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Abstract

Field Programmable Gate Arrays (FPGAs) are found in numerous industries in-

cluding consumer electronics, automotive, military and aerospace, and critical in-

frastructure. The ability to be reprogrammed as well as large computational power

and relatively low price make them a good fit for low-volume applications that can-

not justify the Non-Recurring Engineering (NRE) costs associated with producing

Application-Specific Integrated Circuits (ASICs). FPGAs however, have seen a va-

riety of security issues stemming from the fact that their configuration files are not

inherently protected.

This research assesses the feasibility of reverse engineering the bitstream format

for a previously unexplored FPGA, as well as the utilization of the knowledge gained

during that process to create a bitstream parser and perform a bitstream modifica-

tion attack. The reverse engineering process utilizes Tool Command Language (TCL)

scripts to automate the modification of various configuration options and then synthe-

size the resulting bitstream. Various configuration options for Input/Output Blocks

(IOBs) are mapped to their respective locations in the bitstream and the encoding

format for the configuration of several Look-Up Tables (LUTs) is discovered.

This information is then utilized to create a bitstream parser that takes a bit-

stream as an input and outputs configuration information for IOBs. Additionally,

a bitstream modification attack is performed that changes the original design logic

by modifiying the bitstream directly to change the configuration values of a LUT.

Both the parser and bitstream modification attack are shown to work validating the

information gained through the reverse engineering process.
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METHODS OF REVERSE ENGINEERING A BITSTREAM FOR FIELD

PROGRAMMABLE GATE ARRAY PROTECTION

I. Introduction

1.1 Background and Motivation

FPGAs are used in the military, automotive, and consumer industries and their

prevalence is increasing [7]. Although these devices continue to increase in capacity

and speed [24], they still face a number of security issues [8, 3, 22, 15].

Reverse engineering is one of these issues. When considering FPGAs, reverse en-

gineering usually consists of “transforming an encoded bitstream into a functionally

equivalent description of the original design” [7]. However, the reverse engineering

effort can also be partial, meaning the full functionality of the design is not repro-

duced but data from the bitstream such as encryption keys or LUT content is still

extracted. Reverse engineering itself can be considered a security issue but it can also

enable other security threats by making use of information gained during the reverse

engineering process.

One such threat that can be enabled is bitstream modification or injection. This

attack focuses on directly modifying the encoded bitstream in order to produce a

change in the original design. Because the original design is not known, modifi-

cations to the bitstream are difficult, and usually result in a broken design or the

design not loading. Bitstream injection was considered improbable before 2013 when

Chakraborty demonstrated that presynthesized ring oscillators could be injected into

the bitstream in locations that had not been utilized by the original design [3]. The
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ring oscillators were used to dissipate power increasing the circuit operating temper-

ature. While impressive, injecting into unused portions of an FPGA cannot be used

to interact with the original design. This research focuses on utilizing the knowledge

gained through reverse engineering to protect FPGAs against security threats as well

as execute a more advanced bitstream modification attack.

1.2 Problem Statement

This research presents the process and results of reverse engineering a bitstream

in order to show that this knowledge can be used to both protect or attack FPGAs.

As FPGAs increase in prevalence, identifying security threats and ways to defend

against these threats becomes increasingly important.

1.3 Research Objectives

The goal of this research is to assess whether reverse engineering the bitstream

format for a LatticeECP3 LFE3-35EA-8FN484C FPGA can be used to protect or

attack an FPGA. There are two main hypotheses. The first is that a parser can be

created that can detect malicious modifications to a bitstream by utilizing the infor-

mation gained by reverse engineering the bitstream. The second is that a bitstream

modification attack that directly influences the original design of that bitstream can

be carried out using information from reverse engineering that bitstream.

1.4 Organization

Chapter II provides background relevant to the understanding of this research.

FPGA structure and programmability is discussed along with various security features

and threats. Chapter III discusses the target system, assumptions, design decisions,

and methodology to reverse engineer a bitstream, create a bitstream parser, and
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perform a bitstream modification attack. Chapter IV discusses the results of the

reverse engineering process, effectiveness of the bitstream parser, and the results of

the bitstream modification attack. Chapter V concludes with a summary and a

discussion of future objectives for continuing research.
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II. Background

This chapter provides background information and context related to Field Pro-

grammable Gate Arrays (FPGAs). Information describing the composition of FPGAs

as well as the process behind their configuration is provided.

2.1 Reverse Engineering

Reverse engineering is the process of analyzing a subject system to identify the

system’s components and their interrelationships and to create representations of the

system in another form or at a higher level of abstraction [4]. Reverse engineering

is typically used by adversaries trying to gain knowledge about a system when they

lack design information or details. Reverse engineering can be used on both hardware

and software systems but the objective is typically different. When considering a

hardware system, the objective is usually to duplicate the system. When reverse

engineering software, the objective is usually to gain a design-level understanding of

the system to aid maintenance, strengthen enhancement, or support replacement [4].

When considering FPGAs the objective of reverse engineering is usually to un-

derstand the bitstream format. This is because if the bitstream format is known,

the netlist can be recovered [21, 2, 6]. Although the netlist is not the same as the

Hardware Description Language (HDL) design file, the netlist contains all the compo-

nents that make up the hardware design being implemented on the FPGA. If one can

reverse engineer the bitstream format they can then use that knowledge to recover

the netlist, often considered to be proprietary, and even referred to as Intellectual

Property (IP).
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2.2 Field Programmable Gate Arrays

FPGAs were first introduced in 1984 by Xilinx and over the next three decades

increased in capacity and speed by factors of 10000 and 100 respectively [23]. Unlike

traditional Application-Specific Integrated Circuits (ASICs), which are customized

for a particular use, FPGAs are reprogrammable. This reprogrammability is ac-

complished using a combination of Configurable Logic Blocks (CLBs), Input/Output

Blocks (IOBs) and interconnects. Figure 1 shows an example FPGA architecture

highlighting the CLBs, IOBs, and interconnects. CLBs are made up of various digital

circuits such as Look-Up Tables (LUTs), multiplexers, adders, and flip flops. The

CLBs can then be configured to perform different combinational functions. The in-

terconnects are used to connect the various CLBs to create the desired circuit. IOBs

provide connections to external stimulus. The trade off for this reconfigurability is

that ASICs are more compact and power efficient than an FPGA implementing the

same circuit.

FPGAs are configured using a HDL which is synthesized into what is generally

referred to as a ‘bitstream’. The HDL code describes the structure and behavior of the

circuit while the bitstream is a series of 0’s and 1’s which specify the configuration

options of the CLBs, IOBs, and interconnects to produce that circuit. Each FPGA

vendor has their own proprietary bitstream format and the details of that format are

not usually released to the public.

Depending on the type of FPGA (Static Random Access Memory (SRAM), Flash,

or Antifuse) the bitstream is programmed and stored in different ways [19]. SRAM

FPGAs use internal volatile static latch cells to store configuration data and need to

be programmed after every power cycle [24]. After they are powered on the bitstream

is transferred from an external non-volatile memory source to the FPGA. Flash FP-

GAs use internal non-volatile memory to store the configuration data which means
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Figure 1. FPGA Architecture showing CLBs, IOBs, and Interconnects [20].

no external bitstream transfer is necessary. It also allows for faster power-on and

information transfer through power-cycles [24]. Antifuse FPGAs program through

a pulse which form low-resistance connections between the internal nodes making it

one-time programmable. Regardless of the type of FPGA the configuration is largely

the same. The bitstream’s ones and zeros are used to tie high and low voltages to LUT

initialization values, multiplexer selectors, switching matrix transistors, etc. Every

configurable option on the FPGA is represented somewhere in the bitstream and is

tied to high and low voltage states based on the values in different locations in the

bitstream.

Configurable Logic Blocks.

CLBs are what allow the FPGA to implement custom logic. Although there can

be some differences between the hardware implementation of a CLB depending on the
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manufacturer of an FPGA, they commonly include LUTs, multiplexers, and flip-flops.

Figure 2 shows an example CLB with two LUTs and two flip-flops.

Figure 2. Example configurable logic block.

Instead of a traditional ASIC that uses hardware logic gates to implement the

digital logic for the desired circuit, FPGAs utilize LUTs to implement the logic.

Figure 3 shows an example of how a 2-input LUT utilizes multiplexers to implement

digital logic. Instead of using an AND gate with a and b as the inputs, the LUT utilizes

the inputs a and b as the selectors for the multiplexers and then, via the appropriate

bits in the bitstream, initializes the inputs to the multiplexers as the output values

for the truth table desired. This produces a circuit that is logically equivalent to an

AND gate. If the user wants to implement a different circuit, the input values to the

multiplexers can be changed allowing a new digital circuit without actually changing

the FPGA hardware. LUTs trade space for reprogrammability in that the actual
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hardware needed to implement the LUT is much larger than the hardware needed to

implement the same digital circuit that the LUT is replicating. However, LUTs can

be reprogrammed to implement any desired logic function as long as it fits within

the bounds of the truth table. Designs that require more inputs than the LUT has

available can be implemented by daisy chaining multiple LUTs together.

Figure 3. 2-input look-up table example.

Input Output Blocks.

IOBs are used to connect the internal logic of the FPGA to external components.

At their most basic they consist of a physical pad that serves as the bridge between

the FPGA and the rest of the system along with a number of multiplexers. Since

the IOBs usually allow both input and output to the same physical pad, the choice

of whether a certain pin will be an input or output is decided at configuration time.

There are also other configuration options that determine the physical characteristics

of the signal at the pin such as pullmode, slew rate, drive, etc. These configuration

options vary from FPGA to FPGA. Figure 4 shows an example IOB that is configured

as an output.
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Figure 4. Example input-output block.

Switching Matrix.

The switching matrix is the largest portion of the FPGA (in terms of silicon

area consumed) and is responsible for connecting the CLBs and IOBs to produce the

desired digital logic circuit [9]. The reason that the switching matrix is so large is

that nearly every CLB and IOB must be able to connect to each other. The large

number of routes that need to be accommodated results in a large switching matrix.

Figure 5 shows the routing paths of a simple digital circuit. The configuration of the

switching matrix, which is determined by specific bits in the bitstream instantiates

these routes.

Figure 5. Virtual representation of routing paths within an FPGA
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2.3 Bitstream Synthesis

An HDL file is transformed into a bitstream through a number of steps. Figure 6

shows the process that is used for most FPGAs. First the HDL code is synthesized

into a netlist. The netlist contains the list of components in the circuit and the nodes

they are connected to. The map function maps the components in the netlist to the

components that are found on the FPGA the designer is compiling to. Place then

takes the mapped list of components and selects the locations of those components

on the FPGA. Since the FPGA will most likely have numerous copies of the same

components, place decides which of those components will actually be part of the

circuit. Route then makes the connections between all of the placed components on

the board. After the circuit has been placed and routed it can be converted into

a bitstream file that will configure the correct components and connections on the

board to create the circuit.

Figure 6. The process for bitstream generation from HDL [14].

2.4 Field Programmable Gate Array Security

As FPGAs gained popularity, the issue of security rose in importance for both

vendors and customers. Vendors wanted to protect their hardware designs and tech-

nology from being reverse engineered, copied, or modified by other vendors. They

were also concerned with the protection of “soft cores” or HDL modules that were

created to program an FPGA. The protection of soft cores is the primary security

concern for customers because it protects their designs from being reverse engineered
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or copied by competitors [8].

Unlike ASICs which are difficult to modify once they have been created and require

sophisticated and expensive technology in order to reverse engineer the design, FPGAs

merely need a configuration file which specifies the design to be implemented. This

allows a competitor to start the reverse engineering process from a configuration

file instead of the hardware. This is why bitstream formats are kept secret. If the

format was publicly accessible, as soon as the competitor extracted the bitstream

they could reverse the design. However, this does not protect the bitstream from

reverse engineering, it only prolongs the process. Once a competitor figures out the

format they can reverse the bitstream into a more useful file type.

FPGA vendors and customers have used a number of methods to protect their

designs from competitors including obfuscation, encryption, and reconfiguration. For

the rest of this thesis FPGA security will refer to the protection of soft cores from

reverse engineering, copying, or modification rather than the protection of the actual

FPGA hardware design unless specified otherwise.

Obfuscation.

One method that can be used to increase security is to obfuscate the design.

Obfuscation is the process of intentionally modifying the description or structure of a

circuit in order to conceal its functionality to make it more difficult to reverse engineer

[10]. Although this method may not stop a competitor from reverse engineering the

design, obfuscation may increase the cost of reverse engineering to the point where it

is cheaper for the competitor to invest in creating their own design instead.

There are two approaches to hardware obfuscation, passive obfuscation and active

obfuscation. Passive obfuscation alters the comprehensibility of the HDL code so

that it is difficult for a human to understand but will still compile with the same
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functionality. Active obfuscation on the other hand, alters the functionality of the

circuit. Many times active obfuscation is key based where a key or sequence of keys

must be applied to the input to unlock the normal function of the circuit. If the key

is not applied the circuit will function incorrectly [10].

Encryption.

In order to protect the intellectual property of their customers, FPGA vendors

offer a bitstream encryption feature on high-end models. Figure 7 shows an example

of how bitstream encryption works. In this example a FPGA based network router

is being updated. Both the designer and the FPGA share the same secret key. The

designer encrypts the new bitstream and sends it to the router. The FPGA has

an internal decryption engine and decrypts the bitstream after it is loaded from

configuration memory. After decryption, it configures itself according to the new

bitstream. Even if the bitstream is intercepted over the Internet or when the bitstream

is being loaded from configuration memory, the attacker will be unable to decrypt

the bitstream without the secret key [17].

Figure 7. FPGA receiving encrypted bitstream from designer [17].

However, encryption alone is not sufficient for system security in a number of
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situations including [11]:

1. Applications requiring FPGAs with low-energy and cost requirements or small

form-factors. These FPGAs may not have encryption blocks because of their

constraints.

2. Remote upgrades of the design using a new encryption key. In these cases the

encryption keys must be sent with the bitstream leaving them vulnerable to an

attacker who can intercept them.

3. Devices that remain in the field for many years. They are susceptible to physical

attacks such as side channel analysis [17].

2.5 Field Programmable Gate Array Attacks

As vendors and designers have come up with different ways to protect their intel-

lectual property, adversaries and competitors have come up with their own ways to

reverse engineer, copy, and modify those designs. Security follows a cyclical nature

with new attacks emerging followed by security measures to defeat those attacks,

finally followed by new attacks and the cycle continues [8]. Two types of attacks

that have been particularly noteworthy in the past decade are side-channel analysis

attacks and implanting hardware trojans.

Side-Channel Analysis.

Side-channel analysis attacks exploit physical information leakage of operations

executed within a device in order to extract secret data. Many times the secret data

is related to the cryptographic key stored on the device used to decrypt the bitstream

[17]. Side-channel analysis can come in a variety of forms depending on which external
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characteristics are measured. Three types of side-channel analysis related to FPGAs

are [8]:

1. Power analysis: Power is consumed in two ways in integrated circuits. Dy-

namic power consumption is due to Complementary Metal-Oxide-Semiconductor

(CMOS) gates changing state according to the logic transition. Static power

consumption is due to current flowing between the source and drain terminals

and through gate oxide. This is referred to as “gate leakage”. By analyzing the

electrical current patterns of an integrated circuit, information about the data

it is processing may be revealed to the attacker.

2. Electromagnetic analysis: Electromagnetic fields are caused by current changes

during execution of a function. These fields can be detected outside of the device

using finely tuned antennas and analyzed to uncover the secret data.

3. Timing analysis: The timing of different functions such as conditional branch-

ing, memory access, and algorithmic operations are often related to the key

state during cryptographic operations. An example of this would be comparing

a password one character at a time. If the function took different amounts of

time for a match and miss then the attacker could determine the password.

Hardware Trojans.

Hardware Trojans are malicious, hard-to-detect hardware modifications. They

have become a potent threat to ensuring trustworthiness of integrated circuits due to

outsourcing steps in the manufacturing process [3]. They can be used for a variety

of functions including decreasing the lifetime or reliability of the device, functional

failure, or leakage of secret keys. They are also a significant threat to FPGAs since

the bitstream used to configure the device could potentially implement a Trojan.
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Without the source code used to generate the bitstream it can be very difficult to

detect their presence. Additionally, it is possible to insert a Trojan into an FPGA

design by modifying the bitstream [3]. In this case, the attacker does not need any

knowledge of the design to insert the Trojan. Instead the Trojan is inserted at a

location in the bitstream that was not being utilized.

Bitstream Modification.

Bitstream modification can be performed by both an adversary that intercepts the

bitstream, or an insider. Consider the situation where an Industrial Control System

(ICS) company is licensing the IP that it uses for its FPGAs. If an adversary can

intercept the bitstream, it could be modified and the ICS company would be unable

to tell since they only receive a bitstream file. Chakraborty showed that this is a

real threat since a bitstream can be modified to introduce hardware trojans without

actually knowing the HDL used to create the bitstream [3]. In this case they inserted

ring oscillators to increase the temperature of the FPGA thereby accelerating its

aging. This attack could be implemented by an insider that is responsible for loading

the bitstream onto the board, or by an adversary that intercepts the original bitstream

and delivers the modified bitstream to the company.

An adversary that is able to reverse engineer the target FPGA could go farther by

gleaning information about the bitstream and then making changes to the bitstream

directly. This information allows the adversary to make more effective changes with-

out having to understand the totality of the design. If the adversary is able to

completely reverse engineer the bitstream file then they will have absolute control in

understanding and changing the bitstream.
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Bitstream Reverse Engineering.

Bitstream reverse engineering is a significant threat to the security of the intel-

lectual property of designers. Since the bitstream is a string of 0’s and 1’s that

configure the components on the board, until the competitor can determine how the

bitstream is configuring those components the design is still protected. However, re-

searchers have shown that given enough time, a bitstream can be reverse engineered

into the netlist which describes the design [21, 6].

Once the netlist has been generated the design can be understood, modified, and

synthesized to run on other FPGAs. However, the process is time intensive. In

order to isolate a configuration option many bitstreams must be generated, with

each containing slight differences. The bitstreams can then be compared to see how

configuration changes affect the makeup of the bitstream. This process then has to

be repeated over and over again for each configuration option. Additionally, some

configuration options are difficult to isolate because a change to a certain configuration

option can also affect other configuration options.

Covert Channels.

A covert channel allows two cooperating entities to communicate secretly, in vio-

lation of a security policy, by manipulating shared resources [16, 12]. This is similar

to a side-channel however, a side-channel leaks information to other parties, and does

not require the cooperation of malicious entities. Covert channels are further divided

into storage channels and timing channels. Storage channels communicate by mod-

ifying a storage location such as a hard drive or system memory. Timing channels

communicate by performing operations that affect the real response time observed

by the receiver. To show a covert channel example consider the case where a vehicle

with an FPGA wants to fool an emissions test. The emissions test will most likely
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use the same sequence of inputs to test the vehicle such as throttle the engine to 2000

Revolutions Per Minute (RPM) and hold for 3 minutes, increase to 4000 RPM for one

minute, etc. In order to fool the test a storage channel between the IOBs and a set

of CLBs could be implemented. The IOBs could write the values of the RPM values

to some location in memory that is then checked by the CLBs controlling ignition

timing and other factors that affect emissions. If the CLBs see a certain sequence of

RPM values they would know that they are in the middle of an emissions test and

possibly change ignition timings or other engine factors in order to reduce emissions.

A timing channel could be implemented to achieve the same feat by increasing or

decreasing the delay for the signal between the IOBs and the CLBs to communicate

different RPM values. If a certain sequence of delays is recognized the outputs are

then changed to produce fewer emissions.
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III. Experimentation Methodology

This chapter explains the methodology used to reverse engineering an Field Pro-

grammable Gate Array (FPGA) bitstream format as well as utilize the knowledge

gained through the reverse engineering process to perform a bitstream modification

attack.

3.1 Assumptions

There are a number of assumptions that must be made in order for this research to

succeed. The first is that the bitstream is either not encrypted, or that the decrypted

bitstream can be recovered somehow. Encrypted bitstreams impede the ability to

parse information about the bitstream or execute a bitstream modification attack

because the mapping of the configuration options to the bitstream is no longer con-

stant. Reverse engineering the bitstream format using encrypted bitstreams would

be much more difficult and even if some progress was made, changing the encryption

key would negate any work done.

The second assumption that is made is that the bitstream is not obfuscated in

any way. This means that the bitstream file is exactly the file that is loaded into

the configuration memory in order to program the FPGA. If this bitstream was ob-

fuscated and went through some sort of decoder hardware before being loaded into

the configuration Static Random Access Memory (SRAM) the reverse engineering

process could be significantly harder.

These are both valid assumptions to make because not all FPGAs offer encryption

options and even those that do have had their encryption broken [17, 18]. Addition-

ally, assuming that the bitstream is not obfuscated is completely valid for most situa-

tions because the common situation is to have the bitstream directly loaded into the

18



configuration memory instead of passing it through some decoding hardware [25, 1].

3.2 Target System

The target system for this paper was the LatticeECP3 LFE3-35EA-8FN484C

FPGA. Although this work could have been performed on any FPGA, this one was

chosen for a number of reasons. Both Xilinx and Altera have had numerous scientific

research articles published on their FPGAs with both having been explored to some

degree in regards to reverse engineering their bitstream [21, 22]. Lattice, on the

other hand has seen much less attention on anything other than the extremely small

iCE40 FPGAs [5]. This allows for comparisons to be made between the reverse

engineering process for the Lattice FPGAs and the processes for the Xilinx and Altera

FPGAs. Additionally, since any FPGA could be studied and we had decided on a

Lattice FPGA due to the reasoning above, we decided to pursue a investigate a mid-

grade FPGA with enough computational power to implement many different designs.

To reverse engineer a bitstream, the primary tool needed is the synthesis software

that transforms a Hardware Description Language (HDL) design into a bitstream.

Having the physical device, with the actual FPGA is only needed to test bitstream

modification attacks.

All bitstreams were synthesized using the Lattice Diamond software, version 3.9.1.

with the specified FPGA as the target device, and utilized the Lattice Synthesis

Engine for synthesis of the bitstreams. The synthesis of bitstreams was performed

using Tool Command Language (TCL) scripts that were evaluated by the pnmain.exe

application. This allowed for the scripting of bitstream generation.

The Lattice Diamond software is free to download from Lattice Semiconductor

and allows HDL code to be synthesized into bitstreams for various Lattice FPGAs.

A free license allows synthesis for lower end FPGA models and purchasing a license
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allows synthesis for higher end models. The tool organizes designs using projects and

implementations and has a number of views to show information about the project.

Figure 8 shows an example view with the HDL editor as the main view, the implemen-

tations within the project shown on the left side and the TCL Console shown below.

Figure 9 shows the process view instead. Projects share the same target FPGA and

can contain different implementations. Implementations are groups of files such as

HDL, Lattice Preference File (LPF), analysis, and programming files that are used

to synthesize a bitstream for the target device. A project can contain any number of

implementations but only one implementation can be active at a time. Additionally,

only one process can be running on a project at any given time.

Projects can be created using the New Project Wizard shown in Figure 10 or by

using TCL commands. When actions are selected within the Graphical User Interface

(GUI) they are then translated into TCL commands and then evaluated in the console.

Figure 8 shows an example of this happening. After the new project selections were

made using the GUI in Figure 10 the following line appears and is executed in the

TCL console which can be seen in the bottom pane of Figure 8:

prj_project new -name "clbtest4" -impl "impl1" -dev LFE3-35EA-8FN484C

-synthesis "lse"

This is the TCL command that is generated by the GUI and is evaluated by the

Lattice Diamond software to create a new project. Additionally, projects can be

modified and synthesized without ever using the GUI by running TCL scripts through

the command line TCL console. Projects can be created, source files can be added

or removed, and bitstreams can be generated all without interacting with the GUI.

This was pivotal to the reverse engineering effort because manually configuration for

producing bitstreams would be very time consuming and likely suffer from numerous

human input errors.

20



Figure 8. Lattice Diamond software GUI showing HDL editor, File List view, and Tcl
Console.

3.3 Bitstream Reverse Engineering Process

This section serves to describe the general process used when reverse engineering

certain configuration options for the Lattice LFE3-35EA-8FN484C FPGA. The first

step was to downselect to a specific configuration option to reverse engineer. This

could be a specific pin set as an input or output, a logic function initialized in a

Configurable Logic Block (CLB), a certain intersection in the switching matrix, etc.

Upon selecting the configuration option to be investigated, the option was exercised
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Figure 9. Lattice Diamond software showing the Process view.

through all possible values, generating a corresponding bitstream for each value. This

was done using TCL scripts that would modify either the LPF or the HDL file and

then synthesize the bitstream. These scripts all followed a similar pattern. The TCL

script would open a Lattice Diamond project that already had a prepared HDL file

and LPF, copy the HDL design and LPF into a new implementation and set it as the

active implementation, modify the LPF or HDL file, synthesize the bitstream, and

then repeat. Listing A.1 shows an example of one of these TCL scripts that was used

to generate bitstreams for the pullmode option for each of the pins. A single script
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Figure 10. Lattice Diamond New Project GUI.

could exercise configuration options for any number of components on the board. The

script would name and relocate the bitstream files as it synthesized each one so that

all files were in a single location. Figures 11 and 12 show the script executing and the

resulting output bitstream files. The TCL scripts were executed via batch files that

would call the TCL file so that groups of TCL scripts could be executed sequentially.

Figure 11. TCL script running generating bitstream files for analysis.
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Figure 12. Bitstream files generated, renamed, and moved by the TCL script.

After the bitstreams were generated they were analyzed in an Ubuntu 14.04 virtual

machine, harnessing the many advanced shell scripting commands. The bitstreams

were analyzed using the program found in Listing A.2 which takes bitstream files

as inputs and outputs the location of differences between these files and the values

at those locations. Figure 13 shows an example of this program being used. The

two .bit files are the bitstreams that are compared and the numbers in the leftmost

column represent locations in the bitstreams where the two files differ. The hex values

on the same row as one of those locations represents the values of the bitstreams

in hex at those locations. After comparison, the binary of bitstreams was usually

analyzed and compared to each other. This made it easier to see trends that were

more difficult to notice when observing the hex outputs. Figure 14 shows an example

of the bitstream printing tool found in Listing A.3 being used to print the binary from

index 0 through index 20. The tool is able to print both the binary or hex depending

the flag specified.

While analyzing these bitstreams it became obvious that the configuration options
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Figure 13. Results of bitstream comparison tool comparing two bitstreams.

Figure 14. Results of bitstream printing tool outputting binary for a bitstream.

that could be exercised in isolation should be reversed first. If an option affected other

parts of the design it was difficult to isolate which portions of the bitstream were

responsible for that change because many indices could change at once. For example,

switching a pin from an input to an output could result in greater than 50 changes in

the bitstream because the switching matrix was also affected. Isolating which parts of

the bitstream were responsible for the shift from input to output and which portions

were the switching matrix was very complicated, involving many bitstreams, and lots

of comparison and contraction.

However, much like corner pieces in a jigsaw puzzle, configuration options that

manifested few changes in the bitstream when exercised could be used as figurative

footholds to help reverse other configuration options by observing similar patterns or

eliminating certain locations in the bitstream based on previously reversed options.

25



3.4 Input/Output Blocks

This section describes the process of mapping the relationship between the bit-

stream file and the configuration of the Input/Output Blocks (IOBs).

IOBs have two main advantages when considered in a reverse engineering perspec-

tive. The first is that there are far fewer of them than either CLBs or the switching

matrix. There are 295 pins on the target FPGA while there are 33264 Look-Up

Tables (LUTs) as shown in Figure 10. Additionally, the IOBs and CLBs make up

a very small percentage of the board when compared to the switching matrix [9].

Their smaller number means that it takes less time to synthesize bitstreams for all of

them in order to compare how the configuration options manifest differently in the

bitstreams.

The second advantage is that their configuration options can be changed very eas-

ily using either the spreadsheet view shown in Figure 15 or the LPF. The spreadsheet

view shows all of the inputs and outputs for a given design and their configuration

options. These options can be changed by double-clicking an option and selecting

one of the given values. These changes are then translated into commands that are

written to the LPF.

Being able to change configuration options directly ensures that the changes that

manifest in the bitstream are both isolated and reflective of the actual configuration

option. Consider the case of the LUTs which will be explained in more detail in a

future section. There are two ways that the configuration values of a given LUT could

be changed. The first would be to write a variety of HDL files using different logic

operators that are then translated into LUT configuration values. The second is to

initialize those LUTs using supported HDL primitives and selecting the configuration

values specifically. Method two is better suited for the reverse engineering effort be-

cause the bitstreams will definitely reflect the configuration values specified. Method
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Figure 15. Lattice Diamond Spreadsheet View.

one on the other hand leaves the relationship obscured because the synthesis engine

initializes the LUTs. If the synthesis engine is performing optimizations it is very

difficult to know if the changes in the bitstream are actually reflective of the desired

configuration option changes. Additionally, since changes made to the configuration

options in the spreadsheet view were present in the LPF, modifying the LPF directly

enabled automated bitstream generation.

There were three main goals when reverse engineering the IOBs. The first was

to map all of the configuration options for each pin to their respective indices and

values in the bitstream file. The second was to determine whether a pin was an

input or output based on the bitstream file. And finally, to determine whether a

pin was connected to logic blocks in the design. The following sections describe the

methodology for reversing that configuration option.
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Pullmode.

The pullmode is responsible for describing how the signal will be interpreted at

the pin. The pullmode can be set to four options:

• Up: Input is attached to a pull-up resistor, i.e., the pin is tied to logical ”1”.

• Down: Input is attached to a pull-down resistor, i.e., the pin is tied to ground

or logical ”0”.

• Keeper: Neither pull-up nor pull-down. Drives a weak 0 or 1 to match the

level of the last logic state present on the pad to prevent the pad from floating.

• None: The input is not set to any of these modes.

Each of these options can be toggled using either the spreadsheet view or by

modifying the LPF directly.

For the remainder of this document an index refers to the byte address in the

bitstream after the header. When discussing changes in a bitstream due to a design

change both the number of indices that change as well as the locations within those

indices are discussed. A change in the pullmode of a pin had between 3 and 6 indices

of change reflected in the bitstream. This was especially isolated when compared to

other design changes such as moving the location of a CLB which could result in 70

- 100 indices changing. This isolation made pullmode a key candidate for reverse

engineering.

Satisfied that this configuration option was sufficiently isolated, a TCL script

synthesized bitstreams for every pullmode option for every pin, with each pin set as

an input and then again with each pin set as an output. The pseudocode for that

script is shown below. The objective was to determine which indices were responsible

for the pullmode option for each pin as well as answer whether there was a common

28



pattern used for every pin to identify the pullmode. The hypothesis was that each

pin would have a different location in the bitstream that would store its configuration

options and that the values at those locations would each follow the same pattern in

terms of representing the pullmode in the bitstream.

Algorithm 1 Pullmode Bitstream Generation

1: for Pin p in all I/O Pins do

2: for pullmode val in UP,DOWN,KEEPER,NONE do

3: Replace IOBUF line in LPF with ”IOBUF PORT ”a” PULLMODE=val”

4: end for

5: Replace Location line in LPF with ”LOCATE COMP ”<input/output pin

name>” SITE p”

6: end for

After the script generated the 2296 bitstreams, they were then compared to find

the indices in the bitstream responsible for the pullmode configuration option for each

pin. As shown in Figure 16, relatively few indices changed for each pin. Each text file

in the picture was generated by comparing the four bitstreams (pull-up, pull-down,

bus keeper, and none) that were generated for each pin and listing all of the indices

in the bitstreams that were different from any of the other bitstreams. In each text

file, the first column with hex values refers to the values in the bitstream associated

with pullmode pull-up, the second refers to pull-down, the third refers to bus keeper,

and the fourth column refers to none. The numbers on the leftmost column are the

indices in the bitstream where the changes occurred. So for instance, when comparing

the four bitstreams that were generated for pin A2 when set as an input, the only

differences between the four bitstreams appear in bytes 429, 476, and 477. It should

be noted that indices 476 and 477 appear in almost every one of the listed comparison

files. Recall that each index points to a specific byte in the bitstream. If any bit in
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that byte is different, then the value at that index will change. Because we are

searching for specific bits, it may be necessary to examine the values at the bit level

rather than the byte level. However, with the bitstreams generated it was impossible

to know whether all of the indices listed for each pin were necessary to configure the

different pullmode options or if just a subset of the indices shown for each pin was

necessary.

Figure 16. Indices in the bitstream responsible for the pullmode configuration option
for various pins.

To solve this problem the bitstream generation script was again executed with

different logic designs mapped to different portions of the FPGA. The reasoning for

this was to isolate the indices responsible for the pullmode configuration option. Based

on the hypothesis above, if the same generation script was executed with different

combinational logic designs and mapped that logic to different portions of the FPGA,

the indices that are responsible for pullmode configuration must have the same value

across all of the different runs while indices that are affected by the switching matrix

and CLBs would change. The following gates and placements were used.

1. 1 Input NOT Gate at R2C73D

2. 1 Input NOT Gate at R23C53A

3. 2 Input AND Gate at R3C70B

4. 1553 Encoder Placed by the compiler

30



When exploring which designs and placements were necessary to isolate the in-

dices, the need to vary the CLBs in sufficiently diverse ways became clear. This was

achieved by using a NOT gate, an AND gate, and the Intellectual Property (IP)

core for a MIL-STD-1553 encoder. The encoder represented a larger design while

the simple gates represented smaller designs. Each of the gates were then placed in

different slices within CLBs on different portions of the FPGA and the 1553 encoder

was placed by the tool. This proved to be enough variation initially and if none of

the indices expressed different values additional variation could be introduced before

considering that all of the indices listed were necessary to represent the pullmode

configuration. After the bitstreams were generated for the additional logic designs,

the bitstreams for each pin were compared and printed to text files. This comparison

resulted in four comparison files for each pin created using the four bitstreams gener-

ated for each logic design. The four comparison files for each pin were then collated

into a single text file in order to see how the indices and the values of those indices

changed as the same pin exercised the same pullmodes across 4 different designs.

Examples of these files can be seen in Figures 18 and 19. It should be noted that the

indices never changed between different logic designs but the values at those indices

sometimes changed. The indices whose values did not change between designs were

assumed to be responsible for the pullmode configuration option and were examined

more thoroughly.

To answer the question of why not just assume that all indices listed are responsible

for pullmode, there are a few reasons that suggest otherwise. Firstly, the number of

indices that changed for each pin when comparing bitstreams for each of the pullmodes

was not constant. Some pins had only 3 indices change where as other pins had 6

indices change. Why would a designer decide to use more indices to represent the

same change in different pins? Additionally, each pin had indices that were different
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but some pins also had indices that were the same. Why would a designer have

the same information located in two separate places when creating larger files will

increase the time needed to configure the FPGA and also increase the complexity

of the process used to parse the bitstream? It seemed more likely that some indices

were being changed as a result of some other variation that was changing as a result

of changing the pullmode.

Table 1. Pullmode Groups

Group Number Indices
Group 1 476 or 477
Group 2 440404 or 440405
Group 3 667296 or 667297
Group 4 895054 or 895055
Group 5 Offset Pattern: 1, 2, 433, 434, 435
Group 6 Offset Pattern: 427, 428, 433, 860, 861

After collating the comparison files for each pin and noticing that the indices

of change were the same, the indices changing for each pin were printed and then

sorted numerically. The pins were then organized into 6 groups based on the indices

responsible for their changes. Any pins that shared the same indices were grouped

together as well as pins that shared a pattern in the offset of their indices. The

grouping is shown in Table 1. Group 1 consisted of all pins with changes in indices

476 or 477. Group 2 consisted of all pins with changes in indices 440404 or 440405.

Group 3 consisted of all pins with changes in indices 667296 or 667297. Group 4

consisted of all pins with changes in indices 895054 or 895055. Group 5 consisted of

all pins not in one of the previous groups with an offset pattern of 1, 2, 433, 434,

435. Pin V5 is an example with its indices shown in Figure 17. Its second index of

change 887693 is 1 greater than its first index of change 887692. Additionally, its

third index of change is 2 greater than the first, its fourth index is 433 greater than

the first index, etc. Finally, Group 6 consisted of all pins not in one of the first four
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groups with an offset pattern of 427, 428, 433, 860, 861.

Figure 17. Indices related to changes of the pullmode for pin V5.

Group 5 and Group 6 may seem as if the criteria for the pins was arbitrarily

picked. However, these pins did not lend themselves to an easy partitioning in the

same way that Groups 1 through 4 did. These pins behaved differently than Groups 1

through 4 in that there were always 6 indices of change and the values at those indices

did not change when different logic designs and placements were used. Figure 18 and

Figure 19 show these differences. Pins A2, K1, R17, and AA4 are from Groups 1, 2, 3,

and 4 respectively. Pins V5 and AB20 are from Groups 5 and 6 respectively. Pins in

the first four groups always have 3 or 4 indices of change, share common indices with

other pins in the group, and the values at those indices sometimes change depending

on the design logic or placement. Pins in Groups 5 and 6 always had 6 indices of

change and the values of those indices did not change with different design logic or

placements. Since there wasn’t an apparent strategy to partition the pins not in the

first four groups, the offsets of the indices of each of the pins was calculated. Two

clear patterns emerged. The remaining pins either had an offset of 1, 2, 433, 434,

435 or 427, 428, 433, 860, 861. These two offsets were then used to separate the pins

into Groups 5 and 6. The pins were then analyzed as groups to find the relationship

between the pullmode options and the representation in the bitstream.
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Figure 18. Pins Groups 1 through 4 showing the differences in changing indices.
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Figure 19. Pins from Groups 5 and 6 showing the differences in changing indices.

Slew Rate and Drive.

Slew rate and drive were two other configuration options that were reverse engi-

neered for the IOBs. The slew rate is the maximum voltage change per unit time in

a node of a circuit. Each bidirectional or output pin can have a slew rate of either

fast or slow. Input pins are always set to a slew rate of fast. Fast corresponds to

high-speed performance while slow corresponds to low-noise performance. The drive

attribute is applicable to all output and bidirectional pins and specifies the strength

of the output signal in milliamps (mAs). Table 2 shows the different drive strengths

available at each supply voltage. Additionally, not all drive levels are available for

each Input/Output type. The I/O type used for all of the bitstreams was LVCMOS25

which did not allow a drive strength of 2 mA.
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Initially, the slew rate and drive configuration options were approached with the

same methodology that was used for pullmode. Generate bitstreams with all possible

values of the single configuration option for each pin and then analyze. However, after

generating bitstreams for both of these options independently it became clear that

these options could affect each other. For example, after generating and analyzing

the differences between fast and slow slew rate for all pins with a drive level of 12 mA,

the same pins were analyzed at a drive level of 8 mA. It was impossible to discern

the slew rate of the 8 mA pins using the information from the 12 mA drive level pins.

Because of this, bitstreams were synthesized for each drive level for each slew rate

and then analyzed together. After the bitstreams were generated they were compared

against each other for each pin and then their binary was printed at those locations

in order to visually recognize patterns between the bitstreams.

Once again the pins were analyzed in groups that corresponded to the groups they

were split into during the pullmode analysis.

Table 2. Valid Drive Strengths

Drive Strength VCCIO VCCIO VCCIO VCCIO VCCIO
(mA) 1.2V 1.5V 1.8V 2.5V 3.3V

2 X
4 X X X X
8 X X X X X
12 X X X X
16 X X X X
20 X

Input/Output.

Out of the 295 pins only the 16 in Groups 2 and 3 are input only. All other

pins can be set as either input, output, or bidirectional. The configuration option for

these pins was first hinted at when analyzing the pullmode results. When examining

Figure 29 there were clear patterns in the first four bitstreams where pin D19 was set
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as an input pin and D18 was set as an output pin, and the second four bitstreams

where pin D19 was set as an output pin and D18 was set as an input pin. That figure

seemed to suggest that a 1101 in the beginning of a pin’s section in the bitstream

indicated an input pin and that a 1101 closer to the middle of a pins section in the

bitstream indicated an output pin. To explore this hypothesis the previous bitstreams

that had the pins set as inputs and outputs were compared to each other. Additional

bitstreams were generated with the pins set as bidirectional and then compared to

both the input and output bitstreams. The results of these comparisons can be found

in the analysis section, 4.1.

3.5 Configurable Logic Blocks

The CLBs were the next item reverse engineered after the IOBs. The CLBs proved

more difficult than IOBs simply because there are many more CLBs than IOBs and

the LPF modification cannot be used to modify configuration options in the same

way that was done previously. This is because the LUTs in the CLBs are configured

based on the HDL when it is synthesized. The LPF is not used until the map and

place and route steps in the bitstream generation process and therefore is not even

considered until after the LUTs have been configured.

In order to overcome this issue, Lattice primitives were used along with HDL

attributes. Each of the Lattice FPGAs have a library of primitives that are supported

by that device. In the case of the ECP3, the LUT4 primitive was used so that the LUT

could be directly initialized to the desired configuration value. The HDL attributes

were used to set other attributes such as location instead of modifying the LPF simply

to avoid having to change two different files. The LUTs are initialized based on what

the output to their desired truth table is. Figure 20 shows an example of this. In

order to get a LUT that would produce the outputs in the truth table shown, the
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initialization value needs to be 0xF444. When the synthesis process is translating

HDL code into the bitstream, it replaces the logic in the design with LUTs that are

initialized to produce the same outputs. Based on this information, the hypothesis

was that the initialization information appeared somewhere in the bitstream. If this

were the case, to understand the digital logic being implemented in the CLB one must

simply figure out what the LUTs were initialized to and then remake the truth table.

Figure 20. Look Up Table initialization value based on the desired truth table.

Single Look Up Table Reversal.

The process to reverse engineer the configuration of a LUT was to create a set

of bitstreams that had a variety of configuration values for the same LUT. These

bitstreams were then compared to each other in order to identify which indices were

responsible for the configuration information. The bitstreams were then visually

compared to each other at those indices to reveal how the configuration information

was encoded within the bitstream. TCL scripts were again used to generate the
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bitstreams.

Given that each LUT has a 16 bit configuration value, that 16 bit value was

assumed to be stored somewhere within the bitstream. Therefore, at least 16 bit-

streams would need to be generated for each LUT in order to locate the indices

responsible. However, if other indices were also changing as a result of modifying the

configuration value, additional bitstreams could possibly be necessary to identify the

correct configuration indices. Therefore, 61 bitstreams were initially generated for

the LUT. 0x0000 through 0x000F, 0x0010 through 0x00F0, 0x0100 through 0x0F00,

and 0x1000 through 0xF000. This resulted in sufficient information to recognize how

the configuration was stored in the bitstream.

Confirming The Mask Is Correct.

After a LUT was analyzed the result was a mask, or location of the bits specifying

the encoding of the LUT configuration value. However, a confirmation was needed to

ensure the information was correct and useful for understanding a bitstream. To do

this, a number of bitstreams were synthesized with each bitstream containing different

combinational logic located in the LUT of interest. Those bitstreams would then be

used to recover the truth table for what that LUT was initialized to. If the recovered

truth table and the specified logic agreed, the mask would be confirmed. Additionally,

the logic would be specified using HDL operators instead of initializing the primitives

directly. Using HDL operators would ensure that the initialization value of the LUT

was generated by the synthesis engine translating the design. A number of different

designs were created using simple logic such as a 3 input AND gate, 4 input OR gate,

or a design that would combine various logic gates but was sure to fit in a single

LUT. The design was then placed in the correct CLB and LUT using LPF or HDL

constraints and analyzed.
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Figure 21. HDL used to generate a three input AND gate.

Figure 22. Bitstream values at R2C40D Look Up Table 1 indices for a three input
AND gate.

This process is detailed for both a 3-input AND gate, as well as a more complicated

design of AB+CD̄. Figure 21 shows the HDL used to generate the three input AND

gate and Figure 22 shows the values of the bitstream at the indices that are associated

with LUT 1 in CLB R2C40D. The boxed red values correspond to the bits responsible

for the configuration of the LUT. In this case there are 0’s in both the 16,384’s and

32,768’s place resulting in an initialization hex value of 0xC000. If this value is used

to derive the truth table for this LUT the outputs are 1 for input 1110 and 1111

which is exactly what is expected with a 3-input AND gate. All three of the inputs

need to be high and then the fourth input does not have any effect on the function.

Figure 23. HDL used to generate a more complicated logic function.

The second example shows a more complicated logic function. Figure 23 shows

the HDL used to generate the bitstream for the AB +CD̄ while Figure 24 shows the

synthesized bitstream at the indices that are associated with LUT 1 of CLB R2C40D.
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Figure 24. Bitstream values at R2C40D Look Up Table 1 indices for a more complicated
logic function.

When examining the bitstream it is more difficult to see if the derived mask is correct.

When observing the bitstream and comparing it to the mask shown in Figure 46 a

configuration hex value of 0x8f88 is derived. The digital logic function can then be

reconstructed using the truth table that corresponds with the configuration hex value

shown in Table 3.

Table 3. Derived Truth Table

W X Y Z F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1
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This yields a logic function of:

W̄ X̄Y Z + W̄XY Z + WX̄Ȳ Z̄ + WX̄Ȳ Z + WX̄Y Z + WXY Z

This function can then be further reduced to:

WX̄ + Y Z

Although this isn’t in the same form as the HDL one must remember that the

synthesis process has control over how the inputs are routed to the LUT. Since the

inputs can be routed in any order to the CLB we can replace the variables in our logic

function. If W is replaced with C, X with D, Y with A and Z with B the logic function

becomes AB + CD̄ which was the same as the HDL code. This result shows that

the function in the CLB is logically equivalent but the inputs were not necessarily

routed in the same way. This finding means that the mask can be used to correctly

predict the logic within a LUT. Even though the routing cannot be inferred from this

process, it is still possible to understand the logic function that a LUT is replicating

based solely on the bitstream.

3.6 Bitstream Modification Attack

A bitstream modification attack was performed using the information gained from

reverse engineering how the configuration information for a LUT was stored. The

goal was to simulate an attack where an adversary intercepts a bitstream en route

from the IP designer and the target system. The adversary modifies the bitstream

which is then loaded onto the target system. The process consisted of developing

a simple digital circuit that was synthesized into a bitstream. The bitstream was

loaded onto the target system to confirm that it was working correctly. The design

was then modified by changing the bitstream to produce a new desired behavior and

the modified bitstream was loaded onto the target system. If the new functionality
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could be observed after the modified bitstream was loaded, the attack would be

deemed successful which would also validate that bits identified as controlling the

LUTs were correct.

Experiment Design.

The initial logic function was a simple 4-input OR gate. This OR gate was im-

plemented using HDL operators instead of configuring the LUT directly to ensure

that this was similar to the actual process an IP design would go through. Figure 25

shows the HDL used to generate the 4-input OR gate while Figure 26 shows the LPF

used to locate the design into the correct LUT.

Figure 25. HDL used to generate the OR gate for the bitstream modification.

Figure 26. LPF constraints used to generate the OR gate for the bitstream modification.

The inputs were connected to 4 dip switches using LPF constraints and then the

output was connected to a Light Emitting Diode (LED). After confirming that the

design was functioning correctly on the target system, the bitstream was modified to
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implement a 4-input AND gate using the information gained through reverse engi-

neering the LUTs. Figure 27 shows the values that were replaced in the bitstream in

order to make this change in the LUT in CLB R2C40D. The design was then loaded

onto the target system where the change in functionality was observed and verified.

Figure 27. Indices that were modified to transform an OR gate into an AND gate.

3.7 Bitstream Parser

A bitstream parser was created in order to verify that the information assumed

about the IOBs was correct and that a tool could be created to help protect FPGAs

by inspecting bitstreams prior to loading them onto the FPGA.

Design and Testing.

The bitstream parser was created in python and takes a single bitstream as an

input. The bitstream is transformed into a string of 1’s and 0’s that is then queried

at various points in order to interpret what pins are being utilized and their configura-

tion settings. Listing A.4 shows an excerpt from the script that provides the logic for

parsing information about pin B4 from the bitstream. A number of IF statements are

used to query different sections of the bitstream and then output information about

the bitstream. The reasoning for the IF statements instead of a more advanced parser

using tokenization was based on how the bitstream file is interpreted by the hardware.

The bitstream configures options by directly setting selector values for multiplexers

and is not interpreted in more sophisticated ways. Because of this, simply checking

for combinations of different 1 and 0 patterns at different locations is sufficient for a

parser.
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The parser is able to parse information for 139 of the pins. This includes all

pins in Groups 1 through 4 as well as pin C21 from Group 5. Pins in Groups 1

through 4 all followed very similar patterns and were rather easy to parse. It was

much more difficult to narrow down the location of bits controlling the configuration

options for pins in Groups 5 and 6 however. The increased difficulty is because these

pins did not follow the same patterns as pins in Groups 1 through 4 and had their

information spread throughout the bitstream in locations that could be thousands of

indices apart. Due to time restrictions only a single pin was entered into the parser

in order to show that it is possible to include them in the parser. Although the parser

was partially tested as it was developed, after it was completed it was tested further

to ensure that it would still parse IOBs and their configuration options even if there

were many IOBs that all interacted together. In order to test this the MIL-STD-1553

encoder was used with all pins set to pins that were included in the parser. Their

pullmodes, slew rates, and drive levels were picked randomly and then a bitstream

was generated. Figure 28 shows the pins chosen and their configuration options. Pin

C21 was purposely included to show that the parser would also work on pins from

Group 5 and 6 even though all of them were not included. After the bitstream was

generated it was input to the parser and the results were output to a text file. Results

from this exercise can be found in section 4.4.

After the bitstreams for the IOBs and CLBs were generated, they were then

analyzed in order to find the locations in the bitstream mapping to the various con-

figuration options for each. The IOBs were analyzed in order to locate the bits that

correspond to the pullmode, slew rate, and drive level configuration options as well

as which bits determine whether a pin is an input or output pin. The CLBs were

analyzed in order to find the bits corresponding to the initialization values of the

LUTs. The information from both of these exercises was used to create the bitstream

45



Figure 28. Pins and their configuration options used in the bitstream parser test.

parser and execute the bitstream modification attack.
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IV. Results and Analysis

This chapter describes the results and accompanying analysis for the reverse en-

gineering efforts, bitstream parser, and bitstream modification attack.

4.1 Input/Output Blocks

This section describes the results and analysis of the reverse engineering effort for

the Input/Output Blocks (IOBs).

Pullmode.

The bitstreams related to the pullmode configuration option were analyzed in

groups that corresponded to shared indices of change between bitstreams.

Group 1.

Group 1 consisted of 86 pins with changes at indices 476 or 477. The pins were

sorted based on the smallest index of change found during their comparisons and the

binary from index 0 to 477 for each of the bitstreams related to those pins when set as

inputs was printed to the same file. Since each pin had four corresponding bitstreams

the bitstreams would be printed in the same order for each pin (up, down, keeper,

none) and then a blank line would be printed to signify the beginning of a new pin.

Since the bitstreams were printed along the same indices and in order based on where

changes were occurring in the bitstream, bits in the same column were in the same

location in their respective bitstreams. Thus if there was a common pattern for how

the pullmode was represented it would visually cascade through the resulting file.

Figure 29 shows a selection of this file at the first location of changes with the

1’s replaced with black squares and the 0’s replaced with white space for easier
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viewing. The bits responsible for the pullmode option for each pin are boxed in red.

These bits were determined responsible for the pullmode option because they were

the only locations that change in a regular pattern for each pin in the group. For all

pins in Group 1 pullmode is represented by 2 bits. Up is represented by 00, down by

11, keeper by 01, and none by 10. Additionally, Figure 29 explains the reason that

the relationship between the pullmode values and the bitstream is not immediately

apparent when looking at the hex results of the initial comparison like those shown

in Figure 16. The pullmode bits for each of the pins shown in the image are 34 or

35 bits apart from each other. The bitstream does not abide by byte boundaries so

the hex values representing the same pullmode option is different for different pins.

Instead the bitstream uses its own boundaries denoted by 1’s after a certain number

of bits. In Group 1 these boundaries are 34 or 35 bits apart. The bits within the

boundaries correspond to options related to the same pin.

Figure 29. Selection of bitstreams related to the pullmode configuration of group 1
input pins with 1’s replaced with black space and 0’s replaced with white space.

After the locations of the bits responsible for each of the pins pullmodes were lo-

cated, a file similar to the one in Figure 29 was created but instead used the bitstreams

generated when the pins were set as outputs. This file was created to provide an-

other data set to verify that the locations determined for the pullmode were correct.

Figure 30 shows the same selection as Figure 29, but from the bitstreams related
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to the pullmode of output pins. Although there are some bits that have changed,

the pullmode bits are in the same locations and are expressed in the same pattern.

This serves as further confirmation that these bits are responsible for the pullmode

configuration option.

Figure 30. Selection of bitstreams related to the pullmode configuration of group 1
output pins with 1’s replaced with black space and 0’s replaced with white space.

Group 2.

Group 2 consisted of eight pins with changes at indices 440404 or 440405. All eight

of these pins were input only which was confirmed by error messages when trying to

generate bitstreams with these pins set as outputs. The binary for these pins was

printed in much the same way except the indices ranged from 439980 to 440405.

Figure 31 shows a selection of this file with the 1’s replaced with black space and

the 0’s replaced with white space. The bitstreams are printed in the same order in

that the first bitstream in any group of four relates to pullmode up, the second to

pullmode down, the third to pullmode keeper, and the fourth to pullmode none. The

middle bits of the file have been removed in order to show all eight of the pins in the

same file, designated by the three ellipses in the middle of the image.

Once again, the pullmode is expressed using two bits however there is a slight

change in the representation from the first four pins to the second four pins. The first
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four follow the same pattern as the pins in Group 1. The second four pins though,

switch the expression of keeper and none. Additionally the other bits expressed in

each pin are mirrored in that they are on the other side of the pullmode bits.

Figure 31. Selection of bitstreams related to the pullmode configuration of group 2
pins with 1’s replaced with black space and 0’s replaced with white space.

Group 3.

Group 3 consisted of eight pins with changes at indices 667296 or 667297. All

eight of these pins were also input only pins similar to Group 2. The binary for these

pins was printed from index 666870 to 667297. Figure 32 shows a selection of the

printed binary with some of the middle bits removed in order to show the pullmode

bits of all eight pins. The ellipses designates a removal of a portion of the file. These

pins behave almost exactly like the pins in Group 2 with pullmode expressed with

two bits and mirroring exhibited between the first four and second four pins.
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Figure 32. Selection of bitstreams related to the pullmode configuration of group 3
pins with 1’s replaced with black space and 0’s replaced with white space.

Group 4.

Group 4 consisted of 34 pins with changes at indices 895054 or 895055. These

pins could be set as both input or output pins like Group 1. The binary for these

pins was printed from index 894630 to 895055. Figure 33 shows a selection of the

printed binary for these pins. Pins in Group 4 behaved very similarly to Group 1 in

that they had 34 or 35 bits in between pullmode bits for subsequent pins and there

was no mirroring exhibited.
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Figure 33. Selection of bitstreams related to the pullmode configuration of group 4

pins with 1’s replaced with black space and 0’s replaced with white space.

Group 5.

Group 5 was the first group of pins that did not follow the pattern of sharing

indices. Instead this group was made up of any remaining pins that had an offset in the

indices of 1, 2, 433, 434, 435. This accounted for 76 of the remaining pins. Since the

indices of change for each pin were very far apart, only the indices directly responsible

for each pin were printed. For example, the first 8 bits in the four bitstreams related

to pin C21 were from byte 67597. This is very far removed from the first 8 bits for

the first four bitstreams for pin D21 which come from byte 76690. This leads to a

slightly different file than the file generated for the previous four groups. Instead

of the changes cascading horizontally through the file, the pullmode bits responsible

should manifest themselves as the only columns that do not change throughout the

file. This is because if the pullmode bits for these pins follow the same pattern as

the previous groups the bits responsible for pullmode should be at the same offset for

each pin. Thus printing out only the indices that change for each pin will lead to the

pullmode bits for each pin being in the same column. Figure 34 shows a portion of

the resulting file. Once again individual bitstreams run horizontally across the image.

A tabbed space between bits of the same bitstream indicates that bitstream is not
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contiguous and the next bits after a tab do not follow directly after the previous bits.

For example, the first eight bits printed in the four bitstreams related to pin C21 all

come from byte 67597. The next 16 bits printed come from bytes 68024 and 68025.

The following eight bits come from byte 68030 and the last 16 bits come from bytes

68457 and 68458. Additionally, since only the indices that changed for each pin were

printed, bits that are in the same column no longer relate to the same location in

their bitstreams. The boxed columns correspond to the bits relating to the pullmode

for each pin. This was determined based on these are the only columns that stay the

same for each pin. Assuming that these pins use a similar pattern of two bits of 00

for up, 11 for down, 10 for keeper, and 01 for none, and that they follow the same

pattern of having the pullmode bits in a similar offset for each pin, these are the only

locations that would fit.
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Figure 34. Selection of bitstreams related to the pullmode configuration of group 5

pins with 1’s replaced with black space and 0’s replaced with white space.54



Group 6.

Group 6 was the second group of pins that did not follow the pattern of sharing

indices. Like Group 5 this group contained pins that shared a common offset in the

values of their indices of change. Any pins with an offset pattern of 427, 428, 433,

860, 861 were added to this group. This consisted of 81 pins. Similarly to Group 5,

the binary of the bitstream files related to these pins was printed only at the indices

of change. Figure 35 shows a portion of the resulting file. The file’s organization is

exactly the same as Group 5 so bits in the same column do not correspond to the same

location in the bitstream. The red boxed areas correspond to the bits responsible for

expressing the pullmode configuration for each of the pins.
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Figure 35. Selection of bitstreams related to the pullmode configuration of group 6

pins with 1’s replaced with black space and 0’s replaced with white space.56



Slew Rate and Drive.

The bitstreams related to the slew rate and drive level configuration options were

analyzed in groups that corresponded to the groups created during the pullmode

reverse engineering sections.

Group 1.

Group 1 consisted of the same 86 pins as Group 1 for the pullmode analysis.

However, not all of the pins in Group 1 exhibited the same patterns when comparing

drive and slew rate. In order to determine how slew rate and drive were expressed,

the binary of the bitstreams from the bitstreams were printed from index 0 through

477. Figure 36 shows these bitstreams generated for pin D19 as well as the values of

other generated bitstreams at the same locations for reference. The four bitstreams

labeled “Input Pullmode” correspond to the four bitstreams generated expressing the

pullmode options (up, down, keeper, none) when D19 was set as an input pin. “Out-

put Pullmode” corresponds to the four bitstreams generated expressing the pullmode

options when D19 was set as an output pin. “Bidirectional Pullmode” corresponds to

the four bitstreams generated expressing the pullmode options when pin D19 was set

as a bidirectional pin. “Just Slew Rate” shows the two bitstreams generated when

only the slew rate option was changed. When comparing it to “Drive and Slew Rate”

which has bitstreams generated for every drive and slew rate combination in the order

4 fast, 4 slow, 8 fast, 8 slow, 12 fast, 12 slow, 16 fast, 16 slow, 20 fast, 20 slow, it is

easy to see that slew rate and drive affect the same bits. The red box encompasses

the only bits that ever change when changing the drive or slew rate for this pin. This

pattern is repeated for the first 8 pins and then the rest of the pins follow a slightly

different pattern.

The other 78 pins follow a very similar pattern except for a one bit difference.
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Figure 36. Comparison of bitstreams generated for pin D19.

Figure 37 shows the same bitstreams as Figure 36 but for Pin D17 instead of D19.

The only difference is the seventh bit from the left inside the red enclosed area. This

bit can change depending on other options such as the pullmode so it is not considered

when trying to discern the slew rate or drive. The rest of pins in Group 1 follow this

pattern.

58



Figure 37. Comparison of bitstreams generated for pin D17.

Group 2 and Group 3.

Group 2 and Group 3 are input only pins and thus they have no drive level and

their slew rates are always fast.

Group 4.

Group 4 consisted of the same 36 pins that were in Group 4 for the pullmode

analysis. All pins in this group followed the same pattern that is demonstrated in

Figure 38. Figure 38 has the same format as the previous figures with four bitstreams
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for the four pullmode values for both pin T16 set as an input and an output followed

by the 20 permutations of drive and slew rate. Once again the seventh bit is ignored

when trying to discern the drive and slew rate of the pins.

Figure 38. Comparison of bitstreams generated for pin T16.

Group 5 and Group 6.

Group 5 and 6 did not follow the same patterns as Groups 1 and 4 so discerning

the slew rate and drive level were much more difficult. In the interest of time, only

one pin was reversed and tested to show that it was possible to discern the slew rate

and drive for pins in these groups.

Pin C21 which was the first pin in Group 5 during the pullmode analysis was picked

to be the pin that was reversed. Once again the binary for the pin was printed at the

indices that changed between different slew rates and drive levels. Figure 39 shows
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the indices that changed when the drive level and slew rate were changed. The binary

at these indices was then printed and compared for each of the 10 bitstreams. Using

knowledge discovered during analysis of the Configurable Logic Blocks (CLBs) which

showed checksum bits were represented by two adjacent bytes all possible checksum

bits were eliminated and then the remaining indices were printed. This resulted in

Figure 40. The boxed bits are the bits that are used to discern the slew rate and

drive level of any bitstream using pin C21.

Figure 39. Indices related to changing slew rate and drive for pin C21

Figure 40. Comparison of bitstreams generated for pin C21.
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Drive and Slew Rate Takeaways.

Unlike pullmode which used two bits for every pin in order to specify the value

of that configuration option, drive and slew rate influenced the same bits and thus

needed more bits in order to express the options. Additionally, certain drive levels

and slew rate combinations were expressed using the same bit combinations in the

bitstream. This suggests that those combinations are equivalent at the hardware level.

In order to test this hypothesis and ensure that it was not a mistake in attributing

which bits represented the drive level and slew rate, the bitstreams were compared.

Figure 41 shows the result of the comparison between a bitstream with pin T15

using a 8 milliamp (mA) drive level and fast slew rate called t158fast.bit and

another bitstream with pin T15 using a 12 mA drive level and a slow slew rate called

t1512slow.bit. The comparison script produces a blank output meaning there are no

differences between the two bitstreams. This shows that the hardware representations

are most likely equivalent.

Figure 41. Comparison of two bitstreams for pin T15 showing there was no difference
between the 8 mA drive level with fast slew rate and the 12 mA drive level with slow
slew rate.

Input/Output.

The analysis for the portions of the bitstream controlling whether a pin was an

input or output was done using the bitstreams previously generated for the previous

sections that were then compared to some additional bitstreams where the pins were

set as bidirectional. The bitstreams were printed at the same indices that were printed

when analyzing the pullmodes. Figure 42 shows an excerpt from the file generated
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that reveals the input, output, and bidirectional configuration options for the pin

D19. The first 4 bitstreams running horizontally from left to right show the four

pullmode options (up, down, keeper, none) for pin D19 when set as an input. The

next four show the same pullmode options but for pin D19 set as an output. The

last four show the same pullmode options but for pin D19 set as bidirectional. The

bits enclosed by the red, leftmost box are bits in the location that signify input. The

bits enclosed by the blue, rightmost box signify output. Bitstreams that have both

of these bits exercised high signify bidirectional.

Figure 42. Portions of bitstreams related to indices controlling input, output, and
bidirectional options for pin D19.

This approach did not work for all pins however because there were certain pins
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that did not have a single bit that only specified input. Instead these pins were

checked to see if there were any options that were specified that would classify them

as an output such as drive level and slew rate. If there were, they were then checked

for bits that could possibly signify them as bidirectional. Figure 43 shows an example

of one such pin. Figure 43 has its bitstreams organized in the same fashion in that the

first four were all generated with pin D17 set as an input, the next four with D17 as

an output, and the last four with D17 as bidirectional. The bits inside the rightmost

blue rectangle were all checked and if they were 000010000 the pin was recognized

as an input. If there was any other combination there the pin was either an output

or bidirectional. From there the bits inside the leftmost rectangle were checked. If

those bits were “1101” the pin is specified as bidirectional and if they were not the

pin was specified as an output pin. This approach works well for most cases but

can have difficulty discerning between bidirectional keeper and output keeper pins.

However, this makes sense in some regards because of what is physically happening

during those two cases. The keeper value for pullmode drives the pad to the last logic

state. Since the logic drives the pad to the last logic state regardless of whether that

state was an input or output the hardware will look the same for supporting both

inputs and outputs.
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Figure 43. Portions of bitstreams related to indices controlling input, output, and

bidirectional options for pin D17.

4.2 Configurable Logic Blocks

This section describes the results and analysis of the reverse engineering effort for

the CLBs.

Single Look Up Table Reversal.

When comparing a set of bitstreams with different configuration options for the

same Look-Up Table (LUT), there are between 6 and 8 bytes that change within

the bitstream. The variation in the numbers of bytes changing has to do with the
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bitstream not abiding by byte boundaries. There are 16 indices that correspond to

the 16 bit initialization value that the LUT is configured to and 32 bits that act as

some sort of checksum on those configuration bits. The configuration information

however, is slightly encoded. If the initialization value of the LUT is considered as

a 16 bit binary number, the indices are negated in that 1’s are replaced with 0’s

and vice versa. Additionally, the 16 bits are not placed next to each other. They

are spread across 2 to 4 bytes that can be 100’s of indices away from each other in

the bitstream. The bits responsible for encoding the configuration information were

discerned by analyzing the differences between the individual bitstreams.

Figure 44 and Figure 45 show an example of this process. Each line in the files

correspond to a bitstream for the same LUT that was initialized to different values.

Figure 44 shows the first 16 bitstreams and Figure 45 shows the next 15 bitstreams all

for the same LUT. The four values on the left show the hex representation of the 16 bit

value the LUT was initialized to. The indices enclosed in red boxes correspond to the

1’s, 2’s, 4’s, 8’s, etc place locations of the corresponding hex value. This is observed

by comparing which indices change from line to line. For example, the 1’s place for

the first hex value was confirmed by comparing the 0002 and 0003 initialization value

lines. All of the indices in the last 16 indices do not change in a regular manner so

they can be ignored. These would eventually be confirmed as a checksum on the

configuration value while performing a bitstream modification attack. However, the

change from 0002 to 0003, has a 0 in the same location that the 0001 line has one.

This can also be confirmed by comparing the 0004 and 0005 line, or any other line

where the binary representation would only be changed in the 1’s place. This process

can be repeated for the rest of the configuration values. After the completion of this

process many of the remaining bitstreams can be removed to show the “mask” or

the indices that encode the 16 bit initialization value for a LUT. Figure 46 shows the
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“mask” for LUT R2C40D. This process can then be completed on the rest of LUTs

on the board to get the masks for each of them.

Figure 44. Bitstreams from a Look Up Table 1 in Configurable Logic Block R2C40D
with different configuration values.

Figure 45. Continuation of bitstreams from a Look Up Table 1 in Configurable Logic
Block R2C40D with different configuration values.
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Figure 46. Mask for R2C40D Look Up Table 1.

4.3 Bitstream Modification Attack

Modification Results.

The original 4-input OR gate design was loaded onto the board and the correct

functionality was observed. On this board, the Light Emitting Diodes (LEDs) are

off when they are driven high. Figure 47 shows a subset of the states for the OR

gate showing that the LED correctly lights up when the input is 0000 and the light

is off for any other input. The red boxed areas correspond to the bits related to

configuring the LUT while the indices boxed in blue correspond to the checksum

bits. These bits were identified as some sort of checksum when trying to load the

modified bitstream onto the target system. The programmer tool was capable of

detecting modifications and would either return a file invalid report or xcf reader

error. The xcf file is a configuration file used by the programmer which contains

information about the device, data files targeted, and the operations to be performed

[13]. However, when these bits were replaced with the checksum bits previously found

when reverse engineering the mask, the programmer accepted the file. Figure 48

shows the target system after the modified bitstream was loaded. This shows that

the circuit is displaying the intended behavior of an AND gate. The LED is correctly
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on in every state except when the input is 1111. This shows that the correct behavior

is being exhibited after loading the modified bitstream onto the target system so the

modification attack is a success.

Although the presence of the checksum bits increases the difficulty of the modifi-

cation attack and using pre-synthesized checksums may not be feasible, the checksum

can be defeated. For simple modifications the checksum can be brute forced since the

indices checked by the various checksums are known. The other option is to reverse

engineer the checksum algorithm. This can be done by running either the program-

mer or the Lattice Diamond software through a debugger to observe the operations

responsible for calculating or checking the checksum. This method has been used in

a very similar scenario where the encryption scheme on the Stratix II and Stratix III

were uncovered making it highly applicable [22].

Figure 47. Various dip switch states showing the correct function of an OR gate.
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Figure 48. Various dip switch states showing the correct function of an AND gate after

a bitstream modification attack.

4.4 Bitstream Parser

Figure 49 shows the result of the parser. Every pin was accurately detected and

all configuration options were correctly identified. This shows that the information

deduced about the IOBs in previous sections was correct and the bitstream parser can

be used to identify components used in a design by strictly querying the bitstream.

The parser could also be expanded to include LUT information but that informa-

tion was not included due to time constraints. Given that this parser can correctly

identify components used in a design, it can be used to protect Field Programmable

Gate Arrays (FPGAs). Consider the case where the owner of the FPGA is getting

their designs from a third-party who is unwilling to disclose the source code. The

owner can parse the design and save the output before uploading the bitstream. Then

when an upgraded design is given to the owner they can parse the new bitstream and

compare the outputs. In cases where additional input or output ports are used with-

out prior reasoning given, the owner can discuss the changes with the third-party

designer to ensure there are no covert channels or data leakage. Additionally, if the

LUT information is added to the parser more data about the bitstreams including

percentage of LUTs used, or even the logic in each of the LUTs could be provided to
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Figure 49. Results of testing the parser to parse a bitstream using pins with a variety
of pullmodes, slew rates, and drive levels.

try to detect malicious hardware.

4.5 Comparison To Other Reverse Engineering Attempts

Although there have been a number of other attempts focused on reverse engi-

neering FPGAs, this research has some key differences. This is the first research to

the author’s knowledge that focuses on a Lattice Semiconductor FPGA. Researchers

in the past have mostly focused on Xilinx FPGAs [21, 2, 6], with less work focused
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on Altera FPGAs [21, 22]. Additionally, there are key differences in the methods

used to reverse engineer the bitstream formats. [21, 2, 6] all take advantage of the

XDL and XDLrc files. The XDL file is a text file that is equivalent to the Native

Circuit Description (NCD) file. The XDL and NCD files can be converted between

each other and the XDL file gives a low-level description of the mapped and routed

circuit internal details on the FPGA. The XDLrc file gives the overall internal detail

information of the FPGA chip. This research does not make use of these file formats

because they are specific to Xilinx FPGAs. Instead this research uses the Lattice

Preference File (LPF) and Hardware Description Language (HDL) modifiers in order

to modify low level details on the FPGA. [22] also makes use of a debugger in order

to run the Quartus II program which allowed them to see exactly what actions the

software was taking and the register values as the program was running. This ap-

proach was not used because it was faster to generate and analyze bitstreams in the

way that was presented. However, their method could be used to solve the algorithm

for the checksum bits found within the FPGA.

4.6 Overall Analysis

Various configuration options for IOBs and CLBs were mapped to their corre-

sponding locations in the bitstream. For IOBs the pullmode options was successfully

mapped for all 295 pins. Slew rate, drive level, and whether a pin was an input or

output were mapped for all pins in Groups 1 through 4 and one pin in Group 5 was

mapped to show that it was possible. For CLBs the location of bits specifying the ini-

tialization values for the LUTs was mapped for a few LUTs to show that the method

was sound. However, in the interest of time not all LUTs were reverse engineered.

The information gained from the reverse engineering process was then used to cre-

ate a bitstream parser that accurately parsed IOB information for all pins in Groups
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1 through 4 and one pin in Group 5. Additionally, a bitstream modification attack

was executed to show the masks for the LUTs were correct.
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V. Conclusion

This chapter summarizes the goals (Section 5.1), conclusions (Section 5.2), con-

tributions (Section 5.3) and future work (Section 5.4) of the research presented, and

concludes with final recommendations (Section 5.5).

5.1 Motivation and Research Goals

Field Programmable Gate Arrays (FPGAs) are present in numerous industries

including avionics, Industrial Control Systems (ICSs), and automobiles. These FP-

GAs are configured using a bitstream that has little to no inherent security measures.

The presence of a sophisticated bitstream modification attack could affect nearly all

FPGAs and could have drastic consequences both financially and physically. The

goal of this research is to show that knowledge about a bitstream gained through re-

verse engineering can be used to create a parser to detect configuration options used

in a design by strictly querying the bitstream possibly detecting malicious changes.

Additionally, this knowledge can be used to execute a bitstream modification attack

that interacts with the original design.

5.2 Conclusions

The research conclusions presented in each chapter are addressed here. First

Chapter III presented the methodology used to reverse engineer portions of the Lat-

ticeECP3 LFE3-35EA-8FN484C bitstream. This process utilized no sophisticated

third-party tools, instead relying solely on included functionalities of the Lattice Dia-

mond tool and scripts written for comparison and analysis. Regarding the Input/Out-

put Blocks (IOBs) the pullmode, slew rate, and drive level configuration options were

successfully mapped to their counterparts in the bitstream. Additionally, portions
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of the bitstream controlling whether a pin was utilized as well as if it was an input,

output, or bidirectional were found. For the Configurable Logic Blocks (CLBs), the

location of the bits representing the initialization values for a number of the Look-Up

Tables (LUTs) were found. Additionally, these locations were tested to show that

the logic implemented in a particular LUT could be found by noting the values at

these bits and reconstructing a truth table. This process should be repeatable for any

FPGA that utilizes the Lattice Diamond tool to synthesize its bitstreams.

In Chapter IV the results of the reverse engineering process were further shown to

be reliable through the use of a parser that could output configuration information for

a given bitstream and through the successful test of a bitstream modification attack

which changed the initialization values in a LUT used in a Hardware Description

Language (HDL) design. The parser was able to accurately detect the pins used and

their configuration options for a variety of designs including a large MIL-STD-1553

encoder. The bitstream modification attack was a success and a 4-input OR gate

that controlled the output to an Light Emitting Diode (LED) was transformed into

a 4-input AND gate by strictly modifying the bitstream.

5.3 Contributions

This research presents another reverse engineering process, different from [21, 2,

6, 22], for a brand of FPGA not explored in past research. Additionally it shows that

bitstreams can be analyzed prior to loading to detect differences from the specified

design which could help to detect modifications due to an adversary. Finally, the

success of the bitstream modification attack shows that modification attacks that

affect the original design are possible and will still load onto the target FPGA.
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5.4 Future Work

This research has significant potential for future work. The following sections

detail additional work that could potentially improve detection of malicious hardware

design or bitstream modification or perform more sophisticated attacks on FPGAs.

Switching Matrix.

Reverse engineering the switching matrix was not attempted due to time con-

straints. However, if the switching matrix could be fully or partially reverse en-

gineered, the designs encoded in the bitstreams could be understood to a higher

degree. Without the switching matrix it is impossible to know how the CLBs and

IOBs are connected to implement the digital logic. This knowledge would allow for

more detailed analysis of bitstreams to detect malicious hardware. However, fully

reversing the switching matrix could also lead to adversaries using the knowledge to

reverse engineer sensitive Intellectual Property (IP).

Further Parser Development.

The parser created could be further developed to include the information about

the LUTs that was not included and additional configuration options. An increase

in configuration options that the parser can detect could lead to higher chances of

detecting malicious hardware that was included in the design or injected into the

bitstream. Also the parser could be expanded to not only identify configuration

information but to also analyze and possibly detect malicious hardware. This would

require the switching matrix to be reverse engineered in order for the parser to be

able to fully parse the digital logic.
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More Sophisticated Bitstream Modification Attacks.

A more sophisticated bitstream modification attack could be attempted that in-

teracts with a more complex design. The bitstream modification attack demonstrated

was very simple and more of a proof of concept. Demonstration of an attack that

changes a complex design possibly used in ICSs, or automobiles that either leaks

data or results in dangerous behavior could be meaningful to show the validity of

that threat.

Automated Reverse Engineering.

Although the analysis in the reverse engineering process for this research was

largely manual it seems likely that the process could be automated. An automated

system for reverse engineering bitstreams could be created using the information

gained from this reverse engineering endeavor and then utilized on a different FPGA.

This could result in parsers or bitstream modification attacks being developed for

a number of different FPGAs instead of being confined to the FPGA used in this

research.

5.5 Concluding Thoughts and Recommendations

This research shows the value of information gained from reverse engineering the

format of a bitstream. The information can be used for both protection of an FPGA

or to assist in an attack. Before more thorough bitstream parsing tools can be cre-

ated or more sophisticated bitstream modification attacks can be attempted, several

aspects of the future work presented must be addressed. This research presents a first

step towards either of those goals on a system not previously explored in scientific

literature. However, further development is required before an advanced malicious

hardware detection system is created or an advanced bitstream modification attack
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is achieved.
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Appendix A. Scripts

Listing A.1. Example TCL script used to generate bitstreams

set globalcounter 1

#file_path is location of the project folders

set file_path "D:/Users/dance/Documents"

set drive_path "D:/Users/dance/Google Drive/AFIT/Thesis/Bitstream Files"

set output_folder "not_r2c73d_output"

#project_name is the specific folder

set project_name "pullmodetest1"

#name is name of the implementation before the number

set name pullmode

#val1 is starting implementation

set val1 0

#val2 is next implementation

set val2 585

set pattern NONE

set timestamp [clock format [clock seconds] -format {%Y%m%d%H%M%S}]

set firstRun 0

array set pinArray {

1 D19

2 A2

3 A3

4 A4

# Rest of array omitted to save space

}

prj_project open "$file_path/$project_name/$project_name.ldf"

for {set index 147} {$index <= 295} {incr index} {

set count 1

for {set i 1} {$i <= 4} {incr i} {

set systemTime [clock seconds]

puts stderr "Progress globalcount:$globalcounter index:$index

count:$count System time: [clock format $systemTime -format

%H:%M:%S]"

#set current project as active and export bitstream if you want

if { $firstRun == 0 } {

prj_impl active "$name$val1"

set firstRun 1

}

#updating replace value

if {$count == 1 } {

set replace UP

}
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if {$count == 2 } {

set replace DOWN

}

if {$count == 3} {

set replace KEEPER

}

if {$count == 4} {

set replace NONE

}

prj_impl clone "$name$val2" -dir "$name$val2" -impl "$name$val1"

-copyRef

prj_impl active "$name$val2"

set filename

"$file_path/$project_name/$name$val2/source/$project_name.lpf"

set temp $filename.new.$timestamp

set in [open $filename r]

set out [open $temp w]

#Loop through lines of the file

while {[gets $in line] != -1} {

#do all changes here

if {[regexp {LOCATE COMP "b" SITE} $line] == 1 } {

puts $out "LOCATE COMP \"b\" SITE \"$pinArray([expr {$index +

1}])\" ;"

} elseif {[regexp {IOBUF PORT} $line] == 1 } {

puts $out "IOBUF PORT \"b\" PULLMODE=$replace IO_TYPE=LVCMOS25

;"

} else {

puts $out $line

}

}

#Close file access

close $in

close $out

#write the new LPF file

file rename -force $temp $filename
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#Synthesize the bitstream

if { [catch {

prj_run Export -impl $name$val2 -task Bitgen

#move bitstream to bitstream folder

file rename -force

"$file_path/$project_name/$name$val2/${project_name}_$name$val2.bit"

"$drive_path/$output_folder/$pinArray([expr {$index +

1}])$replace.bit"

} err] } {

puts stderr "Error encountered: $err $pinArray([expr {$index + 1}])"

}

incr globalcounter

set val1 $val2

incr val2

incr count

}

}

prj_project close
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Listing A.2. Bitstream comparison program

//C program for comparing different bitstreams

//Note safety considerations have not been implemented

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <stdlib.h>

#define SKIP_HEADER 1

int main(int argc, char *argv[])

{

//Get paths of files to compare

if(argc < 3){

printf("Not enough args(3)\n");

return 0;

}

unsigned char headerEnd[] = {0x00, 0xff, 0xff, 0xff, 0xff, 0xbd, 0xb3,

0x47, 0x00, 0x00, 0x00, 0xc2, 0x04, 0x80, 0x80, 0xff, 0xff, 0xff,

0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,

0xff, 0xff, 0xff, 0x44};

//Read files into buffers

FILE *fp;

size_t sz;

size_t sz1;

fp = fopen(argv[1],"rb");

fseek(fp,0L, SEEK_END);

sz = ftell(fp);

rewind(fp); //pretty sure this is unneeded

fclose(fp);

unsigned char (*buffer_array)[sz] = malloc(sizeof(double[argc-1][sz]));

unsigned char tempBuffer[sz];

int offset;

int found = 0;

if(SKIP_HEADER == 1){

for(int i = 1; i < argc; i++){

fp = fopen(argv[i],"rb");

fread(tempBuffer,sz,1,fp);
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for(int j = 0; j < sizeof(tempBuffer);j++){

if(found == 1){break;}

for(int k = 0; k < sizeof(headerEnd); k++){

if(tempBuffer[j+k] == headerEnd[k]){

if(k == sizeof(headerEnd -1)){

offset = j;

found = 1;

break;

}

}else{

break;

}

}

}

found = 0;

rewind(fp);

fseek(fp,offset,SEEK_SET);

sz1 = sz - offset;

fread(buffer_array[(i-1)],sz1,1,fp);

fclose(fp);

}

}else{

for(int i = 1; i < argc; i++){

fp = fopen(argv[i],"rb");

fread(buffer_array[(i-1)],sz,1,fp);

fclose(fp);

}

}

for(int i = 0; i<sz1; i++){

for(int j = 1; j< argc - 1; j++){

if(buffer_array[0][i] != buffer_array[j][i]){

printf("%8d\t",i);

for(int k = 0; k < argc - 1; k++){

printf("%02x\t",buffer_array[k][i]);

}

printf("\n");

break;

}

}

}

printf("\n");

return 0;

}
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Listing A.3. Program for printing binary from bitstreams

//C program to take in bitstreams and output the binary of them

//May also include option to output hex aswell

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define SKIP_HEADER 1

#define HEADER_LENGTH 334

#define BYTE_TO_BINARY_PATTERN "%c%c%c%c%c%c%c%c"

#define BYTE_TO_BINARY(byte) \

(byte & 0x80 ? ’1’ : ’0’), \

(byte & 0x40 ? ’1’ : ’0’), \

(byte & 0x20 ? ’1’ : ’0’), \

(byte & 0x10 ? ’1’ : ’0’), \

(byte & 0x08 ? ’1’ : ’0’), \

(byte & 0x04 ? ’1’ : ’0’), \

(byte & 0x02 ? ’1’ : ’0’), \

(byte & 0x01 ? ’1’ : ’0’)

int main(int argc, char *argv[])

{

//Get paths of files to compare

int hexout = 0;

int binaryout = 0;

int commaCount = 0;

if(argc == 1){

printf("1st argument either h for hex, b for binary, or B for both\n");

printf("2nd argument is the indices list \n"

"For example 0,440 would print from index 0 to index 440 \n"

"0,440,500,700 would print from 0 to 440 and then 500 to 700\n"

"There is no error checking on the indices so make sure you input them

correctly\n"

);

printf("Arguments after this are the names of bitstreams\n");

return 0;

}

//Using Strcmp which is dangerous so becareful with this if using in end

tool

if(strcmp(argv[1],"h") == 0){

hexout = 1;

}else if(strcmp(argv[1],"b") == 0){

binaryout = 1;

}else if(strcmp(argv[1],"B") == 0){

hexout = 1;
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binaryout = 1;

}

//Turn indices list argument into list of indices

char* indicesList;

indicesList = (char *) malloc(strlen(argv[2]) + 1);

strcpy(indicesList,argv[2]);

char* token;

token = strtok(indicesList, ",");

while(token != NULL){

commaCount++;

token = strtok(NULL,",");

}

int indicesArray[commaCount];

int counter = 0;

token = strtok(argv[2],",");

while(token != NULL){

indicesArray[counter] = atoi(token);

token = strtok(NULL,",");

counter++;

}

unsigned char headerEnd[] = {0x00, 0xff, 0xff, 0xff, 0xff, 0xbd, 0xb3,

0x47, 0x00, 0x00, 0x00, 0xc2, 0x04, 0x80, 0x80, 0xff, 0xff, 0xff,

0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,

0xff, 0xff, 0xff, 0x44};

//Read files into buffers

FILE *fp;

size_t sz;

size_t sz1;

fp = fopen(argv[3],"rb");

fseek(fp,0L, SEEK_END);

sz = ftell(fp);

rewind(fp); //pretty sure this is unneeded

fclose(fp);

unsigned char buffer_array[(argc - 3)][sz];

int offset;

int found = 0;

if(SKIP_HEADER == 1){

for(int i = 3; i < argc; i++){

fp = fopen(argv[i],"rb");
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unsigned char tempBuffer[sz];

fread(tempBuffer,sz,1,fp);

for(int j = 0; j < sizeof(tempBuffer);j++){

if(found == 1){break;}

for(int k = 0; k < sizeof(headerEnd); k++){

if(tempBuffer[j+k] == headerEnd[k]){

if(k == sizeof(headerEnd -1)){

offset = j;

found = 1;

break;

}

}else{

break;

}

}

}

found = 0;

rewind(fp);

fseek(fp,offset,SEEK_SET);

sz1 = sz - offset;

fread(buffer_array[(i-3)],sz1,1,fp);

fclose(fp);

}

}else{

for(int i = 3; i < argc; i++){

fp = fopen(argv[i],"rb");

fread(buffer_array[(i-3)],sz,1,fp);

fclose(fp);

}

}

int startIndex;

int endIndex;

if(hexout == 1){

// printf("outputing Hex\n");

for(int j = 0; j< argc - 3; j++){

for(int k = 0; k < (sizeof(indicesArray)/sizeof(indicesArray[0])/2);

k++){

startIndex = indicesArray[2*k];

endIndex = indicesArray[2*k+1];
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if(endIndex > sz1){

endIndex = sz1;

}

for(int i = startIndex; i<=endIndex; i++){

printf("%02x",buffer_array[j][i]);

}

printf("\t");

}

printf("\n");

}

}

if(binaryout == 1){

//printf("outputing Binary\n");

for(int j = 0; j< argc - 3; j++){

for(int k = 0; k < (sizeof(indicesArray)/sizeof(indicesArray[0])/2);

k++){

startIndex = indicesArray[2*k];

endIndex = indicesArray[2*k+1];

if(endIndex > sz1){

endIndex = sz1;

}

for(int i = startIndex; i<=endIndex; i++){

printf(BYTE_TO_BINARY_PATTERN,BYTE_TO_BINARY(buffer_array[j][i]));

}

printf("\t");

}

printf("\n");

}

}

}
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Listing A.4. Excerpt from bitstream parsing script

#B4

input = 0

if bitstream[3719] == "1":

#print(bitstream[464:472])

print("B4")

if bitstream[3715:3724] == "000010000":

print("Input")

input=1;

else:

if bitstream[3702:3707] == "1101":

print("Bidirectional")

else :

print("Output")

print("Pull-mode: ",end=’’)

if bitstream[3713:3715] == "00":

print("up")

elif bitstream[3713:3715] == "11":

print("down")

elif bitstream[3713:3715] == "01":

print("keeper")

elif bitstream[3713:3715] == "10":

print("none")

if input == 1:

print("Slew-rate: fast")

print("Drive: N/A")

else:

if bitstream[3715:3721] == "101010" and bitstream[3722:3724] ==

"11":

print("Slew-rate: slow")

print("Drive: 4")

elif bitstream[3715:3721] == "000010" and bitstream[3722:3724] ==

"00":

print("Slew-rate: fast")

print("Drive: 4")

elif bitstream[3715:3721] == "100010" and bitstream[3722:3724] ==

"00":

print("Slew-rate: slow")

print("Drive: 8")

elif bitstream[3715:3721] == "110110" and bitstream[3722:3724] ==

"10":

print("Slew-rate: fast")

print("Drive: 12")

elif bitstream[3715:3721] == "011010" and bitstream[3722:3724] ==
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"10":

print("Slew-rate: slow")

print("Drive: 12")

elif bitstream[3715:3721] == "011110" and bitstream[3722:3724] ==

"10":

print("Slew-rate: fast")

print("Drive: 16")

elif bitstream[3715:3721] == "111110" and bitstream[3722:3724] ==

"00":

print("Slew-rate: fast")

print("Drive: 20")

elif bitstream[3715:3721] == "011110" and bitstream[3722:3724] ==

"00":

print("Slew-rate: slow")

print("Drive: 20")

print()
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