessors,

284-287

for 68230 PI/T, 186-189

for 68901 MFP, 221-227

checking of, against bounds, 373

exchanging of, 52-55, 390, 483

moving of data with, 111, 113, 410-411
select lines for, 221

shift instructions for, 359, 398

swapping halves of, 449

REQ signal, 263, 267

RESET (Reset External Devices) instruction, 74,

76, 81, 430, 483

Reset routine, 13, 122—127, 323-324

RESET signal, 153, 155, 161, 166—167

for 68020 microprocessor, 310

for 68230 PI/T, 190

for 68901 MFP, 221, 227

Return and Deallocate Parameters instruction,

286-287, 435

Return and Restore Condition Codes instruction,
74, 76, 437, 483

Return from Exception instruction, 74, 76,

126-127, 132-133, 293, 436, 483
Return from Subroutine instruction, 26, 74, 76, 81,

438, 483

Index 451

RMC (read modify write control) signal, 285-286,

309, 332

Robotic systems, 203

ROL instruction, 65, 67—69, 431-432

ROM (read-only memory), 156—157, 162

ROR instruction, 65, 67—68, 431—432

Rotate with Extend instructions, 65, 67—68, 70,

433-434

Rotate without Extend instructions, 65, 67—70,

431-434, 480

Rotational motors, interface for, 198-204

ROXL instruction, 65, 67—68, 433-434

ROXR instruction, 65, 67—68, 70, 433-434

RS-232 interface, 218—220

RS (register select) line, 212—213

RSR (receive status register), 224

RTD instruction, 286—287, 435

RTE instruction, 74, 76, 126-127, 132-133, 293,

436, 483

RTR instruction, 74, 76, 437, 483

RTS instruction, 26, 74, 76, 81, 438, 483

RTS (ready-to-send) signal, 212—213, 218

R/W (read/write) signal, 20—21, 151, 154, 158

for 68020 microprocessor, 309

for 68230 PI/T, 190

for 68901 MFP, 227

for asynchronous bus, 171

and buffering, 164

for DMA, 263

RXCLK (receive clock), 212, 216, 218

RXD (receive data) signal, 212—213, 218

SBCD instruction, 439

Scaling, 313-314, 317

Scc instructions, 440

Security, coded systems for, 228—232

Sémicolons (;) for comments, 90, 94

Serial communications bus, VME, 173

Serial interface, 209-211

6850 ACIA for, 212—220

68901 MFP for, 220-232

Set According to Conditions instruction, 440, 480

Setting

of bits, 70—72, 368-369

of bytes, 440, 480

of operands, 450

SFC (source function code) register

for 68010 and 68012 microprocessors, 284—287

for 68020 microprocessor, 308

Shift instructions, 70

arithmetic, 65, 67-69, 358-360

execution times of, 480

logical, 65, 67-68, 397-399

Signals, 149-156

for 68030 microprocessor, 329

buffering of, 164-166

See also specific signals

Signed Divide instruction, 58, 104, 331, 382—383

Signed Multiply instruction, 58, 61, 104, 107, 417

Signed operations, 55-62, 104—107, 331,

382-383, 391, 417

Sign Extend instruction, 58, 60, 391

Sljline#221 3227,

Single-address DMA mode, 263-264

Single-operand instructions, 27

Single-step mode, 137

SIZx signals, 311, 313, 332

Software development, 88—96

block transfers, 96—98

and data processing applications, 101-107

data-sequencing, 99-101

macros in, 115—117

movement instructions, 110—115

multiple-decision instructions, 108-110

Software listings

for 68010 and 68012 microprocessor

initialization, 288

for block movements, 97

for bus error exception processing, 298

for coded data communication, 230-231

for data-acquisition system, 256—257

for DMA initialization, 271

for DTE/DCE interface, 219

for interrupt-driven gain controller, 246

for keyboard/display system, 195

for linking stack, 112

for multiplication and division, 104

for multiprecision addition, 102

for PIA timer signals, 184

for sorting, 99-101

for stepper-motor interfaces, 201

for string comparisons, 109

for trap routine, 135

for typical assembly language program, 92

for waveform generation, 261

SO line, 221, 227-229

Sorting software, 99-101

Source programs, 88

452 Index

SP (system stack pointer), 24

Special status word, 139, 293-296

Spurious interrupts, 137

SR. See Status register

SSP (supervisor stack pointer), 7, 9, 122-123, 125

S-states, 157—160

Stack frames, 293, 295-297

Stacks and stack pointers, 7—9

for 68010 and 68012 microprocessors, 287—289

for 68020 microprocessor, 307.
and exception processing, 122, 125-127,

140-141

for interrupts, 253, 307

loading instructions for, 110-115

organization of, 25-26

supervisor, 7, 9, 122-123, 125, 127, 136, 293

user, 7-9, 133-134, 307, 408

Start bits, 210

Static RAM, 156

Status bits with instructions, 45

Status register, 7, 8-11

for 6850 ACIA, 212-215, 217, 219-220

for 68020 microprocessor, 308

for 68901 MFP, 221

in exception processing, 125-126, 131-133

moving data to and from, 405-407

with OR operations, 389, 428

with STOP instruction, 441

Stepper motors, interface for, 198-204

STERM (synchronous termination) signal, 327

Stop bits, 210, 230, 232

STOP instruction, 74, 76, 441, 483

Storage, defining of, 94

String compare software, 108-110

SUBA instruction, 56-57, 59, 444

SUBI instruction, 57, 445

SUB instruction, 56-57, 59, 442-443

SUBQ instruction, 57, 446

Subroutines, 74-76

branching to, 370

jumping to, 79, 394

returning from, 26, 81, 438, 483

and stack, 25—26

Subtract Address instruction, 56—57, 59, 444

Subtract Binary instruction, 56-57, 59, 341,
442-443

Subtract Decimal with Extend instruction, 62-64,

439

Subtract Immediate instruction, 57, 445

Subtraction, 56—57, 59

with addresses, 444

BCD, 62-64, 439

binary, 56—57, 59, 341, 442-443

execution time of, 478—479, 482

with extend, 447-448

immediate, 445

multiprecision, 102

quick, 446

Subtract Quick instruction, 57, 446

Subtract Decimal with Extend instruction, 62—64,

439

Subtract with Extend instruction, 57, 447-448

SUBX< instruction, 57, 447—448

Supervisor mode, 2, 10, 13-14

for 68010 and 68012 microprocessors, 289

for 68020 microprocessor, 307

for cache memory, 323

for exception processing, 122, 125, 129, 133

for MMU, 326

Supervisor stack, 7, 9, 122—123, 293

for 68010 and 68012 microprocessors, 293

for exception processing, 125, 127, 136

SWAP (Swap Register Halves) instruction, 52—55,

449, 483

Symbol tables, 94

Synchronous bus and interfaces, 5, 152, 181—187

System

control instructions for, 76—78, 153

memory for, 157

representation of, 150

System byte, 8—10, 308, 311

Tables

exception vector, 122—124

queues for, 25

symbol, 94

TACR timer control register, 224

TADR timer data register, 224

Tag fields, 323-324, 331-332

Take Illegal Instruction Trap instruction, 77, 392

TAO signal, 221, 224

Target systems, 88

TAS instruction, 159, 450

TBCR timer control register, 224

TBDR timer data register, 224

TBO signal, 221, 224

TCDCR timer control register, 224

TCDR timer data register, 224

Tetines 221,229

TCO signal, 221, 224, 227

TDDR timer data register, 224

TDO signal, 221, 224, 227

TDR (transmit data register), 212-215, 217

TEMP register, 265

Test and Set Operand instruction, 159, 450

Test Bit and Change instruction, 362—363

Test Bit and Clear instruction, 364-365

Test Bit and Set instruction, 368—369

Test Bit instruction, 371—372

Test Condition, Decrement, and Branch

instruction, 380-381

Testing

of bits, 70—72, 318-319, 362—365, 368-369,

371-372

of conditions, 380—381

execution time for, 480

of operands, 58, 60, 159, 450, 453

Test Operand instruction, 58, 60, 453

Timed data transfer, 152

Timers and timing, 168

for 6821 PIA, 183-184

for 68901 MFP, 221, 224, 226-227

for A/D converters, 461-462

with cache memory, 320

and DMA transfers, 272

for DRAM refreshing, 249-251

of instructions, 77-81, 476—484

for reading and writing memory, 157—162

TIVR register, 188-189

Trace mode, 10, 122—123, 137, 308, 484

Transceivers, 164-166

Transfers. See Data movement

Transmit clock, 212, 216, 218

Transmitters, 210

TRAP instruction, 74, 132-135, 451

Trap on Overflow instruction, 74, 133, 452

Traps and trap instructions, 14, 132—135,

451-452

for 68010 and 68012 microprocessors, 288—289

for 68020 microprocessor, 320

and exceptions, 122-123

execution times of, 483-484

illegal instruction for, 392

TRAPYV instruction, 74, 133, 452

Triangular waveform generation, 260-261,

283-284

TSR (transmit status register), 224

Index 453

T-states, 78—81

TST instruction, 58, 60, 453

Two-pass assemblers, 90

TXCLK (transmit clock), 212, 216, 218

TXD (transmit data) line, 212—213, 218

UCR (USART control register), 224—225

UDR (USART data register), 224

UDS (upper data strobe) signal, 20-22, 151, 154,

157-159

for 6850 ACIA, 217

for 68008 microprocessor, 156

for 68230 PI/T, 192

for 68901 MFP, 227

for asynchronous bus, 171

and bus errors, 169

and chip enable inputs, 162

for DMA, 263

Unary operations, 346

Unconditional branching, 74—75, 367

Unimplemented instructions, 136

Uninitialized interrupts, 137

UNLK (Unlink) instruction, 110, 112—114, 300,

454

UNPK instruction, 316—319

Unsigned Divide instruction, 58, 62, 104—105,

331-334, 384-385

Unsigned Multiply instruction, 58, 61, 104—105,

418

Unsigned operations, 55—56, 104-107

Upgrading, 6-7

Upper byte, accessing of, 151

USART (universal synchronous/asynchronous

receiver and transmitter), 221, 224-227, 229

User byte, 8—9

User mode, 2, 14

User-vectored interrupts, 129-132, 237-238

USP (user stack pointer), 7-9, 133-134, 307,

408

V (Overflow) flag, 9-10

VBR (vector base register)

for 68010 and 68012 microprocessors, 284—285,

287

for 68020 microprocessor, 307—308, 311-312

Vector table, exception, 122-123, 162, 293-294
VERSA bus, 170-176

Virtual machine schemes, 279-284

Virtual memory, 3, 278-284, 290-293, 297-300

454 index

VMA (valid memory address) signal, 152,

155-156, 181-182, 216-217

VME bus, 173-176

VMX bus, 173

VPA (valid peripheral address) signal, 129, 152,

155, 161, 181, 183, 238

VR (interrupt vector register), 239—240

Wait states, 160, 162

Warm starts, 123

Watchdog timers, 169

Waveform generation, 183-184, 260-261,

283-284

Words, 2, 4-5, 21-24

addition of, 11-12

and stack, 25

Write bus cycles, 78, 158—159, 161-162

X (Extend) flag, 9-10

XY plotter systems, 203

Y1 select signal, 216

Z-80 systems, interfacing to, 6—7

Zero divide exceptions, 123, 137-138

Z (Zero) flag, 9-10

aM)
} pas i

Day ie
ie They

be RSPAS Eran Ne a His

mye de

cy atmen

alas bys la eras

ab pe beae Tle ;
Ay pie Me ey sit ee wy

Hicoyentae
Aen yea Ui vipat / ie pees

,)

Kis
Mau aa 36

if 1)

OAT SE a earery eens
se uj

sae iS

{ Vy

ay, i a i y

iy dh, olan i
Gradieie Mi Pye

7

Beit iis Bie
tit ee

107
Tait ar ies

Mavs

i
AN IED

tH Pe)
i bye
v

Pana ines i we) ahd mie

Be nea Ny
The RIE IE Hable 2
DAs ede ve pte tat
-

BOAT)
nye is ma
irene)!
Nii ity 2 AY) i

Git Eye ee db ead:

f 4s tsiiA ital

MUSES § Aentay Pere,

1
Pnern 7 ? Higa !

Weis wf
AUN

Was pang vy

1
Put)

FOIILe uh
cayiey

{
iy

tern)
VN
Ht i

i

ny Hii iW)
4 a Hy i
WAIN auth
OTT LVL es

ay Ly.

ree

Mie A Wr
giana
oe oo
see re

aT

RAMA Ae
at wine vey eH iy

Rare ee a ou i J
Haretacnt statue yt

i eat) tt

aren
wa

Skit ay aie 7
far

ea beatae tats

Ce ar

Mo Hye) il) ¢) Nia

Epa tel ha ee I yt e

ae La t
(nan eaga 104 hf 1494

}
22)

Eth
Jesh}
Hu

art
Waly

5 BRN
rite tate ate

arate ray
Ms ieee A

Adamson

Antonakos

Ellzey

Hair

Irvine

Johnsonbaugh

Khan

Kroenke

Leestma

Loomis

Mayer

Nyhoff..
Ricardo

Stallings.

Stallings

Stallings

Stallings

Szymanski

ADDITIONAL MAXWELL MACMILLAN
INTERNATIONAL EDITIONS IN
COMPUTER SCIENCE

STRUCTURED C FOR TECHNOLOGY

THE 68000 MICROPROCESSOR mn

DATA STRUCTURES FOR COMPUTER INFORMATION

SYSTEMS/2e °
MULTIVARIATE DATA ANALYSIS/2e
ASSEMBLY LANGUAGE FOR THE IBM-PC

APPLICATIONS PROGRAMMING IN C

BEGINNING STRUCTURED COBOL i

DATABASE PROCESSING/3e

PASCAL PROGRAMMING & PROBLEM SOLVING/3e

THE DATABASE BOOK
PROGRAMMING IN MODULA-2
DATA STRUCTURES & PROGRAM DESIGN IN MODULA-2

DATABASE SYSTEMS; PRINCIPLES, cui) &
IMPLEMENTATION :

COMPUTER ORGANIZATION & ARCHITECTURE/2e

~~ DATA & COMPUTER COMMUNICATIONS/2e
ISDN: AN INTRODUCTION
LOCAL NETWORKS/3e
‘INTRODUCTION TO COMPUTERS & INFORMATION

tami Sine

ISBN 0-02-946331-9

